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SECTION   1 
INTRODUCTION 

The prediction of blast wave environments via numerical simulation is one of the 
organizing themes of the work discussed here and it's original motivation. Such 
environments can be categorized as ideal or nonideal, as well as early time (equiv- 
alently, high overpressure) or late time (equivalently, low overpressure). The work 
reported on here is largely based on code technology developed in our preceding 
efforts at modeling high overpressure environments, both ideal and nonideal (using 
thermal layer models) [17]. Our code development efforts over the past few years 
have been directed at extending this technology in the following directions: (1) 
problems involving wave number stiffness which include as a special case nearly in- 
compressible flow, (2) problems for which the incompressible equations themselves 
is appropriate, (3) problems involving source term stiffness and (4) problems in- 
volving strong shock wave propagation in materials with complicated constitutive 
properties. The applications which have focused this work arise largely from very 
late time blast wave environments, especially the problems inherent in the calcula- 
tion of fireball rise. The motivation for our work in area (4) above comes, instead, 
from a desire to understand the effects of high overpressure blast waves on, for 
example, hardened targets or differing soil types. 

If one considers the problem of fireball rise, it is immediately apparent that the 
analogue computational problem is really at least three problems: it's initial for- 
mation, a long intermediate stage in which it begins to rise from a nearly stationary 
position and a late stage in which the local Mach number gradually increases and 
compressibility effects are once again important. For our purposes here, we con- 
sider the first part as solved by our older work. The second stage can be solved 
either by considering an incompressible model and solving the derived equations or 
by developing specialized implicit strategies in the context of a compressible flow 
solver. There is a stronger requirement for the latter approach as the Mach number 
increases at later times. On the other hand, related problems such as the prediction 
of contaminant transport in a battlefield or theatre environment are better handled 
by using an appropriate model with sonic waves eliminated a priori. Accordingly, 
we have worked on both approaches. At the same time, we have especially concen- 
trated on particulate transport and reactive flow in these flow fields, since they are 
critically important inputs (and outputs) for the intended applications. This has 
led to our work on source term stiffness. 



1.1 IMPLICIT-EXPLICIT SCHEMES. 

In our report [17], we discussed the early stages of the development of the Implicit- 
Explicit (I-E) scheme, in particular some one-dimensional inviscid and viscous flow 
calculations, see [10]—[11], and we also presented future tasks. Several studies have 
been completed since and they represent major advances in this area. We start 
with a brief description of these studies. First, Collins has successfully accom- 
plished several objectives that extended the generic I-E methodology; these were 
documented in great detail in his Ph.D dissertation [12]. Some aspects of this work 
were presented at the First European Computational Fluid Dynamics conference, 
see [14]. A summary of the objectives and results of the work carried out by Collins 
[12] and Collins et. al. [14] are given in Section 1.1.1 below. Second, the I-E 
methodology was implemented for flows that are modeled by systems with source 
terms, in particular chemically reacting and dusty gas models, including the cases 
of stiff sources, see [19] and [22]. The results of these studies are summarized in 
Section 1.1.2. below. Third, an early version of the work by Collins et. al (in the 
context of ID flows) was submitted to and accepted for publication recently [13]. 

1.1.1 Zero Mach Number Limit. 

The main objective of the work done by Collins [12] and Collins et al [13] [14] is to 
eliminate the explicit Courant-Friedrichs-Levy (CFL) constraint on unsteady com- 
pressible flow calculations by using a high resolution explicit scheme in conjunction 
with an implicit scheme in such a way that the explicit CFL restriction is miti- 
gated and that the solution retains much of the temporal accuracy provided by the 
explicit scheme. Explosion dynamics provides a particularly challenging example 
where this methodology is needed. There are two phases of interest in these types of 
problems: the initial blast wave and the subsequent cloud rise. Typically, the blast 
wave phase is computed using a high resolution explicit compressible code while the 
cloud rise is simulated with an incompressible code. At late time during the cloud 
rise phase, the Mach number becomes significant once again and can approach one; 
thus violating the assumption of incompressibility. The I-E strategy could be used 
to handle both phases of the problem, and in addition, it offers significant savings 
for just the blast phase of this problem. For example, if the temperature in the 
fireball is too high and the explicit time step of such calculation becomes too small 
for such calculation to be feasible, the scheme would allow for a much larger time 
step without significant degradation in the solution. At late times, the same code 
can be used to compute the cloud rise. As the Mach number in the cloud increases, 
the I-E method will transition continuously to a high resolution explicit scheme. 

The study followed the guidelines stated below: 

(1) Develop an Eulerian implicit-explicit scheme, similar to the one in reference 
[16], which satisfies several design principles (for details, see, e.g., [14]). 

(2) Use the second-order Godunov scheme as the underlying high resolution 
explicit scheme. 



(3) Extend this method to two space dimensions using the unsplit Godunov 
scheme in [7]. 

(4) Provide numerical calculations which demonstrate the feasibility of this 
method. 

The work consists of two parts. In Part I, the method is implemented for the 
special case of one-dimensional inviscid compressible flow where, for convenience, 
a polytropic equation-of-state is used. The methodology can be easily extended 
to gas dynamics with a general equation-of-state using the ideas in [8]. A more 
difficult question is the extension of these ideas to two or three space dimensions; 
this was done in Part II for the two-dimensional case. Implementations for systems 
in higher space dimensions follows directly from the two-dimensional case. 

At first, the implicit-explicit ideas are developed for the special case of linear ad- 
vection in one space dimension; extensions of this linear scalar scheme to handle 
source terms follows. In particular, it is shown that this scheme satisfies the design 
principles, thereby fixing these ideas for extension to nonlinear systems. Also, the 
potential for nonlinear instabilities is recognized and an indication is given as to 
how to handle such instabilities. A nonlinear stability constraint is introduced for 
the method in the special case of a scalar conservation law. Next, the scheme is 
described for systems of conservation laws; the formulae necessary for compressible 
gas dynamics are included. For that case, it is assumed that a sufficiently smooth 
numerical flux function exists. Since Newton's method is used to solve the system 
in one space dimension, a key component of the work in Part I is the introduction 
of an appropriately smooth numerical flux function for the hyperbolic equations. A 
suitable version of the Engquist-Osher flux [6] is used, as modified for systems by 
Bell et. al. [4]. The version used is sufficiently smooth so that the Newton's method 
linearization is well-behaved; in particular, it converges to steady states even in the 
presence of strong shocks. The construction of this flux function, together with 
several approximations that are efficient for practical large-scale applications are 
presented in detail. For the two-dimensional system, an approximation to the 
Godunov flux is used and a nonlinear multigrid technique is applied to solve the 
resulting equations. To conclude the first part, numerical results are presented 
for the one-dimensional case. It is shown that the schemes are able to propagate 
slowly moving shocks and contact surfaces through a Cartesian mesh. Also, the 
scheme's ability to capture a stationary shock in a diverging duct is demonstrated. 
A numerical study is presented which demonstrates second-order accurate steady 

states. 

In Part II, the scheme is generalized to two dimensions using Colella's Corner 
Transport Upwind (CTU) scheme [7] as the underlying explicit scheme. Once 
again, the focus is on the scalar linear advection equation, but this time in two space 
dimensions. The stability results here are far different from the one-dimensional 
case. The scheme of choice, i.e., the one studied in Part I, is unstable when applied 
to the scalar linear advection in two dimensions; therefore, in an effort to find a 



better implicit scheme, a two parameter family of schemes is considered, with the 
same simple structure as the implicit scheme in Part I. A stable scheme is found 
but continuity in CFL number is lost. It is shown that even the stable implicit 
scheme is unstable when applied to the scalar linear advection equation in a hybrid 
mode. Because of this, the focus of attention shifts to the nearly incompressible 
flow application under the constraints that the particle characteristics are always 
handled explicitly (that is the advection part of the flow) whereas only the acoustic 

modes are treated implicitly. 

Next, the truncation error and stability properties of the hybrid schemes are investi- 
gated, as applied to a linear system derived from the isentropic gas dynamic condi- 
tion equations. The analysis is done under the assumption of nearly incompressible 
flow. The stability analysis indicates that, under not very restrictive constraints on 
the advection part of the flow, the original scheme is stable. Very similar results 
are obtained with the unconditionally stable implicit scheme discussed earlier. The 
truncation error analysis verifies the order of accuracy for the hybrid scheme, and 
in particular, verifies second order accurate steady states. It also shows why one 
cannot expect the scheme to work at arbitrarily low Mach numbers, problem for 

all compressible codes [29]. 

Part II is concluded with a presentation of computational results for two problems: 
a doubly periodic shear layer and a simulation of one of the Brown and Roshko 
shear layer experiments [5]. Both of these are examples of unstable, nearly incom- 
pressible flow. These results show that the scheme performs as desired; however, 
the efficiency of the nonlinear multigrid algorithm used in this study (and described 
in detail in [14]) leaves room for improvement. 

To summarize this work we examine the results. The results of the ID cases show 
that explicit high resolution upwind schemes can be smoothly hybridized on a 
mode-by-mode basis with an implicit method so that problems involving localized 
wave speed stiffness and convergence to steady state can be solved without sacri- 
ficing accuracy and resolution for strong wave interactions and energy containing 
modes. Several of the calculations illustrate the importance of replacing the Go- 
dunov flux by the smoother approximate Engquist-Osher flux when the system 
is linearized. Questions involving the optimal choice of an approximate Riemann 
solver and appropriate dissipative mechanisms have not been completely resolved; 
however, a very simple and efficient solver augmented by a small amount of artifi- 
cial viscosity and some additional dissipation at sonic points has been capable of 

handling our test problems. 

The stability results for this methodology in two space dimensions forced us to 
focus Part II on the low speed nearly incompressible flow application. The com- 
putational results for this part demonstrate that the implicit-explicit methodology 
is well suited for this application. The results show that for low Mach number 
flows, the degradation of the solution due to the implicit part of the computation 



is minimal and the high resolution capability of the underlying explicit scheme is 
preserved. Also, since both the implicit and explicit results compare well with 
the incompressible results reported in reference [3], the approximate phase space 
solution and the Godunov flux discussed in detail in [14] appear to be adequate. 
The major drawback with the present implementation of this scheme is the cost of 
solving the nonlinear system. For the current multigrid implementation, calcula- 
tions must be executed at a Courant number of approximately 7 or higher to be 
competitive with the explicit scheme; this corresponds to Mach numbers of 0.1 or 
lower. However, Moo < .1, it is questionable which solution strategy is competitive 
with the explicit code. 

We remark that an attempt was made to accelerate the convergence of the resulting 
nonlinear system of equations by following the preconditioning matrix idea of Shuen 
et al [27]. This idea consists of introducing an extra derivative with respect to 
some pseudo-time; this additional finite difference derivative is premultiplied by 
preconditioning matrix and in the limit of steady-state with respect to pseudo- 
time the solution to the new system converges to the solution of the original (real) 
time-dependent system. The implicit-explicit method was rewritten following the 
methodology of [27] with the hope that the preconditioning matrix would accelerate 
the overall convergence of the scheme. It turned out that this idea did not work 
well for the I-E scheme; not only the performance did not improve but for some 
runs it resulted in diverging solutions. This behavior may be attributed to two 
different reasons: first, the analysis of [27] is dependent upon the finite-difference 
operator and the results quoted in [27] do not carry over to the I-E algorithm 
automatically, and second, it is not at all clear that the idea should improve time- 
dependent solutions in the first place; it is proven to work well for steady-state 
solutions but there does not exist enough evidence that the acceleration carries 
over to the time-dependent solutions. 

We expect that there are many possible applications of the I-E approach taken 
here. In some of them (e.g., nearly incompressible flow) an obvious competing ap- 
proach is to resolve the stiffness problem at the level of the governing equations by 
deriving a new system, asymptotically valid in the appropriate limit, which is not 
stiff and developing numerical methods for the limit system (e.g., the incompress- 
ible Euler equations). However, it should be noted that it is not known whether or 
not this approach is valid in all situations; for example, in the case of magnetohy- 
drodynamics in the limit as the Alfven number approaches zero, it does not appear 
to be possible to derive a limiting set of equations, see [18]. Also, it is usually more 
natural to derive well-posed initial-boundary value problems and design numerical 
boundary conditions for the original set of equations than for the reduced set in 
the appropriate approximation. Another class of problems for which our approach 
is an obvious candidate arises in atmospheric flows. Here, in addition to the Mach 
number varying widely, low amplitude gravity waves are present and restrict the 
time step considerably; eliminating the sound waves through the implementation of 
reduced equation sets can lead to numerical difficulties in specifying open boundary 
conditions. 



The application of shock wave - boundary layer interaction, which we were not 
concerned with in this study, requires the hybrid scheme to transition from a fully 
explicit scheme in the free stream, to a hybrid scheme at the top of the boundary 
layer and possibly to a fully implicit scheme close to the wall. The stability results 
in Part II indicate that the transition to a fully implicit scheme in a two dimensional 
flow may lead to instabilities. These instabilities may never arise in this application 
for the following reasons: the flow in the boundary layer near the wall is essentially 
one-dimensional and from the analysis we know the flow has to be fully two dimen- 
sional for the instabilities to occur; and it may be the case that the viscous terms 
stabilize the scheme in this region. We have performed preliminary calculations 
using a viscous extension of the 1-dimensional method from Part I and directional 
operator splitting for shock wave - boundary layer interactions; the results indicate 
that our approach will be useful in this context. The implementation of a viscous 
extension of the unsplit code from Part II will be a topic for future work. 

1.1.2 Chemically Reacting and Dusty Gas Flows. 

The objective of this research effort is the efficient and accurate computation of 
reactive multiphase flows at both high and low Mach numbers (e.g., boundary 
layers, combustion, among others). We believe that the I-E strategy, when coupled 
with mesh refinement approaches and methods for the stable computation of stiff 
source terms, can be a valuable tool in this field. We start with the description of 
preliminary study reported in [19]. 

The purpose of the study in [19] was to further advance and validate the I-E 
approach by investigating the effects of including source terms representing mul- 
tispecies reacting flows. The integration scheme for the sources was done either 
fully explicit or using the trapezoidal rule, but in both cases the sources were not 
projected onto left and right states in the setup of initial data for the flux function 
approximation (or Riemann problem). Several ID results were obtained; converged 
solutions for variable area duct, for both smooth and shocked flows are demon- 
strated using an extension of the Newton iteration methodology of Collins et al 
[14]. Also, an appropriate extension of the unsplit I-E scheme has been developed 
and implemented for 2D reactive flow with periodic boundary conditions; the new 
scheme was used for problems analogous to the nonreactive results discussed above 
for the zero Mach number limit. 

For the ID calculations we find that the performance criteria depend on the degree 
of source term stiffness. In particular, a fairly low CFL maximum is required 
(that is, to obtain converged solutions) during parts of the calculations. Unlike the 
ID calculations, it is found that trapezoidal rule differencing for the source terms 
is required for stability for the 2D problem solved. In view of these results we 
decided to explore more complex treatments of stiff source terms and, especially, 
the coupling between wave speed and source term stiffness. These issues were 
addressed in the work reported in [22] and described next. 



The work discussed here is concerned with the problem of source-term stiffness 
which arises in, e.g., reactive flow and/or two-phase flow. We studied several new 
innovative approaches due to Yee et al [23] [25] [30], Pember [26] and the present 
authors. Several ideas were then applied in the context of the Godunov-like, hybrid 
implicit-explicit scheme so that the latter methodology was successfully extended 
to treat both stiff and non-stiff, nonequilibrium, chemically reacting flow fields. 
This is done using a completely unsplit operator: both the two-dimensional and 
the source terms integrations are fully coupled. For the fully explicit mode of the 
scheme, the procedure used allows for the formal retention of second-order accuracy 
of the numerical scheme. 

The stiff and nonstiff solvers developed here were used to solve two unsteady flow 
cases: a doubly periodic, unstable, low Mach number shear layer flow and the sim- 
ulation of the evolution of a shock wave due to the transverse injection of fluid 
into supersonic flow. In both flow fields, and for several reaction models (i.e., 
frozen air flow, air with only vibrational relaxation of molecules and a complete 
chemically reacting, 5-species air model), the numerical results prove that the ex- 
tended implicit-explicit methodology can handle complex flow problems and com- 
pute high-resolution details. We found that the standard non-stiff approach cannot 
handle stiff problems; even upon starting up with very small integration steps, the 
solution becomes unstable and eventually breaks down. 

We have also shown via numerical experimentation that after the resolution of 
the initial large gradients in stiff flow fields, using the fully explicit mode of the 
solver, the solution remains stable in the neighborhood of the thermodynamical 
equilibrium state and can be advanced in time using the implicit-explicit mode; 
although the I-E mode does not theoretically provide the same order of accuracy, 
it may be used due to its relative efficiency. Therefore the stiff I-E solver can handle 
stiffness arising both from sources and wave speeds. 

None of the above reports contain our work on dust modeling. The code described 
here contains most of the modules needed to model stiff dusty gas flows. Although 
similar in many respects to the problems of reactive flow, there are additional nu- 
merical difficulties which have been addressed in the course of our code development 
work. Future tasks are to optimize the code, specifically by searching for and im- 
plementing faster nonlinear solvers in the implicit modes of the predictor and the 
corrector steps (e.g., multigrid methodologies, see [12]). Also, the importance of 
the Riemann problem solver (and related numerical models) needs to be studied in 
conjunction with the solution of stiff, close-to-equilibrium thermodynamic states. 



1.2 NONCLASSICAL GAS DYNAMICS. 

1.2.1 Nonconvex EOS. 

The motivation for the study of 2D unsteady isentropic gas dynamics (2x2 system) 
with a nonconvex equation of state (EOS), as well as the results of the work that was 
carried out during 1989-1991, are described in detail in [17], [20]. A brief summary 
of the main objectives follows: first, to simulate the a-e phase transition in Iron 
which occurs at about 137 kilobars and has been extensively studied; second, to 
test several variants of the second-order Godunov scheme in the simple 2x2 setting, 
but for materials with nonconvex EOS. 

The nature of the above mentioned study restricted us to using very particular 
nonconvex EOS's. We used two models. The first was obtained by using simple 
polytropic gas relations such as p(v) — v"", where p is the pressure, v is the spe- 
cific volume, and 7 is the ratio of specific heats, and joining two (locally) convex 
disjoint "pieces" of the above curve by adding a Cfi° function so that the resulting 
nonconvex EOS has two isolated zeroes in the second derivative and the function 
is monotonically decreasing. The second model was based on experimental data of 
the two distinct a-e phases of Iron along the isotherm T = 295° K; since the EOS 
curves describing the two phases do not cross in the transition region, we carefully 
constructed a smooth joining (transition) curve which consists of a fifth order poly- 
nomial with second order contact at the end points. As a consequence, and for 
both models, the Riemann problem defined for any two initial states on the EOS 
curve has a unique solution, composed of both nonclassical and classical waves, 
that can be theoretically predicted (see, e.g., [28]) and numerically constructed; we 
point out that such solutions are complex, tedious to program and very expensive 
to compute exactly. 

The results of the above mentioned work are given briefly here. First, we developed 
robust and accurate numerical schemes for the solution of problems described by 
2x2 model equations with a nonconvex EOS; specifically, we found that the gen- 
eral methodology of Bell-Colella-Trangenstien (BCT) [4] yielded excellent quality 
results at acceptable expense compared to other Godunov-like schemes. Second, 
we conducted a limited study of self-similar, oblique shock wave reflections in two 
space dimensions. We have found new and quite exciting phenomenology resulting 
from the nonconvexity that induces highly nontrivial 2D wave interactions. 

The work summarized above has been extended in two directions. First, we ob- 
tained more results in the 2x2 context; we used the BCT schemes to perform new 
calculations in which the EOS has a cusp. The latter seems to more realistically 
describe phase transitions compared to the smooth curves constructed for the tran- 
sition region in our preceding work described above. The results are extremely 
interesting, especially for regular to Mach transition, and they clearly indicate the 
capturing of split waves as predicted by the theory for such EOS models. More 
runs and analysis are required for the better understanding of this phenomenon. 



A summary of this ongoing work can be found in [21]. Second, and more impor- 
tantly, we have extended the BCT algorithm to the full equations of gas dynamics 
(3x3 system). The current draft of E. Erskine's Masters thesis [15] contains the 
fundamental results necessary to extend the BCT algorithm to the 3x3 case and do 
realistic material modeling; some preliminary numerical results in 1-space dimen- 
sion setting were presented by E. Erskine in April 1993 at a meeting in Stonybrook, 
NY. More advanced code development work for the 3x3 case took place in the last 
few months. A generic version of a BCT-like, split, two-spatial dimensions code was 
written and results for a convex strong shock reflection were obtained and compared 
with the solutions obtained using the "usual" second-order Godunov scheme; the 
comparison shows excellent agreement. Currently, several nonconvex EOS are being 
analytically constructed (a nontrivial issue for the 3x3 case where the nonconvexity 
is constructed in the energy equation under several thermodynamical constraints) 
and they will be tested in the two-dimensional, shock-reflection setting (some very 
early results are available). Also, we are surveying the literature for experimental 
data that could assist us in modeling realistic materials. We point out that the 
results for the nonconvex 3x3 case are new, it is not clear how the physical model 
translates into the reflection diagram and we believe that a large number of runs 
and exhaustive analysis will be required to verify the solutions and to have a good 
feel and understanding of the new phenomenon. 

1.2.2 Multimaterial Algorithms. 

For a description of the main issues and applications for multimaterial extensions of 
our codes see [17]. During the contract period, it became apparent that our method 
was failing for the case of a strong rarefaction in water. Consequently, considerable 
effort has gone into extending our analysis and fixing the code. This work is now 
complete as well as successfull - at least for the Tait EOS. Details are available in 
the current draft of [9]. 



1.3 INCOMPRESSIBLE FLOWS AND THE PROJECTION METHOD. 

The early development of the projection method is discussed in [17]. Since then, J. 
Bell and colleagues at LLNL worked at extending the code to treat variable density, 
3-D flow fields and also combustion in the zero Mach number limit [24]. The 
development of a 3-D code with Adaptive Mesh Refinement (AMR) capabilities is 
ongoing at LLNL. After completion, it will be possible to use the latter to simulate 
the low speed part of fireball rise. In what follows we will describe some preliminary 
studies that were conducted with a non-AMR (i.e., uniform mesh), 2-D version of 
the code that was provided by D. Marcus (LLNL). 

The idea is to numerically model the cloud rise experiments known as GEST (Gas 
Explosive Simulation Technique, see [3]-[4]) by first solving the explosion phase 
using a compressible flow solver and, after some appropriate evolution time, as- 
suming that the residual flow field in the explosion vicinity is incompressible, carry 
out the solution of the cloud rise phase using an incompressible flow solver. We 
can proceed as follows. A spherical explosion was modeled incorporating the (ID) 
Godunov compressible code and using the input data produced by A. Kuhl (stoi- 
chiometric Methane-Oxygen mixture). The computation was carried out by us to 
the physical time T = 1.0 sec, for which the leading shock wave has already left the 
computational domain (and region of interest for the incompressible flow model). 
We remark that this part of the computation was done on a relatively fine (and 
uniform) mesh. 

The output data obtained by the latter computation, in its conservative form, is 
used as input data for the second phase of the computation. First, the (spher- 
ical) one-dimensional conservative variables are mapped onto a two-dimensional, 
cylindrical (r-z) coordinate system; this is done by insisting that the variables re- 
main conservative with respect to the new cell-volumes, created by the relatively 
coarse cylindrical mesh, and assigning the appropriate (i.e., volumetric) weight to 
the computed variables by tracing their fine-mesh-volume contributions to the new 
cells (in which they are fully contained or partially intersected). The incompressible 
flow model requires only the density and velocity fields. However, we also map the 
composition (i.e., product gas/air ratio) and simply "convect" this variable in the 
evolving incompressible flow field in order to extract temperature data from the 
local density and composition data. 

As mentioned above, the incompressible solver we have at present is a non-AMR, 2D 
version of the second-order projection method. The computational domain chosen 
for the intended preliminary work consists of 256 by 512 zones, modeling a physical 
domain of 50m (r) by 100m (z). The initial data consists of a post-explosion sphere 
of radius of 30m mapped onto the cylindrical domain and centered at the point of 
ignition of the explosive device; the zones outside the sphere take on the ambient 
air conditions. The important underlying hypothesis of a divergence free velocity 
field for the incompressible flow model is (numerically) imposed on the initial data 
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at the beginning of the computation. In addition, we can code and compute the 
physical locations of the ten probes that recorded data in the live experiment, tag 
the (numerical) cells "containing" these probes, and record time-dependent data at 
these ten locations. Several other diagnostic data can also be recorded during the 
"cloud rise" computational phase. A complete run, one which advances the flow 
from T = 1.0 sec. (end of compressible flow solver) to about T = 4.0 sec. (the 
data recordings of the successful experiment terminated at about T = 3.8 sec), is 
expected to take about 800 time steps at a cost of about one CPU hour on a Cray 
YMP. 

The results would consist of the time dependent density, velocity, vorticity and 
composition fields. The vorticity field will capture the roll up of vortices and their 
motion upwards, based on previous work with this code technology. A full analysis 
of such a calculation must await the results. We are now completely prepared to 
proceed with this effort. 
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SECTION 2 
CONCLUSIONS 

(1) The implicit-explicit methodology has been extended to near zero Mach 
number situations and accurate, resolved results have been computed. 
Source term capability - stiff and nonstiff - has been successfully imple- 
mented in the context of realistic physics modeling. 

(2) The variable density projection algorithm is a highly robust, accurate and 
efficient method for problems which are essentially zero Mach number at 
all times of interest, e.g., cloud rise. It is the method of choice for such 
situations. 

(3) The multimaterial algorithm is now available for water using the Tait EOS. 
More generally, the algorithm is now being used by many groups with great 

success. 
(4) It has been shown that materials characterized by nonclassical EOS exhibit 

solution phenomenology which can be profoundly different from convex 
EOS gases. The implications of this are quite profound for the numerical 
prediction of shock and blast wave loading; it is necessary that the under- 
lying code integrator be capable of capturing all of the physically relevant 
waves and do so if and only if they are actually present in the mathematical 
solution. 
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SECTION 3 
RECOMMENDATIONS 

(1) The implicit-explicit code remains one of two possibilities for computing 
problems with inherent wave speed stiffness, along with hybrids of pro- 
jection codes and explicit upwind schemes. Further research is essential 
if endusers are to have confidence in the results from simulations of prob- 
lems such as fireball rise where the Mach number can increase substantially 
during the course of the calculation. 

(2) The explicit codes for gas dynamics are now a fairly mature technology. Our 
research on multimaterial extensions and more complicated conservation 
laws leads to the conclusion that code development efforts in this direction 
would payoff in greatly improved predictive capabilities for applications 
such as blast wave loading of soil, reinforced targets, etc. and advanced 
HE weapon design (including interior ballistics). 

(3) The zero Mach number projection methodology is advancing rapidly and 
it appears that it's extension to long-time transport at large lenghth scales 
(including mesoscale) will pose no theoretical difficulties. In view of the 
relatively low level of sophistication in the numerical modelling in currently 
available codes for this problem domain, a large effort here promises even 
larger payoffs. 
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