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1 Executive Summary

This final report summarizes the findings of the research, "Segmentation of Multi-look, Multi-
frequency and Multi-polarimetric SAR data" supported by the AFOSR contract F49620-92-J0130.
During the duration of the project, we have developed algorithms for a) Markov Random Field
based segmentation of high resolution SAR images, b) detection of man-made features in SAR
images and c) labeling, as well as, grouping algorithms. These algorithms have been integrated to
produce a 2-D site model of the given SAR image. The 2-D site model is an annotated description
of the SAR image incorporating natural and man-made features such as trees, grass, water, open
terrain, buildings, roads and shadows. Such site models are useful for delineating regions of interest
(which serve as focus of attention mechanisms) and for providing local context in ATR algorithms.

The 2-D site models will be useful for the urban clutter mitigation problem in the ATR domain.
Target detection in SAR images of urban areas, with a low occurrence of false alarms, is a difficult
problem because of the presence of a large number of spurious bright returns. These arise mainly
due to the cardinal effects caused by the vertical walls/roofs of buildings, as well as due to other
cultural objects which produce bright backscatter. Several of these false targets can be eliminated
by the use of context-based arguments once we are able to segment and label the scene. Moreover,
target detection algorithms can be cued to look on roads and clearings, once these have been
delineated in the SAR image, resulting in computational savings. We have begun interactions
with Dr. Les Novak of MIT Lincoln Laboratory on integrating the 2-D site models in their ATR
algorithm. Another potential application of our work is in SAR seeker. All of our algorithms
have been tested on the 1' x 1' high resolution fully polarimetric SAR data collected at Lincoln
Laboratory. We acknowledge the assistance of Dr. Les Novak in providing this data.

The research contract partially supported the Ph.D. thesis work of Mr. Shyam Kuttikkad. He is
expected to graduate in December 1996.

Publications resulting from this contract are:

1. E. Rignot and R. Chellappa, " Segmentation of Polarimetric Synthetic Aperture Radar Data",
IEEE Trans. Image Processing, Vol. IP-1, pp. 281-300, July 1992.

2. E. Rignot and R. Chellappa, "Maximum a posteriori Classification of Multifrequency, Multi-
look Synthetic Aperture Radar Intensity Data", J1. Optical Society of America, A, Vol. 10,
pp. 573-582, April 1993.

3. S. Kuttikkad and R. Chellappa, "Non-Gaussian CFAR Techniques for Target Detection in
High Resolution SAR Images", Proc. First Intl. Conf. on Image Processing, Austin, TX, pp.
910-914, Nov. 1994.

4. R. Chellappa, "Image Understanding and Statistics: What each can do for the other?" (In-
vited paper), Joint Statisticians Meeting, Toronto, August 1994.

5. S. Kuttikkad and R. Chellappa, "Building Wide area 2-D Site Models from High Resolution
SAR Images", Intl. Symposium on Computer Vision, Coral Gables, FL. Nov. 1995.
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2 Polarimetric Feature Vector Based Segmentation

In [5], Derin et. al. have presented stochastic models for single- and multi-look, intensity and
complex, single polarization data, and developed maximum a posteriori segmentation algorithms
for each case. Single polarization segmentation schemes do not completely account for the influence
of targets and terrain on the polarization of the electromagnetic signal. In order to exploit all the
polarization information, fully polarimetric methods have to be used. Fully polarimetric radars
permit the measurement of the complete polarimetric scattering matrix of each resolution cell in
the region being imaged. One common technique for the segmentation of fully polarimetric data
involves the statistical modeling of the polarimetric measurement vector, followed by an estimation
of the region labels.

The simplest model for the polarimetric complex data is the multivariate circular Gaussian distri-
bution, which was considered in [12, 19]. This model allows for the easy specification of marginal
densities and characterization of the statistical properties of the data in terms of first and sec-
ond order moments, while providing simple closed form expressions for various estimates of the
region labels. In [12] a maximum likelihood (ML) estimate was obtained for the region labels.
A Markov Random Field (MRF) model was proposed in [19] to obtain a maximum a posteriori
(MAP) estimate of the region labels, leading to a smoother segmentation.

Let X, = [HH, HV, VV], denote the single look polarimetric measurement vector at site s. The
VH polarization term is not present because it is symmetrized with respect .to HV during data
calibration. Each component of X, is a complex number of the form HV = IHVI exp{i0Hv}. The
conditional distribution of the polarimetric measurement vector X8, given it's region label L,, is
assumed to be circular Gaussian :

p(X,/Ls = 1) = -•exp{-X*C-1XT - loglCiI} (1)

where L,(= 1, 1 E {1, 2,..., K}), is the set of region labels. Superscripts * and T denote conjugation
and transposition respectively. C1 =< X*TX >1 is the 3 x 3 polarimetric covariance matrix, with
< >1 denoting ensemble averaging over the region 1. The model of (1) assumes that each region has
stationary backscatter statistics.

2.1 Maximum Likelihood Estimation of Region Labels

For azimuthally symmetric targets, which is the case of most natural targets, the cross-polarized
return is uncorrelated with the two co-polarized returns, giving rise to the covariance matrix

1 0 Plx/-7) (2Cl = al 0 El 0 (2)

where

al =< JHHI2 >I- el <- HV2>< IHHI2 >1

< Hivv 2 >. < HHVV* >1 (3)
- < IHH12 >1' p= < IHHF >l< JVV* 2 >1
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C1 can be inverted analytically and substituted in (1) to give

=1 1 I [HHI2  [HV12 
_ VV 2  +2 Re(HHVV*pl)

p(7X/L ) . p (1 - lp1l2) 01f, oi-yl(l - IPt 2) 2r!,/-7(1 - lpu12)

- log(Ocr3 -(1 - Ip112))} (4)

Regions of the radar image can be completely characterized by the parameters of the covariance
matrix. These parameters can be selected using a supervised, semi-supervised, or unsupervised
method. A clustering routine on an appropriately selected feature vector can be used for the
unsupervised selection of each region's parameters. The problems with this scheme are the com-
putational cost of the clustering technique, performance variation across images, and the need to
fine-tune the cluster parameters. In the semi-supervised scheme, the operator specifies the possible
number of cluster centers. Thereafter, an iterative algorithm, which alternately splits the training
data into the specified number of classes and then computes their cluster centers, is used to find the
best possible cluster centers from the training data. Both these methods suffer from the drawback
that the resulting cluster centers do not necessarily represent the polarimetric characteristics of
actual regions like vegetation, roads, shadows, etc. The supervised method requires training areas
and some knowledge of the ground truth. Although the segmentation results are sensitive to the
selected training areas, this method is not very restrictive since, during a particular data collection
run, we can assume that the characteristics of the various classes are reasonably stationary. The
covariance matrix parameters for each region are estimated by obtaining their ML estimate over a
set of data points which are known to belong to that region.

It is assumed that as we move a sliding window of size N. across the entire image, the region
label within the window remains the same. The joint distribution of the polarimetric vectors of
a small neighborhood set, N,, of s is considered, to improve classification accuracy. The spatial
correlation between the polarimetric vectors of N, is neglected at the cost of a slight reduction
in segmentation accuracy, but with a significant saving in computational cost. The interaction
between neighboring pixels is taken into account by the Markov Random Field model. Under the
uncorrelated assumption, the conditional distribution of the entire polarimetric data array X, given
the label array L is :

p(X/L) = flp(X8 /L,) (5)

and the conditional distribution of the measurement vector at each pixel is

p(X 8 /L8 = 1) = 1 p(Xi/ll = 1) (6)

Using a Gibbs representation of (6), we have

p(X8 /L8 = 1) = exp{-NU3(X8 /L,. = )} (7)
7 r3 N

where the energy function U• is

U1X.N= 1) = N1
2  + IHVNI2 + lvvN12

Uat(1 - pt12) ±r-- a1-yu(l - pu12)

-2 Re(HHNVV*Npi)

OCu/vY( 1 - ip) ± log(o-aE-,/(1 - pt)) (8)
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and

HHNVV*N 1N•12
H -N HgiYVi*; IHHNI2  - -IHHi2 (9)

The ML approach to region labeling involves maximization of the LHS of equation (7). This is
equivalent to assigning that label to a particular pixel which minimizes the energy function of
equation (8). Since the ML approach assigns equal prior probability to each region, the result may
appear noisy and pixels in the same region may be left unconnected. The resulting segmentation
can be made smoother by incorporating spatial interactions into this model.

2.2 Maximum A Posteriori Estimation of Region Labels

The MRF model is used to describe the spatial interaction between neighboring pixels. According
to this model, the conditional distribution of the region label L,, given the region labels elsewhere,
depends only on the labels of an immediate neighborhood, and is given by :

p(L=11L,;rE N Z2( 1 exp{-NUU(L = 1/L,; r E No)} (10)

where the Gibbs energy function U2 is :

5  ((LLL = 1 ;rE (11)
tENs

/3 is a positive constant which was empirically chosen between [1.0-1.6], [19], independent of the
data set, for good segmentation accuracy. /3 = 0 corresponds to the ML estimate and a large /3
leads to excessive smoothing. N° is a neighborhood of s, of N elements, excluding s and bk is the
Kronecker delta. Z2 is a positive normalizing constant, independent of 1. N? is chosen to be the
same as N, for consistency.

The posterior distribution of region label L, given the single look polarimetric vector X, and the
region labels L, of the neighborhood is (since X, and L, are independent) :

p(L. = 11L,; r E N°)p(XI/L. = 1)
p(L• = 1/L,; r E N?, X,) = (X (12)

Since X, is known, p(X,) is just a constant and :

p(L8 = l/L;r E NUo,Xs) oc exp{-NU;(X,/L, = 1)- NUU(LS = l/L,;r E N°?)1 (13)

The posterior distribution of the entire label array, given the entire polarimetric data array is

p(L/X) cx exp{-N E[Uis(XS/LS = 1) + Us(L8  l/Lr; r E NO)]} (14)
S

The MAP estimate corresponds to the minimization of the MAP energy function

EMAP -- [U'(Xs/L, = 1) + Us(L, = I/Lr; r E No)] (15)
S
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This is a non-convex function which can be minimized by using the simulated annealing [8] algo-
rithm. Other approximate techniques such as iterated conditional mode [2] and maximum posterior
marginal [15] can also be used. We have used the iterated conditional mode technique [14].

Figures 1 (a) and (b) show two SAR images with cultural features like buildings, roads, fields, etc.
The result of ML and MAP segmentation are shown in Figures 2 and 3. The images in (a) have
been segmented into 4 regions, while the ones in (b) have been segmented into 5 regions.

3 CFAR Processing for Man-made Feature Detection

Target detection in SAR images can be done by comparing the received backscatter intensity to a
fixed threshold, if only thermal noise is present. But if the target is embedded in spatially varying
background clutter, as is common in SAR terrain imagery, an adaptive threshold has to be used to
keep the probability of false alarm, a constant. CFAR techniques are useful for detecting metallic
objects and other strong reflectors like vehicles, power-line towers, metal guard rails on bridges,
etc. The adaptive threshold, with which the output of each pixel is compared, is generated using
a weighted combination of the outputs obtained from a moving window of reference cells from
the background. The background clutter is assumed to have an underlying statistical distribution.
The reference cells are used to obtain estimates of the parameters of the underlying statistical
distribution of the clutter.

The traditional circular Gaussian assumption for complex backscatter, which results in a Rayleigh
magnitude distribution, is not a good fit for data obtained at low grazing angles and from high
resolution radars [23]. Moreover, in order to ensure that the presence of an extended target does
not affect the threshold computation, the reference cells must be spatially well separated from
the test cell. This tends to make the empirical distribution of the reference cells more spiky than
predicted by the Rayleigh magnitude distribution. Distributions with larger tails and larger stan-
dard deviation-to-mean ratio, than Rayleigh, seem to match the empirical distribution better. The
Lognormal, Weibull and K-distributions satisfy these conditions, but the Lognormal distribution
tends to overestimate the range of variation obtained from real clutter. Thus, the Weibull and
K-distributions are of interest for clutter modeling, because they lie between the two extremes of
Rayleigh and Lognormal, and they include the Rayleigh distribution as a special case.

Several types of CFAR techniques have been suggested in the literature [7, 10, 26, 20, 25, 18], based
on the method of obtaining the adaptive threshold from the reference window. The Cell Averaged
CFAR (CA CFAR) is the simplest of these, where all cells in the reference window are used to
compute the clutter parameters, and hence, the adaptive threshold. The CA CFAR technique
assumes that the cell under test is the only possible target while the reference cells are purely
clutter. This detector does not perform very well when the reference window overlaps with parts
of the same extended target or other targets, interfering with the computation of the threshold. In
an Order Statistic CFAR (OS CFAR) detector, an order statistic of the reference cell outputs is
used to compute the threshold. The OS CFAR technique works better in extended/multiple target
situations because a suitably chosen order statistic is more robust in the presence of additional
targets. Other CFAR techniques, such as Greatest of CFAR and Censored CFAR, do not offer
significant advantages over the OS CFAR technique for the types of images we are using. In [16] and
[17], polarimetric data has been combined into a single channel prior to applying a two-parameter
CFAR, but we restrict our attention here to single polarization CFAR processors.
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(a) (b)

Figure 1: Original SAR image with buildings and roads

(a) (b)

Figure 2: Result of ML region labeling

(a) (b)

Figure 3: Result of MAP region labeling
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3.1 CFAR Detection in Non-Gaussian Clutter

Under the assumption that the radar backscatter is the result of the superposition of several inde-
pendent, identically distributed scatterers, the in-phase and quadrature components of the clutter
returns become jointly Gaussian processes, as a consequence of the Central Limit Theorem [9].
The resulting backscatter magnitude (intensity) is Rayleigh (exponentially) distributed. Several
CFAR processors for this distribution have been derived in the literature [7, 20]. As mentioned
before, empirical clutter magnitude distributions for high resolution radars lie between Rayleigh
and log-normal in terms of spikiness. The Weibull and K distributions satisfy this requirement and
also include the Rayleigh magnitude distribution as a special case.

In a CFAR detector, the voltage in the cell under test is compared with an adaptive threshold
derived from a moving window of reference cells from the background. CFAR processing can be
posed as a binary hypothesis testing problem

H0  Target absent (clutter only)
H1  Target present

with the decision criterion
H1

7r0 < rz (16)

Ho

where 7ro is the detector output for the cell under test, z is the test statistic derived from the
outputs of the M cells in the reference window, and r is the adaptive threshold multiplier.

In the general case, given a test statistic Z, with pdf fz(z), the probability of false alarm, PFA,

and the threshold multiplier, 7, are related by00P 1A = Pro[7ro _ Trz]fz(z)dz (17)

where 7r 0 is the detector output for cell under test, and Pro[.] is the probability under the null
hypothesis.

The test statistic for the CA CFAR detector is the average of the voltages from all the reference
cells. The resulting pdf is the N-fold convolution of the pdf of a single cell. For the OS CFAR
processor (based on a single ranked sample), the test statistic is the kth order statistic from M
reference cells. The pdf of the kth order statistic is [4]

Fk(u) = k (M) fo(u)Fo(u)k-[1 - Fo(u)]M-k (18)

where Fo(.) and fo(.) are the univariate clutter-only cumulative distribution function (cdf) and pdf
respectively (under the null hypothesis).

3.2 Weibull Clutter

The Weibull model has been suggested for sea and ground clutter magnitude at high resolutions
and low grazing angles [21, 22]. The output of the magnitude detector is modeled by the Weibull

7



pdf

fx(x) c f- (xp U(x) (19)

where B is the scale parameter, C is the shape parameter, and U(x) is the unit step function. The
scale parameter is related to the average clutter power, Po by

Po = BF (I + 2) (20)

where r(.) is the Eulerian gamma function. The Rayleigh distribution is a special case of this
two-parameter distribution, with C = 2. Of particular interest to us are Weibull densities with
shape parameter values between 1 and 2, i.e., between the exponential and Rayleigh densities. If
the shape parameter is known a priori, there is a simple expression for the adaptive threshold for
the OS CEAR processor with a single ranked sample [13]. Generally, when both the shape and
the scale parameter are unknown, there is a need to estimate them simultaneously. Dubey [6]
and Cohen [3] derived estimators for the Weibull parameters based on rank-order statistics and an
iterative solution to the ML equation, respectively.

The ML CFAR [18] uses the solution of the iterative ML equation to estimate the shape parameter
and obtains the scale parameter from this estimate. The following set of equations are used to
estimate B and C in [3] (the estimates are denoted as B and C respectively):

FM XClnx. 1 M
_M___ XM 1M M nm=-=(1

Em=1 X~m Mm=1

S= (M 1 xm6l (22)

where M is the number of reference cells considered for estimation and x, is the output of the mth
reference cell. The resulting adaptive threshold, Tea, and the probability of false alarm, PFA, are
related by

P =A exp (23)

Under Weibull intensity assumption about the backscatter, with unknown shape and scale parame-
ters, [25] describes a CFAR algorithm, based on two ranked samples from the output of a square-law
detector. The adaptive CFAR threshold is given by

T = yt-lyý (24)

where yi and yj (i < j) are the rank-ordered square-law detected outputs from the background
clutter and f3 is a function of i, j, and the PFA. Since a random variable generated by squaring
a Weibull distributed random variable, is itself Weibull distributed with different parameters, and
since the CFAR threshold is independent of the distribution parameters, (24) is also applicable to
the threshold, 7, corresponding to clutter magnitudes xi and xj :

r =xX 1_)Y(25)8i
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Dubey [6] derived an estimator, C, of the shape parameter based on two ordered samples from a
set of Weibull magnitudes :

ln[- ln(1 - hi)] - ln[- ln(1 - hi)] (26)

In xj - In xi

where hk = k/(M + 1) and M is the total number of samples. Dubey showed that the smallest
variance for this estimate was obtained when hi = 0.1673 and hj = 0.9737. The corresponding
values of i and j are used in (25).

The exact integral relation between 0 in (25) and PFA was derived in [25] using the joint density
of the ith and jth ordered samples, and is given by

PEA - (i - 1)!(j - i - 1)!(M - j)! i=o exp [1 -

exp(-u) [exp(-v)]M-j+ [exp(-u) - exp(-v)]j-'-1 U(v - u)dudv (27)

Levanon and Shor [13] gave an approximate expression for •3 in terms of the parameter ai:

In a(
n= n[- ln(1 - h)] - In [- ln(1 - hi)] (28)

where a• is the scale factor of the OS CFAR for exponential magnitude [20], and is related to the
false alarm probability by

PEA = M!(ai + M - i)! (29)
(M - i)!(ai + M)!

The discrepancy between the actual and approximate expressions decreases with increasing false
alarm probability. The approximate expression is easier to handle computationally and we have
used it in our experiments. Figure 4 shows an HH polarization SAR image of a highway over-pass.
The result of Weibull CFAR processing with a PFA = 10-3 applied to this image are shown in
Figures 5 and 6.

3.3 K-Distributed Clutter

The K distribution has been suggested for experimental sea clutter [24] and ground clutter [27].
The K distribution arises when a complex Gaussian process is modulated by a chi distributed
process. Alternately, it can be shown to arise from modulating the power of a Rayleigh magnitude
process with a gamma distributed variable. This is the case when the clutter voltage in a given cell
exhibits rapid Rayleigh fluctuations, whose mean varies slowly over time according to the gamma
distribution. The two parameter K pdf is given by

4c
fx(x) = 4c (cx)UK,-l(2ex) V(x) (30)

F(v)

where v is the shape parameter, K,(.) is the modified Bessel function of the second kind of order
v, and c is a power parameter related to the mean clutter power, PO, by Po = v/c 2. When v = oo,
this reduces to the Rayleigh pdf. The shape parameter controls the spikiness of the clutter, with
lower values of v implying more spiky clutter.

9



Figure 4: Original highway overpass image

For specific values of the shape parameter, namely v = m + 1/2, m = 0, 1, 2,..., there exist simple
expressions for the pdf of the test statistic [1]. Since large values of v result in the Rayleigh
amplitude pdf, and small values give rise to the more spiky clutter that we are interested in, we
will restrict our interest to shape parameter values of 0.5 and 1.5.

In general, given the PDF, pw(w), of the test statistic W, the probability of false alarm is given
by [1]

PFA 21' (Tw)'KI,(2CTw)j pw(w)dw (31)

For the CA CFAR detector, the test statistic is the sum of M correlated reference cell outputs,
each of which is a K-distributed random variable. Closed form expressions (for specific values of v)
for pw(w) are given in [1]. The resulting PDF for v = 3/2 is reproduced here as an example

PW (2C)2M w2M-1 e-2Cw (32)

'(w)- =f(2M)

From (18) and (30), the pdf of the kth order statistic of the K distribution is

-(y = 2 (cy)Mv M-k+l r 2(cy)v k-i

Y = k [() K,_i(2cy) 2cy [(2) [ 7(c) K,(2cy)] (33)

which can be simplified for v = m + 1/2, m = 0, 1,2,.... In particular, for v = 1.5 we have

fy (y) = 4C2k(I ) exp[-2c(M - k + 1)y](1 + 2 cy)M-k fi - (1 + 2 cy)e 2,y Ik-1 (34)

Substituting the above expressions for the OS CFAR test statistic pdf in (31) gives the relationships
between the probability of false alarm and the adaptive OS CFAR threshold multiplier for v = 1.5.
In general, these equations have to be solved numerically to obtain the appropriate threshold. The
result of CFAR processing with a PFA = 10-3 and nominal v = 1.5 applied to the over-pass image
of Figure 4 are shown in Figures 7 and 8.

10
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Figure 5: Weibull ML CFAR; PFA 10-3 Figure 6: Weibull OS CFAR; PFA 10- 1

4.

*, . S .v~ •

Figure 7: K CA CFAR; v 1.5; PFA 0- 10 3  Figure 8: K OS CFAR; v 1.5; PFA 0- 30

4 Modified Labeling and Site Model Construction

As mentioned earlier, purely statistical segmentation schemes do not perform well in regions con-
taining man-made structures. Several observations can be made about real SAR terrain data. At
low to medium depression angles, the vertical walls of buildings, facing the sensor, produce small
areas of backscatter. Buildings are, in general, characterized by large shadow regions, bounded by
bright L-shaped or linear streaks (cardinal effects) toward the direction of the sensor. These bright
streaks often show up as false alarms in target detection algorithms. Also, even when supervised
ML segmentation algorithms (with training areas) are used, there is a tendency to misclassify pixels
as parts of roads. The fact that roads are ribbon-shaped strips can be used to get rid of most of
these false alarms. Similarly, the fact that at high resolutions and low to medium depression angles,
trees produce shadows in radar images can be used to reduce misclassification of pixels as trees.
Finally, it is difficult to differentiate between shadow regions and calm bodies of water in SAR
images, because they produce near-zero backscatter at off-nadir depression angles. Size- , shape-
or context-based arguments need to be used to effectively resolve shadows and calm water.

We incorporate these rules and other information about the sensor location, heading and resolution
to build an approximate 2D site model of the terrain being imaged. This site model is constructed
on the slant range plane. The complete algorithm for the detection of targets, segmentation, and
building of a two-dimensional site model from high resolution, polarimetric SAR data is given
below. Most of the morphological and other primitive operations mentioned below are described
in greater detail in [11].

* Target detection
A two-pass Order Statistic CFAR detector is used for target detection. Non-Rayleigh OS

11



CFAR detectors are better suited for target detection in high resolution spiky clutter. CFAR
detection is initially done independently on the three polarimetric channels, with a low false
alarm probability, typically 10'. The resulting binary images images are logically OR-ed.
This conservative approach is suitable for extracting most candidate target pixels from any of
the polarization channels. Later, a second CFAR processing step, utilizing a higher false alarm
probability (typically 10-2), is performed only in the immediate neighborhoods of previously
detected targets. We chose a 5 x 5 neighborhood around each target pixel detected after the
first pass. This two-stage CFAR processing extracts the full extent of large targets, while
reducing false alarms.

* Filtering and streak detection
This step is necessary to eliminate isolated false alarms and as a pre-processing routine be-
fore building detection. Knowledge about the radar resolution and the approximate size of
potential targets can be used to group target pixels into clusters and get rid of isolated pixels.
At the same time, if the minimum cluster size is set too large, thin streaks, characteristic of
building tops, will be eliminated. We use a 3 x 3 window, which is moved across the image,
retaining groups of at least four pixels. Thereafter, a Hough transform technique is used to
detect dominant linear streaks formed by the remaining target pixels. A relative maximum
operator is used to detect all the peaks in Hough space, and the corresponding target pixels
are passed on to the building detection stage.

e Supervised ML segmentation
Training areas are used to determine the polarimetric covariance matrix parameters of possible
terrain classes. We train on nearly homogeneous patches of clearing, grass, road, shadows
and trees, obtained from elsewhere in the data sequence. A ML estimate of the region label
for each pixel is obtained by maximizing the joint conditional density function of (6), over
a local (3 x 3) neighborhood. Target pixels detected after CFAR processing and subsequent
filtering, are not considered in the joint distribution characterization.

9 Building detection
Shadows in high resolution SAR terrain images are caused primarily by buildings and trees.
Isolated pixels and small regions classified as shadow by the ML segmentation algorithm are
eliminated by a morphological erosion operation followed by a dilation operation. The re-
maining shadow regions are grown using a Euclidean distance criterion on neighboring pixels.
Those pixels which border a shadow region, and are close to their neighbors (of the shadow
class) in terms of the Euclidean distance between their respective intensity measurement vec-
tors, are included in the shadow class. This step is applied repeatedly until there are no
further changes in the pixel labels. Finally, those shadow regions which are bounded, to a
large extent, by a streak of bright target pixels extending toward the sensor are declared as
building shadows.

* Road extraction
Small regions are eliminated and larger ones are filled out using a series of binary morpholog-
ical dilation/erosion operations on the road regions generated by the ML segmentation step.
Bounding rectangles of the appropriate orientation are fitted to the remaining regions, after
a connected components algorithm is used to label each region uniquely. Possible ribbon-
shaped road segments are detected using appropriate thresholds for the aspect ratio, length
and fractional fill of these bounding rectangles. The justification for this step is that road
regions are expected to be elongated, nearly rectangular ribbons, and not arbitrarily shaped
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blobs. Detected road segments are extended on either side by including previously detected
road regions which may have failed the above tests.

" Modified labeling of natural features
ML segmentation is done again for those pixels which were previously misclassified as road
or shadow, but this time without including the shadow and road classes. Shadow regions
and bodies of water can be resolved at this stage using a size argument, based on the radar
depression angle and the approximate height of the tree canopy. Verification of trees is done
by eliminating small tree regions and looking for tree shadows (extending away from the
sensor) associated with the remaining ones.

" Re-evaluating target clusters
Target streaks corresponding to detected buildings are eliminated from further consideration
as possible targets. A filtering step is performed to eliminate isolated target pixels generated
by this operation. We use a moving window of size 5 x 5 to retain only those target clusters
which contain at least ten pixels. Bounding rectangles are placed around the remaining target
clusters to aid in target recognition and/or facilitate SAR data compression.

The steps in our 2-D site model construction algorithm are shown in Figures 9-10. An original
SAR image with moderate urban clutter is shown in Figure 9. Figure 11 shows the possible targets
detected after a two-pass CFAR detector, followed by a filtering step to remove isolated target
pixels. This result was obtained using an OS CFAR detector for K distributed clutter, with shape
parameter v = 1.5, on each polarization channel, followed by a logical OR operation. The desired
false alarm probabilities were chosen to be 10-3 and 10-2 respectively in each pass. The initial ML
segmentation result, with a complex multivariate Gaussian assumption for the backscatter vector,
is shown in Figure 12. The target pixels detected after CFAR processing have not been included
in the segmentation step. At this stage there are many pixel misclassifications, especially those
which are classified as roads and trees. Moreover, no buildings have been detected yet. Figure 12
shows the result of shadow growing followed by building detection. The extracted road is shown in
Figure 13, while those tree regions which are supported by the presence of tree shadows extending
away from the radar are shown in Figure 14. Finally, Figure 10 shows the complete 2D site model
constructed from the polarimetric data. This figure also shows possible target clusters, surrounded
by rectangles, which could be used in radar image compression. Figure 15 shows a larger, wide-area
SAR image and the result of our site-model building algorithm on this image is shown in 16. Once
again, the final segmentation result shows white rectangles placed around possible target clusters.

5 Summary and Conclusions

We have investigated some of the key issues involved in the analysis of SAR images. Our research
efforts have resulted in an integrated set of algorithms that can produce annoted 2-D site models
of high resolution SAR images. These site models are useful in context based exploitation of SAR
images and ATR applications.

Future research issues of interest are: more effective utilization of phase history in polarimetric
data, use of interferometric data, and algorithms for registration of SAR images to site models
for automatically delineating regions of interest, and fusion of SAR FLIR and IFSAR data for
multisensor exploitation using site models.
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Figure 9: SAPt image with urban clutter Figure 10: Complete 2D site model

Figure 11: Output of two-pass CFAR Figure 12: Buildings (gray) & shadows (black)

Figure 13: Extracted road Figure 14: Verified trees
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Figure 15: Original wide-area SAR image
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Figure 16: Constructed site-model
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