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pressure Poisson equation. 

Technical monitors for the Chicago District were Mr. Tom Fogarty and 
Mrs. Linda Sorn. 

At the time of preparation of this report, Dr. Robert W. Whalin was 
Director of WES, and COL Bruce K. Howard, EN, was Commander. 

The contents of this report are not to be used for advertising, publication, 
or promotional purposes. Citation of trade names does not constitute an 
official endorsement or approval of the use of such commercial products. 



Conversion Factors, 
Non-SI to SI Units of 
Measurement 

Non-SI units of measurement used in this report can be converted to SI units 
as follows: 

Multiply By To Obtain 

cubic feet 0.02831685 cubic meters 

degrees (angle) 0.01745329 radians 

feet 0.3048 meters 

square feet 0.09290304 square meters 

VI 



1     Introduction 

Background 

Computational fluid dynamics (CFD) is now used routinely by researchers 
and design engineers alike.  New CFD codes (numerical flow models) appear 
every year.  Although some of these are applicable for broad classes of flow 
problems, no single model is likely to gain universal acceptance in the 
foreseeable future.  No one has yet written a general-purpose CFD code that 
works reliably and efficiently at all Reynolds numbers, Froude numbers, and 
Mach numbers.  In spite of monumental gains in computer power, numerical 
flow modeling remains a problem-specific art. 

Buoyant flow in reservoirs falls in a class of problems for which the Mach 
number is very small. Thus, the density can be assumed to vary only slightly 
with temperature and not at all with pressure.  The resulting density gradients 
are so small that the governing equations reduce to the incompressible Navier- 
Stokes equations with a vertical perturbation added for buoyancy.  The Froude 
number is generally small enough in reservoirs to justify neglect of surface 
waves, and the free surface can be assigned a uniform vertical velocity.  In 
contrast, the Reynolds number may exceed 108, and empirical corrections are 
needed to model the small-scale influence of turbulence. 

Some buoyant flow models assume the pressure in a water column to be 
hydrostatic, i.e., proportional to the weight of the water itself.  This 
eliminates the vertical component of the momentum equation and guarantees 
that the remaining equations will all be of the same mathematical type, but it 
is acceptable only when the vertical acceleration is negligible.  Deep 
reservoirs with submerged structures and sharply varying topography 
generally render the hydrostatic assumption invalid. 

MAC3D is a numerical model for buoyant incompressible flow, with 
emphasis on reservoir hydrodynamics.  In general, the model is intended for 
hydraulic applications in deep water where vertical motion and vertical 
acceleration are both important. It uses a variant of MacCormack's method 
(MacCormack 1969; Bernard 1992) to solve the Reynolds-averaged Navier- 
Stokes equations for three-dimensional (3-D) incompressible flow, which are 
discretized with six-sided finite-volume cells.  The grid cells can be 
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nonrectangular in cartesian (x,y,z) space, but they are uniformly rectangular in 
the computational (i,j,k) space where they are indexed by the integer 
coordinates (i,j,k).  This sequential ordering of grid cells in an ijk-anay is 
commonly called a structured grid. 

To improve local resolution and reduce computer memory requirements, 
MAC3D uses composite (multiblock) structured grids, i.e., structured grids 
composed of one or more subdomains (also known as blocks). The individual 
subdomains are rectangular in the computational (i,j,k) space, but they can 
have any shape and orientation in cartesian (x,y,z) space as long as their grid 
nodes match along the shared boundaries between the subdomains. The 
discrete flow variables are staggered, with contravariant (normal) velocity 
components defined at the centroids of the cell faces, and scalar quantities 
(pressure, temperature, etc.) defined at the cell centers. 

MAC3D accounts for turbulence by using a k-e turbulence model (Launder 
and Spalding 1974), which consists of two semiempirical equations for the 
production and transport of the turbulence energy k and the turbulence 
dissipation rate e. Buoyancy arises from temperature-dependent density 
variations that add a perturbing force to the vertical momentum equation in 
the presence of gravity. The transport of heat (temperature) and other passive 
constituents is governed by advection-diffusion equations, in which the dif- 
fusion coefficients are proportional to the eddy viscosity obtained from the 
turbulence model. 

/ 
The normal velocity along inflow/outflow boundaries can be imposed either 

as an unchanging, user-specified distribution or as a time-varying distribution 
extrapolated from the flow just inside the grid.  In the latter case, the 
extrapolated velocities are obtained from a discrete radiation condition 
proposed by Orlanski (1976), which transmits internal disturbances out of the 
grid with negligible reflection.  Solid boundaries can be designated as either 
no-slip (frictional) or slip (frictionless).  The shear stress along no-slip 
boundaries is obtained either from Manning's equation or from an empirical 
wall function that defines the relation between velocity and distance from the 
boundary.  Free surfaces are idealized as (rigid) slip boundaries. 

MAC3D tentatively assumes all solid boundaries and free surfaces to be 
impermeable and adiabatic (thermally insulated), so that heat and other passive 
constituents can enter or leave the flow field only through the inflow/outflow 
boundaries.  The actual rate of heat transfer through a free surface depends on 
external factors such as radiation and wind (which also creates momentum 
transfer), and these will be dealt with in future work.  For the time being, 
however, the model allows the adiabatic constraint to be relaxed in the 
following manner. 

Suppose that a reservoir is initially stratified with cold water at the bottom 
and warm water at the surface.  If all the boundaries are adiabatic (no heat 
transfer) and impermeable (no inflow or outflow), then diffusion (heat conduc- 
tion) will gradually eliminate the initial stratification, leaving the reservoir 
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with a single uniform temperature.  In some cases, however, one may wish to 
know only the manner in which a particular flow alters the initial stratifica- 
tion, and not the rate at which the insulated reservoir otherwise comes to 
equilibrium.  Accordingly, if the user so chooses, MAC3D will ignore any 
change in temperature not produced by the flow itself. In other words, it will 
ignore background heat conduction.  This allows the user to isolate the effect 
of the flow upon the stratification. Otherwise, the model will allow the 
temperature to evolve toward an equilibrium state dictated by the imposed 
flow, the full heat conduction, and the adiabatic boundaries. 

Purpose and Scope 

The planned McCook Reservoir near Chicago, IL, will serve as a holding 
tank for runoff and sewage (prior to treatment) through the middle of the 
twenty-first century.  Its design and construction pose major engineering chal- 
lenges because of its size—roughly 4,700 ft1 long, 3,300 ft wide, and 110 to 
150 ft deep.  Safe operation of the reservoir demands an intimate understand- 
ing of its hydrodynamics, and this warrants the development of a nonhydro- 
static, 3-D numerical model as a means to that end.  A model of this kind 
would be useful not only for McCook Reservoir, but for other applications as 
well. 

This report documents the preliminary development of the MAC3D 
numerical model and offers qualitative demonstrations of MAC3D's 
capabilities using a provisional 10-block grid for McCook Reservoir. 
Quantitative testing and empirical validation of the model are already under- 
way, but these are lengthy efforts that will be documented in future reports. 

Chapter 2 outlines the governing equations for the major flow variables, 
while Chapter 3 describes the discrete methods used for their numerical solu- 
tion.  Chapter 4 summarizes briefly the operation of the model as a whole, 
and Chapter 5 presents the results of preliminary flow calculations for 
McCook Reservoir.  Chapter 6 offers conclusions and recommendations with 
regard to further model development. 

1    A table of factors for converting non-SI units of measurement to SI units is found on 
page vi. 
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2    Governing Equations 

Incompressible Flow 

The speed of sound in fresh water is about 4,700 ft/sec.  With Mach 
number defined as the ratio of flow speed to sound speed, water flowing at 
47 ft/sec has a Mach number of 0.01. At Mach numbers on the order of 
10"2, water behaves as though it were truly incompressible (except for 
questions related to acoustics).  In this context, an incompressible fluid is 
defined as one whose density varies with temperature but not with pressure. 

The density of liquid water is greatest at 4° C, above which it falls 
monotonically with temperature up to 100° C.  This behavior of the density p 
is conveniently expressed as 

p = p0[l - 0(7)] 

where1 

p0 = reference (maximum) density 

6 = relative deviation from the reference value 

T = temperature 

For temperatures in the range 0-30° C, 0 can be approximated with 

(1) 

0 =A\T-T0\ + B(T-T0) 

where 

A = 5.6250 x 10"6 

2 (2) 

1    For convenience, symbols and abbreviations are listed in the notation (Appendix A). 
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B = 6.5625 x 10"6 

T0 = 4° C 

At 30 °C, Equation 2 gives 0 = 0.00458, indicating that the density 
deviates only slightly from its reference value.  Dissolved constituents such as 
salt can also produce comparable density variations, and salinity may be 
included in future versions of MAC3D.  In any case, except for the vertical 
buoyant force in the presence of gravity, one can ignore small variations of 
the density and impose the fully incompressible constraint for conservation of 
mass, 

div u = 0 (3) 

where the symbol div denotes the divergence operator, u represents the 
velocity, and a single underbar henceforth indicates a vector.  Applying the 
same arguments to the equation for conservation of momentum, one obtains 

p0_= = divT -. gradp + pg (4) 

where 

t = time 

T = shear stress 

p = pressure 

g = acceleration due to gravity 

and a double underbar henceforth indicates a tensor.  The symbol grad 
represents the gradient operator, and D/Dt denotes the substantive (total) 
time-derivative operator, 

— = — + u-grad (5) 
Dt      dt     ~ 

The grad and div operators are standard vector notation.  In cartesian (x,y,z) 
coordinates they take the following form: 
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j. du      dv      dw divu = — + — + — 
dx      dy       dz 

(6) 

gradip = 
dip   dip   dip 
dx' dy' dz 

(7) 

The triad (u,v,w) gives the cartesian components of the vector u, and the 
symbol ip here denotes any scalar function or vector component. For the 
latter, the operator u-grad yields 

u-grad\p = M— .+ v-l. + 
dx        dy 

w d£ 
dz 

(8) 

For turbulent flow, the velocity in Equations 3 and 4 is the Reynolds- 
averaged velocity, and the shear stress includes the viscous stress and the 
turbulent Reynolds stress. Invoking the Boussinesq hypothesis for turbulence, 
the two stresses are combined in a single expression, 

dui 

to} dx: 
(9) 

The dynamic viscosity ft is the sum of the molecular viscosity nM and the 
eddy viscosity (tT.  Since fiT > > /xM one assumes in practice that \K « fiT. 
In Equation 9, the subscripts i andy take integer values 1, 2, and 3.  Thus, 
the vector (Uj,u2,u3) represents velocity (u,v,w), and the vector (Xj,x2,x3) 
represents position (x,y,z) in a cartesian coordinate system.  The tensor stress 
component T(- is the shear stress in the x'h direction on a plane normal to the 
x-h direction (and vice versa, because of symmetry).  For example, T12 is the 
shear stress in the x-direction on a plane normal to the y-direction, given by 

r12 r21 = it 
du. du-. 

dxi       dxi 
= M 

du       dv 
dy      dx 

(10) 

Assuming that the temperature, viscosity, and pressure are known at each 
instant, then Equations 3 and 4 uniquely determine the evolution of the flow 
with time.  Temperature can be obtained from a transport equation for heat, 
and eddy viscosity from a suitable turbulence model, but there is no equation 
of state from which to derive the pressure. The correct pressure gradient for 
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incompressible flow is that which ensures conservation of mass as expressed 
by Equation 3.  To obtain a governing equation of convenient form for pres- 
sure, one takes the divergence of Equation 4. This produces a Poisson 
equation, i.e., 

dx2      by2      dz2 

Du 
p°Wt ~     = ~ p- (11) 

In practice, the right-hand side of Equation 11 is obtained in the following 
manner. Suppose that the flow is to be advanced from time t to t + At. Let 
u be the mass-conserving velocity at time t, and let u' be a non-mass- 
conserving velocity computed for time t + At by omitting gradp from 
Equation 4.  Thus, div u' ^ 0, where 

w7 = u - —lp0u-gradu - divr - pg) (12) 

If gradp is the (unknown) pressure gradient that has to be imposed at time t 
to guarantee conservation of mass at time t + At, then Equation 11 reduces to 

iL + iL**L = *toJ (13) 
dx2      dy2      dz2      At 

In other words, even if the velocity u is known at a given time, the pressure 
for that time is not necessarily known.  To find the correct pressure, the 
momentum equation (4) must first be advanced (integrated) provisionally over 
a small time increment At without including a pressure gradient. The resulting 
mass-conservation error div u' ^ 0 then provides the right side of the Poisson 
equation (11, 13) whose solution yields the unknown pressure gradient. 

Passive Transport 

The transport equations for quantities other than momentum all have the 
general form of an advection-diffusion equation with a source/sink term on the 
right side, i.e., 

PI =diV(v^grad^) +5^ (14) 
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where v. is the diffusivity and S^ is the source/sink term for the transported 
quantity \p.  One ordinarily assumes v^ to be proportional to the kinematic 
fluid viscosity v, i.e., 

v +        ♦ P, v (15) 

where 

Ü s Hi (16) 
P        PQ 

where P^ is the ratio of diffusivity to kinematic viscosity for the particular 
quantity \p. 

Heat Transfer 

For incompressible flow, thermal energy (heat) is uncoupled from kinetic 
energy and is directly proportional to temperature.  Thus, the equation for 
passive transport of heat reduces to an equation for temperature, i.e., 

— = div(PTv gradT) + ST (I7) 

where the coefficient PT is the ratio of thermal diffusivity to kinematic 
viscosity, also known as the Prandtl number.  The thermal source/sink term 
ST is zero in the absence of chemical, biological, or radiative processes that 
generate or absorb heat. 

Equation 17 determines the rate of internal heat transfer through the fluid 
itself, but not through the boundaries.  In practice, solid boundaries can be 
regarded as adiabatic walls that insulate the flow from its surroundings.  The 
adiabatic boundary condition for temperature is 

n- gradT = 0 (18) 

8 

where n is a unit vector normal to the boundary.  Equation 18 is an acceptable 
approximation on the bottom and sides of a reservoir, but generally not on a 
free surface.  Heat transfer across a free surface entails radiation, convection, 
and conduction, which depend on sunlight, wind, and ambient air tempera- 
ture.  When the influence of these external factors is unknown or poorly 
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defined, the following procedure offers a means of avoiding some of the 
difficulties arising from uncertainty. 

Suppose a reservoir is stably stratified initially with a vertical (z-dependent) 
temperature distribution Ts(z) that is constant (or very slowly changing) with 
time.  One may think of Ts(z) as a static (background) distribution sustained 
by unknown conditions outside the reservoir.  In designing artificial measures 
to overcome or eliminate the stratification, it is expedient to compute 
immediate response to a perturbing flow and to ignore slow response to 
external conditions. To this end, Equations 17 and 18 are replaced by 

*£ =div[PTvgrad(T-Ts)] (19) 

and 

n-grad(T-Ts) = 0 (20) 

Equations 19 and 20 ensure that there will be no departure from the static 
temperature Ts(z) if there is no flow (as0)in the reservoir.  This 
reformulation of the equations ignores background heat conduction (diffusion) 
and seeks to isolate the influence of the flow in particular upon stratification. 

External influences obviously do have to be included in long-term reservoir 
simulations, but these have been deferred for later work.  In the preliminary 
version of MAC3D, Equation 19 is used by default, with Equation 20 
imposed on all boundaries except inflow/outflow boundaries.  Background 
heat conduction (Equations 17 and 18) is optional. 

Turbulence 

Turbulence arises whenever there is too little molecular viscosity to prevent 
small disturbances from growing and disrupting a laminar flow.  The process 
is self-limiting, so that a turbulent flow can be thought of as having a slowly 
varying mean-flow component and a smaller, rapidly varying turbulence 
component.  The coupling between mean flow and turbulence is so strong that 
one cannot be calculated independently of the other, but the resulting range of 
eddy sizes is so great that conventional numerical methods cannot resolve 
them all.  Thus, one must introduce empirical or semiempirical equations to 
model the influence of turbulence on mean flow, and vice versa.  Henceforth, 
except for k and e, all reference to the flow variables will tacitly imply the 
mean flow.  The influence of buoyancy in the production and dissipation of 
turbulence is omitted in the preliminary version of MAC3D, but it will be 
incorporated in future work. 
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One of the most widely used turbulence models is the k-e model of 
Launder and Spalding (1974).  Here k is the turbulence energy (per unit 
mass), and e is its dissipation rate. The kinematic eddy viscosity v is related 
to k and e by 

v = C kl (2D 

where Cv is an empirical coefficient.  In the standard k-e model, the governing 
equations for k and e are, respectively, 

21 = vT - e + —div(vgradk) (22) 
Dt ak 

— = C.vTl - C7L + ldiv(vgrade) (23) 
Dt        1     k       2 k      a( 

The first term vT on the right side of Equation 22 is the production rate for 
turbulence energy, in which 

T = 2(u2
x + v) * wz

2) + (uy + vxf + (uz + wxf * (vz + Wyf (24) 

and the subscripts x, y, and z indicate partial derivatives. The standard set of 
nondimensional empirical coefficients is 

Cv = 0.09 

C, = 1.44 

c2 = 1.92 

ak = 1.0 

ae = 1.3 

In regions of low velocity and high turbulence energy, the standard k-e 
model overpredicts the eddy viscosity, which means that k is too large, or e 
is too small, or both. There is no perfect remedy for this tendency, but ad hoc 
modifications that preferentially reduce k, enlarge e, or damp production in 
low-velocity, high-turbulence regions can sometimes be tuned to improve flow 
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predictions in general (Bernard 1991, 1993).  In MAC3D the quantity T is 
replaced in Equations 22 and 23 by T*, where 

r m  = T tanh 
2      2       2 

R„ v\jT 
(25) 

and R* « 5 is a new empirical coefficient whose value has been chosen (by 
trial and error) to improve predictions for two-dimensional (2-D) recirculating 
flow. 

The turbulence model provides equations for the production and transport 
of k and e, but not for the necessary boundary conditions. These have to be 
deduced from other considerations.  In one scenario used in previous work 
(Bernard 1993) and also in MAC3D, the condition n-gradk = n • grad e = 
0 is imposed on all impermeable boundaries except no-slip walls, where 
tangential velocity and turbulence energy are both assumed proportional to the 
1/7 power of distance from the wall.  The tangential shear stress on no-slip 
walls is then taken to be 

2 r       "w (26) 

where uw is the average tangential velocity over a distance 8 normal to the 
wall.  The quantity Cw is a wall coefficient whose default value (unity) applies 
only for hydraulically smooth walls, but this value can be changed at the 
user's discretion. 

In an alternative scenario offered only in MAC3D, the condition dk/dn = 
de/dn = 0 is imposed on all impermeable boundaries, and the shear stress on 
no-slip walls is taken to be 

pQCfu -fuw 
(27) 

where uw is defined as before, and Cf is a nondimensional friction coefficient. 
The latter is obtained from the following relation derived from Manning's 
equation: 
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Cf = 14.5 jf- (28) 
J *l/3 

where n is the Manning coefficient, and 8 is defined as before.  In this context 
n serves as a convenient (and familiar) parameter that characterizes the 
roughness of the wall.  The factor 14.5 applies only when 8 is given in feet in 
Equation 28.  Otherwise, it becomes 9.8 when 8 is given in meters. 

In the first scenario, the energy production rate j>r* is calculated 
everywhere using the definitions for T and T* given by Equations 24 and 25. 
In the second scenario, however, the product vT* is replaced adjacent to no- 
slip boundaries by 

„r     _  2 r3/2 ul (29) 
K      J 0 

where K « 0.418 is von Karman's constant. This gives the production rate a 
value that it would otherwise have only at equilibrium (when production 
balances dissipation and diffusion). 

Curvilinear Coordinates 

For simplicity, all the governing equations have thus far been expressed in 
cartesian coordinates (x,y,z), but they are better expressed in curvilinear 
coordinates (£,17, f) for numerical solution on nonrectangular grids. Written in 
terms of the latter, the cartesian components of grad \p are 

** = €*** +ix+n + tx+t (30) 

^ = ty+k +7ly*rl 
+ fA (31) 

^z = €z^ +"z^ + f^r (32) 

where the subscripts x,y,z and £,Tj,f indicate partial derivatives. Using the 
Gauss theorem, one finds that 
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divu = l(tf{ + Vv + Wj.)                                                             (33) 

and from Equations 30-32, it follows that 

u-gradf = hüfy + V^ + W+f)                                             (34) 

where 7 is the Jacobian determinant, 

j _   d(x,y,z)  _ 
■^t   ■^'«»   JCy 

>c y, yf 

z{ z, zf 

(35) 

and [/, V, and Ware the volumetric fluxes in the £-, 17-, and f-directions, 
respectively, given by 

U = /(^« + £yv + %zw)                                                              (36) 

V = /(^« + TfyV + r?zw)                                                                     (37) 

W = /(&« + ryv + fzw)                                                                  (38) 

Lastly, the derivatives of the curvilinear coordinates (£,?7,r) with respect to the 
cartesian coordinates (x,y,z) are 

«x = 7^ - ?*,)                                            <39> 

^ = - j(Vr - V,)                                            (40) 

*z = j(Vr - V,)                                                      (41) 
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**= -i(y& - y&) (42) 

ly = 7^zf - x&) 

v= -jto'-v«) 

& = 7^ - y,zf) 

*y "   7 (■*«**    V«) 

fz = ^(^y, - v«) 

(43) 

(44) 

(45) 

(46) 

(47) 

14 
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3    Numerical Considerations 

Finite-Volume Discretization 

With the aid of Equations 30-47, all derivatives with respect to x, y, and z 
can be eliminated from the governing equations in Chapter 2, leaving only 
derivatives with respect to £, rj, and f.  For discretization, one then has to 
define the grid spacing (A£,A?7,Af) in the curvilinear (computational) 
coordinate system.  The latter is arbitrary, and standard procedure is to 
impose unit spacing for convenience; i.e., 

A£ = Ay = Af = 1 <48> 

Since infinitesimal volumes in the two coordinate systems are related by 

J dl dr, d{ = dx dy dz <49> 

it then follows that the finite volume of a single discrete grid cell is given by 

J =  \[ i dxdydz (50) 

In computational (£,77, f) space, all the grid cells are unit cubes; but in car- 
tesian (x,y,z) space, they are hexahedrons of arbitrary shape, as shown in 
Figure 1.  Thus, a triple integral appears on the right-hand side of Equa- 
tion 50, with the limits of integration being the six faces of the grid cell.  All 
discrete calculations are done in the computational (£,r?,r) space for 
convenience. 

MAC3D uses grids of the marker-and-cell (MAC) type for discretizing the 
governing equations discussed in Chapter 2. This means that scalar quantities 
such as pressure, temperature, density, etc., are defined at the centers of the 

15 
Chapter 3   Numerical Considerations 



grid cells, while the volumetric fluxes (U,V,W) given by Equations 36-38 are 
defined at the centroids of the cell faces.  Since the fluxes are proportional to 
the three cartesian components of velocity (u,v,w), the latter must also be 
defined on the cell faces.  In practice, one needs definitions for u, v, and w at 
the cell centers as well, but more will be said about this later. 

Discrete flow equations are obtained for each cell by integrating the 
governing equations over the cell volume and converting volume integrals to 
surface integrals via the Gauss theorem.  The details of this procedure are 
given for two dimensions in Bernard (1993), which discusses the depth- 
averaged STREMR model.  The extension to three dimensions is tedious but 
straightforward. 

Computational Coordinates 

Since the grid has unit spacing in the computational (£,??,£) space, it is 
convenient to replace the curvilinear coordinates (^,r/,f) with the integer 
computational coordinates (i,j,k).  Although the two sets of coordinates are 
identical, the integers (i,j,k) also serve as indices for entire grid cells and cell 
faces, in addition to defining the locations of the grid nodes in computational 
space. 

In the MAC3D indexing scheme, cell (i,j,k) is the particular cell whose 
corners lie inclusively between nodes (i-lj-l,k-l) and (i,j,k), as shown in 
Figure 2.  For example, ceh (1,1,1) has its eight corners at nodes (0,0,0), 
(0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0), and (1,1,1). 

In contrast to the cells themselves, there are three orientations of cell faces. 
Faces of constant i are called i-faces; faces of constant j are called j-faces; and 
faces of constant k are called k-faces.  Face indices consist of one node 
coordinate, corresponding to the constant coordinate on that particular face, 
and two cell indices, corresponding to the remaining two indices for that 
particular cell. 

Thus, the two i-faces for cell (i,j,k) are labelled as i-face (i,j,k) and i-face 
(i-lj,k).  The four corners of i-face (i,j,k) lie at nodes (i,j,k), (i,j-l,k), 
(i,j,k-\), and (i,j-l,k-l).  The four corners of i-face (i-lj,k) lie at nodes 
(i-lj,k), (i-lj-l,k), (i-lj,k-l), and (i-lj-\,k-l)- 

For example, the two i-faces of cell (1,1,1) are i-face (1,1,1) and i-face 
(0,1,1).  I-face (1,1,1) has its four corners at nodes (1,1,1), (1,1,0), (1,0,1), 
and (1,0,0).  On the opposite side of the cell, i-face (0,1,1) has its four 
corners at nodes (0,1,1), (0,1,0), (0,0,1), and (0,0,0). 
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Face-Centered Fluxes 

Expressed in terms of the curvilinear coordinates, the incompressible 
constraint for conservation of mass (Equation 3) becomes 

dU      dV      dW     n ~n — + — +   = 0 (51) 
3£       dr,       dt 

where U, V, and Ware the volumetric fluxes given by Equations 36-38.  For 
a MAC grid cell in computational (i,j,k) space, U is defined for i-faces, Vfor 
j-faces, and Wfor k-faces.  Using the same indices for the fluxes and the 
faces of cell (i,j,k), the discrete expressions for the partial derivatives in 
Equation 51 are 

™ = U(iJ,k) - U(i-l,j,k) (52) 

dV = V(iJ,k) - V(iJ-l,k) (53) 

0™. = W(iJ,k) - W(iJ,k-l) (54) 

In simpler terms, the volumetric flux through a cell face is just the area of the 
face multiplied by the velocity normal to the face. Thus, a mass-conserving 
flow can be established for cell (i,j,k) by correctly defining a single normal 
component, instead of three cartesian components, for the velocity on each of 
the six faces. 

Cartesian Velocities 

If all three velocity components (u, v, and w) are known for each cell face, 
then it is straightforward to calculate the appropriate volumetric flux (U, V, or 
W) through each face.  When solving Equations 36-38 for u, v, and w, 
however, one finds that each of these velocity components requires three flux 
components (U, V, and W) that have to be taken from three distinct cell faces. 
Thus, if the flux alone is known for each face, there is not enough 
information to calculate all three velocity components at a single location.  To 
compute u, v, and w on a given cell face, it is necessary to use flux infor- 
mation from other cell faces.  This creates a dilemma concerning the 
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unambiguous definition of velocity components in the equations for conser- 
vation of mass (3 and 51) and momentum (4). 

The problem is as follows. To maintain conservation of mass as required 
by Equation 51, the fluxes (U, V, W) Mid their time increments (AU,AV,AW) 
have to be uniquely defined on the cell faces.  But the flux increments 
(AU.AV.AW) depend on the velocity increments (A«,Av,Aw) via Equa- 
tions 36-38, and these cannot be uniquely defined at a given location unless 
the velocity components themselves are uniquely defined. In the end, one has 
to choose between two alternatives:  averaging flux components in space or 
averaging flux increments in time. MAC3D takes the latter approach, 
implemented in a predictor-corrector scheme. 

Predictor-Corrector Scheme for Updating Fluxes 

In the predictor phase, flux components (U, V, W) from three of the six 
faces are used to define the required velocity components (u,v,w), which are 
used in Equation 12 to calculate provisional velocity increments 
(AH'.AV'.AW')-   These are inserted into Equations 36 - 38 to obtain non-mass- 
conserving flux increments (AU',AV',AW), which are then added to the 
existing flux increments to obtain provisional flux components (U',V',W). 
The latter are inserted in the curvilinear version of the Poisson equation for 
pressure, i.e., 

div grad p - 
JAt 

du'   .   dV'  + dWf 

dt dr, d{ 
(55) 

After Equation 55 is solved iteratively for the pressure p, using a precondi- 
tioned conjugate scheme developed by Kapitza and Eppel (1987), the resulting 
pressure gradient is used to compute the correct, mass-conserving flux incre- 
ments (At/^AV^, AW<W) for the predictor phase. 

The corrector phase is similar to the predictor phase, except that the flux 
components (U, V, W) from the other three cell faces are used to define the 
required velocity components (w, v,w).  The rest of the procedure for com- 
puting mass-conserving flux increments (A£/^,AV^,AW^) for the corrector 
phase is the same as that for the predictor phase.  At the end of the corrector 
phase, however, the flux increments obtained in both phases are averaged to 
give the net increments (AU,AV,AW) for one time-step; e.g., 
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AU = L[MJV> + At/(c)) (56) 

Note that, given six faces to choose from, there are eight possible com- 
binations of three, whose flux components can be used to define velocity 
components in the predictor phase. To avoid directional bias, MAC3D uses 
each of the eight possible combinations once in every eight time-steps. 

Predictor-Corrector Scheme for Transport 
Equations 

With the exception of the turbulence quantities k and e (to be discussed 
later), a predictor-corrector scheme is used for updating all variables whose 
governing equations have the general form of Equation 14.  Expressed in 
curvilinear coordinates, the latter becomes 

dt d£ drj 3f 
div (^ grad ^) + 5^ (57) 

The right-hand side of Equation 57 contains first- and second-order derivatives 
in space, while the left-hand side contains first-order derivatives in space and 
time.  In both the predictor and corrector phases, the time derivative is 
approximated with 

f¥ =  ^*   ~ 0 (58) 
dt At 

where ^  is the new value and ^ is the old value.  In finite-difference jargon, 
this is called forward-time differencing. 

For the first-order space derivatives, the predictor and corrector phases 
alternately use forward-space and backward-space differencing.  For example, 
if the predictor phase uses 

then the corrector phase must follow with 
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U*t = U(i-lj,k)[WJ>® ~ W-lJ'k)} (60) 

and vice versa.  For all three coordinate directions there are eight possible 
combinations of forward- and backward-space differences that can be used in 
the predictor phase.  MAC3D uses each of these combinations once in every 
eight time-steps to avoid accumulating directional bias. 

The alternate use of forward and backward differencing for first-order 
space derivatives is called MacCormack's method (MacCormack 1969; 
Bernard 1993).  In contrast, central differencing is used for second-order deri- 
vatives in space in both the predictor and corrector phases; e.g., 

9 

i^ = W+lJ,k) - 2WJ,k) + i(i-lj,k) (61) 
3£2 

For a single time-step, the net increment A^ is half the sum of the predictor 
increment A\p^ and the corrector increment A\p<c), i.e., 

A* = I(A^> + A^c>) (62) 

MAC3D uses the foregoing differencing scheme not only for updating 
passive constituents, but also for computing provisional velocity increments 
(Au',Av',Aw') via Equation 12.  Expressed in its curvilinear form, the advec- 
tive term in the x-component of the momentum equation becomes 

u -grad u = — udu + ydu + wdu 
d£ dr, dr 

(63) 

20 

with similar expressions for u ■ grad v and u ■ grad w in the y- and z- 
components, respectively. 

In Equation 12, the cartesian velocity components (u,v,w) are treated as 
though they were cell-centered quantities, even though they are computed 
from flux components (U, V, W) taken from three different faces.  This artifice 
allows the provisional velocity increments (Aw',Av',Aw') to be computed in 
the same manner as the increments of truly cell-centered quantities.  Direc- 
tional bias is small (though not completely insignificant) after each full time- 
step, because the cartesian velocity components (u,v,w) are computed with 
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flux components (U,V, W) taken from opposing cell faces in the predictor and 
corrector phases. 

As an alternative to the MacCormack scheme for discretizing ugrad \J/, 
MAC3D also offers two-point upwind differencing in both the predictor and 
corrector phases.  For example, if U(i-l,j,k) > 0, then upwind differencing 
gives 

I!** = W-ij,k)[WJ*) - W-UQ] (64) 
OK 

Otherwise, if U(i,j,k) < 0, then upwind differencing gives 

U^t = U(iJ,k) [ W+1 J,k) - WJJc)} (65) 
OS 

Although formally less accurate than the MacCormack scheme, the upwind 
scheme guarantees that changes in \p propagate only in the direction of flow. 
It is intended for use mainly in situations where the MacCormack scheme 
proves numerically unstable or otherwise unsatisfactory. 

Single-Step Upwind Scheme for Turbulence 

The governing equations for turbulence (22 and 23) are very sensitive to 
the spatial discretization used for the total derivatives Dk/Dt and De/Dt, and 
also to that used for the velocity derivatives in the rate coefficient T defined 
by Equation 24.  After considerable experimentation with the turbulence equa- 
tions, the MacCormack predictor-corrector scheme was abandoned in favor of 
a single-step upwind scheme for advancing k and e in time.  In the latter 
scheme, both u-gradk and u-grad e are discretized with upwind differ- 
encing, and their increments (M,Ae) are computed in a single (predictor) step. 

In contrast, the velocity derivatives appearing in T cannot be approximated 
with one-sided differencing, nor can the velocities themselves be calculated in 
the manner used in the predictor-corrector scheme for the momentum equa- 
tion.  In this case, the flux components (U,V,W) are averaged for opposing 
cell faces to obtain truly cell-centered approximations for the velocity 
components (u,v,w).  The cell-centered velocities are then used in central- 
difference approximations for the velocity derivatives in T; e.g., 
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22 

|£ = ±[u(i+lj,k) -u(i-\,kj)) (66) 

The foregoing measures are necessary to keep the variation of k, e, and v 
smooth and well-behaved.  If the MacCormack scheme is used for k and e, or 
if other approximations are imposed for the velocity derivatives in T, the 
computed flow may become unpredictably erratic. 

Inflow/Outflow Boundaries 

The bottom, sides, and free surface of a reservoir are true boundaries. 
That is, they are impermeable, and no fluid passes through them. In contrast, 
inflow/outflow boundaries are not true boundaries at all, but are mathematical 
conveniences that facilitate flow computation on a grid of limited extent. 

MAC3D recognizes two types of inflow/outflow boundaries (FLUX and 
OPEN), both of which allow flow fluid to enter or leave the grid.  The 
volumetric flux components (U,V,W) are fixed and unchanging (with time) on 
cell faces designated as FLUX faces.  In addition, cell-centered quantities such 
as temperature, turbulence energy, etc., are assigned fixed values just outside 
the grid along FLUX boundaries. 

OPEN boundaries are frontiers beyond which the flow is unknown and 
through which it passes as if no boundary were present at all.  In principle, 
the only property of OPEN boundaries is transparency, and they should 
transmit outward-moving disturbances without producing any reflections.  To 
obtain boundary values for velocity components normal to OPEN faces, as 
well as external values for cell-centered quantities just outside OPEN 
boundaries, MAC3D uses a discrete radiation condition proposed by Orlanski 
(1976).  Subject to this boundary condition, normal velocities on OPEN faces 
are free to change in response to the flow just inside the grid, and cell- 
centered quantities just outside the grid are free to change in a similar manner. 

Let \p represent a face-centered (or cell-centered) quantity whose value is 
needed on (or just outside) an OPEN i-face.  The discrete radiation condition 
imposes the following equation for the radiation of ^ through the i-face: 

ft + ci/k = 0 (67) 

Both the time derivative \{/t and the space derivative ^ can be calculated from 
the existing flow in the previous time-step (or predictor phase).  The one 
remaining unknown in Equation 67 is the propagation speed c, given by 
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-1 (68) 
+1 

The derivatives ipt and ^ are calculated via central-difference approximations 
using previous values for \p and A^ at locations just inside the grid. 

If the sign of c is such that the direction of propagation would be inward 
rather than outward, the computed value of c is automatically replaced by 
zero. Now with the propagation speed completely defined, the new boundary 
value \p' is given by 

\P' = 4, - cAtfy (69) 

in which the derivative ^ is computed with a one-sided (forward or back- 
ward) difference approximation in the ^-direction.  For example, if i-face 
(i,j,k) is an OPEN face, and an external value is needed for ^' in cell 
(i+l,j,k), then 

tf'(i+U*) = W+IJ*) (70) 
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4    Model Operation 

Composite Grids 

MAC3D uses composite grids (also known as multiblock grids) made up of 
one or more subdomains.  These can have any shape and orientation in 
cartesian (x,y,z) space, and each subdomain occupies a distinct rectangular 
block of computational (i,j,k) space.  The subdomains, or grid blocks, must be 
contiguous in cartesian space, but their placement in computational space is 
arbitrary as long as they are separated with buffer zones at least two (i,j,k) 
units thick.  The buffer zones are needed to store updated values of flow 
variables for neighboring cells adjacent to the subdomain interfaces (in 
cartesian space). 

For convenience, each grid block has its own local (i,j,k) coordinates. 
Once the position of a block has been specified in the global (i,j,k) coordinate 
system, all subsequent input for that block refers to its local (i,j,k) 
coordinates.  Moreover, if a calculation is to be made for a limited portion of 
a reservoir, then only the grid blocks that encompass the region of interest 
need to be loaded into the calculation. 

Composite grids facilitate calculations in which fine grid spacing is needed 
near a particular structure or boundary feature, but not elsewhere.   For 
example, the wake created by a cylindrical pier in a rectangular channel is 
best computed with a fine cylindrical grid close to the pier, and a coarse 
rectangular grid far downstream. 

Grid Generation 

Grid generation can be accomplished witn any of several 3-D numerical 
grid generators that are now commercially available.   The main things to keep 
in mind are, first, that the grid nodes have to match perfectly (with no over- 
lap) on the common boundaries of neighboring subdomains; second, that 
variations in grid spacing should be gradual rather than abrupt; and, third, that 
extreme skewness of intersecting grid lines should be avoided.   As a rule of 
thumb, the grid spacing should change by no more than 30 percent from one 
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cell to the next, and the angle between intersecting grid lines should lie 
between 45 and 135 deg. 

Inflow/Outflow Data 

MAC3D accepts user-specified inflow/outflow data along FLUX 
boundaries and OPEN boundaries.  Input velocity distributions may be 
uniform, linear, or parabolic.  Temperature and other passive constituents may 
be assigned a single value along a particular boundary segment, or otherwise 
extrapolated from the initial vertical distribution in the reservoir.  Uniform 
values are imposed for turbulence energy and dissipation rate (or eddy 
viscosity) along all inflow/outflow boundaries.  As discussed in Chapter 3, 
initial values are held fixed for all time along FLUX boundaries, but they are 
allowed to change subject to the discrete radiation condition (e.g., 
Equation 67) along OPEN boundaries. 

Initial Conditions 

MAC3D uses the velocities specified along inflow/outflow boundaries to 
compute an irrotational, mass-conserving flow (potential flow) inside the grid, 
and this provides an initial condition for velocity.  The net flow rate can be 
either computed directly from the inflow/outflow velocities or specified 
independently.  In the latter case, MAC3D adjusts the magnitudes (but not the 
relative distributions) of the inflow/outflow velocities to match the specified 
flow rate.  The initial temperature is a user-specified vertical distribution, 
which can be linear, cubic, or cubic spline. 

Flow Development 

Using the initial and boundary conditions previously discussed, MAC3D 
employs the numerical algorithms discussed in Chapter 3 to solve the govern- 
ing equations outlined in Chapter 2.  The discrete solution is advanced step by 
step through time to produce the developing flow.  If a steady state is possible 
for the flow under consideration, the model should converge to that state and 
hover about it (with small deviations from one time-step to the next). 

Because of the alternating directions m~d in the predictor-corrector 
scheme, small deviations from the steady state tend to repeat themselves over 
cycles of eight time-steps.  Steady state is usually at hand when the maximum 
and minimum values of the flow variables remain unchanged for fifty or more 
of these cycles.    In any case, when the real flow has no steady state, the 
computed flow likewise has no steady state. 
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The size of the time-step At has to be specified by the user, but MAC3D 
computes and prints two reference values that can be used for guidance.  The 
first of these is the maximum allowable time increment Atmax based on 
numerical stability considerations (Bernard 1993). The second is the period 
TN, which is the inverse of the Brunt-Väisälä frequency N.  The quantity TN 

is the fundamental period of oscillation for a stratified fluid in the presence of 
gravity, given by 

TN (71) 
dp 

8TZ 

As a rule of thumb, the time-step should be slightly less than Atmax and at 
least ten times smaller than TN. 

If so directed by the input, MAC3D will compute and store the initial 
flow, and then stop. At this point, the user can examine the printed output, 
which includes quantities like Atmax and TN, and set At to a suitable value. 
The computation can then be restarted and continued for a specified number of 
time-steps, after which At can be reset. This procedure can be repeated as 
many times as necessary. 

Flow Visualization 

At the end of each MAC3D run, all the major flow variables are stored in 
output files that can be used with appropriate flow-visualization software to 
create vectors, streamlines, color/contour maps, and other types of plots from 
the computed results. Output from MAC3D is generated in the well-known 
PLOT3D format, which is accepted by several different visualization packages 
that are now commercially available.  Although the flow calculations them- 
selves can be executed on workstations or even personal computers (PC's), 
they are much more quickly done on supercomputers.  In the latter case, the 
resulting output files usually have to be transferred back to a workstation or 
PC for flow visualization. 
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5    Flow Simulations 

Provisional Grid for McCook Reservoir 

Figures 3 and 4 show overhead views of the surface and bottom grids, 
respectively, for a provisional configuration of McCook Reservoir. The north 
arrow in Figure 3 is not true north; it is defined only for convenience of 
orientation.  The cutout in the bottom (Figure 4) represents a sump.  The grid 
as a whole is divided into ten subdomains (blocks), which together occupy a 
129 x 44 x 5 region in computational (i,j,k) space.  Figure 5 shows an 
overhead view of the block edges (thin white lines) with the sump grid inset, 
and Figure 6 shows a perspective view with the sump walls and bottom 
shaded.  Figure 7 offers a similar view of the reservoir bottom with the sump 
excluded. 

The simulated reservoir has a maximum width of 3,260 ft (east to west in 
Figure 3) and a maximum length of 4,655 ft (north to south in Figure 3). 
When filled to capacity, it is 113 ft deep along the ridge of the central berm 
(Figure 7), 135 ft deep along the plateau immediately to the west of the berm, 
and 150 ft deep in the trough on the extreme west side of the grid. East of 
the berm, the reservoir is uniformly 130 ft deep except in the sump, where the 
total depth is 230 ft. The ramp at the north end of the berm (Figure 7) 
reduces the depth gradually to a minimum value of 20 ft. 

Each grid block is five cells deep, including the block that represents the 
sump.  Thus, the discrete flow field is five cells deep except for the region 
containing the sump (Figure 8). This region consists of two blocks stacked 
vertically, and it is ten cells deep altogether.  In the MAC3D flow simula- 
tions, as discussed in the following section, flow was injected uniformly 
through a port consisting of the bottom two rows of cell faces on the right 
side of the sump (Figure 9), and withdrawn uniformly through the reservoir 
surface (Figure 3). The inflow port and the reservoir surface were designated 
as FLUX boundaries in the MAC3D input. 

The computational grid is fine enough to capture the largest eddies in the 
flow, but not fine enough to achieve grid independence (i.e., negligible 
change in the computed flow with further grid refinement).  For the latter 
purpose, ten to twenty additional grid spaces would be needed in the vertical 
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for each subdomain.  In some regions of the reservoir, a comparable increase 
in the horizontal resolution might also be necessary.  For qualitative model 
demonstrations, however, the grid used here is adequate. 

Imposed Flow Conditions 

The reservoir was assumed to be completely full.  The velocity through the 
inflow port was fixed at 1 fps, which created an inflow of 10,870 cfs.  This 
was balanced by an equal outflow with a uniform vertical velocity of 
0.001 fps at the reservoir surface.  The walls and bottom of the reservoir 
were given a Manning coefficient of 0.02, and the turbulence model was 
activated in all cases.  The inflow turbulence energy was 2 percent of the total 
inflow energy, and the kinematic eddy viscosity was set at 2 ft /sec along the 
inflow port.  The Prandtl number was set to unity, making the thermal dif- 
fusivity equal to the eddy viscosity.  MAC3D flow simulations were then 
made for the following conditions: 

a. Cold inflow (10 °C) into cold reservoir (10 °C) 

b. Cold inflow (10 °C) into warm reservoir (20 °C) 

c. Cold inflow (10 °C) into stratified reservoir (10 to 20 °C) 

(1) With background heat conduction 

(2) Without background heat conduction 

For the stratified reservoir, the initial temperature profile (Figure 10) was 
20 °C from the surface to a depth of 39 ft; linear with depth from 39 ft to 
91 ft; and 10 °C below 91 ft. 

The initial flow used for all cases was potential flow.  This was computed 
automatically by MAC3D to establish an irrotational, mass-conserving velocity 
field throughout the entire reservoir.  The governing equations were then 
marched through time for 7,200 sec (2 hours) in increments of 1 sec per time- 
step.   By this time, the cold reservoir with cold inflow (neutrally buoyant 
flow) had essentially reached steady state.  The other (buoyant) cases did not 
reach steady state, partly because cold water was continuously flowing into the 
reservoir and displacing warmer water.  The stratified case was run with and 
without background heat conduction (as discussed in Chapter 2) to illustrate 
the extent to which the adiabatic boundary conditions and thermal diffusivity 
can affect the computed flow. 
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Presentation of Computed Results 

To facilitate interpretation and qualitative comparison of the computed 
results, the same information is presented graphically for each set of imposed 
flow conditions. First comes a perspective view of selected velocity profiles 
over the entire reservoir (e.g., Figure 11).  Next are shown close-ups of the 
velocities in and above the sump (e.g., Figures 12 and 13), followed by an 
overhead view of the surface velocities (e.g., Figure 14).  Then comes a 
series of overhead views of flow patterns in five successive grid planes (e.g., 
Figures 15-19), beginning at the surface and ending at 80 percent of the total 
depth (to the top of the sump).  These flow patterns were obtained by 
normalizing all the velocity vectors so that each has a magnitude of unity. 
Thus, the displayed vectors indicate only the local direction of the flow. In an 
overhead view for a single grid plane, however, the projected vector lengths 
will not all be the same unless the vertical velocity component is uniform. 

Cold Reservoir with Cold Inflow 

Most of the action for the cold reservoir (Figures 11-19) is confined to the 
region near the sump.  Strong eddies are evident in both the elevation and 
horizontal planes of the sump itself.  These are complemented by a strong 
eddy just to the south, and a weaker eddy (near the bottom) just to the north. 
Velocities in the southern half of the reservoir are very small in comparison 
with those in and around the sump. 

Warm Reservoir with Cold Inflow 

Results for the warm reservoir (Figures 20-28) are dramatically different 
from those for the cold (neutrally buoyant) reservoir.  In this case, the 
downward buoyant force increases the energy required for the cold inflow to 
penetrate vertically the warmer (lighter) water in the reservoir.  Thus, the 
colder the inflow, the greater the tendency for water leaving the sump to flow 
under the ambient water (as in Figure 21) instead of up and through it (as in 
Figure 12). 

The underflow away from the sump along the bottom induces a return flow 
along the surface, as shown in Figures 21 and 22.  At the elapsed time 
(2 hours) for which results are shown, the highest velocities are confined 
roughly to the northern third of the reservoir.  Questions of magnitude aside, 
the overall flow patterns are more complex than those for the neutrally 
buoyant flow, with each grid plane exhibiting horizontal recirculation in dif- 
ferent locations (Figures 24-28). 
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Stratified Reservoir with Cold Inflow 

Distinct simulations were made for the stratified reservoir with and without 
background heat conduction (Figures 29-46).  These should be regarded as 
bounding calculations rather than as realistic simulations.  They are presented 
mainly to demonstrate the disparity of prediction that can arise because of 
uncertainty concerning the internal rate of heat transfer. 

Near the sump, the velocities for the stratified reservoir with background 
heat conduction (Figures 29-32) loosely resemble those for the unstratified 
warm reservoir (Figures 20-23).  In this case, however, there is a strong 
vertical recirculation west of the central berm, which was not evident for the 
unstratified reservoir.  The flow in this region is generally east to west along 
the surface and west to east along the bottom. 

The flow in the stratified reservoir without background heat conduction 
(Figures 38-46) is totally different from that for the reservoir with background 
heat conduction (Figures 29-37).  Here the largest velocities are confined to 
the region near the sump (Figures 38-41), with multiple zones of horizontal 
recirculation occurring in different planes at various distances from the sump 
(Figures 42-46). 

The difference between these two flows indicates the relative influence of 
the eddy diffusivity. If the initial diffusivity of 2 ft2/sec were held constant, it 
would be sufficient to bring the entire reservoir to thermal equilibrium within 
2 hours (in the absence of any flow).  Thus, the flow simulation with back- 
ground heat conduction combined the effects of cold inflow and rapid internal 
heat conduction.  Although the reservoir was initially stratified, it gradually 
became unstratified far from the sump, with a temperature of about 15 °C. 

In the flow simulation without background heat conduction, the local 
temperature changed only in response to the inflow, which was too weak to 
destratify the entire reservoir through fluid motion alone.  In this case, the 
buoyant forces were strong enough to restrict the main action to the region 
near the sump, and the initial temperature distribution hardly changed at all. 

Figure 47 shows a gray-scale map of the initial stratified temperature (in 
degrees centigrade) on vertical (elevation) surfaces inside the reservoir and 
along its sides.  Figure 48 shows the temperature map for the flow without 
background heat conduction after 2 hours el?psed time, and Figure 49 shows 
the corresponding map for the flow with background heat conduction. For 
comparison, Figure 50 shows the temperature map for the previous case of the 
warm reservoir (20 °C) with cold inflow (10 °C) after 2 hours elapsed time. 
Note that vertical distances have been magnified by a factor of five in 
Figures 47-50. 
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Conclusions and 
Recommendations 

In most respects, one can regard MAC3D as a three-dimensional extension 
of the depth-averaged STREMR model.  MAC3D uses the same numerical 
algorithms and turbulence model as STREMR, but it also includes buoyancy 
and offers the added flexibility of composite (multiblock) grids.  In any case, 
MAC3D draws heavily on the insight and experience previously gained in 
developing STREMR, which has been extensively tested and documented 
(Bernard 1992, 1993; Bernard and Schneider 1992; Maynord, in preparation). 

This report offers no comparison of model predictions with physical test 
data, but MAC3D is not completely unverified.  At each stage of develop- 
ment, the model has been run and checked against STREMR predictions for 
2-D flow.  Thus, in certain 3-D settings for which the flow should be 2-D, 
MAC3D actually produces a 2-D flow; and the predictions agree with those of 
STREMR.  In future work, MAC3D predictions should be tested against 
pertinent experimental results for fully 3-D flow. 

The existing model now seems ready for implementation as a supplemen- 
tary aid in design studies of McCook Reservoir, although undiscovered 
deficiencies may still have to be dealt with.  Given a specified inflow or out- 
flow, MAC3D can predict reasonable bounds for the resulting circulation 
inside the reservoir.  The major uncertainties are the rates of surface heat 
exchange and internal heat conduction, and these merit considerable further 
study.  In particular, modules need to be developed to account for reflection 
and absorption of solar radiation, shear stress produced by surface winds, and 
surface heat flux produced by changes in ambient atmospheric temperature. 

MAC3D is capable of predicting the hydrodynamic response to inflow, 
outflow, and hydraulic mixers, but ic also needs to predict the response to 
bubble diffusers.  The latter represents a special problem, because rising bub- 
bles generally move with a different velocity from that of the flow.  Thus, 
future work should include the development of adequate models for localized 
bubble plumes and their influence on the flow.  These might include special 
buoyant forces added along the vertical planes or axes of diffusers, along with 
empirical rules for the spreading of the plumes themselves. 

Chapter 6    Conclusions and Recommendations 
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At present MAC3D deals with hydrodynamics, but not with water quality. 
To make the model more generally useful as an aid for reservoir design, 
operation, and modification, future work should include the addition of 
modules to account for oxygen transport and degradation, as well as pertinent 
chemical and biological processes. 
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b. Curvilinear coordinates 

Figure 1. Grid cells as they appear in cartesian space and computational 
(curvilinear) space 
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Figure 2. Nodal coordinates in computational space 



Figure 3.  Surface grid for McCook Reservoir 



Figure 4.  Bottom grid with sump excluded 



Figure 5. Overhead view of subdomain edges with sump grid inset 



Figure 6.  Perspective view of subdomain edges with sump inset 



Figure 7.  Perspective view of bottom with sump excluded 



Figure 8.  Cutaway of bottom and side grids in and around sump 



Figure 9.  Solid walls (shaded) with inflow port for sump 



Figure 10.  Initial temperature profile for stratified reservoir 
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Figure 11. Velocity profiles for cold reservoir with cold inflow 



Figure 12. Velocities in elevation plane of sump for cold reservoir with cold inflow 



Figure 13. Velocities for horizontal planes in and above sump for cold reservoir with cold 
inflow 



Figure 14. Surface velocities for cold reservoir with cold inflow 
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Figure 15. Surface flow patterns for cold reservoir with cold inflow 
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Figure 16.  Flow patterns at 20 percent of total depth for cold reservoir with cold inflow 
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Figure 17.  Flow patterns at 40 percent of total depth for cold reservoir with cold inflow 
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Figure 18.  Flow patterns at 60 percent of total depth for cold reservoir with cold inflow 



Figure 19.  Flow patterns at 80 percent of total depth for cold reservoir with cold inflow 
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Figure 20. Velocity profiles for warm reservoir with cold inflow 
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Figure 21. Velocities in elevation plane of sump for warm reservoir with cold inflow 



Figure 22. Velocities for horizontal planes in and above sump for warm reservoir with cold 
inflow 
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Figure 23.  Surface velocities for warm reservoir with cold inflow 
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Figure 24. Surface flow patterns for warm reservoir with cold inflow 



Figure 25.  Flow patterns at 20 percent of total depth for warm reservoir with cold inflow 



Figure 26.  Flow patterns at 40 percent of total depth for warm reservoir with cold inflow 



Figure 27.  Flow patterns at 60 percent of total depth for warm reservoir with cold inflow 
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Figure 28.  Flow patterns at 80 percent of total depth for warm reservoir with cold inflow 



Figure 29. Velocity profiles for stratified reservoir with cold inflow 



Figure 30. Velocities in elevation plane of sump for stratified reservoir with cold inflow 
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Figure 31. Velocities for horizontal planes in and above sump for stratified reservoir with 
cold inflow 
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Figure 32. Surface velocities for stratified reservoir with cold inflow 



Figure 33. Surface flow patterns for stratified reservoir with cold inflow 
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Figure 34.  Flow patterns at 20 percent of total depth for stratified reservoir with cold 
inflow 



Figure 35.  Flow patterns at 40 percent of total depth for stratified reservoir with cold 
inflow 



Figure 36.  Flow patterns at 60 percent of total depth for stratified reservoir with cold 
inflow 



Figure 37.  Flow patterns at 80 percent of total depth for stratified reservoir with cold 
inflow 



Figure 38. Velocity profiles for stratified reservoir with cold inflow and no background heat 
conduction 



Figure 39. Velocities in elevation plane of sump for stratified reservoir with cold inflow and 
no background heat conduction 



Figure 40. Velocities for horizontal planes in and above sump for stratified reservoir with 
cold inflow and no background heat conduction 



Figure 41. Surface velocities for stratified reservoir with cold inflow and no background 
heat conduction 



Figure 42. Surface flow patterns for stratified reservoir with cold inflow and no background 
heat conduction 
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Figure 43.  Flow patterns at 20 percent of total depth for stratified reservoir with cold 
inflow and no background heat conduction 
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Figure 44.  Flow patterns at 40 percent of total depth for stratified reservoir with cold 
inflow and no background heat conduction 



Figure 45.  Flow patterns at 60 percent of total depth for stratified reservoir with cold 
inflow and no background heat conduction 
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Figure 46.  Flow patterns at 80 percent of total depth for stratified reservoir with cold 
inflow and no background heat conduction 
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Appendix A 
Notation 

D/Dt Substantive (total) time-derivative operator 

div Divergence operator 

8 Acceleration due to gravity 

grad Gradient operator 

ij.k Integer computational coordinates 

J Jacobian of coordinate transformation 

k Turbulence energy 

n Manning's coefficient 

n Unit vector normal to boundary 

P Pressure 

PT Ratio of thermal diffusivity to kinematic viscosity, also 
known as the Prandtl number 

S Source/sink term 

t Time 

T Temperature 

TS 
Static (background) temperature 

ä Vector velocity 

u,v,w Cartesian components of velocity 

Appendix A  Notation 
A1 



U, V, W Volumetric fluxes in the £-, 77-, and f-directions, respectively 

x,y,z Cartesian coordinates 

e Turbulence dissipation rate 

6 Relative deviation from reference value 

H Sum of the molecular viscosity nM and the eddy viscosity \iT 

v Kinematic viscosity 

v^ Diffusivity for ^ 

£,rj,f Curvilinear coordinates 

p Density 

p0 Reference (maximum) density 

T Shear stress 

\p Scalar function or vector component 

A2 
Appendix A  Notation 
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