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1    Introduction 

The primary objective of the proposed research is to develop computer techniques for de- 
tecting abnormalities in digital mammograms using sound engineering methods and rigorous 
testing to provide reliable results which can be used by radiologists to increase diagnostic 
accuracy and decrease the rate of undetected cancers. To provide flexibility in a clinical 
setting, a radiologist will have control over the sensitivity/specificity of computer detection 
routines. In order to provide this flexibility, receiver operator characteristic (ROC) tech- 
niques will be developed for non-traditional statistical classifiers, such as artificial neural 
networks (ANNs) and binary decision trees (BDTs). Finally, all software will be optimized 
and packaged into a graphical user interface which will provide a radiologist with access to 
image processing tools in addition to the computer detection routines. 

The first full year of research in computer-aided diagnosis of mammogram images can be 
divided into two general areas. First, "basic" level computer science algorithms and concepts 
have been developed and refined. During the process of developing solutions for the digital 
mammography application, problems of a more basic nature arise. These basic problems usu- 
ally require general purpose solutions which, in turn, result in techniques that are applicable 
in many areas of computer science and engineering. Second, application specific experiments 
have been performed which are directed towards realization of the primary objective of the 
funded research. Namely, to develop a fully automated system for computer-aided diagnosis 
of digital mammograms. 

The following subsections will introduce the topics that have been the focus of the first 
full year of research. Here, the problems will be summarized, our solutions will be introduced, 
and some background information will be provided. The body of this report (Section 2) will 
provide the details of the research conducted, including experimental methods, data, and 
results. Section 3 of the report will summarize the research, and draw some conclusions. 
Each research topic will be covered in separate subsections within each of the three major 
sections of this report. Much of the following material has or will be submitted to scientific 
journals and/or conference proceedings. 

1.1    ROC Analysis 

The accuracy of a classifier (in a 2-class problem) can be completely characterized by a plot 
of the classifier's true positive detection rate versus its false positive rate. This is called a 
receiver operating characteristic (ROC) curve. The false positive (FP) rate is the proba- 
bility of incorrectly classifying a normal sample as an abnormal sample. The true positive 
(TP) detection rate, also called the sensitivity, is the probability of correctly classifying an 
abnormal sample. The TP and FP rates both are specified in the interval from 0.0 to 1.0 
(or 0% to 100%), inclusive. Statistical classifiers have parameters that can be varied to alter 
the TP and FP rates. Each set of parameter values may result in a different (TP,FP) pair, 
called an operating point. 

The Area Under the ROC Curve (AUC) is an accepted way of comparing overall classifier 
performance [1, 2, 3]. However, the "best" classifier for an application may well depend on 
the particular combination of TP and FP rates that are required. Additionally, classifier 
performance at very low sensitivities or very high FP rates is usually not of practical interest. 

1 



When large portions of the ROC curve lie outside the range of interest, it is more useful to 
analyze only a portion of the curve. 

The objective of this research subtopic was to review current methods for generating 
ROC curves for traditional and non-traditional classifiers, and to develop scientifically sound 
techniques for comparing ROC curves generated by different classifiers. Generating ROC 
curves for traditional classifiers, such as Bayesian and K-Nearest Neighbor classifiers, are 
well established. Similarly, techniques for comparing full and partial ROC curves have been 
explored in previous work [2, 4]. However, since ROC analysis is so fundamentally crucial 
to the proposed research, a review of established techniques was essential. Upon completion 
of this review, we found it was necessary to refine some existing techniques for comparing 
portions of ROC curves. 

1.2 Generating ROC Curves for ANNs 

While techniques for generating ROC curves for "traditional" classifiers are well understood, 
the same cannot be said for "non-traditional" classifiers such as ANNs and decision trees. 
In a majority of previous work, artificial neural networks (ANNs) have been applied as a 
classifier to find one "best" detection rate. Recently researchers have begun to report ROC 
curve results for ANN classifiers. The current standard method of generating a ROC curve 
for an ANN is to vary the output node threshold for classification. We developed a novel 
algorithm for generating a ROC curve for a 2-class ANN classifier. By appropriately scaling 
the bias input weight for selected nodes on the first hidden layer, we can control the ANN's 
TP and FP rates in a desirable manner. The training data is used to determine the sets of 
scale factors that will change the TP rate from 0% to 100% while maintaining as low a FP 
rate as possible. We show that this new technique generates better ROC curves in the sense 
of having greater area under the ROC curve, and in the sense of being composed of a greater 
number of distinct operating points. As a result of applying our algorithm, the same ANN 
is capable of achieving not only better detection rates, but also permits the user to select an 
appropriate operating point for a given application. 

1.3 Combination of Multiple Classifiers 

Many pattern classification techniques exist, each with inherent strengths and weaknesses. 
No single classifier is suitable for all applications. Similarly, it may be difficult to achieve 
acceptable performance for complex data distributions using any single classifier. One al- 
ternative in the search for greater performance is integrated or adaptive methods which are 
capable of capitalizing on the strengths of several individual classifiers. Indeed, recent work 
in handwritten character recognition has shown promising results when several classifiers are 
combined to reach a decision [5, 6, 7, 8, 9, 10, 11, 12, 13]. This is often referred to as Com- 
bination of Multiple Classifiers (CMC). We have been exploring CMC in order to determine 
the merit of such approaches for improved classification accuracy in a digital mammography 
application. 

Most of the current approaches to CMC treat the training data as a monolithic whole 
when determining classifier accuracy. However, it seems intuitive that the accuracy might 
vary with position in feature space. Given an arbitrary test sample and classifiers which may 



have different feature spaces, it is reasonable to think that a given classifier would perform 
similarly for other samples near the test sample in its feature space. The result of our 
CMC research is a novel algorithm for dynamic classifier selection that uses estimates of a 
classifier's accuracy in local regions of feature space. Our CMC algorithm simply selects the 
classifier which is most accurate for a subset of training samples nearest to the test sample. 
Note that the particular samples in the subset may vary among classifiers. 

1.4    Segmentation Techniques 

The research topics in the previous 3 Subsections have dealt with computer science topics 
that are general-purpose in nature. The research introduced in this subsection is concerned 
with determining the most promising fundamental approach to segmenting/detecting abnor- 
malities in mammogram images. 

Most approaches to date have used some type of contrast-based segmentation scheme to 
extract potentially abnormal tumor regions from digital mammograms. Since most lesions 
are more radiographically dense compared to surrounding tissue, a contrast-based approach 
seems intuitively appealing. However, the vast range in appearance of typical lesions makes 
it very difficult to develop a reliable segmentation scheme with a high specificity. That is, 
in order for a segmentation algorithm which relies heavily on pixel intensity to segment a 
majority of lesions, a large number of false positive regions will also be segmented. The false 
positive rate of the contrast-based segmentation approaches is so high that even subsequent 
processing of the images still fails to raise the system specificity to an acceptable level. 

An alternative to contrast-based segmentation is a texture-based segmentation scheme. 
This type of approach has been used successfully to detect spiculated lesions with an ac- 
ceptable false positive rate [14, 15, 16]. Recent work comparing contrast-based segmentation 
to texture-based segmentation [17] would seem to indicate the importance of considering 
the texture of the breast tissue during the segmentation process. The goal of this research 
subtopic is to develop a general-purpose texture-based segmentation scheme that can be used 
to segment most kinds of mammographic abnormalities. The initial phases of this research 
have been concerned with determining what kinds of texture features are useful, and what 
kind of initial results can be expected using such an approach. 

2    Body 

This section provides details of the research directed towards solving the 4 problems intro- 
duced in the Section 1.1 through 1.4. Whenever possible, experimental methods and results 
are provided. 

2.1    Generating and Comparing ROC Curves 

The following 4 subsections (2.1.1 to 2.1.4) briefly review current techniques for generat- 
ing ROC curves for several families of statistical classifiers. Subsection 2.1.5 presents the 
methods we use for comparing ROC curves generated by two different methods of classifi- 
cation. This work involved refining an existing test for statistical significance so that it was 



applicable to our problem domain. 

2.1.1    ROC for Bayesian Classifiers 

For the Bayesian (LC and QC) classifiers, we get as output the a posteriori probability of 
an unknown sample for both classes. We compute the ratio 

*abn 
(1) 

where Pabn and Pnrmi are the a posteriori probabilities of the sample belonging to the abnor- 
mal class and the normal class, respectively. We can set a decision threshold, T, such that 
if the ratio is greater than T, the unknown sample is classified as abnormal, otherwise it is 
labeled as normal. By varying the threshold, the TP/FP trade-off of the Bayesian classifiers 
can be altered. For example, as T is increased, both the TP and FP rates will decrease (not 
necessarily at the same rate). 

2.1.2 ROC for KNN Classifier 

For the KNN algorithm, ROC points for a specific value of K are obtained by varying k (the 
number of votes required) for the abnormal class from 1 to K and observing the resulting 
TP and FP rates. It should be apparent that as k is increased, the TP and FP rates will 
decrease since it will require more "votes" for an object to be classified as abnormal. To 
optimize the KNN classifier, we vary the value of K from 1 to 200. At each value, an ROC 
curve is generated by varying k from 1 to K, and the AUC is computed. The K value that 
produces the maximum AUC is selected for classification purposes. The operating point of 
the KNN classifier can then be selected by choosing an appropriate value of k. 

2.1.3 ROC for Decision Trees 

In decision trees, the leaf nodes may be seen as associating a probability with each class. 
The probability is computed from the training samples that fall into the leaf after the tree 
has been grown and pruned. For example, a leaf node may contain 80 training samples from 
class 1, and 20 training samples from class 2. During classification, we can say an unknown 
sample that falls into this leaf has an 80% probability of belonging to class 1, or a 20% 
probability of belonging to class 2. Thus, ROC points for decision trees are obtained by 
simply varying a threshold for the probability of a sample belonging to the abnormal class. 
So, as the threshold for the abnormal class is lowered we would expect more samples to be 
classified as abnormal, thereby increasing both the TP and FP rates. 

2.1.4 ROC for ANNs 

In the Subsection 2.2, we describe, in detail, the traditional method of generating ROC 
curves for ANNs, and the novel algorithm that we developed in response to some drawbacks 
of the traditional method. 



2.1.5    A Test for Statistical Significance 

Hanley and McNeil [2] describe methods to determine if the observed difference between two 
AUCs is statistically significant. An AUC that has been computed over a full ROC curve is 
equivalent to the probability that a randomly selected abnormal sample will be rated more 
suspicious, by a classifier or a human, than a randomly selected normal sample [2]. An AUC 
computed over a portion of a ROC curve is equivalent to a conditional probability, and 
must be expressed as such prior to applying the methods of Hanley and McNeil. 

First, the AUCs over the range of interest are estimated using the trapezoid rule for the 
discrete operating points. The area under a portion of a ROC curve can be expressed as a 
conditional probability via the following transformation: 

where Ap is the area under the ROC curve computed between TP rates TP\ and TP2. (A 
similar transformation would be used when AUCs are computed between FP rates FP\ and 
FP2.) 

The formula for the z statistic is 

AUC, - AUC2 
Z =      I 9 9 ^ yJSE^ + SE2

2 

where AUCi and AUC2 are the two estimated AUCs, and SEi and SE2 are the estimated 
standard errors of each AUC. We use a two-tailed test for statistical significance. The null 
hypothesis is that the two observed AUCs are the same. The alternate hypothesis is that 
the two AUCs are different. A critical range of z > 1.96 or z < —1.96 (a level of significance 
a = 0.05) indicates that the null hypothesis can be rejected, and there is sufficient evidence 
to support the alternate hypothesis. 

A conservative estimate of the standard error of an AUC value can be calculated (from 
[2]) as: 

SEI AUd) =   le{1 ~e) + {UA " 1)(Ql ~ 92) + K ~ 1)(92 ~ 92) (4) 
V nAnN 

where Q\ and Q2 are two distribution-specific quantities, 8 is the "true" area under the 
ROC curve, and nA and n^ are the number of abnormal and normal samples, respectively. 
The estimate AUCi is used as an estimate of 6. The quantities Q\ and Q2 are expressed as 
functions of 8: 

o, = ^ («) 
and 

Q, = ^ (6) 

In a test for statistical significance, two ROC curves are compared only over the range of TP 
rates that are common to both curves. 



2.2    Generating ROC Curves for ANNs 

For the following discussions, it is assumed that the reader is familiar with ANN concepts 
in general, including activation functions, the role of the bias unit and the weights on the 
bias input to a node, and the backpropagation training algorithm. For a basic introduction 
to backpropagation neural nets, the reader is referred to [18]. 

2.2.1 The ANN architecture 

All of the experiments reported here use fully-connected backpropagation networks with 
sigmoid activation functions (output range 0.0 to 1.0), a bias unit with weighted connections 
to all nodes, and a single output node. The value produced by the output node would 
typically be thresholded so that values greater than or equal to 0.5 are labeled "target", and 
values less than 0.5 are labeled "non-target". Our experiments utilize simulated and real 
data. We have created several sets of 2, 3, and 5-dimensional data. These simulated data 
sets will be described in more detail later. Some of the experiments on the simulated data 
utilize a network with 2 hidden layers with 10 hidden nodes per hidden layer and one output 
node. The number of inputs, obviously, depends on the dimensionality of the data set (i.e. 
either 2, 3, or 5 inputs). We also examine networks with a single hidden layer of 10 nodes 
and, as before, 1 output and either 2, 3, or 5 inputs. In our own previous work on a problem 
in mammogram image analysis [19], a network with 7 inputs (plus 1 bias input), 2 hidden 
layers with 10 hidden nodes per hidden layer, and 2 output nodes was found empirically 
to give the best performance. For consistency, this same architecture is used in this paper 
for all experiments that utilize the mammography dataset with the exception that only one 
output node is used. 

2.2.2 ANN training and testing 

The ANN must be trained before the ROC curve can be generated. The ANN is trained for 
2000 epochs using a standard backpropagation learning algorithm, and the network weights 
are saved for the lowest network error (sum of squared error over all training samples) found 
during training. The resulting network is referred to as a "basic trained network". Each 
of the two methods we discuss manipulates one or more parameters of the basic trained 
network to generate a ROC curve. The current accepted method [20, 21, 22, 23], varies the 
threshold on the value produced by the output node. Our proposed new method scales the 
weight on the bias inputs for selected nodes on the first hidden layer. 

It is important to follow careful methodology in selecting and evaluating ROC points. In 
a given experiment, the training data set is used to train the ANN. This fixes values for all 
of the weights in the ANN. This initial instance of the ANN provides one operating point. 
Based on the training data, values of some underlying network parameter(s) are selected to 
give additional instances of the ANN. The result is a set of instances of the network chosen 
to represent points on the ROC curve. The goodness of this set of network instances is then 
evaluated using a separate test set of data. So, ANN training involves both the learning of 
the network connection weights, and the estimation of classifier parameter settings for the 
purpose of generating a ROC curve. 
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The results for a trained ANN are naturally dependent on both the particular training 
set and the initial values of the weights. Therefore, it is necessary to observe a number of 
instances of a basic trained network in order to give a true picture of the relative performance 
of a method for generating ROC points. Thus, experimental results are obtained for several 
random initializations of the ANN weights for each set of training data. The training and 
test sets for each experiment are described in detail in the following subsection. 

Occasionally, an ANN is unable to converge on a reasonable solution for the training 
data within the allotted 2000 training epochs. When this occurs, all training samples are 
assigned to the same class. This corresponds to a either a ROC point with 100% TP and FP 
rates, or a point with 0% TP and FP rates. A network instance which has trained to one 
of these extreme ROC points is effectively useless, and we do not attempt to extract ROC 
curves in this situation. We will note the number of times the ANN did not properly train 
in our experimental results. 

2.2.3    The experimental data 

We report experimental results for a number of different sets of simulated data. Simulated 
data is attractive from an experimental standpoint because we can create a virtually unlim- 
ited supply of completely independent training and test data with known distributions. Due 
to the limited number of target training samples available from our mammography data, 
each of the training sets will contain many of the same target samples. Therefore, while 
the training data is completely independent from the test data, the individual training sets 
are not independent of each other. The addition of the simulated data permits us to be 
reasonably sure that our test results are not somehow dependent on characteristics inherent 
in the mammography data, such as the number, dimensionality, and/or distribution of the 
data samples. 

In our first sets of simulated data, samples from both the target class and non-target class 
have Gaussian distributions with some regions of overlap in feature space. We use 4 different 
size training sets (500, 1000, 1500, and 2000 samples) with an equal number of samples from 
the target and nontarget classes. We use data sets with 3 different input dimensions (2-d, 
3-d, and 5-d). The target samples have a mean of 0.625 with a standard deviation of 0.1 for 
all dimensions, and the non-target samples have a mean of 0.375 with a standard deviation 
of 0.1 for all dimensions. Figure 1 shows an example of some 2-dimensional data with these 
distributions. We created 3 sets of test data (one for each different input dimension) of 5000 
samples (half from each class) to test these first sets of simulated data. Overall, we have 12 
sets of training data (4 sizes x 3 dimensions) and 3 sets of test data of overlapping normally 
distributed data. 

In our second sets of simulated data, only the target samples have a Gaussian distribution. 
The non-target samples have a uniform distribution. The non-target samples are permitted 
to overlap the target samples for some regions in feature space, but not near the mean of 
the target samples. As before, we use 4 different size training sets and 3 different input 
dimensions with half the samples coming from each class. The target samples have a mean 
of 0.75 with a standard deviation of 0.1 for all dimensions. Figure 2 shows an example 
of some 2-dimensional data with the distributions we have just described. Thus, we have 
another 12 sets of training data (4 sizes x 3 dimensions). Again, we have 3 sets of test data 
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Figure 1: A portion of one of the training sets of 2-dimensional data in which both classes 
have Gaussian distributions. 

(one for each different input dimension) with 5000 samples. 
In addition to the simulated data, experimental results are reported for real data from 

a classification problem in mammogram image analysis. The data is a set of 2-class, 7- 
dimensional, normalized feature vectors that have been extracted automatically from labeled 
(ground truth), segmented mammogram images. The mammogram images, the feature 
selection and extraction methods, and the segmentation procedure are presented in [19]. 
The mammogram images are divided into separate sets of training and test images from 
which the training and test samples are obtained, respectively. Fifteen different training sets 
are created by randomly selecting an equal number of target and non-target samples from 
the set of training images. More specifically, we have 5 training sets with 300 samples, 5 sets 
with 400 samples, and 5 sets with 524 samples1. The mammography data test set includes 
all samples from all of the test images (280 targets, and 3719 nontargets). 

For each of the 24 training sets of simulated data, we perform 3 random initializations 
of the ANN weights prior to training the network. As we mentioned before, simulated 
data will be used to train networks with 2 different architectures, one with a single hidden 

1The set of training images contained a total of 262 target samples.   Thus, the training sets with 524 
samples contain all target samples available in the training images 
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Figure 2: A portion of one of the training sets of 2-dimensional data in which only the target 
class has a Gaussian distribution, and the nontarget class is more uniformly distributed. 

layer of 10 nodes, and one with two hidden layers of 10 nodes each. Therefore, we may 
have up to 144 instances of a basic trained network (24 training sets x 3 initializations x 
2 ANN architectures) for ROC experiments on simulated data (provided the ANN is able 
to converge on a solution for all 144 trainings). Since we have only 15 training sets of 
real data, we decided to perform 5 random initializations of the ANN weights prior to 
training the network. Therefore, we may have up to 75 instances of a basic trained network 
(15 training sets x 5 initializations) for ROC experiments on real data. So, overall we will 
compare the two methods of ROC curve generation for up to 219 separate instances of a 
basic trained network. 

2.2.4    The current standard ROC generation method: output node thresholding 

The current accepted method to generate ROC points for ANNs is simply to vary the thresh- 
old on the value produced at the output node [20, 21, 22, 23]. The threshold (Tout) is varied 
over the range of the output node value (0.0 to 1.0). For each of the values of Tou4, any 
feature vector which produces an output greater than or equal to Tout is labeled a target, 
otherwise it is labeled a non-target. 

Recall that we must use the training data to estimate how ANN parameter values must 
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be varied in order to produce a set of ROC points. In this case, we need to estimate a 
set of Tout values that correspond to various levels of sensitivity. This can done by simply 
sorting the set of output values that are found when every sample in the training set is input 
to the trained network. Each distinct value in this sorted set corresponds to a T^t value 
that will produce a new point on a ROC curve plotted for the training set. A set of Tout 

values determined in this manner produces the maximum number of ROC points that can 
be directly found. Additional points, if desired, would be found by interpolating between 
actual points found from the training data. For example, assume the training data gives 
(TP%,FP%) operating points of (40%, 10%) for an output threshold of 0.6, and (50%, 20%) 
for an output threshold of 0.7, but no points in between these. An output threshold of 0.65 
might be assumed to produce an interpolated ROC point of (45%, 15%). Note that this 
newly estimated value of Tout will not produce a new ROC point for the training set, but it 
may well result in a new ROC point for a data set with a similar distribution as the training 
set data (such as the test data). 

For the experiments reported here, we first find all of the distinct Tout values for the 
training set. Then, using the interpolation procedure described above, we estimate a set Tout 

values corresponding to TP rates ranging from 0% to 100% in 1% intervals2. The goodness 
of this set of 101 Tout values as a ROC curve is then evaluated using the test set. Of course, 
it would be possible to generate an "optimal" ROC curve for the test data by selecting Tout 

values from the sorted set of output values that are found when the test set is input to 
the trained network. However, this would introduce the possibility of bias since classifier 
parameters would be determined directly from test data. In our work, all ANN parameters, 
connection weights and thresholds, are learned from training data only. Test data is used 
strictly for performance evaluation. 

2.2.5    The proposed ROC generation method: scaling the bias weights for the 
first hidden layer 

Consider a basic trained network. At each node, the weighted sum of inputs to that node 
becomes the input to a sigmoid function which determines the output value for the node: 

node output value = .,,. „ , .„ „ ,—, .„ „ , „. m (7) ^ I _|_ e-(WiX1+W2X2+...+WdXd+W0B) v   J 

In this expression, the X,-, i = l...d, are the inputs (other than the bias) to the node, the 
Wi,i — l...d, are the weights on the inputs, and WQ is the weight on the bias input. The 
bias input, B, is fixed at 1.0 during the backpropagation learning phase. Scaling the bias 
input weight to make it greater than the value learned during network training will result 
in a greater value for the output of the node for a given set of input values. Scaling the 
bias input weight to make it less than the value learned during training has the opposite 
effect, translating into a reduced value for the node output for a given set of input values. 
Depending on the overall configuration of weights learned for the network, scaling the bias 

2In principle, any desired number of Tout values with any predicted spacing in TP rates can be created 
by appropriate interpolation between actual Tout values that are found directly from the training data. A 
set of 101 values with 1% intervals in TP rate was judged sufficient for our purposes here. 
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weight for a given node to make it greater could either increase or decrease the value produced 
at the output node for a given input feature vector. 

The mechanics of the proposed method of generating ROC curves are as follows. The 
first step is to determine, separately for each first hidden layer node, whether it is necessary 
to increase or decrease its bias input weight in order to cause more samples to be classified 
as targets (i.e increase TP and FP rates). This is accomplished in the following manner. 
The training set data is applied to the basic trained network3, and the resulting TP and FP 
rates are noted. This TP/FP pair represents the "natural" ROC point to which the ANN 
has trained. Now, for a single first hidden layer node, the bias input weight is increased by 
an arbitrary increment, the training set is applied, and the resulting TP and FP rates are 
observed. Next, the bias input weight is decreased by an arbitrary amount, the training set 
is applied, and the resulting TP and FP rates are observed. This process is repeated for 
each first hidden layer node. 

The bias input weight for a single node is increased or decreased by multiplying the 
weight (Wo) by a scale factor. In our implementation, this is done by setting the bias input 
to each node. During training the bias input is kept at a constant value of 1.0 for all nodes 
in the ANN. In our method of generating a ROC curve for the ANN, we vary this value 
individually for each node on the first hidden layer. In effect, the bias value at a given node 
becomes a "scale factor" for the bias weight learned at that node. We use scale factors 
of -9.0 and 11.0 to respectively decrease and increase bias input weights for this first step 
of the algorithm. We should note here that for some nodes the TP and FP rates are not 
affected when the bias input weight is changed. These nodes have effectively been "turned 
off" during training and are playing no role in determining the network output. Such nodes 
are not considered in ROC curve generation. So, at this point we know which "direction" 
(increasing, decreasing, or not at all) that each first hidden layer node must be scaled in 
order to increase or decrease both the TP and FP rates. 

A set of scale factors for the bias weights on the first hidden layer will change the network 
operation and lead to a new (TP,FP) rate on the training set. In this view, the originally 
learned weights can be viewed as having implicit scale factors of 1.0. Since ANN training 
results in an initial specific point on the ROC curve, generating the rest of the curve involves 
changing the TP rate (sensitivity) of the ANN and observing the corresponding FP rate. 
Thus, the next step to generate a ROC curve is to determine sets of scale factors (using the 
training set) that change the ANN's TP and FP rates in a desirable manner. Our algorithm 
achieves this in two steps. First, we determine sets of scale factors that increase the TP rate 
from the initial ROC point while increasing the FP rate as little as possible (or not at all). 
Second, we determine sets of scale factors that decrease the TP rate from the initial ROC 
point while decreasing the FP rate as much as possible. Conceptually, we are "sweeping 
out" a: ROC curve by attempting to find operating points for the training data that change 
the TP rate from 0% to 100% while maintaining as low a   FP rate as possible. 

We will now describe our implementation for determining sets of scale factors and apply- 
ing them to generate a ROC curve. A lookup table data structure is created. The table has 
a row for each first hidden layer node.  Each column in the table contains the set of scale 

3 Applying a data set to an ANN implies that each sample in the set is input to the network and classified 
according to its output value. 
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factors that correspond to a particular operating point found using the training set data. 
The lookup table, when completed, specifies how to generate a set of ROC points from the 
basic trained network (see Figure 3). 

1st Hidden Layer 

Output Node 

B = 1.0 
(Bias Input) 

Resulting TP and FP rates 
define an operating point 
on the ROC curve. 

Appropriate scale factor from 
table is multiplied by the bias 

. input weight for each first 
hidden layer node. 

Hidden 
Node# 

Scale Factors for 1 st Hidden Layer Nodes. 
Operating Points as (TP rate, FP rate). 

(0,0) (TP,FP) (100,100) 

1 X.XX 

2 X.XX 

N X.XX 
Select desired operating point 

from the lookup table. 

Figure 3: The lookup table of scale factors is used to set a desired operating point for the 
ANN classifier. In this figure, the bias connections to the second hidden layer and output 
nodes are not shown. The bias value for these nodes is always 1.0. 

The following algorithm is used to fill in the lookup table. The lookup table is initialized 
with the middle column entries all set to 1.0. These are the default scale factors for the 
bias input weights for the first hidden layer nodes in the basic trained network. Thus, this 
middle column represents the operating point to which the ANN naturally trained. Starting 
at the middle of the lookup table, the scale factors for all first hidden layer nodes are moved 
simultaneously by the same amount in the direction that will increase the TP and FP rates. 
Based on the first step in our algorithm we know which direction the scale factors should be 
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changed for each first hidden layer node, but not by how much. We would like to be able 
to change the TP rate in as fine of increments as possible. So, we need to change the scale 
factors until at least one more target in the training set is correctly classified as a target 
(i.e. a new TP is found), thereby raising the TP rate. We perform a "binary search" over 
a range of possible scale factor changes until we zero in on the smallest scale factor change 
(within some desired degree of accuracy) that increases the TP rate for the training set. 
This process is depicted in Figure 4. The binary search technique is an efficient way to limit 
the number potential scale factor changes examined. This is important since the full set of 
training data must be applied to the network to get a TP and FP rate for each scale factor 
that is examined. Once the new set of scale factors have been determined, the new TP and 
FP rates of this operating point are recorded. 

Step 1: Change scale factor(s) by an arbitrary amount, 
apply the training set, and observe new TP rate. 

imount 7 
h + 

0.0 
(no change) 

20.0 
(arbitrarily 

large change) 

_^  Change in 
Scale Factor 

Step 2: Perform a "binary search" of the range 
of scale factor changes to find the minimum 
amount the scale factor(s) must be changed to 
get one more true positive in the training set. 

h 
0.0 10.0 

Apply training set and 
observe new TP rate. 

20.0 

If TP rate 
is changing 

If no change 
in TP rate 

0.0 5.0 15.0 20.0 

Assuming TP rate is changing: Select new scale 
factor, apply training set, and observe new TP rate. 

If TP rate  If no change 
is changing   in TP rate 

0.0     2.5 7.5 20.0 

Binary search continues until we find the 
minimum scale factor change (within a 
desired dgree of precision) that causes 
the TP rate to change. 

j£- 
0.0      2.786 20.0 

_^. Change in 
Scale Factor 

„ Change in 
Scale Factor 

_^. Change in 
Scale Factor 

_^. Change in 
Scale Factor 

Figure 4: A "binary search" is used to search a large range of potential scale factor changes. 
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If the density of the training set points in feature space is the same near all regions of the 
decision boundary, then changing the scale factors of all nodes simultaneously makes sense. 
However, if the density of training set points is different near different regions of the decision 
boundary, then it may be better to scale for only a selected subset of the bias weights. To 
check for this possibility, the scale factor is changed in the appropriate direction for each first 
hidden layer node individually (using the binary search techniques described above) until a 
minimal increase in the TP rate is found. Again, we record the new TP and FP rates. 

So, if we have N nodes on the first hidden layer, then there are iV + 1 possible sets of scale 
factors, and therefore N + 1 candidate operating points, from which to choose. A simple 
rule suffices to select the best operating point from among these candidates. Select the 
candidate operating point which increases the TP rate by the least amount (i.e. the finest 
increment in TP rate possible). If more than one candidate point produces this minimal 
change in the TP rate, then select the one of these that increases the FP rate by the least 
amount. When there are ties (i.e. more than one set of scale factors produces the best 
operating point), changing the scale factors for all first hidden layer nodes simultaneously 
takes precedence over changing the scale factor for a single node, and ties between changing 
different individual node scale factors are resolved arbitrarily. Finally, the next column in 
the lookup table is filled in with the scale factors that correspond to the selected ROC point. 
This procedure of increasing the TP and rate and filling in the lookup table is continued 
until we get a TP rate of 100% on the training set. 

A similar strategy is employed to fill in the columns of the lookup table to the left of 
the middle column. Similar to before, we change scale factors for all first hidden layer nodes 
simultaneously, and for each first hidden layer node individually to generate a set of possible 
new operating points. From the N + 1 candidate operating points, we select the one that 
reduces the TP rate the least. If more than one candidate point produces this minimal 
reduction in the TP rate, we select the one of these that reduces the FP rate the most. Ties 
are broken in the same manner as before. The scale factors for the newly selected operating 
point are added to the lookup table. We continue to decrease the TP rate and fill in the 
lookup table until either a TP rate or a   FP rate of 0% is found for the training set. 

At this point, we have a lookup table which gives the scale factors required for each 
operating point on the ROC curve based on the training set data. An example of a portion 
of an actual lookup table is shown in Table 1. Notice that sometimes all scale factors are 
changing simultaneously between successive operating points, and sometimes only a single 
scale factor is changing. Also, moving from left to right, notice that the scale factor increases 
for some nodes and decreases for others. 

We should note that our solution for obtaining sets of scale factors for the bias weights 
is a heuristic. It chooses between manipulating either the scale factor for some one first 
hidden layer node or for all first hidden layer nodes at once. It is possible that better 
operating points may be found by changing more than 1 but less than all scale factors. 
Considering all possible subsets would require checking 2N combinations, where N is the 
number of first hidden layer nodes. An exhaustive search would be out of the question for 
large N. The heuristic of choosing from among all hidden layer nodes or any single node 
should generally give good classification performance at reasonable computational cost. As 
a more sophisticated heuristic, a genetic algorithm could be used to help determine scale 
factor changes for varying numbers of first hidden layer nodes. 
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Table 1: Portion of a lookup table that specifies the scale factors for the bias weight inputs 
of each first hidden layer node. Each column in the lookup table corresponds to an operating 
point found for the training set data. 

Scale Factors to Decrease 

TP and FP Rates 

Default 
Scale 

Factors 

Scale Factors to Increase 

TP and FP Rates 
Hidden 
Unit #    . 

.    TP=65.3 

.    FP=12.0 
TP=67.0 
FP=12.7 

TP=68.0 
FP=14.0 

TP=68.7 
FP=16.0 

TP=71.3 
FP=17.3 

TP=72.7 
FP=21.3 

TP=76.0    .. 
FP=28.0    .. 

Unit 9     . 1.0 1.0 1.0 1.0 1.0 1.06 1.06 
Unit 10    . 1.0 1.0 1.0 1.0 1.1 1.16 1.26 
Unit 11    . 0.97 0.97 0.97 1.0 1.0 1.06 1.06 
Unit 12    . 1.6 1.6 1.0 1.0 1.0 0.94 0.94 
Unit 13    . 1.0 1.0 1.0 1.0 1.0 1.06 1.06 
Unit 14    . 1.0 1.0 1.0 1.0 1.0 1.06 1.06 
Unit 15    . 1.0 1.0 1.0 1.0 1.0 1.06 1.06 
Unit 16    . 1.0 1.0 1.0 1.0 1.0 1.06 1.06 
Unit 17    . 1.0 1.0 1.0 1.0 1.0 1.06 1.06 
Unit 18    . 0.94 1.0 1.0 1.0 1.0 1.03 1.03 

From the sets of scale factors determined for the training set, we can interpolate additional 
sets of scale factors for projected ROC points for a new set of data. Once the lookup table has 
been completed for the training set, we interpolate between sets of scale factors for successive 
ROC points to find a set of scale factors that could theoretically generate 101 ROC points 
(0% to 100% TP rate in 1% increments). For example, using Table 1 and interpolating to 
get an operating point with a predicted TP rate of 75%, the scale factor for node 10 would 
be approximately 1.23, while the scale factors for the other nodes remain unchanged. These 
101 sets of scale factors are used to generate the ROC curve for the test set. 

2.2.6    Comparing Methods of ROC Generation 

Both the standard method and our proposed method begin with the basic trained ANN. 
For each method, the training set is used to generate a predicted set of 101 ROC points at 
1% increments in the TP rate.  The performance of the methods is then evaluated on the 
separate test set. 

For our experimental results, we will compare AUCs in three ways.  First, we make an 
absolute (no statistical test) comparison of AUCs to determine which method generates a 
better ROC curve most of the time given a trained ANN. Testing our statistical hypothesis 
using a two-tailed test helps to determine if the difference between two observed AUCs is 
significant. Since the ROC curves are derived from the same data sets, we should consider 
a correlation factor when computing the test for statistical significance [24].   If we do not 
consider a correlation factor, the difference in AUCs must be relatively large in order to 
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pass the test. A non-zero correlation factor increases the chances of finding a statistically 
significant difference in AUCs. Our second way of comparing AUCs is a very stringent test 
in which we do not consider a correlation factor. Finally, our third way of comparing AUCs, 
which is probably the most accurate method of comparison, considers the correlation factor 
in the calculations of the critical value z. 

In addition to the AUC measurement, we also compare the number and range of distinct 
operating points that each ROC method generates on the test data. A greater number 
of distinct operating points means there is more flexibility when selecting a desired TP 
and FP rate. A finely sampled range of operating points is important because a different 
TP/FP trade-off may be needed for different applications. A: ROC curve with a "full range 
of operating points" has relatively small differences in either the TP rate or the FP rate 
between any two consecutive points on the curve. As evaluated here, both methods of ROC 
curve generation have the same potential to produce 101 evenly spaced ROC points. That is, 
parameters are generated based on the training set to give 101 distinct projected operating 
points. These 101 parameter settings may or may not generate distinct points when used in 
an evaluation with the test set. 

2.2.7    Results 

For the 219 training attempts described in Subsection 2.2.3 (144 for simulated data and 75 for 
mammography data), the ANN failed to converge 41 times. Thus, we have 178 instances of 
a basic trained network for the purpose of comparing the ROC curve generating capabilities 
of the two methods. All of the experimental results are summarized in Table 2. 

Simulated Data: 
For the simulated data, the ANN failed to converge on a reasonable solution 24 times, 

or about 17% of the time. Our proposed method generates a greater AUC for nearly 87% 
(104 of 120) of the trained network instances. The conventional method generates a greater 
AUC about 12% of the time. The two methods generated equivalent AUCs less than 2% 
of the time. Our method has a statistically significantly greater AUC for about 81% (97 of 
120) of the individual instances if the correlation factor is considered. The AUCs are not 
statistically significantly different (i.e. statistically equivalent) for 19 instances, or about 
16% of the time. Of the 120 instances, the conventional method generates a significantly 
better AUC only 4 times, or about 3% of the time. Even if the correlation factor is not taken 
into account, Table 2 shows that our method is still considerably better. 

The average number of distinct operating points that were generated from the 101 ROC 
points projected from the training data are 12 and 44 for the current standard method and 
our proposed method, respectively. In general, fewer operating points were generated for the 
simulated data than for the mammography data. Since the simulated data sets have more 
"ideal" distributions than the mammography data, the ANNs were able to find relatively 
good solutions during training. In fact, the AUC values are typically greater than 0.96 for the 
simulated data, whereas the AUC values for the mammography data are generally around 
0.90. As a result, many of the ROC curves generated for the simulated data usually have 
an operating point with a high TP rate (> 80%) and a 0% FP rate, and/or a point with a 
100% TP rate and a FP rate well below 100% (around 40%). Thus, no ROC points for a 
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Table 2: Summary of test results indicating the average number of ROC points generated by 
each method, and the number of instances each method produces a better ROC curve. Ml is 
the conventional method of generating ROC curves by thresholding the value at the output 
node. M2 is our proposed method that scales the bias input weights of the first hidden layer 
nodes. 

Data Type 

# of ANNs 
That Did 
Not Train 

# Basic 
Trained 

Networks 

Average # Direct Comparison of AUCs 
of ROC Points 

Ml Better M2 Better 
Equivalent 

AUCs Ml M2 
Simulated 
Mammography 

Totals 

24 
17 

41 

120 
58 

178 

12 
52 

17 

44 
86 

58 

14 
11 

25 

104 
47 

151 

2 
0 

2 

Data Type 

# of ANNs 
That Did 
Not Train 

# Basic 
Trained 

Networks 

Average # 
of ROC Points 

Significance Test Without Correlation 

Ml Better M2 Better 
Equivalent 

AUCs Ml M2 
Simulated 
Mammography 

Totals 

24 
17 

41 

120 
58 

178 

12 
52 

17 

44 
86 

58 

4 
1 

5 

91 
13 

104 

25 
44 

69 

Data Type 

# of ANNs 
That Did 
Not Train 

# Basic 
Trained 

Networks 

Average # 
of ROC Points 

Significance Test With Correlation 

Ml Better M2 Better 
Equivalent 

AUCs Ml M2 
Simulated 
Mammography 

Totals 

24 
17 

41 

120 
58 

178 

12 
52 

17 

44 
86 

58 

4 
5 

9 

97 
31 

128 

19 
22 

41 

large range of TP or FP rates are needed. For example, if we get a TP rate of 80% with an 
FP rate of 0%, then there is no need to generate operating points with TP rates less than 
80%. Similarly, if we get a TP rate of 100% with a FP rate of 40%, there is no need for 
operating points with FP values greater than 40%. 

Mammography Data 
The ANN failed to converge on a reasonable solution 17 times, or about 23% of the time, 

for the mammography data. This is a slightly higher rate than for the simulated data. This 
is not surprising if we consider the simulated data is more "ideal" than the mammography 
data. Our proposed method generates a greater AUC for about 81% (47 of 58) of the 
trained network instances. The conventional method generates a greater AUC about 19% of 
the time. The two methods did not generate an equivalent AUC for any of the 58 instances. 
Our method has a statistically significantly greater AUC for about 53% (31 of 58) of the 
individual instances if the correlation factor is considered.  The AUCs are not statistically 
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significantly different for 22 instances, or about 38% of the time. Of the 58 instances, the 
conventional method generates a significantly better AUC only 5 times, or less than 9% of 
the time. As before, if the correlation factor is not considered, our proposed method still 
outperforms the conventional method. The average number of operating points found for 
the current standard method and our proposed method are 52 and 86, respectively. 

Distribution of ROC points 
The current standard method generally had problems in finding a full range of operating 

points. As an example, for one of the basic trained ANNs an operating point, denoted by (TP 
rate, FP rate), was (9.6%, 0.52%), but the next closest operating point was (85.4%, 22.4%). 
So, operating points could not be obtained in this case for almost 76% of the possible TP 
operating range or about 22% of the possible FP operating range. Therefore, it may not be 
possible for an ANN to operate near a desired TP or FP rate if the current standard method is 
used to generate operating points. This phenomena, illustrated in Figure 5, is characteristic 
to some degree of many of the ROC curves generated using the current standard method, 
and it is a serious drawback. Our proposed method is always capable of producing a full 
range of operating points. 

2.3    CMC Using Local Accuracy Estimates 

Section 2.3.1 introduces our CMC algorithm and describes some potential variations. Sec- 
tion 2.3.2 briefly describes the other CMC algorithms which we have implemented and tested. 
Section 2.3.3 describes the experimental procedures, covering the data, the individual clas- 
sifiers, and some implementation issues. Section 2.3.4 compares the performance of the 
individual classifiers and the CMC algorithms. 

2.3.1    The DCS-LA Approach 

Dynamic Classifier Selection (DCS) attempts to determine which classifier is most likely to 
make a correct decision for a given test sample. One straight-forward approach is to estimate 
each classifier's accuracy in a region of feature space surrounding the test sample. We term 
our approach to CMC as Dynamic Classifier Selection by Local Accuracy, or DCS-LA. Local 
accuracy estimates (LAEs) can help determine where in feature space a particular classifier 
performs most reliably. 

There are two important issues that must be addressed in order to implement a DCS-LA 
algorithm. First, how should the local region about a test sample be defined? Second, how 
should the local accuracy be estimated? 

A local region about a sample in feature space may be defined in any of several ways. 
One approach is to take the K-nearest neighbor training samples to the test sample. This 
approach defines a local region as the convex hull of the K nearest training samples. It is 
not necessarily clear, a priori, what region size (value of K) would be best for a particular 
problem. 

Once a local region has been defined, the accuracy of a classifier within the region can 
be estimated from either the training data or a separate set of validation data. One possible 
estimate of local accuracy would be simply the percentage of training samples in the region 
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Figure 5: ROC curves generated by both methods for the same training and test sets of 
mammography data. The difference between the AUCs of the ROC curves generated by 
both methods is not always this large. This particular example was selected to illustrate a 
phenomena that is characteristic of the conventional method. Here, the conventional method 
was unable to generate any operating points with FP rates between 0.52% and 22.4%. 

that are correctly classified. We'll refer to this as the overall local accuracy. It is an estimate 
of the probability that the classifier is correct in some small pocket of feature space. 

Another possibility would be to estimate local accuracy with respect to some output 
class. Consider a single classifier that assigns a test sample to class C,. We can determine 
the percentage of the local training samples assigned to class C{ by this classifier that have 
been correctly labeled. We'll refer to this as the local class accuracy. It more specifically 
estimates the probability that the classifier is correct in the small pocket of feature space 
when making a particular decision. 

Our DCS-LA implementation defines the local regions as the K-nearest neighbors in the 
training sets. Both methods described above for computing LAEs will be examined. 
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2.3.2     Algorithms for Comparison 

In order to determine the relative merit of our CMC algorithm, we have selected two previ- 
ously published algorithms [8, 12] for direct comparison. 

The Behavior-Knowledge Space Approach 
The Behavior-Knowledge Space (BKS) algorithm has recently been tested on an appli- 

cation for recognizing unconstrained handwritten numerals. Huang and Suen [8] show the 
BKS method to be superior to voting, Bayesian, and Dempster-Shafer approaches. 

Behavior-Knowledge Space is a N-dimensional space where each dimension corresponds 
to the decision of one classifier. Each classifier can assign a sample to one of M possible 
classes. Depending on the application, a classifier may have M + 1 possible decisions, where 
class M+l is a "reject" decision. In our application, we do not permit rejections, and so each 
classifier has M possible decisions. Each unit of a BKS represents a particular intersection 
of individual classifier decisions. Thus, the BKS represents all possible combinations of the 
individual classifier decisions. Each BKS unit accumulates the number of training samples 
from each class. For an unknown test sample, the decisions of the individual classifiers index 
a unit of BKS, and the unknown sample is assigned to the class with the most training 
samples in that BKS unit4. The BKS method is easy to implement, easy to train, and 
computationally efficient in the testing mode. 

Classifier Rank Using a KNN Approach 
In [12], Sabourin et al. present a DCS algorithm which proved to have some similarities to 

our DCS-LA approach. From the training data, they extract a set of "correctness" features: 
the Euclidean distance to the closest misclassified sample, the Euclidean distance to the 
closest correctly classified sample, and the ratio of these two distances. They note which 
classifier(s) correctly classified each training sample.' For an unknown test sample, the three 
correctness features are computed, and the nearest neighbor (NN) training sample in this 
"new" feature space is found. The classifier that correctly labeled the NN training sample 
is dynamically selected to classify the unknown sample using the original feature data. 

A better performing variation of their algorithm selects the classifier that correctly classi- 
fies the most consecutive neighboring training samples (relative to the unknown test sample). 
The selected classifier is said to have the highest "rank". Although they do not associate their 
DCS algorithm with the concept of local accuracy, their notion of classifier rank certainly 
has the flavor of a LAE. We will refer to this algorithm as the Classifier Rank method, or 
CR. 

An Alternate LAE 
In terms of our work, the CR algorithm presented in [12] uses a LAE which we would 

describe as an overall local accuracy estimate. An obvious alternative would be to use local 
class accuracy for the LAE. Thus, we implemented a version of our DCS-LA algorithm 
which incorporates the ideas of classifier rank and local class accuracy as a   LAE. Given a 

4In the event that a tie exists in a BKS unit, our implementation dynamically selects the output of the 
most globally accurate individual classifier. As it turns out, this tie-break was very rarely needed, and the 
overall effect was negligible. 
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test sample assigned to class d by a classifier, the LAE for the classifier is computed as the 
number of consecutive nearest neighbors assigned class C,- which have been correctly labeled. 
We will refer to this variation of our algorithm as DCS-LA/2. 

2.3.3    Experimental Procedures 

For a CMC approach to be of practical use, it should improve on the best individual classifier, 
given that the individual classifiers have been reasonably optimized. This is necessary in 
order to ensure that improved performance for the CMC algorithm is in fact due to the 
combination of the classifiers rather than to incomplete training or design of the individual 
classifiers. Few published CMC works are clear as to how well the individual classifiers have 
been optimized. (We have found one paper [5] that shows a clear attempt to construct 
individual classifiers with all the information available to the CMC algorithm.) In our work, 
each classifier has the potential to draw from the same large set of features. Also, effort is 
made to optimize each individual classifier with respect to selecting "good" values for the 
parameters which govern its performance. 

Individual classifiers can be set for various true positive and false positive rates5. Per- 
formance of a CMC algorithm as a function of the true positive or false positive rates of the 
individual classifiers has not previously been examined. 

Data Sets 
The task is to detect abnormalities in mammograms, labeling pixels as either "normal" 

or "abnormal" tissue. Thus, we have a 2 class problem. The DCS-LA algorithm is also 
applicable to multi-class problems such as character recognition. Additionally, multi-class 
problems can be defined in terms of 2 classes by making a binary (yes or no) decision for 
every class. 

A data set of 40 digitized mammograms6 containing some abnormalities was divided into 
two sets of images, Set A and Set B. From each set of images, pixels from the abnormal 
and normal class were randomly sampled. Set A has 19,735 samples from the normal class, 
and 3001 samples from the abnormal class. Set B is made up of 20,028 normal samples 
and 5159 abnormal samples. For each pixel, 63 features were computed. A more detailed 
description of this feature data can be found in [25]. The images from which the feature data 
was extracted were provided by Nico Karssemeijer, and are used in his previous research [26] 

Initially, Set A is used as training data for the individual classifiers and the CMC al- 
gorithm, and Set B is used to measure performance. Then the roles of Sets A and B are 
reversed. Thus, at no time are samples from the same image used for training and testing in 
the same set of experiments. Whenever we talk of training (or test) data, both Set A and Set 
B have been utilized independently in that capacity. Thus, the results of feature selection, 
individual classifier performance, and CMC results should be expected to be similar, but not 
identical, for Sets A and B. 

5 This terminology is often associated with 2-class problems. Other multi-class problems, like handwritten 
character recognition, use the analogous terms recognition and substitution rates. 

6Images were provided by courtesy of the National Expert and Training Centre for Breast Cancer Screen- 
ing and the Department of Radiology at the University of Nijmegen, the Netherlands. 
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Individual Classifiers 
We use six individual classifiers as input to the various CMC algorithms, two paramet- 

ric and four non-parametric. They are Linear Bayesian (LC), Quadratic Bayesian (QC), 
K-Nearest Neighbor (KNN), two decision tree implementations (BDT and C4.5), and an 
artificial neural network (ANN). Feature selection has been performed for each of the six 
classifiers. The details and results of the feature selection process have been omitted from 
this report. 

DCS-LA Implementation and Application 
For each classifier, the DCS-LA algorithm uses the training data, and the final decision 

made by the classifier for each training sample. The individual sample inputs, which may 
be different for each classifier, are needed to find the neighboring samples to an arbitrary 
test sample in each classifier's feature space. Obviously, the class assignments made by each 
classifier are needed to determine local classifier accuracy. 

Once all the training data has been loaded, we are prepared to classify an unknown 
sample. First, the sample is labeled by all the individual classifiers. If all classifiers agree, 
there is no need to compute LAEs. When the individual classifier disagree, a LAE is 
computed for each classifier, and we select the decision of the classifier with the highest 
LAE. 

Occasionally, two (or more) classifiers with conflicting decisions will have the highest 
LAE. Tie breaking is handled by choosing the class that is selected most often among the 
tied classifiers. If a tie still exists, the classifier(s) with the next highest LAE(s) will break 
the tie in the same manner as before. 

Since determining the appropriate size for a "local" region is part of designing the DCS- 
LA approach, we need to test a range of local region sizes. We ran experiments for 10 
different region sizes: K = 1, 5, 10, 15, 20, 25, 30, 25, 40, and 50. Here, we utilize the 
Mahalanobis distance metric [27] to find the K-nearest neighbors, as this adapts to features 
that are measured on different scales. 

We would also like to investigate the effect of setting the individual classifiers to various 
TP rates prior to applying CMC. We tested all CMC algorithms with the individual classifiers 
set to 6 different TP rates: 70%, 75%, 80%, 85%, 90%, and 95%. Not all of the classifiers 
could be set to the exact TP rate desired. In these cases, the individual classifiers were set as 
close to the desired TP rate as possible. Overall we generated 60 operating points for each 
of the two DCS-LA variations: 10 region sizes with individual classifiers set to 6 different 
TP rates. 

2.3.4    Classification Results 

We now present test results for the individual classifiers and the various CMC algorithms. 
For brevity, the results obtained when Set A is used to train and Set B is used to test will 
be referred to as the El data (experiment 1). Similarly, the results obtained when Set B is 
used to train, and Set A is used to test will be referred to as the E2 data. Results for the 
El and E2 data are mostly similar. We will show experimental results for the El data, and 
note any differences for the E2 results. 
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Figure 6: Partial ROC curves for the 6 individual classifiers, and their associated AUCs. 

Figure 6 shows partial ROC curves7 plotted for all 6 individual classifiers for the El data. 
Similar results are obtained for the E2 data. In both cases, the best individual classifier is 
KNN if the overall AUC is considered. However, there is no single best classifier for all TP 
rates. Consider the data in Figure 6. Depending on the desired TP rate, the QC, KNN, 
C4.5, or BDT could be considered the best individual classifier. From very low TP rates up 
to about a 79% TP rate, the BDT classifier has better FP rates than the other classifiers. 
For TP rates from 79% to about 92%, the C4.5 classifier is best. The KNN classifier has the 
lowest FP rates for TP rates from 92% to 100%, except in the small range from about 97% 
to 99%, where the QC classifier is superior. For the E2 data, depending on the desired TP 
rate, the best individual classifier is one of KNN, C4.5, or BDT. 

As a benchmark for useful CMC performance, we consider a composite ROC curve con- 
sisting of the  "best" parts of the individual ROC curves.   This curve is constructed by 

7Partial ROC curves are plotted as opposed to ROC plots that show the entire operating range (TP 
rates from 0.0 to 1.0 and FP rates from 0.0 to 1.0) in order to focus on a region of interest. In a medical 
application such as ours, high sensitivity levels are required. 
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considering the set of all the individual classifier operating points, and deleting inferior op- 
erating points. An operating point is deleted if and only if another point exists which has 
a lower FP rate and a higher TP rate. The composite ROC is a lower bound for practical 
CMC performance. We also plot ROC curves for an "oracle" classifier, which chooses the 
correct class if any of the classifiers did so. Thus, the only time the oracle cannot make a 
correct classification is when all the individual classifiers are wrong. Thus, the performance 
of the oracle is a theoretical upper bound for all CMC algorithms discussed in this work. 
The composite and oracle ROC curves for the El data are shown in Figure 7. 
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Figure 7: Composite ROC curve for the 6 individual classifiers, and the ROC curve for an 
oracle classifier. 

CMC Algorithms 
First, we would like to determine if it is better to compute the LAE as the overall local 

accuracy, or the local class accuracy. Recall, we generated 60 ROC points for both DCS-LA 
variations. In order to determine potential performance, we plotted partial ROC curves that 
use the best operating points available. As we discussed before, an operating point is ignored 
if and only if another point exists which has a lower FP rate and a higher TP rate. Clearly, 
in practice the operating point that is eliminated would never be used. Once the TP rates 
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of the individual classifiers have been set, the DCS-LA algorithm will examine local regions 
of various sizes. Each region size will result in a slightly different operating point, and we 
may select whichever point or points are desired. Shortly, we will examine the algorithm's 
performance if we require all regions to remain a constant size regardless of the individual 
classifier settings. 

The partial ROC curves for both DCS-LA variations using the El data are shown in 
Figure 8. From this figure, we can see that using local class accuracy as the LAE is superior 
to using the overall local accuracy. The difference is not statistically significant (z = 1.44 
for TP rates ranging from 78% to 94%). Results for the E2 data confirm this. 
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Figure 8: Partial ROC curves for the two DCS-LA variations. KNN refers to a local region 
defined as the K-Nearest Neighbors. The type LAE is denoted by either OLA or LCA. 

Provided there is no significant difference in performance, a fixed value of K is concep- 
tually simpler than testing for various values of K. Thus, we would like to examine whether 
smaller or larger regions are generally best. Figure 9 shows partial ROC curves for various 
size local regions. All plots are for the El data with the LAE computed as local class accu- 
racy. This plot does not show results for every different region size, just enough to clearly 
permit some interesting observations. No single region size is obviously superior in all cases, 
although a region size using K = 10 is best a majority of the time. In general, region sizes 
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with K = 5 or K = 10 seem to result in the best performance. 
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Figure 9: Partial ROC curves for DCS-LA algorithm with local regions of various sizes. 

Now, we compare the performance of the best DCS-LA algorithm variation with that of 
the individual classifiers. Figure 10 shows the composite ROC curve (for the El data) for 
the 6 individual classifiers compared to the results for DCS-LA with the LAE computed as 
local class accuracy. We also show the results of the BKS, CR, and DCS-LA/2 algorithms. 
To be fair, only the best single value of K (10) is used in the plot for the DCS-LA results. 
Thus, the ROC curves for all four CMC algorithms are composed of 6 operating points each. 

It is evident that our DCS-LA algorithm is better than the best individual classifier at 
all times. The difference between the AUCs, computed over the range of common TP points 
(from 82% to 93%), for DCS-LA ROC curve and the Composite ROC curve is statistically 
significant (z — 3.51). The DCS-LA/2 method performs nearly as well as DCS-LA at lower 
sensitivities, but less so at higher levels. It is significantly better than the best individual 
classifier {z — 2.71) over the common TP range (82% to 88%). The CR method provides 
improvement, though not statistically significant, at some levels of sensitivity. The BKS 
method is not able to improve upon the performance of the optimized individual classifiers. 
The DCS-LA method is the only CMC algorithm we tested that performed consistently 
better than the individual classifiers. It performed significantly better than the BKS method 
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(z = 4.91 for TP rates ranging from 84% to 92%), and the CR method (z = 3.81 for TP 
rates ranging from 82% to 91%). 

Train:  Set A,    Test:  Set B 

E  0.90 
o 

0) 
> 

'en 
o 

Q_ 

CD 
=5 

Oracle ROC Curve 

DCS-LA (K  =   10) 

A ADCS-LA/2 Method 

CR Method 

BKS  Method 

Composite ROC Curve 

0.00 0.02 0.04 0.06 0.08 0.10 
False Positive Rate 

Figure 10: The composite and oracle ROC curves for the 6 individual classifiers compared 
to the results for the DCS-LA, BKS, CR, and DCS-LA2 methods. 

With respect to our mammography application, for TP rates above 80%, the DCS-LA 
algorithm results in FP rates anywhere from 0.5% to 2% lower than the best individual 
classifier. To put this in perspective, consider that a single mammogram image may have 
on the order of 2 to 3 million pixels that require classification. So, for the same level of 
sensitivity (TP rate), we would misclassify anywhere from 10,000 to 60,000 fewer normal 
pixels than we would with the best individual classifier. 

2.4    Contrast-Based vs. Texture-Based Segmentation 

The most common approaches to segmenting potential lesions from mammogram images 
involves locating radiographically bright regions. Thus, the contrast of a lesion relative 
to surrounding background tissue is the feature upon which the segmentation is based. 
Alternatively, a segmentation routine based on the texture of a region can be used to extract 
potential lesions. The results shown in these subsections are for each segmentation routine 
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alone. That is, there is no attempt to perform classification of image regions after they have 
been segmented. The following experiments have been run to determine which approach, if 
any, might offer some fundamental advantages in a mammogram image analysis application. 
All results are reported for the same set of 320 images, which contain a total of 62 lesions. 

2.4.1    Contrast-Based Segmentation 

Our first experimental results are for a contrast-based segmentation with region growing. 
This approach is described in detail in [17]. This approach represents an attempt to accu- 
rately segment a majority of all the lesions. That is, we have a very liberal segmentation 
routine in order to "fully" segment most of the lesions in the data set. Segmentation is based 
on local contrast in which pixels greater than the mean plus one-half a standard deviation of 
pixel intensities in a 10mm by 10mm square window are retained. There are some smoothing 
and median filtering pre- and post-processing operations. A rather complex region growing 
routine is used after the initial segmentation to improve shape estimation of the segmented 
object. 
Results: 
Average TP area per image : 32.1 % 
Average FP area per image : 9.6 % 
TP lesion detection rate : 100 % (62 of 62) 
Total Number of FPs (320 images): 11172 
Average Number of FPs per image : 34.9 

2.4.2    Texture-Based Segmentation with One Feature 

In the following three texture-based segmentation, an image is thresholded on one or more 
texture features, where the feature and the threshold have been selected empirically. We are 
not concerned with trying to fully segment each lesion. Thus, the is no region growing step 
after the thresholding operation. Additionally, the thresholds are global and absolute, so we 
may not segment many "pockets" of locally high or low feature values (which is virtually 
guaranteed to happen if we keep pixels according to mean and st.dev. of a local area, as 
before). Also, a pretty good size smoothing window (3.5mm by 3.5mm) is run after the 
thresholding operation. 

The second segmentation routine is based on a single texture feature, relative extrema 
density. This feature many times responds with low values for a "ring" surrounding the 
lesion. A threshold on the texture feature was selected empirically such that we keep pixels 
with a feature value less than 37.0. As a smoothing step, a 3.5 mm square window is centered 
on each pixel. If more than 25thresholding step, then the pixel at the center of the window 
is kept. 
Results: 
Average TP area per image : 60.2 % 
Average FP area per image : 12.0 % 
TP lesion detection rate : 98.4 % (61 of 62) 
Total Number of FPs (320 images): 2052 
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Average Number of FPs per image : 6.4 

Basing the segmentation on a texture feature, as opposed to a contrast derived feature, 
appears to offer a tremendous improvement. We miss one lesion during segmentation, but 
the number of FP regions segmented is dramatically reduced. 

2.4.3    Texture-Based Segmentation with Two Features 

In this third routine, a pixel must pass thresholds for two texture features in order to be re- 
tained. In addition to thresholding pixels on the relative extrema density, as above, another 
texture feature called ALOE is computed for each pixel. Pixels with an ALOE feature value 
less than 0.0047 and a relative extrema density feature value less than 37.0 are retained. As 
before, the smoothing step says to keep the pixel at the center of a 3.5 mm square window 
if more than 25window survived both threshold operations. 
Results: 
Average TP area per image : 55.4 % 
Average FP area per image : 9.8 % 
TP lesion detection rate : 98.4 % (61 of 62) 
Total Number of FPs (320 images): 1716 
Average Number of FPs per image : 5.40 

Adding a second feature to the texture-based segmentation scheme drops the FP rate 
even further, without reducing the sensitivity. 

2.4.4    Texture-Based Segmentation with Three Features 

In this routine, a pixel must pass thresholds for three texture features in order to be retained. 
The additional feature computed for each pixel is the average gradient (using the Sobel op- 
erator) in a 5mm by 5mm square window. Pixels with an ALOE feature value less than 
0.0047 and a relative extrema density feature value less than 37.0 and an average gradient 
feature value greater than 225.0 are retained. As before, the smoothing step says to keep the 
pixel at the center of a 3.5 mm square window if more than 25inside the window survived 
all three thresholds. 
Results: 
Average TP area per image : 50.3 % 
Average FP area per image : 6.12 % 
TP lesion detection rate : 96.8 % (60 of 62) 
Total Number of FPs (320 images): 1331 
Average Number of FPs per image : 4.16 

Adding yet another feature to the segmentation scheme drops the FP rate even further. 
This time there is a slight drop in sensitivity, as we fail to segment one less lesion. 
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3    Conclusions 

3.1 ROC Analysis 

We have completed a review of techniques for generating ROC curves for several families 
of statistical classifiers, and techniques for comparing two ROC curves. As a result, we 
noticed some fundamental weaknesses with the current approaches of generating ROC curves 
for non-traditional classifiers such as ANNs and decision trees. Additionally, we found no 
clearly defined techniques (which would apply to our work) for determining if the difference 
between portions of two ROC curves is statistically significant. By refining some previous 
work, we have developed a systematic method for comparing classification and image analysis 
algorithms. Thus, this research plays a key role in selecting individual components which 
will be incorporated into the final computer system. 

3.2 Generating ROC Curves for ANNs 

Two methods of ANN ROC generation are compared. These methods are (1) varying a 
threshold on the output node, and (2) scaling the bias input weight for selected first hidden 
layer nodes. Varying a threshold on the output node is the current standard method. Scaling 
the bias input weight for selected first hidden layer nodes is the new method developed 
through our research. We have shown that this new method produces statistically equivalent 
or significantly greater AUCs than those obtained with the current standard method over 
90% of the time, and will generally result in a greater number of ROC points. Our proposed 
method involves the construction of a lookup table which contains a sequence of scale factors 
for the bias input weights of each first hidden layer node. The lookup table is used as 
a "sensitivity dial" which facilitates the easy selection of an operating point for an ANN 
classifier. 

The main contribution of this work is that we have provided a method which allows 
ANNs to be used for reliable classification at operating points other than the single operating 
point for which they are trained. ANNs are generally trained to minimize the number of 
misclassifications or some error rate criteria. For applications where different types of errors 
have different costs, this "optimal" (in terms of error rate) operating point is not suitable. 
This additional flexibility is very much in the spirit of probabilistic classifiers which permit 
the selection of an operating point which can maximize "profits" when a "gain/loss" is 
associated with making a decision. 

3.3 CMC Using Local Accuracy Estimates 

We have developed a new algorithm for combining multiple classifiers that uses estimates 
of each individual classifier's local accuracy about a test sample. To classify an unknown 
sample, we determine which classifier is most accurate for a subset of training samples similar 
to the unknown sample. The output of the most locally accurate classifier is then used for 
classification. We have attempted to address some issues relevant to the construction of a 
multiple classifier system which have not previously received attention. These issues concern 
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the optimization of individual classifiers, and the effect of varying the sensitivity of the 
individual classifiers on the CMC algorithm. 

In all of our experiments, LAEs based on local class accuracy were more effective than 
those based on overall local accuracy. This LAE information can be used effectively as the 
selection mechanism for a CMC algorithm which dynamically selects the output of a single 
classifier to label a given test sample. 

In our work, we made efforts to optimize the individual classifiers with respect to the 
available feature data. Certainly it would be preferable to use a single classifier as opposed to 
a combination of several classifiers if the performance of the two systems are equivalent. We 
are able to show that even if all the individual classifiers have been optimized, dynamic classi- 
fier selection by local accuracy is still capable of improving overall performance significantly. 
By contrast, simple voting techniques, and even a recently proposed CMC algorithm, were 
not able to show any significant improvement. It is expected that advances in the perfor- 
mance of low-level classification tasks via CMC will ultimately result in diagnostic accuracy 
at the image level that would not be possible using any single classifier. 

3.4    Segmentation Techniques 

We have compared two general approaches to segmenting potential lesions from digital mam- 
mogram images: contrast-based and texture-based segmentation. There would appear to be 
a great advantage to using texture features to key on suspicious regions in the images. A dra- 
matic reduction of false positive regions segmented with a very small drop in sensitivity can 
be achieved by considering the texture of the breast tissue rather than intensity. This work 
is in the preliminary stages, but our direction for future work would seem clear. Namely, to 
develop texture-based segmentation routines for digital mammography. 
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