
AD 

AD-E402 714 

Technical  Report  ARFSD-TR-95016 

PHASE NOISE CANCELLATION IN A MIXER CIRCUIT: 
ANALYSIS USING A RANDOM PHASE FUNCTION 

John J. Podesta 

19960129 12Ö 
January 1996 

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND 
ENGINEERING CENTER 

US ARMY 
TANK AUTOMOTIVE AND 
ARMAMENTS COMMAND 

ARMAMENT RDE CENTER 

Fire Support Armaments Center 

Picatinny Arsenal, New Jersey 

Approved for public release; distribution is unlimited. 

mc^^<nwsPEGW)i 



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for 
reducing this burden, to Washington Headquarters Services, Directorate for Information Operation and Reports, 1215 Jefferson Davis 
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704- 
0188), Washington, DC   20503. 

1. AGENCY USE ONLY (Leave Wank) REPORT DATE 
January 1996 

3. REPORT TYPE AND DATES COVERED 

4.  TITLE AND SUBTITLE 

PHASE NOISE CANCELLATION IN A MIXER CIRCUIT: ANALYSIS USING A 
RANDOM PHASE FUNCTION 
6. AUTHÖR(S)  

John J. Podesta 

5.  FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES(S) 

ARDEC,FSAC 
Precision Munitions/Mine and Demolition Division (AMSTA-AR-FSP) 
Picatinny Arsenal, NJ 07806-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9.SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(S) 

ARDEC, DOIM 
Information Research Center (AMSTA-AR-IMC) 
Picatinny Arsenal, NJ 07806-5000 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

Technical Report 
ARFSD-TR-95016 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

A stochastic signal model is used to study the phase noise suppression in an ideal mixer circuit. The phase noise in 
a harmonic oscillator is modeled by a sinewave containing a random phase term. The random phase term is a 
random walk stochastic process. The problem is to calculate the phase noise reduction (i.e., the decrease in 
sideband power) which occurrs when the oscillator signal is coherently mixed witha time delay replica of itself. The 
results confirm the validity of the well know engineering formula for the phase noise reduction as a function of the 
time delay. An improved formula is also obtained. Although the results are derived for a pure sinusoidal oscillator, 
the same analysis can also be applied to modulated signals such as FMCW, etc. 

14. SUBJECT TERMS 
Phase modulation 
Radar signals 
Local oscillators 

Noise (radar) 
Coherent radar 
Autocorrelation 

Signal processing 
Phase noise 

Random walk 
Radio frequency oscillators 

15. NUMBER OF PAGES 
56 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OFREPORT 

IINHI ASSIFTFD  

18. SECURITY CLASSIFICATION 
OF THIS PAGE 
 1INOIASSIFIFD.  

19. SECURITY CLASSIFICATION 
OF ABSTRACT 
 IIN0I ASSIF1FD  

20. LIMITATION OF ABSTRACT 

SAR 
NSN 7540-01 280-5500 
Prescribed by ANSI Std. Z39-18 
298-102 

Standard Form 298 (Rev. 2-89) 



CONTENTS 

Page 

Introduction 1 

Spectral Purity 3 

Stochastic Phase Modulation Theory 6 

Random Walk Phase Modulation 9 

Phase Noise of the Source Oscillator 11 

Autocorrelation Function of the Mixer Output 15 

Power Spectrum of the Mixer Output 19 

Phase Noise of the Mixer Output 21 

Phase Noise Reduction Factor 23 

Conclusions 30 

References 33 

Appendices 

A     Necessary and Sufficient Condtions for Stationarity 35 

B     Analysis of the Amplitude Factor 39 

C     Derivation of the Approximate Formula 47 

Distribution List 51 



Introduction 

It is well known that the phase noise of a sinusoidal oscillator is reduced by 
the time-delayed mixing scheme shown in figure la. This phenomenon, called 
the correlation effect (ref 1) is important in the phase noise analysis of radar and 
communications systems. It is usually explained using FM modulation theory, 
(refs 1 through 4) where it is shown that the reduction in the sideband power 
at the output relative to the sideband power of the source is given by the well 
known formula 

K(u) = 2[l - COS(O;TO)] = 4sin2(o;To/2) (1) 

where To is the time delay and m is the radian frequency offset from the carrier. 
A precise definition of the function K(u) is given below. In this report, the 
correlation effect is analyzed using the theory of stochastic processes. The 
signal model consists of a fixed frequency sinusoid that is phase modulated by 
a random-walk phase function, i.e., a random-walk phase noise. Other signal 
models are possible but shall not be considered in this report. It is shown that an 
analysis based on this random signal model leads to a similar, though somewhat 
more detailed formula than equation (1). In one respect, the analysis presented 
here places equation (1) on a more rigorous mathematical foundation. In light 
of this analysis, it is fair to conclude that equation (1) is a good approximation 
which is generally valid except for very small frequency offsets. 

The problem considered here is illustrated in figure la. This is a common 
signal processing operation which can be thought of as the front end of a co- 
herent CW or FMCW radar receiver. The signal v(t) is a sinewave containing 
a random phase function, i.e., 

v(t) - cos[u0t + <f(t) + <po] (2) 

where (p(t) is a random process.1 The phase noise originating in the source oscil- 
lator v(t) propagates through the mixer and low-pass filter (LP) and manifests 
itself in the output x(t). The problem is to compare the phase noise spectrum 
of the output signal x(t) to the phase noise spectrum of the source v(t). The 
term phase noise spectrum is defined in the section Spectral Purity. In order to 
simplify the comparison of these power spectra, it is helpful to frequency-shift 
the power spectrum of the source oscillator v(t) from the carrier frequency OOQ 

down to D.C. This is accomplished very easily by means of the circuit shown 
in figure lb.   In figure lb, the local oscillator is an ideal reference oscillator 

■"^For an FMCW radar, an FM modulation term should be included in the argument of 
the cosine. However, this modulation term does not effect the analysis and is omitted for 
simplicity. 
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Figure 1.  Circuit Block diagram. 



u(t) = cosa^ which has zero phase noise. Thus, the power spectrum of the 
output y(t) is almost identical to the power spectrum of the source u(t), except 
that the entire spectrum is downshifted to D.C. Observe that the power spec- 
trum of v(t) can be easily measured in this case by connecting the output y[t) 
to a baseband spectrum analyzer. This is the basic principle behind various 
methods of phase noise measurement (ref 5). 

The main objective of this study is to compare the power spectral density 
of the mixer output x(t) to the power spectral density of the source oscillator, 
i.e., y{t). It will be shown that there is a reduction, i.e., a decrease in the phase 
noise spectrum of the signal x(t) relative to the phase noise spectrum of y(t). 
The reduction in phase noise power is characterized by the ratio 

KM=W>' (3) 

where SX(UJ) and Sy(ui) are the power spectral densities of x(t) and y(t), respec- 
tively. The quantity K{UJ) will be called the reduction factor or the correlation 
factor. (In ref 4 it is called the delay function). Using dB notation, the reduction 
factor can be expressed in the form 

iT(o;) = 101og10^M    dB. (4) 

The main goal of this report is to calculate the reduction factor for the random 
signal model given by equation (2). 

Spectral Purity 

The spectral purity of a sinusoidal oscillator describes how closely the fre- 
quency spectrum of the oscillator represents that of an ideal sinewave. The 
term phase noise refers to the short term (< 1 second) frequency fluctuations 
resulting from random phase modulation of the sinusoidal signal. Phase noise 
is also called FM noise. In addition to phase noise, an oscillator is also subject 
to amplitude fluctuations or AM noise. However, for an amplitude stabilized 
oscillator, the AM noise is usually much less than the FM noise. 

The power spectrum of a good oscillator is characterized by a narrow spec- 
tral peak at / = /o (and one at —/o). A simple measure of spectral purity is 
given by the linewidth of the power spectrum S(f) as shown in figure 2. Note 
that the power spectrum as used here is defined for both positive and nega- 
tive frequencies. Moreover, it is an even function of frequency. The oscillator 
linewidth is characterized by either the full-width at half-maximum (FWHM) 



Figure 2.  The linewidth of the power spectrum. 



or the half-width at half-maximum (HWHM). Thus, an elementary measure of 
spectral purity is given by the ratio 

/3dB /c\ 
v = -7—» (5) 

Jo 

where /3dB is equal to the HWHM. The parameter 77 will be called the linewidth 
parameter. 

A much more precise measure of spectral purity is given by the quantity £(/), 
called script-L-F. It seems that £(/) was first introduced into the engineering 
literature by V. Van Duzer in 1964 (ref 6). Another early appearance of £(/) 
in the literature was due to D.J. Glaze in 1970 (ref 7). A formal definition of 
£(/) was given by D.W. Allen, J.H. Shoaf, and D. Halford in 1974 (ref 8). As 
originally defined in reference 8: 

A/) = ^A (6) 
"0 

where P(f) is the average signal power in a 1 Hz bandwidth and at a frequency 
offset / from the carrier, and Jo is the total average signal power. To be more 
precise, P(f) is defined to be the power spectral density at a frequency offset / 
from the carrier, where / lies in the range —/o < / < 00. Since it is sometimes 
a point of confusion, it is important to stress that PQ is not the power spectral 
density at /o, but the total average signal power. It is important to make this 
distinction. An immediate consequence of the above definition is that C(f) 
satisfies the normalization condition 

/oo 

£(/)# = 1. (7) 
■/o 

Therefore, C(f) will be called the normalized power spectral density. As one 
might expect, £(/) is directly related to the power spectrum S(f) of the oscil- 
lator. By the definition of S(f), the total average signal power is given by 

PO= r s(f)df. (8) 
J—00 

Using the fact that S(f) is an even function of /, that is, S(—f) = S(f), this 
can be written as an integral over positive frequencies in the form 

P0= [°°2S(f)df. (9) 
./O 



The average power contained in the frequency band from f\ to f2 (0 < f\ < h) 
is given by 

rh 
P12 = 2S(f)df (10) 

Jfi 

and the fraction of the total power which is contained in that frequency band 
is 

Po       f0°°S(f)df {    } 

The spectral density P(f) can be obtained from equation (9) or (10) by inspec- 
tion: at a frequency offset / from the carrier P(f) = 2S(fo + /)• Therefore, 
one obtains the relation 

£(/) = 23&iQ. (12) 
-TO 

Consider now the units (physical dimensions) of £(/). Because P(f) is a power 
spectral density and Po is a power, the units of £(f) are Hz-1. Using dB 
notation, £(/) can be written in the form 

£(/) = 101og10^. (13) 
-TO 

The units in this case are dBc/Hz which are commonly abbreviated as dBc. 

As defined by equation (6), the normalized power spectrum C(f) is the stan- 
dard way to characterize oscillator spectral purity. In the measurement com- 
munity, £(/) is called the single-sideband (SSB) phase noise. Measurements of 
oscillator spectral purity seek to measure £(/) as a function of /. Assuming 
that the spectral profile is symmetric about /o, measurements are generally 
made only for positive (or only for negative) values of the frequency offset /. 
For the system designer, acceptable limits of phase noise are usually specified 
by quoting an upper bound for C(f) at a specified offset / from the carrier. 
For a more detailed specification, an upper bound on £(/) might be specified 
at several discrete frequency offsets, /i,/2, • • • ,fn', or over a continuous range 
of frequencies, /i < / < f2- 

Stochastic Phase Modulation Theory 

The analysis given here follows Papoulis (ref 9, 2nd ed., p. 321-324). It is 
assumed that the signal source is amplitude stabilized so that the amplitude 
fluctuations of the oscillator output are negligible. The phase fluctuations of 
the oscillator give rise to a stochastic process of the form 

v(t) = cos[u0t + <p(t) + ipo], (14) 



where the phase function <p(t) is a stochastic process and <po is a random variable 
that is uniformly distributed on the interval [0,2ir\. In addition, it is assumed 
that <p(t) and <po are statistically independent for all t. There are two ways 
to specify the process <p{t): Either <p(t) is a given stochastic process (phase 
modulation) with known statistics, or it is defined indirectly by the integral 

<p(i) f 
Jo 

w(s) ds, (15) 

where w(t) is a given stochastic process (frequency modulation) with known 
statistics. Technically, equation (15) is a stochastic integral which must be 
treated with special mathematical care; however, the representation (15) shall 
not be used here. For the purposes of analysis, it is desirable that the oscilla- 
tor signal v{t) be at least wide-sense stationary so that the process mean and 
autocorrelation function are invariant with respect to a shift of the time origin. 

To simplify the mathematics, the real valued process (14) can be represented 
as the real part of the complex process V(t) denned by 

V(t) = e'Vo'+vW+vo^ (IQ\ 

The statistics of v(t) are closely related to the statistics of the process 

since V(t) = $(i)e""ot. The objective now is to find the power spectrum of the 
oscillator signal v(t). First of all, the process v(t) has zero mean since 

E[e^°]= E[cosip0] + t£[sinp0] = 0, 

and therefore, using the fact that the <p(t) and <p0 are statistically independent, 

J E[V(t)] = E(ei^ot+ip^)E[eilfi0] = 0 

which imply 

E[v(t)] = E 
V(t) + V*(t) 

= 0. 

Next, the autocorrelation function of the process v(t) can be written in the form 

Rvfah) = E[v(t2)v(h)] =E 
V(t2) + V*(t2) V(h) + V*(t2) 

} 
= \{E[V{t2)V(h)} +E[V(t2)V*(t1)] +E[V*(t2)V(t1)] 

+ E[V{t2)V(t1)]}. (18) 



Evaluating the first term yields 

E[V(t2)V(ti)] = E[eI'Wo(f2+*l)e,'^(f2)+v,(il)]] E[ei2lfi0] = 0. (19) 

The second term in equation (18) can be written in the form 

S[n<2)^*(*i)] =i2*(*2,*i)eiwo(t3-'l), (20) 

or equivalently, 
Rv(t2,h) = Jfete,*!)^*2-*1*, (21) 

where 

Rz(t2,h) = E[#(t2)**(*i)] = E^^-^^y (22) 

The second and third terms in equation (18) are obtained from the first and 
second terms by interchanging t\ and t2, or equivalently, by complex conjuga- 
tion. Therefore, substituting equations (19) and (20) into equation (18), one 
obtains 

Ä«(*2,*i) = \[R*(t2lt1)eiuor + R^(t2it1)e-iuor], (23) 

where r = t2 — t\. This equation expresses the autocorrelation function of v(t) 
in terms of the autocorrelation function of $(£). As stated previously, it is 
desirable that the random process v(t) be wide-sense stationary. If i?$ is only a 
function of r = t2—1\, then so is Rv. Thus, a sufficient condition for stationarity 
is easy to obtain. If the first order p.d.f. of the increment ip(t2)—(p(t\) appearing 
in equation (22) depends only on t2 — ti, then R$(t2,ti) is only a function of 
r. Consequently, equation (23) takes the form 

RV(T) = l- [R*(r)eiu°r + RK^e-^}. (24) 

Therefore, the autocorrelation function of the process v(t) only depends on 
the time difference r, and since i£[u(£)] = 0, this implies that v(t) is wide- 
sense stationary. In general, for a Gaussian phase modulation, a necessary and 
sufficient condition for the process v{t) to be wide-sense stationary is given in 
appendix A. 

Having obtained the autocorrelation function of v(t), it is now possible to 
obtain the power spectrum by simply taking the Fourier transform of Rv(r). 
Using the well known frequency-shift theorem, the Fourier transform of equation 
(24) is given by 

Sv(u) =-[S$(u)—u}0) + S$(u} + u0)], (25) 

where 5$(a;) is the power spectrum of $(£). Of course, S$(w) is real since by 
equation (22), R$(—T) = R$(T). Equation (25) gives the power spectrum of 
the oscillator signal v(t) in terms of the power spectrum of $(£). In order to 
proceed with the analysis, it is necessary to assume some particular form for 
the process <p(t). 



Random-Walk Phase Modulation 

It is known that due to thermal and shot noise, the phase (p(t) in an electrical 
oscillator executes a continuous random walk (refs 10 and 11). Therefore, it 
will be assumed that (p(t) is a zero mean Wiener process with parameter a. 
The first order p.d.f. of ip(t) is given by 

/(?,*) = 
V2ncrt 

,-<p*/2at (26) 

where t > 0. According to Edson (ref 10), the coherence time rc is defined to 
be the time interval required for the standard deviation (variance) of the phase 
to increase by 1 radian. For the Wiener process (26), this condition takes the 
form 

Var [tp(tj\ = E [p2{t)] =at=l, (27) 

and therefore, the coherence time is given by 

TC = 1/a. 

One way to define the Wiener process is by the integral 

(28) 

cp(t) =  /   w(s)ds, 
Jo 

where w(t) is a zero mean, stationary, white noise Gaussian process with au- 
tocorrelation function Rw(r) = a8(r). Thus, for a random-walk phase modu- 
lation the instantaneous frequency deviation w(t) — UQ = w(t) is a zero mean, 
stationary, white noise Gaussian process where the rms frequency fluctuations 
are given by 

trl = Var [u(t) - uQ] = Var [w(t)] = a. (29) 

The variance a^ is related to the linewidth of the power spectrum. Combining 
equations (28) and (29) shows that the rms frequency fluctuations are related 
to the coherence time by the relation 

cr;„ = — (30) 

To avoid the use of the stochastic integral, the Wiener process can also be 
denned by the following properties: 

1. (p(0) = 0. 

2- f(v{t2) = <P2\<p(h) = Vi) = 

exp 
y/2va(t2 - h)        L   2a(*2 - h) 

{<P2-<Plf t2>h> o. 



3. The increments <p(t2)—<p(ti) and ^(tj) —<p(tz) axe statistically independent 
for every set of points 0 < tj < t2 < *3 < ^4 • 

4. The sample functions ip(t) are continuous. 

These properties have the following simple consequences: 

5. The first order p.d.f. of the increment <p(t + r) — <p(t) is independent of t. 

6. The joint p.d.f. of <p(ti),tp(t2),... ,<£>(£„), is Gaussian for every sequence 
0 < h < t2 < ■ ■ ■ < tn. 

It is well known (ref 9) that the autocorrelation function of ip(i) is given by 

Rv(h,ii) = armin(ti,<2). (31) 

This shows that <p(t) is not a stationary process. Nevertheless, the process v(t) 
turns out to be stationary. 

The properties of the Wiener process will now be used to compute the power 
spectrum of the oscillator signal v{t). Since a linear combination of Gaussian 
random variables is itself a Gaussian random variable, the increment tp(t2) — 
<p{t\) has a Gaussian p.d.f. with mean value zero and variance a\t2 —1\ |. Thus, 
the autocorrelation function 

Ä#(*2,<i) = E(<Mt*-'*t^) (32) 

is essentially the characteristic function of the Gaussian random variable (p(t2) — 
<f(t\). From probability theory, if a; is a Gaussian random variable with mean 
[i and variance cr2, then the characteristic function of x is 

E[eixz] = e^-"72*2/2. (33) 

Using this result together with property 2 of the Wiener process, it follows that 

R*(t2,h) = e-a^-t^\ (34) 

or more simply, 
R$(T) = eaW2. (35) 

Taking the Fourier transform of this function yields the power spectrum 

*M = K2)W- (36) 

This is the well known Lorentzian spectrum. The half-width at half-maximum 
of the spectral peak is given by 

10 



This relates the coherence time to the the linewidth of the power spectrum. 
Using equations (36) and (25), the power spectrum of the oscillator signal v(t) 
is given by 

Sv(w) = 
a + a 

(<*/2)2 + (u;-u,o)2      (e*/2)2 + (u, + u;o)2J 
(38) 

This is the desired result. The PSD (38) consists of two Lorentzians symmet- 
rically located at u — ±WQ. 

Phase Noise of the Source Oscillator 

The phase noise of the source oscillator can be described by either the RF 
power spectrum Sv(u:) or by the normalized phase-noise spectrum £(/). These 
two spectral representations are related through equation (12). The average 
power in the signal v(t), the total signal power, is given by 

Po = E[v2(t)]=Rv(0) = ^ (39) 

where the value 1/2 is obtained from equations (24) and (35). Substituting 
equations (39) and (38) into equation (12), the SSB phase noise of the source 
oscillator is given by 

*(/) = 
a + a 

L(o72)2+a,2      («/2)2 + (o; + 2a;o)2Jw=2,/ 
(40) 

For a frequency offset w such that |OJ| <«O, the magnitude of the first term 
is much greater than the magnitude of the second term. Hence, it is a good 
approximation to simply write 

A/) 
a 

(e*/2)2+u;2_ 
(41) 

u=2nf 

Thus, the normalized SSB phase-noise spectrum has the same Lorentzian spec- 
tral profile as the RF power spectrum. 

This result can also be obtained by means of the mixer circuit in figure lb. 
In this circuit, the noisy source oscillator v(t) is mixed with a phase-noise-free 
reference oscillator u(t) = cos(üjQt). The input to the low-pass filter is 

v(t)u(t) = cos[u}0t + ip(t) + <po] cos(w0t). (42) 

11 



Using the cosine identity 

cos 
1  r 

A cos B = - [cos(A -B) + cos(A + B)\, (43) 

together with the fact that y(i) is a lowpass process, the filtered mixer output 
is given by 

y(t) = -cos[ip(t) + ip0]. (44) 

Since ip(t) is not strictly a low-pass process, this equality is not exact. A random 
process x(t) is a strictly low-pass process if Sx(u>) = 0 for \u\ > B, where B > 0 
is the cutoff frequency. Nevertheless, for an oscillator with good spectral purity, 
the process <p(t), and therefore the process exp[icp(t)], is very nearly a low-pass 
process so that equation (44) is a reasonable approximation. To continue with 
the analysis, let Y(t) be the complex signal 

Y(t) = 
1 , i[ip(t)+ip0] (45) 

Note that 2Y(t) = $(i) as denned by equation (17). Proceeding as in section 
2, it is clear that E[Y(t)] = E[Y*(t)] = 0, and therefore E[y{t)] = 0. The 
autocorrelation function of y(t) can be written in the form 

Ry(t2,t1)=E[y(t2)y(t1)]=El 
Y(t2) + Y*(t2) r(*i) + r*(ti) 

Using the results 

i{E[y(i2)F(i1)] +E[Y(t2)Y*(t1)] +E[Y*{t2)Y(t1)] 

+ E[Y*(t2)Y*(t1)}}. 

E[Y(t2)Y(t1)]=E[Y*(t2)Y*(i1)] =0, 

(46) 

and 
E[Y{t2)Y\tl)]=\E Af{t^)-9(ti)] = IR*(T), 

equation (46) implies 

Ry(T) = -R*(r), (47) 

where Ä$ is denned by equation (22) and r = t2 —1\. By taking the Fourier 
transform, this immediately yields the power spectrum 

Sy(w) = g^*(w) (48) 

12 



Substituting the result (36) for a random-walk phase modulation, one obtains 

Sy(u))   = 
8 

a 

{a/2)2+Lo2 (49) 

This is the desired power spectrum. Equation (12) will now be used to calculate 
the normalized power spectrum £(/). From equation (47), the total average 
power in the signal y(t) is found to be P0 = 1/8. Combining this with equation 
(49), the normalized PSD of y(t) is given by 

4/) = 
2a 

(a/2)2+u2 (50) 
W=2Ttf 

Except for an additional factor of two, this is identical to equation (41). Conse- 
quently, the normalized phase noise spectrum of y(t) is two times the normalized 
phase noise spectrum of the source oscillator v(t). 

For the purpose of making calculations, the phase-noise spectrum (41) can 
be written in the more convenient form 

A/) 

where the HWHM is given by 

7T/3dB l + (///3dB)2 

/3d B = 
a 
4ir' 

(51) 

(52) 

Alternatively, this can be expressed in dB notation in the form 

£(/) = 101og 10 

1 

*/i 3dB l + (///3dB)2 
dBc/Hz. (53) 

For a 36 GHz oscillator with a linewidth parameter -q = 10~7, the normalized 
phase-noise spectrum of u(i), equation (53), is plotted in figure 3. The phase 
noise of the signal y(t) can be obtained by simply adding 3 dB. The spectrum 
in figure 3 is the well known Lorentzian. It is flat from / = 0 to fzdB = 3600 
Hz and then rolls off with a slope of 20 dB per decade. In the low frequency 
limit, as / -> 0, £(/) -» -101og(7r/3dS) = -40.5 dBc/Hz. 

Autocorrelation Function of the Mixer Output 

With reference to figure la, the two signals entering the mixer are the oscilla- 
tor signal v(t) and the received signal ev(t - r0), where T0 > 0 is the time delay 

13 
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of the received signal and e > 0 is its magnitude. The input to the low-pass 
filter is the product 

ev(t)v(t - To) = scos[u>0t + </?(*) + ^o] cos[u>0(i - T0) + ip(t - rQ) + <p0]. 

Using the trigonometric identity 

cos A cos B = - [cos(A - B) + cos(A + B)], 

together with the assumption that cp(t) is a low-pass process, the filtered mixer 
output is given by 

x(i) = 2 cos [co°To + V(*) ~ fi* ~ r°)]' (54) 

where i > TQ. Since ip(t) is not strictly a low-pass process this equality is not 
exact. However, for an oscillator with good spectral purity ip(t) is very nearly 
a low-pass process so that equation (54) is a good approximation. Proceeding 
as before, define the complex signal 

X(t) = ei["oTo+v(t)-<e(t-T0)]^ (55j 

where t>T0. Using definition (22) together with the fact that R$(T) is real, it 
is clear that 

E[X(t)]=eiwoTR^(r) 

E[X*(t)] =e-iu;°TR$(T). 

Therefore, the mean of the process x(t) is given by 

~X(t)+X*(t) 
E[x(t)]=£-E - COS(W07O)ä$(T0). (56) 

2 

Substituting the result (35) for the Wiener process, one obtains 

E[x(tj\ = ^cos(u0T0)e-
aT0/2. (57) 

Due to the phase noise of the source oscillator, the expected D.C. output level 
(S:/2)COS(U;OTO) is reduced in magnitude by the factor e_ar°/2. However, for 
the small delays usually encountered in practice, the inequality ar0 <C 1 is 
well satisfyied so that e~aT°/2 ~ 1. In this case, this factor is neglidgible and 
equation (57) reduces to the usual result obtained in the absence of any phase 
noise. For large time delays such that ar0 3> 1, the two mixer inputs become 
uncorrelated and J3[:r(i)] —> 0. 
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The rest of this section will be devoted to a calculation of the autocorrelation 
function of x(t). Using the complex signal X(t), this autocorrelation function 
may be written in the form 

Rxfah) = EfafaMh)] =jE 
X(t2)+X*(t2) X(i1) + X*(f1) 

+ E[X*(t2)X(t1)] + E[X*(t2)X*(t1)}}. (58) 

It is convenient to define the shorthand notation 

A<pi = ip(ti) -fih -T0) 

A<p2 = <p(t2) -y(*2 -ro). 

Thus, the first and second terms in equation (58) may be written in the form 

E[X{t2)X(t{)] = e^oro^XA^+A^)^ 

E[X(t2)X*(i!)]  =       ^^(A^-A^)]. 

(59) 

(60) 

These expectations may be evaluated as follows: assume that t2 > t\ > TQ. 

There are two cases to consider (figure 4): case 1 where t\ < t2 — TQ, and 
case 2 where t2 — r0 < t-y. In case 1, A<p\ and Atp2 are independent and 
identically distributed Gaussian random variables with mean zero and variance 
OCTQ. Therefore, using the known characteristic function for a single Gaussian 
random variable, one obtains 

E[e^A^+A^] = E[ezA^]E[eiA^) = e~aTo,    |i2 - *i| > r0.     (61) 

Similarly, the random variable (—Atpi) is also Gaussian with mean zero and 
variance CXTO, which implies 

E[e^A^-A^} = E[eiA^]E[e-lA^\ = e~aT\     \t2 -h\> r0. (62) 

In case 2, Ay>i and A(p2 are no longer independent. In this case, let 

Xl = <p(h - TQ) - (p(ti - TQ), 

X2 = ipfa) -ip(t2 -T0), 

xz =f{h) -<p(ti). 
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fr-To 

AQx     A(j)2 

h—To     tr-Zo 

Figure 4.  Illustration of overlap between the phase 
increments at times 1 and 2. 
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Because (p(t) is a Wiener process, the quantities x\, x2, and x3 are mutually 
independent Gaussian random variables with mean values E[x{\ = 2? [£2] = 
E[xz\ — 0, and variances 

a\ - a\t2 -ii|, 

a\ =a(r0- \t2 -*i|), 

03 = <x\t2 -ii|- 

Therefore, by virtue of the relations 

Aipi = xi + x2 

A<f2 = x2 + x3, 

it follows that 
'A<f2 + Aipi = xi + 2x2 + x3 

^Aip2 — Aipi — x3 — x\. 

Thus, in case 2, one finds 

E^(A92+AVI)J _ E[eixi]E[ei2x2]E[eiX3] 

- (P-»fß\(fi-«l^/2\(-oi/2 =   e )(e-^'/2)(e 

==e_or(2Tö-|r|)j |r|<r0, (63) 

where r — t2 —t\. And similarly, 

E[ei(Av2_Avi)] = E[eiX3]E[e-iX1} 

= {e-^'2){e-^'2) 

= e~a^, \T\<T0. (64) 

Substituting equations (63) and (64) into equations (59) and (60), one finds 

L    V   ;    V   yj 1 e~aT° if     \T\ >r0; 
V    ' 

anc 
f   P~alTl       if        \T\  < Tn 

E[X(t2)X*(t1)] = \e_aTo    !       T-ro' (66) 

These equations can be written more compactly in the form 

£[X(t2)X(ii)] = e-^V2^°/(r), (67) 

£[X(i2)X*(ii)] = e-°"*g(r), (68) 
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where 

and 

/(*■) 

9(r) 

e-a(r0-|r|) jf       |r| < ^ 

1 if     \T\ > r0; 

e°(T-o-|r|) jf |r| < T0) 

1 if \T\ > TQ. 

(69) 

(70) 

Note that /(—r) = /(r) and #(T) = l//(r). Substituting equations (67) and 
(68) into equation (58), the autocorrelation function of the filtered mixer output 
x(t) is found to be 

R*(t2,h) = g- e_Qro [cos(2u;o7o)/(r) + g(r)}. (71) 

Since this function only depends on the time difference r — t^ — ti, the process 
x(t) is wide-sense stationary as required. 

Power Spectrum of the Mixer Output 

Taking the Fourier transform of the autocorrelation function (71), the power 
spectrum of x(t) is given by 

Sx (u) e~aT° [COS(2Cü0T0)F{Lü) + G(w)], (72) 

where F(u>) and G(u>) are the Fourier transforms of /(r) and g(r), respectively. 
In order to compute these transforms, let 

so that 

f/W = /(r)-l 
U(r)=0(r)-1, 

'F(u) = F(u) - 8{u>) 

G{u) = G(w) - S(u). 

(73) 

(74) 

Using equations (69) and (70), a straightforward evaluation of these transforms 
yields 

and 

F(u,) = 

G(«) = 

2a 

a2+co2 

-2a 

a2+u2 

COs(iOTo) - («To) 
sm^wToj 

(wr0) 
— e -OT0 

,       .      .       ,sin(o;ro) ,„_ 
cos(o;ro) +  QT0     /    "; - e+ar° 

(wro) 

(75) 

(76) 

19 



Note that G(co) is obtained from F{u>) by simply reversing the sign of a. Sub- 
stituting equations (74), (75), and (76) into equation (72) one obtains 

Sx(u,) = j e~aT° |[cos(2u;oro) + l]6(u) + (-J2L_) A(w)} ,        (77) 

where 

A(LO)  = cos(a;ro)[cos(2a;oro) — l] 

.        sin(<x>ro) r 
- (aT0)— — lcos(2a;oro) + 1 

(WTo) 

O+OT0 _    -ar0 

Using the identities 

and 

+ e
+aT° - e~aT° COS(2U0T0). (78) 

ex = cosh(rr) + sinh(x) 

e~x = cosh(:r) — sinh(x), 

{1 — cos(2x) = 2 sin2 x 

1 + cos(2;c) = 2 cos2 a;, 

the function A(u>) can be written in the more compact form 

A{UJ) =   [cosh(aro) — cos(cjT0)]2sin2(u>oTo) 

2cos2(u;oTo). (79) + ,      ,      .        sin(wro) 
sinh(aro) — (aro) 

(VTQ) 

Discussion: The power spectrum (77) is the sum of two terms where the first 
term is a delta function and the second term is a continuous function. The delta 
function in equation (77) cooresponds to the power contained in the average 
D.C. signal 

E[x(t)] = n = £- e~ar°/2 COS(CJ0T0). (80) 

For the purpose of studying the phase noise, the delta function part of the 
power spectrum will be separated from the continuous part. This is achieved 
by separately considering the power spectra of the two signals x(t) — /j, and fj, — 
const. Mathematically, this amounts to using the autocovariance of the process 
x(t) instead of the autocorrelation. The autocovariance of the process x(t) is 
defined by 

C(t2,tx) = E[ [x(t2) - fi(t2)] [x(h) - fi[tt)] } 

= R(t2,ti) - fi(t2)fi(h), (81) 
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where /i(i) = £?[x(<)]. For the wide-sense stationary process x(t), the mean is 
constant and Cx(r) = Rx{r) — /j,2 so that by taking a Fourier transform, 

Cx(u) = Sx(u)-pL28(u). (82) 

Hence, the delta function part of the power spectrum has been subtracted out 
and Cx{u) is simply the continuous part of the power spectrum. Obviously, if 
the process mean is zero, then C(w) = S(Lü). For the mixer output x(t), the 
continuous part of the power spectrum is given, using equation (77), by 

This equation is one of the main results of this report. For a fixed time delay 
To, the first two factors are positive constants. The frequency dependence of 
the power spectrum is contained in the last two factors. The third factor is the 
well known Lorentzian spectrum with a HWHM given by 

uzdB = öL = —, (84) 

where rc is the correlation time of the oscillator signal v(t). Comparing this 
with equation (37), the HWHM of the mixer output x(t) is twice the HWHM 
of the source oscillator v(t). Therefore, one effect of the mixing process is a 
broadening of the Lorentzian part of the power spectrum by a factor of 2. In 
addition, and more importantly, the amplitude of the spectrum is modulated 
by the factor A[u). It is this modulation factor, A(u)), which is responsible 
for the correlation effect, i.e., the reduction in phase-noise of the mixer output. 
The behavior of the function A(u) is investigated in appendix B. 

Phase Noise of the Mixer Output 

The normalized power spectrum of the mixer output x(t) can be calculated 
from the PSD Sx(u>). Using equation (71), the total average power in the signal 
x(t) is given by 

Po = E[x2(t)] = Rx{0) = j e-aT0 [e~ar° COS(2LO0T0) + e+aT°].       (85) 

Applying various trigonometric and exponential identities, this may be put into 
the form 

e2 

Po = —e  aT° [cosh(ar0) cos2(a;oTo) + sinh(ar0) sin2(u;o"ro)]. (86) 
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For the small time delays met in practice, it is almost always true that arQ <C 1. 
Therefore, making the approximation e+aT° ~ e~aT° ~ 1, equation (85) takes 
the simplified form 

e2 e2 

P0 ~ — [cos(2cj0r0) + l] = — cos2(a;oro). 
o 4 

(87) 

This is a well known result which says that the output power is proportional 
to cos2(a?o'To), essentially the cosine squared of the delay (or range). Of course, 
this result is exact when the phase noise of the source is zero. But, even in 
the presence of phase noise, this result is a very good approximation as long as 
the phase noise of the source oscillator is low and the time delay is small, i.e., 
«T0 <C 1. 

In order to calculate the phase-noise spectrum, the delta function component 
of the PSD (77) must be omitted. This is because the average D.C. component 
of the signal x(t) does not contribute to the SSB phase noise £(/). Using the 
continuous part of the PSD, equation (83), together with equation (12), the 
normalized phase-noise spectrum is given by 

= 2Cx(u) = /     4a     \ 
U) P0        u>=2*f       \a2+LÜ2) B 

(88) 
w—2i:f 

where 
B = cosh(ar0) cos2(u;oTo) + sinh(ojTo) S]X?{UIQTO). (89) 

The factor of two on the right side of equation (88) is due to the fact that both 
positive and negative frequency components contribute equally to the measured 
noise power. The function A(LO) may be written in the compact form 

A(u>) =  I [l — cos(a>T0)] + a > 2sin2(a;oTo) 

+ < (ar0 

sin (urro)] 

(UT0)   J 
+ 6>2cos2(u;oTo) 

where 
a = cosh(aro) — 1 

b = sinh(ar0) — (aro). 

(90) 

(91) 

The same comments made for equation (83) are applicable to equation (88). 
To reiterate, equation (88) shows that the phase-noise spectrum of the mixer 
output is the product of two terms. The first term is just the Lorentzian spectral 
function. If equation (88) is rewritten in the form 

2a ~2A(u>) 

B w=2irf 
(92) 
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then by comparison with equation (41) it is clear that the linewidth of the 
Lorentzian term is two times the linewidth of the source oscillator. This is one 
effect of the mixing process. A more important effect arises from the second 
term 2A(u)/B which imposes a modulation onto the Lorenzian. It is this 
modulation factor which is responsible for the coherence effect, i.e., phase-noise 
reduction. 

Phase Noise Reduction Factor 

As stated in the introduction, the main objective is to compare the phase 
noise of the mixer output in figure la to the phase noise of the source. The 
ratio of the power spectral density of the filtered mixer output x(t) to that of 
the source oscillator y(t) is given by 

K(v) = 
Sx{< co 

Sy(u)' 
(93) 

This will be called the reduction factor. Substituting the power spectra (49) 
and (83) into (93), and assuming there is no attenuation of the delayed signal 
(e = 1), the reduction factor is found to be 

A» 
, — »To (a/2)2+u;2 

a2 -fa;2 2A{ 00) (94) 

where A{UJ) is given by equation (7.6). This equation is the main result of this 
report. With minor modifications, equation (8.2) may be written in the form 

K(w) = e ■QTQ 
(ar0/2)2 + (^r0)

2 

(crro)2 + (OJTO)
2 2A(u). (95) 

For the time delays encountered in practice, it is generally true that ar0 <C 1. 
Consequently, the first and second factors in equation (95) are approximately 
unity, and it is a good approximation to write 

K{u) ~ 2A{LO). (96) 

Therefore, the frequency response of K(u>) is contained in the function A(u) 
which again is given by: 

A{u) =  <[l — cos(u;7o)] + a \ 2sin2(u;o'ro) 

+ ^ (ar0) 1- 
sin(u7To) 

(WTO) 
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The general behavior of this function is studied in appendix B. The first thing 
to note is that A(UJ) is a rapidly varying function of the delay r0. Due to the 
factors sin2(u;oTo) and cos2 (c^o To), the first and second terms in equation (97) 
oscillate in and out of phase as To cycles through a period of l//o- For example, 
if/o = 33 GHz, then l//o = 30 ps (picoseconds) which shows that these terms 
are oscillating very rapidly indeed. Therefore, it is necessary to consider three 
separate cases: 

Case (1) 

Case (2) 

Case (3) 

u>QTo = mr, n = l,2,3,.. 

LOOTO = (2n + 1)(TT/2), n 

LOQTO = (2n + 1)(TT/4) 

0,1,2,. 

n = 0,1,2,. 

Equivalently, these cases are characterized by 

Case (1) 

Case (2) 

Case (3) 

COS
2
(W0T0) = 1, 

sin2(w0ro) = 1, 

sin2(w0T0) = cos2(a;oro) = 1/2. 

The behavior of A(UJ) in each of these special cases is discussed in appendix B. 

To illustrate the above results, the reduction factor was calculated for a 36 
GHz oscillator with a linewidth parameter 77 = 10-7. For the purpose of making 
calculations, it is convenient to introduce the variables 

X = «To 

y = VTQ. 
(98) 

Making these substitutions, the reduction factor (95) takes the form 

>/2)2+y2' 
K{Lü) = e~x 

2 j_ ,,2 xl +y 
2A(u) (99) 

where 

A{u) =  I [l - cos(y)] + a \ 2 sin2 (u;0r0) 

sin(y) 
+ <(*) + b> 2cos (UJQTQ), (100) 

and 
a = cosh(a;) — 1 

b = sinh(x) — x. 
;ioi) 
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In the low frequency limit, as to -» 0, equation (107) shows that K(LJ) —>■ 
(aro)2/2 where the additional factor of 1/4 comes from the second term in 
equation (94). To locate the frequency of transition from region 1 to region 2, 
expand the cosine in equation (107) to obtain 

K(u) « 2[(u;r0)
2 + (ar0)

2], (108) 

which is valid for OJTQ small. The transition occurs when LOTQ ~ OJTO or u = a. 
To obtain the frequency of transition from region 2 to region 3, note that A(u>) 
reaches its maximum at UJTQ = %, i.e., u? = 7r/ro, where the maximum value is 
A(UJTQ = 7v) = 8 + 2(aro)2. These results may be summarized as follows. 

Region 1 0 < u < a,        K(u) ~ (ar0)
2/2 = tf0; 

Region 2:   a < u < 7r/r0,   üC(u;) ~ Ä"0 + 2(u;r0)
2; 

Region 3:     u> > TC/T0,      K(U) ~ 4. 

The value of 4 in region 3 is one-half the maximum value of 8. 

Also plotted in figure 5 is the approximate formula 

K(u) w 2[l - cos(o;ro)] = 4sin2(o;To/2) (109) 

derived from FM modulation theory (refs 1 through 3). A different and much 
simpler derivation of equation (109) is given in appendix C. It is clear from 
figure 5 that equation (109) is a good approximation in regions 2 and 3 where 
it approaches the exact solution for case 3. However, (109) fails in the low 
frequency limit, that is, in region 1. The breakdown of this formula can be 
remedied by simply adding a constant. Thus, based on the previous analysis, a 
more accurate formula is 

K{u) w 4[1 - cos(u;ro)] + (ar0)
2/2, (110) 

where a = 2u>zdB = ^V^o and co^dB is the HWHM of the source oscillator. This 
formula represents a slight improvement over equation (109). 

So far, the discussion of the solution has focused on the three special cases: 
cases 1, 2, and 3. With this done, it is necessary to discuss what happens when 
the delay TQ lies somewhere in the range between these cases. It is possible to 
write equation (97) in the form 

A{u) = Ax COS
2
(U0TQ) + A2 sin2(u;oro), (111) 

where 
_ sin(a;ro) 

(wr0) 
Ai =Ai(w) = 24 («To + b   , (112) 
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and 
A2 =A2(O;) = 2{[1-COS(U;TO)] +a\. (113) 

The function A(u) reduces to Ai(uS) in case 1 and ^2(0;) in case 2. By virtue 
of the identity 

sin2(0) + cos2(0) = l, (114) 

equation (111) shows that the response A(u) lies between A\{UJ) and ^(w) for 
all values of To between case 1 and 2. 

There is another prominent feature of figure 5, namely, that the separation 
between the response curves for cases 1 and 2 is independent of frequency. This 
is, in fact, a general feature of the solution. Ignoring the constants a and b in 
equations (112) and (113), the ratio of the response in case 1 to that in case 2 
is given by 

Ai(ui)      ,      , 1 — sin(y)/v 
-^ ~   ar0 ^v- 115 
A2{w) l-cos(y) 

It is interesting that the quotient appearing in equation (115) is very nearly 
constant on the interval from y — 0 to y = TT. While this fact is difficult to 
demonstrate analytically, it is easy to show graphically in figure 6 where the 
value of this quotient is seen to be approximately 1/3. Therefore, the ratio of 
Ai(u>) to A-iiui) is approximately constant and 

SU^X' <116> 
where ar0 — 2-quoTo. Thus, for the delay To = 10-9 seconds in figure 5, the 
separation between the response curves for cases 1 and 2 is aro/3 = —48.2 dB. 

As discussed in connection with equation (97), the reduction factor is a very 
sensitive function of the delay r0. More specifically, as To cycles through a 
period of l//o = 28 picoseconds the reduction factor goes from case 1 to case 2 
and then back to 1 again. Of course, in the middle is case 3. By inspection of 
figure 5 the difference between case 2 and case 3 is 3 dB. Analytically, in case 
3 one has, using equations (111) and (116), 

A(u) = ^[A^) + A2(u)] ~iila(u;), (117) 

since OTO <C 1. This accounts for the 3 dB difference. Note that the response 
lies between cases 2 and 3 for one-half of the period l//o due to equation (111), 
i.e., case 3 occurs when 6 = 7r/2, case 2 occurs when 8 = TT, and case 3 occurs 
again when 0 = 3TC/2. The question arises: for what percent of the period l//0 

is the response within 3 dB of case 3? The answer is 67 % of the time. To see 
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1.0- 

0.3 

DENOMINATOR / 

^•NUMERATOR 

NUMER/DENOM 

Figure 6.     The quotient   (numer/denom)   in equation 
(115)     is  approximately  constant  from  zero  to pi. 
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this, note that if 9 = 0 corresponds to case 1 and 9 = TC/2 corresponds to case 
3, then when 6 = 7r/3, 

A(U) = \AX{U) + \A2(U) ~ l-A2{u), (118) 

which corresponds to case 3 minus 3 dB. Hence, the reduction factor is within 
3 dB of the solution in case 3 throughout 67 % of the period l//o- 

In practice, these rapid oscillations of the reduction factor can be ignored 
since in a radar system, for example, the radar return is "smeared out" in time. 
That is, the return signal is the sum of many components with different delays. 
This results in an averaging effect whereby the reduction factor is averaged over 
one period of the variable 9 = UIQTQ. Since the average of sin2(0) and cos2(#) 
are both equal to 1/2, the averaging effect yields 

A(u) = ±[Ai(u) + Aa(u>)] ~ \A2{U), (119) 

Therefore, using equation (96), the reduction factor in the presence of the av- 
eraging effect is given by 

K(u) ~ A2(u) = 2[1 - cos(u;ro)] + (ar0)
2, (120) 

or, equivalently, 
K(u) ~ 4sin2(wr0/2) + {aT0f. (121) 

Conclusions 

The phase noise of an amplitude stabilized oscillator was modeled as a 
sinewave with a random-walk phase function. The propagation of phase noise 
through a mixing circuit was studied to determine the reduction of phase noise 
due to mixing the time delayed signal with itself. The normalized (baseband) 
power spectrum of the source oscillator is given in equation (41) and the spec- 
trum of the filtered mixer output is given in equation (83) or (88). The main 
result of the report is the reduction factor (correlation factor) which is given in 
equation (95). The results show that the well known formula (1) for the reduc- 
tion factor is a good approximation except in the low frequency limit (w —> 0). 
An improved formula was given, either equation (110) or (121), which is valid 
for any frequency offset. 

It is important to realize that the theoretical results obtained in this study 
are only applicable to the extent that the given mathematical model is valid. In 
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general, an oscillator will exhibit both AM and FM noise components; whereas, 
in this study it was assumed that the amplitude noise is zero. Nevertheless, 
for an amplitude stabilized oscillator employing current state-of-the-art tech- 
nology, the AM noise is usually neglidgible compared to the FM noise. Another 
limitation of the model employed here is its restriction to a random walk phase 
function. This is not always the case for electrical oscillators. A microwave os- 
cillator, for example, does not exhibit a perfect random-walk (f~2) phase noise 
spectrum. In practice, real oscillators have phase noise spectra which exhibit 
combinations of different slopes, i.e., /~4, /~3, f~2, /_1, f°, and, more gener- 
ally, noninteger slopes f~a where a > 0 is a real parameter. Nevertheless, the 
random walk f~2 case is one of the most important since it is mathematically 
tractable and since it is characteristic of a resonantly tuned oscillator operating 
near its thermal performance limit (ref 12). 
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Necessary and Sufficient Conditions 
for Stationarity 
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For a zero mean Gaussian phase modulation cp(t) (not necessarily stationary) 
it is easy to obtain a necessary and sufficient condition for the stationarity of 
the process v(t). Since the sum and difference of Gaussian random variables is 
Gaussian the increment <p(t2) — v(*i)1S a Gaussian random variable with mean 
zero and variance 

a2(t2,t1) = VaT[<p(t2)-v(t1)} 

= E([p{t2) - c^)]2) = *J(t2) - ZRvfati) + al(h). 
(A-l) 

By using the characteristic function for a Gaussian random variable, it follows 
that 

JM*2,*i) = £(>^-<^) = expf-a2^)/^. (A-2) 

Note that this is a real function. Consequently, using equation (24) the auto- 
correlation function of v(t) takes the form 

Rv(h,h) = -jR$(i2,*i)cos(a;or). (A-3) 

Since E[v(t)] = 0, this equation implies that v(t) is wide-sense stationary if and 
only if the function R$(t2,ti) depends only on the time difference r = t2 — t\. 
From the previous considerations, it follows that if <72(i2, h) depends only on r, 
then R$(t2,h) = R$(T) is strictly a function of r. Conversely, if R$(t2,ti) = 
R$(T) is strictly a function of r, then the variance cr2(i2,ti) is also a function 
of T. This proves the following theorem. 

Theorem. If ip{t) is a zero mean Gaussian process, then the stochastic process 
v(t) = cos[u;oi + <p{t) + <fio] is wide-sense stationary if and only if Var[(p(t2) — 
<p(ti)] is a function of r only, that is: 

Var[<p(t2) - ¥>(*i)] = *l(t2) - 2Rtp(t2,t1) + <r2 (ia) = a2(r). (A-4) 

In this case the autocorrelation function of v(t) is given by 

Rv(r) = -ä$(T)COS(W0T), (A-5) 

where 
Ä*(r) = exp[-J<7

2(r)]. (A-6) 

In the special case when ip(t) is a stationary process, (A-l) is only a function 
of T. Therefore, one has the following corollary. 

Corollary. If ip(t) is a stationary zero mean Gaussian process, then the sto- 
chastic process v(t) is wide-sense stationary with autocorrelation function given 
by (A-5) and (A-6). 
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Analysis of the Amplitude Factor 
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The functional dependence of the reduction factor K(w) is primarily con- 
tained in the function A{u>). Therefore, a study of A(a>) will shed light on the 
general behavior of K(u). Since A{u>) also depends on the time delay To it will 
sometimes be denoted by A(u: To), where 

A(Lü,TO) =   [cosh(aro) — cos(u;ro)]2sin2(a;o'ro) 

sin(u;ro + sinh(o:To) — (CKTQ)- 
(wr0) 

2 COS   (LOQTQ). (B-l) 

It is clear that A(UI,TQ) > 0 for all To > 0 and for all u real. Also, A(— a;) = 
A(cu), so that A(u>) is an even function of a;. One important observation should 
be made at this point: Due to the factors sin2(u;oTo) and cos2(u;oTo) the relative 
contributions of the first and second terms alternate as To cycles through a 
period of length To = l//o- For frequencies in the microwave range, To is on 
the order of 100 picoseconds and therefore A(u)) is a very sensitive function of To. 
That is, the first and second terms are very rapidly going in and out of phase. 
On the other hand, in a radar system, for example, the radar return is "smeared 
out" in time so that on average each of these terms will contribute equally to 
the mixer output. This averaging effect is discussed further in section 8. In 
equation (B-l), as TQ increases from 0+ there are three cases to consider: 

Case (1) 

Case (2) 

Case (3) 

u?0T0 = n7r,    n = 1,2,3,...; 

LO0T0 = (2n + 1)(TT/2),    n = 0,1,2,...; 

u;0To = (2n + 1)(TT/4),    n = 0,1,2,.... 

Equivalently, these cases are characterized by 

Case (1) 

Case (2) 

Case (3) 

cos2(u;oTo) = 1, 

sin2 (U;0T0) = 1, 

sin2(u>0To) = cos2(u;oTo) = 1/2. 

Because the mixer output x(t) is proportional to cos2(o;oTo), case (1) might 
be expected to have the dominant effect on the output phase noise. However, 
it will be shown that the coefficient of the sin2 term in (B-l) is on the order 
of unity, while the coefficient of the cos2 term is on the order of ar0 where, in 
general, OJTO <C 1. Therefore, cases (2) and (3) are also important. 

CASE 1: CJOTO = mr. 

In this case, A(UJ) is given by 

A(u) = 2 sinh(aTo) - (ar0) 
sin(o;To) 

(<*>7o) 
(B-2) 
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For the delays usually encountered in practice, it is generally true that ar0 <C 1. 
Making the approximation sinh(a;) ~ x + x3/3l, this takes the form 

A(u) ~ 2(ar0) 
sin(a;To) 

(CJTO) 
+ 26, (B-3) 

where 6 = (ar0)
3/3!. The magnitude of this term is determined by the factor 

ar0. This function is sketched for the case n = 1 in Figure B-l. Note the 
linear scale. It is apparent that the function A(u) will cause a reduction or 
nulling out of the phase noise spectrum for frequencies in the neighborhood of 
zero. For frequencies from zero to WT0 = 7r, A(UJ) increases monotonically from 
the minimum value 26 to the value 2(ar0 + 6). For frequencies greater than 
üJTO = 7T, A(u>) is nearly flat as it approaches the asymptotic value 2(ar0 + 6). 
Consequently, the nulling effect is greatest from to = 0 to LüT0 — n. To gain some 
feeling for the overall magnitude of the nulling effect suppose that aro = 10~4. 
Then 26 ~ 10-16 and 2(ar0 + b) « 1(T4. The nulling effect caused by A(u) is 
quite strong in case 1. 

Consider now the behavior of A(U),T0) as a function of r0. For a fixed time 
delay To = mr/uo (n fixed), the zeros of sm(u>r0) occur at LOTQ = mn, or 

uj       m , 
— = -, B-4 
UQ       n 

where m = 0,1,2, The behavior of A(u) for different values of the delay n 
is illustrated in Figure B-2. In general, A(u>) increases monotonically from the 
minimum value 26 at u> — 0 to the value 2(ar0 + 6) at to — u>o/n. For u > u)o/n, 
A(u) is nearly constant. 

CASE 2: IJüQTQ = (2n + 1)(TT/2). 

In this case, A(u>) reduces to the form 

A(OJ) = 2 [cosh(ar0) - cos(wr0)]. (B-5) 

For the small delays encountered in applications it is almost always true that 
CCTQ <C 1. Therefore, making the approximation cosh(:z) ~ 1 + x2/2, equation 
(B-5) takes the form 

A(u) = 2 [1 - cos(W0)] + 2a, (B-6) 

where a — (QTO)
2
/2. This function is plotted on a linear scale and displayed 

in Figure B-3. This function exibits large amplitude swings as a function of u. 
As UJ increases from zero to u>r0 = TC the function A{w) increases monotonically 
from its minimum value 2a to its maximum value 2 + 2a.   For example, if 
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Figure B-l.  Linear plot of the amplitude response versus 
frequency in case 1. 
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Figure B-2.  Amplitude versus frequency in case 2 
for different values of the delay n. 
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Figure B-3.  Amplitude versus frequency in case 2. 
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aTo = 10-4, then 2a = 10-8 and 2 + 2a ss 2.0. Therefore, in this example, 
A(u>) spans eight orders of magnitude between u> = 0 and UJTQ = n. Since the 
phase noise spectrum is located in the neighborhood of LO = 0, i.e., u <wo, 
this shows that A(UJ) causes a significant reduction or nulling out of the phase 
noise. Of course, since the mixer output goes as cos2(a>oTo), the mixer output 
is zero in case (2) and the nulling effect is irrelevant. Nevertheless, the above 
analysis is relevant for a study of case (3). 

Next, consider the dependence of A(u>, r0) on the time delay. In case (2), the 
time delay is given by r0 = (2n + 1)7T/2LCO. The extrema of A(w) occur when 
UJTQ = m7r, m = 1,2,  For a fixed value of TO (fixed n), the extrema occur 
for those frequencies which satisfy 

u, _    2m 

^ - 2>TM ' (B"7) 

where m — 1,2,..., n fixed. The behavior of A(LO) for different values of n are 
shown in Figure B-4. As the time delay n increases, the bandwidth from co = 0 
to the first maximum Lü/LüQ = 2/(2n + 1) decreases. Consequently, the band- 
width of the nulling effect also decreases as shown in Figure B-4. Nonetheless, 
the nulling effect is significant except for very large values of n (large delays) 
since the phase noise is concentrated in a narrow frequency band close to the 
carrier frequency. 

CASE 3: COQTO = (2n + 1)TT/4. 

This case is a combination of cases 1 and 2. Making the same approximations 
for sinh and cosh as in equations (B-3) and (B-6), one obtains 

A(u) = {ar0) 

where 

_ sin(u;To) 

(WT0) 
+ [l - cos(o;r0)] + (a + b), (B-8) 

a=(ar0)
2/2, b = (ar0)

3/3!. (B-9) 

Since ar0 <C 1, the first term in (B-8) is much less than the second term and 
the overall response is very similar to that of case 2 shown in Figures B-3 and 
B-4. 
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Appendix C 

Derivation of the Approximate Formula 
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In this appendix an elementary derivation is given of the approximate formula 
(1). The phase of the output signal is <f>{t) — ip(t) — <p(t — To), where ip(t) is 
the phase of the source. Therefore, the autocorrelation function of the output 
phase is given by 

S^r) = E[<f>(t2 )</>(*!)] 

= E[ [f{h) - <p(t2 - To)] [<p{h) - <p(h - T0)] } 

= 2RV(T) - RV(T + T0) - RV{T - T0). (C-l) 

Taking the Fourier transform and using the time shift property, this yields the 
result 

S*(w) = 2[l - cos(üüT0)]Sv(u;). (C-2) 

Therefore, the ratio of the power spectrum of the output phase <j>{t) to the 
power spectrum of the input phase ip(t) is given by 

|44 = 2[1 - COS(O;T0)] = 4sin2(a;To/2). (C-3) 

This is just formula (1). The problem with this result is that the power spectrum 
of the oscillator signal v(t) is not equal to the power spectrum of the phase 
function tp(t), and the PSD of x(t) is not equal to the PSD of <f>(t). In the case 
of a random-walk phase function, a more careful analysis leads to the correct 
result (94). 
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