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1.0 Introduction

1.1 Statement of two problems

There are two problems that must be addressed 1if next-
generation training systems for cognitive skills are to be 1)
more effective than current systems and 2) developed and fielded

on the scale that will be required to meet future training needs.

1.1.1 PROBLEM I: There Needs To Be A Theory That Prescribes
How To 1) Teach Cognitive Skills That Reguire Multiple Forms of
Knowledge & 2) Determine Whether The Student Is Acquiring

Knowledge In The Correct Forms During Skill Acquisition.

If the purpose of cognitive skill training in the military
is to produce expert performance (and it is), then training
should develop in the learner the same knowledge and problem
solving strategies that experts have. For example, the goal of
training military personnel to solve algebra word problems, or to
determine the causes of circuit faults, should be to teach them
the knowledge and problem solving skills that are used by experts
at solving algebra word problems or determining the causes of
circuit faults. Indeed, at every step along the way to
expertise, diagnosis and training should be directed toward that

goal.




This line of reasoning has a significant implication for the
next generation of automated training methods, if we want them to
produce order-of-magnitude improvements over the current
generation. Expertise at most interesting cognitive skills, such
as solving algebra word problems, diagnosing circuit faults,
requires that the expert use several forms of knowledge to obtain
a correct answer (Leddo et al., 1988, 1990). For example, in the
case of circuit fault diagnosis, at least three different forms

of knowledge are required for expert performance:

o Knowledge Type 1: Objects and Attributes encode the properties
of the entities in (faulty) circuits. Examples of objects are
diodes, transistors, wires, breaks 1in wires, etc. Examples of

attributes are impedance, thickness, etc.

o Knowledge Type 2: Mental Models that permit the problem
solver to "run" the circuit mentally and produce inferences about
the behavior of the circuit under different initial conditions

i.e., attributes of objects in the circuit.

o Knowledge Type 3: Rules that encode diagnostic strategies,
inferential rules for determining the cause of observed symptoms,

repair techniques, and so forth.




In the case of algebra word problems as well, several forms
of knowledge must be used to achieve a solution. The problem
solver must have knowledge about the various algebraic forms of
problem typeé -- time-distance problems; word problems; etc. --
rules that determine the operations to perform on the algebraic
forms, and, of course, knowledge about the objects, attributes,
and mental models that represent the domain elements referred to
in the problem. Work performed at Research Development
Corporation suggests that math practitioners both possess and use
these diverse types of knowledge in solving practical problems

involving algebra.

Thus, we believe that training most "interesting” cognitive
skills will require teaching the learner several forms of
knowledge. This implies that the next generation of computer-
based trainers for cognitive skills will be required to respond
explicitly to the requirement for teaching multiple forms of
knowledge. Currently, however, most computer-based
tutoring/training systems for cognitive skills use a single
representation for the knowledge and skills they are trying to
teach. Those that use multiple forms of knowledge do so for
pragmatic reasons rather than because a strong cognitive theory
of expertise and training prescribes them. For example, the

representation for knowledge 1in tutoring systems based on




Anderson's ACT* theory is almost exclusively in the form of
production rules and, where it varies from production rules, it
is typically in service of the production rule representation.
Ssimilarly, work by Eliot Soloway and his colleagues (cf., Johnson

and Soloway, 1985) focuses on frame-based representations of

knowledge.

In short, if the expert knowledge required to solve target
problems has a single form, then tutoring based on a single form
of knowledge is likely to be effective. If, however, the expert
knowledge required to solve target problems is not in a single
form then, even though tutoring based on a single knowledge form
may produce some positive effects, the tutoring may not be as
effective or as efficient as it could be if it were not limited
to a single form for the knowledge. In addition, students will
pe unlikely to achieve expertise without significant changes in

the ways they represent the knowledge required for expertise.

The requirement for teaching multiple forms of knowledge
imposes a further constraint on the assessment component of next-.
generation training systems. The further constraint is that the
training system must, at every step in the training, monitor the
forms in which the student acquires knowledge. For example, 1if

expert knowledge about a device is represented in a mental model




that encodes both structure and function, then the student should
acquire it in that form and not, for example, in the form of a
1ist of objects and attributes that repreéent components of the
device. To accomplish this, the training system must have 1)
explicit strategies for teaching the knowledge 1in the correct

form and 2) assessing whether the student is indeed acquiring the

correct form of knowledge.

If the student begins to diverge from the correct form for
the knowledge the training system is trying to teach, then the
tutorial component must correct the student. When there are many
possible forms for some particular piece of knowledge, but only
one form consistent with expertise, then the less the tutor knows
about the form of the student's knowledge, the less effective it
will be in rapidly getting the student back on track. The need
for close monitoring arises because the tutorial planning
required to get the student back on track may be quite complex
(Littman, 1991) and, in some cases, impossible if the student

gets too far afield.

In sum, we need 1) a theory that prescribes the forms of
knowledge that should be taught by training systems for cognitive

skills and 2) an on-line assessment methodology that will permit




the training system to determine whether the student is acquiring

the correct forms of knowledge.

The above analysis leads to two objectives to be achieved to
progress to the next generation of intelligent training systems

for cognitive skills:

Objectives: We need a theory that prescribes how to 1) use
multiple knowledge forms to train specific cognitive skills and
2) determine whether the student is acquiring knowledge in the

correct forms during skill acquisition.

1.1.2 PROBLEM II: There Is No Engineering Methodology To
Support Rapid, Cost-Effective, Replicable Development &
Maintenance Of Training Materials That Use Multiple Knowledge

Forms.

Solving Problem I is only half the battle. Even if we
devise a theory of multiple knowledge forms for cognitive skills
that prescribes the content, structure, and tutoring methods for
next-generation systems, there is no guarantee that it will be
possible to produce the required quantity of effective, main-
tainable, and robust training systems for all the cognitive
skills that we need to train. Currently, the development process

for intelligent computer-based training 1is time-consuming and




does not typically yield systems that are easily evaluated,
maintained or modified. 1In addition, producing nearly any system
is a start-from-scratch effort in which 1) little software built
by others can be reused, 2) most software components produced for
the system can only occasionally be reused in subsequent .efforts
within the development group and 3) software produced by one
group is almost never reused outside the group. This state of
affairs obviously limits the quality, consistency, and quantity

of current training materials.

The task of constructing next-generation training for
cognitive skills is bound to be more difficult. Future systems
will be more complex, undoubtedly require the cooperation of many
people to produce them, and will require significént maintenance
and modification as delivery software, training requirements, and
hardware change. In short, effective development and fielding of
these systems will require a robust engineering methodology just
as the design of large-scale software requires a software
engineering methodology. Hence, the second critical problem that
must be solved to progress to the next generation of intelligent

training systems for cognitive skills:




Problem II: There is no engineering methodology to support rapid,
cost-effective, replicable development and maintenance of

training materials that use multiple knowledge forms.

1.2 . Statement of two goals

In response to the two problems identified in the
previous section, we have defined two goals for the proposed
research and development effort. In the remainder of this
section we state the two goals, justify them, and identify some

of their implied subgoals.

1.2.1 GOAL I: Develop a Tutoring & Assessment Methodology For
Cognitive Skill Training Based On Multiple, Integrated Knowledge
Forms. our case for using multiple forms of knowledge in
intelligent computer-based training systems for cognitive skills
consists of five main arguments. We feel that any one of the
arguments would recommend the use of multiple knowledge forms.
However, the five arguments touch on most essential aspects of
the design, development, and operation of training systems.

Thus, we believe that a strong case can be made for developing
the approach of multiple forms of knowledge. In the remainder of
this section we identify and briefly describe the arguments. The
arguments are quite intuitive and most were touched on in the

introductory section of the report.




Argument 1: Cognitive Reality of Multiple Knowledge Forms. It
is clear, from intuition and from the cognitive science
literature on instruction and expertise, that many problem
solving tasks require multiple forms of knowledge. If the goal
of cognitive skill training is to foster expertise, then students
should learn what experts know. This implies that, in many

instances, training systems will have to teach students knowledge

in several forms.

Argument 2: Accuracy of Diagnosis and Assessment of Learning.

If a training system cannot reason about different forms of
knowledge, then it cannot have é robust assessment methodology
for determining whether, during the training process, the student
is acquiring knowledge in the form appropriéte for expertise. If
a training system's only measures of performance are which
problems the student correctly solved and which the student
incorrectly solved, and assessment problems are not generated
explicitly to determine the form in which the student has
acquired knowledge, then the system will not know why the student
correctly solved some problems and incorrectly solved others.

For example, a student may give the same wrong answer because he
made a careless mistake (but geneially understands the material),
misremembers a particular fact (but generally understands the

process he's using), or is thoroughly confused and is largely




guessing. Each of these has different implications for
corrective instruction. Perhaps an even more dangerous case 1is
when the student achieves a correct answer by mimicking a
procedure without understanding why the procedure works. Here
the student may get the textbook problem "right" but fail
miserably when placed in a real-world context and given a

somewhat novel task that requires modification of the procedure.

If one of the criteria of achieving expertise 1is that
knowledge be in the appropriate form, then unless the training
system can assess multiple knowledge forms and which of those
forms the student is using, it will not be able to assess
expertise effectively. Thus, multiple knowledge forms are
necessary to the assessment function of training systems for many

cognitive skills.

Argument 3: Efficacy of Tutoring. If the knowledge that a
training system is intended to teach can only have one form, then
there is no ambiguity about how the student should represent it.
For example, if a training system is teaching only diagnostic
rules, then the likelihood that the student will not represent
the knowledge as rules is negligible and tutoring will consist
primarily of refining the condition and actions parts of the

rules. If, however, there are several plausible forms for some

10




piece of knowledge then there can be ambiguity about 1) what form
the student's knowledge is currently in and 2) which tutoring
strategies are appropriate to correct the student's
understanding. For example, there may be a choice about whether
to represent the parts of a device as a list of objects and
attributes or as a coherent set of objects with behavior -- i.e.,

a mental model.

Unless the tutor knows what the alternative knowledge forms
are, can assess which form the student's knowledge is in, and can

reason about how to help the student change from one form to

“another, the tutor will be unlikely to help the student acquire

knowledge in the forms appropriate for acquisition of expertise.
Indeed, the student may need to learn the same knowledge in

several forms to achieve expertise.

Argument 4: Economy of Storage and Computation. It has been
argued that knowledge encoded using any of the popularly proposed
knowledge representations can be transformed to any other
representation. Nevertheless, it is clear that some
representations are more naturally suited to certain represen-
tations than others. This can be for reasons of storage economy
or computational efficiency. For example, a script (cf., Schank,

1982; Schank and Abelson, 1977) could be encoded as a sequence of

11




production rules, each set to fire after the previous rule
executes. The special structure of "script-like" rules can be
exploited to economize storage either by not duplicating elements
common to all scripts, or by storing features relevant to the
whole script only once and not with each rule. In addition,
special purpose, efficient inference engines can be built to take
advantage of the script structure. For example, the entire
script can be run in sequence, rather than requiring the pattérn
matcher to check the preconditions for all rules in the rulebase

after each rule is fired).

Of course, these were some of the arguments that led
researchers to postulate and implement ‘the different
representations now 1in current use. Cognitive scientists
postulate similar explanations for experimental findings pointing
to multiple representations in humans. Thus, it seems reasonable
to carry the development of the theory of multiple

representations to cognitive skill training.

Argument 5: Expressiveness for Designers of Training Systems for
Cognitive Skills. Developers of training systems for cognitive
skills need an intuitive language in which to express the
knowledge required for expertise. For example, if a development

environment provides a designer of a training system for circuit

12




diagnosis with constructs that allow the designer to directly ex-
press the mental model knowledge, the diagnostic rule knowledge,
and the object and attribute knowledge, then it is likely that
the resulting system will 1) initially contain more knowledge
appropriate for training expertise, and 2) be easier to change
and augment than if it were built with a single form of
knowledge. Equally, a developer of an algebra tutor who can
directly express algebraic forms and manipulation rules willvbe
likely to produce an initial prototype that 1is robust and

cognitively effective.

1.2.2 GOAL II: Develop An Intelligent Reusability Engineering

Methodology For Training Materials Development Process.

The design and development of training materials for
cognitive skills 1is a complex, costly, and often inefficient
process that requires the coordinated efforts of a diverse group
of individuals. Problems commonly associated with this process
include: 1) duplication of previous design and development ef-
forts due to lack of communication across development groups and
lack of a "corporate memory;" 2) miscommunication among group
members due to differences in approach, background, terminology,

etc.; 3) inappropriate products because of a failure to involve

13




end users in crucial design decisions; and 4) suboptimal products

resulting from imperfect group collaboration.

To improve the efficiency of the production and maintenance
of training materials, personnel who construct them should have
intelligent computer support for reuse of existing materials. 1In
this engineering scenario, the developer could specify
characteristics of training materials under construction and the
intelligent support system would either 1) find appropriate
reusable components in its knowledge base or 2) assist the user
in constructing new materials which could then be added to the
knowledge base. Until such support exists, production and
modification of training materials is likely to be costly, prone

to error, and subject to the "reinventing the wheel" syndrome.

We have, therefore, defined two primary subgoals, which we

now identify and describe.

Subgoal 1: Develop a knowledge-based environment for constructing
ltraining materials that utilize multiple forms of knowledge.
Accurately representing domain knowledge in a training or
tutoring system is extremely difficult. Many times, developers
of training system have the intuition that the expertise they
want to train requires multiple forms of knowledge. To

accommodate this intuition, they essentially wind up building

14




special purpose languages that allow them to express domain
knowledge in the forms required for expertise. We have the
goal of building a general purpose, transportable knowledge based
environment that would help developers of training systems 1)
select appropriate forms for domain knowledge and 2) represent
the knowledge. In addition, we intend to develop at the same
time a mechanism that would store, for reuse, all the knowledge
that individual developers represent. This would give anyone
building training systems access an initial library of reusable
domain knowledge to which they could contribute. We intend to
develop a framework for the reusable knowledge and to provide
software tools to help developers integrate it into their own
training software. Ultimately, we would like to distribute this
knowledge base on a hard disk as part of a knowledge based

development package for training systems.

The knowledge-based environment will initially be
constructed to support the development of training materials that
use the five forms of knowledge identified in the introduction.
In the first implementation, we focused on helping developers of
training systems to represent domain knowledge using these forms
of knowledge. Future work would 1) provide support for additional
forms for domain knowledgé and 2) extend the system to be able to

support the representation of the forms of knowledge required for

15




tutoring (Littman, 1989). This extension of the system would
provide knowledge-based support for constructing tutors and
trainers that use strategies appropriate for their domains of
instruction. Again, as in the case of domain knowledge, we
intend to build a mechanism to permit storage and reuse of

tutorial knowledge.

Subgoal 2: Begin to close the Design—Production—Evaluation—
Modification (D-PE-M) Loop. Training material often needs to be
modified. Reasons for modification include changes in the work
environment, technology and equipment, the structure of tasks,

and the methodologies and results of evaluation.

For example, recent developments in cognitive theory produce
well-defined assessment methodologies  for cognitive  skill
acquisition that could be integrated into training programs. The
effectiveness of training systems could thus be constantly
assessed. Modifying the system for optimal performance could
thus become a frequent requirement. Such modification would
probably not be consistent if it were done by hand. At the very
least, version-control methodologies from software engineering
should be used to enforce the consistency of such modifications.

Other, larger scale, modifications would also require close

adherence to established software engineering methods. For

16




example, when new training technologies, such as virtual reality,
become widely available, it would be advantageous to be able to
introduce them into existing training software without ruining
it. There are thus many reasons for evaluating and modifying
training software and we believe that the knowledge based support
environment should accommodate as many as possible. We therefore
focused on producing a knowledge based support environment for
designing, producing, evaluating, and modifying training

software.

2.0 Background

Today's high-tech world requires a. higher level of technical
skill and literacy than ever before. The Air Force workplace
increasingly requires its personnel to have technical skills.
Unfortunately, recent educational assessments (cf., National
Assessment of Educational Progress, 1989) show that graduating high
school seniors are severely lacking in technical skills. As a
result, employers such as the United States Air Force must bear an
increasing burden in training its personnel.

One area that has shown immense promise is the use of
automated trainers. Such trainers provide the student with one-on-

one training, which has often been viewed as the most effective in
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terms of speed of learning (cf. Bloom, 1984). Similarly, such
trainers offer hope as a means of reaching large numbers of
students and in many cases are more economical than standard
classroom instruction.

In the field of automatéd trainers, the field of intelligent
tutoring systems (ITSs) has received considerable attention (cf.,
Brna, Ohlsson and Pain, 1993; Greer, 1995). Intelligent tutoring
systeﬁs typically are driven by a cognitive model of thé skills fhe
student is trying to learn and have a cognitively-based
instructional framework for how those skills can be developed.

Why use ITSs in training? There is clear evidence documenting
the superiority of individualized instruction over traditional
group instruction (e.g., Bloom, 1984) . The superiority of small
class sizes is usually attributed to the increased opportunity for
individualized attention. The basic premise of the mastery
learning paradigm (Bloom, 1968) is that the amount of
instructional time allotted to a given objective should be allowed
to vary among students, so that each student has the opportunity to
master the objective before moving on to other objectives. Bloom
(1984) showed that mastery learning improved performance by 1
standard deviation; adding individualized instruction improved

performance by 2 standard deviations.
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A major benefit of computer-aided instruction is the ability
to tailor instruction to the individual student. An ITS differs
from a traditional computer-aided instruction system in that it has
an embedded model of the student's current understanding of the
subject matter, and tailors instruction according to this model.
ITS development has been an active area of research in the
cognitive science and Al fields (Brna, Ohlsson and Pain, 1993;
Polson and Richardson, 1988).

Very many ITSs have been developed over the last ten years,
but only a few have been subjected to formal evaluation. of
course, the ones for which evaluations are reported constitutes a
biased sample; but bearing this in mind, the results of the
evaluations are quite impressive (Shute and Regian, 1990). For
example, students having 20 hours of instruction from Sherlock,
which teaches avionics troubleshooting (Lesgold, Lajoie, Bunzo and
Eggan, 1990), performed on the evaluation test comparably to
technicians with almost 4 years experience. Students using the
LISP tutor (Anderson, Farrell and Sauers, 1984) learned the
computer language LISP in half the time it took traditional

classroom students.
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3.0 Theoretical Framework.

3.1 The testbed.

The first task of the project was to select a testbed. The
purpose of the testbed was twofold. First, it provided a basis for
testing an instructional methodology based on our Integrated
Knowledge Structure (INKS) framework. Second, the testbed served
as a basis ﬁor developing a generic intelligent tutoring system
architecture.

The INKS framework itself deals with conceptual (e.g., as
compared to motor or perceptual) problem solving tasks. .Therefore,
selection of a testbed was driven by finding a problem solving
domain that was largely conceptual and lent itself well to teaching
each of the different types of knowledge in our INKS framework. We
also wanted to select a domain with\a wide range of applicability
to real world problem solving. For this reason, scientific inquiry
was chosen as the testbed for testing the INKS-based instructional
approach.

This testbed was later changed to algebra for purposes of
building the generic ITS architecture. This was motivated by the
fact that an algebra ITS was under development at Armstrong
Laboratories at Brooks AFB in San Antonio, Texas. Researchers were

looking to test alternative approaches to ITSs, so the project team
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changed the testbed to accommodate this interest within the Air

Force.

3.2. The instructional approach.

The first step in the development of an instructional approach
is to develop a model of the testbed knowledge. Since our goal is
not simply to present a curriculum within the context of a
simulation but rather to build the same type of thinking skills-in
students that experts have, it is important to identify and model
those skills. This model will then drive instructional
requirements designed to build similar knowledge in students as
well as drive the evaluation of how well students have learned that
knowledge. These instructional requirements and evaluation
feedback then drive what simulations/events the students experience

(see below) .

3.2.1 Expertise: Characteristics and rationale as a training
target.

Given that we have set a goal of teaching students to solve
problems as experts do, we want to develop a framework for modeling
expert problem solving knowledge. There are several reasons why
understanding how experts solve problems and represent knowledge

has relevance to the proposed work. First, the goal of training is
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to make students effective problem solvers in the topic area
taught. Research by Wagner and Sternberg (1985) shows that experts
are effective,lnot just intelligent.

Second, research indicates that expert knowledge is diverse
and well integrated (Laskey, Leddo, and Bresnick, 1989; Leddo et
al., 1990). Experts have a variety of problem solving strategies
at their disposal and can apply them as called for by the
situation. These strategies are functional in nature and ére
oriented toward the goals and objectives that characterize the
expert's job. As a result, the expertlproblem solving strategies
are well integrated with everyday knowledge and are readily
retrievable and applicable.

Third, experts tend to show a deep understanding of their
subject area. Non-experts tend to be more superficial in their
understanding and this can affect problem solving. For example, in
physics, Chi et al. (1981) found that non-experts Jjudge the
similarity of problems on the basis of superficial features such as
type of apparatus, while experts judge similarity by reference to
basic prinéiples of physics (e.g., conservation of energy) and
generic solution techniques associated with such principles.
Similar differences between experts and novices in algebra are
reported by Schoenfeld and Herrmann (1982) and 1in coﬁputer

programming by Weiser and Shertz (1983) .
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A central theme 1in expert knowledge is its functional
orientation. Expert knowledge 1is centered around goals. As a
result, any modeling of expert knowledge and implications derived
for iﬁstruction must take goals into account. In fact, research by
the Yale University Cognitive Science Group (cf., Galambos, Abelson
and Black, 1986) suggests that goals play a powerful role in
organizing people's knowledge in general. This point is important
because much traditional classroom-style instruction is déne
without much emphasis on goals. Rather the focus is on problem
solving procedures. While researchers such as Anderson (1982) have
argued that expert knowledge 1is characterized by procedural
knowledge, Leddo et al. (1990) find that true expertise 1is
characterized by goal and causal knowledge while procedural
knowledge actually characterizes experienced non-experts (who are

more advanced than novices but are not true experts).

3.2.1.1 Modeling expert knowledge. The research described above
focuses on the behaviors exhibited by experts. To translate
knowledge of these behaviors into practical instruction and
evaluation techniques, one must understand the types of knowledge
that underlie these skills.

In the cognitive science and psychology literatures, several

frameworks have been proposed as models of expert (and non-expert)

23




knowledge. These schemes tend to address different types of
knowledge. For example, scripts (Schank, 1982; Schank and Abelson,
1977) are used to represent goal and planning knowledge that is
used in fairly routinized environments. Scripts are generalized
sequences of steps used to achieve a goal. Script-like schemas can
also be used to integrate bodies of knowledge into a larger
framework.

Knowledge about data patterns and how objects are organiéed
together can be represented by object frames (c.f., Anderson, 1980;
Minsky, 1975). Frames are very much like scripts in that they are
expectancy-driven organizers of knowledge. We conceptualize
scripts as focusing more on goal and plan-related knowledge while
frames organize collections of objects. Frames can also be
distinguished from semantic nets (cf., Quillian, 1966) which tend
to organize information about individual concepts and-relationships
between them rather than collections of objects. For example, a
science laboratory may best be represented by a frame since it is a
collection of people and equipment while a test tube may best be
represented by a semantic net that describes its features.

Knowledge  about situation-specific procedures can be
represented by production rules (cf. Newell and Simon, 1972).
Production rules are expressed in the form "IF [antecedent], THEN

[consequent]", where antecedents are situational conditions that
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determine when procédures are to be executed and consequents are
the procedures executed under those conditions. Production rules
are useful in both carrying out procedures (e.g., "If this step has
been completed, then do this next step.") and also generating
inferences (e.g., "If the following problem features are observed,
then infer that this is an [X] type of problem."). Production
rules can be distinguished from scripts in that scripts organize
entire goal-driven plans, while production rules organize specific
actions. Scripts can be viewed as collectioné of production rules
much the way that frames can be viewed as collections of semantic
nets.

Finally, causal and analogical reasoning can be captured by
mental models (cf., de Kleer and Brown, 1981; Johnson-Laird, 1983;
Leddo, Cardie and Abelson, 1987). In our framework, (Leddo, Cardie
and Abelson, 1987), mental models are viewed as encoding the causal
rationale for why a specific problem solving procedure 1s used.
one of the factors that distinguishes the way experts solve
problems from the way non-experts do is the former's heavy reliance
on mental models and the ability to use them to select an
appropriate problem solving strategy to meet a set of objectives.

We have discussed five different representation frameworks
(scripts, object frames, semantic nets, production rules and mental

models) for representing expert knowledge. As we mentioned above,
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experts possess diverse knowledge that 1is richer that can be
handled by any single framework. Leddo, Cardie and Abelson (1987)
developed an Integrated Knowledge Structure (INKS) framework that
combines these individual schemes. In the INKS framework, scripts
serve as the general organizer of knowledge, linking plans and
goals together. Production rules give situation-specific
procedures to be executed given conditions that arise during the
execution of a plan. Frames organize collections of objects that
are utilized in the execution of plans while semantic nets organize
features of the individual objects within a frame. Mental models
provide the rationale for why procedures are executed and how they

are instrumental in achieving objectives.

3.2.2 The development of expertise.

The INKS model may serve as a useful explanatory mechanism as
to how experts acquire practical problem solving skills. John
Anderson (1982) argues that expertise 1is acquired in stages.
Initially, Anderson argues, people have declarative knowledge.
Declarative knowledge is largely semantic. Anderson terms such
knowledge as "knowing that.” For example, a student learning to
drive may know "that" he needs to put the key in the ignition and

turn it while simultaneously pushing down on the gas peddle. The
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student "knows that" this is what he needs to do, although he still
may not be capable of performing the act.

The next stage in acquiring knowledge is to proceduralize the
declarativevknowledge. This knowledge of what one is supposed to
do is translated into concrete procedures that lead from problem to
solution. Anderson terms this knowledge "knowing how" in that the
student now knows how to start the car, shift gears, etc. This
type of knowledge is represented by production rules. In essence,
the student has transitioned from a more abstract representation of
what he must do ("knowing that") to a more specific representation
("knowing how") that allows him to do it.

The drawback with Anderson's framework is that it forces a
person to learn a specific set of procedures for every type of
problem rather than generating a general formula from which
different procedures might be generated. Leddo et al. (1990)
extended Anderson's framework by studying the problem solving
processes of people at different levels of expertise.

Leddo et al. found support for Anderson's two stages of skill
development. However, the most experienced group of problem
solvers, the true experts, used a different problem solving
strategy. Experts used their goals and a causal understanding of
the problem domain (i.e., a mental model) to select and adapt a

strategy to fit the specific problem. Hence, the experts' problem
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solving process was more powerful than a procedural one, because
experts had the means to generate procedures as needed from richer,
more abstract knowledge structures. These procedures were causally
related to both the situation and the goal. Leddo et al. terﬁed
this type of reasoning "knowing why."

We believe that this "knowing why" 1is what distinguishes
experts from ndn-experts. We also feel the causal links between
the goals and the planning strategy used with the specific
procedures and semantic features of the situation are the keys to
effective practical problem solving. (This is why all of the
knowledge structures in the INKS framework are relevant and no
single structure 1is sufficient.) We further argue that most
students never advance beyond the "knowing how" stage (in fact,
Leddo et al., 1990, found that only about 5% of the professional
problem solvers they studied, all of whom had more than 20 years of
professional experiénce, could be characterized as "knowing why"
problem solvers). Students may have a fundamental understanding of
how to apply a problem solving procedure, but lack a deeper
understanding of why that procedure is relevant and what the
purpose of that procedure is. As a result, unless they are given a
specific procedure to follow in a practical problem solving
setting, they will have great difficulty coming up with one on

their own. On the other hand, if they can succeed in learning why
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problem solving procedures are relevant, we hypothesize that they
will be better able to link these problem solving procedures to
concrete, practical problems. (Shavelson, Webb, Stasz and
McArthur, 1987, echo our sentiments by arguing that math
education should include goals and underlying causal reasoning
behind the subject matter).

Research at RDC (Leddo, Campbell, Black, and Isaacs, 1992)
provides preliminary support for the contention that solving
problems "procedurally" is not as effective as solving problems
"causally." Algebra students when confronted with a practical
problem typically look for a formula to execute. We believe they
are performing problem solving procedurally--trying to map for-
mulas (procedures) to the problem. This causes problems when the
chosen formula does not fit the problem (e.g., the formula is
geared toward solving an equation with one wunknown but the
problem has two unknowns). Math practitioners on the other hand
who solve the same problem by establishing goals and developing a
model of the problem (i.e., using the "expert" problem solving
approach described above) have no difficulty with the same
problems. Further, when the students who are having difficulty
with the problems are asked to "forget about the formulas and
develop a model of the problem," they often are then able to

solve the problem.
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3.2.3 Implications for Instruction.
We argue that our conceptualization of the knowledge skills
underlying expert practical problem solving has important

implications for how training can be conducted. We believe that

instruction should focus on building the different types of

knowledge outlined earlier, with emphasis on integrating them
through causal mental models. Successful problem solving requires
two major steps, both of which involve the use of integrafed
knowledge. First, students must analyze a problem, using the
problem features presented, and infer an appropriate problem
solving strategy. We view this as a "bottom-up" process in that
students work from specific problem features to generate a more
abstract problem representation.

Second, once a student has structured the problem and selected
a strategy or set of problem solving procedures, s/he must then
apply that strategy to the specific problemn. This often involves
mapping features of the problem onto slots in the strategy. We
view this as a "top-down" process in that students work from the
general strategy in order to instantiate it into a concrete
problem.

Research by RDC team members (Leddo et al., 1992) supports
this contention. We have found that math practitioners (those

that use math as part of their professional jobs) do not reason
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by formulas when solving practical algebra problems. Rather,
they use semantic and causal knowledge of the problem situation
to weed out relevant from irrelevant information and then
establish relationships among the different pieces of
information. This is used to establish a problem solving
strategy. (We view this process as a bottom-up structuring of
the problem). Once the problem solving strategy is selected, the
practitioners pick specific formulas and execute them. (We view
this process as top-down problem solving). Interestingly, the
formulas selected are often not the formulas that are
"prescribed" by algebra, e.g., y=mx+b, but work Just the same.
This process is quite different than the formula-driven reasoning
typically taught in algebra (and other) courses. However, our
results suggest that math practitioners don't reason
"mathematically" (i.e., by formulas), but rather use real world
knowledge to structure the problem and then used math to solve
it. We believe the biggest training challenge lies in teaching
people to integrate their real-world reasoning skills with
domain—specific problem solving skills and that this may in fact

produce the biggest gain in learning.

Both of the two steps described above involve integrating
abstract, formula-type knowledge with concrete, everyday

knowledge. students often have trouble with both steps. They
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may fail to recognize what "type" of problem it is from its
description and/or they may pick a strategy but then not know
which values presented in the problem go in which slots in the
strategy. We hypothesize that causal mental models can help the
students make these linkages. We outline a training approach to

accomplish this.

First, the student is taught in the context of specific goals.
The student is asked to solve a problem where no quantitative
analysis is performed. Here, students may be presented with simple
questions to investigate such as “does putting candy on sale lead
to increased sales?” Students may think about what general
considerations and issues need to be addressed to answer such a
question. The goal is to induce students to build a model of the
problem before they can solve it, without simply jumping into a set
of procedures. In this case, the ITS would present the student
with a variety of problems that depict different scenarios that the
student might encounter. This gives the student a breadth of
experience and makes salient the fact that there is a wide range of
problems the student may have to encounter in real-world probiem
solving (one tendendy novices have is to underestimate the variety
of problem types and as a result often employs "one size fits all"

problem solving) .
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Next, students are introduced to the framework for solving
problems. For example, in the scientific inquiry context text,
students would be taught the concepts such as what a hypothesis is,
how to test a hypothesis in real world settings, etc. This stage
can be viewed as Anderson's "knowing that" as students are learning
the framework. Here, the ITS might show students scenarios with
specific cues highlighted (e.g., sales at two stores, one having a
sale, the other not) so that the student can see the relationship
between concepts to be learned and their real world occurrences.

Next, students are given practice with this framework so that
it can be proceduralized ("knowing how"). Here, the' ITS would
generate specific problem instances and the student must perform
the procedures that s/he has been taught such as analyzing the data
collected in the problem.

Finally, students are taught to develop an overall causal
understanding or model of what they have learned (much as experts
have) . This involves giving students multiple problems with
themes. An example of this in the scientific inquiry context might
be to have the ITS simulate different experiments in which the
samples on which data are collected are biased in some way so that
the student can use this larger context to anticipate the specific
affects that such biases may have on the validity of generalizing

experimental results to an entire population. We hypothesize that
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this type of training is especially effective in building problem
solving skills in time stressed environments as students learn to
use context knowledge to make more rapid conclusions (i.e., the

difference between "top-down" and "hottom-up" problem solving).

3.2.4 Diagnosing what students have learned using knowledge
elicitation.

Knowledge elicitation refers to the process of ascertaining
what a person knows about a given topic area and how that knowledge
is organized. The goal of knowledge elicitation is to transform
information obtained from a person into some representation of the
person's knowledge.

There are two common categories of knowledge elicitation
techniques. The first is called protocol analysis (cf. Ericsson
and Simon, 1984) in which people articulate their thought processes
while solving problems. Protocol analysis is good for eliciting
what people know, in particular their practical problem solving
procedures, but has serious limitations for eliciting their
underlying organization and understanding of that knowledge.

Protocol analysis 1s also extremely tedious and time-
consuming. In an intelligent tutoring application, standard
protocol analysis 1is clearly infeasible. However, one can build

into the ITS data-collecting procedures for monitoring students'
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problem-solving, and one can use querying to gather information
about what students are thinking as they solve the problem.

The second type of commonly used knowledge elicitation
technique is an interview or question and answer format. Leddo and
Cohen (1989) report an interview technique called Cognitive
Structure Analysis (CSA) that is explicitly designed to elicit
people's underlying organization and understanding of their problem
solving processes. CSA is based on the INKS framework descriﬁed
earlier. It involves questions regarding people;s problem solving
goals, the strategies they use (what procedures, what sequence they
occur in, etc.), the reasons behind these strategies, the features
of the problem that are relevant, etc.

CSA has received a preliminary testing in ITS implementation
in THINKER (Leddo, Sak and Laskey, 1989). CSA was used to elicit
from experts the domain knowledge that went into forming THINKER's
knowledge base. This knowledge base formed the basis for THINKER's
curriculum. THINKER also uses CSA to probe students when they make
errors. The goal of these probes is to infer students' underlying
knowledge gaps or errors in reasoning. THINKER compares what the
student knows to its expert knowledge base to make this inference
which then determines what corrective instruction THINKER gives the
student. Separately, CSA was implemented as an automated

assessment tool to assess the effectiveness of classroom
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instruction. The results of this study are discussed later in the
report. Finally, CSA was used in the ITS architecture developed
under the present project.

CSA's probes are driven by both structural and content
considerations of the knowledge structures in the INKS framework.
For example, scripts not only describe what events will happen in a
context (the content knowledge), but also their sequence, their
importance, etc. (the structural knowledge).

These content and structural considerations not only help
capture what a student knows but also help distinguish the
representation the student is using. For example, a production
rule representation may capture event sequences, but is typically
not used to capture relative event importance. Therefore, if a
student is thinking in terms of event importance, s/he is probably
using a script instead of a production rule representation.

Leddo et al. (1992) developed a hybrid technique that uses
both problem‘solving and CSA techniques. In this technique, a
student first solves a problem using his normal problem solving
strategy. The steps he goes through are then recorded. Next, the
elicitor revisits each step using the CSA technique in order to
diagnose the knowledge used in that step. This technique is useful
in generating a global model of problem solving knowledge as

opposed to a highly detailed model that might be used to construct
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an expert system. The goal in our application is to give someone
(student or tutor) a quick means to assess the student's level of
reasoning. It is therefore important to be able to assess a global
model, and much less important to assess the details. The other
benefit of the hybrid technique is that it uses both natural
problem solving and interview-based techniques. Some students may
have difficulty articulating their knowledge. This makes it
difficult to infer whether the problem is lack of understanding or
inability to articulate their understanding. The hybrid technique
allows students to demonstrate proficiency behaviorally as well as
explaining it. This helps to distinguish which of these two
factors is at work.

This hybrid knowledge elicitation technique 1is especially
useful in simulation-based ITS environments. Students'
interactions with the simulations can serve as a rich source of
information about the students' naturally problem solving
approaches. Further, scenarios can be manipulated by the ITS to
see how these problem solving strategies differ, if at all, across
situations.

This type of assessment, namely recording the students’
problem solving process, is the means by which most ITSs construct
a student model. We Dbelieve that this approach alone 1is

insufficient as it does not give underlying reasoning about why the
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student took whatever actions he or she did. We believe
understanding the student's underlying reasoning 1is key to
developing corrective instruction. For this reason, we see the
addition of CSA to the assessment as a valuable supplement.

In the present project, the goal was to use knowledge
elicitation to identify discrepancies between student and expert.
These discrepancies generate conclusions about the student's level
of development which then guide the student's progress. For
example, we argued above that novices are largely pattern-oriented
(with simple patterns), experienced people are largely procedural
and experts are goal and mental model-driven. If we are to help
students learn to be goal and mental model-driven, we need to be
able to determine what drives their current problem solving. This
involves not only comparing students and experts in terms of the
knowledge they have, but also comparing the student's knowledge
with her behavior. 1In other words, if a student has a causal model
but still reasons procedurally, she is not behaving as an expert
would and therefore 1likely needs stronger linkage between her
abstract causal knowledge and her concrete procedural knowledge.
This is why CSA is especially important--it gets at the problem
solving knowledge that underlies problem solving behavior. Once
the student's cognitive level is assessed, a learning strategy can

be developed based on the framework described in section 3.2.3.
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4.0 An experimental test of the INKS-based instructional framework.

4.1 Overview

The first goal of the project was to develop an
instructional framework suitable for intelligent tutoring systems
that has the goal of teaching students how to solve problems as
experts do. As discussed earlier, a fundamental premise of the
present research is that expert problem solving knowledge 1is
diverse and is best represented by a rich, integrated structure
such as the INKS framework discussed earlier.

The Research Development Corporation.v methodology  for
developing such an instructional framework is comprised of the
following steps:

1) Conduct knowledge elicitation with domain experts to identify
the knowledge and skills that need to be taught.

2) Model this expert knowledge using INKS to understand the
relationship between the knowledge concepts and how they are used
in problem solving.

3) Develop instructional activities designed to teach these
knowledge and skills.

4) Conduct knowledge elicitation with students to determine what

knowledge is needed.

39




5) Select instructional activities designed to teach the needed
knowledge.
6) Iterate steps 4) and 5) (and others as needed)

In order to leverage the current effort, steps 1) and 2)
were completed by using work from a separate project. The
subject area was scientific inquiry wusing statistical data
analysis. Figure 1 presents an INKS representation of part of

the knowledge elicited in this subject area.

4.2 Method

Subjects.
Two schools participated in the study. One was the New High

School, an alternative school in Boulder, Colorado that served an
at-risk student population. Eighteen students (16 9th graders
and 2 10th graders) were selectéd from the New High School to
participate in  the experimental condition. The second
participating high school was Boulder Valley High School, a
mainstream high school, also located in Boulder, Colorado. From
this high school, two control groups were constructed: a group

of eleven 9th graders and a group of nine 12th graders.
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Materials.

A variety of performance and other problem solving tasks
were coﬁstructed to teach the scientific problem solving method.
These ranged from complete studies that emphasized the entire
sciehtific method (as discussed earlier) to component tasks that
emphasized specific problem solving skills. The emphasis of all
problem solving tasks was to pres;nt real world problems that the
students could relate to. An example of a task that emphasized
the complete problem solving process was having the students
construct, carryout and evaluate a study that addresses the
question of whether putting an item on sale actually increases
sales. An example of a task that emphasizes specific component
skills was to present students with salary information for
computer scientists and have them determine.whether there was a
bias due to gender once employees’ experience and education was

taken into consideration.

All told, 25 hours worth of instructional materials were
developed. These were accompanied by relevant manipulatives
(e.g., candy for the experiment to test the effects on sales of

putting candy on sale, decks of cards for the study on ESP).
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Procedure.

All subjects were paid volunteers who were recruited with
the help of their schools. Subjects in the experimental
condition were paid $80 for their participation in the project.
Subjects in the control condition were paid $20. Prior to the
start of the study, all students were given a pre-test on their
knowledge of the scientific problem solving process. Questions
were based on the INKS model of scientific inquiry as shown in
Figure 1. Questions were multiple choice and comprised of
knowledge-based questions and applied questions. An example of a
knowledge-based question was “In scientific inquiry, defining the
question you are asking is important because”. An example of an
applied problem was to calculate the mean of a set of test
scores. All questions were followed by five possible answers. The
pre-test and post-test were administered and scored via computer.

The experimental students were given 25 hours instruction
over a period of three weeks. These included 1.5 hour sessions
after school during the week and 4 hour sessions on Saturday.
Given that students were expected to have after school
activities, they were allowed to pick three afternoons a week for
instruction. All students were required to attend on Saturday.

Activities were done either individually, in small groups or as
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an entire class. Three RDC staff members participated as
instructors.

Upon completion of the 25 hours of instruction, all
students, both experimental and control received a post-test. The
post-test had two parts. The first wés a series of multiple
choice questions similar to those in the pre-test. Essentially
this part of the post-test was virtually identical to that of the
pre-test in that the same concepts were tested, but with
different questions. The second part of the post-test was a
performance task in which students were presented with a scenario

involving a toxic spill and they had to develop a plan for

cleaning it up.

4.3 Results

There were two types of research questions of interest to
the present study: 1) how good 1is INKS at modeling the
knowledge relevant to solving problems, and 2) does an
instructional framework based on the INKS framework lead to
improved problem solving performance? |

The answer to the first question is based on data collected
by the computerized assessment tool which was actually developed
under a separate project but was tested in the present study. To

address this question, two types of correlations were computed.
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The first was the correlation between concept knowledge as
measured by the concept questions in the pre- and post-tests and
the solutions to the application knowledge as measured by these
two tests. To compute this, the number of correct éoncepts was
tabulated for each student as well as the number of applied
questions answered correctly. These were broken out by condition
(experimental, control) and type of test (pre- or post-). There
were too few observations to break the data out by knowledge t?pe
(e.g., procedural, causal), although this variable may be worth
investigating in a future study. Table 1 below shows these

correlations.

pre-test | post-
test
exper .51 *| .88 **
(13) (13)
control .54 ** 1 .43 *
(21) (18)
Table 1: Correlations between conceptual and problem solving

knowledge
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numbers in parentheses are degrees of freedom
* p < .05
**x p < ,01

Note: some data missing due to computer network malfunction

It is interesting to note that the highest correlatioﬁ is in
the post-test of the experimental condition, which is the oﬁly
cell in which students had been exposed to the subject matter.
One explanation from this is that exposure to the subject matter
reduces the pool of knowledge students will draw on to solve a
problem. In other words, 1f students are unfamiliar with a
subject area, the range of concepts they might draw upon to solve
a problem is greater than that if they have been taught to solve
problems in that area. Therefore, the correlation between a
given set of concept knowledge and the ability to solve problems
that use those concepts may be less when those concepts are less
familiar than when they are more familiar. It turns out that the
correlation of .88 is significantly higher than the other three
(p < .05), which in turn are not significantly different from
each other.

The other aspect of the research question regarding how good

INKS is in predicting problem solving performance is looking at
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whether the change in concept knowledge as measured from pre-test
to post-test correlates with the change in problem solving
performance as measured from pre-test to post-test. To compute
this, pre-test/post-test change scores for both of these measures
were computed for the experimental group only (it was assumed
that any change in scores in the control group would reflect
variability iﬁ test-taking performance not true learning) . The
correlation obtained was .78 (df = 13, p < .01), suggesting that
not only is INKS good at measuring current knowledge but also
growth in knowledge.

The second research question this study addressed was
whether an INKS-based instructional approach would lead to

enhanced problem solving skills. To measure this, the

'performance task was used as it is currently the educational

benchmark for subject area mastery. As is common in performance

assessment, a four point scoring rubric was constructed to
evaluate each student’s response. Responses were evaluated Dby
rater blind to experimental conditions and hypotheses. Table 2

presents mean scores on the performance task broken down by
experimental. 9th grade control and 12th grade control

conditions.
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9th Grade Control 12th Grade Control Experimental

1.55 3.00a 3.06a

Table 2: Mean Solution Scores on the Performance Task
Note: numbers not sharing a common coefficient

are significantly different at the .05 level

Table 2 illustrates that the experimental group actually
scofed the highest of all groups on the performance task,
although their performance was not significantly different from
the 12th grade control group. However, the results show that an
at-risk student population made up primarily of 9th graders
(there were two 10th graders in the group) performed at a level
significantly higher than their 9th grade mainstream counterpart

and at a level comparable to mainstream 12th graders.

4.4 Discussion

The results of the present study lend support to the concept
of INKS as a framework for modeling student knowledge and using
it as a basis ‘for developing instructional programs to build
expertise. The above results suggest that an INKS model of
student knowledge is highly predictive of problem solving

performance, particularly in cases where students have been
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instructed in the subject matter. . Additionally, the results
suggest that changes in knowledge (i.e., learning) as measured by
INKS is highly predictive of changes of performance.
Collectively, these results lend support to the general
premise of the current research that problem solving 1is
integrative in nature and that by using an knowledge
representation framework that captures integrated knowledge, one
can predict how well a person can solve problems. |
The second major hypothesis of the present research was that
an instructional framework modeled after the INKS representation
scheme would be effective in building problem solving skills.
The results of the present study confirmed this as well in that
at-risk 9th graders performed at a mainstream 12th grade level at

the end of instruction.

5.0 1Intelligent Tutoring System Architecture

The second major goal of the present work was to develop an
intelligent tutoring system architecture based on the INKS-based
instructional methodology. Therefore, our methodology for
building intelligent tutoring systems (ITSs) needs to be modeled
after the six step methodology outlined at the beginning of this

section. This ITS methodology, therefore, needs to specify not
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only an ITS architecture itself, but the tools required to
support the other steps.

In order to devote as much of the project resources as
possible to the development of an ITS archifecture and supporting
tools, the decision was made to adopt a testbed for which the
knowledge elicitation (step 1 of the process) had already been
conducted. Therefore the testbed chosen was algebra. In order
flesh out the ITS methodology, the following techniéal

components/ tools were developed:

1) an INKS knowledge representation structure
2) an INKS entry tool so that non—combuter scientists could build
INKS structures
3) a scripting language to present lessons
4) a knowledge assessment tool (built largely on another project)
to assess student learning
5) an integrating architecture to link the assessment of student
knowledge using INKS to appropriate instruction and presentation
of that instruction.

Below we describe the overall architecture in general terms.
We enclose three documents as an appendix that provides additional
detail regarding the components. The first 1is the overall

architecture that integrates the student model, the curriculum and
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associated activities, and the presentation of the lessons
(including the user interface). The second document describes the
scripting language that was developed (although not completely
finished) called Gilligan. Gilligan controls the presentation of
lessons to the user and the incorporation of student responses into

the student model. The third document is a user’s manual for

Gilligan.

5.1 Generic ITS Architecture.

As discussed earlier, the second goal of the project is to
develop a generic architecture for building ITSs. Figure 2
illustrates the general architectural design. We discuss this
design in terms of its components.

The core activity of our architecture is assessing the
student's knowledge and using this information to focus student
activities for maximum learning. What make this architecture
intelligent is that the choice of activities are directly based
on what the student knows instead of being pre-programmed. The
heart of the SIAM architecture is the interplay between the
presentation manager, the student profile manager (student model)
and the activity selection.

The activity selection module has two components: a course

map that outlines the natural progression of topics to be taught
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and a set of activities that are suitable for teaching particular
topics both regular and remedial. The student profile manager
influences which of these particular activities are selected
pased on the INKS model of the student. Activities are selected
to address particular learning needs. In the case where more
than one activity is appropriate, the activity is selected that
satisfies the most learning needs. Once the activity 1is
selected, it is presented to the student. The Gilligan scripting
language serves as the interface between system and student. It
both directs what the student sees on the screen and maps the
student responses to the appropriate portion of the INKS so that
the Student Profile Manager can update the student model and
determine what the new learning needs are.

The SIAM architecture includes supporting tools. An INKS
entry tool allows a designer to enter INKS content into a Fox Pro
database so that it can be used by the system. The interface to
this tool allows the user to type in the content for each slot in
the INKS node so the user does not have to worry about the
structure of the INKS itself, only the content of the knowledge.
An INKS viewing tool allows the user to see the INKS structure
in graphic format so that s/he can check the INKS content for
accuracy and validate that concepts are correctly integrated with

each other.
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As discussed earlier, CSA is a tool for providing additional
validation regarding what someone knows about a domain by
presenting direct probes as opposed to observing only their
problem solving behavior. CSA is integrated via an assessment
tool that is connected to the student model. When an error state
is triggered within an INKS node, a set of probes is generated to
validate the error. This ultimately can influence what remediate
a student may get.

The rest of this section describes the intelligent tutoring

system (ITS) architecture and explains some of its functions.

5.1.1 Activities

One core concept in the ITS architecture is that of an
activity. Activities control all interactions with the student.
Each activity is made of tasks, which are able to present text
and graphics, animate graphics, engage in interactive exploration
of the information, query for information, assess student
responses, and chose future activities. Simple activities may
have one task such as the display of text to explain a concept.
Complex activities may have full simulation~scenarios oOr
multimedia presentations with multiple decision paths based on

student responses.
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The tasks are connected
&y Run Bxercise together on an activity line.

Figure 3 shows one such line.

B o |

'ﬁ Pest exercise guestionnaire

Activities flow from the top to
’ C— F—E Update TNKS node based p

on the correct answers,

‘ .s common errors, or
EX] |42 unexpected answers

bottom and the horizontal bars

at each end represent the start

and stop of the activity.
Figure 3 An example activity pifferent icons are used .to
line represent different classes of
tasks. In the example, the
first icon tell ITS to call another activity line (a subroutine)
and when that line is finished return to this line. The next
icon writes a question on an interaction window and prompts the
student for a reply. It is followed by hollow diamond which
intercepts the student's reply and interprets their choice. Each
potential choice is shown as a arrow surrounded by circle and for
each reply some new path is taken. If the choice is not one of
the expected choices, the final (right most) path is taken.
Below each choice is a icon that places evidence on the INKS node
(explained later). This evidence will help determine what the
student knows and where remediation should take place.
Instructional technologists break their activities into

pretests, lessons, practice (problems with immediate feedback),
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tests and remediation (explaining the subject in a different
manner). As can be seen, activities forms a powerful programming
language that allows the instructional technologists to perform
all of these activities and to build complex lessonware.

The description to this point has the instructional
technologist explicitly controlling what activities are being
shown at each step of the instruction. This lacks flexibility.
Ideally, we want to assess student understanding and, at
appropriate places in activity flow, choose remediation
activities. This is at the heart of our intelligent tutoring.
The bottom three icons in Figure 3 are being used to collect data
on the student's understanding and use this evidence to modify
INKS nodes. For this evidence to be exploited, the instructional
technologist must identify points in instruction where

remediation would be appropriate.

In Figure 4, a remediation opportunity can be seen on the
first icon. The solid diamond at the bottom of the icon informs

ITS to remediate at this point if the student did not understand

some aspect of graphing (what the task taught) .

56




To remediate, the ITS temporarily puts the current activity
line aside and begins the
B chosen remediation activity.

5; Run Exercise 6 Remediation activities will

*
@ Remediate task 1
@ Remediate task 2

continue to be chosen until
the student shows
understandiﬁg iﬁ the material.
Once they understand, fhe
Figure 4. A remediation activity instructional flow continues
where it left off. Remediation
is recursive and will delve as

deep as necessary to teach the material.

All activities connected directly to INKS nodes by a
statement of objectives. These identify the competencies or
misunderstandings are addressed by this activity. The required
list of competencies or misunderstandings is derived from an
analysis of the INKS description. Activities can address
multiple competencies and misunderstandings. The system will
always attempt to select activities that best match the students
needs without repeating activities unnecessarily. Activities
should also be chosen that adapt to different student learning

styles and problem-solving methodologies. The system will also

attempt to exploit different methods of presentation.
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5.1.2 INKS

To master a subject, the student must learn and apply many
different types of knowledge. The Integrated Knowledge System
(INKS) is an organizational methodology that groups and
synthesizes these knowledge sources into one common description.
This is another core concept used by ITS. It allows the
different facets of problem knowledge to be used holistically gnd
gives an educational system considerable flexibility in dealing
with the student and the errors they make during learning.

INKS knowledge is represented by a network of information
nodes. Each node describes the knowledge necessary to perform
one educational task. Figure 5 presents a pictorially
representation of an INKS node. The node name identifies this

node and is unique from all others.

The mental model describes why this node is used.

The input scene specifies when this node can be applied to the
task. It is a set of preconditions that are expected to be true
before the knowledge in this node can be applied.

The procedure specifies the set of steps that must be achieved to
perforn this task.

The output scene 1is the >expected result from applying the

procedure.
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Background concepts are those things implicitly assumed to be
known by the student. These concepts are declarative in nature
and differ from input scenes in their focus. The input scéne and
mental model describe when and why knowledge should be applied.
The background concepts are those things of a more general nature
that may be used to reason in the problem domain.

The state table holds information on the student's performance
and . errors they

are making. Each

INKS node has one

State Table .
(What's Happening)

correct state (the

: » r Steps
student know this \= st J - % r—
knowledge), Zero Procedure J
(When) |- (How)
or more common R Output

Scene
(Resuit)

error states, and
one unknown erIor pn;.,re 5, An INKS node
state (when the
student makes an error that is not explicitly represented as a
state). The different states are updated as the student is asked
questions and responses.

The INKS activity list lists all activities that can teach

one or more aspects of this node. Each node must have an

activity for the mastery standard state and one for each error
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state. All important concepts have multiple activities which
either explain the concept from a different perspective or are

designed to address common errors made by students.

6.0 Discussion and future directions.

The present effort demonstrated the feasibility of the INKS
framework as the basis of a methodology for developing ITSs, both
from an instructional and a technological perspective. Clearly,
further research is needed to complete the ITS architecture and
supporting tools so that trainers who do not specialize in ITS
development can construct ITSs for practical use.

In addition to the completion of the development and testing
efforts begun in the present work, we would like to discuss three
extensions of ITS technology that we believe would make a
significant contribution to the field. We believe our INKS-based
ITS framework could support developments in each of these areas.

We have discussed earlier that the typical rule-based ITS 1is
very constraining on the behavioral paths it allows a user to
take. Any action that deviates from the expected path is flagged
as an error and the user is instructed to substitute his/her
“incorrect” response with a “correct” one. While this

methodology can be useful in teaching formalized procedures, we
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argue that it has little ecological validity for the wide range
of ill-structured, open-ended problems that people face in life.
We have often made the point, for example, that this model
of ITSs could not be used to teach people how to build ITSs
pbecause there is no single “correct” procedure for how to build
one. Most problems have a variety of solutions that are roughly
comparable in their acceptability and often, they are too many to
enumerate and program into an ITS' expert knowledge base.
Further, it is often difficult to tell from a single step in

a procedure whether a person is making a mistake or on the right

track. Often, it is a sequence of steps that are necessary to
infer whether a person’s solution path is appropriate. A good
example of this is chess. There are 20 possible first moves for

the white pieces in any game. Well over half of these moves have
formalized opening systems structured around them, typically with
extensive branching to allow a myriad of “acceptable” move
sequences. Therefore, it is impossible to judgment the goodness
of most df these moves unless they are viewed in the context of
the overall strategy of the subsequent play. Such an occurrence
is problematic for a rule-based ITS that seeks to evaluate each
action for its correctness at the time the action is made.
Related to this issue is the phenomenon of exploratory

learning. Here, the student is expect to learn by exploring a
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problem solving environment, collecting information, taking
actions, and discovering the consequences of those actions.
Exploratory learning is currently a popular paradigm within the
educational and training communities. Therefore, it is valuable
for ITS technologies to support this type of learning.

One valuable method for utilizing an exploratory learning
environment an a computerized setting is through games. Games
naturally lend themselves to exploration. Further, the fact that
they are fun induces people to spend subétantial amounts of time
(most willingly too!) playing them. By embedding intelligent
tutoring within a game context, one can capitalize on user
motivation to spend time and master the environment.

Like exploratory learning environments, games typically
support a gréat deal of user control and freedom of action. As
was discussed above, this tends to be problematic for rule-based
ITSs that expect users to follow fixed action sequences.

In order to build exploratory learning and open-ended action
into an ITS, the primary technical challenge appears to be giving
the ITS the ability to understand user behavior when i1t does not
follow a preprogrammed action pattern. This has tremendous
ecological validity given the tremendous variability in the way
people naturally solve problems in the real world. This is also

reflected in real world teaching as students typically are not
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tightly constrained in how they solve problems. Therefore,
teachers need to possess the ability to view a workproduct and
make inferences as to the problem solving process used by the
student.

The INKS-based ITS framework offers an approach to address
this »issue. Higher level structures in the INKS framework
specify top-level goals and the types of actions necessary to
accomplish these goals. These actions are organized based on
their causal enablements to the goal rather than a specific order
in which they must be carried out. The problem solving
structures would then contain the goal, the solution constraints,
necessary subgoals/steps and any steps that are dependent upon
each other (which would dictate sequencing requirements) .

With such a problem solving model, it becomes less relevant
what order steps are conducted as long as logical enablements are
met. For example, suppose one wanted to teach scientific problem
solving in the context of a detective game (detective work 1is
much like scientific research as both involve hypothesis testing
through the collection and analysis of empirical data). The
tutoring component might have the following constraints: it is
necessary to collect sufficient evidence to support the favored
hypothesis (e.g., convict the suspect) and rule out competing

hypotheses (e.g., show that other suspects could not have done
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it). With these general constraints, the specific order in which
a student might collect data becomes less relevant as long as the
student fulfills both requirements. Therefore, such an INKS-
based approach could support open-ended, exploratory learning.

A second future direction the present research could take
represents a marriage of intelligent tutoring systems with
question answering systems that use natural language. The basic
motivation behind such a system 1is based on the everyaay
observation that sometimes people learn by simply asking
questions and having something explained to them. Currently, ITS
research has emphasized presenting lessons and teaching
procedures rather than instruction through “dialog”.

It is important to emphasize that traditional question
answering systems are not, in and of themselves, ITSs nor can
they serve in that capacity without significant enhancements. A
good teacher does more than simply convey information. Teachers
recognize that there are educational goals that may extend beyond
simply the scope of the information being requested by the
questioner. Therefore, a teacher may provide more information
than has been requested or even answer a different gquestion 1if
she determines that the student’s question is directed toward the

wrong educational objective.
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A good teacher also assesses the questioner’s current level
of knowledge and ability to assimilate new information. For
example, if a novice asks “tell me about the work you do in
intelligent tutoring systems”, a wise response will cover basic
level topics, whereas if a fellow researcher asks the same
question, one would expect a much more sophisticated and
technical response. Related to this, a good teacher will gauge
whether the student appears to understand the answer to a quéry
and may often attempt to explain the concept in several ways and
over time, will develop a model of what types of explanations
(e.g., concrete example, analogy) work best with what types of
students.

A good teacher will also ask questions themselves as part of
the teaching process in order to assess what background a student
has, whether they are understanding the'answers being given them
or even to clarify what question the student is really asking in
case there is more than one interpretation or more than one
possible answer, the relevance of which depends on the student’s
goal. A good teacher will anticipate the student’s overall
educational goal and may offer information the student has not
requested if she deems that the student might find it

interesting, e.g., telling the student of related topics.
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Finally, a teacher will keep track of topics already discussed
and draw upon them and build upon them in further discussions.

These are extremely interesting topics for further research
and bnes with tremendous practical application. For example,
many software packages have help files or users manuals. Rather
than having a user struggle through these, it is much more
efficacious for a user to simply ask the system a gquestion.
Further, “virtual reference librarians” for such things as the
Internet (or even mundane things like libraries or museums) could
help people navigate through vast resources that are available
but difficult to anticipate by the wuser (so “intelligént”
questions may be hard to generate) .

Preliminary research related to these issues has been done
by Johanna Moore (1995). She has developed discourse-based
intelligent tutors'that interact with students through dialog.
Students are able to ask the tutor questions and receive answers.
The tutor has the capability to refer to previously discussed
material or to allow the student to request an explanation or
elaboration of an answer.

Missing from Moore’s work is student modeling. In other
words, the Moore’s tutors do not evaluate what a student knows
compared to an educational goal and then direct the dialog to

fill in missing knowledge. Moore’s tutor (which is an
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enhancement of Sherlock) relies on the student to direct the
queries.

We believe our ITS can make a valuable contribution to this
type of technology.- The INKS framework can be used as a model of
both students and expert knowledge, which can help drive the
discourse. Additionally, our CSA elicitation technique could
form the basis of probing questions that seek to evaluate what
the level of student knowledge is and what information is most
needed.

One of the principal needs that have been expressed by
members. of both the educational and training communities is for
technology to support group training. Currently, we have
intelligent tutoring systems that support training of individuals
according to their specific needs and simulation environments
that support group problem solving, but without individual
feedback and instruction. A major technical challenge 1is to
bridge these two technologies so that one can enjoy the benefits
of group problem solving training (which is more ecologically
valid than individual problem solving for most real world tasks)
and still maintain the advantage of personalizing instruction to
optimize the learning of each participant.

We believe that one of the main challenges in team training

is to accommodate the diverse reasoning styles associated not
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only with specific students being trained, but also with specific
tasks. For example, 1in our research we have found that
intelligence analysts need to be data-driven, whereas operations
officers need to understand high level plans (Leddo et al.,
1990). Therefore, an intelligent tutoring framework that
purports to be a team trainer must be able to accommodate. these
different knowledge styles. In order to do this, its knowledge
framework must be sufficiently rich to handle the different types
of knowledge associated with different individuals and tasks.

But there is a more subtle requirement that is important

_here. It is not enough for an intelligent tutoring framework to
support the training of individual skills. This would imply a
series of independent trainers. Rather, if the goal 1is to

promote enhanced team effectiveness, the requirement is to train
individuals so that their performance enhances the team. This
means that any intelligent tutoring framework must be able to
integrate the knowledge associated with specific tasks, evaluate
it against an overall team standard, and then teach at the
individual level in accordance with this team standard. In other
words, the framework needs to be able to reason about the
individual subject areas integratively using both inductive and

deductive knowledge processing.
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We believe the INKS framework that we have developed and
used on the present project provides an excellent framework to
deliver team training. The INKS framework itself was developed
in large part based on research on decision makers in different
tasks and how they work together. We now discuss how the INKS
framework can be used in team training.

In earlier sections of this report, we discuss our
intelligent tutoring framework. The first step is to build
expert knowledge models of the domain being taught, typically
through knowledge elicitation sessions with domain experts. These
knowledge models can be supplemented by observation of the
experts on the Jjob and through training materials. For a team
training intelligent tutoring framework, it would be essential to
think about building the knowledge model on two levels.

The first is in terﬁs of high-level tasks. This knowledge
model needs to emphasize the overall team goals, the (mental)
model of who the team members are and how they interact, and the
strategic plans that the team needs to carry out. This might
also be the type of knowledge that the team leader would have,
who in the absence of a tutor would Dbe responsible for the
" performance and corrective instruction of the team.

The second level of the knowledge model would deal with the

specialized knowledge that individual team members have.
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Typically, (and this is especially true in military teams) teams
are comprised of a team leader, who is a generalist in terms of
his/her knowledge and a core of functional specialists. This is
true whether we are talking about a combat team that may have a
commander, intelligence officer, logistics officer, personnel
officer, etc. or a medicai team that may have a surgeon,
anesthesiologist, nurse, etc.

We would expect these two levels of knowledge to 'be
hierarchical. At the lower levels of the hierarchy, we would
expect the functional knowledge to consist largely of semantic
(content or factual) knowledge and procedural (production rule)
knowledge that supports performing the specific functions. Above
this knowledge at a higher level of abstraction, we would expect
the integrative knowledge to consist largely of script-based
knowledge that embodies the goal and planning knoWledge of the
team and mental models to integrate the functional lower level
knowledge with respéct to how they relate to the higher level
plans.

We do not believe that any of the single knowledge structure
frameworks that currently dominate intelligent tutoring system
research would suffice in this role. The most predominant
knowledge representation framework in ITSs is production rules.

As discussed earlier, production rules are temporally ordered
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procedures. Production rules lack the hierarchical structure
necessary to integrate lower level bodies of knowledge. They
work effectively in teaching such things as computer programming
(in which the output is itself a set of procedures) but fail in
more planning-oriented problem solving instruction such as
geometrical proofs.

The second most common single knowledge structure framework
is frames (cf., Johnson and Soloway, 1985). While frames ére
more schematic in nature than production rules and therefore are
pbetter at integrating _lower level knowledge, frame-based
knowledge is typically generic in nature and does not deal well
with rich, diverse situations such as the types that comprise
medical emergencies or combat scenarios.

We now briefly discuss how our INKS-based ITS framework
would handle team training. The first step that would be
necessary would be to define the team goals and component tasks.
This would include identifying the relevant team members to be
trained and the training priorities. We would perform this in
conjunction with the end users and relevant subject area experts.

The next step would be to form an INKS model of effective
team problem solving. This provides a performance standard that
the training would be designed to Support. As an aside, this is

a common practice in educational settings as a prior step to
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developing curricula. Once the performance standard has been
identified, the next step is to build a knowledge model of the
team skills that are necessary to reach this standard. At this
point the knowledge model 1is high level and includes such things
‘as the subgoals or substeps that are necessary to be performed in
order to achieve the team goal, identifying the personnel
responsible for achieving these subgoals and how these subgoals
combine to achieve the overall objective.

This model then will drive the instructional objectives for
each individual member of the team. The instructional objectives
focus on the necessary team member output and the knowledge
necessary to achieve this output. At this point, INKS knowledge
models of the different functional specialists are developed so
that specific team member instruction can be generated. Once
these INKS structures are developed, lessons, including those
‘presented by simulations are developed.

The problem solving/simulation-based training would focus on
two things. First, the problems need to strengthen the
individual skills of the functional specialist. Here, the
problems would focus on mastering the Dbasic concepts and
procedures needed by the functional specialist. In essence, the
math content of the present ITS can be considered an example of

this. However, once these skills are developed, it is crucial
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that they are placed in the context of team problem solving and
performance.

Therefore, the second focus of simulation-based instruction
is on team problem solving and performance. Here, the student
practices his or her skills in the context of a team. In this
context, either the ITS itself can play the role of the other
team members Or several students can practice together, each
playing the role of a different team member. The advantages of
the ITS playing the other team members is that this gives the
instructor greater control over the types of scenarios and
actions that the student will witness and have to respond to. It
alsb creates the opportunity for students to see the "correct"
procedures being carried out by the team members. The advantages
of having multiple students practice is that the situations they
encounter may be more realistic in that human variability and
error are more likely to be present in the human participant
variation than if the ITS plays all roles. Another advantage,
particularly if the students being instructed will also work with
each other in the "real world" is that they can develop a group
dynamic and work out any problem in a simulated world rather than
working out their mistakes as a team inithe real situation. One

drawback of having a team comprised of student, particularly if

73




the students are rough, is that students may develop bad habits
working with people who are error prone.

We believe that students should probably gain experience in
more controlled simulations, perhaps those directed by the ITS or
having an instructor be a participant. Once the student is
competent at his or her functional skills, other students can be
introduced to play other members of the team.

There are two more issues that we would like to raise with
regard to team training. First, when a person goes from being an
individual problem solver to a member of a team, there are other
necessary skills beyond simply the technical skills of one's Jjob
description. For example, questions of resource allocation come
into play (among other things related to the logistics of the
group) as well as group dynamic skills such as the ability to
work with group members who have different cognitive and problem
solving styles and the ability to communicate with group members.
In fact, so important is the skill of communication that in one
study, experienced analysts rated the ability to communicate
one's conclusions as the single most important factor in
determining how effective they were (Martin, Mullin and Leddo,
1989). Therefore, we believe that an important part‘of training

group problem solving includes emphasizing these skills as well.
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The second issue worth raising is.assembling the team for
training. In many instances, a group can be assembled in a
single location at a single time for training. However, today’s
military is situated in diverse locations and an important need
is to replace the traditional schoolhouse model of collocating
trainees with a methodology that allows trainees to réceive
instruction without taking time from their units. Another good
example of this are reserve personnel. Here, the people who
require training are only "assembled" for short periods of time
each year. There is an important requirement for personnel to
sustain their training throughout the course of the year,
particularly since it may be unclear when such people will be
called on to use such training.

One solution for delivering such training may be thrcugh the
use of distance learning technology involving teleconferencing,
or perhaps more economically, training via the Internet. Below
we present some initial thoughts as to how sﬁch training may be
accomplished.

From its inception, the academic community has been very
active on the Internet and many of the services currently
available are educational in nature. Access to these services
have excited educators from all walks of life (e.g., public

schools, universities, and corporate trainers). The availability
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of Mosaic (discussed below) have only added fuel to the fire.
Many educational systems are either connected to the Internet or
have pilot programs to assess its feasibility. This discussion
will begin with a brief discussion on the Internet and Mosaic and
finish describing how it supports future education opportunities.

Built into the fundamental design of the Internet 1is an
ability for new services to be created and provided to end-users.
Recent years have seen an explosion of these services. While
they have profoundly expanded the usefulness of the Internet,
users are increasingly aware that services exist that could
assist them, but they do not know how to locate these services or
how to use the service once located. A new class of program has
emerged which assist users navigate the Internet and locate
relevant services. The Mosaic system from the National Center
for Supercomputer Applications (NCSA) at the University of
Illinois is one example.

Mosaic begins by presenting a single hypermedia interface to
the user. Once learned, the user can access all supported
services from this interface. Mosaic handles the actual
interactions with the underlining services and once a reply have
been acquired, Mosaic uses a data appropriate viewer to present
the information. Byvdirectly handling the underlining service,

Mosaic insulates the user from the idiosyncratic requirements and
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behaviors of different services. Mosaic's overall effect is that
of a very large hyperlinked document that covers any and all
topics.

Since our software architecture separates lesson
presentation from lesson management, we are able to create a new
Internet service that uses Mosaic for lesson presentation. This
architecture has four advantages.

First, by using Mosaic for lesson presentation, our software
would have access to any presentation service available to
Mosaic. This currently includes text, graphics, sound and video.
Using Mosaic allows us to build multimedia lessons without having
to build multimedia presentation engine.

Second, users of Mosaic can use our software without having
to learn a new user interface. Learning new software interfaces
is an investment of time and energy that many people avoid unless
they perceive the benefit much greater than the cost. In
Mosaic's case, many Internet users have already made' this
decision and understand how to use Mosaic. By using Mosaic, one

can capitalize on the training these users have already done.

Third, this approach makes our educational software
available anywhere Internet services exist. Indeed, students
could access the software from anywhere in the world. This 1is

one version of distance learning.
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Finally, by using the Internet (implicit in use Mosaic),
collaborative learning can be supported. Since many skills
require a team to perform the task, training for these skills
often require the complete team for training. This 1is often
difficult when members live in different geographic areas. Since
the Internet is available anywhere in the world, team training
can occur even when members are geographic separate.

Oour approach is also useful for integrating digitized video.
Video materials are often used to augment other instructional
techniques. Much of this material is of high quality and should
be reused. It is easily integrated into our architecture. For
each video <clip, a lesson 1is created listing the video's
objectives and describing a method for student evaluation. Once
these lessons are placed in the curriculum, they will be selected
in the same manner as any other lesson. Indeed, if the student
shows preference for video material, these lessons will get
preference.

Other, non-computer lesson material, can be supported in a
manner similar to video. For each lesson using non-computer
materials, a lesson is created listing the lesson objectives and
describing a method for student evaluation. The software

architecture will automatically select these lessons when
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appropriate. The types of non-computer lesson material can be
very broéd and two example curriculum will be listed below.

A curriculum attempting to teach mathematics or some other
domain may have a student (or whole classroom) solve a problem
and record the results. The computer-related curriculum would
then assist students by posing questions on their results and
assisting them in answering these questions. Indeed, 1if the
students are connected by the Internet, they could exchange
results with students all over the world and do very interesting
and complete analysis.

The above discussions are meant to illustrate the
tremendously rich potential of simulation-based ITS work. We
have only begun to scratch the surface of marrying instruction
with technology. We believe future work in this area holds great

promise.
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1 Introduction

This document describes the Siam system.
Siam is RDC's core assessment and intelligent
tutoring technology which is embedded in all of
our products. The primary goal of this
document is to provide needed design
information. Section 1 (this section) and 2 (the
overall architecture) should be understandable
to others. Section 3 is a detailed description of
the various modules that make up the system
and is specifically for the RDC programmers.
Appendix A is a glossary of terms.

The Siam system is an intelligent tutoring
system. One unique aspect of Siam is that it
bases student activities on an objective
assessment of their individual understanding.

“In other words. this system adapts to each
student and focuses its efforts to maximize
learning.

Siam is designed to present multimedia
materials. This include text. graphics. video.
sound, and interactive games.

2 Systém Architecture

The core activity of our architecture is
assessing the student's knowledge and using
this information to focus student activities for
maximum learning. What make this
architecture intelligent is that the choice of
activities are directly based on what the student
knows instead of being pre-programmed. This
differs from most educational systems whose -
curriculum must be executed in a specific
order.

The rest of this section describes the Siam
architecture and explains how it functions.

2.1 Activities

One core concept in the Siam architecture is
that of an activirv. Activities control all
interactions with the student. Each activity is
made of rasks. which are able to present text
and graphics, animate graphics. present video
or sound, engage in interactive exploration of
the information (e.g. an interactive grapheror a
game). query for information. assess student
responses. and chose future activities. Simple
activities may have one task such as the display
of text to explain a concept. Complex tasks
may have full multimedia presentations with

RDC Proprietary

multiple decision paths based on student

responses.

The tasks are cennected together on an
activiryline. Figure | shows one such line.
Activities flow from the top to bottom and the
horizontal bars at each end represent the start
and stop of the activity. Different icons are
used to represent different classes of tasks. In
the example. the first icon tell Siam to call
another activity line (a subroutine) and when
that line is finished return to this line. The next
icon writes a question on the interaction
window and prompts the student for a reply. It
is followed by hollow diamond which
intercepts the student's reply and interprets
their choice. Each potential choice is shown as
a arrow surrounded by circle and for each reply
some new path is taken. If the choice is not
one of the expected choices. the final (right
most) path is taken. Below each choice isa
icon that places evidence on the INKS node
(explained later). This evidence will help
determine what the student knows and where
remediation should take place.

Instructional technologists break their
activities into pretests, lessons, practice
(problems with immediate feedback), tests and
remediation (explaining the subjectin a
different manner). Ascan be seen, activities
forms a powerful programming language that
allows the instructional technologists to
perform all of these activities and to build
complex lessonware.

The description to this point has the
instructional technologist explicitly controlling
what activities are being shown at each step of
the instruction. This lacks flexibility. Ideally,
we want to assess student understanding and,
at appropriate places in activity flow, choose

invoke the interactive grapher

Query student on what they learned

Figure 1. An example activity line

Update INKS node based
on the correct answer, a
common error, or an
unexpected answer

DRAFT of August 30, 1994
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remediation activities. This is at the heart of
our intelligent tutoring. The bottom three icons
in Figure 1 are being used to collect data on the
student's understanding and use this evidence
to modify INKS nodes. For this evidence to
be exploued the instructional technologist must
identify points in instruction where remediation
would be appropriate.

In Figure 1. a remediation opportunity can
be seen on the first icon. The solid diamond at
the bottom of the icon informs Siam to
remediate at this point if the student did not
understand some aspect of graphing (what the
task taught). Figure 2 shows this remediation
activity taking place.

lnvoke the interactive grapher

Remediate task 1

Remediate task 2

Figure 2. A remediation activity

To remediate, Siam temporarily puts the
current activity line aside and begins the chosen
remediation activity. Remediation activities
will continue to be chosen until the student
shows understanding in the material. Once
they understand, the instructional flow
continues where it left off. Remediation is
recursive and will delve as deep as necessary to
teach the material.

All activities connected directly to INKS
nodes by a starement of objectives.
These identify the competencies or
misunderstandings are addressed by
this activity. The required list of
competencies or misunderstandings is
derived from an analysis of the INKS
description. Activities can address
multiple competencies and
misunderstandings. The system will

always attempt to select activities that
best match the students needs without

repeating activities unnecessarily.
Activities should also be chosen that ,
adapt to different student learning styles
and problem-solving methodologies.

RDC Proprietary

The system will also attempt to exploit different
methods of presentation.

2.2 INKS

To master a subject. the student must learn
and apply many different types of knowledge.
The Integrated Knowledge Svstem (INKS) is
an organizational methodology that groups and
synthesizes these knowledge sources into one
common description. This is another core
concept used by Siam. [t allows the different
facets of problem knowledge to be used
holistically and gives an educational system
considerable flexibility in dealing with the
student and the errors they make during
learning.

INKS knowledge is represented by a
network of information nodes. Each node
describes the knowledge necessary to perform
one educational task.

Figure 3 presents a pictorially
representation of an INKS node. The node
name identifies this node and is unique from all
others.

The mental model describes why this node
is used.

The input scene specifies when this node
can be applied to the task. Itis a set of
preconditions that are expected to be true before
the knowledge in this node can be applied.

The procedure specifies the set of steps that
must be achieved to perform this task.

The ourput scene is the expected result from
applying the procedure.

Background concepts are those things
implicitly assumed to be known by the student.

st State Tabie .
.7 (What's Happening) §.°.°.°

Qutput
Scene
(Resuit)

Figure 3. An INKS node
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These concepts are declarative in nature and
differ from input scenes in their focus. The
input scene and mental model describe when
and why knowledge should be applied. The
background concepts are those things of a more
general nature that may be used to reason in the
problem domain. Examples include the nature
of reptiles or the periodical table. ‘

The state tuble holds information on the
student's performance and errors they are
making. Each INKS node has one correctstrate
(the student know this knowledge), zero or
more common error states. and one unknown
error state (when the student makes an error
that is not explicitly represented as a state).

The different states are updated as the student is
asked questions and responses.

The INKS acriviry list lists all activities that
can teach one or more aspects of this node.
Each node must have an activity for the mastery
standard state and one for each error state. All
important concepts have multiple activities
which either explain the concept from a
different perspective or are designed to address
common errors made by students.

In the current system. the mental model,
input scene, procedure, output scene. and
background concepts are human readable
strings and are not interpreted by the software.

The INKS nodes are connected in a
directed graph as presented in Figure 4. Each
node represents one step in the process that the
student must understand. When steps are
dependent on other steps. their relationship is
represented by a line between the steps. While
not shown in Figure 4, an INKS node can have

multiple parents.

Subnodes can be placed in an explicit order
where all steps must be completed in that order.
Itis also possible to identify a series of
subnodes that form a choice. Only one of these
nodes is necessary to complete the task.

2.3 Student Management

Figure 5is a pictorial representations of the
Siam system. Processing begins when the
student identifies themselves and selects an
allowed curriculum. Siam loads this
curriculum's INKS as well as any status the
student may have generated on previous uses.
If they have not studied this material before, all
the INKS nodes are identified as not having
been performed.

Most subjects have multiple orders in
which the material can be taught. The course
map arranges the default order in which
activities are taught. This order usually reflects
the order of the book being used by the
classroom. The course map is actually a
activity line and it is loaded with the
curnculum.

If the student has already explored this
curriculum the system determines if there are
any pending remediations to perform and this
information if feed to the activity selection.

2.4 Activity Selection

The tutoring system must determine the
most appropriate activity to present to the
student. The "most appropriate” is influenced
by several factors such as the current activity,
the state of the student's INKS, prerequisite
Knowledge. last activity, the phase of the

K 1D variable e

—X Identify parts == GEE 1D coefficient v

: = Recognize LG ID constant wme
linear equations
CX Algebra L Recognizing formulas _—&E Recognize standard form
for linear equations .
N &E Recognize slope roresenmosessan

and y-intercept

Figure 4. An INKS structure
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moon, and other factors we deem important.
The method described in this section is our
preliminary approach. It may be modified as
we gain experience with the system.

The activity interpreter places evidence
against the proper INKS node. At each
potential remediation step. these INKS nodes
are queried to determine if any remediation is
necessary. If none is required. no new activity
is chosen and the activity interpreter continues
at the next task.

If remediation is required, the activity
selector must chose the most appropriate
activity. INKS nodes maintain a list of all
activities and remediation related to the node.
Remediation selection begins by creating a list
of all potential activities that can remediate the
nodes specified by activity interpreter.

Figure 5. Sy

RDC Proprietary

i.nt;mls b

stem Architecture

‘A database keeps a record of all activities
shown to the studentand amattempt is made to
avoid repeating teaching activities.! Once
repeated activities have been eliminated, the
remaining activities have a measure of
relevance is calculated for them. This measure
is based on the activity's relevance to the .
current needs of the student. The most relevant
activity is chosen and returned to the activity 0
interpreter. The activity interpreter puts the
current activity aside and begins the new
remediation activity. When the new activity
ultimately finishes, the previous activity is
continued at its original point in execution.

! We may clear this database out when the student
restarts. This would allow us to repeat material when o
enough time had been deemed to elapse.
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2.5 Evaluation of Student

In the earlier sections. the actual method to
evaluate the student's performance was not
discussed. This will now be redressed. As
Section 2.2 explains. each INKS node has a
list of states representing the student's
understanding of the subject. This list has at
least two states: the correct state and the
unexpected error state. Many will have
additional errors that have been identified by
the instructional technologist.

As the student works through a activity.
they are required to answer questions. The
answers to these questions generate evidence
that updates the INKS profile of the student's
knowledge. The primary objective of the
evidence update algorithm is a place the most
weight on the recent answers while still
remediating previously incorrect answers. As
the student continues to answer problems
correctly. the INKS node will be declared
mastered and the student can move on.

While student answers is the primary
method for collecting evidence. another method
exists. Attached to many activities are hints for
the student. If the students asks for hint either
before or after getting and error. negative
evidence is added to the INKS node. If. after
receiving the hint. they still get the answer
wrong. additional evidence is supplied to the
node. Once the student has asked for a hint
they will not be given credit for this problem,
forcing them to demonstrate at a later time that
they actually understand the material. Thisis
the algorithm for normal query interactions;
games may have a different algorithm.

RDC Proprietury -5-

Appendix A. Glossary

activiry - a set of one or more tasks to perform
with the student. Tasks are able to present
text and graphics. animate graphics, present
video or sound, engage in interactive
exploration of the information (e.g. an
interactive grapher or a game). query for
information. assess student responses, and
chose future activities.

buckground concepts - those things of a more
general nature that may be used to reason in
the problem domain. Examples include the
nature of reptiles or the periodical table.

correcrstate - the state an expert would achieve
on the INKS node

INKS - the INtegrated Knowledge System. A
fundamental data structure used by our
system. [t explicitly represents the different
aspects of knowledge necessary to
understand a field of study.

input scene - specifies when knowledge can be
applied to the task. Itisaset of
preconditions that are expected to be true.
It is part of an INKS node.

lessonware - the software description of a
curmiculum.

mental model - describes why something is
being done. It is part of an INKS node.

output scene - the expected result from
applying the procedure. Itis part of an
INKS node.

procedure - specifies the set of steps that must
be done to perform this task. Itis part of
an INKS node.

staretable - holds information on the student
performance and errors they are making

unknown error stare - a student error state that
has no specific diagnostic information. It is
part of an INKS node. i

Pk
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Introduction

The Gilligan authoring language allows instructional technologists to create, display, and manage computer-
based educational materials. The Gilligan language can control both simple and complex behaviours. It language
has focused on making simple behaviours easy to describe.

Gilligan lessons can be written in any word processor capable of outputting the document in the Rich Text
Format (or RTF).! The processing of the RTF file file converts Gilligan commands into educational software.

Need to discuss:

Layers and Areas

Notation for label

Notation for node:state:value
comments and quoting convention.

Commands

All Gilligan commands begin with either an @ or # sign. When @ is used, the command description
continues until the end of the paragraph (the first RETURN). '# is used in only specialized commands and there
notation will be described later. Following are a list of Gilligan commands.

Syntax
Throughout the descriptions of the commands, we use the same conventions to describe the syntax. These
help to describe what is legal and what is not.

literal Anything in bold is literal. In other words, that part of the command should appear in the
script exactly the same way.

variable Anything in in italics is variable. It can be replaced by whatever the Instructional
Technologist thinks is appropriate or necessary for that command.

[optional] A Anything placed inside of square brackets is optional. It can be part of the command. but
doesn’t need to be. Most optional items have a default value which is used if the item is
omitted.

{repeatable } This should actually read “‘repeatable and optional ™. Any item inside curly brackets can be
repeated zero or more times.

! While any RTF capable word processor may be used, Gilligan only recognizes the Macintosh RTF equation
nototation. Therefore, if equations are part of the lesson, a Macintosh word processor should be used.
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Syntax
@

Function
This is a simple blank line. It is used to separate sections in the Gilligan description without causing text to

appear in the instructional material.

Examples
@- I want to use a blank line to separate this paragraph from the next

@- one. Unfortunately that will put a blank line in the lesson also, so
@- I'll use the @' symbol to make a blank line.

@- The “@' symbol can also be used to separate groups of commands. By

@- separating the groups, it makes it easier for someone else to read

@- and understand what's going on.

See also
-
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Syntax
@- some comment string

Function
All comments begin with @- and continue to the end of the paragraph.

Examples
@- The next piece of text will not be displayed until a show command is

used.
etext Elabell hidden
I'm hidden. You can't see me. ha ha.

3
[

See also
@

oy
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@background

Syntax
@background image-name

image-name refers to a *“.bmp” file, so it must be 8 characters or less. It can be either a quoted string or a
variable which contains the filename.

Function
Selects a background image.

Examples
@background gbeachﬁ

@set image §beach§
@background image

See also
{cwgraphic
#[picture]
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@calculator (not implemerited)

Syntax
@calculator labei[ at Jocation ]

label can either be a quoted string or a variable which contains the label name.

Function
Brings up the calculator tool. For now we will be using the calculator that comes with windows.

Examples
@text

Try doing a few calculations on the calculator.
@calculator gcalclﬁ

-

erase §calcl§

See also
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@define

Syntax
@define activity_name [ remediate node:state[:va/ue] { . node:state[:value] } ]

activity_name is always an unquoted string.

Function
In Gilligan, instructional material is constructed from a series of activities. @define is used to create an

activity which is made up of a list of commands. All activities must have a label name. They may optionally
define a list of INKS node:state: values that are remediated by this activity. In this case, value indicates how
well this lesson will remediate the given node:state combination.

There is no @end_define command. The activity definition ends when another @define is reached, or the file
ends.

Examples
@define M1L2S1

@define M3L2R2 remediate nodel25:state3:1, nodel5:statel

See also
@do
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@do

Syntax
@do activity-name

Function
(wdo allows one activity to invoke another activity. When the invoked activity is complete, the original

activity continues at the next command.

Examples
@background ﬁtreesg

@do BMIL1TE
edo PMirisif
edo EMiL1pif
@do Eminis2f
edo EMiL1pP2§
@do EMiL1s3§
edo FMiL1P3E

edo EMiL1TE

See also

|

\

\

|

activitv-name can either be a quoted string, or a variable.
(wdefine

|

|

\

|
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@erase

Syntax
@erase [ object-label ] [ at focation ]

object-label and location can either be quoted strings or a variables.

Function
Erases the object specified. The object can be text, graphics, a numberline or an xy graph. If no object is

specified, the entire sector is cleared.

To erase a specific object, that object must have been given a label when it was created.

Examples
@- This will erase the entire sector.

@erase

@text ﬁtextOlg
Better read me fast.
@wait 2

@erase g‘text01§

See also
(wtext
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@evidence (not implemented)

Syntax
@evidence node:state[:value ]

Function
Provides evidence to the INKS. Node is a short name identifying the node that you have evidence for. State
is another name identifying either the correct state or one of the error states of that node. Value must be a
number between 0 and 1 which specifies how strong the evidence is (1 being the strongest). If value is

ommitted, then the default is 1.

This function is necessary for the numberline and xy graphing tools because neither of them have the
capability of automatically updating the INKS.

Examples
@numberline §n1§

@text

Plot x > -1.

@numberline_input §n1§ into operation value

@if operation =’§gt§ and value = §-1§
@evidence node25:correctState

@else
@evidence node25:errorl:0.7

@endif

See also
(«multiple_choice
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@graphic

Syntax
@graphic graphic-filename [ at jocation ]

graphic-filename and location can either be a quoted strings or a variables.

Function
Draws the graphic specified by graphic-filename. Graphics-filename refers to a . bmp” file, so it should be 8

characters or less. It should also be unique throughout the entire tutor, unlike other labels which only need to
be unique within the current activity.

Examples

@graphic Ppic1§ at Etopf

See also
#[picture]
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@hide

Syntax
@hide label

Jubel can either be a quoted string or a variable.

Function

Hides an item which is currently displayed, but still leaves space for it.

Examples
@text ﬁtextOlﬁ

This is the first sentence.

@text gtext02§

You're not supposed to see this sentence.

etext Etext03l
This is the third sentence.

@hide §text02§

See also
(wshow

(wtext

RDC Proprietary -11-
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@highlight

Syntax
@highlight text-labe!

text-label can either be a quoted string or a variable.

Function
Highlights the text specified by text-label.

Examples
@text gsentencelﬁ

Once upon a time there was this really #{word01l,lame} girl named Melinda
Lamowitz.
@- This command highlights the word ﬁlameg in the above sentence.

@highlight Ewordoif
@- This command highlights the entire sentence.

@highlight gsentence1§

See also
wunhighlight
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@if (not implemented)

Syntax

@if expression
commands

[ @else

commands ]
@end_if

Function

Conditionally executes a set of commands if the expression evaluates to *“true”. If there is an else clause,
then the commands associated with it will be executed if the expression evaluates to false.

The expression is a comparison, usually involving one or more variables. Here is a list of the comparison
operators which can be used :

<

>

<

>

!=

Equal to

Less than

Greater than

Less than or equal to
Greater than or equal to
Not equal

You can also make complex expressions by combining simple ones with “and”, “or”’ and “not™. These
operations have an order of precedence: nots are done first, then ands and finally ors. This precedence can be

overridden using parentheses.

These expressions can also contain arithmatic. See @set for more details.

Examples
@if x = 1

@erase %textOlﬁ
@end if

@if

(y2 - yl) / (x2 - x1) = slope

@text

Right.
Q@else

@text

Sorry, that's not the right answer.

@end_if

RDC Proprietary
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@- Check to see if (x1,yl) equals (0,0) or (1,1)

@if (x1 = 1 and yl = 1) or (x1 = 0 and yl = 0)
Do stuff here.

@end_if '

See also
yswitch
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@multiple_choice

Syntax
@multiple_choice [ multiple-choice-label ] [ ordered] [ at location] [ into variable ]

[ rtf-text-of-question ]

{ @answer [ “answer-label’ ] [ correct ] [ evidence node:state[:value] ]
rtf-text-of-answer

[ @feedback
rtf-text-of-feedback ]

@end_multiple_choice

Function
This command will ask the student a multiple choice question and wait for a response. The student will be
able to select from among several possible answers. These answers are described by using the @answer sub-
command. Each @answer can be accompanied by an @feedback command which describes the text that will
be displayed if this answer is chosen. Additionally. each @answer can provide evidence to the INKS. The
“correct” keyword does not actually indicate anything to the computer. It is used to make the script easier
for people to decipher.

By default, the order in which the answers are displayed will be shuffled each time the question is displayed.
To override this feature, use the *‘ordered™” keyword.

Examples
@multiple_choice

What is your favorite color?
@answer correct
blue
@feedback
That's right.
@answer
green
@feedback
No, you're favorite color is blue.
@end multiple choice

@- This multiple choice guestion will update the INKS.
@multiple_choice

Given the equation : x = 3y + 4

What will x equal if y is 772

@answer correct evidence nodel28:statel:1

25

@answer evidence nodel28:statel:1l

7

RDC Proprietary -15- August 24, 1995




@answer evidence nodel28: state2:1

21
@answer evidence nodel28: state3:1

11
@end multiple_choice

See also
wevidence
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@next

Syntax
@next [ transition transition-name ]

Function
@next waits for the user to press the “next” button.

transition-name must be an unquoted string equal to one of the following:
blind
crush
diagonal
drip
explode
random
sand
slide
spiral
split
weave
wipe
snake
slideblind
slideweave
interleave
growlines

Examples

@- We want to fade from a page showing §pic1§ to a page showing %piczg

@graphic ¥piclf

@next transition sand
@Qerase '
@graphic ﬁpicZ%

@next

See also
(wdefine
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@numberline (not implemented)

Syntax
- @numberline [ label ] [ start_with min-va/ue] [count_by delta]

Function
Draws a numberline over the top third of the tutorial area. The numberline will always have 11 tick marks
and unless start_with and count_by are specified it will range from -5t0 5. Start_with specifies what the
smallest value on the number line will be, and count_by specifies the increments between each tick mark.

Up to 2 things can be plotted on any given numberline at one time.

Jabel can either be a quoted string or a variable.
min-value and delta can either be numbers or variables containing numbers.

Examples
@- Create a numberline which goes from -35 to 15 in increments of 5.

@numberline ﬁnumline01§ start_with -35 count_by 5
@erase ﬁnumlineOlg

See also
@numberline_clear

(@numberline_input
@numberline_plot
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@numberline_clear (not implemented)

Syntax
@numberline_clear numberline-label

Function
This function clears any plots that have been made on the numberline so far. It does not erase the numberline

itself though. You should use @erase or @erase “label” to do that.
numberline-label can either be a quoted string or a variable.

Examples
@numberline Enlif

@numberline plot gnllg §9e§ -3
@numberline plot Enl1f Eitd 2
@next

c]
@- We need to clear the numberline if we want to plot anything more.

@numberline_clear
@numberline_plot gnllg %ecﬁ 4

See also
@numberline

{wnumberline_plot
(wnumberline_input
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@numberline_input (not implemented)

Syntax
| @numberline_input numberline-label into operation value

| after this command, operation will equal one of the following:

| “nothing” - if the student pressed done without plotting anything.
| “It" - for less than

“lg" - for less than or equal to

| “eq” - for equal to

| “gt" - for greater than

“ge" - for greater than or equal to

numberline-label can either be a quoted string or a variable.

operation and value must be variables.

Function
Waits for the student to draw a plot on an existing numberline which was created using the @numberline

command. The student will be able to select a point on the numberline and an operation (<, >, <=, >=, =)
from a set of buttons drawn under the numberline. Then the student will press a “done” button, and control
will return to the script. Information about the plot is returned in two variable: operation and value. An @if
command can then be used to determine whether the student plotted the right thing or not. If the student
presses ““done’ before plotting anything. then operation will equal “nothing”. It is important to check for
this case.

|
Examples
@numberline ﬁnllﬁ
@-——m———— == Ask the student to plot something.
@text

Plot the inequality %x > Og on the numberline.
@numberline_input gnllg into operation value

@
@-—-——mmm Figure out what they plotted.
@if operation = gnothingﬁ

@text
You didn't plot anything.
@Gelse
@if operation != ggtg
@evidence nodel5:error2:1
@text

Sorry, you didn't get the right operation. You should have chosen the
ggreater thang or §>§ button.

@if value != 0
@evidence nodel5:error3:1l
@text

Sorry. You got the operation right, but you didn't pick the right number
on the numberline. You should have picked O.

@else
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@evidence nodel5:correctState:l
@text

That's right. Let's go on the the next problemn.

@end_if
@end_if

@end_if

a

@next

@erase

@-———————m——— Erase the numberline

@erase gnllg

wif

(wnumberline

See also

{@numberline_plot

|
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@numberline_plot (not implemented)

Syntax
@numberline_plot numberline-label operation value

where operation can be one of the following:
“It” - for less than
“je" - for less than or equal to
“eq” - for equal to
“gt" - for greater than
“ge" - for greater than or equal to

numberline-label and operation can either be a quoted string or a variable.

value can either be a number or a string containing a number.

Function
Draws a plot on an existing numberline (referenced by numberline-label).

Examples
@- We want to show the student how to plot x < 3

@numberline gnumlineOlg
@numberline_plot gnumline01§ §lt§ 3

See also
(wnumberline

(numberline_input
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@remediate

Syntax
@remediate

Function
Invokes a remediation cycle. The INKS is examined to see if there are any areas where the student is
deficient. If one or more are found, a remediation lesson is found which can address the problem.

Examples
@do %lessonlﬁ

@do §practicel§

@do ﬁtestlﬁ

@remediate

See also
(wdefine

{wdo
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@set (not implemented)

Syntax

@set variable expression

Function
Sets the variable to the value of expression. Expressions can be as simple as a number or variable. or as
complex as an equation. Here is a list of the arithmatic operators that can be used in expressions:

+ addition

- subtraction

*  multiplication

/  division

A exponentiation

() parentheses are used to change the order of operations

It’s important to understand the precedence for the order of operations. What this means is that certain
operations are always performed berfore other ones, regardless where they are in the expression. For
example, the expressions “3 * x+ 5 and “5+3 * x> will give the same result because multiplication is
always done before addition. Here is the order of precedence, exponentiation is always done first, the
multiplication and dividion, and finally addition and subtraction. The parentheses can override this
precedence whenever it’s necessary. For example, if you’re writing the following expression :

y+5
X+ 1

you must write it as “(y + 5)/ (x + 1)"". If you don’t use the parantheses and you write “y +5/x + 17, then
what you’re really saying is :

y+ x +1
5

Examples
@multiple choice into y

Pick a number to substitute for “y' in the following equation :
X =y + 2y +3

Then I'll tell you what the answer is.

@answer glg

1

@answer gzﬁ

) .

@answer §3§

3

@answer %4%
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4
@end_multiple_choice
@set x y°2 + 2y + 3
@text

The value of x is #x.
@next '

@erase

etext Ftext01E

Hi there.

@set text_label_var ﬁtextOlg
@highlight text_label var

See also
@if
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@sound (not implemented)

Syntax
@sound sound-file

Function
Generates a sound by playing a “.wav” file. The sound-file must be 8 characters or less.

sound-file can either be a quoted string or a variable.

Examples
@multiple choice into sound_name

What is the capital of France?
@answer correct ﬁchordﬁ

Paris

@feedback

Right! »

@answer %blare%

Berlin

@feedback

Wrong!

@end multiple choice

@
@- This will play different sounds depending on whether the answer

@- was right or wrong.
@sound sound_name

See also

(wgraphic
(wbackground
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@switch (not implemented)

Syntax
@switch expression

{ @case “/abel’
commands }

[ @default “label’
commands ]

@end_switch

Function

Executes the case that has a label matches the the value of expression. See @if and for more information on

expressions.

Examples
@switch x

@case §l§

The value of x

@case §2§

The value of x

@case §3§

The value of x

@case §4§

The value of x

@default Fnotl-4§

The value of x

@end_switch

See also
@if
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@title (not implemented)

Syntax

@title [ label] [ at area-name]
Some-RTF-text.

Function
(@title is used to create a standard title page. All the text following @title will be centered. The first line will

be drawn in 24 pnt, the second in 18 pnt and the third in 14 pnt.

Jabel can either be a quoted string or a variable.

Examples
@define M1L1S1

@title
Introduction
Module 1
Lesson 1
Section 1
@next

@erase

See also
(hide
(@show
(whighlight
@unhighlight
#{label, text}
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@text

Syntax

@text [ texr-label] [ at area-name] [ hidden ]
Some-RTF-text.

Function
(@text preceeds an rtf text description that will be displayed to the user. The rtf description may include text,

equations, and graphic insertions. If a label is included on the @text command line, this is label can be used
to control when and how this text is displayed. The at attribute specifies where the text will be displayed. If
no at is specified, the default display area will be used. The hidden attribute allows this text to be defined
and not displayed on the screen. This hidden text will consume its space but it will not be seen (until the

author explicitly shows it).

The following text attributes will end up in the text displayed by SIAM.
Font
Font size
Bold, italics, underline
Margins
Left and right justification, and centering

text-lubel can either be a quoted string or a variable.

Examples
@text
Here is some text with all sorts of ﬁll‘llll!lc_sthf done
to it
to show what will translate into the final lessons.

@text “text01l”

vou should be able to see this,

@text “text02” hidden

but you won’t see me until you press the “next” button.
@

@next
@show “text02”

See also
(chide

@show
@highlight
@unhighlight
#{label, text}
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@unhighlight

Syntax
@unhighlight text-label

text-label can either be a quoted string or a variable.

Function
Highlights the text specified by text-label.

Examples
@text “sentencel”
Once upon a time there was this really #{word01,lame} girl named Melinda

Lamowitz.

AW e e

@- This command highlights the word “lame” in the above sentence.
@highlight “wordOl”
@- This command will unhighlight it.

@unhighlight “word0l”

See also
(@highlight
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@xy_graph

Syntax

@xy_graph [ graph-iabel ] [ start_xy_with minx, miny

Function

] [ count_x_by xdelta] [ count_y_by ydelta ]

Draws a cartesian coordinate plane in the upper-right quarter of the window. Start_xv_with indicates where

to start counting on both the x and y axes. For example, if minx and miny are set to 0 and 0, the lower left

corner on the graph will be the origin.

Count_x_by and couni_y_by define the increments between the tick marks on the x and y axes.

graph-lubel can either be a quoted string or a variable.
miinex, miny, xdelta and vdela can either be numbers or variables containing numbers.

Examples

@- Draw a graph of the first guadrant. The tick marks on both

@-- the x and v _axes will be numbered 0, 10, 20, ... 100.

@xy graph “graph0l” start xy with 0,0 count X by 10 count y by 10

@erase “graph01”

See also
@xy_graph
@xy_plot_point
@xy_plot_line_2points
wxy_plot_line_yint
(wxy_input_point
{wxy_input_line_2points
(@xy_input_line_yint
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@xy_clear

Syntax
@xy_clear graph-label

Function
Clears away all the plots which have been made on an xy graph. This is mainly for convenience. If you use

this command, you won’t have to erase and redraw the graph everytime you want to draw something new.

graph-label can either be a quoted string or a variable.

Examples
@xy graph “graph01”

@text

These two line intersect at the origin.
@xy plot line yint “graph01” 1 0

@xy plot line yint “graph01” -1 O

@next

@text
These two lines intersect at the point (2,1). -

@xy clear “graph0l1”

@xy plot line yint “graph01” 2 -3
@xy plot line yint “graph01” -1 3
@erase “graphOl”

See also
(wxy_graph
xy_plot_point
@xy_plot_line_2points
(wxy_plot_line_yint
xy_input_point
(wxy_input_line_2points
@xy_input_line_yint
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@xy_plot_point

Syntax
@xy_plot_point graph-label x, y

Function
Plots a single point on an xy_graph. Only 2 points can be plotted at any one time.

graph-label can either be a quoted string or a variable.
x and v can either be numbers or variables containing numbers.

Examples
@- We want to show the student how to plot a line through the

@- point (0,0) and (1,3)

@xy graph “graph01”

@xy plot point “graph01” 1, 3
@xy plot point “graph01” -2, 5

See also
(wxy_graph
wxy_plot_point
@ xy_plot_line_2points
(wxy_plot_line_yint
@ xy_input_point
(wxy_input_line_2points
(xy_input_line_yint
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@xy_plot_line_2points

Syntax
@xy_plot_line_2points graph-label x1, y1 x2, y2 [ hatching hatch-style hatch-direction]

where hatch-style can be one of the following:
“line” - just a solid line without hatching (this is the default)
“line_fill" - a solid line with hatching
“dash_fill" - a dashed line with hatching

and hatch-direction can be one of the following:
“up” - the hatching is “above” the line - positive y direction
“down” - the hatching is “below the line

If the line is vertical, the “up” direction will fill to the right - the positive x direction.

Function
Draws a plot of the line defined by the two points (x1,y1) and (x2,y2). Can also display an inequality using

the “hatching’ parameters.

graph-label can either be a quoted string or a variable.
xI, vl, x2 and v2 can either be numbers or variables containing numbers.
hatch-stvle and hatch-direction can either be a quoted string or a variable.

Examples
@- We want to show the student how to plot a line through the

@- point (0,0} and (1,3}
@xy graph “graphO1”
@xy plot points *graph0l” 0,0 1,3

@erase “graphO1l”

See also
@xy_graph
@xy_plot_point
@xy_p]ot_line_Zpoints
@xy_plot_line_yint
(wxy_input_point
(xy_input_line_2points
(xy_input_line_yint
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@xy_plot_line_yint

Syntax
@xy_plot_line_yint graph-label slope yintercept [ hatching hatch-style hatch-direction]

where hatch-style can be one of the following:
“line" - just a solid line without hatching (this is the default)
“line_fill" - a solid line with hatching
“dash_fill" - a dashed line with hatching

} and hatch-direction can be one of the following:
“up” - the hatching is “above” the line - positive y direction
“down” - the hatching is “below the line

Function
Draws a plot of the line defined by the slope and vintercept. Can also display an inequality using the

“hatching” parameters.

graph-label can either be a quoted string or a variable.
slope and vintercept can either be numbers or variables containing numbers.
hatch-stvle and hatch-direction can either be a quoted string or a variable.

Examples
@- We want to show the student how to plot the inequality

@- vy > 3x -~ 2
@xy graph “graph0l1”
@xy plot points “graph01” 3 -2 hatching “dash f£ill” “up”

@erase “graph01”

See also
@@xy_graph
xy_plot_point
@xy_plot_line_Zpoims
@xy_plot_line_yint
wxy_input_point
@@xy_input_line_2Zpoints
{@xy_input_line_yint
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@xy_input_point

Syntax
@xy_input_point graph-label intox, y

Function
Waits for the student to plot a single point on an Xy _graph. No more than 2 things can be plotted at any time.

graph-label can either be a quoted string or a variable.
x and v must be variables.

Examples
@xy graph “graphOl1”

@text
Plot the point (1, -2) on the graph.
@xy input point “graph0l1” into X, ¥
Qif x =1l and y = -2

Right.
@else

Wrongo Batman!
@endif

See also
@xy_graph
@xy_plot_point
(@xy_plot_line_2points
@xy_plot_line_yint
@xy_input_point
@xy_input_line_2points
@xy_input_line_yint
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@xy_input_line_2points

Syntax
@xy_input_line_2points graph-label into x1, y1x2, y2 hatch-style hatch-direction

where hatch-style can be one of the following:
“nothing” - the student pressed done without completing the plot
“line” - just a solid line without hatching (this is the default)
“line_fill" - a solid fine with hatching
“dash_fill" - a dashed line with hatching

and hatch-direction can be one of the following:
“none” - either the fill style is “line” or the student pressed done without completing the plot

“up” - the hatching is “above” the line - positive y direction
“down" - the hatching is “below” the line

If the line is vertical, the “up” direction means that the plot is filled to the right - the positive x direction.

Function
Waits for the student to make a plot of a line on the xy graph using two points. If the student presses the
“done” button without plotting anything, the value of hatch-stvle will equal “nothing” (this is an important

case to check for).

graph-label can either be a quoted string or a variable.
x1. vl x2, v2, hatch-stvle and hatch-direction must all be variables.

Examples
@xy graph “gl”

@-———m— - — == Ask the student to plot something.

@text

Plot the line which passes through the origin and (2,3}

@xy input line yint “gl” into slope yint hatch style hatch direction

@-——mmm———— e — Fiqure out what they plotted.
@if hatch style = “nothing”
@evidence node27:errorl:l
@text
You didn’t plot anything.
@else
@if (x1=0 and y1=0 and x2=2 and y2=3) or (x2=0 and y2=0 and x1=2 and
y1=3)
@evidence node27:error2:1
@text .
Sorry. you didn’t get the right points.
Gelse
@if hatch style != “line”
@evidence node27:errord:l
@text
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Sorry. The line is in the right place, but it should not be dashed and
there shouldn’t be any hatching.

@else
@evidence node27:correctState:l
etext
That's right. Let’s go on the the next problem.
@end if
@end if
@end if
e
@next
Gerase
@-———m—m—mm——— Erase the xy graph

@Berase “gl”

See also
wxy_graph
(@xy_plot_points
(wxy_plot_line_2points
@xy_plot_line_yint
(@xy_input_point
(wxy_input_line_2points
(@xy_input_line_yint
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@xy_input_line_yint

Syntax
@xy_input_yint graph-label into slope yintercept hatch-style hatch-direction

where hatch-style can be one of the following:
“nothing” - the student pressed done without completing the plot
“line” - just a solid line without hatching (this is the default)
“line_fill" - a solid line with hatching
“dash_fill" - a dashed line with hatching

and hatch-direction can be one of the foliowing:
“none” - either the fill style is “line” or the student pressed done without completing the plot
“up” - the hatching is “above” the line - positive y direction
“down” - the hatching is “below” the line

Function
Waits for the student to make a plot of a line on the xy graph using the slope and y-intercept. If the student
presses the “done™ button without plotting anything, the value of hatch-stvle will equal “nothing” (this is an
important case to check for).

graph-label can either be a quoted string or a variable.
slope. vintercept. hatch-stvle and hatch-direction must all be variables.

Examples
@xy graph “gl”

@-———emm e Ask the student to plot something.

@text

Plot the inequality “y < 2x + 1” on the graph.

@xv input line yint “gl” into slope yint hatch stvle hatch direction

@-—-mmr—— Figure out what they plotted.

@if hatch style = “nothing”

@evidence node27:errorl:1

@text
You didn’t plot anything.
@else
@if slope != 2
@evidence node27:error2:1
@text
sorry, vou didn‘t get the slope right.
Gelse
@if yint =1
@evidence node27:error3:1
@text

Sorrv. You got the slope right, but you didn’t intersect the y-axis at the
right place.
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@else

@if hatch style != “dash fill”
@evidence node27:erroréd:1
@text

Sorry. The line is in the right place, but you need to have a dashed line
with hatching below it.

Gelse
@if hatch direction != “down”
@evidence node27:error5:1
@text

sorrv. Everything is right except that the hatching needs to be below the
line instead of above it.

Gelse
@evidence node27:correctState:1
@text
That's right. Let’s go on the the next problem.
@end if
@end if
@end if
@end if
@end if
@
@énext
@Gerase
@-——mm—mmmmmm Erase the xy graph

@erase “gl”

See also
@xy_graph
xy_plot_point
(@xy_plot_line_2points
@xy_plot_line_yint
(xy_input_point
(@xy_input_line_2points
@xy_input_line_yint

RDC Proprietary -40 - August 24, 1995




@wait

Syntax
@wait time

Function
Pauses execution for the number of seconds specified by time.

time can either be a number or a variable containing a number.

Examples
@wait 3

See also
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#variable

Syntax
#variable

Function
Displays the value of a variable. This can only be used within text.

Examples
@text

The value of x is #x.

See also
#{label, text}

#[picture]
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#[picture]

Syntax
#{picture]

Function
Displays a picture at the current location. This can only be used within text.

Examples
@text

This lesson consists of 2 sections:
#[bullet] Adding and subtracting fractions.
#[bullet] Multiplying and dividing fractions.

See also
#variable

#{label, text}
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#{label, text}

Syntax
#{label, RTF-text}

Function
Allows labeling of specific words in text.

Examples
@text

I want to be able to highlight the word “#{wordl,hello}” in this paragraph.
@highlight “wordl”

See also
#variable

#[picture]
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USERS MANUAL

By Deirdre McGlynn

Technical Report #95-03

Research Development Corporation
2875 Towerview Road
Herndon, VA 22071




Scripting with Gilligan

Purpose of this document

The following is a user's guide to the Gilligan scripting language, which
allows instructional technologists to create computer based instruction.
Scripts should be written in Macintosh RTF.

For the sake of clarity, certain type styles will be used for the example
commands of this document. In the example commands of this document, the
parts of the commands that appear in the script as written are set in bold
face. Specifications (usually in the form of a quoted string) are set in italics.
Straight brackets are used to indicate which specifications are optional. The
symbol * is used to stand for any string of aJphanumenc characters and does

not appear in any actual scripts.
@command "specification" [optional-specification ]

In the example scripts of this document (just as in actual scripts),
however, only plain text style is used. White spaces never appear within the
quote marks in a quoted string. Otherwise, as a general rule, there should be
one white space between the command and each of the specifications that
modify it The examples of scripted commands are set in 10 pt font.

@text
This is a scripted text item example in ten point font.

In the scripts, all commands begin with an @ sign with one type of
exception. For commands which are embedded in text, which begin with a #
sign. The # sign is also used with variables when they are embedded in text.

Courseware Control
Each course is controlled by the activities that are deﬁned and

retrieved. As currently implemented "backgrounds” are controlled at the
courseware level. Remediation opportunities are turned on and off as
defined by the instructional technologist.
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Controlling the sequence of activities
The encoding which handles the sequencing of lessons, practices, and

remediations within modules and the organizational structure of the tutor
will be done by Drew and Jeff. Jeff will also encode the user menus for the

modules and the lesson.

Description of Tutor

The learner is allowed to select the lesson and is given the option of
skipping the lesson and proceeding to practice problem sefs or tests. There
will be in addition an auto-pilot function which chooses an appropriate
default path through the tutor for the learner.

Naming convention for activities:

M(1-10)L(1-5)S(1-5) for each section M- module
M(1-10)L(1-5)R(1-5) for each section's remediation L - lesson
M(1-10)L(1-5)P(1-5) for each section's practice T - test
M(1-10)L(1-5)R-L for each lesson's remediation R - remediation
M(1-10)L(1-5)P-L for each lesson's practice F - filler
M(1-10)L(1-5)T for each test

M(1-10)L(1-5)F for each filler

Defining activities

Activity is a general term that applies to any section, remediation, filler.
At the beginning of each activity file, this command is given to associate the
name of the activity with its content.

* to define subsequent script in file as the activity by name (no

quotes this time)

@define activity

Ordering activities
The sequence of activities (includes all sections, remediations, fillers) is
controlled by the @do command. This command is used at the meta-

organizational level rather than in the activity files.
® 10 retrieve a named activity (use quotes around named activity)

@do "activity "
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Remediations

The learner's need for remediation is assessed at the completion of
each practice problem set or test. This assessment is based on the learner's
performance on the practice and testing sections of the tutor. If indicated by
the accumulated evidence, one or more remediations will be selected for the
learner at this time. After completing the remediation, students will be given
practice problems on the content of the remediation.

e to assess need for remediation; and if necessary, cues remediation

activities for the learner
@remediate

The script that handles the organizational structure of the tutor will
be scripted like this:

file “coursmap”

@define COURSEMAP
@do “M1L1”
@do “M1L2”
@do “M1L3”

@do “M2L1”
@do “M212”
@do “M2L3”
@do “M2L4”

@do “M3L1”
@do “M3L2”

file “M1L11”

@define M1L1

@background “beach”

@do “M1L1I"

@do “M1L1S1”

@do “M1L1P1” :
@remediate o
@do “M1L1S2”

@do “M1L1P2”.

@remediate

@do “M1L1S3”

@do “M1L1P3”
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@remediate

- @do “M1L1P4”
@remediate
@do “M1L1T”
@remediate

Backgrounds

A different picture serves as a background for each module and
serves as a navigational cue. This pair of commands occurs at the meta-
organizational level and does not appear in activity files.

* to place graphic behind tutorial area

@background “image_name”

In this scripted example, a bitmapped graphic of a fern is used as the

background for modulel.
@define"mod1fern.bmp"”
@background "mod1fern.bmp”

Sector Conventions
Sector conventions which specify the location where text/graphic items

can be placed are written like this- at "location". The quotes don't include
the ‘at’ and there is one space between the at and quoted word. Don't forget

the quotes around the "location”

If a text or graphic item is placed at a specific location, then it appears
only within the defined boundaries of that sector.

Sector Convention A

this is a scaled model

The tutorial area (blue rectangle) is divided into six sectors. These

placements are specified in this way: at "upper, at "lower, plus a _left", -
—middle" or _right". (no white spaces are used between these words, e.g. at

"lower_left")
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Sector Convention B

—
I

The tutorial area (blue rectangle) is divided into three sectors - if
not specified otherwise, text wraps into all areas not appropriated by a
graphic. These placements are specified in this way: at "top", at "center", and

at"bottom".

Miscellany
Comments
All comments begin with @- and continue to the end of the
paragraph. Comments themselves never appear on screen, but are used to
clarify the meaning of the script.

Here is a scripted example of a comment:

@- The next piece of text won’t be displayed until later.
@text “textO2” hidden
I'm hidden. You can’t see me. ha ha

Skipping lines
The @ sign plus a hard return will be used to leave spaces in the
script. This is used only to make the script more legible and does not affect

the screen display.

Construction and Control of Instruction L

Title pages

Whenever the learner proceeds to a new lesson, section or
remediation, a title page will appear. It serves to introduce the learner to the
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content to come and let the learner know where they are in the tutor. The
name of the section will also appear at the top of the screen above the
tutorial area and superimposed over the background area.

* {0 generate a title page-precedes lesson, section, and remediation
and always followed by @next/@erase
@title

Example script:
@dtle
This is the title page of this lesson in a generic format

@next
@erase

(this command signals a yet-to-be-implemented title page template Wthh is
used at the beginning of each lesson, section and remediation)

e to generate a title heading at the top of screen (superimposed over

the background)
@text at "title"

Defining the page
The needed paging behaviors are
¢ progressive reveals
e paging forward
® paging backward

Progressive reveals
Progressive reveals add elements of a series of text and graphic

items on the screen one after another as the learner presses the next key. As
a rule, erases are not used between items of this series. If one of these items
are erased from the screen, items beneath it on the screen will rise higher on

the screen to fill the erased area.

¢ to execute the next command when the learner hits the next key
@next

e to erase the entire screen
@erase
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This is a scripted example of a Simple Progressive Reveal:

@-the following example was donated by Jeff Bassett and consttutes
evidence that playing Doom promotes violence in the workplace(DM)
@text -

Step 1: Place the rubberband on your right forefinger.

@next

@text

Step 2: Pull the rubberband back with your left hand.

@next '

@text

Step 3: Aim at your target (Drew makes a good target).

@next

@text ,

Step 4: Release the rubberband, and listen to your target scream.
@next

@erase

Paging Forward
A page is defined as a "screenful” of text and graphics and delineated

by a @next/@erase pair of commands. In essence, the @next/@erase pair of
commands acts as a page break.

Paging backward
The learner needs to be able to page backward through a section or

lesson or remediation. When the student chooses to hit the back arrow, the
previous page starts from the top of the screen, rather than from the last part
of a progressive reveal. In practice, the learner is returned to the place in the
lesson that corresponds to the immediately previous @next/@erase pair. For
the purposes of this function, the @erase must immediately follow the @next
and not have any location specified. At present, there is no direct command
to override this mechanism, and the hide and show commands will be used to

control this process.

Each time the student hits the back key, the program will find the
immediately previous @next/®erase pair of commands. Notice there are no
comments after the @erase in this instance. ~

® to create a page break

@next
@erase -

January 18, 1995
7




Calling text/graphics to the tutorial area

The tutorial area will have a margin of at least one character all
around. If the area within the margin were filled by text, it would contain
aboutl6 14 pt lines vertically and about 60 characters horizontally( this
information needs to be verified). A graphic item filling the entire available
space (including the margin) would be 4.9 in. X 6.9 in.

Placement of text/graphic items
Text and graphic items are placed on the screen according to the .

current position of the program cursor. (The program cursor is not the same
as the mouse/arrow key driven cursor used by the learner. Its location on the
screen is controlled by the script and is never seen by the learner.) On an
empty page, the default location of program cursor is in the upper left corner
of the text area. Therefore, the default placement of the first text/graphic
item to be placed on the screen is at the upper left corner as well.

As text or graphics are added to the screen, the program cursor
proceeds to the line directly following the last item drawn. In this way, each
successive item is placed immediately under whatever item is lowest on the
screen, unless a particular sector location is specified.

When an @erase command is executed and the screen is cleared, the
program cursor returns to the upper left hand corner again. .

About Text
The body of text that follows the @text command is placed on the

screen immediately underneath the previous entry unless otherwise
specified. RTF will save formatting information on italicizing, underlining,
and bolding exactly as the text is entered by the writer of the section or

remediation. Font size information will also be saved.
Text that is labeled can also be hidden, which means that the item

will consume space, but not appear on screen until the writer explicitly shows
it. G

® 10 place a text item on the screen:
@text ['label name"][at"center"] [hidden]
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This example places text on the screen at the current program cursor
location:

@text
Hi, 'm a piece of text. What are you?

About Graphics
Graphics require filenames that are unique across modules. Graphic

filenames are put in quotation marks. These filenames refer to a “.bmp” file,
so it should be 8 characters or less. Just like text items, graphics may be
labeled. Names of labels need only be unique within a section or remediation
and are also within quotes. .

e to place a graphic on the screen:
@graphic "filename" [at "location"]

This example places the graphic named coolpic on the screen at the
current program cursor location:

@graphic “coolpic”

This example places the graphic named coolpic on the screen ata
specified location:

@graphic “coolpic” at "lower_right”

This example embeds a picture within text (note that straight brackets
are used here):

@text
Here is a list of things which are generally a bad idea:

#[bullet] Playing in the road.
#[bullet] Running with scissors.
#[bullet] Kite-flying in thunderstorms

Erasing
The erase command can be used to erase the entire screen or a

specified area or object. The object can be a text or graphic item, as well as a
tool such as a number line or an xy graph. If no object or area is specified,
the entire screen is cleared.
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¢ the generic erase command
@erase['label-of-item"} [ at"location"]

In this example, the entire screen is erased. (Remember that the
@next/@erase combination acts like a page break)

@- This will erase the entire screen
@erase ‘

In this example, the only the text labeled "text01" is erased. (Note that
any item underneath "text01" will move up the screen to fill the emptied
space if its placement has not been specified)

@text “text01”
Better read me fast.
@®wait 2

@erase “text01”

If a piece of text or graphics is erased from the middle of the screen
using @erase “label”, everything which was drawn after it will move up the
screen to fill the blank made by the thing which was erased. The program
cursor also moves up the screen a corresponding amount.

Labeling
Labels are used to mark text, graphics and the tools. They allow
items already placed on the screen to be modified by subsequent commands.
Labels are either a quoted strings or a variable. The quoted string can be any
alphanumeric beginning with a letter, and must be of eight or fewer
characters. No white spaces at all are to be used within the quotation marks

of a guoted string.

Labels can either be used for a whole section of text or a whole
graphic or for a piece of text or a graphic embedded in text. In relation to
text, labels are used for highlighting, hiding, showing and erasing. In
labeling blocks of text, place label name in quotes immediately after the .

@text command.

¢ To label blocks of text
@text ["Iabel-name" ] [at"location"] [ hidden ]
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In this example of labeled text, notice that no spaces at all are used
between the quotes:

@text "textO1" at "middle” hidden
If this were unhidden text, you would be able to read this.

For the purpose of marking specific pieces of text within a block of
text for highlighting, hiding, showing and erasing inline labels are used.

* to label as * the piece of text or graphic item within curly-

brackets
#§{ * , item labeled }

To label a specific word within a body of text, script it this way:

@text
There once was this really #{word01,brilliant} girl named Melinda

Brillowitz.

Hiding/Showing

Once a text or graphic item is given a label, the writer can hide/show
the item by using the appropriate command followed by its label. Unlike the
screen behavior when an item is erased, when an item is hidden, the cursor
does not move back up the screen. Therefore, an item whose location is not
specified and which is lower down on the screen will move up to fill the
erased area unless the removed item is "hidden" rather than erased. Hidden
text will consume space but it will not be seen until the author explicitly

gives the command to show it.

¢ to hide a labeled text or graphic item
@hide "labelO1"

¢ to show a labeled text or graphic item
@show "labelO1"

This is a scripted example of hide/show behavior in a progressive
reveal in which text is revealed in the middle of the screen

@text
Step 1
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@-— This text starts out hidden and will be revealed later.
@text “text02” hidden

Step 2

@text

Step 3

@next

@show “text02”

@next

@erase

This is the page as it first appears:
Step 1 .

Step 3

This is how the page looks after pressing “next”:
Step 1
Step 2
Step 3

This is another example of a hide/show script in a progressive reveal in
which text items are replaced on the screen as you progress.

@text “text01”

Step 1

@text “text02a”

Step 2 (form a)

@text “text03”

Step 3

@next

@

@erase “text02a”

@-— The next erase acts as a “cut”
®erase “text03”

@text “text02b”

Step 2 (form b)

@-——- This show acts as a “paste”
@show “text03”

@next

@
@erase “text02b” ' 2
@-——- The next erase acts as a “cut”
®erase “text03”

@text “text02c¢”

Step 2 (form ¢)

@—- This show acts as a “paste”

@show “text03”
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@next
®erase

The page as it first appears:
Step 1
Step 2 (form a)
Step 3

This is how the page looks after pressing “next”:
Step 1
Step 2 (form b)
Step 3

This is how the page looks after pressing “next” a second time:

Step 1
Step 2 (form ¢)
Step 3

Highlighting
Once a text is given a label, the writer can highlight/unhighlight the

item by using the appropriate command followed by its label.

¢ to highlight a labeled text
@highlight "labelO1"

¢ to unhighlight a labeled text
@unhighlight "labelO1"

An scripted example of highlight/unhighlight behavior:

@text “text01”
Pay attention to this text.
@highlight “text01”

A scripted example of highlight/unhighlight behavior for a speaﬁc
word within a body of text:

h-',

@text
There once was this really #{wordO1l, brilliant} girl named Mehnda

Brillowitz.
@next
@highlight “word01”
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The word “brilliant” is highlighted in the above text when the learner
presses next.

Transitions/Sounds/Waits

Transitions

Transitions will be used to emphasize a logical progression in a series
of graphics.

e to use an effect
@next [transition transition_name ]

Available transition effects are as follows:
(transition-name must be an unquoted string):

blind crush

diagonal drip

explode random (approximates fade)
sand slide

spiral split

weave wipe

snake slideblind

slideweave interleave

growlines

This is a scripted example of a transition effect - note that the word
random is unquoted in this instance:

@- We want to fade from a page showing “picl” to a page showing
“pic2”

@graphic “picl”

@next transition random

@erase

@graphic “pic2”

@next
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Sound Cues

Three types of sounds will be used to emphasize points or give
feedback to the learner. Chord indicates a correct response, blare, an
incorrect response and ring is used for emphasis. As with labels, sound files

are a quoted string of eight or fewer characters.

¢ to play a given sound
@sound #”sound_file”

Here is a scripted example of the use of a sound cue:
@sound #”chord”

Wait

A wait command can also be used to delay entering additional items
to the screen in the absence of the learner pressing the next key. Only time
increments of whole seconds are permitted.

¢ to delay execution of the next command for a number of seconds
@wait number_of_seconds

A scripted example of wait behavior lasting 3 seconds:
@wait 3

Gathering INKS Node Evidence

In this tutor, the evidence sent to an INKS node is generated only from
practice problems and from test questions (locally, this process is known as
INKSifying). However, evidence can be gathered from any point is the tutor.

A multiple choice question from which evidence is gathered will have
the following notation after the @answer command. This set is reiterated for

each node that is referenced:
¢ to INKSify a multiple choice question

@multiple_choice [evidence node:state [:value]]}
(See scripted example in multiple choice section below)
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Any other decision points from which the writer may wish to gather
evidence will use an @evidence command. This decision point may be either
an if statements or switch command. The @evidence command is reiterated
for each node that is referenced:

¢ to INKSify an if statement or switch command
@evidence node:state [:value]
(See scripted example in section on if statements and switches

below)

At the @remediate command, the accumulated evidence is
weighed, and if it is determined that a remediation is needed, the
appropriate remediation section is sent to the learner.

Multiple Choice Questions

The order of the responses to the multiple choice questions are
automatically randomized unless writer specifies that responses are to be
presented in the order they have been scripted.

Every multiple choice question must contain all of the following:

¢ to display mc question to the screen (order of answers is
randomized unless ordered is specified)
@multiple_choice [ordered]

¢ to display each answer to the screen
@answer [correct] [ evidence node:state [:value]]
(Each @answer can provide evidence to the INKS. The “correct”
keyword or lack of it does not actually indicate anything to the
computer. It is used to make the script easier for people to
decipher and edit.)

* to execute display of text only if the immediately previous -

@answer has been selected by the learner
@feedback

e to signal end of the mc question
@end_multiple_choice

January 18, 1995
16




This is a scripted example of a multiple choice item from which
evidence is not collected:

@muldple_choice
Which of the equations below describes the word problem?
@answer
- 45-x=7.2
@feedback
That’s right
@answer
45=7.2+x
@feedback
Even more than that.
@answer correct
45+x=7.2
@feedback
At the very least.
@end_multiple_choice

This is a scripted example of an INKSified multiple choice item :

@multiple_choice

Given the equation: x =3y + 4
What will x equal if y is 77
@answer correct evidence nodel28:state0:1
25

®@answer evidence nodel28:statel:1
7

@answer evidence nodel28:state2:1
21 :
@answer evidence nodel28:state3:1
11

@end_multiple_choice

@- This multiple choice question will update the INKS.
|
|
|

Variables ,
Variables are used as a container for a given value. This command_

sets a variable to the value of a selected expression. Expressions can beas ;

simple as a number or text item, or as complex as an equation.

* to set a variable to the value of an expression
@set variable expression '
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® to expand a variable (can be text or graphic item) within a text

block:
@text

—___#var

Here's an example of setting a variable to a text item:

@set greeting “Hello”

@text

This little piece of text says #greeting

@-the preceding @text displays as — This little piece
of text says “Hello”

Putting in numbers works in the same way. If the variable in the
case above were set to 10, the number 10 will be expanded in the text in the

place of the #var.

Variables can also be defined according to learner response to a
multiple choice question. The writer can thus use variables to personalize the

instruction for the learner.

e to define a variable through learner response to a multiple choice

question
@multiple_choice [into var]

For example, the learner can be allowed to choose his own variable
for a subsequent problem. Notice that the label is what is put into the
variable, not the answer itself. Here is a scripted example:

@multiple_choice into varl

Pick any letter to stand for the unknown in the problem.
@answer “x” -

X

@answer “y”

y

@answer “z”

z

@end_multiple_choice
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If the student has chosen the first answer, the variable is given a
value of xX’. :

Here is an example in which the learner chooses the value with
which to evaluate an equation.

@multiple_choice into y
Pick a number to substitute for "y" in the following equation :
X=y"2 + 2y+3

then I'll tell you what the answer is.

@answer "1"

1

@answer "2"

2

@answer "3"

3

@answer "4"

4

@end_multiple_choice

@setxyA2 + 2y + 3

@text

The value of x is #x.

@next

@erase

A variable could also be used to provide audio feedback in multiple
choice problems. Here is a scripted example of audio feedback:

@multiple_choice into sound_file
What the right answer?
@answer #”blare”

a wrong answer

@answer #”blare”

another wrong answer

@answer #”chord”

The right answer
@end_muldple_choice

@sound sound_file
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More about expressions
Here is a list of the arithmetic operators that can be used in
expressions in the order that they are performed:

() operations within parentheses
exponentiation

e and / -multiplication and division

+and - addition and subtraction

Branching according to Learner Interactions

At times, the sequence of activities or feedback presented to the
learner may be adjusted according to previous learner interactions. An if
statement or a switch is used to define the conditions under which this
branching takes place. If statements will be used to evaluate learner
interactions with the tools, and give appropriate feedback to the learner. The
learner's responses to an if statement or a switch can also furnish evidence
for an INKS node.

If statements

The if statement is generally used rather that the switch command
when there are only two alternatives. Additionally, each @if or @else can
provide evidence to the INKS when followed by an @evidence command.

Every if statement contains all of the following components:

¢ to begin an if statement:
@if expression
(The commands listed after @if will be executed, if the
condition indicated by the expression is true)

LI (o) specify feedback or activity sequence if the expression is not
true (this is optional in an if statement) *
@else
(the commands listed after @else will be executed, if the
~condition indicated by the expression after @if is not true)

e to mark the end of an 1f statement (this is not optional):
@end_if
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If the condition indicated by the expression is not true and there is
no @else command, then the entire script between @if and @end_if is ignored.

Here is a scripted example of an if statement:

What is does #varl#varl +1 equal?
@answer “8”

8
@answer “81”

81
@answer “1024”

1024
@end_multiple_choice

@if var2 = varl A (varl + 1)
That’s right!

@else

Sorry that’s wrong.
@end_if

Here is a list of the comparison operators which can be used in the
expression clause:

TYANMNV A

Equal to

Less than

Greater than

Less than or equal to
Greater than or equal to
Not equal

You can combine these simple comparison operators to make complex
expressions with “and”, “or” and “not”.

A scripted example of a complex expression:

@if var =1 orvar>=3 )
@highlight “word01” g
@end_if K
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Switch
Switches can be used to synthesize several if statements when there

are several alternatives. Each case listed after a @switch corresponds to a
single if statement. The case that has the label which matches the value of
the variable is the one that will be executed. Additionally, each @case can
provide evidence to the INKS when followed by an @evidence command.

Every switch contains all of the following components:

* to begin a switch (the variable may be set to an expression)
@switch variable

Following this a list of alternative cases that are labeled. The case in
which the label matches the variable of the @switch is executed.

e to list each alternative case (there will be several of these)

@case "label”
(plus the list of commands to be executed if case label

matches the variable)

¢ selected if none of the cases apply
@default "label”
(plus the list of commands to be executed)

e to end a switch
@end_switch

This is a scripted example of a switch:

®@switch x
@case “1”
The value of x is 1.
@case “2” -
The value of x is 2. Vo
@case “3” S
The value of x is 3.
@case “4”
The value of x is 4.
@default “not1-4”
The value of xis not 1, 2, 3 or 4.

®end_switch
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Tools

All tools called to the screen by the writer of instruction must be
labeled. Variables can be used to record and evaluate the learner's
interactions with the graphing tools. If a graphing tool is called by the writer,
a command can be used to enter coordinate points or lines which the writer
wishes to be displayed upon opening the tool. All tools must be explicitly
erased by the label given to them by the writer rather than with the @erase

tool.

Number line
Xy graph
Calculator
Notepad

Number line

The number line will always have 11 tick marks and unless start_with
and count_by are specified it will range from -5 to 5. Start_with specifies
what the smallest value on the number line will be, and count_by specifies
the increments between each tick mark. If the writer wishes to give the
learner the option of calling the number line, this choice can be offered
through a multiple choice question

The placement of the number line is at top of screen and centered
(may overlay part of background layer, but not title at top of screen) The
window in which the number line appears is not a movable window.

e tocall a number line
@numberline "numberline-label " [start_with min-value]

[count_by delta ]

® to erase number line
@erase "numberline-label " .

An example of calling the number line to the screen and erasing it. : ﬂ’

@- Create a number line which goes from -35 to 15 in increments of 5.
@number_line “numline01” start_with -35 couany 5
@erase “numline01”
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Operations with number lines
These abbreviations will indicate the noted operation:

nothing - if the student pressed done without plotting anything.
It - for less than

le - for less than or equal to

eq - for equal to |

gt - for greater than

ge - for greater than or equal to

These operations can be used to form one variable expressions
which can be plotted on the numberline.

A total of 2 points or simple expressions can be plotted on any given
number line at one time. The first item plotted is displayed in blue and the
second is in green, regardless of whether it has been plotted by the writer or

learner.

In order to enter two plots on the number line, the writer uses the
@numberline_plot twice. :

* to plot a point or an expression on a number line
@numberline_plot numberline-label operation value

@-we want to show the learner how to plot x > 3
@numberline "numlineQ1"
@numberline_plot "numline01” "gt" 3

When the learner is asked to plot a point on the number line and the
command below is given, a set of buttons representing operations ( <, >, <=,
>=, and = ) will appear to allow the learner to control the plotting. The
learner will be able to select a point on the number line and one of the
operations. If the learner is asked to plot two points in a number line, a
second @numberline_input command controls the second input.
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* to indicate the learner will select a point or a point and an
operation and to return input data from the learner
interaction's with the number line for evaluation.

@numberline_input "numberline-label”" into operation

value

An @if/@else script can be used to evaluate the correctness of the
student's answer and give the appropriate feedback to the learner. The
following is an example of using an if statement to give feedback.

@numberline “nll”
@ Ask the student to plot something.
@text
Plot the inequality “x > 0” on the numberline.
@numberline_input “nll1” into operation value
@
@ Figure out what they plotted.
@1f operation = “nothing”
@text
You didn’t plot anything.
@else
@if operation != “gt”
@evidence nodel5:error2:1
@text
Sorry, you didn’t get the right operation. You should have chosen the
“greater than” or “>“ button.
@if value = 0
@evidence nodel5:error3:1
@rtext
Sorry. You got the operation right, but you didn’t p1ck the
right number on the numberline. You should have picked 0.
@else
@evidence nodel5 correc!State.l
@text
That’s right. Let’s go on the next problem.
@end_if
@end_if
@end_if .
@next j," 4
@erase LA
@ Erase the numberline T
@erase “nll1”

January 18, 1995
25 ' <




Only the latest plot made on the number line so far can be cleared from
the screen by the learner control. It does not erase the number line itself
though. You should use @erase “label” to do that. The @erase will not remove
the numberline.

¢ to clear any plots that have been made to the number line
@numberline_clear "numberline-label”

A scripted example of clearing the numberline:

@numberline “nl1”

@numberline_plot “nl1” ge -3

@numberline_plot “nll” 1t 2

@next

@- We need to clear the number line if we want to plot anything
more.

@numberline_clear

@numberline_plot “nl1” eq 4

Xy _graph

The placement of the xy graph is at far upper right (overlays part of
background layer). The window in which the xy graph appears is not a
movable window. There is a point plotting mode and a line plotting mode
available. This modality is determined by the subsequent command.

Each axis of the xy graph will always have 11 tick marks and unless
start_with and count_by are specified, both axes will range from -5 to 5,
counting by ones. Start_xy_with specifies what the smallest value on each
axis will be, and count_by specifies the increments between each tick mark

As with the number line, the first item plotted is displayed in blue
and the second is in green (either 2 points or 2 lines). Whether it is the writer
or learner who makes the plot makes no difference in this regard.

Only the writer of instruction can call the xy graph to the screen. I
However, if the writer wishes to give the learner the option of calling the'xy ; ,;
graph, this choice can be offered through a multiple choice question.
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® to call the xv graph
@xy_graph "xy_label" [start_xy_with  minx,miny ]
[count_x_byxdelta ] [count_y_byydelta ]

® to erase the xy graph
@erase "xy_label"

Here is an example of a scripted call and erasure of an xy graph. Note
that each axis begins with zero and goes up to 100, counting by tens:

@xy_graph “graph01” start_xy.with 0,0 count_x_by 10 count_y_by
10

@erase “graph01”

Plotting points on an xy graph
A total of two coordinate points per graph can be either plotted by the

writer or inputted by the student. The X, y used below in the may either be
numbers or be variables containing numbers.
¢ to plot a single point on an xy_graph.
@xy_plot_point "graph_label" x, y

In this example, the @xy_plot_point command is repeated to add a
second point to the xy graph

@- We want to show the student how to plot the points (0,0) and (1,3)
@xy_graph “graph01”

@xy_plot_point “graph01” 0, 0

@xy_plot_point “graph01” 1, 3

¢ to indicate the learner will enter a single point on an xy_graph
and to set the variables x and y according to the learner

interaction with the xy graph.
@xy_input_point "graph-label” into x,y

Here is an example script: L
@xy_graph “graph01” R
@text o
Plot the point (1, -2) on the graph. ‘
@xy_input_point “graph01” into X, y
@ifx=landy=-2
Right.
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@else
Wrongo Batman!

@end_if

Plotting lines on the xv graph

A total of two lines per graph can be either plotted by the writer or
inputted by the student. The first line drawn appears in blue and the second

line drawn is in green.

There are two ways to plot or input lines on the xy graphs. The first
plots two points and draws a line between them. The second plots the
y-intercept and slope. As with the number line, learners can revise their
plots by using the erase button attached to the graph. After they press done,

though, the program moves on to the next question.

Hatching is also employed to display inequalities. Hatching is specified
by direction and style.

¢ hatch-stvle can be one of the following:
line - just a solid line without hatching (this is the default)
line_fill - a solid line with hatching
dash_fill - a dashed line with hatching

* hatch-direction can be one of the following:
up - the hatching is “above” the line - positive y direction
down - the hatching is “below the line

If the line is vertical, the “up” direction will fill to the right (the
positive x direction) and the "down" direction will fill to the left (the negative
X direction.

The x, y used in the command below in the may either be numbers or
be variables containing numbers. Hatch-style and hatch-direction will also be
either a quoted string or a variable. One white space is used between the i
hatch-style and hatch-direction in the following command as well as between

each pair of xy coordinates. ki
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* to plota line on an existing graph (referenced by graph-label) by
specifying two pairs of xy coordinate.
@xy_plot_line_2points "graph-label "x1, y1 x2, y2
[hatching hatch-style hatch-direction ]

An example of a two coordinate-type line plot script:
@- We want to show the student how to plot a line through the

@- point (0,0) and (1,3) with hatching above

@xy._graph “graph01”
@xy_plot_line_2points “graph01” 0,0 1,3 hatching"line_fill" "up”

¢ to aline plot on an existing graph (referenced by graph-label) by
specifying the slope and the y intercept.
@xy._plot_line_yint graph-label slope yintercept
[hatching hatch-style hatch-direction ]

An example of a two coordinate-type line plot
@- We want to show the student how to ploty > 3x - 2

@xy_graph “graph01”
@xy_plot_line_yint “graph01” 3 -2 hatching "dash_fill" "up"

Clearing the xv graph
The graph can be cleared of anything plotted on it in order to

prepare it for the next data entries. This is an easier alternative to erasing it

and redrawing the graph from scratch.
* to clear previous plots or inputs on the graph

@xy_graph_clear
This is an example of clearing plots on the Xy graph:

@xy_graph “graph01”

@text

These two line intersect at the origin.

@xy_plot_line_yint “graph01” 1 0

@xy_plot_line_yint “graph01” -1 0 -
@next i
@text R ¥
These two lines intersect at the point (2,1). T
@xy_clear “graph01”~

@xy_plot_line_yint “graph01” 2 -3

@xy_plot_line_yint “graph01” -1 3

@erase “graph01”
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Calculator

The calculator can be called to the screen or erased on demand by
both the learner and the writer of the instruction. The learner does this
through the pop-up window brought up by the Display Tools icon. The
window in which the calculator appears is a movable window and its
placement can be adjusted by the learner. The writer uses the following
commands to do the same thing.

e to call calculator
@calculator "label" [atflocation" ]

A specific erase command must be used to erase the calculator as the

regular @erase will not affect it.
® to erase calculator
@erase"label”

Here is a scripted example:

@text
Try doing a few calculations on the calculator.

@calculator “calcl”
erase “calcl”

Notepad

Default placement for this toolds currently undefined. Default
placement may be defined as placement at top of screen and centered (may
overlay part of background layer, but not title at top of screen) There is no

scripting call for this function.

Help

The help function will include a navigation guide and the glossary.
Glossary W
The glossary is accessed though the help function. Default placenien;
for this function is currently undefined. Default placement may be defined a¢
placement at far upper right (overlays part of background layer) It is called
to the screen and erased by the glossary icon. Learner can search for glossary
words by alphabetical index There is no scripting call for this function.
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