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1.0 Introduction 

1.1 Statement of two problems 

There are two problems that must be addressed if next- 

generation training systems for cognitive skills are to be 1) 

more effective than current systems and 2) developed and fielded 

on the scale that will be required to meet future training needs. 

1.1.1 PROBLEM I:  There Needs To Be A Theory That Prescribes 

How To 1) Teach Cognitive Skills That Require Multiple Forms of 

Knowledge &  2)  Determine Whether The  Student  Is Acquiring 

Knowledge In The Correct Forms During Skill Acquisition. 

If the purpose of cognitive skill training in the military 

is to produce expert performance (and it is), then training 

should develop in the learner the same knowledge and problem 

solving strategies that experts have. For example, the goal of 

training military personnel to solve algebra word problems, or to 

determine the causes of circuit faults, should be to teach them 

the knowledge and problem solving skills that are used by experts 

at solving algebra word problems or determining the causes of 

circuit faults. Indeed, at every step along the way to 

expertise, diagnosis and training should be directed toward that 

goal. 



This line of reasoning has a significant implication for the 

next generation of automated training methods, if we want them to 

produce order-of-magnitude improvements over the current 

generation. Expertise at most interesting cognitive skills, such 

as solving algebra word problems, diagnosing circuit faults, 

requires that the expert use several forms of knowledge to obtain 

a correct answer (Leddo et al., 1988, 1990). For example, in the 

case of circuit fault diagnosis, at least three different forms 

of knowledge are required for expert performance: 

o Knowledge Type 1: Objects and Attributes encode the properties 

of the entities in (faulty) circuits. Examples of objects are 

diodes, transistors, wires, breaks in wires, etc. Examples of 

attributes are impedance, thickness, etc. 

o Knowledge Type 2: Mental Models that permit the problem 

solver to "run" the circuit mentally and produce inferences about 

the behavior of the circuit under different initial conditions 

i.e., attributes of objects in the circuit. 

o Knowledge Type 3: Rules that encode diagnostic strategies, 

inferential rules for determining the cause of observed symptoms, 

repair techniques, and so forth. 



In the case of algebra word problems as well, several forms 

of knowledge must be used to achieve a solution. The problem 

solver must have knowledge about the various algebraic forms of 

problem types — time-distance problems; word problems; etc. — 

rules that determine the operations to perform on the algebraic 

forms, and, of course, knowledge about the objects, attributes, 

and mental models that represent the domain elements referred to 

in the problem. Work performed at Research Development 

Corporation suggests that math practitioners both possess and use 

these diverse types of knowledge in solving practical problems 

involving algebra. 

Thus, we believe that training most "interesting" cognitive 

skills will require teaching the learner several forms of 

knowledge. This implies that the next generation of computer- 

based trainers for cognitive skills will be required to respond 

explicitly to the requirement for teaching multiple forms of 

knowledge. Currently, however, most computer-based 

tutoring/training systems for cognitive skills use a single 

representation for the knowledge and skills they are trying to 

teach. Those that use multiple forms of knowledge do so for 

pragmatic reasons rather than because a strong cognitive theory 

of expertise and training prescribes them. For example, the 

representation  for  knowledge  in  tutoring  systems  based  on 



Anderson's ACT* theory is almost exclusively in the form of 

production rules and, where it varies from production rules, it 

is typically in service of the production rule representation. 

Similarly, work by Eliot Soloway and his colleagues (cf., Johnson 

and Soloway, 1985) focuses on frame-based representations of 

knowledge. 

In short, if the expert knowledge required to solve target 

problems has a single form, then tutoring based on a single form 

of knowledge is likely to be effective. If, however, the expert 

knowledge required to solve target problems is not in a single 

form then, even though tutoring based on a single knowledge form 

may produce some positive effects, the tutoring may not be as 

effective or as efficient as it could be if it were not limited 

to a single form for the knowledge. In addition, students will 

be unlikely to achieve expertise without significant changes in 

the ways they represent the knowledge required for expertise. 

The requirement for teaching multiple forms of knowledge 

imposes a further constraint on the assessment component of next- 

generation training systems. The further constraint is that the 

training system must, at every step in the training, monitor the 

forms in which the student acquires knowledge. For example, if 

expert knowledge about a device is represented in a mental model 



that encodes both structure and function, then the student should 

acquire it in that form and not, for example, in the form of a 

list of objects and attributes that represent components of the 

device. To accomplish this, the training system must have 1) 

explicit strategies for teaching the knowledge in the correct 

form and 2) assessing whether the student is indeed acquiring the 

correct form of knowledge. 

If the student begins to diverge from the correct form for 

the knowledge the training system is trying to teach, then the 

tutorial component must correct the student. When there are many 

possible forms for some particular piece of knowledge, but only 

one form consistent with expertise, then the less the tutor knows 

about the form of the student's knowledge, the less effective it 

will be in rapidly getting the student back on track. The need 

for close monitoring arises because the tutorial planning 

required to get the student back on track may be quite complex 

(Littman, 1991) and, in some cases, impossible if the student 

gets too far afield. 

In sum, we need 1) a theory that prescribes the forms of 

knowledge that should be taught by training systems for cognitive 

skills and 2) an on-line assessment methodology that will permit 



the training system to determine whether the student is acquiring 

the correct forms of knowledge. 

The above analysis leads to two objectives to be achieved to 

progress to the next generation of intelligent training systems 

for cognitive skills: 

Objectives:   We need a theory that prescribes how to 1) use 

multiple knowledge forms to train specific cognitive skills and 

2) determine whether the student is acquiring knowledge in the 

correct forms during skill acquisition. 

1.1.2 PROBLEM II: There Is No Engineering Methodology To 

Support Rapid, Cost-Effective, Replicable Development & 

Maintenance Of Training Materials That Use Multiple Knowledge 

Forms. 

Solving Problem I is only half the battle. Even if we 

devise a theory of multiple knowledge forms for cognitive skills 

that prescribes the content, structure, and tutoring methods for 

next-generation systems, there is no guarantee that it will be 

possible to produce the required quantity of effective, main- 

tainable, and robust training systems for all the cognitive 

skills that we need to train. Currently, the development process 

for intelligent computer-based training is time-consuming and 



does not typically yield systems that are easily evaluated, 

maintained or modified. In addition, producing nearly any system 

is a start-from-scratch effort in which 1) little software built 

by others can be reused, 2) most software components produced for 

the system can only occasionally be reused in subsequent .efforts 

within the development group and 3) software produced by one 

group is almost never reused outside the group. This state of 

affairs obviously limits the quality, consistency, and quantity 

of current training materials. 

The task of constructing next-generation training for 

cognitive skills is bound to be more difficult. Future systems 

will be more complex, undoubtedly require the cooperation of many 

people to produce them, and will require significant maintenance 

and modification as delivery software, training requirements, and 

hardware change. In short, effective development and fielding of 

these systems will require a robust engineering methodology just 

as the design of large-scale software requires a software 

engineering methodology. Hence, the second critical problem that 

must be solved to progress to the next generation of intelligent 

training systems for cognitive skills: 



Problem II: There is no engineering methodology to support rapid, 

cost-effective, replicable development and maintenance of 

training materials that use multiple knowledge forms. 

1.2     Statement of two goals 

In response to the two problems identified in the 

previous section, we have defined two goals for the proposed 

research and development effort. In the remainder of this 

section we state the two goals, justify them, and identify some 

of their implied subgoals. 

1.2.1 GOAL I: Develop a Tutoring & Assessment Methodology For 

Cognitive Skill Training Based On Multiple, Integrated Knowledge 

Forms. Our case for using multiple forms of knowledge in 

intelligent computer-based training systems for cognitive skills 

consists of five main arguments. We feel that any one of the 

arguments would recommend the use of multiple knowledge forms. 

However, the five arguments touch on most essential aspects of 

the design, development, and operation of training systems. 

Thus, we believe that a strong case can be made for developing 

the approach of multiple forms of knowledge. In the remainder of 

this section we identify and briefly describe the arguments. The 

arguments are quite intuitive and most were touched on in the 

introductory section of the report. 



Argument 1: Cognitive Reality of Multiple Knowledge Forms. It 

is clear, from intuition and from the cognitive science 

literature on instruction and expertise, that many problem 

solving tasks require multiple forms of knowledge. If the goal 

of cognitive skill training is to foster expertise, then students 

should learn what experts know. This implies that, in many 

instances, training systems will have to teach students knowledge 

in several forms. 

Argument 2: Accuracy of Diagnosis and Assessment of Learning. 

If a training system cannot reason about different forms of 

knowledge, then it cannot have a robust assessment methodology 

for determining whether, during the training process, the student 

is acquiring knowledge in the form appropriate for expertise. If 

a training system's only measures of performance are which 

problems the student correctly solved and which the student 

incorrectly solved, and assessment problems are not generated 

explicitly to determine the form in which the student has 

acquired knowledge, then the system will not know why the student 

correctly solved some problems and incorrectly solved others. 

For example, a student may give the same wrong answer because he 

made a careless mistake (but generally understands the material), 

misremembers a particular fact (but generally understands the 

process he's using), or is thoroughly confused and is largely 



guessing. Each of these has different implications for 

corrective instruction. Perhaps an even more dangerous case is 

when the student achieves a correct answer by mimicking a 

procedure without understanding why the procedure works. Here 

the student may get the textbook problem "right" but fail 

miserably when placed in a real-world context and given a 

somewhat novel task that requires modification of the procedure. 

If one of the criteria of achieving expertise is that 

knowledge be in the appropriate form, then unless the training 

system can assess multiple knowledge forms and which of those 

forms the student is using, it will not be able to assess 

expertise effectively. Thus, multiple knowledge forms are 

necessary to the assessment function of training systems for many 

cognitive skills. 

Argument 3: Efficacy of Tutoring. If the knowledge that a 

training system is intended to teach can only have one form, then 

there is no ambiguity about how the student should represent it. 

For example, if a training system is teaching only diagnostic 

rules, then the likelihood that the student will not represent 

the knowledge as rules is negligible and tutoring will consist 

primarily of refining the condition and actions parts of the 

rules.  If, however, there are several plausible forms for some 

10 



piece of knowledge then there can be ambiguity about 1) what form 

the student's knowledge is currently in and 2) which tutoring 

strategies are appropriate to correct the student's 

understanding. For example, there may be a choice about whether 

to represent the parts of a device as a list of objects and 

attributes or as a coherent set of objects with behavior — i.e., 

a mental model. 

Unless the tutor knows what the alternative knowledge forms 

are, can assess which form the student's knowledge is in, and can 

reason about how to help the student change from one form to 

another, the tutor will be unlikely to help the student acquire 

knowledge in the forms appropriate for acquisition of expertise. 

Indeed, the student may need to learn the same knowledge in 

several forms to achieve expertise. 

Argument 4: Economy of Storage and Computation. It has been 

argued that knowledge encoded using any of the popularly proposed 

knowledge representations can be transformed to any other 

representation. Nevertheless, it is clear that some 

representations are more naturally suited to certain represen- 

tations than others. This can be for reasons of storage economy 

or computational efficiency. For example, a script (cf., Schänk, 

1982; Schänk and Abelson, 1977) could be encoded as a sequence of 

11 



production rules, each set to fire after the previous rule 

executes. The special structure of "script-like" rules can be 

exploited to economize storage either by not duplicating elements 

common to all scripts, or by storing features relevant to the 

whole script only once and not with each rule. In addition, 

special purpose, efficient inference engines can be built to take 

advantage of the script structure. For example, the entire 

script can be run in sequence, rather than requiring the pattern 

matcher to check the preconditions for all rules in the rulebase 

after each rule is fired). 

Of course, these were some of the arguments that led 

researchers to postulate and implement the different 

representations now in current use. Cognitive scientists 

postulate similar explanations for experimental findings pointing 

to multiple representations in humans. Thus, it seems reasonable 

to carry the development of the theory of multiple 

representations to cognitive skill training. 

Argument 5: Expressiveness for Designers of Training Systems for 

Cognitive Skills. Developers of training systems for cognitive 

skills need an intuitive language in which to express the 

knowledge required for expertise. For example, if a development 

environment provides a designer of a training system for circuit 

12 



diagnosis with constructs that allow the designer to directly ex- 

press the mental model knowledge, the diagnostic rule knowledge, 

and the object and attribute knowledge, then it is likely that 

the resulting system will 1) initially contain more knowledge 

appropriate for training expertise, and 2) be easier to change 

and augment than if it were built with a single form of 

knowledge. Equally, a developer of an algebra tutor who can 

directly express algebraic forms and manipulation rules will be 

likely to produce an initial prototype that is robust and 

cognitively effective. 

1.2.2   GOAL II:  Develop An Intelligent Reusability Engineering 

Methodology For Training Materials Development Process. 

The design and development of training materials for 

cognitive skills is a complex, costly, and often inefficient 

process that requires the coordinated efforts of a diverse group 

of individuals. Problems commonly associated with this process 

include: 1) duplication of previous design and development ef- 

forts due to lack of communication across development groups and 

lack of a "corporate memory;" 2) miscommunication among group 

members due to differences in approach, background, terminology, 

etc.; 3) inappropriate products because of a failure to involve 

13 



end users in crucial design decisions; and 4) suboptimal products 

resulting from imperfect group collaboration. 

To improve the efficiency of the production and maintenance 

of training materials, personnel who construct them should have 

intelligent computer support for reuse of existing materials. In 

this engineering scenario, the developer could specify 

characteristics of training materials under construction and the 

intelligent support system would either 1) find appropriate 

reusable components in its knowledge base or 2) assist the user 

in constructing new materials which could then be added" to the 

knowledge base. Until such support exists, production and 

modification of training materials is likely to be costly, prone 

to error, and subject to the "reinventing the wheel" syndrome. 

We have, therefore, defined two primary subgoals, which we 

now identify and describe. 

Subgoal 1: Develop a knowledge-based environment for constructing 

training materials that utilize multiple forms of knowledge. 

Accurately representing domain knowledge in a training or 

tutoring system is extremely difficult. Many times, developers 

of training system have the intuition that the expertise they 

want to train requires multiple forms of knowledge. To 

accommodate this intuition, they essentially wind up building 

14 



special purpose languages that allow them to express domain 

knowledge in the forms required for expertise. We have the 

goal of building a general purpose, transportable knowledge based 

environment that would help developers of training systems 1) 

select appropriate forms for domain knowledge and 2) represent 

the knowledge. In addition, we intend to develop at the same 

time a mechanism that would store, for reuse, all the knowledge 

that individual developers represent. This would give anyone 

building training systems access an initial library of reusable 

domain knowledge to which they could contribute. We intend to 

develop a framework for the reusable knowledge and to provide 

software tools to help developers integrate it into their own 

training software. Ultimately, we would like to distribute this 

knowledge base on a hard disk as part of a knowledge based 

development package for training systems. 

The knowledge-based environment will initially be 

constructed to support the development of training materials that 

use the five forms of knowledge identified in the introduction. 

In the first implementation, we focused on helping developers of 

training systems to represent domain knowledge using these forms 

of knowledge. Future work would 1) provide support for additional 

forms for domain knowledge and 2) extend the system to be able to 

support the representation of the forms of knowledge required for 

15 



tutoring (Littman, 1989). This extension of the system would 

provide knowledge-based support for constructing tutors and 

trainers that use strategies appropriate for their domains of 

instruction. Again, as in the case of domain knowledge, we 

intend to build a mechanism to permit storage and reuse of 

tutorial knowledge. 

Subgoal 2: Begin to close the Design-Production-Evaluation- 

Modification (D-PE-M) Loop. Training material often needs to be 

modified. Reasons for modification include changes in the work 

environment, technology and eguipment, the structure of tasks, 

and the methodologies and results of evaluation. 

For example, recent developments in cognitive theory produce 

well-defined assessment methodologies for cognitive skill 

acquisition that could be integrated into training programs. The 

effectiveness of training systems could thus be constantly 

assessed. Modifying the system for optimal performance could 

thus become a frequent requirement. Such modification would 

probably not be consistent if it were done by hand. At the very 

least, version-control methodologies from software engineering 

should be used to enforce the consistency of such modifications. 

Other, larger scale, modifications would also require close 

adherence to established software engineering methods.   For 

16 



example, when new training technologies, such as virtual reality, 

become widely available, it would be advantageous to be able to 

introduce them into existing training software without ruining 

it. There are thus many reasons for evaluating and modifying 

training software and we believe that the knowledge based support 

environment should accommodate as many as possible. We therefore 

focused on producing a knowledge based support environment for 

designing, producing, evaluating, and modifying training 

software. 

2.0 Background 

Today's high-tech world requires a. higher level of technical 

skill and literacy than ever before. The Air Force workplace 

increasingly requires its personnel to have technical skills. 

Unfortunately, recent educational assessments (cf., National 

Assessment of Educational Progress, 1989) show that graduating high 

school seniors are severely lacking in technical skills. As a 

result, employers such as the United States Air Force must bear an 

increasing burden in training its personnel. 

One area that has shown immense promise is the use of 

automated trainers. Such trainers provide the student with one-on- 

one training, which has often been viewed as the most effective in 
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terms of speed of learning (cf. Bloom, 1984). Similarly, such 

trainers offer hope as a means of reaching large numbers of 

students and in many cases are more economical than standard 

classroom instruction. 

In the field of automated trainers, the field of intelligent 

tutoring systems (ITSs) has received considerable attention (cf., 

Brna, Ohlsson and Pain, 1993; Greer, 1995). Intelligent tutoring 

systems typically are driven by a cognitive model of the skills the 

student is trying to learn and have a cognitively-based 

instructional framework for how those skills can be developed. 

Why use ITSs in training? There is clear evidence documenting 

the superiority of individualized instruction over traditional 

group instruction (e.g., Bloom, 1984). The superiority of small 

class sizes is usually attributed to the increased opportunity for 

individualized attention. The basic premise of the mastery 

learning paradigm (Bloom, 1968) is that the amount of 

instructional time allotted to a given objective should be allowed 

to vary among students, so that each student has the opportunity to 

master the objective before moving on to other objectives. Bloom 

(1984) showed that mastery learning improved performance by 1 

standard deviation; adding individualized instruction improved 

performance by 2 standard deviations. 



A major benefit of computer-aided instruction is the ability 

to tailor instruction to the individual student. An ITS differs 

from a traditional computer-aided instruction system in that it has 

an embedded model of the student's current understanding of the 

subject matter, and tailors instruction according to this model. 

ITS development has been an active area of research in the 

cognitive science and AI fields (Brna, Ohlsson and Pain, 1993; 

Poison and Richardson, 1988). 

Very many ITSs have been developed over the last ten years, 

but only a few have been subjected to formal evaluation. Of 

course, the ones for which evaluations are reported constitutes a 

biased sample; but bearing this in mind, the results of the 

evaluations are quite impressive (Shute and Regian, 1990). For 

example, students having 20 hours of instruction from Sherlock, 

which teaches avionics troubleshooting (Lesgold, Lajoie, Bunzo and 

Eggan, 1990), performed on the evaluation test comparably to 

technicians with almost 4 years experience. Students using the 

LISP tutor (Anderson, Farrell and Sauers, 1984) learned the 

computer language LISP in half the time it took traditional 

classroom students. 
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3.0 Theoretical Framework. 

3.1 The testbed. 

The first task of the project was to select a testbed. The 

purpose of the testbed was twofold. First, it provided a basis for 

testing an instructional methodology based on our Integrated 

Knowledge Structure (INKS) framework. Second, the testbed served 

as a basis for developing a generic intelligent tutoring system 

architecture. 

The INKS framework itself deals with conceptual (e.g., as 

compared to motor or perceptual) problem solving tasks. .Therefore, 

selection of a testbed was driven by finding a problem solving 

domain that was largely conceptual and lent itself well to teaching 

each of the different types of knowledge in our INKS framework. We 

also wanted to select a domain with a wide range of applicability 

to real world problem solving. For this reason, scientific inquiry 

was chosen as the testbed for testing the INKS-based instructional 

approach. 

This testbed was later changed to algebra for purposes of 

building the generic ITS architecture. This was motivated by the 

fact that an algebra ITS was under development at Armstrong 

Laboratories at Brooks AFB in San Antonio, Texas. Researchers were 

looking to test alternative approaches to ITSs, so the project team 

20 



changed the testbed to accommodate this interest within the Air 

Force. 

3.2. The instructional approach. 

The first step in the development of an instructional approach 

is to develop a model of the testbed knowledge. Since our goal is 

not simply to present a curriculum within the context of a 

simulation but rather to build the same type of thinking skills in 

students that experts have, it is important to identify and model 

those skills. This model will then drive instructional 

requirements designed to build similar knowledge in students as 

well as drive the evaluation of how well students have learned that 

knowledge. These instructional requirements and evaluation 

feedback then drive what simulations/events the students experience 

(see below). 

3.2.1 Expertise:   Characteristics and rationale as a training 

target. 

Given that we have set a goal of teaching students to solve 

problems as experts do, we want to develop a framework for modeling 

expert problem solving knowledge. There are several reasons why 

understanding how experts solve problems and represent knowledge 

has relevance to the proposed work.  First, the goal of training is 
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to make students effective problem solvers in the topic area 

taught. Research by Wagner and Sternberg (1985) shows that experts 

are effective, not just intelligent. 

Second, research indicates that expert knowledge is diverse 

and well integrated (Laskey, Leddo, and Bresnick, 1989; Leddo et 

al., 1990). Experts have a variety of problem solving strategies 

at their disposal and can apply them as called for by the 

situation. These strategies are functional in nature and are 

oriented toward the goals and objectives that characterize the 

expert's job. As a result, the expert problem solving strategies 

are well integrated with everyday knowledge and are readily 

retrievable and applicable. 

Third, experts tend to show a deep understanding of their 

subject area. Non-experts tend to be more superficial in their 

understanding and this can affect problem solving. For example, in 

physics, Chi et al. (1981) found that non-experts judge the 

similarity of problems on the basis of superficial features such as 

type of apparatus, while experts judge similarity by reference to 

basic principles of physics (e.g., conservation of energy) and 

generic solution techniques associated with such principles. 

Similar differences between experts and novices in algebra are 

reported by Schoenfeld and Herrmann (1982) and in computer 

programming by Weiser and Shertz (1983). 
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A central theme in expert knowledge is  its  functional 

orientation.  Expert knowledge is centered around goals.  As a 

result, any modeling of expert knowledge and implications derived 

for instruction must take goals into account.  In fact, research by 

the Yale University Cognitive Science Group (cf., Galambos, Abelson 

and Black, 1986) suggests that goals play a powerful role in 

organizing people's knowledge in general.  This point is important 

because  much  traditional  classroom-style  instruction  is  done 

without much emphasis on goals.  Rather the focus is on problem 

solving procedures.  While researchers such as Anderson (1982) have 

argued that  expert  knowledge  is  characterized by procedural 

knowledge,  Leddo et al.  (1990)  find that true expertise  is 

characterized by  goal  and  causal  knowledge while  procedural 

knowledge actually characterizes experienced non-experts (who are 

more advanced than novices but are not true experts). 

3.2.1.1 Modeling expert knowledge. The research described above 

focuses on the behaviors exhibited by experts. To translate 

knowledge of these behaviors into practical instruction and 

evaluation techniques, one must understand the types of knowledge 

that underlie these skills. 

In the cognitive science and psychology literatures, several 

frameworks have been proposed as models of expert (and non-expert) 
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knowledge. These schemes tend to address different types of 

knowledge. For example, scripts (Schänk, 1982; Schänk and Abelson, 

1977) are used to represent goal and planning knowledge that is 

used in fairly routinized environments. Scripts are generalized 

sequences of steps used to achieve a goal. Script-like Schemas can 

also be used to integrate bodies of knowledge into a larger 

framework. 

Knowledge about data patterns and how objects are organized 

together can be represented by object frames (c.f., Anderson, 1980; 

Minsky, 1975). Frames are very much like scripts in that they are 

expectancy-driven organizers of knowledge. We conceptualize 

scripts as focusing more on goal and plan-related knowledge while 

frames organize collections of objects. Frames can also be 

distinguished from semantic nets (cf., Quillian, 1966) which tend 

to organize information about individual concepts and relationships 

between them rather than collections of objects. For example, a 

science laboratory may best be represented by a frame since it is a 

collection of people and equipment while a test tube may best be 

represented by a semantic net that describes its features. 

Knowledge  about  situation-specific  procedures  can  be 

represented by production rules (cf. Newell and Simon, 1972). 

Production rules are expressed in the form "IF [antecedent], THEN 

[consequent]", where antecedents are situational conditions that 
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determine when procedures are to be executed and consequents are 

the procedures executed under those conditions. Production rules 

are useful in both carrying out procedures (e.g., "If this step has 

been completed, then do this next step.") and also generating 

inferences (e.g., "If the following problem features are observed, 

then infer that this is an [X] type of problem."). Production 

rules can be distinguished from scripts in that scripts organize 

entire goal-driven plans, while production rules organize specific 

actions. Scripts can be viewed as collections of production rules 

much the way that frames can be viewed as collections of semantic 

nets. 

Finally, causal and analogical reasoning can be captured by 

mental models (cf., de Kleer and Brown, 1981; Johnson-Laird, 1983; 

Leddo, Cardie and Abelson, 1987) . In our framework, (Leddo, Cardie 

and Abelson, 1987), mental models are viewed as encoding the causal 

rationale for why a specific problem solving procedure is used. 

One of the factors that distinguishes the way experts solve 

problems from the way non-experts do is the former's heavy reliance 

on mental models and the ability to use them to select an 

appropriate problem solving strategy to meet a set of objectives. 

We have discussed five different representation frameworks 

(scripts, object frames, semantic nets, production rules and mental 

models) for representing expert knowledge.  As we mentioned above, 
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experts possess diverse knowledge that is richer that can be 

handled by any single framework. Leddo, Cardie and Abelson (1987) 

developed an Integrated Knowledge Structure (INKS) framework that 

combines these individual schemes. In the INKS framework, scripts 

serve as the general organizer of knowledge, linking plans and 

goals together. Production rules give situation-specific 

procedures to be executed given conditions that arise during the 

execution of a plan. Frames organize collections of objects that 

are utilized in the execution of plans while semantic nets organize 

features of the individual objects within a frame. Mental models 

provide the rationale for why procedures are executed and how they 

are instrumental in achieving objectives. 

3.2.2 The development of expertise. 

The INKS model may serve as a useful explanatory mechanism as 

to how experts acquire practical problem solving skills. John 

Anderson (1982) argues that expertise is acquired in stages. 

Initially, Anderson argues, people have declarative knowledge. 

Declarative knowledge is largely semantic. Anderson terms such 

knowledge as "knowing that." For example, a student learning to 

drive may know "that" he needs to put the key in the ignition and 

turn it while simultaneously pushing down on the gas peddle.  The 
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Student "knows that" this is what he needs to do, although he still 

may not be capable of performing the act. 

The next stage in acquiring knowledge is to proceduralize the 

declarative knowledge. This knowledge of what one is supposed to 

do is translated into concrete procedures that lead from problem to 

solution. Anderson terms this knowledge "knowing how" in that the 

student now knows how to start the car, shift gears, etc. This 

type of knowledge is represented by production rules. In essence, 

the student has transitioned from a more abstract representation of 

what he must do ("knowing that") to a more specific representation 

("knowing how") that allows him to do it. 

The drawback with Anderson's framework is that it forces a 

person to learn a specific set of procedures for every type of 

problem rather than generating a general formula from which 

different procedures might be generated. Leddo et al. (1990) 

extended Anderson's framework by studying the problem solving 

processes of people at different levels of expertise. 

Leddo et al. found support for Anderson's two stages of skill 

development. However, the most experienced group of problem 

solvers, the true experts, used a different problem solving 

strategy. Experts used their goals and a causal understanding of 

the problem domain (i.e., a mental model) to select and adapt a 

strategy to fit the specific problem.  Hence, the experts' problem 
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solving process was more powerful than a procedural one, because 

experts had the means to generate procedures as needed from richer, 

more abstract knowledge structures.  These procedures were causally 

related to both the situation and the goal.  Leddo et al. termed 

this type of reasoning "knowing why." 

We believe that this "knowing why" is what distinguishes 

experts from non-experts. We also feel the causal links between 

the goals and the planning strategy used with the specific 

procedures and semantic features of the situation are the keys to 

effective practical problem solving. (This is why all of the 

knowledge structures in the INKS framework are relevant and no 

single structure is sufficient.) We further argue that most 

students never advance beyond the "knowing how" stage (in fact, 

Leddo et al., 1990, found that only about 5% of the professional 

problem solvers they studied, all of whom had more than 20 years of 

professional experience, could be characterized as "knowing why" 

problem solvers). Students may have a fundamental understanding of 

how to apply a problem solving procedure, but lack a deeper 

understanding of why that procedure is relevant and what the 

purpose of that procedure is. As a result, unless they are given a 

specific procedure to follow in a practical problem solving 

setting, they will have great difficulty coming up with one on 

their own.  On the other hand, if they can succeed in learning why 
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problem solving procedures are relevant, we hypothesize that they 

will be better able to link these problem solving procedures to 

concrete, practical problems. (Shavelson, Webb, Stasz and 

McArthur, 1987, echo our sentiments by arguing that math 

education should include goals and underlying causal reasoning 

behind the subject matter). 

Research at RDC (Leddo, Campbell, Black, and Isaacs, 1992) 

provides preliminary support for the contention that solving 

problems "procedurally" is not as effective as solving problems 

"causally."  Algebra students when confronted with a practical 

problem typically look for a formula to execute.  We believe they 

are performing problem solving procedurally—trying to map for- 

mulas (procedures) to the problem.  This causes problems when the 

chosen formula does not fit the problem (e.g., the formula is 

geared toward solving an equation with one unknown but the 

problem has two unknowns).  Math practitioners on the other hand 

who solve the same problem by establishing goals and developing a 

model of the problem (i.e., using the "expert" problem solving 

approach described above)  have no difficulty with the same 

problems.  Further, when the students who are having difficulty 

with the problems are asked to "forget about the formulas and 

develop a model of the problem, " they often are then able to 

solve the problem. 
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3.2.3 Implications for Instruction. 

We argue that our conceptualization of the knowledge skills 

underlying expert practical problem solving has important 

implications for how training can be conducted. We believe that 

instruction should focus on building the different types of 

knowledge outlined earlier, with emphasis on integrating them 

through causal mental models. Successful problem solving requires 

two major steps, both of which involve the use of integrated 

knowledge. First, students must analyze a problem, using the 

problem features presented, and infer an appropriate problem 

solving strategy. We view this as a "bottom-up" process in that 

students work from specific problem features to generate a more 

abstract problem representation. 

Second, once a student has structured the problem and selected 

a strategy or set of problem solving procedures, s/he must then 

apply that strategy to the specific problem. This often involves 

mapping features of the problem onto slots in the strategy. We 

view this as a "top-down" process in that students work from the 

general strategy in order to instantiate it into a concrete 

problem. 

Research by RDC team members (Leddo et al., 1992) supports 

this contention. We have found that math practitioners (those 

that use math as part of their professional jobs) do not reason 
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by formulas when solving practical algebra problems.   Rather, 

they use semantic and causal knowledge of the problem situation 

to weed out relevant from irrelevant information and then 

establish  relationships  among  the  different  pieces  of 

information.   This is used to establish a problem solving 

strategy.   (We view this process as a bottom-up structuring of 

the problem).  Once the problem solving strategy is selected, the 

practitioners pick specific formulas and execute them.  (We view 

this process as top-down problem solving).  Interestingly, the 

formulas  selected  are  often  not  the  formulas  that  are 

"prescribed" by algebra, e.g., y=mx+b, but work just the same. 

This process is quite different than the formula-driven reasoning 

typically taught in algebra (and other) courses.  However, our 

results   suggest   that  math  practitioners   don't   reason 

"mathematically" (i.e., by formulas), but rather use real world 

knowledge to structure the problem and then used math to solve 

it.  We believe the biggest training challenge lies in teaching 

people  to  integrate  their  real-world reasoning skills  with 

domain-specific problem solving skills and that this may in fact 

produce the biggest gain in learning. 

Both of the two steps described above involve integrating 

abstract, formula-type knowledge with concrete, everyday 

knowledge.  Students often have trouble with both steps.  They 
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may fail to recognize what "type" of problem it is from its 

description and/or they may pick a strategy but then not know 

which values presented in the problem go in which slots in the 

strategy. We hypothesize that causal mental models can help the 

students make these linkages. We outline a training approach to 

accomplish this. 

First, the student is taught in the context of specific goals. 

The student is asked to solve a problem where no quantitative 

analysis is performed. Here, students may be presented with simple 

questions to investigate such as "does putting candy on sale lead 

to increased sales?" Students may think about what general 

considerations and issues need to be addressed to answer such a 

question. The goal is to induce students to build a model of the 

problem before they can solve it, without simply jumping into a set 

of procedures. In this case, the ITS would present the student 

with a variety of problems that depict different scenarios that the 

student might encounter. This gives the student a breadth of 

experience and makes salient the fact that there is a wide range of 

problems the student may have to encounter in real-world problem 

solving (one tendency novices have is to underestimate the variety 

of problem types and as a result often employs "one size fits all" 

problem solving). 
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Next, students are introduced to the framework for solving 

problems. For example, in the scientific inquiry context text, 

students would be taught the concepts such as what a hypothesis is, 

how to test a hypothesis in real world settings, etc. This stage 

can be viewed as Anderson's "knowing that" as students are learning 

the framework. Here, the ITS might show students scenarios with 

specific cues highlighted (e.g., sales at two stores, one having a 

sale, the other not) so that the student can see the relationship 

between concepts to be learned and their real world occurrences. 

Next, students are given practice with this framework so that 

it can be proceduralized ("knowing how"). Here, the ITS would 

generate specific problem instances and the student must perform 

the procedures that s/he has been taught such as analyzing the data 

collected in the problem. 

Finally, students are taught to develop an overall causal 

understanding or model of what they have learned (much as experts 

have). This involves giving students multiple problems with 

themes. An example of this in the scientific inquiry context might 

be to have the ITS simulate different experiments in which the 

samples on which data are collected are biased in some way so that 

the student can use this larger context to anticipate the specific 

affects that such biases may have on the validity of generalizing 

experimental results to an entire population.  We hypothesize that 
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this type of training is especially effective in building problem 

solving skills in time stressed environments as students learn to 

use context knowledge to make more rapid conclusions (i.e., the 

difference between "top-down" and "bottom-up" problem solving). 

3.2.4  Diagnosing what  students  have  learned using  knowledge 

elicitation. 

Knowledge elicitation refers to the process of ascertaining 

what a person knows about a given topic area and how that knowledge 

is organized. The goal of knowledge elicitation is to transform 

information obtained from a person into some representation of the 

person's knowledge. 

There are two common categories of knowledge elicitation 

techniques. The first is called protocol analysis (cf. Ericsson 

and Simon, 1984) in which people articulate their thought processes 

while solving problems. Protocol analysis is good for eliciting 

what people know, in particular their practical problem solving 

procedures, but has serious limitations for eliciting their 

underlying organization and understanding of that knowledge. 

Protocol analysis is also extremely tedious and time- 

consuming. In an intelligent tutoring application, standard 

protocol analysis is clearly infeasible. However, one can build 

into the ITS data-collecting procedures for monitoring students' 
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problem-solving, and one can use querying to gather information 

about what students are thinking as they solve the problem. 

The second type of commonly used knowledge elicitation 

technique is an interview or question and answer format. Leddo and 

Cohen (1989) report an interview technique called Cognitive 

Structure Analysis (CSA) that is explicitly designed to elicit 

people's underlying organization and understanding of their problem 

solving processes. CSA is based on the INKS framework described 

earlier. It involves questions regarding people's problem solving 

goals, the strategies they use (what procedures, what sequence they 

occur in, etc.), the reasons behind these strategies, the features 

of the problem that are relevant, etc. 

CSA has received a preliminary testing in ITS implementation 

in THINKER (Leddo, Sak and Laskey, 1989) . CSA was used to elicit 

from experts the domain knowledge that went into forming THINKER'S 

knowledge base. This knowledge base formed the basis for THINKER'S 

curriculum. THINKER also uses CSA to probe students when they make 

errors. The goal of these probes is to infer students' underlying 

knowledge gaps or errors in reasoning. THINKER compares what the 

student knows to its expert knowledge base to make this inference 

which then determines what corrective instruction THINKER gives the 

student. Separately, CSA was implemented as an automated 

assessment  tool  to  assess  the  effectiveness  of  classroom 
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instruction. The results of this study are discussed later in the 

report. Finally, CSA was used in the ITS architecture developed 

under the present project. 

CSA's probes are driven by both structural and content 

considerations of the knowledge structures in the INKS framework. 

For example, scripts not only describe what events will happen in a 

context (the content knowledge), but also their sequence, their 

importance, etc. (the structural knowledge). 

These content and structural considerations not only help 

capture what a student knows but also help distinguish the 

representation the student is using. For example, a production 

rule representation may capture event sequences, but is typically 

not used to capture relative event importance. Therefore, if a 

student is thinking in terms of event importance, s/he is probably 

using a script instead of a production rule representation. 

Leddo et al. (1992) developed a hybrid technique that uses 

both problem solving and CSA techniques. In this technique, a 

student first solves a problem using his normal problem solving 

strategy. The steps he goes through are then recorded. Next, the 

elicitor revisits each step using the CSA technique in order to 

diagnose the knowledge used in that step. This technique is useful 

in generating a global model of problem solving knowledge as 

opposed to a highly detailed model that might be used to construct 
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an expert system. The goal in our application is to give someone 

(student or tutor) a quick means to assess the student's level of 

reasoning. It is therefore important to be able to assess a global 

model, and much less important to assess the details. The other 

benefit of the hybrid technique is that it uses both natural 

problem solving and interview-based techniques. Some students may 

have difficulty articulating their knowledge. This makes it 

difficult to infer whether the problem is lack of understanding or 

inability to articulate their understanding. The hybrid technique 

allows students to demonstrate proficiency behaviorally as well as 

explaining it.   This helps to distinguish which of these two 

factors is at work. 

This hybrid knowledge elicitation technique is especially 

useful in simulation-based ITS environments. Students' 

interactions with the simulations can serve as a rich source of 

information about the students' naturally problem solving 

approaches. Further, scenarios can be manipulated by the ITS to 

see how these problem solving strategies differ, if at all, across 

situations. 

This type of assessment, namely recording the students' 

problem solving process, is the means by which most ITSs construct 

a student model. We believe that this approach alone is 

insufficient as it does not give underlying reasoning about why the 
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Student took whatever actions he or she did. We believe 

understanding the student's underlying reasoning is key to 

developing corrective instruction. For this reason, we see the 

addition of CSA to the assessment as a valuable supplement. 

In the present project,  the goal was to use  knowledge 

elicitation to identify discrepancies between student and expert. 

These discrepancies generate conclusions about the student's level 

of development which then guide the student's progress.   For 

example, we argued above that novices are largely pattern-oriented 

(with simple patterns), experienced people are largely procedural 

and experts are goal and mental model-driven.  If we are to help 

students learn to be goal and mental model-driven, we need to be 

able to determine what drives their current problem solving.  This 

involves not only comparing students and experts in terms of the 

knowledge they have, but also comparing the student's knowledge 

with her behavior.  In other words, if a student has a causal model 

but still reasons procedurally, she is not behaving as an expert 

would and therefore likely needs stronger linkage between her 

abstract causal knowledge and her concrete procedural knowledge. 

This is why CSA is especially important—it gets at the problem 

solving knowledge that underlies problem solving behavior.  Once 

the student's cognitive level is assessed, a learning strategy can 

be developed based on the framework described in section 3.2.3. 
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4.0 An experimental test of the INKS-based instructional framework. 

4.1 Overview 

The first goal of the project was to develop an 

instructional framework suitable for intelligent tutoring systems 

that has the goal of teaching students how to solve problems as 

experts do. As discussed earlier, a fundamental premise of the 

present research is that expert problem solving knowledge is 

diverse and is best represented by a rich, integrated structure 

such as the INKS framework discussed earlier. 

The Research Development Corporation methodology for 

developing such an instructional framework is comprised of the 

following steps: 

1) Conduct knowledge elicitation with domain experts to identify 

the knowledge and skills that need to be taught. 

2) Model this expert knowledge using INKS to understand the 

relationship between the knowledge concepts and how they are used 

in problem solving. 

3) Develop instructional activities designed to teach these 

knowledge and skills. 

4) Conduct knowledge elicitation with students to determine what 

knowledge is needed. 
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5) Select instructional activities designed to teach the needed 

knowledge. 

6) Iterate steps 4) and 5) (and others as needed) 

In order to leverage the current, effort, steps 1) and 2) 

were completed by using work from a separate project.   The 

subject  area was  scientific  inquiry using statistical  data 

analysis.  Figure 1 presents an INKS representation of part of 

the knowledge elicited in this subject area. 

4.2  Method 

Subjects. 

Two schools participated in the study. One was the New High 

School, an alternative school in Boulder, Colorado that served an 

at-risk student population. Eighteen students (16 9th graders 

and 2 10th graders) were selected from the New High School ■ to 

participate in the experimental condition. The second 

participating high school was Boulder Valley High School, a 

mainstream high school, also located in Boulder, Colorado. From 

this high school, two control groups were constructed: a group 

of eleven 9th graders and a group of nine 12th graders. 
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Materials. 

A variety of performance and other problem solving tasks 

were constructed to teach the scientific problem solving method. 

These ranged from complete studies that emphasized the entire 

scientific method (as discussed earlier) to component tasks that 

emphasized specific problem solving skills. The emphasis of all 

problem solving tasks was to present real world problems that the 

students could relate to. An example of a task that emphasized 

the complete problem solving process was having the students 

construct, carryout and evaluate a study that addresses the 

question of whether putting an item on sale actually increases 

sales. An example of a task that emphasizes specific component 

skills was to present students with salary information for 

computer scientists and have them determine whether there was a 

bias due to gender once employees' experience and education was 

taken into consideration. 

All told, 25 hours worth of instructional materials were 

developed.   These were accompanied by relevant manipulatives 

(e.g., candy for the experiment to test the effects on sales of 

putting candy on sale, decks of cards for the study on ESP). 
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Procedure. 

All subjects were paid volunteers who were recruited with 

the help of their schools. Subjects in the experimental 

condition were paid $80 for their participation in the project. 

Subjects in the control condition were paid $20. Prior to the 

start of the study, all students were given a pre-test on their 

knowledge of the scientific problem solving process. Questions 

were based on the INKS model of scientific inquiry as shown in 

Figure 1. Questions were multiple choice and comprised of 

knowledge-based questions and applied questions. An example of a 

knowledge-based question was "In scientific inquiry, defining the 

question you are asking is important because". An example of an 

applied problem was to calculate the mean of a set of test 

scores. All questions were followed by five possible answers. The 

pre-test and post-test were administered and scored via computer. 

The experimental students were given 25 hours instruction 

over a period of three weeks. These included 1.5 hour sessions 

after school during the week and 4 hour sessions on Saturday. 

Given that students were expected to have after school 

activities, they were allowed to pick three afternoons a week for 

instruction. All students were required to attend on Saturday. 

Activities were done either individually, in small groups or as 
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an entire class.   Three RDC staff members participated as 

instructors. 

Upon completion of the 25 hours of instruction, all 

students, both experimental and control received a post-test. The 

post-test had two parts. The first was a series of multiple 

choice questions similar to those in the pre-test. Essentially 

this part of the post-test was virtually identical to that of the 

pre-test in that the same concepts were tested, but with 

different questions. The second part of the post-test was a 

performance task in which students were presented with a scenario 

involving a toxic spill and they had to develop a plan fox- 

cleaning it up. 

4.3  Results 

There were two types of research questions of interest to 

the present study: 1) how good is INKS at modeling the 

knowledge relevant to solving problems, and 2) does an 

instructional framework based on the INKS framework lead to 

improved problem solving performance? 

The answer to the first question is based on data collected 

by the computerized assessment tool which was actually developed 

under a separate project but was tested in the present study. To 

address this question, two types of correlations were computed. 
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The first was the correlation between concept knowledge as 

measured by the concept questions in the pre- and post-tests and 

the solutions to the application knowledge as measured by these 

two tests. To compute this, the number of correct concepts was 

tabulated for each student as well as the number of applied 

questions answered correctly.  These were broken out by condition 

(experimental, control) and type of test (pre- or post-). There 

were too few observations to break the data out by knowledge type 

(e.g., procedural, causal), although this variable may be worth 

investigating in a future study. Table 1 below shows these 

correlations. 

pre-test post- 

test 

exper .51    * 

(13) 

.88   ** 

(13) 

control .54   ** 

(21) 

.43    * 

(18) 

Table 1:   Correlations between conceptual and problem solving 

knowledge 
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numbers in parentheses are degrees of freedom 

*  p < .05 

** p < .01 

Note:  some data missing due to computer network malfunction 

It is interesting to note that the highest correlation is in 

the post-test of the experimental condition, which is the only 

cell in which students had been exposed to the subject matter. 

One explanation from this is that exposure to the subject matter 

reduces the pool of knowledge students will draw on to solve a 

problem. In other words, if students are unfamiliar with a 

subject area, the range of concepts they might draw upon to solve 

a problem is greater than that if they have been taught to solve 

problems in that area. Therefore, the correlation between a 

given set of concept knowledge and the ability to solve problems 

that use those concepts may be'less when those concepts are less 

familiar than when they are more familiar. It turns out that the 

correlation of .88 is significantly higher than the other three 

(p < .05), which in turn are not significantly different from 

each other. 

The other aspect of the research question regarding how good 

INKS is in predicting problem solving performance is looking at 
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whether the change in concept knowledge as measured from pre-test 

to post-test correlates with the change in problem solving 

performance as measured from pre-test to post-test. To compute 

this, pre-test/post-test change scores for both of these measures 

were computed for the experimental group only (it was assumed 

that any change in scores in the control group would reflect 

variability in test-taking performance not true learning). The 

correlation obtained was .78 (df = 13, p < .01), suggesting that 

not only is INKS good at measuring current knowledge but also 

growth in knowledge. 

The second research guestion this study addressed was 

whether an INKS-based instructional approach would lead to 

enhanced problem solving . skills. To measure this, the 

performance task was used as it is currently the educational 

benchmark for subject area mastery. As is common in performance 

assessment, a four point scoring rubric was constructed to 

evaluate each student's response. Responses were evaluated by 

rater blind to experimental conditions and hypotheses. Table 2 

presents mean scores on the performance task broken down by 

experimental. 9th grade control and 12th grade control 

conditions. 
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9th Grade Control 

1.55 

12th Grade Control 

3.00a 

Experimental 

3.06a 

Table 2:  Mean Solution Scores on the Performance Task 

Note:  numbers not sharing a common coefficient 

are significantly different at the .05 level 

Table 2 illustrates that the experimental group actually 

scored the highest of all groups on the performance task, 

although their performance was not significantly different from 

the 12th grade control group. However, the results show that an 

at-risk student population made up primarily of 9th graders 

(there were two 10th graders in the group) performed at a level 

significantly higher than their 9th grade mainstream counterpart 

and at a level comparable to mainstream 12th graders. 

4.4  Discussion 

The results of the present study lend.support to the concept 

of INKS as a framework for modeling student knowledge and using 

it as a basis for developing instructional programs to build 

expertise. The above results suggest that an INKS model of 

student knowledge is highly predictive of problem solving 

performance,  particularly in cases where students have been 
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instructed in the subject matter. Additionally, the results 

suggest that changes in knowledge (i.e., learning) as measured by 

INKS is highly predictive of changes of performance. 

Collectively, these results lend support to the general 

premise of the current research that problem solving is 

integrative in nature and that by using an knowledge 

representation framework that captures integrated knowledge, one 

can predict how well a person can solve problems. 

The second major hypothesis of the present research was that 

an instructional framework modeled after the INKS representation 

scheme would be effective in building problem solving skills. 

The results of the present study confirmed this as well in that 

at-risk 9th graders performed at a mainstream 12th grade level at 

the end of instruction. 

5.0  Intelligent Tutoring System Architecture 

The second major goal of the present work was to develop an 

intelligent tutoring system architecture based on the INKS-based 

instructional methodology. Therefore, our methodology for 

building intelligent tutoring systems (ITSs) needs to be modeled 

after the six step methodology outlined at the beginning of this 

section.  This ITS methodology, therefore, needs to specify not 
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only an ITS architecture itself, but the tools required to 

support the other steps. 

In order to devote as much of the project resources as 

possible to the development of an ITS architecture and supporting 

tools, the decision was made to adopt a testbed for which the 

knowledge elicitation (step 1 of the process) had already been 

conducted. Therefore the testbed chosen was algebra. In order 

flesh out the ITS methodology, the following technical 

components/ tools were developed: 

1) an INKS knowledge representation structure 

2) an INKS entry tool so that non-computer scientists could build 

INKS structures 

3) a scripting language to present lessons 

4) a knowledge assessment tool (built largely on another project) 

to assess student learning 

5) an integrating architecture to link the assessment of student 

knowledge using INKS to appropriate instruction and presentation 

of that instruction. 

Below we describe the overall architecture in general terms. 

We enclose three documents as an appendix that provides additional 

detail regarding the components.   The  first  is  the overall 

architecture that integrates the student model, the curriculum and 
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associated activities, and the presentation of the lessons 

(including the user interface). The second document describes the 

scripting language that was developed (although not completely 

finished) called Gilligan. Gilligan controls the presentation of 

lessons to the user and the incorporation of student responses into 

the student model. The third document is a user's manual for 

Gilligan. 

5.1 Generic ITS Architecture. 

As discussed earlier, the second goal of the project is to 

develop a generic architecture for building ITSs. Figure 2 

illustrates the general architectural design. We discuss this 

design in terms of its components. 

The core activity of our architecture is assessing the 

student's knowledge and using this information to focus student 

activities for maximum learning. What make this architecture 

intelligent is that the choice of activities are directly based 

on what the student knows instead of being pre-programmed. The 

heart of the SIAM architecture is the interplay between the 

presentation manager, the student profile manager (student model) 

and the activity selection. 

The activity selection module has two components:  a course 

map that outlines the natural progression of topics to be taught 
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Figured. System Architecture 
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and a set of activities that are suitable for teaching particular 

topics both regular and remedial. The student profile manager 

influences which of these particular activities are selected 

based on the INKS model of the student. Activities are selected 

to address particular learning needs. In the case where more 

than one activity is appropriate, the activity is selected that 

satisfies the most learning needs. Once the activity is 

selected, it is presented to the student. The Gilligan scripting 

language serves as the interface between system and student. It 

both directs what the student sees on the screen and maps the 

student responses to the appropriate portion of the INKS so that 

the Student Profile Manager can update the student model and 

determine what the new learning needs are. 

The SLAM architecture includes supporting tools. An INKS 

entry tool allows a designer to enter INKS content into a Fox Pro 

database so that it can be used by the system. The interface to 

this tool allows the user to type in the content for each slot in 

the INKS node so the user does not have to worry about the 

structure of the INKS itself, only the content of the knowledge. 

An INKS viewing tool allows the user to see the INKS structure 

in graphic format so that s/he can check the INKS content for 

accuracy and validate that concepts are correctly integrated with 

each other. 
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As discussed earlier, CSA is a tool for providing additional 

validation regarding what someone knows about a domain by 

presenting direct probes as opposed to observing only their 

problem solving behavior. CSA is integrated via an assessment 

tool that is connected to the student model. When an error state 

is triggered within an INKS node, a set of probes is generated to 

validate the error.  This ultimately can influence what remediate 

a student may get. 

The rest of this section describes the intelligent tutoring 

system (ITS) architecture and explains some of its functions. 

5.1.1 Activities 

One core concept in the ITS architecture is that of an 

activity. Activities control all interactions with the student. 

Each activity is made of tasks, which are able to present text 

and graphics, animate graphics, engage in interactive exploration 

of the information, query for information, assess student 

responses, and chose future activities. Simple activities may 

have one task such as the display of text to explain a concept. 

Complex activities may have full simulation-scenarios or 

multimedia presentations with multiple decision paths based on 

student responses. 
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[^ Run Exercise 

|/f<£ Pi ist exe -eise q jestionnaire 

V 
Update INKS node based 
on the correct answers, 
common errors, or 
unexpected answers 

The tasks  are  connected 

together on an activity line. 

Figure 3 shows one such line. 

Activities flow from the top to 

bottom and the horizontal bars 

at each end represent the start 

and stop of the activity. 

Figure  3 An example  activity Different icons  are used to 

line represent different classes of 

tasks. In the example, the 

first icon tell ITS to call another activity line (a subroutine) 

and when that line is finished return to this line. The next 

icon writes a question on an interaction window and prompts the 

student for a reply. It is followed by hollow diamond which 

intercepts the student's reply and interprets their choice. Each 

potential choice is shown as a arrow surrounded by circle and for 

each reply some new path is taken. If the choice is not one of 

the expected choices, the final (right most) path is taken. 

Below each choice is a icon that places evidence on the INKS node 

(explained later) . This evidence will help determine what the 

student knows and where remediation should take place. 

Instructional  technologists break their  activities  into 

pretests, lessons, practice (problems with immediate feedback), 
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tests and remediation (explaining the subject in a different 

manner). As can be seen, activities forms a powerful programming 

language that allows the instructional technologists to perform 

all of these activities and to build complex lessonware. 

The description to this point has the instructional 

technologist explicitly controlling what activities are being 

shown at each step of the instruction. This lacks flexibility. 

Ideally, we want to assess student understanding and, at 

appropriate places in activity flow, choose remediation 

activities. This is at the heart of our intelligent tutoring. 

The bottom three icons in Figure 3 are being used to collect data 

on the student's understanding and use this evidence to modify 

INKS nodes. For this evidence to be exploited, the instructional 

technologist must identify points in instruction where 

remediation would be appropriate. 

In Figure 4, a remediation opportunity can be seen on the 

first icon. The solid diamond at the bottom of the icon informs 

ITS to remediate at this point if the student did not understand 

some aspect of graphing (what the task taught). 
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5^ Remediate task 1 

5^ Remediate task 2 

Figure 4. A remediation activity 

To remediate,  the ITS temporarily puts the current activity 

line aside and begins the 

chosen remediation activity. 

Remediation activities will 

continue to be chosen until 

the student shows' 

understanding in the material. 

Once they understand, the 

instructional flow continues 

where it left off. Remediation 

is recursive and will delve as 

deep as necessary to teach the material. 

All activities connected directly to INKS nodes by a 

statement of objectives. These identify the competencies or 

misunderstandings are addressed by this activity. The required 

list of competencies or misunderstandings is derived from an 

analysis of the INKS description. Activities can address 

multiple competencies and misunderstandings. The system will 

always attempt to select activities that best match the students 

needs without repeating activities unnecessarily. Activities 

should also be chosen that adapt to different student learning 

styles and problem-solving methodologies. The system will also 

attempt to exploit different methods of presentation. 
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5.1.2  INKS 

To master a subject, the student must learn and apply many 

different types of knowledge. The Integrated Knowledge System 

(INKS) is an organizational methodology that groups and 

synthesizes these knowledge sources into one common description. 

This is another core concept used by ITS. It allows the 

different facets of problem knowledge to be used holistically and 

gives an educational system considerable flexibility in dealing 

with the student and the errors they make during learning. 

INKS knowledge is represented by a network of information 

nodes. Each node describes the knowledge necessary to perform 

one educational task. Figure 5 presents a pictorially 

representation of an INKS node. The node name identifies this 

node and is unique from all others. 

The mental  model  describes why this node is used. 

The input   scene   specifies when this node can be applied to the 

task.  It is a set of preconditions that are expected to be true 

before the knowledge in this node can be applied. 

The procedure  specifies the set of steps that must be achieved to 

perform this task. 

The output    scene    is the expected result from applying the 

procedure. 
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Steps 

Background   concepts   are those things implicitly assumed to be 

known by the student.   These concepts are declarative in nature 

and differ from input scenes in their focus.  The input scene and 

mental model describe when and why knowledge should be applied. 

The background concepts are those things of a more general nature 

that may be used to reason in the problem domain. 

The state   table   holds information on the student's performance 

and  errors  they 

are making.   Each 

INKS node has one 

correct   state    (the 

student  know this 

knowledge),    zero 

or   more   common 

error states,  and 

one unknown    error   Figure 5> ^ INKS node 

state   (when  the 

student makes an error that is not explicitly represented as a 

state).  The different states are updated as the student is asked 

questions and responses. 

The INKS activity list lists all activities that can teach 

one or more aspects of this node. Each node must have an 

activity for the mastery standard state and one for each error 
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State. All important concepts have multiple activities which 

either explain the concept from a different perspective or are 

designed to address common errors made by students. 

6.0 Discussion and future directions. 

The present effort demonstrated the feasibility of the INKS 

framework as the basis of a methodology for developing ITSs, both 

from an instructional and a technological perspective. Clearly, 

further research is needed to complete the ITS architecture and 

supporting tools so that trainers who do not specialize in ITS 

development can construct ITSs for practical use. 

In addition to the completion of the development and testing 

efforts begun in the present work, we would like to discuss three 

extensions of ITS technology that we believe would make a 

significant contribution to the field. We believe our INKS-based 

ITS framework could support developments in each of these areas. 

We have discussed earlier that the typical rule-based ITS is 

very constraining on the behavioral paths it allows a user to 

take. Any action that deviates from the expected path is flagged 

as an error and the user is instructed to substitute his/her 

"incorrect" response with a "correct" one. While this 

methodology can be useful in teaching formalized procedures, we 
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argue that it has little ecological validity for the wide range 

of ill-structured, open-ended problems that people face in life. 

We have often made the point, for example, that this model 

of ITSs could not be used to teach people how to build ITSs 

because there is no single "correct" procedure for how to build 

one. Most problems have a variety of solutions that are roughly 

comparable in their acceptability and often, they are too many to 

enumerate and program into an ITS' expert knowledge base. 

Further, it is often difficult to tell from a single step in 

a procedure whether a person is making a mistake or on the right 

track. Often, it is a sequence of steps that are necessary to 

infer whether a person's solution path is appropriate. A good 

example of this is chess. There are 20 possible first moves for 

the white pieces in any game. Well over half of these moves have 

formalized opening systems structured around them, typically with 

extensive branching to allow a myriad of "acceptable" move 

sequences. Therefore, it is impossible to judgment the goodness 

of most of these moves unless they are viewed in the context of 

the overall strategy of the subsequent play. Such an occurrence 

is problematic for a rule-based ITS that seeks to evaluate each 

action for its correctness at the time the action is made. 

Related to this issue is the phenomenon of exploratory 

learning.  Here, the student is expect to learn by exploring a 
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problem solving environment, collecting information, taking 

actions, and discovering the consequences of those actions. 

Exploratory learning is currently a popular paradigm within the 

educational and training communities. Therefore, it is valuable 

for ITS technologies to support this type of learning. 

One valuable method for utilizing an exploratory learning 

environment an a computerized setting is through games. Games 

naturally lend themselves to exploration. Further, the fact that 

they are fun induces people to spend substantial amounts of time 

(most willingly too!) playing them. By embedding intelligent 

tutoring within a game context, one can capitalize on user 

motivation to spend time and master the environment. 

Like exploratory learning environments, games typically 

support a great deal of user control and freedom of action. As 

was discussed above, this tends to be problematic for rule-based 

ITSs that expect users to follow fixed action sequences. 

In order to build exploratory learning and open-ended action 

into an ITS, the primary technical challenge appears to be giving 

the ITS the ability to understand user behavior when it does not 

follow a preprogrammed action pattern. This has tremendous 

ecological validity given the tremendous variability in the way 

people naturally solve problems in the real world. This is also 

reflected in real world teaching as students typically are not 
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tightly constrained in how they solve problems. Therefore, 

teachers need to possess the ability to view a workproduct and 

make inferences as to the problem solving process used by the 

student. 

The INKS-based ITS framework offers an approach to address 

this issue. Higher level structures in the INKS framework 

specify top-level goals and the types of actions necessary to 

accomplish these goals. These actions are organized based on 

their causal enablements to the goal rather than a specific order 

in which they must be carried out. The problem solving 

structures would then contain the goal, the solution constraints, 

necessary subgoals/steps and any steps that are dependent upon 

each other (which would dictate sequencing requirements). 

With such a problem solving model, it becomes less relevant 

what order steps are conducted as long as logical enablements are 

met. For example, suppose one wanted to teach scientific problem 

solving in the context of a detective game (detective work is 

much like scientific research as both involve hypothesis testing 

through the collection and analysis of empirical data). The 

tutoring component might have the following constraints: it is 

necessary to collect sufficient evidence to support the favored 

hypothesis (e.g., convict the suspect) and rule out competing 

hypotheses (e.g., show that other suspects could not have done 
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it). With these general constraints, the specific order in which 

a student might collect data becomes less relevant as long as the 

student fulfills both requirements. Therefore, such an INKS- 

based approach could support open-ended, exploratory learning. 

A second future direction the present research could take 

represents a marriage of intelligent tutoring systems with 

question answering systems that use natural language. The basic 

motivation behind such a system is based on the everyday 

observation that sometimes people learn by simply asking 

questions and having something explained to them. Currently, ITS 

research has emphasized presenting lessons and teaching 

procedures rather than instruction through "dialog". 

It is important to emphasize that traditional question 

answering systems are not, in and of themselves, ITSs nor can 

they serve in that capacity without significant enhancements. A 

good teacher does more than simply convey information. Teachers 

recognize that there are educational goals that may extend beyond 

simply the scope of the information being requested by the 

questioner. Therefore, a teacher may provide more information 

than has been requested or even answer a different .question if 

she determines that the student's question is directed toward the 

wrong educational objective. 
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A good teacher also assesses the questioner's current level 

of knowledge and ability to assimilate new information. For 

example, if a novice asks "tell me about the work you do in 

intelligent tutoring systems", a wise response will cover basic 

level topics, whereas if a fellow researcher asks the same 

question, one would expect a much more sophisticated and 

technical response. Related to this, a good teacher will gauge 

whether the student appears to understand the answer to a query 

and may often attempt to explain the concept in several ways and 

over time, will develop a model of what types of explanations 

(e.g., concrete example, analogy) work best with what types of 

students. 

A good teacher will also ask questions themselves as part of 

the teaching process in order to assess what background a student 

has, whether they are understanding the answers being given them 

or even to clarify what question the student is really asking in 

case there is more than one interpretation or more than one 

possible answer, the relevance of which depends on the student's 

goal. A good teacher will anticipate the student's overall 

educational goal and may offer information the student has not 

requested if she deems that the student might find it 

interesting,  e.g.,  telling  the  student  of  related  topics. 
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Finally, a teacher will keep track of topics already discussed 

and draw upon them and build upon them in further discussions. 

These are extremely interesting topics for further research 

and ones with tremendous practical application. For example, 

many software packages have help files or users manuals. Rather 

than having a user struggle through these, it is much more 

efficacious for a user to simply ask the system a question. 

Further, "virtual reference librarians" for such things as the 

Internet (or even mundane things like libraries or museums) could 

help people navigate through vast resources that are available 

but difficult to anticipate by the user (so "intelligent" 

questions may be hard to generate). 

Preliminary research related to these issues has been done 

by Johanna Moore (1995). She has developed discourse-based 

intelligent tutors that interact with students through dialog. 

Students are able to ask the tutor questions and receive answers. 

The tutor has the capability to refer to previously discussed 

material or to allow the student to request an explanation or 

elaboration of an answer. 

Missing from Moore's work is student modeling. In other 

words, the Moore's tutors do not evaluate what a student knows 

compared to an educational goal and then direct the dialog to 

fill  in  missing  knowledge.    Moore's  tutor  (which  is  an 
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enhancement of Sherlock) relies on the student to direct the 

queries. 

We believe our ITS can make a valuable contribution to this 

type of technology. The INKS framework can be used as a model of 

both students and expert knowledge, which can help drive the 

discourse. Additionally, our CSA elicitation technique could 

form the basis of probing questions that seek to evaluate what 

the level of student knowledge is and what information is most 

needed. 

One of the principal needs that have been expressed by 

members, of both the educational and training communities is for 

technology to support group training. Currently, we have 

intelligent tutoring systems that support training of individuals 

according to their specific needs and simulation environments 

that support group problem solving, but without individual 

feedback and instruction. A major technical challenge is to 

bridge these two technologies so that one can enjoy the benefits 

of group problem solving training (which is more ecologically 

valid than individual problem solving for most real world tasks) 

and still maintain the advantage of personalizing instruction to 

optimize the learning of each participant. 

We believe that one of the main challenges in team training 

is to accommodate the diverse reasoning styles associated not 
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only with specific students being trained, but also with specific 

tasks. For example, in our research we have found that 

intelligence analysts need to be data-driven, whereas operations 

officers need to understand high level plans (Leddo et al., 

1990). Therefore, an intelligent tutoring framework that 

purports to be a team trainer must be able to accommodate these 

different knowledge styles. In order to do this, its knowledge 

framework must be sufficiently rich to handle the different types 

of knowledge associated with different individuals and tasks. 

But there is a more subtle requirement that is important 

here. It is not enough for an intelligent tutoring framework to 

support the training of individual skills. This would imply a 

series of independent trainers. Rather, if the goal is to 

promote enhanced team effectiveness, the requirement is to train 

individuals, so that their performance enhances the team. This 

means that any intelligent tutoring framework must be able to 

integrate the knowledge associated with specific tasks, evaluate 

it against an overall team standard, and then teach at the 

individual level in accordance with this team standard. In other 

words, the framework needs to be able to reason about the 

individual subject areas integratively using both inductive and 

deductive knowledge processing. 
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We believe the INKS framework that we have developed and 

used on the present project provides an excellent framework to 

deliver team training. The INKS framework itself was developed 

in large part based on research on decision makers in different 

tasks and how they work together. We now discuss how the INKS 

framework can be used in team training. 

In earlier sections of this report, we discuss our 

intelligent tutoring framework. The first step is to build 

expert knowledge models of the domain being taught, typically 

through knowledge elicitation sessions with domain experts. These 

knowledge models can be supplemented by observation of the 

experts on the job and through training materials. For a team 

training intelligent tutoring framework, it would be essential to 

think about building the knowledge model on two levels. 

The first is in terms of high-level tasks. This knowledge 

model needs to emphasize the overall team goals, the (mental) 

model of who the team members are and how they interact, and the 

strategic plans that the team needs to carry out. This might 

also be the type of knowledge that the team leader would have, 

who in the absence of a tutor would be responsible for the 

performance and corrective instruction of the team. 

The second level of the knowledge model would deal with the 

specialized  knowledge  that  individual  team  members  have. 
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Typically, (and this is especially true in military teams) teams 

are comprised of a team leader, who is a generalist in terms of 

his/her knowledge and a core of functional specialists. This is 

true whether we are talking about a combat team that may have a 

commander, intelligence officer, logistics officer, personnel 

officer, etc. or a medical team that may have a surgeon, 

anesthesiologist, nurse, etc. 

We would expect these two levels of knowledge to be 

hierarchical. At the lower levels of the hierarchy, we would 

expect the functional knowledge to consist largely of semantic 

(content or factual) knowledge and procedural (production rule) 

knowledge that supports performing the specific functions. Above 

this knowledge at a higher level of abstraction, we would expect 

the integrative knowledge to consist largely of script-based 

knowledge that embodies the goal and planning knowledge of the 

team and mental models to integrate the functional lower level 

knowledge with respect to how they relate to the higher level 

plans. 

We do not believe that any of the single knowledge structure 

frameworks that currently dominate intelligent tutoring system 

research would suffice in this role. The most predominant 

knowledge representation framework in ITSs is production rules. 

As discussed earlier, production rules are temporally ordered 
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procedures. Production rules lack the hierarchical structure 

necessary to integrate lower level bodies of knowledge. They 

work effectively in teaching such things as computer programming 

(in which the output is itself a set of procedures) but fail in 

more  planning-oriented problem  solving  instruction  such  as 

geometrical proofs. 

The second most common single knowledge structure framework 

is frames (cf., Johnson and Soloway, 1985). While frames are 

more schematic in nature than production rules and therefore are 

better at integrating lower level knowledge, frame-based 

knowledge is typically generic in nature and does not deal well 

with rich, diverse situations such as the types that comprise 

medical emergencies or combat scenarios. 

We now briefly discuss how our INKS-based ITS framework 

would handle team training. The first step that would be 

necessary would be to define the team goals and component tasks. 

This would include identifying the relevant team members to be 

trained and the training priorities. We would perform this in 

conjunction with the end users and relevant subject area experts. 

The next step would be to form an INKS model of effective 

team problem solving. This provides a performance standard that 

the training would be designed to support. As an aside, this is 

a common practice in educational settings as a prior step to 
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developing curricula. Once the performance standard has been 

identified, the next step is to build a knowledge model of the 

team skills that are necessary to reach this standard. At this 

point the knowledge model is high level and includes such things 

as the subgoals or substeps that are necessary to be performed in 

order to achieve the team goal, identifying the personnel 

responsible for achieving these subgoals and how these subgoals 

combine to achieve the overall objective. 

This model then will drive the instructional objectives for 

each individual member of the team. The instructional objectives 

focus on the necessary team member output and the knowledge 

necessary to achieve this output. At this point, INKS knowledge 

models of the different functional specialists are developed so 

that specific team member instruction can be generated. Once 

these INKS structures are developed, lessons, including those 

presented by simulations are developed. 

The problem solving/simulation-based training would focus on 

two things. First, the problems need to strengthen the 

individual skills of the functional specialist. Here, the 

problems would focus on mastering the basic concepts and 

procedures needed by the functional specialist. In essence, the 

math content of the present ITS can be considered an example of 

this.  However, once these skills are developed, it is crucial 
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that they are placed in the context of team problem solving and 

performance. 

Therefore, the second focus of simulation-based instruction 

is on team problem solving and performance.  Here, the student 

practices his or her skills in the context of a team.  In this 

context, either the ITS itself can play the role of the other 

team members or several students can practice together, each 

playing the role of a different team member.  The advantages of 

the ITS playing the other team members is that this gives the 

instructor greater control over the types of scenarios and 

actions that the student will witness and have to respond to.  It 

also creates the opportunity for students to see the "correct" 

procedures being carried out by the team members.  The advantages 

of having multiple students practice is that the situations they 

encounter may be more realistic in that human variability and 

error are more likely to be present in the human participant 

variation than if the ITS plays all roles.  Another advantage, 

particularly if the students being instructed will also work with 

each other in the "real world" is that they can develop a group 

dynamic and work out any problem in a simulated world rather than 

working out their mistakes as a team in the real situation.  One 

drawback of having a team comprised of student, particularly if 

73 



the students are rough, is that students may develop bad habits 

working with people who are error prone. 

We believe that students should probably gain experience in 

more controlled simulations, perhaps those directed by the ITS or 

having an instructor be a participant. Once the student is 

competent at his or her functional skills, other students can be 

introduced to play other members of the team. 

There are two more issues that we would like to raise with 

regard to team training. First, when a person goes from being an 

individual problem solver to a member of a team, there are other 

necessary skills beyond simply the technical skills of one's job 

description. For example, guestions of resource allocation come 

into play (among other things related to the logistics of the 

group) as well as group dynamic skills such as the ability to 

work with group members who have different cognitive and problem 

solving styles and the ability to communicate with group members. 

In fact, so important is the skill of communication that in one 

study, experienced analysts rated the ability to communicate 

one's conclusions as the single most important factor in 

determining how effective they were (Martin, Mullin and Leddo, 

1989) . Therefore, we believe that an important part of training 

group problem solving includes emphasizing these skills as well. 
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The second issue worth raising is assembling the team for 

training. In many instances, a group can be assembled in a 

single location at a single time for training. However, today's 

military is situated in diverse locations and an important need 

is to replace the traditional schoolhouse model of collocating 

trainees with a methodology that allows trainees to receive 

instruction without taking time from their units. Another good 

example of this are reserve personnel. Here, the people who 

require training are only "assembled" for short periods of time 

each year. There is an important requirement for personnel to 

sustain their training throughout the course of the year, 

particularly since it may be unclear when such people will be 

called on to use such training. 

One solution for delivering such training may be through the 

use of distance learning technology involving teleconferencing, 

or perhaps more economically, training via the Internet.  Below 

we present some initial thoughts as to how such training may be 

accomplished. 

From its inception, the academic community has been very 

active on the Internet and many of the services currently 

available are educational in nature. Access to these services 

have excited educators from all walks of life (e.g., public 

schools, universities, and corporate trainers) .  The availability 
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of Mosaic (discussed below) have only added fuel to the fire. 

Many educational systems are either connected to the Internet or 

have pilot programs to assess its feasibility.  This discussion 

will begin with a brief discussion on the Internet and Mosaic and 

finish describing how it supports future education opportunities. 

Built into the fundamental design of the Internet is an 

ability for new services to be created and provided to end-users. 

Recent years have seen an explosion of these services. While 

they have profoundly expanded the usefulness of the Internet, 

users are increasingly aware that services exist that could 

assist them, but they do not know how to locate these services or 

how to use the service once located. A new class of program has 

emerged which assist users navigate the Internet and locate 

relevant services. The Mosaic system from the National Center 

for Supercomputer Applications (NCSA) at the University of 

Illinois is one example. 

Mosaic begins by presenting a single hypermedia interface to 

the user. Once learned, the user can access all supported 

services from this interface. Mosaic handles the actual 

interactions with the underlining services and once a reply have 

been acquired, Mosaic uses a data appropriate viewer to present 

the information. By directly handling the underlining service, 

Mosaic insulates the user from the idiosyncratic requirements and 
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behaviors of different services. Mosaic's overall effect is that 

of a very large hyperlinked document that covers any and all 

topics. 

Since our software architecture separates lesson 

presentation from lesson management, we are able to create a new 

Internet service that uses Mosaic for lesson presentation. This 

architecture has four advantages. 

First, by using Mosaic for lesson presentation, our software 

would have access to any presentation service available to 

Mosaic. This currently includes text, graphics, sound and video. 

Using Mosaic allows us to build multimedia lessons without having 

to build multimedia presentation engine. 

Second, users of Mosaic can use our software without having 

to learn a new user interface. Learning new software interfaces 

is an investment of time and energy that many people avoid unless 

they perceive the benefit much greater than the cost. In 

Mosaic's case, many Internet users have already made this 

decision and understand how to use Mosaic. By using Mosaic, one 

can capitalize on the training these users have already done. 

Third, this approach makes our educational software 

available anywhere Internet services exist. Indeed, students 

could access the software from anywhere in the world. This is 

one version of distance learning. 
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Finally, by using the Internet (implicit in use Mosaic), 

collaborative learning can be supported. Since many skills 

require a team to perform the task, training for these skills 

often require the complete team for training. This is often 

difficult when members live in different geographic areas. Since 

the Internet is available anywhere in the world, team training 

can occur even when members are geographic separate. 

Our approach is also useful for integrating digitized video. 

Video materials are often used to augment other instructional 

techniques. Much of this material is of high quality and should 

be reused. It is easily integrated into our architecture. For 

each video clip, a lesson is created listing the video's 

objectives and describing a method for student evaluation. Once 

these lessons are placed in the curriculum, they will be selected 

in the same manner as any other lesson. Indeed, if the student 

shows preference for video material,  these lessons will get 

preference. 

Other, non-computer lesson material, can be supported in a 

manner similar to video. For each lesson using non-computer 

materials, a lesson is created listing the lesson objectives and 

describing a method for student evaluation. The software 

architecture  will  automatically  select  these  lessons  when 



appropriate. The types of non-computer lesson material can be 

very broad and two example curriculum will be listed below. 

A curriculum attempting to teach mathematics or some other 

domain may have a student (or whole classroom) solve a problem 

and record the results. The computer-related curriculum would 

then assist students by posing questions on their results and 

assisting them in answering these questions. Indeed, if the 

students are connected by the Internet, they could exchange 

results with students all over the world and do very interesting 

and complete analysis. 

The above discussions are meant to illustrate the 

tremendously rich potential of simulation-based ITS work. We 

have only begun to scratch the surface of marrying instruction 

with technology. We believe future work in this area holds great 

promise. 
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1    Introduction 
This document describes the Siam system. 

Siam is RDCs core assessment and intelligent 
tutoring technology which is embedded in ail of 
our products. The primary goal of this 
document is to provide needed design 
information. Section 1 (this section) and 2 (the 
overall architecture) should be understandable 
to others. Section 3 is a detailed description of 
the various modules that make up the system 
and is specifically for the RDC programmers. 
Appendix A is a glossary of terms. 

The Siam system is an intelligent tutoring 
system. One unique aspect of Siam is that it 
bases student activities on an objective 
assessment of their individual understanding. 

"In other words, this system adapts to each 
student and focuses its efforts to maximize 
learning. 

Siam is designed to present multimedia 
materials. This include text, graphics, video, 
sound, and interactive games. 

2    System Architecture 
The core activity of our architecture is 

assessing the student's knowledge and using 
this information to focus student activities for 
maximum learning. What make this 
architecture intelligent is that the choice of 
activities are directly based on what the student 
knows instead of being pre-programmed. This 
differs from most educational systems whose 
curriculum must be executed in a specific 
order. 

The rest of this section describes the Siam 
architecture and explains how it functions. 

2.1   Activities 
One core concept in the Siam architecture is 

that of an activity. Activities control all 
interactions with the student. Each activity is 
made of tasks, which are able to present text 
and graphics, animate graphics, present video 
or sound, engage in interactive exploration of 
the information (e.g. an interactive grapherora 
game), query for information, assess student 
responses, and chose future activities. Simple 
activities may have one task such as the display 
of text to explain a concept. Complex tasks 
may have full multimedia presentations with 

multiple decision paths based on student 
responses. 

The tasks are connected together on an 
activity line. Figure 1 shows one such line. 
Activities flow from the top to bottom and the 
horizontal bars at each end represent the start 
and stop of the activity. Different icons are 
used to represent different classes of tasks. In 
the example, the first icon tell Siam to call 
another activity line (a subroutine) and when 
that line is finished return to this line. The next 
icon writes a question on the interaction 
window and prompts the student for a reply. It 
is followed by hollow diamond which 
intercepts the student's reply and interprets 
their choice. Each potential choice is shown as 
a arrow surrounded by circle and for each reply 
some new path is taken. If the choice is not 
one of the expected choices, the final (right 
most) path is taken. Below each choice is a 
icon that places evidence on the INKS node 
(explained later). This evidence will help 
determine what the student knows and where 
remediation should take place. 

Instructional technologists break their 
activities into pretests, lessons, practice 
(problems with immediate feedback), tests and 
remediation (explaining the subject in a 
different manner). As can be seen, activities 
forms a powerful programming language that 
allows the instructional technologists to 
perform all of these activities and to build 
complex lessonware. 

The description to this point has the 
instructional technologist explicitly controlling 
what activities are being shown at each step of 
the instruction. This lacks flexibility. Ideally, 
we want to assess student understanding and, 
at appropriate places in activity flow, choose 

[f~ Invoke the interactive grapher f 
J$)\ Query student on what they learned 

Update INKS node based 
on the correct answer, a 
common error, or an 
unexpected answer 

Figure 1. An example activity line 
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remediation activities. This is at the heart of 
our intelligent tutoring. The bottom three icons 
in Figure 1 are being used to collect data on the 
student's understanding and use this evidence 
to modify INKS nodes. For this evidence to 
be exploited, the instructional technologist must 
identify points in instruction where remediation 
would be appropriate. 

In Figure 1. a remediation opportunity can 
be seen on the first icon. The solid diamond at 
the bottom of the icon informs Siam to 
remediate at this point if the student did not 
understand some aspect of graphing (what the 
task taught). Figure 2 shows this remediation 
activity taking place. 

JL 
Invoke the interactive grapher 

§tJ Remediate task 1 

Remediate task 2 

Figure 2. A remediation activity 

To remediate. Siam temporarily puts the 
current activity line aside and begins the chosen 
remediation activity. Remediation activities 
will continue to be chosen until the student 
shows understanding in the material. Once 
they understand, the instructional flow 
continues where it left off. Remediation is 
recursive and will delve as deep as necessary to 
teach the material. 

All activities connected directly to INKS 
nodes by a statement oj: objectives. 
These identify the competencies or 
misunderstandings are addressed by 
this activity. The required list of 
competencies or misunderstandings is 
derived from an analysis of the INKS 
description. Activities can address 
multiple competencies and 
misunderstandings. The system will 
always attempt to select activities that 
best match the students needs without 
repeating activities unnecessarily. 
Activities should also be chosen that 
adapt to different student learning styles 
and problem-solving methodologies. 

The system will also attempt to exploit different 
methods of presentation. 

2.2  INKS 
To master a subject, the student must learn 

and apply many different types of knowledge. 
The Integrated Knowledge System (INKS) is 
an organizational methodology that groups and 
synthesizes these knowledge sources into one 
common description. This is another core 
concept used by Siam. It allows the different 
facets of problem knowledge to be used 
holistically and gives an educational system 
considerable flexibility in dealing with the 
student and the errors they make during 
learning. 

INKS knowledge is represented by a 
network of information nodes. Each node 
describes the knowledge necessary to perform 
one educational task. 

Figure 3 presents a pictorially 
representation of an INKS node. The node 
name identifies this node and is unique from all 
others. 

The mental model describes why this node 
is used. 

The input scene specifies when this node 
can be applied to the task. It is a set of 
preconditions that are expected to be true before 
the knowledge in this node can be applied. 

The procedure specifies the set of steps that 
must be achieved to perform this task. 

The output scene is the expected result from 
applying the procedure. 

Background concepts are those things 
implicitly assumed to be known by the student. 

Figure 3. An INKS node 
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These concepts are declarative in nature and 
differ from input scenes in their focus. The 
input scene and mental model describe when 
and why knowledge should be applied. The 
background concepts are those things of a more 
general nature that may be used to reason in the 
problem domain. Examples include the nature 
of reptiles or the periodical table. 

The stale table holds information on the 
student's performance and errors they are 
making. Each INKS node has one correctstate 
(the student know this knowledge), zero or 
more common error states, and one unknown 
error state (when the student makes an error 
that is not explicitly represented as a state). 
The different states are updated as the student is 
asked questions and responses. 

The INKS activity list lists all activities that 
can teach one or more aspects of this node. 
Each node must have an activity for the mastery 
standard state and one for each error state. All 
important concepts have multiple activities 
which either explain the concept from a 
different perspective or are designed to address 
common errors made by students. 

In the current system, the mental model, 
input scene, procedure, output scene, and 
background concepts are human readable 
strings and are not interpreted by the software. 

The INKS nodes are connected in a 
directed graph as presented in Figure 4. Each 
node represents one step in the process that the 
student must understand. When steps are 
dependent on other steps, their relationship is 
represented by a line between the steps. While 
not shown in Figure 4, an INKS node can have 

multiple parents. 
Subnodes can be placed in an explicit order 

where all steps must be completed in that order. 
It is also possible to identify a series of 
subnodes that form a choice. Only one of these 
nodes is necessary to complete the task. 

2.3 Student Management 
Figure 5 is a pictorial representations of the 

Siam system. Processing begins when the 
student identifies themselves and selects an 
allowed curriculum. Siam loads this 
curriculum's INKS as well as any status the 
student may have generated on previous uses. 
If they have not studied this material before, all 
the INKS nodes are identified as not having 
been performed. 

Most subjects have multiple orders in 
which the material can be taught. The course 
map arranges the default order in which 
activities are taught. This order usually reflects 
the order of the book being used by the 
classroom. The course map is actually a 
activity line and it is loaded with the 
curriculum. 

If the student has already explored this 
curriculum the system determines if there are 
any pending remediations to perform and this 
information if feed to the activity selection. 

2.4 Activity Selection 
The tutoring system must determine the 

most appropriate activity to present to the 
student. The "most appropriate" is influenced 
by several factors such as the current activity, 
the state of the student's INKS, prerequisite 
knowledge, last activity, the phase of the 

Q( Algebra i **/ Recognize        _ 
^-^ linear equations ~ 

{t@( ID variable 

££ ID coefficient 

,g£ ID constant 

■ for linear equations t _ f~s Recognizing formulas    pSS Recognize standard form 
O^ fnr lino or a/in^ti/M-ic- I 

g*s Recognize slope 
L-P\ anH v/-in torpor»* • and y-intercept 
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Figure 4. An INKS structure 
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moon, and other factors we deem important. 
The method described in this section is our 
preliminary approach. It may be modified as 
we gain experience with the system. 

The activity interpreter places evidence 
against the proper INKS node. At each 
potential remediation step, these INKS nodes 
are queried to determine if any remediation is 
necessary. If none is required, no new activity 
is chosen and the activity interpreter continues 
at the next task. 

If remediation is required, the activity 
selector must chose the most appropriate 
activity. INKS nodes maintain a list of all 
activities and remediation related to the node. 
Remediation selection begins by creating a list 
of all potential activities that can remediate the 
nodes specified by activity interpreter. 

A database keeps a record of all activities 
shown to the sTiIdenfand atrattempt is madelö 
avoidjepeating teaching activities.l Once 
repeated activities have been eliminated, the 
remaining activities have a measure of 
relevance is calculated for them. This measure 
is based on the activity's relevance to the 
current needs of the student The most relevant 
activity is chosen and returned to the activity 
interpreter. The activity interpreter puts the 
current activity aside and begins the new 
remediation activity. When the new activity 
ultimately finishes, the previous activity is 
continued at its original point in execution. 

1 We may clear this database out when the student 
restarts. This would allow us to repeat material when 
enough time had been deemed to elapse. 
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2.5 Evaluation of Student 
In the earlier sections, the actual method to 

evaluate the student's performance was not 
discussed. This will now be redressed. As 
Section 2.2 explains, each INKS node has a 
list of states representing the student's 
understanding of the subject. This list has at 
least two states: the correct state and the 
unexpected error state. Many will have 
additional errors that have been identified by 
the instructional technologist. 

As the student works through a activity, 
they are required to answer questions. The 
answers to these questions generate evidence 
that updates the INKS profile of the student's 
knowledge. The primary objective of the 
evidence update algorithm is a place the most 
weight on the recent answers while still 
remediating previously incorrect answers. As 
the student continues to answer problems 
correctly, the INKS node will be declared 
mastered and the student can move on. 

While student answers is the primary 
method for collecting evidence, another method 
exists. Attached to many activities are hints for 
the student. If the students asks for hint either 
before or after getting and error, negative 
evidence is added to the INKS node. If, after 
receiving the hint, they still get the answer 
wrong, additional evidence is supplied to the 
node. Once the student has asked for a hint 
they will not be given credit for this problem, 
forcing them to demonstrate at a later time that 
they actually understand the material. This is 
the algorithm for normal query interactions; 
games may have a different algorithm. 

Appendix A. Glossary 
activity - a set of one or more tasks to perform 

with the student. Tasks are able to present 
text and graphics, animate graphics, present 
video or sound, engage in interactive 
exploration of the information (e.g. an 
interactive grapher or a game), query for 
information, assess student responses, and 
chose future activities. 

background concepts - those things of a more 
general nature that may be used to reason in 
the problem domain. Examples include the 
nature of reptiles or the periodical table. 

correct stale - the state an expert would achieve 
on the INKS node 

INKS - the INtegrated Knowledge System. A 
fundamental data structure used by our 
system. It explicitly represents the different 
aspects of knowledge necessary to 
understand a field of study. 

input scene - specifies when knowledge can be 
applied to the task. It is a set of 
preconditions that are expected to be true. 
It is part of an INKS node. 

lessonware - the software description of a 
curriculum. 

mental model - describes why something is 
being done. It is part of an INKS node. 

output scene - the expected result from 
applying the procedure. It is part of an 
INKS node. 

procedure - specifies the set of steps that must 
be done to perform this task. It is part of 
an INKS node. 

state table - holds information on the student 
performance and errors they are making 

unknown error state - a student error state that 
has no specific diagnostic information. It is 
part of an INKS node. . , 

r 

■■*• 
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Introduction 
The Gilligan authoring language allows instructional technologists to create, display, and manage computer- 

based educational materials. The Gilligan language can control both simple and complex behaviours. It language 
has focused on making simple behaviours easy to describe. 

Gilligan lessons can be written in any word processor capable of outputting the document in the Rich Text 
Format (or RTF).1  The processing of the RTF file file converts Gilligan commands into educational software. 

Need to discuss: 

Layers and Areas 

Notation for label 

Notation for node:state:value 

comments and quoting convention. 

Commands 
All Gilligan commands begin with either an @ or # sign. When @ is used, the command description 

continues until the end of the paragraph (the first RETURN). '#' is used in only specialized commands and there 
notation will be described later. Following are a list of Gilligan commands. 

Syntax 
Throughout the descriptions of the commands, we use the same conventions to describe the syntax. These 

help to describe what is legal and what is not. 

literal Anything in bold is literal. In other words, that part of the command should appear in the 
script exactly the same way. 

variable Anything in in italics is variable. It can be replaced by whatever the Instructional 
Technologist thinks is appropriate or necessary for that command. 

[optional] Anything placed inside of square brackets is optional. It can be part of the command, but 
doesn't need to be. Most optional items have a default value which is used if the item is 
omitted. 

{repeatable}     This should actually read "repeatable and optional". Any item inside curly brackets can be 

repeated zero or more times. 

1 While any RTF capable word processor may be used, Gilligan only recognizes the Macintosh RTF equation 
nototation. Therefore, if equations are part of the lesson, a Macintosh word processor should be used. 
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@ 

Syntax 
@ 

Function 
Tliis is a simple blank line. It is used to separate sections in the Gilligan description without causing text to 
appear in the instructional material. 

Examples 
@- I want to use a blank line to separate this paragraph from the next 
@- one.  Unfortunately that will put a blank line in the lesson also, so 
@- I'll use the ~@' symbol to make a blank line. 

@ 
@- The ~@' symbol can also be used to separate groups of commands.  By 
@- separating the groups, it makes it easier for someone else to read 
@- and understand what's going on. 

See also 
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Syntax 
@- some comment string 

Function 
All comments begin with %- and continue to the end of the paragraph. 

Examples ^ ,  . 
@- The next piece of text will not be displayed until a show command is 
used. r 

@text ||labellf| hidden 
I'm hidden.     You  can't  see me.     ha ha. 

See also 
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©background 

Syntax 
©background image-name 

image-name refers to a ".bmp" file, so it must be 8 characters or less. It can be either a quoted string or a 
variable which contains the filename. 

Function 
Selects a background image. 

Examples 
©background |beach| 

@set   image j|beach]| 
©background   image 

See also 
^graphic 

# [picture] 
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©calculator (not implemented) 

Syntax 

©calculator label [ at location ] 

label can either be a quoted string or a variable which contains the label name. 

Function 
Brings up the calculator tool. For now we will be using the calculator that comes with windows. 

Examples 
@text 
Try doing a few calculations on the calculator. 

@calculator ||calcl|| 

erase ||calcl|| 

See also 
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©define 

Syntax 
©define activity_name [ remediate node:state[:value ] { , node:state[:value ] } ] 

activity_name is always an unquoted string. 

Function 
In Gilligan, instructional material is constructed from a series of activities, ©define is used to create an 
activity which is made up of a list of commands. All activities must have a label name. They may optionally 
define a list of INKS node:state:values that are remediated by this activity. In this case, value indicates how 
well this lesson will remediate the given node:state combination. 

There is no @end_define command. The activity definition ends when another ©define is reached, or the file 

ends. 

Examples 
gdefine M1L2S1 

@define M3L2R2 remediate nodel25:state3:l, nodel5:statel 

See also 
©do 
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Syntax 
@do activity-name 

activity-name can either be a quoted string, or a variable. 

Function ... ,      .      ... 
(a>do allows one activity to invoke another activity. When the invoked activity is complete, the onginal 
activity continues at the next command. 

Examples 
@background 

@do |MILII| 

@do |MILISI 

@do JM1L1P1 
@do |M1L1S2 

@do |M1L1P2 

@do |M1L1S3 

@do |M1L1P3 

@do |MILIT| 

See also 
(^define 

;rees| 
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@erase 

Syntax 

©erase [ object-label] [ at location ] 

object-label and location can either be quoted strings or a variables. 

Function 
Erases the object specified. The object can be text, graphics, a numberline or an xy graph. If no object is 
specified, the entire sector is cleared. 

To erase a specific object, that object must have been given a label when it was created. 

Examples 
@- This will erase the entire sector, 

©erase 

@text §textOl| 

Better read me fast. 

@wait 2 
@erase j|text0lj| 

See also 
(ojtext 
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Syntax 

©evidence node:state[. value ] 

Function 
Provides evidence to the INKS. Node is a short name identifying the node that you have evidence for. State 
is another name identifying either the correct state or one of the error states ofthat node. Value must be a 
number between 0 and 1 which specifies how strong the evidence is (1 being the strongest). If value is 

ommitted, then the default is 1 

This function is necessary for the numberline and xy graphing tools because neither of them have the 
capability of automatically updating the INKS. 

Examples 
@numberline f|nl|| 
@text 
Plot x > -1. 
@numberline_input j|ril|| into operation value 

@if operation = ]§gt| and value = l~ll 
©evidence node25:correctState 

@else 
©evidence node25:errorl:0.7 

@endif 

See also 
(a>multiple_choice 
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©graphic 

Syntax 

©graphic graphic-filename [ at location ] 

graphic-filename and location can either be a quoted strings or a variables. 

Function 
Draws the graphic specified by graphic-filename. Graphics-filename refers to a ".bmp   file, so it should be 8 
characters or less. It should also be unique throughout the entire tutor, unlike other labels which only need to 
be unique within the current activity. 

Examples 
©graphic |picl| at fftopf 

See also 
#[picture] 
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Syntax 
@hide label 

label can either be a quoted string or a variable. 

Function 
Hides an item which is currently displayed, but still leaves space for it. 

Examples 
@text |textOl| 
This is the first sentence. 

@text §text02| 
You're not supposed to see this sentence. 

@text f§text03J| 
This is the third sentence. 

@hide |text02| 

See also 
(«;show 

(o,text 
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©highlight 

Syntax 
©highlight text-label 

text-label can either be a quoted string or a variable. 

Function 
Highlights the text specified by text-label. 

Examples 
@text j|sentencel|f 
Once upon a time there was this really #{word01,lame} girl named Melinda 
Lamowitz. 
§- This command highlights the word |lame| in the above sentence. 

©highlight j§wordOlf| 
@- This command highlights the entire sentence. 

©highlight f|sentencel| 

See also 
(ojunhighlight 
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@if (not implemented) 

Syntax 
@if expression 

commands 

[ @else 

commands ] 
@end_if 

Conditionally executes a set of commands if the expression evaluates to "true". If there is an else clause, 
then the commands associated with it will be executed if the expression evaluates to false. 

The expression is a comparison, usually involving one or more variables. Here is a list of the comparison 

operators which can be used : 

=    Equal to 

<    Less than 

>    Greater than 

<= Less than or equal to 

>= Greater than or equal to 

!=   Not equal 

You can also make complex expressions by combining simple ones with "and", "or" and "not". These 
operations have an order of precedence: nots are done first, then ands and finally ors. Tins precedence can be 
overridden using parentheses. 

These expressions can also contain arithmatic. See @set for more details. 

Examples 
@if x =  1 

@erase ||textOl|f 
@end_if 

@if   (y2  - yl)   /   (x2  - xl)   =  slope 
@text 
Right. 

@else 
@text 
Sorry,   that's not the right  answer. 

@end  if 
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@- Check to see if (xl,yl) equals (0,0) or (1,1) 
@if (xl = 1 and yl = 1) or (xl = 0 and yl = 0) 

Do stuff here. 
@end_if 

See also 
(oiswitch 
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@multiple_choice 

Syntax 
@multiple_choice [ multiple-choice-label] [ ordered ] [ at location ] [ into variable ] 

[ rtf-text-of-question ] 

{ ©answer [ "answer-laber ] [ correct ] [ evidence node:state[:value ] ] 

rtf-text-of-answer 

[ ©feedback 

rtf-text-of-feedback ] 

} 
@end_multiple_choice 

""-rhiTcommand will ask the student a multiple choice question and wait for a response. The student will be 
able to select from among several possible answers. These answers are described by using the ©answer sub- 
command. Each ©answer can be accompanied by an ©feedback command which describes the text that will 
be displayed if this answer is chosen. Additionally, each ©answer can provide evidence to the INKS. 1 he 
"correct- keyword does not actually indicate anything to the computer. It is used to make the script easier 

for people to decipher. 

By default, the order in which the answers are displayed will be shuffled each time the question is displayed. 
To override this feature, use the "ordered" keyword. 

Examples 
@multiple_choice 

What is your favorite color? 

@answer correct 

blue 

@feedback 

That's right, 

©answer 

green 

©feedback 
No, you're favorite color is blue. 

@end_multiple_choice 

@- This multiple choice question will update the INKS. 

@multiple_choice 

Given the equation :  x = 3y + 4 

What will x equal if y is 7? 
©answer correct evidence nodel28:state0:1 

25 
©answer evidence nodel28:statel:1 

7 
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@answer evidence nodel28sstate2:l 

21 
@answer evidence nodel28:state3:1 

11 
@end_multiple_choice 

See also 
(^evidence 

RDCProprietary -16- August 24, 1995 



@next 

Syntax 

@next [ transition transition-name ] 

Function 
@next waits for the user to press the "next" button. 

transition-name must be an unquoted string equal to one of the following: 

blind 

crush 

diagonal 

drip 

explode 

random 

sand 

slide 

spiral 

split 

weave 

wipe 

snake 

slideblind 

slideweave 

interleave 

growlines 

Xa|T_PWe want to  fade  from a page  showing |picll to a page  showing |pic2| 

©graphic ||piclf| 
@next  transition  sand 

©erase 
©graphic j|pic2|f 

©next 

See also 
(^define 
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@numberline (not implemented) 

Syntax 
©numberline [ label] [ start_with min-value ] [ count_by delta ] 

""Draws a numberline over the top third of the tutorial area. The numberline will always have 11 tick marks 
and unless start mth and count_bv are specified it will range from -5 to 5. Start mth specifies what the 
smallest value on the number line will be, and country specifies the increments between each tick mark. 

Up to 2 things can be plotted on any given numberline at one time. 

label can either be a quoted string or a variable. 

min-value and delta can either be numbers or variables containing numbers. 

EXa|T_P create a numberline which goes from -35 to 15 in increments of 5. 

©numberline |numlineOl| start_with -35 count_by 5 

@erase j|numlineOl|| 

See also 
@numberline_clear 

(cynumberline_input 

@numberline_plot 
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@numberline_clear (not implemented) 

Syntax 
@numberline_clear numberline-label 

Function , .        ... 
This function clears any plots that have been made on the numberline so far. It does not erase the numberhne 
itself though. You should use @erase or (ojerase "label" to do that. 

numberline-label can either be a quoted string or a variable. 

Examples 
@numberline f|nll|| 
@numberline_plot f|nll|| (gel ~3 

@numberline_plot f|nll|| ||lt|| 2 
@next 
@ 
@_ We need to clear the numberline if we want to plot anything more. 

@numberline_clear 
@numberline_plot f|nll|| j|eq|| 4 

See also 
^numberline 

(o/numberline_plot 

(ojnumberlinejnput 
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@numberline_input (not implemented) 

Syntax 
@numberline_input numberline-label into operation value 

after this command, operation will equal one of the following: 
"nothing" - if the student pressed done without plotting anything. 
"It" - for less than 
"le" - for less than or equal to 
"eq" - for equal to 
"gt" - for greater than 
"ge" - for greater than or equal to 

numberline-label can either be a quoted string or a variable. 

operation and value must be variables. 

Function % ,   r      ... 
Waits for the student to draw a plot on an existing numberline which was created using the ©numberline 
command  The student will be able to select a point on the numberline and an operation (<, >, <-. >-, -) 
from a set of buttons drawn under the numberline. Then the student will press a "done" button, and control 
will return to the script. Information about the plot is returned in two variable: operation and value. An ®if 
command can then be used to determine whether the student plotted the right thing or not. If the student 
presses "done" before plotting anything, then operation will equal "nothing". It is important to check for 

this case. 

Examples 
©numberline ||nll|| 
@ Ask the  student to plot  something. 

@text 
Plot the inequality |x > o| on the numberline. 

©numberline_input |nll| into operation value 

@ 
@ Figure out what they plotted. 

@if operation = ||nothingJ| 

@text 
You didn't plot anything. 

@else 
@if operation != j|gt|| 

©evidence nodel5:error2:1 

©text 
Sorry, you didn't get the right operation.  You should have chosen the 
^greater than| or ]|>f| button, 

©if value != 0 
©evidence nodel5:error3:1 

©text 
Sorry.  You got the operation right, but you didn't pick the right number 
on the numberline.  You should have picked 0. 

©else 
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©evidence nodel5:correctState:l 

@text 
That's right.  Let's go on the the next problem. 

@end_if 

@end_if 

@end_if 

@ 
@next 

©erase 
@  Erase the numberline 

@erase f|nll|| 

See also 

^numberline 

(£t;nuitiberline_plot 
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@numberline_plot (not implemented) 

Syntax 
@numberline_plot numberline-label operation value 

where operation can be one of the following: 
"It" - for less than 
"le" - for less than or equal to 
"eq" - for equal to 
"gt" - for greater than 
"ge" - for greater than or equal to 

numberline-label and operation can either be a quoted string or a variable. 

value can either be a number or a string containing a number. 

Function 
Draws a plot on an existing numberline (referenced by numberline-label). 

Examples 
@- We want to  show the  student  how to plot x <  J 
@numberline ||numlineOl|| 
@numberline_plot ||numlineOlf| ]|lt|| 3 

See also 
(«^numberline 

(ajnumberlinejnput 
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©remediate 

Syntax 
©remediate 

Function ,     ^,.   t ,     . 
Invokes a remediation cycle. The INKS is examined to see if there are any areas where the student is 
deficient. If one or more are found, a remediation lesson is found which can address the problem. 

Examples 
@do ||lessonl|| 
@do Upracticelfl 

@do |testl| 
©remediate 

See also 
(^define 

(o;do 
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Syntax 
@set variable expression 

Function . 
Sets the variable to the value of expression. Expressions can be as simple as a number or variable, or as 
complex as an equation. Here is a list of the arithmatic operators that can be used in expressions: 

+    addition 

subtraction 

*     multiplication 

/     division 
A    exponentiation 

( )   parentheses are used to change the order of operations 

It's important to understand the precedence for the order of operations. What this means is that certain 
operations are always performed berfore other ones, regardless where they are in the expression. For 
example, the expressions "3 * x + 5" and "5 + 3 * x" will give the same result because multiplication is 
always done before addition. Here is the order of precedence, exponentiation is always done first, the 
multiplication and dividion, and finally addition and subtraction. The parentheses can override this 
precedence whenever it's necessary. For example, if you're writing the following expression : 

y_±^ 
x+ 1 

you must write it as "(y + 5) / (x + 1)". If you don't use the parantheses and you write "y + 5 / x + 1", then 
what you're really saying is : 

y+ _x_+ 1 

5 

Examples 
@multiple_choice  into y 
Pick a number to  substitute  for   ~y'   in the  following equation   : 

x  = y;   +  2y  +  3 
Then I'll tell you what the  answer  is. 
©answer ||l|| 
1 
Sanswer ||2f| 
2 
©answer j|3|| 
3 
©answer l|4|f 
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4 
@end_multiple_choice 

@set x y*2 + 2y + 3 
@text 
The value of x is #x. 
@next 
@erase 

@text |textOll 
Hi there. 
@Set text_label_var |textOl| 
©highlight text_label_var 

See also 
<&if 
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@sound (not implemented) 

Syntax 
©sound sound-file 

Function 
Generates a sound by playing a ".wav" file. The sound-file must be 8 characters or less. 

sound-file can either be a quoted string or a variable. 

Examples 
@multiple_choice into sound_name 

What is the capital of France? 

©answer correct ||chord|| 

Paris 
©feedback 

Right! 

©answer j|blare|| 
Berlin 

©feedback 

Wrong! 
@end_multiple_choice 

© 
@- This will play different sounds depending on whether the answer 

@- was right or wrong, 

©sound sound_name 

See also 
(^graphic 

(«^background 
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©switch (not implemented) 

Syntax 
©switch expression 

{ @case "laber 

commands } 

[ ©default "laber 

commands ] 
@end_switch 

Function ^..„    , „ 
Executes the case that has a label matches the the value of expression. See @if and for more information on 

expressions. 

Examples 
@switch x 

@case j|l|| 
The  value  of  x   is   1. 

@case j|2|| 
The value of  x  is  2. 

@case ||3|| 
The value of  x  is  3. 

@case ||4|| 
The  value  of  x   is  4. 

@default |notl-4| 
The  value  of  x   is  not   1,   2,   3  or  4. 

@end_switch 

See also 
@if 
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@title (not implemented) 

Syntax 

©title [ label] [ at area-name ] 
Some-RTF-text. 

""""I"title is used to create a standard title page. All the text following ©title will be centered. The first line will 
be drawn in 24 pnt, the second in 18 pnt and the third in 14 pnt. 

label can either be a quoted string or a variable. 

Examples 
©define M1L1S1 

@title 
Introduction 

Module 1 

Lesson 1 

Section 1 

@next 

@erase 

See also 
©hide 
©show 
©highlight 

@unhighlight 

#{ label, text} 
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Syntax 

©text [ fexf-/abe/] [ at area-name] [ hidden ] 
Some-RTF-text. 

FUn|'text preceeds an rtf text description that will be displayed to the user. The rtf description may include text, 
equations, and graphic insertions. If a label is included on the ©text command line, this is abelcan be used 
to control when and how this text is displayed. The at attribute specifies where the text will be displayed If 
no at is specified, the default display area will be used. The hidden attribute allows this text to be defined 
and not displayed on the screen. This hidden text will consume its space but it will not be seen (until the 

author explicitly shows it). 

The following text attributes will end up in the text displayed by SIAM. 

Font 

Font size 

Bold, italics, underline 

Margins 
Left and right justification, and centering 

text-label can either be a quoted string or a variable. 

Examples 
@text 

Here is some text with all sorts  of_*lrilll«|C_StUTf done 

to it 

t-o ghnw what will translate into the final lessons. 

Ot.ext   »text01" 
You should be able to  see  this, 

larsxt.   "text02"   hidden 
hit-  Y""  won't   see me until  vou press   the   "next"   button. 

I 
@next 
fishow   "text02" 

See also 
©hide 

©show 

©highlight 

©unhighlight 

#{ label, text} 
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@unhighlight 

Syntax 
@unhighlight text-label 

text-label can either be a quoted string or a variable. 

Function 
Highlights the text specified by text-label. 

Examples 
atext "sentencel" 
nnrp upon a time there was this really #fwordOl.lame) girl named Melinda 

Lamowitz. 
a- This command highlights the word "lame" in the above sentence. 

Ohiahlight "wordOl" 
a- This command will unhighliaht it. 

Oimh iah light "wordOl" 

See also 
(^highlight 
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@xy_graph 

Syntax 
@xy_graph [ graph-label] [ start_xy_with minx, miny] [ count_x_by xdelta ] [ count_y_by ydelta ] 

""itows a cartesian coordinate plane in the upper-right quarter of the window. Start_xy_with indicates where 
to start counting on both the x and y axes. For example, if minx and miny are set to 0 and 0, the lower left 

comer on the graph will be the origin. 
C '<nmtjc_by and anmt_y_by define the increments between the tick marks on the x and y axes. 

graph-label can either be a quoted string or a variable. 

minx, miny, xdelta and ydelta can either be numbers or variables containing numbers. 

EXSITIDIGS 
&-  Draw a arar>h  of  th*  first, quadrant. The  tick marks  on both 
(a-   the x and v axes  will  be numbered   0.   10.   20,—. ■ ■   100. 
avy graph   "araphOI"   start xy with 0.0  count x by 1.0  count y by 10 

(jarase   "graphOl" 

See also 
(£>xy_graph 

(a:xy_plot_point 

(a;xy_plot_line_2points 

(g!xy_plot_line_yint 
(a^xy_input_point 

(aixy_inputJine_2points 

(a;xy_inputjine_yint 
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Syntax 
@xy_clear graph-label 

Function 
Clears away all the plots which have been made on an xy graph. This is mainly for convenience. If you use 
this command, you won't have to erase and redraw the graph everytime you want to draw something new. 

graph-label can either be a quoted string or a variable. 

Examples 
@xy graph "araphOl" 

etext 
These two line intersect at the origin. 

(3xy plot line yint "graphOl" 1 0 
@yy plot line vint "araphOl" -10 

Onext 

Qtext 
These two lines intersect at the point—(2,1) . 

@xy clear "graphOl" 

@yy plot   line vint   "graphOl"   2   -3 
@yy plot   line vint   "araphOl"   -1   3 
flerase   "graphOl" 

See also 
(gxy_graph 

(o;xy_plot_point 

(o;xy_plotjine_2points 

(a;xy_plotJine_yint 

(«;xy_input_point 

(ajxy_input_line_2points 

(oixyJnputJine_yint 
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@xy_plot_point 

Syntax 
@xy_plot_point graph-label x, y 

Function 
Plots a single point on an xy_graph. Only 2 points can be plotted at any one time. 

graph-label can either be a quoted string or a variable. 

x and v can either be numbers or variables containing numbers. 

ExdfflDlBS 
&- we want  to  show the  student how to plot a  line  through the 

0-  point   (0.01   and   (1.3) 
(ayy graph   "araphOl" 
(ayy plot  point   "araphOl"   1.   3 
@xy plot  point   "araphOl"   -2. 5 

See also 
(axy_graph 

(£txy_plot_point 

(£t,xy_plotJine_2points 

(a.xy_plot_line_yint 

(axy_input_point 

(a;xy_input_line_2points 

(axy_input_line_yint 
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@xy_plot_line_2points 

Syntax 
@xy_plotJine_2points graph-label x1. y1 x2, y2 [ hatching hatch-style hatch-direction ] 

where hatch-style can be one of the following: 
"line" - just a solid line without hatching (this is the default) 
"linejill" - a solid line with hatching 
"dashjill" - a dashed line with hatching 

and hatch-direction can be one of the following: 
"up" - the hatching is "above" the line - positive y direction 
"down" - the hatching is "below the line 

If the line is vertical, the "up" direction will fill to the right - the positive x direction. 

""Draws a plot of the line defined by the two points (xl,yl) and (x2,y2). Can also display an inequality using 

the "hatching" parameters. 

graph-label can either be a quoted string or a variable. 

xl. vl. x2 and y2 can either be numbers or variables containing numbers. 

hatch-style and hatch-direction can either be a quoted string or a variable. 

EXBITIDIGS 
a- WP want, to show the student how to plot a line through the 

a- point (0,0) and (1.3) 

axy "rauh "araphOl" 
flxy plot points "graphOl" 0.0 1.3 

flprasfi   "araphOl" 

See also 
(o;xy_£raph 

(o!xy_plot_point 

(S!xy_plotJine_2points 

(§>xy_plot_line_yint 

(a;xy_input_point 

(o^xy_iiiputJine_2points 

^xy_input_line_yint 
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@xy_plot_line_yint 

Syntax 
@xy_plot_line_yint graph-label slope yintercept [ hatching hatch-style hatch-direction ] 

where hatch-style can be one of the following: 
"line" - just a solid line without hatching (this is the default) 
"linejill" - a solid line with hatching 
"dashjill" - a dashed line with hatching 

and hatch-direction can be one of the following: 
"up" - the hatching is "above" the line - positive y direction 
"down" - the hatching is "below the line 

Function , ,. ♦■ 
Draws a plot of the line defined by the slope and yintercept. Can also display an inequality using the 

"hatching" parameters. 

graph-lahel can either be a quoted string or a variable. 

slope and vintercept can either be numbers or variables containing numbers. 

hatch-style and hatch-direction can either be a quoted string or a variable. 

Examples ^    . n .. 
a- wa want to show the student how to plot the inequality 

0- Y >   3x - 2 
gyy graph "araphOl" 
flvy plot joints "aranhOl" 3 -7  hatching "dash fill" "up" 

Bprase "araphOl" 

See also 
<rt;xy_graph 

(^xy_plot_point 

(a>xy_plot_line_2points 

(o!xy_plotjine_yint 

(a;xy_input_point 

(a!xy_input_line_2points 

(a;xy_inputjine_yint 
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@xy_input_point 

Syntax 
@xy_input_point graph-label into x, y 

FUnwTi" for the student to plot a single point on an xy_graph. No more than 2 things can be plotted at any time. 

graph-label can either be a quoted string or a variable. 

x and v must be variables. 

Examples 
flyy graph "graphOl" 

etext 
Plot the point 11.   -2)   ori the graph. 

Oxy input point "araphOl" into x, y 

aif x = 1 and v =  -2 

Right. 

@else 
Wrongo Batman I 

Oendif 

See also 
@xy_graph 

@xy_plot_point 

(ajxy_plot_line_2points 

(§xy_plot_line_yint 

(o]xy_input_point 

(a>xy_inputJine_2points 

@xy_input_line_yint 
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@xy_input_line_2points 

Syn@xy_input_line_2points graph-label into xl, y1 x2, y2 hatch-style hatch-direction 

where hatch-style can be one of the following: 
"nothing" - the student pressed done without completing the plot 
"line" - just a solid line without hatching (this is the default) 
"linejill" - a solid line with hatching 
"dashjill" - a dashed line with hatching 

and hatch-direction can be one of the following: 
"none" - either the fill style is "line" or the student pressed done without completing the plot 
"up" - the hatching is "above" the line - positive y direction 
"down" - the hatching is "below" the line 

If the line is vertical, the "up" direction means that the plot is filled to the right - the positive x direction. 

^V™ for the student to make a plot of a line on the xy graph using two points. If the student presses the 
"done" button without plotting anything, the value of hatch-style will equal "nothing' (tins is an important 
case to check for). 

graph-label can either be a quoted string or a variable. 
xl. vl, x2, v2, hatch-style and hatch-direction must all be variables. 

Examples 
gyy araph "al" 
O Ask the student to plot something. 

@text 
Plot, the line which passes through the origin and (2,3) 
flvy input- line vint "gl " into slope vint hatch style hatch direction 

@ 
0 Figure out what they plotted. 

Oif hatch stvle = "nothing" 

Qevidence node27:errorl:1 

@text 
You didn't plot anything. 

@else 
flif fxl=0 and y1=n and x?=2 and v2 = 3) or (x2=0 and v2=0 and xl=2 and 

yl = 3) 
Oevidence node27:error2:1 

@text 
sorrv. vou didn't get the right points. 

@else 
@if hatch stvle != "line" 

Oevidence node27:error4:1 

etext 
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.gorrv.  The line is in fhs riahr plane, but it should not be dashed and 
there shouldn't be anv hatching. 

@else 
Oevidence node27:correotState:1 

@text 
That's right.  Let's go on the the next problem. 

@end if 

@end if 

Oend if 

1 
Onext 

Qerase 
0  Erase the xv graph 

Oerase "gl" 

See also 
(o;xy_graph 

(o;xy_plot_points 

(oixy_plot_line_2points 

@xy_plot_line_yint 

(o^xy_input_point 

(^;xy_inputJine_2points 

(«>xy_inputjine_yint 
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@xy_input_line_yint 

Syntax ,_.,._,.    t- 
@xy_input_yint graph-label into slope yintercept hatch-style hatch-direction 

where hatch-style can be one of the following: 
"nothing" - the student pressed done without completing the plot 
"line" - just a solid line without hatching (this is the default) 
"linejill" - a solid line with hatching 
"dashjill" - a dashed line with hatching 

and hatch-direction can be one of the following: 
"none" - either the fill style is "line" or the student pressed done without completing the plot 
"up" - the hatching is "above" the line - positive y direction 
"down" - the hatching is "below" the line 

Function , 
Waits for the student to make a plot of a line on the xy graph using the slope and y-mtercept. If the student 
presses the "done" button without plotting anything, the value oViatch-style will equal "nothing   (this is an 

important case to check for). 

graph-label can either be a quoted string or a variable. 

slope, vintercept. hatch-style and hatch-direction must all be variables. 

Examples 
@xy  graph "gl" 
3 Ask the student to nlot something. 

etext 
Plot, the inequality 'y < 2x + 1" on the graph. 
avy input, line vint "al" into slope yinr. hatch style hatch direction 

@ 
@ Figure out what thev plotted. 

0if hatch style = "nothing" 

Oeyidence node27:errorl:1 

@text 
You didn't plot anything. 

@else 
@if slope != 2 

Oevidence node?7:error2:1 

@text 
.Sorrv. vou didn't get the slope right. 

@else 

@if vint l= 1 
@evidence node27:error3:1 
Qtext 

sorry.     You got  the  slope  right,   but you didn't  intersect  the y-axis  at  the 
right  place. 
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Oelse 
gif hatch stvle != "dash fill" 

flpvif^snce node27 :error4 :1 

@text 
gnrrv.  The Hn» is in the ri^ht mace, but vou need to have a dashed line 

with hatching below it. 

@else 
flif hatch direction != "down" 

Oevidence node27:error5:1 

@text 
c^rv.  Rverv^^a is right ovrppt that the hatching needs to be below the 

line instead of above it. 
fielse 

flevidence node27:correctState:1 

@text 
That's right.  Let's go on the the next problem- 

Send if 

Send if 

@end if 

@end if 

@end if 

@next 

Qerase 

@  
ßerase   "gl' 

See also 
(u>xy_graph 

@xy_plot_point 

(o;xy_plotJine_2points 

(cyxy_plotJine_yint 

(a!xy_input_point 

(o)xy_input_line_2points 

@xy_inputjine_yint 

Erase the xv graph 
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@wait 

Syntax 
time 

Function 
Pauses execution for the number of seconds specified by time. 

time can either be a number or a variable containing a number. 

Examples 
@wait   3 

See also 
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#variable 

Syntax 
üvariable 

Function 
Displays the value of a variable. This can only be used within text. 

Examples 

The value of  x  is  #x. 

See also 
#< label, text} 

#[picture] 
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#[picture] 

Syntax 
#[picture] 

Function t t        ,   ... t  t 
Displays a picture at the current location. This can only be used within text. 

Examples 
@text 
This   lesson  consists  of   2   factions: 

ftrhnlletl   Arming  and   subtracting   fractions. 
ttfbnllPtl   Multiplying ^nd  dividing  fractions. 

See also 
#vanable 

#! label, text! 
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#{label, text} 

Syntax 
«{label, RTF-texQ 

Function 
Allows labeling of specific words in text. 

Examples 
@text 
T ,„ant   to hP able  t-.o highlight   thP word  "#fwordl,hell o}"   in this paragraph. 

iahinhlight   "wordl" 

See also 
#variable 

#[picture] 
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Scripting with Gilligan 

Purpose of this document 

The following is a user's guide to the Gilligan scripting language, which 
allows instructional technologists to create computer based instruction. 
Scripts should be written in Macintosh RTF. 

For the sake of clarity, certain type styles will be used for the example 
commands of this document In the example commands of this document, the 
parts of the commands that appear in the script as written are set in bold 
face. Specifications (usually in the form of a quoted string) are set in italics. 
Straight brackets are used to indicate which specifications are optional. The 
symbol * is used to stand for any string of alphanumeric characters and does 
not appear in any actual scripts. 

©command "specification" [optional-specification] 

In the example scripts of this document (just as in actual scripts), 
however, only plain text style is used. White spaces never appear within the 
quote marks in a quoted string. Otherwise, as a general rule, there should be 
one white space between the command and each of the specifications that 
modify it The examples of scripted commands are set in 10 pt font. 

@text 
This is a scripted text item example in ten point font. 

In the scripts, all commands begin with an @ sign with one type of 
exception. For commands which are embedded in text, which begin with a # 
sign. The # sign is also used with variables when they are embedded in text. 

Courseware Control 
Each course is controlled by the activities that are defined and 

retrieved. As currently implemented "backgrounds" are controlled at the 
courseware level.   Remediation opportunities are turned on and off as 
defined by the instructional technologist 
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Controlling the sequence of activities 
The encoding which handles the sequencing of lessons, practices, and 

remediations within modules and the organizational structure of the tutor 
will be done by Drew and Jeff. Jeff will also encode the user menus for the 
modules and the lesson. 

Description of Tutor 
The learner is allowed to select the lesson and is given the option of 

skipping the lesson and proceeding to practice problem sets or tests. There 
will be in addition an auto-pilot function which chooses an appropriate 
default path through the tutor for the learner. 

Naming convention for activities: 

M(l-10)L(l-5)S(l-5) 
M(l-10)L(l-5)R(l-5) 
M(l-10)L(l-5)P(l-5) 
M(1-10)L(1-5)R-L 
M(1-10)L(1-5)P-L 
M(1-10)L(1-5)T 
M(1-10)L(1-5)F 

for each section 
for each section's remediation 
for each section's practice 
for each lesson's remediation 
for each lesson's practice 
for each test 
for each filler 

M- module 
L - lesson 
T - test 
R - remediation 
F - filler 

Defining activities 

Activity is a general term that applies to any section, remediation, filler. 
At the beginning of each activity file, this command is given to associate the 
name of the activity with its content. 

• to define subsequent script in file as the activity by name (no 
quotes this time) 

@define activity 
Ordering activities 

The sequence of activities (includes all sections, remediations, fillers) is 
controlled by the @do command. This command is used at the meta- 
organizational level rather than in the activity files. 

• to retrieve a named activity (use quotes around named activity) 
@do "activity" 
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Remediatlons 
The learner's need for remediation is assessed at the completion of 

each practice problem set or test. This assessment is based on the learner's 
performance on the practice and testing sections of the tutor. If indicated by 
the accumulated evidence, one or more remediations will be selected for the 
learner at this time. After completing the remediation, students will be given 
practice problems on the content of the remediation. 

• to assess need for remediation; and, if necessary, cues remediation 
activities for the learner 

@remediate 

The script that handles the organizational structure of the tutor will 
be scripted like this: 

file "coursmap" 

@define COURSEMAP 
@do "M1L1" 
@do "M1L2" 
@do "M1L3" 

@doaM2Ll'' 
@do "M2L2" 
@do "M2L3" 
@do "M2L4" 

@do "M3L1" 
@do "M3L2" 

file "MILir 

@define M1L1 
@background "beach" 
@do "MILir 
@do "M1L1S1" 
@do "M1L1P1" 
@remediate 
@do "M1L1S2" 
@do "M1L1P2" 
©remediate 
@do aMlLlS3" 
@do -M1L1P3" 

January 18,1995 
3 



©remediate 
©do"MlLlP4" 
©remediate 
©do "MILIT" 
©remediate 

Backgrounds 

A different picture serves as a background for each module and 
serves as a navigational cue. This pair of commands occurs at the meta- 
organizational level and does not appear in activity files. 

•   to place graphic behind tutorial area 
©background uimage_name" 

In this scripted example, a bitmapped graphic of a fern is used as the 
background for modulel. 

@define"mod lfern.bmp" 
©background nmodlfern.bmp" 

Sector Conventions 
Sector conventions which specify the location where text/graphic items 

can be placed are written like this -  at "location". The quotes don't include 
the 'at' and there is one space between the at and quoted word. Don't forget 
the quotes around the "location" 

If a text or graphic item is placed at a specific location, then it appears 
only within the defined boundaries of that sector. 

Sector Convention A 

this is a scaled model 

The tutorial area (blue rectangle) is divided into six sectors. These 
placements are specified in this way: at "upper, at "lower, plus a Jeff, - 
„middle" or _right". (no white spaces are used between these words, e.g. at 
"lowerjeft") 
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Sector Convention B 

The tutorial area (blue rectangle) is divided into three sectors — if 
not specified otherwise, text wraps into all areas not appropriated by a 
graphic. These placements are specified in this way: at "top", at "center", and 
at "bottom". 

Miscellany 

Comments 
All comments begin with @- and continue to the end of the 

paragraph. Comments themselves never appear on screen, but are used to 
clarify the meaning of the script. 

Here is a scripted example of a comment 

@- The next piece of text won't be displayed until later. 
<§>text utext02" hidden 
I'm hidden. You can't see me. ha ha 

Skipping lines 
The @ sign plus a hard return will be used to leave spaces in the 

script. This is used only to make the script more legible and does not affect 
the screen display. 

Construction and Control of Instruction 

Title pages 

Whenever the learner proceeds to a new lesson, section or 
remediation, a title page will appear. It serves to introduce the learner to the 
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content to come and let the learner know where they are in the tutor. The 
name of the section will also appear at the top of the screen above the 
tutorial area and superimposed over the background area. 

• to generate a title page-precedes lesson, section, and remediation 
and always followed by @next/@erase 

@title 

Example script: 
@title 
This is the title page of this lesson in a generic format 
@next 
@erase 

(this command signals a yet-to-be-implemented title page template which is 
used at the beginning of each lesson, section and remediation) 

• to generate a title heading at the top of screen (superimposed over 
the background) 

@text at "title" 

Defining the page 

The needed paging behaviors are 
• progressive reveals 
• paging forward 
• paging backward 

Progressive reveals 
Progressive reveals add elements of a series of text and graphic 

items on the screen one after another as the learner presses the next key. As 
a rule, erases are not used between items of this series. If one of these items 
are erased from the screen, items beneath it on the screen will rise higher on 
the screen to fill the erased area. 

• to execute the next command when the learner hits the next key 
@next 

• to erase the entire screen 
@erase 
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This is a scripted example of a Simple Progressive Reveal: 

@-the following example was donated by Jeff Bassett and constitutes 
evidence that playing Doom promotes violence in the workplace(DM) 
@>text 
Step 1:   Place the rubberband on your right forefinger. 
@next 
@text 
Step 2: Pull the rubberband back with your left hand. 
@next 
@text 
Step 3: Aim at your target (Drew makes a good target). 
@next 
@text 
Step 4: Release the rubberband, and listen to your target scream. 
@next 
@erase 

Paging Forward 
A page is defined as a "screenful" of text and graphics and delineated 

by a @next/@erase pair of commands. In essence, the @next/@erase pair of 
commands acts as a page break. 

Paging backward 
The learner needs to be able to page backward through a section or 

lesson or remediation. When the student chooses to hit the back arrow, the 
previous page starts from the top of the screen, rather than from the last part 
of a progressive reveal. In practice, the learner is returned to the place in the 
lesson that corresponds to the immediately previous @next/@erase pair. For 
the purposes of this function, the @erase must immediately follow the @next 
and not have any location specified. At present, there is no direct command 
to override this mechanism, and the hide and show commands will be used to 
control this process. 

Each time the student hits the back key, the program will find the 
immediately previous @next/@erase pair of commands. Notice there are no 
comments after the @erase in this instance. 

• to create a page break 
@next 
@erase 
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Calling text/graphics to the tutorial area 

The tutorial area will have a margin of at least one character all 
around. If the area within the margin were filled by text, it would contain 
aboutl6 14 pt lines vertically and about 60 characters horizontally( this 
information needs to be verified). A graphic item filling the entire available 
space (including the margin) would be 4.9 in. x 6.9 in. 

Placement of text/graphic items 
Text and graphic items are placed on the screen according to the 

current position of the program cursor. (The program cursor is not the same 
as the mouse/arrow key driven cursor used by the learner. Its location on the 
screen is controlled by the script and is never seen by the learner.) On an 
empty page, the default location of program cursor is in the upper left corner 
of the text area. Therefore, the default placement of the first text/graphic 
item to be placed on the screen is at the upper left corner as well. 

As text or graphics are added to the screen, the program cursor 
proceeds to the line directly following the last item drawn. In this way, each 
successive item is placed immediately under whatever item is lowest on the 
screen, unless a particular sector location is specified. 

When an @erase command is executed and the screen is cleared, the 
program cursor returns to the upper left hand corner again. 

About Text 
The body of text that follows the @text command is placed on the 

screen immediately underneath the previous entry unless otherwise 
specified. RTF will save formatting information on italicizing, underlining, 
and holding exactly as the text is entered by the writer of the section or 
remediation. Font size information will also be saved. 

Text that is labeled can also be hidden, which means that the item 
will consume space, but not appear on screen until the writer explicitly shows 
it. . 

• to place a text item on the screen: 
@text ['labelname'f][3it"center"] [hidden] 
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This example places text on the screen at the current program cursor 
location: 

©text 
Hi, Tm a piece of text. What are you? 

About Graphics 
Graphics require filenames that are unique across modules. Graphic 

filenames are put in quotation marks. These filenames refer to a ".bmp" file, 
so it should be 8 characters or less. Just like text items, graphics maybe 
labeled. Names of labels need only be unique within a section or remediation 
and are also within quotes. 

• to place a graphic on the screen: 
©graphic "filename" [at "location"] 

This example places the graphic named coolpic on the screen at the 
current program cursor location: 

©graphic "coolpic" 

This example places the graphic named coolpic on the screen at a 
specified location: 

©graphic "coolpic" at "lower_right" 

This example embeds a picture within text (note that straight brackets 
are used here): 

©text 
Here is a list of things which are generally a bad idea: 

#[bullet] Playing in the road. 
#[bullet] Running with scissors. 
#[bullet] Kite-flying in thunderstorms 

Erasing 
The erase command can be used to erase the entire screen or a 

specified area or object. The object can be a text or graphic item, as well as a 
tool such as a number line or an xy graph. If no object or area is specified, 
the entire screen is cleared. 
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• the generic erase command 
@erase[' label-of-itemn] [ at "location"] 

In this example, the entire screen is erased. (Remember that the 
@next/@erase combination acts like a page break) 

@- This will erase the entire screen 
@erase 

In this example, the only the text labeled "textOl" is erased. (Note that 
any item underneath "textOl" will move up the screen to fill the emptied 
space if its placement has not been specified) 

@text "textOl" 
Better read me fast. 
@wait2 
@erase "textOl" 

If a piece of text or graphics is erased from the middle of the screen 
using @erase "label", everything which was drawn after it will move up the 
screen to fill the blank made by the thing which was erased. The program 
cursor also moves up the screen a corresponding amount. 

Labeling 
Labels are used to mark text, graphics and the tools. They allow 

items already placed on the screen to be modified by subsequent commands. 
Labels are either a quoted strings or a variable. The quoted string can be any 
alphanumeric beginning with a letter, and must be of eight or fewer 
characters. No white spaces at all are to be used within the quotation marks 
of a quoted string. 

Labels can either be used for a whole section of text or a whole 
graphic or for a piece of text or a graphic embedded in text. In relation to 
text, labels are used for highlighting, hiding, showing and erasing. In 
labeling blocks of text, place label name in quotes immediately after the 
@text command. 

• To label blocks of text 
@text ["label-name"] [at"location"] [hidden] 
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In this example of labeled text, notice that no spaces at all are used 
between the quotes: 

@text "textOl" at "middle" hidden 
If this were unhidden text, you would be able to read this. 

For the purpose of marking specific pieces of text within a block of 
text for highlighting, hiding, showing and erasing inline labels are used. 

• to label as * the piece of text or graphic item within curly- 
brackets 
#{ * , item labeled} 

To label a specific word within a body of text, script it this way: 

@text 
There once was this really #{word01,brilliant} girl named Melinda 
Brillowitz. 

Hiding/Showing 
Once a text or graphic item is given a label, the writer can hide/show 

the item by using the appropriate command followed by its label. Unlike the 
screen behavior when an item is erased, when an item is hidden, the cursor 
does not move back up the screen. Therefore, an item whose location is not 
specified and which is lower down on the screen will move up to fill the 
erased area unless the removed item is "hidden" rather than erased. Hidden 
text will consume space but it will not be seen until the author explicitly 
gives the command to show iL 

• to hide a labeled text or graphic item 
@hide "labelOl" 

• to show a labeled text or graphic item 
@show "labelOl" 

This is a scripted example of hide/show behavior in a progressive 
reveal in which text is revealed in the middle of the screen 

@text 
Step 1 
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@— This text starts out hidden and will be revealed later. 
@text "text02" hidden 
Step 2 
@text 
Step 3 
@next 
@show "text02" 
@next 
@erase 

This is the page as it first appears: 
Step l 

Step 3 

This is how the page looks after pressing "next": 
Step 1 
Step 2 
Step 3 

This is another example of a hide/show script in a progressive reveal in 
which text items are replaced on the screen as you progress. 

@text "textOl" 
Stepl 
@text "text02a" 
Step 2 (form a) 
@text "text03" 
Step 3 
@next 
@ 
@erase "text02a" 
@— The next erase acts as a "cut" 
@erase atext03" 
@text "text02b" 
Step 2 (form b) 
@-— This show acts as a "paste" 
@show "text03" 
@next 
@ 
@erase atext02b" ^ 
@ The next erase acts as a "cut" 
@erase "text03" 
@text "text02c" 
Step 2 (form c) 
@ This show acts as a "paste" 
@show "text03" 
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@next 
@erase 

The page as it first appears: 
Stepl 
Step 2 (form a) 
Step 3 

This is how the page looks after 
Step l 
Step 2 (form b) 
Step 3 

pressing "next": 

This is how the page looks after pressing "next* a second time: 
Stepl 
Step 2 (form c) 
Step 3 

Highlighting 
Once a text is given a label, the writer can highlight/unhighlight the 

item by using the appropriate command followed by its label. 

• to highlight a labeled text 
©highlight "labelOl" 

• to unhighlight a labeled text 
@unhighlight "labelOl" 

An scripted example of highlight/unhighlight behavior: 

@text "textOl" 
Pay attention to this text. 
(©highlight "textOl" 

A scripted example of highlight/unhighlight behavior for a specific 
word within a body of text: 

@text 
There once was this really #{word01, brilliant-} girl named Melinda 
Brillowitz. 
@next 
(©highlight "wordOl" 
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The word "brilliant" is highlighted in the above text when the learner 
presses next. 

Transitions/Sounds/Waits 

Transitions 
Transitions will be used to emphasize a logical progression in a series 

of graphics. 

•   to use an effect 
@next [transition transition^name ] 

Available transition effects are as follows: 
(transition-name must be an unquoted string): 

blind crush 
diagonal drip 
explode random (approximates fade) 
sand slide 
spiral split 
weave wipe 
snake slideblind 
slideweave interleave 
growlines 

This is a scripted example of a transition effect - note that the word 
random is unquoted in this instance: 

@- We want to fade from a page showing "picl" to a page showing 
"pic2" 
©graphic "picl" 
@next transition random 
@erase 
©graphic apic2" 
@next 
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Sound Cues 

Three types of sounds will be used to emphasize points or give 
feedback to the learner. Chord indicates a correct response, blare, an 
incorrect response and ring is used for emphasis. As with labels, sound files 
are a quoted string of eight or fewer characters. 

• to play a given sound 
@sound #"so\mdSüen 

Here is a scripted example of the use of a sound cue: 

@sound #"chord" 

Wait 

A wait command can also be used to delay entering additional items 
to the screen in the absence of the learner pressing the next key. Only time 
increments of whole seconds are permitted. 

• to delay execution of the next command for a number of seconds 
@wait number_ofseconds 

A scripted example of wait behavior lasting 3 seconds: 

@wait 3 

Gathering INKS Node Evidence 

In this tutor, the evidence sent to an INKS node is generated only from 
practice problems and from test questions (locally, this process is known as 
INKSifying). However, evidence can be gathered from any point is the tutor. 

A multiple choice question from which evidence is gathered will have 
the following notation after the @answer command. This set is reiterated for 
each node that is referenced: f 

• to INKSify a multiple choice question 
@multiple_choice [evidence node:state [:va/ue]] 

(See scripted example in multiple choice section below) 
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Any other decision points from which the writer may wish to gather 
evidence will use an ©evidence command. This decision point may be either 
an if statements or switch command. The ©evidence command is reiterated 
for each node that is referenced: 

• to INKSify an if statement or switch command 
©evidence nodeistate [lvalue] 

(See scripted example in section on if statements and switches 
below) 

At the ©remediate command, the accumulated evidence is 
weighed, and if it is determined that a remediation is needed, the 
appropriate remediation section is sent to the learner. 

Multiple Choice Questions 
The order of the responses to the multiple choice questions are 

automatically randomized unless writer specifies that responses are to be 
presented in the order they have been scripted. 

Every multiple choice question must contain all of the following: 

• to display mc question to the screen (order of answers is 
randomized unless ordered is specified) 
@multiple_choice [ordered] 

• to display each answer to the screen 
©answer [correct] [evidencenodeistate [lvalue]] 

(Each ©answer can provide evidence to the INKS. The "correct" 
keyword or lack of it does not actually indicate anything to the 
computer. It is used to make the script easier for people to 
decipher and edit.) 

• to execute display of text only if the immediately previous 
©answer has been selected by the learner 

©feedback 

• to signal end of the mc question 
@end_multiple_choice 
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This is a scripted example of a multiple choice item from which 
evidence is not collected: 

@multiple_choice 
Which of the equations below describes the word problem? 
©answer 
4.5-x= 7.2 
©feedback 
That's right 
©answer 
4.5 = 7.2+ x 
©feedback 
Even more than that. 
©answer correct 
4.5+x=7.2 
©feedback 
At the very least. 
@end_multiple_choice 

This is a scripted example of an INKSified multiple choice item : 

@- This multiple choice question will update the INKS. 
@multiple_choice 
Given the equation: x = 3y + 4 
What will x equal if y is 7? 
©answer correct evidence nodel28:stateO:l 
25 
©answer evidence nodel28:statel:l 
7 
©answer evidence nodel28:state2:l 
21 
©answer evidence nodel28:state3:l 
11 
@end_multiple_choice 

Variables 
Variables are used as a container for a given value. This command 

sets a variable to the value of a selected expression. Expressions can be as 
simple as a number or text item, or as complex as an equation. 

• to set a variable to the value of an expression 
@set variable expression 
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• to expand a variable (can be text or graphic item) within a text 
block: 

@text 

__#var 

Here's an example of setting a variable to a text item: 

@set greeting "Hello" 
@text 
This little piece of text says #greeting 
@-the preceding @text displays as - This little piece 
of text says "Hello" 

Putting in numbers works in the same way. If the variable in the 
case above were set to 10, the number 10 will be expanded in the text in the 
place of the #var. 

Variables can also be defined according to learner response to a 
multiple choice question. The writer can thus use variables to personalize the 
instruction for the learner. 

• to define a variable through learner response to a multiple choice 
question 

@multiple_choice [into var] 

For example, the learner can be allowed to choose his own variable 
for a subsequent problem. Notice that the label is what is put into the 
variable, not the answer itself. Here is a scripted example: 

@multiple_choice into varl 
Pick any letter to stand for the unknown in the problem. 
@answer "x" 
x ',.' ... 

@answer "y" ^ 
y 

@answer "z" 
z 
@end_multiple_choice 
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If the student has chosen the first answer, the variable is given a 
value of *x\ 

Here is an example in which the learner chooses the value with 
which to evaluate an equation. 

@multiple_choice into y 
Pick a number to substitute for "y" in the following equation : 
x = yA2 + 2y+3 
then I'll tell you what the answer is. 
©answer "1" 
1 
©answer "2" 
2 
©answer "3" 
3 
©answer "4" 
4 
@end_multiple_choice 
@setxyA2 + 2y + 3 
©text 
The value of x is #x. 
©next 
©erase 

A variable could also be used to provide audio feedback in multiple 
choice problems. Here is a scripted example of audio feedback: 

@multiple_choice into soundLfile 
What the right answer? 
©answer #"blareff 

a wrong answer 
©answer #"blare" 
another wrong answer 
©answer #"chord" 
The right answer 
@end_multiple_choice 
©sound sound_file 
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More about expressions 
Here is a list of the arithmetic operators that can be used in 

expressions in the order that they are performed: 

( ) operations within parentheses 
A exponentiation 
• and/ multiplication and division 
+ and - addition and subtraction 

Branching according to Learner Interactions 

At times, the sequence of activities or feedback presented to the 
learner may be adjusted according to previous learner interactions. An if 
statement or a switch is used to define the conditions under which this 
branching takes place. If statements will be used to evaluate learner 
interactions with the tools, and give appropriate feedback to the learner. The 
learner's responses to an if statement or a switch can also furnish evidence 
for an INKS node. 

If statements 
The if statement is generally used rather that the switch command 

when there are only two alternatives. Additionally, each @if or @else can 
provide evidence to the INKS when followed by an ©evidence command. 

Every if statement contains all of the following components: 

• to begin an if statement: 
@if expression 
(The commands listed after @if will be executed, if the 
condition indicated by the expression is true) 

• to specify feedback or activity sequence if the expression is not 
true (this is optional in an if statement) 

@else _;*'.,. 
(the commands listed after @else will be executed, if the    f' 
condition indicated by the expression after @if is not true) 

• to mark the end of an if statement (this is not optional): 
@end__if 
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If the condition indicated by the expression is not true and there is 
no @else command, then the entire script between @if and @end_if is ignored. 

Here is a scripted example of an if statement: 

What is does ^varl^^i +1 equal? 
©answer "8" 

8 
©answer "81" 

81 
©answer "1024" 

1024 
@end_multiple_choice 
© 
©if var2 ■ varl A (varl + 1) 
That's right! 
©else 
Sorry that's wrong. 
@end_if 

Here is a list of the comparison operators which can be used in the 
expression clause: 

= Equal to 
< Less than 
> Greater than 
<= Less than or equal to 
>= Greater than or equal to 
1 = Not equal 

You can combine these simple comparison operators to make complex 
expressions with "and", "or" and "not". 

A scripted example of a complex expression: 

©ifvar« 1 orvar>=3 , 
©highlight "wordOl" ,'»  ,< 
©end_if 
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Switch 
Switches can be used to synthesize several if statements when there 

are several alternatives. Each case listed after a ©switch corresponds to a 
single if statement. The case that has the label which matches the value of 
the variable is the one that will be executed. Additionally, each ©case can 
provide evidence to the INKS when followed by an ©evidence command. 

Every switch contains all of the following components: 

• to begin a switch (the variable may be set to an expression) 
©switch variable 

Following this a list of alternative cases that are labeled. The case in 
which the label matches the variable of the ©switch is executed. 

• to list each alternative case (there will be several of these) 
©case "label" 
(plus the list of commands to be executed if case label 
matches the variable) 

• selected if none of the cases apply 
©default "label" 
(plus the list of commands to be executed) 

• to end a switch 
@end_switch 

This is a scripted example of a switch: 

©switch x 
@case "1" 

The value of x is 1. 
@case "2" 

The value of x is 2. ',' te 
@case "3" ;.. 

The value of x is 3. 
@case "4" 

The value of x is 4. 
©default "notl-4" 

The value of x is not 1,2,3 or 4. 
@end_switch 
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Tools 

All tools called to the screen by the writer of instruction must be 
labeled. Variables can be used to record and evaluate the learner's 
interactions with the graphing tools. If a graphing tool is called by the writer, 
a command can be used to enter coordinate points or lines which the writer 
wishes to be displayed upon opening the tool. All tools must be explicitly 
erased by the label given to them by the writer rather than with the @erase 
tooL 

• Number line 
• Xy graph 
• Calculator 
• Notepad 

Number line 

The number line will always have 11 tick marks and unless start_with 
and count_by are specified it will range from -5 to 5. Start_with specifies 
what the smallest value on the number line will be, and count_by specifies 
the increments between each tick mark. If the writer wishes to give the 
learner the option of calling the number line, this choice can be offered 
through a multiple choice question 

The placement of the number line is at top of screen and centered 
(may overlay part of background layer, but not title at top of screen) The 
window in which the number line appears is not a movable window. 

• to call a number line 
@numberline "numberline-label" [start_with min-value] 

[count_by delta ] 

• to erase number line 
@erase  "n umberline-label" 

An example of calling the number line to the screen and erasing it.      * 

@- Create a number line which goes from -35 to 15 in increments of 5. 
@number_line "numlineOl" start_with -35 count_by 5 
@erase "numlineOl" 
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Operations with number lines 
These abbreviations will indicate the noted operation: 

nothing- if the student pressed done without plotting anything. 
It - for less than 
ie - for less than or equal to 
eg - for equal to 
gt - for greater than 
ge - for greater than or equal to 

These operations can be used to form one variable expressions 
which can be plotted on the numberline. 

A total of 2 points or simple expressions can be plotted on any given 
number line at one time. The first item plotted is displayed in blue and the 
second is in green, regardless of whether it has been plotted by the writer or 
learner. 

In order to enter two plots on the number line, the writer uses the 
@numberline_plot twice. 

• to plot a point or an expression on a number line 
@numberline_plot numberline-label operation value 

@-we want to show the learner how to plot x > 3 
<§>numberline "numlineOl" 
@numberline_plot "numlineOl" "gt" 3 

When the learner is asked to plot a point on the number line and the 
command below is given, a set of buttons representing operations (<,>,<=, 
>=, and = ) will appear to allow the learner to control the plotting. The 
learner will be able to select a point on the number line and one of the 
operations. If the learner is asked to plot two points in a number line, a 
second @numberline_input command controls the second input. 
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• to indicate the learner will select a point or a point and an 
operation and to return input data from the learner 
interaction's with the number line for evaluation. 

@numberline_input"numberline-label" into operation 
value 

An @if/@else script can be used to evaluate the correctness of the 
student's answer and give the appropriate feedback to the learner. The 
following is an example of using an if statement to give feedback. 

©numberline "nil" 
@ Ask the student to plot something. 
©text 
Plot the inequality "x > 0" on the numberline. 
@numberline_input "nil" into operation value 
@ 

@ Figure out what they plotted. 
©if operation = "nothing" 

©text 
You didn't plot anything, 
©else 

©if operation != "gt" 
©evidence nodel5:error2:l 
<§>text 
Sony, you didn't get the right operation. You should have chosen the 
"greater than" or u>" button, 

©if value !«= 0 
©evidence nodel5:error3:l 
@text 
Sony. You got the operation right, but you didn't pick the 
right number on the numberline. You should have picked 0. 

©else 
©evidence nodel5:correctState:l 
©text 
That's right. Let's go on the next problem. 

@end_if 
@end_if 

@end_if 
©next <„-' 
©erase '      : 
@ Erase the numberline 
©erase "nil" 
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Only the latest plot made on the number line so far can be cleared from 
the screen by the learner control. It does not erase the number line itself 
though. You should use @erase "label" to do that. The @erase will not remove 
the numberline. 

• to clear any plots that have been made to the number line 
@numberline_clear "numberline-label" 

A scripted example of clearing the numberline: 

@numberline "nil" 
@numberline_plot "nil" ge -3 
@numberline_plot "nil" It 2 
@next 
@- We need to clear the number line if we want to plot anything 
more. 
@numberline_clear 
@numberline_plot "nil" eq 4 

Xy graph 
The placement of the xy graph is at far upper right (overlays part of 

background layer). The window in which the xy graph appears is not a 
movable window. There is a point plotting mode and a line plotting mode 
available. This modality is determined by the subsequent command. 

Each axis of the xy graph will always have 11 tick marks and unless 
start_with and count_by are specified, both axes will range from -5 to 5, 
counting by ones. StarL_xy_with specifies what the smallest value on each 
axis will be, and count_by specifies the increments between each tick mark 

As with the number line, the first item plotted is displayed in blue 
and the second is in green (either 2 points or 2 lines). Whether it is the writer 
or learner who makes the plot makes no difference in this regard. 

Only the writer of instruction can call the xy graph to the screen.    ;y 
However, if the writer wishes to give the learner the option of calling thexy £ 
graph, this choice can be offered through a multiple choice question- 
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• to call the xy graph 
@xy_graph "xy_label" [start_xy_with     minxtminy] 

[count_x_byxde/ta ] [count_y_byydeira ] 

• to erase the xy graph 
@erase"xv_iabe/" 

Here is an example of a scripted call and erasure of an xy graph. Note 
that each axis begins with zero and goes up to 100, counting by tens: 

@xy_graph "graphOl" start_xy_with 0,0 count_x_by 10 count_y_by 
10 
@erase "graphOl" 

Plottine points on an xv graph 
A total of two coordinate points per graph can be either plotted by the 

writer or inputted by the student. The x, y used below in the may either be 
numbers or be variables containing numbers. 

• to plot a single point on an xy_graph. 
@xy_plot_point "graph_label" x, y 

In this example, the @xy_plot_point command is repeated to add a 
second point to the xy graph 

@- We want to show the student how to plot the points (0,0) and (1,3) 
@xy_graph "graphOl" 
@xy_plot_point "graphOl" 0, 0 
@xy_plot_point "graphOl" 1, 3 

• to indicate the learner will enter a single point on an xy_graph 
and to set the variables x and y according to the learner 
interaction with the xy graph. 
@xy_input_point "graph-label" into x, y 

Here is an example script: 
^xy-graph "graphOl" V.« 
@text .£• 
Plot the point (1, -2) on the graph. 
@xy_input_point "graphOl" into x, y 
@ifx»=landy = -2 
Right. 
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@else 
Wrongo Batman! 
@end_if 

Plotting lines on the xv graph 
A total of two lines per graph can be either plotted by the writer or 

inputted by the student. The first line drawn appears in blue and the second 
line drawn is in green. 

There are two ways to plot or input lines on the xy graphs. The first 
plots two points and draws a line between them. The second plots the 
y-intercept and slope. As with the number line, learners can revise their 
plots by using the erase button attached to the graph. After they press done, 
though, the program moves on to the next question- 

Hatching is also employed to display inequalities. Hatching is specified 
by direction and style. 

• hatch-stvle can be one of the following: 
line - just a solid line without hatching (this is the default) 
line^fill - a solid line with hatching 
dash__fill - a dashed line with hatching 

• hatch-direction can be one of the following: 
up - the hatching is "above" the line - positive y direction 
down - the hatching is "below the line 

If the line is vertical, the "up" direction will fill to the right (the 
positive x direction) and the "down" direction will fill to the left (the negative 
x direction. 

The x, y used in the command below in the may either be numbers or 
be variables containing numbers. Hatch-style and hatch-direction will also be 
either a quoted string or a variable. One white space is used between the » 
hatch-style and hatch-direction in the following command as well as between 
each pair of xy coordinates. f 
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• to plot a line on an existing graph (referenced by graph-label) by 
specifying two pairs of xy coordinate. 

@xy_plot_line_2points "graph-label " xl, yl x2,y2 
[hatching hatch-style hatch-direction ] 

An example of a two coordinate-type line plot script: 
@- We want to show the student how to plot a line through the 
@- point (0,0) and (1,3) with hatching above 
@xy_graph "graphOl" 
@xy_piotJine_2points "graphOl" 0,0 1,3 hatching"iine_i5il" "up" 

• to a line plot on an existing graph (referenced by graph-label) by 
specifying the slope and the y intercept 

@xy__plot_line_yint graph-label slope yintercept 
[hatching hatch-style hatch-direction ] 

An example of a two coordinate-type line plot 
@- We want to show the student how to plot y > 3x - 2 
@xy_graph "graphOl" 
@xy_plot_line_yint "graphOl" 3  -2 hatching "dash-fiU" "up" 

Clearing the xv graph 
The graph can be cleared of anything plotted on it in order to 

prepare it for the next data entries. This is an easier alternative to erasing it 
and redrawing the graph from scratch. 

• to clear previous plots or inputs on the graph 
@xy_graph_clear 

This is an example of clearing plots on the xy graph: 

@xy_graph "graphOl" 
@text 
These two line intersect at the origin. 
@xy_plot_line_yint "graphOl" 1 0 
@xy_plot_line_yint "graphOl" -10 
@next V „ 
@text / 
These two lines intersect at the point (2,1). .r 

@xy_clear "graphOl" 
@xy_plorJine_yint "graphOl" 2 -3 
@xy_plot_line_yint "graphOl" -13 
<§>erase "graphOl" 
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Calculator 
The calculator can be called to the screen or erased on demand by 

both the learner and the writer of the instruction. The learner does this 
through the pop-up window brought up by the Display Tools icon. The 
window in which the calculator appears is a movable window and its 
placement can be adjusted by the learner. The writer uses the following 
commands to do the same thing. 

• to call calculator 
©calculator "label" [sLtHocation" ] 

A specific erase command must be used to erase the calculator as the 
regular @erase will not affect it. 

• to erase calculator 
@erase"iabe/" 

Here is a scripted example; 

@text 
Try doing a few calculations on the calculator. 
©calculator "calcl" 
erase "calcl" 

Notepad 

Default placement for this tool4s currently undefined. Default 
placement may be defined as placement at top of screen and centered (may 
overlay part of background layer, but not title at top of screen) There is no 
scripting call for this function. 

Heiß 
The help function will include a navigation guide and the glossary. 

Glossary 
The glossary is accessed though the help function. Default placemen;, 

for this function is currently undefined. Default placement may be defined a£ 
placement at far upper right (overlays part of background layer) It is called 
to the screen and erased by the glossary icon. Learner can search for glossary 
words by alphabetical index. There is no scripting call for this function. 
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