
The Harmonic Sieve:
A Novel Application of Fourier Analysis to

Machine Learning Theory and Practice
Jeffrey Charles Jackson

August 23, 1995
CMU-CS-95-183 Accesion For

NTIS CRA&l
DTIC TAB
Unannounced
Justification ____

D

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements\
for the degree of Doctor of Philosophy. \A *• I

By
Distribution/

Availability Codes

Avail and/or
Special

19960119 027

Thesis Committee:

Merrick Fürst, Chair
Avrim Blum

Steven Rudich
fishay Mansour, Tel Aviv University

@ 1995 Jeffrey Charles Jackson

This research is sponsored by NSF under grant no. CCR-9119319. Views and conclusions contained in
this document are those of the author and should not be interpreted as representing the official policies,
either expressed or implied, of the United States Government.

"DISTRIBIITIöN' STATEMENT A

Approved for public release;
Distribution Unlimited

Abstract

This thesis presents new positive results—both theoretical and empirical—in machine learn-

ing. The primary learning-theoretic contribution is the Harmonic Sieve, the first efficient

algorithm for learning the well-studied class of Disjunctive Normal Form (DNF) expressions

(learning is accomplished within the Probably Approximately Correct model with respect

to the uniform distribution using membership queries). Of particular interest is the novel

use of Fourier methods within the algorithm. Specifically, all prior Fourier-based learning

algorithms focused on finding large Fourier coefficients of the function to be learned (the

target). The Harmonic Sieve departs from this paradigm; it instead learns by finding large

coefficients of certain functions other than the target. The robustness of this new Fourier

technique is illustrated by applying it to prove learnability of noisy DNF expressions, of a

circuit class that is even more expressive than DNF, and of an interesting class of geometric

concepts.

Empirically, the thesis demonstrates the significant practical potential of a classification-

learning algorithm closely related to the Harmonic Sieve. The Boosting-based Perceptron

(BBP) learning algorithm produces classifiers that are nonlinear perceptrons (weighted

thresholds over higher-order features). On several previously-studied machine learning

benchmarks, the BBP algorithm produces classifiers that achieve accuracies essentially equiv-

alent to or even better than the best previously-reported classifiers. Additionally, the percep-

trons produced by the BBP algorithm tend to be relatively intelligible, an important feature

in many machine learning applications. In a related vein, BBP and the Harmonic Sieve are

applied successfully to the problem of rule extraction, that is, the problem of approximating

an unintelligible classifier by a more intelligible function.

11

Contents

1 Introduction 1
1.1 Learning DNF Efficiently: The Harmonic Sieve 2
1.2 Algorithmic Techniques 3
1.3 Extensions to the Harmonic Sieve 5
1.4 Rule Extraction 8
1.5 Learning Sparse Perceptrons 11
1.6 Summary and Thesis Organization 12

2 Mathematical Preliminaries 15
2.1 Estimating Expected Values 15
2.2. Some Notation 17

Learning-Theoretic Results 19

The DNF Learning Problem 21
3.1 Models of Learning 22

3.1.1 Preliminary Definitions . . : 22
3.1.2 PAC Learning 23
3.1.3 Exact Identification 26

3.2 Prior DNF Learning Results 27
3.2.1 Learning from Examples 27
3.2.2 Learning with Membership Queries 32
3.2.3 Hardness Results 33
3.2.4 Summary and New Results 34

The Fourier Transform 35
4.1 Definition and Properties of the Fourier Transform 35
4.2 Applications to Learning 38

4.2.1 Learning AC0 in Quasipolynomial Time 38
4.2.2 Efficient Fourier Learning 40
4.2.3 Learning DNF in Slightly Superpolynomial Time 42
4.2.4 Weakly Learning DNF 42

iii

iv CONTENTS

4.2.5 Summary and Comparison with Harmonic Sieve 43

4.3 Finding Well-correlated Parity Functions 44

4.3.1 The KM Algorithm 45

4.3.2 Extending KM 47

5 Hypothesis Boosting 49

5.1 The Boosting Concept 49

5.2 Freund's Fl Boosting Algorithm 50

5.3 Applying Boosting to DNF Learning 54

5.4 Alternative Boosting Algorithms 55

5.5 Appendix 56

6 Learning DNF 61

6.1 A Key Fact about DNF 61

6.2 Nonuniform Weak DNF Learning ' 63

6.3 Strongly Learning DNF 68

6.4 Comparison with Prior Fourier-based Algorithms 72

7 Learning Other Representation Classes 75

7.1 Learning TOP 75

7.2 Some Specialized TOP Classes 76

7.3 Two Classes Not Generalized by TOP 79

8 Learning Geometric Concepts 81

8.1 Generalizing KM 82

8.2 Learning &-UBOX 83

8.2.1 A Fact about &-UBOX 84

8.2.2 Turning Xa into a Weak Approximator 85

8.2.3 Main Result 87

8.3 Learning UBOX 87

8.4 Appendix 88

9 Learning Over Nonuniform Distributions 89

9.1 Learning with respect to "Nearly" Uniform pistributions 89

9.2 Learning with respect to Product Distributions 91

10 Learning Despite Noise 95

10.1 Definitions and Intuition 95

10.2 Formal Development 96

CONTENTS v

II Applications 99

11 Introduction to Empirical Results 101
11.1 Background 101
11.2 Goals 103
11.3 Application Domains 105

11.3.1 Congressional Voting 105
11.3.2 Promoter Recognition 105
11.3.3 Protein-coding Region Recognition 106

11.4 The AdaBoost Hypothesis Boosting Algorithm 106

12 Rule Extraction 109
12.1 Motivation 109
12.2 Applying HS to Rule Extraction 113

12.2.1 Congressional Voting 114
12.2.2 Promoter Recognition 115

13 Learning Sparse Perceptrons 119
13.1 Theory of Sparse Perceptron Learning 120
13.2 Implementation Considerations 123
13.3 Applications of Sparse Perceptron Learning 123

14 Further Work 127

vi CONTENTS

List of Figures

1.1 A DNF expression 2
1.2 A TOP expression 6
1.3 A UBOX function 7
1.4 A perceptron ; 9
1.5 A multilayer perceptron . 9

3.1 A 2-decision list 28
3.2 A Boolean decision tree 30
3.3 A depth-3 Boolean circuit 31

5.1 The Fl hypothesis boosting algorithm. 53

6.1 The weak DNF learning algorithm WDNF 66
6.2 The HS algorithm for efficiently learning DNF 69

7.1 A parity-DNF function 79

11.1 The AdaBoost boosting algorithm. 107

Vll

viii LIST OF FIGURES

List of Tables

13.1 Test-set accuracy. 125
13.2 Hypothesis complexity (# weights) 126

IX

LIST OF TABLES

Acknowledgments

While my advisor would be the first to tell me to make clear that the theoretical results

reported in this thesis are my own, I believe it is also true that I would never have obtained

these results without Merrick Furst's guidance over the last—ahem—seven years. Merrick

recognized the potential of the main tool used to obtain my thesis results (Fourier analysis

of Boolean functions) long before I did, and carefully guided my early research in this area.

He has also been consistently encouraging and supportive, as well as a superb mentor to me

in a number of non-technical areas. For example, you probably don't want to know what

I was planning to call the main algorithm of this thesis before Merrick suggested the name

"Harmonic Sieve"...

My research has also been strongly influenced by Avrim Blum, who has for several years

been much like a second advisor to me. A great deal of what I know about learning theory

has come through my interactions with Avrim. He has also been a wonderful source of

stimulating problems and research directions; in fact, I believe Avrim was largely responsible

for my interest in the central theoretical problem addressed by this thesis. Both Avrim and

Merrick gave particularly helpful comments on early drafts of the results reported on in this

thesis, and Avrim also suggested a simplification to my original proof of Fact 8.1.

Steven Rudich also deserves special mention. On the technical side, an insight of Steven's

inspired the initial proof of Fact 6.1. Perhaps more importantly, a frank discussion with

Steven may have done as much as anything to motivate me to solve the core learnability

problem of this thesis! His courses in complexity and cryptography were excellent character-

building experiences: his homeworks are humbling to say the least. And finally, his comments

on an earlier draft of the thesis played an important role in the framing of the final document.

XI

xii ACKNOWLEDGMENTS

Yishay Mansour has long been supportive of my work on applying Fourier techniques in

machine learning, which I appreciate probably more than he realizes. Yishay also suggested

considering the extension to the main thesis result discussed in Chapter 7. Finally, he advised

me not to spend too much time writing acknowledgments, so...

The empirical results reported in this thesis represent joint work with Mark Craven. I

appreciate very much his help with filling in my knowledge of techniques and results in

empirical machine learning and his willingness to speculate on the practical viability of the

Harmonic Sieve.

A number of others have contributed in various ways to this thesis. Mike Kearns, along

with the first four people mentioned above, was a co-author with me of a "weak" learning

result on which the main theoretical thesis result is built; his enthusiasm about my results

has also been a wonderful encouragement. Dick Lipton suggested considering the extension

of the Harmonic Sieve to geometric concepts (Chapter 8). Yoav Freund graciously provided

unpublished details about his boosting algorithm. Rob Schapire suggested that the Harmonic

Sieve should be capable of learning a certain class of function representation (the class of

DNF expressions defined over parity functions; see Chapter 7). Doug Tygar helped with

the proof of Lemma 8.2. Andrew Tomkins shared very helpful comments during the initial

development of the Harmonic Sieve. Charlie Rackoff supplied useful pointers to some related

literature.

Carnegie Mellon's School of Computer Science has been a tremendously stimulating and

enjoyable place to engage in graduate studies. In addition to those mentioned above (and

with apologies to anyone I am inadvertently omitting), I especially thank Randy Bryant,

Prasad Chalasani, Lonnie Chrisman, Ed Clarke, Steve Guattery, Somesh Jha, Sergei Niren-

burg, Jifi Sgall, Sean Smith, Shang-Hua Teng, and Xudong Zhao for interesting discussions

and/or collaborations. Through their coursework and other interactions, Alan Frieze, Ravi

Kanaan, Gary Miller, and Danny Sleator have broadened my knowledge of theoretical com-

puter science.

I also appreciate very much the opportunities I have had to present my work and engage

Xlll

in related research in other environments. Thanks especially to Nader Bshouty and Hans

Simon for hosting extended visits at the Universities of Calgary and Dortmund, respec-

tively, and also thanks for stimulating discussions to Andreas Birkendorf, Richard Cleve, Eli

Dichterman, Paul Fischer, Norbert Klasner, and Tino Tamon.

Finally, I am very grateful to my wife Cindy and children Rebecca, Peter, Emily, and

Benjamin for embarking on this great adventure with me—or perhaps I should say, all too

often without me!

xiv ACKNOWLEDGMENTS

Chapter 1

Introduction

The starting point for the research described in this thesis is a question that many studying

the theory of machine learning have pondered: in what sense, if any, is the class of Disjunctive

Normal Form (DNF) expressions learnable? (A Boolean function is expressed in Disjunctive

Normal Form if it is written as an OR of AND's of (possibly negated) Boolean inputs; see

Figure 1.1.) A number of factors have led to the strong interest in DNF learnability. An

early motivation was that DNF expressions can succinctly represent many types of human

knowledge, and these representations seem to be readily understood. For example, consider

the following instructions adopted from the 1994 Form 1040 tax publication, a publication

that is intended to be read by a very wide audience:

If as of December 31, 1994, you:
had never been married

or
had been married
and were then legally separated

or
had been married
and were widowed before January 1, 1994
and were not remarried in 1994

then you may file as a single taxpayer.

The fact that DNF expressions are easily understood motivated a conjecture that machine-

based learning systems should be able to learn DNF expressions [Val84]. Since that conjec-

ture, there has been a great deal of research related to DNF learnability [Val85, KLPV87,

1

CHAPTER 1. INTRODUCTION

V

A A A

Xl x2 X3 X4 x5

Figure 1.1: Graphical representation of the DNF expression (x-i_Ax2)V(x2Ax3Ax4)V(x4Ax5).
The function represented by each of the AND gates is a term of the DNF.

Ang90, AFP90, Ver90, AP91, AK91, Han91, KM93, AHP92, AP92, BR92, Man92, Bsh93,

Han93, KR93, BKK+94, SM94, Bsh95]. However, most of the positive results of this research

only applied to various restricted forms of DNF; for example, it was shown that monotone

DNF, in which no negated variables are allowed in the DNF expression, is learnable. There

were also a few algorithms that could learn DNF in slightly superpolynomial time. But prior

to the results of this thesis there was no provably efficient (polynomial-time) algorithm for

learning arbitrary DNF expressions.

1.1 Learning DNF Efficiently: The Harmonic Sieve

This thesis presents the Harmonic Sieve (HS), an algorithm that efficiently learns DNF.

Specifically, we show that the HS algorithm learns DNF with respect to the uniform distri-

bution using membership queries in the Probably Approximately Correct (PAC) model of

learning.1 This model of learning is defined formally in Chapter 3; for now, we give an infor-

mal but reasonably precise definition. In particular, consider the following 20-questions-like

game between two players, Bob and Alice. Bob secretly chooses an arbitrary DNF expression

/. Alice is then allowed to ask about the value of / on a number of inputs that is bounded

1It should be noted that most of the earlier restricted DNF algorithms learn in a stronger sense than
HS. Therefore, while a few of the earlier algorithms are corollaries of the thesis results, most of the prior
DNF-related algorithms are not implied by our results.

1.2. ALGORITHMIC TECHNIQUES 3

by a polynomial in the size of / (the number of characters required to write / down), and

the total processing time she is allowed is similarly bounded. Alice wins the game if she

produces a function h (not necessarily a DNF) such that, over the domain of /, h agrees

with / 99% of the time. This thesis presents a winning strategy for Alice. That is, regardless

of the expression / chosen by Bob, Alice can win the game by running HS (or more precisely,

win with very high probability over the random choices made by the algorithm).

While we find it convenient to describe the result in terms of a game, we also believe that

the Harmonic Sieve and the ideas underlying it have the potential for significant real-world

application. Specifically, "Bob" above should be thought of as representing some real-world

process that associates inputs with Boolean outcomes. An example real-world process we

will consider in detail later in the thesis comes from computational biology. The promoter-

recognition task is to identify those regions of DNA that immediately precede genes. It

is known that the sequence of nucleotides in such a promoter region distinguishes it from

non-promoter DNA regions; that is, there is a function that maps input data consisting of (a

Boolean representation of) sufficiently long DNA sequences to the Boolean outcome "gene

begins immediately after this sequence." If there is a small DNF expression describing this

real-world input/output relationship and if there is some entity willing to answer hypothetical

questions about the relationship (in this example, such data could conceivably be collected

by laboratory experiments), then the Harmonic Sieve can be used to learn to classify a very

high percentage of randomly-generated DNA sequences with the same classification assigned

by the real-world process.

1.2 Algorithmic Techniques

The primary tool used to obtain our DNF learnability result is Fourier analysis. Fourier

techniques were first applied to problems in machine learning theory by Linial, Mansour, and

Nisan [LMN93] and have since been used extensively [Bel91, AM91, FJS91, KM93, Bel92,

Man92, BFJ+94, BJ95, BT95]. However, not even Fourier methods had produced an efficient

learning algorithm for DNF. In fact, Mansour had shown that to prove DNF learnability by

4 CHAPTER 1. INTRODUCTION

Fourier analysis would require something beyond then-known techniques [Man92].

This thesis presents a novel Fourier analysis that overcomes the limitations of earlier

Fourier techniques. At a high level, the algorithm resulting from this new analysis can be

thought of as implementing a search strategy that differs markedly from early Fourier search

strategies. More specifically, all previous Fourier-based learning algorithms implemented a

strategy for finding the so-called "large Fourier coefficients" of the function / to be learned

(the meaning of the quoted term is not important in the current discussion; it is defined in

Chapter 4). The Harmonic Sieve searches for not only the large Fourier coefficients of /, but

also the large coefficients of certain other functions. While it is perhaps counterintuitive that

this approach should facilitate the learning of /, our Fourier analysis proves that it does.

The discovery of this new paradigm for Fourier-based learning is a major contribution of

this thesis. The proof that this approach is appropriate for learning DNF relies on a newly-

discovered relationship—that may be of independent interest—between DNF expressions

and parity functions.

Another algorithmic aspect of the Harmonic Sieve that is worth noting is that it is

based on a hypothesis boosting mechanism, in particular one due to Freund [Fre90]. Such

mechanisms are designed to boost a weak learner (one that produces a classifier that is

correct, say, 51% of the time) into a learner of the type described earlier (one that produces

a classifier that is correct, say, 99% of the time, a so-called strong learner). Hypothesis

boosting is a powerful idea, and versions of boosting have been applied successfully in practice

[DSS93]. Boosting has also been used to derive provably efficient and noise-tolerant learning

algorithms [AD93]. However, DNF appears to be the first class of expressions that has been

shown to be efficiently learnable using hypothesis boosting and for which no alternative

learnability proof was previously known.

It is also interesting to note that we use boosting to obtain a distribution-dependent re-

sult. That is, our learning algorithm produces a classifier c that agrees well with the function

/ in the sense that if an input x is drawn uniformly at random then with high probability

c(x) = f(x). However, if the requirement was to find a c that agreed well with / with

respect to some other probability distribution over the inputs, the Harmonic Sieve would

1.3. EXTENSIONS TO THE HARMONIC SIEVE 5

not be guaranteed to meet this requirement. It is in this sense that HS is a distribution-

dependent algorithm. Hypothesis boosting, on the other hand, was originally designed

to boost distribution- independent weak learning algorithms into distribution-independent

strong learners (distribution-independent learning is explained more fully below). Never-

theless, we show how to use an existing boosting mechanism (with minor modifications) to

boost a distribution-dependent weak learning algorithm into a strong distribution-dependent

learner for DNF.

The minor modification mentioned above also merits some attention. As originally en-

visioned, boosting would be applied to a weak algorithm that learned from examples. Such

a weak learner is given a large set of examples {(x\ /(a;2))} of the function / to be learned,

where each xl is drawn at random according to some fixed distribution D over the inputs to

/, and produces a classifier c such that the probability of agreement of / and c over inputs

drawn at random according to D is at least, say, 0.51. Any weak algorithm that can learn in

this way is a distribution-independent weak learner. Note that the learner is not explicitly

told the distribution D against which its output classifier c will be tested, but is only given

information about D implicitly through the set of examples provided. It is at this point that

we modify the boosting mechanism: our booster supplies the distribution D to the weak

learner explicitly. In particular, we will supply a function (the distribution oracle) to the

weak learner that, given an input x, returns the probability weight assigned to x by D.

This change to the boosting mechanism is important because the weak learning algorithm

for DNF described in this thesis requires access to distribution oracles in order to learn

efficiently with respect to the distributions of interest.2 As far as we know, the notion of

providing a distribution oracle to a learning algorithm and the demonstration that such

oracles can facilitate efficient learning are further original contributions of this thesis.

1.3 Extensions to the Harmonic Sieve

2While the strong DNF learner produces a classifier the performs well with respect to uniform, the
boosting mechanism requires that the weak learner perform well with respect to a variety of nonuniform
distributions.

CHAPTER 1. INTRODUCTION

MAJ

e e ©

Xl X2 X3 £4 X5

Figure 1.2: Graphical representation of TOP expression MAJ^i © x2, x2 © x3 © £4, x4 © a?5).
In general, a Threshold-of-Parity (TOP) representation of a Boolean function / is a majority
vote over a collection of (possibly negated) parity functions, where each parity is applied
to a subset of /'s input variables (parity applied to a cardinality-1 subset is the function
represented by the single variable in that subset, and parity of the empty subset is a constant).
The above function is true on an assignment x if at least two of the three (a majority) of the
parity functions are made true by the assignment; the all-l's vector is such an assignment.

Actually, the Harmonic Sieve is more than a DNF learning algorithm. This same algorithm

can learn another class of function representations, the Threshold-of-Parity, or TOP, class

(Figure 1.2); in fact, the output of the Harmonic Sieve is always a TOP. TOP is a more

succinct class of function representations than DNF in the sense that any DNF expression

can be rewritten as a TOP with only a polynomial increase in size [KP94], while even a

single n-bit parity requires 2n_1 terms in any DNF representation. Recalling that Alice's

processing time is bounded by a polynomial in, among other parameters, the size of Bob's

representation of the function / to be learned, we see that TOP is more difficult to learn

than DNF.

To further demonstrate the robustness of the ideas underlying the Harmonic Sieve, we

extend the algorithm in a variety of ways. For example, the Harmonic Sieve is designed to

learn Boolean functions defined over the domain {0,1}™ of n-bit Boolean strings. However,

the algorithm can also be extended to learn certain classes of Boolean functions defined

over the domain {0,..., b — l}n, where b is any positive integer. In particular, we show

that for b constant, the class UBOX of unions of axis-parallel rectangles (Figure 1.3) can be

1.3. EXTENSIONS TO THE HARMONIC SIEVE

Ö

4

3

1

n

0 1

Figure 1.3: Graphical representation of a UBOX function over {0,..., 5}2 consisting of three
rectangles. The function value is true on those input vectors that fall on or within any of
the rectangles.

learned efficiently in the same uniform-plus-membership-query model of learning for which

the Harmonic Sieve is designed. Previous algorithms for learning UBOX (in stronger learning

models) are polynomial-time only when the dimensionality n or the number of rectangles is

held constant [BEHW89, LW90, GGM94, BGGM94]; our algorithm is polynomial-time in

both of these parameters but has superpolynomial dependence on b.

Extending in another direction, we show that the distribution dependence of HS can be

relaxed somewhat. Our main result is that DNF can be learned with respect to certain

product distributions. Product distributions are a natural generalization of the uniform

distribution. To draw an n-bit string x uniformly at random, we can flip n fair coins and

assign each bit of x accordingly. A product distribution is denned similarly, except now each

coin is assigned a fixed bias representing the probability of producing a head. We show that

DNF is learnable with respect to any constant-bounded product distribution D, i.e., any

product distribution having the property that all of the biases defining D differ from | by

no more than a fixed constant c < |.

Finally, we also show that HS is able to tolerate well certain types of errors in the in-

8 CHAPTER 1. INTRODUCTION

formation it receives about the Boolean function / to be learned. In terms of the game

representation of the learning model, we show that DNF is learnable even if Bob frequently

lies about the value of /. More specifically, each time Bob is asked about the value of / on

an input a;, he first checks to see if he has been asked about x before. If so, he gives the same

answer given previously. If not, Bob flips a coin with fixed bias strictly less than |. If this

coin comes up heads, Bob lies about the value of f(x), otherwise he tells the correct value.

Alice is now allowed more running time as the bias of Bob's coin nears | (it is information-

theoretically impossible to learn / if the a noise rate is |). Alice's goal remains to produce

an approximation to the noiseless f. A formal definition of this model of learning in the

presence of persistent random classification noise is given in Chapter 10.

Notice that if Alice is given rather noisy data describing a function / then if she produces

a classifier c that closely approximates /, c will not agree especially well with the noisy data.

That is, in some sense what Alice hopes to produce is a classifier that captures the underlying

structure of the data she is given and not the noisy aspects of the data. This is very similar

to the goal in much of applied machine learning, where in many domains it is assumed that

there exists a relatively simple function approximating a given data set representing some

real-world phenomenon, but that there is no simple function exactly fitting the data. The

goal in this setting is also to find the simple approximating function rather than a perfect

classifier for the given data.

Thus we have some reason to hope that an algorithm that tolerates noise well will also

perform well on many real-world learning problems. Of course, only careful experiments can

determine how well a learning algorithm actually performs on real-world data, which leads

us to experiment with the Harmonic Sieve and a related learning algorithm.

1.4 Rule Extraction

First, we consider using HS as a means of rule extraction. The rule extraction problem is

roughly the following. In a number of application domains, the best-performing concept-

learning algorithms produce rules in a form that is very difficult for humans to understand

1.4. RULE EXTRACTION

X\ X2 Xi/\X<2, X4

Figure 1.4: Graphical representation of perceptron sign(—2 + 7xi + 13a;2 — 8(xif\x2) + 5x4). A
perceptron is a threshold over the original input variables as well as over functions of limited
numbers of these variables.

_r _r

Xl X2 X3 X4 x5 x6

Figure 1.5: Graphical representation of a multilayer perceptron (lower weights suppressed).
Typically the lowest level perceptrons are defined over the original inputs only.

10 CHAPTER 1. INTRODUCTION

(e.g., multilayer perceptrons, or "neural networks"; see Figure 1.4 and Figure 1.5). Of course,

there are many reasons to desire a rule which is easy to understand: deeper understanding

of the process being modeled by the rule, increased confidence in the predictive power of the

rule, less time and memory required to compute the prediction of the rule, etc. The rule

extraction problem, then, is to take a rule which is relatively opaque and approximate it by

a second function which is more intelligible.

The Harmonic Sieve can be used to address the rule extraction problem in the following

way. Since we are given a function / (the opaque rule) as input, we can run the HS algorithm,

using the opaque representation of / to answer the questions asked by HS about /. If

HS produces a function that is a good approximation to the original function and that is

easier to understand, then we will have succeeded in extracting an intelligible rule from an

opaque one. We describe a simple modification to the Harmonic Sieve that biases it toward

producing understandable approximators, and we examine the performance of this modified

algorithm on a well-known benchmark learning problem (predicting party affiliation based

on Congressional voting record). We find, as hoped, that our approximator is generally much

simpler than the neural net from which it was derived. An interesting side benefit is that

this simple function actually performs (very slightly) better than the original network!

Although in general HS can output arbitrary TOP representations, on this benchmark

the TOP's produced by the biased HS have parity gates with fanin at most two. This leads

us to experiment with a second algorithm that is restricted to produce only such limited

TOP's. This algorithm is more efficient than HS, and performs rule extraction reasonably

well on a larger benchmark problem from computational biology (the promoter recognition

task mentioned earlier). In fact, unlike the more general Harmonic Sieve, this restricted

algorithm does not need to ask questions about the function to be learned, but instead can

learn from examples alone. This leads us to pursue applications beyond rule extraction for

this algorithm.

1.5. LEARNING SPARSE PERCEPTRONS 11

1.5 Learning Sparse Perceptrons

The supervised classification learning task is: given a set of classified data—such as a set of

DNA sequences, each sequence classified as either a promoter region or nonpromoter—learn

a classification function c that can accurately classify future data. The classification learning

task is an important and well-studied problem in applied machine learning, and a number

of algorithms have been shown to perform this task well in practice. This thesis develops a

new classification learning algorithm that appears to have certain advantages over previous

algorithms.

In particular, we develop a new practical perceptron learning algorithm which is based

on the hypothesis boosting mechanism underlying the Harmonic Sieve as well as on other

concepts developed in the thesis. A distinguishing feature of this Boosting-based Perceptron

(BBP) learning algorithm with respect to other algorithms for learning perceptrons—such as

the classical perceptron learning algorithm [Ros62], the backpropagation learning algorithm

[RHW86], and Winnow [Lit88]—is that it is constructive in the following sense. Typical

perceptron learning algorithms assign nonzero weights to all of the features (input variables

or small functions of these variables) and vary these weights during a training phase. At the

end of training, all features will in general have nonzero weight. In contrast, the boosting-

based algorithm adds features one at a time to the rule constructed during training. An

outgrowth of this methodology is that, loosely speaking, if the function to be learned is

representable as a sparse perceptron (one with few nonzero weights) then the BBP algorithm

will produce a sparse perceptron as its output.

Thus it is to be expected that the BBP algorithm may have intelligibility advantages over

many existing classification learning algorithms, as it may produce smaller and therefore

more understandable classifiers. What is perhaps more surprising is how well the percep-

trons learned by this algorithm perform. On three different benchmark learning problems,

the boosting-based algorithm did indeed produce relatively small and intelligible percep-

trons; but in addition, these perceptrons performed essentially as well as or better than

the classifiers produced by the previous best-performing alternative general-purpose learn-

12 CHAPTER 1. INTRODUCTION

ing methods. Specifically, the performance of our algorithm compared very favorably with

neural network learning, and in general was noticeably better than the backpropagation

algorithm for learning perceptrons as well as another well-known classification learning al-

gorithm, C4.5. Furthermore, the results on one of the tasks suggest that the algorithm is

successfully selecting a small set of the most relevant features from a large set of possible

features.

1.6 Summary and Thesis Organization

Summarizing, this thesis contributes a number of new results. We consider the following

three results the primary contributions of the thesis:

• Introduction of a new Fourier-based learning strategy: find large Fourier coefficients

of certain functions other than the function to be learned.

• Application of this strategy to the well-studied open problem of DNF learnability,

resulting in the Harmonic Sieve algorithm for learning DNF and, more generally, TOP

expressions.

• Development of the related Boosting-based Perceptron learning algorithm and empiri-

cal assessment of BBP in several previously-studied application domains, showing that

BBP can produce classifiers that are relatively accurate, capture relevant features well,

and are reasonably intelligible.

Secondarily, the thesis also contains the following results:

• Discovery of a relationship between DNF expressions and parity functions.

• Demonstration that boosting can be used to prove positive learnability results for

classes of function representations for which no alternate proof of learnability is known.

• Demonstration that a (slightly modified) off-the-shelf boosting algorithm can be used

to boost a distribution-dependent weak learner.

1.6. SUMMARY AND THESIS ORGANIZATION 13

• Introduction of the notion of learning from a distribution oracle.

• Extension of the Harmonic Sieve in various ways, showing its robustness.

• Demonstration empirically that both the Harmonic Sieve and BBP algorithms can suc-

cessfully perform rule extraction.

The remainder of the thesis presents details of these results and is organized as follows.

After some mathematical background in Chapter 2, the thesis is divided into two parts, the

first part dealing with our learning-theoretic results and the second part with applications

of these results. Within Part I, Chapter 3 presents some of the history of the DNF learning

problem. It also contains formal definitions for a number of models of learning and discusses

the relative advantages of various models. In Chapter 4 we define the multidimensional

discrete Fourier transform that is a key tool in obtaining our results. We explain how this

transform relates to the more familiar one-dimensional Fourier transform and describe several

useful properties of the multidimensional version. We then discuss a number of learning

algorithms which have employed this transform. We will focus on one such algorithm—

discovered by Goldreich and Levin [GL89] and introduced to learning theory by Kushilevitz

and Mansour [KM93]—that plays an integral role in the Harmonic Sieve. Chapter 5 discusses

at length the hypothesis boosting mechanism used by HS.

In Chapter 6 we prove the existence of a certain relationship between DNF expressions

and parity functions, use this relationship to develop a Fourier-based algorithm for weakly

learning DNF, and show how to apply boosting to the weak algorithm to produce a strong

DNF learning algorithm, the Harmonic Sieve. We conclude the chapter by comparing the

Harmonic Sieve with other Fourier-based learning results. In Chapter 7 we show that the

Harmonic Sieve can learn any TOP function in time polynomial in the number of parities in

the function. As mentioned earlier, this is actually a stronger result than the fact that DNF

is learnable, since TOP is a more succinct class of representations than DNF. Results further

relating TOP to other classes of representations are also presented. We close this chapter

by showing that some of these classes, even though conceptually very similar to DNF and

TOP, are not efficiently learnable by the Harmonic Sieve. In the next several chapters we

14 CHAPTER 1. INTRODUCTION

consider the previously-discussed extensions of the Harmonic Sieve to learning certain geo-

metric concepts (Chapter 8), learning DNF with respect to certain nonuniform distributions

(Chapter 9), and learning the DNF and TOP classes when the algorithm receives incorrect

answers to some of the questions it asks (Chapter 10).

We then turn to the second part of the thesis, which explores applications of the the-

oretical ideas developed in Part I. We begin in Chapter 11 by describing several learning

applications: prediction of party affiliation from Congressional voting records and two prob-

lems from computational biology. Chapter 12 demonstrates the applicability of modified

versions of the Harmonic Sieve to the rule extraction problem in two of these domains, and

Chapter 13 presents the boosting-based perceptron learning algorithm and analyzes its per-

formance on all three benchmark learning problems. The thesis closes with a brief discussion

of further research directions.

Chapter 2

Mathematical Preliminaries

The main purpose of this chapter is to present a collection of lemmas that are often referred to

generically as Chernoff bounds. These lemmas will help us to obtain bounds on the running

times of our learning algorithms. We will also present some miscellaneous mathematical

notation.

2.1 Estimating Expected Values

We will frequently want to estimate the expected value of random variables. The following

three lemmas allow us to compute the sample size needed to ensure that with high probability

the sample mean closely approximates the true mean of a random variable. The lemmas differ

in the restrictions placed on the random variable and in how the closeness of approximation

is measured (additively or multiplicatively).

Lemma 2.1 (Chernoff) Let X\,X2,... ,Xm be independent {0,1} random variables all

with mean \i. Then for any 0 < A < 1,

Pr

and

Pr

i m

-i m

'" 1=1

15

< e-
A2"W3

<e -\
2mß/2

16 CHAPTER 2. MATHEMATICAL PRELIMINARIES

Lemma 2.2 (Hoeffding) Let Xi,X2,... ,Xm be independent random variables all with

mean /J, such that for all i, a < X{ < b. Then for any A > 0,

Pr
-i m

> x < 2e-2A2m/(fc-a)2

Lemma 2.3 (Bienayme-Chebyschev) Let Xi,X2,. ..,Xm be pairwise independent ran-

dom variables all with mean fi and variance a2. Then for any A > 0,

Pr
-i m

m ...
> A <

mX2

Hoeffding's inequality will be particularly useful to us. For later reference, we state the

following immediate corollary of Lemma 2.2:

Corollary 2.1 Let X represent a random variable that produces values in the range [a,b].

Then there is an algorithm AMEAN(X, b — a,X,S) that for any such X produces a value fj,'

such that \E[X] — fi'\ < A with probability at least 1 — 8. Furthermore, AMEAN runs in time

polynomial in b — a, A-1, and log 8_1.

Proof: Take m = (b — a)2ln(2/8)/(2X2) and let S represent the sum of m draws from the

random variable X. Then // = S/m satisfies the requirements of the corollary. □

The ChernofF bound can be used to obtain a similar algorithm for estimating the mean

of a {0,l}-valued random variable within a multiplicative factor. At times we will want

to similarly estimate the mean of an [a, b]-valued random variable within a multiplicative

factor, rather than within an additive factor as above. The following corollary shows that

under certain conditions this estimate can be performed efficiently using a standard guess-

and-double technique, a technique that is also used frequently elsewhere in the thesis.

Corollary 2.2 Let X represent a random variable that produces values in the range [a, 6],

and let ~E[X] = fi. Then there is an algorithm MMEAN(X, b—a, 8) that for any such X produces

a value \i' such that \fj, — fi'\ < yu/2 with probability at least 1 — 8. Furthermore, when MMEAN

is successful (i.e., with probability at least 1 — 8) it runs in time polynomial in |/^|-1, b — a,

and log <5-1.

2.2. SOME NOTATION 17

Proof: The idea behind MMEAN is the following. By Hoeffding, drawing m > 8(6 —

a)2\n(2/8)/(p2) random examples of X is sufficient to produce p' such that \p' — p\ < p/A

with probability at least 1 — 8 (for readability, we will not use absolute value bars on p when

it is clear from context that we are referring to its magnitude). Of course, we do not know

p and therefore we cannot directly compute the required sample size m. However, if we

compute m using a value pg < p then we will still get, with high probability, an estimate p'

within p/A of the true mean. On the other hand, if we happen to use a value pg for p that is

much larger than p—say pg = Ap—and attempt the same estimation using pg to select the

number of samples, then with high probability we will produce an estimate p' that is much

smaller than 3pg/A. Such an event is evidence that our "guess" \xg is much larger than p;

therefore, we can refine our guess and try again. In this way we can start with a very poor

guess pig for p and yet quickly converge on an adequate guess, which will lead to a good

estimate p' for p.

Specifically, we begin by taking pg — \ and computing p' = AMEAN(.X, b — a,pg/A,8/2).

If \p'\ > 3//a/4 then p > pg/2 and therefore \p' — p\ < p/2 with probability at least 1 — 6/2.

However, if |^'| < Spg/A then we halve both pg and 8 and again estimate p'. By the reasoning

above, this procedure will, with probability at least 1 — 8, terminate after at most [log(^-1)]

steps and will produce p' such that \p' — p\ < p/2. D

2.2 Some Notation

We will use the following notation at various points in the thesis. For any complex-valued

function g we define the norms L^g) = ma,xx{\g(x)\}, Li(g) — Ylx\9(x)\i and ^(f) =

JYIX \d\2{x)i where x ranges over the entire (assumed finite) domain of g. At times we will

refer to the norm of a set instead of a function, with the obvious intended meaning. We will

typically be interested in learning functions with domain {0,1}" for some fixed value of n.

For x € {0, l}n we use X{ to denote the ith bit of x. For a complex variable g = a + &v —lj we

denote the complex conjugate of g by g* = a — 6\/^T. Logarithms denoted by log are base

2 and by In are base e. A function / : {0,1}" —> {0,1} is monotone if for all x G {0,1}",

18 CHAPTER 2. MATHEMATICAL PRELIMINARIES

f(x) = 1 =» f(y) = 1 for any y E {0,1}" such that y{ = 1 for all i such that xt = 1.

Real-valued functions / and g over the positive reals satisfy / = 0(g) if there exist finite

constants cx and c2 such that for all p > 0, f(p) < Cig(p) + c2. Alternatively, under the

same circumstances we can write g = !)(/). Ihe function f(p) over the positive reals is

polynomial in its parameter p if there exists a constant c such that f(p) = 0(pc).

Part I

Learning-Theoretic Results

19

Chapter 3

The DNF Learning Problem

"[DNF] expressions appear particularly easy for humans to comprehend. Hence

we expect that any practical learning system would have to allow for them."

[Val84]

The publication of Valiant's "A Theory of the Learnable" in 1984 sparked significant

interest in what has come to be known as computational learning theory. Arguably the

major contribution of Valiant's paper was a framework within which formal questions about

learnability can be studied. Within this framework, Valiant posed and answered a number

of learnability questions.

However, as the quote above indicates, one learnability question Valiant posed seemed

particularly critical: how can Disjunctive Normal Form (DNF; see Figure 1.1) expressions

be efficiently learned? An initial motivation for studying this question was that DNF rules

seem to be relatively easy for humans to understand and communicate, and therefore it

seems natural to require that a good machine learning system be able to learn DNF rules. As

Valiant also noted, "The question of whether [a DNF learning algorithm] exists is tantalizing

because of its apparent simplicity." Another reason for studying DNF learnability is that

DNF expressions are widely used in computer science, particularly in circuit design. Thus

any knowledge we gain about DNF in the process of searching for a DNF learning algorithm

may have ramifications for other areas of computer science as well.

21

22 CHAPTER 3. THE DNF LEARNING PROBLEM

Subsequent to Valiant's initial work there has been sustained research on questions about

DNF learnability [Val85, KLPV87, Ang90, AFP90, Ver90, AP91, AK91, Han91, KM93,

AHP92, AP92, BR92, Man92, Bsh93, Han93, KR93, BKK+94, SM94, Bsh95]. This research

has produced results in a variety of models of learning, but for the most part these results

have only given partial answers to the question of DNF learnability in the various models

studied. Furthermore, for the two models in which the question of DNF learnability had

been resolved prior to the results of this thesis, the answers were negative. That is, there

was no known efficient algorithm for learning DNF in any of the standard learning models.

The theoretical focus of this thesis is on producing such an algorithm. Actually, we

present two such algorithms, although the first of these algorithms is interesting primarily

for historical reasons now that the second, stronger algorithm is known. In this chapter we

present formal definitions of a number of models of learning, including the specific models

within which our algorithms learn DNF expressions. We then review some of the prior work

on DNF learnability and discuss the relationship of this work with the thesis results.

3.1 Models of Learning

3.1.1 Preliminary Definitions

In this thesis we will primarily be interested in the efficient learnability of Boolean functions,

where efficiency is measured relative to the size of the function when represented as a Dis-

junctive Normal Form expression. A DNF expression is a disjunction of terms, where each

term is a conjunction of literals and a literal is either a variable or its negation. The size

of a DNF expression r is the number of terms in r.1 The DNF-size of a function f is the

size of the smallest DNF expression representing /. Every Boolean function over {0, l}n can

be represented as a DNF; we call function representations that have this property universal

representations. Thus what we mean by "DNF is learnable" is that arbitrary Boolean func-

tions with domain the Boolean hypercube {0, l}n are learnable in time polynomial in their

1This is the standard definition of the size of a DNF expression. We gave a a different, polynomially-
related definition in the Introduction for simplicity of exposition.

3.1. MODELS OF LEARNING 23

DNF-size. We call the domain of the function / to be learned its instance space. An element

x in the instance space is called an instance, and the pair (x,f(x)) is called an example of

/•

We also consider the learnability of arbitrary Boolean functions when the size of the

function is measured in terms of something other than the function's size as a DNF. One

measure of particular interest is when the size is measured in terms of a Threshold-of-Parities,

or TOP, representation (Figure 1.2). Any Boolean function / on {0,1}™ can be computed by

taking a majority vote over a fixed collection of parity functions, i.e., TOP is, like DNF, a

universal representation. By a parity function we mean a function that computes parity over

a fixed subset of the unnegated inputs to / or the negation of such a function; for reasons

explained later, we will assume that these functions output values in { —1,+1}. Parity over

the empty set is by definition the constant function 1. Also, a parity function may occur

multiple times in a TOP. The TOP-size of a function / is the number of parity functions in

the smallest TOP computing /. Equivalently, we can think of a TOP as an integer-weighted

vote over parity functions; in this case, the TOP-size of a representation is the sum of the

magnitudes of the weights.

Given a Boolean function / and probability distribution D on the instance space of /, we

say that Boolean function h is an e-approximator for f with respect to D if PrxeRt)[h(x) =

f(x)] > 1 — e. The notation here represents the probability that h = f over instances

drawn at random according to D; we will typically instead write Pr#[/i = /]. An example

oracle for f with respect to D (EX(f,D)) is an oracle that on request draws an instance

x at random according to probability distribution D and returns the example (x,f(x)). A

membership oracle for f (MEM(f)) is an oracle that given any instance x returns the value

f(x). Queries to these oracles are called example and membership queries, respectively.

3.1.2 PAC Learning

Of the models of learning Valiant introduced [Val84], the model of learning that is perhaps

the best known and most studied is what is now called the Probably Approximately Correct

(PAC) model. This model is defined as follows. Let e and 8 be positive values (called the

24 CHAPTER 3. THE DNF LEARNING PROBLEM

accuracy and confidence of the learning procedure, respectively). Then we say that a class T

of representations of functions (e.g., the class DNF) is PAC learnable if there is an algorithm

A such that for any e and 8, any / € T (the target function), and any distribution D on

the instance space of / (the target distribution), with probability at least 1 — 8 algorithm

A(EX(f,D),e,8) produces an e-approximation for / with respect to D. Furthermore, we

require that when A succeeds at producing such an approximator, «4,'s running time must be

bounded by a polynomial in n, the .F-size of /, 1/e, and 1/8. We generally drop the "PAC"

from "PAC learnable" when the model of learning is clear from context.

Note that we used above the notation / G T to denote a function / represented by a

member of the representation class T. Of course, if T is a universal representation class,

such as DNF, then the requirement that the target be representable by a member of T

does not restrict the choice of target in any way. For other, non-universal representation

classes T', several of which will be defined below, the requirement / £ T does restrict the

choice of target function. We sometimes refer to the functions represented by such a class

as ""T functions." Further note that at times we will also use the notation / £ T to mean a

representation f in T rather than the function represented by /. Which meaning we intend

will be clear from context.

A number of variations on this basic PAC model have been studied. For example, let M

represent a learning model, such as PAC, and let T and H be representation classes. We

say that T is M -learnable byH\iT is .A/f-learnable by an algorithm A that always outputs

a function representation h G H. If T is .M-learnable by T then we say that T is properly

.M-learnable.

A particularly important variation on learning models is allowing the learning algorithm

access to a membership oracle. Specifically, if T is wM-learnable by an algorithm that also

uses a polynomially-bounded number of membership queries (bounded in the same param-

eters as .M-algorithms that do not use membership queries), we say that T is A4-learnable

with membership queries. Another variation on learning models is to restrict the choice of

distributions D against which examples will be drawn and the hypothesis tested. Let Vn

denote a nonempty set of probability distributions on {0, l}n. By a distribution class we

3.1. MODELS OF LEARNING 25

mean any set V = LinVn. Then we say that T is M-leamable with respect to distribu-

tion class T) if T is .M-learnable for all target distributions D in T> but is not necessarily

learnable for arbitrary D. For some distributions that have obvious generalizations to distri-

bution classes (such as the uniform distribution on {0, l}71), we blur the distinction between

distribution and distribution class and say simply that T is learnable with respect to the

distribution rather than with respect to the distribution class. For purposes of differentia-

tion, we sometimes refer to models such as the basic PAC model that place no restrictions

on the distribution D as distribution-independent models of learning, and to models that do

impose such restrictions as distribution-dependent.

A further useful learning variation is so-called weak learning [KV89] (in contrast, the PAC

model above is sometimes called strong learning). If T is .M-learnable for e = 1/2 — l/p(n, s),

where p is a fixed polynomial and s is the .F-size of /, then T is weakly M.-learnable. Since

a fair coin is a |-approximator for any representation class, weak learning is essentially

asking only that we produce a hypothesis that is slightly (but detectably) more accurate

than random guessing. In fact, as the learning problem becomes more difficult (i.e., as the

size of the target function and number of input bits increase), even less accuracy is required

of the hypothesis.

The original motivation for considering weak learning was the following. First, the def-

inition is strong enough that it is possible to show that some representation classes are not

weakly learnable given standard complexity theoretic/cryptographic assumptions (arbitrary

Boolean circuits are one example [Val84]). On the other hand, the definition is enough weaker

than the definition of strong learning that it seemed likely some representation classes could

be shown to be weakly learnable which are not strongly learnable. Somewhat surprisingly,

it has been shown that for the PAC and PAC with membership queries models, weak learn-

ability implies strong learnability [Sch90]. However, these results do not in general extend

to distribution-dependent PAC learning. For example, let T be a class of representations

that is hard (given certain assumptions) to weakly learn, even with respect to uniform (some

examples are given in a later section). Now consider the class JF+ obtained by conjoining a

new variable with each of the representations in J7, e.g., T* = {xoAf \ f £ J7}. This class

26 CHAPTER 3. THE DNF LEARNING PROBLEM

is easy to learn weakly with respect to uniform but, given the hardness of weakly learning

F, is not learnable in a strong sense with respect to uniform.

Thus distribution-dependent boosting is not possible in general. However, in this thesis

we will use an existing distribution-independent boosting technique to convert a distribution-

dependent weak learner for DNF into a distribution-dependent strong learner for DNF. We

are not aware of any other proof of learnability of a class based on applying a standard

distribution-independent boosting algorithm to the task of boosting a distribution-dependent

weak learner.

3.1.3 Exact Identification

Another standard model of learning is due to Angluin [Ang88] and is sometimes referred to

as the Exact Identification model. Here the goal is not to approximate the target function

/ but to produce a hypothesis h that is functionally equivalent to /, i.e., an h such that

for all x, f(x) = h(x). In general, to accomplish efficient learning in this model requires a

more powerful oracle than the ones we have already considered. The specific oracle we will

use is an equivalence oracle for f (EQ(f)), an oracle that, given a hypothesis function h,

returns an instance x such that f(x) ^ h(x) if such an x exists; otherwise, the oracle returns

"equivalent." A representation class T is exactly identifiable if there is an algorithm A such

that for all / G J7, A(EQ(f)) runs in time polynomial in n and the jF-size of / and returns

a hypothesis h equivalent to /. Representation class T is exactly identifiable with proper

equivalence queries if T is exactly identifiable by some algorithm A such that for all of the

hypotheses h posed by A to the equivalence oracle, h € T.

A number of learnability results have been produced for the exact identification model;

several of them are mentioned in the next section. One of the reasons for this interest is

the close relationship between this model and PAC learning. In particular, if a class T

is exactly identifiable (resp., using membership queries) then T is PAC learnable (resp.,

using membership queries) [Ang88]. Thus positive results for the exact identification model

immediately give positive results for the PAC model as well. Also, essentially all classes

that are PAC learnable are also known to be exactly identifiable, although it is possible to

3.2. PRIOR DNF LEARNING RESULTS 27

construct cryptographically-inspired classes that separate the models [Blu90].

3.2 Prior DNF Learning Results

With the previous definitions in hand, we now briefly review some of the history of the DNF

learning problem.

3.2.1 Learning from Examples

As mentioned at the beginning of this chapter, Valiant first considered the question of

whether or not DNF is PAC learnable [Val84]. He noted that given a different measure

of the complexity of a DNF—one that will in general give more time to a learning algorithm

than our size measure—it is possible to learn DNF using a certain nonstandard and par-

ticularly powerful oracle. He also gave algorithms for learning two subclasses of DNF. By

a subclass of DNF we mean a representation class consisting of DNF expressions which are

syntactically restricted in some way. Valiant proved the learnability of the subclass &-DNF

of DNF expressions with at most a constant k many literals per term, and of the subclass

monotone DNF that consists of all DNF expressions having no negated literals. His algo-

rithm for the latter class used an extended form of membership queries; Angluin [Ang88]

subsequently showed that standard membership queries suffice. Furthermore, Valiant con-

sidered the dual question of learning CNF (AND of OR's) expressions; note that since the

negation of a CNF expression is a DNF of the same size, a learning algorithm for either class

can be used to learn the other. This immediately gives that the CNF subclass fc-CNF is

also learnable. However, he left open the "tantalizing" question of whether the unrestricted

class DNF (with standard size measure) was learnable in any reasonable model of learning.

Further motivation to focus on DNF learning was provided in a follow-on paper [Val85] in

which Valiant presented some evidence that learning Boolean classes more expressive than

DNF might be intractable.

Several subsequent results, both positive and negative, continued the work begun by

Valiant on PAC learning of syntactically-restricted subclasses of DNF. Kearns et al. [KLPV87]

28 CHAPTER 3. THE DNF LEARNING PROBLEM

XiAx2 0

x5

X2/\X4

Xz 0

X\/\X±

0

Figure 3.1: A 2-decision list. The value of the function on an input x is computed by
beginning at the top of the list and outputting the value associated with the first term
satisfied by a;. If no term is satisfied then the value at the bottom of the list is output. For
example, the input x = 01111 first satisfies the term a^Aa^, and therefore the output of the
list on this input is 1. In general, a ^-decision list is similar, but each term is allowed up to
k literals.

3.2. PRIOR DNF LEARNING RESULTS 29

showed that for any constant k, the representation classes {/V# | / 6 k-C~NF,g 6 &-DNF}

and {fAg \ f € &-CNF,# e fc-DNF} are PAC learnable. These authors also first proved

that monotone-DNF is "group-learnable" with respect to the uniform distribution (group

learning was later shown equivalent to weak learning, and monotone functions were shown

to be weakly learnable with respect to uniform regardless of the size measure used [KV89]).

Kearns et al. further pointed out that the set of functions with representations as fc-term-

DNF is a subset of the set of functions expressible in &-CNF. Therefore, for constant k,

&-term-DNF is learnable by k-CNF. However, in a negative vein, they showed that k-tevrn-

DNF is not properly learnable unless RP = NP. Rivest [Riv87] proved that the class of

functions expressible as ^-decision lists (Figure 3.1), a class that contains both fc-DNF and

k-CNF, is PAC learnable for constant k.

Some other early work produced quasipolynomial time {e.g., npolyl°sn time) algorithms

for classes related to DNF.2 One important example of a class learnable in quasipolynomial

time is the well-studied class of functions expressible as Boolean decision trees (Figure 3.2).

Decision trees are also a subclass of DNF, as every decision tree can be immediately converted

to a DNF expression of the same size or smaller and thus can be viewed as a restricted way

of expressing DNF. Due to this subclass relationship, any algorithm that efficiently learns

DNF also efficiently (non-properly) learns Boolean decision trees. On the other hand, there

are Boolean functions / such that the decision-tree-size of / is exponentially larger than its

DNF-size. To see the latter claim, consider a DNF of the form (x-iAx^V^Ax^V

Ehrenfeucht and Haussler [EH89] showed that the class of Boolean decision trees is PAC

learnable in time n°^ogn\ (A nice proof of this fact also follows by combining results of

Blum [Blu92] and Rivest [Riv87]). Ehrenfeucht and Haussler also showed that the DNF

subclass of polynomial-size DNF expressions that also have polynomial CNF-size is PAC

learnable in time rc°(log n); put another way, every Boolean function is PAC learnable in

time quasipolynomial in the larger of the CNF- and DNF-sizes of the function.

2Here and elsewhere in this chapter we will generally for simplicity drop the e, S, and function-size
factors from our bounds. Specifically, unless otherwise noted, our bounds assume that the other factors are
polynomial in n.

30 CHAPTER 3. THE DNF LEARNING PROBLEM

0 0

Figure 3.2: A Boolean decision tree. The value of the function on an input x is com-
puted by- beginning at the root of the tree and tracing a path to a leaf in the obvious
way. The value of this leaf is the value of the function. For example, the input x — 00001
defines a path to the leftmost leaf, and therefore the output of the tree on this input is
0. A DNF representation can be immediately obtained for any decision tree by creating
a term for each path to a 1-leaf; for this tree, the corresponding DNF representation is
(x7Ax7Ax3Axj)V(x7A^'Aa;4A3;5)V(a;iAx^)V(a;iAxiAa;3). By definition, the decision-tree-size
of a function is the number of leaves in its smallest decision tree representation. Thus by the
construction above, every function has decision-tree-size at least as large as its DNF-size.

3.2. PRIOR DNF LEARNING RESULTS

Xl X2 X3

31

X4 x5

Figure 3.3: A depth-3 Boolean circuit. The size of such a circuit is the number of gates in
it. In general, an AC0 circuit is a generalization of DNF and CNF (depth-2 circuits) that
includes a constant number of additional alternating levels of AND's and OR's and is of size
polynomial in the number of inputs n.

In a paper that introduced the use of Fourier techniques for learning problems, Linial

et al. [LMN93] showed a learnability result for a class which generalizes DNF and CNF by

allowing additional levels of OR's and AND's (Figure 3.3). Specifically, they showed that the

class of depth-d circuits is PAC learnable with respect to uniform in time roughly n°^°s n\

The restriction of this class to polynomial-size circuits (which is assumed in this bound,

as noted earlier) is known as the class AC0; we will have more to say about AC0 below.

Subsequent to the Linial et al. result, Verbeurgt [Ver90] showed that DNF is learnable with

respect to uniform in time n°^°ss^\ where s is the DNF-size of the target. This result

does not require Fourier analysis; the essential observation is that dropping from a DNF

expression / all its terms of size at least log(s/e) produces an expression /' that is an e-

approximator to /. These were the first positive results for the unrestricted class of DNF

expressions.

However, there was (and is) also some reason to believe that DNF might not be efficiently

PAC learnable, even with respect to the uniform distribution. Perhaps the strongest such

32 CHAPTER 3. THE DNF LEARNING PROBLEM

evidence to date is a result of Blum et al. [BFJ+94] showing that in a particular model

of learning from "noisy" data (the Statistical Query model of Kearns [Kea93]) DNF is not

learnable with respect to uniform. Because of the close connection between this noise model

and the PAC learning model—almost every representation class known to be PAC learnable

is learnable in the Statistical Query model—this result strongly suggests that DNF is not

PAC learnable.

3.2.2 Learning with Membership Queries

Most of the above results apply to learning from an example oracle alone, which was a dom-

inant concern in much of the early learning-theoretic work. Angluin was largely responsible

for demonstrating the utility of learning from alternate oracles. For example, she showed

that many PAC-learnable classes, such as &-DNF and &-CNF, are also learnable from the

equivalence oracle presented earlier, thus generalizing somewhat the positive PAC results for

these classes.

However, perhaps more important than the introduction of the equivalence oracle was

Angluin's work demonstrating the power to be gained by using membership queries. For

example, as noted above, she showed that monotone DNF can be exactly learned from

proper equivalence and membership queries [Ang88], in contrast with her subsequent proof

that monotone DNF (and therefore unrestricted DNF as well) is not learnable from proper

equivalence queries alone [Ang90]. Furthermore, fc-term-DNF (and fc-term-CNF) were shown

to be learnable from proper equivalence queries and membership queries [Ang88], in stark

contrast to the proper PAC-learning hardness results for these classes without membership

queries cited above. Also in the model of learning from proper equivalence plus member-

ship queries, joint work with Frazier and Pitt [AFP90] showed that conjunctions of Horn

clauses are learnable. This implied that the dual class—the subclass of DNF's in which each

term contains at most one negated literal—is also learnable using membership and proper

equivalence queries.

Subsequent work by other researchers has shown that membership queries do indeed

seem to provide a great deal of help in learning many representation classes. Kushilevitz

3.2. PRIOR DNF LEARNING RESULTS 33

and Mansour [KM93] showed that the class of parity decision trees (a generalization of

Boolean decision trees that allows arbitrary parity functions at the internal nodes of the

tree) is PAC learnable with respect to the uniform distribution using membership queries.

Unlike the class of Boolean decision trees, the parity decision tree class is not a subclass

of DNF as it includes many functions that have small parity-decision-tree-size (such as

parity) but which are not expressible as polynomial-size DNF's. While it is also true that

DNF is not a restriction of the parity decision tree class, and thus the Kushilevitz/Mansour

result did not imply learnability of DNF, it seemed that similar techniques might lead to a

polynomial-time learning algorithm for DNF in the same uniform-plus-membership model.

In fact, Mansour [Man92] subsequently presented a similar algorithm for learning DNF in

time n°0-°siosnioge)_ jjoweverj as we w[\\ discuss in more detail in the next chapter, in the

same paper he presented some evidence that this approach might not give a polynomial-time

learning algorithm for DNF.

In the model of distribution-independent learning with membership queries there have

been several nice polynomial-time learning results for strict subclasses of DNF. Blum and

Rudich [BR92] gave an algorithm for exactly learning fc-DNF for k = O(log n) using member-

ship and equivalence queries (Bshouty has given simpler alternate algorithms for this problem

[Bsh93, Bsh95]). And in a very surprising yet elegant result, Bshouty [Bsh93] proved that

Boolean decision trees are likewise learnable with membership and equivalence queries. In

fact, he showed more generally that every Boolean function / is learnable with membership

queries in time polynomial in the larger of the CNF- and DNF-sizes of /.

3.2.3 Hardness Results

There are, however, known limitations on the power of learning with membership queries.

Aizenstein et al. showed that if read-thrice DNF (DNF in which each variable occurs at

most three times) is learnable with membership and proper equivalence queries then NP =

co-NP. More generally, Angluin and Kharitonov have shown that if one-way functions

exist and if DNF is PAC learnable with membership queries then, with respect to the class

of distributions computable by polynomial-time circuits, DNF is PAC learnable without

34 CHAPTER 3. THE DNF LEARNING PROBLEM

membership queries. In essence, this result says (assuming a fundamental cryptographic

assumption, i.e., that one-way functions exist) that membership queries will not help with

PAC learning DNF.

This Angluin and Kharitonov result, while theoretically interesting, did not close the

door on the possibility that membership queries might help for learning DNF with respect to

restricted classes of distributions, such as with respect to uniform. To address this possibility,

Kharitonov pursued a line of research [Kha92, Kha93] that culminated in showing that, given

a specific assumption about the hardness of factoring, AC0 is not learnable in polynomial

time, even weakly, with respect to uniform, and using membership queries. This means

that for the representation class of polynomial-size circuits composed of AND's and OR's of

some fixed constant depth, it is apparently impossible to learn in even a very weak sense.

Furthermore, Kharitonov hoped to show that the "fixed constant depth" was in fact depth

two, that is, that polynomial-size DNF was similarly hard to learn.

3.2.4 Summary and New Results

In summary, while there has been sustained interest in the learnability of DNF in various

models, most of the positive results have been for restricted versions of DNF learnability

or have not been polynomial time. In fact, there were no known algorithms for efficiently

learning unrestricted DNF in any generally-accepted model. Furthermore, there were neg-

ative results for learning without membership queries in certain models [Ang90, BFJ+94],

and progress was apparently being made toward proving that DNF was not learnable with

membership queries even in a weak sense of learning and with respect to uniform.

It is at this point that the primary theoretical results of this thesis enter the picture.

In joint work [BFJ+94], we showed that DNF is indeed learnable weakly with respect to

uniform using membership queries. This was then strengthened [Jac94] to show that DNF

is strongly learnable in the same model by the Harmonic Sieve. The results depend heavily

on Fourier techniques, and the strong learning algorithm also uses a hypothesis boosting

mechanism. We discuss our results in detail in later chapters, but first we review the Fourier

transform and hypothesis boosting tools that will be used to obtain these results.

Chapter 4

The Fourier Transform

In this chapter we present what has proved to be a particularly useful tool in learning theory,

a multidimensional discrete Fourier transform known as the Walsh transform. We begin by

defining the transform and some of its basic properties. We then outline several important

learning results obtained using analysis based on this transform. Finally, we focus on a

particular result that will play a key role in the Harmonic Sieve.

4.1 Definition and Properties of the Fourier Trans-
form

The Discrete Fourier Transform (DFT) is perhaps best known for its applications in signal

processing. However, a fast algorithm for the DFT (the Fast Fourier Transform, or FFT)

also plays a central role in efficient algorithms for tasks such as multiplication of integers

and of polynomials, and is therefore well-known to computer scientists. The DFT can be

defined as follows1: given a vector / = [/o, /i,..., /JV-I] of N complex numbers, the DFT of

/ is a vector / = [/o, h-, ■ ■ ■, /JV-I] of N complex numbers defined by

1 JV—1

iy k=0

1There are slight differences between our definition and one commonly used in computer science [AHU74].

35

36 CHAPTER 4. THE FOURIER TRANSFORM

for 0 < i < N, where U>N = e
27r%/T/'Jv. A useful property of the DFT is that it is essentially

its own inverse; that is, again for 0 <• i < N,

We will be interested in applying the DFT to functions, and in particular to functions

defined over hypercubes. For any integer b, let [b] represent the set {0,..., b— 1} and consider

a function / : [b]n —> C. We can view such a function as a vector of bn complex numbers,

one value in the vector for each value in the truth table of /. Thus we could define the DFT

for such a function by simply taking the DFT described above over the vector representation

of the function.

However, as we will see, there is some advantage to defining the DFT in a way that takes

into account the underlying structure of the domain of the function to be transformed. In

particular, we will define the multidimensional discrete Fourier transform (also known as the

Walsh transform) as follows: given a function / : [b]n —»■ C, the multidimensional discrete

Fourier transform (or just Fourier transform) of / is defined for each a € [b]n by

0 xe[b]n

Using the notation

Xa{X) = U^

note that we can express /(a) as

f(a) = ExGu[b]n[f(x) ■ Xa(x)},

where E^g^s^] represents the expectation over x drawn uniformly at random from the set S

(we will often write this simply as E[-] when the set S is understood from context). We call

f(a) a Fourier coefficient of /. The inverse (multidimensional discrete) Fourier transform is

given by

/(*)= E M-xl(x)
aE[b]n

4.1. DEFINITION AND PROPERTIES OF THE FOURIER TRANSFORM 37

where x*a is the complex conjugate of Xa, that is,

*/ \ — Z^i aixi
Xa(X) ="b ■

We will later use several properties of the Fourier transform and especially of the functions

Xa- It can be shown that the x functions have the property that

Fr *i _ / 1 if a = &
HXa ■ Xb\ ~ | Q otherwise.

Thus with respect to the inner product (f,g) = E[f-g*] these functions form an orthonormal

basis for the space of all complex-valued functions on [b]n. Also note that Xö 1S the constant

+1 function; therefore, /(Ö) = E[/ ■ Xö] = E[/]. By Parseval's theorem, for every function

/ : [&]B - R,

E[/2] = £|/(a)|2.
a

For / mapping to { — 1, +1} it follows that Y,a l/(
a)|2 = 1- Because of this, when we refer to

a Boolean function we will have in mind one that maps to { — 1, +1} rather than the usual

mapping to {0,1} (we take +1 to represent true in either case). More generally, it can be

shown that for any real-valued functions / and g, E[fg] = £)0 f(
a)g*(a)-

For the special case b = 2 we prefer to use an equivalent set-based notation in defining

the Fourier basis functions and transform. In this case, for each set A C {1,... ,n} we can

define the function XA '■ {0,1}" —> { — 1, +1} as

XA{X) = (-1)£.€^ = 1 - 2 (j>< mod 2)
\ieA)

(this is consistent with the earlier definition, as u>2 = —1). That is, XA(%) is the Boolean

function that is 1 when the parity of the bits in x indexed by A is even and is —1 otherwise.

Also note that for Boolean /, f(A) — E[/ • XA] represents the correlation of / and XA

with respect to the uniform distribution. Specifically, it can be shown that for every A C

{l,...,n},

prxeRU[f(x) = XA(x)]=1-+^^-.

38 CHAPTER 4. THE FOURIER TRANSFORM

4.2 Applications to Learning

In this section we review several learning algorithms that have been derived using Fourier

techniques, some of which have already been mentioned in the previous chapter. Our em-

phasis in this section will be on the intuition behind these results rather than on giving

mathematically rigorous descriptions of the algorithms. In the next section we will give

details of a particular Fourier-based algorithm that will play a key role in our approach to

learning DNF.

4.2.1 Learning AC0 in Quasipolynomial Time

Linial, Mansour, and Nisan introduced the idea of applying Fourier analysis in the study

of learnability of representation classes [LMN93]. In particular, they gave an algorithm for

learning the representation class AC0 in quasipolynomial time. AC0 is a subclass of the class

of Boolean functions over the set {0,1}* of finite Boolean strings. For any / : {0,1}* —>

{ —1,+1}, define /„ : {0,1}" —»• { —1,+1} to be the function over {0,l}n consistent with /

over this domain. Then / is in AC0 if and only if there is a polynomial p and a constant d

such that for all n, fn is computable by an {A, V, ->}-circuit of depth at most d and of size

bounded by p(n) (Figure 3.3). For g : {0,1}" —► { —1, +1}, we say that g is an AC0 function

if there exists / € AC0 such that g = fn:

AC0 is an important class from a learning point of view in part because the class of

polynomial-size DNF expressions is a subclass of AC0. It is also a well-studied class in

complexity theory. For our purposes, a key complexity result concerning AC0 is that n-bit

parity is not in AC0 [FSS81, Has86]. In fact, Hastad has shown that even, say, parity over a

subset S of the inputs such that l^l = y/n cannot be weakly approximated by any function

/ € AC0 [Has86]. That is, for all sets A C {1,... ,n} such that |A| > y/n and for every

/ G AC0, the Fourier coefficient f(A) has superpolynomially small magnitude.

While Hastad's results are actually somewhat stronger than this, Linial et al. went

even further, showing an overall bound on the sum of squares of a very large set of Fourier

coefficients. Although this bound does not follow immediately from Hastad's results cited

4.2. APPLICATIONS TO LEARNING 39

above, the proof of the bound does build (in a very nontrivial way) on Hastad's well-known

Switching Lemma. Before we state the bound, recall that every function / : {0, l}n —>

{ — 1,+1} can be written in terms of its Fourier coefficients f(A) as

A

What Linial et al. showed is that for any / € AC0, for all sets A of size exceeding roughly

k PS log (n/e), where d is the depth of the circuit computing /, the coefficients f{A) of /

are so small that the function g defined by

g(x) = £ f(A) ■ XA(X)
\A\<k

is very close to /. Specifically, for an appropriate choice of k, ~Ex€Ru[(f(x) — g{x))2] < e.

They then proved that this implies that sign(^) is an e-approximator for / with respect to

uniform.

While the analysis underlying this approximation result is quite sophisticated, the learn-

ing algorithm that results is very simple. Assume that we are able to draw examples of

an AC0 function / uniformly at random over {0,1}™ (i.e., we are given an example ora-

cle EX(f,U)). Ignoring computational considerations, we can use this oracle to estimate

f(A) = ~E[f(x)xA(%)] for all sets A of size at most polylogarithmic in n/e. By Chernoff bound

arguments we need only quasipolynomially many samples to obtain adequate estimates for

all of these values. Thus we can estimate all of these coefficients in quasipolynomial time.

We then use these estimated coefficients to create an approximation to the function g above

and output sign(^) as our final hypothesis. By the earlier claims this hypothesis will well-

approximate / with respect to the uniform distribution. Therefore, AC0 is PAC learnable

in quasipolynomial time with respect to uniform.

This LMN algorithm was an exciting discovery: AC0 is a much richer class than those

for which efficient learning algorithms were known at the time. Furthermore, the Fourier

techniques were obviously quite powerful and seemed likely to lead to further algorithms.

The major question was, could they lead to efficient learning algorithms rather than ones

running in quasipolynomial time?

40 CHAPTER 4. THE FOURIER TRANSFORM

4.2.2 Efficient Fourier Learning

Two different results at about the same time showed that Fourier techniques could indeed

give rise to efficient learning algorithms for certain representation classes.

Probabilistic Concepts

Aiello and Mihail [AM91] showed that certain simple probabilistic concepts could be effi-

ciently learned with respect to the uniform distribution using an example oracle. A proba-

bilistic concept p can be thought of as a randomized function that operates in two stages.

Given an input x, the first stage invokes a deterministic function p\(x) that produces a value

in [0,1]. The second stage treats the value produced by the first stage as a probability and

outputs 1 with probability pi(x) and 0 with probability 1 — pi(x). The learning problem for

probabilistic concepts is to take a sample of the {0, l}-outputs of a probabilistic concept p

and produce a good approximation to the underlying deterministic function p\. The underly-

ing functions considered by Aiello and Mihail were 1-decision lists (Figure 3.1) and read-once

decision trees (functions expressible as a Boolean decision tree (Figure 3.2) in which each

variable X{ appears in at most one decision node of the tree).

A key to the Aiello and Mihail results was showing that for any concept p in the two

probabilistic classes mentioned above there exists a good approximator to p with respect to

uniform that depends on only a polynomial (in n and e_1) number of Fourier coefficients.

By "good approximator to p" we mean that the expected absolute difference between the

approximator h and the underlying deterministic function p\ is bounded by e. In fact,

they showed that a good approximator to the probabilistic concepts they considered is a

hypothesis of the form

h = £ f{A)XM
Aes

where the set S C 2^1''"'n^ is polynomial size. Furthermore, they showed how to efficiently

find the set S, as well as how to find sufficiently accurate approximations to the coefficients

indexed by S, given only an example oracle for p.

4.2. APPLICATIONS TO LEARNING 41

Decision Trees

Kushilevitz and Mansour took a somewhat different approach to produce an efficient Fourier-

based algorithm. They were the first to consider the model of learning that our DNF algo-

rithm is designed for: learning with respect to the uniform distribution using a membership

oracle (rather than an example oracle, as in the previous results). While having a mem-

bership oracle available makes learning somewhat easier, it is not an unreasonable model

of learning. In fact, we will discuss potential applications for algorithms developed in this

model in the second part of this thesis.

Given the additional power of membership queries, Kushilevitz and Mansour were able

to show that decision trees are learnable with respect to uniform in time polynomial in

the size of the tree (i.e., the number of leaves). This was an interesting result for several

reasons. First, because of their understandability, decision trees have been the subject of

much study in both the theoretical and applied machine learning communities. In fact,

one of the more popular current machine learning algorithms, C4.5 [Qui93], is a heuristic

algorithm for learning decision trees.

Perhaps even more importantly, the Kushilevitz and Mansour proof technique was novel

and powerful. Kushilevitz and Mansour proved a Fourier property about Boolean decision

trees, much as Linial et al. had done for AC0, and then showed that representation classes

possessing this property were efficiently learnable. In fact, both the AC0 and decision tree

learning algorithms output a hypothesis approximating

sign(£/(A)xJ
\Aes I

for an appropriate set S C {l,...,n}. What sets the Kushilevitz and Mansour approach

apart is that they gave an algorithm for efficiently finding a polynomial-size set S such that

the above hypothesis is a good approximator. In particular, the algorithm uses membership

queries to find the Fourier coefficients f(A) with the largest magnitude; the indices of these

coefficients define the set S. The algorithm for finding these coefficients plays a key role in

the Harmonic Sieve and is discussed in detail in Section 4.3.

42 CHAPTER 4. THE FOURIER TRANSFORM

Finally, it should be noted that Kushilevitz and Mansour showed that the Fourier prop-

erty of Boolean decision trees used to show learnability of this class also holds for decision

trees with arbitrary parity functions at the internal nodes (parity decision trees); thus the

class of parity decision trees is also learnable. Subsequently, Bellare [Bel92] proved that the

property holds for several other classes, including &-term-DNF for k = O(logn).

4.2.3 Learning DNF in Slightly Superpolynomial Time

While the Kushilevitz and Mansour decision tree learning algorithm was a significant step

forward, the knotty question of whether a similar algorithm existed for DNF remained open.

In particular, there are polynomial-size DNF expressions that are not expressible by any

polynomial-size decision tree, even a tree with parity functions at the decision nodes. Could

such functions be learned in time polynomial in their size as a DNF?

For a while, the best answer was "almost." As mentioned in the previous chapter, it

is relatively straightforward to show that DNF can be learned with respect to uniform in

time roughly n0(los(s/e)), where s is the DNF-size of the target [Ver90]. This result does not

require Fourier techniques and does not require membership queries. Subsequently, Mansour

[Man92] combined Fourier ideas from Linial et al. and Kushilevitz-Mansour to show that

polynomial-size DNF is learnable with respect to uniform and using membership queries in

time roughly n°(loslos«loge)_ Once again, the hypothesis produced was an approximation

to a function h of the form

Ä = sign (£/(A)* J ,
\Aes)

but now S was (slightly) superpolynomial in size in the worst case.

4.2.4 Weakly Learning DNF

One of the contributions of this thesis provides the next step in our progression of Fourier

results in learning theory. This step might appear to be quite small, but as we will see it plays

a significant role in leading up to our strong DNF learning algorithm. The result was this:

DNF is weakly learnable with respect to the uniform distribution using membership queries

4.2. APPLICATIONS TO LEARNING 43

[BFJ+94]. As previously noted, this was the first known algorithm for learning unrestricted

DNF in a standard model of learning. The result also provided a new bound on how far

learnability hardness results for AC0 in this same model of learning [Kha93] could be taken.

To some extent, however, the main reason for interest in the result was that it renewed hope

that DNF might be strongly learnable in the same model, perhaps by building on the weak

learner. This hope was well-founded, as we show in Chapter 6.

The proof that DNF is weakly learnable boils down to one simple observation: for every

DNF expression / of size s, there is some Fourier coefficient f(A) such that |/(A)| > 1/35.

While this is quite simple to prove, we will not bother to do so now, as we prove a more

general result in Chapter 6. Given this observation, the technique used by Kushilevitz and

Mansour for finding large Fourier coefficients can be employed, given a membership oracle

for any DNF expression /, to find a coefficient of / having magnitude at least l/3s. Since

a coefficient f(A) represents the correlation between the parity function \A and the target

function /, having found a suitably large f(A) means that the corresponding parity XA is a

weak approximator to /. The form of the hypothesis h output by this weak DNF learner is

then particularly simple:

h = sign(f (A))XA-

4.2.5 Summary and Comparison with Harmonic Sieve

Reviewing the Fourier-based learning algorithms presented in this section, we see a common

theme. First, a Fourier property of the class of representations to be learned had to be proved.

Second, based on this property, an algorithm for finding the "right" Fourier coefficients to

describe the target function was constructed. And third, the output hypothesis was (the

sign of) a linear combination of the parities corresponding to the right coefficients, where

the coefficients of this combination were estimates of the corresponding Fourier coefficients.

While this methodology had produced a string of impressive results, Mansour [Man92]

gave some evidence that it might not be sufficient for strongly learning DNF in polynomial

time. In particular, for all Fourier-based learning algorithms prior to the Harmonic Sieve

44 CHAPTER 4. THE FOURIER TRANSFORM

the "right" set S of Fourier coefficients was defined as a set having a property something like

£ f2(A) > 1 - 6,
Aes

where / represents the target function. Since for Boolean /, H4C{i,...,n} /2(-^) = 1 (by

Parseval), a set S as above represents most of the "spectral power" of /. In turn, it can

be shown that for the function g = J2Aesf(A)xA, E[(/ — g)2] < e. Thus g is in some

sense very close to /, and g (or its sign) can be used to approximate /. However, Mansour

showed that there are DNF expressions for which any polynomial number of the Fourier

coefficients represent relatively little of the spectral power of the function. Specifically,

there are some DNF expressions such that any set S having the property above must be

superpolynomially large in e_1. Thus any algorithm for learning DNF by finding such an S

requires sup er polynomial time. Therefore, to prove that DNF is efficiently learnable using

Fourier techniques would require a very different approach than that taken in previous work.

The Harmonic Sieve provides such a novel approach. Specifically, it finds not only Fourier

coefficients of the target function, but also Fourier coefficients of certain functions other

than the target. Furthermore, the output hypothesis, while similar to the hypotheses of

most previous Fourier algorithms in that it is the sign of a sum of parity functions, does not

have weights that correspond to Fourier coefficients of the target. Instead, the weights are

determined by a very different method based on hypothesis boosting. While at this point

it is probably not at all clear that such an approach could produce any sort of learning

algorithm, let alone an efficient learning algorithm for DNF, we will soon prove that it does.

We continue this comparison between the Harmonic Sieve and previous Fourier learning

algorithms in Chapter 6 after presenting the Harmonic Sieve algorithm in detail. For now,

we turn to a discussion of the Kushilevitz/Mansour algorithm for finding the large Fourier

coefficients of a function.

4.3 Finding Well-correlated Parity Functions

As noted in the previous section, our DNF learning algorithm relies in part on a technique

that, given a membership oracle for a function /, efficiently finds the large Fourier coefficients

4.3. FINDING WELL-CORRELATED PARITY FUNCTIONS 45

of /. In other words, this technique can be used to find those parity functions that are well-

correlated with /.

In this section we describe the first-known technique for performing this task, which was

discovered by Goldreich and Levin [GL89]. Subsequently, Kushilevitz and Mansour [KM93]

gave a Fourier-based proof of correctness for this technique and showed how to use it to learn

decision trees with respect to the uniform distribution. This technique (which we call the

KM algorithm) and a proof of correctness will be presented in detail. In addition to the basic

KM algorithm, we will give a slight extension of KM that will be used by the Harmonic Sieve.

We have chosen to detail the KM algorithm because it is relatively intuitive and has been

used in a variety of learning algorithms [KM93, Bel91, Man92, BFJ+94, Jac94]. It should

be noted that an alternative algorithm that may give better performance (at least for many

problems) has been discovered more recently by Levin [Lev93]. Finally, for applications in

which the number of inputs n is so small that the entire truth table of the function to be

learned can be generated in a computationally-feasible amount of time, the Fast Fourier

Transform (FFT; see [AHU74] for a definition and discussion) can be used to find the large

Fourier coefficients of the target function. That is, we can produce a vector representing the

truth table of /, perform a multidimensional version of the FFT on this truth table to get

a vector of all of the Fourier coefficients of /, and then exhaustively search this vector for

the maximum coefficient. While asymptotically KM is polynomial-time in n and this FFT

approach is exponential-time, the FFT is more efficient than the sampling-based KM on small

problems. In fact, we use the FFT in one of the applications reported on in Part II of this

thesis.

4.3.1 The KM Algorithm

The basic KM algorithm finds, with probability at least 1 — 6, close approximations to all of the

large Fourier coefficients of a Boolean function / on {0,1}". Since on this domain a Fourier

coefficient f(A) represents the correlation between a parity XA and the target function /, KM

can be used to find all parities that correlate well with /. By "large" coefficients we mean

coefficients of magnitude exceeding some threshold 9; the algorithm runs in time polynomial

46 CHAPTER 4. THE FOURIER TRANSFORM

in n, log(6_1), and 9~l. KM makes membership queries for /, but otherwise / is treated as a

black box.

KM is a recursive algorithm that is given as input a membership oracle MEM(f), threshold

6, confidence 8, and the specification of a set of Fourier coefficients. A set of coefficients is

specified by two parameters, an integer k £ [0, n] and a set A C {1,..., &}; these parameters

define the set ÖA,k = {f{A U B) \ B C {k + 1,... , n}}. Initially, KM is run on the set of all

Fourier coefficients of /, C^Q.

Each time KM is called, it begins by defining a partition of the input set CA,U into the

two equal-sized sets CA,H+\
and CAu{k+i},k+i- For notational convenience we let C; denote

either of the sets in the partition. After partitioning the input set, KM next tests to see

whether or not a large coefficient can possibly be a member of one or both of the sets. It

(conceptually) does this by computing the sum of squares of the Fourier coefficients in each

set; we denote the sum for set C; by L\{Ci). If L\(Ci) < 62 for either d then certainly

none of the coefficients in that C; exceeds the threshold 9, and the coefficients in that C; can

be ignored in subsequent processing. On the other hand, if L\{Ci) > 62 and \d\ > 1 then

KM recurses on C;. The above-threshold singleton sets remaining at the end of this process

are the desired large coefficients. Because the sum of squares of the Fourier coefficients of a

Boolean function is 1 (by Parseval), the algorithm will recurse on at most 6~2 subsets at any

of the n levels of the recursion. Thus this algorithm runs in time polynomial in the depth n

of the recursion, in 0-1, and in the maximum time required to compute L\{C{) for any d.

Of course, the time required to compute L\{Ci) could be exponentially large. The KM

algorithm gets around this difficulty by estimating L\{Ci) for each C% in an ingenious way:

for every function / : {0,1}™ —»• R, every k £ [0, n], and every A C {1,..., k},

Ll(CA,k) = Ex,ytZ[f(yx)f(zx)XA(y © *)],

where the expectation is uniform over x £ {0,l}"-fc, y £ {0, l}k, and z £ {0, l}k, and yx

represents the concatenation of y and x. (For a derivation of a generalization of this equality,

see chapter 8.) Thus L\{CA,k) can be estimated by using membership queries to sample /

appropriately. In particular, by Hoeffding's inequality, KM can efficiently estimate a value //'

4.3. FINDING WELL-CORRELATED PARITY FUNCTIONS 47

such that

Pr \p'-L2
2(CA,k)\>j

<8f_
~ 2n'

Therefore, with probability at least 1 - 862/2n, if L2(CA,k) > 02 then p' > 302/4, and if

L\{CA,k) < 92/2 then p' < 302/4. With high probability, then, if we recurse only on sets

that have p' > 392/4: then we will recurse on all the sets that have L\{CA,k) > #2 and we will

not recurse on any set such that L\{ÖA,k) < 02/2. By the earlier argument this will give us

a polynomial-time algorithm that with probability at least 1 — 8 returns a set S C 2^1'-'n^

such that

1. For all A such that \f(A)\ >6,AeS; and

2. For all ÄG S, |/(A)| > ^.

We say that such a set has the large Fourier coefficient property.

4.3.2 Extending KM

The Harmonic Sieve will need to find the large coefficients of certain functions that are not

Boolean valued. This leads us to extend KM slightly:

Lemma 4.1 There is an algorithm KM' such that, for any function g : {0,1}™ —> R, threshold

6 > 0, and confidence 8 > 0, KK'(n,MEM(g),6,L00(g),6) returns, with probability at least

I—6, a set with the large Fourier coefficient property. KM' uses membership queries and runs

in time polynomial in n, 0'1, log(£-1); and L^g).

Proof: For each set CU,fc, by Hoeffding's inequality (Lemma 2.2) a number of samples

polynomial in 0_1, log(<5_1), and L^g) {i.e., maxx |<7(a:)|) is sufficient to estimate p' such

that

Pr W-L2
2(CA,k)\>j

802

ZnLKgY
The fact that by Parseval Y1A9

2
(A) = E[#2] < L^g) means that the number of recursive

calls at each of the n levels of the recursion is, with probability at least 1—8, bounded above

by 2L2
ys(g)/02. The rest of the argument is analogous to that for KM. D

48 CHAPTER 4. THE FOURIER TRANSFORM

Chapter 5

Hypothesis Boosting

As mentioned in the last chapter, in Blum et al. we showed that DNF is weakly learnable

with respect to the uniform distribution using membership queries [BFJ+94]. This is an

interesting result from a theoretical point of view, since it is also known that AC0 is not

learnable in this sense modulo cryptographic assumptions [Kha93]. It will also form the basis

of our main theoretical result, that DNF is strongly learnable with respect to uniform using

membership queries. A key tool we will use to get the strong result from the weak one is

hypothesis boosting, which we now discuss.

5.1 The Boosting Concept

Schapire [Sch90] first discovered the surprising fact that every representation class that can be

weakly learned (in a distribution-independent model) can be strongly learned. Subsequently,

several improved boosting algorithms have been developed [Fre90, Fre92, Fre93, FS95]. In

addition to certain efficiency advantages, the subsequent boosters tend to be much simpler

than Schapire's original algorithm. As we will see, this simplicity will be exploited in a novel

way by our Harmonic Sieve algorithm.

All of the currently-known boosting algorithms are similar in certain respects. In each

case, we assume that the boosting algorithm is given a weak learner; in fact, we typically

assume that the weak learner is distribution-independent and produces (|—7)-approximators

for the target representation class, where 7 is known by the boosting algorithm. All of

49

50 CHAPTER 5. HYPOTHESIS BOOSTING

the boosters run the given weak learner multiple times and combine the resulting weak

hypotheses in some manner to produce a strong hypothesis. Boosting occurs as a result of

running the weak learner on different (simulated) example oracles EX(f, A) each time, thus

producing weak hypotheses that perform well on different regions of the instance space.

The boosters differ in how they define the particular simulated distributions A against

which the weak learner is run and in how they combine the weak hypotheses generated

into the final strong hypothesis. The DNF learning algorithm presented in this paper is

based on one of Freund's boosting algorithms [Fre90]; we will call this algorithm Fl. An

important feature of Fl for our purposes is that all of the distributions A simulated by

Fl when boosting with respect to uniform are polynomial-time computable functions, i.e.,

the weight assigned to x by A can be efficiently computed for all x. This means that in

addition to supplying the weak learner with example oracle EX(f, A) at each boosting step,

we can also give the learner an oracle for the distribution A- This ability to provide the

weak learner with a such a distribution oracle is crucial, as our weak algorithm, unlike other

learning algorithms that we are familiar with, requires such an oracle.

Another noteworthy aspect of Freund's Fl algorithm is that the final hypothesis is formed

in a simple way: apply the majority function MAJ to the weak hypotheses produced during

the boosting process. As the weak hypotheses generated by the Harmonic Sieve are relatively

simple (they are parity functions), our final hypothesis is also quite simple. This may

have implications for potential practical applications of the Harmonic Sieve and related

algorithms, as discussed in Part II of the thesis.

We now discuss the Fl boosting algorithm in detail.

5.2 Freund's Fl Boosting Algorithm

As input, Fl is given positive e, 8, and 7, a weak learner WL that produces (|-7)-approximate

hypotheses for functions in J7, and an example oracle EX(f, D) for some / <E T. The weak

learner WL is assumed to take an example oracle and confidence parameter 8' as inputs and

produce a (| — 7)-approximate hypothesis with probability at least 1 — 8'.

5.2. FREUND'S Fl BOOSTING ALGORITHM 51

Given these inputs, the Fl algorithm steps sequentially through k stages (an appropriate

value for k is given below). At each stage t, 0 < i < A: — 1, Fl performs one run of WL,

which produces (with high probability) a (| - 7)-approximate hypothesis Iü,-. During the

first stage, Fl runs WL on the given example oracle EX(f, D). During each of the succeeding

stages % > 0, Fl runs WL on a simulated example oracle EX(f,Di), where distribution A

focuses weight on those instances x such that slightly fewer than half of the i weak hypotheses

generated during previous stages are correct on x and slightly more than half are incorrect.

Recalling that the final hypothesis of Fl is a majority vote over the weak hypotheses it

produces, this choice of distribution makes some sense: the distribution focuses the weak

learner on those instances that would be misclassified if a majority vote of the current weak

hypotheses was taken, but which are also close to receiving a correct vote. It is clearly a

good idea to focus the weak learner at the next stage on such instances.

On the other hand, this choice of distribution may appear to have certain problems.

Specifically, such a A puts very little weight on instances that are very wrong (i.e., instances

x such that almost all of the previous hypotheses label x incorrectly), and thus these instances

will very likely not be correctly labeled by the final hypothesis. While this is true, the

distributions A begin (for small i) rather "flat" with respect to variation from the target

distribution D and become more focused gradually as i increases. Thus it is not until i

is fairly large that the booster begins to effectively ignore the very wrong instances, and

Freund shows that for the specific A's defined below there are in fact very few of these

ignored instances at any stage of boosting. Thus the fact that these instances will likely be

wrong in the final hypothesis is not a concern.

Before defining the distributions A precisely and explaining how the algorithm simulates

EX(f,D{), we need some notation. Let

&i = i £(L}J-r;*-t-l,| + 7) if ^ - | < r < |
r [0 otherwise

where B(j;n,p) = (")^'(1 - p)n~j is the binomial formula. Also, let a\ = aj/maxr{a;}.

Finally, let ri(x) represent the number of weak hypotheses Wj among those hypotheses pro-

duced before stage i that are "right" on x, i.e., n(x) = |{0 <j<i\ Wj(x) = f(x)}\.

52 CHAPTER 5. HYPOTHESIS BOOSTING

Now we are ready to describe the simulation of EX(f, A)- During stage i > 0, when the

weak learner requests an example from the simulated example oracle EX(f,Di), Fl queries

the example oracle EX(f,D) and receives an example (x,f(x)). With probability a* ix\, Fl

accepts this example. If Fl does not accept then it queries for another example, repeating

this process until it does accept. Finally, Fl passes the accepted example to WL. Thus the

distribution D; simulated by Fl at stage i is

Di(l,= pfe' (5-1)

Stage i is completed when WL outputs its hypothesis iOj.

It can be shown that if the number of stages k is chosen to be at least |7-2ln(e-1)

and the weak learner successfully produces a (| — 7)-approximator at each stage, then Fl

will produce an e-approximator as its final hypothesis. However, there is a potential com-

putational difficulty with this approach to boosting. Notice that in general it may require

many samples of the example oracle EX(f,D) to simulate the example oracle EX(f,D{).

In fact, it can be seen that the denominator of (5.1) is the probability that Fl accepts an

example while simulating the oracle EX(f,Di). Thus if at some stage i this denominator,

J2y D(y)a%
ri,ys, becomes quite small then to simulate the example oracle EX(f,Di) could

require a very long (perhaps superpolynomial) time.

To account for this possibility, the algorithm estimates YlyD{y)a%
r.i\ at each stage i.

If the estimate is below a threshold then Fl terminates, outputting as its hypothesis h a

majority vote over the weak hypotheses discovered before stage i. Intuitively, this is a

reasonable stopping condition for the algorithm for the following reasons. As explained

earlier, at every stage i very few instances are "very" wrong, i.e., are incorrectly classified by

well over half of the weak hypotheses. Also, if the probability of acceptance while simulating

EX(f, D{) is very small then there must be few instances in the region focused on by Z),, that

is, few instances on which slightly more than half of the weak hypotheses vote incorrectly.

Putting these facts together means that few instances are incorrectly classified by h as defined

above.

An implementation of Fl that incorporates these ideas and takes into account several

5.2. FREUND'S Ft BOOSTING ALGORITHM 53

Invocation: h «- Fl(EX(f, D), 7,WL, e, 8)
Input: Example oracle EX(f,D) for target / and distribution D; 0 < 7 < |; (| - 7)-
approximate weak learner WL(EX, 8) which succeeds with probability at least 1 — 6; e > 0;
8>0
Output: h such that, with probability at least 1 — 8, PI\D[/ = h] > 1 — e

1. 7 = min(7,0.39)
2. Ä;<-f7-2ln(4/e)
3. w0±-\lL(EX(f,D),8/2k)
4. for i <—1,.. .,& — 1 do
.5. ri(x) = |{0<i<i|u;i(x) = /(x)}|

6. B{j;n,p)=f$pi{l-p)»-i

7. ä* = £([k/2\ -r;k-i-l, 1/2 + 7) if i - Jfc/2 < r < Jb/2, äj = 0 otherwise
8. a* = ä*/maxr=0,...,i-i{är}.
9. 0 = e3/57

10. X = draw example (x,f(x)) from EX(/,-D) and compute al
T.ix\

11. Ea<-AMEAN(X,6-a = l,|0,5/2A;)
12. if Ea < §0 then
13. Än-t
14. break do
15. endif

, , D(x)a' , .
16. Ax = v- n ?W
17. Wi^yL{EX{f,Di),8l2k)
18. enddo
19. h(x) = MAJ(w0(x),wi(x),... ,Wk-i(x))
20. return h

Figure 5.1: The Fl hypothesis boosting algorithm. AMEAN is described in Corollary 2.1. X
is a random variable used to estimate ED[O^, J.

54 CHAPTERS. HYPOTHESIS BOOSTING

smaller issues is given in Figure 5.1. The following lemma concerning the functionality and

running time of Fl is due to Freund; the previously unpublished proof of one part of Freund's

argument is presented in the chapter appendix.

Lemma 5.1 (Freund) Algorithm Fl, given positive e, 8, andj, a (^ — ^-approximate PAC

learner for representation class T, and example oracle EX(f, D) for some f E T and any

distribution D, runs in time polynomial in n, s, 7-1, t~l, and log(£-1) and produces, with

probability at least 1—8, an e-approximation for f with respect to D.

Fl can also be used to boost a weak membership-query learner into a strong membership-

query learner. The only change to Fl is that it accepts the membership oracle MEM(f) as

an argument and includes this oracle as an argument in the calls to WL. The Harmonic Sieve

will be based on the membership-query version of Fl.

5.3 Applying Boosting to DNF Learning

Hypothesis boosting as described above is designed to take a distribution-independent weak

learner and use it to create a similarly distribution-independent strong learner. So if we had

a distribution-independent weak PAC learning algorithm for DNF, we would immediately

have a strong PAC learning algorithm for DNF. However, it is generally believed (and this

author shares this view) that DNF is not distribution-independent PAC learnable. If this

belief is correct then the existence of hypothesis boosting gives that DNF is also not weakly

distribution-independent PAC learnable.

On the other hand, we would like to use the Fl boosting algorithm to produce a strong

distribution-dependent learning algorithm for DNF. Also, Fl requires a weak learning algo-

rithm that learns with respect to many different distributions. Thus we are led to search for

a weak learning algorithm that, while not completely distribution-independent, learns with

respect to a wide variety of distributions. In the next chapter we present precisely such a

weak learner. To the best of our knowledge, this is the first distribution-dependent weak

learner that can be boosted using an off-the-shelf boosting technique.

5.4. ALTERNATIVE BOOSTING ALGORITHMS 55

5.4 Alternative Boosting Algorithms

It should be noted that Fl is not the only boosting algorithm that could be applied to

the DNF learning problem. In particular, Freund has also developed a similar and more

efficient (in the distribution-independent setting) boosting algorithm [Fre92, Fre93] that can

also be used to learn DNF. We have chosen to detail Fl for two reasons. First, the later

algorithm (call it F2) is slightly more involved in that it may choose not to call the weak

learner at all at some stages of the boosting process; therefore, clarity of exposition favors

Fl. Second, F2 produces distributions D{ which may deviate from uniform more than the

distributions produced by Fl. In turn, this deviation from uniform plays a role in the time

bound on the Harmonic Sieve, as we will see. Therefore, the F2 algorithm does not offer

a clear performance advantage over Fl in the context of the Harmonic Sieve. However,

if efficient implementation of the Harmonic Sieve for a particular application is an issue,

both boosting algorithms should be considered. As mentioned earlier, Schapire's original

boosting algorithm [Sch90] is probably not an appropriate basis for HS, as it is not clear how

to efficiently simulate oracles for the distributions defined by this algorithm.

Recently, Freund and Schapire have developed yet another boosting algorithm, AdaBoost

[FS95]. AdaBoost is designed specifically for "boosting-by-sampling" as opposed to the

"boosting-by-filtering" technique employed by Fl. A boosting-by-filtering algorithm defines

each probability distribution D, by filtering examples received from the oracle EX(f,D).

On the other hand, in boosting-by-sampling a large set S of examples is drawn once at

the beginning of learning, and regardless of the true target distribution D, a new target

distribution D' is defined. This distribution is uniform over the set S and has zero weight on

all instances not represented in S. Furthermore, the distributions D[defined in the course

of boosting-by-sampling are also nonzero only on the instances in S. The idea of boosting-

by-sampling is to use boosting to find a hypothesis (nearly) consistent with the set S. For

large enough S, uniform-convergence arguments can then be used to show that the resulting

hypothesis is with high probability an e-approximator to the target function [VC71, Hau88].

In practice, the notion of finding a hypothesis consistent with a given data set plays

56 CHAPTERS. HYPOTHESIS BOOSTING

an important role in many learning algorithms. Thus from an applied point of view, it

could be useful to base the Harmonic Sieve on a boosting-by-sampling algorithm. In fact,

any boosting-by-filtering algorithm can be converted to a boosting-by-sampling algorithm

(the basic idea is to simulate an example oracle EX(f,D')). However, AdaBoost, which is

designed with boosting-by-sampling in mind, has potential practical advantages over earlier

boosting algorithms. Primarily, AdaBoost is adaptive (this is what the "Ada" in AdaBoost

stands for). Specifically, the distributions Di created by AdaBoost depend on (adapt to) how

well the weak hypotheses produced before stage i approximate the function /. Furthermore,

AdaBoost uses a measure of how well each weak hypothesis approximates the target to

assign weight to that weak hypothesis in the final strong hypothesis. As a result, we expect

AdaBoost to require fewer boosting stages in general than would be required by any of the

earlier boosting algorithms.

Therefore, in Part II of the thesis, where we consider applying versions of the Harmonic

Sieve to several benchmark problems, we will base our empirical algorithms on AdaBoost.

However, in the current part of the thesis we will utilize Fl, as we do not know how to obtain

positive DNF-learning theoretical results using a boosting-by-sampling algorithm. The key

problem is that the distribution D' described above is typically extremely nonuniform; as

we will see, the running time of HS depends directly on the nonuniformity of the target

distribution.

5.5 Appendix

Here we prove the validity of the Fl boosting algorithm. In fact, it follows immediately from

Freund's work [Fre90] that if the algorithm given in Figure 5.1 runs for all k stages, then

the hypothesis produced will, with probability at least 1 — 6, be an e-approximator to the

target / with respect to distribution D. This fact together with the following lemma gives

the proof of Lemma 5.1. The proof of the following lemma is based on unpublished work by

Freund [Pre].

5.5. APPENDIX 57

Lemma 5.2 If at any stage i of Fl

ED(y)ciiM<§j

then the hypothesis h formed by taking a majority vote over the weak hypotheses Wo, lüi,..., u>;-i

is an e-approximator for f with respect to D.

Before proving this lemma, we note that the 0.39 bound on 7 in Fl was chosen to keep

the statement of the above stopping criterion relatively simple. As will become apparent in

the proof, other choices of the bound can be used to derive alternative stopping criteria for

Fl having exponents of e arbitrarily close to 2 and smaller constants.

Proof of Lemma 5.2: For 0 < i < k and 0 < r < i, define

D(r)= J2 Dix)
x.ri(x)=r

(recall that r,(a;) counts the number of weak hypotheses found before stage i that are "right"

on x). Our goal will be to show that at every stage i of Fl,

££(»)<(*)<£=► ED(r)<e. (5.2)
V °' r<i/2

Given this, a majority vote over the weak hypotheses found prior to stage i is an e-approximator

to the target function /.

The argument for (5.2) consists of two parts. First, we show that it is always the case

that at any stage i,
L»/2-(fc-t)7j

E D(r) < e/2. (5.3)
r=0

Then we will show that given the antecedent of (5.2) it is also true that

L«/2J

E D(r) < e/2. (5.4)
r=L»'/2-(fc-i)7j+l

To show (5.3) we need a fundamental result from Freund. Define for each stage i of the

Fl boosting process the function ß%
r, 0 < r < i, as

ßi =
0 if r > f

£}£"r£(j;*-«,! +7) if«-rtl<r<!
1 otherwise

58 CHAPTER 5. HYPOTHESIS BOOSTING

(recall that £}(•;•,•) represents the binomial formula). Then Freund [Fre90, Fre93] shows

that if Fl is run for k > \^~2 ln(4/e) stages on a (| — 7)-approximate weak learner, at each

stage i we will have

tm(r)<e
T

Note also that if 7 < 7 and we take k = *f~2 ln(4/e) then k > \^~2 ln(4/e).

Now the median of a binomial distribution B{n,p) is either \np\ or \np] [JS68]. Because

ß\ represents a cumulative binomial distribution, where the underlying binomial distribution

has mean \i = (k - i)(| + 7), it follows that for r such that [k/2\ - r > fi, ß\. > |. In

particular, for r < [| — (k — i)^\, ß\ is thus lower bounded, which gives us

Li/2-(fc-t)7j 1 LiV2-(*-t)7j

T> E #A(r)>- E A(r).

The argument for (5.4) is somewhat more involved. First, since the binomial distribution

B(n,p) reaches a maximum at |_p(ra+l)J (see, e.g., [Bol85] p. 6), we have that a\ is maximized

for some r < [i/2 — (k — i)j\ + 1. For larger values of r, a\ is monotonically decreasing.

Therefore, in the region [i/2 — (k — i)^\ < r < i/2, a* reaches a minimum amin at r = |_|J •

We will show that a.min > e2/28.5, and therefore that

L*/2J a«'
E D{r) < £ D{y)-^-

r=Li/2-(fc-i)7j+l y.i/2-(k-i)j<r(y)<i/2 °imm

<
e3

57a

<

as desired.

The lower bound argument for am;„ = au/2j also consists of two parts. In particular,

recall that a* = al
r/ maxr{äl}. Freund has shown [Fre93, Lemma 2.3.10] that the denom-

inator of this expression is upper bounded by J8/(3ir(k — i — l))e1/12. Thus we only need

an appropriate lower bound on amt-„ = ce\i/2\ to complete the proof.

5.5. APPENDIX 59

To show the required bound on amin we first consider several cases. If k is odd and i is

even then

O-n

/1 ' - \ - k—i—1 „ fc—t—1 'k-i-l\ f\ . _\^r~ (\ \—2—
k-i-l , , ,2+'J 15"^ ' (5-5)

We use a.i/2 to denote the right-hand side of (5.5). If k is even and i is odd we have

«mi» = <%/2j > ttfj/21 = «1/2 •

For the other two cases (k and i both even or both odd), we have

ämin = a|j/2j > <%/2j+l/2 = «1/2, (5.6)

where we have generalized the definition of the binomial coefficient to the reals using the

r(-) function.

To lower bound äi/2, we first note that using Stirling's approximation it can be shown

(see, e.g., [Fre93, Lemma 2.3.10]) that for any real x > 1,

2
7TX

Also,

(H*/2(H^(H*f=-(>-^r
It can also be shown that for 0 < y < 1, (1 — y)y~1 > e-1. Furthermore, for 7 < 0.39,

(1 - 472) > e_1. Therefore, for x = k - i - 1 < k = ^j~2 ln(4/e), we have

k—i—1 k—i—1

(H ' (H ' >-^-^
which means that

V 7T(K — l — l)

and combining this with the earlier upper bound on maxr{o;5,} gives

e 2

a ■ > —e-5/12e2 > mm~ 32 -28.5'

D

60 CHAPTER 5. HYPOTHESIS BOOSTING

Chapter 6

Learning DNF

In this chapter we prove our main result, that DNF is learnable with respect to the uniform

distribution using membership queries. We begin by extending our weak DNF learning result

described in Section 4.2.4. Recall that the key to the weak result is that for every DNF /

there is a parity function that weakly approximates / with respect to the uniform distribution

[BFJ+94]. Below we show that for every DNF / and for every distribution D there is a parity

function that weakly approximates / with respect to D. Next we show how to exploit this

fact to produce an algorithm for weakly learning DNF with respect to certain nonuniform

distributions. It is then shown that this weak learner can be boosted into a strong learner

for DNF with respect to the uniform distribution. We close the chapter by expanding on

the comparison between the DNF algorithm and earlier Fourier-based algorithms begun in

Chapter 4.

6.1 A Key Fact about DNF

We now prove that for every DNF / and every probability distribution D over the instance

space of / there is a parity that weakly approximates / with respect to D. Before presenting

the proof we give some of the intuition behind this result.

First, note that if Eß[/(x)] deviates noticeably (i.e., inverse polynomially in the size of

/) from 0 then the constant parity X0 is a weak approximator to / with respect to D (recall

that we are taking Boolean functions as mapping to { —1,+1}). The harder case, then, is

61

62 CHAPTER 6. LEARNING DNF

when D is such that / is unbiased, or nearly so. In this case one of the s terms of / must

correlate noticeably well with /. This is because all terms agree with / on x's such that

f(x) = — 1, since all terms must be unsatisfied when the function is unsatisfied.1 And at

least one term (call it T) must be satisfied by a 1/s fraction of the inputs that satisfy the

function.

Now a term is a Boolean function and therefore can be expressed as a linear combination

of parity functions by applying the Fourier transform. In fact, a term has a very simple

Fourier representation. Call XA a parity in term T (denoted XA € T) if A is a (possibly

empty) subset of the variables in T, and let |T| represent the number of variables in term T.

Then the Fourier representation of the {—1, +l}-valued function represented by a term T is

where the sense of a parity (negated or not) in the sum depends on the senses of the variables

in the term. This implies that

\Ex€RD[f(x).T(x)}\ < \ED\J(X)]\ + 2EXA€T[\ED\J(X)XA(X)]\],

where EXAGT[
-
] represents the expected value over uniform random choice of XA € T. Because

we are considering the case in which ED[/] is very small but Eß[/-T] is noticeably large, the

above relation implies that the "average" of the parities in T is noticeably well-correlated

with /, and therefore at least one of these parities must be well-correlated.

Our original proof formalized these ideas. Subsequently, Bshouty [Bsh] refined our ap-

proach and developed the proof that we present here, which gives somewhat better constants.

Fact 6.1 For every DNF f with s terms and for every distribution D on the instance space

of f there exist a term T in f and a XA^-T such that \Eo\fxA\ — V(25 + !)■

Proof: There is at least one term T in f such that PTD[X satisfies T] > PTD[X satisfies f]/s.

Let T(x) be the Boolean function represented by T, i.e., T(x) = 1 when x satisfies T and

1We take —1 to represent false and +1 to represent true, although the opposite convention is often
used in Fourier work.

6.2. NONUNIFORM WEAK DNF LEARNING 63

T(x) = — 1 otherwise. Also, assume without loss of generality that none of the literals in T

are negated and let V represent the set of variables appearing in T. Then for all x,

z vev z

where the expectation is uniform over the subsets ACV. Let T'(x) = (T(x) + l)/2. Then

ED[f ■ V] = EAcv[(-l)lA]ED[fxA}} < EAcv[\ED[fXA]\]. Also, since T is a term of /, for

any x such that f(x) = -1, T'{x) = 0. Thus ED[fT'} = ED[T'} = PrD[T = 1].

Therefore, there is some XA e T such that |ED[/x^]| > (ED[f] + l)/2s. Since ED[f] =

Eß[/x0], the proof is completed by noting that the inequality above implies that either

\EDUXAW > l/(2s + 1) or ED[f] < -l/(2s + 1). D

6.2 Nonuniform Weak DNF Learning

Fact 6.1 says that for every DNF / and every distribution D there exists a parity weakly

approximating / with respect to D. This suggests that we may be able to strongly learn DNF

by boosting a weak DNF learner that produces parity functions as the weak hypotheses. The

question, of course, is whether or not there is an efficient algorithm for finding appropriate

parity functions.

We already know the answer to this question when the problem is restricted to finding a

weakly-approximating parity with respect to uniform: the KM algorithm can efficiently solve

this problem. Thus the KM algorithm is a natural basis for the more general weak learner we

desire. In fact, it is known that the Kushilevitz/Mansour uniform-distribution learnability

results can be generalized to learn parity decision trees with respect to a certain subclass of

the class of product distributions [Bel91] (product distributions are defined in Chapter 9).

However, it is not clear that an algorithm for weakly learning with respect to this distribution

class can be boosted into a strong learner; certainly a richer class of distributions is required

if we plan to use an existing boosting algorithm such as Fl.

Thus we seek an efficient mechanism for finding weakly-approximating parity functions

with respect to a fairly broad class of distributions. However, as discussed in Chapter 5,

64 CHAPTER 6. LEARNING DNF

we do not expect to be able to efficiently find a weakly-approximating parity with respect

to completely arbitrary distributions. What we are seeking, then, is an algorithm that is

apparently the first of its kind: an algorithm that learns efficiently with respect to a rather

general distribution class (in particular, one with no independence assumptions), but also

an algorithm that does not necessarily efficiently learn over arbitrary distributions. This

presents quite a puzzle!

The solution to this puzzle begins with the following simple but critical observations.

What we would like is an algorithm that generalizes KM, which recall is given a threshold 9

and uses membership queries on the target / to find the index A of a Fourier coefficient f(A)

such that |/(A)| > 9. Because a Fourier coefficient f(A) is by definition E[/- XA], finding the

index A of a large Fourier coefficient f(A) leads us to a parity XA that weakly approximates

/ with respect to uniform. We would like a more general algorithm that, given both 9 and

(in a form to be determined) a distribution D, finds a XA such that |Eß[/ • XA]\ > 9. While

the expected value in this relation cannot be viewed as a Fourier coefficient of / as was the

case when D was uniform, notice that

ED[f ■ XA] = £ f(x)XA(x)D(x) = 1 £ 2nf(x)D(x)XA(x).
X l X

Thus if we take g(x) - 2nf(x)D(x) then we have that for all A, ED[f ■ XA] = g{A). That

is, finding a large Fourier coefficient g(A) of g will lead us to a parity XA that weakly

approximates / with respect to D.

Therefore, we have reduced the problem of efficiently finding a well-correlated parity

with respect to arbitrary distributions D to efficiently finding a large Fourier coefficient of a

function g which is essentially the product of the target / and the distribution D. If we had a

membership oracle for g and if g was Boolean then we could apply KM directly to the problem

of finding a large coefficient of g. In fact, if we are given an oracle for distribution D (a

function that given input x returns the weight assigned to x by D) along with a membership

oracle for / then it is a simple matter to simulate an oracle for g = 2nfD. Also, as shown

in Chapter 4, a modified version of KM can find the large Fourier coefficients of non-Boolean

g in time polynomial in L<X)(g) as well as in the normal parameters of KM. For g of the form

6.2. NONUNIFORM WEAK DNF LEARNING 65

we are interested in, this means that the algorithm runs in time polynomial in L00(2nD).

These observations form the basis of an algorithm WDNF for efficiently learning DNF (in a

weak sense) with respect to a broad class of distributions:

Lemma 6.1 Let D represent both a ■probability distribution over {0,1}™ and the correspond-

ing distribution oracle. There is an algorithm WDNF such that for any function f : {0,1}™ —>

{ —1,+1}, for any probability distribution D on the instance space of f, and for any positive

6, WDW(EX(f,D),MEM(f),D,6) finds, with probability at least 1 — 6, a Boolean function

h such that Eß[//i] = 0(5_1), where s is the DNF-size of f. The probability of success is

taken over the random choices made by the WDNF algorithm and by the oracle EX(f, D). The

algorithm, when it succeeds, runs in time polynomial in n, s, \og(6~1), and L00(2nD). The

weak hypothesis h is a parity function (possibly negated).

Proof: Let g(x) = 2nf(x)D(x). Then by Fact 6.1 and the above argument there is some

XA such that |ED[/XA]| = \g(A)\ > 1/(26 + 1). Thus by Lemma 4.1, Ktf(n,MEM(g),6 =

l/(2s + l),Loo(g) = LQO(2nD),6) will, with probability at least 1 — 6, find a XA such that

|ED[/XA]| = 0(s_1). Furthermore, the KM' algorithm when given these parameters runs in

time polynomial in n, s, log(6-1), and L00{2nD).

Note, however, that WDNF is not given the values of s or of L00{2nD). We circumvent

this difficulty as illustrated in Figure 6.1. The primary fact to note is that if KM' is called

using values s' and L'00(2nD) that are larger than their respective true values, KM' will still

succeed (with high probability) at finding an appropriate set of large Fourier coefficients of

g. However, the algorithm may run longer than it would have run had the smaller values

been used. Therefore, we use a simple guess-and-double technique that quickly converges

on parameter values that are larger than necessary and yet small enough to maintain the

desired performance guarantees. To assure that the overall algorithm succeeds with the

desired confidence, we require successively smaller probabilities of failure 6' of KM' as each

new set of parameter guesses is used.

There is still another difficulty: because we are guessing the value of Loo(2nD), we

do not have any guarantee that a nonempty set S returned by KM' has the large Fourier

66 CHAPTER 6. LEARNING DNF

Invocation: h <- \1MF(EX(f,D),MEM(f),D,6)
Input: Example oracle EX(f,D) for target / and distribution D; membership oracle
MEM(f) for /; distribution oracle D; 8 > 0
Output: h such that, with probability at least 1 — 8, Pr-£>[/ = h] > | + j^rj, where s is the
DNF-size of /.

1. a «- 1; L'«- 1; (5' <- 8/2; M <- 0
2. repeat
3. MEM(g)(x) = 2n ■ MEM(f)(x) ■ D{x)
4. 0 = 1/(25 + 1)
5. Si- KM'(n, MEM(g), 0, X, tf'/2) ■
6. if |5| < 2£2/02 then
7. for each B € S1 do
8. m= [81n(8X2/5'ö2)/ö2]
9. t <- 0

10. for m times do
11. {x,t)<-EX(f,D)
12. i <- t + £ • XB(Z)

13. enddo
14. // <- t/m
15. if l/i'l > 30/4 and |//| > \M\ then M <- //; A <- £
16. enddo
17. endif
18. 5 <- 25; I <- 2Z; 5' <- £'/2
19. until M^O
20. return /i = sign(M) • XA

Figure 6.1: The weak DNF learning algorithm WDNF. The notation "MEM(g)(x)" represents
the value returned by the (simulated) membership oracle for g on input x.

6.2. NONUNIFORM WEAK DNF LEARNING 67

coefficient property (KM' may be using a number of examples insufficient to accurately es-

timate the required Fourier coefficients). However, we can use calls to the example oracle

EX(f,D) to estimate ED[/XA] for each A G S. By Hoeffding (Lemma 2.2), if we use

m = \8\n(8L2/8'92)/92] examples then, with probability at least 1 - 8'62/4:L2, our estimate

// is within 0/4 of ED[fxA\. Therefore, if |//| > 30/4 then \ED[fXA]\ > 0/2. Also note

that if a sufficiently large value of L is used in a call to KM' then by the proof of Lemma 4.1,

\S\ < 2L2/62 with high probability. Therefore, if the algorithm detects that the size of a set

S returned by KM' exceeds this bound, it takes this as evidence that the guessed parameter

L was too small and does no further processing on S. Thus by allowing KM' to fail with

probability at most 8'/2 and each of the at most 2L2/02 estimates of Fourier coefficients

g(A) to fail with probability at most 8'02/AL2, we have that the overall failure of each pass

through the main loop is at most 8'. Furthermore, our choices for 8' assure that the overall

failure probability of WDNF is at most 8.

Finally, note that the algorithm terminates (with the required probability) after 0(log(s)+

log(Lco(2nD))) steps, where each step requires time polynomial in n, s, log(8~1): and

L00(2nD). That it returns the XA that is estimated to be best correlated with / among

the parities represented by S guarantees (with the same probability) that the true value

of E£)[/XA] is within a multiplicative factor of 2 of the maximal correlation of any parity

function, which is at least 1/(25 + 1)- □

Note that the uniform distribution assigns weight 2~n to all inputs. Thus an immediate

corollary of the above lemma is that DNF is weakly learnable (given example, membership,

and distribution oracles) with respect to any distribution D such that for all x G {0,1}™,

the weight that D assigns to x is at most p(n,s1e~1,8~l)/2n for some fixed polynomial p.

In other words, WDNF weakly learns DNF with respect to any distribution D that puts only

polynomially more weight on its inputs than does the uniform distribution. We will refer to

such distributions as polynomially-near uniform.

Thus we now have, as desired, a weak DNF algorithm that efficiently learns with respect

to a rather broad class of distributions (given certain oracles, including the nonstandard

distribution oracle). The learning algorithm also has the expected property that it does not

68 CHAPTER 6. LEARNING DNF

guarantee efficient learning with respect to arbitrary distributions. This is a promising start;

what remains is to show how WDNF can be integrated with Freund's Fl hypothesis boosting

algorithm to produce a strong learning algorithm for DNF.

6.3 Strongly Learning DNF

For efficiency, the weak learner WDNF requires two properties of the target distribution D:

the distribution must be polynomially-near uniform, and an oracle for the distribution must

be provided to the learner. Now consider the target distributions D{ generated at each stage

of Freund's Fl boosting algorithm when the booster's goal is to produce an e-approximating

hypothesis with respect to uniform. As we will see below, these target distributions D{

are polynomially-near uniform. In fact, this is true of all boost-by-filtering algorithms.

However, a second property of Fl's distributions D{ is not true of the distributions of some

other boosting algorithms: each of Fl's distributions is defined—modulo a scale factor—by

a polynomial-time computable function. The scale factor can also be estimated efficiently.

Therefore, an approximate distribution oracle can be provided to the weak learner for each

target distribution D{ generated during boosting. Furthermore, we show that the weak

learner does not require an exact distribution oracle; this approximate oracle suffices.

Putting this all together gives an algorithm for strongly learning DNF with respect to

uniform. We call our algorithm the Harmonic Sieve (HS) because conceptually it repeatedly

finds a dominant harmonic (parity function that correlates well with the target) and then

damps out its influence (shifts the distribution) so that another harmonic becomes dominant.

Theorem 6.1 DNF is learnable with respect to the uniform distribution using membership

queries.

Proof: We will actually prove a somewhat more general result: the Harmonic Sieve algo-

rithm, given an oracle for any probability distribution D along with the usual parameters,

learns DNF with respect to D in time polynomial in n, the DNF-size s of the target /, e_1,

log(6~1), and L<X)(2nD). As indicated above, the algorithm is essentially an application of Fl

to boosting the weak learner WDNF developed in the preceding section. Figure 6.2 describes

6.3. STRONGLY LEARNING DNF 69

Invocation: h <- ES(EX(f, D), MEM(f), D, s, e, 8)
Input: Example oracle EX(f,D) for target / and distribution D; membership oracle
MEM(f); distribution oracle D; DNF-size s of /; e > 0; 8 > 0
Output: h such that, with probability at least 1 — 8, PI\D[/ = h] > 1 — e

1. 7<-l/(8a + 4)
2. &^!7-

2ln(4/e)
3. w0 ♦- WDNF(£X(/, D),MEM(f), D, 812k)
4. for z <— 1,.. .,& — 1 do
5. ri(a;) = |{0<i<z|u;i(a;) = /(a;)}|
6. B(j;n,p) = (;)^(l-p)^

7. a* = £([&/2J -r;k-i-l, 1/2 + 7) if i - fc/2.< r < ife/2, a* = 0 otherwise
8. < = a;/maxr=0 i-i{aj.}-
9. 0 = e3/57

10. X= draw example (x,f(x)) from EX(f,D) and compute C^./N

11. Ea<-AMEAN(X,6-a = l,|0,5/2Jfe)
12. if £a < |0 then
13. k*-i
14. break do
15. endif

_ D(*K (x) 16. „„*, _ ^ „, . ;

17. D\{x) = (D(x)aQ)/Ea

18. Wi <- WDNF(£X(/, A), MEM(f), D[, 8/2k)
19. enddo
20. Ä(a;) = MAJ(u;o(x),tüi(a;),...,iüjfe_i(s))
21. return h

Figure 6.2: The HS algorithm for efficiently learning DNF. AMEAN is described in Corollary 2.1.
X is a random variable used to estimate EßfaS^J.

70 CHAPTER 6. LEARNING DNF

the algorithm. For simplicity, this version of the algorithm assumes that the DNF-size s of

the target / is provided; this assumption is easily removed by modifying the algorithm to use

a guess-and-double technique similar to that used in WDNF. Note also that in most respects

the main procedure of the Harmonic Sieve is identical to Fl. The major difference is that

HS produces an approximate distribution oracle D[at every stage of boosting and provides

this oracle to the weak learner.

To see that this algorithm satisfies the requirements of the theorem, first note that if WDNF

succeeds at producing a (| — g^)-approximate weak hypothesis with respect to D{ at each

stage % then Lemma 5.1 shows that the hypothesis produced by HS will be an e-approximator

to the target / with respect to the target distribution D. Furthermore, by Lemma 6.1, WDNF

will produce such a hypothesis (with high probability) given an oracle for D,-. This presents

the following difficulty: to simulate an exact oracle for D; (line 16 of Figure 6.2) requires

computing exactly the exponentially large sum Yly D(y)al
r., %.

To circumvent this difficulty, HS provides WDNF with the approximate oracle D[mentioned

above (line 17). Note from line 11 that HS, like Fl, uses random sampling of the example

oracle EX(f,D) to estimate an approximation Ea to the sum YJyD{y)al'r.,y This estimate

is, with high probability, within an additive factor 0/3 of the true value. Because the test

at line 12 assures (with high probability) that every D\ is computed using a value of Ea that

exceeds 20/3, § £y D{y)a\.^ < Ea < 2 J2y
D{y)a\i{y)- This implies that there is a constant

c G [1/2,3/2] such that for all x, D[{x) = cD^x).

Now consider the functional impact of supplying this approximate oracle rather than the

true oracle to WDNF (we consider the impact on running time below). WDNF uses its given

distribution oracle (call it Dw) for exactly one purpose: to simulate a membership oracle

for the function g = 2nfDw- Thus the only impact of multiplying Dw by a constant c

is to multiply the function g by the same constant. Furthermore, the Fourier transform is

a linear operator, and thus (T~g(A) = c ■ g(A) for all A. In summary, multiplying WDNF's

distribution oracle by a constant has the effect of multiplying all of the Fourier coefficients

of the induced function g by the same constant. Because the relative sizes of the coefficients

are unchanged, multiplying g by a constant will not adversely affect the ability of KM' to find

6.3. STRONGLY LEARNING DNF 71

the large Fourier coefficients of g.

Thus changing the distribution oracle by a constant factor has no expected impact on the

functionality of WDNF. Therefore, by the earlier argument, HS will return an e-approximator

to the target /.

The only remaining concern is with the running time of the algorithm. First, recalling

that HS is very similar to the polynomial-time algorithm Fl, note that HS also runs in time

polynomial in the appropriate parameters if two conditions are met: both the number of

boosting stages k of HS and the running time of WDNF must be bounded by polynomials.

Clearly the number of boosting stages is polynomially bounded. Thus all that remains is to

bound the running time of WDNF.

By Lemma 6.1, if WDNF was invoked with a distribution oracle for D; then the running time

of WDNF would be appropriately bounded, since L^Di) < 3L0O(D)/Q and 0 is polynomial in

e. Also notice that if the distribution oracle is multiplied by a constant factor then the only

impact on the running time of WDNF comes from changes to the running time of the call to

KM'. There are two potential effects on the running time of KM' resulting from multiplication

of Dw by c. First, because this multiplication may reduce the magnitude of the Fourier

coefficients of g, it may be necessary to use a smaller threshold value 6 in the call to KM' in

order to find a large Fourier coefficient. Second, because the running time of KM' depends

on L00(2nDw), this multiplication may directly increase the time bound. However, in both

cases the running time is increased by at most a small constant if the multiplicative factor

c is near 1, as we guaranteed earlier. Thus the running time of WDNF, and therefore of HS, is

bounded by a polynomial in the desired parameters. D

The final hypothesis output by HS is not a DNF but a threshold of parity functions, i.e.,

a TOP representation. We will have more to say about the relationships between HS, DNF,

and TOP in the next chapter. For now, notice that this is the same representation output

by the Fourier-based learning algorithms discussed in Chapter 4. However, HS arrives at its

hypothesis in a very different manner than previous Fourier learning algorithms, as discussed

in the next section.

72 CHAPTER 6. LEARNING DNF

6.4 Comparison with Prior Fourier-based Algorithms

The existence of the Harmonic Sieve proves that DNF is learnable in a strong sense. Beyond

that, as mentioned previously, the Harmonic Sieve is unique in several ways. The algorithm

demonstrates that boosting can be used to prove a positive learnability result for a class

for which no other proof technique is known. It also provides the first known example

of a distribution-dependent weak learner that can be boosted by an algorithm designed

for distribution-independent boosting. And HS introduces the notion of learning from a

distribution oracle.

However, a particularly interesting feature of the Harmonic Sieve, as discussed somewhat

in Section 4.2.5, is its use of an algorithmic approach that differs markedly from earlier

Fourier-based learning algorithms. Recall that Mansour [Man92] had presented evidence that

approaches to Fourier-based learning based strictly on finding the large Fourier coefficients

of the target were apparently not adequate for learning DNF. HS is based on a new approach

to Fourier-based learning: find large Fourier coefficients of functions other than the target.

Alternatively, as pointed out above, this approach can be viewed as finding parity func-

tions that correlate well with the target with respect to a variety of distributions. Although

the distributions considered by HS are polynomially-near uniform in the sense defined ear-

lier, even relatively small deviations from uniform can significantly affect how well a given

parity approximates the target. The fact that HS finds parities that correlate well with the

target over a range of distributions means that the algorithm can potentially find "impor-

tant" parity functions that might be missed by earlier Fourier-based learning algorithms.

Furthermore, even if all of the parity functions included in the final HS hypothesis have large

Fourier coefficients, the weights of the parities in the HS hypothesis are not necessarily close

estimates of Fourier coefficients, as was the case with previous algorithms.

However, it is possible that, say, the Kushilevitz-Mansour algorithm run with an appro-

priate (inverse-polynomial) threshold could learn the same classes learnable by HS. That

is, it may be that our DNF learnability result has more to do with the analytical approach

taken than the HS algorithm itself. Whether or not this is the case is an interesting question

6.4. COMPARISON WITH PRIOR FOURIER-BASED ALGORITHMS 73

for further research.

In the next chapter we present further learnability results that follow from this new

Fourier-based approach and also discuss some limits on this method.

74 CHAPTER 6. LEARNING DNF

Chapter 7

Learning Other Representation
Classes

In this chapter we attempt to generalize our DNF learning result to other representation

classes with Boolean inputs; our results are both positive and negative. Our primary positive

result is that the representation class TOP of Thresholds of Parities (Figure 1.2) is learnable

by the Harmonic Sieve. We then discuss several classes that are restricted versions of TOP

and that therefore are also learnable with respect to uniform. Finally, we consider two other

representation classes—depth-2 threshold circuits and depth-3 Boolean circuits—that cannot

be learned efficiently by the Harmonic Sieve.

7.1 Learning TOP

TOP, like DNF, is a universal class. Thus the learnability result we would like to show is

that arbitrary Boolean functions are learnable in time polynomial in their TOP-size, i.e., in

the number of parities in the smallest TOP representing the target function. To prove this,

we first prove that all TOP's have a certain property: for every distribution D, every TOP /

is weakly approximated with respect to D by some parity function. The analogous property

for DNF (Fact 6.1) was the only property of DNF used in the proof that DNF is learnable.

Thus, given this property for TOP we can immediately apply the proof of Theorem 6.1 to

show that TOP is learnable with respect to uniform by HS. Moreover, TOP is properly

learnable, since HS produces a TOP as its hypothesis.

75

76 CHAPTER 7. LEARNING OTHER REPRESENTATION CLASSES

The TOP property we seek is actually a corollary of a theorem of Goldmann, Hastad,

and Razborov [GHR92]. We give a relatively simple alternate proof similar to one of Blum

et al. [BFJ+94] for a more specific TOP property.

Fact 7.1 For every f the majority of s parity functions and for every distribution D on the

instance space of f, one of the parity functions XA defining f satisfies |Eß[/x^]| > l/(2s + l).

Proof: First, we would like the number s of parity functions in / to be odd so that the "vote"

of these functions will always be nonzero. Note that if s is even then it is straightforward

to create a new circuit with 2s + 1 parities computing the same function (each of the initial

parities is replicated and the constant parity x$ ls added). Thus for any / representable

as a majority of s parity functions there is some F = J2A F{A)XA such that / = sign(i?)

(where sign(O) is undefined), Li{F) < 2s +1, and all the coefficients F(A) of F are integers.

Specifically, this F is simply the sum of the parity functions defining / (or defining the

circuit with an odd number of parity functions if s is even). Note that |.F(a;)| > 1 for all x,

and since / = sign(i?), we have

1 < ED[\F\} = ED{fF] = ED[f£HA)XA]=:Y,HA)ED[fXA}
A A

< max{|ED[/x^]|}El^)l-
A A

D

Theorem 7.1 TOP is properly learnable with respect to uniform using membership queries.

7.2 Some Specialized TOP Classes

TOP is a fairly expressive class of representations. For example, it has been shown recently

that for every Boolean function /, the TOP-size of / is at most polynomially larger than

the DNF-size of / [KP94]. Actually, we get as a corollary of our learning result an alternate

proof of this relationship (this method of obtaining complexity results from boosting results

has been noted before [Fre93]).

7.2. SOME SPECIALIZED TOP CLASSES 77

Corollary 7.1 Every DNF f with s terms can be computed as the majority ofO(ns2) parity

functions.

Proof: Run HS with a simulated membership oracle for /, with e = 2~^n+1\ with 8 < 1, and

with D the uniform distribution. By the proof of Theorem 6.1, HS produces a majority of

0(ns2) parity functions as its hypothesis. Then note that, while HS is no longer guaranteed

to run efficiently in n, it is still guaranteed to produce with high probability a hypothesis h

with the following properties:

1. h is the majority of k = 0(ns2) parities.

2. Pr[h ^ f}< 2~n.

For the second property to hold, it must be that h = f. Since the algorithm succeeds—with

positive probability—at finding an h with these properties, such an h must exist. D

Before going further, we need some notation. In particular, we have previously used the

notion of a subclass of a representation class; now we generalize this notion somewhat. We

will view a representation class T as a restriction (or a specialization) of a class Ti if there

exists a fixed polynomial p such that for every n and every Boolean / over {0, l}n, 7Y-size

of / is at most p(n, s), where s is the .F-size of /. Given such an T and H, learnability of

H implies non-proper learnability of T'. In other words, the restricted class, while it may be

capable of representing arbitrary Boolean functions, is from a learning perspective an easier

class. We will also say that 7i generalizes T if J- is a restriction of Ji. If 7i generalizes T

but not vice versa, then Ti strictly generalizes J-'.

Thus what we have shown above is that DNF is a restricted class of TOP. In fact, the

restriction is strict, as n-bit parity has only an exponentially large DNF representation. In

addition to DNF, TOP strictly generalizes another universal class, this class with the size of

a function / measured not in terms of how / is expressed but instead in terms of a Fourier

property of the function / itself. In particular, define the L\-size of a Boolean function / to

be Li(f), that is, the sum of the magnitudes of the Fourier coefficients of /, and let CL\ be

the class of arbitrary Boolean functions with this size measure. Brück and Smolensky [BS90]

78 CHAPTER 7. LEARNING OTHER REPRESENTATION CLASSES

have shown that TOP strictly generalizes CLX. In fact, CLi is the class that Kushilevitz

and Mansour showed to be efficiently learnable with respect to uniform using membership

queries; the fact that the class of parity decision trees is similarly learnable is a corollary of

the fact that this class specializes CL\ [KM93]. Because CL\ in turn specializes TOP, HS

can efficiently learn every class previously shown learnable by Kushilevitz and Mansour.

As another example of a restricted TOP class (and therefore a class learnable by the

Harmonic Sieve), consider the class in which each function representation in the class is a

threshold of functions </;, and where each </j in turn is an arbitrary function of fanin O(log n).

To see that this class specializes TOP, consider the Fourier transform of a function g defined

over a set S of the input bits. For all K{l,...,n} such that A - S ^ 0, g(A) = 0 (the

argument for this is similar to the argument that the XA'S are orthogonal). Thus g has at

most 2's' non-zero Fourier coefficients. Furthermore, we may compute the coefficient g(A)

for any ACS'by fixing the bits indexed by {1,..., n} — S to arbitrary values in {0,1} and

computing the expectation E[^XA]
over all possible assignments to the bits indexed by S.

This means that every non-zero coefficient may be expressed as a rational with denominator

2lsl. Therefore 2^g is expressible as the sum of 0(22^) parities, at most 0(2'5I) of which

are distinct. So given a threshold of s many functions <?; each on O(logn) inputs, we create

for each #,• a polynomial-size (in n) sum of parities computing 2cg4-, where c is the maximum

fanin of any g{. Taking a threshold over these sums gives a threshold over polynomially many

(in n and s) parities that computes the original function.

As a final example of a class that specializes TOP, consider the class parity-DNF of

representations that are depth-3 circuits with an OR at the top level, AND's in the middle,

and parity functions at the bottom (Figure 7.1). Parity-DNF also specializes TOP. The

high level idea behind this observation is the following. The Fourier representation of a

conjunction of parities is very similar to a conjunction of literals: it is roughly an "average"

of a collection of parity functions plus a constant. Thus we can prove, much as we did for

DNF, that for every parity-DNF / and every distribution D there is a parity that weakly

approximates / with respect to D. Thus the proof that DNF is learnable as TOP can

readily be generalized to show that parity-DNF is also learnable as TOP. Then the proof of

7.3. TWO CLASSES NOT GENERALIZED BY TOP

V

79

X\ x2 x3 x4 x5

Figure 7.1: A parity-DNF function.

Corollary 7.1 shows that parity-DNF is a restriction of TOP.

7.3 Two Classes Not Generalized by TOP

The Harmonic Sieve algorithm does not readily extend to learning two representation classes

that are seemingly small generalizations of DNF and TOP. In particular, Brück [Bru90] has

shown that there is a polynomial-size (in n) depth-2 threshold circuit (Figure 1.5) /i such that

Loo(fi) = 2-™/2, and an argument of Brück and Smolensky [BS90] can be used to construct

a polynomial-size depth-3 {A, V,->}-circuit (Figure 3.3) /2 such that L00(f2) = n~lo&n. Let

s be the size of a target function / according to the size measure of either of these two

representation classes. Then the Fourier characterizations above say that for each of these

classes there are functions / such that no parity is correlated inverse-polynomially in s with

/, even with respect to the uniform distribution. Thus the KM' procedure invoked by HS to find

the largest Fourier coefficient of a target function will need an inverse superpolynomially in

s small threshold value 6. The running time of KM', in turn, is bounded inverse-polynomially

in 6, and therefore is not polynomially bounded for these classes. Furthermore, because

the maximum magnitude of any Fourier coefficient f(A) of a function / upper bounds the

80 CHAPTER 7. LEARNING OTHER REPRESENTATION CLASSES

inverse of the TOP-size of / (Fact 7.1), these classes are not restrictions of TOP.

As an example of how these hardness results are obtained, we give the depth-3 circuit

construction here. First, it can be shown that the Fourier representation of the Boolean

function A(x) = xiAx2 is

A (x) = -Ö (l + X{i}(x) + X{2}(x) - X{i,2}(a))

Now consider a circuit that consists of a parity gate that takes a set {C;} of subcircuits as

input. We can obtain an arithmetic representation of the function computed by this circuit

by taking the product of the Fourier transforms of the subcircuits C,-. Also, note that the

product XA ■ XB = XAAB, where A denotes symmetric difference. Therefore, the parity of

logn 2-bit A functions, where the A's are applied to pairwise-disjoint sets of variables, has a

Fourier transform in which every nonzero coefficient has magnitude n~l. On the other hand,

this is a function on 2 log n bits, and therefore it can be represented either as a CNF with

at most n2 clauses or as a DNF with at most n2 terms.

Let gi represent the parity of logn 2-bit A functions over pairwise-disjoint variables, and

let Si represent the set of variables in #;. Also, let g represent the function formed by taking

the parity of a set of log n functions gi where each gi is defined over a set of variables Si

that is disjoint from all the other sets. Then, by reasoning similar to the above, the nonzero

Fourier coefficients of the resulting function will all have magnitude n~logn. Furthermore,

the function can be written as a polynomial-size DNF over inputs that are polynomial-size

CNF's, which is a polynomial-size depth-3 circuit.

In the next chapter we consider learnability of a representation class that generalizes

DNF in a different way, moving from functions over {0,1}" to functions over more general

hypercubes. We show that HS can be extended to learn this more general class.

Chapter 8

Learning Geometric Concepts

In this chapter we describe a generalization of the HS algorithm that learns certain classes of

representations defined over non-Boolean domains. In particular, the representations in these

classes specify rectangular regions of the domain where the represented Boolean function is

true (Figure 1.3). Learnability of geometric representations has received significant interest

recently; [BGGM94] contains a nice summary of research in this area. We briefly mention

how our results relate to a few of the previous results below, but first we define the class of

primary interest.

In fact, before we formally define the geometric classes of interest, first note that the

positive instances of an s-term DNF / are covered exactly by the union of s subcubes of the

Boolean hypercube {0,1}™. Based on this view of DNF, we define the following generalization

of DNF over the domain [b]n (we use [b] to represent {0,..., b — 1}). For / and u in [b]n such

that ti < Ui for all i, the rectangle [£, u] on [&]" is the set of instances Y\™=1{li,li + 1,..., i*;}.

Thus rectangles are a natural generalization of the terms of a DNF, and unions of rectangles

are a natural generalization of DNF expressions. Therefore, we will be interested in the

learnability of the representation class UBOX of unions of (axis-parallel) rectangles. The

size of a UBOX representation r is the number of rectangles in r.1

We will show that if b is a constant then UBOX is learnable with respect to the uniform

distribution using membership queries in time polynomial in the usual parameters. This

1For consistency with the DNF portion of this paper, the definitions given here deviate from standard
notation for geometric concepts (e.g. [BGGM94]). Typically, the dimension n of the instance space is denoted
by d, the number of attribute values 6 is denoted by n, and the number of rectangles s is denoted by m.

81

82 CHAPTER 8. LEARNING GEOMETRIC CONCEPTS

complements results in stronger models of learning showing polynomial-time learnability for

UBOX when either the dimension n or the number of boxes is held constant [BEHW89,

LW90, GGM94, BGGM94].

We begin by showing how to extend the Harmonic Sieve algorithm to learning a subclass

of UBOX that generalizes the class &-DNF of DNF expressions where each term has at most

k literals. A k-rectangle [£,u] on [b]n is a rectangle such that \{i \ li ^ 0 or m^b — 1}| < k.

&-UBOX is the restriction of UBOX to unions of fc-rectangles. After showing that fc-UBOX

is learnable with respect to the uniform distribution for restricted values of k, we show that

the same algorithm can learn unrestricted UBOX in time exponential in b log log b and thus

in polynomial time for constant b.

Before developing these algorithms, we show how to generalize the KM algorithm for

learning over the domain [b]n.

8.1 Generalizing KM

The UBOX algorithm we develop will, like HS, build on an extension of KM. In particular, the

Kushilevitz/Mansour Fourier analysis that underlies the KM algorithm can be generalized to

produce an algorithm that finds the large Fourier coefficients of a Boolean function on [&]".

Recall from Chapter 4 that the Fourier basis functions are now of the form

Xa(x) = <-' ,

where a € [b]n and Ub = e
27rv-V6. These functions form a basis for the space of all complex-

valued functions on [b]n, and every function / : [b]n —*■ C can be uniquely expressed as a

linear combination of the x functions: f = J2a f(
a)x*ai where x* represents the complex

conjugate of x and /(a) = E[/xa]- Also, for such functions / Parseval's identity holds,

although now it is expressed in terms of magnitudes:

E, l/(*)l2]=£|/(«)
Finally, the basis functions are orthonormal in the sense that

8.2. LEARNING K-UBOX 83

To find the large Fourier coefficients of a function / : [b]n —»■ { —1, +1}, we first define the

set Ca,k, where k is an integer in [0, n] and a is a vector in [b]k, by generalizing the earlier

definition of ÖA,k (Section 4.3.1) in the obvious way. Then the Kushilevitz-Mansour Fourier

analysis can be generalized to show that for every /, k, and a as above,

L\{Ca,k) = Ex,y,z[Re(r(yx)f(zx)xa(y - *))], (8.1)

where L\{Cayk) represents the sum of squares of the magnitudes of the elements of Ca,k', the

expectation is uniform over x G [b]n~k, y € [b]k, and z 6 [b]k; and y — z represents the

difference between y and z in Zk.

To derive this equation, fix k, let a be any vector in [b]k, and let x be any vector in [&]™_*\

Then we define fa(x) in terms of a subset of the Fourier coefficients of /:

d

where the sum is over all vectors d G [b]n~k. Then by Parseval's, E^l/^x)!2] = Ll(Catk)-

Next note that

Eye[6]»[/(y*)x:(v)] = Ey £ f{cd)X:d{yx)Xl{y)
.c€[b]k,de[b]"-k

= E /(«0x3(«)E« [xc(y)x:(y)] = E /(«M«)
c,d d

= fa(x).

Equation 8.1 follows by some algebraic manipulations and simplification.

The generalized algorithm, then, is exactly the same as KM, except it uses the relationship

above to estimate L\(Ca,k) for b sets (one for each possible value of a^) during each recursive

call. This generalized KM runs in time polynomial in b as well as in the original parameters.

KM' can be similarly generalized.

8.2 Learning /c-UBOX

The main result of this section is that &-UBOX is learnable for certain values of &. To

obtain this result, we first generalize Fact 6.1 to the fc-UBOX class. Then we will show how

84 CHAPTER 8. LEARNING GEOMETRIC CONCEPTS

to convert the basis functions corresponding to the large Fourier coefficients found by the

generalized KM' outlined above into Boolean weak hypotheses.

8.2.1 A Fact about fc-UBOX

Now we show that for every fc-UBOX function / (with k appropriately limited) and for

every distribution D there is some Fourier basis function Xa that correlates well with / with

respect to D.

Fact 8.1 Let f : [b]n —»■ {—1, +1} be any union of s k-rectangles, and let D be any probability

distribution on [b]n. Then there is some Xa such that |ED[/X0]| = 0(s_1 log_fc b).

Proof: We consider two cases. The simple case is when Eß[/] > l/2s. In this case, the

constant function Xö satisfies the lemma.

Otherwise, let p = Pi"£>[/ = +1]. Note that for this case of the proof we have Eß[/] <

1/25, and thus p < 1/2 + l/4s. Also, there is some rectangle R such that PTD[X € R] > p/s.

Let R(x) be the Boolean function represented by R, i.e., R[x) = 1 when x is in rectangle R

and R(x) = —1 otherwise. Then, since / = — 1 implies R = —1, Pro[R = f] > (1 —p) +p/s.

It follows that Eß[/i?] > 1/25. Also, by an argument similar to one in the proof of Fact 7.1,

ED[/.R] < maxa{|Eß[/xa]|} ■ Y,a\R(a)\- Thus the proof is complete once we show that

L1(R) = 0(logkb).

To see that Li(R) is thus bounded, first observe that the function (R(x) + l)/2 can be

written as the product of at most k functions Rj(x), where each Ri(x) is a 1-rectangle with

range {0,1}. Moreover, it can be shown that L^R) < 2UiLi(Ri) [KM93]. Thus LX(R) =

0((maxL1(i?8))
fc), where the maximum is over all possible 1-rectangles i?8- producing outputs

in {0,1}. In fact, this maximum is the same as the maximum over all 1-rectangles R\ : [b] —>■

{0,1}, since the value of a 1-rectangle is determined by a single variable. In the appendix

of this chapter we show that maxLi(i?-) = O(log b). D

8.2. LEARNING K-UBOX 85

8.2.2 Turning Xa into a Weak Approximator

Given the above fact and the generalization of KM' outlined earlier, we can also generalize

the other components of the HS algorithm to learn &-UBOX for efficiently for certain k. A

key difference between the original and generalized HS algorithms is in the form of the weak

hypothesis produced at each stage of the algorithm. Unlike the original HS, which produced

a XA that could be used directly as the weak hypothesis, the generalized HS finds a complex-

valued function Xa at each stage of the boosting process. The proof of the following lemma

describes an algorithm for converting such a Xa into a weak approximator for Boolean /.

Lemma 8.1 Let D be a probability distribution over [b]n. There is an algorithm TABLE

such that for any function f : [b]n —> { —1,+1}; for any distribution D as above, for any

a € [b]n, and for any positive 8, TABLE(EX(f, D), a, 8) returns, with probability at least 1 — 8,

a Boolean hypothesis ha such that Pr£>[ha ^ f] = 1/2 — 0(|Eu[/xa]|)- The algorithm runs

in time polynomial in n, b, |Eß[/xa]|-1; andlog(8~1).

Thus the weak learner for fc-UBOX consists of running the generalized KM' followed by

running TABLE, where the inputs to TABLE are the index a of the function Xa found by KM'

and the simulated oracle EX(f,Di) defined by stage i of Fl.

Proof of Lemma: TABLE, as the name implies, produces a hypothesis ha that consists of

a table of Boolean entries. In particular, for each j .£ [b], the table contains a single entry

ha(j) that defines ha[x) for all x such that Xa(x) — i^l- Thus

6-1

Prx£RD[ha(x) ^ f(x)} = J2Pr^RD[ha(x) + f(x) | Xa(x) = ^] • PrxeRD[Xa(x) = <4).
3=0

Let D3 be defined by

Di(x) = l° DX
ifX"^^

I ™—, —7T otherwise.

Then

6-1

PrxeRD[ha(x) ^ f(x)] = J2Pr^eRDj[ha{j) ± f(x)] ■ PrxeRD[Xa(x) = u3
b]

j=o

86 CHAPTER 8. LEARNING GEOMETRIC CONCEPTS

= g(|-E— [y-/(x)1)-^^w^]
1 I6"1

Now note that

and therefore

ö - öS Mi) • ^6^4/(^)3 • PrKeflD[xa(^) = w3
b].

j=0

|ED[/x.]| < £ |E^i[/]| • Pr,eD[Xa(x) = eft.
3

Define Ä'a(j) = sign(EDJ[/]). Then

MK±f\<\-\\VD\Jx\\

and /j'a is a weak approximator to / for all a such that |ED[/X0]| is inverse-polynomially

large. Furthermore, for h" defined by

h»m = { -K(J) ^ |EDJ[/]I < ^^ or PrxeRD[Xa(x) = Jh] < &&*&
\ KÜ) otherwise

it follows that

PrD[K?f\<±-\\ED\fxa]\

This analysis leads to the following algorithm for producing a Boolean approximator ha

from function Xa- Let 9 = |ED[/XO]|- Estimate n'- = |EDJ[/]| f°r all j such that |Erw[/]| >

0/8 and such that PI\D[X0 = Wj] > 9/8b (call these the kn/e j). Define ha(j) = sign(//^)

for all j as above and define the value of ha(j) arbitrarily for the remaining j. Then if the

estimates for fi'j are all within 0/8 of the true values, ha is at least a (1/2 —$/4)-approximator

to/.

We now briefly outline a method of efficiently finding appropriate pL1- for all the large j.

First, we will estimate 9 using calls to EX(f, D). Note that by Corollary 2.2, we can estimate

9 to within a small multiplicative factor with probability at least 1 — 8 in time polynomial

in Ö-1 and log^-1. Given such a bound on 9, we can by Hoeffding (Lemma 2.2) compute

the number mi of examples from a simulated oracle EX(f, DJ) necessary to accurately and

8.3. LEARNING UBOX 87

with high probability estimate n'- for j such that |ED;[/]| > 0/8. We can also compute a

necessary number ra2 of examples from EX(f, D) such that with high probability, for every j

such that PTDIXO, = ^l) > 0/8b, at least mi of the examples (x,f(x)) will satisfy Xa(x) = OJ{.

It can be shown that a value of m2 polynomial in b, 0_1, and log«1)-1 is sufficient to produce

sufficiently accurate estimates of \i'- for all large j. □

8.2.3 Main Result

Putting this all together, we obtain the following:

Theorem 8.1 Forp any fixed polynomial, t = p(n, s,e-1,log(£-1)), and k = O(logt/log\ogb),

k-UBOX is learnable with respect to the uniform distribution using membership queries. The

algorithm runs in time polynomial in b, n, s, e_1, and log(^_1).

8.3 Learning UBOX

In fact, unrestricted UBOX is learnable in time polynomial in all parameters except 6, and

thus is efficiently learnable for b constant.

Corollary 8.1 For p a particular fixed polynomial and t = p(n,s,e-1,log(^-1)), UBOX is

learnable with respect to the uniform distribution using membership queries in time polyno-

mial in the parameters above as well as f°(61oslos6). ffere s represents the UBOX-size of the

target function.

Proof Sketch: We choose t = 12s/cie3, where c\ is the constant 1/57 appearing in HS.

Then for any k-rectangle R such that k > log6/6_1(t), Pr[x £ R] < Cie3/12s. Furthermore,

for any distribution D simulated by HS in the process of boosting with respect to uniform,

PTD[X G R] < 1/45. Using this observation, the proof of Fact 8.1 can be generalized

to show that, for any function / and for any D as above, there is some \a such that

\ElD[fXa]\ = ü{s-H-°^0^h)). U

88 CHAPTER 8. LEARNING GEOMETRIC CONCEPTS

8.4 Appendix

Here we briefly sketch the proof of a lemma needed for Fact 8.1.

Lemma 8.2 For every l-rectangle R : [b] —*■ {0,1}, Lx(R) — O(log&).

Proof Sketch: Let d represent the width of R, that is, d = \{x \ R(x) = 1}|. By the

definition of the Fourier transform and standard facts about principle roots of unity, we can

view each Fourier coefficient R(a) as the vector sum of a sequence of d 2-dimensional vectors

of length 1/6, where there is a fixed angle 2ira/b between each consecutive pair of vectors.

A geometric argument then gives that |i?(0)| < 1 and that for a £ {1,..., 6 — 1} the vectors

all lie within a circle of diameter l/bs'm(-Ka/b). That is,

1
\R(a)\ <

fcsin^

for a G {1,..., 6— 1}, regardless of the choice of d. We can bound the sum of the magnitudes

of the latter coefficients by considering a to be a continuous rather than discrete variable

and integrating, which gives after simplification

6-i 2

Y/\R(a)\<2 + -ln(b).

D

Chapter 9

Learning Over Nonuniform
Distributions

We have thus far shown that DNF (as well as certain other classes of representations) is

learnable with respect to the uniform distribution over the instance space. While the uniform

distribution is in some sense quite natural, in many real-world application domains we might

expect, for example, significant correlation among the variables in instances. Thus in this

chapter we consider the problem of learning DNF with respect to distributions other than

uniform.

9.1 Learning with respect to "Nearly" Uniform Dis-
tributions

Note that we have already laid the groundwork for a certain amount of generalization to

nonuniform-distribution learning. Recall that the proof of Theorem 6.1 actually shows that

DNF is learnable with respect to any distribution D such that an oracle for D is available

and £00(2™!)) is bounded by a polynomial in n. Actually, we do not even require an oracle

for such a D, because if we learn an (e/Loo(2"Z)))-approximator h with respect to uniform

then h is also an e-approximator with respect to D.

Furthermore, we can relax the need for a polynomial bound on L00(2nD). Recall that

KM' runs in time polynomial in, among other parameters, L^g), where g is the (potentially

non-Boolean) function for which a large Fourier coefficient is desired. The bound on the

89

90 CHAPTER 9. LEARNING OVER NONUNIFORM DISTRIBUTIONS

magnitude of g is used in KM' in two ways:

1. The number of samples needed to with high probability accurately estimate

Ex,yMyx)g{zx)xA{y © z)] (9.1)

can be bounded, using Hoeffding's inequality (Lemma 2.2), by a function that is poly-

nomial in Loo(g) along with other parameters.

2. The number of recursive calls made by KM' is bounded by a polynomial in, among other

parameters, E[g2}. This quantity in turn is bounded by L^g).

A number of samples sufficient to accurately estimate the expectation in (9.1) can be com-

puted using Chebyschev (Lemma 2.3) rather than Hoeffding. To apply Chebyschev, we need

to bound the variance a2 of the function

p(x,y,z) = g(yx)g(zx)xA(y®z).

We can bound a2 in terms of the variance a2 of g, since

a2
p = E\p2} - E2\p] < E[p2] = Ex[E2

y[g
2(yx)]} < Ex,y[g\yx)]

where the final inequality follows from the fact that for any real-valued function /, E2[/] <

E[/2]. So E[g4] upper bounds a2. Furthermore, E[g4] + 1 also upper bounds E[g2]. This

means that in both items above a bound on E[g4] can be substituted for the bound on L^g).

However, to achieve a confidence oil —8 that the estimated value of (9.1) is sufficiently close

to the true value requires a number of examples polynomial in <5_1 rather than the log 6_1

required when Hoeffding was applied.

Recalling that HS runs KM' on </'s of the form 2™/D where / G {—1, +1}, this means that

a modified version of the algorithm can efficiently learn DNF with respect to any distribution

D for which it is given an oracle and such that E[(2n.D)4] is polynomially-bounded in n.

9.2. LEARNING WITH RESPECT TO PRODUCT DISTRIBUTIONS 91

9.2 Learning with respect to Product Distributions

We can also learn DNF with respect to certain product distributions. A product distribution

on {0,1}" is defined by a set {fr £ R | 1 < i < n}. Each m represents the probability

that input bit i is a 1; this probability is independent of the values of all the other bits.

Product distributions are a natural generalization of the uniform distribution, which is the

product distribution having //; = | for all i. They are also distinct from the distribution

classes considered above. For example, E[(2"D1/4)4] > 2™ for the product distribution D1/4

in which fXi = 1/4 for all i.

Because of the independence between variables inherent in product distributions, stan-

dard Fourier analysis readily generalizes to these distributions [FJS91]. The primary dif-

ference is that the functions XA are replaced by a generalized Fourier basis consisting of

functions ipA, and Fourier coefficients are now defined with respect to this new basis. Specif-

ically, let D be a product distribution with \i{ as above. Then for all A C {l,...,rc} we

define

V>A(X) = n f*i *&i

This <f basis is orthonormal with respect to the inner product {f,g} = Eß [/</]. Therefore, if

for / : {0, l}n -► R we define f{A) = ED[f(pA] then

A

It is straightforward to verify that when D is the uniform distribution, ipA = XA and f(A) =

f(A) for all A.

Building on this generalized Fourier transform, Bellare has described a modified KM al-

gorithm that finds all the large generalized Fourier coefficients of a function with respect to

certain product distributions [Bel91]. We can use these ideas to extend HS and show the

following.

Definition 9.1 The c-bounded product distribution family VT>C is the set of all product

distributions D such that for every Hi defining D, c < Hi < 1 — c.

92 CHAPTER 9. LEARNING OVER NONUNIFORM DISTRIBUTIONS

Theorem 9.1 For any constant c G (0,1/2], DNF is learnable with respect to Wc using

membership queries.

Proof Sketch: Let / be the target function and D the target product distribution. We will

learn / with respect to D by running HS with a modified weak learner. Specifically, we will

show that for every D, defined by Fl in the process of learning with respect to D we can

efficiently and with high probability find a set A such that |E£>; [fy>A] I is inverse polynomially

large. It then will follow by a table technique similar to the one outlined in the proof of

Lemma 8.1 that if A can be converted to a Boolean weak approximator for / with respect to

Di.

The first step is to show that such a ipA exists. By the proof of Fact 6.1 we know that

for any s-term DNF / either Pr£>[/ = 1] < 1/3, in which case the constant function ip$ is a

weak approximator to /, or there exists a term T of / with the following properties:

• Pro[T is satisfied] > ^, and

• At least one subset A of the variables in T is such that |ED[/XA]| > ^j-

Furthermore, since D is a c-bounded product distribution, T contains at most ln(3s)/ ln(c-1)

variables. Thus there is some parity XA over O(log(s)) of the inputs which is a weak approx-

imator to / with respect to D. Also, for the distributions Di generated by Fl in the process

of learning against D, Di(x) = 0(D(x)/e3) for all x. So for each of these distributions Di

there is some parity over 0(log(s/e)) inputs which is a weak approximator with respect to

Di.

Now by reasoning similar to the proof of Fact 7.1, for A such that |Eü;[/XA]| > l/(3s),

f < max \EDi[f<pB]| • E 1x4^)1 • 3s B ^

Because XA is a Boolean function and Parseval's identity holds for any orthonormal basis,

we have that ^2B XA{B)
= 1- Furthermore, it can be shown that XA(B) = 0 unless B C A.

By our earlier bound on the size of A and the relationship between L\ and L^ norms, this

gives
fe\°W

m<ix\EDt[f<pB]\>{-) .

9.2. LEARNING WITH RESPECT TO PRODUCT DISTRIBUTIONS 93

To find such a <ps we use a modified KM algorithm. Define CA,k = {f(A U E) | E C

{k + 1,..., n}}. Then it can be shown that

L2
2{CA,k) = EXiytZ[f(yx)f(zx)<fA(y)<pA(z)}.

For constant-bounded product distribution D and |A| = <9(log(s/e)), |<^4(2/)| = (s/e)0^ for

all y. Since we know (modulo our usual guess of s) that there is some A that obeys this

bound and such that (pA is well-correlated with /, we modify the KM algorithm so that it

"cuts off" any branch of the recursion that would consider an A exceeding this bound. Thus

at every recursive call to the modified KM we can efficiently estimate the above expectation

for Boolean /, and therefore we can efficiently find a (pA that correlates well with / with

respect to D.

Furthermore, if we define g(x) = f(x)Di(x)/D(x) then E^[/</?#] = ED[g(pB]- For A' as

defined by Fl when learning with respect to D we have \g(x)\ = 0(e~3) for all x. Therefore,

for each of these D^s we can efficiently find a <PB that correlates well with / with respect to

A- D

This result holds whether or not the learner is given an oracle for the target distribution

D, since a very good approximation to a product distribution D can be obtained efficiently

by using random sampling to estimate the /U;'s defining D.

94 CHAPTER 9. LEARNING OVER NONUNIFORM DISTRIBUTIONS

Chapter 10

Learning Despite Noise

So far, we have assumed that the membership oracle MEM(f) is completely accurate. In

this chapter we show that DNF and, more generally, TOP remain learnable (with very high

probability) despite substantial noise in the data. As noted in the Introduction, proving

that the Harmonic Sieve is noise tolerant is interesting because of the similarity of goals in

noise-tolerant and real-world learning.

10.1 Definitions and Intuition

We focus on learning from a membership oracle that exhibits persistent classification noise

[GKS93]. In particular, for any Boolean / and noise rate t] define the noisy oracle MEMQN(f)

as follows. If the oracle has been queried about the instance x previously, it answers with

the same value returned before. Otherwise, with probability 1 — rj the oracle returns f(x),

and with probability r) it returns —f(x). Given such a noisy membership oracle, the learning

algorithm's goal is to find a hypothesis h that is an e-approximation to the true target /,

not to the noisy function simulated by the oracle.

Note that for rj = |, on any input x, MEMQN(J) produces positive and negative outputs

with equal probability, independent of /. Thus it is information-theoretically impossible to

learn / in this case. Therefore, we will assume rj < |.

The proof that TOP is learnable in this noise model is based on the following ideas. Since

the noise is persistent and the decision about whether or not to apply noise to a given example

95

96 CHAPTER 10. LEARNING DESPITE NOISE

is independent of the decisions for all other examples, we can assume that all noise decisions

are made before learning commences. That is, we can treat the noisy oracle as if, given

/, it chooses a fixed noisy function fv according to the probability distribution DVj implied

by the noise process described above. We will show that, with extremely high probability

over the random choice of fn, every Fourier coefficient fv(A) is very near its expected value

(1 — 2r))f(A). Thus if we run the KM algorithm with a threshold of 0(s_1(l — 2rj)) using

the noisy oracle MEMQN(J), we are virtually certain to find a parity XA that is a weak

approximator for TOP /. Therefore, the first stage of the HS algorithm will give essentially

the same result whether we use MEM(f) or MEMQN(/) (recall that the KM threshold is set

automatically by WDNF). We then argue that a similar property holds for succeeding stages

of the algorithm.

The only remaining difficulty is deciding when the algorithm should terminate, since it

cannot determine that its hypothesis is within e of the true target / by sampling fv (we

assume that the example oracle given to HS also draws from fv). We will assume that a

polynomial bound in n on the TOP-size of the target function is known.1 This size bound

assumption immediately gives us a bound on the number of boosting stages in HS (see

Figure 6.2). Also, for sufficiently large n, a polynomial bound on the number of boosting

stages will ensure (with high probability) that all of the weak hypotheses found by the

algorithm are in fact weak approximators to the true function /. This follows from the

strength of the bound given below on the deviation of the noisy Fourier coefficients from

their expected values.

10.2 Formal Development

We begin the formal development of these ideas by bounding the probability that any fv(A)

differs significantly from (1 — 2r])f(A). We use Pr^[-] and E^[-] to represent probability and

expectation, respectively, taken over fv chosen randomly according to Dy.

1In practice, as we will see in the next part of the thesis, there are other techniques for determining when
the learning should terminate.

10.2. FORMAL DEVELOPMENT 97

Lemma 10.1

Pr„[3A s.t. \fi(A) - (1 - 2rj)f(A)\ > A] < 16e"-A22n-5.

Proof: First, consider any fixed A, and let P8j = Prx[f(x) = i k XA(X) = j] for z, j G

{ —1,+1}. Then it follows from its definition that f(A) = Y,i,j ijPij- Similarly, for fixed p

define P?^ = Prx[f(x) = i k XA{X) = j k P(x) = I], and note that

HA) = E%.

Let Eij£ represent E^[P^-J. Taking expectations over random choice of fv on both sides

of the above equality, it follows that if for each i, j, and £, \Piji — Ä'j^l < A/8, then

|?(A)-(l-2i7)/(A)l<A.

There is a simple relationship between each E^i and one of the Pj's; for example,

-^1,1,1 = (1 ~~ f})P\,\- We will use this relationship to bound the probability that -P/j^ differs

from its expected value by more than A/8. To illustrate the process we consider a specific

example. Let Sltl = \{x \ f(x) = 1 k XA(X) = 1}| and 5?ilfl = \{x \ f(x) = I k XA(X) =

1 k p(x) = 1}|. That is, Phl = S1A/2n and P£lfl = 5?il)1/2n. Then

Prr,[\P^-Ei,JA>\/8}=Prr,
Jl,l,l

5l,l
"(I-»/)

A
>

8iV-

We can bound the latter probability by Hoeffding. That is, we can conceptually associate a

random variable with each of the S\ti x's such that f(x) = XA(X) = 1. Each random variable

takes on value 1 with probability 1 — 7/ and value 0 otherwise. S^n then represents the sum

of these random variables, which are independent and have the same mean. Therefore,

Pr„[|i^ - Eitj/\ > A/8] < 2e-
A2^/32PM < le'**^!3^ < Ze^2^.

The lemma follows by the fact that the probability of the union of events is bounded above

by the sum of the probabilities of the events. □

We now state and prove the main theorem of this chapter. To simplify the statement of

the theorem, we place tighter bounds on e, 6, and rj than are necessary.

98 CHAPTER 10. LEARNING DESPITE NOISE

Theorem 10.1 For all sufficiently large n, TOP is learnable from a persistent classification

noise membership oracle MEMQN(J) with respect to the uniform distribution, assuming the

TOP-size s of f, t~x, log(<S_1), and 1/(1 — 2n) are each bounded by a polynomial in n. The

algorithm is told a polynomial in n upper bound on s. The probability of success is taken over

the randomness of MEMQN(f) as well as over the internal randomization of the learning

algorithm.

Proof: Based on the earlier discussion and lemma as well as the given bounds on s, e, 8, and

r), for an appropriate choice of A we can guarantee, with the degree of confidence required

by HS, that the first stage of the noise-tolerant HS will find a weak approximator for the

true target /. What remains to be shown is that we can obtain similar guarantees for the

subsequent stages of the algorithm. We do this by generalizing Lemma 10.1.

Let Di by the distribution simulated by the algorithm at stage i, and let g(x) = 2nf(x)Di(x).

Recalling the definition of Di (equation (5.1)), it follows that g(x) takes on at most 2k dis-

tinct values, where k is the number of boosting stages the algorithm will perform. Let G

represent this set of values. Then for i,j £ { —1,+1} and £ € G, if we define P^t =

Prx[g(x) = itk XA{X) = j k g%x) = £] then E„[^(A)] = E4J7Ä[i^]. The analysis

of Lemma 10.1 applies to the expected difference between P^t and E^[P^-f]. Furthermore,

|^| is bounded by a polynomial in n given our bounds on e, there are at most 8A; terms in

the sum above, and k is polynomially bounded because s and e_1 are. Therefore, following

the reasoning in Lemma 10.1, we can with very high probability guarantee sufficiently small

deviation between gv(A) and its expected value, (1 — 2r])g(A), for every value of A. D

Part II

Applications

99

Chapter 11

Introduction to Empirical Results

In the first part of the thesis we have developed a number of positive theoretical results

in particular models of learning. The question we have not yet addressed is: are these

theoretical results of any practical use? This second part of the thesis (which represents

joint work with Mark Craven) addresses this question, and while we currently have results

in only a limited number of domains, the results are encouraging.

We begin this chapter with a brief background on empirical machine learning research, an

outline of the goals of our empirical research, and an introduction to three specific learning

problems that will be addressed in various ways in subsequent chapters. We also present the

AdaBoost hypothesis boosting algorithm [FS95] that is used in our empirical work.

11.1 Background

Early on in our discussion of theoretical machine learning we defined a number of formal

models of what it means to learn. Similarly, in empirical machine learning we can de-

fine various frameworks within which learning can be studied. These frameworks, like the

learning-theoretic ones, are differentiated largely by aspects such as the form of data that

will be available to the learner, the goal of the learning algorithm, and how success will be

measured. Some of the ways in which learning frameworks have been categorized include:

• Active vs. passive learning: Is the learning algorithm allowed to affect the selection of

data that will be used to train the algorithm?

101

102 CHAPTER 11. INTRODUCTION TO EMPIRICAL RESULTS

• Supervised vs. unsupervised learning: Is the algorithm told the class of a data item

(such as what digit is represented by a given visual image), or is it simply given vectors

of data and expected to find, say, a small hierarchical clustering of the data?

• Classification vs. skill (reinforcement) learning: Is the goal of the algorithm to correctly

classify data, or is it to improve at some skill such as navigating through a maze?

We will be particularly interested in the passive, supervised, classification learning frame-

work, which we now discuss in some detail.

Typically, empirical research in the classification-learning framework begins by assuming

the existence of a set of examples (labeled instances) called the training set. An instance is

often called a feature vector, the individual elements of the vector being features or attributes.

Features are generally Boolean-valued, numeric (integer or rational), or nominal-valued. The

latter feature is one that takes on a finite set of possible values; for example, an attribute

that can have values red, amber, or green is nominal-valued. The label of an example is

called the example's class.

The goal of the classification learner is to use the training set to produce a classifier

that will accurately classify inputs in a test set that is unseen during learning. Classifier

performance is generally measured as the (unweighted) percentage of the test set that is

classified correctly by the output classifier. The performance of a learning algorithm on a

task is obtained by averaging the performance of the classifiers it produces over a collection

of training/test set pairs.

A common mechanism for producing the training/test pairs is k-fold cross validation.

Specifically, one large set of examples is partitioned into k (approximately) equally sized

sets. Each set is used once as a test set, with the data remaining each time used as the

training set. We typically use 10-fold cross validation in the experiments described in this

thesis. Cross validation can also be used within a training set. This is useful when there are

parameters of the learning algorithm—such as the number of boosting stages performed by

the Harmonic Sieve—that must be set carefully to obtain good performance. The idea is to

treat the training set as if it was the full data set and use cross validation to compare the

11.2. GOALS 103

performance of different versions of the learning algorithm, each version having a different

setting of the parameters. The best-performing version is then trained over the entire training

set to produce the final hypothesis.

11.2 Goals

Perhaps the major difference between empirical and theoretical research on machine learning

is in how success is measured. In theoretical research, success generally means that a theorem

has been proved. Typically, the better known the question answered by the theorem, the

more successful the result.

In empirical research on machine learning, success generally means discovering algorithms

or techniques that, by some empirical measure, outperform known algorithms and techniques.

The more distinct the advantages of the new algorithm, the more successful the result. In

some sense an empirical algorithm is ultimately successful if it displays expert human-level

performance on some learning task (and, if many algorithms achieve this level of performance,

outperforms the competition). Machine learning algorithms have begun to achieve such

a level of success in a variety of domains, including automatic vehicle steering [Pom91],

handwritten character recognition [DSS93], and game playing [Tes94].

As indicated above, the typical performance measure for empirical machine learning

algorithms is: how well did the algorithm learn the task at hand? But there are a variety of

other useful measures of performance, including for example: how much time was required

for learning; how quickly can the learned function be computed; how much memory is

required to learn/store the learned function; how well does the learning algorithm use prior

knowledge; how intelligible is the learned function? Of course, a performance measure may

be some composite of these simpler measures.

Broadly speaking, the goal of the empirical research reported in this thesis is to develop

algorithms designed to perform well against a composite measure of performance: learn as

well as the best-known machine-based techniques while producing a learned function that is

more intelligible than other techniques with comparable classification performance.

104 CHAPTER 11. INTRODUCTION TO EMPIRICAL RESULTS

We approach this task using two different techniques. In Chapter 12, we try a two-

step method: first, learn using the best-known classification algorithm, producing classifier

c; then attempt to produce an approximation to c which is more intelligible than c. This

assumes, of course, that the best-known classifier c is relatively unintelligible, which is the

case in many application domains. The advantage of this two-step approach is that we can

use c as a membership oracle, which (theoretically) allows us to apply the Harmonic Sieve

to the task of approximating c by a more intelligible classifier.

There are, however, shortcomings to applying this method in many real-world domains.

One difficulty is that HS approximates with respect to uniform, which may not give an appro-

priate approximation with respect to the underlying target distribution. Another difficulty

is that the classifier produced by HS will be an approximation to an approximation to the

target function, and thus may not be a particularly good approximator. Finally, while HS is

a polynomial-time algorithm, the Version of the algorithm presented in Chapter 6 does not

scale as well as we would like. To overcome these difficulties we develop two modified versions

of HS. Each of these versions is used to perform rule extraction in a different benchmark

domain, with reasonably successful results.

The other approach we take to achieving our empirical goal is to attempt to learn rel-

atively intelligible classifiers directly from the training set (Chapter 13). In this case we

do not have a membership oracle available and therefore cannot use the Harmonic Sieve

directly. However, as we will see, one of the modified versions of HS developed in Chapter 12

actually does not require membership queries. On three benchmark tasks, including the two

on which rule extraction was performed, this Boosting-based Perceptron learning algorithm

not only produces quite intelligible classifiers, but also produces among the most accurate

classifiers known for these tasks. Furthermore, on one of the tasks the algorithm demon-

strates a particularly strong ability for selecting, from a very large set of potential features,

those features that are thought to be among the most relevant for that classification task.

We next outline the three benchmark tasks considered.

11.3. APPLICATION DOMAINS 105

11.3 Application Domains

11.3.1 Congressional Voting

Schlimmer [SF86] extracted the votes of the 435 members of the US House of Representatives

from the Congressional Quarterly Almanac (1985) on 16 issues. The features of each record

in the data set are one representative's votes on each of the issues (Y, N, or ?), and the classi-

fication of a record is that member's party affiliation (R or D). Some of the votes of members

of the opposing parties are almost identical; therefore, we do not expect perfect separation

of the data by a general-purpose learning algorithm. In fact, it is just this "messiness" of

the data rather than any real-world usefulness that has made this an interesting benchmark

data set. The relatively small size of the data set has also led a number of empirical learning

researchers to include it in their studies. The version of the data set we use has one of the

features (physician-fee-freeze) removed; this has been found to make the learning task

noticeably more difficult [BN92].

11.3.2 Promoter Recognition

A promoter is a relatively short segment of DNA that immediately precedes a gene, which is

a blueprint for a functional unit (typically a protein) within an organism. A promoter is in

effect a marker which RNA polymerase, the molecular machine used for gene transcription,

recognizes. However, the "rules" used by RNA polymerase to recognize promoters are not

completely understood, hence for humans to detect the presence or absence of a gene within

a strand of DNA is generally a somewhat time-consuming process. Thus a classifier for the

promoter recognition problem could be quite valuable to biologists.

The specific promoter set we use is a more complex extension (468 records) of the data

set first assembled and analyzed by Towell et al. [TSN90]. In these data sets, an instance

of the promoter recognition problem is a sequence of 57 nucleic bases (each of the bases is

represented by one of the characters "a, c, g, t"). The correct classification of an instance is

"promoter" if a gene begins in the 51st position and is "nonpromoter" otherwise. An actual

example for the promoter recognition task follows.

106 CHAPTER 11. INTRODUCTION TO EMPIRICAL RESULTS

tttgtttttcattgttg

acacacctctggtcatg

atagtatcaatattca

t g c a g t a promoter

Exactly half of the records in our data base are promoters.

11.3.3 Protein-coding Region Recognition

The protein-coding region recognition task is similar to promoter recognition. In particular,

the input is again a string of characters representing a DNA sequence. Now, however,

we are specifically interested in structural genes, those genes that provide a blueprint for

protein synthesis. Proteins are complex macro-molecules composed of a sequence of simpler

molecules, amino acids. A structural gene contains a sequence of nucleotides that codes for

the sequence of amino acids in the corresponding protein.

As noted above, there are only four different nucleotides. On the other hand, there are

20 different amino acids used to construct a typical protein. Therefore, there is not a one-

to-one correspondence between the nucleotide sequence in a structural gene and the amino

acid sequence in the protein encoded by the gene. Instead, each amino acid is coded for by

a sequence of three nucleotides.

If we are given a DNA sequence s that is a portion of the sequence coding for a protein,

and if the first character of s is also the first character of a triple coding for an amino acid,

then s is an in-frame protein-coding region. The protein-coding region recognition task is

to tell whether or not a given DNA character string represents an in-frame protein-coding

region. We use the protein-region data set studied previously by Craven and Shavlik [CS93b],

which consists of 10,000 sequences, each 15 nucleotides (5 triples) long. Roughly half of the

sequences are examples of in-frame protein-coding regions.

11.4 The AdaBoost Hypothesis Boosting Algorithm

11.4. THE ADABOOST HYPOTHESIS BOOSTING ALGORITHM 107

AdaBoost
Input: training set S of m examples of function /, weak learning algorithm WL that is
(| — 7)-approximate, 7
Algorithm:

1. T^^ln(m)
2. for all x E S, w(x) <— 1/m
3. for i = 1 to T do
4. for all x E S, D{(x) <- w(x)/ £™ x u>(x).
5. invoke WL on training set S and distribution D;, producing weak hypothesis hi

6- e» <— T,x.hi{x)?f(x) Di(x)
7. # <- til {I -ti)
8. for all x E S1, if /i(a;) = /(#) then 10 (a:) <— w(x) • ßi
9. enddo

Output: h(x) = sign (Tj=1 -ln(^) • hi(x)j

Figure 11.1: The AdaBoost boosting algorithm for producing a consistent hypothesis using
a Boolean weak learner.

As mentioned earlier in this chapter, in our empirical work we will be particularly in-

terested in learning within the passive classification learning framework. In Chapter 5 we

noted that this framework lends itself to a boosting-by-sampling approach rather than the

boosting-by-filtering approach employed by Fl. Due to this and other practical consider-

ations discussed in Chapter 5, we employ a different boosting mechanism in our applied

versions of the Harmonic Sieve.

The specific boosting algorithm we use in our empirical studies is a version of the recent

AdaBoost algorithm [FS95] (Figure 11.1). Given a weak PAC learner that can achieve

accuracy e = | — 7, AdaBoost runs for T = ln(m)/(272) stages. Initially, the algorithm

creates a distribution D\ that is uniform over the given example set S. The probability

distribution at each subsequent stage i is defined in a rather simple way: if hi-i correctly

classifies an example, then the weight on that example is reduced in the distribution D,- used

at stage i. The effect of this is to increase the focus of the weak learner at stage i on those

examples which ä,-_I classified incorrectly. At the end of the T stages a final hypothesis h is

output; this is just a weighted threshold over the weak hypotheses {hi \ 1 < i < T}. Note

that, unlike Fl, the weights are now real-valued. If the weak learner succeeds in producing a

108 CHAPTER 11. INTRODUCTION TO EMPIRICAL RESULTS

(2 — 7)-approximator at each stage then AdaBoost's final hypothesis will be consistent with

the training set [FS95]. As noted in Chapter 5, for large enough training sets a consistent

hypothesis will generally be a good approximator to the target.

In practice, of course, there will be no guarantee that the weak learner to be boosted

will achieve any particular level of approximation. In fact, real-world data may not even

describe a function, i.e., the same feature vector may appear more than once in the data set

and be assigned different labels at different times. Thus while the theoretical guarantees for

AdaBoost give us some confidence that the algorithm has potential real-world applications,

we will also need to modify the algorithm somewhat for practical use. Specifically, we will

choose the stopping criteria in ways other than the method shown in Figure 11.1. We will

mention the specific methods used as we describe each of the experiments.

Chapter 12

Rule Extraction

In this chapter we define the rule extraction problem and present potential solutions to

this problem based on variants of the Harmonic Sieve algorithm developed earlier in the

thesis. We begin with some motivation for the rule extraction problem, then consider two

benchmark problems and two Harmonic-Sieve-based solutions.

12.1 Motivation

Many problems in science, and particularly in biology, fit into the supervised classification

framework of learning discussed in the previous chapter. For example, consider the promoter

recognition problem described in the last chapter. We are given a set of known examples

of DNA sequences that represent promoter regions as well as regions that do not represent

promoters and we are asked to develop a classifier that will correctly classifier future DNA

sequences.

Some of the best results for biologically-motivated classification problems such as pro-

moter recognition have been obtained by classification algorithms that produce multilayer

perceptrons (MLP's; also sometimes called artificial neural networks) as the classifier. A

(single-layer) perceptron, as defined by Minsky and Papert [MP88], is simply a weighted

threshold over the set of input features and over local functions of these features (Fig-

ure 1.4). By "local" we will mean functions that take only a limited number of the features

as inputs. A two-layer perceptron (Figure 1.5) is a weighted threshold of perceptrons (which

109

110 CHAPTER 12. RULE EXTRACTION

are typically linear, i.e., without local functions as inputs), and multilayer perceptrons gen-

eralize this idea in the obvious way. In the neural network flavor of MLP's there are many

variations on this simple framework, such as replacing the threshold function used in our

definition with a similar but differentiable function, or allowing outputs from one level to

feed back to previous levels. In the empirical comparisons to follow we will focus on MLP's

that are strictly feedforward, have a hard threshold at the final level (so that a Boolean

output is produced), have sigmoidal internal functions, and are trained by a version of the

backpropagation learning algorithm [RHW86].

While, as already noted, MLP learning algorithms have proved to be particularly effective

at solving biological (and other) classification problems, they are not a perfect solution to

these problems. In particular, an MLP solution to a biological classification problem typically

sheds little light on what mechanisms underly the physical phenomenon being observed,

because MLP's are frequently very difficult to understand.

As one example of the causes of this difficulty, consider that often an MLP is described by

a set of hundreds or even thousands of real-valued parameters. Also, while humans tend to

find linear functions relatively intelligible, MLP's often represent highly nonlinear functions.

Finally, although internal (hidden) functional units in multi-layer networks are linear and

therefore potentially understandable on an individual basis if not collectively, it is often

difficult to ascribe intelligible meaning to individual hidden units. This is because MLP's

commonly learn distributed representations, that is, each unit has a meaning only in the

context of the values produced by many other units. Thus in an MLP for the Congressional

voting problem, there may not be any one unit that represents "conservative," although

the concept may be present in the MLP in the sense that inputs representing conservative

members of Congress might generate a characteristic set of responses in the various hidden

units.

In short, while an MLP may do an excellent job of telling us, say, that a specific DNA

sequence represents a promoter region, it will generally not provide us with a general rule

saying, for example, "If the 22nd nucleotide in the sequence is 'a' and the 23rd is 'g' then

the sequence likely represents a promoter." However, such rules can be extremely useful for

12.1. MOTIVATION 111

several reasons. First, to the extent that the rules match reasonably well with expectations,

the rules can add to the confidence we are willing to place in the output of a classifier.

Second, unexpected rules may play a role in the scientific discovery process. Finally, a

simpler classifier may have useful computational advantages over a more complex rule.

In part because MLP's do not in general represent intelligible rules, several researchers in

biology have turned to alternative classification methods that do produce human-intelligible

rules, such as decision tree learners [HK93] or inductive logic programming [SKLM94]. In

some problem domains these more intelligible classification strategies produce classifiers hav-

ing essentially the same accuracy as more opaque approaches. However, there are classifi-

cation problems in biology where MLP learners seem to have a distinct advantage over

competing recognition methodologies [CS93a,-TS94]. It is specifically this type of problem

that motivated our study.

Thus we consider a different approach to rectifying the intelligibility deficiency of MLP's,

an approach that relies on a form of rule-extraction.1 Our approach is quite simple: rather

than attempting to completely replace the MLP learner with another learning algorithm

producing more intelligible rules, we will use the MLP learner as the first step of a two-step

learning process. That is, we begin by training an MLP on the given training set. Our

second step is to run a second learning algorithm that, rather than attempting to learn from

the original training set, attempts to approximate the function represented by the MLP

produced in the first stage. The hope is that this second algorithm (the rule extractor) can

produce a classifier that is both more intelligible than the MLP and nearly as accurate on

the test set.

At this point, a reasonable question is, "If there is an algorithm that can produce a good

classifier given an MLP, why not just skip producing the MLP and run this algorithm on

the original training set directly?" The answer is that the algorithm we plan to use in the

second stage is a version of the Harmonic Sieve, which is a membership-query algorithm.

1Actually, the rule-extraction methodology we outline is applicable to any classifier, not merely MLP's.
We focus here on MLP's because they are notoriously hard to understand and to the best of our knowledge
were the most accurate general-purpose learning methods on the benchmarks we consider.

112 CHAPTER 12. RULE EXTRACTION

Thus HS would not be an appropriate algorithm to run when the only data available about

the target function is a relatively small set of training examples. On the other hand, once

an MLP has been trained to approximate the target function, this MLP can be used as a

surrogate membership oracle for the target. Therefore, if the MLP is a good approximation

to the target, and if HS is capable of producing an accurate approximation h to the MLP,

and if h is more intelligible than the MLP, then our approach will be successful.

Of course, there are several "if's in statement above, and we might therefore wonder

if there is any domain in which this approach can succeed. As we will show presently, in

at least one (relatively simple) domain our approach does succeed at producing classifiers

that are both as accurate as the MLP's produced and generally much more intelligible. In

a second domain having a much larger feature set we again produce relatively intelligible

classifiers, but they are slightly less accurate than the MLP's on which they are based. We

address this benchmark again in the next chapter using a different approach with better

results.

Before turning to our empirical results on the rule extraction problem, it should be

mentioned that the Harmonic Sieve is certainly not the only technique that could be used

to extract more rule-like classifiers from MLP's. In fact, there has been much interest in

the problem of simplifying MLP's, e.g., [ADTss, CS94, HB90, LDS89, Thr93]. A potential

advantage of the Harmonic Sieve is that it incorporates powerful algorithmic techniques,

such as Fourier methods and hypothesis boosting, that to the best of our knowledge have not

been applied to the rule extraction task before. The algorithm is also (at least theoretically)

capable of learning a very expressive class of Boolean functions, and is tolerant of certain

forms of noise. These attributes led us to apply versions of the Harmonic Sieve to the

two benchmark rule extraction tasks discussed in the next section. Before considering the

specific tasks, we examine some of the potential difficulties with using the Harmonic Sieve

for practical rule extraction.

12.2. APPLYING HS TO RULE EXTRACTION 113

12.2 Applying HS to Rule Extraction

In practice, it is not at all clear a priori that HS is well suited to the rule extraction task.

First, many people would not consider an arbitrary TOP representation—which can include

numerous parity functions each over a large subset of the inputs—particularly intelligible.

Therefore, even if HS succeeds at producing a good approximation to the given MLP repre-

sentation, it may be that we will have made no progress on extracting a human-intelligible

rule. And in fact there is no guarantee that HS will in a reasonable time produce a good

approximator to an arbitrary polynomial-size MLP, as discussed in Chapter 7.

Furthermore, HS produces a hypothesis (classifier) that generalizes well with respect to the

uniform distribution. On the other hand, what we want is a classifier that generalizes well

over some unknown, possibly very nonuniform, real-world distribution. Thus, theoretical

guarantees aside, it is quite possible that the classifier produced by HS will not generalize

well on the test set even if it does approximate the given MLP well with respect to uniform.

Finally, many (if not most) real-world problems do not have exclusively Boolean-valued

features. While we showed in Chapter 8 that the Harmonic Sieve can be generalized for

certain non-Boolean domains, the general form of the hypothesis becomes even less under-

standable than a TOP! Of course, it is generally possible to replace an attribute with a set

of Boolean attributes; for example, in the voting-data domain, each three-valued voting data

feature can be replaced by two Boolean features, say one that is on exactly when the vote is

yes and the other on exactly when the vote is no. But such a change expands the number

of attributes n, and while HS is a polynomial-time algorithm, in practice its original version

is not computationally feasible on typical current workstations for values of n that are, say,

much greater than 25 (although replacing KM with the newer Levin algorithm mentioned in

Chapter 4 may improve this).

We now consider how we addressed these difficulties in applying HS to two domains:

Congressional voting and promoter recognition. A different approach is used in each domain.

114 CHAPTER 12. RULE EXTRACTION

12.2.1 Congressional Voting

As noted earlier, the voting benchmark is useful because of its relative difficulty (we are aware

of no learning algorithm that achieves even 95% accuracy on the 15-feature version of this

task) combined with the small size of the data set (435 records of 15 3-valued features each).

Each three-valued feature was expanded into two Boolean-valued features as described above.

Using 10-fold cross validation we trained 10 different MLP's, each on 90% of the original data

set. MLP's with 0, 5, 10, 20, and 40 hidden units were trained and 20-fold cross validation

within each training set was used to select the "best" architecture for each of the 10 training

sets. In three of the 10 sets perceptrons (0 hidden units) were selected, and 10 or more units

were selected for the remaining sets.

Next, for each MLP a truth table was produced corresponding to the output of the MLP

on each possible input of 15 yes/no votes (i.e., "?" votes were not allowed). That is, a

Boolean function over 15 Boolean-valued features was extracted from each MLP. We then

ran a version of HS using the truth tables for these functions as input. This version of HS used

a Fast Fourier Transform (see Chapter 4) rather than KM to find the best-correlated parity

function at each stage; because of the small number of inputs, this ran relatively quickly on

a Sun SPARC1 workstation. As mentioned previously, AdaBoost was used as the boosting

algorithm. Initially, the TOP's produced were somewhat difficult to understand because

some of the parity functions included in a TOP could involve four or more features. In an

attempt to produce simpler but still reasonably accurate TOP classifiers, we introduced a

"hack" into the process of selecting a parity as the weak hypothesis at each stage. Rather

than selecting the best-correlated parity, each parity was assigned a value equal to its cor-

relation divided by 2fc_1, where k was 1 for parities on 0 or 1 Variables and the number of

variables in the parity otherwise. The parity maximizing this value was then selected as the

weak hypothesis at a stage. Thus this version of HS considered all possible parity functions

at each stage, but would select a parity over a large number of features only if that parity

was an overwhelmingly better approximator than all the parity functions over few features.

Finally, the number of boosting stages was set at 250 because this value allowed reasonable

12.2. APPLYING US TO RULE EXTRACTION 115

running times and produced simple classifiers that approximated the MLP's extremely well

with respect to uniform. This number was chosen without reference to the training or test

sets, but only based on the performance of HS on the truth table it was given as input.

The results of this experiment were quite successful. In terms of intelligibility, eight of

the TOP's produced were simple linear perceptrons, one had a single two-feature parity,

and the remaining TOP contained two second-order terms. As argued in the next chapter,

there is reason to believe that such classifiers are reasonably intelligible. The correlation of

the classifiers with the target functions was also excellent: all classifiers were at least 99.4%

accurate over the 215 values of their respective targets. When the classifiers were applied to

the 10 sets of training and test data (with "?" votes represented as the probability of a "Y"

vote on the issue) the performance was even better: 99.8% agreement with the MLP's on

the training data (that is, eight disagreements over 10 trials), and 100% agreement on the

test data. In fact, the TOP's actually (slightly) outperformed the MLP's on the training

data (93.1% vs. 92.9%), even though the MLP's were given the training data and the TOP's

were not!

12.2.2 Promoter Recognition

Applying HS to promoter recognition was a more difficult task. In this task there are 57 4-

valued nominal features which were expanded to 228 Boolean-valued features in the obvious

way. Although the Harmonic Sieve runs in time polynomial in the number of features, it

was not feasible to run the current version of the algorithm on such a large problem using

available hardware.

As indicated earlier, the KM algorithm is particularly slow in practice, and we could not

replace it with an FFT in this task because of the much larger number of features. Therefore,

we experimented with replacing KM by various heuristic simplifications. In particular, recall

that HS uses KM to find the parity function that correlates best with the target function

with respect to a particular distribution. While in the general case there are 2n possible

parity functions to consider (where n is the number of Boolean features), as indicated in

the preceding section we are particularly interested in finding "small" parities that correlate

116 CHAPTER 12. RULE EXTRACTION

well with the target, as this produces a more intelligible classifier. Specifically, if we consider

only parities over at most k variables, then there are only 0(nk) such parities. Therefore,

for small values of k it becomes computationally feasible to examine the correlation of all

possible parity functions of interest. Of course, if the target function is well approximated

by a parity over k + 1 features, this approach will fail to find this parity. The empirical

question that arises, then, is how large k needs to be in order to have good performance on

a variety of real-world problems.

We applied this approach with k = 1 to learning an approximator to an MLP in the

promoter domain. That is, our weak hypothesis at each stage was either a single feature or a

constant (+1 or —1). As the final hypothesis of HS is a threshold over the weak hypotheses,

this means we were producing a linear threshold as the classifier, but using something very

different than traditional algorithms to find this linear threshold. To measure the correlation

of each possible weak hypothesis with the MLP, we used a fixed set of 5000 examples of the

MLP function drawn uniformly at random when the algorithm commenced execution and

measured all correlations over this set. We defined the target distribution for this modified

version of HS to be uniform over the set and ran the algorithm for 250 boosting stages.

Using 10-fold cross validation and MLP training as described for the voting task, we

found that our algorithm gave 90.0% accuracy on the test data while the MLP's gave 91.0%.

Our perceptrons generally had approximately 150 nonzero weights (recall that there were

228 features in this data set); four of the MLP's were perceptrons, one had five hidden units,

and the remaining five MLP's had 10 or more hidden units. The largest of these (40 units)

had over 9000 weights.

It is worth noting again that our perceptrons were being trained on data randomly drawn

from the MLP's and not on the actual training data. Thus it is particularly interesting that

in spite of this the perceptrons agreed with the MLP's on the training data 98.0% of the

time and classified the training data with accuracy 96.6%. This despite the fact that none of

the perceptrons achieved even 96% accuracy over the 5000 random examples on which they

were actually trained.

Overall, this experiment was reasonably successful, although we were not able to achieve

12.2. APPLYING ES TO RULE EXTRACTION 117

MLP accuracy. In order to boost the accuracy we considered learning with larger values of

k. But notice also that the version of HS that we used above uses membership queries only

to produce a random sample on which to run the algorithm. This raises an obvious question:

what happens if rather than drawing a random sample from the MLP, we run a version of

this algorithm directly on the "random sample" represented by the training set? This is the

subject of the next chapter.

118 CHAPTER 12. RULE EXTRACTION

Chapter 13

Learning Sparse Perceptrons

In the previous chapter, we considered a two-stage procedure for producing intelligible yet

accurate classifiers: learn a difficult-to-understand classifier such as an MLP and then try

to transform the MLP into a more understandable yet still accurate classifier. One obvious

difficulty with this approach is that we expect in general that the resulting classifier, while

perhaps achieving nearly the performance of the MLP, is likely to be somewhat less accurate.

We observed exactly this difficulty at the end of the last chapter. Intuitively, it would seem

preferable to produce an intelligible approximator directly from the training data; it seems

at least possible that this approach might even lead to the best of both worlds, better

intelligibility and better generalization performance.

In this chapter we present a one-stage approach to learning understandable, yet accurate,

classifiers. This approach builds on the second algorithm of the preceding chapter, which

can be viewed as a stripped-down version of the Harmonic Sieve. Specifically, the algorithm

gives up any hope of finding large parities (i.e., parity functions over large subsets of the

features) that correlate well with the target function. In the applications we consider, we

are able to achieve good classification performance despite this change. In return for this

change, we obtain an algorithm that does not require membership queries and that therefore

can be run directly on the training data.

Specifically, this Boosting-based Perceptron (BBP) algorithm is designed to output sparse

perceptrons, i.e., single-layer (nonlinear) perceptrons that have relatively few non-zero weights.

The nonlinear inputs to the threshold are now small conjunctions rather than the arbitrary-

119

120 CHAPTER 13. LEARNING SPARSE PERCEPTRONS

size parity functions of a TOP; conjunctions were chosen for intelligibility reasons.

We begin this chapter by formally defining sparse perceptrons and stating some theoreti-

cal results that follow readily from our earlier discussions. It should be noted that Freund has

previously made similar observations [Fre93]. After this theoretical development we discuss

the application of the BBP algorithm to three benchmark problems.

13.1 Theory of Sparse Perceptron Learning

For our later theoretical results we will need a more precise definition of sparseness which

we develop now. Consider the Boolean function / : {0, l}n —> { —1,+1}. Let Ck be the

set of all conjunctions of at most k of the inputs to /. Ck includes the "conjunction" of 0

inputs, which we take as the identically 1 function, and for k > 1, includes "conjunctions" of

1 input, i.e., the individual input features. All of the functions in Ck map to { — 1, +1}, and

every conjunction in Ck occurs in both a positive sense (+1 represents true) and a negated

sense (—1 represents true). Then the function / is a k-perceptron if there is some integer s

such that

f(x) = Sign(J2hi(x)\ (13.1)

where for all i, hi G Ck, and the sign function is defined as

sign(a;) =
f 1 if x > 0

-1 if x < 0
undefined otherwise.

Note that while we have not explicitly shown any weights in our definition of a &-perceptron

/, integer weights are implicitly present in that we allow a particular hi € Ck to appear more

than once in the sum defining /.

We call a given collection of s conjunctions hi G Ck a k-perceptron representation and s

the size of the representation. As usual, we define the size of a given fc-perceptron function

/ as the minimal size of any k-perceptron representation of /. By an s-sparse fc-perceptron

we mean a k-perceptron / such that the size of / is at most s.

We now develop the BBP algorithm for PAC learning sparse perceptrons. First, we note

some well-known facts about perceptrons. Let Hr represent the class of halfspaces in r

13.1. THEORY OF SPARSE PERCEPTRON LEARNING 121

dimensions, that is, the class of functions representable as the sign of a real-weighted sum

of at most r inputs. Then for any / G Hr and any positive e and S, given a set S of m

examples drawn from EX(f, D), where

m = 0(Ilni+£),

then

Pr[3h G Hr | Vx G S f(x) = h(x) k PrD[/(x) ^ h{x)] > e] < 8,

where the outer probability is over the random choices made by EX(f,D) [BEHW89]. In

other words, given enough (polynomial in the parameters describing the difficulty of the

learning problem) training data, any hypothesis h G Hr that is completely consistent with

the target function / G 7ir on the training data is likely a strong approximator to / with

respect to D.

While there are existing PAC algorithms for PAC learning the general class of perceptions

{e.g. [BEHW89]), an atypical aspect of our algorithm is that when learning target functions

which are in the class of sparse perceptrons, it produces relatively sparse hypotheses as

output. In particular, if the target is an s-sparse ^-perceptron, then the BBP algorithm

produces hypotheses in Hr, where (ignoring logarithmic factors) r is quadratic in s and

the inputs to the hypothesis are a subset of the elements of Ck- By the above, to show

that 5-sparse ^-perceptrons are PAC learnable using such hypotheses it is sufficient to show

that given any set of training data for such a perceptron we can efficiently find a suitable

hypothesis consistent with the data. Therefore, in the sequel we will assume that we are

given a sufficiently large training set and that our learning task is to find a sparse perceptron

consistent with that data set.

In fact, by Freund's boosting results, to show that sparse A;-perceptrons are PAC learn-

able as sparse perceptrons we need only show that fc-perceptrons are weakly learnable as

conjunctions in Ck- This follows quite easily from the following [GHR92], which generalizes

our Fact 7.1:

Lemma 13.1 (Goldmann Hastad Razborov) For f : {0,1}" —► { — !,+!} and H any

122 CHAPTER 13. LEARNING SPARSE PERCEPTRONS

set of functions with the same domain and range, if f can be represented as

f{x) = sign r%2hi(x)\

where hi € H, then for any probability distribution D over {0, l}n there is some hi such that

VvD[f{x)^hi{x)]<1--^-.

If we specialize this lemma by taking H = Ck then this implies that for any ^-perceptron

function / of size s and any probability distribution D over the input features of / there

is some hi £ Ck that (| — ^-approximates / with respect to D. Therefore, given such a

distribution D the weak learning algorithm is extremely simple: exhaustively test each of the

0(n) possible conjunctions of at most k features until a weak approximating conjunction is

found. The above lemma proves that if / is a fc-perceptron then this exhaustive search must

succeed at finding a weak approximator that has 7 > l/2s. Therefore, given a sufficiently

large (polynomial size) training set with m examples, a booster such as Fl need only run for

2s2 ln(4ra) stages before it will produce an e-approximator to /. Because each stage adds

one weak hypothesis (conjunction) to the output hypothesis, the final hypothesis will be in

7^2s2in(4m)5 where the inputs to the hypothesis are in Ck-

So far we have shown that sparse fc-perceptrons are learnable by (polynomially larger)

sparse perceptron hypotheses. In practice, of course, we expect that many real-world classi-

fication tasks cannot be performed exactly by sparse perceptrons. However, it follows from

the results of Chapter 10 that our algorithm is robust in the sense that even if the target

function is only a "noisy" version of a sparse fc-perceptron, the BBP algorithm is still ca-

pable of learning a sparse representation of the underlying perceptron, at least for certain

definitions of noise.

Finally, if the Fl booster is used, the algorithm will produce a sparse perceptron with

integer weights, which is perhaps interesting from a theoretical point of view. However,

as discussed in Chapter 5, in practice we prefer to use AdaBoost [FS95], which produces

real-valued weights.

13.2. IMPLEMENTATION CONSIDERATIONS 123

13.2 Implementation Considerations

We have just shown that, for a specific (theoretical) definition of what it means to "learn",

sparse perceptrons are learnable. We turn now to a few details of the practical implementa-

tion of this theory.

The major implementation concern involves deciding when the learning algorithm should

terminate. AdaBoost assumes that a lower bound on the accuracy of the weak learner is

known when calculating the number of boosting stages. Of course, such information is not

available in real-world applications, and in fact, if the target function is not a &-perceptron

then conceivably this lower bound is extremely small and therefore would not be useful for

computing the number of boosting stages. In practice, we use cross validation to determine

an appropriate termination point, as discussed in Chapter 11. We also limit the number of

boosting stages to at most n, where n is the number of weights in an ordinary single-layer

perceptron for a given task. This is consistent with our desire to have relatively sparse

perceptrons and was found to be helpful in practice.

Another implementation detail has to do with attempting to keep the output hypothesis

as understandable as possible. Specifically, we would like to favor smaller conjunctions in the

perceptrons we produce. To accomplish this, we modify our algorithm in a way similar to

that used in the previous chapter. Specifically, for j > 1 we multiply each j-order feature's

correlation by 4 before selecting the feature that serves as the weak hypothesis at each

boosting stage. This policy is related to Rissanen's Minimum Description Length principle

[Ris89] in that we are trading off possible performance enhancement (at least in the weak

hypothesis) for reduction in the complexity of the final hypothesis.

13.3 Applications of Sparse Perceptron Learning

We now apply the BBP algorithm that results from the previous considerations to three

benchmark tasks. First, it should be noted that the theory developed above works over

discrete input domains (Boolean or nominal-valued features). Thus, we consider only tasks

with discrete input features. Also, because the algorithm uses exhaustive search over all

124 CHAPTER 13. LEARNING SPARSE PERCEPTRONS

conjunctions of size at most k, learning time depends exponentially on the choice of k. In

this study we chose to use k = 2 throughout, since this choice results in reasonable learning

times and apparently good performance on the tasks we consider.

In our experiments, we are interested in assessing the generalization ability and the com-

plexity of the hypotheses produced by our algorithm. We compare our algorithm to ordinary

perceptrons trained using backpropagation [RHW86], multi-layer perceptrons trained using

backpropagation, and decision trees induced using the C4.5 decision-tree system [Qui93].

We use C4.5 in our experiments as a representative of symbolic learning algorithms. The

hypotheses produced by symbolic algorithms are generally considered to be more comprehen-

sible than MLP's. Additionally, to test the hypothesis that the performance of our algorithm

can be explained solely by its use of second-order features, we train ordinary perceptrons

using feature sets that includes all pairwise conjunctions, as well as the ordinary features.

To test the hypothesis that the performance of our algorithm can be explained by its use of

relatively few weights, we consider ordinary perceptrons which have been pruned using the

Optimal Brain Damage (OBD) algorithm [LDS89]. In our version of OBD, we train a per-

ceptron until the stopping criteria are met, prune the weight with the smallest salience, and

then iterate the process. Cross validation is used to decide when to stop pruning weights.

We evaluate our algorithm using the three real-world domains described in Chapter 11:

Congressional voting [SF86], recognition of promoters in DNA [TSN90], and recognition of

protein-coding regions in DNA [CS93b]. For the voting and promoter domains, we randomly

partition the data into 10 training and test sets. Because of certain domain-specific charac-

teristics of the data, we use only four training and test sets for the protein-coding task. All

of our reported results represent averages over the different training/test sets.

For each training set, cross validation is used to set various parameters for each algorithm:

the number of hidden units and training epochs for multi-layer perceptrons; the pruning

confidence level for C4.5; the number of weights to delete for OBD; and the number of

training stages for our algorithm. We try multi-layer perceptrons with 5, 10, 20, 40 and

80 hidden units. The multi-layer perceptrons and the ordinary single-layer perceptrons are

trained using a conjugate-gradient procedure for a maximum of 100 search directions.

13.3. APPLICATIONS OF SPARSE PERCEPTRON LEARNING 125

Table 13.1: Test-set accuracy.

domain

method

BBP C4.5
perceptrons

multi-layer ordinary 2nd-order pruned
voting
promoters
protein coding

91.5%
92.7
72.9

89.2%
85.0
62.6

92.2%
90.6
71.6

90.8%
90.0
70.7

89.2%
88.7
69.8

87.6%
88.2
70.3

Table 13.1 reports test-set accuracy for each method on all three domains. We mea-

sure the statistical significance of accuracy differences using a paired, two-tailed t-test with

a significance level of 0.05. On the voting domain, the accuracy of the BBP algorithm is

comparable to both multi-layer perceptrons and ordinary single-layer perceptrons, i.e., the

measured accuracy differences between these three algorithms are not statistically significant.

For both the promoter and the protein-coding domains, our algorithm generalizes better than

multi-layer perceptrons and ordinary single-layer perceptrons. Both differences are statis-

tically significant in the protein-coding domain, and the difference between our algorithm

and single-layer perceptrons is significant in the promoter domain. For all three domains,

BBP is superior to C4.5, the perceptrons with second-order features and the OBD-pruned

perceptrons, and all of these differences are statistically significant. From these results we

conclude that (1) BBP exhibits good generalization performance on a number of interesting

real-world problems, and (2) the generalization performance of the algorithm is not explained

solely by its use of second-order features, nor is it solely explained by the sparseness of the

perceptrons it produces. An interesting open question is whether perceptrons trained with

both pruning and second-order features are able to match the accuracy of our algorithm; we

plan to investigate this question in future work.

Table 13.2 reports the average number of weights for all of the perceptrons. For all three

problems, the BBP algorithm produces perceptrons with fewer weights than the multi-layer

perceptrons, the ordinary perceptrons, and the perceptrons with second-order features. The

sizes of the OBD-pruned perceptrons and those produced by our algorithm are comparable

for all three domains. Recall, however, that for all three tasks, the perceptrons learned by

126 CHAPTER 13. LEARNING SPARSE PERCEPTRONS

Table 13.2: Hypothesis complexity (# weights).

domain

method

BBP
perceptrons

multi-layer ordinary 2nd-order pruned
voting
promoters
protein coding

12
41
52

651
2267
4270

30
228

60

450
25764

1740

12
59
37

our algorithm had significantly better generalization performance than their similar-sized

OBD-pruned counterparts. We contend that the sizes of the perceptrons produced by our

algorithm are within the bounds of what humans can readily understand. In the biological

literature, for example, linear discriminant functions are frequently used to communicate do-

main knowledge about sequences of interest. These discriminant functions frequently involve

more weights than the perceptrons produced by our algorithm. We conclude, therefore, that

our algorithm produces hypotheses that are not only accurate, but also comprehensible.

The results on the protein-coding domain are especially interesting. The input repre-

sentation for this problem consists of 15 nominal features representing 15 consecutive bases

(nucleotides) in a DNA sequence. In the regions of DNA that encode proteins (the positive

examples in our task), non-overlapping triplets of consecutive bases represent meaningful

"words" called codons. In previous work [CS93b], it has been found that a feature set that

explicitly represents codons results in better generalization than does a representation of just

bases. However, we used the bases representation in our experiments in order to investigate

the ability of our algorithm to select the "right" second-order features. Interestingly, nearly

all of the second-order features included in the perceptrons produced by our algorithm rep-

resent conjunctions of bases that are in the same codon. This result suggests that BBP is

especially good at selecting relevant features from large feature sets.

Chapter 14

Further Work

While we have shown that DNF is efficiently learnable in a particular model of learning, the

question of whether or not DNF is learnable in more general models—and in particular in

the PAC model—remains open. A number of interesting intermediate questions also remain

unanswered. For example, is it possible to learn DNF (even monotone DNF, in which no

variables are negated) with respect to uniform without using membership queries?

In Chapter 6 we briefly compared HS with earlier Fourier-based learning algorithms.

There we pointed out that HS has the potential to learn representation classes that these

previous algorithms might not be able to learn efficiently. Do such classes exist—and in

particular, is DNF such a class? Or is it possible that HS is no more powerful than earlier

algorithms, that is, that the results of this paper are the consequence of an improved analysis

rather than an improved algorithm?

On the applications side, our next step will be to further modify the BBP algorithm

for learning sparse perceptrons so that it can be applied to real-valued as well as discrete

feature domains. We then plan to test the algorithm over a much broader spectrum of

benchmark tasks than the three considered here. We are also interested in comparing BBP

with other theory-based algorithms that have been empirically tested, such as Winnow [Lit95]

and Weighted Majority [Blu95], as well as other empirical algorithms. Along these lines,

the current algorithm is designed to learn within a time-invariant learning framework, and

therefore may not perform as well as, say, Weighted Majority in domains where the target

function may vary over time. It would be especially nice to have an algorithm that worked

127

128 CHAPTER 14. FURTHER WORK

well in this on-line setting while producing sparse hypotheses.

Another potential application area for the Harmonic Sieve is within hardware circuit de-

sign and analysis. For example, given the truth table for a function over a reasonable number

of inputs (say up to 25), the Harmonic Sieve can be used to produce a TOP representation

of the function that is at most polynomially larger than the smallest possible TOP. For at

least some functions, the TOP produced may be significantly smaller than the optimal DNF

expression of the function. Does this occur in practice, and if so, how significant are the size

reductions achieved?

Bibliography

[AHU74]

[AM91]

[AHP92]

[AP91]

[AP92]

[ADTss]

[Ang88]

[Ang90]

[AFP90]

[AK91]

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman.
Analysis of Computer Algorithms. Addison-Wesley, 1974.

The Design and

William Aiello and Milena Mihail. Learning the Fourier spectrum of probabilistic
lists and trees. In Proceedings of the Second Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 291-299, 1991.

Howard Aizenstein, Lisa Hellerstein, and Leonard Pitt. Read-thrice DNF is hard
to learn with membership and equivalence queries. In Proceedings of the 33rd
Annual Symposium on Foundations of Computer Science, pages 523-532, 1992.

Howard Aizenstein and Leonard Pitt. Exact learning of read-twice DNF formu-
las. In Proceedings of the 32nd Annual Symposium on Foundations of Computer
Science, pages 170-179, 1991.

Howard Aizenstein and Leonard Pitt. Exact learning of read-& disjoint DNF and
not-so-disjoint DNF. In Proceedings of the Fifth Annual Workshop on Compu-
tational Learning Theory, pages 71-76, 1992.

R. Andrews, J. Diederich, and A. B. Tickle. A survey and critique of techniques
for extracting rules from trained artificial neural networks. Knowledge-Based
Systems, (in press).

Dana Angluin. Queries and concept learning. Machine Learning, 2:319-342,
1988.

Dana Angluin. Negative results for equivalence queries.
5:121-150, 1990.

Machine Learning,

Dana Angluin, Michael Frazier, and Leonard Pitt. Learning conjunctions of
Horn clauses. In Proceedings of the 30th Annual Symposium on Foundations of
Computer Science, pages 186-192, 1990.

Dana Angluin and Michael Kharitonov. When won't membership queries help?
In Proceedings of the Twenty Third Annual ACM Symposium on Theory of Com-
puting, pages 444-454, 1991.

129

130 BIBLIOGRAPHY

[AD93] Javed A. Aslam and Scott E. Decatur. General bound on statistical query learn-
ing and PAC learning with noise via hypothesis boosting. In Proceedings of the
34th Annual Symposium on Foundations of Computer Science, pages 282-291,
1993.

[Bel91] Mihir Bellare. The spectral norm of finite functions. Technical Report TR-495,
MIT-LCS, February 1991.

[Bel92] Mihir Bellare. A technique for upper bounding the spectral norm with applica-
tions to learning. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, pages 62-70, 1992.

[Blu90] Avrim Blum. Separating distribution-free and mistake-bound learning models
over the Boolean domain. In Proceedings of the 31st Annual Symposium on
Foundations of Computer Science, pages 211-218, 1990.

[Blu92] Avrim Blum. Rank-r decision trees are a subclass of r-decision lists. Information
Processing Letters, 42:183-185, 1992.

[Blu95] Avrim Blum. Empirical support for Winnow and Weighted-Majority based al-
gorithms: results on a calendar scheduling domain. In Proceedings of the Twelfth
International Conference on Machine Learning, Tahoe City, CA, 1995.

[BFJ+94] Avrim Blum, Merrick Fürst, Jeffrey Jackson, Michael Kearns, Yishay Mansour,
and Steven Rudich. Weakly learning DNF and characterizing statistical query
learning using Fourier analysis. In Proceedings of the 26th Annual ACM Sym-
posium on Theory of Computing, pages 253-262, 1994.

[BKK+94] Avrim Blum, Roni Khardon, Eyal Kushilevitz, Leonard Pitt, and Dan Roth. On
learning read-A;-satisfy-j DNF. In Proceedings of the Seventh Annual Workshop
on Computational Learning Theory, pages 110-117, 1994.

[BR92] Avrim Blum and Steven Rudich. Fast learning of fc-term DNF formulas with
queries. In Proceedings of the 24th Annual ACM Symposium on Theory of Com-
puting, pages 382-389, 1992.

[BEHW89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. War-
muth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the
ACM, 36(4):929-965, October 1989.

[Bol85] Bela Bollobas. Random Graphs. Academic Press, 1985.

[Bru90] Jehoshua Brück. Harmonic analysis of polynomial threshold functions. SIAM
Journal of Discrete Mathematics, 3(2):168-177, May 1990.

[BS90] Jehoshua Brück and Roman Smolensky. Polynomial threshold functions, AC0

functions and spectral norms. In Proceedings of the 31st Annual Symposium on
Foundations of Computer Science, pages 632-641, 1990.

BIBLIOGRAPHY 131

[Bsh] Nader Bshouty. Personal communication.

[Bsh93] Nader H. Bshouty. Exact learning via the monotone theory. In Proceedings of the
34th Annual Symposium on Foundations of Computer Science, pages 302-311,
1993.

[Bsh95] Nader H. Bshouty. Simple learning algorithms using divide and conquer. In
Proceedings of the Eighth Annual Workshop on Computational Learning Theory,
pages 447-453, 1995.

[BGGM94] Nader H. Bshouty, Paul W. Goldberg, Sally A. Goldman, and H. David Mathias.
Exact learning of discretized geometric concepts. Technical Report WUCS-94-
19, Washington University, July 1994.

[BJ95] Nader H. Bshouty and Jeffrey C. Jackson. Learning DNF over the uniform dis-
tribution using a quantum example oracle. In Proceedings of the Eighth Annual
Workshop on Computational Learning Theory, pages 118-127, 1995.

[BT95] Nader H. Bshouty and Christino Tamon. On the Fourier spectrum of monotone
functions. In Proceedings of the 27th Annual ACM Symposium on Theory of
Computing, 1995.

[BN92] W. Buntine and T. Niblett. A further comparison of splitting rules for decision-
tree induction. Machine Learning, 8:75-86, 1992.

[CS93a] M. W. Craven and J. W. Shavlik. Learning symbolic rules using artificial neural
networks. In Proceedings of the Tenth International Conference on Machine
Learning, pages 73-80, Amherst, MA, 1993. Morgan Kaufmann.

[CS93b] Mark W. Craven and Jude W. Shavlik. Learning to represent codons: A chal-
lenge problem for constructive induction. In Proceedings of the 13th International
Joint Conference on Artificial Intelligence, 1993.

[CS94] Mark W. Craven and Jude W. Shavlik. Using sampling and queries to extract
rules from trained neural networks. In Proceedings of the Tenth International
Conference on Machine Learning, pages 37-45, 1994.

[DSS93] H. Drucker, R. Schapire, and P. Simard. Boosting performance in neural net-
works. International Journal of Pattern Recognition and Artificial Intelligence,
7(4):705-719, August 1993.

[EH89] Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random
examples. Information and Computation, 82(3):231-246, September 1989.

[Fre] Yoav Freund. Personal communication.

132 BIBLIOGRAPHY

[Fre90] Yoav Freund. Boosting a weak learning algorithm by majority. In Proceedings of
the Third Annual Workshop on Computational Learning Theory, pages 202-216,
1990.

[Fre92] Yoav Freund. An improved boosting algorithm and its implications on learning
complexity. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, pages 391-398, 1992.

[Fre93] Yoav Freund. Data Filtering and Distribution Modeling Algorithms for Machine
Learning. PhD thesis, University of California at Santa Cruz, September 1993.
Available as technical report UCSC-CRL-93-37.

[FS95] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. In Proceedings of the Second Annual
European Conference on Computational Learning Theory, 1995.

[FJS91] Merrick L. Fürst, Jeffrey C. Jackson, and Sean W. Smith. Improved learning of
AC functions. In Fourth Annual Workshop on Computational Learning Theory,
pages 317-325, 1991.

[FSS81] Merrick Fürst, James B. Saxe, and Michael Sipser. Parity, circuits, and the poly-
nomial time hierarchy. In 22nd Annual Symposium on Foundations of Computer
Science, pages 260-270, 1981.

[GGM94] Paul W. Goldberg, Sally A. Goldman, and H. David Mathias. Learning unions
of boxes with membership and equivalence queries. In Proceedings of the Seventh
Annual Workshop on Computational Learning Theory, pages 198-207, 1994.

[GKS93] Sally A. Goldman, Michael J. Kearns, and Robert E. Schapire. Exact identi-
fication of circuits using fixed points of amplification functions. SIAM Journal
on Computing, 22(4):705-726, August 1993. Preliminary version appeared in
Proceedings of the 31st Symposium on Foundations of Computer Science, pages
193-202, 1990.

[GHR92] M. Goldmann, J. Hastad, and A. Razborov. Majority gates vs. general weighted
threshold gates. In Proceedings of the Seventh IEEE Conference on Structure in
Complexity Theory, pages 2-13, 1992.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way func-
tions. In Proceedings of the Twenty First Annual ACM Symposium on Theory
of Computing, pages 25-32, 1989.

[Han91] Thomas R. Hancock. Learning 2/iDNF formulas and kfi decision trees. In Pro-
ceedings of the Fourth Annual Workshop on Computational Learning Theory,
pages 199-209, 1991.

BIBLIOGRAPHY 133

[Han93] Thomas R. Hancock. Learning kp, decision trees on the uniform distribution. In
Proceedings of the Sixth Annual Workshop on Computational Learning Theory,
pages 352-360, 1993.

[HB90] S. J. Hanson and D. J. Burr. What connectionist models learn: Learning and
representation in connectionist networks. Behavioral and Brain Sciences, 13:471—
518, 1990.

[Has86] J. Hastad. Computational Limitations for Small Depth Circuits. PhD thesis,
MIT Press, 1986.

[Hau88] David Haussler. Quantifying inductive bias: AI learning algorithms and Valiant's
learning framework. Artificial Intelligence, pages 177-221, 1988.

[HK93] L. Hunter and T. Klein. Finding relevant biomolecular features. In Proceedings of
the First International Conference on Intelligent Systems for Molecular Biology,
pages 190-197, Bethesda, MD, 1993. AAAI Press.

[Jac94] Jeffrey Jackson. An efficient membership-query algorithm for learning DNF
with respect to the uniform distribution. In Proceedings of the 35th Annual
Symposium on Foundations of Computer Science, pages 42-53, 1994.

[JS68] K. Jogdeo and S. M. Samuels. Monotone convergence of binomial probabili-
ties and a generalization of Ramanujan's equation. Annals of Math. Statistics,
39:1191-1195, 1968.

[KLPV87] Michael Kearns, Ming Li, Leonard Pitt, and Leslie Valiant. On the learnability
of Boolean formulae. In Proceedings of the Nineteenth Annual ACM Symposium
on Theory of Computing, pages 285-295, 1987.

[KV89] Michael Kearns and Leslie G. Valiant. Cryptographic limitations on learning
Boolean formulae and finite automata. In Proceedings of the Twenty First Annual
ACM Symposium on Theory of Computing, pages 433-444, 1989.

[Kea93] Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. In
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Com-
puting, pages 392-401, 1993.

[Kha92] Michael Kharitonov. Cryptographic lower bounds for learnability of Boolean
functions on the uniform distribution. In Proceedings of the Fifth Annual Work-
shop on Computational Learning Theory, pages 29-36, 1992.

[Kha93] Michael Kharitonov. Cryptographic hardness of distribution-specific learning.
In Proceedings of the 25th Annual ACM Symposium on Theory of Computing,
pages 372-381, 1993.

134 BIBLIOGRAPHY

[KP94] Matthias Krause and Pavel Pudlak. On the computational power of depth 2
circuits with threshold and modulo gates. In Proceedings of the 26th Annual
ACM Symposium on Theory of Computing, pages 48-57, 1994.

[KM93] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the Fourier
spectrum. SI AM Journal on Computing, 22(6):1331—1348, December 1993. Ear-
lier version appeared in Proceedings of the Twenty Third Annual ACM Sympo-
sium on Theory of Computing, pages 455-464, 1991.

[KR93] Eyal Kushilevitz and Dan Roth. On learning visual concepts and DNF formu-
lae. In Proceedings of the Sixth Annual Workshop on Computational Learning
Theory, pages 317-326, 1993.

[LDS89] Y. Le Cun, J. S. Denker, and S. A. Sofia. Optimal brain damage. In D. Touretzky,
editor, Advances in Neural Information Processing Systems, volume 2, pages
598-605. Morgan Kaufmann, San Mateo, CA, 1989.

[Lev93] Leonid A. Levin. Randomness and non-determinism. Journal of Symbolic Logic,
58(3):1102-1103, 1993.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits,
Fourier transform, and learnability. Journal of the ACM, 40(3):607-620, July
1993. Earlier version appeared in Proceedings of the 30th Annual Symposium on
Foundations of Computer Science, pages 574-579, 1989.

[Lit88] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new
linear-threshold algorithm. Machine Learning, 2:285-318, 1988.

[Lit95] N. Littlestone. Comparing several linear-threshold algorithms on tasks involving
superfluous attributes. In Proceedings of the Twelfth International Conference
on Machine Learning, Tahoe City, CA, 1995.

[LW90] Philip M. Long and Manfred K. Warmuth. Composite geometric concepts and
polynomial predictability. In Proceedings of the Third Annual Workshop on
Computational Learning Theory, pages 273-287, 1990.

[Man92] Yishay Mansour. An O(nlogl°sri) learning algorithm for DNF under the uniform
distribution. In Fifth Annual Workshop on Computational Learning Theory,
pages 53-61, 1992.

[MP88] Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Compu-
tational Geometry. MIT Press, 1988.

[Pom91] D. A. Pomerleau. Efficient training of artificial neural networks for autonomous
navigation. Neural Computation, 3(1):88—97, 1991.

BIBLIOGRAPHY 135

[Qui93] J. Ross Quinlan. C4-5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[Ris89] J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific, 1989.

[Riv87] Ronald L. Rivest. Learning decision lists. Machine Learning, 2(3):229-246, 1987.

[Ros62] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms. Spartan Books, 1962.

[RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-
tations by error propagation. In David E. Rumelhart and James L. McClelland,
editors, Parallel Distributed Processing: Explorations in the Micro structures of
Cognition, volume 1, chapter 8, pages 318-362. MIT Press, 1986.

[SM94] Yoshifumi Sakai and Akira Maruoka. Learning monotone log-term DNF formu-
las. In Proceedings of the Seventh Annual Workshop on Computational Learning
Theory, pages 165-172, 1994.

[Sch90] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5:197-
227, 1990.

[SF86] J. C. Schlimmer and D. Fisher. A case study of incremental concept induction.
In Proceedings of the Fifth National Conference on Artificial Intelligence, pages
496-501, Philadelphia, PA, 1986.

[SKLM94] M. Sternberg, R. King, R. Lewis, and S. Muggleton. Application of machine
learning to structural molecular biology. Phil. Trans. R. Soc. Lond. B, 344:365-
371, 1994.

[Tes94] G. Tesauro. TD-Gammon, a self-teaching backgammon program, achieves
master- level play. Neural Computation, 6(2):215—19, March 1994.

[Thr93] Sebastian B. Thrun. Extracting provably correct rules from artificial neural
networks. Technical Report IAI-TR-93-5, University of Bonn, May 1993.

[TS94] Geoffrey G. Towell and Jude W. Shavlik. Knowledge-based artificial neural
networks. Artificial Intelligence, page to appear, 1994.

[TSN90] G. Towell, J. Shavlik, and M. Noordewier. Refinement of approximate domain
theories by knowledge-based neural networks. In Proceedings of the Eighth Na-
tional Conference on Artificial Intelligence, pages 861-866, Boston, MA, 1990.
AAAI/MIT Press.

[Val84] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, November 1984.

136 BIBLIOGRAPHY

[Val85] L. G. Valiant. Learning disjunctions of conjunctions. In Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, pages 560-566, 1985.

[VC71] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of rela-
tive frequencies of events to their probabilities. Theory of Probability and Its
Applications, 16(2):264-280, 1971.

[Ver90] Karsten Verbeurgt. Learning DNF under the uniform distribution in quasi-
polynomial time. In Proceedings of the Third Annual Workshop on Computa-
tional Learning Theory, pages 314-326, 1990.

