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FINAL REPORT on NDOS '95 
Conference on 

Nonlinear Dynamics in Optical Systems 

The conference on Nonlinear Dynamics in Optical Systems (NDOS '95), was held in 

Rochester, New York, during the period June 5-7, just preceding the Seventh Coherence and Quantum 

Optics conference (CQ07), which was scheduled for June 7-10,1995. On June 7, joint sessions were 

held with CQ07 that were planned in consultation with the organizing committee for that conference. 

The historic Coherence and Quantum Optics conferences have been held, since its beginning, seven 

times, consecutive meetings about six years apart This year provided a rare opportunity to hold NDOS 

as a satellite meeting in concurrence with CQ07. As a historical footnote, three meetings on the 

general topic of nonlinear dynamics in optical systems have been organized before NDOS'95. The 

first was the Optical Instabilities conference in Rochester (1985). The second meeting was in Afton, 

Oklahoma (1990) with the title Nonlinear Dynamics in Optical Systems (NDOS). This title has been 

retained for the third and fourth meetings held in Alpbach, Austria (1992) and Rochester, NY (1995). 

These were highly successful meetings and demonstrated the growing interest in both the basic science 

and applied engineering aspects of optical instabilities. All the meetings were typically attended by 150 

participants, and represented the truly international nature of this field of research because of the 

geographical distribution of the participants.. 

NDOS has come to be recognized as a unique meeting point for leading researchers in 

dynamical systems with expertise in the fields such as optical instabilities, chaos and its control, optical 

solitons and their applications, and laser physics. Advances in the mathematical discipline of 

dynamical systems have traditionally been aimed at fluid dynamics scientists and often at those 

studying the dynamics of chemical reactions and mechanical systems. In the past decade it has become 

evident that optical systems provide a novel setting for the exploration of nonlinear dynamics over a 

vast range of time scales and in one, two and even three spatial dimensions. It is perhaps the only 

meeting that has a goal of developing strong interdisciplinary ties between dynamical systems 



researchers in the mathematical sciences and optical scientists and engineers. NDOS meetings have 

focused the attention of both communities on the similarities between fluid dynamical and optical 

pattern formation mechanisms, demonstrating the profound and deep connections of these disciplines. 

At the NDOS'95 meeting in Rochester, NY, reports on the control of chaotic behavior of laser systems 

and transverse pattern dynamics once again demonstrated the direct application of algorithms 

developed in a mathematical context to optical systems. 

CONFERENCE ORGANIZATION 

The conference was organized by a group of five scientists, all members of the Organizing 

Committee. They were helped in the selection of topics and invited speakers by the Advisory 

Committee. The program committee members helped in the review and selection of the contributed 

papers. The members of the three committees are listed here. 

ORGANIZING COMMITTEE 

G. P. Agrawal (Rochester) 
P. Glorieux (Lille) 
Y. Khanin (Nizhny-Novgorod) 
M. Piche" (Quebec) 
R. Roy (Atlanta) 

PROGRAM COMMITTEE 

M. Brambilla (Milan) 
P. Colet (Palma de Mallorca) 
O. Kocharovskaya (Novgorod) 
N. Loiko (Minsk) 
J. Mclnerney (Cork) 
L. Melnikov (Saratov) 
F. Mitschke (Münster) 
J. Moloney (Tucson) 

ADVISORY COMMITTEE 

N. Abraham (Bryn Mawr) 
F.T. Arecchi (Florence) 
E. Arimondo (Pisa) 
R. Boyd (Rochester) 
G. Casati (Milan) 
W. Firth (Glasgow) 
R. Fork (Huntsville) 



D. Lenstra (Amsterdam) 
R. Harrison (Edinburg) 
H. Haken (Stuttgart) 
W. Lange (Muenster) 
L. Lugiato (Milan) 
A. Mak (St. Petersburg) 
P. Mandel (Brussels) 
A. Oraevsky (Moscow) 
K. Otsuka (Tokyo) 
M. San Miguel (Palma de Mallorca) 
M. Scully (College Station) 
M. Soskin (Kiev) 
C. Stroud (Rochester) 
J. Tredicce (Nice) 
C. Weiss (Braunschweig) 
H. Winful (Ann Arbor) 

CONFERENCE PROGRAM 

The meeting consisted of oral and poster presentations and discussions of recent 
developments on the dynamics of nonlinear optical systems. The reader is referred to the 
Conference Digest for a detailed listing of the session topics and the summary of the invited and 
contributed papers. A list of invited papers is included here for providing a flavor of the topics 
covered by NDOS'95. 

Photorefractive Spatial Solitons, Mordechai Segev, *Greg Salamo, **George Valley and 
***Bruno Crosignani, Princeton University, *University of Arkansas, **Hughes Research 
Laboratories, ***Universita' dell'Aquila 

Synchronization of Chaotic Lasers in Master-Slave Relation, Maki Tachikawa, 
Toshiki Sugawara, Takayuki Tsukamoto and Tadao Shimizu, University of Tokyo 

Transverse-Pattern Dynamics in Short-Pulse Lasers, Leonid A. Melnikov, 
Chernyshevsky State University 

Laser Cooling: Physical Mechanisms and Ultimate Limits, C. Cohen-Tannoudji, 
College de France 

Controlling Chaotic Lasers, R. Roy, Georgia Institute of Technology 

Quantum Aspects of Optical Pattern Formation, L.A. Lugiato, Universita de Milano 



Chaos in Semiconductor Lasers With Optical Injection, A. Gavrielides, Phillips 
Laboratory 

Nonlinear Optical Properties of Quasi-One Dimensional Magneto-Excitons, Daniel 
S. Chemla, University of California at Berkeley 

Phase-Controlled  Photocurrents  in  Semiconductors, E. Dupont, P.B. Corkum and 
*H.C. Liu, National Research Council 

Spatial Solitons in Wide-Aperture Nonlinear Optical Systems, N. N. Rosanov,   S.I. 
Vavilov State Optical Institute 

Cooperative Synchronization in a Laser Array with Eigenfrequency Spread, A. 
Napartovich, S.Y. Kurchatov and V.V. Likhanskii, Troitsk Institute for Innovation and Fusion 
Research 

Financial Support 

An important objective of NDOS'95 was to encourage the participation of the graduate students 

as much as possible. As a result, financial support was needed to cover local expenses for both the 

graduate students and the invited speakers (travel expenses of the foreign invited speakers were paid 

by the conference funds). Financial support was requested from both the AFOSR and ONR. The 

organizing committee was gratified and is thankful to both sponsors for their generous support. 

Graduate students supported by the external funds 

Name Institute Amount 

R. Bridge University of Rochester $ 150 

REssiambre University of Rochester $150 

Z. Gilles Georgia Institute of Technology $284 

D. L. Hart Georgia Institute of Technology $284 

A. Hohl Georgia Institute of Technology $284 

L. Liou University of Rochester $150 



J. Marciante 

M. Möller 

A. Pinto 

A. Ryan 

A. Teixieira 

S. Thornburg 

P. van der Linden 

Q. L. Williams 

M.Yu 

University of Rochester 

Georgia Institute of Technology 

University of Rochester 

University of Rochester 

University of Rochester 

Georgia Institute of Technology 

Georgia Institute of Technology 

Georgia Institute of Technology 

University of Rochester 

$150 

$284 

$150 

$150 

$150 

$284 

$284 

$284 

$150 

Invited Speakers supported by the external funds 

M. Tachikawa 

L. A. Melnikov 

A. Napartovich 

N. A. Loiko 

M.Segev 

D. S. Chemla 

NIST, Boulder, Colarado 

Chernyshevsky State University 

Trisk Institute, Moscow 

Institute of Physics, Minsk 

Princeton University, Princeton 

Univerity of California, Berkeley 

$284 

$284 

$309 

$375 

$284 

$284 

Other Participants supported by the external funds 

N. A. Loiko Institute of Physics, Minsk 

I. V. Melnikov General Physics Institute, Moscow 

N. N. Rosanov Vavilov State Optical Institute 

L. Svirina Institute of Physics, Minsk 

E. A. Viktorov Vavilov State Optical Institute 

$375 

$284 

$375 

$375 

$284 



«    *    « 

NONLINEAR DYNAMICS IN 
OPTICAL SYSTEMS 

NDOS'95 

Conference Digest 

JUNE 5-7, 1995 

University of Rochester 

Rochester, New York, U.S.A. 



ORGANIZING COMMITTEE 

G. P. Agrawal (Rochester) 
P. Glorieux (Lille) 
Y. Khanin (Nizhny-Novgorod) 
M. Pich6 (Quebec) 
R. Roy (Atlanta) 

PROGRAM  COMMITTEE 

M. Brambilla (Milan) 
P. Colet (Palma de Mallorca) 
O. Kocharovskaya (Nizhny-Novgorod) 
N. Loiko (Minsk) 
J. Mclnemey (Cork) 
L. Melnikov (Saratov) 
F. Mitschke (Münster) 
J. Moloney (Tucson) 

ADVISORY  COMMITTEE 

N. Abraham (Bryn Mawr) 
FT. Arecchi (Florence) 
E. Arimondo (Pisa) 
R. Boyd (Rochester) 
G. Casati (Milan) 
W. Firth (Glasgow) 
R. Fork (Huntsville) 
D. Lenstra (Amsterdam) 
R. Harrison (Edinburgh) 
H. Haken (Stuttgart) 
W. Lange (Münster) 
L. Lugiato (Milan) 
A. Mak (St. Petersburg) 
P. Mandel (Brussels) 
A. Oraevsky (Moscow) 
K. Otsuka (Tokyo) 
M. San Miguel (Palma de Mallorca) 
M. O. Scully (College Station) 
M. Soskin (Kiev) 
C. Stroud (Rochester) 
C. Weiss (Braunschweig) 
H. Winful (Ann Arbor) 

NDOS'95 is supported in part by the University of Rochester, U.S. Air Force Office of 
Scientific Research, and U.S. Office of Naval Research. 

©  1995 University of Rochester 



NDOS'95 PROGRAM 

June 5,1995 (Monday) 
8:20-8:30 Opening of Conference (Hubbell) 

Welcome Remarks R. Aslin, Vice Provost and 
Dean, University of Rochester 

8:30-10:00 MA Plenary Session (Hubbell) 
Chair: N. Abraham 

MAI Photorefractive Spatial Solitons (Invited) 
Mordechai Segev, *Greg Salamo, **George Valley and 
***Bruno Crosignani, Princeton University, *University of 
Arkansas, **Hughes Research Laboratories, ***Universita' 
dellAquila 

MA2 Synchronization of Chaotic Lasers in Master- 
Slave Relation (Invited) Maki Tachikawa, Toshiki 
Sugawara, Takayuki Tsukamoto and Tadao Shimizu, 
University of Tokyo 

MA3 Transverse-Pattern Dynamics in Short-Pulse 
Lasers (Invited) Leonid A. Melnikov, Chemyshevsky State 
University 

10:00-10:30 Coffee Break 

10:30-12:00 MB Pattern Dynamics I (Hubbell) 
Chair: C. Stroud 

MB1 Transverse Mode Competition in a C02 Laser E. 
Louvergneaux, D. Hennequin, D. Dangoisse and P. 
Glorieux, University des Sciences et Technologies de Lille 

MB2 Circular Motion of Vortices in Lasers M. Vaupel, 
C. O. Weiss, Physikalisch-Technische Bundesanstalt 

MB3 Roll Patterns and Transition to Turbulent State in 
a Laser System Dejin Yu, Weiping Lu and R. G. Harrison, 
Heriot-Watt University 

MB4 Pattern Dynamics, Selection and Control in Large 
Aspect Ratio Lasers Joceline Lega, C. Bowman, J.V. 
Moloney, A.C. Newell, and *I Aranson, University of 
Arizona, *Bar Ban University 

MB5 Spatio-temporal Dynamics of Lasers with a Large 
Fresnel Number G. Huyet, S. Rica, J.R. Tredicce and N.B. 
Abraham, Institute Non Lineaire de Nice 

MB6 The Effect of Mirror Curvature on Pattern 
Formation in Large Aspect Ratio Lasers G.K. Harkness, 
J.C. Lega, G.-L. Oppo, University of Strathclyde 

12:15-13:15 Lunch: Danforth Dining Center 

13:30-15:00 MC Chaos Control (Hubbell) 
Chair: W. Firth 

MCI Control of Chaos in Multi Transverse Mode 
Lasers R. Martin, A.J. Kent, G. DAlessandro, G.-L. Oppo, 
University of Strathclyde 

MC2 Experimental Control of Chaos in CO2 Laser with 
Feedback M. Ciofini, R. Meucci and F.T. Arecchi, 
Instituto Nazionale di Ottica 

MC3 Adaptive Control of Chaos S. Boccaletti, F.T. 
Arecchi, University of Firenze 

MC4 Control of Chaos in a Multlmode Solid State 
Laser by Use of Small Periodic Preturbations Pere Colet, 
*Y. Braiman, Universität de les Illes Balers, *Georgia 
Institute of Technology 

MC5 Using the Control Duration to Stabilize a 
Multlmode Laser Thomas W. Can, Ira B. Schwartz, Naval 
Research Laboratory 

MC6 Stabilizing or Destabilizing Lasers by Continuous 
Delayed Feedback Serge Bielawski, Dominique Derozier, 
Pierre Glorieux and "Thomas Erneux, University des 
Sciences et Technologies de Lille, ♦Universite' Libre de 
Bruxelles 

15:00-15:30 Coffee Break 

15:30-17:00 MD Cavity Dynamics (Hubbell) 
Chair: R. G. Harrison 

MD1 Time Series Analysis of an Optically Turbulent 
System F. Mitschke, *G. Steinmeyer, *M. Heuer, *A. 
Schwache, I. Klopsch, Universität Münster, ""Universität 
Hannover 

MD2 Information Encoding in Passive Ring Resonators 
with Plane Mirrors Massimo Brambilla, L. A. Lugiato, M. 
Stefani, Universita di Milano 

MD3 Nonlinear Propagation in an Optical Fractal 
Structure M. Bertolotti, F. Moretti, C. Sibilia and *P. 
Masciulli, Universita di Roma, »University of Palermo 

MD4 On Instabilities and the Influence of Noise in a 
Nonlinear Resonator Mathew R. Semak, J. K. Mclver 
Evangelos A. Coutsias, University of New Mexico 

MD5 Nonlinear Dynamics, Delayed Bifurcation and 
Squeezing in a Triply Resonant Optical Parametric 
Oscillator K. Kasai, K. Petsas, C. Richy and C. Fabre, 
Laboratoire Kastler-Brossel 

MD6 Dynamic Behaviors of Light Transmission of Thin 
Film with Mirror N.A. Loiko, Yu.A. Logvin and A.M. 
Samson, Institute of Physics of Academy of Sciences of 
Belarrus 

18:15-19:30 Dinner: Danforth Dining Center 

NDOS'95 



20:00-22:00 ME Poster Session I 
May Room, Wilson Common Building 

ME1 The DFB of Counterpropogating Waves in a 
Periodically Modulated Medium with Relaxing Cubic 
Nonlinearity A.A. Afanas'ev, B.A. Samson, E.G. 
Tolkacheva, Belarus Academy of Sciences 

ME2 Transverse Dynamics in a Laser with Fast- 
Relaxed Active Medium Leonid A. Melnikov, Irina V. 
Veshneva and Andrey I. Konukhov, Chemyshevsky State 
University 

ME3 Controlling Chaos May Induce New Attractors in 
an Optical Device Paul Alsing, V. Kovanis and A. 
Gavrielides, *T. Emeux, Phillips Laboratory, ♦Universite' 
Libre de Bruxelles 

ME4 Modelling Spectral Gain and Refraction Index in 
Semiconductor Lasers Salvador Balle, Universität de les 
Hies Balears 

ME5 Interaction of Soliton-Like Propagation in a 
Diffusive Nonlinear Planar Waveguide M. Bertolotti, S. 
Marchetti and C. Sibilia, Universita di Roma 

ME6 Pattern Formation in Bacteriorhodopsin Film with 
Mixed Absorptive-Dispersive Nonlinearity Mark 
Saffman, Jesper Glückstad, Ris0 National Laboratory 

ME7 The Control of the Guiding Center Soliton by the 
Sliding Frequency Filter S. Burtsev, DJ. Kaup, Clarkson 
University 

ME8 Semiconductor Laser Exposed to Optical 
Feedback from an External Cavity Containing an 
Atomic Absorber E. Cerboneschi, D. Hennequin, L. 
Guidoni, F. Di Teodoro and E. Arimondo, Universita di 
Pisa 

ME9 Searching the Desired Periodic Orbit and Coding 
the Chaos in Semiconductor Laser Diodes for Message 
Transmission Jyh-Long Chem, Hong-Jyh Li, National Sun 
Yat-Sen University 

ME10 Experimental Observation of Period Doubling 
Suppression in a Loss Modulated CO2 Laser V.N. 
Chizhevsky, Belarus Academy of Science 

ME11 Longitudinal Effects in Distributed Feedback 
Laser Diodes: Hole Burning Dynamics Pere Colet, 
Salvador Balle, Universität de les Illes Balears, 

ME12 Controlling Chaos in a Hybrid Optical Bistable 
System Jian-Hua Dai, Hua-Wei Yin and Hong-Jun Zhang, 
Chinese Academy of Sciences 

ME13 Broad Turnability in an Intrinsic Passive (J = 1 
to J = 0) Polarization Oscillator R.J. Ballagh, W. J. 
Sandle, University of Otago 

ME14 Nonlinear Dynamics and Chaos of a Single Mode 
cw Nd: YAG Laser with Modulated Loss L. Dambly, 
P.M. Ripley, R.G. Harrison, Heriot-Watt University 

ME15 Gain-Switching and Frequency Chirp of 
Injection-Locked Single-Mode Semiconductor Lasers 
Jaume Dellunde, *M.C. Torrent, J.M. Sancho and **M. 
San Miguel, Universität de Barcelona, ""Universität 
Politecnica de Catalunya, **Universitat de les Dies Balears 

ME16 Synchronization of Periodic and Chaotic C02 
Lasers with Saturable Absorber P.C. de Oliveira, Y. Liu, 
M.B. Danilov and J.R. Rios Leite, Universidade Federal de 
Pemambuco 

ME17 Numerical Analysis of Non-Paraxial Beam Self- 
Focusing in Kerr Media Vladimir L. Derbov, Leonid A. 
Melnikov, Chemyshevsky State University 

ME18 Generation of Ultrashort Pulses with Controlled 
Envelope Shape at Transient Double Resonance in the 
Regime of Instable Gain of Signal Wave Alexey 
Dmitriev, Oleg Parshkov, Andrey Vershinin, Saratov State 
Technique University 

ME19 Relaxation Oscillation Dynamics and Stability of 
the Lang-Kobayashi Laser Thomas Emeux, *G.H.M. van 
Tartwijk, *A.M. Levine, *D. Lenstra, Universite' Libre de 
Bruxelles, *Free University (Amsterdam) 

ME20 Average Symmetries in an Oscillator with 
Photorefractive Gain J . Farjas D. Hennequin, D. 
Dangoisse and P. Glorieux, University des Science et 
Technologies de Lille 

ME21 Polarization Competition and Transverse Effects 
in Sodium Vapor A. Gahl, A. Aumann, J.P. Seipenbusch, 
W. Lange, University of Münster 

ME22 Dynamical Memory Function of a Hybrid 
Bistable Device with Delayed Feedback Self-Control of 
Chaos Jin-Yue Gao, Ying Zhang and Zhi-Ren Zheng, Jilin 
University 

ME23 Fast Switching Unstable Orbits in Periodically 
Driving Laser V.A. Gaysenok, E.V. Grigorieva and *S. A. 
Kashchenko, Belarus State University, * Yaroslavl State 
University 

ME24 Nonlinear Optical Response of Layered 
Composite Materials Russell J. Gehr, Robert W. Boyd, 
George L. Fischer and *J.E. Sipe, University of Rochester, 
♦University of Toronto 

ME25 "Hot" Reconstruction of Modes and Relaxation 
Oscillations of Solid-State Lasers A.V. Ghiner, 
Universidade Federal do Ceara 

ME26 High-Order Spatial Mode Bifurcations in 
Nonlinear Interferometer with Delayed Feedback E.V. 
Grigorieva, *S.A. Kashchenko, Belarus State University, 
♦Yaroslavl State University 

ME27 Polarization Instabilities in Lasers with Weakly 
Anisotropie Cavities V.G. Gudelev, L.P. Svirina and 
Yu.P. Shurik, Academy of Science of Belarus 

NDOS'95 



ME28 Mixed Period-Two and Fixed Point Attractor in 
Degenerate   Optical   Parametric   Oscillations M. 
Haelterman, M.D. Tolley, University Libre de Bruxelles 

ME29 Dynamical Evolution of Four-Wave-Mixing 
Processes in an Optical Fiber Darlene L. Hart, Rajarshi 
Roy, Georgia Institute of Technology 

ME30 Spatiotemporal Evolution of Femtosecond Pulses 
in Semiconductor Amplifiers Robert Indik J.V. Moloney 
and R. Binder, University of Arizona 

ME31 Periodic Cycles, Bifurcations and Chaotic 
Behavior of the New Type of Optical Solitons in the 
Solid-State Lasers Mode-Locked by Linear and 
Nonlinear Phase Shift V.L. Kalashnikov, I.G. Polyko, 
V.P. Kaiosha, V.P. Mikhailov, Belarus State University 

ME32 Low Frequency Relaxation Oscillations in Class 
B Lasers with Feedback P. Khandokhin, Ya. Khanin, *J.- 
C. Celet, ♦D. Dangoisse and *P. Glorieux, Russian 
Academy of Science, ♦Universite' de Lille 

ME33 Intensity Noise Suppression of External Cavity 
Semiconductor Laser via High Frequency Modulation 
Noriyuki Kikuchi, Yun Liu and Junji Ohtsubo, Shizuoka 
University 

ME34 Multimode Instabilities in the Transit- 
Multistable Ring Cavity Jeong-Mee Kim, A. T. 
Rosenberger, University of Alabama in Huntsville 

ME35 Nonlinear Dynamics in Additive Pulse Mode- 
Locked Lasers G. Sucha, *Sarah R. Bolton, and *D. S. 
Chemla, IMRA America, *University of California 

ME36 Transverse Dynamics of a Phase-Conjugate 
Resonator with Phase Mismatch Dan Korwan, Guy 
Indebetouw, Virginia Tech 

ME37 Pump Polarization Modulation in an Optically 
Pumped Laser A. Kul'minskii, R. Vilaseca and *R. 
Corbalan, Universität Politecnica de Catalunya, 
♦Universität Autönoma de Barcelona 

ME38 Control of Spatio-Temporal Chaos in Neural 
Networks and Its Application to Associative Memory 
Masanori Kushibe, Yun Liu and Junju Ohtsubo, Shizuoka 
University, 

ME39 Optical Patterns Generated in the Single-Mirror 
Device with Polarization Instability M. Le Berre, D. 
Leduc, E. Ressayre, A. Tallet and *A. Maistre, Laboratoire 
de Photphysique Moleculaire du C.N.R.S., *Universite 
Pierre et Marie Curie 

ME40 Instabilities of a Microcavity Laser with a Weak 
Optical Injected Signal Hua Li, T.L. Lucas, John G. 
Mclnemey, The University of New Mexico 

ME41 Interaction of Counterpropagating Waves and 
Self-Organizing Distributed Feedback Laser in a 
Resonant Superfluorescence I.V. Mel'nikov, General 
Physics Institute RAS 

June 6,1995 (Tuesday) 

8:30-10:00 TA Pattern Dynamics II (Hubbell) 
Chair: L. Lugiato 

TA1 Optical Patterns in Sodium Vapor: Experiment 
and Theory Thorsten Ackemann, Y. Logvin, A. Heuer, 
and W. Lange, University of Münster 

TA2 Polarization Effects on Pattern Formation in 
Liquid Crystal Light Valves: Theory, Simulations and 
Experiments R. Neubecker, B. Thuering, T. Tschudi, G.-L. 
Oppo, University of Strathclyde 

TA3 Competing Spatial Instabilities in a Coupled 
LCLV Feedback System Bernd Thüring, A. Schreiber, M. 
Kreuzer, and T. Tschudi, Technische Hochschule 
Darmstadt 

TA4 Transport Induced Optical Instabilities in a 
Nonlinear Spatially Extended System P.L. Ramazza, S. 
Residori, E. Pampaloni, and F.T. Arecchi, Instituto 
Nazionale di Ottica 

TA5 Pattern Formation in a Microfeedback System 
W.J. Firth, Yu. A. Logvin, *B.A. Samson, University of 
Strathclyde, *Belarus Academy of Sciences 

TA6 Patterns, Pattern Dynamics, and Pattern 
Correlations in a Photorefractive Bidirectional Ring 
Resonator Z. Chen, D. McGee, N.B. Abraham, Bryn Mawr 
College 

10:00-10:30 Coffee Break 

10:30-12:00 TB Polarization Dynamics (Hubbell) 
Chair: K. Otsuka 

TB1 Polarization Pattern Dynamics in the Laser Vector 
Complex Ginzburg-Landau Equation A., Amengual, M. 
San Miguel, R. Montagne and E. Hernändez-Garcia, 
Universität de les Dies Balears, 

TB2 Polarization Pattern Forming Instabilities in 
Lasers Q. Feng, M. *San Miguel, J. V. Moloney and A.C. 
Newell, University of Arizona, *Universitat de les Illes 
Balears 

TB3 Polarization Switching in Quantum Well Vertical- 
Cavity Surface Emitting Lasers J., Martin-Regalado, M. 
San Miguel, *N.B. Abraham and **F. Prati, Universität de 
les Illes Balears, *Bryn Mawr College, **University of 
Milan 

TB4 Transverse and Polarization Effects in VCSELs F. 
Prati, G. Tissoni, L.A. Lugiato, *J. Martin-Regalado, *M. 
San Miguel and *N.B. Abraham, Universita de Milano, 
♦Universität de les Dies Baleraes 

TB5 Polarization Chaos in a Cavity-Isotropic Optically 
Pumped Laser C. Serrat, R. Vilaseca, R. Corbalän, 

NDOS'95 



Universität Politecnica de Catalunya, Universität 
Autonomade de Barcelona 

TB6 Polarization Instability in a Zeeman Laser Model 
Via On-Off Intermittency J. Redondo, E. Roldan and GJ. 
de Valcärcel, Universität de Valencia 

12:15-13:15 Lunch: Danforth Dining Center 

TD5 Relaxation Oscillation in an Injection-Locked 
Semiconductor Laser Piet C. De Jagher, *Daan Lenstra, 
Eindhoven University of Technology, *Free University 
(Amsterdam) 

TD6 Travelling Wave Model for the Multimode 
Behavior of a Fabry-Perot Laser M. Homar, J.V. 
Moloney and *M. San Miguel, University of Arizona, 
•Universität de les Dies Balears 

13:30-15:00 TC Ultrafast Dynamics (Hubbell) 
Chair: M.Pichi 

TCI Ultrashort Pulse Propagation in the Spatio- 
Temporal Regime Govind P. Agrawal, Andrew T. Ryan, 
University of Rochester 

TC2 Chaotic Pulse Dynamics in Fiber Arrays Gregory 
G. Luther, Alejandro B. Aceves, University of New 
Mexico, 

TC3 Femtosecond Nonlinear Dynamics of Periodic 
Structures through Direct Integration of Maxwell's 
Equations Stojan Radic, Nicholas George, Govind P. 
Agrawal, University of Rochester 

TC4 Self-Induced Transparency in Bragg Reflectors: 
Gap Solitons Near Absorption Resonances Alexander 
Kozhekin, Gershon Kurizki, Weizmann Institute of Science 

TC5 Picosecond Soliton Dynamics Beyond the Guiding- 
Center-Soliton Regime Ren£-Jean Essiambre, Govind P. 
Agrawal, The University of Rochester, 

TC6 Transmission of Solitons Generated by Modulation 
of Laser Diodes Using TDM and In-line Phase 
Conjugation, Claudio Mirasso, *Luis Pesquera, Institute 
de Estructura de la Materia, *Universidad de Cantabria 

15:00-15:30 Coffee Break 

15:30-17:00 TD Laser Dynamics (Hubbell) 
Chair: P. Mandel 

TD1 Self-Pulsing in a Mesomaser C. Balconi, F. 
Casagrande, L.A. Lugiato, *W. Lange and *H. Walther, 
Universitä de Milano, *Max-Planck-Institute für 
Quantenoptik 

TD2 Spatio-Temporal Dynamics in a Broad Area Laser 
Diode Ingo Fischer, *O.Hess, and W. Elsäßer, Philipps 
Universität Marburg, *Institut für Technische Physik 

TD3 Nonlinear Dynamics in Lasers with Phase- 
Conjugate Optical Feedback George R. Gray, David H. 
DeTienne and *Govind P. Agrawal, University of Utah, 
♦University of Rochester 

TD4 Strongly Pulsating Oscillations in Lasers Subject to 
Continuous Delayed Feedback D. Pieroux, T. Erneux, 
Universite Libre de Bruxelles 

18:15-19:30 Dinner: Danforth Dining Center 

20:00-22:00 TE Poster Session O 
May Room, Wilson Common Building 

TE1 Tunable Polarization Modulation Instability in 
Weakly Birefringent Fibers S.G. Murdoch, R. Leonhardt 
and J.D. Harvey, University of Auckland 

TE2 Crtitical Phenomenon in a Hybrid Optical Bistable 
System Jian-Hua Dai, Hua-Wei Yin and Hong-Jun Zhang, 
Chinese Academy of Sciences 

TE3 Bistability and Rectangular Pulses Under Second 
Harmonic Generation A.V. Ghiner, *G.I. Surdutovich and 
**N.P. Konopleva, Universidade Federal do Ceara, 
♦Institute de Fisica de Sao Carlos, **Novosibirsk State 
University 

TE4 Nonlinear Dynamics of Chirped Solitons in Doped 
Fibers L.W. Liou, Govind P. Agrawal, University of 
Rochester 

TE5 Noise and Chaos in a Multimode Solid State Laser 
Clif Liu, Henry D. Abarbanel, **Zelda Gills, and 
**Rajarshi Roy, University of California, **Georgia 
Institute of Technology 

TE6 Suppression of Chaos in External Cavity 
Semiconductor Laser Yun Liu, Junji Ohtsubo, Shizuoka 
University 

TE7 Chaos Control In a Modulated Class-B Laser NA 
Loiko, A.V. Naumenko and S.I. Turovets, Institute of 
Physics of Academy of Sciences of Belarus 

TE8 Bifurcation to Antiphase Periodic Solutions in a 
Modulated Solid-State Fabry-Perot Laser Paul Mandel, 
T. Erneux, University Libre de Bruxelles 

TE9 Spatio-Temporal Dynamics of Gain Guided 
Semiconductor Laser Array J. Martih-Regalado, S. Balle 
and *N.B. Abraham, Universität de les Illes Balears, *Bryn 
Mawr College 

TE10 Nonlinear Dynamics and Chaos In a Periodically 
Driven SBS Oscillator: Experiment and Theory Weiping 
Lu, Paul M. Ripley and Robert G. Harrison, Heriot-Watt 
University 
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TE11 Coherent Effects on Ultrashort Pulse Interaction 
in a Doped Fiber I. V. Mel'nikov, A. W. Luchnikov, 
General Physics Institute 

TE12 Spectral Features of a Short Pulse Self-Action in a 
Resonant Medium Leonid A. Melnikov, Andrey I. 
Konukhov and Irina V. Veshneva, Department of Optics - 
Chernyshevsky State University, 

TE13 Chaos and Control in Semiconductor Lasers 
Govind P. Agrawal, *Charles M. Bowden and *Shawn D. 
Pethel, University of Rochester, *U.S. Army Missile 
Command 

TE14 Three-order Nonlinearities as Mechanism of the 
Mode-Locking Victor P. Mikhailov, V.L. Kalashnikov, 
V.P. Kaiosha, I.G. Poloyko, Belarus State University 

TE15 Transmission of Laser Diode Pulses in Standard 
Optical Fibers: Different Compensation Techniques 
Claudio R. Mirasso, P. Garcia-Femandez and C. Lozano, 
Institute de Estructura de la Materia 

TE16 Reflection of a Gaussian Beam from a Saturable 
Absorber: Experimental Results D. V. Petrov, A. S. L. 
Gomes and Cid B. de Araüjo, Universidade Federal de 
Pemambuco 

TE17 Multistability in a Thin Layer Laser with Inclined 
External Cavity I.E. Protensko, A.N. Oraevsky, *J.D. 
Graham, *R.T. Edmonson, and *D.K. Bandy, P.N. Lebedev 
Physics   Institute,   *Oklahoma   State   University 

TE18 Nonlinear Dynamics of a CO2 Laser with 
Externally Modulated and Re-Injected Optical Signal 
E.M. Rabinovich, *J.M. Kowalski, **M.A. Safonova and 
*C.L. Littler, Advanced Isotope Technologies, ""University 
of Texas, **New York University, 

TE19 Population Inversion Without Amplification via 
Field-Dependent Relaxation Yevgeny V. Radeonychev, 
Russian Academy of Sciences 

TE20 Spatio Temporal Coupling Implications for Z- 
Scan Measurements Andrew T. Ryan, Govind P. Agrawal, 
University of Rochester 

TE21 Pulsations of Transverse Drift Modes in 
Misaligned Linear and Ring Cavities Mark Saffman, 
Ris0 National Laboratory, 

TE22 Self-Induced Gain and Stratification in Counter- 
Propagation of Light Beams in Dense Media B.A. 
Samson, W. Gawlik, Jagellonian University 

TE23 Dye Laser with Polarized Pumping Dynamics S. 
Sergeyev, S.K. Gorbatsevich, S.A. Sakharuk, Belarus State 
University 

TE24 Role of the "Cascading Effect" in a Ring Cavity 
Filled with a Quadratic Nonlinear Medium C. Sibilia, A. 
Re, E. Fazio, M. Bertolotti, Dipartimento di Energetica- 
Univ. Roma 

TE25 Dynamic Transverse Patterns In a Two-Mode 
Laser D.V. Skryabin, A.G. Vladimirov, A.M. Radin, St. 
Petersburg State University 

TE26" Spatial Instabilities In DH Stripe Semiconductor 
Injection Lasers: Effects of Thermal Nonlinearity GA. 
Smolyakov, L.A. Melnikov, S.V. Ovchinnikov and *E.M. 
Rabinovich, Chernyshevsky State University, University of 
North Texas 

TE27 Quasisoliton Inside a Dissipative Bistable Optical 
System G. I. Surdutovich, *A.V. Ghiner, Institute de 
Fisica de Sao Carlos, *Universidade de Federal do Ceara' 

TE28 Polariton Solitons as Asymptotic Solutions of 
Coherent Semiconductor Maxwell-Bloch equations in 
the low-density Regime Irina Talanina, *A. Knorr and 
*S.W. Koch, University of Ulm, "Philipps Universität 

TE29 Simulation of Femtosecond Pulse Propagation in 
an Unpumped Er-doped Optical Fiber Xiaonong Zhu, 
Michel Piche, University Laval 

TE30 Geometric Structure of Laser Models Vladislav 
Yu. Toronov, Vladimir L. Derbov, Saratov State University 

TE31 Nonlinear Dynamics of a Two-Photon Laser with 
Injected Signal in the High-Q Cavity Limit J.F. 
Urchueguia, V. Espinosa, *G.J. de Valcarcel, *E. Roldan, 
Universität Politecnica de Valencia, """Universität de 
Valencia 

TE32 Determinism and Stochasticity of Power Dropout 
Events in Semiconductor Laser Systems with External 
Feedback H.J.C. van der Linden, A. Hohl, R. Roy, School 
of Physics - Georgia Institute of Technology 

TE33 Saddle Antiphase Dynamics of a Multimode Laser 
E. A. Viktorov, *D.R. Klemer and **M.A. Karim, S.I. 
Vavilov State Optical Institute, ""Spectra-Physics 
Laserplane, """"University of Dayton 

TE34 Nonlinear Interaction of Transverse Modes in a 
Class-B Laser A.G. Vladimirov, D.V. Skryabin, St. 
Petersburg State University 

TE35 Correlation Dimension Analysis of Heterodyne 
Detection of High-Frequency Chaotic Oscillation from a 
Laser Diode with Optical Feedback Nobuyuki Watanabe, 
Koichi Karaki, Olympus Optical Co. 

TE36 Fast Dynamics of an Er^+ -doped fiber ring laser 
Quinton L. Williams, Rajarshi Roy, Georgia Institute of 
Technology 

TE37 Transverse Spatial Modulation of a Gaussian 
Beam in BATI03:Ce Ping Xie, Jian-Hua Dai, Peng-Ye 
Wang and Hong-Jun Zhang, Chinese Academy of Sciences 

TE38 Exciton Interaction Effects In Optical Transient 
Grating V. I. Yudson, TH. Neidlinger, P. Reineker, 
Universität Ulm 
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June 7,1995 (Wednesday) 

8:30-10:05 WA Joint Session* I (HubbeU) 
Chair: M. Lax 

WA1 Laser Cooling: Pbysucal Mechanisms and 
Ultimate Limits (CQ07 Invited, one-hour Tutorial) C. 
Cohen-Tannoudji, College de France 

WA2 Controlling Chaotic Lasers (CQ07 Invited) R. Roy, 
Georgia Institute of Technology 

WD4 Nonlinear Coupling in Self-Mode-Locked Lasers 
Robert Bridges, Robert W. Boyd and Govind P. Agrawal, 
University of Rochester 

WD5 Periodic Antiphased States in Intracavity Second 
Harmonic Generation Paul Mandel, J.-Y. Wang, 
University Libre de Bruxeües 

WD6 The Effect of Noise Sources Correlation on the 
Form of Low-Frequency Intensity fluctuations spectra 
in multimode Class B Laser Ya. Khanin, P.A. 
Khandokhin and V.G. Zhislina, Institute of Applied Physics 
of Russian Academy of Sciences 

15:00-15:30       Coffee Break 
10:10-10:35 Coffee Break 

10:45-11:50 WB Joint Session* U (Hubbell) 
Chair: L. Allen 

WB1 Quantum Aspects of Optical Pattern Formation 
(CQ07 Invited) LA. Lugiato, Universita de Milano 

WB2 Chaos in Semiconductor Lasers With Optical 
Injection (Invited) A. Gavrielides, Phillips Laboratory 

12:00-13:00 Lunch: Danforth Dining Center 

13:15-15:00 WC Joint Session* m (HubbeU) 
Chair: R.W. Boyd 

WC1 Nonlinear Optical Properties of Quasi-One 
Dimensional Magneto-Excitons (Invited) Daniel S. 
Chemla, University of California at Berkeley 

WC2 Phase-Controlled Photocurrents in 
Semiconductors (Invited) E. Dupont, P.B. Corkum and 
*H.C. Liu, National Research Council 

WC3 Spatial Solitons in Wide-Aperture Nonlinear 
Optical Systems (Invited) N.N. Rosanov, S.I. Vavilov 
State Optical Institute 

15:30-17:15 WE Chaos (Lander) 
Chair: D. Lenstra 

WEI Cooperative Synchronization in a Laser Array 
with Eigen frequency Spread (Invited) A. Napartovich, 
S.Y. Kurchatov and V.V. Likhanskii, Troitsk Institute for 
Innovation and Fusion Research 

WE2 Dynamical Characterization of Globally Coupled 
Optical Systems Kenju Otsuka, *Jingyi Wang, *Paul 
Mandel, and Thomas Erneux, Tokai University, 
♦Universite Libre de Bruxelles 

WE3 Unified Treatment of Spontaneous Pattern 
Formation in "2+1" Dimensional Optical Systems Ross 
F. Mclntyre, Weiping Lu, Robert G. Harrison, Heriot-Watt 
University 

WE4 Spatiotemporal Chaos Due to Attractor Merging 
in a Class-C Laser M. Sauer, F. Kaiser, Technical 
University Darmstadt 

WE5 Controlling the Unstable Steady-States of Lasers 
Using Continuous Feedback Daniel J. Gauthier, Duke 
University 

WE6 Instabilities and Synchronization of Coupled State 
Solid Lasers K. Scott Thornburg, Jr., Micheal Möller, 
Rajarshi Roy, Georgia Institute of Technology 

13:15-15:00 WD Nonlinear Dynamics (Lander) 
Chair: M. San Miguel 

WD1 Self-Consistent Models of Lasing Without 
Inversion: Problems and Prospects Olga 
Kocharovskaya, Russian Academy of Science 

WD2 Ball Bistabillty A.N. Oraevsky, *D.K. Bandy, P.N. 
Lebedev Physics Institute, *Oklahoma State University 

WD3 Modelocking of a Titanium-Sapphire Laser 
Induced by Intracavity Frequency Shift Gerd Bonnet, 
Stefan Balle and Klaas Bergmann, Fachbereich Physik der 
Universität 

18:15-19:30 Dinner: Danforth Dining Center 

*Joint session with the Coherence and Quantum 
Optics (CQ07) Conference 
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MAI 

Photorefractive    Spatial    Solitons 

Mordechai     Segev,(!)   Greg    Salamo,(2) 

George   Valley(3)    and   Bruno   Crosignani(4) 

(1) Electrical Engineering Dept, Princeton University, Princeton, NJ 08544. 
Phone (609) 258-1949;     Fax. (609) 258-1954; segev@ee.princeton.edu 

(2) Physics Department, University of Arkansas, Fayetteville, AR 72701. 
(3) Hughes Research Laboratories, Malibu, CA 90265. 
(4) Dipartimento di Fisica, Universita' dell'Aquila, 67010 L'Aquila, Italy 

We present an overview of the experimental and theoretical 

understanding on spatial solitons in photorefractive materials. There are three 

generic types at present: quasi-steady, screening and photovoltaic solitons. The 

quasi-steady-state solitons, which were predicted and discovered first/1-9) 

exist during the slow screening process of an externally-applied field in bright 

and dark realizations and in one and two transverse dimensions. The 

screening solitons are predicted and recently observedU0"12) (SBN) in a 

photorefractive material with an external applied field at steady state, when 

the field is nonuniformly screened. The photovoltaic solitons are predicted 

and observed(13'14) in photorefractive materials with a strong photovoltaic 

current (LiNbOs) and use the refractive index perturbation associated with 

photovoltaic field to guide and confine the planar soliton. By and large, none of 

these solitons has properties similar to those of the conventional Kerr solitons. 

Perhaps the most important distinctions from Kerr solitons is the existence of 

photorefractive solitons at microWatts and lower power levels and in two 

transverse dimensions. This implies the practicality of using photorefractive 

solitons for beam steering, optical wiring and interconnects and other nonlinear 

optical  devices. 

We   describe   our   recent   experimental   and   theoretical   results   which 

include   (i)   observations   of   steady-state   photorefractive   screening   solitons 



trapped in one and two transverse dimensions, (ii) experimental studies of 

bright and dark quasi-steady solitons that serve as reconfigurable light- 

induced waveguides for other beams, (iii) theoretical predictions of vector 

solitons and of (iv) fast free-carrier screening-solitons at the high intensity 

regime. 

References 
(1) M. Segev, B. Crosignani, A. Yariv and B. Fischer, Phys. Rev. Lett. £&, 923 (1992). 
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(3) D. N. Christodoulides and M. I. Carvalho, Opt. Lett. 19_, 1714 (1994). 
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(10) M. Segev, G. C. Valley, B. Crosignani, P. DiPorto and A. Yariv, Phys. Rev. Lett. 71, 3211 
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(11) Observations of self-focusing effects in the screening regime were presented by M. D. 

Iturbe-Castillo, P. A. Marquez-Aguilar, J. J. Sanchez-Mondragon, S. Stepanov and V. 
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SYNCHRONIZATION OF CHAOTIC LASERS IN MASTER-SLA VE RELATION 

Maki Tachikawa,+ Toshiki Sugawara, Takayuki Tsukamoto, and Tadao Shimizu* 

Department of Physics, University of Tokyo, 7-3-1 Hongo,  Bunkyo-ku, Tokyo-113. 

*Present address: Time and Frequency Div., National Institute of Standards and 
Technology, 325 Broadway, Boulder, CO 80303. 
Tel: 303-497-3174,  Fax: 303-497-7845,  E-mail: tachikaw@boulder.nist.gov 
*Present address: Department of Physics, Science University of Tokyo, 
1-3 Kagurazaka, Shinujuku-ku, Tokyo-162. 

Summary 
Synchronization between periodic oscillators is a well known phenomenon like Huygens' 

discovery of the two clocks on the wall. Then, it is quite interesting to ask whether chaotic 
systems can synchronize if they have mutual or one-way couplings.  Recently, this problem 
has attracted considerable attention due not only to its fundamental importance in nonlinear 
dynamics but also to its practical applicability in neural networks, communications, and 
control of chemical and biological systems.  In this paper, we demonstrate dynamic responses 
of a chaotic system to external driving signals by using a passively Q-switched (PQS) C02 

laser1. 
We consider the situation where one chaotic laser (slave laser) is driven by the output of 

another chaotic laser (master laser).  Fig.l shows the experimental setup of the laser system. 
A saturable absorber inside the laser cavity induces self-sustained chaotic pulsation in a 
single-mode C02 laser.  The infrared radiation from the master laser is injected into the 
absorption cell of the slave laser, modulating its saturable loss.  Fig.2 shows the observed 
time sequences of the PQS pulsation from the two lasers.  The amplitude correlation between 
the two signals is examined by plotting the intensity of the peak in the slave laser's output Xs 

against that of the peak in the master laser's output Xm which has appeared just before it. 
With no coupling, the two lasers are pulsating independently, and correspondingly, data 
points in the correlation plot are scattered in an erratic manner.  The Lorenz plot analysis 
reveals that the two trajectories settle on slightly different strange attractors.    When the 
injected power is raised up to 24.2 mW, the chaotic pulsation of the slave laser is synchro- 
nized to the driving pulsation with a certain delay, which is clearly shown by the linearity in 
the amplitude correlation. 

Numerical calculation on our rate-equation model reproduces basic characteristics of the 
synchronization with a good fidelity.  It is found that synchronization is realized when 
Lyapunov exponents of the modulated slave system are negative.  Furthermore, the slave 
system is locked to the master system even when driven by a binary signal that is a 



simplification of the time sequence of the master laser's output.  Namely, the slave laser 
functions to recover the lost information of the master laser. 

The frequency entrainment is generally observed in a nonlinear oscillator externally driven 
by a periodic force when the driving frequency is close to intrinsic frequencies of the system. 
Our observation demonstrates that the entrainment may occur even when the driving force is 
chaotic if it is based on a strange attractor nearly identical to that of the slave system. 

Reference 
1. T. Sugawara et al., Phys. Rev. Lett. 72, 3502 (1994).   In contrast to our observation, 
synchronization between mutually coupled lasers was reported by R. Roy and K. S. 
Thornburg, Jr., Phys. Rev. Lett.  72, 2009 (1994). 
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Transverse-Pattern Dynamics in Short-Pulse Lasers 

Leonid A.Melnikov 

Department of Optics, Chernyshevsky State University 
83 Astrakhanskaya str., Saratov 410071, Russia 
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Transverse mode competition in a CO2 Laser 

E. Louvergneaux, D. Hennequin, D. Dangoisse and P. Glorieux. 
Laboratoire de Spectroscopie Hertzienne 

Unite" associee au Centre National de la Recherche Scientifique (URA 249) 
Universite des Sciences et Technologies de Lille 

F-59655 Villeneuve d'Ascq cedex (France) 

Pattern formation resulting from transverse mode competition is studied 

in CO2 lasers with a large transverse section. The laser is designed to support a 

large number of interacting modes with small frequency differences between 

their resonance frequency to allow for strong intermodal coupling since our 

aim is to investigate nonlinear regimes leading to spatio-temporal dynamics 

linked to the interaction of many modes or related to morphogenetic processes. 

We have used a multi-element degenerate resonator where the spot size of the 

TEMoo mode on the optical elements is considerably smaller than in 

conventional cavities and where the spacing between axial modes is large 

enough to avoid overlapping of axial mode families. We describe and analyze 

the particular situation that is met in the formation of ordered patterns in a 

cavity in which i) the cylindrical symmetry is broken by Brewter plates ii) the 

frequency degeneracy of modes belonging to the same family q is lifted by 

astigmatism and cavity aberrations. Spatial periodicity is associated with 

spectral periodicity. Indeed, the RF spectra of ordered patterns contain 

regularly spaced components typically separated by 500 kHz. 

Modal expansion of the beam on the Hermite-Gauss (HG) basis has been 

privileged. If one considers these patterns as superpositions of HG modes with 

different frequencies, the thermal plate shows only the sum of their intensity as 

rapidly oscillating crossproducts are averaged to zero. We show by a least 

square method applied to experimental patterns that due to mode competition, 

the patterns are often composed of a few modes selected inside one transverse 

family and obeying "selection rules". Numerical reconstructions in good 
1 



agreement with experiments are obtained. In order to explain the behavior 

described above, we have integrated a model using modal expansion on the 

HG basis [1]. By comparing with experiments, the importance of the choice of 

the basis in which the beam is expanded is emphasized. 

From the observation of patterns in which the eleven first transverse 

mode families are involved, two hypothesis based on integral overlap 

calculations may be formulated : (i) modal interaction is ruled by transverse 

hole burning. Modes are associated to minimize overlapping between their 

intensity distribution, (ii) the number of modes is determined to extract the 

maximum energy from the active medium. The selection of one transverse 

family in pattern formation, partially found in our experimental simulations is 

a result that comes out from the theoretical study of Harkness et al. [2]. They 

found that above threshold, the modes of only one transverse family appear in 

the pattern. 

The observation of oriented patterns shows clearly that astigmatism of the 

cavity plays a dominant role in pattern formation. Comparison of these 

patterns with their counterparts in a cavity in which the astigmatism is much 

weaker has been made. 

[1] L.A. Lugiato, F. Prati, L.M. Narducci, P. Ru, J.R. Tredicce and D. K. Bandy, 

Phys. Rev. A37,3847-3866 (1988) 

[2] G. K. Harkness, J. C. Lega and J. L. Oppo, to be published 
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We have recently found that lasers can emit fields with moving vortices [1]. 
In [1] the motion of a single vortex was followed indirectly by using two 
strategically placed point detectors. If would seem difficult to follow more 
complex dynamical patterns with this technique. As the typical timescale of 
this motion of lasers is 10-8s , there exists no real possibility to record films 
or even snapshots of the time-varying laser field. Photorefractive oscillators 
(PROs) are on the other hand largely equivalent to lasers of class A [2]. 
Since their gain-line widths are of the order of Hz, they show an extreme 
frequency pulling which results in dynamics with a characteristic time of 
100ms. Thus dynamics can be observed with ordinary video equipment. As 
we work at low gain the differences between PRO and lasers should be neg- 
ligible [2] and the experiments should give a proper picture of spatial laser 
dynamics of an ordered type. We use a ring resonator and a BSO crystal. 
The gain is obtained by two-wave mixing in BSO pumped by an Ar+-Laser. 
The resonator contains two lenses for the selection of the number of trans- 
verse modes located between two neighbouring longitudinal modes. An iris 
is used to control the losses of the modes, so that the highest exciteable 
transverse mode is selected by the aperture. To excite reproducibly certain 
mode families, the resonator length is actively stabilized. The length is tun- 
able, so that the modes of the passive resonator can be shifted relative to 
the gain line. 10% of the generated field is coupled out and recorded by a 
CCD-camera. Patterns will be shown on video film and as snapshots. We 
first concentrate on "doughnut-like" patterns which are essentially bright 
fields with a dark center at the optical axis. The optical field of those pat- 
terns contains a phase singularity (also called vortex). We observed such 
patterns with singularities of order up to 15. 

If the n-th doughnut mode is emitted simultaneously with an adjacent 
longitudinal mode, the pattern consists of n circling vortices. We demon- 
strate an example in the case of n = 4. There approximately 4.1 transverse 
mode spacings per free spectral range are used. Reducing the detuning of 
the fundamental mode relative to the gain line increases the speed of cir- 
cling, because the transverse and fundamental mode have different frequency 



pulling according to their losses. When the two modes phase-lock, four sta- 
tionary vortices result. As we tune the Gaussian mode away from and the 
fourth order mode family closer towards the gain line we find that the right 
hand circling changes into left hand circling at a particular detuning. Tun- 
ing the Gaussian back towards the gain line a second transition point is 
found where a change back to right hand circling occurs. The difference in 
frequency between these two points indicates hysteresis. The interferogram 
of the pattern shows an abrupt change of sign of the charge of the vortices 
at the transitions. It is plausible that there should be a hysteresis between 
circling directions because patterns are in general bistable with respect to 
helicity[3]. 

While there is hysteresis here between circling senses, it is also possible 
to phase-lock the two constituent modes. This corresponds to stopping of 
the circling motion and occurs when the modes are tuned so that their 
pulled frequencies become close enough. Phase locking requires resonator 
anisotropy. 

With ~ 2.7 transverse mode spacings per free spectral range a stationary 
first order vortex at the center with seven vortices circling around can be 
realized. One can describe this pattern by interference between a charge-one 
and a charge-six doughnut. 

In the case of simultaneous excitation of a charge-three- and a charge- 
five-dougnut together with the fundamental mode, three vortices move on a 
circle of a small radius while eight vortices move at a large distance from the 
optical axis. All these circling motions can be understood hydrodynamically 
as Magnus drifts. 

To demonstrate other typical hydrodynamic effects, a one-dimensional 
mode flow was explored using cylindrical lenses in the resonator. The emit- 
ted patterns are mode cascades, vortex creation like in obstacle flow and 
interfering tilted waves. 
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In this paper, we report roll patterns and transition between rolls and turbulent states 

in the field intensity of emission from a coherently optically pumped three-level laser sys- 

tem. While such phenomena have been predicted and observed in various passive systems 

[1], our findings are to our knowledge the first to be reported for a laser, earlier attention 

being focused to phase singularities and defect-mediated turbulence evolving from trav- 
elling waves in laser systems [2]. 

We consider both pump and emission processes to be resonant in the model descrip- 

tion [3]. The equations describing the coherently optically pumped three-level laser are 

derived from the semi-classical Maxwell-Bloch equations under the rotating-wave approx- 

imation and neglecting longitudinal effect and including transverse diffraction effect. Four 

control parameters involved in this nonlinear system are the pump strength A, the cavity 

damping constant cr, the unsaturated gain g and the ratio b of energy relaxation to dipole 

dephasing rates. The spatially homogeneous steady-state electric field amplitude E(") has 

three branches, a nonlasing solution (N) and two symmetric lasing solutions (L). Linear 

stability analysis predicts that for the branch (N), the lowest instability threshold is al- 

ways located at transverse wavenumber K — 0, in which the instability is identified to 

be temporal. For the lasing states (L), the instability occurs through a Hopf bifurcation 

where the unstable wavenumber K varies between K = 0 and K = Km, indicative of 

possible spatio-temporal pattern formations. The latter limit Km is determined by the 

termination of lasing due to pump-induced Rabi splitting [3]. 

For a typical parameter set: g = 52, a = 1.3 and b = 0.4, we observe, from numerically 

integrating our nonlinear system, pure roll patterns, defects and a transition from rolls to 

a turbulent state and vice versa. The roll patterns not only appear in the real and imag- 

inary parts of the complex electric field E but also in its intensity |£|2, evolving from an 

initially uniform state which exists within the pump parameter window from the instabil- 

ity threshold value A ~ 2.4403 at a critical wavenumber Kc = 1.7818 to A = 2.512. The 

spatial period of the roll patterns in Re(E) and lm(E) is identified to be the same as that 

in intensity \E\2. The intensity pattern periodically changes with a period T = 2irluA 

while both the real and imaginary parts of E also exhibit a slow amplitude modulation; 



u>A is the oscillatory frequency corresponding to the largest growth rate for the given 

pump A. When the pump parameter A is increased above A = 2.52, turbulent states are 

observed which span a pump parameter window from A = 2.52 to 2.56, beyond which the 

system evolves into a new roll state. Some typical intensity patterns near the transition 

point are shown in Fig. 1, in which on increasing A the roll pattern evolves through defect 

formation into a turbulent state. Figure 2(a) and (b) show the time evolution for the roll 

and the turbulent patterns, respectively. 

In conclusion, we have provided first theoretical evidence of roll patterns and the 

dynamical transition between the roll states and turbulent structures in a resonant co- 

herently optically pumped three-level laser model. These phenomena are found to exist 

only in the nonzero lasing branches. 

Fig. 1 Transverse field intensity 

\E(x,y)\2 patterns, (a) A = 2.51, 

(b) A = 2.515 and (c) A = 2.52. 

Time t 

Fig. 2 Time series. 

(a) A = 2.51 and 

(b) A = 2.52. 
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The emergence of transverse patterns near peak gain in large aspect ratio 
Class A, B and C lasers can be described by a complex Swift-Hohenberg 
equation (CSHE) coupled to a mean flow [1]. This model generalizes the 
conventional rate equation description to wide aperture lasers and avoids 
spurious high transverse wavenumber instabilities associated with the naive 
adiabatic elimination procedure [2]. The mean flow corresponds essentially 
to retaining the population inversion in the description of the laser dynamics 
even for the cases of Class A and C lasers and allows one to extend the valid- 
ity of this complex order parameter description to well above lasing thresh- 
old. Robustness is a key observed feature, with the amplitude equations 
derived from the CSHE for negative (complex Ginzburg-Landau (CGLE)) 
and positive (complex Newell-Whitehead-Segel (CNWS)) detuning, agreeing 
precisely with those derived directly from the original laser equations [3]. 
The nonvariational character of the CSHE for a laser plays a fundamental 
role in determining the type of pattern that emerges above threshold. 

A generalized rate equation descripton of a single longitudinal mode, ho- 
mogeneously broadened 2-level laser is given by the complex Swift-Hohenberg 
equation coupled to the inversion (mean flow) [1]: 

(a + l)V>t   =   <r[(r - 1) - ifi]^ + taVV-7—^(12+ aV2)V-<Tntft (a +1)2 ' ^ 
nt + bn   =   |^i|2 



This equation determines the space-time evolution of the complex order 
parameter ip and has an obvious physical interpretation. The linear term 
(first term) on the RHS displays linear amplification (if the pump param- 
eter r > rc = 1) and frequency pulling (crti) where a is the dimensionless 
cavity loss and fi, the dimensionless cavity-atomic transition detuning. The 
second term accounts for diffraction and is responsible for the nonvariational 
character of the CSHE. The third diffusion term is all important in filtering 
the growth of unstable modes, by selectively amplifying the traveling wave 
with transverse wavenumber kc = \J^ (gain discrimination). Otherwise all 
transverse modes would see equal gain. Without the additional degree of 
freedom n for Class A and C lasers, the CSHE would not reproduce the 
linear instability boundary (Busse balloon) well above threshold. 

We will present a detailed study of pattern dynamics in wide aperture 
2-level lasers comparing predictions of the complex order parameter descrip- 
tion above with the 2-level Maxwell-Bloch model. The nonvariational aspect 
of the problem is all important, precluding static patterns, at least in an 
infinitely extended geometry. We will show how boundary driven pattern 
selection competes with pattern selection mechanisms in the bulk and, in 
particular, how boundary nucleated patterns invade the interior consum- 
ing core-unstable spiral waves. Preliminary results will be presented on the 
derivation of a complex order parameter equation description for wide aper- 
ture semiconductor lasers including inhomogeneous broadening and many- 
body effects where the latter impose a strong asymmetry on the neutral 
stability curves.Wide aperture Class B lasers will be shown to be inherently 
turbulent optical systems. 
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We report experimental evidence of spatio-temporal 
complexity and weak turbulence in lasers with large Fres- 
nel numbers. We characterize the dynamics by mea- 
surements of the intensity cross correlation function of 
patterns emitted by a COi laser with a Fresnel number 
around 60. We show that these patterns have limited 
spatial correlation and we have measured the correlation 
length. Our experimental results can be explain in a 
framework based on the Maxwell-Bloch equations. We 
show that two instabilities be present. The first is a long 
wavelength instability which is related to the phase in- 
variance of the electromagnetic field and is described by a 
Kuramoto-Shivasinsky (KS) type equation. The second 
is a short wavelength instability which corresponds to a 
Hopf bifurcation which selects a very well-defined wave- 
length and is described by a complex Swift-Hohenberg 
(CSH) equation. 

In this report, we summarize some of our recent re- 
sults [1] for our Perot-Fabry CO2 laser which has an in- 
tracavity lens which can be moved to adjust up to 60 
and then we give a theoretical approach based in the 
Maxwell-Bloch theory of lasers. 

Time averaged intensity patterns are observed on an 
infra-red image plate and they may be as simple as con- 
centric rings or may be of a more complex nature such 
as square lattices as reported in [2]. These averaged 
structures are induced by the geometrical symmetry of 
the cavity which can be adjusted with three piezoelectric 
(PZT) crystals for precise alignment of one of the cavity 
mirror. For a perfect alignment, the pattern has circu- 
lar symmetry and when we move one of the PZT's from 
this setting we break the circular symmetry giving the 
pattern has a privileged axis of symmetry. 

However, the observation of the spatial distribution of 
the time averaged laser intensity does not give any infor- 
mation about the temporal behavior. Moreover one may 
wonder if these structures are the time-averaged pattern 
of a complex field or are only generalized cavity modes. 
In other words, are we observing a low dimensional dy- 
namics or a characteristic of spatio-temporal complexity 
and weak turbulence? 

To obtain some answer to this question, the trans- 
verse profile of the intensity is measured with a rotating 
mirror which deflects the beam onto a HgCdTe detector 
(Fig.lb). We observed that the DC component is always 
large compared to the AC component. At relatively low 
pump rate, we observe periodic intensity oscillations at 
150kHz over most of the pattern; this frequency is close 
to the relaxation oscillation frequency of the single mode 
laser. When the pump and/or the Fresnel number is in- 

creased the laser intensity becomes chaotic in time at 
each point, as we can see in FIG.lc. The intensity power 
spectrum shows a relative broad peak centered at a fre- 
quency of the order of magnitude of the relaxation oscil- 
lations, and a large broad spectrum at lower frequencies. 
The envelope of the oscillating auto correlation function 
decreases to zero with a correlation time of the order of 
lms. 

*W/fc 

FIG. 1. a) The average pattern displayed by a thermal 
plate, b) The curve 61 is a plot of the correlation function 
C(x,x0) with the reference detector positioned near the cen- 
ter of the pattern. The second curve 62 is the averaged in- 
tensity coming from the rotating mirror. Curve 62 is used 
as a spatial reference, and we can compare the correlation 
length with the radius of the beam and with the width of 
the "boundary layer" of the pattern, c) The AC component 
of the intensity at a point vs. time, d) The mean power 
spectrum of the signal in c), in which we can distinguish a 
broad background characteristic of a chaotic signal and also 
a narrow band around a frequency between 350-400 kHz and 
a smaller band between 150 — 200kHz. 

We used two detectors to calculate the spatial corre- 
lation of the pattern. One detector is used to record 
the intensity at a reference point while the second mea- 
sures the signal deflected by the rotating mirror. As the 
mirror rotates very slowly, we are able to measure the 
cross-correlation between the intensities at two different 
spatial points. With a digital oscilloscope we are able to 
acquire 1 million data points which are transferred to a 
computer for analysis. 

The two data files obtained are divided into 64 files in 
set of which gives 64 separate regions in the pattern. We 
calculate the cross correlation between the such files as 
follows. Let us call ref(x0,t) and mir(x,t) the xih files 
obtained respectively from the reference file and from the 



rotating mirror file. Then we calculate : 

£j=Jj mir(x, t) ■ ref(xo, t + T) 
C(x,x0) = max 

T    ^(S^W(x,t)2)(E^re/(x0,t)
2) 

If the signals are perfectly correlated, then C(x, XQ) = 1, 
and if they are uncorrelated C(x,xo) = 0. In FIG. 1-b) 
we show the function C(x, xo) plotted for 64 locations. 

We measure this spatial correlation for different pat- 
terns as the Fresnel number is increased. For patterns 
which have periodic oscillations (low pump or low Fres- 
nel number), the correlation is equal to one everywhere. 
When the complexity is increased the temporal behavior 
of the intensity becomes chaotic with a small number of 
modes; thus the spatial correlation function is no longer 
equal to one everywhere, but decreases with oscillations. 
This decrease of correlation comes from a superposition 
of modes which interact. But for high Fresnel number, 
we see that the spatial shape of the correlation changes 
dramatically. As we see in FIG. l-b), the correlation is 
a peaked function with a characteristic width which is 
about i of the characteristic size of the pattern. 

In the general electromagnetic Maxwell theory, the 
phase of the complex Fourier amplitude of the electro- 
magnetic field (a real quantity) is not fixed. This prop- 
erty is valid either for a dissipative or conservative sys- 
tems without an external forcing, which could lock the 
phase. According, the long wavelength laser dynamics 
(a dissipative system) is governed by a phase diffusion 
equation. Similar electromagnetic phase dynamics is a 
common feature for any laser and may lead under certain 
conditions to a "turbulent" state, which is uncorrelated 
in time and in space, through a modulation, mainly of 
the phase primarily of the electromagnetic field. 

Some lasers, often called class-B lasers, also suffer 
from an oscillatory transition toward a periodic structure. 
These lasers exhibit a periodic modulations in space and 
time. In our case the measured electric field amplitude 
is modulated by both effects. As a consequence the laser 
intensity is locally chaotic on short time scales but the 
time-average intensity patterns retains the global sym- 
metry of the system. 

Coupled of partial differential equations for both a 
Hopf bifurcation and a (KS) phase dynamics, read: 

dtA = pA- iv{ql + V2)A - a(q2
0 + V2)2A 

-{ß1\A\2+ß2(^4>?)A + ß3V<j>-VA; (la) 

dt<j> = -k2V2cfi - f VV + ci(V0)2 + c2\A\2. (lb) 

The complex field A describes a Hopf bifurcation with 
a well defined spatial wavelength, while the real variable 
0 describes the dynamics of the phase of the electromag- 
netic field, fi and kg are the control parameters, v rep- 
resents a group velocity of a Hopf bifurcation, go is the 
spatial wavenumber, a is a complex coefficient represent- 
ing diffusion and diffraction,   CQ is a positive coefficient 

which ensures the dissipation and it depends on the Fres- 
nel number, ßi and Cj depend on laser parameters and 
ensure saturation. In general, equation (lb) leads to a 
"turbulent" behavior in time as well as in space. Its time 
scale (TC ~ C0/&0) is much smaller than the characteristic 
time of the Hopf bifurcation, which is of the same order of 
magnitude as the relaxation oscillations of a single mode 
laser. Furthermore, the characteristic length of the phase 
instability (Ac ~ •y/coV&o) is larger than the wavelength 
of the Hopf bifurcation. As a result, we believe that the 
observed temporal oscillations come from the Hopf bi- 
furcation, while a loss of correlation in time and space 
comes from the phase dynamics. Thus the overall corre- 
lation time and length in laser patterns should be of the 
order of TC and Ac, respectively. 

The phase dynamics reaches a "turbulent" state when 
the number of degrees of freedom is increased. Such 
a number grows in proportional to the Fresnel num- 
ber (Fr), as Fr/Fro, where Fro is dimensionless and 
depends on the laser parameters (detuning, pumping, 
etc.). Fr is the parameter which governs the transi- 
tion from low dimensional chaos (Fr ss Fro) to a weak 
turbulence regime (Fr > Fro). It is difficult to obtain 
detail of this kind of measurements of turbulent behavior 
of the laser intensity with measurements of the intensity 
as a function of time at a single point. Hence, we focus 
our attention on the correlation length. By dimensional 
analysis of equation (lb), we expect that the correlation 
length varies as Xc/R ~ y/Fr0/Fr, with R the radius 
of the laser beam. For a low Fresnel number, that is 
for a system of only a few degrees of freedom, the pat- 
tern is completely correlated since Ac w R. But as Fr 
increases (larger than Fro) the phase correlation length 
decreases becoming much smaller than R. In conclusion, 
as a result of these two instabilities, the laser intensity 
is disorganized in space and in time due to the turbulent 
behavior of the KS dynamics, yet the time-averaged pat- 
tern recovers the spatially periodic structure as selected 
by the CSH equation. The fact that "turbulent" pat- 
terns retain underlying symmetry on average, has been 
experimentally observed in Faraday instability [3]. 
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A number of recent publications have studied transverse pattern formation in broad area lasers [1-5]. One 

of the main results of these works has been to show that, in positively detuned lasers of infinite transverse 

extent, the first bifurcation is to a state corresponding to off-axis emission. One limitation of such work is 

that the effects of transverse boundaries are not included ; these may be important in describing real laser 

systems which have a transverse pump shape, intracavity apertures or curved cavity mirrors. 

A recent study has considered transverse reflecting boundaries [6] but such reflectors are not commonplace 

in real lasers. Here we study the effect of mirror curvature on the first laser bifurcation by studying the 

bifurcation and above threshold behaviour of the mean-field Maxwell-Bloch equations [7], 

8F 
dt 

dR 
dt 

dt 

=   -k 1-iS ia 
V2 

+ v- *? V F-R 

-5-   =   -(l + i6)R + FA, 

=    -7 A-x + \(F'R + FR*) 

These partial differential equations describe the interaction of the laser field, F, the polarisation, R, and 

the population inversion, A. The parameter \ describes the pumping, 6 is the detuning and rj is related to 

the curvature of the mirrors ; 77 = 0 corresponds to them being flat. 

For small detunings, and close to threshold, we have reduced these Maxwell-Bloch equations to a modified 

Swift-Hohenberg equation and have performed linear analysis of both the reduced and full equations in a 

Gauss-Laguerre/Gauss-Hermite basis. Figure 1 shows how the curved mirror results converge to those for 

flat mirrors [3] (in a Fourier basis) when the parameter 77 —► 0. 

Close to threshold, we have derived amplitude equations describing the nonlinear interaction of the cavity 

modes. For any arbitrary mirror curvature, the laser bifurcation is always to a pattern involving a single 

family of empty cavity modes, whereas for flat mirrors travelling waves are always expected. In this sense, 

the curvature of the mirrors introduces a singular perturbation. Away from threshold, a secondary transition 

occurs from patterns involving cavity modes to ones of a travelling wave nature. We have studied these 

transitions in detail in both one and two transverse dimensions. Figure 2 presents the results of two numerical 

simulations. The first, close to threshold, shows a final time independent state consisting of a few Gauss- 

1 Permanent address: INLN - UMR CNRS 129 - 1361 Route des Lucioles, 06560 Valbonne, France 



Laguerre modes. The second, above the secondary threshold, shows a state dominated by travelling-waves, 

as described in the caption. 

This work is, in part, supported by EPSRC grant GR/J/30998. 
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Figure 1: The threshold for excitation of each family of Gauss-Laguerre modes for two values of the mirror 
curvature, TJ. On the right, the mirrors are nearly flat and the lowest of the threshold curved tends to that 
for the Fourier modes in the fat mirror case. 
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Figure 2: Tiie real part of the laser field, F, as a function of the transverse coordinates (x,y). On the left, 
the pump is close to threshold and the final output state is comprised of a few Gauss-Laguerre modes. On 
the right, travelling waves are generated at the boundary and travel inwards. 
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We show that a modified version of Hunt's Occasional Proportional Feedback (OPF) 
method [1] as applied to the chaotic single mode laser [2], can be used to control a 
multi transverse mode laser exhibiting weak spatio-temporal chaos. 

We consider the diffractive Maxwell-Bloch equations for a single longitudinal ring 
cavity laser [3] and project the electric field variable onto a set of 15 Gauss-Laguerre 
modes for cavity configurations where only 6 modes have non-negligible amplitudes. 
The polarisation and population inversion variables are evaluated on a grid of 640 
lattice nodes leading to a system of 2050 coupled ordinary differential equations. 
By perturbing global parameters of the system according to the OPF method, we 
have been able to stabilise periodic orbits in both the cases of cylindrically sym- 
metric and asymmetric pump shapes. In order to describe experimentally feasible 
techniques, we have chosen to monitor the total output power of the laser and to 
sample it periodically at the frequency of the relaxation oscillations or at its har- 
monics/subharmonics. At these times a perturbation proportional to the difference 
between the sampled output power and a reference value was applied to a selected 
system parameter. 

In the case of cylindrically symmetric pump shapes, orbits were controlled by per- 
turbing either the magnitude of the pump or the cavity losses, the latter proving 
to be more effective. In all the controlled orbits, the modal projections of the fi- 
nal periodic state change little in spite of the different character of the dynamics 
which may range from period one to period nine and even above. The fact that 
we obtained a variety of periodic orbits all with very similar modal configurations 
indicates that Hunt's technique offers flexibility in temporal control but is less able 
in accessing spatial dimensions. 

In order to describe more realistic laser configurations [4], we have broken the cylin- 
drical symmetry of the Maxwell-Bloch equations by shifting the pump with respect 
to the centre of the spherical mirrors. Again, control of temporal chaos has been 
achieved by modulating the losses for weakly disordered cases. A first estimate of 
the correlation dimension gave values between 4 and 6 showing a low dimensionality 
of the attractor. Typical magnitudes of the control kicks are between 3 to 5% of 
the intensity but they can be.reduced after control is achieved. Figure 1 shows the 
time evolution of the total power before and after the application of the control 
signal. Figure 2 displays the corresponding power spectra where the removal of the 



continuum component via the control technique is apparent (see panel (b)). 
From these measurements, it would appear that control using Hunt's technique is 
generically feasible even when a large number of coupled differential equations (2050 
in our case) are present. It is important, however, to stress that control has been 
achieved only where the chaos is weak. As the pump is increased and the laser 
becomes more chaotic, the ability to control is lost. Whenever the dimension of 
the dynamics exceeds 8 or 10, the control technique appears to increase disorder 
instead of removing it. This is in agreement with recent attempts to control fully 
developed spatio-temporal disorder in partial differential equations [5] where the 
same relevance of attractors to the overall dynamics is questionable [6]. 
Support from EPSRC (GR/J/30998) is gratefully acknowledged. 

References 
[1] E. Hunt, Phys. Rev. Lett. 67, 1953 (1991). 
[2] R. Roy et al., Phys. Rev. Lett. 68, 1259 (1992). 
[3] L. Lugiato et al., J. Opt. Soc. Am. B 7, 1019 (1990). 
[4] C. Green et al., Phys. Rev. Lett. 65, 3124 (1990). 
[5] A. Kent, Ph.D. thesis, University of Strathclyde, Glasgow (1994). 
[6] A. Politi et al., Europhys. Lett. 22, 571 (1993) and references therein. 

(*) Present address, Department of Physics, University of Buenos Aires, Argentina. 
(**) Present address, Department of Mathematics, University of Southampton, UK. 

Figure 1:   Time evolution of the output power P of a multi-transverse mode laser before 
(a) and after (b) the application of the control signals. 
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Figure 2: Power spectrum S of the output power of a multi-transverse mode laser before 
(a) and after (b) the application, of the control signals. 
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We show that the chaotic behavior of a CO laser with feedback 

can be stabilized by addition of a small sinusoidal perturbation 
in the feedback loop. 
Robust stabilization of different periodic orbits can be 

achieved by a parametric perturbation with frequency close to 
that of the leading cycle embedded in the chaotic attractor and 
with relative amplitudes of the order of a few per cent. We call 
this stabilization "adaptive stabilization" since the 
perturbation parameters are suggested by a preliminary global 
measurement on the system itself. This method avoids the on-line 
tracking of a local feedback stabilization [1] which would imply 
too stringent requirements on the time resolution of the tracking 
apparatus; moreover it adapts to a global system property, that 
is, its power spectrum. 
We recall that the chaotic behavior of a single mode C02 laser 

with feedback depends on some peculiarities of the feedback loop. 
In our case [2],the signal from a detector is fed back to an 
intracavity electro-optic modulator via an amplifier with a bias 
voltage B. B acts as the control parameter.When the system is in 
the chaotic region, the stabilization of periodic orbits has been 
obtained by adding to the bias voltage B a small sinusoidal 
perturbation so that it becomes 

B = B [1 + c sin(2Trft) ] # 

The perturbation frequency f is chosen close to the frequency f 
. of the peak (representing the remnant of the limit cycle) still 
present  in  the  unperturbed  chaotic  spectrum.  The  relative 
perturbation amplitude c is of the order of few per cent. 

The stabilization region is presented in the parameter space 
[e,f] (Fig 1). We consider the difference A=S(f)-S between the 
peak value of the power spectrum S(f) at the fundamental 
frequency of the stabilized orbit and the averaged spectrum S 
over the range 0-100 kHz as the robustness indicator. Figure 2 
shows the dependence of A-A  on the perturbation frequency 

c 

measured at e=0.027, being A the value of A for the unperturbed 
C 

chaotic spectrum. The boundaries of Fig. 2 correspond to the 
merging of the peak within the chaotic background, so that A 



reduces to A . 
Numerical 'simulations on a four-level model of the C02 laser 

are in good agreement with the experimental results [3]. 

f^Tott, C.Grebogi and J.A.Yorke, Phys. Rev. Lett. 64, 1196 

219-°F.T.Arecchi; R.Meucci,  and W.Gadomski,  Phys. Rev.  Lett. 
58, 2205 (1987) 

3 - M.Ciofini, R.Meucci and F.T.Arecchi, submitted to Phys. Rev 
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We introduce an adaptive method for stabilizing the unstable periodic orbits 
embedded in a chaotic attractor. The control technique is based on a continuous 
correction of the dynamics with a forcing term driven by the local information 
extracted from the dynamics itself. The method easily controls systems in which 
more than one positive Liapunov exponent is present and can be implemented 
even for experimental situations which are too fast for standard off-line control 
methods. 
Let us consider a system ruled by 

dx 
^■ = G(x,/i), (1) 

where x is a J9-dimensional vector, G a nonlinear function and \i a set of control 
parameters chosen in such a way as to produce chaotic behavior. 
In a previous work [1], an adaptive algorithm able to recognize a chaotic dyna- 
mics was introduced. This algorithm is based on a continuous readjustement of 
the observation time interval in order to minimize the second variations of the 
vector x. For each component i (i = 1,2, ...,D) of x, one defines the variation 
over the time interval rn as 

6xi(tn+i) = Xf(*n+i) - x,-(i„), (2) 

where £„+1 = £„ + rn (rn being specified later) represents the (n + l)th instant 
at which observation of the system is performed. 
By use of Eq. (2) it is possible to evaluate the local variation rates A's as 

and to update the observation interval as 

rS^rWCl-tanh^AiCtn+O)). (4) 

In Eq. (4) the r^ are the observation time intervals corresponding to the ith 
component of the vector x. Once all r^ have been calculated, the next time 
interval is selected as [1] 

rn+1 =mini {r^i}, (5) 

and this fixes the new observation at the time tn+2 = £n+i + Tn+i- 
The analysis of the sequence of r's permits to extract the main properties of the 
given dynamics x(i). 
Now, in order to stabilize a periodic dynamics, we first need to extract the 
periods of the UPO's embedded in the chaotic motion [2]. 
We consider the maps rn+k vs. rn, k > 2. If the r.m.s. 77 of the distribution of 
points around the diagonal is plotted against the step interval k, the function 
increases, since the selfcorrelation of a chaotic signal lasts only for a finite time. 



In fact, the chaotic trajectory visits phase space regions corresponding to ne- 
ighborhoods of different UPO's. During the time in which the trajectory comes 
close to a generic UPO of period Tj, temporal self correlation is rebuilt after such 
a period. Thus, for all kj such that kj- < r > approaches Tj (< r > being the 
average of the r distribution), the corresponding TJ vs. kj plot should present 
local minima. 
Once the periods Tj (j = 1,2,...) of the UPO's have been measured, stabilization 
of each one can be achieved when the system visits phase regions close to that 
UPO. For this purpose we modify the adaptive recognition algorithm as follows. 
At each new observation time tn+1 = tn + rn and for each component i of the 
dynamics, instead of Eq. (2), we evaluate the difference between the observed 
and the desired values: 

6xi(tn+1) = Xi(tn+1) - Xi(tn+1 - Tj). (6) 

The local variation rates A's are now redefined as 

while Eqs. (4,5) are kept for the updating process of r's. 
Finally, we define Ui(t) as the ith component (constant over each observation 
time interval) of the perturbing vector U(i) as 

Ui(tn+1) = (xi(tn+1 - Tj) - Xi(tn+1)), (8) 
Ml+l 

and we add such a vector to the evolution equation, which now becomes 

dx 
— = G(x,//) + U(<). (9) 

Therefore, once a given Tj has been preselected, it is the same adaptive dynamics 
which selects the correction terms to be added in Eq.   (9).   In summary, our 
method acts in two successive steps: a first recognition task in which the periods 
of UPO's are measured and a second control task in which the dynamics is 
constrained to shadow the desired periodic orbit. 
Even though apparently similar to Pyragas' [3], our adaptive method is better 
at least in two ways.  First, the adaptive nature of the forcing term (Eq.   (8)) 
which is inversely proportional to the time intervals and hence is weighted by 
the information extracted from the dynamics itself.   Second, while in Ref.   3 
the control is readjusted at each computational time step, here interventions 
are done at the intermediate time scale, thus reducing the computational or 
experimental effort for the control task. 
Work partly supported by EEC contract n. CI1*CT93-0331. 
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A great deal of attention has been paid in recent years to develop algorithms to convert the dynamical 

system from chaotic to periodic motion [1]. The algorithms are based on the fact that small changes 

applied to chaotic system can suppress and eliminate chaos. The different techniques in controlling chaos 

can be (mainly) classified in two categories: feedback and nonfeedback. Feedback techniques [2, 3] are very 

powerful and proved to be very efficient in different systems. In particular, the Occasional Proportional 

Feedback technique [3], has been successfully applied to control chaos in multimode solid state lasers 

[4]. The nonfeedback techniques have not been so actively studied, and are poorly understood and more 

challenging. The essential advantage of nonfeedback techniques lies in its speed; no on-line monitoring 

and processing is required. This speed makes them especially promising for controlling systems with many 

degrees of freedom, such as fast electro-optical systems, superconducting Josephson junction arrays, and 

hydrodynamical systems. Numerical and analytical studies of single a Josephson junction [5], Duffing 

oscillator [6], and Rossler model [7] are representative examples of the use of small periodic drive to 

stabilize chaotic system. Nonfeedback techniques have also been applied to stabilize the dynamics of a 

non-autonomous loss-modulated single mode CO2. [8] 

We numerically study the stabilization of periodic orbits in a multimode solid state laser by using small pe- 

riodic perturbations of a externally controlled system parameter. The dynamics of a multimode Nd:YAG 

(neodynium doped ytrium aluminium garnet) laser with an intracavity KTP (potassium titanyl phos- 

phate) frequency doubling crystal can be modelled in terms of the rate equations for the intensity Ik and 
Gk associated with each mode [9] 

rjk    =    (Gk-a-geIk-2eY,t1kjIj)h (1) 

TfGk    =   p-(i + /i + /?^/i)Gt (2) 

where N is the number of modes and k = 1,..., N. Here rc is the cavity round-trip time (0.2 ns), TJ is the 

fluorescence lifetime of the Nd3+ ion (240 //s), a is the cavity loss parameter (assumed to be the same for 

all the modes, a = 0.01), p is the small signal gain, which is related to the pump parameter and g = 0.1 

is a geometrical factor dependent on the phase delays due to the YAG and the KTP crystals and on the 

angle between the YAG and KTP fast axes, e is the nonlinear coefficient associated with the conversion 

efficiency of the fundamental intensity into doubled intensity by the KTP crystal (c = 5 x 10~6). ß is the 

cross-saturation parameter related to the competition among the different longitudinal modes (assumed 

to be the same for all the mode pairs ß = 0.65). The coefficients fijk depend on the mode polarization. 

Each cavity mode can be polarized only in one of two orthogonal directions; njk = g if modes j and 

k have the same polarization and pjk = 1 - g otherwise. We consider the case with three modes, two 
polarized in the one direction, and one in the orthogonal direction. 



Increasing the pumping p; then the system evolves from a stable steady state to periodic and finally 

to chaotic behavior with one positive Liapunov exponent. To achieve stablization we perform small 

amplitude modulations of the losses a = ao(l + »i sin(utf)). Numerical simulations show that very small 

modulation amplitudes have a dramatic effect on the dynamics. Depending on amplitude and frequency, 

the applied modulation can either increase the chaos or eliminate it. Fig. 1 shows the value of the 

leading Liapunov exponent as function of loss modulation amplitude for u = 166 ms-1. Stabilization is 

possible for some small values of the modulation amplitude. For large modulation amplitudes, leading 

Liapunov exponent is higher that in absence of the modulation, thus, the amount of chaos in the system 

is increased. 

For different amplitude and modulation frequencies it is possible to stabilize different kinds of orbits, 

with the different modes oscillating periodically in a symmetric or an assymmetric way. Also, for some 

frequencies of modulation, one can obtain short periodic peaks (with large peak intensity) separated by 

long periods of very small intensity at each modes. The pulses of each of the modes alternate showing 

an antiphase behavior with one pulse emitted at each period of the modulation for the losses. 

P.C. acknowledges finacial support from the Comisiön Interministrial de Ciencia y Tecnologia, Project 

No. TIC93/0744. Y.B. work was supported by the Office of Naval Research, through contract N00014- 

91-J-1257. 
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Fig. 1. Leading Liapunov exponent Xi as function of c*i for QQ = 0.01 and p = 0.03. 
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The use of a system's natural dynamics to force the system into a desired unstable state and thus 
achieve control offers an advantage over classical control methods. By applying small amplitude 
feedback to a readily available system parameter so that the system evolves towards the desired 
state, difficult or costly modifications to the system that alter its dynamics are unnecessary. This 
idea is apparent in a method to stabilize periodic orbits originated by Ott, Grobogi and Yorke 
(OGY)[l]. They used linear control theory and feedback to an available system parameter to direct 
the system to the stable manifold of the unstable state. Ideally, control could then be turned off 
as the natural dynamics along the stable manifold continued to contract the system towards the 
desired state. 

A limitation of the OGY control method occurs in high-dimensional systems where control 
perturbations induce transients off the stable manifold that hinder the effectiveness of the method. 
It is interesting then that a related scalar control method called occasional proportional feedback 
(OPF)[3] has been successful in controlling the steady state and periodic orbits of a multimode laser, 
which is a high-dimensional system [4] [5]. However, the OPF feedback method also requires the 
careful tuning of additional experimental parameters. In particular, the laser control experiment 
requires adjustment of control perturbation pulse width. This observation motivated us to develop 
a control method that explicitly uses the duration of time the control signal is applied, called control 
duration, as an additional feedback parameter to control steady states in high-dimensional systems 
[6]. An important difference between OPF and our method is that while in the case of OPF the 
control pulse width is fixed, we use the pulse width, or as we call it, the control duration, as an 
additional feedback parameter. 

We have appUed our method to the control of the model for a multimode Nd:YAG laser with 
an intracavity KTP crystal. This laser system is designed to convert infrared light to visible green 
light via frequency doubling. However, for moderate pump powers the steady state laser output 
undergoes a Hopf bifurcation and for higher pump powers exhibits chaos. 

Fig. 1 shows the controlled steady state for approximately 40 ms, during which time there 
have been two-hundred control pulses. Control is then turned off so that the system evolves to 
splay-phase oscillations characteristic of the multimode laser. Specifying the duration of time for 
which control was activated as qTnat, where T^ is the natural period of the system, each control 
pulse lasted less than Tmt, so that q < 1. During the simulation shown in Fig. 1, it was found 
that q € (0.997,0.014), the mean value was q = 0.384, and the standard deviation was <rq - 0.263. 
The fact that there is a low variance in q suggests a possible contributor to the success of the 
experiments using OPF when the control duration was held fixed. 
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Figure 1: 7 is related to the pump intensity of the laser and serves as the feedback parameter. The 
laser is controlled for approximately 40 ms at which time the feedback control is turned off and the 
system evolves to splay-phase oscillations. 
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ABSTRACT 

Periodically modulated lasers exhibit cascade of period doubling 
bifurcations which have been studied experimentally [1,2], numerically [3,4] 
and analytically [5,6] . 

A comparative study between experimental and theoretical predictions 
requires informations on the unstable branches of periodic solutions. 
Stabilizing unstable orbits using feedback control methods became quickly an 
objective for several laboratories [7]. Chaotic outputs have been controlled 
on a NdrYAG laser [8], an Ndtfiber laser [9], on a CO« laser [10] and on a 

NMR laser [11] but the actual mechanisms leading to successful 
stabilizations of unstable orbits are still unknown. The main objective of 
this paper is to show that stabilization is realized by moving the period 
doubling bifurcation point above which a particular branch of solutions is 
unstable. 

Specifically, we consider a periodically modulated CO- laser controlled 

by delayed continuous feedback and investigate the stability of the Period 1 
solution analytically, numerically and experimentally. We model the laser by 
the following dimensionless equations for the intensity I and the inversion 
of population D: 

g - 21[AD - 1 - k(t)], (1) 

jjj: - 7[1 - D(l + I)]. (2) 

Time t is measured in units of the cavity lifetime. A - 0(1) is the pump 

parameter and 7-0(10" ) is the ratio of the population inversion 
relaxation rate to the cavity damping rate. k(t) is the additional loss term 
containing the modulation and the feedback terms: 

k(t) - mcos(wt) + a(I(t) - I(t - r)). (3) 

The parameters m and w  are the amplitude and the frequency of the periodic 

modulations, respectively, a and r - 2™"1 are the amplitude and the delay 
of the feedback loop, respectively. 

Assuming a and m small, we seek an asymptotic solution of Eqs. (l)-(3) 
of the form 

I - IQ « (Cexp(iwt) + c.c.) + (Dexp(iwt/2) + c.c),     (4) 



■2- 

where IQ - A - 1, and determine equations for C and D. We analyze these 

equations and obtain the stability boundaries for the Period 1 and Period 2 
solutions. Figure 1 compares the exact numerical (dotted line) and 
approximate (full line) of the stability boundary for the Period 1 solutions 
(i.e., the period doubling bifurcation points m - m_ (a); the values of the 

fixed parameters are A - 2, 7 - 4.17 x 10 and w - 2.01 x (2I07)
1//2). 

Stabilization of a Period 1 orbit at a fixed value of m is realized because 
the period doubling bifurcation point mpD increases as a  increases. However, 

below a critical negative value of a (vertical line in Figure 1), the laser 
exhibits a new instability leading to quasiperiodic oscillations. 
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Time series analysis has developed into a powerful tool for the study of low-dimensional 
chaotic systems. Various algorithms to estimate attractor dimensions, Lyapunov exponents, etc. 
have been widely discussed. Surrogate techniques are now established which provide a degree 
of safety against spurious results that can lead to false interpretations. However, these 
techniques are usually limited to very low-dimensional'systems. Turbulence, i.e. a situation 
when both temporal and spatial degrees of freedom undergo chaotic dynamics, is notoriously 
difficult to analyze in terms of time series. 

We will discuss an optical system that develops in a chaotic fashion temporally. At the same 
time, there are spatial degrees of freedom which can, and do, lead to the formation of spatial 
structure, be it stationary, or periodically or nonperiodicalry evolving. 

The experiment consists of a fiber optic ring resonator, where the optical Kerr effect in the fiber 
provides a nonlinearity. Such a system was first discussed theoretically by Dceda and predicted 
to be chaotic III. In our experiment 121, the resonator is synchronously driven by a train of 
picosecond pulses. We use single mode, polarization-preserving fiber, and either a color center 
laser or an additive-pulse mode-locked Nd.YAG laser as a light source. There are clean 
indications that an intricate substructure is generated in the pulses emerging from the resonator. 
On the other hand, standard photodetectors can only record the total energy per pulse so that 
much of this stmcture is washed out in the detector signal. Nevertheless, we work with these 
data in our time series analysis. 

It is most remarkable that in the case of a true single mode fiber, all spatial degrees of freedom 
are in just one spatial dimension - the direction of propagation of the light. We can therefore 
speak of a longitudinal instability leading to one-dimensional turbulence. (It is also conceivable 
to add transverse degrees of freedom through choice of multimode fiber). 



Group velocity dispersion in the fiber plays a role analogous to diffraction in the transverse 
plane, and thus controls how intricate the self-generated structures in the pulses can get. (The 
analog}' between dispersion and diffraction is stretched a little, however, when one realizes that 
there can be dispersion of either sign, and also higher order dispersion). In a sense the number 
of spatial degrees of freedom can be selected through adjustment of dispersion. In the 
experiment we can choose the second order dispersion between about -25ps2/km and 
-10ps2'km. In particular, we can tune around ß2 = 0 where higher order dispersion (ß3) 
becomes prominent. 

Part of the information about the formation of structure can be extracted successfully from the 
experiment, in spite of the ultrashort time scales involved. Nevertheless, the full information is 
only accessible through detailed comparison with a computer simulation. Some interesting 
aspects about the formation of structurein the pulses, evident from simulations, will be 
discussed. 

We ventured to run time scries analysis of long strings of pulse energy measurements, recorded 
with state-of-the-art digitizing oscilloscopes. It turns out that with the use of certain extensions 
of the dimension concept the varying degree of complexity obtained through variation of 
dispersion can be seen quite clearly. In particular, the cases of anomalous and normal dispersion 
(soliton vs. non-soliton regime) are markedly different We will present the first results which 
are already very encouraging for further research. 

'1 /       K. Deeds, Opt. Comm. 30. 257 (1979) 
!2!        G. Steinmeyer, D. Jaspert, F. Mitschke, Opt. Comm. 104, 379 (1994) 
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Summary 

The spatial and spatio-temporal phenomena emerging in the transverse structure 
of the electromagnetic field, due to the coupling between diffraction and the non- 
linearity of the medium, have attracted a lot of attention in recent years [1,2]. 
Modulational instabilities in passive systems with a cavity have been investigated 
widely and pattern-forming phenomena have been predicted and observed [2]. 
As it already occurred in the history of nonlinear optics, Kerr media driven by 
homogeneous external fields have been an ideal exploration land and, in fact, the 
existence of stationary modulational instabilties were readily discovered theoret- 
ically [3]. Further studies [4] proved the existence of a bifurcated branch where 
the stable emission profile of the field is a stationary hexagonal lattice. With an 
appropriate choice of the control parameters, this bifurcated branch can be made 
coexistent with a low transmission, homogeneous stationary emission. Under this 
operational condition, the system can realize also stable field patterns in which 
hexagons coexist with the homogeneous solution ; this phenomenon corresponds 
to what in other fields of physics were called localized structurea{lS)\5\. The pos- 
sibility of LS in a bistable optical system has been predicted in [6]. 
The occurrence of islands where a modulation (e.g. a single intensity peak of the 
hexagonal lattice embedded into the homogeneous background), is present imme- 
diately suggests the possibility of encoding information in the emitted transverse 
field profile of such a system, by 'writing' or 'erasing' the LS by acting on the 
profile of the driving field [7]. 

In this presentation we start considering a ring cavity with plane mirrors with 
a Kerr medium, as it was modeled in [3], where the governing equations for the 
emitted field include diffraction via the Laplacian operator and the critical param- 
eters are the detuning 6 , its amplitude Ein and the cooperativity parameter C . 
We find that the bifurcated branch extends over a wide range of values for the 
homogeneous input field J5,n where a homogenous solution is also stable (corre- 
sponding to the lower branch of the plane wave steady state curve). 
The process of encoding a high intensity dot is achieved by injecting an inhomo- 
geneous field Ein{x,y) having a 'hot spot' in that point of the transverse plane 
where the dot is to be emitted. The system excites a LS corresponding to one 
single peak (equal to those in the hexagonal lattice) at that point and sustains 
this modulated emission even when the 'hot spot' in the injected field is removed 



and its profile is brought back to homogeneous . As many dots can be written 
in the transverse plane as one wishes, provided that they all remain independent. 
This is accomplished by exciting the dots at a distance larger than a minimum 
separation dc which is on the order of the critical wavelength corresponding to 
the bifurcated lattice; when excited at a smaller distance the two dots will interact 
and in particular will annihilate when close enough. 
This provides the mechanism for erasing a dot at any given location (x,y) in 
the transverse plane: the injected field is modified so to present a 'hot spot' at 
(x',yr) (where the distance must be smaller than dc) so that the original dot is 
annihilated. Then the profile of the driving field can be reset as homogeneous 
. Preliminary results from simulations on a saturable nonlinear 2-level absorber 
(the same model used in ref.8) seem to confirm the validity of this scheme: the high 
intensity peaks can still be excited as independent individuals as far as they are 
'written' sufficiently far apart; while trying to excite a dot closer (than a certain 
critical distance) to an existing one can result in annihilation of both elements. 
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In this paper we study the input-output characteristic of a fractal nonlinear optical 
Fabry-Perot resonator. The ID dielectric integrated resonator is obtained alternating 
two nondispersive planar dielectric layers of unperturbed refractive index «2 and nj 

{n2 > «,) of thickness such that their optical path is the same. The initiator is the layer 

of refractive index /ij. IfZ- is the optical path of the initiator, the generator is obtained 
substituting the central part of the initiator having an optical path ofZV3 with the layer 
of refractive^ index w, and thickness such that the optical path is L/3 again. The 
resonator is obtained iterating the operation on the left and right third optical path, and 
stopping the iteration at the N-th step. 
We consider the resonator embedded between two equal semi-infinite nondispersive 

layers of refractive index « less than both «2 and nj. The incident light is assumed to 
be a plane TE wave with normal incidence. The transmission properties of this linear 
resonator have been just studied [1, 2], by using the transfer matrix formalism . The 
isolated transmission peaks in a forbidden frequency gap [1,2] suggest the possibility 
of obtaining optical switching at low threshold intensity. In the case of a nonlinear 
device we have therefore studied the same resonator with the layers of refractive index 
«2 made by a Kerr-type medium. As a consequence, the transmitted intensity is a 
nonlinear function of the incident one, at a given e.m. frequency . The calculations of 
the transmitted intensity versus the incident one are based on a generalization of the 
dummy method [3]. In order to evaluate the nonlinear behaviour of the resonator, we 
consider the wave nonlinear phase shift due to the propagation in one nonlinear layer 
as follows [3] 



(P^=3^OY/0
51KI2+W2V' 

where k0 is the vacuum wave number, y is the Kerr coefficient of the nonlinear layers 

whose refractive indices are given by n^ = nm + y|£|2 (m = 1,2 depending on which of 

the two basic dielectric layers is the nonlinear one), 5h, ah, bh are the geometrical 
thickness, the forward and backward waves amplitudes respectively of the h-th 
nonlinear layer. The material's losses are taken into account by considering complex 
refractive indices. Multistage behaviour has been found, with switch input power 

depending on which of the two basic layers (of linear refractive index w,or w2) is 
nonlinear. The considered resonator shows a reduction of the input switch power, if 
compared with the analogous periodic structure.  A comparison with nonlinear 
interferential filters is also presented . 
The simulations show that it is possible to have a multistable behaviour with a 
relatively low first switch threshold. 
The spatial field profile inside the structure is also calculated. 
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ABSTRACT 

We study the nature of the instabilities which arise in the Maxwell-Bloch 
system where an adiabatic approximation is made by which the polarization 
follows the field. Moreover, a retarded-time integration is performed and the 
system is placed in the setting of an optical resonator containing a nonlinear 

1 



element.  With this, one can construct a pair of coupled differential-delay 
equations for the scaled field and the scaled population inversion.   Of the 
various limits in which the latter can be examined, the dispersive, or Kerr, 
limit forms the backdrop for this study.   Indeed, several limits have been 
considered. Following the work of Ikeda, as well as others, one can take the 
limit of fast longitudinal relaxation and weak feedback fraction and derive a 
real, non-invertible map for the intensity in which time develops discretely 
in integer steps of the cavity transit time. This mapping can be shown to 
display an intermittency route to chaos by the same mechanism seen in such 
cases as the logistic map. This mechanism can be most easily appreciated 
by considering a particular instance of its occurrence - the period three solu- 
tion. The period three and all odd periodic cycles come about by an inverse 
tangent bifurcation.   In our work, we allow for a non-negligible feedback 
fraction in developing the backdrop for creating methods for the study of 
multiple element systems, where relaxation and delay times may be compa- 
rable.  With the limit of fast relaxation not enforced, the evolution of the 
differential delay system is considered in the presence of white noise.  The 
most interesting behavior appears to occur in chaotic regions which are being 
stochastically perturbed. The characterization of this behavior can be sought 
in the transitional nature of the correlation dimension. In our computational 
work, we consider a highly accurate integration scheme that is applied to en- 
sembles of initial conditions to assure minimal contamination from round-off 
errors.  Finally, a description is also discussed in terms of the properties of 
the probability density function of the motion. 
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Triply resonant OPOs (TROs), in which the signal, idler and pump modes are 
simultaneously resonant in the optical cavity, are of great interest if one wants to obtain very 
low pump power oscillation thresholds in the c.w. regime, that can be reached for example by 
semiconductor single mode lasers. Such c.w. OPOs have a high frequency stability and can be 
used to inject high power pulsed OPOs for spectroscopic applications. 

OPO 
output 
intensity 

lmW 4 

Figure 1 

0 Pump intensity 80 mW 

We have built a "semi-monolithic" OPO, made of a 1 cm long KTP crystal with flat ends, 
that is anti-reflection coated on one side and has a multidielectric coating on the other side 
(finesse of 45 for the pump beam, and about 103 for the signal and idler modes), pumped by a 
single mode c.w. frequency doubled YAG laser. The minimum observed oscillation threshold 
was 0.6 mW. Figure 1 shows the variation of the OPO signal or idler intensity as a function of 

pump intensity. One observes(1) a hysteresis loop characteristic of bistability, which is in very 

good agreement with the theoretical curve obtained from(2) (parabolic curve in figure 1). At 

high pump powers, of the order of 100 mW, we have also observed a self-pulsing behaviour of 
the OPO. 
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Figure 2 shows the variation of the OPO output power when the pump power is swept 

linearly with time, in conditions where no Instability occurs in the steady state regime. When 

the pump intensity increases, the system crosses the oscillation threshold 1^ but does not start 

oscillating, until it reaches a value 1^, where it switches abruptly to a non zero output intensity. 

On the contrary, when the pump intensity decreases with time, the OPO output intensity 

decreases smoothly with time, and the system follows a curve which looks similar to what is 

obtained in the steady state regime. One thus observes in this regime a delay to oscillation, of 

the order of 4 us, i.e. very long as compared to the characteristic build-up times rMV of the 
intracavity intensity, either for the pump mode (t^ = 2ns), or the signal and idler modes 

(tcav =*60ns). Such "delayed bifurcations" have been first theoretically predicted*3', and have 

been observed so far in optical systems only in C02 and Ar+ lasers. Using a model derived from 

<3>, we have obtained a very good agreement between experimental and theoretical curves. 

In this kind of system, there is an interesting interplay between dynamical behaviour and 

quantum noise : on the one hand, the quantum noise is responsible for the starting of the OPO. 

Its characteristics influence the transient behaviour of the system and the onset of delayed 

bifurcations. On the other hand, the pump field reflected by the TRO can be squeezed, and the 

regions of significant squeezing are found close.to the bifurcations points connecting the 

different dynamical regimes. We are presently studying the quantum noise properties of this 
device. 
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The work is devoted to investigations of an light interac- 

tion with a system consisting of a thin film whose length is 

much less than an input wavelength and a feedback mirror. It is 

known, the thin film itself displays an optical bistability due 

to a creation of a necessary nonlinearity by both a superradi- 

ance and a Lorentz defined local field effect /l/. The presence 

of an additional reflecting surface (when.for example.such film 

is put on a dielectric substrate) provides one more feedback 

mechanism. It increases the dynamic range of bistability and 

can lead to selfpulsings of the transmitted field/2.3/. The 

considerations of this problem, as rule, take into account the 

superradiance only, suppose the resonance tune of the light 

field frequency to the centre of absorption line of the film 

(absorption bistability) and very short times of relaxations 

processes in comparison with a delay time in the feedback loop. 

At present work we have studied a role of both the local field 

and superradiance in the instability appearance. The influence 

of a detuning of the input field frequency has been analysed. 

The special attention has been concentrated on the delay effect 

connected with a finiteness of the time of the light passage 

from the film to the mirror as well as on the phase displace- 
ment arising in the feedback loop. 

The analysis of the thin film element has been carried out 

in the framework of the two-level approximation. The differen- 

tial difference equations have been formulated on the basis of 

Bloch equations /l/ taking into account the external delayed 

feedback. In the parameter space, domains with different orders 

of instability of the system's steady state have been derived. 

In the instability domains the structure of arising pulsations 



has been investigated. Bifurcations taking place with changing 

the delay have been retraced. Mechanisms of the pulsation ap- 

pearance and their chaotization have been elucidated. 

As a result, the routes for control of the light transmis- 

sion of the system have been found out. In particular, we have 

determined a change in the dynamic range of bistability because 

of a change in the phase displacement in the feedback loop. We 

have shown that by an increasing of delay the bistabilty cha- 

racter can be changed: the bistability state can include a 

stable steady state and stable pulsations instead of two stable 

steady states. Such increasing can also lead to the change in 

the transmission behaviour from the bistability to regular or 

chaotic pulsations. 

It has been shown that the structure of pulsations in the 

main depends on the ratio of longitudinal and transverse rela- 

xation times and on the delay time in the feedback. If the ra- 

tio is more bigger than unity, an increase in the delay results 

in the change of pulsation shape to asymptotically rectangular 

pulses whose duration closed to the delay. The pulsations deve- 

lop due to the same reasons that the bistability takes place 

when there is the phase displacement in the feedback loop. The 

domains of their existence have only a lower boundary on the 

delay. At the certain value of input field the pulsations are 

destabilized. When the longitudinal relaxation time is close to 

the transverse one approximately harmonic pulsations arise in 

limited intervals of the delay. Their appearance is connected 

with the excitement of Rabi oscillations. With increasing the 

input field the sequence of the pulses periodically invert the 
population of levels of the film. 

The revealed properties of the light transmission of thin 

film with mirror extends scope for the use of such device for 
the control of light. 
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The interest to the investigation of the features of the radiation propagation in a periodically 
modulated nonlinear media is stimulated by the prospects of using such media ("nonlinear" 
gratings) in optical fibre communication lines, to get subshort durations pulses and so on. The 
different nonlinear effects, such as bistability [1], self-pulsing and chaos [2], formation of the 
solitons [1,3,4] and so on arise under the radiation propagation in the "nonlinear" gratings. The 
above mentioned effects are predicted in assumption of the medium instantaneous nonlinear 
response. So, that appeared characteristic nonstationary phenomena are connected with the 
radiation propagation prosess, i.e. with the wave nonstationarity. 

In this report the radiation propagation in a periodically modulated medium with the relax- 
ing cubic nonlinearity is investigated for the first time. An equations for the counterpropagating 
waves amplitudes were obtained and their analytical solution under the low distributed feedback 
(DFB) approximation was shown. It is determined, that the nonstationary energy exchange 
(NEE) between the power forward wave and the low backward wave can take place because of 
the phase mismatching of interference picture of electromagnetic field and light-induced grat- 
ing. We made a numerical modelling of the equations obtained for the arbitrary values of the 
coupling coefficient k, Bragg detuning A and the input pulse parameters. The dynamics of the 
regular temporal modulation of continuous radiation [5] in dependence of relation of the radi- 
ation trip time through the medium to the time of relaxing of the nonlinear medium response 
(parameter /i = L/ctQ) is investigated. 

The equations for the normalized counterpropagating waves amplitudes in the problem 
under consideration are 

ftp       i ftp ' (       * t 

±17+78. " «f**"*+ ie'""{^ J W"**+«f / ft«?/**}, 

f"T P2 cl^l+JM' E± = J****'* = w/c,n, > 0, and the boundary conditions are 
MÜ>T) = CO(T),£_(£,T) = 0. 

In approximation of the low DFB (kL < 1) if assuming that (J0 + |A|)L < 1 the next 
expression for the reflected wave intensities followed from obtained equations 

l_(0,r) = (u^Ji _ g[(A _ 3Jo)2 + /(T>/o)] Jf 

in which 

f(r, Jo) = 3/0e-r [2A - 70(2 + e"T + AT)] , 

where I0 = Jft|» = const at r > 0. It is obviously, that in the region f(r) < 0 the sluggishness 
of the medium nonlinear response leads to the increasing of the low refclected wave which is 
caused by the NEE between the waves on the light-induced grating phase-mismatched by the 
radiation [6]. In particular for A = 3J0, f(r) < 0 in the region r > 0.9. In this case the low 
wave maximum amplification is reached at the time moment r0 = 2. 



The basic chaxacterictics of the output pulses in dependence of the "nonlinear" grating 
parameters and gauss-form input pulse £,'(r) are investigated with the help of the numerical 
modelling of the system of equations obtained. The regularities of the passed pulses temporal 
modulation are discussed. 

We investigated the regime of the radiation temporal modulation in the "nonlinear" grating 
[5] in dependence of the parameter /* in the case of the J0 = const. The results of the numerical 
modelling at A = 0,kL = 2,J0 = 2 are shown on the Fig., from which one can see, that 
the frequency of the appeared pulsations of the passed radiation I+{L,r) increase with the 
ßt increasing. The stabilization of the modulation frequency corresponding to the case of the 
sluggishless nonlinearity [5] occur at y, > 30. 

So, the "nonlinear" grating can be used as a continuous radiation modulator with the 
certain frequency, which depend of the relaxation time of the nonlinear medium response. The 
transformation of the continuous radiation to the train of the short stable pulses of any duration 
can has a practical interest for the various devices of the quantum electronics and integral optics. 
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Pattern formation in lasers and associated space-time dynamics in the output of a laser beam are 
problem of growing interest in recent years. Many of the nontrivial features including phase singularities, 
and regular pattern dynamics are investigated [1]. However, most of the theoretical models are restricted by 
the limitations of single longitudinal mode and small field variation on a round-trip in a laser cavity, which 
are valid for a small gain medium and a cavity with near-flat mirrors (generalized 'mean field limit'). In this 
paper we present some results of numerical simulations of transverse dynamics in a laser with high round-trip 
gain and arbitrary cavity configuration including near confocal or concentric cavities in the approximation 
of fast-relaxed medium with homogeneously broadened gain line. Therefore, the effect of active medium can 
be described through a nonlinear susceptibility. The comparison of the results of 'mean field limit' theory 
with these results allows to underline the net effect of transverse field structure on laser dynamics. 

The numerical model include the solution of initial problem for the paraxial wave equation in the 
active medium: 

2idE(z, r)/dz + V\E = (6 + i)E/{\ + 62 + \E\2), (1) 

^ where 6 is the normalized detuning of carrier frequency of the slowly varying electric field envelope 
E(z, f, t), z is the axial coordinate, r = (r, tp) are polar coordinates, g is the unit-length gain. This equation 
was solved numerically using of the step-splitting method. The modal decomposition in terms of Laguerre- 
Gaussian modes of empty cavity was used at the diffraction step without of the restriction of axial symmetry. 
More than 200 modes TEMm>n>t} were included into consideration with radial and azimuthal indices n < 10 
and m < 9, respectively. 

To complete the field transformation in empty-space part of a cavity and transformations on intra- 
cavity elements the corresponding modal amplitude transformation were included. Thus the multidimen- 
sional mapping for transverse scalar field was obtained. It should be noted that the temporal behavior of 
the field within round-trip temporal interval does not vary from one round-trip to another owing to the 
lack of second-order dispersion in the equation (1). It may occur in pulse laser with actively or passively 
compensated pulse spreading or in lasers with small numbers of longitudinal modes. Thus the results will 
be the same for both small and great numbers of longitudinal modes. Obviously, the mapping dynamics 
represents the actual dynamics of laser output at the temporal interval from round-trip time to infinity. 

The cavity configuration of unidirectional symmetric ring cavity with one spherical mirror and gaus- 
sian aperture [2], [3] was used in numerical experiments. Starting with standard set of initial values of modal 
amplitudes after some thousands round-trips the dynamical regimes were recorded and analyzed. The cavity 
detuning characteristics was of special interest in the paper. 

As previously, we have observed the deformed modes (cooperative frequency locking) with stationary 
amplitudes, some locking regimes when transverse mode beat frequency coincides with subharmonics of c/L 
The diagram of the dynamics regimes in the case of zero detuning in the plane of G (round-trip gain) and 
F (mirror focal power) is shown in the Fig.l, presenting the region of zero intensity StO, threshold curve 
region of the stationary regimes with nonzero intensity St, bifurcation curve of power oscillation appearance' 
and the region of quasipenodic oscillation of output power QP. The pattern evolution in the narrow locking 
regions nT, n = 2,3,... corresponds to colliding and repulsing maxima, while in the regimes of quasiperiodic 
oscillation the pattern rotates with angular velocity approximately proportional to the transverse mode 
spacing. The mean radius of the pattern also oscillate with a doubled period. At moderate values of the 
gain the pattern dynamics corresponds to the evolution of the linear sum of empty cavity modes (Fig  2a) 



with the modal amplitudes slowly varying within the mode-beating period (Fig. 2b, the dependencies of the 
intensity of TEM00q, TEMi0q, and total power W from round-trip number are shown). The increase of the 
gain leads to more complicated pattern with arising valleys (Fig. 3a), while the modal amplitudes begin to 
oscillate (Fig. 3b). 

We have observed that the width of locking region increased essentially in the case of nonzero detuning. 
In the Fig. 4a,b the patterns, corresponding to 6 = irrespectively, at G = 2.2 and the same value ofF are 
shown. As the period-2 oscillations of power exist in this regimes, both pictures of consequent round-trip 
are shown, demonstrating the drastic differences among the pictures corresponding to different values of 
detuning. 

This work was supported by the Commission of the European Communities under ESPRIT Contract 
P9282-ACTCS, EU-Russia Collaboration, and ISF grant NS4000. 
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The logistic map has been used to describe period doubling 
bifurcations for periodically modulated lasers. It also represents 
an asymptotic approximation of Ikeda's map for a passive ring 
cavity. Because various control methods have been used recently 
to stabilize branches of periodic solutions in lasers, we investigate 
the logistic map with a standard Ott, Grebogi and Yorke (OGY) 
control. We explore the structure of this map plus perturbations 
and find considerable modifications to its bifurcation diagram. In 
addition to the original fixed points, we find a new fixed point and 
new period doubling bifurcations. We show that for certain values 
of small perturbations the new fixed point of the perturbed logistic 
map is stable, while its original fixed point becomes unstable. 
Our analysis suggests that new branches of solutions may exist in 
lasers as a result of the feedback control. 

I. INTRODUCTION 

Experimental observations of cascading period doubling 
bifurcations in periodically modulated lasers [1,2] have been 
compared to the bifurcation properties of simple maps such 
as the logistic map. Although the logistic map has not been 
derived from the original laser equations, essential features 
of the experimental bifurcation diagram has been explained 
by contrasting experimental and theoretical bifurcation di- 
agrams [2]. This includes predictions of the harmonic cas- 
cades, the inverse cascade, and the universal sequence. More 
recently, period doubling cascades in lasers have been fur- 
ther investigated experimentally by using a variety of con- 
trol methods [3,4]. The main objective of these experiments 
is to stabilize branches of unstable periodic solutions so that 
a complete understanding of the laser dynamics is possible. 
Because these methods are motivated by local arguments (a 
shift or the elimination of a bifurcation point responsible for 
the change of stability of a specific periodic solution), the 
question has been raised whether the control method may 
induce new branches of solutions. 

In this paper, (see also [5]) we investigate this problem 
by studying the logistic map with the standard OGY algo- 
rithm and explore the bifurcation properties of the resulting 
perturbed map. The Ott, Grebogi, and Yorke (OGY) [6] 
control method was developed to stabilize unstable periodic 
orbits by introducing a feedback on an accessable control pa- 
rameter. It was later successfully applied experimentally in 
chaotic lasers [7] and both experimentally and theoretically 
in a host of other chaotic systems. 

The OGY algorithm perturbs a map locally about an un- 
stable fixed point xp■ Considered as a map in its own right, 
the OGY perturbed map also has xp as a fixed point. How- 
ever, new fixed point(s) are created as well. Typically, these 
newly created fixed points lie outside the local region in 
which the OGY perturbation is applied. However, in cer- 
tain cases these new fixed points may lie close to the original 

fixed point and can even swap stability with it. Although 
this latter phenomenon can occur more generally in other 
maps, in this paper we will demonstrate this effect in the 
case of an OGY peturbed logistic map 

xn+i = F(xn,a) = ai„(l - z„). (1) 

The logistic map is shown in [5] to be a local approximation 
of the Ikeda map [8] 

Xn+i =a[l-£sin(X„)] (2) 

where Xn is proportional to the field intensity in a ring laser 
cavity containing a nonlinear dispersive medium. 

II. THE LOGISTIC MAP AND THE OTT, GREBOGI 
AND YORKE CONTROL METHOD 

The logistic map Eq. (1) is a one dimensional map which 
becomes chaotic when the the control parameter a exceeds 
a critical value, ac = 3.569946. It admits two fixed points 
given by x{^ = 0 and xF = x£2) = 1 - a-1. The slope of the 
map at the zero solution xi ' is given by dF/dxn | _ (i> = a 
and, therefore, is stable for 0 < a < 1 and unstable for 
a > 1. At the nonzero fixed point xF the map has slope 
dF/dxn\Xn=XF = 2 - a. Thus xF is a stable fixed point for 
|2 - a| < 1 or 1 < a < 3 and unstable for a > 3. 

Ott, Grebogi and Yorke [6] observed that the set of unsta- 
ble fixed points are dense in a chaotic at tractor. By using 
simple control techniques, they realized that the unstable 
periodic orbits embedded in the chaotic attractor could be 
stabilized. The OGY control formula is derived by requiring 
6xn+i = xn+i — xp —► 0 as the result of a specific perturba- 
tion 6an. For the logistic map Eq. (1) this yields (at xF) 

t dF/dxn . a2(a - 2) r 
*«n = —ZZTTT- 6xn = —*—r-L Sxn = ß0(a) 6xn     (3) dF/da a-1 

Let us now consider the new map Fc consisting of the 
logistic map with the OGY perturbation 

Fc(xn, a, S)=[a + {/?„(<*) + 6} 6xn] xn(l - xn).       (4) 

where 6x„ = xn — xp and we have introduced an additional 
parameter 6 which controls the amplitude of the feedback. 
The introduction of the second parameter 6 is motivated by 
the laser experiments. In these experiments both the ampli- 
tude of the feedback and the main bifurcation parameter can 
be modified independently. 

For 6 = 0, the main effect of the OGY perturbations 
Eq. (3), is to locally alter the map F in the neighborhood of 
the unstable fixed point xF, so that the perturbed map Fe 

has zero slope at xF. To guarantee control of the unstable 
fixed point, it is sufficient for the slope of the perturbed map 



at xp to have magnitude less than unity. This ensures that 
the perturbed map is a contraction mapping in the neigh- 
borhood of the fixed point. The OGY algorithm, in which 
this slope is set equal to zero, represents the prescription 
for optimal control. For a fixed, maximum allowed value 
of the perturbation 8amax the extent of the change in x„, 
called the controlling region 8x, is found by inverting Eq. (3), 
8x = \6amax/ß0\. 

III. NEW FIXED POINTS 

The map Fc admits the fixed points x; ' = 0 and xp as 
well as a new one at 

^ = 1- 
a 

ßo + 8 
(5) 

Note that the fixed point XF is the same as in the unper- 
turbed map. This is obvious from Eq. (4). However, the 
slope at xp is now significantly altered. A simple calculation 
shows that at XF dFe/dxn = 8 xp (1 — xp) = 6(a — l)/a2. 

The slope at the other fixed point x» ' is given by dFc/dxn = 
a (1 - a/ß0 + 6) + (2 - ß0 + 6/a). Note that the fixed points 

x[ ' and xp coalesce at 8eri = l/xp (1 — xp) = a2/(a — 1) 
where both have slope unity. For 8 < 5cri, XF is stable and 
x[ ' is unstable. For 6 > 6cri XF is unstable and x; ' is stable 
for 6cri < 8 < 8„2, where 8„2 = a/2 (a + 3-rVc*2 + 2a + 9). 
This is depicted in Fig. 1(a). For 8 > 6er3 a period doubling 
route to chaos occurs as shown in Fig. 2, for the case 8 > 0. 
The previous discussion remains essentially unaltered for the 
case of 8 < 0. Again there is a period doubling route to chaos 
for increasing \8\, only in this case no new period 1 fixed point 
is created. 

The perturbed OGY map Fc, has an additional fixed point 
x; ', even for 8 = 0 (see Fig. 1(a)). This fixed point may 
be observed in the controlling region near xp provided 8 is 
nonzero. To this end, it is worthwhile to examine the total 
changes of the map as 8 is progressively increased from zero 
(with a fixed). 
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Fig.   1:   (a) Stability of fixed points of peturbed logistic map Fc 
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Fig.  2: xn+i vs. S for the peturbed logistic map Fc, Eq. (4). 

Figures l(b)-(d) show the local change that occurs in the 
controlling region |x„ — XJP| < 8x, where 6x is now de- 
fined by: 8x = \8amax/(ßo + 8)\ Note that the line running 
across the figures at an angle of 45° represents the bisector 
xn+i = xn. Its intersection with the return map gives the 
current fixed points. The figures have been plotted with a 
value of a = 3.785, and \8amax/a\ = 0.4, which is typically 
much larger than would be implemented in the usual OGY 
algorithm. In Fig. 1(b) 8 = 3.0; the slope at xp is less than 
unity. The maxima of Fc in the controlling region no longer 
coincides with xp and is shifting to the right for increasing 6. 
The slope at the new fixed point x; ' is greater than unity. 
However, for increasing 8, the value of x» ' increases as its 
slope decreases. At 8 = 8eri = 5.144 the two fixed points 
coalesce and both have slope unity. For 8 = 10.0 > 8cri, xp 
has become unstable and while x; ' has become stable. 

The above figures have been shown with a value of 6a/a < 
0.4. However, even in the limit of very small 8a/a conform- 
ing to the spirit of the OGY algorithm, the new fixed point 
x; can be seen. For example, as shown in [5] if we al- 
low for an OGY perturbation of no more than 5%, then for 
8 = 5.85 we find that the map locks onto the new period 1 
stable fixed point x; ' = 0.7482 instead of the now unstable, 
original fixed point xp = 0.7358. For values of 6 > 5.85 the 
stable fixed point x; ' lies outside the controlling region 82, 
while xp remains inside, yet unstable. The map Fc is unable 
to lock onto any stable fixed point and remains chaotic. 
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When multimode rate equations (RE) are used to 
model semiconductor laser dynamics, different modal 
gain coefficients describe the spectral shape of the gain 
[1], but the spectral shape of the refraction index is ne- 
glected. AM/FM coupling due to carrier density varia- 
tions is simply described by means of a Henry's a factor 
[2]. In this way, coherent couplings of the fields and Four- 
Wave Mixing effects are not fully incorporated. 

In order to include these effects, two-level models 
(TLMs) have been sometimes applied to semiconductor 
lasers [3]. However, TLMs neglect the semiconductor 
bandstructure and assume a constant energy difference 
between electronic states which leads to severe failures of 
TLMs when applied to semiconductor lasers [4]. 

Microscopic models for calculating the gain and re- 
fraction index spectra from the electronic bandstructure 
of the semiconductor have been developed [5,6], show- 
ing that, due to the electronic structure of the semicon- 
ductor, the gain peak does not occur at zero dispersion. 
However, these models are much more complicated than 
TLM and RE, and they are computationally expensive 
and strictly applicable only to CW operation or small- 
signal analysis. 

This has stimulated the search for models which in- 
corporate the main results of microscopic theories in a 
phenomenological way, while preserving the simplicity 
of the RE/TLM descriptions [7]. Here I present a sim- 
ple modification of the TLM that allows to reproduce 
the qualitative trends of the complex susceptibility of a 
semiconductor laser in the spectral regions of net gain 
[8], namely 1) Asymmetric spectral shapes of the gain 
and refraction index, 2) Reasonable dependence of these 
spectral shapes on the carrier number, 3) Maximum gain 
not coinciding with zero dispersion, and 4) Reasonable a 
values for small detunings. 

The model is based on the TLM optical Bloch equa- 
tions in the rotating-wave and slowly-varying amplitude 
approximations [9], where the evolution equation for the 
slowly varying amplitude of the material polarization is 
modified to 

dtp = l 
T2(N) + i{wo-u9(N)) 

i^-(N ~Nt+ ia0Nt)E . (1) 

where E is the slowly varying amplitude of the opti- 
cal field, wo is the carrier angular frequency, N is the 
carrier density and Nt is its value at transparency for 
wo = ug. The particular form chosen for the c*o term 
can be justified as an heuristic extension of the exact re- 
sults obtained for a two-band semiconductor system at 
zero temperature from microscopic theory.   In general, 

both the polarization decay rate T2 and its natural fre- 
quency ug may depend on both N and on Joule heating 
related to the value of J [6,10]. To simplify the follow- 
ing analysis, I assume 1/T2 = 1/7^ + r(N - Nt) and 
uig = u° + s(N - Nt)t and I define the normalized de- 
tuning $o = (w0 + w - w°)T2°. The steady-state complex 
susceptibility is then given by 

X(w) = x' + *x" = -»" 
.\fi\2T2 N - Nt + ia0Nt 

e0h l-j0 (2) 

The corresponding gain spectrum g(u) (Fig. 1) is not 
lorentzian. The frequency where we have maximum gain 
does not correspond to zero dispersion, and it increases 
for increasing carrier density [11]. The asymmetry of 
g(u>) depends only on the value of a0; the //-dependence 
of both T2 and wg affects both the frequency of the gain 
peak and the gain bandwidth but does not affect the 
spectral shape of the gain. 
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FIG. 1. Gain spectrum obtained for TT% Nt = 0.75 and 
sT%Nt = -1.2 for ao = 0.9 (solid line) and a0 = 0.7 (dashed 
line). Lines with no symbols correspond to N = 1.99JV( and 
lines with symbols to N = 1.79Nt. 

The effective a parameter, a = (dx'/dN)/(dx"/dN), 
depends on both the frequency and carrier-density, as 
shown in Fig. 2. It must be noted that, in order to match 
the measured values of a, the ./V-dependence of both ug 

and T2 is crucial, otherwise a essentially corresponds to 
detuning and hence it is too small around the gain peak. 

The Amplified Spontaneous Emission spectrum for a 
multi-longitudinal-mode Fabry-Perot laser operating in a 
single transverse and lateral mode has been calculated for 
different levels of current injection (Fig. 3), showing the 
experimentally observed asymmetric shape of the gain 
curve with the longitudinal modal resonances superim- 
posed on it [11,12]. 
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FIG. 3. Amplified Spontaneous Emission spectrum for the 
parameters in Fig. 1. The upper pannel corresponds to 
N = Nt, while the lower pannel corresponds to N = 1.99JV,. 
These results closely resemble the experimental measurements 
in [11]. 

riety of materials and situations for operation of the laser 
below threshold. 
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In summary, I have presented here a simple extension 
of the TLM which preserves its simplicity while incor- 
porating the fundamental results of microscopic theories. 
The model allows to adjust experimental results for a va- 
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The aim of this work is to study the existence of interaction properties of a 

localised field propagating in a nonlinear planar waveguide under the assumption 

that confinement is provided in the transverse dimension by a linear refraction index 

difference and that in the orthogonal dimension the nonlinear interaction, known as 

self-focusing is of use, when the nonlinearity is of thermal origin and therefore it is 

a diffusive and non local nonlinearity. 

Under slowly varying envelope approximation (SVEA) , the equation describing 

the propagation in a Kerr -type nonlinear waveguide, under stationary conditions is 

fdF\      , 82      & ,2 
2/ 

where 

8ZJ = -^ + W)F-LF-mF = ° (1) 

ß • 

and ß is the mode wavevector, k0 is the vacuum propagation constant , nnl is the 

nonlinear part of the refractive index , and a suitable change of variable has been 

performed : Z=ßz, X=ßx , Y=ßy. If a thermal diffusive nonlinearity is studied , the last 



term of eq. (1) is replaced by one containing information about a temperature field 

obtained by solving a coupled problem with the heat conduction equation. To realise a 

strong confinement of the field in the waveguide , so that to reduce the study of the field 

propagation along the Z direction , whit a control of the diffraction along the X 

dimension , suitable boundaries conditions must be introduced on the evaluation of the 

temperature field, so for example the presence of a dissipation in the Y-X plane . Under 

this hypothesis . Eq. (1) for the e.m. field propagation is reduces to a NSE - like form   , 

where k is   proportional to the nonlinear thermal behaviour of refractive index, 

depending on the thermal characteristics of the medium, and on the contrary of the 

local electronic case, now is a function of the spatial variables. 

To study the propagation we have solved numerically the coupled e.m. and thermal 

problem, by using the FDBPM method. 

For a low absorbing material and for a propagation length shorter that 1/ a (a is the 

absorption coefficient ) , we have found the existence of spatial soliton -like propagation: 

stabe propagation with a control of the diffraction for a propagation length of the order of 

1/cc   . 

We have studied the interaction properties of two close localised excitations of input 

space profile as sech, finding attractive properties of soliton like of equal phase , and 

repulsive behaviour when the phase is % , in a very similar way as spatial solitons in a local 

nonlinear waveguides. 

A value of the level of power and thermal nonlinearities to reach this kind of interaction is 

also presented and discussed. 
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We report on the formation of transverse 
patterns in thin films of the nonlinear 
material bacteriorhodopsin [1]. The 
geometry of a thin nonlinear film with 
feedback mirror [2-7] was used as shown 
in Fig. 1. Bacteriorhodopsin has attracted 
considerable interest in recent years as a 
nonlinear optical medium [8], and is 
characterized by a combined absorptive- 
dispersive nonlinearity [9], in addition to 
relatively high values of the background 
linear absorption. The dispersive part of the 
nonlinearity stems both from photochromic 
effects, and, at high intensities, a thermal 
nonlinearity. 

Previous theoretical work on pattern 
formation in thin films has centered on Ken- 
type media where the nonlinearity is purely 
dispersive. Bacteriorhodopsin, on the other 
hand, is characterized by a mixed 
absorptive-dispersive nonlinearity. We have 
modeled the nonlinearity as a sluggish 

saturable Kerr medium with complex index 
of refraction 

,.„,,.„,      7 
n = n0+in0+{n2+in2) , 

where 7^ is the saturation intensity. The 
presence of absorption results in two 
effects. The loss due to linear absorption 
increases the threshold intensity for pattern 
formation. What is more significant is that a 
linear stability analysis shows that the 
nonlinear absorption, as described by the 
imaginary part of the complex n?, results in 
frequency detuning of the patterns but does 
not otherwise affect the threshold intensity. 
This result differs from that found in the 
original analysis of this geometry [2], where 
a purely dispersive material response was 
assumed. In that case the threshold is a 
minimum for static instabilities. The 
detuning predicted here is analogous to that 
found in photorefractive media where a 

bacteriorho- 
dopsin    / 

virtual 
mirror 

HeNe 

observation 
screen 

mirror 

Fig. 1. Experimental geometry. 



Fig. 2. A typical transverse structure, 
observed with d=3 mm. 

sluggish complex nonlinearity also 
results in frequency detuning of the 
spatial sidebands[10,l 1]. 

The experimental setup is shown in 
Fig. 1. A 15 mW beam from a HeNe 
laser with wavelength 633 nm is 
focused to a spot with Gaussian beam 
radius w = 26jum giving a peak 
intensity of 1400 W/cm2. The 
bacteriorhodopsin in gelatin film had a 
thickness of / = 40//m and a refractive 
index of about 1.5. The film was 
prepared to have a pH of about 9, 
resulting in a high saturation intensity 
of about 900 W/cm2. A virtual mirror 
[12] based on a 4f 'lens system with real 
mirror allows small mirror spacings d 
to be investigated conveniently. A 
typical transverse structure is shown in 
Fig. 2. 

The measured values of the intensity 
needed for pattern formation were 
found to agree, within a factor of two, 
with the predictions of the linear 
stability analysis. 

This work was supported by a grant 
from the Danish Natural Science 
Research Council. 
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The installment of filters [1] helps to suppress the Gordon-Haus effect [2] of timing jitter of solitons 
in fibers caused by amplifier noise. The filters not only suppress the noise, but also cause the 
exponential growth of a linear waves. In order to overcome this problem, Mollenauer et al., [3] 
proposed the use of sliding frequency filters, whose peak frequency slowly changes linearly along 
the transmission line, as an alternative to ordinary filters. This idea was confirmed experimentally 
in [4]. Kodama and Wabnitz [5] applied conservation laws of the nonlinear Schroödinger equation 
and used computer simulation to analyze the performance of the sliding frequency filter. 

In this paper, we apply the singular perturbation method to the "averaged" equation[3, 7]: 

iqz + qTT + 2q2q* = ie[8q + ß2(dr + ieß0Z)2q] (1) 

to analyze the effect of the sliding frequency filter on the guiding center soliton. The results we obtain 
may help to optimize the performance of the filter. In Eq.(l) ß2 > 0 is a parameter representing 
filter strength, 8 is an excess gain and ß0 parameterizes the sliding of the peak frequency u>0 of 
filters installed after each amplifier, so that the peak frequency is a linear function of distance Z: 
Lo — u)0 + eß0Z along the fiber. According to [6] one may expand unknown solutions of the perturbed 
NLS (1) in the series about a single soliton: 

2rjexp[i(-2((T -T) +5)1 

Here 2rj,l/ri,T and 07 are the soliton's amplitude, width, position and phase, respectively. In the 
absence of perturbation 

7z = -4£,   ä2 = 4(7/2 + £2) (3) 

Omitting calculations, let us present the main results. Under the sliding frequency filter the soliton 
parameters evolve according to the following system: 

r,Zl = 2Srj - 8ß2T)(t'2 + 7?2/3),   £ = -ß0/2 - (16/3) ßrf?,    Z, = eZ (4) 

provided the modulus of the sliding parameter ß0 is under the critical value of ß0cr = -A-SJS/ß2. To 
make (4) more compact we factored out the sliding frequency from £ by introducing a new notation: 
£' = £ - eßoZ/2. The sliding filter does not affect the equations for the soliton's position T and 
phase ö7(up to the e2), but does change the equations for the soliton's amplitude 7/ and frequency 
£ considerably. According to (4), the soliton's frequency £ would follow the sliding frequency. The 
fixed points of the system (4) are fixed by a cubic equation with respect to the TJ

2
. This cubic 

equation has only two positive roots [5]: (ifc,6i),0?6,6) where »/. > r}b. Only the first point is a 
stable one.  If the sliding parameter has an overcritical value, then the soliton frequency £ is no 
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longer able to follow the sliding frequency. Equation for the radiation part is very complicated. 
But, in fact, we really only need to understand the dynamics in the limit Z —► oo. The zero-mode: 
k = 0 is, potentially the fastest growing mode. Moreover, this mode defines the change of area 
A = /~ d$qi with distance. So, we need to derive its asymptotics. Straightforward calculations 
gives the following estimate of the modulus of the linear mode: 

*IAI    to«, (5) A ~ exp [WZ],    W = t(6 - 
477a 

4«) 

Let us fix the filter's strength eß2 = 0.3 and plot Fig.l which represents 3 characteristic slices of 
W = W(e6, eßo) for ß0 = 0.1,0.2,0.3. ^From Fig.l it follows there is a critical range of parameters, 
only inside of which the sliding frequency filter would operate. First, one must use a sufficiently 
large extra gain, 6, because otherwise one would be in the overcritical regime (the horizontal line 
in Fig.l contains this overcritical regime). Just above this critical value of 8CT, the curve dips down 
and one has the maximum suppression of radiation. Then, as 8 is increased more, the value of W 
increases also and at certain value of 8, parameter W becomes positive. Now, instead of suppression 
one has growth of the linear mode. It's obvious that, although, one should like to work close to 
the critical value of 6CT in order to provide the maximum suppression of radiation, nevertheless one 
must be careful so that fluctuations would not slip one into the overcritical regime. 

References 

[1] Mecozzi, A., Moores, J.P., Haus,- H.A., and Lai Y, Opt. Lett., 16, 1841 (1991). 

[2] Gordon, J.P., Haus, H.A., Opt. Lett., 11, 665 (1986). 

[3] Mollenauer, L.F., Gordon, J.P., and Egvangelides, S.G., Opt. Lett 17, 1575 (1992). 

[4] Mollenauer, L.F., Lichtman, E., Neubelt, M.N., Harvey, G.T., Lett. 29, 910 (1993). 

[5] Kodama, Y., Wabnitz, S., Opt Lett.,18, 1311 (1993) 

[6] Kaup, D.J. , Phy. Rev. A. 42, 5689 (1990). 

[7] A. Hasegawa and Y. Kodama, Opt. Lett. 15, 443 (1990). 



ME8 

Semiconductor laser exposed to optical feedback from an external cavity 
containing an atomic absorber 

E. Cerboneschi, D. Hennequin*, L.Guidoni, F.di Teodoro, and E. Arimondo** 
Dipartimento di Fisica, Universitä di Pisa, Piazza Torricelli 2,56100 Pisa, Italy 

^Permanent address: Laboratoire de Spectroscopie Hertzienne, Unite associee au CNRS, 

Universitä des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France. 

**Present address: JILA, University of Colorado at Boulder, Boulder, CO 80309-0440, USA. 

In recent years, semiconductor laser systems including an absorber medium have been 

extensively investigated, mainly with the purpose of improving the spectral performance of the 
lasers. The incorporation of an absorber in the laser cavity provides a dispersive loss mechanism, 
which can be used to produce frequency dependent changes in the laser gain and refractive index, 
such as to correct for the amplitude and phase fluctuations of the laser field. In this way, 
quenching of the spectral linewidth and improvement of the frequency stability of the laser are 
achieved if, as dispersive loss mechanisms, the saturated absorption [1] or the Faraday rotation 
[2] in atomic vapours are used. Semiconductor laser systems with intracavity absorber attract also 
interest from the point of view of the fundamental research on nonlinear dynamics and chaos. Up 

to now, investigations have been conducted on lasers with saturable absorber (LSA) introduced in 
the semiconductor cavity itself, either by doping or by controlled optical damage of the active 
layer. Passive Q-switching and transitions to chaos have been observed [3], like in the more 
widely investigated LSA with CO2 laser [4]. 

We have performed experimental observations of the dynamics arid the spectral behaviour of 
a semiconductor laser coupled to an external cavity containing a cell of Cs vapour. Our laser 
system consists, unlike the LSA, which is an unique resonator containing both gain medium and 
absorber, in a compound resonator composed by two coupled cavities: the one formed by the 
cleaved facets of the semiconductor laser, and the exernal cavity, constituted by the output facet 
of the laser and a grating placed 68 cm away. We have used a laser Spectra Diode SDL-5400, 
with 100 mW maximum power, tuned, by means of the rotation and the fine translation of the 
feedback grating, to the D2 absorption line of the Cs atoms. In Fig. 1 we show three Fabry-Perot 
spectra and the respective fluorescence profiles, recorded at different laser frequencies. The 
frequency has been varied within the Doppler-broadened D2 line of the Cs atoms. The 
fluorescence profiles represent the fluorescence intensity emitted by the atoms inside the cell as a 
function of the position, along a direction orthogonal to the laser axis. Contemporarily with the 
laser spectra and the atomic fluorescence, the temporal dynamics of the intensity of the laser 
output has been monitored. Fabry-Perot spectra corresponding, in (a), to self-locking, in (c), to 
the competition between two modes and, in (e), to the excitation of many resonance modes of the 
external cavity (separated by 220 MHz) are shown. While the self-locked situation corresponds to 
a stable laser emission with low noise level, the spectra shown in (c) and (e) are respectively 

accompanied by bistability and by the low-frequency fluctuation instability, typical of 



semiconductor laser under certain conditions of optical feedback [5]. The fluorescence profiles 

corresponding to the three situations are markedly different from each other, displaying 

maximum intensity either at the center (in (d) and (f)) or at each side of the laser beam (in (b)). 

The self-locked situation is obtained through the above-mentioned spectral stabilization 

mechanism due to the dispersive losses produced by saturated absorption. 

o.o     0.5     1.0     1.5 
Frequency (GHz) 

-2     0      2      4 
Position (mm) 

Fig. 1: In (a), (c) and (e), Fabry-Perot spectra of the field emitted by a semiconductor laser exposed to 
feedback from an external cavity with an absorber of Cs vapour. The three spectra have been recorded 
at different values of the laser frequency within the D2 absorption line of the Cs atoms. The FSR of the 
spectrum analyzer is 1.5 GHz. In (b), (d) and (f), the corresponding intensity profiles of the 
fluorescence emitted by the Cs vapour, versus a space coordinate transverse with respect to the laser 
axis. The origin of the space coordinate coincides with the center of the laser beam. 

Different shapes of the fluorescence profiles can be due to optical pumping mechanisms. In 

order to gain an insight into the physical origin of such profiles we plan to perform precise 

measurements of the laser frequency with the aim of identifying which of the hyperfine structure 

transitions are involved in the radiation-atom interaction. The connection of the fluorescence 

profile with the spectral features of the laser output could turn out suitable to implement 

intacavity spectroscopy. Deeper investigations are also required to undestand the mechanisms 

underlying the dynamical features associated with the excitation of either two or many laser 

modes, and to identify the modifications that the presence of the absorber in the external cavity 

introduces in the nonlinear dynamics of the semiconductor laser with external feedback. 
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Recently, interest has been growing in the use of chaos for communication.   Its potential 

applicability to high-speed optical systems is of technological importance.   At least three 

typical methods have currently emerged in the literature to achieve the use of chaos in 

communication. The first involves synchronized chaos [1]. With synchronization achieved, 

the chaotic replica of the original chaotic signal is subtracted from the received composite 

signal and this leaves the message signal. This method is basically a masking method. The 

second method [2] concerns the utilization of controlling chaos [3]. This method, however, 

needs fast feedback mechanisms for high-speed signal processing that make it complicated to 

implement. The third method [4] uses the unstable periodic orbits embedded within a chaotic 

attractor to achieve communication. However, for high-speed system this method requires a 

non-trivial modulation technique to transmit correct information.    Unlike the methods 

described above, we utilize a novel characteristic of chaos that a variety of dynamic states can 

be created by imposing a weak periodic perturbation [5].  Since these states can be further 

classified by some characteristic index, here the Shannon entropy, we suggest that by guiding 

the entropy, we can search the desired periodic orbit and a temporal programming of small 

parameter switching between these dynamic states can lead to a new mean of message coding 

without greatly modifying the system.   Specifically, we quantify the system's output time 

series by measuring its some successive maxima and evaluating the Shannon entropy 

according to these data.   In this manner, we can construct a mapping table between the 

parameter and the entropy and an alphabet table in terms of the entropy.  The information 



transmission is achieved by applying well-prepared weak perturbations successively.    In 

communication, we prescribe the coding length and the alphabet table.   After receiving a 

coded message, the receiver can decode it by calculating the entropy with a reference to the 

alphabet table.    Here we theoretically demonstrate the proposed scheme in a directly 

modulated semiconductor laser and a laser diode with orthogonal polarization feedback [6] 

where an additional current modulation is used as the weak periodic perturbation. We have 

also exercised the proposed scheme in a semiconductor diode experimentally. 
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Over the last years the influence of periodical perturbations on dynamics of nonlinear 

systems near critical points is the matter of great interest, especially in the case when their 

frequencies are close to parametric resonancies of the unperturbed system. An existence of 

great number of nonlinear parametric effects near the period doubling bifurcation (PDB) in 

nonautonomous systems has been theoretically predicted in Ref.l. Experimentally, the most 

of them have been observed in the strain dynamics of a magnetostrictive ribbon [2] and 

other nonoptical dynamical systems.. In loss driven CO2 lasers, such types of effects as 

small signal amplification and classical squeezing (deamplification) have been experimentally 

demonstrated as well as its strong phase dependencies [3-6]. 

In this paper we present the first experimental observation in optical systems of the 

effects of the period doubling suppression and the shift of bifurcation point due to periodical 

loss perturbations in the loss modulated CO2 laser. A scaling law relating to the shift of the 

bifurcation point and the amplitude of the loss perturbations was also found, as well as others 

related nonlinear parametric effects predicted in Ref.l. Besides, a scaling law for the 

idler power near the bifurcation point was found which is in the perfect agreement with a 
theoretical prediction obtained in Ref.7. 

The investigations were performed with a cw single mode frequency-stabilized CO2 

laser. Two acousto-optic modulators placed inside the cavity have been used for sinusoidal 

pump and perturbation loss modulations. The laser parameters were tuned so that the pump 

modulation frequency fp (=100 kHz) was approximately twice the relaxation-oscillation 

frequency of the CO2 laser. The frequency of the perturbation signal was equal fp/2+d, 

where d=0.5 kHz. The laser output intensity was measured by a HgCdTe detector with 

time resolution of 50 ns and a digital oscilloscope coupled to PC/AT486. The spectral 

components near fp/2 in the laser response were found on the base of Fourier transform 
of time series. 

The results of the experimental investigation of the period doubling suppression are 

shown in the figure (a). The curve (1) is the amplitude of the laser response at fp/2 that 
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corresponds to the amplitude of PDB. It is clear seen the switchlike behavior in the laser 
response at fp/2 when the amplitude As of the perturbing signal reaches the critical value. 
This means that the periodical loss perturbation suppresses the PDB in CO2 laser and 
stabilizes the system. The bifurcation point is shifted to a new value that is higher the value 
of the unperturbed system. Under the experimental conditions the shift of the bifurcation 

point is proportional to As in power of a = 0.85±0.02 that has a some difference from the 
predicted value of 2/3 which was obtained for very small detuning, d [1]. In general, the 
power in the scaling law depends on the detuning d. The curves (2) and (3) show the 
components in laser response at signal fs at idler \ frequencies. A similar behavior is 
observed also at fp/2+md,  where m is an odd integer. 

The fig..(b) shows the idler-to-signal amplitude ratio as a function of the amplitude of 
perturbation.When the PDB is suppressed the ratio reaches a maximal value which depend in 
general on a dissipation and the detuning [7] as well as the perturbation amplitude. 

The research described in this publication was made in part by Grant No. MX3000 from 
International Science Foundation. 
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Spatial hole burning (SHB) is the phenomenon of a localized reduction in carrier density due to 

stimulated recombination and the finite diffusion length of the carriers. In semiconductor lasers, carrier 

density provides gain, but it also induces frequency-dependent changes in the index of refraction. SHB has 

shown to originate instabilities gain-guided semiconductor lasers [1]. In addition, it is considered to play 

a dominat role in the spectral degradation of the emission of distributed feedback (DFB) lasers. In these 

devices, a modulation of the device refrative index is implemented in order to obtain higher spectral purity 

as compared to conventional Fabry-Perot devices. However, since SHB involves a spatial redistribution of 

the gain, it might cause lasing of secondary modes [2]. Different attempts to study the influence of SHB 

on the static and dynamical behaviour of DFB lasers have been carried out using a variety of models [3]. 

However, the inclusion of SHB and spontaneous emission noise in a large-signal, dynamical model based 

on the Maxwell-Bloch description of the optical field and its interaction with the active medium has not 

been considered until very recently [4]. Similar descriptions are frequently used in connection with a modal 

expansion for the electric field [2, 5], although they have been applied only to the analysis of the CW 
operation of the diode. 

The model considers the wave equation for the SVA of the optical field E(z,t) and carrier frequency 

Q, and Bloch equations for the material variables, which we take as a two-level system. The equations read: 

*E    =    2^^{4(^+^)^-^} (1) 
dtN   =    J-jeN-(E'P + EP*)/2 + Dd2

zN + y/2^NXN + VCXJ (2) 

dtP   =    -Ml + M)P + 9o{N - Nt)(l - ia)E + y/2^NX. (3) 

where P(z,t) is the SVA of the material polarization. The longitudinal distribution of refractive index 

is given by n(z), which has a mean value n. j describes the losses and g is the gain coefficient for the 

electric field. N(z,t) stands for the minority carrier density and Nt its value at transparency. J(z,t) is the 

current density injection (in carriers per unit length and unit time), je is the inverse carrier lifetime due to 

spontaneous recombination, and D is the diffusion coefficient for the carriers. Spontaneous emission noise is 

modeled through the Gaussian complex noise term XE(z,t), which we assume to be of zero mean and delta 

correlated in both space and time. XJV(M) models spontaneous non-radiative recombination of the minority 

carriers, and xj(z,t) models fluctuations in the injection current due to circuit parasitics. XN and XJ are 

taken as independent Gaussian white noises with zero mean, and they are also independent of spontaneous 
emission noise. 

We consider non-reflecting facets as the boundary conditions for the electric field at the lasing fre- 

quency, and no current flow through the faces as the boundary condition for the carriers. The DFB element 

is a A/4-shifted cosinusoidal grating for a lasing wavelength of 1.53 (im. 

We have numerically integrated these equations for a stepwise change of the injected current J from a 

bias level below threshold to a given level above it. When a uniform current injection is considered, the light 



output at the facets obtained from our model features (see figures) the same pulse emission characteristics 

obtained from the simpler rate equation approach, though it can be seen that SHB yields non-linear gain 

saturation. The results in this case are also similar to those obtained from other models [6]. We have also 

determined the light-current characteristic from this solution, determining the threshold current density as 

a function of the step in the refractive index grating. 

In addition, we show that, for moderate values of KL, higher order modes destabilize the CW output 

as the current injection is increased. 

However, the numerical results show that, due to the modelling of the material as a two-level system, 

the a parameter describing AM/FM coupling corresponds to detuning away from resonance. In order to 

match the observed values of a ~ 5, the gain peak is largely detuned from the Bragg wavelength, so a 

quite large modulation amplitude of the refraction index is required in order to achieve lasing at the Bragg 

wavelength. This shows that a better modelling of the material polarization is required to reproduce the 

behaviour of real DFB lasers. 
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OGYs method to control chaos [1] inspired the recent research in chaos application [2]. In this 
paper, we numerically and experimentally study the control of chaos in a hybrid optical bistable system 
using the piece-wise function model. Whether the perturbation in an accessible system parameter is large 
or small, the dynamic behavior of each iteration can be described by the piece-wise function map and the 
process of controlling chaos can be described by a new map which intersects the original map at the fixed 
point (or desired controlled orbits). The fixed point is a common orbit for both maps, and it is unstable in 
the original map but stable in the new map. In such a way we can convert the chaotic dynamics to the 
fixed point. The one-dimension mapping is xn+l = f(xn,p), wherep is an accessible system parameter. 
A piece-wise function is defined as 

r    _//(*.. A) forx„<x0 

{f(Xr,,P„) for X„ > X0 

where x0 is a piece-wise point that divides the function curve into two part. The process of controlling 
chaos can be expressed as 

k+i =/(*„, P„) 

where e is the feedback strength and xj- is the unstable point fixed embedded in the chaotic attractor. 
Eq.(2) is a new map which is different from the original map Eq. (1). Choosing a suitable value of e, we 
can control the chaos to the fixed point Xj-. Suppose that Xn is close enough to Xf, then a linear 

approximation can be applied. From Eq.(2), we obtain e0 - Ae < e < e0 + Ae. Here, eQ = -XI [{X- l)g], 
Äff = 1/[(A- l)g], X = df I &, g = &f(p0) I dp, and these partial derivatives are evaluated at x = xf 

and p = p0. These variables can be derived from experiment data. The choice e=e0 is optimal for it 
minimizes the average time during which the orbit wanders chaotically before it can be stabilized. 

The experimental apparatus[3-5] used in this study consists of a He-Ne laser used as the light source 
and a LiNb03 crystal as a nonlinear medium. The feedback loop delay is controlled by a computer. When 
the delay time of the feedback loop is much larger than the relaxation time of the medium, the hybrid 
optical bistable system can be described by the following mapping xn+1 = 4,sin2(x„ -b), where^0 and 
Xn are proportional to the input and output intensity respectively, and b is a bias voltage. If the value of 
A=AQ the system is chaotic. As long as the iteration falls near Xß we changed A from AQ by 
^ = £o(xn ~ xf) ■ The experimental results are shown in Figures 1. Fig. 1(a) shows the return map, 1(b) 
the controlled time series, and 1(c) the perturbation of parameter A We estimate the noise level to be 2% 
from Figure 1(a). Similar numerical results are shown in Figures 2. Both are in good agreement with each 
other. 
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A "polarization oscillator" is an unstable optical device utilizing nonlinear birefringence or 
dichroism to spontaneously modulate a transmitted laser beam for steady-state input. Such a 
device may hold considerable application potential: for example in optical communications 
and optical data processing it could provide the optical equivalent of an electronic voltage- 
controlled oscillator—producing an output modulation frequency linearly related to input 
intensity. We present in this paper a model for such a device, based upon a system of 
J=l(lower)<->J=0(upper) atoms in a ring cavity. An important feature of the proposal is the 
presence of a magnetic field, longitudinal to the beam propagation direction, which provides 
overall control of the modulationaJ instability. 

The semiclassical model for the system is developed for a homogeneously-broadened 
(J=1<-»J= 0) transition driven by a linearly-polarized continuous-wave field. The atomic 
response is solved to all orders of the field intensity by using a density-matrix approach, and 
the evolution of the circularly-polarized components of the plane-wave field in the cavity is 
treated in the mean-field approximation. In the absence of the magnetic field, the output is 
also linearly polarized and has a stable constant intensity in almost all circumstances. 
However, there are large parameter regimes for which the output field may undergo steady 
oscillation between states of left- and right-circular polarization when a non-zero longitudinal 
magnetic field is applied. The incident laser intensity controls the onset of oscillation, which 
may have large (temporal) gain. The oscillation frequency is sensitive to cavity detuning and 
magnetic field, but in general is also dependent on the laser intensity. The wide parameter 
range over which the oscillations for the J = l<-> J = 0 medium occur is in marked contrast to 
the case for instabilities with two-state atoms1'2, and is illustrated in Fig. 1. Here, the 
pulsation frequency is plotted as a function of the magnetic field strength (Larmor frequency 
00) and the cavity detuning (0). 

Fig. 1. Oscillation frequency as a 
function of cavity detuning $ and 
Larmor frequency oo for a laser-atom 
detuning, A, of 100. The incident 
laser intensity is adjusted at each value 
of <|) and to for maximum gain. All 
other system parameters are held 
constant: cooperativity = 2400 (600 
times the critical value of 4 for onset 
of optical bistability at zero magnetic 
field); lower-level relaxation rate 
0.0875; upper-level radiative decay 
rate 0.25; and cavity relaxation rate 
1.2. The Larmor and oscillation 
frequencies, decay rates and detunings 
(except for the laser-cavity detuning, 
which is expressed in terms of the 
empty-cavity half-width at half-height) 
are all measured in units of the optical- 
dipole dephasing rate. 

-30 

LJ 



The case chosen in Fig. 1 is for large detuning from resonance (see caption). All system 
parameters are constant except for the incident laser intensity which is adjusted at each value 
of co and <|> to give maximum gain. A broad tuning range of oscillation frequency can be 
obtained simply by varying the input intensity, as is illustrated in Fig. 2: the range of 
frequencies obtained by varying the incident laser intensity is plotted, corresponding to each 
point in Fig. 1. 
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Modulated Loss. 

L. Dambly, P.M. Ripley and R.G. Harrison 

Department of Physics, Heriot-Watt University 

Riccarton, Edinburgh EH14 4AS, UK 

e-mail: phydl@uk.ac.hw.phy 

We report on the nonlinear dynamic and chaos of a cw unidirectional, single mode 

Nd:YAG laser with modulated loss. These observations are, to our knowledge, the first to 

be reported for such a system which in many respects is a paradigm of Class B solid state 

lasers. Further, our investigations are to the application of new control algorithms to this 

system to stabilise its dynamical and in particular chaotic behaviour. 

The experiments were carried out with a CW Nd:YAG laser1 comprising a ring cavity 

of two flat mirrors and a 10% flat output coupler. An intra-cavity Faraday rotator and a 

half-wave plate were introduced to ensure unidirectional propagation, single mode operation 

being ensured through appropriate choice of cavity length and the inclusion of intra-cavity 

apertures. Intra-cavity loss modulation was implemented by an accousto-optic modulator 

provided with control of both amplitude Am and frequency vm of modulation; these were 

used as the principle control parameter for our investigations of dynamical behaviours. 

This driven system had a resonance {vR « SkHz) corresponding to the radiative life- 

time of the upper level of the lasing transition. All the dynamics appeared for a frequency of 

modulation in the neighborhood of the resonance and its harmonics. Outside these domains 

of frequency, the modulation had no effect and the dynamical behaviour was reduced to the 

steady state of the non-driven Nd:YAG laser. Figure 1 shows the different dynamical be- 

haviour for various amplitudes of modulation when the frequency of modulation was close to 

the first harmonic (vm « 2vR). For small amplitude (Am = 1%), we observed a periodic state 

with a frequency of approximately 50kHz (Fig. 1 (a) and (d)) characteristic of the pump 

process rate. For higher amplitude, the system jumped to another limit cycle (Am = 4%) 

with a frequency close to vm (Fig. 1 (b) and (e)) and reached a chaotic state (Am = 16%) 



(Fig. 1 (c) and (f)). 

The representative data of Figure 1, both time series and phase portraits, were recorded 

using a Lecroy digitiser. A full characterisation and modelling of the dynamical behaviour 

will be reported together with the results of our current application of continuous feedback 

control2-3 to the system utilising the intra-cavity modulator as the control element interfaced 
to a PC for programmable control. 

0      250    500    750   1000 

t(us) 

(b) 

AAMMAMMMMMM/ 

0      250    500    750   1000 

t(us) 

W> U 

(c) 

Uli 
0     250    500   750   1000 

t(us) 

6 

^    4 
s 
erf    2 

. 2 4 

I(a.u.) 
2 4 

I(a.u.) 

(f) 

Figure 1: Example of dynamical behaviour (a, b and c) and the corresponding phase portraits 

(d, e andf). um = 20kHz and Am = l%(a,d),5%(b,e)andl6%(c,f) of losses. 
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Injection locking of semiconductor lasers has been used as an effective method for frequency 
locking and linewidth reduction in CW operation [1]. Modulated operation of laser diodes can 
also be improved with light injection, showing both frequency chirp and time jitter reduction 
[2]. The laser with an external field exhibits interesting physical phenomena, such as optical 
bistability, four-wave mixing, frequency conversion and optical chaos [3]. 

Depending on the intensity of the external field, several regimes can be appreciated for 
different values of the detuning between the master and the slave lasers. Stable steady-state 
operation of the slave is only possible inside an asymmetric locking range of detunings. The 
emission frequency of the slave laser becomes identical to that of the master and shows a smaller 
linewidth than in the unlocked case. 

In this work, we investigate the frequency dynamics and switching time of gain-switched 
single-mode semiconductor lasers under light injection. An study of the turn-on time with a laser 
subject to a small external field was presented in [4] in the context of detection of weak optical 

signals. We use the same stochastic coupled rate equations, including gain compression effects. 
Results are based on numerical simulations. 

A sudden increase in the current injection drives the laser from below to above threshold. 
A range of dynamical locked operation can be observed with a low chirp, where only phase 
modulation and noise remains. This range of detunings depends on the injection level and can be 
broader than the one corresponding to CW operation. Figure 1 shows an asymmetric dynamical 
locking range as large as 90 GHz with an injected intensity around a 5% of the intensity of the 
solitary slave laser in the on state. 

The switch-on time is considered as the delay time between the current step and light 
emission at a given intensity reference level. The mean switch-on time shows a minimum for a 
given detuning. This minimum can be found outside both the CW and the dynamical locking 
range. Time jitter is highly reduced for all detunings, except at special locations linked to the 
switch-on time minima, where time jitter is dramatically increased. Mean switch-on time and 
time jitter at two reference levels are plotted in figure 2, for a injected intensity of a 0.1%. The 
values corresponding to the solitary laser are also plotted for completeness. Appearance of an 



a given detuning, that can be found outside both the CW and the dynamical locking range. 
Time jitter is highly reduced for all detunings, except at special locations linked to the switch-on 
time minima, where time jitter is dramatically increased. Mean switch-on time at two reference 
levels is plotted in figure 2, for a injected intensity of a 0.1%. The values corresponding to the 
solitary laser are also plotted for completeness. Appearance of an intensity prepulse triggers the 
switch-on before the exponential grow of the intensity, making the precise position of the minima 
dependent on the intensity reference. 

The turn-on of the slave laser can be triggered by the external field, even if the carrier 
number has not reached its threshold value, corresponding to the slave laser acting as an optical 
amplifier. This effect can be observed in figure 2, at the reference level of a 12%, being the mean 
switch-on time of the solitary laser of 161 ps. 
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Synchronization of Periodic and Chaotic CO2 Lasers with 

Saturable Absorber 
ME16 
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We studied experimentally and numerically the dynamics of two single mode C02 lasers 

with intracavity saturable absorber when they are submitted to variable amount of optical 

coupling. This type of laser has been extensively studied [1]. Changes in a control parameter, 

like the absorber gas pressure or the cavity tuning, produces alternating periodic and chaotic 

pulsations, cascades of period doubling and type I intermittency with Shil'nikov homoclinic 

orbits giving routes to chaos verified experimentally and numerically [1,2]. These instabilities 

have pulse rate in the range of 50kHz. Two such lasers refered as A and B were 15m apart 

and a portion of the output of A was sent into B with a small misalignment to avoid standing 

wave coupling. Conversely a variable amount of the B power was also sent into A. Their 

optical coupling was measured to be 5.0 ± 0.5%, with their gratings selecting the 10.6^m 

P(18) C02 lines. A spectrum analiser was used to monitor the beatnote of the lasers. An 

observed high frequency relative jitter (> 500kHz) indicates that in the time scale of their 

Q-switching (> 20^s) any interference between the two laser fields was averaged to zero. 

All coupling effect was then interpreted as intensity and population changing rates. 
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The above figure shows the output pulses of the lasers when the intracavity cell of laser 



A had 40mTorr of SF6 mixed with 600mTorr of CO2 as a buffer gas (in the cell the C02 

is mostly in its vibrational ground state and will not absorb the laser light), while laser B 

had 20mTorr of SF6 plus 700mTorr of CO2 • Choosing the appropriate frequency tuning, 

the uncoupled lasers were set in periodic pulsation as given in Fig. a. After coupling, the 

lasers gave pulses as Fig. c. They became chaotic and syncronized their pulsations. Both 

lasers had lower saturation intensities in their absorbers, as compared to their amplifiers, 

so their coupling acted mostly as absorber coupling when they had their optical frequencies 

separated by less than hMHz. Thus positive correlation between their pulsation resulted 

as shown in Fig. d. Figs, b and d are the two intensities correlations of Figs, a and c, 

respectively. 

For other values of PZT tuning, the two lasers could be set in chaotic regime and then 

syncronized. For small frequency detunings, positive correlation between their pulsation 

resulted. Anticorrelated synchronization was obtained when the optical frequency detuning 

of the lasers was 20MHz. For instance, before coupling they were periodic, in pM and 

PW regime, respectively. After the coupling each laser kept the same type of periodic pulse 

shape but they adjusted their pulse rate and separation to meet the negative correlation 

condition. 

The theoretical model uses the two-level three-level systems of rate equations for each 

laser[1,2], with coupling terms to account for cross saturation of the absorbers and ampli- 

fiers^ described in [3]. Numerical solutions of the equations for each laser, with apropriate 

choice of parameters was made to produce pulsed solutions as previously observed in experi- 

ments^]. The calculated pulses for the coupled lasers did compare well with the experimen- 

tal observation[3]. Similar synchronization studies were recently obtained on C02 [4] and 

NdYag [5] lasers. Our model neglects standing wave effects, inhomogeneous broadening in 

the absorber medium, transverse beam profile effects, etc... and yet there is a very good 

agreement between the calculations and our experiments. 
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We suggest a new numerical algorithm for modelling the beam self-action and transverse pattern 
formation in the situations when the focal beam spot or the typical scale of the transverse pattern is com- 
parable with the wavelength, so that the conventional paraxial theory yields singular behavior of the beam 
at the focal point [1]. For Kerr self-focusing Feit and Fleck [2] have shown that this singularity is due to 
the commonly used parabolic approximation and suggested a more sophisticated scheme of reducing the 
Helmholtz equation to a first-order one. Numerical calculations of wide-angle self-focusing in [2] showed 
multiple foci with a finite value of the field and a sudden drop of the total beam power at each of them. The 
power loss was attributed to the reflection of the wide-angle components of the beam by the focal region. If 
it is so, a considerable backward wave may arise, which, however, could not be observed in [2] since only the 
forward wave was considered explicitly. Formally the second-order Helmholtz equation has both forward and 
backward waves as solutions, so the role of backward waves in nonparaxial self-focusing is an open question. 
There seem to be at least two physical reasons for the backward wave to appear: 1) linear reflection due to 
fast transverse variation of the nonlinear refraction index n; 2) reflection from 3D structure of n induced by 
the interference of the opposite waves. 

We solve directly the scalar Helmholtz equation: 

(d>/dz>-rVl+k>n>)E(r,<p,z) = 0, (1) 

where E(r, <p, z)Js the coordinate-dependent amplitude of the electric field. For Kerr media n is given by 
n = n0 + n2\E(f, z)|2. We make use of the field decomposition in terms of Laguerre-Gaussian modes of free 
space [3]: 

E(r,<p,z) = y£A'?(zWmn(r,lp), (2) 
m,n 

.    V-m„(r,^) = (n!/(n+m)!)-1/24ml(„(z)r2)(nr2)1r1exp(-Pr2/2 + imv?) (3) 

where L™ is the Laguerre polynomial, P = 77 +if is the inverse complex beam parameter which is, generally, 
z-dependent. If we choose P to be constant, the modal amplitudes in the free space obey the set of equations' 

d2Am 

-^ + PnlA™ + v £ D™n,A™, = 0, (4) 

where n0 is the linear part of the refraction index, Dm is a symmetric three-diagonal matrix 

D?n, = -(2n + |m| + 1)*„B, - [(„ + l)(„ + l + H)]1'V»+i " [n(n + M)]1/V»-i, (5) 

Diagonalization of the matrix (5) yields a new basis set of functions 

*«n(r><p) = 52B%1>mn(r,<p), (6) 
n 

the columns of the matrix Bm being the eigenvectors of the matrix (5). Using the new basis the field 
amplitude may be presented as E{rt<p,z) = £mj. Cmj{z)*mj(r,<p), where the new modal coefficient satisfy 
the set of equations 

d2Cmj 
—for + <X~mjVmj = -WPmj, (7) ^ + a2,Cmi- = -47r*2P 



where amj = {^nl+rjdy)1/2, d™ is the j-th eigenvalue of the matrix (5), Pmj is the modal coefficient for the 
nonlinear part of the polarization. To solve (7) we used the fourth-order Runge-Kutta scheme. Forward and 
backward transformation (2) is carried out at each step of the process to calculate the nonlinear polarization. 
Rigorously one should solve a boundary (scattering) problem to account for the reflected wave. As a first 
step, however, it is natural to solve a Cauchy problem with initial conditions imposed on the field and its 
derivative at z = 0. 

Using the method described the propagation of beams through nonlinear media was numerically 
modelled for various types of initial conditions. As one of the examples, consider the propagation of an 
axially symmetric (m = 0) beam having the initial profile Eo{r) = exp(—T]0r

2). To make our results 
comparable with [2] we put A = 1 , A being the wavelength, Az = 0.01, n2 = 0.015, the initial 1/e diameter 
of the Gaussian beam is 5.0, the initial value of 7max = 1. We used up to 60 Gauss-Laguerre modes defined by 
their values in 60 points, corresponding to zeros of Laguerre polynomials and covering the interval of r2 from 
0 to 202.9. It was shown that nearly 50 modes provide the accuracy of nearly one per cent in reproducing 
the z-dependence of the on-axis intensity. In Fig. (a) and (b) solid curves show the on-axis intensity versus 
z for two types of initial conditions imposed on the ^-derivative of the modal coefficients C' -(0). In case (a) 

we set C'mj(0) = iJ(*mj + 47rk2Pmj(0)/Cmj(0)Cmj(0) which provides asymptotically no backward wave at 

the input. In case (b) C'mj(0) = 0, which means that the forward and backward waves have equal amplitudes 
at the input. Dashed line in Fig.(a) shows the numerically found value of the sum iJ2m(CmjCm- - c.c), 
which may be easily shown to be a rigorous integral of motion in transparent media. 

Our analysis have shown that the representation of the total AC field as the sum of forward and 
backward waves is unambiguous only in the asymptotic sense, namely in the regions far from the self-focus. 
For the parameters considered in case (a) we observed zero backward wave both before and after the focus. 
Since the latter is the correct boundary condition, one may conclude that no back reflected wave appears at 
the focus. If the backward wave is already present for some reason, Fig.(b) shows that its amplitude is not 
significantly affected while passing the focal region. Hence the results of [2] may be interpreted as the power 
loss at the absorbing boundary due to wide-angle beam divergence rather than as the manifestation of the 
backward reflected wave. 

This work was supported by the Commission of the European Communities under ESPRIT Contract 
P9282-ACTCS, EU-Russia Collaboration. 
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In the given report one offers the theory of transient doub- 
le resonance in the medium with inhomogeneously broadening lines 
of quantum transitions in the field of 2ir-pulse of self-induoed 
transparency. Theory is developed on the base of treatment of bo- 
undary problem 
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Here A and a - normalized magnitudes of signal radiation and po- 
larization of medium on signal frequency; w and x - normalized 
values of time in pump pulse frame and of coordinate along the 
propagation direction; 5Q, ö t 0)2, e - parameters that depends on 
the frequencies; n - parameter of coupling between the pump and 
signal transitions; 
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where l  is duration of 2ft-pulse; T and T are times of polariza- 
tion dephasing caused to the Doppler effect. 

Analytical solution of (1)-(3) was produced for the cases 
when one of following simplified suppositions is valid 

r/T = r/T. .t    -. -2, T/r = T2/t = 0,   wi = 0        (4) 
The analysis of it has shown that at n  > (1+y)/2 and x-~ oo it 



becomes possible to form the stationary mode of p-th order - the 

pulse of asymptotically stable shape that amplifies exponentially 

on x win undimensional gain G = 2 (n-p)-7-1, where p = 0, 1 ... 

[n-(y+1)/2]. Here 7 - parameter depending on the type of selected 

simplified supposition (4). The mode of p-th order arises as asy- 

mptotical solution at x -*-» only when following p conditions for 

the input signal pulse shape, 9(w)  are meeting 

ezp [(2p - n  - 21 +y+1)w] p. 00 

-00 
cosh72 w 

dw -  0, I  =■1, 2 P (5) 

When any conditions are failed the process of signal pulse forma- 

tion is essentially unstable and the mode of p-th order (p > 1) 

dominates only on any stage of transient process that ends by the 

0-th order mode formation. 

To determine the possibility- of stationary mode formation 
» 

and the area of given order mode stability in the case of non-fu- 

lfilment of any suppositions in (4) one carries out the numerical 

simulation of the signal pulse evolution on the base of the equa- 

tions (1)-(2) with initial condition (3). The results of such mo- 

deling for one case are represented in fig.1. The curves 1, 2, 3 

in it describe the 1-th order mode but curve 4 coresponds to the 

0-th order mode formation that ends the transient process. 

To conclude note 

that shape and duration 

of stationary modes do 

not depend on the initi- 

al signal pulse shape, 

&(w).It  permits to make 

the conclusion that tra- 

nsient double resonance 

can be applied for the 

transformation and sta- 

bilization  of ultra- 

short laser pulse cha- 

racteristics. 

Pig. 1. 
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ABSTRACT 

Semiconductor lasers are extremely sensitive to external signals. Unwanted 
optical feedback is the main source of instability and is leading to various 
forms of chaos. Recently, the physical mechanisms leading to the so-called 
low frequency fluctuations (LFF) have been studied in detail [1,2]. LFF 
consist of sudden drops in light intensity each followed by a gradual 
increase. They have been observed at moderate feedback levels and near the 
lasing threshold. But little is known on the instabilities that may appear 
near threshold. This motivates a new analysis of the Hopf bifurcation point 
above which the intensity becomes pulsating. 

A minimal model for a semiconductor laser subject to optical feedback 
has been proposed by Lang and Kobayashi in 1980 [3]. A basic state 
corresponding to a single mode periodic solution is known but its stability 
cannot be found analytically. We propose to determine approximations of the 
Hopf bifurcation point by taking advantage of two large parameters in the 
problem. Our analysis differs from previous approximative theories [4] by 
the fact that we are using a singular perturbation method. The method allows 
a systematic analysis of the Hopf bifurcation point in terms of all the 
parameters. 

Lang and Kobayashi model is described by two ordinary-delay- 
differential equations for the complex electrical field Y and the excess 
carrier number Z. In dimensionless form, these equations are given by 

Y' = (1 + ia)ZY + 77exp(-iÖ0)Y(s - 8) (1) 

TZ' = P - Z - (1 + 2Z)|Y|2. (2) 

3 
T ~  Tn/Tp "" °(10 ) is the ratio °f carrier and photon lifetimes. 8  « T/T    - 

,3, P 
0(10 ) is the ratio of the diode cavity round-trip time and the photon 
lifetime. P < 1 is the dimensionless pumping current above threshold. 0 < rj 
< 1 is the amplitude of the feedback, a « 3-5 is the linewidth enhancement 

factor. Q is the frequency of the solitary laser. The single mode solutions 
are solutions of the form 

Y - Agexp[i(ns - ö)t] and Z - Z (3) 

where Ag, Qg and Zg are constants. These constants are determined in terms 

of the effective feedback strength C and the feedback phase </>    defined by 



2   1/2 
C «  (1 + a  )  '   rid  and <f>Q * [16  + arctan(a). (4) 

Figure 1 shows the stability boundaries in (C,<£0) parameter's space. The 

dotted lines correspond to saddle-node bifurcation points which separate 
regions of equal numbers of single mode solutions [5]. The full lines 
correspond to the approximative Hopf bifurcation points found from our 

analysis which is based on the double limit T large and 8  - 0(T 
The condition r\ >  0 requires the inequality 

cos(A - arctan(a)) < 0 

1/2 
) large. 

(5) 

where A = OS is defined as the external cavity mode frequency. We have 

analyzed (5) for various A and have found that a mode close to the maximum 
gain mode (A - 0) is stable because it does not verify (5). This observation 
is substantiated by independent numerical studies. 

Our analysis of the Hopf bifurcation requires separate studies near 
resonance points and in the low pump limit. Of particular interest is the 
low pump limit which exhibits a Hopf bifurcation at the lasing threshold. 
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Oscillators with photorefractive gain (OPG) have been shown to be 

very convenient to study spatio-temporal dynamics. In particular, 

defect mediated turbulence has been experimentally evidenced [1]. The 

defects are here the so-called optical vortices, which are phase 

singularities of the optical field [2]. Recently, Arecchi et al [1] 

described the optical turbulence through the statistics of the vortices, 

and showed the existence of two main regimes: at low Fresnel number 

%&, typically f*£F<10, the dynamics is governed by the transverse 

boundaries, while at 5v>>10, it becomes intrinsic. 

We propose here to use a simpler statistical measure, namely the 

time average of the patterns, to differentiate the regimes. We use as an 

indicator the symmetry of the pattern, which is compared to that of the 

system. In the latter, we separate two contributions: the boundary 

symmetry ab, imposed by e.g. the shape of an iris, and the intrinsic 

symmetry a\, usually cylindrical, but which can be changed by using e.g. 

a ring cavity with an odd number of mirrors in order to privilege an 

axis. 

Using this method, three types of behavior have been identified. 

For iVF<10, the averaged patterns are exclusively depending on ab. In 

particular, when only a\ is cylindrical, the patterns no more exhibit 

circular structures. For 10<I*/F<100, a\ mainly determines the symmetry 

of the patterns. The shape of the iris affects only its borders while the 



center exhibits the c\ symmetry. Finally, when 5A/f>100, we are no more 

able to detect any symmetry in the averaged pattern, except that the 

borders remain imposed by ab- 

Thus it appears that through this simple statistical test, it is 

possible to put in evidence three types of behavior of the OGP, and in 

particular, for fA^>100, dynamics where the memory of the intrinsic 

symmetry is lost, probably due to the fact that the transverse 

instability wavelength becomes smaller than the coherence length of 

the system. 

[1] F. T. Arecchi, S. Bocaletti, P. L. Ramazza and S. Residori, Phys. Rev. 

Lett, m 2277 (1993) 
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In addition to the transverse effects which occur in Kerr media, a wealth of phenomena can be 
observed if the nonlinearity of the medium has tensor properties. This is true for sodium vapor, 
since the creation of ground state orientation is a pronounced nonlinear mechanism which brings 
the vector properties of the light field into play and may e. g. induce a spatial separation of 
different polarization components of the light field [1,2]. In a recent paper [2] we have described 
the experimental observation of self-induced planar and cylindrical splitting of a laser beam into 
different polarization components in a single transit through sodium vapor and have given evidence 
that it is a completely deterministic phenomenon. 
In this contribution we give additional experimental results some of which are unexpected and 
counterintuitive. We present further analytic and numerical studies of the beam propagation which 
are in good qualitative agreement with the observations. We also discuss the physical principles 
underlying the results. 

One of the striking experimental results is the observation that the total power of a laser beam 
transmitted by sodium vapor in a nitrogen atmosphere can strongly decrease with increasing input 
power in a certain parameter range (see Fig. la). The phenomenon occurs on the self-focusing 
side of the Dj-line. It is observed that the sudden decrease is coupled with a strong change in 
the transmitted beam profile which displays a spatial splitting into right- and left-hand circularly 
polarized components (see Fig. lc - le) in the same parameter range. It should be noted that the 
position of the spots is nonlinearly shifted in Fig. lc to le. 
In [2] we have presented a model which treats the sodium atoms as two-level atoms with two-fold 
spin-degeneracy. It includes Zeeman pumping and the presence of the light-shift phenomenon of 
the atomic sublevels as the important features of the atomic interaction with the light field. In 
small magnetic fields light-shift induced level crossings can occur which have strong impact on the 
optical properties of the sample and introduce intensity-dependent contributions to the refractive 
index whose spatial distribution is not washed out by atomic diffusion. These level crossings are the 
origin of a very pronounced dependence of the system on the magnetic field. Using this microscopic 
description of the medium we compute the propagation of the light field by means of a split-step 
FFT beam-propagation method. 
In the interpretation of the numerical results most of the observations find a physical explanation 
based on the idea of a competition between different polarization components. Also the result 
displayed in Fig. la can be reproduced qualitatively in the calculations (Fig. lb). 
Another counterintuitive result is presented in Fig. 2 for an experimental situation in which the 
cylindrical symmetry is conserved. In the case of an elliptically polarized input beam, experimental 
parameters exist (e. g. those of Fig. 2b) that make the initially weaker circular component become 
the stronger one at the end of the sodium cell. Fig. 2a, which has been obtained analytically, predicts 
a certain range of the external longitudinal magnetic field that allows the on-axis concentration of 
the initially weaker ^.-component. Since the intensity in the <7_-spot is larger than the one in the 
wide a+-ring (see Fig. 2b), the <7_-component is less absorbed during the propagation and finally 
also the power in the cr_-component is larger. When the longitudinal component of the magnetic 
field is variied, ring structures are observed (see Fig. 2b, c) which agree with the order predicted 
by the analytic treatment. 

[1] A. C. Tarn, W. Happer, Phys. Rev. Lett. 38, 278 (1977) 
[2] A. Gahl, J. P. Seipenbusch, A. Aumann, M. Möller, W. Lange, Phys. Rev. A50, R917 (1994) 



100 200 300 

Ph [mW] 
100 200 

Ph[mW] 

0 2 4 
x [mm] 

Fig. 1: a) Transmitted power vs. input power. P<: total power, P±: power of <r±-component, 
b) Numerical simulation using control parameters similar to the experimental ones, 
c - e) Intensity distribution on the CCD-camera at input power levels indicated by c,d,e 
in Fig. la. The upper left spot in Fig. le is <r_ polarized, the others are <r+ polarized. 
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Fig. 2: a) Position of local extrema of the ground state orientation as a function of the radial position 
r/w in dependence on the longitudinal magnetic field Bt. The bold/dashed lines indicate 
a maximum/minimum for an initially elliptically polarized gaussian beam with weaker <r_- 
component. During the propagation the resulting gradient of the refraction index causes a 
transverse flow of the a±-intensity as denoted by the arrows. From a cut along the line "b" a 
<r_-polarized central spot and a <r+-polarized ring are expected, from a cut along "c" a <r+- 
polarized central spot surrounded by a <r_- and a (T+-polarized ring. 
b, c) Intensity distribution on the CCD-camera for two values of Bz. Polarisation of the central 
spot in b) and the inner ring in c) is <r_, while the ring in b) and the central spot and the outer 
ring in c) are <r+ -polarized. 
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Dynamic chaos is a very interesting nonlinear effect which has been intensively studied 

during the last two decades. The effect is very common, it has been detected in a large number of 
dynamic systems of various physical nature. In practice, however, this effect is usually 
undesirable. Many researchers have been interested in controlling undesirable chaos and applying 
chaos. Ott, Grebogi and Yorke [1] (OGY) have suggested an efficient method of chaos control 
that can eliminate chaos. Pyragas [2,3] proposed two new methods, external force control and 
delayed feedback self-control, to control chaos. We apply the method of delayed feedback self- 
control of chaos to dynamic memory of an electro-optical bistable device, A binary code data 
have been written to and read from this system. The mathematical description of this system can 
be summarized by the following simple-looking delayed differential equation [4]: 

dV(t)/dt+V(t)=0.5Y{ l-Kcos[V(t-T)+e]} (1) 

for the feedback voltage or the output intensity V(t) applied to the modulator. In Eq. (1), Y is the 
input intensity, and the time t and the delay T are both measured in units of the system's natural 

relaxation time. In turn, 9 denotes a fixed bias voltage applied to the modulator in units of the 

half-wave voltage, and K is the extinction coefficient of the device. Eq. (1) links the input and the 
output intensity signals and describes the steady state transmittance when dV/dt=0. 

Ikeda et al. have clarified the bifurcation structure of the oscillation modes of a similar 
delayed feedback system and suggested potential applicability as a memory device, utilizing the 
multistable modes of oscillation [5]. Following this suggestion, Davis et al. proposed a method 
called seeded bifurcation switch [6], in which dynamical storage was carried through the system 
being switched frequently between the bifurcation region and reverse bifurcation region. A similar 
system was studied by Gao et al [7], and up to 51 binary code has been demonstrated. 

Based on the previous works, we proceed the idea of self-control of chaos into the 
dynamical memory device, so that memory function can be completed in one developing chaos 
region only, and the experimental setup is simplified. We have completed writing binary data to 
the following experimental system and the results are coincident with computer simulation. A 



3mw He-Ne laser was used as the input source; it was modulated by a L£Nb03 crystal with an 

electric field applied perpendicularly to the direction of propagation of the incident light beam 

The input intensity was monitored by a detector D2 and was partially transmitted through a 

second L£Nb03 modulator whose applied voltage consisted of the sum of a fixed bias and the 

output of the feedback loop. The feedback signal itself was produced by a photomultiplier and 

two amplifiers, and could be delayed by a Z-80 microprocessor which was connected with a NEC 

personal computer for data injection and recording. The behavior of the output intensity was 

monitored by an oscilloscope. 

In our experiment, the open loop relaxation time of the system is 0.15±0.02ms. With delay 

time Tr=7.3±0.2ms in Z-80 microprocessor, we introduce self-control of chaos into the process 

loop, and tuned the input intensity and bias voltage until a chaotic oscillation waveform in order 2 

inverse bifurcation region of chaos was observed on the oscilloscope. The "write" procedure is 

done as follows. We generated one of (n, m=2) oscillation patterns in order 2 period doubling 

bifurcation region in NEC computer with two different peaks and two different valleys. This peak 

and valley values are the same as the corresponding values in (n=l, m=2) oscillation waveforms 

which can be read from Z-80 microprocessor by the NEC computer earlier before the "write" 

signal was produced. The "write" oscillation patterns with one delay time length and arbitrary n 

element binary code was injected from NEC computer to Z-80 as seed signal. After code 

injection, the system shows order n harmonic chaotic oscillation and the waveforms transits 

continuously among (n, m=2) class, when desired n element binary coded waveform emerges, we 

keep it in the system by completing the loop of controlling-chaos in time. The n-bit binary coded 

data was written into the memory, and the oscillation patterns with n-bit binary coded waveform 

can be seen on the oscilloscope and can be recorded in NEC computer through Z-80 

microprocessor. 

Because of the instabilities and noise from the amplifiers and detector, the steady working 

regions of input intensity for (n, m=2) class is very limited, the regions for higher order harmonics 

(larger n) are even small. We are going to stabilize the coded waveforms more and identify the 

phase of the different oscillation patterns by an external reference clock, so that higher stable 

harmonic could be used and more binary information signals could be "write" into and read out 

from the memory device. 
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Abstract 

Theory to find periodic unstable orbits due to large perturbations 
is given for class B laser systems. The method allows to determine 
nonlocal organization of phase space, in particular,boundaries of at- 
tractive basins of attractors and stable manifold of repellers. 

Recently the different algorithms have been developed for dynamical 
chaos control in nonlinear systems. In [1,2] specific targeting of unstable 
periodic orbits has been achieved experimentally by using large amplitude 
perturbations in C02 laser with intracavity modulated losses. Contrary to 
the small perturbation control methods , the last technique allows to obtain 
both unstable orbits embedding inside the basin of attractor (as a result 
of period doubling bifurcation) and unstable orbit created by saddle-node 
bifurcation of coexisting attractors. 

It would be useful for such purposes to know global construction of phase 
space . Here we present the analytical approximation of Poincare mappings 
for class B lasers with periodic modulation of intracavity losses or pumping 
rate. The method allows: 

- to found key points for reconstruction of both stable and unstable limit 

cycles (repellers); 
- to determine the main characteristics of multistable periodic attractors, 

in particular amplitude of oscillations, period, energy of pulse and average 
energy of nonstationary process in dependence on driving frequency ; 

- to found threshold conditions on creation of regimes with periods mul- 
tiple driving period, i.e. conditions for saddle-node bifurcations; 

- to obtain analytically instability threshold via period doubling bifurca- 

tion; 
- to calculate analytically the direction of stable manifold of the repeller 

using the values of its multiplicators; 
- to give the recipe to reach targeting unstable orbit, i.e. the amplitude 

and optimum timing of additional losses perturbation following the experi- 
mental technique of [1]. 
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The example of three-points attractor of the mapping is present in fig.l. 
It is identical with 3T-periodical window in chaos. The right black point 1 
corresponds to the start of a middle pulse, point 2 - to the start of a small 
pulse and point 3 - to the start of a big pulse. Arrows denote the directions 
of stable and unstable manifolds of the repeller. The last one is presented 
by white point. We can calculate the value of additional losses perturbation 
to move to move (02,^2) —» (c„<f>s) denoted by *. The timing of optimum 
perturbation should be chosen between small and big pulses to reach the 
stable manifold of the repeller. 

We also take into account small external illumination, impurities with 
saturable absorption , and small optical delayed feedback. The phenomenon 
of quasiperiodisity is shown analytically for such systems. 

The possibilities of controlling unstable orbits by small coupling periodic 
perturbation and by small external feedback are discussed on the base of 
mapping dynamics. 

1. V.N.Chizhevsky, P.Glorieux, Phys.Rev.E, Oct.-Nov.(1994). 
2. V.N.Chizhevsky, S.I.Turovets, Phys.Rev.A 50 (1994) 1340. 
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The nonlinear optical properties of composites materials are of current interest, 

since composites can exhibit enhanced nonlinear response. We have analyzed previously 

the second- and third-order nonlinear susceptibilities of layered composites under the 

assumption that the layer thicknesses are much smaller than an optical wavelength and have 

found that significant enhancement is possible under certain circumstances: namely, the 

constituent with the larger nonlinear response must have the lower linear index of refraction 

and the light must be polarized normal to the layers. [1] The enhancement takes the form of 

local field correction factors in the expression for the susceptibility. Note that the effective 

medium of the composite is uniaxial, with the optic axis oriented normal to the layers. 

We have constructed layered composites from titanium dioxide and the conjugated 

polymer poly (p-phenylenebenzobisthiazole) (PBZT) by spin casting alternating layers 500 

A and 400 A thick, respectively. The fill fraction of the PBZT was thus 44%, which was 

nearly ideal given the relative linear refractive indices of the two constituents. According to 

the theory [1] we expect an effective third-order susceptibility 35% larger than that of 

PBZT. 

To determine the value of %0) of our samples, we performed z-scan measurements 

with the samples tilted with respect to the beam axis. For p-polarized light incident on the 

samples, there was a component of the electric field normal to the layers. This component 

1 
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experienced the enhanced nonlinear susceptibility.   The data from the experiments [2] 

consisted of the nonlinear phase shift acquired by the laser beam versus the sample angle. 

The analysis of this data required a new theoretical formalism determining the 

nonlinear phase shift acquired by a laser beam in passing through a uniaxial material 

oriented at an arbitrary angle with respect to the beam. We have developed a solution to 

this problem based on a Green function formalism, similar to one reported previously. [3] 

We will present the theory and the subsequent analysis of our experimental data. The good 

agreement found indicated that the model is accurate. (See figure 1.) 
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Figure 1: Theory and experimental data for s- and p-polarized light at various angles of 
incidence. The dashed curve represents the theory without local field 
enhancement of the nonlinear susceptibility and the open circles represent data 
for pure PBZT. 
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A mode's competition due to spatial hole burning effect (SHB) is a reason of nontrivial 

nonlinear dynamical properties of solid-state lasers [1], From the other hand the 

nonstationary generation of such kind of lasers is a low - damping process due to fact that 

the relaxation rate y of the inverse population N(r,t) much less then inverse lifetime of the 

photon in cavity a ,(r). In such situation it is essential in theory to obtain the exact results 

because in principle any approximations may change qualitatively the conclusion   about 

stability of the stationary state of laser. 

To push forward the problem of stability of stationary generation the analogy of 

Boltzman H-theorem was derived in general suppositions for multimode rate equations 

taking into account the SHB-effect [2]: 

d_ 

dt li    N, h Mj-Mjs-Mjsln^ -  |2 -1^+l^M 3r d3r 

Here A/y(r) is the intensity of mode with number "j~ fl is Einsteht coefficient of 

induced radiation and Üß(r) is a spatial eigenfunction of j-th mode. Indice ~S "denotes the 

stationary values of magnitude, AN(r,t) - N(r,t)~ Ns(r). It was shown that SHB-effect 

leads not only mode's competition in frame of usual rate equations but produces some kind 

of -hot" reconstruction of the mode's structure of the laser [3]. As a result some additional 

term appears in right-hand side of the eq.(l). 

"' lj["j(°J»s -*,)- AMO,"-°,)IN2 -\0js\y? (2) 

Here a j(f) is the cavity losses,tf,(r,r)is the eigenfunction of j -th mode of "hot"cavity. 

So the problem of the stability of stationary solution arises again. Now we could calculate 



the "hot" reconstruction by expansion of the £/y (r,f) on the set of eigenfunctions    Öct (r) 

of the "cold" (N = 0,a = 0) cavity: 

<WQ+L 
1 

t?j<Üj-<»Ck 
°ß- 

0) . -ü), 
l+-i t; Ok (3) 

Here a ß ~ §o fi Q •Octd
3r,vjt -JD, M/Q •Octd

3r , w . is the frequency of j-th 

mode of the "hot" cavity, ca a is the frequency of k -th mode of the "cold" cavity, w 0 is 

the frequency and T is the linewidth of the atomic laser transition (the expression (3) holds 

true under conditions that a jk (w i - w a ) and v Jk (w y - w a ) both are much less then 

unity). So one can rewrite the expression (2) by such a way: 

AF-2' W;-(o0 
(4) 

One can see tliat under neglecting of the detuning (co i - co 0 ^""' there is no any influence of 

the "hot" mode's reconstruction on the stability of the stationary generation. With the taking 

into account this factor to obtaine the rough condition of stability we can compare AF with 

the right-hand side of eq. (1). For generation close to the center of the line it leads to 

inequality y • T > a2. So one can conclude that "hot" reconstruction of the mode structure 

doesn't violate the stability and uniqueness of the stationary state of the solid-state laser in 

the case of good quality cavity and generation close to the center of line. 

The possibilities of the existence of bistability and instabilities of the stationary 

generation outside the frames of mentioned conditions arc discussed. 

l.Ya.LKhanin, Dynamics of Lasers, Sov. radio, Moscow, 1975 
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Abstract 

The properties of different spatial structures in nonlinear resonator 
with spatial transformer in feedback are investigated. The parameter 
regions, amplitudes and rotation frequency of complex optical rever- 
berators are determined on the base of normal form theory. High-order 
spatial mode bifurcation results multistability of neutral stable trav- 
elling waves . The direction of their evolution are obtained by second 
normalization procedure. 

Recently different types of instability of a light field were observed by 
controlling the spatial scale and the topology of the transverse interactions 
of light fields in a medium with cubic nonlinearity, in particular rotating 
patterns and optical turbulence [1-3]. 

The mathematical description of these phenomena is based on parabolic 
equation with a retarded argument: 

du d2u 

and periodic boundary conditions: 

i i &u\ du. 

where u is the phase shift of the field in the medium, K is proportional to 
input intensity of light, 6 is the angle coordinate, A is an effective diffusion 
coefficient. The equation corresponds to experimental situation when the 
light beam has the form of a thing light. 

In this communication the existence of different structures (slowly and 
fast oscillating ones) are shown on the base of normal forms theory. Some 
important cases must be distinguished in dependence on peculiarities of sta- 
bility destruction for finite and small values of diffusion D and rotation shift 
A (i.e. local and large-scale transverse interactions). 

Finite D and A. There are four situations when the critical conditions 
are valid for the different numbers (from one to six) of spatial modes. Then 



there are finite-dimensional manifolds on which the local dynamics of (1) is 
determined by^ universal normal form. The main characteristics of travel- 
ling waves (optical reverberators) and mode beating corresponding complex 
spatio-temporal patterns are obtained. 

Small D and A. Slowly oscillating spatial structures occur if radius of 
light ring is large (diffusion is small) and rotation shift A is close to rational 
number multiple ir. Here the central manifold with infinite dimension takes 
place. If odd modes are existed only then we get quasi-normal form : 

u 2 dz A\.d2z .1      _   - ^=(l+f)^-^-(g+f)*3. 
with antiperiodic boundary conditions. 

The conditions of realization of different stable states and spatial inho- 
mogeneous and slowly rotating in time solution are obtained. The frequency 
of the last one is proportional to the small factor of diffraction and amplitude 
tends to "step". 

Small D and small A. The fast oscillating patterns are formed by the set 
of high-order spatial modes with wave numbers close to D'1/2. Quasi-normal 
form presents the dynamics of travelling waves with neutral stability. The 
second normalization leads to normal equation: 

£=U*+H^1+iÄ2)+{Bi+iBi)(+{Ci+iC2)i' *|2) 

with periodic boundary conditions. Here s = Dt is slow temporal variable, 
0 = 6 — vDt(-Spcos(S6)) - travelling angle variable. 

The obtained equation describes the phenomenon of multistability and 
determines the evolution direction of travelling waves under change of the 
2nd-order infinitesimal parameters. In particular, infinite process of creation 
and destruction of spatial structures takes place as geometrical size of system 
is increased infinitely. 

The quasi-normal forms are universal for the same critical cases with 
infinite dimension in different systems and determine the universal roads of 
self-organization. 

1. S.A.Alhmanov, M.A.Vorontsov. In "Nonlinear waves. Dynamics and 
evolution." Moscow, 1989. 
2. S.A.Akhmanov, et.al. JOS A B 9 (1992) 78. 
3. S.A.Kashchenko. Sov.J. of Num.Math. and Math.Phys. 31 (1991) 467. 
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The nonstationary behaviour of polarization parameters without any 
time-dependent external influence (polarization instability) was observed 
experimentally in single-mode He-Ne [1,2] and He-Xe [2] lasers at jt = 1 -► 
J2 = 2 transition and linear phase anisotropy of the cavity as well as in 
He-Ne [3] laser at ji = 1 -»j2 — 1 transition and circular phase anisotropy 
of the cavity. 

On the basis of the proposed mathematical model [4] we have studied in 
details the influence of the active medium and empty cavity anisotropies, 
as well as the longitudinal magnetic field on polarization instability phe- 
nomenon. 

According to the theoretical predictions this phenomenon has been ob- 
served experimentally in He-Ne (A = 1.15pm) laser at elliptical orthogonal 
eigenstates of the empty cavity with not too large values of ellipticity. 

Periodic oscillations of two 
qualitatively different forms, 
represented in terms of xy 
components of the intensity 
of two standing waves in 
Fig.l and Fig.2, have been 
found. The first of them oc- 
curs near the Hopf's bifurca- 
tion point. The second so- 
lution has been observed at 
the fine center tuning when 
the frequency difference be- 
tween the emitted waves is 
decreased, or at the detuning 

so from the line center. 
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Polarization instability in the system under consideration is very much 
the same as it is at linear orthogonal eigenstates of the empty cavity, ob- 
served in [2] in He-Ne (A = 3.39^m) laser. 

In the vicinity of the line center tuning the transition between two sta- 
tionary orthogonal elliptically polarized waves has been observed, which 
occurs through the region of tunings with polarization instability. Analo- 
gous polarization behaviour has been found in [1] and [3] at linearly and 
circularly polarized eigenstates of the empty caviy, respectively. 

It has been shown also that polarization instability phenomenon in a 
single-mode gas laser with weakly anisotropic cavity exists whilst the empty 
cavity or the external field anisotropy changes the active medium eigen- 
states, or in other words, the scheme of connection of atomic sublevels, 
which forms the state of polarization of the emitted radiation. So, this 
phenomenon, according to the predictions of [2], could be considered as the 
exhibition of the dynamics of atomic variables. It can be found in other 
laser systems at comparable in value active medium and empty cavity or 
(and) external field anisotropies. 

The research described in this publication was made possible in part by 
Grant N RWVOOO from the International Science Foundation. 
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In recent years, significant improvements in crystal quality, laser sources, and cavity 
designs have led to the development of optical parametric oscillators (OPO's) operating in 
the continuous-wave regime with thresholds as low as a few milliwatts.1 Such thresholds 
have been made possible thanks to drastic cavity loss reduction (overall loss of 0.1 % 
leading to finesse of up to 6000 has been recently reported).2 Besides their practical 
interest, the high finesse OPO's are attractive for the study of nonlinear dynamics.1 In 
particular, since they operate with low internal intensities (i.e., weak pump depletion over 
each cavity round-trip), they can be described by the mean-field theory which predicts a 
variety of complex behaviors such as self-pulsing, period-doubling cascades, and chaos.3 

The aim of our communication is to present a new remarkable dynamical feature of the 
high finesse OPO. We deal here with the particular case of second harmonic generation. 
Instead of considering the situation which is relevant to the application of the mean-field 
theory (i.e., both fields near resonance), we study the case where the pump field is tuned 
between two cavity resonances. This is the situation in which Dceda instability occurs when 
considering a Kerr medium in the cavity.4 Owing to the Kerr-like nonlinear phase changes 
in the pump field resulting from the cascaded second order nonlinearity, we can expect that 
Ikeda-type instabilities will also occur in the off-resonance OPO. 

We treat this problem by means of the procedure we developed in ref.[4] for the Kerr 
nonlinearity. The propagation equation together with the resonator boundary conditions 
yield the following four dimensional map 

Ej+1(0) = Tj S + RjEj(L) expCikjL) (l.a) 

E!|+1(0) = RjEjCDexpOkjL) (l.b) 

where Ei and E2 are the pump and signal amplitudes in the cavity, S is the input pump 
amplitude, Tj and Rj are the transmission and reflexion coefficients of the cavity input 
coupler (see fig.l) and L is the cavity length. Assuming phase-matching (k2 = 2 ki), Ei(L) 
and E2(L) are given by integration of the normalized propagation equations dEi/dz = 
i Ej*E2 and dE2/dz = i Ei2 over a cavity round-trip. In order to study Ikeda-type 
instability, we assume that the pump field is tuned between two cavity resonances, i.e., 
kiL = (2m+l)rc - 8 where 8 is the linear phase detuning (we assume 8 « 2%). If the 
coupling coefficients Tj and Rj are real, the phase matching condition implies that the signal 
field is close to resonance [k2L = 2(2m+l)7t - 28]. This is the situation we consider here. 
As in the mean field theory of ref.[3], we assume weak pump depletion over one round- 
trip. This allows us to integrate the propagation equations in a first order approximation 
which yields* Ei(L) = Ei(0) + iL Ei*E2 and E2(L) = E2(0) + iL Ei2. Introducing these 



expressions into the map (1) and applying a first order expansion in terms of the cavity 
losses Tj and detuning 8, we get a simplified algebraic map from which it it easy to 
calculate the fixed-point (PI) and period-two (P2) attractors. Straightforward calculations 
reveal the existence of a period-doubling bifurcation (onset of Ikeda instability) 
characterized by P2 oscillations in the pump field while the signal field remains on a fixed- 
point attractor. The amplitude of the signal on this fixed-point, E2n = E2n+1, is given by 

n       n+1 E2-E2 
 iL 

T* + 4i8 

[(Ej)2 + (E;+1)2] (2) 

Fig.2 shows this peculiar mixed P1-P2 attractor as calculated from the map (1). We verify 
the validity of the approximate algebraic expression (2) with an accuracy of the order of 
3%. Note that with the map (1) the degeneracy in the signal field predicted by (2) is slightly 
broken. We observe two close but separate lines (the separation being only of a few 
percents). As expected, the accuracy of eq.(2) decreases for higher values of the losses. 

In conclusion, our analysis reveals that off-resonance OPO's exhibit an Ikeda-type 
instability characterized by a mixed P1-P2 attractor which constitutes a remarkable example 
of self-organized behavior in a two-mode nonlinear system. 

6TI 

EI,E2 

Fig. 1 Schematic of the OPO cavity. We 
consider a monolithic ring design 
analogous to that of ref.[2] 
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Fig.2 Pump and signal field amplitudes lEjl and IE2I 
versus input pump amplitude S with Tl = T2 = 0.25 
and 8 = 0.1. 
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Two waves at different frequencies copropagating through a fiber can generate sidebands at 
new frequencies due to nonlinear interactions in the fiber medium. Earlier investigations, using 
short lengths of fiber (l-2m), found good agreement between experimental measurements and 
theoretical predictions. ^ A conservation law, derived from theoretical models, for the 
asymmetry between the pumps and sidebands, has been experimentally verified for short fiber 
lengths.2»3 Here, we report the results of both theoretical and experimental investigations of the 
nonlinear dynamics of four-wave mixing (FWM) processes along a long optical fiber. 
Experimental measurements of the dynamical evolution of the FWM spectra in a long length of 
optical fiber are compared with numerical solutions of the nonlinear Schrodinger equation (NLSE), 
used to model wave propagation in an optical fiber. We also discuss the effect of multimode laser 
inputs on the dynamics of the FWM processes along the optical fiber and show how the dynamics 
are altered significantly compared to single mode laser inputs. 

The experiments are performed on a 50 m length of fiber with a pump frequency detuning 
of 366 GHz in the normal dispersion regime of the fiber. The output spectrum from the fiber was 
imaged using a low noise, high resolution CCD camera placed at the output of a spectrometer. A 
typical FWM spectrum is shown in Figure 1, the sidebands are centered around the two pump 
peaks. The power in the first order sidebands, normalized to the total power, was measured along 
the length of fiber and is compared with numerical solutions of the NLSE. In Figure 2(a) we 
show the results for pump inputs with 2W peak power, while Fig. 2(b) shows the results for 5W 
peak power. The NLSE predicts periodic and quasi-periodic energy exchange between the pumps 
and sidebands, whereas the experiments indicate that the energy in the sidebands tend to steady 
state values. It is interesting to note that despite the disagreement, the asymmetry conservation 
law2«3 was found to be preserved throughout the fiber, independent of length. At the long lengths 
of fiber this asymmetry relation proved to be a sensitive test to detect other nonlinear processes, 
such as stimulated Raman scattering. 

Pump fluctuations in the detuning and power were included in the numerical simulations 
and do not fully explain the evolution to the steady state values as seen in Figure 2. The 
experimental results also show that the individual sidebands exhibit distinct dynamics. The power 
generated in the blue-shifted sideband along the fiber (Figure 3(a)) has a higher value at the 
maximum of the cycle and a shorter period than the red-shifted sideband (Figure 3(b)). A more 
accurate description of this behavior is found by modelling one of the input pumps as a two mode 
laser and the other as a single mode laser. Numerical solutions of the NLSE including the effects 
of pump fluctuations and a two mode laser input yield good agreement with experimental 
measurements of the average sideband dynamics, Figures 3(a) and 3(b). However, measurements 
of the standard deviation of the average values along the fiber are still not explained by this model. 
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Many-body effects have been shown to be important in describing fem- 
tosecond pulse propagation in semiconductor amplifiers. Physical mecha- 
nisms such as dynamic bandgap renormalization, Coulomb screening, spec- 
tral hole-burning, plasma heating and cooling etc. have all been shown to 
play an important role in determing the nature of the pulse evolution along 
the amplifier [1]. An important experimental observation at low carrier den- 
sities is the so-called Urbach tail [3], which corresponds to an exponential 
rather than Lorentzian-like decay of the exciton absorption tails away from 
the peak. This observed phenomenon has been ascribed to memory effects [2] 
and requires a modification to the Maxwell-Semiconductor Bloch equations 
(MBSE) describing the interaction of light with the semiconductor material. 
The MBSE are given by: 

dE L\7   F   -    *'<Wo^o y^ n 

= -i'(A,-«g)P,-iß,(yj+ /*-!) + 

df?A Qfe/h 
dr, *^", + c.c+    ^ 

coll 

coll 

with the renormalized Rabi frequency üq = ß/2 + J £g, Vq_q,Pq, and the 
renormalized transition energy A, = eq - (l/tyE,, Vq.q,{fe

ql + /*). In the 
usual relaxation rate approximation, the collision terms are replaced by an 



effective ^-dependent damping constant i.e ^1      = -yaPa This amounts 
. "*) \coll 

to representing each homogeneously broadened lineshape by a Lorentzian 
profile. In order to account for memory effects in the polarization decay we 
consider f^ = £„ 7,(* - t')Pq{t')dt'. 

This generalized manybody problem offers a formidable computational 
challenge. We utilize forms for jq(t) which correspond to both a hyperbolic 
secant lineshape [3] and a series of multiple pole approximations to account 
for faster than quadratic fall-off for the tails of the homogenously broadened 
lineshape. In the low density approximation, we recover the rapid fall-off 
in the exciton feature showing that a truncated multiple-pole approximation 
is reliable in this case. The effect of faster fall-off in the tails is to recover 
a linear gain profile which asymptotes to zero absorption at the band edge. 
Lorentzian tails yield an artificial net absorption which is nonzero at the 
band edge and extends to lower energy [3]. 

We will report on a study of femtosecond pulse propagation in semicon- 
ductor amplifiers including inhomogeneous broadening, many-body interac- 
tions, plasma cooling and memory effects. Plasma cooling provides more cold 
carriers for gain on the tail of the pulse and leads to strong pulse distortion. 
Memory effects significantly affect the saturation behavior of the amplifier 
and reduce the predicted absorption from high-lying carrier momentum states 
following saturation. Plane wave calculations are extended to a broad-area 
amplifier, introducing the diffraction degree of freedom to the problem. A 
femtosecond pulse will be shown to undergo transient self-focusing to form 
an self-induced index waveguide near its peak with diffraction occuring on 
the outer edges. 
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As has been shown recently a spontaneous formation of the solitons in the laser systems 
takes place without any additional modulators [1,2]. Main feature of these lasers is the low fre- 
quency beatings produced by a shift of the carrier generation frequency from the center of the lu- 
minescence band. Moreover, the existence of the traditional mechanism of the soliton formation 
based on the interaction between the group-velocity dispersion and the self-phase modulation 
(SPM) may sufficiently increase the mode locking efficiency. 

The purpose of this paper was to perform a detailed research of new type of soliton lasers 
with SPM, negative group-velocity dispersion and frequency shift from the luminescence band 
center. These investigations were based on the self-consistent field theory, analysis of the soliton 
stability and the numerical simulation of the generation dynamics performed with the help of the 
split-step Fourier method and the fluctuation model. 

We have shown that a mechanism of the soliton formation for the new type of mode-locking 
may be understood by analogy with soliton propagation in the media with the negative group-veloc- 
ity dispersion and SPM. A transform-limited pulse propagating through nonlinear media becomes a 
frequency modulated. SPM leads to growth of the instant frequency along the pulse profile. It was 
assumed also that the soliton carrier frequency has shift from the center of the luminescence band 
(CD) owing to a move of the resonator mirror creating the cumulative Doppler effect, a shake of the 
laser cavity elements (for example, the rotating prisms or plates), intracavity long-pass wavelength 
filter consisting of a knife edge introduced between the prism pairs, the gain line splitting. Then 
pulse obtains an additional linear frequency modulation. If a < 0 (longer-wavelength shifted 
soliton) the instant frequency decreases along the pulse profile. The combined action of these 
processes may produce a self-reproduction of the pulse propagating in the system If this state is 
stable, a competition between initial amplifying pulses in the laser system may lead to formation of 
the single stable pulse. 

We have considerated the dissipative nonlinear equation describing the field propagation in 
the laser system with frequency shift from the center of the luminescence band and being an 
analogue   of the   generalized   Landau-Ginzburg   equation.   It   has   the   soliton   solutions: 

a = a0exp(iat)coax'1'1 ^ 0t, where 0 = -o)-j= is the reverce soliton width, 
^y/id-dy/   +2y/r) 

2    a)3T(-2dy/-2di/f3 +4r +4y/2r) 
ao = T7~.—71—~—: is the soliton intensity, 

ay/2(d-dy/2 +2y/T) J 



2- 

a =y + 
2<D

2
T -2d2a>2y/ Adco T 2o)2r2 

is the gain in the soliton 

Fie-l 

400 t, nc 

d-dy/1 +2y/T d - d\f/z+2y/T y/(d-dy/z +2y/r) 
maximum, \\i is the chirp, T is the time delay on the spectral filter, y is linear losses, d is group 
velocity dispersion coefficient. The chirp and the frequency shift are found from implicit equations. 
We described the main features of these solitons. The results of the soliton analysis are in excellent 
agreement with experimental dates presented in [2,3]. 

We found that the rise of the soliton 
energy result in Hopf bifurcation. The 
soliton acquires the nonrelaxating 
oscillations with frequencies ~10 MGz. 
Such oscillations correspond to the de- 
flection of the laser parameters from the 
zone of the efficient mode locking (see fig. 1, 
where the result of the numerical simulation 
of the laser dynamics is shown). The further 
rise of the soliton energy breaks the regular 
character of the oscillation. The additional 
frequency dependent on amplitude of the 
oscillation appears. If the oscillation 

frequencies are rationally independent, there is a quasi-periodical osculation. The vector "wanders" 
on the bifurcation tore and the oscillations become irregular (see fig.2). The layer of the ergodic 
motion expands around initial trajectory. 

Later on the systems suffers the bifurcation cascade when the motion becomes regular again 
but with new rational ratios between the oscillation frequencies. New regular trajectories appear on 

the boundaries of the ergodic motion zones. Such state is 
supported on the finite interval of the soliton energy 
increase. On this interval a frequency-lockin regime 
exists. Then the formation of the ergodic layer is 
repeated and each bifurcation is accompanied by the 
states with ergodic motion. Further rise of the soliton 
energy leads to increase of the oscillation amplitude and 
the appearance of the new oscillation frequencies ratios. 
We have observed the trajectories corresponding to four 
frequencies relations. At last, the soliton becomes fully 
unstable and the system behavior becomes a chaotic. 

We believe that new type of soliton mechanisms 
enables to generate stable ultra-short pulse trains in a 

wide range of the laser parameters without the need of additional modulators. 
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Relaxation oscillations have been studied both theoretically and 

experimentally in a multimode YAG laser in presence of a derivative 

feedback. Feedback which is often used to reduce the fluctuations in the 

laser output [lj has also been considered from a dynamical point of view[2|. 

Continuous feedback is useful to stabilize unstable steady states and to track 

them over a wide range of parameters in which the laser is usually spiking 

periodically or chaotically I3j. We report here on a detailed investigation of 

relaxation resonances of a multimode class B laser with a derivative 

feedback built from a combination of the total intensity and of the intensity 

in a given mode. Such a combined feedback is represented by the expression 
^ dl; dlv 

A = A0 + Ktotai  Z -1 + Kv   7^ (1) 
dr dT 

where A is the pump parameter and lj the intensity in mode j. We have 

considered here the case of multimode operation of this laser when up to 4 

modes are simultaneously excited above threshold and up to 4 relaxation 

frequencies may play a significant role in the dynamics of such a laser. 

In this presentation, we use a rate equation model describing the 

operation of the class-B laser  [4|: 
dl; 

1 = G lj (No + Nj -1 - Cj) 
dr 
dNo 

=  A - Nn (1 + EL) - L Nj lj (2) 
dT 

dN; 1 
^   = -Nj(1+Iip-2Nnlj 

using the loss distribution of the form Cj = ß (j-1), and standard notations of 

laser theory. Steady-state solutions are given and their stabilities are linearly 

analysed.   Numerical   simulations   have   shown   that  depending   on   the 



feedback coefficients the laser may destabilise through excitation of specific 

relaxation oscillations and eventually switch to chaos. 

The experiments have been performed on a YAG laser with a 

feedback made of a combination of the total intensity and the intensity in 

one longitudinal mode. The radiofrequency noise spectra have been 

measured for each of the longitudinal modes and for the total intensity. In 

absence of feedback, all spectra display a resonance peak at the standard 

relaxation oscillation frequency of the laser. The RF noise spectra in each 

longitudinal mode also exhibit several resonances at frequencies lower than 

80 kHz typically. All these lower resonance frequencies which are observed 

on individual mode fluctuations are almost absent from the total intensity. 

They correspond to antiphase oscillations which globally compensate each 

other. Special attention has been paid to the case where the coefficients 

Ktotal and Kv fulfill the conditions Ktotal < 0 and Kv > 0 to realize both the 

compensation of the high frequency too and the excitation of a low 

frequency. Various dynamical features have been obtained depending on 

the amplitude and the sign of the feedback and in particular on the relative 

weight of the selected mode intensity. They include regenerative 

amplification and selective excitation of low frequency quasi-sinusoidal 

oscillations and chaos. 

The model derived in the theoretical section provides an excellent 

description of the influence of a combined derivative feedback on the 

multimode YAG laser as seen in the experiments. These effects include 

- shift, narrowing and enhancement (reduction) of relaxation oscillation 

peaks in the radiofrequency spectrum of laser noise. 

- destabilization of the  laser by  two scenarios either through a  Hopf 

bifurcation or directly to chaos. 
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Abstract 

The theoretical investigation of high frequency in- 

jection modulation technique in semiconductor laser 

with external optical feedback is conducted for the 

reduction of relative-intensity-noise (RIN). The mod- 

ulation frequency is determined from a linear stability 
analysis. 

1 Introduction 

In some of optical systems such as an optical disk 

system, the system performance is largely affected by 

the optical feedback (OFB) induced laser intensity 

noise. The relative intensity noise (RIN) of a semi- 

conductor laser suddenly increases at a certain feed- 

back level and deteriorates the signal-to-noise ratio. 

In this report, we apply the high frequency injection 

modulation technique'1' to suppressing the feedback 

induced RIN in a compound laser system and control 

the chaos in the laser output. To optimize the modu- 

lation frequency, we give the theoretical background of 

the noise reduction by the high frequecy modulation 

based on a linear stability analysis. 

2 Rate Equation Model 

For a semiconcuctor laser system with weak optical 

external feedback, the dynamics is governed by the 

following rate equations'2' 

dE(t) 
dt 

dN(t) 
dt 

MN) + UG{N)-±\ 

+   JLE(t-T) + FB(t), 
Tin 

E(t) 

=   J- N(t) 

G(N)\E(t)\2 + FN(t), 

(1) 

(2) 

where E(t) is the field amplitude, N(t) is the carrier 

number, and J is the injection current, ui is the laser 

cavity frequency, G is the gain coefficient, and TP, Ti„, 

and T, are the photon life time, the optical round trip 

time in the laser diode cavity, and the carrier life time, 

respectively. The feedback parameter K is given by 

K = (1 — r22)rz/r2, where Tz and r$ are the reflectivi- 

ties of the front laser facet and the external reflector, 

respectively. FE and FN are the Langevin forces of 

spontaneous emission noise. 

MIRROR 

Fig. 1 Cavity model for a semiconductor laser with 

external optical feedback. l,L : lengths of laser diode 

cavity and external cavity, Ri,R2 : reflectivities of the 

laser facet, R3 : reflectivity of the external mirror. 

The effect of a high frequency modulation to the 

injection current at a frequency fm is described by 

J = Jb + Jm sin(27rfmt), where Jt and Jm are the 

bias and modulation currents, respectively. To opti- 

mize the modulation frequency fm for the reduction of 

the RJN, we carry out a linear stability analysis'3' for 

the perturbation to the stationary solutions and ob- 

tain the transcedental equation. Fig.l shows the mode 

distribution calculated by the transcedental equation. 
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Fig. 2 Mode distribution for Jb=1.07Jth, L=2lcm, 

and T32=1.6%. s is the perturbation parameter. 

By employing frequencies that are equal to or near 

the mode frequencies, the numerical integration of 

Eqs.(l) and (2) were carried out by using a fourth- 

order Runge-Kutta algorithm. Fig.3 shows an exam- 

ple of the laser output powers for Jb=1.07Jth {Jth 

is the threshold current), the external cavity length 

L=21cm, rsa=1.6%, and fm =1.44GHz. The chaotic 

behavior in Fig. 3(a) is controlled to a period two cycle 

as shown in Fig.3(b). The Corresponding RIN spectra 

are shown in Fig.4. 

time  (ns) 

Fig.3 Laser output power for Jb=l.07Jth) L=2lcm, 

and r3
2=1.6%.(a) without modulation and (b) with 

modulation. 

It is recognized from the figure that the RIN with 

high frequency modulation at the low frequency re- 

gion is suppressed about 20dB/Hz compared with that 

without the modulation. 
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Frequency   (GHz) 
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Fig. 4 RIN spectra corresponding to Fig. 3. solid 

line: with modulation; dotted line: without modula- 
tion; 

3    Conclusion 

We have investigated the elimination or suppression 

of the chaotic bahavior in a semiconductor laser with 

external optical feedback. The feedback induced in- 

tensity noise has been suppressed by a high frequency 

injection modulation technique, in which the modu- 

lation frequency is chosen to be equal to or near the 

mode frequency. The RIN at lower frequency region 

has been reduced by the optimized modulation fre- 

quency. It is proved that the high frequency injection 

modulation technique is a promising method for the 

control of chaos in semiconductor laser with external 

optical feedback. 
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It was recently shown [1-3] that a cw-driven ring resonator, in which the nonlinear 
medium is a beam of two-level atoms, can exhibit multistability as a result of the Rabi 
cycling of the atoms as they pass through the cavity mode. In the present work, we 
investigate multimode instabilities in this system. 

For the case of absorptive (atoms resonant with the driving field) transit 
multistability [1,2], we have extended the single-mode stability analysis of Ref. 1 to the 
multimode case. For the rfl1 mode, where n is the mode's detuning from the driving laser 
in units of half the cavity's free spectral range, a perturbative analysis shows that instability 
will occur when 

Re(Xn) = -kRe[l-{2Cx/(x2-n27i2T2/xr
2)}Ji(x,in7rx/Tr)]>0 

where k is the cavity decay rate, C the cooperativity, x the normalized intracavity field, x 
the transit time, and xr the cavity round-trip time (times in units of Yj/1). The quantities 
Jj (i = 1,2) are given by 

J^x) = l-e-^cos(x)--^-(l-e"X''t+-^-)xsin(x), 
Xx xl 

J2(x,Xx) = cos(x) - e"XT - Ax sinc(x). 

As first pointed out by Carmichael [4], regions of negative slope in the state equation (x 
vs. y, the normalized input field) of the driven mode (n = 0) in the resonant cavity 
correspond to regions of instability in the modes of the cavity driven midway between 
resonances. For the multistable system, there are many such regions, as illustrated in the 
figure. 

In the figure, regions inside the curves are unstable; here Cx = 10. The Jrtype 
regions intersect the x-axis at the limits of the negative-slope branches of the multistability 
state equation. The J2-type regions are closed curves, and exist only for the lowest 
negative-slope branch at this value of Cx. Curves for three values of n (n = 1, 2, 3) are 
shown; the vertical extent of each curve decreases with increasing n. Even values of n 
denote neighboring cavity modes when the driving laser is resonant with a mode; odd n 
apply when the laser is tuned midway between modes. Note that the J2-type instabilities, 



'— 
k«. 

which play no role in the single-mode case, can become important in describing multimode 
instabilities, and note that they extend beyond the negative-slope branches. For this value 
of CT, experimentally feasible with C = 200 and x = 0.05, the resonant cavity will display 
both Ji-type and J2-type multimode instability (n = 2) in the region just above the first 
branch of negative slope. The cavity driven between modes (n = 1,3) will exhibit 
instabilities in all three regions shown, provided that the ratio of transit time to round-trip 
time is within the proper ranges. 

In summary, we have extended the instability analysis of transit-multistable ring 
resonators to the multimode case. Further results and analyses will be given in the paper. 
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Nonlinear dynamics have been studied in a 
number of modelocked laser systems, primarily 
in actively modelocked systems. However, less 
attention has been paid to the dynamics of 
passively modelocked laser systems. With the 
recent revolutionary advances in femtosecond 
modelocked laser technology, the understanding 
of instabilities and dynamics in passively 
modelocked lasers is an important issue. Here, 
we present experimental and numerical studies of 
the dynamics of an additive-pulse modelocked 
(APM) color-center laser. However, it is 
important to note that our discussions are more 
general, and apply to other types of passively 
modelocked lasers, because we have also 
observed these dynamics in a self-modelocked 
Ti:sapphire laser, and in a modelocked Enfiber 
laser as well. The APM laser and the other 
above mentioned lasers are all examples of lasers 
using a fast saturable absorber (FSA). 
We have studied two types of APM lasers; the 
Fabry-Perot APM1 '2 and the Michelson APM.3 

Both were based on a color-center laser which 
used NaCl as the gain medium. The Fabry-Perot 
APM laser consists of a main cavity (containing 
the NaCl gain crystal) and a control cavity which 
contains a single-mode fiber to provide the Kerr 
nonlinearity. These two cavities are coupled end- 
to-end in the Fabry-Perot configuration. When 
passively modelocked at a power of P=200 mW, 
the laser produces pulses of less than 150 fsec 
duration, at a repetition rate of 76 Mhz, 
corresponding to a pulse spacing of 13 nsec. At a 
slightly higher power, (P=240 mW), a period- 
doubled pulse train is produced (Figure l[a]), and 
at even higher power (P>280 mW), a 
quasiperiodic pulse train is generated (Figure 
l[b]). Yet the measured pulse intensity 
autocorrelations still indicate relatively short 
pulses (T-150 fsec). 
Numerical simulations of the Fabry-Perot APM 
laser show that this period-doubling is expected 

as the nonlinearity is increased. The bifurcation 
diagram in Figure 2 shows how the laser pulse 
energy varies as the control cavity nonlinearity is 
increased. First, the laser goes from CW to 
modelocking (the "second-threshold"). As the 
nonlinearity is increased, the pulses get shorter 
and shorter until the laser goes to period-doubled 
modelocking.   With further increases in n2 the 
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Figure 1. Period-doubled pulse train (a) and 
quasiperiodic pulse train (b) from APM laser. 
Note that pulse spacing is 13 nsec in both traces. 



laser makes a switching transition to another 
period-doubled mode, and then a sudden 
transition to apparent chaos, indicating a crisis. 
The figure also shows the pulse solutions at two 
values of nonlinearity. Note that the pulse 
solutions for the upper and lower branches have 
very different intensity profiles. 
We have also studied and numerically simulated 

of behavior; however, we have not considered 
this case yet. 
In conclusion, we have studied the nonlinear 
dynamics of pulse train instabilites and pulse 
reshaping in APM lasers using two different 
cavity configurations. These results are 
important for understanding the general behavior 
of various types of self-modelocked lasers which 
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Figure 2. Bifurcation diagram of (simulated) laser pulse energy versus nonlinearity for a 
Fabry-Perot APM laser. Pulse solutions are shown for two values of nonlinearity: one for 
normal modelocking (n2= 2.3) and two for period-doubled modelocking (n2 = 2.8). 

the Michelson APM laser and have found that it 
exhibits none of these effects, no matter how 
large the nonlinearity is made, or how hard the 
laser is driven. The only instabilities 
encountered in reality were relaxation 
oscillations. This agrees with previous 
observations by Grant4 who did an experimental 
comparision between the F-P and Michelson 
configurations. In the simulations of the 
Michelson APM, as the nonlinearity is increased 
beyond the normal bounds, the modelocked pulse 
becomes distorted, broadened, and develops 
multi-peaked structure, but no pulse train 
instabilities were generated. This also agrees 
with the predictions of Cormier & Piche.5 

Another type of APM laser cavity is the "figure- 
s'' configuration, which has been used for 
modelocked Er:fiber lasers. We might expect 
this to be similar to the Michelson cavity in terms 

use fast-saturable absorber effects. 
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Summary 

Phase-conjugate resonators have unique properties which make them potentially 
attractive for applications in image processing and storage. These applications require 
some of the following attributes: gain, phase healing and spatial multistability. 

We have studied experimentally the spatiotemporal behavior of a linear resonator 
using an externally pumped photorefractive phase-conjugate mirror in a confocal cavity. 
This system has gain and a phase healing mechanism, but observations indicate that 
spatially non uniform solutions are time dependent unless the phase matching condition is 
precisely satisfied [1]. 

We analyzed the effect on the spatiotemporal dynamics using a phase or 
momentum mismatch introduced by an angular tilt of the pump beams. At low Fresnel 
number (F<2) a time independent, spatially uniform solution exists. A phase mismatch 
reduces the gain until the resonator falls below threshold. For 2<F<3, the cavity can 
sustain more than one transverse mode. The motion is periodic consisting of a vortex 
pair nucleating at the center and vanishing at the boundary, with a trajectory along a line 
normal to the transverse momentum mismatch. The frequency of the motion increases 
with the mismatch [fig. 1] and vanishes when phase matching is achieved with exactly 
counter propagating pumps. The output is then spatially uniform and time independent. 
The spatial patterns were analyzed using a singular value decomposition revealing the 
presence of two significant eigenmodes oscillating in phase quadrature [2] [fig. 2]. 

At higher Fresnel numbers the motion is complex and may become chaotic, 
involving several pairs of dynamic vortices. The characteristic frequencies are again seen 
to vanish when approaching phase matching where the output converges to a time 
independent, spatially non uniform solution (e.g. a doughnut at F~4). 

The paper includes detailed accounts of the experiments and attempts to model 
the observed behavior. 
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Usually, modulation of a laser system is accomplished by acting on the pump 
strength (or gain), on cavity parameters such as losses, detuning or anisotropy, or on an 
applied magnetic field /1-3/. In this work we investigate theoretically a new type of 
modulation, in which action takes place on the polarization state of a pump light beam. 
This can be performed in an optically pumped laser where a pump beam acts on a J->T 
transition and the generated laser beam is coupled with an adjacent T->Y transition in a A 
level scheme. Because of the M-degeneracy of the atomic or molecular levels, the system 
is sensitive to the polarization state of both the pump and laser fileds. 

Here we consider specifically the simple case of a A level configuration J=0-»r=l 
->J -0, with a linearly polarized pump beam. Modulation is accomplished by rotating at a 
constant angular velocity Q the polarization plane of the pump beam. We have considered 
two situations. In the first one the cavity losses are assumed to be strongly anisotropic 
(Brewster-angle-plate type), so that the generated field maintains a linear polarization at a 
fixed orientation angle. Thus, if 0 represents the relative angle between the polarization 
planes of the pump and laser fields, it varies with time in the form 0=0o+Qt. 

As 0 changes, the interaction between the pump and laser fields through the active 
medium changes. For instance, it is known that at 0=7t/2 (orthogonal polarizations) the 
two-photon (Raman) contribution to pumping is null /4/ and that the population in the J-1 
sublevel manifold accumulates in a trap dressed state 151, facts which do not occur in the 
case 0=0 (parallel polarization). This makes that the dynamics is very different for different 
fixed values x>f 0 between 0 and u/2 161. 

When 0 is increased very slowly with time (Q«y, being y a typical relaxation time 
of the system), one could expect the system to follow periodically (with period 7c/2Q) the 



rich sequence of steady or dynamic states that correspond to each successive value of 0, 

but several new features appear. For small pump-field intensity, Q-switching-like behavior 

occurs, with very large and delayed intensity spikes (see fig. 1). For moderate pump-field 

intensities, there is quenching of the time-dependent (chaotic) behavior expected to occur 

in a wide domain of values of 0 161, which leads to stabilization of the unstable stationary 

solution (the system "follows" that solution as 0 varies). 

For larger values of Q (but still verifying Q.<f), the observed features become quite 

different from those observed in the limit Q-»0. The system's inertia is large enough to 

prevent following of the sequence of solutions corresponding to the different values of 0. 

Finally, if Q is further increased (Q$y), emission disappears, since polarization rotation is 

equivalent to introducing a frequency difference between the dextro and levo circularly 

polarized components of the pump field, which puts them out of resonance. 

In the second situation we are presently investigating, the cavity is assumed to be 

isotropic, so that the laser field vector can evolve freely and the dynamics involves both the 

intensity and polarization of the laser field. Results will be presented at the Conference. 

1200 1400 1600 1800 

FigJ.- Laser field amplitude vs. time, in a case of low pump intensity. The 
dotted-dashed line represents the function cos0=cos(0o+Qt) and the 
dashed line shows the associated sequence of steady states. 

III.- CO. Weiss and R. Vilaseca: Dynamics of Lasers (VCH, Weinheim, 1991). 
111.- J.Ch. Cotteverte, F. Bretenaker, A. Le Floch, P. Glorieux: Phys Rev A 49, 2868(1994) 
131.- A.P Voitovich, AM. Kul'minskii, V.N. Severikov: Quantum Electron. 23, 768(1993). 
141 R. Corbalan et al.: Phys Rev. A 48, 1483 (1993). 
151.- E. Roldan, G.J. de Valcärcel, R. Vilaseca, R. Corbalan: Phys Rev. A 49, 1487(1994). 
161- A.M. Kul'minskii, R Vilaseca, and R. Corbalan: (to be published) 
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Abstract 

Spatio-temporal chaos in a discrete-time neural net- 
work with continuous state variables is investigated. It 
is demonstrated that the chaotic behavior can be con- 
trolled with the knowledge of only a (random) part of 
the target information. The application to the asso- 
ciative memory is described and the results show that 
the target pattern can be successfully associated with 
the proposed control algorithm. 

1 Introduction 

Recent researches in physiological science fields re- 
vealed the existence of chaotic dyanmics in some bio- 
logical neural systems. I1' On the other hand, nonlinear 
dynamics and chaos have been recognized and inves- 
tigated in a variety of asymmetric neuron models.'2' 
It becomes a growing attractive topic whether chaos 
plays functional roles in the information processing of 
neural systems. 

In this paper, we study the spatio-temporal chaos in 
a neural network and in particular concentrate on the 
functional roles of chaotic dynamics in the informa- 
tion processing of the neural networks. Using the Lya- 
punov spectrum and the bifurcation diagram, we ana- 
lyze the characteristic features of the spatio-temporal 
chaos. Spatio-temporal chaos is controlled by employ- 
ing the parameter control technique. We also apply 
the control algorithm to the memory search and show 
that the system successfully associates the target pat- 
tern by using only a part of the target information. 

2 Chaotic Neural Network 

We consider a chaotic neural model with discrete- 
time and continuous states as follows 

M 

yi(n+l)   =   kyi(n) + Y2 wiixi (n) 

-   axi(ri) + Oi, (1) 

Xi(n + l)   =   tanh(ife(n+l)/e), (2) 

where yi{n) and Xi(ri) are the internal state and out- 
put of the ith neuron, M is the total number of neu- 
rons in the network, k is the memory constant, a is 
the relative inhibitory constant, Wij is the connection 
matrix componet, and a* is the external input of the 
zth neuron. 
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Fig. 1 Bifurcation diagram via the external input 
of a single neuron in a chaotic neural network. M=36, 
fc=0.1, a=1.0, e=0.02. 

The output of the network appears chaotic for cer- 
tain parameter regions. Figure 1 displays a bifurca- 
tion diagram of the 15th neuron via the external in- 
put. Clearly, as Oi is varied, the network transits from 
periodic state to chaos. Besides the bifurcation di- 
agram, we also employed the Lyapunov spectrum to 
investigate the network dynamics. The results show 

that the network behaves chaotically for a wide range 
of positive values of k, a, and Oj. It is worth noting 
that for zero values of k, a, and Oj, the connection 
becomes symmetric and the only attractors are fixed 
points and period-two limit cycles.'3' 

The target patterns can be embedded by defining 



the connection matrix as 

%4&(vw, (3) 
r=l 

where e(r>(r=l,2,- • -,L) is the vector of the embedding 

pattern and e*(r) is its adjoint vector defined by 

M 

5><rvw=&... (4) 
f=i 

3    Spatio-temporal Chaos Con- 
trol and Its Application 

In the configuration of the parameter control 

technique'4', the parameter z (=k, a, üJ) is varied as 

a function of a control signal ß^{n) 

z=[l-M(r)(n)]z(0). (5) 

Here z(0) is the initial value of z and T represents one 

of the embedded target patterns. The control signal 

is generated with following two algorithms. 

1. Algorithm I: regular sampling 

i=l   U=l J 
(6) 

where P is the spatial sampling density and N = 
M/P. 

2. Algorithm II: random sampling 

*(T)(») = £X>(T)(».ft). 
»=i 

(7) 

where N < M is the sampling number and Ri is 

a number randomly distributed within 1 to M. 

gT is calculated by comparing the current state with 
the target one as 

<7(T)(M) = sgnMn) • e^}exp[Wß\ - A .   (8) 

The Numerical simulations have been performed by 

using a 36 neuron network model. Three characters 

"A", "F, "E" are embedded in the network as the tar- 

get patterns. The initial values of k, a, and a* are set 

to proper values for which chaos is observed. Figure 2 

shows the associative processes for the target pattern 

"A".   Sampling density is 1/3 for both cases.   Even 

starting from a random initial pattern, the memory 

search succeeds without trapping in local minima. 

¥1 
INITIAL 
PATTERN t=1 t=2 t=3 t=4 t=5 

t=97        t=98        t=99       t=100      t=101       t=102 
(a) 

INITIAL .   , 
PATTERN t=1 t=2 t=3 t=4 t=5 

DP-« 

■ 

t=103      t=104      t=105      t=106      t=107      t=108 

(b) 

Fig. 2 Associative memory search process with 

spatio-temporal chaos controlling. M=36, Jb=0.9, 

a=0.6, e=0.02, and Oi=0.25 for all neurons, (a) Al- 

gorithm I for P=3; (b) Algorithm II for JV=12. 

4    Conclusions 

We have applied spatio-temporal chaos controlling 

to associative memory search in a chaotic neural net^ 

work. The simulations show that the association is 

successfully performed by using only a part of the tar- 

get information. Our results imply the possibility of 

avoiding the local minimum problem by appropriate 

use of the flexibility of chaotic dynamics. We believe 

that the current study is helpful in understanding the 

functional roles of complex dynamics like chaos in neu- 

ral networks. 
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SUMMARY 

This theoretical study deals with the spatial instabilities generated in the 

transverse profile of the light beam transmitted by a gazeous atomic cell that couples 

the linear cross- polarized components of the electric field. Such a nonlinear medium is 

typically   made of atoms which have a transition with   spin momentum j like   the 

transition 5S U2& 5Pi/2 of the isotope 85 of the Rubidium. The input field is linearly 

polarized and the feedback is realized via a plane mirror located at a variable distance d 

from the cell. Spatio-temporal instabilities occur in the two cross-polarized field 

components but we focus on the structures displayed with a polarization orthogonal to 
the input one. 

The analysis of the structures generated in a such a device was primarly 

motivated by the flower-like patterns observed by Grinberg et al 1. While these patterns 

were interpreted in Ref. [1] as a non-Kerr cell effect, they are basically due to a small 

aspect ratio, as shown by the authors in Ref[2]. This circumstance of a small ratio 

aspect arises from the optical set-up, that favours the diffraction outside the cell along 

the optical path of length, 2d very large with respect to the cell length, £ . It follows 



that the aspect ratio is lowered by the amounfw p-x   with respect to the case without 

any feedback mirror where diffraction only works in the cell. With such a distributed 

feedback device, typical patterns like hexagons and rolls were experimentally 

displayed3, still with the same Rb transition. 

Propagation outside the nonlinear cell provides a threshold instability 

characterized by a degeneratemulticonical emission, with critical wavenumbers, Kf, £ 

=1,2,...On the focusing side, Kg =yß+Ä£ K-\, on the defocusing side, Kg =V3+4£ Kl 

In the very neighbourhood of the threshold intensity, the far-field patterns only display 

the smallest critical wavenumber and, in the limit of small aspect ratio, flower-like 

patterns have been numerically reproduced2. As the input intensity increases further, 

the patterns display the influence of the multiconical process through a cubic 

interaction. That favours the occurrence of square patterns, that actually occur on the 

focusing side of resonance, in both cases of large and small aspect ratios. 

Two examples are shown below: 

o   <§> 

<§> o 

a) See the far-field structure for 
positive detuning and aspect ratio, 9t~l, 

made of a square pattern of radius Kl 

surrounded by twelve spots. Eigth of 

them are the signature of a cubic 

interaction in a such a way that the 

wavenumber built from Kl is nothing 

but K2 = Vf» Kl, emphasizing the 

multiconical emission process. 

b) On the defocusing side and 
for large aspect ratio, 9i~7 the cubic 

interaction and the multiconical 

emission process operate together for 

building a rectangular structure, with 
radius equal to K i and angle <j>= 48° as 

a consequence of K2= *W*- Kl. But 

the K2 mode amplitudes are very small 

as compared with the Kl ones and not 

visible on this countour line. 

1-G. Grynberg, A. Maitre, A. Petrossian, Phys.Rev.Lett. 72,2379(1994) 

2-M. Le Berre, et al submitted for publication to Opt. Commun. 

3-A. Petrossian, M. Pinard, A. Maitre, J.Y. Courtois, G. Grynberg, Europhys. 
Lett.l8,689(1992). 
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Summary 

The experimental and theoretical study of injection instabilities of a semiconductor laser 
has been reported before/1-6/. The most theoretical analysis was for a single mode 
semiconductor laser with monochromatic weak external injection. The corresponding 
experiments were often performed by using edge-emitting lasers. There was a problem 
appear quit often: when the laser was driven into unstable regime by external injection, the 
original lasing mode became unstable and other longitudinal modes appeared, therefore 
the nonlinear dynamics caused by injection was companied by mode competition 
instabilities. This limited the experimental observation of injection dynamics only within a 
narrow parameter range. Here we show our experimental observation of injection 
dynamics by using an electrically pumped vertical cavity surface emitting laser (VCSEL) 
as slave laser. Because of extremely short cavity length, VCSEL can only operate with 
single longitudinal mode. Controlling driving condition guarantees fundamental transverse 
mode. We can therefore use large detuning and injection power to study dynamics without 
disturbance of mode competition. 

The experimental results will be reported as follows: (1). the measured asymmetric stable 
locking range implies the linewidth enhancement factor of ~ 2.3; (2).as detuning was 
settled outside the locking range, uncompleted locking happens often complained by the 
enhanced relaxation oscillation, its harmonics and subharmonics or beating between slave 
laser oscillation with injected signal; (3) as detuning was far away from the stable locking 
range, frequency pushing effect was observed; (4) the resonance effect of injection signal 
on the transverse modes was also recorded. 4WM signal was expected but not observed 
because of the limitation of the detection sensitivity. 

The corresponding theoretical simulation will be presented. We use two-mode equation 
based on rate equations calculating transient process and optical spectra under different 
detuning and injection power. The experimentally observed effects, as described above 
(l)-(3), were obtained from calculations with good agreement with experiment. 4WM 
signal was obtained from the theory with a signal level <-30dB which explained why we 



did not observe it in our experiment. The experimentally observed resonance influence of 
injection on the transverse modes needs more sophisticated model which should include 
polarization dynamics to describe the system in much short time regime of picoseconds 
range. 

In conclusion we show our experimental and theoretical study of injection dynamics. Our 
results emphasize that the intrinsic relaxation oscillations have important role; the 
competing of injected signal with original oscillation in slave laser and quenching one by 
another can be explained mainly through carrier dynamics by rate equations, but more 
quick process also exits requiring better models. 
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Many optical phenomena involve nonlinear coupling of counterpropagating 
waves. Such devices like laser gyro, correlated emission laser, and 
microcavity semiconductor laser are well known examples. Following the 
original work of Schwan et al. [1] attention has been turned to the 
possibility of the coupling to manage superfluorescent decay (SFD) as a 
distributed feedback laser. This Report is aimed on the development of such 
model of the process in which ensemble of evenly distributed atoms can 
organize itself into a spatially periodic structure. 

The model is based on the following argument. When, owing to quantum 
fluctuations of dipole moment and field, an inverted atom begins to decay it 
emits independently on the rest of the ensemble, total intensity of radiation 
from the sample is a sum over all ensemble, and no correlations occurs. The 
first step toward creation of feedback structure can be achieved through 
seeding of classical field. This field stems from non-zero polarization of a 
single atom and is fed by classical fields of surrounding atoms. Then the 
mechanism of growing of spatial correlations can be viewed as a result of 
interference between the source and its own field backscattered by the 
decaying neighbors. Consequently, it prevents reducing consideration to a 
couple of interacting waves and demands solving a set of Maxwell-Bloch 
equation beyond traditional slow-envelope approximation. 

In order to discuss the process qualitatively the dynamics of the atom in 
external field can be examoned near the state of inversion. Starting from 
linearized Bloch equations it is derived such equation for the resonant 
polarization that comprises effect of the resonant environment as follows, 

dP%'X) =\  / P(«,T>e*p<i*0|x-5|>d5, 
-L/2 

Although it is only approximate, this equation gives the general trend, and 
shows in particular that, as the sample length approaches integer number of 
the half-waves, the output intensity on the left face of the sample reaches 
its local maximum while it equals to zero in the opposite direction, and vice 
versa. Violation of this condition leads to symmetrization of SFD, the 
intensity of the radiation experience monotonous growth in the opposite 
directions. 

To achieve additional insight into the process numerical methods are 
used, and their results are depicted in Fig. 1. The sample is supposed to be 
excited by an ultrashort optical pulse coming from the left, and the 
concentration of the resonant centers is chosen to be equal that of the 
experiment [ 1 ]. It is quite remarkable that for the sample with the length of 
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10  A.  the  intensity of  the  emission to the  left  is  approximately  five times 
greater than to the right, and such switching behavior accomplishes with 
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Figure 1 

Time 

Variance of  inversion vs  sample  length  (a),  (b)  and 
corresponding intensities 

patterning of grating with period k/2  in the spatial profile of the inversion 
population [Fig. la,c]. Thiny increasing of the sample length up to 10.25 X 
[Figs. lb,d] equalizesthe intensities on the opposite sides of the sample, and 
does smooth the inversion profile. 
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Because of its simplicity, a system consisting of a nonlinear medium and a single feedback mirror 
is very attractive for studies of optical patterns [1]. It was demonstrated in a recent experiment that 
sodium vapor in an external magnetic field provides favorable properties for studying the spontaneous 
generation of optical patterns and their symmetry [2]. Here we present further experimental results and 
a theoretical discussion - based on a microscopic model - of the nonlinear optical properties of the 
system and their role in pattern formation. 

Our experimental set-up is a slightly modified version of the one described in [2] with a further 
improved spatial filtering (by a single-mode fiber) and a shortened heated zone (L = 15 mm) to reduce 
propagation effects inside the medium. The circularly polarized, enlarged (w0 = 1.4 mm being the 1/e2 

point of intensity) beam of a cw dye laser is injected into a sodium cell (Na particle density of about 
1014cm-3, nitrogen buffer gas pressure 300 mbar). The transmitted beam is fed back into the cell by 
a plane mirror (R = 91.5% ). An external magnetic field is produced by a system of three pairs of 
Helmholtz coils. At the red side of the Di-line highly modulated patterns appear if and only if the 
magnetic fields are properly adjusted (fig. la). As in [2] the appearance of stable patterns with an 
increasing number of filaments and different global symmetries for increasing beam power is observed 
and thus shown to be independent of the beam radius. In the region with pattern formation the integral 
transmission decreases with increasing power of the incoming beam (fig. lb). 

For the theoretical description we adopt the model of Ref. [1] for the propagation of the optical 
field, but replace their Kerr-like model equations by the one for a two-level spin system [3] (including 
the thermal diffusion of the sodium atoms in the buffer gas atmosphere), since under our experimental 
conditions optical pumping between the Zeeman sublevels of the ground state is the relevant nonlinear 
mechanism. This introduces the qualitatively new features of saturation and a sensitive dependence on 
- and hence controllability by - external magnetic fields. A plane wave solution and its stability analysis 
already explain some basics of the experimental findings. The principal shape of the transmission curves 
(fig. 2a) as well as the location of the instability regions in the parameter subspace spanned by the 
magnetic field components are rather well reproduced. The theoretical analysis shows in accordance 
with the experiment that pattern formation is only feasible in a small transverse magnetic field, which 
suppresses wash-out by diffusion while still allowing significant optical pumping. As reported, the ex- 
periment is performed for red detuning, which is regarded to be a self-defocusing situation. However, 
in parameter regions favorable for pattern formation, the refractive index n shows a nonmonotonic de- 
pendence on the light intensity, as revealed by the transmission curve in fig. 2a. (n is related to the 
transmission through lnT ~ (n - 1).) In the region with negative slope, where in accordance with the 
experiment patterning occurs, the medium is self-focusing. Hence, also the characteristic length scale 
is qualitatively the one which is expected for a focusing medium. For higher intensity the medium 
becomes again self-defocusing and the transmission increases with the possibility of switching effects, 
shown in fig. 2a. (In the experiment, this increase can be observed for small longitudinal magnetic fields 
and/or close to resonance. However, for parameters which allow pronounced patterning (e.g. fig. 1), the 
observation is prevented by the limitation of the available laser power.) 

The observed behavior is the manifestation of a light-shift induced level-crossing, which occurs if the 
influence of the light-shift and the external longitudinal field component have opposite sign. A close 
inspection shows that - depending on whether this level-crossing occurs in the minima or maxima of 
the intensity grating inside the medium - the spatial modulation of the orientation and the intensity 
are in or out of phase, corresponding to either a self-defocusing or self-focusing situation. Note, that the 
action of the magnetic field is not limited to destroy orientation and thus to supply the term modelling 
relaxation in [1], which would otherwise be negligible in alkali metal vapors. Furthermore, in a spatially 
modulated optical field the condition for level-crossing varies and thus the rate of the destruction of 
orientation is modulated and can adopt itself to sustain optimal contrast. This fits nicely to the results 
of a recent degenerate four-wave mixing experiment in sodium vapor, where the same mechanism was 
shown to control the contrast of the refractive index grating [4]. 

Obviously, the situation in a Gaussian beam is more involved than the plane wave case due to the 



inhomogeneous intensity distribution, but two-dimensional simulations with a Gaussian input beam 
(fig.2b) and the experiment show that the general features survive. The transmission characteristics 
are only somehow smoothed. The numerically calculated patterns turn out to be very similar to the 
experimental ones (inset in fig. 2b). The theoretical results suggest the possibility of the simultaneous 
existence of defocusing (e.g. in beam center) and focusing (e.g. in the beam wings) regions in the same 
beam. 
[1] G. D'Alessandro and W. J. Firth, Phys. Rev. A 46, 537 (1992); F. Papoff, G. D'Alessandro, G. L. 
Oppo and W. J. Firth, Phys. Rev. A 48, 634 (1993). 
[2] T. Ackemann and W. Lange, Phys. Rev. A 50 R4468 (1994). 
[3] F. Mitschke, R. Deserno, W. Lange and J. Mlynek, Phys. Rev. A 33, 3219 (1986). 
[4] M. Schiffer, E. Cruse and W. Lange, Phys. Rev. A 49, R3178 (1994). 
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Fig. 1: a) Pattern observed at the exit face of the medium for P =125 mW, A = —15 GHz, B<ran» = 
3.9^T, Biong = —31/*T, cell center to mirror distance 76 mm. b) Integral transmission of the cell as a 
function of incident power. The arrow marks the appearance of the pattern in a). 
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Fig. 2: Transmission coefficient versus external pump power, a) Plane wave analytical theory. The 
arrows mark the region of instability against transverse perturbations, b) Numerically calculated integral 
transmission for Gaussian beam input. The inset shows the pattern at the pump power indicated by 
the dotted arrow. The closed arrow marks the onset of pattern formation. Parameters as in fig. 1. 
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Pattern formation in nonlinear optics has increasingly attracted attention over recent 
years and occurs in different types of spatially-extended optical systems often with 
nonlinear feedback. Single feedback systems are basically formed by a pump beam 
which traverses a nonlinear medium and gets reflected back into the medium by a 
single mirror. They have a simple architecture and are easy to model. 

Effort is also taken to experimentally realise large-aspect ratio patterns whose the 
typical length scale is much smaller than the aperture. This is often hard to achieve 
since high intensities and large beam diameters are needed simultaneously. The 
Liquid Crystal Light Valve (LCLV), however, has turned out to be an ideal device 
to investigate large aperture patterns in single feedback setups. While LCLVs had 
already been used for pattern formation induced by geometrical transformations of 
the feedback [1], recent experiments [2,3] focused on the realisation of the "single 
feedback Kerr slice" setup originally proposed by D'Alessandro and Firth [4]. 

The LCLV is an optically addressable spatial light modulator, which can be regarded 
as an optical nonlinearity with physically separated interaction light—»matter and 
matter—»light. Its main experimental advantages lie in the high modulation sensitiv- 
ity and the large space-bandwidth product. Being designed for display applications, 
LCLVs have the ability of modulating the pump beam polarisation in a way sim- 
ilar to an intensity controlled optical retarder plate [5]. Therefore the pure phase 
modulation used in [2,3] is only a subset of a more general case for which we set 
up an appropriate theoretical description. We also study the changes between self- 
defocusing and self-focusing behaviour by virtue of an experimental trick. 

Plane wave solutions under the action of polarisation modulation show optical mul- 
tistability, which in turn generates a rich variety of spatial instabilities. A linear 
stability analysis is used to determine the thresholds of pattern formation. These 
thresholds, and the unstable wavenumber in particular, critically depend on an easily 
accessible operation parameter of the LCLV: its supply voltage. 

Extensive numerical simulations confirm the analytical predictions and furthermore 
show that the type of the pattern depends on the supply voltage as well. By chang- 
ing this control parameter, the intensity pattern switches between rolls, squares, 
hexagons, and structures of more complicated geometry (see Figure 1). 

An experiment that tests the reliability of our theoretical and numerical predictions 
has been set up by adding a polariser in the feedback loop of a LCLV. Transitions 



between rolls, hexagons and squares have been observed in agreement with the 
theoretical results. More importantly, for large enough polarisation modulations, 
the spatial wavelength of the pattern can be consistently modified by changes of 
the supply voltage. A comparison between experimental results and theoretical 
predictions is presented in Figure 2. The agreement is simply spectacular. The 
proposed setup which takes advantage of the polarisation modulation, allows for a 
simple control of the generated patterns and their scalability. 
Support from EPSRC (GR/J/30998) is gratefully acknowledged. 
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Figure 1:    Typical patterns found numerically for a self-defocusing nonlinearity upon 
changes of the LCLV supply voltage. 
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Figure 2: Tfte pattern wavenumber q versus the supply voltage. Solid lines correspond to 
theoretical predictions while dots refer to experimental measurements for the defocusing 
(upper curves) and focusing (lower curves) cases. 
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One of the most interesting problems of selforganized systems showing spontaneous pattern 

formation is the question how the system selects a defined wavenumber or a narrow band of 

wavenumbers [1]. Do various mechanisms select the same, preferred state, or does each partici- 

pating process produce its own wavenumber? If there are different selected states, it is natural 

to ask what happens if two mechanisms are operating simultaneously. We discuss this question 

experimentally and theoretically in a nonlinear optical system with two separate single feed- 

back loops of distinct lengths L\ and Li- Each single feedback is able to develop spontaneous 

transversal patterns with a spatial wavenumber which scales with the feedback length [2]. We 

realize a dispersive optical nonlinearity by an optical addressed liquid crystal light valve (LCLV), 

operating as a defocusing (Kerr-) medium [3]. Due to the distinct propagation lengths, each 

feedback selects a well defined wavenumber, so that we can control the mutual influence of these 

competing spatial instabilities by changing the ratio of the distinct feedback lengths. We show 

that such a competition crucially influences the pattern selection process and helps to explain 

complex spatio temporal dynamics. 

First we show how a variation of the ratio f = L2j'L\ changes the principal behaviour of the 

system. In a wide parameter range off, we find stationary, hexagonal ordered patterns (Fig. la), 

with a typical macroscopic structure size, scaling with the ratio f. In this case the system selects 

a pattern with one well defined spatial wavenumber. Close to a critical point fc, the pattern 

becomes non-stationary. In transient states, we find two different coexisting macroscopic scales 

(fig. lb), but generally the pattern oscillates irregularly between the attracting wavenumbers, 

interrupted by sudden bursts of disorder. These oscillations are important hints that we observe 

in this parameter range a real competition of coexisting spatial instabilities with two different 

wavenumbers involved. For a ratio f smaller than fc we find stationary patterns with similar 

scaling behaviour again, but on a smaller scale than for ratios larger than fc (fig. lc). 



Figure 1: top: Experimentally observed output patterns, (a): £ = 0.62 (b): £ = £c ~ 0.54 (c): 

£ = 0.42; bottom: Corresponding far field patterns, showing the selected wavenumbers 

In order to get a closer understanding of the observed complex behaviour, a linear stability an- 

alysis is carried out. The results show that depending on the ratio of the two distinct feedback 

lengths £, two most unstable wavenumbers have equal pattern forming threshold intensities for 

certain values of £, leading to a coexistance of spatial instabilities. This confirms our assumptions 

made above, that a competition of coexisting spatial instabilities is the reason of the observed 

oscillatory behaviour. The numerically derived scaling behaviour of the macroscopic structure 

size due to the parameter £ is marked by striking jumps, indicating the points where spatial 

instabilities coexist. Comparing the experimantal results with numerical simulations we find a 

good qualitative and quantitative agreement. 
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We describe a new scenario of pattern formation in a system formed by 

a Liquid Crystal Light Valve with feedback, when a translationally invariant 

simmetry breaking is introduced in the feedback loop. From a practical point of 

view this simmetry breaking is obtained by means of angular tilt or translation 

of the beam that is fed back on the Valve. 

The experimental procedure used corresponds to the introduction of a 

transverse transport term in the wave equation describing the evolution of the 

optical field [1],[2]. This extra term is responsible for the onset of a drifting 

roll instability, as theoretically predicted [1],[2] and experimentally demonstra- 

ted [3],[4] for the case in which the nonlinear medium is an alkali vapour filled 

cell. 

In our experiments we have investigated both one-dimensional and two- 

dimensional geometries. In the one-dimensional case, we confirm the existence 

of a drifting roll instability and discuss the dependence of the roll wavelength 

and drift frequency on the experimental parameters. 

The two-dimensional geometry displays a much richer set of pattern forming 



instabilities, some of which (cross-roll instability, zig-zag instability) have been 

previously observed in hydrodynamical systems. We give a classification of the 

domains of stability of the various patterns in the experimental parameter space. 
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The Kerr slice with feedback mirror [1] has proved a very fertile concept 
for studies of optical pattern formation. For applications and for fundamental 
reasons it is of interest to consider miniaturising these patterns. This raises 
the question of the ultimate limitations on the scale of the hexagons, rolls and 
other structures observed in such feedback experiments. The optical wave- 
length obviously provides a basic limit, but to even to reach that scale some 
generalisation is necessary. In particular, envelope and paraxial approxima- 
tions need to be removed. In this work we investigate these questions, and 
show that the pattern formation survives, and is indeed enhanced, in the more 
general model. 

The optical scheme consists of the nonlinear layer and flat feedback mirror 
parallel to the layer at a distance d. The key point is that the layer is assumed 
to much thinner than the optical wavelength A, and that d may be comparable 
to A. Such a structure could be realised in semiconductors using techniques 
established for microresonators [2]. A plane wave with the amplitude E{nc 

illuminates the layer normally from one side, the mirror feedback illuminating 
the layer from other side. 

We suppose the nonlinearity of the nonlinear layer to approximate a two- 
level system, which is a reasonable first approximation to saturable media such 
as semiconductors. The bulk dynamics of the two- level centers then obeys the 
Bloch equations 

Rt = (-l + iS)R + iWE, Wt = -j(W + 1) + i(RE* - RTE)/2,     (1) 

where R and W are the polarization envelope amplitude and population differ- 
ence, 7 is the normalized relaxation rate, 6 is the detuning of a light frequency 
from the resonance, E is the amplitude of the total driving field (input plus 
feedback): 

E(t, rx) = 2Ein{t, rj.) - i2C{R{t, vL) + PdR(t, rx)), (2) 

The coefficient C is the bistability parameter, proportional to layer thickness, 
volume density of the centers and their dipole moment (see [3] for discussion of 
this model, and references). Pd is the propagation operator. Both in paraxial 



and non- paraxial cases the plane wave exp(zkxTx) is an eigenfunction of Pd 
with eigenvalue exp(—ia) In the usual paraxial approximation a = k^eL 

Performing linear stability analysis around steady-state uniform solutions, 
considering the intensity \ES\

2 as the threshold parameter, one finds that 
pattern-forming perturbations with finite kx normally have lowest threshold. 

Multiple-scale expansion in the vicinity of the threshold results in a set of 
Ginzburg- Landau equations for the amplitudes of hexagon (roll) components. 
Their analysis shows subcritical bifurcation to negative hexagons at the lower 
end of the instability interval and to positive hexagons at the upper end, and 
they can also describe roll-hexagon competition. 

There is a symmetry in the system's behaviour with respect to the sign of 
the detuning 6: acrit(—6) — 2ir — acrit(6). This is important for the multiple- 
scale analysis at small \6\. In this case we derive the Swift-Hohenberg-like 
equation: 

Yt = eaxY + {vx8
2 + v26A± - u3A±A±)Y + a2Y

2 - a3Y
3, (3) 

where e is the distance from the threshold, and coefficients a and v depend 
on parameters of initial equations (1), (2). This equation also describes the 
patterns at negative 8. 

The numerical simulation of the problem (1),(2) in ID and 2D cases is in 
good agreement with the above linear and nonlinear analysis. We observed 
spontaneous hexagon, roll, square, rhomboid and stretched hexagon patterns 
formation, together with creation of defects, hexagon-roll competition, hys- 
teresis caused by subcritical bifurcations, and switching initiated by pattern 
formation. 

We will describe these phenomena, emphasising non-paraxial features of 
the near- and far-field output, and assess parameter values for implementation 
of semiconductor microfeedback systems. 
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We present theoretical and experimental studies of the bidirectional emission of a ring 
resonator containing a photorefractive medium. Our recent numerical simulations in the transmission 
grating limit, have revealed intriguing spatiotemporal pattern dynamics in the bidirectional oscillation 
[1]. We will review the model and the results for pattern formation (depending especially on cavity 
length and Fresnel number), spontaneous pattern dynamics (pulsation and rotation in the symmetric 
case), spontaneous pattern alternation when there is astigmatism or misalignment, and the increasing 
decorrelation of the counterpropagating patterns as the Fresnel number is increased. 

Experimentally, using a BaTiC>3 crystal as the photorefractive medium and a low-power 
single-mode and single-frequency HeNe laser for the pump beams, we have measured the formation 
and evolution of the counterpropagating patterns in a four-mirror ring resonator. Pattern alternation in 
definite and repeatable sequences (with periodic or chaotic temporal alternation) which we have 
observed, similar to previous experiments for unidirectional emission based on photorefractive two- 
beam coupling [2], seems in our case to result from slow thermal drifts in the cavity length as 
suggested in other two-beam studies [3]. The number of distinct patterns and the complexity of the 
dynamics depends on the Fresnel number of the resonator. For low Fresnel numbers the 
counterpropagating patterns are highly correlated, with essentially the same pattern in space and time 
including tracking of the intensity and orientation of the patterns. For higher Fresnel numbers, as the 
number of modes involved in the pattern dynamics increases, more complicated spatiotemporal 
patterns are observed which do not correspond to any transverse modes of the cavity, and these 
patterns rotate, oscillate and dance besides alternating, with the counterpropagating patterns less 
correlated, essentially becoming fully decorrelated patterns evolving independently for very large 
Fresnel number. 

The Fresnel number affects the spatial structure of the pattern in both beams dramatically. It 
controls the number of transverse cavity modes which have relatively low cavity loss. In the 
following, we will report the results obtained when the Fresnel number is varied as a control 
parameter (by changing the two apertures) while the pump beam ratio is fixed at 10 to 1. 

The output alternated among a small set of nearly pure modal patterns in a fixed sequence with 
the timing governed by the drifting cavity length when the Fresnel number was not too large. Even 
when the Fresnel number was small enough to permit only the fundamental TEMoo mode to oscillate, 
there was alternation between a period of emission of this mode and a long period of zero-intensity. 
For instance, at F=0.8, a single spot winked on and off in both beams synchronously. When F was 
increased to 2.0, a two-spot pattern or a donut pattern joined the alternation sequence. For low 
Fresnel numbers, the pattern sequence consists of relatively long residency times with patterns closely 
equivalent to low-order Gauss-Laguerre (GL) or Gauss-Hermite (GH) modes. As the Fresnel number 
is increased, the highest order of transverse modal pattern in the alternation sequence increases, the 
periodic nature of pattern alternation decreases, and the transitions from one relatively stable modal 
pattern to another involve more transitional intermediate states. For high Fresnel numbers (F=9.1), 
there is no longer clear modal pattern or alternation sequence, instead, it appears that the patterns are 
restless with irregular changes in space and time which may have the dynamics termed 
"spatiotemporal chaos" [4]. 

Several other distinct features are noticed in the changes in the pattern evolution with 
increasing Fresnel number. First of all, the bidirectional patterns are well correlated in space and time 
for low Fresnel numbers in the sense that they both have basically the same modal pattern and they 
evolve synchronously. This correlation is progressively lost for increasing Fresnel number as the 
correlation between the counterpropagating emissions breaks down with differences first in the 
brightness of sections of geometrically similar patterns, and then in both geometrical structure and 
relative intensity of the patterns. At F=9.1 and F=12.6, the patterns in the two beams cannot be 



described by any single cavity mode and they both perform "chaotic dancing" with no evident 
correlation between them. 

Compared to GH modal patterns, GL modal patterns have shorter dwell times. Although 
modal patterns such as the donut mode at F = 2.0, GL02 at F = 4.5, and GL04 mode at F = 7.1 are 
identifiable, they appear as nonstationary intermediate states. On the other hand, a low-order GH 
modal pattern in the alternation sequence can stay relatively stable indicating GH modes are present 
when there are fewer overall modes accessible to the system with detuning. Interesting enough, there 
is sustained rotation during evolution of the Gauss-Laguerre modal pattern, with both beams rotating 
in synchrony. An example of such rotation was found for F = 4.5. The alternation sequence consists 
of a TEMoo mode, a GL02 mode, a GH20 mode, a GH10 mode and the zero-intensity. But unlike 
Gauss-Hermite modal patterns which are orientationally stationary during their dwell time, the four- 
spot GL02 modal pattern in both beams rotate azimuthally, like traveling waves. We can understand 
this since it is likely that there is some breaking of the transverse rotational symmetry (by astigmatism 
from alignment of the variously angled crystal surfaces, optical elements, or pump beams). This gives 
a preferred orientation for each nonrotationally symmetric pattern. By contrast, when there is 
rotational symmetry which might favor GL modes, all rotational orientations may be equally favored. 
Either the nodes of cos(n9) are fixed by azimuthally localized losses, or perturbations should cause 

diffusion. Steady rotation of such GLon [=cos(n6+<|>)] patterns correspond to a frequency difference 

in the exp(n0) and exp(-nO) basis patterns. The bright and dark regions of the patterns seem to vary 

in the counterpropagating patterns, sometimes a given 9 has a bright spot in both beams but of 
different relative strengths compared to other overlapping bright spots. Sometimes the bright spots in 
one beam occur at angles at which there are dark spots in the other pattern as if cos(nO) patterns were 
interleaved in the two beams. Despite changes in the intensity of each section of the pattern, the 
patterns in both beams retain a geometrically similar structure during rotation. Because we are looking 
from opposite sides of the crystal, the counterpropagating patterns appear to rotate in opposite 
directions. 

Since we used a slow crystal pumped at low power, the dynamics could be resolved during 
the transitions between different patterns. Some intermediate patterns during switchings can be 
clearly interpreted to be the result of two-mode mixing or intermode beating, for instance, between a 
TEMoo and a GL01 of different frequencies which causes a rotating dark spot. The radius at which 
the dark spot is located is determined by the relative strength of the two modes and the rotation rate of 
the dark spot is determined by the frequency spacing of the two modes. The interaction between a 
TEMoo mode and a GH01 mode may cause alternate blinking of two spots. In our case blinking was 
observed during the transition between a single-spot pattern and a two-spot pattern, first in one 
direction and then, through a rotation, in other direction, and it repeated several times before the 
pattern became relatively stationary. Other phenomena involving interaction (rotation, approach, 
departure, and annihilation) of two dark spots were also observed as part of the intermediate transition 
between two patterns in an alternation sequence when there was competition among a few excited 
modes as discussed recently in a related system [4]. 

We have yet to observe in our experiments, the spontaneous pattern alternation found in our 
numerical simulations for misaligned (or astigmatic) optical cavities. Nor have we seen the predicted 
[5] and observed [2,5] spontaneous alternation for symmetric alignments in 2-beam systems 
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I. Introduction 

Lasers offer a very interesting opportunity for the 
study of complex spatio-temporal dynamics in systems 
requiring a vectorial order parameter description. The 
slowly varying amplitude of the vector electric field A 
has a global phase 6 and a relative phase ip. When the 
laser polarization is fixed, for example by Brewster win- 
dows, the phase 6, which gives the time origin of the field 
oscillation, is the relevant phase and transverse pattern 
formation is often associated with ö-instabilities (scalar 
case). For an isotropic laser emitting linearly polarized 
light the dynamics of rp, describing the direction of po- 
larization, incorporates a much richer variety of possi- 
ble states of laser light. We report here a numerical 
study, for the one-dimensional case, of a recently de- 
rived Vector Complex Ginzburg-Landau Equation (VC- 
GLE) for an atomic J — 1 —*■ J = 0 transition [1,2]. 
We describe linearly-polarized Travelling Waves (TW), 
Polarized Standing Waves (SW) and depolarized solu- 
tions, as well as dynamical evolution among these states 
through polarization-phase instabilities. We also show 
that when the laser radiation grows form spontaneous 
emission noise it generally reaches complex disordered 
states. In particular, a vector form of Spatio-Temporal 
Intermittency is found. 

II. Polarization states of the laser VCGLE 

For a negative detuning between atomic and cavity fre- 
quencies and close to threshold, a one-dimensional am- 
plitude equation description yields a VCGLE for A (see 
[2] for the positive detuning case): 

dtA  =  fiA + (l + ia)dlA 

-  (1-M7?)((A-A*)A + «5(A-A)A*) (1) 

In this equation fi measures the distance to threshold, 
a originates from diffraction and ß is associated with 
detuning. The coupling parameter 8 is determined by 
decay rates associated with the coherence and popula- 
tion difference between upper levels with different spin 
number. The fact that 6 is a real number, together with 
1 + aß > 0, are the two main parameter restrictions for 
this version of the VCGLE appropriate to describe laser 
systems. 

In terms of the right and left circularly polarized com- 
ponents of A, A± = {Ax±iAy)/y/2, a family of solutions 
of the laser VCGLE is 

A±{x,t) - Q± exp {-ik±x + iu>±{k±)t + i(0o ± ^0))   (2) 

We will focus in the case 6 < 0 in which the spatially ho- 
mogeneous (k+ = k- = 0) solutions stable with respect 
to zero wavenumber (q = 0) perturbations are linearly 
polarized: Q+ = Q_,AT ex cos^o, Ay oc sin^o- We dis- 
tinguish three classes of polarization pattern solutions: 

aJLinearly Polarized Traveling Waves (TW): k+ = k- = 
A, Ql = (n-K2)/(l + 7),w± = -aA2 - ß(l + 7)(£. 
These solutions are linearly polarized with an arbitrary 
direction V>o- 
bJPolarized Standing Waves (SW): k+ = — jfc_ = A', 
Ql={ji- A2)/(l + 7), u± = -air- -/?(! + 7)Q|. 
They can be visualized (Fig.la) as linearly polarized so- 
lutions in which the direction of polarization is periodic 
in space, with each cartesian component of the field be- 
ing a standing wave for the intensity of the electric field: 

Ax oc cos(Ax -|- tpo) , Ay oc sin(A"i + xp0) (3) 

c)Depolarized solutions (DPS): The general solution (2) 
for k+ ^ k_ corresponds to spatio-temporal states of 
the laser field without a simple polarization description 
'Fig.lb). These solutions can be parametrized by K = 
k+ + k-)/2 and d = k+ — fc_ 

,J   ■!   P   II 
W   ISS   Ä   PI 

w PI pn m 

Figure 1: Space-time plot of the modulus (left) and the phase 
(right) of the amplitude Ax for a standing wave with K = 0 
and d = 0.098 (top) and a depolarized solution K = 0.074 
and d = 0.123 (bottom). The horizontal axis represents space 
and the vertical axis time. The maximum of the modulus has 
been scaled to white and the phase ranges from 0 (white) to 
2ir (black). The parameters are: fi = 0.2, a = 2.6, ß = 0.2, 
<5 = -0.25; the system size is 512 and the last plotted time is 
300 time units. 

III. Dynamics of Polarization-Phase In- 
stabilities 

The polarization pattern solutions of the laser VCGLE 
have a wavenumber-range of stability determined by 
polarization-phase instabilities [1]: Since 1 + aß is posi- 
tive, the solution with k+ = &_ = 0 is always marginally 
stable, and there is no Benjamin-Feir instability in the 
laser VCGLE. The phase ip of the TW solutions is lin- 

early unstable for A2 > Ap
2 ^ l+a^(\+p3y The 

phases ip and 9 of SW solutions are simultaneously lin- 

The early unstable for A2  >  A,2  =   s,»
6(*+ß,a) 

6(i + aß)-(i+ß2y 
depolarized solutions have also a region of the (A, d)- 
plane centered in the origin beyond which they are 
phase-unstable. Our numerical analysis shows that TW 
and SW unstable solutions evolves to other solutions of 



the same class and smaller wavenumber through tran- 
sient depolarized states (Fig.2, notice that the differ- 
ence Q+ — Q_ measures the degree of depolarization). 
Unstable depolarized solutions evolve in time to other 
states, which generically are also depolarized, through a 
mechanism in which the circularly polarized component 
of larger wavenumber reduces its wavenumber while the 
other component remains stable (Fig. 3). 

Figure 2: Space-time plot of the phase of A+ (left) and the 
difference Q+ — Q- (right) for an unstable travelling wave. 
The initial wave has K = 0.270 and d = 0, with a small 
(mean squared amplitude of 0.002) Gaussian-noise perturba- 
tion superimposed. Model parameters and system size as in 
Fig. 1; time running from 0 to 400. Gray levels from white to 
black: from 0 to 2x for the phase, and from negative to pos- 
itive differences for the amplitudes (the dominant gray color 
on the right corresponds to Q+ — Q_ = 0). 

Figure 3: Phases of A+ (left) and A- (right) plotted in gray 
levels, as in Fig. 1, for an unstable depolarized wave. Model 
parameters and system size as in Fig. 1; The evolution is 
showed from 500 to 2500 time units. The initial DPS has 
K = 0.049 and d = 0.393, with a Gaussian-noise perturbation 
(mean squared amplitude of 0.002) superimposed. 

Figure 4: Space-time plot of the modulus of Ax in gray lev- 
els (white=maximum amplitude) from t = 0 to t = 2000. 
Model Parameters as in Fig. 1. The system size is 4096 and 
the initial condition is Gaussian-noise with a mean squared 
amplitude equal to 0.001. 

IV. Growth from noise and SpatioTempo- 
ral Intermittency 

A numerical solution of the laser VCGLE with random 
initial conditions mimics the process of laser radiation 
growth from spontaneous emission noise. For small sys- 
tem size the homogeneous solution dominates, but for a 
large enough system size local growth and competition of 
the different stationary solutions discussed above occurs. 
This leads to complex spatio-temporal dynamics (Fig.4). 
In addition, exploring various ranges of parameters in (1) 
one expects to find regimes of Spatio-Temporal Intermit- 
tency similar to the ones found for the ordinary CGLE 
in the Benjamin-Feir stable regime [3]. Fig. 5 shows this 
dynamical state for a weak coupling of the circularly po- 
larized components (close to the scalar case) and a more 
genuine vectorial form of this dynamical regime. 

Figure 5: Spatio-temporal intermitency appearing for the 
model parameters ß - 1.0, a = 0.2 and ß = 2.0, showed in 
gray levels (white=maximum amplitude) between t = 1000 
and 1500 time units. From top to bottom: A+ and Ax for 
6 = -0.45, and Ax for S - -0.25. The size of the system 
is 512 and the initial condition is Gaussian-noise of mean 
squared amplitude 0.001. 

[1] M. San Miguel, Phase instabilities in the Laser Com- 
plex Ginzburg Landau Equation, (unpublished). 

[2] Q. Feng, M. San Miguel, J.V. Moloney, and A. Newell 
in this conference. 

[3] H. Chate, Nonlinearity 7,185 (1994). 
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Transverse pattern formation in lasers has attracted much attention in recent years and a rich variety 
of pattern forming instabilities has been found. Most of studies have concentrated on systems in which 
the direction of the electric field in the laser cavity is fixed (by, e.g. Brewster windows). In this study 
we consider the case where the degree of freedom of the electric field polarization is unconstrained. We 
analyze the stability of solutions corresponding to transverse patterns: linearly polarized traveling waves 
and polarized standing waves. The interplay between the polarization and transverse effects leads to new 
instabilities whose natures are identified with amplitide equations. Here we report results for the positive 
detuning case (results for negative detuning have been reported elsewhere[l, 2]). 

The system we considered is a wide aperture, single longitudinal mode, ring cavity laser with transverse 
flat end reflectors. The basic equations are the vectorial Mawell-Bloch equations[3] governing space-time 
evolution of the slowly varying complex envelopes of the electric field in the laser cavity, E± = -j-(Ex±iEy), 
which are the left- and right-circularly polarized components. For positive detuning, lasing modes with finite 
transverse wavenumbers lose stability as the pump (r) is increased above threshold (rc). From the vectorial 
Maxwell-Bloch equations we derived the amplitude equations which are valid near threshold: 

r(dt + vgdx)Zl = eZl+e(l + icx)dlzx - [a\Zl\
2 + 2a\z2\2 + ß\z3\

2 + ß\z4\2] zx - ßz2z*3z4, 

r(dt - vgdx)z2 = ez2 + £2(1 + iCl)d
2

xz2 - [a}z2\2 + 2a|*i|2 + ß\z3\2 + ß\z4\
2] z2 - ßz3z%zlt 

r(dt - vgdx)z3 = ez3 + e(l + icjdlza - [a\z3\2 + 2a\z4\2 + ß\Zl\
2 + ß\z2\

2] z3 - ßz4z\z2, 

T(dt + vg8x)z4 = ez4 + e(l + ic!)d2z4 - [a\z4\2 + 2a\z3\2 + ß\zy\
2 + ß\z2\

2] z4 - ßzxz'2z3, 

where zi j>2, z3 and z4) is the amplitude of right- (right-, left- and left-) circularly polarized, traveling wave 
traveling in +x (-x, -x and +x) direction, respectively. The coefficients a and ß are related to the material 
parameters: a = 6"1, ß = (6"1 + c~1)/2, where 6 is the decay rate of the population inversion between the 
atomic levels (J = 1, Jz = ±1) and (J = 0), c the decay rate of the coherence between the levels (J = -1, 
Jz = ±1) (they are measured in units of material polarization decay rate). Usually c>b and we will restrict 
ourself to this case through this study. 

The Amplitude equations admit linearly polarized traveling wave solutions, 

(zi, z2,z3, z4) = (v, 0,0, v)ei^x-vi\ 

A linear stability analysis determines the stability wavenumber |Q| band (for given e = r - rc). We found 
four types of instabilities, each of which sets in at wavenumber \Q\ > |Q,-|, i = 1,2,3,4, respectively, where 

O2--—    O2-  c~b  €     r)2-le     r)2-c_6e 

vi-3£2> ^-bTTcZ2' Q3~2?' Q4-~!c~y- 

The instability occuring at Qx is the well-known Eckhaus instability (the typical |-rule), which is caused 
here by the long-wavelength perturbation in the sum of the phases of zi and z4, the right- and left-circularly 
polarized traveling waves (traveling in the same direction). The Q2-instability is the one due to the long- 
wavelength perturbation in the phase difference of zx and z4. The <33-instability is the amplitude instability 
due the interaction with a wave, with the same polarization, traveling in the opposite direction[4]. The Q4- 
mstability is another amplitude instability which is caused by an orthogonally polarized, oppositely traveling 
wave. Both Q2 and Q4 depend on relative magnitudes of the decay rates: Q2 -+ 0+ and Q4 -> 0+ as c -»• b+. 

1 Tel: (602)621-6652        Fax:(602)621-1510        E-mail: feng@math.arizona.edu 
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Figure 1: Stability diagrams for positive detuning. The open circles, Glied circles, crosses and asterisks 
correspond to Qx, Q2, Q4 and Q3, respectively (see text). The dotted line is the neutral curve. The 
solid and dashed lines are stability boundaries obtained from direct stability analysis based on the vectorial 
Maxwell-Bloch equations. 

This means that the stable band disappears as c -+ b+. Near threshold the Qi-instability limits the stability 
band, while far above threshold it is the amplitude instability originating from the Q4-instability that limits 
the stability band (see Fig.l). The instabilities in the far above threshold region are obtained from the 
numerical stability analysis based on the vectorial Maxwell-Bloch equations. 

The amplitude equations have another type of stable solutions, the polarized standing waves, 

(z1,z2,z3,z4) = (»eiW*-"')io,t;e'"(-9*-''0>o)I 

which correspond to standing waves in both x and y components of the electric field. We have also studied 
the stability of these solutions and found four types of instabilities: two phase instabilities and two amplitude 
instabilities. Among the two phase instabilities, however, the Eckhaus i-rule-instability is now caused by 
the long-wavelength perturbation in the phase difference of zx and z3, while the instability which sets in 
at Q2 is caused by the long-wavelength perturbation in the sum of the phases. We have performed a 
series of numerical simulation on the vectorial Maxwell-Bloch equations with different transverse boundary 
conditions[5]. The linearly polarized traveling waves tend to be destabilized, while the polarized standing 
waves could be more robust to survive under realistic boundaries. 
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Polarization switching in vertical-cavity surface 
emitting lasers (VCSEL's) has been experimentally 
observed [1]. The only explanations offered for switch- 
ings in the strengths of the differently polarized fields 
are the combined shifts of the gain and cavity reso- 
nances as the device temperature changes with injec- 
tion current and their impact on the net gain of the 
frequency-split linearly polarized modes. 

An alternative explanation, explored here, is that 
polarization state switching arises from the coupling 
of the vector field to the spin dynamics of the carriers 
in the medium. A model has been recently developed 
to take account of the coupling of circularly polarized 
components of the field to different spin sublevels of 
the conduction and valence bands in surface emitting 
quantum well semiconductor lasers [2]. The rate equa- 
tion version of this model appropriate for single-mode 
gain-guided VCSEL's is 

dE± 
dt 
dN 
dt 
dn 

= K(1 + »a)(-l + N ± n)E± - iypET - 7a£T 

= -f(N -p)- 7(JV + n)\E+\* - y(N - n)\E- 

^ = _7,„ - 7(JV + n)\E+\2 + y(N - n)\E-\2 

(1) 

(2) 

(3) 

where E± are the slowly varying amplitudes of the 
optical field left(—) and right(+) circularly polarized, 
N is the total population difference between conduc- 
tion and valence bands and n is the population differ- 
ece between the sublevels with opposite value of spin. 
The physical parameters of these equations are the 
following: K is the field decay rate, a is the linewidth 
enhancement factor, jp gives the relative detuning of 
the linearly polarized modes, ja is the strength of the 
anisotropic losses for the linearly polarized modes, 7 
is the decay rate of the total carrier population, /x 
is the normalized injection current which takes the 
value 1 at the lasing threshold, and js is the decay 
rate which accounts for the mixing of the populations 
with opposite value of spin through spin-flip relax- 
ation processes [2]. The spin decay time is known to 
be of the order of tenths of picoseconds [3]. Previous 
analyses of gas lasers found that polarization state dy- 
namics depended sensitively on linear phase and loss 
anisotropies and contributions of the material dynam- 
ics to the cross saturation of the orthogonally polar- 
ized fields [4]. The VCSEL's have the former char- 
acteristics naturally from crystal properties and from 
geometrical distortions and the latter is gained by the 
spin-sensitive dynamical model for the carriers. 

If anisotropies are not considered, afield linearly po- 
larized in an arbitrary direction is obtained. However, 
the presence of linear phase anisotropy in a particular 
direction fixes the polarization emission axis. Then, 
in absence of linear amplitude anisotropy, the linearly 
x and ?/-polarized states are given by 

V2 
=   y^TTe-^'   ;    Ey 

£_ 

■V2 -^ , + '•>"' 

Other relatively simple solutions are also numeri- 
cally found, including steady state elliptically polar- 
ized solutions and what we call "two frequency solu- 
tions" (differently polarized emission at two different 
optical frequencies, each with nearly constant ampli- 
tude). All of these appear to correspond to observed 
states in experimental measurements of VCSEL char- 
acteristics. 

The linear stability analysis allow us to determine 
the stability of the linear polarized solutions in the 
phase space (p vs. ^e.) represented in Fig. 1. 

In order to see some of the types of switching pos- 
sible within this model we have scanned the phase 
space for jp = 2j (to the left of the dashed line) and 
jp — IO7 (to the right of the dashed line). The optical 
field can have complicated time dependence (that can 
be inferred from the optical power spectra and vec- 
tor field dynamics), but for comparison with typical 
experimental results we show first the time averaged 
power of the x and y-polarized components. 

For 7p = 27 (Fig. 2) and increasing // we can ob- 
tain two kinds of transitions since just above threshold 
(/x=l) two solutions are stable: i) if the system begins 
because of noise fluctuations near threshold with the 

0-01 0.10 1.00 10.00 100.00 
Phase Anisotropy      ?•/ 

FIG. 1. Stability diagram of the linear polarized solu- 
tions for the parameters K— 300 ns-1, 7= 1 ns_1, ys= 50 
ns~1 and a = 3. i-polarized solution is stable below the 
solid line, while ^-polarized solution is stable to the left of 
dashed line. 
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FIG. 2. Time averaged power of the i-polarized (filled 
circle) and ^-polarized (empty circle) fields for -yp = 27. 
Time averages are taken over 20 nsec. Switching in a) 
absence (70 = 0) and (b) presence (70 = —0.I7) of lin- 
ear amplitude anisotropy are shown. Trajectories of the 
real part of the vector field amplitude in space are given 
above, and optical spectra of indicated operating points 
are given in c) (x and y-polarized fields indicated by solid 
and dashed lines, respectively). 

y-polarized solution, it retains this polarization as fi is 
raised and lowered, or ii) if the system begins with x- 
polarized emission, it switches to y-polarized emission 
after passing through elliptically polarized light, and 
more complex time dependent intensity (modulated 
at the optical beat frequency of order jp). In this 
case if/i is raised enough to give {/-polarized emission, 
then this polarization state is retained stably when 
fi is lowered, giving an evident hysteresis signature. 
Moreover, instead of two different transitions selected 
randomly by the stochastic noise process, we can force 
the system to have a unique switching transition by 
including a small amplitude anisotropy favoring the 
z-polarized state (7,, < 7). 

For the case of jp = IO7 (Fig. 3), there is no 
abrupt switching at low values of the injection cur- 
rent for 7a = 0, but a saturation of the intensity of 
the i-polarized state is observed at larger values of 
the injection current. The results for the time aver- 
aged power of the x and y-polarized components of 
the field could be understood as a coexistence of lin- 
early polarized states. However, the system passes 
through a variety of states of mixed polarization or 
time dependent oscillations, with examples indicated 
with arrows in the figure which can be characterized 
by their spectra shown in Fig. 3c. We can also force 
an abrupt switching by including a small amplitude 
anisotropy favoring y-polarized emission near thresh- 
old (To > 7)- This case is shown in Fig. 3b, for which 
the behavior for values of fi above the abrupt switch 
is nearly the same as in Fig. 3a. 

The appearance of so many of the phenomena ob- 
served experimentally in a model which includes 
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FIG. 3. Time averaged power of the i-polarized (filled 
circle) and ^-polarized (empty circle) fields for yp = IO7, 
in a) absence (7,, = 0) and b) presence (70 = O.I7) of 
linear amplitude anisotropy. Solid line gives the averaged 
total intensity. Trajectories of the real part of the vector 
field amplitude in space are given above and optical power 
spectra (as in Fig. 2) of indicated operating points are 
given in c). 

realistic values of the parameters and the dynamics of 
the spin states of the carriers, suggests that these dy- 
namics may be an important part of the explanation. 
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Unlike edge-emitting semiconductor lasers, in vertical cavity surface emitting lasers (VC- 

SELs) the polarization of emitted light can have a random orientation. As the injection 

current is increased, spontaneous switching between two orthogonal polarizations [1] as 

well as coexistence of them [2] has been reported. In addition, when higher order trans- 

verse modes are excited, they may present different directions of polarization [3]. 

In this paper we give a description of combined polarization and transverse effects in 

VCSELs. The starting point is a recently formulated model [4] which takes into account 

the coupling of circularly polarized components of the field to different spin sublevels of 

the conduction and valence bands. In the plane wave limit this model has been already 

used successfully to explain polarization switching [5]. Now we extend it by including 

transverse modes in the way described in [6]. In particular, we focus on the case in which 

only Gauss-Hermite modes TEMio and TEM0i , or their linear combinations known as 

doughnut modes, are active. In these conditions, the scalar model [6] predicts that the 

doughnut modes are stable only in a small domain very close to lasing thresholds, while 

modes TEMio and TEMoi are stable in a wider domain, for larger values of the injected 

current. 

The introduction of polarization effects changes considerably this picture. We first stud- 

ied the perfectly isotropic case, in which no direction of polarization is privileged. We 

found that Gauss-Hermite modes are always unstable, because of the competition be- 

tween modes which are orthogonal both in space and in polarization orientation (e.g. 

mode TEMio z-polarized and mode TEM0i y-polarized). On the contrary, the small sta- 

bility domain of rectilinearly polarized doughnut modes persists, but now there is a much 

larger range of values of the injected current for which another kind of solution is stable. 

This new solution is a superposition of a TEM10 mode and a TEM0i mode, orthogonally 

polarized. The electric field is still linearly polarized, but the orientation changes point by 

point. Depending on the value of the relative phase (0 or TT) between the two modes, we 

found the three different patterns shown in Fig. 1. Using the terminology introduced in [7] 

the defects shown in Figs, la and lb are called director vortex and antivortex LP(0, ±1) 

(the defects of rectilinearly polarized doughnut modes are called argument vortex and 



antivortex £P(±1,0)). Fig. lc can be obtained from Fig. la simply rotating the electric 

field by 7r/2. Hence, the two patterns are physically distinguishable [8] but topologically 

equivalent. 
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Fig. 1. Behaviour of the electric field vector in the transverse plane for three different 

modes of emission of the laser. 

Next, we introduced in the model some small phase anisotropies to simulate crystal bire- 

fringence. This has the consequence of removing the frequency degeneracy between the 

two states of polarization. As long as the anisotropy parameter is small, the two frequen- 

cies are able to lock and we still observe the same patterns of Fig. 1, slightly distorted. 

For larger anisotropies the two modes TEMio and TEM0i start to beat one with the 

other, giving rise to oscillating patterns [3]. Finally, by introducing loss anisotropies, one 

polarization is suppressed, and we recover the results of the scalar model [6]. 

Research partially supported by the ESPRIT Basic Research Project 7118 TONICS. 
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Increasing attention is being paid to laser systems in which the dynamics can affect 

not only the amplitude and phase of the laser field but also its vector character, i.e., the 

orientation of the laser field vector /1-4/. 

In the case of gas lasers, the connection between polarization and dynamics is due to 

two kinds of factors; namely, to the M-degeneracy of the atomic or molecular levels of the 

active medium, and to cavity anisotropies or to external agents such as a magnetic field. 

Focusing on the case of cavity-isotropic lasers, in which the field vector can evolve freely, a 

theoretical analysis of a homogeneously broadened incoherently pumped J=1-»J=0 laser, 

for any intensity of the generated field and in the absence of magnetic field, has been 

performed in /4,5/. 

In the present work we extend this kind of analysis to the case when incoherent 

pumping of the laser transition J=1->J=0 is substituted by coherent pumping, which is 

accomplished by means of a linearly polarized pump field acting on an adjacent transition in 

a J=0—»J=l—»J=0 atomic A level scheme. This fact introduces two important changes in the 

physical system. First, the presence of the pump beam breaks the spatial isotropy with 

respect to rotations around the cavity axis, leading to gain anisotropy. And second, two- 

photon (Raman) pump processes can be present. 

The two new factors lead to a laser behavior very different to that of the incoherently 

pumped laser. New interesting features appear, specially when an axial magnetic field is 

applied to the active medium. Among these features, we can mention: 

i) Violation of the "maximum emission principle" 161, commonly verified in laser 

physics. This occurs even in the simplest situation, i.e., in steady-state emission in the 

absence of magnetic field. 



ii) Strong frequency locking of the two circularly polarized components of the 

generated laser field, which persists up to high values of the magnetic field strength. 

iii) Rich dynamics affecting simultaneously the modulus and orientation of the laser field 

vector, as shown in the examples of Fig. 1. This figure shows the slow evolution of the field- 

amplitude vector, in cases with: (a) periodic evolution -the parameter 8 represents the 

magnetic field strength-; (b) type-I intermittency; (c) well-developed chaos, and (d) 

Shilnikov-type chaos. In all the cases the laser field polarization remains linear (assuming 

pump and laser fields to be on resonance), but the polarization direction changes with time. 

Uncorrelation between intensity and polarization dynamics is apparent in case (c). 

To our knowledge this is the first time polarization chaos (in different forms) is found 
in laser physics. 
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Abstract 

We predict on-off intermittent behaviour in the polarization of a Zeeman laser with large cavity anisotropy. The 

intermittency is induced by the chaotic Lorenz dynamics of the field component with less losses, that excites the 

other component. 

The study of polarization dynamics in Zeeman lasers beyond the Lamb theory is a subject of 

recent attention. Puccioni et al' proposed a simple Zeeman laser model with a J = 0 lower level 

and a J = 1 upper level that has been recently revisited by Abraham et al2 and Matlin et al3. In 

another paper Abraham et al4 have refined the model of Ref.l by including more detailed 

decaying terms and showing the importance of these factors. In these previous works an isotropic 

cavity is assumed (in Ref.3 a slightly anisotropic cavity is considered but the influence of the 

anisotropy is not explicitely studied). 

In the present work we study the influence of the cavity anisotropy on the stability and 

dynamical properties in the model of Puccioni et al, assuming that all material variables decay 

with the same relaxation constant y. We denote by Ex and Ey the two amplitudes of the 

components of the electric field along two mutually orthogonal directions on the polarization 

plane, and by K^and Ky the cavity losses associated to each direction, and we assume for 

definiteness that KX < Ky. Under these conditions the only lasing stationary solution is linearly 

polarized along the x axis. By increasing pump this solution can destabilize through two 

independent Hopf bifurcations. One of them is the well known Lorenz instability (affecting Ex) 

and the other one is a polarization instability that gives rise to the self-pulsing amplification of 

Ey. The precedence of one or the other of these bifurcations strongly depends on the value of the 
cavity losses. 

The dynamic behaviour above the bifurcations is charaterized by transitions between periodic 

and chaotic pulsations through both quasiperiodic and intermittent scenarios. The intermittent 

behaviour is particularly rich including a kind of type-II intermittency of a torus. We report here 

on the on-off intermittency5 found when the Lorenz instability preceeds the polarization one for 

large cavity losses and cavity anisotropy. 



Since both Hopf bifurcations affect mutually orthogonal manifolds in the phase-space, a very 

likely skew-product structure of the equations near the bifurcations is achieved. Under these 

conditions the chaotic behaviour of Ex excites Ey in a random way, giving rise to on-off 

intermittency. The observed behaviour of Ey exhibits alternancy between very small amplitude 

oscillations of regular shape (laminar phases) and bursts of irregular appearance when the pump 

is increased approaching the polarization instability. Fig. 1(a) shows an example of this kind of 

behaviour. 

P(n) 

FIG.l. (a) Time trace of the amplitude of the y-component of the field in on-off intermittency. (b) log-log 

representation of the histogram of the duration of laminar phases (of which (a) is an example) constructed from 105 

ca laminar phases (I0 = 0.0ly2) (see text). Two linear regions are appreciated, joined with a shoulder. Parameters 

are: KX = 4y, K^ = 28y, and the proportion of Lorenz instability pump, actual pump, and polarization instability 

pump is 16.00:21.00:27.77. 

In Fig. 1(b) we show the probability of finding a laminar phase of length n, P(n). We take n as 

the number of consecutive intensity maxima of the y -component, such that none of them be 

greater than a certain intensity threshold value I0. On-off intermittency theory predicts the 

following universal characteristics: (/) the duration of the short laminar phases follows the law 

P(n) oc rrm; and (/'/) for large laminar phases the law is exponential of the form P{n) oc e~kn. 

Contrarily, our preliminary results show a linear dependence for large phases and the slope 

corresponding to the linear region for small n is clearly smaller than -3/2. We have checked that 

the statistical results are quite independent of I0. 

We gratefully acknowkedge N.B. Abraham for sharing with us Refs.[2-4] prior to publication. 
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Virtually all materials exhibit some optical nonlinearities at high power levels. An 

important manifestation of such nonlinearities is to render the index of refraction intensity 

dependent such that n(co,I) = no(co) + n2l, where the frequency dependence of the linear 

part of the index no(co) stems from chromatic dispersion and the nonlinear-index coefficient 

n2 governs the intensity induced change in the index.1 The changing index affects both the 

time-dependent and space-dependent behavior of the field. In the plane-wave limit (as in 

optical fibers or for broad beams) diffractive effects can be neglected, and the nonlinear 

medium will support temporal solitons. By contrast, in the cw or quasi-cw limit (as for 

pulses much longer than 10 ps) the effects of medium dispersion can be ignored. Both 

approximations are similar to that made for a highly elliptical beam where diffraction along 

the long axis is neglected compared to diffraction along the narrow axis since its effects 

occur on a much longer distance scale. 

When an elliptical beam of ultrashort optical pulses is launched into a nonlinear 

medium in the spatio-temporal regime group-velocity dispersion (GVD) must be considered 

together with diffraction and the nonlinear modal index. Pulse propagation this regime is 

adequately described by a multidimensional nonlinear Schrödinger equation whose 

normalized form is 

. 3u  ,   1 92u     s32u .   NXT0. ,9       _ 
^     2^"2^ + Sgnrflulu=a (1) 

Here u(££,x) is the amplitude of the pulse envelope, C, = z/Ld, % = X/G, x = (t - z/vg)/To, c 

is the input spot size in the x-direction, To is the input pulse width, and Ld = (Infi^o2 is 

the diffraction length (also known as the Rayleigh range). The parameter s = 

(27üA)a2ß2/To2 includes the dispersive effects through the GVD parameter ß2 and the 

parameter N = (27taA)Vnoln2lIo represents the medium nonlinearity where Io is the peak 

intensity of the pulse. This equation also describes ultrashort pulse propagation in 

nonlinear planar waveguides. 

In the absence of dispersion (s = 0), Eq.(l) can be solved by the inverse scattering 

method and indicates that planar waveguides support spatial solitons in the case of a self- 

focusing nonlinearity. However, for picosecond and especially femtosecond optical pulses 

dispersive effects cannot be neglected and the s-dependent term must be retained in Eq.(l). 

Such pulses experience diffraction in space and dispersion in time simultaneously. 



Moreover, the Kerr nonlinearity governed by the parameter N couples the two effects and 

introduces spatial-temporal coupling. We solve Eq.(l) numerically to explore the novel 

features introduced by such spatio-temporal coupling. We consider the four cases 

corresponding to media with positive or negative GVD and positive or negative nonlinearity 

separately and discuss the interesting features in each case. As an example, the figure 

below compares the propagation of an input pulse (with Gaussian spatial and temporal 

profiles and a peak intensity such that N = 3) in (a) the plane-wave approximation and (b) 
the spatio-temporal regime for the case of positive GVD (ß2 > 0) and positive nonlinearity 

(n2 > 0). In the plane-wave limit, the pulse spreads as expected. By contrast, in the 

spatio-temporal regime, the input pulse experiences compression. Such pulse compression 

is attributed to spatio-temporal coupling induced by the medium nonlinearity.2 

1. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, Boston, 1995) 
2. A. T. Ryan and G. P. Agrawal, Opt. Lett., 20, Feb. (1995) 

c 
a> 

(a) (b) 

Evolution of a Gaussian input pulse in a normally dispersive nonlinear medium for N = 3 
in (a) the plane-wave limit and (b) the spatio-temporal regime such that s = 0.5 in 
equation(l). 
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Numerical simulations show that for suitable initial conditions, behavior reminiscent of spatiotem- 
poral chaos develops in the optical fiber array. This behavior is studied and contrasted with the 1 
+ 1 continuous and discrete nonlinear Schrödinger systems. 

The nonlinear Schrödinger lattice (NLSL) equations 
are obtained from a standard coupled mode expansion of 
the nonlinear fiber array. They are written, 

.dAj      n d2Aj     „  , , l2 , 

(1) 

where j = 1,2,..., N is the fiber index, t = (T — Z/va) 
is the retarded time, £(km-1) is the linear coupling, 
/32(ps2km_1) is the group velocity dispersion coefficient, 
and 7(W_1km_1) is the nonlinear coefficient. As shown 
in Fig. 1, we take the fiber array to be periodic in j. 

j-l 

j+l 

FIG. 1. The periodic fiber array is modeled using the non- 
linear Schrödinger lattice. 

For certain classes of initial data, the field governed by 
the NLSL undergoes a modulational instability that seeds 
a localization process called quasi-collapse and is closely 
related to wave collapse in the 2D nonlinear Schrödinger 
equation (NLS). In recent work [1,2] this dynamics has 

been shown to be very stable, where the attractor for a 
large class of initial conditions consists of localized states 
along the fiber that have sech like temporal profiles. This 
process suggests that the nonlinear fiber array can be 
used as an effective optical pulse compression device [2]. 

The NLSL also exhibits highly irregular behavior. We 
have observed several manifestations of this behavior nu- 
merically. Such behavior should not be surprising in the 
NLSL Bince homoclinic chaos has been shown to exist 
both in discrete NLS (& = 0 in the NLSL) [3,4] and in 
the perturbed NLS [5]. In the NLSL we have observed 
that the field may localize in j, the discrete dimension, 
and form a regular pulse train in t, the continuous di- 
mension, yet evolve irregularly in the evolution variable, 
z. This dynamics is clearly reminiscent of the spatiotem- 
poral chaos that arises in ring cavities, where the regular 
structures are spatial rings [5] which emerge or disappear 
in a chaotic fashion as a function of the map describing 
the round-trip along the cavity. It should also be closely 
related to the dynamics studied in [3,4] and in their later 
works. 

The temporal profiles that we observe are similar to 
what is reported in [1]. The NLSL admits a highly local- 
ized solution, where |A;| » 1 >> |J4;-±I| » \Aj±7\ » 
.... To first approximation with this ordering, the enve- 
lope Aj satisfies the NLS equation. Pulse train solutions 
are then obtained for Aj. Wave forms of this type ap- 
pear to persist in spite of the irregular evolution of the 
amplitudes in z. 

In Fig. 2 the characteristics of the evolution of the field 
in one node of the NLSL are illustrated. Here we have nu- 
merically integrated (1). This solution was initiated with 
Aj(z = 0,i) = 0.8sin(4xt)[1.0+ 0.25*cos(xj/JVr)], where 
ßi = —1, 7 = 1| 6 = -1, and N = 8. The figure shows 
the evolution of the temporal profile at j = 2. Wave en- 
ergy was localized in this node through the quasi-collapse 
dynamics. The wave form remains regular or coherent in 
t and localized in j as it varies irregularly in z. Note that 
the number of pulses in the train varies as a function of z 
indicating a competition among several temporal modes. 
To our knowledge this is the first report of such behav- 



ior in a lattice composed of one of the class of universal 
nonlinear evolution equations. In addition, the interac- 
tion of a modulations! instability and quasi-collapse to 
access a localised coherent state that undergoes chaotic 
amplitude evolution appears to be novel. 

i- 

j'cmc. -. 

FIG. 2. Evolution of |Aj(«, t)\ of the nonlinear Schrödinger 
lattice. 
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A rigorous solution that describes the propagation of an optical field in linear, 
dispersive, inhomogeneous media represents one of the most challenging problems in 
computational electromagnetics today.1 If an optical medium exhibits instantaneous or 

dispersive nonlinearity, the propagation problem becomes even more complicated, and exact 

solutions exist only in a few special cases.2 With renewed interest in nonuniform, nonlinear 

periodic structures3-4 for optical switching, this class of propagation problems is becoming 
increasingly more important. 

The generalized finite-difference time-domain (GFDTD) method2 offers a unique 
capability of exactly solving Maxwell's equations, for arbitrary interaction geometries, while 
fully accounting for the dispersive and nonlinear nature of the material response. The 
arbitrary-order linear dispersion and higher-order material nonlinearities are built into the 
constitutive relation that connects the dielectric displacement (D) to the electric field (E) within 

the optical media. None of the familiar assumptions found in various approximate methods 
(e.g. coupled-mode equations, nonlinear Schrodinger equation) such as a finite number of 

coupled modes, slowly-varying field envelope, or weak media perturbation is used in GFDTD. 
Moreover, both forward and backward propagating waves are automatically included. 

We have recently demonstrated a full GFDTD treatment of a linear, dispersive and 
uniform periodic structure.5 In this paper we further extend the use of GFDTD method by 

analyzing uniform and nonuniform nonlinear periodic structures and their response to 

subpicosecond optical pulses. We model the linear material response by first- (Debye) and 

second-order (Lorentz) dispersion and its nonlinear response by the instantaneous Kerr and 

dispersive Raman responses that remain spatially uniform along the propagation length. The 
method is demonstrated by transmitting a 65-s optical pulse through 40-u.m long linear (Fig. 
1a) and nonlinear (Fig. 1b) DFB structures. The center frequency of the incident pulse is tuned 
near the upper edge of the Bragg stop-band. In the nonlinear case the incident optical 
intensity is sufficient to cause a shift in the photonics band, resulting in a higher transmission 

(Fig. 1b). Even more interesting is the transmission through a X/4-shifted nonlinear periodic 
structure, shown in Fig. 2. The spectrum of a 1-ps incident pulse fits within the central 

transmissive peak of the X/4-shifted structure, thus allowing for full transmission in the linear 
case. However, in the nonlinear case the photonics band is significantly changed even for 
modest input intensities of I ~ 0.01 lcrrt, resulting in all-optical limiting behavior, as shown in 

Fig. 2. We discuss the limitations and advantages of the GFDTD technique, and compare its 
performance to conventional coupled-mode techniques. 
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Fig. 1  Transmitted pulse for a) linear DFB structure and b) nonlinear DFB structure. In 
both cases, the input pulse is 65 fs long and is tuned close to a stop-band edge. 
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Pulse propagation in a non-uniform resonant medium, e.g., a periodic array of resonant films, can destroy self- 
induced transparency (SIT) [1], because the pulse area is then split between the forward and backward (reflected) 
coupled waves, and is no longer conserved [2]. Should we then anticipate severely hampered transmission through a 
medium whose resonance lies in a reflective spectral domain (photonic band gap) of a periodically-layered structure 
(a Bragg reflector)? We have shown analytically that it is possible for the pulse to overcome the band-gap reflection 
and produce SIT in a near-resonant medium embedded in a Bragg reflector. The predicted SIT propagation is a 
■principally new type of a gap soliton, which does not obey any of the familiar soliton equations, such as the non-linear 
Schrödinger equation (NLSE) or the sine-Gordon equation. Its spatio-temporal form and intensity dependence are 
shown here to be distinct from the extensively - studied gap solitons in Kerr-non-linear Bragg reflectors [3], which 
are described by the NLSE. 

In treatments of bidirectional field propagation in media with arbitrary spatial distribution of near-resonant atoms 
[4], the Bloch equations for the population inversion and polarization are entangled in a fashion which leads to an 
infinite hierarchy of equations for successive spatial harmonics. Here we avoid this complication by confining the near- 
resonant two-level systems (TLS) to layers much thinner than the resonant wavelength, with the same periodicity as 
the dielectric structure. 

Our main idea has been to try the following phase-modulated 27r-soliton SIT solution for the envelope of the forward 
(F) and backward (B) field 

v h    f-,  ,   1\  *  exP [i(o!Ti0z/cTc - At)] E^ =2^{l±ü) A°  JhW/U-0] (1) 

where n is the transition dipole moment, rc is the cooperative (resonant) absorption time, AQ is the amplitude of the 
solitary pulse, u is the velocity (normalized to c), n0 is the mean refractive index and A is the field detuning from 
the gap center. 

We focus here on the most illustrative case, when the TLS resonance is exactly at the center of the optical gap. 
Then the phase modulation a, the pulse inverse-width ß = A0/2 and the detuning A are analytically obtainable as 
a function of the group velocity cu. We find that the condition for SIT is that the cooperative absorption length 
crc/n0 should be shorter than the reflection (attenuation) length at the gap 1/K, i.e., that the incident light should be 
absorbed by the TLS before it is reflected by the Bragg structure. SIT is found to exist only on one side of the band- 
gap center, depending on whether the TLS are embedded in the region of higher or lower linear refractive index in the 
Bragg structure. This result may be understood as the addition of a near-resonant non-linear refractive index to the 
modulated index of refraction of the Bragg structure. When this addition compensates the linear modulation, then 
there is no band gap and soliton propagation is possible. The soliton amplitude dependence on frequency detuning 
from the gap center (which coincides with the TLS resonance) is shown in Fig.l. The parameters obtained from our 
analytical solutions fully agree with those which yield both forward and backward soliton-like pulses in a numerical 
simulation of Maxwell-Bloch equations (Fig.2). 

An adequate system for experimental observation of this effect appears to be a periodic array of 12-nm-thick GaAs 
quantum wells (A = 806nm) separated by A/2 non-resonant Al-GaAs layers. Area density concentration a ~ 108-109 

cm"2 of the quantum-well excitons yields rc ~ 10-13-10~14s. A solitary pulse of < lps, i.e., much shorter then the 
dephasing time T2 ~ lOps (at 2°K) in this structure requires band-gap reflection length 1/K > 100 A. 

The salient advantage of the predicted near-resonant gap soliton is stability with respect to absorption. By contrast, 
strong absorption is a severe problem associated with a large Kerr coefficient required for NLSE gap solitons [3]. 
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FIG. 1.  Dependence of the solitary pulse velocity (solid line) and amplitude (dashed line) on frequency detuning from the 
center of band gap. At the gap edge (dotted line) u — \j\fZ. 
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(a) (b) 
FIG. 2.   Numerical simulations of the intensities of (a) "Forward"  and (b) "Backward" waves (KTC 

= 1/V3). 
0.7, group velocity 
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Abstract 2. Model 

We numerically demonstrate stable transmis- 
sion of picosecond solitons (Tp ~ 1 ps) in peri- 
odically amplified optical communication sys- 
tems having amplifier spacings much larger 
than the soliton period. Intrapulse Raman ef- 
fect is included in the model but soliton self- 
frequency shift is suppressed through a proper 
design of the transmission line. Such solitons 
can be used for data transmission at bit rates 
as high as 100 Gb/s with amplifier spacing up 
to 20 km. 

1. Introduction 

The transmission of solitons over long distances is 
attracting increasing attention because of its impact 
on future communication systems. There has been 
mainly two approaches for soliton-based communi- 
cation systems. The first one makes use of long ac- 
tive fibers to continuously compensate for fiber losses. 
This can be accomplished by using the Raman-gain 
window in a non-doped fiber1 or the gain window 
centered near 1.55 pm in an erbium-doped fiber.2 

But, up to now, the distributed amplification scheme 
has not become practical. The other approach uses 
a periodic amplification scheme where small lengths 
(~ 10 m) of fiber amplifiers (discrete amplification) 
are periodically inserted between long passive fibers. 
It has been demonstrated that when the amplifier 
spacing is a small fraction of the soliton period, the 
periodically perturbed, lossy, nonlinear Schrödinger 
equation (NLSE) can be well approximated by a new 
NLSE accurate to second order in the ratio of the 
amplifier spacing to the soliton period. The solitary- 
wave solutions of this new NLSE are called 'guiding- 
center soliton' (GCS)3 or 'average soliton'.'4 Unfortu- 
nately, for practical amplifier spacings (~ 20-30 km) 
the pulse width of such solitons should exceed 10 ps 
to ensure that the amplifier spacing is well below the 
soliton period. As a result, the bit rate is typically 
limited to 10 Gb/s when GCSs are used for signal 
transmission. One can make use of pulses of higher 
peak powers than those needed by the GCS regime to 
increase the amplifier spacing up to a soliton period, 
but not more than that. The soliton duration is still 
on the order of 10 ps.5 

We present here the operation of a soliton communi- 
cation system with periodic amplifiers where solitons 
of about 1 ps or less are transmitted over hundreds 
of kilometers in a dispersion-shifted fiber. The am- 
plifier spacing is much longer than the soliton period. 
The concept of GCS is no longer valid for this regime, 
but long-term stability is possible. Significant pulse 
evolution occurs between each amplifier.6 

Recently, Smith and Blow7 also considered am- 
plifier spacings much larger than the soliton period 
in the context of fiber-loop mirrors acting as optical 
filters. However, it is not clear whether the Raman ef- 
fect important for solitons of small duration has been 
taken into account. 

The basic principle underlying the proposed 
scheme is the following. If one provides the energy in 
a proper way to a soliton and lets it evolve over many 
soliton periods, a new soliton will eventually form 
with a small part of the energy (typically around 3%) 
shed as dispersives waves.8 These dispersives waves 
become well separated (in the time domain) from the 
soliton during propagation between amplifiers and 
can thus be easily filtered, reducing instabilities asso- 
ciated with the interaction of dispersives waves and 
the soliton.9 We use a simple model of fast saturable 
absorber which removes 99% of the energy at low 
power and is transparent at high powers exceeding 
1/10 of the soliton peak power. Within lossy fibers, 
most of the energy provided to a soliton is used to 
compensate fiber losses. Since the soliton experience 
significant losses between amplifiers, the soliton dura- 
tion will generally increase significantly between two 
amplifiers in the adiabatic soliton regime.10 However, 
nonlinear compression can act as a mechanism to re- 
duce the soliton broadening. An important issue in a 
regime where a pulse evolves over many soliton peri- 
ods before to be amplified is the way the gain medium 
is reshaping the pulse spectrum at each amplification. 
The gain lineshape is chosen to be Lorentzian with a 
bandwidth on the order of the soliton spectral band- 
width so that it does not provide too strong frequency 
reshaping as a bandpass filter of bandwidth of the or- 
der of the soliton spectrum width would do. 

Another important issue when dealing with soli- 
tons of small durations is higher-order nonlinear ef- 
fects. It is well known that the intrapulse Raman 
effect for soliton which  produces the soliton self- 



frequency shift (SSFS) is the most important of these 
effects.11 We used a Raman time constant TR of 6 fs in 
our simulations. The mechanism here to control this 
effect is a periodic upward frequency pulling com- 
bined with high-frequencies losses induced through 
frequency-independent insertion losses properly com- 
pensated for at central frequencies by a higher gain. 
In our model, this is accomplished by the bandwidth- 
limited Lorentzian gain in combination with 50% in- 
sertion losses. 

ONE STAGE 

Fiber 
3(Gain SA 

Fig.l. The elements forming one stage of the 
transmission line (SA: saturable absorber). The syn- 
chronous modulator helps to control the timing jitter. 

The Raman term introduced in the NLSE makes 
the group velocity of solitons to depend on the power. 
A power-dependent group velocity can lead to addi- 
tional timing jitter on top of the timing jitter in- 
troduced by the amplifier noise (the Gordon-Haus 
effect1-). To reduce such timing-jitter efTects we in- 
clude a synchronous modulator13 which not only acts 
as an active control of the soliton position within the 
time slot but also stabilizes the soliton peak power. 
Due to the power-dependent group velocity induced 
through the Raman term, special care must be given 
to the choice of the frequency of the synchronous 
modulation. Figure 1 shows one stage of such a trans- 
mission line. 

3. Results 

We present in Fig. 2 the propagation of a soliton over 
50 stages of amplification. We have considered the 
effect of the SSFS, saturable absorber, synchronous 
modulation and amplifier noise. A steady-state soli- 
ton appears within 25 stages. The amplification spac- 
ing is 10 km and the soliton duration (full width at 
half maximum) varies from 850 fs to 1.34 ps between 
two amplifiers. No degradation of the pulse is ob- 
served suggesting that much longer distances of prop- 
agation are possible. Since the soliton remains well 
confined to the time slot, the sensitivity to power 
fluctuations of the input pulse is expected to be low. 

Our preliminary results have shown that a sta- 

ble propagation of solitons of much shorter duration 
than those used in the average soliton regime is pos- 
sible within a realistic model. We are in the process 
of studying this scheme. Detailed results will be pre- 
sented at the meeting. 

Fig.2. Propagation of a picosecond soliton in the 
transmission line over 500 km. 
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It has been recently pointed out that pseudorandom sequences of solitons can be 
generated and transmitted at GHz rates by direct modulation of laser diodes (LD) 
when biasing slightly below threshold1. Using this bias current the response of the 
gain-switched laser to a bit T is independent of the previous input bits. A large 
jitter has been observed after transmission over transoceanic distances2 of solitons 
generated by gain-switched LD. We have shown that this is due to the pulse-to-pulse 
frequency jitter originated in the LD3 and that this jitter can be reduced by mid- 
span optical phase conjugation4 (OPC). Other important effects at high bit rates are 
soliton interaction and Gordon-Haus jitter. When perfect solitons are used as input 
OPC can compensate these soliton effects5. 

In this work we study the transmission of pseudorandom sequences of solitons 
at 15 GHz rate obtained by time division multiplexing (TDM) of three 1.55 fim LD 
modulated at 5GHz and biased slightly below threshold1. A narrowband optical filter 
is used to limit the large bandwidth of the signal produced by the chirping. Due to 
the high transmission rate it is expected that soliton interaction plays an important 
role. In Fig. 1 (left panel) we show the propagation of the 16 bits sequence "10 1 
0 0 1 1 1 0 0 0 1 0 0 1 1" until z=10000 km. Soliton interaction can be clearly seen 
in the set "11" at the end of the sequence. From z=0 until z « 2000 km the pulses 
collapse and then they begin to separate as the transmission distance increases. On 
the contrary in the set "111" the pulses start to separate at z=0. As it can be clearly 
seen at 10000 km the interaction leads to errors since it seems that two or more "0" 
bits are placed between the "1" bits of these sequences. 

Midsystem OPC has been proposed to recover at the end of the transmission line 
the original signal when soliton interaction is present. This has been demonstrated 
when the input sequence is composed by perfect soliton pulses5. When the pulses 
are generated by the LD their shape change until they reach a soliton-like shape at 
z « 2000 km. In our case it seems to be more appropriate to perform the OPC at 
a distance greater than the mid-point. In Fig. 1 (right panel) we show the behavior 
of the sequence of pulses with OPC placed at ~ 6000 km. It is clearly seen that the 
soliton interaction has been almost compensated and the sequence at the output of 
the fiber is close similar to the one at the input. 
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Fig. 1. Transmission of a 16 bit sequence at 15 GHz until 10000 Km. Left side 
without OPC. Right side with OPC at 6000 Km. 

In summary, we have shown that OPC is a very efficient mechanism to reduce 
soliton interaction in a 15 GHz TDM transmission sequence, even when the pulses 
at the beginning of the fiber are not perfect solitons, as it is the case for the pulses 
generated by gain-switching laser diodes. 
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Multistable behavior and temporal instabilities were recently predicted to occur in the 
resonant interaction of two-level Rydberg atoms with a coherently driven mode of a mi- 
crowave cavity [1]. The physical system considered is similar to the micromaser [2], but 
differs due to the presence of the injected field and a larger number of atoms N in the cavity, 
which ranges from a few tens to a few hundreds. As the regime covered is intermediate 
between the micromaser (TV < 1) and ordinary masers (N > 1), the system may be termed 
mesomaser. In this report, the atoms are assumed to enter the cavity in the lower state, 
acting as a nonlinear absorber. 

The mesomaser may be employed to explore a parameter range of particular interest, 
where the atom-field coupling constant and the cavity mode linewidth have the same order 
of magnitude. For a sufficiently weak driving field, the dynamics in this case is governed by 
atomic cooperation, leading to nonlinear and collective phenomena. Assuming a saturation 
photon number well above that of the micromaser, the system dynamics can be described 
semiclassically by Maxwell-Bloch equations, propagation effects being taken into acount[l]. 
For Rydberg transitions, atomic relaxation can be neglected so that the main contribution to 
the atomic line width is transit broadening due to the finite time-of-flight through the cavity. 
This leads to remarkable differences compared with the corresponding optical system. As in 
optical bistability, more than one stable state is predicted. However, for Rydberg atoms the 
rotation of the Bloch vector is not affected by atomic relaxation processes, which leads to 
phenomena distinct from the optical domain. Examples are the occurrence of muliistability, 
i.e., the appearance of more than one hysteresis loop, and instabilities in the upper-branch of 
the hysteresis curve [1]. Neither effect can occur in absorptive single-mode bistability in the 
optical range [3, 4]. Multistable behavior of Rydberg atoms in a cavity is presently under 
experimental investigation at the Max-Planck-Institut für Quantenoptik in Munich. 
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Here, theoretical results concerning the nonlinear dynamics of the system are reported, 
obtained by numerically integrating the Maxwell-Bloch equations [5]. To this end, a method 
developed by Risken and Nummedal for the analysis of laser dynamics [6] is adapted. The 
central result of these calculations is the appearance of spontaneous, undamped oscillations in 
the evolution of the system variables (self-pulsing), which bifurcate from the unstable sections 
of the upper hysteresis branches. If the amplitude of the oscillations is large enough, the 
system may even precipitate from an oscillating state to a stable one. Self-pulsing behavior 
is described in the time and frequency domains, and the conditions for its occurrence are 
discussed in detail. The numerical results yield the envelopes and the frequencies of the 
oscillations. The values of these frequencies at the instability boundaries can be compared 
with the predictions of the linear stability analysis in Ref. [1]. They turn out to be in 
excellent agreement. Self-pulsing oscillations occur in the cavity field amplitude as well as 
the atomic population, monitored at the cavity exit. In the phase space spanned by these 
variables, the system dynamics is governed by a limit cycle. 

The self-pulsing effect is shown to originate from cooperative behavior of the mesoscopic 
atomic system, which leads to an exchange of energy between atoms and cavity field at a 
rate larger than the inverse atomic transit time, i.e., the transit broadening. In this case, the 
system can self-organize and develop periodic undamped oscillations at frequencies which 
are smaller than, or comparable with the inverse time-of-flight. 

Finally, we present the first results on the extension of the investigation to the case 
of nonresonant interaction. The linear stability analysis has been carried out with atomic 
detuning included. In this case, the number of degrees of freedom of the system increases 
from two to four, which opens the possibility of the system entering the chaotic regime. 
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The study of spatio-temporal complexity in nonlinear optical media has gained considerable 

interest within the last years. The systems under investigation can be classified with respect 

to the number of relevant spatial degrees of freedom and by the criterium if the medium is 

passive or active. An interesting active system with one spatial degree of freedom is the broad 

area laser. Its active region is smaller than the lasing wavelength in one transverse direction 

and much larger in the other one. It has been designed to achieve high output power from 

a semiconductor laser. Here, we present results obtained from numerical modelling and, for 

the first time, experimental measurements of the near-field, giving evidence for the spatio- 

temporal dynamics of these lasers. 

We study the turn-on dynamics of a 100 \im wide GaAs/GaAlAs broad area laser, emit- 

ting at A = 810rem. The modelling is based on the semi-classical Maxwell-Bloch equations 

for the complex field, the polarization and the electron and hole density. It predicts for 

the dynamical behavior spontaneous creation of filaments some ns after the first relaxation 

oscillation which propagate in space and time [1,2]. Figure 1 a) shows the result of the 

numerical modelling 8 ns after the first relaxation oscillation for a time interval of 1.5 ns 

with an injection current roughly twice the threshold current. Irregular pulsing combined 

with diagonally propagating filaments are the most striking phenomena in this regime. This 

effect can be attributed to the interplay of the self-focussing properties of the semiconductor 

medium, the charge carrier diffusion and the gain of the medium. 

The corresponding experimental measurements have been performed using a single-shot 

streak-camera. The current to the broad area laser has been supplied by a signal generator, 

providing rectangular pulses that pump the broad area laser for 25ns with an injection 

current that is twice its treshold current. In Figure 1 b) we have depicted one example of 

a single shot streak-camera time trace for the same time interval as in the modelling. With 

these measurements we can for the first time clearly demonstrate propagating filaments in 

the active region of the laser which even show roughly the same propagation velocity as 



in the calculated time trace. However, there are still differences between experiment and 

modelling, e.g. in the modulation depth of the light intensity between the irregular pulses. 

In conclusion, this is the first direct experimental evidence for the spatio-temporal dynamics 

in broad area lasers. Combining modelling and experiments this laser promises to become 

a model system for the investigation of spatio-temporal complexity. 
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FIG. 1. Spatio-temporal dynamics in the near-field of a broad area laser showing the grey-scaled 

light intensity in the active region versus the time, 8ns after the turn-on of the laser, a) nume- 

rical modelling based on the semi-classical Maxwell-Bloch equations b) experimental single-shot 

streak-camera measurement 
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Lasers operating with phase-conjugate feedback (PCF) display dyanmical behavior which 
is often richer than that obtained with ordinary optical feedback arising from a conventional 
reflector.1"4 The light fed back from a phase-conjugate mirror is not only delayed by the external 
round-trip time but also may be shifted to a new frequency, if the PCF is generated by using a non- 
degenerate four-wave mixing mechanism. The influence of PCF, therefore, can be considered to 
be a combination of ordinary feedback, since the feedback is delayed by the external roundtrip 
time, and optical injection, since there is the possibility of detuning. When the solitary laser 
operates in multiple longitudinal modes, the PCF provides a novel mode-coupling mechanism 
which can even lead to mode-locking behavior and to the generation of ultrashort optical pulses. 

This paper investigates through computer simulations the dynamical behavior of lasers in 
the presence of PCF. In general, the laser displays rich and complicated behavior which depends 
on the strength of the feedback, the external cavity length, as well as the operating point of the 
laser. Bifurcation diagrams are constructed which show at a glance for what values of PCF the 
laser operates stably, periodically, or chaotically. As an example, Fig. 1 shows a bifurcation 
diagram of the total output power versus PCF strength for a semiconductor laser operating with 
four longitudinal modes and 40% above threshold. The bifurcation diagram is constructed with 
spontaneous-emission fluctuations neglected so that the dynamical behavior represents true 
deterministic effects. Also shown in Fig. 1 is the total standard deviation of the net (reduced) 
phases, both with and without the effect of spontaneous emission noise. The net phases are 
defined in the usual way as »Fj = (2COJ - COJ_I - (Oj+i)t + (2<|>j - <J>j_! - tyj+i), where COJ and <|>j are 
the frequency and the phase of longitudinal mode j. Mode locking occurs when all the *Fj become 
constant, so monitoring the sum of the standard deviations of each *Fj is an effective way to judge 

mode locking. An investigation of Fig. 1 shows that the output power experiences several 
different types of nonlinear dynamical behavior, depending on the feedback strength. In addition, 

we find that PCF causes the laser to mode lock over a fairly wide range of feedback strengths, 
even though the individual mode powers might display complicated behavior (e.g. at KX = 1.5 



where the modes undergo period-4 quasi-periodic behavior).   The mode-locking behavior is 

maintained even when the spontaneous emission is turned on, indicating that the mode locking is 

robust. 
The paper will present the detailed nonlinear dynamics of semiconductor lasers induced by 

PCF under a variety of conditions. Both single-mode and multi-mode dynamics will be 

considered. Mode-locking behavior as well as FM laser operation will be shown. 
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Figure 1. Bifurcation diagram of total power vs. PCF strength KX for I/Ith =1.4 for a 

semiconductor laser with four longitudinal modes. The total standard deviation of the reduced 

phases of the modes is also shown without (dashed line) and with (solid line) spontaneous- 

emission noise. 



TM 

STRONGLY PULSATING OSCILLATIONS IN LASERS SUBJECT TO 
CONTINUOUS DELAYED FEEDBACK 

D. Pieroux and T. Erneux 

Universite Libre de Bruxelles, Optique Nonlineaire Theorique, 
Campus Plaine, C.P. 231, 1050 Bruxelles, Belgium 

Fax:+ 32 2 650 5824 email(PIEROUX,TERNEUX@ULB.AC.BE) 

ABSTRACT 

Many lasers subject to optical or optoelectronic delayed feedback exhibits 
strongly pulsating oscillations. A typical time evolution of the intensity 
consits of successive high pulses separated by relatively long intervals of 
time with almost zero intensity. Pulsating oscillations have been predicted 
for semiconductor lasers subject to optoelectronic feedback [1,2] and for 
semiconductor lasers subject to optical feedback [3,4]. Moreover a 
continuous delayed feedback is used for the control of unstable orbits of a 
periodically modulated laser [5]. Until recently, pulsating oscillations 
were investigated by computer simulations only. 

Analytical theories consiting on separate approximations for the active 
pulses and the long recovery intervals have been initiated in [1,2]. In [6], 
we formulate equations for a class of lasers subject to a delayed feedback 
of the form 

dx 
dr 

dr 

- y - 7Y(r - 9)   - /9xF(y,y(T-0),7), (1) 

x(l + y). (2) 

where F(y,7) is a linear, positive function of y and y(r - 9).   These 
equations are motivated by two laser problems which have been studied 
independently [1,3]. The variables x and y are deviations of the inversion 
of population and the intensity of the laser field from their steady state 
values, respectively. The parameters 7 and 9  denote the amplitude and the 
delay of the feedback, respectively, ß  is proportional to a ratio of two 

-2  -3 time constants and is typicall an 0(10  -10  ) small quantity. 

We investigate Eqs. (1) and (2) in the limit 

7-0 and ß  - 0 (3) 

and use averaging methods to derive a one dimensional map for the amplitude 
of the oscillations. We analyze the equation for the map in term of 9.   We 
predict several cases depending on the relative value of 9  with respect to 
the period of the oscillations. As a result, we find different time 
evolutions for the intensity which correspond to different features of the 
bifurcation diagram. We have compared numerical and analytical solutions of 
Eqs. (1) and (2) using F - w + s(y + 7y(r - 6))   ax in [3,4] (w - 1.1, 7 - 

-3 
1.5x10  and s - (w-l)/(7+l)). We show that a Hopf bifurcation appears at 

*H - £w/7 « 1 (4) 



-2- 

but harmonic oscillations are observed only in the vicinity of <?„ (6  -= 

0.06). They become strongly pulsating for a sligthly larger value of 6   {9  • 
0.07). For 0.07 < 9 <  10, the amplitude of the pulsating solutions remains 
almost constant. We find that (see Figure 1) 

max(x) = 37/7?w » 1 (5) 

Period doubling bifurcation appears for larger values of 0  and 
corresponds to a secondary bifurcation from a 6-periodic to a 26-periodic 
state. We derive a different map and find that the first period doubling 
bifurcation of a cascade is given by 

*pD - (6/7) 
1/2 » 1. (6) 

We have found excellent agreement between (6) and the exact numerical 
solutions as soon as 7 < 0.1. The asymptotic solution is particularly useful 
for 7 « 0.1 because an accurate numerical solution is difficult to obtain. 
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The dynamical behavior of semiconductor lasers is an extensively studied topic. The sta- 
bility of the dynamics of these lasers is greatly influenced by the value of the phase-ampli- 
tude coupling parameter a. The associated chirping effect severely alters the dynamics 
and stability of the laser compared to a=0 type lasers. In fact, the dynamics becomes so 
complicated that simple models are needed for better understanding of the various types of 
behavior. An example of such a simple model is the Adler locking model and associated 
potential model [1] in case of weak injection near the locking edge. At larger injection 
rates, a Hopf-bifurcation takes place causing undamped relaxation oscillations within the 
locking wedge and the above-mentioned model is no longer adequate due to oscillations in 
amplitude and phase. 
We have studied the relaxation oscillation (RO) in a single-mode semiconductor laser sub- 
ject to external optical monochromatic injection. A two-variable scalar function W is con- 
structed from which the slow transient dynamics of the RO can be derived as well as the 
above-mentioned potential model as an asymptotic case. The function W is used to study a 
Poincare-mapping to obtain a description of the RO-dynamics in the locking region. This 
allows us to investigate when the RO gets excited and when the excited RO becomes un- 
stable. 
First, we transform the rate equations into a form in which the relevant orders of magni- 
tude appear as separate parameters. Since the RO is the fastest motion present, we can use 
an averaging procedure to analyse the evolution on a slower timescale. Thus we derive the 
slow-timescale set of 2 coupled equations for the time-averaged amplitude of the RO and 
phase (with respect to the injection phase). We then show that these equations can be re- 
lated to a single function W. The average flow has the form xt=Wr yt=-Wy, so that steady- 
state undamped RO's correspond to the saddle points of W. Alternatively, we show that a 
Poincare-mapping of the flow can be defined which leads to a dynamical system which is 
nearly the same as the above-mentioned average flow. This mapping appears to be very 
suitable for studying the stability of periodic orbits. 
We retrieve the known locking region [2,3] and the region where a constant locked laser 
field can be produced. We find that, upon increasing the power of the injected field, locked 
solutions with undamped RO exist; these become unstable when the injected power ex- 
ceeds a certain value, at which point a period-doubling bifurcation occurs. Furthermore, 



we find a bistability for not too small values of a (i.e. above a certain value between 1 and 
2): parameter values exist for which two distinct undamped RO's are stable. A similar bi- 
stability was reported in [4]. The location of the Hopf and the period-doubling bifurca- 
tions are found in good, respectively fair agreement with numerical simulations on the full 
equations. 
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Stability diagram obtained with the W-function approximation indicating the Hopf, peri- 
od-doubling, and other bifurcations. K and 0% are the scaled injection amplitude and de- 
tuning frequency. Region A is outside the locking range; in region B locked solutions exist 
with time-independent amplitude; in C locked solutions with excited RO exist, in Cn a bi- 
stability is found; in D the RO is not stable. The boundary between C and D indicates the 
start of a period-doubling tree. 
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I. Introduction 

Longitudinal multi-mode emission is important in dye, 
solid-state and semiconductor lasers [1 — 3]. The the- 
oretical description of this phenomena is usually done 
through multimode rate equations. The shortcomings 
of this approach are well known: The number of modes 
considered is fixed a priori, a whole set of parameters for 
the gain of the different modes has to be introduced, Spa- 
tial Hole Burning (SHB) is not easily taken into account 
and phase sensitive interactions are often neglected. An 
alternative more complete modeling is given by a Travel- 
ling Wave (TW) approach for the field in the laser cavity, 
but TW models in which the dipole polarization variable 
is eliminated are intrinsicaly unstable at large wave num- 
bers. We report here the results of a numerical study 
of a TW model of a Fabry-Perot (FP) laser based on 
the complete set of Maxwell-Bloch equations for a ho- 
mogeneously broadened two-level medium. Our TW ap- 
proach is trivially extended to include optical feedback 
from an external mirror. We elucidate the competing 
role of spontaneous emission noise, SHB and diffusion 
in multimode emission. We also characterize intracavity 
mode selection by optical feedback in external cavities 
of various lengths. 

II. Model 

A slowly varying envelope approximation and a Fourier 
expansion for the material variables, leads to equations 
for the counterpropagating electric field amplitudes in 
the FP cavity ^(z^t), and for the Fourier components 
of polarization P, ■. and population inversion N^ [4,5] 

8E±      dE± 

dt 

<! 
dt 

dz 

= -7i 

(0) 

1
 
+

 ^)
P

(
+
P)+(

N
(P)

E+
 + 

N
(P+I)

E
~) 

dP, 
(p) _ 

dt 

at 

-71 l + i- 
7J- 

PCr)+(N(P)E-+N(P+DE+) 

= -7|| 
473 Jt2 

(l + 6(p-l)—)N(p) 

+ {E~'Ptp-D + **?-» + E+'PU>^ + S-^i)) 
dN, 1£1- my2 

-7|| 

DV*Nm + J 

Ni0) + E+P+* + E-p(-* + (*) 

In these equations 8 is the detuning parameter, y± is 
the decay rate for the polarization, y\\ the decay rate for 
population inversion, J is the pumping, D is a diffusion 
coeficient and k is the carrier wavenumber. Spontaneous 
emission is introduced by Langevin Gaussian white noise 

sources in the equations for P^- The grating terms (p > 
0) in the equations for the material variables describe 
effects of Spatial Hole Burning (SHB). In our numerical 
solution we truncate the Fourier expansion at p — 1. 
This model must be solved in conjunction with boundary 
conditions imposed by cavity mirrors at z = 0 and z = 
L with field reflectivities rj and r2. Optical feedback 
is introduced by free propagation of counterpropagating 
fields between z — L and z = L + Lext and an external 
mirror field reflectivity r^. 

We have solved this model with a semi-implicit finite- 
difference numerical integration scheme [4]. In our study 
we have kept fixed the following parameter values which 
reflect typical time scales of a semiconductor laser: jx = 
1 x 1013s-\ 7|| = 2 x 108s-\ L = 250/xm, rx = 99.5%, 
r2 = 56.6%. Our results also give expected qualitative 
behavior for some dye and solid-state lasers in different 
time scales. The AM/FM coupling is here introduced 
through the detuning 6 which models a small linewidth- 
enhancement factor for semiconductor lasers. 

III.  Factors  influencing 
havior of a FP laser 

Multimode Be- 

If SHB is neglected (setting to zero the grating terms) 
and spontaneous emission noise is also neglected, the FP 
laser shows single mode behavior at any pumping level 
above threshold. This behavior is modified by the follow- 
ing dynamical ingredients which we consider separately: 

a) Spatial hole burning: Neglecting spontaneous 
emission noise and carrier diffusion, the number of las- 
ing modes grows with pumping level, becoming constant 
far above threshold, as seen in the Field Power Spectra 
(FPS) of Fig. 1 (left column). 
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Figure 1 FPS (log scale, frequency in GHz). Pump values: 
(J/Jth) = l-02(a,(i),1.7(6,e),3.5(c,/). Spontaneous emission 
noise: ß — 0 (left column: a,b,c), ß — 10-4s-1 (right column: 
d,e,f). 6 = 0, D = 0. 



b) Spontaneous Emission Noise: Close to thresh- 
old, spontaneous emission noise excites a number of cav- 
ity modes (Fig.l right column) at pump levels for which 
SHB alone does not destroy single mode emission. Ne- 
glecting SHB, the modes excited by spontaneous emis- 
sion alone have a Side Mode Suppresion Ratio (SMSR) 
above 20dB for pump values above J = 1.8.7«/,. In 
general both spontaneous emission noise and SHB con- 
tribute to multimode emission (see also Fig.4a). For 
large enough pumping there is a saturation in the num- 
ber of lasing modes as typically observed in solid-state 
lasers. 

c) Carrier Diffusion: Carrier diffusion plays a crucial 
role in semiconductor lasers (Fig.2). It competes with 
SHB and damps side modes. Restoration of single-mode 
emission for large enough pumping levels is shown, but 
smaller diffusion coefficients lead to multimode-emission 
far above threshold. For intermediate pump levels we 
have observed simultaneous operation of a few modes, 
but we have not observed mode hopping. 

cited in a many-mode spectrum as shown in Fig. 4. 
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Figure 2 FPS (linear scale, frequency in GHz).Pump values: 
(J/Jth) = l.05(a,d),1.5(b,e),2.5(c,f). Carrier diffusion: D = 
0m2s-1 (left column: a,b,c), D = 4x 10-4m2s-1 (right column: 
d,e,f). S = 70GHz,ß=10-*s~1. .:" 

IV. Feedback and mode selection 

Optical feedback from an external mirror combines with 
intracavity fields and can lead to mode selection depend- 
ing on feedback level and external cavity length. We 
first consider weak feedback levels to avoid instabilities 
of the output intensity. We analyze three cases with dif- 
ferent external cavity lengths Lext and an intermediate 
value of carrier diffusion for which multimode emission 
occurs in a large range of pump values. For Lext = 75 
\xm external cavity modes are separated 2000GHz, while 
the laser cavity modes have an intermode spacing of 
\llGHz. The laser cavity mode closest to the maxi- 
mum of the gain curve which resonates with one of the 
external modes is selected. Single-mode emission with a 
SMSR of 20dB is obtained for an external mirror field 
reflectivity r-3 of just 1%. By a A/2-shift of the external 
mirror different intracavity modes can be selected. For 
an external cavity of 450 fim, the external cavity mode 
spacing coincides with twice the internal one, so that the 
laser might be forced to reduce its multimode emission 
to lasing in two modes. Such two mode selection with a 
SMSR of 20dB for r3 = 2% is shown in Fig.3. 

For longer external cavities mode selection is not found; 
instead weak feedback leaves many intracavity modes ex- 
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Figure 3 Left colum: Light intensity vs time (ns). Right colum: 
FSP (linear scale, frequency in GHz). External field reflectiv- 
ity:   r3   =  0% (a,d), 0.5% (b,e), and 2% (c,f).    J/Jth   =  1-3, 
Lext = 450pm, 6 = 70GHz, ß = lO"^-1, D = 10_4m2s -4™2.-i 

Figure 4 FPS (log scale, frequency in GHz). External field re- 
flectivity: r3 = 0% (a), 2% (b). J/Jth = 1-4. Leit = 1cm, 
8 = 70GHz, ß = lO-4^-1, D = lO-'m2«-1. 

Finally, we have considered the possibility of mode se- 
lection through moderate or strong feedback. We note 
that within our numerical scheme multiple external re- 
flections are included. For the shortest external cavity 
(Lext = 75 (im ), for which single-mode emission oc- 
curs for r"3 = 1%, the laser output becomes unstable 
with broad FPS at moderate feedback levels (Fig. 5a). 
However, for strong feedback, two groups of intracavity 
modes are selected, so that a few-mode emission is re- 
covered. The spacing between these groups is given by 
the separation of the .broad external cavity resonances 
(Fig. 5b). 

J^-^ 
Figure 5FPS (log scale, frequency in GHz). External field re- 
flectivity: r3 = 10% (a), 40% (b). J/Jth = 1-5. Lcxt = 75pm, 
S = 70GHz, ß = 10-4«-1, D = l0-im2s-1. 
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In the scalar description of wave propagation in optical fibres governed by the nonlinear 

Schrödinger equation (NLSE), modulation instability can occur only in the anomalous 

dispersion regime, and this was the first form of MI to be observed [1]. The coherent 

interaction of two different circularly polarised waves of the same frequency propagating 

in a birefringent fibre has also been predicted to give rise to modulation instability in both 

the normal and the anomalous dispersion regimes [2]. Modulation instability has 

however, only been observed in the normal dispersion regime by pumping highly 

birefringent fibres with intense red or green pulses [3,4]. This form of MI arises from the 

incoherent interaction of two linearly polarised pulses. We have recently observed 

"polarization modulation instability" PMI in the normal dispersion regime[5]. When 

pumping on the slow axis of the fibre, there is no low power threshold for the instability 

and the peak gain is always at a finite detuning from the pump. 

In these experiments, the pump laser used was a mode locked cavity dumped Krypton ion 

laser, operating at 647nm, which can produce 60ps pulses with a peak power of in excess 

of lkW at a repetition rate of 1.2MHz. PMI has been observed at frequencies up to 

20THz using a standard low birefringence HeNe single mode fibre whose birefringence 

could be altered by changing the radius of the spool on which it was wound. In addition, 

PMI has been observed using a fibre having a birefringence intermediate between that of a 

"High" and that of a "Low" Birefringence fibre which has enabled us to generated 

amplitude modulated light at a frequency of 48THz (see Figure 1). 

The fact that the sidebands appear on the orthogonal axis to that of the pump in PMI has 

important implications for squeezing experiements[6]. The ability to observe the PMI 

sidebands in a short length of fibre (where the pump remains strongly polarised along the 

desired axis) ensures that the downshifted sideband does not experience parallel raman 

gain, although some interference from orthogonal raman gain was still experienced, in 

spite of the large frequency shift of the MI sidebands (in the Figure, the peak at 667nm is 

from stimulated raman scattering). 



The dependence of PMI gain on the induced birefringence has been used to construct a 

ring laser using a fibre wound on a conical spool. This laser has gain for a range of 

different modulation frequencies, and can be used to generate modulated pulses with 

tuneability over 1-2 Terahertz utilising the different round trip times of the induced 

sidebands in the cavity. Tuneability has also been achieved by altering the stress on a 

spooled fibre [7] 
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Figure 1:        Spectrum and autocorrelation function of PMI in 4m of Stolen fibre, 
Pin=700W, ^stokes=682.8nm, ^,^=615^ (So>=48.1THz) 
Modulation period 21fs (47.6THz) 
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The time evolution of the output of a hybrid optical bistable device is well described by the 
following delayed differential difference equation[l-2]: 

dx 
t— = -x + Asm2(x(t-tR)-xb), (1) 

where x and A are proportional to the output and input intensity, respectively, xb is the bias 
voltage, rthe relaxation time of the system, and tR the delay time of the feedback loop. The device 
is an infinite-dimensional dynamical system[3] which can be solved numerically with a forth-order 
Runge-Kuntta algorithm . We have solved Eq.(l) with the parameters xb, rand tR fixed at 3.0,1.0 
and 10.0, respectively. Increasing A from 1.0 to 5.0, we have traced out the bifurcation by 
selecting as the starting point of a given equation the final condition corresponding to the previous 
values of A. The system has been shown to exhibit complicated dynamical behavior including Hopf 
bifurcation, period adding, intermittency, phase locking, quasiperiodicity, hyperchaos, crisis, long- 
lived chaotic transients, etc. In this paper, with the help of the Lyapunov exponents, Poincare 
sections, power spectrum and phase portraits, Fig. 1(a) shows the spectrum of the first ten 
Lyapunov exponents^! >X2^-^Mo) ^ me parameter A is varied from 2.0 to 4.0 by step 0.05. 
As an example, we discuss in detail the crisis occurring at critical point Ac=3.69997092 in the 
second periodicity windows. Fig. 1(b) is the blow-up of the range of A from 3.69993 to 3.702. 
Before crisis the attractor is a hyperchaos with five positive Lyapunov exponents. After crisis the 
largest two Lyapunov exponents are zero, indicate that the system behavior is quasiperiodic. 
Increasing A (3.86>/4>3.701), we find many pairs of equal negative Lyapunov exponents, for 
example, ^2=A,3, A.4=X.5, X7=?i.g etc. This means that the quasiperiodicity evolves into limit cycle 
through frequency locking. These are verified by the power spectrum and Poincare section. At the 
same time, we observe the very long-lived chaotic transient. For example, at A=3.7l, the average 
chaotic transient lifetime <T>=2.6X10^. A crisis[4] from hyperchaos to quasiperiodicity happens at 
Ac for which we calculate the critical exponent y «1.75 (Fig. 2). This, critical exponent is different 

from that (y=1.0) of intermittency corresponding to the type of Hopf bifurcation. 
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A simple model of the second harmonic (SH) generation in a passive resonant ring cavity 

with nonlinear medium of the length / is studied. Such a system has bistable and 

muhistable stationary solutions. The bistabihty springs up only for sufficiently large, more 

than critical, value of the parameter     y!   y>4,   where     L = \/ G up  is the 

transformation length, a is the nonlinear coupling constant of the waves , and up is the 

pump amplitude. This limitation is connected with the fact that increase of the SH intensity 

due to the resonator effect for high-quality cavities does not cause a sufficient change of 

the nonlinear phase to enable appearance of additional solution. 

The ruin of stability means arise of two "alternative" states while each of them 

reproduces itself through an even number of resonator round-trips. Formally such a 

solution cannot be "inserted" into the cavity. In fact between these alternative states 

arises switching front "inserted" into the resonator, which travels into the cavity with a 

phase velocity (Fig.l). For dispersionless system switching front turns into steep-like one 

and so pulses acquire the rectangular form. As a result system starts generate a repetitive 

succession of rectangular pulses with the duration and relative duration equal to the 

round-trip time of the cavity (Fig.2). 

With increasing of the resonator quality IT -periodical solutions become unstable so 

that bifurcation (doubling of the period) takes place and the amplitude oscillates between 

not two but four points. Such mode instability is of the Dceda's type in a new physical 

situation We emphasize that in our case the system can demonstrate not only bistability of 

stationary states but "bistabihty of regimes" as well. For a fixed set of the parameters 

there are stable stationary and periodic solutions depending on the initial conditions. 



Fig. La) SH amplitude dependence on the distance for two different initial 

eonditions(stationary solutions 1 and 2). b) Instantaneous field distributions inside the 

cavity at different moments of time under doubleperiodic mode. 
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Fig.2. Temporal change of the SH amplitude flu(0, t) inside the cavity (normalized to the 

pump amplitude up). 
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The spectrum of pulses emitted from mode-locked fiber lasers often characteristically 

exhibits sharp, unequally spaced sidebands. The origin of these sidebands is well understood. 

They result from the constructive interference between the soliton and the dispersive waves that are 

shed from the pulse due to perturbations in the cavity loss, gain, dispersion, or nonlinearities.1 

Spectral sidebands correspond to frequencies of dispersive waves for which the relative phase 

difference is a multiple of 2n. 

In previous work,2 the sideband frequencies were determined by assuming a chirp-free 

soliton as in the case of passive, undoped fibers. By using the phase-matching criterion between 

the soliton and dispersive waves, an expression for the sideband frequencies was derived. 

However in active fibers, the gain dispersion results in pulses of the form (sechx)(1 + i(l), where the 

parameter q governs the amount of chirp in the pulse.3 This chirp is responsible for modifying the 

interference condition between the soliton and dispersive waves and consequently, the frequency 

of the sidemodes generated through the dispersive wave resonances. We have obtained a new 

expression for the sideband frequencies in the anomalous dispersion regime which is given by: 

c;        0.28 r8mzo    „      ,,    _   .."11/2 5vm=—L-^-(l-q2_2qd)J    , (1) 

where 8vm is the frequency offset of the sideband from the center frequency of the soliton, m is the 

order of the sideband, Ts is the soliton width (full width at half maximum), zo is the dispersion 

length, L is the length of the laser cavity, and d is the gain dispersion parameter. This expression 



reduces to the previously obtained result for unchirped solitons by setting q = 0.  However, in 

general, q is not zero, and the pulses formed inside a fiber laser are chirped solitons. 

The chirp of the emitted soliton is highly dependent on the gain experienced by the pulse in 

a round-trip of the laser cavity. This is shown in Fig. 1 where the chirp parameter is plotted as a 

function of the round-trip gain. The solid and dashed curves correspond to the anomalous and 

normal dispersion regimes, respectively. Since the round-trip gain must equal the total cavity 

losses, there is a direct connection between the amount of loss in the cavity and the sideband 

frequencies observed in the pulse spectra. We show how the positions of the soliton sideband 

spectra are dependent not only on the net dispersion of the cavity as previously thought4 but also 

on the total cavity losses. 

1 J. P. Gordon, J. Opt. Soc. Am. B 9, 91 (1992). 

2 S. M. J. Kelly, Electron. Lett. 28, 806 (1992). 

3 P. A. Belanger, L. Gagnon, C. Pare, Opt. Lett. 14, 943 (1989) 
4 M. L. Dennis and I. N. Duling III, IEEE J. Quant. Electron. 30,1469 (1994). 
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Fig. 1. Chirp parameter q of the output pulse as a function of the round-trip intra-cavity gain. The 

solid and dashed curves correspond to the anomalous and normal dispersion regimes, respectively. 
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The solid state Nd:YAG (neodymium doped yttrium aluminum garnet) laser with an intracavity 
frequency doubling KTP (potassium titanyl phosphate) crystal [1] can show chaotic intensity 
fluctuations when operated with at least three longitudinal infrared modes. The source of chaotic 
behavior is the coupling of the infrared modes through the process of sum-frequency generation in 
the KTP crystal. This process destabilizes the relaxation oscillations which are normally heavily 
damped in the system without the intracavity crystal. We show that the laser can be operated both 
in a low dimensional chaotic regime and in a regime where intrinsic noise significantly influences 
the deterministic dynamics. 

The laser system was prepared so that it was clearly chaotic in operation with two distinct 
polarization configurations of the three lasing fundamental modes. In Figure 1(a) we show a time 
trace of the total infrared intensity I(t) when all three modes are parallel polarized ("type I" chaos). 
In Figure 1(b) we show I(t) with one mode polarized perpendicular to the other two ("type II" 
chaos). Type I chaos consists of long "bursts" of relaxation oscillations, while type II appears far 
more irregular. Very little green light is generated for Type I behavior-which consists of low 
dimensional chaos that is controllable by the method of occasional proportional feedback (OPF) 
[2,3]. Type II chaos is accompanied by the generation of a substantial amount of green light and 
the presence of high dimensional intrinsic noise. Typically, type II chaos can not be controlled 
using OPF. 

We report results of nonlinear time series analysis [4] for quantitative distinction between chaotic 
behavior where the noise level is very low (type I) and chaotic behavior where the noise level is 
substantial (type II). Our analysis uses average mutual information [5] and percentage of false 
nearest neighbors [6], as shown in Fig. 2, to reconstruct the system dynamics by time delay 
embedding. We also evaluate the Lyapunov spectrum of the system to firmly establish that the 
motion is chaotic and to estimate the overall dissipation of the system. Large noise fluctuations are 
associated with the substantially larger dissipative type II chaos. We suspect that the origin of this 
noise is in the microscopic fluctuations of the photon fields arising during the conversion of pairs 
of infrared (1.064 mm) photons to green light (0.532 mm). 
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Figure 1. (a) Fluctuations of the total infrared intensity for three mode Nd:YAG laser 
operation with all modes polarized parallel to each other. Relaxation oscillations of 
period = 16 u.sec are evident within a modulating envelop, typical of type I dynamics, (b) 
Fluctuations of the total infrared intensity for three mode Nd:YAG laser operation with one 
mode polarized perpendicular to the other two (type II). The relaxation oscillations are still 
visible. 
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Figure 2. (a) Percentage of false nearest neighbors (FNN) versus the embedding dimension 
dß for type I (solid symbols) and type II (open symbols) chaotic data sets. These are 
averages over the collection of type I and type II data collected, (b) Enlargement of Fig. 
2(a) showing that the percentage of Type I FNN drops to 0.1 percent and stays there as dß 
increases but the percentage of type II FNN does not drop below 4 percent. Both operating 
conditions show intrinsic noise; but, the much higher level of residual false neighbors in type 
II chaos is the signature of a system where noise is appreciable enough to influence the 
deterministic dynamics. 
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Abstract 

In chaotic dynamics of a semiconductor laser with 

external optical feedback, we describe a method that 

controls or suppresses chaos into regular state by 

means of a coherent second external feedback. The 

potential applicability of the control algorithm to the 

intensity noise reduction has also been discussed. 

1 Introduction 

Semiconductor lasers with external optical feedback 

provide one of the best physical systems for study- 

ing nonlinear dynamic phenomena. A rich variety of 

behavior has been observed in these systems, includ- 

ing periodic, quasi-periodic oscillations, and chaos.'1' 

In some applications, feedback induced chaos can be 

harmful to the performance of semiconductor lasers 

because it enhances the intensity noise. I2' Therefore 

one wishes to reduce or suppress undesired chaotic ins- 

abilities. This is the task of so called chaos-controlling. 

In this paper, we introduce the second external feed- 

back (see Fig. 1) loop to suppress chaotic dynamics 

of external cavity semiconductor laser. The configu- 

ration has been studied as a high-dimensional chaos 

model.I3' Here we lay emphasis on the control of the 

chaotic dynamics by adjusting the parameters of the 

second feedback loop. We show that chaos can be ef- 

fectively suppressed by setting the ratios L2/L1 and 

R2/R1 to appropriate ranges. Moreover, by calculat- 

ing the RIN (relative intensity noise) levels for dif- 

ferent states, we demonstrate that the proposed al- 

gorithm can be used for the noise reduction in some 

applications of semiconductor lasers. 

2 Results and Discussions 

The shematic of the laser diode with doulbe external 

feedbacks is shown in Fig. 1. The light source is a CSP 

?\         1 \   1 

1: :/   : : 

Fig. 1 Experimental setup. L\, L?.: distances of 

two external mirrors from the front facet of the laser, 

Ri, Ä2: amplitude reflectivities of two mirrors. 

AlGaAs semiconductor laser with the cavity length Z, 

the refractive index 77, and the amplitude reflectivity 

of two facets ro- 

For a weak to moderate feedback level, one has the 

following rate equations 

E(t)   =   {MN) + ±GN[N(t)-Nth]}E(t) 

+      *.E(t-Ti) + ^E{t-T2) + FB(tUl) 
'in 'in 

N(t)   =   J- 
N(t) 

-   GN[N(t)-No]\E(t)\2 + FN(t).        (2) 

Here, E(t) the complex eletric field at the front facet, 

N(t) is the average carrier density in the active region, 

UJN is the angular optical frequency of the laser, GN is 

the modal gain coefficient, Nth is the threshold carrier 

density for the solitary laser, «1,2 = (1 - r§) x RI^/TO 

is the feedback coefficient, FE and FN are Langevin 

noise terms. Also, Tm is the optical round trip time 

in the laser diode cavity, T„ is the carrier life time, 

7"it2 = 2Li,2/c is the external cavity round trip time, 

and J is the injection current density. 

We have numerically calculated Eqs. (1) through 

(3) by employing a fourth order Runge-Kutta algo- 

rithm and verified various phase transitions among 

fixed points, periodic states, and chaos. The emphasis 

is put on the variations of the dynamics with respect 

to the ratio of optical leneth or the reflectivity be- 



tween two external feedback loops. Figure 2 shows 
a typical example of such variations. In the case of 
the single feedback, the result (broken line) demon- 
strates chaotic behavior. With the second feedback, 
the chaotic output is reduced to a periodic oscillation 
(solid line) or even a fixed fixed (dotted line). In the 
calculation, the chaos suppression occurs for various 
set of parameters. Especially for L2/L1 = 0.85 ~ 0.99, 
there exist dramatical changes of dynamics due to the 
variation of parameters. Figure 3 summarizes a bifur- 
cation for a certain condition: J=1.07./«,, £i=30 cm, 
and Ä!=1.5%. 

m 

I 05 

■      ■      ■ v/>   I      ■      ■ 

1^ ? /- 

v   \ 

10 

time  t  (ns) 

Fig. 2 Numerical results for J=1.07 Jth, Li=30 
cm, and Äi=1.5%. Broken line: single feedback; 
Dotted line: La/^i =0.925, Ä2/Äi=l/3; Solid line: 
L2/Li=0.925, R2/Ri=2/Z. 
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Fig. 3 Bifurcation diagram for J=1.07 Jth, Li=30 
cm, and Äi=1.5%. 

The reason why chaos is suppressed with the second 
coherent light feedback can be considered as follows. 
In the case of double external cavities, the laser cou- 
ples with an interference signal formed by two coher- 
ent feedbacks. Under certain proper parameter condi- 
tions, the interference signal becomes a periodic beat 
signal. The feedback of such beat signal yields the co- 
herence of the phase and finally the periodicity of the 
laser dynamics. 

Optical feedback may cause the intensity noise en- 
hancement which drametically deteriorates the per- 
formance of semiconductor lasers. We consider that 
the feedback induced deterministic instabilities are re- 
sponsible for the intensity noise enhancement.'4' As 
the double external cavities can be introduced in the 
practical case, the chaos suppression of the current 
configuration might be applied to the noise reduc- 
tion. To verify this property, we generate the Langevin 
noises in Eqs. (1) through (3) and calculate the RIN 
levels for the cases with or without the control. As 
an example, the average RIN corresponding to Fig. 2 
reads -71.5, -101.0, and 91.3 dB/Hz for the broken, 
solid, and dotted lines, respectively. In general, the 
RIN level can be reduced 20 dB/Hz or more provided 
chaos is suppressed to periodic or fixed states. This 
suggests that the control algorithm is very promising 
in reducing the feedback induced noise. 

3    Summary 

We have introduced and tested an algorithm that 
applies to the suppression of chaos in the semiconduc- 
tor laser with external optical feedback. The nolvelty 

of the proposed procedure lies in the fact that it em- 
ploys only the external feedback itself to achieve the 
control. It has been confirmed that the method is 
suitable for the reduction of the feedback induced in- 
tensity noise. 
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Since the original method of chaos control by Ott, Grebogi, and Yorke (OGY) was 

presented [1] a number of successful applications of this method for taming chaotic 

dynamics in experiments including lasers has been reported. In particular, Roy et al. 
have resolved the problem of multimode instability (so-called "green" problem) in the 
Nd:YAG laser with intracavity frequency doubling on the KTP crystal[2], Glorieux and 
coworkers have stabilized a chaotic output of selfpulsing fiber and modulated C02 lasers 
[3 and references therein]. 

At the same time, the OGY method itself and its modifications have some drawbacks 
which are essential for widespread applications in practical devices. The main of these 

are usually a priori unknown parameters of control, so the adjustments to correct values 
may become quite tedious, the extremely high sampling frequencies in very fast systems, 
and sometimes absence of robustness to noise. 

In this paper we analyze theoretically possibilities of improving these techniques using 
as a paradigmatic example the rate equations model for a modulated class-B laser. 

First, we have considered delayed impulsive feedback (DIF) techniques. The 
consideration covers the cases when one or two of the following control parameters are 
accessible : the losses of cavity, the pump parameter and the energy of injected pulse 
from a master laser. The key point here is existence of an optimal phase of applying 
impulsive correction signals. In particular, in a modulated laser with control on cavity 
losses this phase corresponds to the vertical orientation of an unstable manifold of a 
saddle nT-periodic cycle to be stabilized and coincides with an optimal phase of 

amplification near a threshold of an instability which, in its turn, can be readily identified 
theoretically and experimentally [4]. More than that, there is also an optimal strength of 
the feedback kicks. It also can be expressed analytically through the parameters of 

characterization of the unstable orbits. In Fig.l we present the theoretical results 

illustrating this optimal control technique applied to the model of a modulated C02 laser 
with losses controlled by an additional spiking laser [4]. It can be easily seen, that in a 

parameter space of the control scheme there is a domain of achieving control with an 

optimum in the centres of contour plots. The external boundaries of this domain are 
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Fig. 1        Optimal chaos control. 
(a) - Domain of control in the space (M>); 
(b) - Domain of control in the space (a,<j>) (for 
fixed modulation depth \ ). 
(c) -Laser power in the Puancare section vs 
modulated depth for the optima] parameters of 
control. 
Digits in fig. (a), (b) are the values of 
relaxation times to the stabilazed cycle (in 
periods of modulation). 

found analytically from the condition that Floquet multipliers of the resulting system are 
in the unit circle. It is also seen that stabilization of the unstable orbits is traced to the 

chaotic region without any readjusting of the control scheme parameters. 

We have also performed a linear stability analysis for a delayed continuous feedback 
techniques (DCF) in a modulated lasers which has a number advantages in applications 
[3]. As a result using the Stokes generalization of the Floquet theory for functional 

equations, we derived a generalized bifurcation condition which contains as particular 

cases subgarmonic, saddle-node and Hopf instabilities. It has been shown that DCF 
control does not change the saddle-node bifurcations in the original systems and 
suppresses period doubling bifurcations. These results are in good agreement with the 

recent experiments on controlling unstable orbits in a C02 laser by DCF [3], 
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[2]. RRoy et. al., Phys.Rev.Lett 68,1259 (1992). 
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[4]. V.N. Chizhevsky and S.I. Turovets, Opt Commun. 102,175 (1993). 
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The antiphase state denotes a simple periodic, multiperiodic or chaotic state that 

was observed recently in multimode lasers experiments [1-5]. The simplest type of 

antiphase state is characterized by the fact'that the intensity of each mode 

oscillates with a similar waveform but not with the same phase. Antiphase states 

appear with high multiplicity because there is no preferential mode if all modes 

are equally coupled. Furthermore, these antiphase states are competing with the 

in-phase state (all modes are in phase). It is thus of particular interest to 

determine the bifurcation diagram of the antiphase states. 

Specifically, we consider the Tang, Statz and deMars equations modeling a solid- 

state Fabry-Perot laser [6] with a periodic pump modulation [7]. Each of the N 

modes is characterized by the ratio /cp of the field decay rate to the population 

inversion decay rate and by its gain yD. The laser pump rate is w. Assuming K    S F P 
K, we have determined an asymptotic approximation of the laser equations in the 

limit   K   »    1    and   yp   =   y   +   0(1/4K).   To   dominant   order   in   K,   the   laser   is 

characterized   by   only   two   frequencies;   QAt^xi  and   Q -Jy(,#c",   where   Q     is   N   -   1 

degenerate. Using the expressions given in [8] we find the following limits for w 

close to 1, w large and N large, respectively: 

1/    w = 1 + e, N = 0(1): 

ß2 = c + 0(c2),      Q2 = c/(2N + 1) + 0(c2), 

2/   w » 1, N = 0(1): 

fi2 = w + 0(1),      n2 = w/(2N - 1) + 0(1), 

3/    N »  1,  w = 0(1): 

A2 = w - 1 + 0(1/N),      n2 = (w - 1)/2N + OÜ/N2). 

2 
In particular, for N = 2, we find 3 < tä/^)    < 5 and Q A2    = 2 for w = 15/7. 

Scaling  the  time  so  that  the   degenerate  frequency   equals  1,   the   leading  order 

approximation is 



N 

dx  /dt =  -  y     -  Mcos(crt)  - AV y.  , (1) 
P P ^     J 

j 
dy /dt = x  (1 + y  ) , (2) 

P P P 

where p = 1,2,... N. In these equations x and y are proportional to the 

deviation of the population inversion and the intensity from their steady state 

values, respectively. M and <r are proportional to the amplitude and the frequency 

of the modulation. A depends on the pump parameter w. If M = 0, Eqs. (1) and (2) 

form a conservative problem that admits antiphase periodic solutions [9]. The fact 

that when N = 2 there is a significant domain of parameters for which ß,/ß? - 2 

suggests a near resonance phenomenon between the two periodic solutions of the 

linearized theory. We investigate this problem by determining the bifurcation 

diagram of the periodic solutions of Eqs. (1) and (2). For N = 2, we find that the 

leading approximation of the solution for y(t) is given by 

y      = [ (-)PBel1: + c.c] + [ Ae2lt + c.c.],      p = 1, 2. (3) 

If B = 0 and A *■ 0, the solution is a pure in-phase periodic solution. If B * 0, 

the solution corresponds to an antiphase periodic solution whatever the value of 

A. We derive amplitude equations for A and B by formulating solvability conditions 

for the two possible cases of resonance (cr = 1 and <r = 2). If <r = 1, we find that 

an antiphase periodic solution is the only possible solution. If IT = 2, both 

antiphase and in-phase solutions are possible. 
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I.   INTRODUCTION 
Complex spatio-temporal behavior is a general property 
of semiconductor laser arrays. Many experimental [1] 
and numerical [2-4] studies have shown that index/gain 
guided laser arrays exhibit strong spatio-temporal pul- 
sations which are usually related to the presence of 
amplitude-phase coupling through the a-parameter [3] 
and multilateral mode operation [4]. With such a compli- 
cated dynamics well documented, a better understanding 
of the causes of the complex dynamics characteristic of 
semiconductor laser arrays is required. To distinguish 
between cause and effects, theoretical modeling of such 
devices is a key step. 

n.  LASER MODEL 
In order to avoid the unphysical high-wave-number in- 
stabilities that appear in Rate Equation models when 
spatial effects are explicitely included [5], we modify the 
semiclassical Maxwell-Bloch model for a two level homo- 
geneously broadened medium to capture appropriately 
more of the semiconductor laser physics [6]. Assuming 
that the optical field can be decomposed as 

E(x,y,z;t) = xRe[E(x;t)ii>(y)9{z)exp(-iwt)] 

where <j>{y) {^/(z)) is the transverse (longitudinal) field 
distribution of the fundamental transverse (longitudinal) 
mode, E(x\t) the slowly varying lateral field distribution 
parallel to the juncion plain whose amplitude may depend 
on time, and w is the carrier frequency, we can write these 
equations as 

dE 7, ,„       icz   d'E      P _ = __(1+,Q)£+__+_ 

dP 
at 

dN _ C(x) ., . „a*JV 

at 

= -7, [l - ier (l - ^l) j P + 7,(1 + o2)<i(7V - N0)E 

,.        ^ + D^--[EP'+E'P] 

(1) 

(2) 

(3) 

where P(x;t) is the slowly varying enveloppe of the ma- 
terial polarization for a carrier frequency w, and N the 
carrier density. Spontaneous emission and thermal noise 
are modeled by Gaussian white noise sources in the equa- 
tions for P and N. 

The main physical parameters of these equations are: 
distributed loss 7=0.723 ps-1, linewidth enhancement 
factor a=3, reference frequency w=2.2987 1014 s-1, index 
of the active layer 77=3.5, polarization decay rate 7p = 1013 

s-1, differential gain a=2 10~6 /jm3 ps-1, carrier density 
at transparency No =1.3 106 /im-3 , carrier decay rate 
7e=3.3 108 s-1, active layer thickness /=0.2 pm, c is the 
velocity of light, D is the diffusion coeficient and q is the 
electron charge. 

The dependence of the current density profile, C(x), 
on   the   lateral   direction   allows   us   to   have   narrow 

stripe, broad-area or multi-stripe configurations. Current 
spreading is also taken into account by a layered approx- 
imation in which the current density is almost uniform 
across the stripes (Cmax) and the interstripe regions, and 
the relationship between both values is a fixed ratio r [4]. 

A four-stripe gain-guided semiconductor laser array 
has been modeled where the width of the stripes is main- 
tained constant (5 ^m). In all the simulations, the device 
is switched-on by abruptely changing the injection cur- 
rent from transparency to a certain level above threshold 
which is kept constant for the whole time interval of in- 
tegration. 

III.  DYNAMICS OF THE ARRAY 
In gain-guided devices, the carrier distribution provides 
not only gain, but also field confinement. Hence the sys- 
tem is by far more sensitive to any mechanism which 
changes the carrier profile, thus leading to a decreased 
stability of phase-locked states. The influence of differ- 
ent mechanism on the array dynamics is considered. 

a) Carrier Diffusion: Carrier diffusion mainly affects 
the effective current injection and the field confinement 
within the stripes. The first one can cause a different 
emission frequency for each stripe, and also can lead to 
the discrimination of the outer stripes [7] as shown in 
Fig. 1. The second one will influence the coupling be- 
tween neighbouring stripes through the evanescent fields, 
thus favouring the arousal of dynamical instabilities. 

b) Interstripe Distance: The distance between 
stripes strongly determines the coupling strength between 
neighbouring stripes. We have explored the effect of vary- 
ing the interstripe distance, adjusting the injection cur- 
rent for each value of the interstripe separation to satisfy 
that the current density profile is the same in all the cases, 

i) ii) 

-40     -20        0 
Position (/im) 

20        0 20 
Position (/tm) 

FIG. 1. Effects of carrier diffusion. Near field plot for 
LD = 3/im , r = 0.05, s — 4/zm and i) I = 180mA, ii) 
7 = 200mA. 
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FIG. 2. Influence of the interstripe distance: a) Near field 
and (x,ui) plots for LD = 2/im, r = 0.33 and Cmax ~ 2 Cth\ 
and b) Time series and spectra of the total intensity emited 
by the array, for i) s = 8/im and 1=350 mA, ii) s = 6/im and 
1=300 mA, and iii) a = 4pm and 1=250 mA 

in order to obtain approximately the same mean output 
power. Fig. 2 shows the near field plot and the corre- 
sponding {x,u) plot for three different interstripe sepa- 
rations. 

For large interstripe distances (s=8 /im) the stripes are 
almost isolated and each one behaves as a single laser 
having its own lateral fundamental mode ('local' mode), 
and the 'array' modes can be described as combination of 
such 'local' modes. However, the weak coupling of neig- 
bouring stripes breaks the frequency degeneracy between 
fields of different stripes, and small beating between such 
'array' modes is expected (~ 0.3GHz). When the inter- 
stripe distance is decreased (s=6 /im), the relaxation os- 
cilations frequency (/r) is close to a harmonic of the beat 
note (frequency difference between 'local' modes), yield- 
ing strong spiking of the intensity in each stripe. A futher 
decrease to s=4 /im leads a strong drop of the laser co- 
herence, the spectral power being distributed over ~ 50 
GHz. Moreover, these dynamics and characteristic fre- 
quencies are also observed in the total laser power and 
spectra plots. 

c) Current Injection: Increasing the injection cur- 
rent leads to the same dynamics as previously described: 
the device passes through stable, quasi-periodic and 
chaotic outputs as the current is increased.  For low in- 

jection currents, the array dynamics can be depicted as 
the result of the interaction among a few " array modes" 
defined as combinations of "local" modes defined within 
each stripe, thus reminding of Coupled-Mode Models. As 
the current injection is increased, more and more of these 
"array modes" are required in order to describe the re- 
sulting dynamics. 

IV.  STRONG COUPLING LIMIT 
A completely different behavior is obtained when the 
stripes axe so close and coupled that they behave almost 
as a single broad stripe (see Fig. 3). Opposite to the cases 
discused in the previous section, the space-resolved spec- 
trum shows well defined peaks with defined lobes (similar 
to the one observed for broad area lasers [8]). It must 
be emphasized that these "supermodes" cannot be con- 
structed as combinations of the different "local" modes, 
thus breaking the validity of a Coupled-Mode approach. 

NEAR FIELD FAR FIELD (x-w) GRAPH 

FIG. 3. Broad Area behavior: a) Near field, far field and 
(z,w) plots for LD = 2fim, r = 0.33, a = 0.5/tm and 1=203 

mA (Cmax ~ 2 Cth). 
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In this paper we report nonlinear dynamics and weak chaos in a periodically driven 
spatially extended nonlinear optical oscillator, namely, stimulated Brillouin scattering in 
single mode fibre with external feedback and under periodical excitation Driven nonlin- 
ear oscillators have historically played a key role in the study of bifurcation theory and 
universality laws of nonlinear dynamics and chaos and, through the connection of coupled 
oscillators to the Ginzburg-Landau equation, they have more recently attracted attention 
in pattern formation and spatio-temporal chaos. The focus of our attention here is on 
experimental and theoretical investigations of how complex bifurcations can be induced, 
through periodic pump excitations of different frequencies and depths of modulation in 
a spatially extended Brillouin oscillator. We have quantified the dynamical features we 
observe, including a quasiperiodic route to weak chaotic states. The theoretical findings 
are found to be in good accord with experimental observation, providing physical insight 
into this dynamical system. 

Experiment: The SBS emission was generated in a single mode fibre pumped by the emis- 
sion from a stablized single mode cw Nd:YAG laser operating at 1.06 fim.  The experi- 
mental set up, as detailed earlier [1], now includes an acousto-optical modulator (AOM) 
to modulate the pump source, providing at the entrance of the fibre (120m length) a 
modulated excitation P — 70(1 — asin2(ut/2)), where I0 is the laser output intensity, a 
and u are repectively the depth and frequency of the modulation. In the absence of the 
modulation the SBS emission was set, by pump level, to provide periodic dynamics [1], 
sustained by the natural reflectivity of the fibre.  In the presence of the modulation the 
SBS emission was found to be periodic, quasiperiodic and weakly chaotic, dependent on 
the two main control parameters u> and a, when the average incident power in the fibre 
was held constant. Periodic emission was observed only when the frequency of the AOM 
was located in the vicinity of the fundamental frequency of the oscillator, l/2Tr , or its 
harmonics, where Tr is the trip time of light traveling in the fibre. Quasiperiodic bands 
were observed in other frequency regions, total range investigated being l/4Tr - 1/Tr, 
within which the temporal wave forms were quite diverse though all arising from the com- 
bination of these two frequencies. Chaotic emission was experimentally found to emerge 
in two small domains in this range through a quasiperiodic route on increasing the mod- 
ulation depth to 25~ 30%, as shown in Fig.l, the maximum depth being limited at 30~ 
35% in the experiment due to excessive heating effect. The weakly chaotic behaviour in 
Fig. 1(c) was manifested by the emergence of a third frequency component in the power 
spectrum and confirmed by the convergence of the correlation dimensions of this data set 



on increasing the embedding dimensions. Its value was measured to be ~ 2.9 

Theory: The theoretical model description of this dynamical system involves a three wave 

interaction of the pump, Stokes and acoustic waves, initially driven by spontaneous Bril- 

louin noise and accounts for nonlinear refractive effects and the boundary conditions of 

the fibre system (see Eq.(l)-(6) in Ref.[2]).   The pump amplitude, now modulated, is 

written as A(z=0)= y/P since the AOM does not induce any effective phase information 

to the system. The physical parameters used are those corresponding to the polarisation 

scrambled single mode fibre we use in the experiment and the normalised pump parameter 

is fixed at g = 5.9, well within the periodic operating region obtained in the absence of 

the pump modulation. The dynamics of Stokes emission were found to be in good qualita- 

tive accord with the experimental findings on change of the two parameters, in particular 

the quasiperiodic route to chaos, on increasing modulation depth for fixed values of the 

modulation frequency as in experiment. Theoretical results further show an evolution of 

weak chaos to full chaos with further increase of the modulation depth to 100%. While 

the calculated correlation dimensions for the parameters in Fig. 1(c) show a quicker con- 

vergence than that of the experiment they nevertheless give a pleasing agreement on their 

converged values as shown in Fig.2, indictive of similar behaviour of the both attractors. 

In general, our findings establish that many aspects of the universal dynamical features 

of driven nonlinear system described by ODE's are preserved in this spatially extended 

driven system. 
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Fig.l. A quasiperiodic route to weak 
chaos on increasing modulation depth, 
5,20,30 % (from top to bottom), for 
a fixed frequency at 0.7/2Tr. 
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Fig.2. Corr. dim. vs embed, dim: open 
circles for the data set in the bottom 
of Fig.l; closed circles for the 
corresponding theoretical data. 
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In fiber soliton communication systems one of the main constraints on the 
single-channel bit rate is the interaction between adjacent pulses. It has 
been shown that spectral limited amplification is effective tool of 
suppression of this source of timing jitter. However the results on spectral 
limited amplification have been thus far obtained for the case of pulse 
duration larger than the time of .polarization relaxation. For a pulse which 
duration is comparable with or less than the relaxation time this 
approximation loses its justification, the interaction of the optical pulse 
with amplifying medium becomes coherent, and the response of the active medium 
depends nonlinearly on the preceding history of the pulse. 

Recently it has been shown by us that coherent effects might develop 
trailing substructure of the amplifying soliton [1]. The every subpulse has 
phase opposite to that of the subsequent one, and the situation can be thought 
when the adjacent solitons are placed at opposite extrema of the trailing 
substructure which thus might act as a phase modulator, breaking interaction 
between them. In this Report we consider the features of the interaction of 
the sub-picosecond solitons in Er-doped fiber. The dynamics of the soliton 
pair is described by nonlinear Schrödinger equation (NSE) modified by the 
appropriative inclusion of the resonant polarization which, in turn, obeys the 
set of Bloch equation [1]. We do not take into account stimulated Raman 
scattering here because our purpos is to study the process of soliton 
interaction ina two-level medium in the presence of dispersion and Kerr-like 
self-phase modulation. 

The governing set of equations was solved numerically. As an initial 
value we used isolated pair of NSE solitons having pulse width 0.15 ps, the 
relaxation time was supposed to be equal to 0.3 ps, and the dopant 
concentration 1 ppm was used to satisfy the condition of adiabatic following. 
In Figs. 1,2 the propagation of the pair of the off phase solitons in pumped 
erbium fiber is depicted. We note the following features. 

In Fig. 1 the dynamics of the interaction between two off-phase solitons 
of 0.15 ps pulse width and 0.9 ps pulse separation is shown. Since solitons 
are off-phase and close enciA$V\. the soliton interaction can be suppressed. 
However the development of trailing substructure leads to their repulsion. 
Eventully, soliton prolifiration occurs. 

The phenomenon of soliton annihilation in interacting of two identical 
solitons with different phases is shown in Fig. 2. In this case the scale of 
developing of the trail of the leading soliton equals to the interpulse 
separation. The attraction between the training substructure and second 
soliton does pull them closer and makes them overlap significally. This 
produces a chance for the leading soliton to pump the triling one that can 
lead a single amplified and compressed soliton emerges from the bandwidth 
limited fiber amplifier. 
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Fig. 1 Interaction between two identical out off phase solitons; interpulse separation 0.9 ps. 
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It was found experimentally in a study of self-induced transparency that a short high-intensity laser 
pulse have anomalously long distance of propagation in a resonant medium [1]. Besides that the central 
frequency of a pulse was shifted to the red side of the transition line. As was mentioned in [1] appearance of 
the shift leads to a weakening of pulse absorption. 

In these experiments above mentioned phenomena were observed only when the light beam was 
focused on the rear plane of a gas cell using a lens. Moreover, the self-focusing occurred, so the transverse 
pattern effects must be included into consideration. Approximate analysis of the experiments based on the 
concept of space-temporal soliton was presented in [2], [3]. In this paper we discuss the results of numerical 
simulation of a coherent pulse propagation in the optically dense longitudinally extended resonant absorbing 
two-level medium. 

Our model includes the Maxwell-Bloch equations: 

8P(z, f, t)/dt = -(r + iA)P + {iE/2)(Nb - Na)T, 

dNa(z,r,t)/dt = -laNa - (i/2){ETP- P*E)27alb/(la + 7t), 

dNt{z,r,t)/dt = -yb(Nb - 1) + {i/2)(E'P - P*E)27alh/(7a + 76), 

2idE(z,r,t)/dz + VlE{z,r,t) = -igP{z.r,t), 

where P(z, f, t), E(z, r, t) are the slow varying amplitudes of the electric field and medium polarization, 
t —► t — z/c is the local time of the pulse, Na, Nb are the populations of upper (a) and lower (6) levels, 
respectively, normalized on the unsaturated value of Nb, A is the pulse carrier frequency detuning, T, 7a, jb 

are the relaxation rates of the polarization and populations, respectively. 

For the numerical simulation we use the field representation on the grid in transverse plane denned 
by coordinates lines <p = const and r = const in cylindrical coordinate system. Then for every knot of this 
grid the equations for P(t),Na(t) and Nb(t) were solved numerically, supposing that E(z,f,t) is a given 
function of t. So we obtain the temporal evolution of medium polarization. In the solution of the paraxial 
wave equation we use the step-splitting method. At the diffraction step it is convenient to exploit the simple 
algebraic relations describing the transformation of empty-space modal amplitudes. At the nonlinear step it 
is easy to solve density matrix equations at grid knots. 

The initial pulse at the input plane had gaussian profile both in time and in space. The initial 
condition for the medium were P(z, r, 0) = 0, Na(z, r, 0) = 0, Nb(z, r, 0) = 1. The used algorithm allows 
to obtain temporal evolution of the field in any point of transverse plane, temporal dependence of modal 
amplitudes, and correspondent snapshot of a transverse pattern at any given moment. The carrier frequency 
shift was determined as an average value of chirp (6v = —d(j>/dt, where <j> is the phase of the field) along the 
pulse at longitudinal axis or space-time average value of chirp. 

The results of the simulations are summarized as follows: 

• The pulse spectrum variations occurs due to self-phase modulation of special kind: the beam diameter 
variation occurring due to self-action of light beam leads to phase modulation; 



« The magnitude and sign of spectral shift depends essentially from input pulse power, pulse duration, 
and optical thickness of absorber; 

a The carrier frequency can be shifted both to the red and to the blue in the case of very short pulse 
with pulse width less than T-1; 

9 More long pulses with the pulse width greater than T-1 have the red shift up to 1/4 of the transition 
linewidth. 

For the qualitative explanation we have used the results of the simulations of the evolution of the 
phase on the axis in the case of stationary self-action [4], shown in Fig. at different values of input intensity. 
Here z is the longitudinal coordinate, normalized to diffraction length, initial beamwaist was 7r. In Fig. the 
phase evolution along longitudinal axis was shown vs different initial axial intensity of the beam. It is easy 
to see, that for the varying initial intensity chirp will occur, corresponded to the blue shift at the leading 
edge and to the red at the trailing edge. In absorbing media the leading edge is absorbed considerably while 
trailing edge propagate in saturated medium. Thus the average shift will be red. 

This work was supported by the Commission of the European Communities under ESPRIT Contract 
P9282-ACTCS, EU-Russia Collaboration, and ISF grant NS4000. 
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A generalized Maxwell-Bloch formulation for laser-field-coupled semicon- 
ductors was derived from a two-band model which includes the direct Coulomb 
interactions as well as the effects of the density of states distribution. The result- 
ing system is composed of a self-consistent set of coupled equations in four 
dynamical variables for the semiconductor medium, together with the electric 
field amplitude coupled through the Maxwell wave equation in semiclassical 
approximation and are obtained to lowest order in the Coulomb exchange 
interaction and the density of states distribution [1]. The temporal evolution of 
these equations in the spacial mean field limit forms the basis for the dynamical 
system in our analysis. 

It is shown that dynamical instabilities and chaos are intrinsic with respect 
to the parameter space of this model, Fig. 1. A novel and sensitive method [2] is 
used to characterize the chaotic system and it is shown also that the new method 
is particularly applicable to distinguish deterministic from stochastic components 
when stochastic fluctuations are introduced. It is shown that in general, the co- 
herent Coulomb exchange interaction lowers the chaotic threshold [3]. 

Several distinct control schemes are applied to achieve selective 
decomposition of the chaotic attractor into unstable periodic orbits, and the effects 
of the control schemes are analyzed. The method of Occasional Proportional 
Feedback (OPF) [4] is applied using the gain (injection current) as control param- 
eter. Also, the method of Continuous Delayed Proportional Feedback (CDPFB) was 
applied with measured success [5]. The effects and stability of the two procedures 
are compared. The latter procedure appears more practical for semiconductors 
since it can be implemented optically. Shown in Fig. 2 is the result of applying 
OPF to the system under the identical conditions corresponding to the chaotic 
dynamics represented in Fig. 1. 

Currently, we are formulating a novel control scheme using fast training 
neural network algorithms [2] to achieve global, nonlinear adaptive control using 
several control parameters simultaneously. This method is distinct from existing 
local linear methods [4,5] and is anticipated to be robust for higher dimensional 
systems. 

REFERENCES 

L    CM. Bowden and G. P. Agrawal, "Generalized Bloch-Maxwell Formulation 
for Semiconductor Lasers," Phys. Rev. A, in press. 



4 

5. 

S. D. Pethel and C. M. Bowden, "Characterization of Chaotic Signals Using 
Fast Learning Neural Networks," invited contribution in Handbook of Neural 
Computation (Institute of Physics, Oxford University Press, NY, 1995), in 
press. 

C. M. Bowden, S. Singh, and G. P. Agrawal, "Laser Instabilities and Chaos in 
Inhomogeneously Broadened Dense Media," J. Mod. Opt., to be published. 

E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64,1196 (1990). 

J. E. S. Socolar and D. J. Gauthier, private communication. 

30 

as 

so 

18 ' 
10 

£ • -   , 
0 

•8 

-10 

-15 

-20 
0. 

,    " ; , 
S 1.S 34 &s 9M 72 8.0 103 12Ü 1&6 1&0 

P 

Figure 1. Polarization | P | versus carrier density W, no control 

ae 

38 

20 

18 

10 

s ■ 
0 

-8 

-19 

•18 
, , , , , , , , 

ft« 1J 3J> ZJB M 7J$ 

P 
0.0 103 110 1SJ ISA 

Figure 2. Polarization | P | versus carrier density W, with COPFB control 



TE1A 

Three-order nonlinearities as mechanism of the mode-locking 

V.P.Mikhailov, V. L. Kalashnikov, V.P.Kalosha and I.G.Poloyko 

International Laser Center of Belarus State University, 7 Kurchatov Str., Minsk, 220064, 

Belarus, Tel/fax.: (7-0172)78-57-26, E-mail:user3@mikhai.bsu.minsk.by 

The soliton-like states in the lasers are formed by a nonlinear interaction between the 

transverse resonators modes. This process requires a dynamical balance between the gain 

saturation and nonlinear losses which depend on the intracavity field intensity. Traditionally, this 

dependence is provided by modulators based on the saturable absorbers [1]. The possibilities of 

these modulators, however, are limited by inertial nature of the resonant nonlinearity. 

Recently considerable progress has been made in the development of the mode-locked 

lasers. Apart from methods of the soliton formation involving the use of the saturable absorbers, 

new methods use the instantaneous nonresonant nonlinearities. It is very attractive method for the 

generation of the high intensity pulses shorter than 100 fs [2]. 

In this connection the purpose of the present paper is to perform a complex method of the 

generation dynamics analysis for the mode-locked solid-state lasers with the three-order 

nonlinearities producing self-phase modulation (SPM) and Kerr self-focusing (KSF). 

We have developed the general approach to the mode-locking analysis. This approach 

combines the investigation of the critical points of the laser evolution operator (its first and 

second derivatives) and its structural stability, the self-consistent field theory and the numerical 

simulation of the generation dynamics. 

The possibilities of this approach have been demonstrated for the research of the lasers 

mode-locked by nonlinear Fabri-Perot interferometer (an additive-pulse mode-locking), by 

antiresonant loop with SPM and by KSF. The key point in the utilization of the three-order 

nonlinearities in these systems is a transformation of the nonlinear phase perturbations to 

intensity-dependent losses. This transformation is performed by interference of the splitting laser 

beams in the Fabri-Perot interferometer and antiresonant loop or by aperturing of the self-focused 

beams. 

We are shown that the zones of the effective mode-locking have a point structure and the 

mode-locking regime develops from this "seeding" points. The perturbations of the laser 

parameters destroys the mode-locking zone, but the point structure is the stable (see fig.). We 

have found that the "seeding" point set corresponds to the parameters of the stable soliton 

propagation and the nonefficient mode-locking regime corresponds to the periodical cycles 

appearance. 
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The investigation of the Ken-lens mode-locking technique allows to find the criteria for 

the creation of the mode-locking regimes with the highest efficiency. The analysis of the 

generation dynamics establishes the wide set of the oscillation and chaotic effects in this systems. 

We believe that the complex analysis of the laser systems mode-locked by three-order 

optical nonlinearities allows to open the simplest way for the design of the compact and stable 
femtosecond lasers. 
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The effect of Group Velocity Dispersion (GVD) and Self Phase Modulation (SPM) 
has been considered by several authors to study the propagation of optical pulses in 
optical fibers. Most of them used Gaussian [1] or Supergaussian models to describe 
the optical pulses [l]-[3]. To our knowledge, one of the few works that uses the rate 
equations of the laser diode to generate the optical pulses is the one of Suzuki and 
Takeshi [4]. They studied the effect of GYD and SPM in dispersion shifted fibers. 

In our work, the eye opening degradation due to GVD and SPM is analyzed by 
studying the propagation of optical pulses generated by a single mode semiconductor 
laser (SMSL) in standard single mode fibers, similar to the ones already installed. We 
study different techniques that allow partial recover of the eye degradation or allow 
for longer distance transmissions: pre-compensation and post-compensation using 
dispersion shifted fibers and in-system phase conjugation. 

We start our study by solving numerically the noise driven rate equations for the 
SMSL [5]. The wavelength of the laser is 1.55 /an and most of the other parameters 
characterizing the laser are fixed but we allow for different values of the linewidth en- 
hancement factor o which plays an important role during the propagation of pulses in 
highly dispersive fibers. The SMSL is directly modulated by a square wave electrical 
current as in ref. [5]. with a maximum current of 33.7 mA and a bias current of 13.1*2 
mA (the threshold current is 13.25 mA). We consider two modulation frequencies: 5 
Ghz in the RZ scheme and 10 Ghz in the NRZ scheme. The optical pulses so ob- 
tained are then coupled to the optical fiber. To study the propagation we numerically 
solve the non-linear Schrödinger equation by the Split Step Fourier Method [I]. The 
dispersion parameter of the fiber is S2 = —17 ps2/km and the non-linear parameter 
- = 0.002 mW1 km"1. 

In figure 1 a) and b) we show, as an example, the result of the propagation of 
the 2' pulses from a pseudorandom sequence with and without pre-compensation 
for a value of o =4. in the RZ scheme. In panel a) we show the eye diagram at 
z=I5 km without pre-compensation and in b) the eye diagram at z=25 km with pre- 
compensation in a 3 km fiber of 32 = 45 ps2/km. 3 km is the distance at which 
maximum compression is obtained in the pre-compensation for the parameters used 
in the simulations. By comparing both eye diagrams it can be seen that they have 
almost the same degradation, i.e. with pre-compensation one can achieve 10 km more. 
In both cases the degradation of the eye diagram is noticeable. This degradation is 
due to several mechanisms: timing jitter in the SMSL. pattern effects due to the input 
sequence of random bits [4]. fluctuations in the frequency chirp, fiber dispersion and 
also, due to the large modulation frequency of the laser current, to a pulse-pulse 
interaction during the propagation. This effect gives rise to the large oscillations 
in the tails of the pulses and in some cases, where two or more "1"  bits appear 



Fig. 1 Eye diagram at the output of the fiber: a) 15 Km. b) 25 Km using pre-compensation. 
c) 35 Km using optical phase conjugation 

In panel c) we plot the eye diagram at 35 km distance when an optical phase 
conjugation is performed at the output of the laser (which in this case also coincides 
with the origin of the fiber). Due to the sign of the frequency chirp of the SMSL and 
the parameter ,i2 of the standard fiber. GVD has the effect of broadening the optical 
pulses. Phase conjugation basically inverts the chirp sign at the output of the laser 
leading to a narrowing of the pulses during the first kilometers of the propagation 
and so allowing a larger distance for the transmission. As can be see in the figure the 
result in this case is better than when using pre-compensation. 

The effect of post-compensation, different a values of the laser and the NRZ 
scheme will be also discussed during the talk. 
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A laser beam incident on the surface of a nonlinear medium can display 
characteristic features such as self-focusing and self-induced transparency. If 
nonlinear effects are strong enough the intensity profile of the reflected wave 
may exhibit drastic spatial modifications due to the refractive index modula- 
tion in the longitudinal direction in the bulk [1-3]. In this paper we present 
experimental results on the modification of a Gaussian beam profile caused by 
the electronic contribution for optical properties of a surface. 

Recently we introduced the reflection Z-scan technique ( RZ-scan ) to in- 
vestigate the spatial modification of a Gaussian beam by reflection on a surface 
[4]. As in the conventional Z-scan [5] the beam profile modification is monitored 
through an aperture placed in the far-field region. Hence, the phase distortion 
produced in the reflected beam is transformed to amplitude distortion which is 
easily detected by a simple photodiode. 

The experiments were performed with samples of semiconductor doped glass 
(Scott glass RG695). Two slabs of different thickness ( sample A with 0.013cm 
and sample B with 0.2cm ) were used. For the wavelength used in the experi- 
ments (A0 = 532nm) the linear absorption coefficient was 200cm_1. The second 
harmonic of a Q—switch and mode-locked Nd : YAG laser was used as a light 
source. Each Q-switch burst consists of about 20 pulses of 80ps duration sep- 
arated by 10ns. The low repetition rate of the Q-switch (5Hz) was chosen in 
order to avoid cumulative thermal index of refraction and absorption changes. 
The beam was focused on the sample's surface by a 15cm focal distance lens and 
the intensity was changed by a combination of half-wave plate and polarizer. 

A plot of the far-field reflectance as a function of the sample's position 
relative to the beam's focus is shown in Fig.l. From this plot it is possible 
to calculate the nonlinear absorption parameter K.2- ( We define the complex 
refractive index n = no + n-iI + J(«o + K2-0 , where no and «o ai'e the linear 
refractive index and extinction coefficient, ni and «2 are the nonlinear refractive 
index and extinction coefficient, I is the intensity of laser beam ). On the other 
hand the reflectance measured without aperture do not show any changes as a 
function of the sample's position. 



These results were explained using a model for the reflection of a Gaus- 
sian beam from a surface which suffers nonlinear refraction and absorption. 
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The value of K2 = -3 x 10~scm2/W deduced from this experiment is about 
75 times larger than the value obtained for the sample using the conventional Z- 
scan technique. It can be explained by the fact, that the Z-scan measurements 
give information on the nonlinear bulk properties, averaged on the effective 
propagation length. By reflection the spatial modification of a reflected beam 
is due the nonlinear properties of a thin layer near the surface and several 
nonlinear mechanisms inherent to the interface may contribute. 

This work was supported by the Brazilian Agencies Conselho Nacional de 
Desenvolvimento Cientifico e Tecnolögico (CNPq) and Financiadora de Estudos 
e Projetos (FINEP). 
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Two lasing regimes are possible when a thin layer semiconductor laser operates with an inclined 

external cavity. In the regime of total internal reflection we find multistability and more than one 

operational threshold. 

Summary 

Progress in modern optics, particularly in networking and information processing, demands the 

development of new solid-state lasers of small dimensions - on the order of an optical wavelength 

or less. An extensive search continues for passive optical bistable devices that can provide high 

contrast multistability and short switching times [1]. A few miniature lasers have been studied 

experimentally, for example, Ref. [2]. These finding encourage theoretical investigation of thin 

layer semiconductor lasers (TLL) which can läse in the direction perpendicular to the active layer. 

In our paper we investigate thin layer semiconductor lasers considering the specific case 

when the active layer is positioned inside an external cavity and inclined with respect to its axes. 

(See Figs. 1.) In general, the external cavity leads to the stabilization of semiconductor laser 

generation [3] which is obviously important for practical applications. Similarly, one expects to 

stabilize the TLL, but in this case the external cavity brings even more. 

We discuss two different regimes of generation: the normal reflection (NR) regime and a 

regime of total internal reflection (TIR). The NR regime (Fig. la) occurs when the output radiation 

leaves the external cavity due to reflection from the layer. One attractive feature of NR regime is 

that the layer can be inclined with respect to the axes of external cavity under an almost arbitrary 



angle 0. It provides flexibility in the choice of output radiation direction. In particular it lets us 

organize TLL's in a compact vertical array or other spatial configurations. 

The TIR regime (Fig. lb) can take place, when the index of refraction of the cavity medium 

is greater than the index of refraction of the semiconductor layer. Unlike the NR case the laser 

generation is possible only when 6 = GJIR. the total internal reflection angle. However, much 

more volume of active medium is involved, which leads to a noticeable increase in the amplification 

coefficient. TIR regime is accompanied by multistability caused by the local field correction and 

some interesting dynamical features. 

Despite the different experimental setups necessary for NR and TIR, they can be described 

(to a first approximation) by the same set of nonlinear differential equations. Mathematical 

description of the problem is based on the assumption that the cavity mode field is much stronger 

than any other field interacting with the layer. 
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Grant #921019. 

References: 
1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Acad.Press, New 

York,  1985). 

2. K.Iga et al. Electron.Letts. 23, 134 (1987). C.Lee, T.G.Rogers, D.G.Deppe, 
B.G.Streetman. Appl. Phys.Letts. 58, 1122 (1991). 

3. V.L. Velichansky, A.S. Zibov, V.S. Kargopol'tsev, V.l. Molochev, V.V. Nikitin, 
V.A. Sautenkov, G.G.Kharisov, and B.A.Tyurikov, Sov. Tech.Phys.Lett. 4, 
438(1978). 

E' 

*   Q  / 
*     /   J& 6 \L^ E 

S\ 
Ml 

(a) 
HS 

Figure 1 (a) NR regime, (b) TIR regime 



TE18 

NONLINEAR DYNAMICS OF A C02 LASER WITH EXTERNALLY 
MODULATED  AND RE-INJECTED OPTICAL SIGNAL 

E.M.Rabinovich1,  J.M. Kowalski2 , M.A.Safonova3, and  C.L.-Littler2 

1) Advanced Isotope Technologies, Incorporated, P.O. Box 5073, Denton, Texas 76203-5073, 
e-mail : 76341.1040@compuserve.com 
2) Department of Physics, University of North Texas, Denton, Texas, 76203, telephone : (817) 
565-4291, fax :   (817) 565-4160 ;  e-mail : fd23@vaxb. acs.unt.edu , 
3) Courant Institute of Mathematical Science, New York University ,251 Mercer Street, New 
York, NY 10012, e-mail : safonova@acf4.nyu.edu 

C02 lasers are very sensitive to back-reflected radiation and can be driven into a large variety 
of dynamical states by an external modulation of the feedback parameters. We report on the 
experimental and theoretical results concerning instabilities in C02 lasers induced by an optical 
phase modulation of the reflected back signal. The mentioned above phase modulation was 
carried out by periodically varying either a geometrical length of a feedback (by means of a 
piezo-ceramic driver) or an optical length of feedback ( by means of an electro-optical 
modulator EOM). Experimental results show the presence of stable periodic orbits of different 
periods, bistability of periodic orbits and chaotic attractors with complex transition scenarios. 

This new experimental method generating chaos in carbon-dioxide lasers, where an external 
modulation of optical feedback parameters is applied, is much simpler then more sophisticated 
intercavity losses modulation technique which has been widely used in previous investigations 
( see, for example , [1]. ) 

The experimental setup is shown in Fig.l. In this scheme an axial-flow gas C02 laser operating 
at a wave length of X = 10.6 urn was used. This laser has the resonant cavity 2.5m long, the 
diameter of the discharge tube is 6 mm, and the pressure of the conventional gas mixture varies 
from 15 to 20 mmHg. An additional mirror, placed on the piezoceramic driver, provides the 
radiation feedback into the active region. This mirror is mounted on a piezoelectric ceramic drive 
allowing static tuning and/or periodic modulation of the optical feedback length . 

The length of the optical feedback does not exceed 30 cm. The laser intensity is measured 
by a HgCdTe photodetector monitoring part of the radiation reflected from a diffraction grating. 
The intensity signal from the detector and its time-delayed copy are fed into an oscilloscope , 
operating in the x-y mode. The electrical signal delay line has a constant delay of 2.5 us. This 
simple scheme allows real time observations of the two-dimensional projections of the system 
trajectories in the space of delayed signals. A spectrum analyzer of bandwidth 20 Hz - 40 MHz 
simultaneously displays the power spectra. The electronics allows one to "freeze" at any instant 
the phase portrait and power spectra, and digitize the signal using a digitizer with variable 
sampling frequencies and store the data. 

The optical feedback system was modulated by using an electro-optical modulator (EOM) with 
a quarter wave voltage of 2.2 KV. The EOM was a Cd-Te crystal having an active length of 48 
mm, and an aperture diameter of 3 mm.  The voltage applied to the EOM had a DC component 



of 1.5 KV and the amplitude and frequency of the modulated signal varied within 100-900V and 
50-85 KHz, respectively. In the second series of experiments phase of the feedback radiation was 
modulated by the induced oscillations of the feedback providing mirror    mounted on a 
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Fig.l   Experimental Setup for Nonlinear Dynamical Phenomena Investigation  in C02 Laser 

piezoelectric drive.  The driving frequencies varied from 30 KHz to 60 KHz 
The theoretical analysis of the single-mode laser with an optical feedback is based upon 

consideration of two equations which are extensions of Lang-Koboyashi equations [2] for 
harmonically  modulated time of delay. 
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Recent researches into atomic coherence effects essentially 

modified many traditional concepts in quantum optics. In 

particular, lasing without inversion and inversion without 

lasing (which are based on the phenomenon of the atomic 

interference) were predicted and attracted much attention [1]. 

We show that strong monochromatic field can produce steady- 

state population inversion at the resonant transition. Hence 

one more commonly believed conclusion about impossibility of 

such process does not hold in general. This effect is due to 

modification of the atomic relaxation rates caused by strong 

field and appears when intensity of the field becomes high 

enough. However such population inversion does not lead to 

amplification of this field. On the contrary it provides even 

more effective transfer of energy from the electromagnetic 

field to the medium. 

Our analysis is based on the set of generalized master 

equations [2] which takes into account dependence of the 

relaxation rates on the frequencies of the dressed transitions. 

Such dependence introduces specific asymmetry between the 

relaxation rates at the dressed transitions. This asymmetry 



results in turn in a redistribution of both dressed and bare 

states populations. In case of sufficiently strong field it 

makes possible a population inversion in the finite domain of 

the detunings. 

In two-level system such frequency detunings can essentially 

exceed the natural linewidth but the magnitude of population 

inversion remains relatively small. 

In three-level system almost full inversion (i.e. transfer 

most of atoms to the upper level) is achievable. The last 

phenomenon occurs when one of two Stark sublevels crosses the 

third neighboring atomic state what is accompanied by the 

reversal of the relaxation direction between the crossing 

levels. 

Finally fie,ld-dependent relaxation makes possible a steady- 

state population inversion at the resonant transition under the 

action of the strong field and provides one more mechanism for 

population inversion without amplification. 

Placing two-level atoms inside optical cavity and three- 

level atoms into high Q micro-wave cavity and tuning of these 

cavities accordingly to the Rabi-sidebands and to the Rabi 

frequency allows to vary both the domain of the detunings 

providing population inversion and the magnitude of this 

inversion. 
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Frequently, ultrashort pulses are employed as the most practical method for 

achieving the high powers required for the observation of spatial effects due to fast optical 

nonlinearities. In particular, the Z-scan method1 of measuring the nonlinear index, n2, of a 

material relies on the nonlinearity of the test material to alter the spatial phase distribution of 

the field and thus its intensity distribution in the far field. A drawback of this method is 

that the temporal behavior of the field is also affected by the nonlinearity. For example, the 

same material that supports spatial solitons can, under the proper conditions, support 

temporal solitons. Moreover, the nonlinearity couples the two behaviors together so that 

the magnitude of the spatial effect may become dependent on the width of the pulse. This 

spatio-temporal coupling can be shown to lead to pulse compression in the normal 

dispersion regime2 and spatial narrowing in a self-defocusing medium. The work 

presented here is a result of numerical simulations which demonstrate how spatio-temporal 

coupling can lead to erroneous n2 measurements in Z-scan experiments employing 

ultrashort pulses. 

We use an algorithm based on the split-step Fourier method to model the evolution 

of spatially one-dimensional (corresponding to an elliptical beam) pulses in a Z-scan 

apparatus. The behavior of ultrashort pulses propagating in nonlinear dispersive Ken- 

media is described by the multidimensional nonlinear Schrödinger equation (NSE), 

. du   ,    132u       s 32u ,   .XT?. ,o        „ 
^+2^-2^ + sgn(n2)N2|u|2u = 0. (1) 

Here u(£,£,x) is the amplitude of the pulse envelope, C, = z/Ld, ^ = x/a, x = (t - z/vg)/To, a 

is the input spot size in the x-direction, To is the input pulse width, and Ld = (2TC/?I)G
2
 is 

the diffraction length (also known as the Rayleigh range). The parameter s = 

(27tA)CT2ß2/To2 includes dispersive effects through the group velocity dispersion parameter 

ß2 and the parameter N = (2rco7?iWnon2lo represents the medium nonlinearity where lo is 

the peak intensity of the incident pulse. The normalized units not only simplify the 

problem they also broaden the applicability of the results discussed below. 

Plotted in figure (1) are the time-integrated far-field intensity distributions resulting 

from the propagation of an input field of the form U(0£,T) = exp[- £2/2 - (1 + iC) T
2
/2] 



travelling through a Z-scan apparatus for three separate dispersion conditions. For these 
simulations N2 = 12, s = ± 2, and C = 0 or 2 in equation (1). The plots correspond to a 
sample placed at the point of the trough in the Z-scan. To get the actual value of the Z-scan 
at that one point it would be necessary to integrate over a small central section of the plots 
below. The upper (dashed) curve is the far-field for the normal-dispersion case with the 
strength of the dispersion chosen such that s = 2 in equation (1). The middle (solid) curve 
is for the anomalous dispersion case with s = -2. In the absence of dispersion (s = 0) the 

curve would fall between the upper two curves. The error in the measurements of the 
nonlinearity in these cases would be small but measurable. The lower (dotted) curve is for 
a chirped pulse (C = 2) in an anomalously dispersive (s = -2) medium The lower curve 

points to the significant effect mat a chirped pulse can have on the Z-scan measurement In 
all cases, the error results from the spatio-temporal coupling induced by the nonlinearity. 
We will present a comprehensive analysis of the roles dispersion and chirp play on the 

spatio-temporal coupling and on the Z-scan measurements. 

1. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan and E. W. Van Stryland, IEEE 
J. of Quantum Electron., 26,760(1990) 
2. A. T. Ryan and G. P. Agrawal, Opt. Lett., 20, Feb. (1995) 
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Figure 1. Time integrated far-field intensity distribution of Gaussian input pulses after 
propagation through a Z-scan apparatus. Dashed curve: normal dispersion with s = 2 in 
eqn.(l). Solid curve: anomalous dispersion with s = -2. Dotted curve: anomalous 
dispersion, s = -2, with chirp C = 2. 
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Misalignment induced drift instabilities 
have been considered in the context of 
Fabry-Perot [1,2] and thin slice with 
feedback mirror geometries [3,4]. Related 
drift instabilities of localized modes in 
misaligned ring resonators have also been 
observed [5]. We report here on analytical 
and numerical studies of drift wave 
thresholds and dynamics in misaligned 
linear and ring resonator geometries. 

Transverse mode drift may be due to either 
misalignment of the optical cavity [4,5], or 
nonnormal incidence of the pump beam on 
a well aligned cavity [1,2,3]. In the case of 
a roll instability in the near field the twin 
beams in the far field will be frequency 
shifted by ±£l from the pump beam. This 
frequency shift corresponds to a transverse 
drift of the roll pattern with velocity 
A2Q./0, where the twin beams are 
separated by an angle 20. Note that media 
with a complex (mixed absorptive- 
dispersive) nonlinearity may give rise to 
frequency shifted dynamic instabilities, and 
hence near field drift motion, even in the 
case of normal incidence on perfectly 
aligned cavities[6,7,8]. 

When attention is restricted to small 
misalignments, such that the transverse 
displacement Ax = ccL (a is a tilt angle and 
L is the effective cavity length), is small 
compared to the width of the incident beam 
a plane wave analysis is appropriate. 
Within such a framework we calculate the 

dispersion relations for drift waves in the 
linear and ring geometries shown in Fig. 1. 
assuming a Kerr type nonlinearity of the 
form 

,     . .,    , ,     ....      / 
n = n0+in0+{n2+in2) . 

Here we allow for a complex n2, I is the 
intensity, and T is the material response 
time. We carry out the analysis for the case 
of thin nonlinear media [9]. The resulting 
dispersion relations extend the results of 
Grynberg [3], who considered a 
polarization instability, to the case of Kerr 
media. 
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Figure 1. Linear (a) and ring(b) geometries for 
pattern formation. 



When the misalignment is increased such 9. W.J. Firth, J. Mod. Opt. 37, 151 (1990). 
that the displacement Ar is comparable to 
the beam width the instability thresholds 
rise dramatically, and the dynamics change 
character. Instead of a continuous 
frequency shifted oscillation, the instability 
grows, drifts towards the edge of the finite 
sized pumping region, disappears, and 
starts over. This type of scenario has been 
observed experimentally in photorefractive 
ring resonators[5].    In this regime the 
plane wave description breaks down and 
we have used direct numerical simulations 
to study the dynamics, including the 
transition from a continuous to a pulsed 
scenario. 

This work was supported by a grant from 
the Danish Natural Science Research 
Council. 
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Phenomena caused by the local fields in optically dense atomic media are of a growing 
interest because of their possible applications in optoelectronics and physics of atomic 
traps. The principal mathematical manifestation of this effect is the appearence of non- 
linear terms in the Bloch equations for atomic dynamics in a light field. Such terms were 
shown to be responsible for the feedbackless, intrinsic optical bistability (IOB) [1]. 

In this work we study the consequences of the IOB for the dynamics of counter- 
propagating light beams in homogeneously absorbing dense media. We demonstrate the 
possibility of unidirectional energy exchange between the counter-propagating light beams 
resulting in an amplification of one of them. It occurs for certain values of the beam 
intensities, which leads to a self-induced stratification along the propagation direction. 

The equations for the dynamics of population difference n and polarization amplitude 
p of a two-level atom in the external field of amplitude ft can be written in the following 
form: 

p=[-l + i(8-crn)]p + inn/2, n = -77(71 - 1) + i(pü* - p*Ü), (1) 

where r/ is the ratio between longitudinal T\ and transverse T2 relaxation rates, S is the 
detuning of the light frequency from the resonance, and a is the dimensionless local-field 
parameter [1]. 

We suppose ft to be a sum of two counter-propagating waves with slightly different 
frequencies: 

ft = ft+e,fc2+i£t + ü.e~ik\ (2) 

where k is the linear wavenumber. The small relative frequency shift e <C T2
_1 IS m~ 

troduced to produce a moving grating in order to eliminate an uncertainity in a spatial 
distribution of the atomic variables, which dependence on the light intensity is bistable. 
This purpose can be achieved also by assuming a slow motion of the medium in a z 
direction. 

Under such conditions the polarization and population difference spatial distributions 
could be expanded in series of elementary gratings with the basic scale given by the light 
interference pattern |ft|2 = s0 + si cos(2kz + ty+ - $_) (^± are the phases of the fields 
ft±): 

p(z) = ü[d0 + dccos(2kz + $+-$_) + <*, sin(2fcz + #+ - $_) + ...]. (3) 

The main consequence of the IOB in expansion (3) is the appearence of the .sin-term, 
which is absent at a = 0. Physically it produces a nonlinear gain for the wave ft+ and 
additional absorption for ft_ after extracting in p(z) resonant with the interacting beams 
terms. This unidirectional energy flow can result in an amplification of ft+, which takes 



place for certain beam intensities I± = |n±|2, as shown in Fig.l. 

15 
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Fig.l. Diagram displaying the region of the self-induced amplification of the wave 0+ 
(shaded area) at 8 = 0 and a = 20. 

The point {/+(z);/_(z)} for specific boundary conditions enters the region of fi+- 
amplification producing hence a number of spatial first-order phase transitions "gain- 
absorption". The typical spatial intensity distribution illustrating such self-induced strat- 
ification is shown in Fig.2. 

Fig.2. Longitudinal distribution of normalized field intensities i+ = I+/I+(z = 0) 
and t_ = i_/J_(z = L) in a medium at 6 = 0, a = 20,1+(z = 0) = 9,1.(z = L) = 169. 

Inversion of the sign of e, or of the medium motion direction, changes the direction of 
the energy flow, creating a region of 0_-amplification. This effect could find an application 
in sensitive motion detectors. 

Another important consequence of the described energy transfer could be a new, stim- 
ulated optical force which acts at sufficiently high medium density. It would be very 
interesting to check whether this local-field-induced force could overcome the repulsive 
force due to radiation trapping in optical atomic molassis [2] and thereby the density 
limit on a way toward the Bose-Einstein condensation. 
The work is supported by the Polish Committee for Scientific Research (grant 2P30205205). 

[1] Y.Ben-Aryeh, C.M.Bowden, and J.C.Englund, Phys.Rev.A 34, (1986) 3917. 
[2] T.Walker, D.Sesko, and C.Wieman, Phys.Rev.Letts 64, (1990) 408. 



TE23 

Dye laser with polarized pumping dynamics 

S.V.Sergeyev, S.K.Gorbatsevich, S.A.Sakharuk 
Department of Physics, Belarus State University, 

4 Skorina Ave.,Minsk 220050, Republic of Belarus 
e-mail: root@mfp.bsu.minsk.by 

fax: (007-0172) 26-59-40 

There a lot of papers dealing with coupled-oscillators dynamics and its' application 
to biology and chemistry. The problem can be represented in the following form: 

dX1/dt = F1(X1) + D1(X2-X1), 

dK2/dt = F2{X2) + D2(Xi - X2), 

Xi,X2€£n, (1) 

The results obtained can be summarized as following: (i) if oscillators (i*!,^) in (1) 
are sufficiently different than coupling suppress the auto-oscillations and system goes to 
steady-state (Bar-Eli effect ); (ii) if oscillators in (1) are identical (i*i = F2) than phase- 
drift and phase-locked solutions, various tori, multiple oscillations, period doubling and 
chaos for large enough coupling can occur. 

For the anisotropic lasers polarizations modes play role of coupled oscillators that 
gives opportunity to use results of theory mentioned above. It can be illustrated by 
means of semi-classical model of the ring cavity cw dye laser with polarized pumping and 
Orientational Relaxation Processes (Brownian Rotation of molecules or Radiationless 
Energy Transfer) in the active medium: 

dEi r 
_1 = -ki{Ei - j P(g)(meei)dg), 

^ = -(1 + iA)P - £ ^(meej)^, 
j=x,z 

~ = 7(<*o(maep)2 - (1 + t)D - I ^(P^ + P^)(m.e,)), 

(2) 

where Ei, (i = z, x) are polarization modes of ring cavity dye laser, A is detuning of the 
laser cavity with respect to the maximum of emission spectrum of dye molecules, g are 



the Euler's angles; ep ,e< are unit vectors of polarization of excitation and emission for the 
i-th mode; ma, is unit vector oriented along dipole moment of the optical transition with 
absorption, vector me is a vector oriented along dipole moment of the optical transition 
with emission, t are operators of Orientational Relaxation (Brownian Rotation and 

Radiationless Energy Transfer ). 
It has been found by means of nonliner analysis that for the case when pumping is 

polarized along the cavity neutrally stable circular polarized waves can appear above 
the first threshold. Numerical solution of equations (2) confirms the results of analytical 
consideration and gives opportunity to find phase-drift solution and polarization chaos 
(fig.l.) that means chaotic modulation of phase difference between polarization modes 

A(f. 
Phase correlation between polarization modes decreases when rate of ORP increases. 

In the limit of infinitely high rate of ORP the is no any correlation and anisotropic 
dye laser looks like isotropic one (Lorenz-Haken model). Polarization chaos displayed 
is located more close to the first laser threshold than chaotic attractor in Lorenz-Haken 

model. 
The dynamics displayed looks like the identical coupled oscillators dynamics with 

phase-drift and chaotic operations. By means of rotating pumping polarization plane 

the case of different coupled oscillators has been realized. 

fig.l. ki = 0.1,     A = 0.2 
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In the last few years the interest for the spatial and/or temporal evolution of optical fields in 

nonlinear systems has particularly increased. The conditions to have constant or periodic solutions or 

period doubling route to chaos (see [1] and references inside) have been studied in the case of a cavity 

filled with second order nonlinear material. Instabilities in a Fabry-Perot resonator filled with a medium 

with a second order nonlinearity, having a pulsed input, have been studied in ref.[2], considering pulses 

short with respect to the transit time in the medium. In this case no backward field is present, and no 

additional effects associated to the nonlinear phase shift are present. 

Here a quasi c.w. operation is considered in a ring cavity filled with a second order nonlinear 

medium, working in conditions to produce a nonlinear phase-shift ( mismatching conditions between 

pump and generated fields are used) . We study the case of second harmonic generation (SHG), when 

at the initial time , at the input mirror, only the pulse at fundamental frequency is present . It can be 

proved that the nonlinear harmonic generation process is strongly influenced, by the phase mismatching 

Ak between the two beams [3,4 ] and by the difference A£ of the amplitudes of the fields at the input of 

the nonlinear medium[3,4]. Because these two parameters are independent one from the other, we can 



consider, for instance the generation process inside the cavity for M=0, at fixed cavity detuning , and 

study what happens by varying AE. The difference AE automatically varies if we adjust the input pulse 

repetition rate and the cavity length , so that at the entry of the nonlinear medium there are, at the same 

time , the input pulse and the two pulses circulating inside the cavity (synchronous configuration ). This 

is sufficient to produce a third - order- like nonlinear phase shift into the pump beam, which behaves as a 

nonlinear cavity detuning . Owing to the nonlinearity, the output pulses will in general be different from 

the input one both in modulus and phase. In other words the output and, consequently, the input may 

vary in time, in spite of the lack of variation of the input at the entrance of the cavity, yielding a 

continuous modification of AE. This behavior, by means of the feedback, can show, for suitable values 

of the input power and fixed linear cavity detuning , a periodic, constant or intermittent behavior 

of the output. 

In our analysis we consider the evolution of the moduli and phases of the output pulses as a 

function of the modulus of the input. 

It is also useful to make an analysis in similar conditions by varying Ak ( detuning for the 

generation process) and maintaining constant the input power at fundamental frequency. 

A stability analysis of the system descrining the interaction inside the cavity is presented and 

discussed : it gives a direct connection between the instable behaviour and the nonlinear phase shift of 

the pump beam. 
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Investigation of nonhnearity influence on transverse configuration of electromagnetic 
field in lasers and passive optical systems now attracts considerable attention. In the 
present work we study nonlinear interaction of two Gauss-Laguerre modes with opposite 
angular momenta. These modes are characterized by the radial index p = 0 and angular 
indices I = ±1. As it was shown earlier [1,2], the interaction of these modes can lead 
to regimes with stationary or time-dependent intensity patterns. Here we show that 
class-A laser (e.g. Nag, He-Ne, He-Xe) operating in two modes with opposite angular 
momenta may exhibit three different kinds of time-dependent transverse patterns. Let 
us neglect the dependence of laser field intensity I on the coordinate along the optical 
axis. Then, for a bimode laser under consideration, it can be written as 

J oc p3 exp(-p3)(J5° + £L + 2E+E- cos(2^ + M+ - /*_). (1) 

Here E± and ^± are the slowly varying amplitudes and phases of the modes, p is the 
normalized distance from the optical axis in the transverse direction, <f> is the polar angle. 
The complex mode amplitudes E± = E± exp(t>±) obey the equations 

dtE± = {A- ß(6)\E±\2 - 00)1^ |a)& + %RE* exp(tV), (2) 

where A is the pump parameter, ß and t? are the complex coefficients depending on the 
detuning 6, inhomogeneous and/or homogeneous hnewidths, and the inversion relaxation 
time of an active medium. R and \j> are the amplitude and the phase of the coefficient 

of linear coupling between the modes. This coupling results from the axial symmetry 
breaking in the laser cavity and strongly affects laser dynamics [2]. 

Eqs.(2) have a pair of solutions of a "standing-wave" type: E+ = E- and /i+ — /A_ = 

0, r. These solutions are the usual Gauss-Hermite modes TEMw and TEMoi. The "pure- 
mode" solutions E+ ^ 0, E- = 0 and E+ = 0, £L £ 0 exist only for R = 0. In the 

presence of linear coupling they are transformed into a pair of "travelling-wave" solutions 
with is* # 0. For one of this solutions E+ > £L and for another one E+ < E— Under 
the transformation (E+,EJ) -+ (£_, j&+) Eqs.(2) remain invariant and the "travelling- 
wave" solutions are converted into one another. 



We have performed a detailed bifurcation analysis of the steady-state and time- 

dependent Solutions of eqs.(2). Let 8 be the bifurcation parameter. Then a typical 

bifurcation sequence can be outlined as follows. The mode TEMio is stable in a certain 
interval of detunings $1 < 8 < 63. At 8 — 82 it undergoes a supercritical Hopf bifurcation, 

and stable limit cycle LCI arises. These limit cycle LC2 disappears in the homoclinic 

figure-eight &t 8 — 5ä. This homochnic bifurcation generates a pair of stable limit cycles 
LC2 and LC3. They disappear at the point <5 — <54 where a supercritical Hopf bifurcations 

on the "travelling-wave" solutions occur. 
The limit cycles LCl, LC2 and LC3 correspond to three different kinds of time- 

dependent transverse patterns. Note, that laser intensity (1) has a minimum at <f> — 

(fi„ — /i+ ± ir)/2. Since the phase difference of the modes ji_ — /i+ is time-dependent 

for periodic solutions, the intensity minimum rotates around the optical axis. The 

time dependencies of the angular velocities of the rotating patterns are shown in Fig.l. 

The mesa value of the angular velocity is equal to zero for a laser operating in LCl 

regime. This means that the intensity minimum oscillates back and forth within a 

finite interval of angles. The angular velocity of the pattern is positive (negative) for 

a laser operating in LC2 (LC3) regime. Hence, the intensity rmnimum rotates in the 

clockwise direction for LC2 in the counterclockwise direction for LC3. Unlike the limit 

cycle LCl corresponding to zero frequency splitting of the transverse modes Aw = 0, 
the limit cycles LC2 and LC3 correspond to nonzero and opposite values of Aw. This 

may be interpreted as spontaneous phase symmetry breaking of the modes caused by 

their nonlinear interaction. 
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Until the present time a variety of models of semiconductor injection lasers have 
appeared that allowed for a greater or lesser degree of self-consistency. Although 
the inclusion of such selfconsistent effects as gain saturation and index antiguiding is 
what all these models have in common, very few of them take into account thermal 
effects in the same rigorous manner. But as has been shown by Hadley et.al.[l] for 
diode arrays and broad-area devices the lasing transverse modes are highly sensitive 
to variations in the lateral temperature distributions. Thermal nonlinearity of the 
active medium is of primary importance in determining the mode selectivity and on 
no account can be neglected. 

From this point of view we revised the results of our previous experiments with 
Ga-L-xAlxAs DH stripe injection lasers [2], where we had reported the modulation in- 
stabilities of the lasers far field and rather intricate behavior of the phase of intensity 
modulation across the laser beam. Using in our thermal model the analytical expres- 
sion for lateral current spreading first proposed by Tsang [3] we showed that in stripe 
geometry lasers a very specific waveguiding profile of Ree(y) can occur owing to the 
fact that lateral temperature distribution is always wider than corresponding carrier 
distribution. We subjected the waveguiding properties of this specific waveguide to 
intense scrutiny by solving one-dimensional waveguiding problem: 

^T + (4/(!/)-^(!/) = 0, (1) 

where eef(y) = be[ + (1 - b)e'2 + T{ie'l + e'(y) + ie"{y)) + i(l - T)e% ; b and T are 
the normalized propagation constant and optical confinement factor, describing the 
real symmetrical three-layer waveguide in transverse direction and quantities ea = 
ei + ie'{; e2 = e'2 + ie'2' are the parameters of this waiveguide. The lateral dependence 



of the complex permittivity e(y) = e'(y) + ie"(y) was treated as perturbation of 
the background dielectric constant ei of the central layer due to carrier injection. 
Thermal and carrier contributions to the e(y) were taken in the form of Epstein 
profiles [2] of appropriate widths and heights so that their resulting superposition 
was consistent with the findings of our thermal model. Having solved equation (1) 
numerically by 'shooting' method for near-field patterns and propagation constants 
ßm = ß' ■+- iß'^ of three lowest-order lateral modes we found that in situations of 
high thermal gradients and relatively wide temperature distribution (high injection 
currents) the second-order lateral mode can compete with the fundamental one for 
common gain. The near-field and far-field patterns of each individual mode ( rather 
stable for low injection currents) become enormously sensitive to the temperature 
variations. This fact is in good agreement with our experiments and supports the 
primary role the thermal processes play in pattern formation together with such 
processes as gain saturation and self-focusing. In order to treat mode competition 
correctly and to account for mutual effect of thermal and optical nonlinearities on 
pattern formation and spatial instabilities we solved beam-propagation problem: 

2iß
dJ^A + ^i£l + (^ee/(y, My,z)\*) - ^(,,:) = 0, (2) 

where we introduced optical nonlinearity. 
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Earlier for a broad class of passive bistable distributed ,Le.,spatially extended, systems of 

an arbitrary nature with cw external signal a new type of stationary/quasistationary states 

was predicted [1]. Later this regime was realized in optical and acoustoelectronic set-ups 

[2]. A concept of the effect is evident from the Fig.l. In shown at Fig.l bistable ring 

system any 5 - like pulse on the background of a constant input signal E0 will be 

attenuated (a) or amplified (b) depending on its initial height (below or above) of a certain 

threshold value AEC. A real "seed pulse" of an arbitrary shape and with duration not more 

than the round trip time T of the cavity turns into a mode of repetitive pulses of definite 

shape, which are stationary or quasistationary with exponentially small instability 

increment (solitons or quasisolitons). Here we discuss the characteristics properties and 

stability of the quasisoliton regime under different models of dispersion.. 
Eout 
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In a simple model of a linear dispersion, when amplitude attenuation coefficient k is 

minimal at the pump frequency COQ ( kr = k^ - a {co - (O^) , cr > 0 ), we obtain 

for a pulse amplitude E(t,z)  equation 

dE 
dt 

= E(t,r) 
kr{E{t,z))-\    E0    ad2E 

T T     T ^2 
E(t + T,r) = E(t,T + T)    (1) 

Here t = nT , n is the index number of the cavity round-trip passage. Eq.(l) give all the 
dE 

steady states: both steady-state regimes     i?,,/^/^     under   ~^—~^   and ^ 

regimes of steady pulses, whose shapes are given by the solutions of Eq.(l) under 

 = 0   Such solutions correspond to motion of a classical particle in a potential well 
dt 

Ef, + E{kr-\) 
W(E)=\———— dE, when amplitude E plays the role of coordinate of the 

particle.    The    relative    values    of   the    rear    and    forward    fronts    velocities 
V{E^ -*E-.)   and   V(E* -±E~), i.e., squeezing or broadening of the pulse, depend 

on the ratio  of the potential hills   W{E,)   and   W(E^)  (Fig.2).  This ratio is 

determined by the magnitude of the cw signal Er, relatively to a certain amplitude E *,, 

which plays the same role as the known Maxwell curve in the theory of the first order 
phase transitions. Stability analysis for two models of dispersion is performed 

W(E) 

V(E,-E3)f- |— V(E3~E,) 

W(E) W(E3)<W(E,) V(E3-E1)<V(E—E3) 

Rear 
front    *H 

Forward 
front 

-V(E,-E3)l — V(E3-E,) 

W|E3)> W(E, ) 
V(E3—E,)> VIE, —E3) 
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The possibility to form polariton solitons in bulk semiconductors has been recently stud- 

ied using the theory of excitons [1,2]. It has been shown that sech-shaped polariton pulses 

can be formed under certain conditions. In particular, it has been found that the pulse 

duration must be larger than a certain critical value. 

This phenomenon of form-invariant polariton pulse propagation should be observable at 

moderate input light intensities, but no quantitative estimations of the required laser power 

and pulse duration have been ever performed. Perhaps, for this reason, no efforts to observe 

the steady-state polariton pulses have been made yet. 

Here, we present new analytical results on polariton soliton dynamics in semiconductor 

media obtained using the semiconductor Maxwell-Bloch equations (SMBE). We compare 

these results with those obtained recently using the theory of excitons and show that, in 

the limit of low electron-hole density, both approaches allow analytical steady-state pulse 

solutions corresponding to polariton solitons. 

1 



It should be emphasized that the solitons considered here are different from the self- 

induced transparency (SIT) solutions which can also be derived from SMBE under certain 

assumptions. The polariton solitons represent a class of asymptotic solutions of SMBE, but 

have a different nature in comparisson with SIT solitons: The polariton solitons form when 

nonlinear effects compensate the dispersive spreading of polariton pulses. In this regard, 

they resemble the solitons in optical fibers. 

We estimate the laser power required to form the steady-state polariton pulses in CuCl 

and CdS crystals and describe explicitly the conditions which have to be satisfied in ex- 

periments to allow a reliable observation of the phenomenon. We believe that experimental 

studies of the soliton dynamics in semiconductors would have not only basic interest, but 

could also prove useful for device applications in soliton based all-optical communication 

lines. 

[1] I. B. Talanina, M. A. Collins, and V. M. Agranovich, Solid State Commun. 88, 541 

(1993). 

[2] I. B. Talanina, M. A. Collins, and V. M. Agranovich Phys. Rev. B 49, 1517 (1994). 



TE29 

Simulation of femtosecond pulse propagation in an unpumped Er-doped optical fiber 

Xiaonong Zhu and Michel Piche" 

Departement de Physique, COPL, University Laval, 
Cite" Universitaire, Quebec, Canada, G1K 7P4 

Tel: (481) 656-2659; Fax: (418) 656-2623; E-mail: xzhu@phy.ulaval.ca 

Summary 

In the last few years, experimental measurements of the dispersion in Er-doped optical 
fibers have been reported by several research groups. It was shown that the extra dispersion due to 
absorption/amplification in Er-doped fibers can be either comparable to [1] or even much larger [2] 
than the corresponding background fiber dispersion. In this presentation, we shall show the results 
of our numerical simulations of a single femtosecond pulse propagating along an unpumped Er- 
doped fiber. In particular, we examine the influence of erbium absorption on a femtosecond 
propagating pulse. 

We use the standard split-step method to solve an extended nonlinear Schrödinger equation 
that includes a term representing erbium absorption. For simplicity, the erbium absorption is 
mimicked by a complex Lorenzian function with its real part standing for the spectrally varying 
attenuation and the imaginary part representing the corresponding phase distortion. For the 
parameters we selected, such as peak absorption 0Co=1.0/m at 1532 nm, absorption bandwidth 
AXa = 30 nm, fiber background dispersion of D = 1.0 ps/nm/km, fiber length L = 0.6 m, the actual 
fiber dispersion over a spectral region on the short wavelength side of absorption center is turned 
from normal to anomalous due to the presence of absorption. We then select incident pulses 
centered at different wavelengths relative to the absorption center. The typical results are shown in 
Fig. 1, where the dashed lines are associated with the same incident pulse (200 fs, 0.29 nJ, sech2 

and bandwidth limited) tuned at three different launching wavelengths. From Fig. 1, we can see 
that during propagation the pulse launched at 1515 nm is temporally broadened [Fig. 1(a)], 
whereas those launched at 1532 nm and 1550 nm are compressed [Figs. 1(c), 1(e)]. The spectra of 
the exiting pulses, however, are broader than those of the input pulses in all the three situations 
[see Fig. 1(b), 1(d), 1(f)]. Further studies show that the exiting pulses in Figs. 1(c) and 1(e) are 
actually shorter than those obtained without considering the absorption effect. It is thus evidenced 
that pulse compression is suppressed/enhanced for the incident pulse launched on shorter/longer 
wavelength side of the center of absorption spectrum. 

To further examine which effect, the amplitude attenuation or the phase distortion due to 
absorption, dominates the reshaping of the propagating pulses, we also made simulations of the 
cases where only the real or the imaginary part of the complex absorption was taken into account at 
the launching wavelength "KQ = 1515 nm. With only the phase distortion effect considered the 
exiting pulse has a duration of ~207 fs and so being still broader than the incident one, whereas 
with pure amplitude effect we observe pulse compression down to about 175 fs. We thus know 
that it is indeed the phase distortion due to erbium absorption that is responsible for making the 
propagating pulse out of the solitonic regime. 

In conclusion, when the fiber background dispersion is relatively small compared to the 
dispersion due to absorption, the propagating pulses inside an unpumped Er-doped fiber can be 
either compressed or broadened, depending on whether the spectrum of the launched pulse is 
centered on the longer or shorter wavelength side of the absorption center. A switching of the sign 
of the actual fiber dispersion on one side of the absorption center can lead to a change of pulse 
propagation pattern from otherwise a solitonic regime into a non-solitonic regime. 
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Fig. 1. Temporal profiles and spectra of the pulses incident into (dashed lines) and exiting from (solid lines) a 60-cm- 
long Er-doped fiber at three indicated launching wavelengths. (The label a. u. stands for arbitrary units). 
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In recent years a remarkable similarity was noticed between the laser semiclassical 
equations and the Schrodinger equation, which results, in particular, in "geometric" proper- 
ties of the phase of laser field [1,2]. The goals of the present paper are to realize the origin 
of this analogy basing on differential geometry and to reveal some new physical outcomes of 
the geometric structure of laser models. 

The common feature of the wave function of a quantum system and the complex 
amplitude of an optical field is the non-sensitivity of the physical state of the system described 
by these functions to arbitrary perturbations of the total phase. For a laser system such an 
ambiguity of the point in the phase space Ar corresponding to a given physical state may 
be formally expressed in terms of the fiber bundle formed by the. triplet (A/", V, II), where V 
is the space of physical states and II is the map A/" -► V\ The fiber bundle (AT, V, II) is the 
counterpart of the principal one [3]. We show that if the evolution of a system is represented 
in V by the trajectory connecting the points Pi and P2, the geometric part of the phase 
acquired by the field may be expressed as 

i-j  mm)  l' (1) 

where ^(s) is the lift in A/* of the geodesic curve connecting Pi and P2. Eq.(l) provides the 
generalization of the geometric phase setting, given in [1], for the case of noncyclk evolution 
of a laser system. 

The reasonable question is whether these geometric ideas are useful for obtaining the 
physical knowledge about the laser. We try to answer this question considering two systems, 
the models of unidirectional and bidirectional ring lasers. The first one, being isomorphic to 
complex Lorenz equations (CLE) [1], has the five-dimensional phase space associated with 
the complex amplitudes of the field x and polarization y, and the inversion z. It is a notable 
fact, which has never been found before, that the map 

II: « = f|j|a - lul2)/2,   v + iw = x*v.z->z 



provides the non-singular representation of CLE in the four-dimensional space of physical 
states, where u, v, w and z are the Cartesian coordinates. This representation is: 

ü = -(a + l)u + (a - T + z)v - (o - 1)Ä, 

v = -(er + l)v - ew - (a - r + *)« + (a + r - z)Ä, (2) 

U> = -(ff + l)w + CÜ, 

i = -bz + v; 

where Ä = (u2 + v2 + w2)1!2 = (|af + |y|3)/2. The analysis of laser dynamics using eqs.(2) 
appears to be rather fruitful. We show that all physical information about the system, in- 
cluding the phase dynamics, Lyapunov exponents and capacity of attractor, may be obtained 
from equations (2) in a very clear way. Studying these equations we have found some pe- 
culiarities of phase dynamics, which can be interpreted as geometric phase manifestations. 
Apart from that, eqs. (2) provide an effective approach to the investigation of bifurcation 
phenomena in lasers, as we prove representing a number of new results on bifurcations in a 

detuned laser. 

Using the unidirectional single-mode laser model, the possibility of Berry's phase ob- 
servation in a steady state laser has been shown , which is due to the adiabatic roundtrip 
in the parameter space [2]. However, in this case the typical range of the laser parame- 
ters allows only very small geometric phase accumulation which in real experiments may be 
entirely masked by the noise. We have found that the effect can be more substantial in a 
multimode system. To demonstrate this we consider the equations of motion for the class A 
bidirectional ring laser [4]: 

v 
E± + -?r-E± + g±Ew = x±E±t 

where Q± and x± are the cavity Q and the nonlinear susceptibilities for two counterpropa- 
gating waves, whose amplitudes are E±t and the complex parameters g± are responsible for 
the mode coupling due to the localised losses. We show that in this system the substantial 
geometric phase can be induced by switching the Q's and changing the location of the loss 
sources. 

This work was supported by the Committee for High School of Russia (grant 94-2.7- 
1097). 
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Abstract 

The dynamics of a class-A two-photon laser with injected signal is investigated. The possible mustistable 

configurations are determined. The stability of the steady state as well as that of the Hopf orbits is characterized. 

In this work we present a model for a two-photon laser with injected signal (TPLIS) in the 
high-Q cavity limit, i.e., a class-A TPLIS. In this limit one can adiabatically eliminate the 
material variables. When the injected signal is resonant with half the two-photon atomic 

transition frequency the dynamics of the system is described by the single complex equation 

j-x = A+[Rg{l)-l + iB]x,       ^(7) = -^-, (1) 

where x and A represent the complex electric field and injected signal amplitudes, I=xx* 

represents the laser intensity, R is the incoherent pump parameter and 0 is proportional to the 
mistiming between half the atomic transition and the cavity frequency, x is the time normalized 
to the cavity damping rate. This model is similar to that recently studied by Zeghlache and 
Zehnle for a one-photon LIS ', the difference between both models arising from the function g(T) 

in Eq.(l), which in the class-A LIS model reads g(I) =1/(1 +1). 

We have found mono-, bi-, and tristable behaviours, and delimited the regions in the 
parameter plane (R, 0) where these configurations can exist. For large enough detunings only 

monostable behaviour is found, as in Ref.l, and bi- and tristable solutions appear as resonance is 
approached. Nevertheless the tristable behaviour cannot exist on resonance. 

The linear stability analysis of the stationary solution of Eq.(l) reveals the existence of two 

independent Hopf bifurcations (HB) for R> Rlhr=8/-J27. One of the HB's is associated with 
low intensity stationary solutions, and the other one with larger intensities, existing a gap 
between both. We have identified the regions in the parameter plane where none, one, and two 
HB's exist. A general feature is that detuning is essential for the existence of self-pulsing 



instabilities, as it occurs in the class-A LIS. A difference between both models is that the pump 

required for the existence of Hopfs in the class-A TPLIS (Rlhr) is smaller than the free-running 

two-photon laser emission threshold (R = 2). Another difference is the behaviour of the system 

when the injection A is increased from zero. In the class-A LIS the stationary solution is born 

unstable and gains stability either through a tangent bifurcation or through the (unique) HB of the 

system. In the class-A TPLIS the stationary solution is born stable, and loses stability through the 

low intensity HB, or through a tangent bifurcation. Since the higher intensity HB has a 

stabilizing effect, the stationary solutions with large enough intensity are stable in both models. 

Finally we have studied the stability of the Hopf orbits near the HB's following the criterion 

of 2, and determined the regions in the parameter plane where the orbits are stable or unstable. 

Apart from these solutions there exist other (large amplitude) periodic solutions that have their 

origin at the free-running laser limit (A = 0), as in the LIS case. The existence of two of such 

solutions in the TPLIS (only one in the LIS) combined with the presence of up to two HB's 

makes the dynamic behaviour of the class-A TPLIS much more complicated, as is illustrated in 

Fig.l, which has been computed with the aid of program AUTO3. 
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FIG.l. Modulus of the laser amplitude vs injected signal amplitude showing two of the possible bifurcation 

diagrams of the class-A TPLIS. The continuous (dashed) lines, and filled (open) circles, denote stable (unstable) 

stationary solutions an periodic orbits, respectively. The filled squares denote HB's. In both figures the two HB's are 

present. In (a) (R = 2.05, 9 = 2.00) there exists a branch of periodic solutions that connects both HB's, whilst the 

large amplitude periodic solutions form an isola. In (b) (R = 2.50, 0 = 0.60) these solutions connect with the HB's. 
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Semiconductor lasers are extremely sensitive to external feedback, which can 
have dramatic effects on its operating characteristics. Power dropout events are one 
of these effects. During a power dropout, the laser intensity suddenly drops 
drastically, after which it slowly increases, reaches a metastable state, and then drops 
again, at irregular intervals. Explanations of the origin of power dropouts have 
tended to be exclusively deterministic [1] or stochastic [2]. 

We have included both deterministic and stochastic mechanisms in order to 
provide a comprehensive modelling of the dropout events.  They occur when the 
laser is pumped around its solitary threshold; a laser undergoes a phase transition at 
this point. Near this phase transition stochastic fluctuations typically have a large 
influence on the operation of the system. We focus on the influence of these 
fluctuations on the dynamics of power dropout events. Numerical and 
experimental results indicate that noise plays a significant role in the characteristics 
of the dropout events. 

Fig. 1(a) shows the time trace of laser intensity for an injection current slightly 
below the solitary laser threshold, computed from a model that is entirely 
deterministic. The results of the computation have been digitally filtered with a cut 
off frequency of 500 MHz so as to model the bandwidth limitations of the detection 
instrumentation. In Fig. 1(b) we have included appropriate noise sources in the 
computation, which is done with exactly the same initial conditions and parameters 
as in the previous case. The dramatic influence of the noise on the dropout 
dynamics is obvious. An experimentally measured time trace for operation slightly 
below the solitary laser threshold is shown in Fig. 2. The qualitative characteristics 
of the dynamics are in excellent agreement with the results from the model 
including noise. 

Results on the statistics of the dropout events, and a detailed dynamical 
analysis of reflection instabilites will be presented. 
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Fig. 1(a)        Time trace of the laser intensity from the deterministic model, I/Ith : 
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Fig. 1(b)        Time trace of the laser intensity from the model with spontaneous 
emission noise; all other parameters the same as for Fig. 1(a). 
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ABSTRACT 

We have demonstrated, experimentally and theoretically, that for certain conditions of multimode lasing, 
saddle features of phase-space stationary states give rise to novel antiphase oscillations based on Shil'nikov 
dynamics and provide a hierarchy of the antiphase states in a miniature multimode solid-state lithium- 
neodymium-tetraphosphate (LNP) laser operating in three longitudinal modes with intracavity frequency 
doubling. 

Antiphase oscillations exhibited by individual laser modes in a multimode solid-state laser with 
intracavity second-harmonic generation (SHG) were first observed experimentally by Wiesenfeld, et. al. 
[1], and the phenomenon of antiphase states is still a very active topic of research in nonlinear laser 
dynamics [2,3]. In our previous work [4], we described a special case of antiphase dynamics — generation 
of homoclinic chaos in a multimode solid-state laser with intracavity SHG, exhibited when the laser is 
operating with a sparsely-active mode spectrum and phase-space trajectories are influenced by 
corresponding saddle features in the vicinity of stationary points. In the present work, we present the 
results of a comprehensive analysis of the influence of such saddle points on the antiphase dynamic 
behavior of a solid-state laser with intracavity SHG. 

Our theoretical model is based on the multimode operation of a LiNd(P03)4 (LNP) laser with 
homogeneous gain and an intracavity KTP doubler. We treat the case of three-mode generation under the 
condition that the central mode is polarized orthogonal to the side modes. For our model, the dynamic 
regime of interest corresponds to unstable points in phase space, some of which are saddle foci which 
satisfy the conditions of Shil'nikov's theorem in some region of the control parameter space [5]. Our saddle 
foci are unique stationary points for which one mode has zero intensity, locally causing the system to 
exhibit essentially two-mode dynamic behavior with the two nonzero modes having nearly similar 
magnitude. There are three possible situations which can occur in this case. For the first situation, the 
central mode has zero intensity and an antiphase process exists between the central mode and the two in- 
phase side modes. The central mode first exhibits ordinary decaying relaxation pulsations on an unstable 
phase-space manifold while the side modes remain quiescent; the central mode then itself becomes 
quiescent as the system transitions to a stable manifold, exhibiting relaxation pulsations of the side modes 
as the system moves toward a saddle focus point (fig. la). 

For the second situation, we have two symmetrical saddle foci corresponding to one zero-intensity 
side mode. There are actually two different antiphase processes for this case: there is an energy exchange 
between the two nonzero modes at any instant, and there is a second exchange between two coupling 
groups, the first one formed of the central and one side mode, and the second formed of the central and the 
opposite side mode. It is important to note that for this situation, unlike the first, the imaginary parts of the 
eigenvalues for the linearized equations for the system correspond closely to a value of half the relaxation 
oscillation frequency (ROF), and energy exchange between the two nonzero modes can thus be observed to 
occur with a frequency of approximately ROF/2 (fig. lb). 



(a) (e) 
Figure 1. Phase-space attractors for the cases of (a) symmetrical spectrum with zero central-mode 

intensity saddle-focus, (b) symmetrical spectrum, zero side-mode intensity saddle-focus, and (c) sparse- 
spectrum. 

The same situation occurs for a sparse mode structure, characterized by unequal longitudinal 
mode spacing arising from etalon and thin-gain-section effects within the cavity [4]. Sparse mode activity 
creates only a single saddle focus, and energy exchange occurs between the central mode and only one of 
the side modes. It is particularly interesting to examine the nature of saddle antiphase energy exchange. For 
normal three-mode antiphase dynamics, energy is transferred sequentially from one mode to the next [1-3]. 
For saddle antiphase operation, however, there appear to be two coactive antiphase processes, in the first of 
which, energy is transferred between two modes of nearly-equal intensity, while the third side mode is 
inactive. The second antiphase process involves a transfer of energy from the first two modes as they 
converge to the focus in phase space, and either (1) into the third side mode as the flow moves outward 
along a path tangent to the focus, whereupon the first two modes become quiescent, or (2) into a 
complementary antiphase process between the third side mode and the central one (fig.3c). 

An additional saddle process occurs as saddle bifurcation of the symmetrical limit cycle into 
antiphase asymmetrical cycles (after Hopf bifurcation in the stationary regime). For every asymmetrical 
cycle, we have a process of period-doubling and two asymmetrical strange attractors arise with 
intermittency between them, and later coalesce into a single symmetrical strange attractor. 

Experimental investigation was carried out using a diode-pumped LNP laser and a KTP doubler in 
a 10 mm hemispherical cavity. Linear losses in the cavity were around 1% per round-trip, and SH 
conversion imposed approximately 0.005% nonlinear loss. The laser was pumped in a range 35-45 times 
threshold. Various behavior ranging from stable to chaotic could be induced through cavity adjustment 
and adjustment of relative crystal orientation. Limit cycle creation, periodic pulsation and pure chaos were 
observed, as well as antiphase pulsations in individual mode portraits. Shil'nikov chaos with antiphase 
features was exhibited by the system, and dynamic behavior was in excellent agreement with the 
theoretical prediction. 
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The dynamics of transverse modes in lasers has attracted considerable attention of 
researchers in the recent years. An experimental study of interaction of several transverse 

modes in C02 and Na2 lasers was described in Ref.l. The results of numerical integration 

of the Maxwell-Bloch equations for the parameter values typical of these lasers and a 

solid-state laser were presented in Ref.2. However, bifurcation mechanisms responsible 
for the appearance of periodic and chaotic behavior of the mode amplitudes in class-B 

laser still remain rather unclear. Here we propose the simplest mathematical model to 

describe these mechanisms in a class-B laser operating in tree transverse modes. Basing 

upon analytical and numerical analyses of this model we study bifurcations of different 
periodic, quasiperiodic, and chaotic regimes. 

We consider a class-B laser operating in three Gauss-Laguerre modes that belong to 
the families q = 0 and q = 1. Here q = 2p + \l\t where p (I) is the radial (angular) 

index. They are the fundamental mode (p = 0,1 = 0) and the two doughnut ones (p = 

0,1 = ±1). We assume that (i) laser operates near the linear threshold; (ii) the detunings 
between the mode frequencies and the atomic resonance frequency are much smaller than 

the homogeneous Enewidth, (ta^J.)3, {^±h±f < 1; (iii) the characteristic time scale 
of mode amplitudes evolution r is much larger than the time scale associated with the 

frequency separation of the families ? = 0and? = l,r> 2x/\6wo - 6u±\. Then the 
mode amplitudes obey the equations 

0tJo = 2Jo(e + Mo), 

dtMo = -7(Afo + h + (|2+|3 + |2-|2)/2), 

dtZ+ = Z+ + RZ. + (1 + »A)(2+JVo + Z.N2)t 

dtZ- = Z- + RZ+ + (1+ iA)(Z-N0 + Z+iq), (1) 

ftAo = -7(^0 + /o + \Z+\2 + |Z_|3), 

dtJV3 = —Y{N2 + Z+Z1). 



Here Jo is the normalised intensity of the fundamental transverse mode and Z± are the 

normalised complex amplitudes of the doughnut modes. M0, NQ and JVa are the spatial 

harmonics of the inversion. The parameter e = rfe/77, where 770(77) is the dimensionless 

pump parameter of the fundamental (doughnut) mode. A = 8u±/f±, 7 = 7n/(7c7?)s 

where 7|| (7c) is the inversion (cavity) relaxation rate. R is the complex coefficient of 

the linear coupling between the doughnut modes. Ä ?£ 0 when the cylindrical sym- 
metry of laser cavity is broken [3]. Note, that for J0 ~ 0 the equations governing the 

evolution of Z*.t 2L, JVo, and JVa are BÜnüar to those describing the interaction of the 

counfcerpropagating waves in a ring class-B laser [4]. 

We have performed a detailed bifurcation analysis of steady-state and time-dependent 

solutions of eqs.(l). Eomoclinic loops responsible for appearance of antiphase pulsations 
of doughnut modes similar to the pulsations observed in experiment of Ref. 5, and bi- 

furcation mechanisms leading to quasiperiodic oscillations and their break-up have been 

investigated. It has been shown that for certain parameter values even a small linear 

coupling between the modes caused by axial symmetry breaking of the laser cavity can 

lead to the transition from regular to chaotic laser operation. 
Eqs.(l) are invariant under the transformation (£+,£_) -* {Z^Z*). Neverthe- 

lesss we have found new type of periodic and chaotic solutions characterised by nonsero 

frequency splitting of the doughnuts. They arise due to spontaneous symmetry break- 

ing caused by the nonlinear interaction of the modes. Presumably, this effect may be 

observed in experiment. In a bidirectional ring laser it manifests itself as a nonzero 

frequency splitting of the counterpropagating waves that can exist even if the counter- 
propagating directions are equivalent. 
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High frequency chaotic fluctuations of compound-cavity LD's output range 1-10 GHz. Since the 
direct detection of such high-frequency fluctuation cannot be accomplished by using currently available 
digital equipment, down-conversion of the signal by the RF-heterodyne technique is required. We 
analyzed numerically the relationship between the frequency gain response of band-pass filter (BPF) for 
IF signal and the behavior of the correlation dimension (CD) of the IF signal passing through the BPF 
and compared the CD of such IF signal and that the LD output (RF) signal. 

Our numerical model consists of three parts: 1) a compound-cavity LD, 2) a local oscillator and 3) a 
band-pass filter, as shown in Fig.l. The first part of the model is the dynamics of the compound-cavity 
LD. The feedback coefficient of the external cavity K through facet which face to external cavity is 
defined as (1 - rp-y^/ri for a Fabry-Perot-type laser diode, where ri is the amplitude reflection of the 
laser facet and r^ is that of the external mirror. Here, we consider a weak feedback condition K « 1 and 
neglected multiple reflections. The dynamics of the complex electric field Eo(t)exp{j((üQt + 0(0} and the 
carrier density N(t) are governed by the Van der Pol equations1 . 

The second component of the model is a free running local oscillator. The rate equations for the local 
oscillator L/ which generates a sinusoidal wave are 

-^p = <»LOA(0. (1) 

-^ = -ö>L.aA(')- (2) 

Here, ö>L.o=27?/Lo.1S me angular frequency of the local oscillator. 
The transfer function of the second order normalized band-pass filter is 

U{s)    S
4+2^wds

3 + (2co2
c+(o2

d)s2+2^(o2
ca)dS + (D4

c' 
(3) 

Here, U(s) and Y(s) are the Laplace transforms of the input and output signals of BPF respectively, coc = 
2nfc is the center angular frequency of the BPF, andö)<f = Infy is the angular frequency that defines 
bandwidth and £ is the damping coefficient. The rate equations of the band-pass filter derived from 
Eq.(3) are expressed with four integrands Z;(f) (i =1,...,4) as follows. 

^a—fc«, dt (4) 

^ = -2^>,Z4(0 + Z,(0 (5) 

■*i(0. (6) 

dt 

^ = -(2c,2
c+^)Z4(t) + ZAt) + [^-l" dt \\EM\ 

^ = -2^Z4(0 + Z,(r). (7) 

Here, Z*(f) is the IF output signal of the heterodyne detection. 
In Eq.(6) the output light intensity of the compound cavity LD was normalized by the light intensity 

of solitary LD \Esoi2. 
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The correlation dimension for the given time series is determined by examining the correlation 
integral2 

C(r) = ^le(r-\Xl~Xj\). (8) 

Here, 0 is the Heaviside function which is equal to zero for a negative argument and one otherwise, 
N is the total number of sampling points, and I I is the Euclidean norm. The reconstructed vectors X( and 
Xj are obtained from the delay coordinate of the time series of the signals (*i,*2.—>*L) as Xi={xi, 
Xi+Ax, xi+2Ax,-—xi+(m-\)Ax)> where m is the embedding dimension and At is the time delay. The 
correlation dimension is determined from the slope of the correlation integral D = dlogC(r)/dlogr as a 
function of the embedding dimension m, where r corresponds to the radius of hyper-sphere that is 
centered at X( in e m-dimensional space. 

Figure2 shows the distribution of correlation dimension of the RF signal and IF signal passing 
through BPF of several bandwidth. By changing A?, CD'S values change, it suggest that the CD depend 
on the delay time, for finite number of time series which have finite time resolution.3 The main peak 
frequency of RF fluctuation is 2.9GHz, and the sampling resolution is 0.02 ns. The delay time Ax is 
varied from 5 to 30 times of the resolution (roughly equal to 0.3-1.74 times of the recurrent time). The 
CD values at m=12 are 2.64(RMS) ± 0.25(SD). For the heterodyne detection,/L.o and/c were set to 
2.8GHz, and 100MHz respectively. The resolution of time series was 0.1 ns (10GHz). The delay times 
Ax were varied from 5 to 50 times of the resolution (roughly equal to 0.05-0.5 times of the recurrent 
time). By changing the bandwidth of BPF, the distribution of the CD values changes. The distribution of 
the CD of IF signal passing through proper bandwidth BPF (fd = 150, 200MHz) are very similar to 
those of RF signal (2.64 ± 0.50 and 2.67 ± 0.41 respectively), whereas the distributions of CD of the IF 
signal passing through the narrower and the wider BPF are broader than that of RF signal (CD = 2.73 
± 0.82 for/d = 50MHz, 2.96 ± 0.86 for/d = 50MHz, 3.17 ±0.95 for/d = 250MHz, 3.05 ±0.90 for 
fd = 300MHz) 

The fractal (scaling) nature of RF signal could maintain through the down conversion, if we choose 
the conditions of BPF. The RF heterodyne procedure may be analogous to the self-similar (Affine) 
transformation when the BPF and frequency of local oscillator satisfy the conditions that preserves the 
fractal nature of RF signal. 
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Erbium-doped fiber lasers (EDFL) have been developed for femtosecond pulse 
generation and their use as a source of solitons [1]. Several groups have observed slow, 
irregular pulsations of the output intensity under conditions of c.w. pumping, and a 
number of studies of the dynamics have thus focused primarily on long time scales (~ 
microseconds to milliseconds) [2]. Here, we focus on some very interesting 
experimentally observed characteristics of an erbium-doped fiber ring laser, pumped at 980 
nm, whose output was sampled on a nanosecond time scale. 

In our investigations, we have studied the standard deviation of the intensity 
fluctuations as a function of pump power above threshold, as shown in Fig. 1. We have 
found that the intensity fluctuations grow rapidly with increasing mean output intensity, in 
contrast to the previously observed behavior of many other laser systems [3]. 
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Fig. 1: Plot of the standard deviation vs. mean photodetector output averaged over three 
different time scales. 

From measurements of the optical spectrum of the output intensity at many different 
pump powers (Fig. 2) we have calculated that over 2000 modes circulate within the full 
width at half maximum. Figure 3 shows two typical digital oscilloscope time traces of the 
output intensity, taken at delayed times with a Gigahertz sampling rate. We note that the 
waveforms between the large peaks are quasiperiodic. The waveforms are found to vary 
from trace to trace, displaying an enormous range of complex patterns. 
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Fig. 2: Spectral plots of laser output from below to above laser threshold with increasing 
pump power. 
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Fig. 3: Waveforms produced by the erbium-doped fiber ring laser while being c.w. 
pumped - 1.5 times above threshold. Sampling rate = 1 Gigahertz. 

A model for the observed behavior is proposed, in which mode-mode coupling 
gives rise to phase-locking between some active modes, while others continue to oscillate 
with random phases. The result is an output intensity with large peaks separated by the 
fundamental cavity round trip time; in between there is a complex waveform produced by 
the modes that are not phase-locked. The long time scale (tens to hundreds of cavity round 
trips) over which the quasiperiodic temporal pattern is observed suggests that the modes 
with random phases preserve those specific phase relationships for many microseconds. 
Eventually, the phases are perturbed, and a new pattern is observed when the scope is next 
triggered. The experimental measurments will be compared with predictions of the simple 
model outlined above. 
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We report the results of our numerical analysis of the transverse spatial modulation of a 
Gaussian laser beam after passing through a 45°-cut BaTi03:Ce crystal. Our results show 
that an extraordinary Gaussian beam, after passing through the crystal, shows transverse 
spatial modulation and self-focusing^ due to the refractive index change modulated by the 
beam itself. When the refractive index change has been induced by one beam (the first 
beam), another incoherent weaker beam with a wider beam width than the first (the 
second beam) shows much stronger transverse modulation after passing through the 
crystal. 

Consider an extraordinary polarized Gaussian beam input into a 45°-cut BaTi03.Ce 
crystal of thickness L, to which an electric field is externally applied.   Since the 
photorefractive effect is strong only in the plane of extraordinary polarization, we restrict 
our consideration to two dimensions (transverse x and longitudinal z). The electric field 
amplitude A(x,z) of the beam polarized along the x direction and propagating primarily 
along the z direction obeys the following paraxial nonlinear wave equation 

d i  d1 ik 
-^A(x,z)-—-^A(x,z) = —An(x,z)A(x,z), (1) 

where the refractive index change An(x,z) can be obtained by consideration of the wave- 
mixings between different Fourier components of the amplitude A(x,z)}2^ i.e., 

^x'r) = 7T^JJ<%^fa'*)/W>'^^^ (2) 
\A(x,z)\ *i       *2 

Here f(qhz) is the spatial frequency distribution of the amplitude A{x,z) and Sn(qx,q2) is 
the coupling coefficient between two components. We have numerically integrated Eq.(l) 
for the input Gaussian beam A(x,z) = 4>exp(-x2 /w0

2). The numerical calculation is 
based on the difference method combined with the fast-Fourier-transform: At a given 
longitudinal z, we decompose the amplitudeA(x,z) into its Fourier components by the 
fast-Fourier-transform and then use Eq.(2) to calculate the refractive index change 
An(x,z). Substituting An(x,z) into Eq.(l) and integrating it by the difference method we 
obtain the A{x,z) at the next z. 

Fig. 1(a) and (b) show, respectively, the refractive index change inside a crystal of 
thickness L=l mm without and with the externally applied electric field of 
E0 = 120FI mm for an input beam waist of w0 = 40/x/w. For no electric field the near 
antisymmetrical feature of An(x,z) about the z axis will lead to the light intensity 
transferring from the left to the right side of the beam. The externally applied electric field 
mainly causes the in phase component of the refractive index change relative to the light 
irradiance. This leads to phase couplings between different plane components and the 
resulted refractive index change will be symmetrical about the z axis. The fact that the 
An(x,z) is slightly larger at +x than at -x is caused by the n 12 out of phase component 



of the refractive index change relative to the light irradiance. Fig.2 gives the transverse 
intensity distribution of the beam for the case with externally applied electric field. It can 
be seen that, after passing through the crystal, the beam shows spatial modulation and self- 
focusing effects. In addition, the amplitude maximum of the beam shifts towards the right. 

From Fig. 1(b) we see that the transverse range of the refractive index change is wider 
than that of the input beam intensity. It is thus anticipated that, if a weak second beam has 
a wider beam width than the first, the former will exhibit stronger transverse spatial 
modulation than the latter due to the refractive index change caused by the latter. This 
case is given in Fig.3 for the second beam width of w0=S0pm. It is seen that the 
transverse modulation and focusing effect are much stronger than those given in Fig.2. 

The experimental data to verify the above results will be reported. 

1. D.N.Christodoulides and M.I.Carvalho, Opt. Lett. 19, (1994) 1714. 
2. M.Segev, B.Crosignani, A.Yariv and B.Fischer, Phys. Rev. Lett. 15, (1992) 471. 
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Fig.l. Refractive index change inside the crystal (a) with no externally applied electric field and (b) with 
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Fig.2. Transverse intensity distribution of the 
beam at input face(curve 1), and at z=lmm (curve 2) 
and z=2.5mm (curve 3) from the exit face of the 
crystal. 

Fig.3. Transverse intensity distribution of the 
second beam at the input face (curve 1), 

and at z=lmm (curve 2) and z=3mm (curve 3) 
from the exit face of the crystal. 
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There is a growing interest in nonlinear transient optical phenomena in dense media where 

the interaction of excitations is important. Most of research is devoted to systems with 

Frenkel or Wannier-Mott excitons which are electrically neutral complexes with zero static 

dipole moments. Here we study nonlinear optical response of a system of optically created 

charge transfer excitons (CTEs) [1]) with nonzero static dipole moments. Recently, the 

possibility of intrinsic optical bistability due to CTE-phonon interaction was theoretically 

predicted [2]. A phase transition of a high density CTE system into a metal state was 

discussed in a later work [3]. However, as estimated in [2, 3], the necessary CTE concen- 

tration is so high (~ 10%) that the problem of the stability of materials arises which may 

impede realization of the proposed phenomena. 

Here we demonstrate that the effects of dipole-dipole interaction of CTEs may manifest 

in the "transient grating" optical response even at a relatively low CTE concentration. In 

this pump-probe process, the created excitonic density n(r) = n0 + ni cos (Qr) is spatially 

modulated in accordance with the spatial modulation of the pump field; Q is the differ- 

ence of the wavevectors of the two pump waves. A time delayed probe optical pulse is 

scattered by the grating in directions determined by the transfer of the grating wavevec- 

tor Q. The transient grating technique is used to measure the diffusion coefficient D of 

excitons. With an increase of the pump intensity and thus the density of excitons, the 

dipole-dipole interaction of CTEs cannot be ignored. 

We present a quantative description of the CTE system in a thin layer; a static dipole mo- 

ment ß of CTEs is chosen perpendicular to the layer. We study the range of temperatures 

p2/(el3) < T where / is the mean distance between CTEs on a layer and e is an effective 

dielectric constant. We obtain the following nonlinear equation for the two-dimensional 

macroscopic density n(r,t) of CTEs: 

?^H = V [D (l + 2.8#n) Vn] - 7n, (1) 



where 7 is the decay rate of CTEs, and lT = (fiV(eT)f3. ^From Eq.(l), we find the 

amplitude of the grating m(i) = na(0) exp (-71 *), where 7l = £effQ
2 + 7, and the effective 

diffusion coefficient D« = (1 + 2.4#n0) D. For reasonable values of CTE parameters we 

estimate the renormalization parameter ( = 2.4#n0 « 0.2 x [300K/T]2/3 [n0 ■ 10"12cm2]. 

Even at a room temperature, the influence of the interaction of CTEs becomes appreciable 

already at a rather moderate CTE density ~ 1012cm-2, i.e. at the concentration of excited 

molecules smaller than 0.05%. 
In addition to the renormalization of the diffusion coefficient and of the grating decay 

rate, the interaction of CTEs manifests also via the generation of higher spatial harmonics 

(n2 cos (2Qr), etc.) of the initially excited grating. <From Eq.(l) we obtain the amplitude 

of the second harmonic 

„,(*) = -„,/"*       [exp (-2*0 " exp (-72*)], (2) 
2(l + C)»o 

where 72 » 4DeßQ2. The appearance of the second spatial harmonic would result in a 

new peak of the scattered probe wave in the direction which corresponds to the transfer 

of the momentum 2Q in the layer plane. Higher spatial harmonics may be generated too. 

It is important that both the renormalization of the diffusion coefficient and the generation 

of higher spatial harmonics may be appreciable even at a relatively small density of CTEs, 

thus one can avoid the problem of stability of organic materials at high pumping. This 

might be especially interesting in connection with possible applications in photonics. 
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A review will be presented of various physical mechanisms allowing 

one to reduce the momentum spread bp of an ensemble of atoms to the 

lowest possible value. Emphasis will be put on recent developments which 

have led, in one, two and three dimensions, to values of bp well below the 

single photon momentum hk. New theoretical approaches giving physical 

insight into the long time limit of these subrecoil cooling methods will be 

also described. 
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Abstract 
Over the past decade it has become clear that many different types of lasers 

exhibit chaotic fluctuations of intensity under a variety of operating conditions. 
These include exotic systems, such as the far infrared ammonia laser, as well as 
commonly used semiconductor lasers.  Signatures of chaotic fluctuations in laser 
light and the comparison of experimental observations with predictions of 
numerical models will be reviewed.  An important issue here is the 
development of measures that can separate noisy and deterministic components 
of dynamical behavior and provide information relevant for application of 
dynamical control techniques.  While earlier work consisted of efforts to identify 
and classify chaotic behavior, the emphasis today is on the control of chaotic 
lasers, and possible applications. 

Recent efforts to control chaotic systems have been remarkably successful 
in many different areas of science and technology.  Dynamical techniques for the 
control of chaos allow a wide variety of waveforms to be stabilized and provide a 
completely new approach to the control of chaotic intensity fluctuations.  Recent 
experiments require only small perturbations of parameters (about the ambient 
values). It has also been demonstrated that the stability regime of a laser system 
can be significantly extended through control and tracking of the unstable steady 
state. These results indicate the possibility of practical applications of nonlinear 
dynamics and show that it is possible to orchestrate the emission of light by large 
ensembles of atoms into complex or simple temporal patterns with rather small 
but judiciously chosen perturbations. 

Several open questions have emerged from these studies. Can we control 
systems that have more than one positive Lyapunov exponent, i.e., more than 
one direction of instability in phase space? Second, how does intrinsic noise 
influence the dynamical behavior and controllability of chaotic systems? These 
questions will directly impact the control of spatio-temporal systems such as 
arrays of coupled lasers, or fiber laser systems. Can chaotic systems can be used 
to our advantage? The possibility of encoding information in a chaotic 
background and then decoding it in real time with a synchronized chaotic system 
will be reviewed. Experiments on synchronization of chaotic lasers will be 
described. The direct relevance of fundamental science to technological 
applications is clearly illustrated in this field. 
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Abstract 

The recent years have witnessed a growing interest in the 
phenomena  of spontaneous pattern  formation  and  transformation   , 
which arise in nonlinear optical syatems. With respect to other 
systems ( think, for example, of hydrodynamics, or nonlinear 
chemical reactions) which are more traditional in the study of 
structure formation , optical systems present the special feature of 
displaying  interesting  quantum effects,  even  at room temperature. 
In this paper we focus on the case of the degenerate optical 
parametric oscillator (OPO)  . The parametric conditions are selected 
in such a way that , above threshold , the OPO emits a signal field 
with a  stripe pattern configuration. 
Above  threshold,  the  quantum description  reveals relevant 
quantum effects both in the far and in the near field ; these 
phenomena are related by a complementarity picture, which is in 
turn related to the wave and particle aspects of the e.m. radiation. 
The discussion will focus on the novel concept of quantum 
images  , i.e.     noisy images whose intensity and phase configuration 
is entirely uniform on average, but which display a regular spatial 
structure in the correlation function. It will be shown that the OPO 
can generate  spontaneously quantum images both below and above 
threshold. 
The     analysis of quantum fluctuations below threshold completes 
the classic analogy with second order phase transitions , adding the 
necessary spatial aspects which were missing in the previous 
treatments. 
With the help of appropriate stochastic realizations of the noisy 
dynamics of the system, we illustrate how a quantum image 
appears when it is observed via    high frequency detection; the 
results will be displayed also by a video. 

1) L.A.Lugiato and G.Grynberg, Europhys.Lett. 29 , 675 (1995) 
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We have experimentally obtained and theoret- 
ically analyzed a systematic map of the various 
instabilities in a master-slave pair of semicon- 
ductor lasers as the amount of optical injection 
power and degree of detuning is varied. Two dis- 
tinct islands of chaos have been identified. They 
are separated by limit cycles, period doubling and 
transitions into and out of chaos. The period 
doubling mechanism is investigated analytically 
based on a new third order pendulum equation. 

Here we report on experimental measurements and 
theoretical calculations based on a single mode rate equa- 
tion model of a quantum well laser subject to strong ex- 
ternal optical injection. Semiconductor laser diodes pro- 
vide a technologically important system to investigate 
both high-speed nonlinear dynamics and noise processes 
in lasers. However, because of the very short time scales 
(subnanosecond) on which the dynamics occur, it is dif- 
ficult to measure the time dependent behavior directly. 
Hence, fourier domain measurements must be combined 
with model calculations in order to extract detailed infor- 
mation about the nature of the dynamics. We have found 
a number of very interesting instabilities as the amount 
of injected power and the degree of detuning between the 
master and the slave laser is varied. For example the laser 
diode exhibits chaos over a bounded range of injection 
levels. As the chaotic regime is approached from either 
the lower or higher injection levels, it follows a period- 
doubling route into and out of chaos [1,2], though the 
route is largely obscured by spontaneous emission noise. 
Additionally, a new regime of period doubling occurs for 
injection levels well above the region of chaos. 

In Figure 1 we see a systematic experimental charac- 
terization of the various dynamic behaviors encountered 
as we vary the amount of injected power and detuning 
between the master and the slave semiconductor laser. 
We identify the following regimes: (S)-stable injection 
locking, (4)-four wave mixing, (Pl)-limit cycle dynamics, 
(P2)-Period-doubling transitions into and out of chaos, 
two distinct islands of chaos and (Ml)-Multiwave mixing 
in several longitutinal modes. The identification of these 
regions was performed by carefully observing the opti- 
cal power spectra. Refer to Figure 3 for a set of spectra 
demonstarting the above characteristics. 

In order to gain a clear understanding of the nature 

of the various instabilities we have performed numerical 
simulations with a single mode rate equation model. The 
equations are cast in a form that emphasizes key dynam- 
ical parameters [3]: 

dE 
dr (1) 

dt!                          £ 
— = -Q - bG - -^sintf - (F"/E, 
dr                           E (2) 

T^- = P-N-P(1 + 2G)E2, 
dr (3) 

G- ^[XN-Y(E2-1)]. (4) 

Simulations were performed both with and without the 
noise sources present. The main effect of noise is to ob- 
scure the route to chaos. However there is an excellent 
qualitative and good quantitative agreement between our 
experimental data and the numerical calculations. There 
is very strong evidence that single mode rate equations 
capture the essential physics of a semiconductor laser 
subject to external optical injection. 

Figure 1. The experimentally obtained map of the 
various instabilities for detuning versus injection. 

For example, the full nonlinear coupled equations are 
first solved with the noise source terms set to zero. Fig- 
ure 2 depicts the numerically obtained bifurcation di- 
agram of the the extrema of the amplitude, E, ver- 
sus the detuning parameter, fi. As the detuning level 
is varied  from negative  to  positive,   the steady  state 



is destabilized, the relaxation frequency becomes un- 
damped, and a limit cycle is born. Further increas- 
ing the detuning, results in a period-doubling route to 
chaos followed by an abrupt transition to a limit cy- 
cle. With a further increase of detuning another pe- 
riod doubling is observed leading to chaos. This bi- 
furcation diagram should be compared with the six ob- 
served optical power spectra in Figure 3. Very good 
agreement is obtained between theory and experiment. 

2.0r 

'S 

I      1.0 
£ 
1 

Figure 2. Numerically obtained bifurcation diagram 
of the extrema of the normalized optical field amplitude, 
E, versus the detuning level, ft. The injection is £ = 
0.026. Labeled detuning levels are for comparison with 

Figure. 3. 

The success of this model motivated us to look for an 
analytic understanding of the various instabilities. We 
take advantage of the typical values of the semiconduc- 
tor laser parameters, in particular the ratio of the photon 
and the carrier lifetimes, in order to reduce the optical 
injection model asymptotically to an equation of a har- 
monic oscillator driven periodically by the phase of the 
laser field. The mechanism [5] for cascading period dou- 
bling instabilities then corresponds to successive subhar- 
monic resonances. The reduced problem can be analyzed 
in terms of the phase only which satisfies a third order 
pendulum equation of the form: 

d3V      dV      4       ... 
(5) 

where A = 6£/ftr and ftr = y/2P/T. This equation 
captures several aspects of the numerical bifurcation di- 
agram, namely the fixed amplitude of the Period 1 solu- 
tion and the period doubling bifurcation. This provides 
a powerful tool for investigating the dynamics of large 
arrays of semiconductor lasers. 
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Figure 3. Measured power optical spectra of the quan- 
tum well laser laser at an injection level £ = 0.026 at six 
levels of detuning ft (a) at SI = —ZGEz the laser is in- 
jection locked, (b) limit cycle at ft = -2GHz, (c) period 
doubling at ft = -1GHz (d) chaos at ft = + 1GHz, (e) 
abrupt transition to at limit cycle at ft = 1GHz, and (f) 
transition back to chaos at ft = SGHz. 

Finally we will present possible applications of injec- 
tion locking to improve the broadband modulation char- 
acteristics of semiconductor lasers. By adjusting the fre- 
quency offset between the master and the slave laser, im- 
proved modulation bandwidth and flatness of the modu- 

lation response can be achieved. 
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SUMMARY 

Application of a strong magnetic field to a bulk semiconductor reduces the 
dimensionality of the electronic excitations from 3D to 1D. This gives the opportunity to 
explore the nonlinear optical properties of one dimensional systems in high quality 
material, without size fluctuation while avoiding the fabrication of delicate samples. 

In this talk we report the first investigations of ultrafast nonlinear optical spectroscopy 
of GaAs under magnetic field up to 12 Tesla. 

We find that even the linear absorption is strongly modified by application of a 
magnetic field. The lowest energy magneto-excitons remain Lorentzian under 
magnetic field. However, the high energy magneto-excitons that appear at the onset of 
the Landau level transitions, become Fano-resonances due to quantum interference 
with the underlying 1D continua. 

The nonlinear optical properties of the two species of excitons were investigated by 
ultrafast four wave mixing (FWM). The Time resolved amplitude (TR-FWM) and power 
spectra (PS) were measured as well as the time integrated amplitude (TI-FWM). It was 
found that the two types of excitons exhibit very contrasted nonlinear optical 
properties. 

For the Lorentzian excitons, the magnetic field enables us to tune the strength of Pauli 
Blocking relative to that of Coulomb interaction. Signature of exciton-exciton 
interaction as well as quantum beats were observed. Surprisingly the spectrally 
resolved FWM exhibit extra resonances that are not seen in the linear spectra. They 
may be related to excited states of the excitons that, in the linear absorption spectra, 
are masked by broadening in the absorption edge. 

The Fano resonances exhibit the most unusual temporal behavior either in coherent 
wave mixing or in their quantum beats with the Lorentzian excitons. While the TR-FWM 
and PS correspond to the same dephasing time, the TI-FWM is instantaneous! This 
reveals a new type of quantum interference which most likely originates from the fact 
that Coulomb interaction governs both the appearance of Fano resonance and their 
nonlinear response. This behavior has even more striking consequences on the 
quantum beats between Lorentzian and Fano magneto-excitons. Just a few percent of 
contribution associated with the latter can quench most of the emission of the former! 
These experimental results are new and so far not explained. 
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We experimentally show that all-optical control of the photoresponse of GaAlAs quantum well detector can 
be achieved using quantum interference in the continuum between free electronic waves which are excited 
by two different pathways. 
Initially, this effect of interference between different quantum pathways was first demonstrated in Xenon 
photo-ionization experiments[l,2]. Taking profit of the quantum interference phenomena between optical 
transitions in rubidium, Yin et al.[3] could control the angular distribution of photoelectrons. These 
experiments prove that, in some cases, the phase of a quantum state is as important a variable as frequency. 
The importance of phase is equally true in single atoms or in semiconductors. For instance, it was recently 
observed that quantum beats in coupled quantum wells excited with two consecutive laser pulses depended 
on the relative phase difference between the two pulses[4]. 
The idea to extend the general concept of phase-controlled photo-ionization to semiconductor devices was 
theoretically discussed by Kurizki et al.[5]. Here, we experimentally show that this concept of coherent 
control is not confined to atomic quantum systems ; it can also be applied to more complicated materials 

like solid-state devices. Indeed, we report 
here all-optical modulation of photocurrent, 
including its sign, in standard mid-infrared 
GaAs/GaAlAs quantum well (QW) detectors 
by controlling the quantum interference 
between two degenerate states in the 
continuum. Two independent quantum paths 
were used to "populate" these continuum 
states (sec Fig 1). The two paths were (1) a 
two-photon non-resonant electron 
intersubband transitions[6] at 10.6um to 
excite electrons from the ground level to the 
symmetric state IE,S> and (2) a linear 
absorption at 5.3umvto excite electrons to the 
antisymmetric wave IE,A>. These 
simultaneously excited states interfere and, 
depending on the phase ((Pio.6'95.3) ar,d the 
intensity of each beam, the electron can be 
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>; 200 
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1-photon path 5.3)un 

\AAM/W 

Non-resonant 2-photon 
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-40   -20     0      20     40 -40   -20     0      20     40 

distance/nm 

Fig. 1 The two quantum pathways from the ground state to 
the energy level IE> in the continuum. 

partially or completely described by a positive or negative progressive wave. One can estimate the current 
density j resulting from the interference: 

L   h m' ^l + {{m' k/mk' -mk'/m' k)/2) sin2 {led) 
(1) 

where m and m' stand for the effective mass in the well and the barrier; k, k' represent the longitudinal free 

electron momentum in the well and the barrier with an energy E; u.( ' and u.'1' are the dipole moments of 
the linear and quadratic absorption; Ea and E2u> are the amplitude of the fundamental and the second 

harmonic field; Dw is the one-dimensional density of state; L is the superperiod of the structure; ns is the 
electron concentration in the QWs; T is the free electron collisional relaxation time. Practically, the sin 
function in this expression implies that by adjusting the phase difference Acp = 2cp106 -<p53 the electron can 



be directed to the right or to the left of the quantum well. The expresion within the square root describes the 
energy dependence of the dipole moment between the symmetric and antisymmetric states, and therefore the 
strength of interference. 
In our experiment, the 5.3(im photons come from the second harmonic of a 10.6um CO2 hybrid TEA laser. 
The relative phase of the co-linear 5.3 and 10.6um beams is varied by passing the two beams through a 1" 

NaCl crystal mounted on a 
rotating stage (see Fig. 2). After 
amplification, the signal are 
recorded on a digital scope and 
gated integrators. The figure 3 
shows a scan of the 
photoresponse of a detector 
when one rotates the salt crystal. 
The sign of the photocurrent can 
be inverted by a rotation of the 
salt crystal of few tenths of 
degrees. From the period of the 
fringes the deduced dispersion 

• n,„ of our NaCl window is 

SF^He Sv 
detector 

'2(0 

Fig.2 Experimental set-up of the coherent-control experiments 
2.54 xlO , which is 7% lower 
than the data book value. As 
described above by Eq.l, the 

amplitude of oscillations varies linearly with the 10.6pm intensity. We checked that this signal is strongly 
sensitive on the polarization, which is expected for intersubband excitation in n-doped GaAs/GaAlAs QWs. 
Other coherent-control experiments using bound-to-bound transitions in asymmetric InGaAs/GaAlAs 
quantum wells and free-to-free transitions in bulk photodetectors[7] will also be presented. 
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Fig.3 Photoresponse of a 8u.m QW detector vs. the relative phase shift between the 5.3 and 10.6u.rn beams. 
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The spatial (or spatio-temporal) solitons present localized patterns in 
wide-aperture nonlinear-optical systems. Their global features, as well as character 
of their interaction, vary significantly in different systems. In the present paper I 
describe and compare the features of spatial solitons in a number of coherent 
passive and active wide-aperture optical systems with fast nonlinearity. 

1. Spatial solitons in transparent medium with saturable self-focusing. 

In such a medium light power is conserved; for a wide beam a transverse 
instability (filamentation) takes place. There is a family of stable spatial solitons 
with continuous variation of their characteristics (i.e., the soliton maximum 
intensity). Stationary distributions with nonzero topological index (vortices) are 
metastable. Interaction of two spatial solitons is weak if the longitudinal size of 
zone of their strong overlapping is small enough. Then the perturbation theory 
gives only small changes of their parameters. In the opposite case of strong 
interaction, numerical simulations predict different types of inelastic collision, 
including formation of new solitons. 

2. Laser autosolitons. 

Such stable localized dissipative structures exist in wide-aperture laser with 
nonlinear losses (hard excitation of lasing) even without the modulation instability. 
The maximum intensity of a single laser autosoliton is definite. Its transverse velocity 
is arbitrary (in a laser with infinite aperture) or definite (in a laser with spatial 
filtration). Laser autosolitons with different topological indices (including vortices) 
are stable. Interaction of two laser autosolitons may also be either weak or strong. In 
the latter case the number of autosolitons does not conserve. Coupled states of two 
autosolitons are stable. There are autosoliton structures rotating with constant angular 
velocity ("planetary systems"). Reflection of laser autosoliton from the mirror edge 
may result in cardinal changes of its type. 

3. Diffractive autosolitons in driven nonlinear interferometers. 

For their existence the filamentation is not necessary. In absence of 
filamentation there is a graphical interpretation of diffractive autosoliton as a 
coupled state of switching waves. These localized dissipative structures have 
definite maximum intensity and discrete spectrum of their width. Transverse 
velocity of a single diffractive autosoliton is zero or nonzero constant in the 
interferometer without or with spatial filtration, respectively. There are coupled 
diffractive autosolitons, both transversely motionless (symmetric pairs) and 
moving (asymmetric structures). 
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We review the recent progress both in the theory and 

experiment on amplification without inversion (AWI) and discuss 

the prospects for the further development of this rapidly 

extending domain of investigations. 

We concentrate mainly on the analysis of those models which 

predict a possibility of amplification without "hidden" 

inversion in any atomic states basis. The major attention is 

paid to the problem of self-consistency of such models. 

Their analysis until now was traditionally based on the 

Maxwell-Bloch equations, where either incoherent or coherent 

pumping were incorporated into the set of equations, 

phenomenologically. In order to be sure that amplification 

without "hidden" inversion is a real observable process one 

needs to turn to the self-consistent analysis. 

We concentrate mainly on two simplest closed three-level 

schemes:(i) scheme with both radiative pumping and radiative 

decay to a common level involving no coherent pumping (ii) so- 

called P-scheme with a .microwave coherent pumping. Our 

analysis is based on the self-consistent master equations 

derived for the schemes under consideration from the first 

principles [1,2] . 

In the distinction from the phenomenological treatment such 

self-consistent    analysis    verifies    impossibility    of 



amplification without inversion in the closed three-level 

system involving no coherent pumping. It shows also a 

modification of the inversionless amplification conditions in 

P-scheme caused by field-dependent spontaneous relaxation. 

Both a character and a magnitude of these modifications 

depend essentially on the position of the adjacent level 2 with 

respect to the operating levels 1 and 2. The most drastic 

changes correspond to the crossing between the ground state 1 

and the lower dynamic Stark level. Such crossing results in the 

reverse of the spontaneous emission direction between these two 

levels. It may provide a new mechanism of inversionless 

amplification based on the depletion of the ground state and 

population trapping of atoms into the dynamic Stark level. 

We discuss also the applicability of the above results to 

the nuclear transitions as well as the advantageous of 

different schemes of inversionless amplification for a 

realization of the gamma-ray laser which is one of the most 

attractive goals. We show that a choice of the appropriate 

scheme depends essentially on the relaxation time of population 

of the upper operating level Tx. In case of the short-lived 

isomers {T1 < 104 s) a double A scheme is the most appropriate 

while in case of the long lived isomers (Tx > 104 s) one should 

turn to a three-level scheme with a coherent pumping. The 

estimates show that a requirement for an incoherent pump rate 

may be essentially weakened in the inversionless amplification 

schemes. However the weakness of the nuclear transitions 

results in a hard requirement on the intensity of the coherent 

pumping. 

This research was partially supported by Russian Foundation 
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Solid-state microballs are proposed as small-size optical bistable elements. The bistability 

condition for a semiconductor material is derived. It is shown that the bistability condition can be 

fulfilled for microballs as small as 10 micrometers in diameter. 

Summary 

Optical bistability is a topic of research pursued for more than thirty years [1], since the origin of 

optical computers and their association with small optical bistable elements. The classical model 

for optical bistable elements called for a resonant absorbing medium inserted in a cavity. Important 

theoretical and experimental results were obtained using this model, but technological difficulties 

prohibited realistic engineering. Thus, the search for a realistic optical bistable element continues. 

A possible way to solve the problems associated with the development of realistic bistable 

optical elements is by using solid microballs. If the microballs are made of a sufficiently large 

dielectric susceptibility, we can obtain the necessary associated high-Q electromagnetic field 

modes, commonly called the whispering-gallery modes, inside this ball. An experiment [2] 

shows that the Q of the quartz balls of diameter of 140 u.m reaches 10^. It decreases as the ball 

diameter decreasing but is significant (10^) even for the diameter of just 14 fim. Recently, quartz 

microballs were used as an external cavity for frequency stabilization and linewidth narrowing of 

semiconductor laser radiation [3]. 

Pure quartz is not a suitable material for optical bistable microball elements because a 

resonant, well-structured absorption line is required for existence of optical bistability. The 

bistable microball can be made of different solid substances which are widely used as laser 



materials. In particular semiconductor materials appear very attractive. Semiconductors are good 

materials for a high-Q microball cavitiy because it has a large refractive index. GaAs, for example, 

has an index of 3.6. Therefore, it is possible to expect that the Q-factor of a cavity made of 

semiconductor will decrease less as its diameter decreases than the decrease of the Q-factor of the 

quartz ball when its dameter decreases. 

It will be shown in our paper that the bistability condition for semiconductor materials has 

the form 

ontTc— >3A/3 (1) 
c 

Here o is a crossection of the band-band transition; nt is a carrier concentration in a carrier band 

corresponding to the transparency condition; a is a line width enhancement factor; xc is the 

photon lifetime in the cavity; c is the speed of light in the material. Using standard values for 

semiconductor parameters we show that condition (1) can be satisfied for microballs as small as 10 

micrometers in diameter. 
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Intracavity frequency shift by a highly efficient acousto-optic Bragg diffraction element 
modifies emission properties of the laser as has been demonstrated for dye-lasers /l - 5/ 
and diode lasers /6/. Here, we investigate the response of a Titanium-Sapphire laser to 
such manipulation. We show that the interplay between intracavity frequency shift, fre- 
quency selective elements, self-phasemodulation in the gain medium and gain dyna- 
mics, leads to a very robust novel type of self starting modelocking. 

The variation of the output power vs pump power, shown in Fig.l, exhibits several cha- 
racteristically different regimes of operation and shows a pronounced hysteresis. Above 
threshold, region 1, pulsation of the laser is observed, which is best described as sustai- 
ned spiking. The repetition rate R of the pulses increase with pump power P from 310 
to 490 kHz while the spectral envelope shifts towards lower frequencies (the frequency 
shift induced by the Bragg diffraction element is to higher frequencies, away from the 
transmission profile of the 200 GHz free spectral range etalon). At about P = 8.5 W the 
slope efficiency changes suddenly as does R which reaches values near 800 kHz while 
the spectral envelope settles again at higher frequencies. When P increases further irre- 
gular fluctuations around a growing continuous emission level, underlying the gra- 
dually dissappearing pulsation, becomes more prominent (region 2). At a well defined 
value of P = 17 W self starting modelocking is observed accompanied by a shift of the 
center of the spectral envelope to lower frequencies to a value near the transmission 
maximum of the etalon. The pulse length is about 50 ps. Modelocking is maintained 
when P decreases (region 3) to values as low as 8 W where the character of the emission 
changes again to sustained spiking. 

Model calculations reproduce the observed features well. Analysis of the results of such 
calculation reveals that the modelocking derives from the competition of the frequency 
shift induced by the acousto-optic modulator, which is to higher frequencies away from 
the transmission maximum of the etalon, and a frequency shift induced by the transmis- 
sion properties of the etalon. At a high pump power broadening of the spectral envelope 
due to the nonlinear response of the gain medium (pulse shortening) become relevant 
and enhances the shift related to the etalon. The latter shift is towards the transmission 
maximum of the etalon. When it exceeds the acousto-optically induced shift to higher 
frequencies losses become smaller, the peak power of the pulse increases and the spec- 
tral broadening is further enhanced. As a result the center of the spectral envelope is 
driven to the transmission maximum, a distinct increase in output power is observed 
and robust modelocking is established. Further analysis of these results indicates that 
this concept may lead to modelocked ps-pulses of controllable variable pulse length. 
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and is maintained when P is subsequently decreased to 8 W. 
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I. INTRODUCTION 

Since its discovery in 1990,1 the self-mode-locked 
(Kerr-lens mode-locked) laser has developed rapidly. To- 
day, with Ti:sapphire as the active medium, such lasers 
have produced pulses of less than 10 fs.2 

The spatial evolution of the beam in the cavity of a 
self-mode-locked laser has been studied by accounting 
for physical effects such as Kerr nonlinearity,3'4 gain,5 

and thermal lensing.6 An important effect that has not 
been included in these studies, however, is that of nonlin- 
ear coupling among the beam parameters in the x and y 
dimensions. This effect is important in self-mode-locked 
lasers that use Z- or X-shaped cavities because the beams 
in such lasers are elliptical rather than circular. This 
ellipticity affects the intensity-dependent nonlinearities 
such as Kerr, thermal, and gain nonlinearities and re- 
sults in a coupling among the x and y beam parameters. 
Previously, we reported a method for including nonlinear 
coupling and showed that such coupling can dramatically 
alter laser behavior.7 

The temporal evolution of the pulse in a self-mode- 
locked laser has also been studied,8'9 but without fully 
accounting for the nonlinear coupling among the beam 
(pulse) parameters in the x, y, and t dimensions. This 
coupling comes about because the intensity-dependent 
nonlinearities are affected by the pulse width in t as well 
as the beam widths in a; and y. 

In this paper, we present two new techniques to ac- 
count for the effects of nonlinear coupling among beam 
(pulse) parameters in the x, y, and t dimensions. We find 
that, under conditions typical of a self-mode-locked laser, 
these two techniques give errors that are relatively small. 
By comparison, techniques that neglect nonlinear cou- 
pling give errors that are much larger. To demonstrate 
the importance of nonlinear coupling in cavity calcula- 
tions, we apply these techniques to a specific Ti:sapphire 
laser and show that nonlinear coupling can cause large 
qualitative changes in laser behavior. 

II. GENERAL FORMULATION 

Calculations for a self-mode-locked laser cavity can 
be carried out accurately using the beam-propagation 
method (BPM)10 with three-dimensional fast Fourier 
transforms (3D-FFTs). Such a technique has not been 
applied to a thorough treatment of self-mode-locked 
lasers, however, because of the vast computing resources 
that would be required. 

To derive the new techniques, we write the electric field 
E in terms of the electric field amplitude A, 

E(v, T) = A{v, T) exp(iß0z - iu,0T)/2 + c.c,        (1) 

where ß0 = now0/c is the propagation constant 
and T is time in the laboratory frame of reference. 
We let t be the time with respect to the center 
of the pulse and define the normalized amplitude as 
u(x,y,t;z)    =    A(x,y,t;z)/y/M(z),    where   M (z)    = 

Jff-oodxdydt\Mx,y,t;z)\2. 
We can obtain a computational technique that is much 

faster than a three-dimensional numerical technique if 
the amplitude is separable in x, y, and t; that is, if 

u(x,y,t;z) = ux{x; z)uy(y; z)ut(t; z). (2) 

This assumption is not precisely valid when intensity- 
dependent nonlinearities are present, but it is often ap- 
proximately true for self-mode-locked lasers. 

We have shown that if Eq. (2) is valid a beam prop- 
agating under the influence of diffraction, second- and 
third-order dispersion, and Kerr nonlinearity evolves in 
accordance with the three-coupled differential equations, 

. dux 
1 dz 

dz 

.dut 

1 d2ux 

~2ß0 dx2 

1 d2uy 

2ß0 dy2 

}2„ 

2TT     U 
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2TT     U 

ßoSxSt Tc 

ß2d2ut      .ß3d
3ut 

+i- 
2n      U 

2   dt2 6   öi3       ßo6x6vPc 
ut\2ut. 

(3a) 

(3b) 

(3c) 

Here ß2 and ß3 and the group-velocity-dispersion and 
third-order-dispersion parameters, respectively, U is the 
pulse energy, and Pc = 2Trn0/ß$n2 is the critical 
power.11 The effective width in the v dimension, 6V = 

(^f_oo luf|4divj , accounts for the nonlinear coupling. 

We can solve Eqs. (3) using the BPM with lD-FFTs. 
We have derived a still faster computational method if 

the spatial and temporal profiles (e.g., Gaussian, hyper- 
bolic secant) do not change significantly during propaga- 
tion. The second moment of the width in the v dimen- 
sion with respect to the intensity distribution is defined 
as pi =^2) - <„)*, where (u2) = ^v2^2 &v and 

(v) = f-oo^Wv^dv. The rms width of the beam pv is 
the square root of the second moment. 

Neglecting third-order dispersion and assuming the ini- 
tial condition (u) = 0, we can show that the evolution of 
the beam is governed by six coupled equations, 
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where i/ equals x, y, or t. Here h is the (small) step 
size, dx = dy = l//?o and dt = -ß2 are the dispersion- 
diffraction parameters, Zd„ = 2pl/dv is the dispersion- 
diffraction distance (which may be negative), and the 
subscript "1" indicates that a parameter is evaluated at 
the initial position z\. The chirp parameter C„ is re- 
lated to the radius of curvature by Rv = —ZdvlCv. The 

three-dimensional ellipticity factor ev — pißy/^PxPyPt 
provides the nonlinear coupling in the equations. The 
quantity cr2 is the beam-quality factor (also known as 
the times-diffraction-limit number or M2).12 The three- 
dimensional nonlinear shape factor is i)xyt = VxVyVt, 
where r\v = 6gu/6v and g indicates a Gaussian profile. 
For a beam that has a Gaussian profile in x, y, and t, 

ai    — 1 and r)xyt = 1. 

III. RESULTS 

Equations (3) or Eqs. (4) may be used to determine 
how a beam (pulse) evolves both in space and time. For 
simplicity, however, we here consider the example of a 
self-mode-locked laser operating in the quasi-cw regime in 
which the pulse width inside the cavity is approximately 
constant (a reasonable assumption for a 100-fs laser). In 
this regime, we may neglect the action of the prism pair. 
We let the length of the Ti:sapphire crystal be 1.5 cm, 
the distances from the folding mirrors to the crystal be ' 
4.85 cm and 4.95 cm, and the distances from the folding 
mirrors to the flat end mirrors be 80 cm. We let the radii 
of curvature of the folding mirrors be 10 cm, the angles 
of the folding mirrors be 27°, and the power be half the 
critical power. 

Figure 1 shows the results of the calculations. We see 
that, when nonlinear coupling is neglected, the laser has 
two modes that are stable against perturbation, but that 
when nonlinear coupling is included, the laser has only 
one mode. Such large effects are not restricted to the 
example given here, but may be seen in many differ- 
ent cavities, both near the centers and the edges of the 
laser stability regions. The numerical results obtained for 
Fig. 1(b) using the BPM and the second-moment equa- 
tions were found to agree to within 1% at all points. 
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We  report   on  the  study  of  a  model   for   intracavity  second  harmonic  generation 
introduced  by the group of Roy  [1].  The modal  intensities  I     and the population 

differences G    are determined by the evolution equations 

M P 

i)dl 
P 
/dt = Ip[Gp-a + geIp-2ge[lr-2glC[lr] (1) 

r=l r=l 

M+P 

dG /dt = 3- - G   [l + (1 - ß)I    + ß  Y  I 
P P{ P L    i (2) 

r=l 
where a is the cavity loss parameter, ? is the small signal gain which is related 
to the pump rate, ß is the cross-saturation parameter and g is a geometrical 
factor whose value depends on the phase delays of the amplifying and doubling 
crystals and on the angle between the fast axes of these two crystals. We have 
assumed that a, ß and y are mode-independent, in good agreement with the 
experimental results [1, 2]. The parameter T) equals T /T    where T    and T    are the 

C       I c I 
cavity round trip time and fluorescence lifetime, respectively. The electric field 
modes can oscillate in one of two orthogonal polarizations. There are M modes in 
one field polarization and P = N - M modes in the orthogonal polarization. The 
mode-mode coupling is characterized by the parameter g when the two modes have the 
same  polarization   and  by  the  parameter  gj   =   1   -  g  when  the  two  modes  have 

orthogonal polarizations. 
From the experimental data it has been determined that 

0 < e « 1,        a, ß, r, 7)/c = 0(1) (3) 

The physical constraints 0 < g < 1 and 0 < ß < 1 have also to be imposed. 

Eqs.(l, 2) have a simple steady solution in which all modal intensities are equal 
in a given polarization:  I    = I for 1 s p < M and I    = J for 1 s q < P. The same 

degeneracy holds for the population differences. For the range of parameters (3), 
the steady state is destabilized by a Hopf bifurcation [3]. We report on the 
analysis of this Hopf bifurcation in the domain 

5    =   \i - rh|   « 1,      c = cQ + SCj + 0(52) (4) 

where ?h is the linear gain at the bifurcation. A different domain of parameters 

was studied in [4] without leading to an answer for the stability of the periodic 
solutions. However the same classification of the solutions emerges in the present 
analysis. Let us introduce the expansions 

Jp = lh + 5t a
p

(cr)elT + c-c-  1 + 0(52),      p = 1,  .... M (5) 

Jq = Jh + 5[ Pq
(cr)elT + c-c-  1 + 0(52),      q = 1,  ..., P (6) 

where cr = 6 t is a slow time while T = wt with u = 0(1/17). A first result is that 



the solutions of (1) and (2) must verify the global sum rule Xa  (cr) +  > ß  (er) = 0. 

p q 

AD1 solutions They occur when all modes are in the same polarization (M = N or P 

= N). The expression a    = p(cr)exp[27rimp/N + i9(cr)] verifies the sum rule with 1 s 

m £ M - 1 and 1 £ p £ M: ail solutions have the same time dependence but are phase 
shifted by an equal amount 27im/N. The value of m determines the relative time 
ordering of the modes. The real amplitude p verifies the equation 

dp/dcr = pt^Ce) - p2£3(e)],      ^(0) * 0,      ^/^ £ 0 (7) 

The important property is that £_(0) = 0 for the AD1 solutions. 

AD2 solutions    They  coexist  with  the  AD1  states  and  are  of  the  form  a   (<r)  = 
  I m 

r(cr)/Q  and  a  (cr)  =  -  r(o-)/R,  with   1  s m  s Q  and  l^n^R  =  N-Q.  The  real 
n 

amplitude of r(cr) verifies eq.(7) with £„(0) * 0. These solutions cluster into two 

subgroups,   all   modes   in   one  subgroup   being   inphased   while  the  two  subgroups 
antiphase. 

AD3 solutions    The  sum  rule must  be verified  in each  polarization: Voc (cr)  = 0, 

)ß (cr) = 0. Hence, in the particular case M = N - 1, P = 1, we have ß = 0. Seeking 
L, q 
a   solution   of   the   form   a     =   p(cr)exp[27rimp/N   +   ie(cr)]   leads   to   an   amplitude 

equation   for   p   which   is   eq.(7)   with   £,(0)   *   0.   The   coefficient   £_(0)   remains 

finite for M = 2 but vanishes for M >  2.  For M = N -  1 and P = 1,  the mode P 
oscillates at a higher frequency than the modes M. 

AD4 solutions The solutions of the global sum rule are of the form a(cr) = p(<r)/M 

and ß(<r) = - p(<r)/P where p verifies eq.(7) with £_(0) # 0. 

Near the Hopf bifurcation, we can study the scaling law I. - I. ,   ~ {■% - y, ) J 
j.max       j,h h 

where I. is the maximum amplitude of the intensity of mode j and I „ ,   is its j,max j,h 
intensity   at   the   Hopf   bifurcation.   When   £,A0)   =   0,   the   bifurcation   is   nearly 

vertical and the exponent p. depends on t). When £„(0) * 0 for all modes, p. = 1/2. 
J 3 J 

This is the case for the AD2 and AD4 states. For AD3 and M = 2 with P = 1, we find 
p   = p    = 1/2 but p_ = 1 for the mode whose amplitude is ß. 

[1]      R. Roy, C. Bracikowski and G. James in Recent Developments in Quantum. Optics, 
R. Inguva ed. (Plenum, New York, 1994) pp.309. 

[2]     K.   Wiesenfeld,   C.   Bracikowski,   G.   James   and   R.   Roy,   Phys.   Rev.   Lett.   65 
(1990) 1749. 

[31     J.-Y. Wang and P. Mandel, Phys. Rev. A 48 (1993) 671. 
[4]     J.-Y.   Wang,   P.  Mandel  and  T.  Erneux,   Quant.   &  Semiclass.   Optics  (1995,   in 

press). 
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The dynamic theory of multimode class B lasers involves two types of 

models. The rate equations approach proposed by S.Tang, H.Statz and 

G.DeMars [1] ignores the inversion gratings induced in a laser medium by a 

joint action of different modes and pulsing, therfore, with beat frequencies. 

Such an approach disregarding phase-sensitive mode-mode coupling is 

valid when the intermode frequency spacing is large compared with the 

inversion relaxation- and field decay rates in the cavity [2]. In the opposite 

limiting case phase-sensitive mode-mode coupling is essential, which 
noticeably tells on the properties of these models [2,3]. 

The characteristics features of a multimode laser model without phase- 
sensitive interactions are: 

- only one steady-state solution is globally stable [4]; 

-the number of relaxation oscillations coincides with the number of lasing 
modes [5-7]; 

- the relaxation oscillations frequencies and decrements have a relatively 
weak dependence on laser parameters. 

These properties account for the mutually simple conformity between the 

systems of optical modes and the relaxation oscillations of laser. As a 

result, the intensity fluctuation spectra of individual modes acquires a 

specific form. Most pronounced in the weakest mode spectrum is the 

resonance peak at the lower relaxation oscillations frequency; in the spectrum 

of a mode coming next for intensity it is the neighbouring peak that shows up 
most vividly, etc. 

However, regularities in the spectra of low-frequency fluctuations 

depend not only on the laser parameters, but on the properties of noise 

sources existing in different modes. For the first time this effect (factor) was 

noticed in   [5].   The experimental works [8-10] in which intensity fluctuations 



spectra of solid-state lasers modes were obtained with good resolution put 

forward a problem of constructing a more exact theoretical model with a view 

to a qualitative comparison of theoretical and experimental data. This 

problem is dealt with in our paper. 

In this paper we consider a set of rate equations for a multimode laser 

with Langevin forces included in the right-hand parts of the equations for mode 

intensities. The power spectra of individual modes and of total intensity for a 

three-mode model given different correlations between the noise sources 

are calculated. The numerical results have been compared with the 

experimental data from [8,9], which has led the authors to a conclusion 

about the existence of correlation between the noise sources. Possible 

reasons of correlation, including a likely effect of technical fluctuations 

of laser parameters are discussed. 
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It is known that the most effective for phase-locking of lasers in an array is global 
or all-to-all coupling, where an equal part of every laser beam is splitted on N-1 beamlets 
directed each to the corresponding laser. This complicated schematics can be realized 
easily, for example, by placing a stop at the common focus of the array radiation. This 
global coupling permits to keep lasing of all lasers in the array to be coherent inspite of 
some time independent eigenfrequencies spread. In fact, it is a matter of magnitude of this 
random spread, which is specified usually by a mean square root detuning, delta. Being 
delta large in comparison with a coupling strength, M, the phase locked operation 
violates, and complicated dynamics may occur. In particular, in Ref.l it was shown that 
for the globally coupled array with the eigenfrequencies distribution having a Lorentzian 
form transitions between different dynamic modes may be observed. Authors of [1] 
neglected an inertia of an active medium. This asssumption is far from being justified in 
most experiments. Here it is demonstrated that the active medium inertia causes a new 
effect called by us cooperative field phase-locking. 

The system of nonlinear equations for wave field amplitudes in each laser of the 
array with global coupling and kinetic equations describing the time variation of gain in 
each laser were calculated numerically. The eigenfrequency in the given laser was taken as 
the random variable fixed in time. The eigenfrequency detunings were supposed to be 
uniformly distributed in the interval from-A/2 to +A/2. The parameters that govern the 
mode of operation of the laser array are A and small-signal gain, go, if the kinetic 
relaxation time is taken fixed. 

Along with numerical calculations, analytical studies were carried out which result 
in explicit expressions for the critical detuning, which were in an excellent agreement with 
numerical studies. It was shown that for go - 1 < M, when independent lasing of the 
single laser is impossible, the increase of A causes the total power of laser array to 



diminish and become zero at some critical value for A. Below this critical value lasing was 

phase locked. 
For sufficiently high small signal gain, go -1 > M, the critical detuning was found 

above which the stationary phase locked operation becomes unstable. The dynamic mode 
depends on the kinetic relaxation time. In particular, when the relaxation oscillation period 
is close to the average field modulation period a new phenomenon was found. The 
temporal co-operative phase-locking of lasers was observed in comparatively short pulses 
almost regularly repeated in time. The peak intensity can be 1.6 times greater than the 
intensity of the ideal laser array. The time averaged intensity achieved 0.4 of the ideal one. 
Explanation of this phenomenon and discussion on possibilities of its extension to more 

realistic situations will be presented in the talk. 
1. Z. Jiang, M. McCall, J. Optical Soc. of America, 10, No. 1, 155 (1993). 
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We propose two correlation functions derived from the ideas of statistical mechanics to character- 
ize generic dynamics including the antiphase states and clustering in globally coupled nonlinear 
systems. Explicit results are obtained for the case of intracavity second harmonic generation in 
multimode lasers. Our analysis indicates the formation scenario of antiphase periodic states and 
dynamical independence of clustered modes. The same analysis is applicable in general to a dissi- 
pative dynamical system with many identical or similar elements. 

The laser problem can be described by the set of equations 

dh/dt = K(Gk - a - gelk - 2e ]P ßjkIj + sk)Ik, 

dGk/dt = 7 - (1 + Ik +ßJ^I:)Gk, k = 1,2,3 ,N 

(1) 

(2) 

Here, t — T/TJ is the normalized time (77: population lifetime), K = TJ/TC (TC: photon lifetime), Ik 

is the intensity for the k-th longitudinal mode, Gk is the nonlinear modal gain, sk is the injection- 
seed signal and other parameters are the same as those in [1]. 

The first function we study was proposed recently by Otsuka and Aizawa [2].   It is the gain 
circulation G,, between modes i and j which is defined as 

Gij = GiGj — GiGj. (3) 

Its property is that a positive (negative) Gi} implies a gain flow from mode i (j) to mode j (i). 
To see how this function can be used, let us consider the pulsed antiphase states which have been 
recently analyzed numerically [3], where there coexist (N -1)! antiphased solutions with different 
orderings of the sequence {Ik} when all modes are in the same polarization. In Fig.l-a, we display 
an antiphased solution in the case of single polarization [M, P] = [4, 0]. In Fig.l-b, we display the 
gain circulations relative to mode 1. At the pulse leading edge t = a, all the gain flows from mode 
1, G\j(t = a), are positive and practically identical (i.e., uniform coupling). Therefore, all modes 
except mode 1 are equally probable candidates for the next pulse. However, at the trailing edge 
of that pulse t = 6, it is found that only mode 2, which transfers back almost the same amount of 
gain to the previous mode 1, can emit the next pulse. The same scenario is observed for the gain 
flows at the leading and trailing edges of each pulse. This implies that a symmetric gain flow path 
connecting antiphased modes is dynamically created. 

When the coupling is uniform, the system admits maximal sensitivity to a mode-dependent 
selective perturbation. Using this property, we apply an injection-seeding method to switch between 
the (N -1)! equivalent antiphase states. We inject during a single period of the antiphased state 
a sequence of N seed square pulses in the desired new sequence. Each pulse is timed to occur at 
the leading edge of a pulse of the original sequence. Fig.l-c illustrates the transition between the 
mode sequence { 1, 2, 4, 3 } of Fig.l-a to the mode sequence { 1, 2, 3, 4 }. 



As the number of modes increases in the globally coupled system, clustering becomes a prominent 
feature [4]. Clustering implies that a subset of the modes evolve differently from the other modes. 
As an example of chaotic clustering, we display in Fig.2 a case where M = 3 and P =2. In Fig.2-a, 
there is antiphase dynamics with the periodic sequence {1, 5, 2, 4, 3, 5, 1, 4, 2, 5, 3, 4}. This 
sequence results from the fact that each of the two orthogonal polarizations are periodic and have 
periods which are in the ratio of the mode numbers 3/2. In Fig.2-b, chaotic clustering takes place 
and the M modes are chaotic while the P modes seem periodic. Finally, in Fig.2-c, all M + P = N 
modes are chaotic. 

To decribe clustering, we introduce global correlation functions defined as 

r0 = ijJlh-i.Uh = ü/ij-i./uJlh. (4) 

The product j, J[kuj ^ represents the total intensity transfer from all modes to mode j. Ti} 

includes the contributions of all the mode intensities instead of only those of modes i and j. Hence 
it describes the global intensity circulation between modes i and j. In the following, we adopt the 
convention that the indices p and p' refer to the P modes while the indices m and m' refer to the 
orthogonal M modes. In the antiphase regime of Fig.2-a where all modes are periodic, there is 
practically no global intensity flow at all: Tmp = rmm. = rpp. = 0. In the chaotic clustered state 
displayed in Fig.2-b where the modes P are periodic and the modes M are chaotic, the rpm have 
large positive peaks and small negative peaks, indicating a predominant intensity transfer from the 
periodic modes towards the chaotic modes. However, the relevant numerical observation is that 
the sum of the global intensity flows from any periodic mode to all the chaotic modes is strictly 
positive at any time: £m Tpm(t) > 0. Thus, the total intensity flow is unidirectional, from the 
periodic to the chaotic modes. This supports the concept of dynamical independence of clustered 
modes [3]. In the fully chaotic situation of Fig.2-c, there are bidirectional global intensity flows 
between all modes and no cancellation occurs: £m Tpm(t) exhibits positive and negative peaks. 
[1] R. Roy, C. Bracikowski, and G. James, in Proceedings of the International Conference on Quan- 
tum Optics, R. Inguva ed. (Plenum, New York, 1994) pp. 309. 
[2] K. Otsuka and Y. Aizawa, Phys. Rev. Lett. 72, 2701 (1994). 
[3] P. Mandel and J.-Y. Wang, Opt. Lett. 19, 533 (1994). 
[4] G. Nicolis and I. Prigogine:   Self-organization in nonequilibrium systems (Wiley, New York, 
1977). 
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Fig.l Pulsed antiphased solution (a), gain cir- Fig.2 Mode clustering for the partition [M, P] 
culation (b) and injection seeding (c) with [M, = [3, 2]. (ah = 0.14: antiphase periodic state, 
P] = [4, 0]. K = 500, a (cavity loss) = 0.02, ß (b)7 = 0.095: chaotic clustering state, (c) 7 = 
(cross-saturation parameter) = 0.292, 7 (small- 0.0936:  fully chaotic state.   Other parameters 
signal gain) = 0.11, € (SHG coefficient) = 0.05 are the same as those of Fig.l. 
and g (geometrical factor) = 0.5161. 

2 



WE3 

Unified Treatment of Spontaneous Pattern Formation in "2+1" 

Dimensional Optical Systems 

Ross F. Mclntyre, Weiping Lu and Robert G. Harrison 

Department of Physics, Heriot-Watt University, 

Edinburgh, EH14 4AS, U.K., 

Tel: 031-451 3056,      Fax: 031-451 3136, 

E-mail: phyrm@uk.ac.hw.phy 

The emergence of transverse spatial patterns in nonlinear passive and also active optical sys- 

tems is currently a subject of keen interest [1]. Recent theoretical treatments of spontaneous 

spatial pattern formation in passive optics have been developed for various "2+1" dimen- 

sional systems. An interesting feature when one looks collectively at these physical systems 

is the fact that the equations, used to describe them, all have, in form, striking mathematical 

similarities. This suggests that a general formulation can be found to describe these and 

other pattern forming systems and from this the Ginzburg-Landau equation (GLE) may be 

derived to provide a generalised treatment of bifurcations and pattern formations in these 

systems. In this paper the focus of attention is to the formulation of such a generalised 

description and through this to provide a framework for its application to specific systems 

in nonlinear optics and more generally to pattern forming systems in other fields such as 
hydrodynamics. 

In choosing the form of a general equation one must account for the relevant physical pro- 

cesses in the optical-material interactions. Accordingly, we study the following diffraction- 
diffusion system 

rötv = /(v,M) + Z)Axv, (1) 

where v €lRn is our dependent variables, \i is a scalar parameter, D is the matrix of 

diffraction-diffusion coefficients, r is the matrix of relaxation times, / is our nonlinear oper- 

ator, and Aj_ is the generalised transverse operator which describes all possible transverse 

spatial operations that allows us to write A± = —K*, where K2 is some real function of the 

critical wavevector k2. Examples of such spatial operators in optics are the ones appearing 

in Swift-Hohenberg type models, A± = (V2
± + k2)2, and reaction-diffusion type equations, 

A± = V*. 

The GLE, which is written in the form of ref [3], is derived from multiple scales analysis 
using equation (1) in which the real coefficients 



T = (/*-/Omi. 

h0 = 2m2, 

L     5 

2 K = öm3 ~  gm2A'c-2' 

/l9 = 7TI-, -m*K-2. 42c 

(3) 

(4) 

(5) 

are determined from relatively straightforward scalar products, m1? m2, and m3, which 

are related explicitly to the physical paramters of the system. This leads us naturally to 

reinterpret the well known stability properties for roll and hexagon patterns in terms of our 

scalar products; the emerging pattern behaviour is found to depend opon the quadratic, m2, 

and cubic, m3, terms as seen in Fig. 1 which displays five distinct pattern forming regions. 

Apart from the fairly conventional and well studied hexagon roll transition domains we 

observe regions where there is a direct bifurcation into turbulence. Indeed in one such 

region we conjecture that the turbulance gives way to stable rolls as the control parameter 
is increased. 

As illustration, we apply this general theory to a thin slice Kerr ring cavity system in a more 

generalised form and show that pattern formations are altered by the inclusion of diffusion 

and finite response of the medium, leading to new stable honeycomb patterns for focusing 

media and further that the inclusion of diffusion alone may lead to a hexagon-roll transition 
as seen in Fig. 2. 
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Fig. 1. Pattern behaviour diagram for the diffraction- 

diffusion system in {m2,m3) parameter space. 
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Fig. 2. Bifurcation diagram of the hexagon and 

roll states as a function of the control paramter. 

[1] See for example N. B. Abraham and W. Firth. J. Opt. Soc. Am. B 7, 951 (1990); L. A. 
Lugiato. Phys. Rep. 219, 293 (1992); 

[2] S. Ciliberto, P. Coullet, J. Lega, E. Pampaloni, and C. Perez-Garcia. Phys. Rev.  Lett. 
65(19), 2370 (1990). 

[3] M. Tilde, P. Mandel and R. Lefever. Phys. Rev. Lett. 73(5), 640, (1994). 



WE4 

Spatiotemporal chaos due to attractor merging in a Class-C-Laser 

M.Sauer, F. Kaiser 

Institute for Applied Physics - Nonlinear Dynamics,Technical University Darmstadt,Hochschulstr.4a, 

64289 Darmstadt, FRG 

Phone: + 6151 163379, Fax: + 6151 163279, E-mail: markus@optics.iap.physik.th-darmstadt.de 

The investigation of transverse laser dynamics has attracted wide interest during the last years. 

Research effort has mainly been focussed on the investigation of wide-gain-section lasers [1] with 

large aspect-ratio on the one hand and lasers with stable resonators which can be described 

by a low number of linear cavity modes and correspond to small aspect ratio on the other 

hand[2]. Both situations can be adequate descriptions of experiments. In order to clarify 

the connection between dynamics governed by few cavity modes and situations of wide-gain- 

section we investigate the behaviour of a Class-C-Laser with a stable resonator. However, we 

do not restrict the dynamics to only a few modes but perform direct numerical simulation 

of the Maxwell-Bloch-equations. We observe a transition into spatiotemporal chaos due to 

merging of two attractors which coexist because of the symmetry breaking induced by left- and 

right-travelling waves respectively. The model reads [1]: 

BE „     .r, s        d
2E 

— = -„E + t6(x)-ia— + ß1P (1) 

-£- = -1i(l + iuab)P + ß2EN (2) 

— = -12{D - D0(x)) - -ß2(EP* + E*P) (3) 

Here, 6(x) takes into account the curvature of the cavity mirrors. For explanation of the 

remaining variables and parameters, see [1]. Since the cavity modes in general oscillate with 

different frequencies depending on their order, they can individually be tuned to resonance 

with the atomic transition frequency. Slightly above the first laser threshhold, the behaviour 

of the system is then governed by the cavity mode whose oscillation frequency lies nearest to 

the atomic line. For higher pump levels instabilities for modes higher than the ground mode 

occur which are due to spatial hole burning. These solutions involve contributions of a high 

number of linear resonator modes and are reminiscent of the recently reported travelling wave 

solutions in geometries where the influence of transverse boundaries is strong [3].   The wave 



travelling in one specific direction accounts for symmetry-breaking of the beam profile (left). 

For higher pump strength, the dynamics of the system involves periodic and quasiperiodic 

states, however, with the wave travelling to one direction only (Fig. 1 (center)). Of course, 

an attractor with a right-travelling wave coexists. These two coexisting attractors merge at a 

certain point due to an attactor crisis and the system performs intermittent jumps between the 

now merged attractors (Fig.l (right)). It is therefore an example of crisis-induced intermittency 

due to attractor merging in a spatially extendend system as has previously reported for the 

Ikeda-system [4]. At the same time, the crosscorrelation of the signal decreases significantly. 

The merged situation can thus be classified as spatiotemporally chaotic. 

0.4 0.1 

Figure 1: left: time evolution a GH(3)-Mode with left-travelling wave, center: just before merging 

with the coexisting state, right: just after merging of the coexisting states 
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In many cases of practical importance, it is desirable to stabilize chaotic lasers by apply- 
ing only small perturbations to some accessible system parameter. An efficient scheme for 
achieving such control was proposed by Ott, Grebogi, and Yorke (OGY) [l] and variations 
of the scheme have been used successfully to control the dynamics of lasers [2]. The key 
idea is to take advantage of the unstable states embedded in the attractor. As the system 
approaches the unstable state, the size of the feedback signal required to keep it there 
vanishes and its smallness is limited only by the noise level in the system. We describe 
an alternative implementation of the OGY scheme that efficiently stabilizes the unstable 
steady-states (USS) of a dynamical system and it can be easily applied to high-speed optical 
systems. 

The control scheme for stabilizing USS's is a specific case of a general feedback algorithm 
recently introduced for stabilizing unstable periodic orbits (UPO's) [3]. Stabilization of 
UPO's is achieved by feedback of a continuous error signal 

oo 

e(t) = cr[i(t)-(i-R)Y:Rk-1i(t-kT)} , (i) 
k=l 

that is proportional to the difference between the present value of an accessible state variable 
£(£) and an infinite series of values of the state variable delayed by integral multiples of the 
period of the orbit r, where 0< R < 1, and cf is a gain vector. Note that the form of Eq. 
1 is closely related to the amplitude of light reflected from a Fabry-Perot interferometer 
suggesting an all-optical implementation. The case R = 0 corresponds to the scheme 
investigated by Pyragas [4] and Lu and Harrison [5], and it was used successfully to control 
UPO's in a laser [6]. The more general scheme (R ^ 0) can stabilize highly unstable orbits 
and it is capable of extending the domain of effective control significantly [3]. 

Optimal control of USS's using the continuous feedback scheme can be achieved when 
the feedback loop is adjusted such that r -* 0, Ä -+ 1, with the ratio (1 - R)/r finite. 
Under these conditions, the feedback signal is determined approximately by the differential 
equation 

de _    d£(t) 

where 7/ = (1 — R)/T. Equation 2 is closely related to the transmission of an high-pass filter 
and the amplitude of light reflected from a high-finesse Fabry-Perot interferometer with a 
short mirror spacing. We emphasize that e(t) vanishes when the system is on the USS 

since d£(t)/dt = 0. Thus, there is no power dissipated in the feedback loop when control is 
successful. Lu and Harrison [5] found that USS's of a laser could be stabilized theoretically 
using a feedback signal given by Eq. 1 with R = 0 for some values of cf and r; however, 
the general case when R^0 was not addressed. 



To confirm theoretically the effectiveness of the proposed feedback scheme, we have used 
it to stabilize the two non-zero USS's of the resonant, homogeneously broadened two-level 
laser. The domain of control is determined by performing a linear stability analysis of 
the laser equations including the effects of the feedback signal. In the first example, we 
investigated 'coherent control' where the feedback signal is generated by filtering a fraction 
of the optical field with a Fabry-Perot interferometer and control is initiated by injecting 
the filtered field into the laser. The injected field is given by 

dE. tnj 

dt 

dE 
= -JfEtnj - c— (3) 

where E represents the laser field. The domain of control for coherent feedback is shown in 
Fig. la where it is seen that stabilization of the USS is effective for arbitrarily large pump 
rates. The domain of control is the same for both phases of the field; the initial conditions 
determine the phase that is stabilized successfully. In the second example, we investigated 
'incoherent control' where the pump rate wp is adjusted about its nominal value w° by a 
feedback signal that is generated by high-pass-filtering a signal proportional to the intensity 
/ of the laser. The pump rate with control is given by wp = w° + e(t) where 

de dl 
— = —7r e + c— 
dt u        dt 

(4) 

The domain of control for incoherent feedback is shown in Fig. lb where it is seen that 
control is also possible for arbitrarily large pump rates and that the range of feedback 
strengths that give rise to successful control is finite. 
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Figure 1 Domain of control for (a) coherent and (b) incoherent feedback with K/7X = 4, 

TfjZT-!- = 0-5, and 7//71 = 0.1. The laser becomes unstable when wp = 13. 
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Chaotic intensity fluctuations of two pump modulated, multimode infrared lasers generated in one 
Nd:YAG crystal pumped by a pair of spatially-separated Argon-ion laser beams have been 
investigated earlier as an example of synchronized chaotic systems. There is an interaction 
between these lasers due to the overlap of the infrared fields which depends on their spatial 
separation [1-2]. 

We report here the results of measurements on an experimental system with single mode, similarly 
polarized lasers. The pump optics have been modified to optimize the range and reproducibility of 
the laser coupling. The mode structure, spatial separation, and intensities of both lasers now can 
be measured simultaneously, as well as their relative frequency detuning. We now present further 
insights into the behavior of both the autonomous (unmodulated) and chaotic, non-autonomous 
laser systems. 

Theoretical analysis of the weak-coupling equations [2] for the autonomous case predicts an 
instability in the vicinity of the phase-locking threshold [3]. Experimental measurements confirm 
the existence of an instability at the spatial separation value predicted. For the non-autonomous 
case, theoretical predictions of the model [see Fig. 1] are compared with experimental data, 
yielding quantitative agreement, particularly for the minimum coupling necessary to achieve 
synchronization for loss-modulation. Fig. 1(a) shows the visibility of the far field interference 
fringes for the superimposed laser beams, V = (Imax - Imin)/(Imax + Imin), which is a measure of 
phase-locking. Fig. 1(b) shows the correlation coefficient r = |ii2/(o"iO"2), |ii2 is the covariance of 
the intensity fluctuations of laser 1 and laser 2 and aj denote the respective standard deviations. 
Measurements of the extent of synchronization as a function of coupling for different modulation 
schemes are presently underway. 

Another set of experiments investigates synchronization using time-delayed bidirectional or 
unidirectional coupling, in contrast to the lateral coupling described previously. Recent theoretical 
work has proposed a possible application of such a scheme in encoding messages in the 
background of a chaotic signal using synchronized lasers [4-6], which has not been demonstrated 
in an experiment yet 
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Figure 1. Theoretical prediction of (a) far-field fringe visibility and (b) correlation coefficient 
versus spatial separation for two loss-modulated, laterally coupled Nd:YAG lasers. A visibility of 
one indicates perfect phase-locking; a correlation coefficient of one indicates perfect 
synchronization of intensity fluctuations. 
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