
Technical Report
CMU/Scl-95-TR-017
ESC-TR-95-017

Carnegie-Mellon University

Software Engineering Institute

Raytheon Electronic Systems Experience in
Software Process Improvement

Tom Haley

Blake Ireland

Ed Wojtaszek

Dan Nash

Ray Dion

November 1995

XWÄiBÜmoW "STAfOSENT" A"

Äpprowd tor pvsM« tvimom
Dtatribatioai Uolktütad

19960126 004
IC Qü&LOT mSPEütiSD I

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administration
of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the
Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Melton University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Technical Report
CMU/SEI-95-TR-017

ESC-TR-95-017
November 1995

Raytheon Electronic Systems Experience in
Software Process Improvement

Tom Haley
Blake Ireland
Ed Wojtaszek

Dan Nash
Ray Dion

Raytheon Electronic Systems

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt. Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1995 by Carnegie Mellon University

This work was created in the performance of Federal government Contract Number F19628-95-
C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a Federally Funded Research and Development Center. The Government of the
United States has a royalty-free government purpose license to use, duplicate, or disclose the
work, in whole or part and in any manner, and to have or permit others to do so, for government
purposes.

This material may be reproduced by or for the U.S. Government pursuant to the copyright
license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA
15212: Phone:1-800-685-6510. FAX: (412) 321-2994.

Copies of this document are available through the National Technical Information Service
(NTIS). For information on ordering, please contact NTIS directly: National Technical
Information Service, U.S. Department of Commerce, Springfield, VA 22161. Phone: (703) 487-
4600.

This document is also available through the Defense Technical Information Center (DTIC).
DUC provides access to and transfer of scientific and technical information for DoD personnel,
DoD contractors and potential contractors, and other U.S. Government agency personnel and
their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Atta: DTIC-OCP, 8725 John J. Kingman Road, Suite 0944, Ft. Belvoir, VA
22060-6218. Phone: (703) 767-8019/8021/8022/8023. Fax: 703-767-8032/DSN-427.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the
trademark holder.

Table of Contents

Foreword vii

Preface ix

1 Background 1
1.1 History 1
1.2 The Business Case for Software Process Improvement 2
1.3 Process Improvement Strategy 3

2 The Raytheon Electronic Systems (RES) Organization 5

3 The Process Improvement Model 7
3.1 The Infrastructure 7

3.1.1 The Organization 8
3.1.2 The SEPG Working Groups 9
3.1.3 The Documented Process 11
3.1.4 The Training Program 13
3.1.5 Tools and Methods 15
3.1.6 The Process Data Center 16
3.1.7 Project Support 18
3.1.8 Process Improvement Planning 19

3.2 Organization/Process Binding 20
3.3 Measurement and Analysis 23

3.3.1 Data Measurement 23
3.3.2 Data Analysis 23

4 Leverage Points 27
4.1 Product Improvement 27

4.1.1 System Definition 27
4.1.2 Requirements Definition 28
4.1.3 Inspections 29
4.1.4 Integration & Qualification Testing 30

4.2 Process Improvement 31
4.2.1 Management Control - Software Development Planning 31
4.2.2 Training 31
4.2.3 Pathfinding 32

5 Quantitative Process and Quality Management 35
5.1 Approach 35
5.2 Results to Date 37

CMU/SEI-95-TR-017 i

41
41
42
45

45
46

47
47
52
54
55
57
57

59

61

Appendices
A Applying SPC to the Software Development Process 63
B Additional Information 69

6 Changing a Mature Process
6.1 Technology Drivers

6.2 Market Drivers

6.3 Business Decisions

6.4 Customer Initiatives

6.5 Benchmarking

7 The Impact
7.1 Cost of Quality

7.2 Software Productivity

7.3 Cost Performance Index

7.4 Overall Product Quality

7.5 Other Organizations

7.6 Personnel

8 Summary

References

CMU/SEI-95-TR-017

List of Figures
Figure 1 Process Improvement - The Process 4
Figure 2 Software Engineering Process Group 7
Figure 3 Metrics - Collection, Analysis, and Feedback 11
Figure 4 Performance Margins Versus Time 24
Figure 5 Sample Technical Performance Measurement Report 25
Figure 6 The RAPID Process 44
Figure 7 Cost-of-Quality Model 48
Figure 8 Cost of Quality Versus Time 50
Figure 9 Software Productivity Increase Versus Time 53
Figure 10 Achieving Project Predictability 55
Figure 11 Defect Density Versus Time 56
Figure A-1 Distribution of Action Item Frequency for Inspections 63
Figure A-2 Action Item Density Versus Inspection Review Speed 64
Figure A-3 Action Item Density Versus Inspection Package Size 65
Figure A-4 Basis for Control Limits 66

CMU/SEI-95-TR-017

iv CMU/SEI-95-TR-017

List of Tables
Table 1 Phase Dependent Margins 24
Table 2 History of Critical Parameters 26
Table 3 Examples of the Process Improvements

Achieved by Root Cause Analysis 37

CMU/SEI-95-TR-017

vi CMU/SEI-95-TR-017

Foreword

This report describes the work of the second winner of the IEEE Computer Society Software
Process Achievement Award. This award was jointly established by the Software Engineering
Institute (SEI) and the IEEE Computer Society to recognize outstanding achievements in soft-
ware process improvement. It is given annually, if suitable nominations are received at the
SEI on or before November 1 of any year. To obtain further information about the award, con-
tact the award coordinator at the SEI.

For the 1995 award, the nominations were received and evaluated by a review committee con-
sisting of Vic Basil, Barry Boehm, Manny Lehman, Bill Riddle, and myself.

As a result of the review, the committee selected the Software Engineering Process Group of
the Raytheon Equipment Division for an on-site visit. Based on the professional presentation
and their comprehensive improvement data, Raytheon was selected as the 1995 award win-
ner. As a condition of the award, one or more representatives of the winning organization write
an SEI technical report on the achievement. This is that report.

Many organizations have found that the lack of adequate data on the costs and benefits of
software process improvement is a significant deterrent to their progress. This award thus em-
phasizes both quantitative measures of process improvements as well as their significance
and potential impact. While no single improvement approach will be appropriate for every or-
ganization and while process improvement methods will evolve, the broad availability of such
explicit improvement information should be of broad and general value.

The granting of this award does not imply endorsement of any one improvement approach by
the IEEE Computer Society or the SEI. The award committee does, however, endorse the
excellence of the work described in this technical report.

Watts S. Humphrey

Chairman, Award Committee

CMU/SEI-95-TR-017
VII

viii CMU/SEI-95-TR-017

Preface

Raytheon began a coordinated effort to improve the way software was being developed in the
fall of 1987, driven primarily by the need to overcome problems with programs overrunning
schedules and budgets and the turmoil brought about by key personnel being moved in crisis
priority to these programs. We recognized that the Software Engineering Institute (SEI) pro-
cess maturity framework provided a feasible road map of gradual improvements which
seemed to address our needs, while also lending guidance as to the sequence in which these
improvement steps could be taken. As with any complicated endeavor, the initial planning re-
quired to solidify an approach took longer than we expected. Not until August 1988 were we
ready to start the program, which we called the Software Engineering Initiative, and refocus
mostly existing (discretionary) funds to carry us through the end of the calendar year. Subse-
quently, the initiative's achievements and updated plans were presented to senior manage-
ment on an annual basis, justifying their ongoing sponsorship, which continues today at a rate
of approximately $1 million per year of discretionary funding.

The Software Engineering Initiative has been a significant factor in Raytheon's success in de-
livering quality software and systems on budget and on schedule over the last several years.
We also believe that these successes have had a direct effect in making the company more
competitive and helping to get contract awards on new work that involves significant amounts
of software. For these reasons, we see the IEEE Computer Society Award for Software Pro-
cess Achievement not as a pinnacle, but as another milestone in our quest to be the "best of
the best" simply because it makes good business sense.

We have measured the effects of improved process achieved by the Software Engineering Ini-
tiative in very concrete terms that can be used to make hard business decisions. In addition,
the most important initial effect of the initiative has been to make software development a pre-
dictable process, thereby expediting overall program successful completion with subsequent
system delivery and operation. Over the lifetime of the initiative, rework involved in building
software has undergone a reduction from about 40% of the development cost to about 10%.
During this same period, productivity of the development staff has increased by a factor of al-
most 2.8, and predictability of their development budget and schedule have been reduced to
a range of +/- 3%. Our ability and willingness to analyze the impact of the initiative in these
business-oriented terms has greatly influenced our success in maintaining the ongoing spon-
sorship of senior management.

This report provides a brief history of the initiative, the organization within which it operates,
and the tailoring of the Capability Maturity Model (CMM) to make it work within the Raytheon
company culture. It describes some key elements of the process improvement model that we
evolved over the lifetime of the initiative, and discusses our approaches to counter traditional
risks associated with process improvement programs. The report covers some of the leverage

CMU/SEI-95-TR-017 jx

points that contributed to the initiative's success and some of the challenges for the future. It
also describes in detail the quantitative results of measuring the impact of process improve-
ment in the terms described above: reduction in rework, increased productivity, and improved
program predictability.

Additional information about this report can be obtained by writing to

Dan Nash or Gary Wolf
Software Engineering Initiative Manager
Raytheon Electronic Systems
528 Boston Post Road
Sudbury, MA 01776
e-mail: raysei@raytheon.com

CMU/SEI-95-TR-017

Raytheon Electronic Systems Experience in
Software Process Improvement

Abstract: The Software Engineering Process Group (SEPG) of Raytheon
Electronic Systems (RES) is responsible for defining and implementing the
Software Engineering Initiative, which outlines the policies, practices, and
procedures to be followed in developing complex software for large-scale
commercial and defense projects. To accomplish these objectives, the SEPG
has had to develop the organizational structure and techniques to meet the
growing challenges of developing, maintaining, and improving its software
engineering process in significant and measurable ways, including quantifying
return on investment (ROI) and increasing the quality of the deliverable
product.

1 Background

1.1 History
Raytheon Company is an international, high technology company that operates in four busi-
ness areas: commercial and defense electronics, engineering and construction, business avi-
ation, and major appliances. With 1994 sales in excess of 12 billion dollars, Raytheon ranks
52nd in sales and 30th in profits on the Fortune 500 list. Raytheon Electronic Systems (RES),
focuses on the commercial and defense electronics, and is responsible for roughly 30% of the
company's sales. RES is a recently consolidated organizational entity that emerged from the
restructuring of Raytheon's defense business in 1995.

The recipient of this software process achievement award is our former Equipment Division,
which is now a major component of the new RES organization. The software development or-
ganization within the Equipment Division was known as the Software Systems Laboratory
(SSL) and is now a major component (approximately half of the 1200 software engineers) of
the Software Engineering Laboratory (SEL) within RES. Throughout this report, all references
to Equipment Division and SSL now reflect the recently consolidated organization as RES and
SEL respectively.

Software is a major element of virtually all complex electronic systems and products we de-
velop. These include air traffic control, vessel traffic management and transportation systems,
digital communications systems, ground-based and shipboard radar systems, satellite com-
munications systems and terminals, undersea warfare systems, command control systems,
and combat training systems. The software itself tends to be real time in nature; much of it is
performance critical and is tightly coupled to hardware.

CMU/SEI-95-TR-017

As with most system houses like Raytheon, software came on with a rush during the 80s. A
good part of the functionality of our complex systems that had historically been implemented
in special-purpose hardware was inexorably moving into software. By the latter part of the de-
cade, the software component had become so pervasive within RES's products that software
problems quickly translated into contract performance issues, some of them of significant pro-
portions. In the fall of 1987, prompted by the lack of success in delivering software projects on
schedule and within budget, the software organization performed an assessment of its own
software development process using the Software Engineering Institute's (SEI's) capability
assessment questionnaire. The Level 1 results led the SEL manager to initiate a process im-
provement effort known as the Software Engineering Initiative. The initiative has since been
the focal point for improving RES's software engineering process and a channel for institution-
alizing knowledge of software engineering methods and technology as well as the policies,
practices, and procedures that document the process.

1.2 The Business Case for Software Process Improvement
Funding to support the Initiative began in the fall of 1988 with a refocus of mostly existing dis-
cretionary funds. It is an important lesson that funding was not new dollars, but an improved
use of existing funds. The credibility of the SEI process maturity structure with its road map of
evolutionary improvements was sufficient rationale to justify continuation of the software pro-
cess improvement program for about a year. At that time, many of our customers were begin-
ning to show an interest in using the SEI process maturity framework as part of their source
selection criteria, and our actual performance to contract seemed to be improving. In the one-
two year time frame, new software projects began showing increased predictability. Software
requirements were completed before software architecture and top-level design began, and
peer-level design reviews and code work-throughs were yielding early positive results. In ad-
dition, we continued to be concerned about whether our $1 million annual expenditure of dis-
cretionary funds was really achieving a return sufficient to justify not spending that money
some other way.

Beyond the improved predictability of software, we wanted quantitative measurements of im-
provements (as fits the Raytheon company culture). To address this challenge, we initially se-
lected an approach for measuring return on investment (ROI) based on a solid business goal
of reducing the amount of rework involved in developing software. The approach was based
on an adaptation of the work done by Phil Crosby [Crosby 84] in the area of cost of quality.
We later supplemented this approach with analyses of software productivity (a secondary, but
growing benefit) on projects, and used cost at completion/budget (CAC/Budget) to measure
the predictability of our software development effort on program performance. For the mea-
surement of overall software product quality we used defect density analysis. We continue to
use all four of these measures (cost of quality, productivity or cost, predictability, and overall
product quality) today to monitor the impact of the software process improvement (SPI) pro-
gram.

CMU/SEI-95-TR-017

1.3 Process Improvement Strategy
We developed an overall strategy for improving the software engineering process to be used
on projects within RES early in the history of the initiative, and the strategy remains in force
today. This process is illustrated in Figure 1. Referring to the figure, the organization's stan-
dard software engineering process is defined by an underlying RES software policy describing
the set of common software engineering practices (created by selecting our best practices
across projects) describing the "whats" of developing software, detailed procedures describing
the "how" of critical aspects of software development, along with the tools and the training
needed to make the developers productive. A process database is an integral part of the equa-
tion, providing both metrics and a baseline for comparing future accomplishments, along with
a repository for project-related products, such as lessons learned, that can be applied to future
developments. Key to Raytheon's approach is overlaying process management and improve-
ment teams with project engineering teams.

Any particular project (the dashed box in the figure) uses the organization's process, con-
sciously tailored to its particular needs and constraints (Figure 1, step a) along with its own
project software development plan, the key document binding the project to the process. The
plan is typically constrained by the contract, the statement of work, and the requirements of
the system as specified by the customer or developed early on during the system definition.
As the project software engineering occurs and the specific process is applied (Figure 1, step
b), two types of project feedback take place (Figure 1, step c). At the project level, the software
development plan is refined to reflect lessons learned in early phases of the development, and
at the organizational level, these lessons learned will have an impact on the process improve-
ment activities and eventually lead to the creation of generic solutions to be added to the or-
ganization's standards (Figure 1, step d). In the meantime, the process improvement activities
being conducted by the initiative, as illustrated in the lower left box in the figure, are benefiting
from the real time application of these solutions on projects. The project feedback along with
outside influences such as technology drivers, the marketplace, corporate business decisions,
and customer initiatives, all have an impact on the direction in which process improvement will
occur.

CMU/SEI-95-TR-017

The Standard Software Engineering Process

Metrics

Procedures Tools Training

Software Engineering Practices

Software Engineering Policy

@ Solution
added to the
Standard

r

Influences
• Technology
• Market
• Business
• Customers

Process Improvement
Activities

Ad Hoc task teams
continually update the
process

© Process Required

Contract
SOW
Requirements

i
Project

Software
Development

Plan

© Feedback

A Project

Project Software
Development

(S) Process Applied

Process
Improvement

Activities

_J

Figure 1: Process Improvement - The Process

At a higher level of abstraction the strategy involves elements that span the entire corporate
structure. Organizations other than RES within Raytheon that deliver software participate in
the process and gain leverage from its results.

CMU/SEI-95-TR-017

2 The Raytheon Electronic Systems (RES) Organization

Raytheon Electronic Systems (RES) is a relatively new entity (January 1995), having been
formed from the consolidation of its three Government Group divisions (Equipment, Electro-
magnetic, and Missile Systems). The software engineering organization within RES is made
up of over 1200 software engineers. RES is a matrix organization made up of various business
areas (or Directorates), which have the task of getting new business in a specific application
domain, and a number of engineering functions (or Laboratories), which have the task of de-
veloping these new systems.

The Directorates provide project management and system engineering functions, while the
laboratories act as subcontractors in their own areas of specialization. From the standpoint of
software, one of the more challenging aspects of the Directorates is the diversity of the appli-
cations that must be supported. They include air traffic control, vessel traffic management and
transportation systems, digital communications systems, ground-based and shipboard radar
systems, satellite communications systems and terminals, undersea warfare systems, com-
mand control systems, and Top Gun Training systems. RES also includes missile product
lines, most notably the PATRIOT missile, which was successfully deployed in the Gulf War.

Software to support the above applications is engineered by the staff of about 1200 software
engineers that make up the Software Engineering Laboratory (SEL). Other laboratories which
provide engineering services in their own area of specialization are Communication Systems,
Computer and Displays, Mechanical, and Radar Systems. A typical development project in-
volves most, if not all, of the above laboratories, as well as such support functions as product
assurance, and engineering resources, and, of course, manufacturing.

The list of software projects that are active at any time might typically contain 200 individual
ongoing projects. Of the total, half of the labor is on large projects (500K delivered source in-
structions [DSIs] to 2-3 million DSIs). The computer languages used for software development
are predominantly "C" and Ada, with limited FORTRAN and assembly language. The target
hardware (on which the developed code operates) ranges from workstations and micropro-
cessors to personal computers (PCs) and a dwindling number of mainframes. The duration of
projects varies from a few months to 2-3 years to 10+ years product line evolution. Staffing
ranges from as few as 4 on some small projects to as many as 50 people on the largest
projects to 300 people for product-line support, including mission software for the missile and
radar, communication and training systems. The application software domains align with the
business areas identified above.

CMU/SEI-95-TR-017

CMU/SEI-95-TR-017

3 The Process Improvement Model

Our model of process improvement embodies three critical activities: (1) establish a strong
and effective infrastructure and maintain its enthusiasm over time, (2) identify the risks and
develop a mitigation strategy for each, and (3) measure and analyze project data in order to
determine the benefits of software process improvement. Each of these three areas is de-
scribed below.

3.1 The Infrastructure
The general form of the infrastructure that we originally envisioned for our SEPG is shown in
Figure 2 and consisted of four entities: an executive committee to provide direction and over-
sight, working groups specializing in each of the major disciplines involved in process improve-
ment, task teams to develop the actual process changes that achieve the improvements, and
an SEPG manager to monitor and coordinate day-to-day progress. The organizational struc-
ture has stood the test of time and continues today in this form.

STEERING COMMITTEE

T. HALEY
B. IRELAND

CHAIR
CO-CHAIR

MANAGER

POLICY & PROCEDURES
WORKING GROUP

I

CM & SQA SUPPORT

TRAINING WORKING
GROUP

I
TOOLS & METHODS
WORKING GROUP

I
S/W ENGINEERING PROCESS
DATABASE WORKING GROUP

I
AD HOC TASK GROUPS

Figure 2: Software Engineering Process Group

CMU/SEI-95-TR-017

3.1.1 The Organization
Executive committee - The composition of this committee is critical to the success of the ini-
tiative. The chairperson is the software engineering manager responsible for all software de-
velopment, with the senior software individual on RES staff as his deputy. The co-
chairpersons of the working groups are members of the executive committee, as are the
SEPG manager and senior representatives from the software quality assurance (SQA) and
configuration management (CM) organizations. The committee meets at least once a month
and reviews the status and plans of each working group in the context of the long-term im-
provement of the organization's standard process and short term individual projects' tailored
process. Perhaps one of the most important tasks performed by the committee is the adjust-
ment of working group task priorities and reallocation of budgets based on process improve-
ment needs of specific projects. In addition, the committee reviews any initiative risks that
might be recognized by the members as needing management action.

Working groups - The Co-chairpersons of each of the four working groups (policy and proce-
dures, training, tools and methods, and process database) were recruited from the line man-
agement organization based on their skills and interest in the specific discipline that the
individual groups required. General membership in the ad hoc task groups (typically 12-15
people) was determined by the following selection criteria: (1) opinion leaders who were re-
spected by their peers, (2) skills and interest, not mere availability, and (3) representation from
diverse parts of the organization. Although membership was achieved primarily by recruiting,
volunteers were sought and placed into positions where they could provide help where it was
needed. Descriptions of the four working groups are provided below.

The primary function of each working group is to define process improvement tasks needed
in its own area, and to create task teams to perform the tasks. This typically involves develop-
ing a written task definition, scope, desired schedule and funding requirement. This written
task description generally provides enough specifics to allow prioritization, permit the identifi-
cation of who might be best qualified (and available) to perform the task, and define the re-
quirements that the task team will use to get started. The working group next needs to recruit
the individuals who have been identified to perform the task since they are generally not mem-
bers of the working group. Since most of the line managers are involved in the initiative, this
is not as hard a job as it may seem. Once the task team is underway, the working group mon-
itors their performance, provides direction, and removes any obstacles to progress.

Task teams - Each task team consists of a group of people with a team leader working on a
specific software process improvement activity with a schedule and budget that have been de-
fined by a working group. Their participation in the activity is generally on a part-time basis, in
parallel with their normal project responsibilities. The team members generally have diverse
backgrounds and experience, and come from different parts of the software organization. The
benefit of this diversity is that the outcome typically does not represent a point solution, but
one that will satisfy the diverse needs of the many parts of the software organization.

CMU/SEI-95-TR-017

During the interval that a task is being actively worked, the members are considered to be part
of the SEPG and are paid by the discretionary funds available to the initiative. The work is not
expected to be gratis, and is in fact the major expenditure the initiative has. Working group
meetings (which are generally weekly) and steering committee meetings (mostly monthly) are
typically held at lunch time and attendance is expected to be pro bono. Once the task team
has completed the activity for which they were responsible, they disband and lose their mem-
bership in the SEPG. Since there are usually 10 to 15 tasks going on in parallel, the typical
size of the SEPG at any time might approach 100 people. As Raytheon adopted Total Quality
Management (TQM) in the early 1990s, the task teams and working groups adopted TQM ac-
tion approaches to their operations.

SEPG manager- When the initiative began, the SEPG manager was the only full-time position
in the SPI organization. The function required is that of managing the day-to-day activities and
individual funding accounts allocated to each task, coordinating the working groups, and facil-
itating the many meetings involved. As the initiative matured, two full-time staff were added:
one to lead the extensive training program that evolved, and one to manage the data reposi-
tory.

3.1.2 The SEPG Working Groups

The Policy and Procedures (P&P) Working Group developed the documents describing our
process. Starting from the individual best practices employed by the various projects under-
way in all parts of the organization, the P&P Working Group extracted a set of "best-of-the-
best" practices to become the starting point for our organization-wide standard practice. We
also leveraged on existing standards like DoD-STD-2167A and on the process-related work
being done at the SEI, using the 1987 SEI report initially [Humphrey 87] and later, the Capa-
bility Maturity Modelsm (CMMsm1) for Software [Paulk 93].

Over time, the P&P Working Group developed a three-tiered set of documents (referred to as
the "blue books") which define our process as follows:

• at the highest level (8 pages) - Software Engineering Policy

• at the intermediate level (200 pages) - Software Engineering Standards

• at the lowest level (550 pages) - Detailed Procedures and Guidelines

These documents are described in more detail below in Section 3.1.3. The P&P Working
Group's responsibility now is to continue to update these documents as needed (reflecting
their use on projects) and to maintain configuration control over the documents.

CMM and Capability Maturity Model are service marks of Carnegie Mellon University.

CMU/SEI-95-TR-017

During 1994, the P&P Working Group reviewed over 180 software trouble reports (STRs) writ-
ten against these Blue Books. They were reviewed and the ones approved incorporated in Re-
visions D and E. Our software development process applies to all programs, but is tailored for
each program. When tailoring is required, it is done through a methodical waiver process un-
der the direct approval of the Software Systems Laboratory manager on an exception-by-ex-
ception basis. Although specific elements of our process have contributed substantially to our
success (for example, CASE tools, requirements solidification, pathfinding, inspections or
peer review), the key element is the full support, or "buy-in," to our improvement process by
all software engineers. This buy-in represents a commitment at all levels of the organization.

The Training Working Group (TWG) developed a comprehensive training program. We have
trained over 4200 students since 1988 including approximately 800 in 1994. All courses are
given during working hours, which promotes the feeling of company support and enhances
morale. Trainers are recruited from the engineering staff. The recruits take a "train-the-train-
ers" course and sit in on a course before they begin to teach it. Overview courses provide gen-
eral knowledge about some technical or management area and detailed courses focus on a
tool or technique (see "The Training Program," Section 3.1.4). A detailed feedback question-
naire is completed by the students at the completion of the course. Further, during the transi-
tion phase, process improvement discussions (PIDs) examine the effectiveness of the training
provided.

The Tools and Methods Working Group implemented a comprehensive set of CASE tools
available to the projects' software development/management team. In addition to supporting
development, the CASE tools are used to capture the software requirements and design data
and automatically publish the resulting documents. By policy, training courses are available
for tool users prior to the time they are needed on the project. In addition, this working group
established the Raytheon Advanced Prototyping, Integration, and Demonstration (RAPID)
Lab and supported prototyping and demonstration efforts on many programs. The RAPID Lab
also provides us our commercial off the shelf (COTS) and nondevelopmental item (NDI) eval-
uations.

The Process Database Working Group established the Process Data Center, a repository for
project and process data and a source for root cause analysis, specific recommendations for
local process improvement, and recommendations for general improvements to the standard
process. As shown in Figure 3, the Process Data Center is the repository for both project data
and metrics used in root cause analysis followed by improvement recommendations to both
on going projects and the overall process.

It is interesting to note that the original decision to form four working groups with the charters
described above was based on our analysis of the SEI's "Method for Assessing Software En-
gineering Capabilities of Contractors." Having identified the key practices at SEI Levels 2 and
3, where we believed that additional emphasis was needed, we formulated tasks to address
the deficiencies and then grouped them into categories in order to assign responsibility. We
found that four categories were sufficient: (1) policy and procedure development and docu-

10 ~~~ CMU/SEI-95-TR-017

mentation; (2) training development and conduct; (3) tool and method evaluation and transi-
tion; and (4) process data collection and analysis. Until just recently, we maintained the
original identity of our four working groups and were able to comfortably fit all new tasks that
we identified into this infrastructure. At the present time, the maturation of our process brought
on by the changing environment (see Chapter 6) is causing us to take a fresh look at that in-
frastructure.

Software Engineering Process

Practices Manual

Detailed Procedures and Guidelines
Training

Metrics

1
Process Improvement Discussions
Software Development Plans
Software Process Group

CASE Tools

- Design Tools
- Source Level Debug/Emulation
- Test Tools

I T

Project A

• Defect Data
• IRs

• IPRs

• STRs
• COQ
• Metrics
• Tracking Book

Project B

Project C

1

1

Feedback
within

Project

General
Improvements

Specific
Recommendations

' Root Cause Analysis
1 Productivity
1 Cost of Non-Conformance

Predictive Model
Defect Densities

Raw Metric

Data
t

Inquiries |

Developers
Managers
Evaluators

Process Data Center

• Software Development
Plans

• Tracking Book
• Proposal/Startup Pkgs

Project History Reports
Bid Metrics

J
Root Cause Analysis
Results

Process KPR Reports
Phase Transition Memos
Compliance Matrices
Project Metrics

Process KPR

Proposal Support

-►
SEI Audit Data

Specific Reports

Figure 3: Metrics - Collection, Analysis, and Feedback

3.1.3 The Documented Process
The organization's standard process is documented at three levels of detail.

At the highest level, the Software Engineering Policy defines the objectives of the process, the
role of the SEPG, the classes of software to which the policy applies, the mechanism for ob-
taining waivers, and the responsibilities of all organizations with which the software develop-
ment organization must interface. Procedurally, the policy specifies such requirements as
tailoring and review of software development plans by the SEPG, establishing a requirements
baseline prior to proceeding with design, training in process as well as the tools and methods

CMU/SEI-95-TR-017 ~ - 11

to be employed on the job, the collection and reporting of metrics data, participation of soft-
ware personnel in the systems engineering process, and selection of the host and target en-
vironments according to very specific guidelines. Although the document is only eight pages
long, it has a tremendous impact on every project, because any proposed deviation is re-
viewed by the SEPG prior to starting the project. Recommendations for or against the pro-
posed deviation are forwarded by the SEPG to the RES general manager for final approval.

At the intermediate level, the Software Engineering Practices provide a wealth of practical,
easy-to-find information on the "whats" of developing software in RES. It covers all life-cycle
phases of development, from pre-proposal to delivery and vaulting, specifying the inputs, pro-
cess steps, and outputs of each phase. It covers the software task management elements of
the work, as well as the software configuration management and quality assurance aspects.
It also covers the engineering support practices that every software development project re-

quires in order to ensure that

• Suitable resources for software development are provided.

• Training in tools and methods is available.

• Tools and techniques are investigated before their use is required.

• Potential risks and problems are identified early via prototyping.

• Process improvement reviews are held at the project phase transition points
as a means of achieving continuous process improvement.

• Project requirements are traced from proposal stage through testing.

• Existing software is reused when possible, and mature COTS tools are
evaluated to satisfy requirements to the maximum extent possible.

• Qualified tools and development methods are incorporated to enhance
productivity.

• Quantified statements of project status, process, and product quality are
maintained, and quantified data are periodically analyzed.

• A method of problem reporting and resolution is established.

• The Process Data Center is provided with all the relevant material called out
in the Practices Manual.

At the lowest level, a series of Detailed Procedures and Guidelines is provided to address the
"hows" of developing software in RES, covering not all aspects of the process, but those which
have been found to be needed in areas that were problematic, or were significant leverage
points in terms of productivity or quality enhancements. The list of currently available detailed
procedures and guidelines includes

• Requirements Traceability

• Software Costing and Scheduling

• Software Sizing and Timing

• Thin Specifications

■\2 CMU/SEI-95-TR-017

• Metrics

• Program Design Language (PDL)

• Detailed Design and Coding Inspection

• Software Development Files

• Critical Design Reviews

• Ada Coding Standards

• C Coding Standards

• FORTRAN Coding Standards

• Unit Testing

• Software Integration

• Regression Testing

• Software Maintenance

• Firmware for Hardware CIs

• Use of Commercial Off-the-Shelf Software

• Prototyping and Internal Development Program (IDP) Software

3.1.4 The Training Program
The Training Working Group (TWG) is responsible for the development of training, student se-
lection, course conduct, course quality, and feedback of results. The student selection process
is initiated by students or their supervisors based upon project needs, individual requests, and
our curriculum plan tied to various job levels. Both task and line management are involved in
endorsing student participation, either for a project-specific, "just-in-time" class, or for a more
general, regularly scheduled class to support professional development. At the end of each
course, students complete a course evaluation form measuring the content of the course, the
instructor's presentation, and how well the course objectives were met. The instructor's view-
point is captured via a separate evaluation form. Modification of course material or improve-
ments to the instructor's classroom skills are made where necessary. Each employee's annual
review contains a process improvement section to assess how training has helped them in
their work. If quality improvements are necessary in a course to benefit an employee's perfor-
mance, their supervisor reports this to the TWG. Task managers can evaluate their personnel
who use training "just in time" to support their progress. Training benefits are being included
as an agenda item for our process improvement discussions.

CMU7SEI-95-TR-017 ~ ^

Overview courses include the following:

• Introduction to Software-Development Methods, software engineers, 12
hours: Lecture/discussion course on software-engineering methodology.
Using our "Blue Book" (The Software Engineering Standards -Practices
Manual) as a textbook, the life-cycle phases are taught in the context of our
policy and practices document.

• Software Testing Overview, engineers and managers, 8 hours: Testing
activities in all phases; compares testing practices of DOD-STD-2167A,
RES' standard process, and the SEI's Capability Maturity Model.

• Management Overview of Ada, program/task managers, 8 hours: Ada
structure and terminology, lessons learned.

• Fundamentals of Ada, middle-level task managers, group and project
managers, 20 hours: Lecture course on how to read, but not write, Ada
source code and how to participate in code reviews.

• Introduction to Database Techniques, engineers and managers, 4 hours:
Introduction to database concepts and techniques.

Detailed courses include the following:

•

•

Formal Software Inspections, software engineers, 14 hours: Lecture,
discussion, and a practicum which involves conducting a project-related
software product inspection (requirements, top-level design, detailed design,
or code).

SRS/IRS Generation Using CASE tools, senior engineers, 32 hours:
Structured analysis for requirements, using CASE tools; generating
associated DOD-STD-2167A documents, such as software-requirements
specifications and interface-requirements specifications.

Design Techniques Using CASE Tools, senior engineers, 32 hours: Teaches
preliminary and detailed design using 2167A approaches and implementing
their design using a CASE tool.

Software Configuration Management, engineers, 12 hours: Standard policy
and procedures, tools, utilities, and resources.

Software Unit Testing, engineers, 12 hours: Covers when and how to
perform unit testing, techniques and tools, preparation of unit-test plan and
procedure, conducting analysis of testing, and test-exit criteria.

Software CSCI/System Testing, senior engineers, 16 hours: Teaches those
responsible for planning, managing, and performing CSCI and system-level
testing the methods for preparing for and conducting structured system
testing.

Software Project Management, development managers, 40 hours: Skills and
techniques to develop software within budget and on schedule. Also included
are lessons learned from previous projects.

14 CMU/SEI-95-TR-017

• Software Sizing and Timing, senior engineers, 8 hours: Estimation
techniques used for proposals and in early development, emphasizing
prototypes; tracking techniques, with examples.

• Software Engineering with Ada, engineers, 32 hours: Lecture-lab course on
fundamental data structures and how to use Ada packages.

The working group is currently developing courses which cover a broader range of software
engineering topics including object-oriented methodology, costing and scheduling, measure-
ment and root-cause analysis, and software integration.

3.1.5 Tools and Methods

The Tools and Methods Working Group (TMWG) is responsible for the selection and evalua-
tion of software development methods and tools. The working group initiates efforts to inves-
tigate new methods or tools based on project needs—whenever possible well in advance of
actual project usage.

The emphasis of the TMWG has been pathfinding new technology areas. New tools and meth-
ods offer opportunities for increases in software development productivity. New approaches
also present potential development risks to a project. For this reason, Raytheon's software de-
velopment process relies on tools and methods pathfinding.

Pathfinding is the process of identifying and testing tools, methods, and software components
prior to their required use on a project in both the development and test environments. Path-
finding is a key component of risk management because problems can be identified early, and
mitigation steps can be taken before there is schedule or cost impact to the project. Pathfind-
ing is also important for establishing and evaluating the effectiveness of new tools and meth-
ods.

A major accomplishment of the TMWG was the pathfinding and development of methods and
tools for using structured analysis and structured design. The TMWG developed specialized
templates and scripts to integrate a CASE tool with the document processing tool for automat-
ed production of project documentation including the system/segment specification (SSS),
system/segment design document (SSDD), software requirements specification (SRS), inter-
face requirements specification (IRS), software design document (SDD), and interface design
document (IDD). This approach is now part of our standard development process and is sup-
ported by in-house training courses.

More recently the TMWG has extended this approach to support object-oriented analysis and
design using commercial CASE tools.

CMU/SEI-95-TR-017 " ^

Other early efforts of the TMWG developed specialized tools in areas where commercial prod-
ucts were not available. Examples of these tools include configuration management tools, a
defect tracking tool, and a requirements traceability tool. All these tools are in widespread
project use. Today there is a strong emphasis on commercial off-the-shelf (COTS) tools. Re-
cent pathfinding efforts have resulted in the use of commercial products for configuration man-
agement and automated regression testing.

The importance of COTS technology goes beyond the traditional software development tools.
COTS application generators and embedded COTS products are key technologies for many
of our current and future projects. The Raytheon Advanced Prototyping, Integration, and Dem-
onstration (RAPID) Lab was established to evaluate and pathfind these kinds of COTS tech-
nology and to develop methods for rapidly building COTS-based applications. COTS tools
evaluated by the RAPID Lab include graphical user interface (GUI) builders, geographic infor-
mation systems, database management systems and related tools, expert system shells, and
networking technology such as DCE and CORBA. In addition, a COTS-based rapid prototyp-
ing method, originally developed by Raytheon under the PRISM Program at Hanscom Air
Force Base, has been enhanced and applied to several new and proposed programs that re-
quire incremental, evolutionary software development processes.

3.1.6 The Process Data Center
The Process Data Center (see Figure 3) provides three very important services for the orga-
nization: management of the project data in the repository, specialized processing of the data
in response to inquiries from various users, and support for root-cause analysis. Each of these
services is described below.

Projects provide the following types of project-related software data to the Process Data Cen-
ter:

• thin specs - a summary version of the software requirements. This
documentation is required at proposal time, to ensure that we know enough
about the project to put together a sensible bid.

•

•

thin SSDD - a summary version of the system/segment design document.
This document is required at proposal time, to capture the functional
allocation to hardware configuration items (HWCIs) and computer software
configuration items (CSCIs) as well as the system and software
architectures.

final approved cost forms and basis of estimate - provides a record of what
the proposed software costs were and what the basis was for arriving at
those costs.

• final proposal review packages - provide a permanent record of the changes
made to the bid package as it made its way through the various levels of
management review.

• startup packages - prepared after contract award and provides an
opportunity to factor in any changes which may have occurred in negotiations
with the customer.

16 CMU/SEI-95-TR-017

•

•

policy compliance data - provides a record of any tailoring or waivers of
requirements of the Software Engineering Policy which are ordinarily applied
in their entirety to all projects.

software development plan - provides a detailed set of plans for developing
the software.

task work statements - provide detailed task descriptions, serving as the
contract between the developing organization and the project's program
office.

practices compliance data - provide an annotated checklist indicating
tailoring or waivers of the detailed requirements of the Software Engineering
Practices Manual which are ordinarily applied in their entirety to all projects.

process metrics - prepared monthly by individual projects; these data consist
of software productivity, cost of quality, cost performance index, milestone
performance index, software reuse, software trouble report statistics, and
requirements trouble report statistics.

performance metrics - prepared monthly by individual projects; these data
describe the current measured/estimated utilization of software system
target resources such as memory storage capability, data processing
capability, response timing limits, communications data link, and random
access shared data bus.

progress metrics - prepared monthly by individual projects; these data are
used by software task managers to gauge the progress or current status of
their project. Included are such metrics as: module development progress,
design complexity, design progress, incremental release content, staffing,
schedule progress, testing progress, software volatility, software size, and
inspection action item statistics.

greensheets - project-specific process tailoring information prepared and
distributed during the course of the project to provide all team members with
the latest information on a variety of subjects. Examples are: workarounds
and results of prototyping efforts.

• process improvement bulletins - results of project specific process
improvement discussions (PIDs) which are conducted at the times of
transition between development phases. The PIDs are used to review the
activities of the current phase (what went well and why, what parts of the
process need to be improved) and those of the next planned phase (any just-
in-time training needed, any process tailoring needed based on the results of
the previous phase).

• software project history report- prepared by the software task manager at the
termination of the project to document lessons learned.

• SEI questionnaire and backup materials - prepared by the software task
manager at the termination of the project in anticipation of any future
customer software capability evaluations (SCEs) or similar audits.

Examples of the types of specialized processing of repository data provided by the Process
Data Center are described below.

CMU7SEI-95-TR-017 17

RES has a legacy of quarterly key program reviews (KPRs) of the major projects in each busi-
ness area, chaired by the RES general manager. The concept has been extended to the re-
view of process improvements accomplished by each of the functional areas within RES in a
format now called "Process KPR." With the broad availability of the project data described
above, and the tools in place to perform these analyses, it is not difficult for the Process Data
Center to provide this service. In fact, the availability of the analytical results in the software
area spawned RES-wide process KPR in the first place.

Since there are great similarities between many of the software projects undertaken within
RES, it is only logical that the data from previous projects have a high utility as a source of
material for proposals and startup planning on new projects. By searching the cataloged data
for similar-to comparisons, pertinent information can be extracted and furnished to the propos-
al writer or software task manager involved in planning a new project. Although this effort is
mainly manual at present, an electronically accessible index is being implemented, along with
planning for storing much of the data in electronic form to provide on-line access.

As evident from the relevant project data listed above, much of the data collected are pertinent
to software engineering capability internal assessments or evaluations by external agencies.
The Process Data Center can supply copies of this material in preparation for the evaluation,
and also during the actual conduct of the evaluation, should that prove necessary.

Finally, the Process Data Center is facilitated to support projects in producing specific reports
based on user inquiries. Software developers, managers, and members of the process im-
provement team can request special data analyses or queries of the database that might be
helpful to their tasks. Process Data Center personnel then utilize the resources available to
them to respond to that request.

We believe that the major leverage point for attaining the Managed level and progressing to-
wards the Optimizing level of process maturity is the routine and continuous analysis of the
data from multiple projects. To make this happen, we are providing the personnel, funding,
communications and computer resources, and necessary tools. There are two major objec-
tives of performing these analyses: namely, to gain insight into the current process in order to
make general improvements, and to support individual projects in terms of specific recommen-
dations. Further discussion of the use of metrics is provided in Chapter 5, Quantitative Process
and Quality Management.

3.1.7 Project Support
Raytheon's standard process is tailored for specific projects, which also benefit from "just-in-
time" training, metrics, and technology evaluation and insertion. The software task managers
have access to much of the raw project data that should be collected in an organization-wide
software process database. Support is provided to minimize the effort required in the data col-
lection activity. First, tools are provided to automate the collection and presentation of data.

18 CMU/SEI-95-TR-017

Support is provided for using the tools, and even to gather and validate the data. Second, we
are very selective about the type of data collected. It has to be helpful to the software task
manager in the day-to-day management of the project, or already required to be provided for
higher level management reviews.

Another potential hindrance to good data collection is the natural tendency to declare project-
specific data as private, for fear that the data will be used against individuals on the team. Peo-
ple get concerned when they see how easy it would be to use the data to measure individuals
and how misleading it could be unless all the circumstances were known.

To counter this tendency, feedback is provided to the projects supplying data on the results of
using the data for process improvement. This makes it clear to the providers that the data are,
in fact, being used to better understand and to improve the process rather than as a finger-
pointing exercise.

At Raytheon, we require that all software task managers take the Software Project Manage-
ment course prior to their being assigned to a project. This provides an ideal mechanism for
ingraining the concepts of using the data collection tools and support that are available to help
manage the project. We also solicit the participation of the entire development staff in our pro-
cess improvement activities, so that everyone is aware of the focus on metrics for process im-
provement, not "finger pointing."

3.1.8 Process Improvement Planning
In planning for improvements in the software development process, we adhere to the philos-
ophy of continuous software process improvement consistent with the ideas of Deming and
Juran. We view the software development activities as steps in a process which can be con-
sistently maintained by rigorously applying a documented set of procedures in which the prac-
titioners are trained. The effectiveness of these procedures can then be measured and
analyzed with the results of the analyses continuously fed back into the process improvement
effort. Consistent with our charter, the broad objectives are reviewed annually during the up-
date of RES's five-year plan, and a specific implementation plan for the upcoming fiscal year
is put in place.

There are a number of steps to the planning and budgeting process, which begin with a set of
informal meetings where the chairpersons of the SEPG Working Group construct a list of key
problem areas and key successes. This step culminates with a list of possible activities for the
coming year, sorted on the basis of affected working group(s). In the second step, each work-
ing group reviews the ongoing activities in its area to determine if additional support will be
needed in the coming year. If so, a determination is made whether that support can be allo-
cated to the various projects that benefit, or whether the initiative must continue to support the
activity.

CMU/SEI-95-TR-017 _ ^

The third step involves the review, by each working group, of the key practices of the CMM
key process areas (KPAs) for which it has primary or support responsibility. The objective of
the review is to determine what SPI activities the working group needs to plan for the coming
year in order to ensure that all projects can perform the specific key practices not already in
place, but judged as necessary.

In the final step, each working group then combines the required activities established in the
three steps described above to derive an implementation plan for the upcoming year consis-
tent with the long-range objectives of the initiative and satisfying the needs that have been
identified. The individual plans are presented to the steering committee and adjustments
made based on known project priorities and budgetary constraints. This is the final plan pre-
sented for endorsement to the engineering manager, RES general manager, and vice presi-
dent for engineering.

A key ingredient of the planning process is involving a large number of the engineering and
management staff in the process improvement tasks. The plan benefits from the very practical
experience and lessons learned on a variety of projects expressed from a number of different
viewpoints. In addition, since the individuals who will implement the process changes are, by
and large, the same individuals who recommended the change, the likelihood of acceptance
is much higher and the conventional problems with technology transition become more trac-
table. The individual projects also benefit from the resulting greater level of awareness and
concern with the process. Recently, our focus has been on determining, developing, pathfind-
ing, and implementing process improvements to successfully satisfy the two key process ar-
eas (Quantitative Program Management and Software Quality Management) required to
satisfy the CMM Level 4 maturity.

3.2 Organization/Process Binding
Over the course of the initiative, especially during the early days, we encountered a number
of obstacles which represented potential risks to the success of the program. These were mit-
igated where possible, and continue to be managed in a variety of ways which bear recording
as a possible benefit to future efforts.

Sponsorship and Commitment - Since the software engineering (SEL) manager was the
person who drove the entire initiative from the very beginning, getting initial sponsorship and
commitment at that level was not a problem. The discretionary funds available at the SEL lev-
el, although adequate to support the size of program that was envisioned, had to be reallocat-
ed in a major way. It was necessary to seek authorizing sponsorship at the next two levels
(engineering manager and general manager) in order to get the necessary support for this re-
allocation. This was achieved by getting both levels intimately involved in the initiative planning
process and by presenting a solid business case for why the SPI initiative would be effective.
The draft initial plans were presented and refined iteratively at the software engineering man-
ager level in a series of presentations, until there was agreement that we had a solid plan. The
three-hour presentation at the general manager level was really more of a working session,

20 CMU/SEI-95-TR-017

where the details of the SEI questionnaire responses were discussed individually and consid-
erable feedback was provided to the initial plan. In this process, the initiative plan became a
plan that was mutually "owned" by both levels of management, thus providing the necessary
authorizing sponsorship and commitment to get the program underway. This participation has
continued throughout the life of the program, with annual two-three hour briefings at the gen-
eral manager level, where progress during the completed period and plans for the upcoming
period are presented in detail.

Because of the matrix organization structure, it was necessary to get reinforcing sponsorship
from the various business directorates (described in Chapter 2, above). Since these director-
ates are the customers of the software engineering organization, they would naturally be af-
fected by the initiative and their input was requested. This was done by making the same two-
three hour presentation to each of the business directorate staffs and incorporating their feed-
back into the plan. As the initiative matured, the directorates were made aware of the progress
and thus were able to see the benefits to their own programs, thus perpetuating the reinforcing
sponsorship and commitment.

Recruiting the right personnel - Populating the lead positions in the initiative infrastructure
was made easier by the fact that the program was being driven by the SEL manager. He was
able to recruit his direct-report line managers to fill most of these critical slots, based on his
knowledge of their skills, interest, and their current project commitments. By making it known
throughout his organization that process improvement was a high priority on his agenda and
that he expected everyone to think about process improvement as part of their normal job, he
was able to help the recruiting effort tremendously.

As the need for additional people increased in direct proportion with the amount of SPI activity,
the fact that the line managers were part of the initiative was a critical factor. They were able
to convey to the individual contributors who worked for them the importance of process im-
provement for the company's future. Not only was it acceptable to spend time on process im-
provement activities, it was considered part of their job. The line managers were also very
cognizant of which individual contributors were already temporarily over-committed and there-
fore knew where to draw the line in asking for SPI support. They also knew how to steer vol-
unteers to the areas where their contributions would be most beneficial.

Resources - The issue of funding a SPI effort of the size needed to support an organization
of 1200+ software engineers is clearly a make-or-break proposition. Unless the improvement
program can attain a certain momentum, interest can be lost because things just take too long
to change. Therefore the level of funding required can be substantial. The probability of sup-
porting a large program on an ongoing basis with pro bono support alone is negligible. It is
necessary to identify a source of funding that can be allocated to the SPI effort and then man-
aged like any other project.

CMU7SEI-95-TR-017 ~ ^

Typically, when a SPI effort is just being started, the funding needs are looked upon as com-
pletely unprecedented, and a source of new money is looked for. However, the organization
may already have discretionary funds being expended in other areas; by redirecting these
funds at least a portion of the SPI program can be financed. Such was our own experience.
The SEL was able to identify discretionary funds under its own control and redirect those funds
to the initiative. Senior management was then much more receptive to our requests for some
additional funding to "round out" the program. The total amount of funding for process im-
provement at Raytheon RES since 1988 has been approximately $1 million per year. This rep-
resents between two-three % of the chargeable labor dollars being dedicated to process
improvement. Coincidentally, this is approximately the same percentage that the SEI states to
be necessary to achieve a successful program [Humphrey 89].

Cultural Issues - The corporate culture (the values, behaviors, and unwritten rules that a
company exhibits) has a great deal of influence on the direction that SPI programs take. In the
Raytheon culture, there were significant factors that on the one hand hindered progress, but
on the other hand were a tremendous help in making SPI a success. On the positive side, we
were well served by a culture that contained a strong quality ethic, heavy emphasis on plan-
ning and tracking mechanisms, a strong engineering background throughout all levels of se-
nior management, and organizational precepts that promoted authority along with
responsibility while also fostering accountability. We were able to gain leverage from these
strong cultural traits in putting together a SPI program that focused on these characteristics
as important elements of the plan. For example, the early SPI planning stressed the need for
improved quality of the software product; planning and tracking of the SPI program just like
any other project; feedback from senior management on the engineering approach; and an
initiative infrastructure that gave responsibility for the success of the program to many of the
middle managers, while giving them the necessary authority, but also holding them account-
able.

In those few instances where we encountered cultural resistance, we were able to effect
changes over the long term by gradually building a convincing base of evidence that linked the
desired change to the core competencies and strategic direction that provided RES with a
competitive advantage. For example, we began our training program by giving courses after
hours, on the individuals' own time, and we paid for our instructors out of discretionary (over-
head) funds. Over time, we were able to convince senior management that project-specific
training had an immediate payback and, thus, we eventually effected a change in the culture.
Our standard practices now dictate that training needs be defined on a per-person, project-
specific basis; that well-structured courses be provided on a just-in-time basis; that they be
given during normal working hours; and that the cost be borne by the project.

Consolidating linked efforts - One way in which SPI efforts get diluted is by the lack of a
focused and coordinated effort. Many times, this is caused by turf-guarding efforts, where a
case is made that some particular improvement activity is not clearly related to the "main" SPI
Initiative and therefore is kept separate, in the Raytheon initiative, the purview of the SPI ini-
tiative was occasionally extended to ensure that this would not occur. All software-related ac-

22 CMU/SEI-95-TR-017

tivities that might consume discretionary dollars were brought under the umbrella of the
initiative, by linking them with the ongoing efforts. This consolidation had the effect of increas-
ing the importance of the initiative to the organization and thus solidifying management sup-
port.

3.3 Measurement and Analysis
Raytheon considers the collection and analysis of metrics to be of primary importance in man-
aging and improving the software development process. To support the collection and analy-
sis of metrics, we have established the Software Process Data Center (SPDC). In the SPDC,
we have provided a living archive for all the process-relevant, hard-copy documentation we
produce over the course of each project development effort. We also provide an electronic re-
pository for much of the same material.

3.3.1 Data Measurement

The two categories of measurements that we have found most useful are project progress
metrics and system technical performance metrics. Each category is prepared monthly by in-
dividual projects.

Progress metrics - these data are used by software task managers to gauge the progress or
current status of their project. Included are such metrics as module development progress, de-
sign complexity, design progress, incremental release content, staffing, schedule progress,
testing progress, software volatility, software size, and inspection action item statistics.

System technical performance metrics - these data describe the current measured or estimat-
ed utilization of software system resources such as memory storage capability, data process-
ing capability, response timing limits, communications data link, and random access shared
data bus.

3.3.2 Data Analysis

In the area of progress metrics the analysis varies with each of the characteristics measured.
As an example of the type of analysis, we will use the first characteristic listed above. Module
development progress is expressed in terms of earned value and schedule and budget effi-
ciency.

These ratios indicate how well the program is performing in terms of schedule and budget.
Raytheon uses metrics to determine the percentage completion of each of its development
phases (requirements analysis, preliminary design, and formal testing). Great care is taken to
ensure that we avoid the 90% syndrome (the software is always 90% complete). Where nec-
essary, we use self-calibrating metrics. That is, the metric is the ratio of two measured quan-
tities, the number of items completed and the total number of items.

CMU/SEI-95-TR-017 ~ ^

The analysis of system technical performance metrics is more straightforward. At the start of
each project, performance requirements are identified. These typically include maximums for
software system target resources such as memory storage utilization, CPU utilization, re-
sponse timing limits, communications data link capacity, and random access shared data bus
capacity.

Raytheon uses a systematic method of collecting and presenting this information from all jobs
with significant software content. The material is prepared by each project in RES monthly,
and reviewed technically. Projects prepare a plan giving the margins by which they will man-
age technical performance parameters over the life of the program. Typical planned margins
are shown in Table 1 and depicted graphically in Figure 4.

Table 1: Phase Dependent Margins

Milestone Allowed Usage

Proposal submission 50%

SRS completion 56%

PDR 62%

CDR 71%

Start of Integration 83%

FQT 91%

System Test 95%

Tolerance Band for Allowed Usaqe

/ X
r- -
i

 1

,-J

I

- — X^r Current
X ^^** Estimate

X x

Technical w X
Parameter X

X

xx

X

Values

X
Technical
Milestones

A A A A A A

Time

Figure 4: Performance Margins Versus Time

24 CMU/SEI-95-TR-017

Projects report monthly the estimated value of each technical parameter. The estimated value
of each parameter is initially modeled, and later measured. Since measurements are consid-
ered more reliable, the reporting distinguishes between these methods. The report also shows
explicitly all reserves, both the development reserve and the customer's reserve. These esti-
mates are reviewed monthly with RES management.

Measured Estimated [~~| Developed Reserve W Customer Reserve

B
S

ro
D.

m ü LU O a rr
£ S
E ro
co
Q.

u/ Qj UJ UJ m vi/

S
E
ro
ro
Q,

£ S
E ro
ro

£
S
E
2
ro
D-

£ 'S

ro
a.

£
F

£
F

ID
E

£ 'S
E

£ 'S
F

£ S
E

ro
ro

ro
ro

Q.

«
0. ro

ro
CO

Q.

CO

ro
a.

£
S
E
ro
w. ro
D.

£ S
E
ro
ro
a.

£
S
E
ro
ro

CL

£
S
E
ro
ro
a.

(D

CD <D a> Q)

m Q) m a>
F F b b
ro ro CO «
m ro ro CO
Q. a. Q. LL

Figure 5: Sample Technical Performance Measurement Report

Figure 5 depicts a typical portion of the performance report. All parameters are normalized so
that 100% represents the maximum contractual value. Parameters which exceed the currently
allowable threshold are considered critical. Parameters which exceed 100% are failing.

CMU/SEI-95-TR-017 25

The values of technical performance parameters are maintained in a relational database. Ta-
ble 2 below shows the history of several critical parameters over a one-year period. Shaded
parameters are (or were) failing. These parameters receive special management attention.

Table 2: History of Critical Parameters
Parameter
Category Parameter

1994 1993

Dec Oct Sep Aug Jun May Apr Mar Feb Jan Dec

timing A 97 97 97 133 92 217 217 217 217 217 200

comm B 141 141 141 141 112 112 112 83 110 110

cpu C 77 101 101 125 91 91 91 91 121 121

D 77 101 101 125 92 92 92 92 121 122

E 91 91 91 110 71 71 71 066 88 88

F 87 87 87 95 71 71 71 14 19 19

G 91 91 91 110 71 71 71 66 88 88

H 87 87 87 95 71 71 71 14 19 19

26 CMU/SEI-95-TR-017

4 Leverage Points

In the course of implementing the Software Engineering Initiative at Raytheon, a number of
key points have emerged in contributing to the sustained improvement of the software devel-
opment process. These points have shown up repeatedly in different projects, specifically in
the areas of product improvement and process improvement. By concentrating on these
points, significant leveraging can be achieved in expediting the software development pro-
cess.

Specifically, with respect to the product, the key leverage points include the areas of system
requirements definition, software requirements definition (the relation between these two is of
critical importance to successful system integration), in-process inspections, and integration
and qualification testing. With respect to the process, the key leverage points are management
control, training, and pathfinding. Each of these points is discussed in more detail in the fol-
lowing subsections.

4.1 Product Improvement

4.1.1 System Definition
Software engineering should play a major role in defining the system, recognizing that as our
system solutions have become more and more software intensive, the overlap between sys-
tem engineering and software engineering has become virtually complete. As a matter of RES
policy, the group responsible for system engineering must be augmented by project personnel
from the software organization at the outset of system definition.

Software engineering is typically an active participant in the early tradeoffs that precede the
various partitioning steps from which a system design baseline eventually emerges. We ex-
pect our software systems people to have a working knowledge of what is happening outside
their software domain; many of our people have found this to be a natural career progression
path to system engineering.

The organization also expects the software engineering participants to assume a dominant
role in setting the system's processor architecture. Since software is going to have to live with
these architectural decisions for the life of the program, this serves to establish ownership in
a timely and sharply focused way. It also causes the software participants to conceptualize a
strawman system engineering architecture, which in turn provides a meaningful basis for siz-
ing the job for planning and scheduling purposes.

Hand in hand with the definition of the target data processing environment comes the need to
lay out the software development environment, in terms of both facilities and tools. For obvious
reasons, software acts as the principal agent in this task, drawing heavily from the experience
built up by the Tools Working Group of our Software Engineering Process Group.

CMU/SEI-95-TR-017 ~ ^

Participation by software representatives also provides early and perceptive insight into the
specifics of the applications domain to be implemented, thereby establishing the core around
which an effective requirements generation team can be built, and enhancing the eventual
software design.

4.1.2 Requirements Definition
We have learned from considerable experience, that definition of an inadequate and/or incom-
plete requirements baseline can bring even the best of software processes to its knees. Pre-
dictably, the software design team must then spend a disproportionate amount of its energy
attempting to sort out and clarify the real requirements, and even despite their best efforts, the
results at system integration time can turn out to be disappointing, at best, and extremely cost-
ly to fix at worst.

A fundamental precept of our software process initiative is to extend our process focus across
the requirements definition phase, even though requirements analysis and specification at
Raytheon are clearly within the purview of the system engineering function. We have found
formal, structured decomposition methods well suited to our needs, particularly with the emer-
gence and subsequent maturation of supporting CASE tools. Our methods baseline has been
Yourdon/Demarco with Hatley/Pirbhai real-time extensions; our CASE tool set of choice is
Software thru Pictures (StP), although our process permits the use of a variety of vendor prod-
ucts. With a well-honed training curriculum in place that is imparted to all members of the soft-
ware requirements team (including systems people and, occasionally, the customer) we are
finding it relatively straightforward to decompose software requirements in an orderly way to
achieve a well-balanced functional performance baseline that is surprisingly resilient to mod-
erate requirements change.

With the emergence of CASE technology, we have been able to achieve a convenient mar-
riage with documentation technology, making our engineers more efficient, and their lives a
lot easier, by attaining a level of tool integration that takes the onerous task of document gen-
eration out of the software engineers' hands.

Our practices require that we generate preliminary requirements (known within Raytheon as
"thin specs") specifications during the proposal phase. These force the software and system
engineers to describe the functional architecture well enough to allow the software to be sized
and cost estimates generated in turn.

In closing out our requirements analysis phase, we do several things that appear to be unique.
First of all, we recognize that there's a potential flaw in our partitioning process. That is, we
allocate system requirements to individual configuration items (Cl), proceed to take a vertical
cut through each Cl whereby requirements are decomposed and defined, and attempt to iden-
tify inter-CI interfaces as well as those external to the system. What our process adds is a final

28 CMU/SEI-95-TR-017

step wherein we carry out an analysis of major system threads by taking a horizontal cut
across all CIs, including both software and hardware, and, by ensuring end-to-end connectivity
across each functional thread, we validate the partitioning that was put in place months earlier.
If not uncovered here, the "we forgots" will next show themselves in the system integration lab.

We also usually conduct a "goodness" check on our software requirements specifications to
satisfy phase exit criteria. We are not talking about functional correctness here; that is covered
in great detail during underway inspections and reviews. Our specific focus is to have a small,
independent team sample the full set of specifications, assessing such factors as the proper
level of decomposition, consistency and clarity of the requirements statements, forward and
backward traceability, and testability of individual requirements. This serves to put an impor-
tant stake in the ground relative to expected specification quality.

4.1.3 Inspections
Surely one of the most important leverage points in our process derives from our adoption of
in-process inspections. These are peer reviews that conform generally to the structure laid out
by Michael Fagan at IBM in the mid-1970s. There is a formalism associated with each inspec-
tion in terms of the moderator's role; the responsibilities of the two-three reviewers both in
preparation for and as participants in the inspection; and the inspection support structure in-
cluding recording, action item tracking and closure, and defect data gathering. Our process
mandates 100% inspection coverage, so convinced are we of the importance of this scrutiny.
We originally limited our inspections to the detailed design and coding phases, but have since
extended this to embrace top-level design as well as requirements definition.

An inspection curriculum is an integral part of our training program. Course conduct is typically
carried out on a project-by-project basis, with the course material tailored to a project-specific
context.

Inspections have played the principal role in allowing us to identify defects at a stage where
they are easy and relatively inexpensive to fix, thereby causing our process to avoid the heavy
rework penalties associated with problem detection at later integration and test stages. We
have dealt with the need to depersonalize this part of the process through careful schooling of
moderators and reviewers in techniques for examining the product for defects, not for evalu-
ating the author; however, objective peer review has the effect of causing the originator to
place special emphasis on the correctness of his/her product.

In stepping up to the challenges of a Level 4 process, we have been quick to appreciate that
inspections provide us with the sort of in-process windows needed to define the organization-
wide behavior of our process model, as well as to measure an individual project's performance
against that model.

CMU/SEI-95-TR-017 29

4.1.4 Integration & Qualification Testing
Our standard process separates software development from software integration, and in turn
separates software integration from software qualification testing. We are also committed to
the use of incremental builds and have been employing this integration strategy for well over
20 years; in many cases, our software builds' functional content and schedule are driven by a
higher level build plan wherein hardware and software functionality is accumulated incremen-
tally into a system string.

We devise a build strategy very early in our process. Our detailed development plans flow from
that strategy. At any given point in time, functionality for several builds may be underway on
parallel development paths. We find it effective to establish a formal hand-off point between
the developers and the integrators; development teams normally pre-integrate their unit-test-
ed code into functional sub-threads and effect a promotion to the integration baseline by dis-
cussing the extent of their testing with the build manager and demonstrating that their new
code will run in the integrated build against a regression test suite. As an added benefit, we
find that our developers are professionally motivated to bring code to the integration point that
in no way affects the hard-won stability of the current build.

The role of the integrator is to ensure that the assembled code executes correctly and predict-
ably; performance within the target environment receives special attention, while functional
correctness is left to the test organization. The build team typically achieves a hand-off to the
test team by demonstrating stable operation using a relevant set of qualification test proce-
dures. The role of the test team is one of establishing via preordained verification methods that
the software satisfies each and every performance requirement levied against it, and the sub-
sequent demonstration of this to the customer.

There are several other facets to the integration and test portions of our process that warrant
mention. Our use of incremental, and sometimes overlapping, builds has caused us to evolve
rigorous, multi-version configuration control mechanisms that are serving us particularly well
as we transition from one-of-a-kind government systems to systems that are productized. In
addition, we find that our pathfinders usually have wrapped up their assigned tasks at about
the time software integration starts, and that they provide perfect seed talent for the build
teams. Finally, we have learned from painful experience that you cannot have too much in the
way of facilities, especially when it comes to integration; therefore, rather than build a two-
three shift operation into our usually tight schedules, we've found it cost- and schedule-effec-
tive to generously equip and instrument our integration and test laboratories.

30 CMU/SEI-95-TR-017

4.2 Process Improvement

4.2.1 Management Control - Software Development Planning
The management component of our software process has its roots in a disciplined planning
process. We insist on the preparation of a comprehensive draft software development plan at
the proposal stage of a program that, to be process compliant, must include 20 discrete ele-
ments of planning detail as defined in our practices manual. Standard estimating methods are
used, based in large measure on delivered lines of code, factored according to whether it is
new, reused, COTS-based, etc. Once a project is underway, we obtain bottom-up estimates
from individual staff members, thereby establishing the desired degree of accountability.

We carry out earned-value tracking on a regular basis: weekly at the project level, monthly at
the engineering laboratory level, and quarterly at the RES level. We have learned that process
compliance must be kept in full view and thus have made phase exit/next phase entry criteria
compliance integral to laboratory-level tracking.

We regard the software quality assurance (SQA) function as a component of our management
control process; however SQA is organizationally separate from the software organization, en-
joying a separate reporting path to RES general manager. The SQA role is primarily focused
on auditing the software process and its products; they carry out this role smoothly and effec-
tively by using technically qualified people, having practical insight into the standard software
process, and maintaining an unobtrusive presence. The result is complete acceptance by the
performing organization undergoing audit.

Finally, on those occasions when it is appropriate to use software subcontractors, our funda-
mental management precepts call for the work to be done under our standard process and,
ideally, for the work to be done on a co-located basis. We have found the SEI CMM to be a
very useful vehicle for assessing the suitability of a potential subcontractor to our software
needs.

4.2.2 Training

As our process has matured, we've defined a training curriculum that has stayed in lock step
with it. We currently provide 18 courses covering the full range of process topics. This training
baseline is subject to ongoing evaluation, and course elaboration and new course definition
are a never-ending proposition.

Each new software program start is expected to lay out a training plan based on project-spe-
cific needs defined in the context of prior training accumulated by the proposed staff. Our phi-
losophy is to present the courses on a just-in-time basis, recognizing that the material can
quickly go stale if it is not soon reduced to actual practice. To this end we have a large staff of
instructors, being able to draw from a cadre of five or six for each course. Our instructor posi-

CMU/SEI-95-TR-017 31

tions are filled exclusively from within the software engineering ranks; our only full-time training
person is the individual who has overall direction of the software training program, and who
trains the trainers. We are certain that the training material is made much more meaningful by
having committed practitioners present it.

We also find that training is the obvious vehicle for getting everyone on the same page; ac-
cordingly, our classes go well beyond software engineering personnel to include program
managers, system engineers, SQA, and frequently, customer personnel.

4.2.3 Pathfinding
In examining how well our software engineers used their time in carrying out their assigned
tasks, we discovered that their work environment frequently presented problems that slowed
them down and/or called for them to use work-arounds (for example, buggy compilers and id-
iosyncratic real-time operating systems). To deal with this, we conceived the idea of pathfind-
ing teams that would move out ahead of the developers to blaze the trail and cope with
problems in advance. These are small teams staffed by those individuals with special talents
who seem to thrive on this sort of relatively unstructured assignment, and whose success is
directly proportional to the efficiency of the engineers who follow them down the various de-
velopment paths.

Pathfinding concentrates on two sets of paths: those that comprise the software development
environment, and those that wend their way through the target data processing environments.
Work on the development side of things generally starts with getting the work stations/PCs and
servers tied in with the network of choice and put through their paces. The full set of tools is
then installed and checked for compatibility with the various platforms as well as with each oth-
er. Project-specific set-up is then carried out (for example, the software development library
structure is established consistent with the particular configuration control strategy in use). All
tools are exercised in the various ways they will be used by the developers. Tools that are new
to Raytheon are given extra attention so as to define explicit procedures governing their use
and identify peculiar behavior characteristics. Tools that are relatively new to the market are
exercised extensively under all modes and stressing loads to benchmark performance and,
perhaps more importantly, to put useful mileage on the tool set. Compilers are given special
attention in this regard since their behavior has a direct impact on developer efficiency. We
are also careful to accurately measure computer loadings associated with the use of specific
tools; a development environment that chokes on a CPU-hungry compiler can impose sched-
ule problems that are extremely difficult to deal with in real time.

The target environment has its own set of problems that lie in wait for the developers. Usually,
the first pathfinding task is to set up the full target configuration, including the download paths
from the development environment. Performance of the individual target elements is com-
pared against what was anticipated. The tasking structure envisaged by the software architec-
ture is put in place and exercised to verify its match to the hardware. A lot of attention is paid
to the run-time operating system, especially if it is relatively new to Raytheon or is being ex-

32 ~ ~~ CMU/SEI-95-TR-017

posed for the first time to the rigors of real-time use that many of our systems demand. Path-
finding also finds itself caught up in the prototyping of performance-critical functions so as to
be able to influence design decisions and make target hardware adjustments in a timely fash-
ion.

Planning for pathfinding tends to be quite dynamic. It is necessary to put a software project
plan in place at the outset that reflects an overall pathfinding strategy. As the team works its
way down the various paths, new avenues of exploration are bound to open up and the team
must have the flexibility to pursue them; however, because of the pathfinding team's relative
independence, it is important to maintain visibility of their activities so as to ensure that ade-
quate energy is being evenly applied across pathfinding areas.

The RAPID Lab, described in Section 3.1.2, has assumed an increasing role in pathfinding or
qualifying COTS products.

CMU/SEI-95-TR-017 J33

34 CMU/SEI-95-TR-017

5 Quantitative Process and Quality Management

An important part of the Software Engineering Initiative, and a key element in achieving the
Software Engineering Institute's Level 4 rating, is the use of metrics, or quantitative methods,
in measuring and evaluating the software engineering process. Once a software engineering
process has been standardized, it is possible to gather and analyze data from projects using
the standardized process to evaluate both the quality of software products and the efficiency
of the methodology. Metrics gathered from a variety of projects employing a common method-
ology provide a valuable source of insight into the effectiveness of the methodology, as well
as a means for providing an objective estimate of the effects of process improvements.

In order to gather and use such metrics effectively, it is necessary to develop an organizational
framework and a tool set to support this activity. This includes the following steps: (1) defining
which metrics are to be recorded; (2) specifying how the data are to be gathered, formatted,
and organized; (3) establishing a common repository in which data from all projects can be
stored and retrieved; and (4) defining procedures by which existing metrics can be analyzed
to assist in process improvement.

This chapter summarizes Raytheon's approach to the quantitative measurement and analysis
of its software engineering process, as well as of the quality of its software requirements as
determined by conformance to requirements, and also summarizes some of the key results
we have obtained to date in our progress towards achieving Level 4.

5.1 Approach
Our approach to institutionalizing quantitative management of both our software engineering
process and its quality requirements involved the following activities: utilizing existing project
data; determining the tools and resources necessary to expedite the collection, storage, re-
trieval, and analysis of data for efficient use within and across projects; establishing the orga-
nizational infrastructure necessary to support data collection, analysis, and dissemination; and
implementing the proposed methods in our actual practices.

Project data collection is an integral part of Raytheon's culture. Cost, schedule, manpower,
and many other project parameters are rigorously tracked and reported in a monthly tracking
book, which is routinely reviewed by all levels of management. These data provided a useful
starting point for the more detailed analyses that we projected as necessary to meet our goals.
A large proportion of these data, however, were in hard-copy form, or else embedded in elec-
tronic word processing formats on different platforms, thus making it difficult to assimilate the
data into a single common format suitable for systematic analysis.

One of the first steps in our approach, therefore, was to automate the collection of most of the
data into a relational database using commercially available tools. This made it possible to
perform searches, sorting, and general statistical processing uniformly within project-specific
data, as well as across data from multiple projects. During this tooling effort, we also re-exam-

CMU/SEI-95-TR-017 35

ined the detailed information previously collected on defects (as reported in action items gen-
erated during inspections, as well as from software trouble reports). As a result, we modified
our data collection forms in ways that would enable us to perform the detailed analyses re-
quired for our root-cause studies.

In parallel with our data consolidation efforts, we augmented our Software Process Data Cen-
ter's capabilities in anticipation of the more intensive activities in which it would be participat-
ing. These augmentations included additional staffing, more computer hardware and software
tools, LAN connections to specific project servers, and additional physical space. We added
a statistical process control (SPC) expert to our ranks to help set up the standard analyses we
would be performing, and to prepare and teach a course in basic SPC techniques to team
members involved in our Level 4 efforts.

Our approach to getting a higher level of involvement from software task managers also led to
a change in our SPI infrastructure. We formed a Task Manager Working Group to facilitate
project data collection, root cause analysis, and the feedback to enable process refinement on
projects. The Task Groups that were formed to implement process change received common
training in problem solving methods, and were given the title of Level 4 process improvement
teams.

While the above developments were occurring, three projects agreed to pilot various elements
of the approach. The success of these pilot efforts, specifically in the area of improved inspec-
tions through the use of statistical analyses and the area of process adjustments resulting from
root cause analyses, prompted the software engineering manager to require that all new
projects adopt this so called Level 4 approach.

Improvements in the inspection process resulted from a detailed study of the results from in-
spections in a number of projects. The analyses (described in Appendix A) concluded that, for
the type of software developed in Raytheon Electronic Systems, the best way to operate in-
spection reviews under preferred conditions is to do the following whenever possible:

• Break review packages down into 1000 DSI or less.

• Allocate and schedule the review meeting length to be consistent with
approximately 100 to 250 DSI per hour.

• Allow for adequate preparation time (minimum of 5 hours per KDSI) and
ensure that sufficient peer reviewers are present.

In addition, the study was able to set control limits on the inspection defect-discovery density
which were subsequently used by the pilot projects in conjunction with the root cause analysis
efforts to achieve better inspection efficiencies and reduced project costs.

36 CMU/SEI-95-TR-017

5.2 Results to Date
The gathering of metrics data and the initial analysis of the data gathered earlier in our initiative
constituted the activities associated with the beginning of our Level 4 work. The next part was
the root cause analysis of the information to determine the cause of problems identified by the
data analysis. The root cause analysis was frequently done by teams of task managers asso-
ciated with the projects, along with representatives from the Process Data Base Working
Group. The final part, closing the loop by changing the process, was done by the task manag-
ers on their respective projects (where changes were project-specific) or by the SEPG, where
the overall process was affected.

Key to these activities was the use of quantitative data for decision making. We deemed this
to be the key identifying characteristic of Level 4 organizations. Collection and initial analysis
were done earlier in our initiative, but the application of root cause analysis and the feedback
loop of process change, based on unbiased data analysis, constituted our Level 4 advance.
This was augmented by the addition of statistical process control techniques permitting us to
focus our analysis and improvement activities on issues resulting from causes outside the nor-
mal process variations.

Table 3 provides some examples of the combined data analysis/root cause analysis/process
change mechanism that we have applied.

Table 3: Examples of the Process Improvements
Achieved by Root Cause Analysis

Weakness

Erroneous interfaces
during integration and
test

Lack of regression test
repeatability

Inconsistent inspection
process

Late requirements up-
dates

Unplanned growth of
functionality during Re-
quirements Analysis

Process Improvements Made

Increased the detail required for interface design during the require-
ments analysis phase and preliminary design phase
Increased thoroughness of inspections of interface specifications

Automated testing
Standardized the tool set for automated testing
Increased frequency of regression testing

Established control limits that are monitored by project teams
Trained project teams in the use of statistical process control
Continually analyze the inspection datafortrends at the organization
level

Improved the toolset for maintaining requirements traceability
Confirm the requirements mapping at each process phase

Improved the monitoring of the evolving specifications aqainst the
customer baseline
Continually map the requirements to the functional proposal baseline
to identify changes in addition to the passive monitorinq of code
growth
Improved requirements, design, cost, and schedule tradeoffs to re-
duce impacts

CMU/SEI-95-TR-017
37

Erroneous interfaces during integration and test- Analysis of software trouble report metrics,
via use of Pareto analysis, showed that the largest contributor to the number of defects was
interface defects. Further analysis by the task manager and process database team deter-
mined that the root cause could be attributed mostly to lack of sufficient detail during the initial
design phases. As a result, we changed our process in two ways to alleviate this problem.
First, we required that the level of detail of interface specification be enhanced up to and in-
cluding adding actual code during the requirements and preliminary design phases of the life
cycle. This was done to require more specificity in the interface definition earlier in the life cy-
cle. Second, we modified all of our inspection checklists to place more emphasis and focus on
the interface issues. Our Policy and Procedures Working Group modified the standards to re-
flect this and the Training Working Group helped change our requirements analysis course.

Lack of regression test repeatability - Pareto analysis of cost data for a large software project
found that a major cost factor was the test area. The root cause of this was determined to be
the cost of the associated set-up and execution time. Further investigation of the metrics data
showed this was true across most of our product line software. Continued root-cause investi-
gations revealed that because of this cost, regression tests were run less frequently so that
when the product was tested, defects had accumulated and debugging was more difficult and
costly. Again, the use of quality metrics data on defects gave quantitative measures to the ex-
tent of this problem. Process changes included automating test activities with commercial
products, standardizing on a test tool set across projects, and increasing the frequency of re-

gression testing.

Inconsistent inspection process - Our baseline data for detailed design and code inspections
shows a wide dispersion of defect removal results among individual inspections. We wanted
both to determine the guidelines for optimal reviews, consistent with our process, and to begin
to shrink the deviation around the mean of these parameters for improved predictability. As a
result, baseline numbers were established for these key variables and control limits estab-
lished. A training program in statistical process control was developed and is now given to
project teams (using actual project data) as their projects transition to the use of Level 4 tech-

niques.

Late requirements updates - Projects were exhibiting a large number of defects during inte-
gration and test, as revealed by analysis of defect density trends from software trouble reports.
The root cause of these defects was traced to the failure of the software to fully satisfy require-
ments, resulting in rework to both the specifications and the software. An improved tool set
was added to provide complete traceability from system level through test cases and support
the confirmation of requirements mapping during inspections as each phase of development.

Unplanned growth of functionality during requirements analysis - We had been accustomed
to assessing requirements growth in terms of code size. When unplanned requirements
growth occurred on several projects, we examined the growth trends and traced the root
cause not to misestimation of size (a common first assumption) but to growth in functions. We
have changed our requirements process to now use customer specifications and the informa-

38 CMU/SEI-95-TR-017

tion that is developed during the proposal process to continually monitor functional (in addition
to code size) growth. Functional growth is now managed in two ways, once identified. First, a
certain amount of growth is planned and tradeoffs are made to evaluate the growth in specific
areas against shrinkage in others to manage the functional scope of the projects. Second,
functional growth is managed as part of the program risk process, where cost and schedule
impacts are identified and mitigated. These process steps are now codified in our software
standards and promulgated in software management and requirements analysis courses.

As we continue our initiative, we have taken the step of requiring all new projects to operate
as Level 4 projects. Within the context of Raytheon SEL's Software Engineering Initiative, we
require of projects that

• appropriate metrics be collected and sent to the Process Data Center on a
monthly basis

• standard analysis and reporting of these metrics be done regularly

• key quality metrics and parameters (from inspections and software trouble
reports) be compared to baselines (mean and control limits) derived from the
SEL metrics database

• task managers and line engineers be trained in the use of statistical process
control techniques so that they can properly interpret the metrics data

• task managers be able to use SPC, along with other techniques, to be able
to focus their resources on key issues, not variations within normal process
limits

• project team members, in conjunction with other members of the SEPG,
contribute to root cause analysis of both project and process-related
problems

• project team members, in conjunction with other member of the SEPG,
contribute to actions to change the SEL process

A key requirement is that the collection, analysis, and process change must have immediate
benefit to the project (a goal is within a month). Raytheon's engineering culture emphasizes
results showing direct, immediate benefits to projects. We have established this as a criterion
for demonstrating the cost/benefit of achieving Level 4 throughout the entire software organi-
zation.

CMU/SEI-95-TR-017 39

40 CMU/SEI-95-TR-017

6 Changing a Mature Process

RES's Software Engineering Initiative has become the cornerstone of our future software busi-
ness. Since our proposals are keyed to the software quality and productivity gains we have
seen in the recent past, it is critical to our continuing success to ensure that software improve-
ments are sustained, measured, and remain significant. This must be done in the ever-chang-
ing business environment in which we live. Some of the important developments which have
dramatic effects on our developing process are (1) the migration of our process from defense-
oriented programs to more commercial-based programs. This is consistent with Raytheon's
evolving focus on commercial opportunities and conforms with DoD's downsizing initiatives,
and (2) the migration of our process from the former Equipment Division to other organizations
within and external to Raytheon (the newly organized Raytheon Electronic Systems, other
Raytheon divisions, subsidiaries, new corporate entities, customers, subcontractors, and
prime contractors).

In the DoD area, our process developed under the constraints of required compliance to mili-
tary standards, close monitoring by the customer, and emphasis at the "software specification"
level of requirements. The characteristics that we are seeing in today's environment are that
reduced (or no) standards are imposed, the customer may not be actively involved during the
development, and the emphasis has shifted to the "system specification" level of require-
ments. In short, there exist a number of drivers, in addition to our quest for institutionalizing
Level 4 and achieving Level 5, that are already affecting and will continue to influence the di-
rection in which our presently mature process will evolve.

6.1 Technology Drivers
The variety of issues that we contend with in this area is staggering. One challenge is the ma-
turity of object-based techniques. While the use of these techniques may provide a competi-
tive advantage, a complete transition to this approach would present significant risk to the
organization. With a documented process, tool support, training programs, and metrics activ-
ities all centered around the use of functional decomposition approaches, the impact of evolv-
ing to an object approach would be significant, to say the least. On the other hand, we may be
missing a great opportunity. The actions being taken to evaluate this tradeoff include the pilot-
ing use of object-based techniques on one project being funded as part of our internal re-
search and development (IR&D) program. This presently includes training project personnel
to use these techniques during the requirements phase, and the plan to extend the training in
the near future to include software design.

Another technological thrust is the migration to Ada 95. With a large number of projects that
have used Ada over the last several years, we have an existing base of programming guide-
lines, training materials, tools, and personnel that will require transition to the new standard.
Having anticipated this need, we have been following the evolution carefully, and publishing
periodic Ada Newsletters to keep people informed as to the changes to be expected. Plans for
completing the transition are underway, so that the risk involved can be.minimized.

CMU/SEI-95-TR-017 41

The evolution to open system architectures is another technological challenge. Anticipating
these developments over the last few years, we have been making efforts to develop our soft-
ware to be platform independent to the greatest extent possible. This includes the use of open
systems standards (such as SQL, POSIX, Cobra, and X-Windows) wherever practical, and the
use of COTS software and hardware. To further enhance our platform independence, we are
relying almost exclusively on commercial tools in areas such as test tools, file management
software, and project management software. In the human/machine interface area, we are
employing application builders to create graphical user interfaces which have a high degree
of independence of target hardware.

Another issue that we must face is the rapid introduction of personal computers and the gen-
erally exponential growth in computing horsepower that is potentially available to our develop-
ers. Here again, this technology provides an opportunity to achieve competitive advantage, by
leveraging the computing power to utilize more sophisticated tools or increase throughput. Our
approach has been to carefully select management and engineering tools which are support-
ed both by the workstations and the personal computers that are increasingly becoming our
environments of choice, and by working closely with the hardware vendors. In this way, as the
computer environment evolves, we stand a better chance of upgrading with minimum impact
on our computational resources.

Of course, the whole area of tool and environment evolution presents a challenge to the stable
process we have in place. Two approaches have been adopted: the first being the ongoing
evaluation of new tools and methodology that has been the focus of our Tools and Methods
Working Group since the very beginning of the initiative, and the second being the recent de-
velopment of the Raytheon Advanced Prototyping, Integration, and Demonstration (RAPID)
laboratory. Although the primary objective of RAPID is the prototyping of application software
within a family of domain-specific software architectures, the facility has the capability of inte-
grating COTS tools for purposes of qualification and evaluation as well.

Yet another technological innovation that has an impact on the current process is the almost
limitless information access available through communication networks. Although these new
communications channels (such as WAN electronic communications throughout the Raytheon
organizations and Internet access to the world) have been made available to the staff, their
potential for integration into the software development process is far from being fully realized.

6.2 Market Drivers
We see the marketplace in our business areas undergoing at least two distinct transitions that
already have an impact on our "mature" process and will undoubtedly continue to influence
the direction that our process evolves. This new market is characterized by demands for quick
and inexpensive solutions, and a strong emphasis on quality.

42 CMU7SEI-95-TR-017

There are several reasons for the increasing emphasis on getting quick and inexpensive so-
lutions:

• As competing companies continue to downsize into "leaner and meaner"
entities and scramble for the dwindling DoD market, the challenge of
trimming costs to the bare bone becomes greater.

• As the computer hardware capability continues to grow at what seems to be
an exponential rate, it becomes more and more important to build systems
more quickly in order to take advantage of the latest capability available.

• The continuing trend toward extending the life of existing systems by
upgrading rather than building from scratch drives customer's expectations
of "faster, better, cheaper."

• As customers see the successful incorporation of non-developmental
software (NDS) and COTS software and hardware into new systems, they
are demanding more of the same.

• In the international arena, the softness of the dollar, the growing capabilities
of off-shore software houses, and the frequent need to compete with foreign
companies that are government subsidized all drive us to streamline our
process to meet these cost challenges.

Some of the specific process-related actions that we're taking to address these issues are as
follows:

• Initiate IR&D projects oriented towards producing baseline capabilities.

• Develop standards for domain-specific software architectures and
mechanisms for reusing large software NDS and COTS products.

• Organize resources to handle multiple projects working on similar systems
for different customers during the same time frame.

• Develop heavily tailored processes for projects that have only small amounts
of new software embedded within a very large NDS and COTS component.

• Gain leverage from the Raytheon Advanced Prototyping, Integration, and
Demonstration (RAPID) laboratory capability in providing streamlined testing
capability for these "new" types of systems.

In fact, the system development paradigm that RAPID supports can be viewed as a specific
process itself. This so-called "RAPID Process" is shown in Figure 6. The RAPID Lab's soft-
ware engineering process is composed of two distinct but intertwined activities. Domain engi-
neering is a foundation activity in which software architectures for each principal application
area are defined, developed, and documented through an integrated CASE tool environment.
The attributes of the components within these architectures become the basis for periodic, me-
thodical product evaluations conducted on nondevelopmental (COTS/GOTS) software prod-
ucts. All products that satisfy the attributes assigned to these components, as well as
associated documentation, are captured and catalogued in a corporate reuse library for future
project use. Project system engineering matches a specific set of user requirements to the ap-

CMU/SEI-95-TR-017 ~ -43

propriate architecture component attributes and the products that have been evaluated and
validated for use in building similar functionality. By reusing architectures and products cap-
tured in the reuse library, development teams are able to rapidly generate and deliver proto-
type or first-article capabilities to an end user.

DOMAIN ENGINEERING

^ NEW REQUIREMENTS

SYSTEMS ENGINEERING

DEFINE SOFTWARE
ARCHITECTURE

ANALYZE
USER REQUIREMENTS

1
DOMAIN
KNOWLEDGE

*
IDENTIFY

COMPONENTS/
PRODUCTS

DEVELOP RAPID
PROTOTYPE PLAN

Catalog/
Repository

v * '
INSTANTIATE

ARCHITECTURE
RAPID PROTOTYPE

INTEGRATION/DEMO

+ I
VALIDATE

COMPONENTS
DEVELOP

END SYSTEM

i i
1'

DEVELOP/FIELD PROPOSAL

OPER/ mONAL SYS1 "EM DEMONSTRATION

Figure 6: The RAPID Process

The heavy emphasis on quality that we see in the marketplace is characterized by require-
ments for quality certification, an emphasis on applying TQM techniques and, at least in the
European community, ISO 9000 registration. The Raytheon quality management (RQM) ap-
proach that has been instituted across RES has led to the adoption of a uniform philosophy
and mechanisms for applying problem-solving techniques. The Software Engineering Initiative
has adopted the RQM approach using process improvement teams (PITs) instead of task
teams for its CMM Level 4 activities. The advantage is that the PITs can benefit from the RES-
provided training in different problem-solving techniques, including the use of statistical pro-
cess control and approaches for addressing the root cause of problems.

44 CMU/SEI-95-TR-017

In the area of ISO 9000 registration, the initiative has led the way to the achievement of the
goal of ISO 9001 software certification within RES. A special training program was set up and
conducted throughout the remaining software-intensive segments of RES in preparation for
the audits, with the goal of achieving certification throughout the entire organization by year-
end. We elected to pursue software certification separate from hardware. While the software
development part of ISO registration was well served by our mature process, it was all the in-
terfaces to the total RES structure, such as purchasing, vaulting, program management, and
document preparation, that proved tricky.

6.3 Business Decisions
Some of the more recent business decisions that Raytheon has made are having an impact
on the process direction that we had established. Specifically, these fall into two areas: corpo-
rate restructuring, and teaming and subcontracting.

Our recent merger of the former Equipment and Missile Systems Divisions to form Raytheon
Electronic Systems, more than doubled the size of the software development organization.
The standard practices of both of these major components must now be merged into a single
set of "best practices," from which specific tailoring will be done on a project-by-project basis.
Raytheon has also acquired major new business elements which have large software compo-
nents. Again, the standard practices which have become part of our mature and stable pro-
cess will need to be further adapted to the business areas of these newly acquired businesses.

Raytheon has recently embarked on programs with complex teaming arrangements involving
multiple companies with varying degrees of software engineering capability maturity. In some
cases, Raytheon is the prime contractor and in others a subcontractor. Some success has
been achieved in working with team members in both environments to have them adopt the
Raytheon process for the entire contract team. In other cases, the division of responsibility on
the contract has been, in part, based on process maturity, with the development of a single
standard process for that contract being performed specifically for the award.

6.4 Customer Initiatives
The evolution of our current process is influenced by the initiatives that some of our customers
are taking. These initiatives include the Portable, Reusable, Integrated Software Modules
(PRISM) work with the Air Force, the Perry initiative affecting all of our DoD customers, and
the increased reliance on process maturity in the selection process being used by many of our
customers in both the Government and commercial sectors.

CMU/SEI-95-TR-017 45

Raytheon is one of the two main contractors for PRISM. The rapid prototyping development
approach being emphasized by this customer initiative is influencing other work, creating a
distinct shift in the processes needed to comply with the customer requirements. This shift has
necessitated the development of new processes, thus helping us continue to evolve our pro-
cess. The approach has such great potential that we have embraced the technology and tran-
sitioned many of the concepts to our own Raytheon Advanced Prototyping, Integration, and
Demonstration (RAPID) laboratory, and to some of the programs we are currently bidding.

The Perry initiative, relaxing the use of military standards and emphasizing the use of best
commercial practice, provides an opportunity to use more effective, less costly approaches for
developing software while still maintaining the level of rigor necessary to ensure a quality prod-
uct. This has the potential for further streamlining our process. Alternative solutions can now
be proposed which involve greater use of commercial software products with resultant savings
in both cost and time. The flexibility this initiative provides to our DoD customer base can now
be leveraged by proposing highly innovative approaches.

6.5 Benchmarking
As Raytheon continues to strive to be the "best of the best," we have increased our participa-
tion in benchmarking. By searching out those industry best practices that can complement our
own, we expect to improve our overall process [Camp 89]. Our approach is to run some bench-
marking pilots with several companies; in doing so, we have two goals in mind: finding process
elements that we can incorporate, and developing our own internal benchmarking process
that we can make part of the Raytheon standard.

46 CMU/SEI-95-TR-017

7 The Impact

In the six years since the Software Engineering Initiative was put in place, Raytheon has been
able to demonstrate sustained, significant, and measurable improvements to its software en-
gineering process. Given the diversity and complexity of Raytheon's projects in both commer-
cial and defense electronics, this is a noteworthy achievement. Our success has enabled us
to remain competitive in the shrinking defense marketplace, to expand into some promising
commercial markets, and to grow substantially.

The gathering and analysis of metrics instituted as part of the Software Engineering Initiative
(see Chapter 5) have enabled us to monitor the impact of the Initiative. In particular, the impact
has been assessed in the following areas: cost of quality, software productivity, cost perfor-
mance index, overall product quality, benefit to other organizations, and benefits to personnel.
Each of these areas is described below.

7.1 Cost of Quality
The cost of quality, as defined by Phil Crosby, is the extra cost incurred because a product or
service was not done right the first time. Crosby defines the cost of quality as a sum of two
components: the cost of nonconformance (CONC) (or rework) and the cost of conformance
(COC), which is made up of appraisal costs and prevention costs. Nonconformance costs are
all those direct and indirect costs associated with reworking a product or service because it
was not done right the first time. Appraisal costs are associated with evaluating or testing the
product or service to determine if it is faulty. Prevention costs are those derived from the pro-
active steps taken to reduce or eliminate rework.

In applying these concepts to software engineering for purposes of analyzing project costs, we
found it necessary to add a fourth major category, which we call the performance costs. These
are simply all those costs which are absolutely necessary in developing the software product
even in an error-free environment. In other words, this is the cost of doing it right the first time.
We felt that by using this fourth category, we would be able to better define the subcategories
to which all project software costs would be allocated.

Defining the subcategories of each main category (performance, rework, appraisal, and pre-
vention) for our software development environment was not an easy task. First of all, the work
breakdown structure used on software projects did not map well to the cost-of-quality catego-
ries. Second, the definitions of each subcategory, which were rather brief for reasons of sim-
plicity, were subject to misinterpretation.

CMU/SEI-95-TR-017 ~ ^

We addressed the first problem by adopting both a short-term and a long-term solution. In the
short term, project costs would continue to be collected using the conventional work break-
down structure, and project leads would, periodically, manually remap all costs to the cost-of-
quality subcategories. In the long term, a common work breakdown structure would be devel-
oped to provide as close a mapping to the cost of quality as possible. This would also entail a
revision of the cost accounting system, and possibly the time-card reporting system as well.

The second problem was addressed by refining the definitions as we gained experience in us-
ing them. This required five iterations of the initial data-gathering exercise before we obtained
a satisfactory level of consistency. The result was the subcategorization shown in Figure 7.

Prevention Costs

• Reviews

• System / \
• Reqts / • Training
• Design / • Methodologies

• Test Plan f • Tools

• Test Scripts • Policy & Procedures
• Walkthroughs • Planning

(Code Inspection) • Quality Improvement

• Testing (First Time) Projects

• IV&V (First Time) • Data Gathering &
• Audits Analysis

• Fault Analysis

N. • Root Cause Analysis

\^ • Quality Reporting

• Re-reviews

• Re-tests
• Fixing Defects (STRs, IRs)

• Code

• Documentation

• Reworking any Document
• CCB

• Engineering Changes

• Lab Equipment Costs of

Retests
• Updating Source Code

• Patches to Internal Code,

Delivered Code

• External Failures

Cost of Performance

• Generation of Plans,

Documentation
• Development of:

• Requirements

• Design

• Code
• Integration

Legend

0 Software Initiative

Figure 7: Cost-of-Quality Model

As shown in the cost-of-quality model the subcategories of the prevention cost are those as-
sociated with the process improvement program. The advantage of using this particular model
is that it could embrace both process improvement costs and project costs. Thus we should
be able to see interaction between the two and perhaps establish causal relationships.

48 CMU/SEI-95-TR-017

The initial application of the cost-of-quality model used six large ongoing projects, mainly be-
cause the six projects employed 80 to 90% of the software engineers. The six project leaders
used the model's cost subcategories to allocate their project's actual costs so that all costs
were accounted for. As predicted, there were many questions as to which subcategory partic-
ular project costs were to be allocated, and quite a variation in the algorithms employed to
break the actual costs down to the defined "buckets." These issues were resolved by refining
the subcategory definitions, and by analyzing and comparing the suballocation algorithms em-
ployed by the six project leaders. In the latter case, this involved a search for anomalies in the
cost data across projects, followed by some research to determine if the anomalies could be
rationalized, or if they were caused simply by differences in the interpretation of definitions or
in the suballocation algorithm employed.

One cause of difference that we uncovered dealt with the fact that two of the six projects were
nearing completion, whereas the remainder were in various early stages of development. In
order to compare data between projects, it was necessary to extrapolate all costs to project
completion.

Another lesson that we learned during this initial exercise is that it is important to have the
project leader generate the data rather than an administrator. In order to make an accurate
sub-allocation of actual project costs, one must possess first-hand knowledge of project par-
ticulars as well as good engineering judgment. Of course, this should not be necessary in the
long term when costs are automatically collected in the appropriate cost-of-quality subcatego-
ries.

Once the iterative process of analyzing and rationalizing project-variant data was complete,
the individual project data were combined by weighting on the basis of project staffing and
then normalizing. The composite results for the six projects were then expressible as average
percentages of total project cost. For purposes of the analysis, process improvement program
costs were factored by considering the initiative as a seventh project which had only preven-
tion costs and no appraisal, rework, or performance costs.

The combined data showed that the average cost of rework or nonconformance had de-
creased following the start of the initiative (see Figure 8). In the two years prior to the initiative,
the rework costs had averaged about 41 % of project costs. In the two years following, that val-
ue had dropped to about 20% and the trend was continuing downward.

CMU7SEI-95-TR-017 49

JOJAJOJA JOJAJOJAJOJAJOJAJOJAJOJ
1988 1989 1990 1991 1992 1993 1994 1995

Figure 8: Cost of Quality Versus Time

In order to get a better understanding of possible causes of the rework reduction, we analyzed
its subcomponents, as well as those of the appraisal and prevention costs. As expected, we
found that rework savings were achieved at the expense of a small increase in appraisal or
prevention costs. For example, appraisal costs rose when informal reviews were replaced by
formal inspections and prevention costs rose when inspection training was instituted. Also, re-
work costs associated with fixing defects found during design rose from about 0.75% to about
2% of project cost and those associated with fixing defects found during coding rose from
about 2.5% to about 4% of project cost.

The major reduction in rework costs was that associated with fixing source code problems
found during integration, which dropped to about 20% of its original value. The second largest
contributor to the rework reduction was the cost of retesting which decreased to about half its
initial value. This clearly indicates that the additional costs of performing formal inspections
and the training that must precede it are justified on the basis of finding problems earlier in the
process, resulting in a more efficient integration.

50 CMU/SEI-95-TR-017

This initial cost-of-quality analysis was indeed a learning experience. It was not easy in that
many project people had to be diverted to this "nonproject" task. It was also not inexpensive,
costing about $25K of overhead. It was, however, promising enough to repeat the exercise
about a year later and to eventually add the process to the normal senior management pro-
cess reviews on a semi-annual basis.

By the second iteration of the analysis, we had developed an approach for quantifying the sav-
ings associated with the reduction in rework and the resulting return on investment. In doing
so, we made some simplifying assumptions. First, we considered the savings and the invest-
ment over a one-year period (1990). Although the savings in any one year are due to process
improvement investments in prior years as well as the current year, we ignored that factor and
used only the 1990 savings and the 1990 investment.

As a baseline for the pre-improvement rework costs, we used the average value of the projects
(41%) at the time the initiative started (August 1988). Then, we calculated the rework savings
by project by month as the difference between the actual and the baseline (41%). Summing
this over the sample projects for the one-year period yielded a total savings of $4.48M.

During 1990, the sample projects had employed 58% of the total available SEL labor force.
Assuming that all projects benefited from the process improvement investments, we prorated
the total investment ($1M) to the sample projects, yielding an investment of $0.58M. The re-
turn on investment (ROI) was thus 7.7 to 1 ($4.48M/$0.58M).

As the analysis was updated (annually in 1991 and 1992, and semi-annually thereafter) new
projects were added to the database and new insights gained. Projected savings that had
been predicted early in the development were, in fact, occurring. Two of the original six sample
projects completed software development during 1991 with substantial reserves intact. Both
projects were large, with software-only costs in the $17M range, and both completed slightly
ahead of schedule. One was four % under budget and the second was six % under budget.
When the latter project was delivered to the customer, Raytheon received a schedule-incen-
tive award of $9.6M, which is not included in any of the above ROI calculations.

By 1994,18 projects were in the database and the data-gathering exercise had become more
routine. Although the full analysis was being made semi-annually, some department manag-
ers were requiring their project leaders to provide the cost-of-quality data along with their nor-
mal monthly tracking data. It was gradually becoming a part of some managers' approach for
monitoring project status.

One of the valuable lessons learned during this period was that our cost-of-quality approach
would not be sufficient as the single means of measuring the results of process improvements.
One drawback to our approach was that the results were normalized, showing rework costs,
for example, as a percent of total project cost. Was it possible, software lab management
questioned, that costs were simply being "shuffled" from one category to another and the bot-
tom line cost of doing a job was not going down at all?

CMU/SEI-95-TR-017 ^j"

7.2 Software Productivity
In addition to cost-of-quality data, we collected available data from individual projects on their
productivity in terms of equivalent delivered source instructions (EDSI) per person-month of
development effort. Although we realized that this was not a scientifically accurate measure,
two factors were in our favor. First, this was one of the measures management routinely used
in reviewing projects containing any combination of new, modified, and reused code; and sec-
ond, most of the projects were similar in type (real-time embedded) and in size (70,000 to
500,000 DSI).

We combined the data from all projects using the same approach as the cost-of-quality data;
namely, by calculating the monthly weighted average using staff size as the weighting func-
tion. The plot of the results showed that average productivity was, in fact, increasing as a func-
tion of time meaning that jobs were costing less. These data are also now gathered routinely
and regularly.

DSI estimates are tracked throughout a project beginning at proposal time. Our initial esti-
mates are formulated in conjunction with developing "thin specs" for each computer software
configuration item. Our methodology accounts for both new and reused code. Both modified
and added lines are counted as new. Reused DSIs are weighted according to the relative ef-
fort (as compared to new code) of modifying or reusing it (including its related documentation).
Proposal DSI estimates are used to project the development effort based on historical produc-
tivity data. The counts are updated during each phase. One of the most important updates is
done after the requirements specifications have been completed. This estimate is part of the
process that establishes the baseline plan used to manage the software development project.
This baseline includes the DSI counts, schedules, staffing, and costs. The actual DSI counts
are determined during the coding phase and are maintained through the testing and delivery
of the product.

After delivery, the product may be reused, either partially or completely, and incorporated in a
product to be delivered to another customer. In addition, our customers often request changes
to the original baseline that are delivered as a new version. This reuse baseline code is
tracked as reused DSIs, and new code (enhancements or additions) is tracked as new DSIs.
The cost estimating process includes a factored count of the reused code.

We continue to update weighted average productivity as projects are added to our database;
we now have data on 24 projects, not all of them complete. The latest results are reflected in
Figure 9, which shows an average productivity increase of about 170% over the period of the
initiative. Figure 9 does not include multiple counts of software captured in multiple releases
to other customers — all our programs are a single release of the system.

52 CMU/SEI-95-TR-017

Productivity
Project CAC/BUD Productivity

A 98% 165
B 86% 172
C 97% 154
D 103% 164
E 101% 241
F 53% 145
G 96% 195
H 102% 267
1 113% 209
J 106% 130
K 88% 224
L 82% 199
M 100% 302
N 89% 160
O 100% 239
P 100% 252
Q 99% 260
R 98% 305
S 96% 260
T 100% 134
U 113% 179
V 100% 249
w 99% 245
X 100% 275

III Mill III I III Mill I II HUM I III 11IIIII MM Mill Mill llll Mill IIII Mill llll I Mil II
JAJOJAJOJAJOJAJOJAJOJAJOJAJO

88 89 90 91 92 93 94

170%
Increase

Figure 9: Software Productivity Increase Versus Time

Comparing these 24 projects over time is a valid way to evaluate productivity improvement be-
cause, although every project is unique, they are all of the same type (real time, embedded)
and with a reasonable size range (70,000 to 500,000 DSIs). Thus, if neither the nature of the
application nor the measurement method changes in this time, it is reasonable to credit the
improvement to what did change, namely, the process. Our productivity calculations include
engineering (software design, code, unit test, and software integration), document preparation
and generation (SDP, SDD, IDD, and software development folders, and SPS), pathfinding
(risk mitigation) and prototyping, software configuration management, software management
(task and line management), administration, and resolution of software problem reports (doc-
ument changes and updates to the software through integration). Our productivity calculations
do not include software requirements analysis or formal qualification test. Productivity is cal-
culated using the DSIs measured at the completion of a project and the development effort in

CMU/SEI-95-TR-017 53

staff months. The measured DSIs is the sum of the new code and of a factored amount of re-
used code. The development effort included in the productivity is measured using our standard
cost accounting system. The calculation for each project is the quotient of the two measure-
ments.

The 2.7 times improvement factor was calculated using the average productivity during August
1988 and the average productivity of recently completed projects. To protect the proprietary
nature of our actual productivity achievements, Figure 9 represents productivity relative to the
initial 1988 value. Each point on the graph is given by 100 x (productivity - base productivi-
ty)/base productivity. The productivity for each point is a weighted average based on the staff-
ing level of each project and the measured productivity for each.

7.3 Cost Performance Index
Another concern we had was whether we were really performing on projects. This issue was
addressed by collecting data on the project's budgeted (predicted) cost and its actual cost at
completion (CAC). This cost performance index ratio (CAC/Budget) for each project was then
used to compute the monthly weighted average (again using the same approach as the cost
of quality) to yield a plot of this time-variant measure. The results were encouraging, showing
that the cost performance index was improved dramatically from about the 40% overrun range
prior to the start of the Initiative to the ±3% range by late 1991 (when we achieved SEI Level
3) and continuing through the present time (see Figure 10). Recognizing that we would ideally
like this to be a 0% fluctuation, we are convinced that software process maturity carries with it
a fair amount of schedule and cost predictability, which is a fundamental goal of our process!

54 CMU/SEI-95-TR-017

CAC/Budget%

150%

140% ■-

130% --

120% ■-

110%

100% --

90% - -

80%

70%

60% ■ -

Figure 10: Achieving Project Predictability

7.4 Overall Product Quality
The primary measure used to assess overall product quality is the defect density in the final
software products. We measure this factor in "number of software trouble reports (STRs) per
thousand lines of delivered source code (STRs/KDSI)" on an individual project basis. The
project defect densities are then combined to compute the monthly weighted average (using
the same approach as the cost of quality described above) thus yielding a time-variant plot of
our overall product quality measure. As shown in Figure 11, data collected over the period of
the initiative shows an improvement from an average of 17.2 STRs/KDSI to the current level
of 4.0 STRs/KDSI.

CMU/SEI-95-TR-017 55

■D
C
CO
<n
O
x:

30 T

- 25 +
CO
Q

cu
D.

o
a

Q

20 •■

15 •■

10 ■■

5 •■

88 89 90 91 92 93 94 95

Figure 11: Defect Density Versus Time

Of course, the ultimate demonstration of overall product quality is the contributions software
has made to RES's success with software-intensive systems. Our first major success was on
the FAA's Terminal Doppler Weather Radar program. For this new system, we developed over
200,000 lines of software tightly coupled to a new-technology radar designed to detect incipi-
ent microburst conditions in the vicinity of air traffic control (ATC) terminals. Using our newly-
minted Level 3 process, we managed to break with Raytheon tradition by moving software off
the program's critical path and helped lead the way to initial delivery 6 months ahead of sched-
ule, thereby earning Raytheon a maximum early-delivery incentive of nearly $10 million.

This was immediately followed by our first major Ada program, COBRA DANE System mod-
ernization. COBRA DANE is a technical intelligence gathering phased-array radar on the tip
of the Aleutian chain for which Raytheon developed nearly 350,000 lines of new code and
once again managed to remain well off the critical path. This $50 million system upgrade was
turned over to the Air Force 4 months ahead of schedule. We've more recently built software-
intensive, state-of-the-art air-traffic control systems that feature UNIX-based open systems ar-
chitectures, significant COTS content, and a productization focus that is achieving significant
software reuse. These are attracting world-wide attention and are instrumental in Raytheon
moving into a dominant position on the international ATC front. A derivative of our ATC auto-
mation products is now emerging in the domain of vessel traffic management, with the com-
missioning of a Coast Guard system in Valdez, Alaska.

56 CMU/SEI-95-TR-017

7.5 Other Organizations
Our software process is institutionalized at SEL and has been extended to our facilities in
Portsmouth, Rhode Island and Cossor Electronics of the United Kingdom. The process at SEL
now encompasses a 1,200-person Software Engineering Laboratory (SEL). More recently, E-
Systems was acquired by Raytheon. We are working with them to acquire the best of each of
our practices.

RES's SEPG has supported the greater Raytheon software community in a variety of ways.
Training materials have been shared with multiple Raytheon entities (Computer Sciences
Raytheon and Raytheon Canada) and with Raytheon customers, including the Air Force Elec-
tronic Systems Center's PRISM program, the FAA, and the aviation authorities of Norway and
Germany. We use our process to evaluate and benchmark the processes of potential subcon-
tractors. We flow down our process to our subcontractors, and in some instances, we have
been placed on contractor teams because of our Initiative and ability to migrate our process
to the prime and other team members.

Our SEPG experience has been shared with the software community at large and SEI affili-
ates in a number of forums, including advisory boards, workshops, briefings, and correspon-
dence groups. We were instrumental in forming and continue to be active in the Boston
Software Process Improvement Network (SPIN), a mechanism for stimulating the sharing of
process information among companies in the greater Boston area. We continue to be one of
the few companies who publish cost-benefit data, lessons learned, and specific, numerical re-
sults of our process improvement efforts for the greater benefit of the software community. A
comprehensive list of the meetings and publications where this information was shared is con-
tained in the list of additional readings (Appendix B).

7.6 Personnel
In addition to the project characteristics that we carefully track to evaluate process improve-
ment success (cost of rework, productivity, cost performance index, and overall product qual-
ity), we see less tangible but equally important results occurring in areas that affect our
personnel.

The metrics discussed in the previous sections quantify the outstanding performance by our
software engineers which we hope gives them the job satisfaction and career enhancement
that comes with successful performance on programs within RES. The real challenge is in
management providing adequate support. Also, the initiative funds the quarterly SEL News-
letter containing numerous job-related articles written by SEL personnel, including an up-to-
date list of ongoing projects and proposal efforts.

CMU/SEI-95-TR-017 ~~ ^

58 CMU/SEI-95-TR-017

8 Summary

Raytheon began its software improvement activities in 1988, driven by compelling business
reasons to improve upon the predictability of the cost and schedule of the software compo-
nents of its major business areas. We chose the path of process improvement, guided by the
CMM, because (1) it made sense and (2) our customers supported this approach. This choice
has proven wise because we have made our software development activities predictable,
more productive, and capable of producing higher quality products. Along with this, we have
become more competitive and won additional business.

We organized our initiative into an executive committee responsible for steering and oversight,
and into four SEPG Working Groups — each responsible for a major area in the initiative. The
Policy and Procedures Group initially captured and documented our best practices so that
they could be applied across all projects. The Training Group elevated the importance of train-
ing from ad hoc "on the job" learning to a full commitment of the software organization to en-
sure that each project had its engineers fully trained before beginning work. The Tools and
Methods Group developed the technologies (CASE tools, workstations) and the methods
(Ada, object-oriented). The Process Database Group developed the process and quality met-
rics and statistical process control to assess the performance of both projects and the process.
These working groups tailored the process to be effective within the Raytheon culture.

There were five fundamental reasons for our successful Software Engineering Initiative:

1. The vision and commitment for the initiative came from the manager of the
software organization. The vision and commitment included more than just
funding — The manager of the software organization was the focal point and
actively drove the effort.

2. We had support from general management — They became active sponsors.
Commitments of funding and general management's requirement that all
business areas adhere to the process were part of this sponsorship.

3. Our process improvements clearly and continually demonstrated business
benefits to projects.

4. We carefully considered the corporate culture of Raytheon — We understood
how our company managed engineering work, allocated discretionary re-
sources, and made commitments.

5. Most importantly, we ran the initiative from within the ranks of the software or-
ganization — Task managers and line engineers did the vast majority of the
work and hence felt ownership of the process and the products. It was some-
thing that they helped create, rather than something imposed upon them from
outside their control. Thus the projects and the process worked together to
achieve the increases in predictability, productivity, and quality.

CMU/SEI-95-TR-017 59

Today we find that our business demands — both defense-oriented and commercial — are
changing along with the accelerating computer hardware and software technologies. Demand
for major software products developed "from scratch" is shrinking, and is being replaced by
the demand for complex new software products, initially prototyped, utilizing industry standard
open interfaces and protocol COTS/NDS products that are produced at lower cost and with
shorter schedules.

Because of these circumstances, our software process is changing so we continue to deliver
effective solutions within the context of the Software Engineering Initiative. We are taking the
technology and processes developed by our RAPID (Raytheon Advanced Prototyping, Inte-
gration, and Demonstration) laboratory and institutionalizing them within the framework of the
Initiative's organization. The processes for effective COTS evaluation, prototyping, software
systems and COTS integration, use of object-oriented techniques, and domain-specific reuse
are becoming as standard as code inspections within Raytheon.

Our Software Engineering Initiative is an exciting and worthwhile endeavor. It continues to
grow and change as both Raytheon and the software industry change. We view the IEEE Pro-
cess Achievement Award as one endorsement of the vision and results of our initiative.

60 CMU/SEI-95-TR-017

References

[Camp 89]

[Crosby 84]

[Humphrey 87]

[Humphrey 89]

[Paulk 93]

Camp, Robert C. Benchmarking. Milwaukee, Wisconsin: ASQC
Quality Press, 1989.

Crosby, P. Quality Without Tears. New York: McGraw-Hill, 1984.

Humphrey, W. and Sweet, W. A Method for Assessing Software En-
gineering Capabilities of Contractors (CMU/SEI-87-TR-23, ADA
187230). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, September 1987.

Humphrey, W. Managing the Software Process. MA: Addison Wes-
ley, 1989.

Paulk, M; Curtis, B.; Chrissis, M; Weber, C. Capability Maturity Mod-
elfor Software, Version 1.1 (CMU/SEI-93-TR-24, ADA 263403).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, February 1993.

CMU/SEI-95-TR-017 61

62 CMU/SEI-95-TR-017

Appendix A Applying SPC to the Software
Development Process

Since 1988, Raytheon has utilized detailed design and coding peer inspections as part of our
Software Development Process. According to industry-wide gathered data, only 50 to 60 per-
cent of all defects are detected during these phase inspections. Subsequently detected de-
fects typically end up costing between 10 and 20 times as much as those detected during their
own phase. Therefore, increasing our ability to detect defects during these inspections would
not only improve the performance of our products but would reduce our overall costs as well.
For this purpose, statistical analysis of detailed design and code inspection data was under-
taken. Data collected across several programs produced an exponentially distributed histo-
gram with a mean of 32 action items (Als) per thousand lines of code (KDSI) and a standard
deviation of 32 (Figure A-1). Our objective was to identify the inspection process conditions
for newly developed code that will increase the detected number of action items per KDSI
while reducing the variation between inspections.

Mean 32.4
Count 148

Standard Dev. 32.4

o
CM

o
CO

o o o o
in <o r>» o

CO
O o o

o o

- c\i CO ■*t w <D N CO
I

T—

CO >
O Action Items/KDSI

Figure A-1: Distribution of Action Item Frequency for Inspections

Various inspection process parameters which were thought to potentially impact our inspec-
tion process were modelled using regression techniques. Our analysis indicates that three key
process conditions appear to be correlated with our new code defect detection rate
(Als/KDSI):

CMU/SEI-95-TR-017 63

1. review speed (KDSI per hour)

2. review package size (KDSI)

3. preparation time (total preparation hours)

Figures A-2 and A-3 present our scattergram plots individually correlating inspection review
speed and review package size to our observed new code defect detection rate. This is not to
say that other factors do not influence our defect detection rate, only to indicate that these
three key factors play a significant role in the efficiency of our inspection process.

w
Q

0)
Q.
w
E
0)

<

225 j

200--

175--

150--

125--

100--

75--

50--

25-?
I

0+-

100 to 250
DSI per Hour

7- *%-i
4-! if ■+- 4- 4- '!■ ■! !f

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
KDSI/Hr

1.1 1.2 1.3 1.4

Note: 20 Action Items per KDSI equates to 1 Action Item per page of review material (code or design)

Figure A-2: Action Item Density Versus Inspection Review Speed

64 CMU/SEI-95-TR-017

250 T

200 <l

150 ■■

to
Q

0)
a
<o
E a
% 100
o

"^ u <
50 1& hfljd.t % ^„* «^ i'^i. n ■ ■+-

0.5 1.5 2 2.5 3 3.5 4

Package Size (KDSI)

4.5 5.5

Figure A-3: Action Item Density Versus Inspection Package Size

When inspections are run at our statistically preferred levels of 100 to 250 DSI per hour, with
a total preparation time of greater than 5 hours per KDSI and package sizes of under 1000
DSI, the average number of action items detected per KDSI increased by 34 percent (from 32
to 43 Als per KDSI), while its variability decreased by 49 percent (from a standard deviation of
32.4 to 16.6). Figure A-4 presents a defect density histogram of our improved inspection pro-
cess. Based on these data, initial SPC control limits of 20 to 60 Als per KDSI for our inspection
process under preferred conditions were established. An approximately 80 percent confi-
dence interval was chosen for our control limits instead of the more traditional three sigma lim-
its for two primary reasons: our low false alarm rate cost of investigation and our expectation
that inspection teams would have an initial tendency of reverting back to their old process.

CMU/SEI-95-TR-017 65

Mean 43.1
Standard Dev. 16.6

Count 24

Package Size = 250-1000
Prep Rate = 5Hrs/KDSI

KDSI/Hr= 100-250

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 100409

Action Items/KDSI

2-Sigma Control Limits: 10 to 76 Action Items per KDSI

Figure A-4: Basis for Control Limits

An Air Traffic Control (ATC) software development effort was chosen as the pilot program for
SPC implementation. A three-hour course,*Statistical Methods for Software Improvement, was
held as a method of introducing the project leads to statistical thinking in general and, in par-
ticular, to our inspection analysis results and their practical application.

As expected, analysis results on the ATC program to date have tracked closely with the results
previously obtained. When our preferred conditions are applied to new or mostly new code
(limited reuse), our ability to detect action items per KDSI increases substantially. Inspections
that were run under preferred conditions but did not product an Al per KDSI ratio within our
control limits were further investigated. It should be noted that inspections that fall outside of
our expected range are not necessarily poor inspections or code, but merely warrant further
investigation due to their unexpected performance. One example of this involved an inspection
where despite running at preferred conditions, a lower defect density than expected was noted
during the review. Upon investigations found that the software engineer developing the
code is as close to a C guru as there is on the ATC program. For this reason, our Software
Laboratory plans to gain leverage from this employee's skill set and development process
whenever possible. Investigation into why other inspections were not previously run at pre-
ferred conditions also yielded interesting information. One CSCI lead noted that when he is
the author, he has a difficult time getting the critical review he would like and, therefore, his
reviews tend to move at a faster rate than preferred. This result has reinforced our commit-
ment to the consistent use of peer review during the inspection process.

66 CMU/SEI-95-TR-017

To date, our SPC implementation efforts on the ATC program have validated our previous sta-
tistical analysis efforts. Reviewing new code (or mostly new code) and operating under our
preferred conditions typically results in 20 to 60 action items per KDSI. Data points outside
these thresholds merely warrant further investigation. Further investigation may result in con-
tinuous improvement opportunities (process learning), corrective measures, or no action tak-
en. It appears from our experience that the best way to operate inspection reviews under
preferred conditions is to whenever possible

• Break review packages down into 1000 DSI or less.

• Allocate and schedule the review meeting length to be consistent with
approximately 100 to 250 DSI per hour.

• Allow for adequate preparation time (a minimum of 5 total hours per KDSI),
and ensure that sufficient peer reviewers are present.

As presented, the practical use of SPC methods is an effective way of improving and control-
ling your software development inspection process.

CMU7SEI-95-TR-017 ~^j

68 CMU/SEI-95-TR-017

Appendix B: Additional Information
Additional related information is presented below.

1. "Creating and Implementing Working Groups," SEI Third Annual SEPG
Workshop, November 7,1990

2. "Quantifying the Benefit of Software Process Improvement," Software
Process Improvement Workshop, November 8,1990

3. "Actually Measuring the Cost of Software Process Improvement," NSIA
Seventh Annual National Joint Conference on Software Quality and
Productivity, April 23,1991

4. "Industry Experiences with SCEs" panelist, SEI Fourth Annual SEPG
Workshop, April 9, 1992

5. "Elements of a Process Improvement Program," IEEE Software, July 1992

6. "Measuring the ROI of Software Process Improvement," DACS Fourth
Annual Software Quality Workshop, August 3,1992

7. "Cost of Quality as a Measure of Process Improvement," SEI Software
Engineering Symposium, September 17,1992

8. "Raytheon's Software Process Improvement Program: History, Impact, and
Lessons Learned," presented to the Air Force Comm - Computer Technology
Integration Center, November 6,1992

9. "Process Improvement and the Corporate Balance Sheet," IEEE Software,
July 1993

10. "Project Performance Improvement Through Software Process
Improvement," Tri-Ada '93 Conference, September 22,1993

11. "Applying the SEI Capability Maturity Model to Real Programs,"
TQM '93 Conference, November 4,1993

12. "Raytheon's Experience in Process Improvement: A Two-fold Increase in
Productivity," Sixth International Conference on Software Engineering and Its
Applications, November 17,1993

CMU/SEI-95-TR-017 ~ ^

70 CMU/SEI-95-TR-017

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified
lb. RESTRICTIVE MARKINGS

None

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-95-TR-017

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESC-TR-95-017

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute
6b. OFFICE SYMBOL
(if applicable)

SEI

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

8a. NAME OFFUNDING/SPONSORING
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESC/ENS

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-95-C-0003

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO

63756E

PROJECT
NO.

N/A

TASK
NO
N/A

WORK UNIT
NO.

N/A

11. TITLE (Include Security Classification)

Raytheon Electronic Systems Experience in Software Process Improvement

12. PERSONAL AUTHOR(S)
Tom Haley, Blake Ireland, Ed Wojtaszek, Dan Nash, Ray Dion

13a. TYPE OF REPORT

Final
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

November 1995
15. PAGE COUNT

69

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB. GR.

18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

process achievement award, return on investment, software engineering,
software engineering process group, software process improvement

19. ABSTRACT (continue on reverse if necessary and identify by block number)

The Software Engineering Process Group of Raytheon Electronic Systems (RES) is responsible for
defining and implementing the Software Engineering Initiative, which outlines the policies, practices,
and procedures to be followed in developing complex software for large-scale commercial and
defense projects. To accomplish these objectives, the SEPG has had to develop the organizational
structure and techniques to meet the growing challenges of developing, maintaining, and improving
its software engineering process in significant and measurable ways, including quantifying return on
investment (ROI) and increasing the quality of the deliverable product.

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED | SAMEASRPTQ DTIC USERS |

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF
22b. TELEPHONE NUMBER (include area code)

(412) 268-7631
22c. OFFICE SYMBOL

ESC/ENS (SEI)

DDFORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

