DEDODT DOCUMENTATION PAGE	Form Approved 1h
REPORT DOCUMENTATION FACE	ОМВ No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments the services of information is reviewed to the services of information of information.	e for reviewing instructions, searching existing data source ts regarding this burden estimate or any other aspect of the rate for information Operations and Reports, 1215 Leffers
collection of information, including suggestions for reducing this burden, to Washington Headquarters services, offector Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reducti	on Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE	AND DATES COVERED
4. TITLE AND SUBTITLE	5. FUNDING NUMBERS
TRIAL BURN SUMMARY REPORT, FOR THE INTERIM RESPONSE ACTION, BASIN F SUBMERGE	D
6. AUTHOR(S)	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) JAN 2 5 1995	8. PERFORMING ORGANIZATION REPORT NUMBER
ROY F. WESTON, INC.	
WEST CHESTER, PA	93256R01
الم محمد مراجع من المراجع المراجع المراجع المراجع ا	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)	10. SPONSORING/MONITORING AGENCY REPORT NUMBER
ROCKY MOUNTAIN ARSENAL (CO.). PMRMA COMMERCE CITY, CO	
11. SUPPLEMENTARY NOTES	
· · · · · · · · · · · · · · · · · · ·	
12a. DISTRIBUTION / AVAILABILITY STATEMENT	12D. DISTRIBUTION CODE
ADDROVED FOR DUBLIC RELEASE: DISTRIBUTION IS UNLIMITED	
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED	
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED	
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words)	
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) THIS REPORT CONTAINS INFORMATION RECOMMENDED IN THE DOC	UMENT ENTITLED "GUIDANCE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) THIS REPORT CONTAINS INFORMATION RECOMMENDED IN THE DOCU ON SETTING PERMIT CONDITIONS AND REPORTING TRIAL BURN RE (TRDA (C10)(C 00 (010)) TANUARY 1889 AND WAS BEEN OPCANIZED	UMENT ENTITLED "GUIDANCE ESULTS" D INTO THE FOLLOWING NINE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) THIS REPORT CONTAINS INFORMATION RECOMMENDED IN THE DOC ON SETTING PERMIT CONDITIONS AND REPORTING TRIAL BURN RI (EPA/612/6-89/019), JANUARY 1989, AND HAS BEEN ORGANIZED SECTIONS: (1) SUMMARY. (2) PROCESS OPERATION. (3) SAM	UMENT ENTITLED "GUIDANCE ESULTS" D INTO THE FOLLOWING NINE MPLING AND MONITORING
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) THIS REPORT CONTAINS INFORMATION RECOMMENDED IN THE DOCU ON SETTING PERMIT CONDITIONS AND REPORTING TRIAL BURN RE (EPA/612/6-89/019), JANUARY 1989, AND HAS BEEN ORGANIZED SECTIONS: (1) SUMMARY. (2) PROCESS OPERATION. (3) SAM PROCEDURES. (4) ANALYTICAL PROCEDURES. (5) TEST RESULT	UMENT ENTITLED "GUIDANCE ESULTS" D INTO THE FOLLOWING NINE MPLING AND MONITORING TS. (6) QUALITY
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) THIS REPORT CONTAINS INFORMATION RECOMMENDED IN THE DOCU ON SETTING PERMIT CONDITIONS AND REPORTING TRIAL BURN RE (EPA/612/6-89/019), JANUARY 1989, AND HAS BEEN ORGANIZED SECTIONS: (1) SUMMARY. (2) PROCESS OPERATION. (3) SAU PROCEDURES. (4) ANALYTICAL PROCEDURES. (5) TEST RESULT ASSURANCE SUMMARY. (7) VISITS AND AUDIT SUMMARY. (8)	UMENT ENTITLED "GUIDANCE ESULTS" D INTO THE FOLLOWING NINE MPLING AND MONITORING TS. (6) QUALITY CLOSURE. (9)
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) THIS REPORT CONTAINS INFORMATION RECOMMENDED IN THE DOCU ON SETTING PERMIT CONDITIONS AND REPORTING TRIAL BURN RE (EPA/612/6-89/019), JANUARY 1989, AND HAS BEEN ORGANIZED SECTIONS: (1) SUMMARY. (2) PROCESS OPERATION. (3) SAM PROCEDURES. (4) ANALYTICAL PROCEDURES. (5) TEST RESULT ASSURANCE SUMMARY. (7) VISITS AND AUDIT SUMMARY. (8) CONCLUSIONS.	UMENT ENTITLED "GUIDANCE ESULTS" D INTO THE FOLLOWING NINE MPLING AND MONITORING TS. (6) QUALITY CLOSURE. (9)
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) THIS REPORT CONTAINS INFORMATION RECOMMENDED IN THE DOCU ON SETTING PERMIT CONDITIONS AND REPORTING TRIAL BURN RE (EPA/612/6-89/019), JANUARY 1989, AND HAS BEEN ORGANIZED SECTIONS: (1) SUMMARY. (2) PROCESS OPERATION. (3) SAM PROCEDURES. (4) ANALYTICAL PROCEDURES. (5) TEST RESULT ASSURANCE SUMMARY. (7) VISITS AND AUDIT SUMMARY. (8) (7) CONCLUSIONS.	UMENT ENTITLED "GUIDANCE ESULTS" D INTO THE FOLLOWING NINE MPLING AND MONITORING TS. (6) QUALITY CLOSURE. (9)
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) THIS REPORT CONTAINS INFORMATION RECOMMENDED IN THE DOCU ON SETTING PERMIT CONDITIONS AND REPORTING TRIAL BURN RE (EPA/612/6-89/019), JANUARY 1989, AND HAS BEEN ORGANIZED SECTIONS: (1) SUMMARY. (2) PROCESS OPERATION. (3) SAM PROCEDURES. (4) ANALYTICAL PROCEDURES. (5) TEST RESULT ASSURANCE SUMMARY. (7) VISITS AND AUDIT SUMMARY. (8) O CONCLUSIONS.	UMENT ENTITLED "GUIDANCE ESULTS" D INTO THE FOLLOWING NINE MPLING AND MONITORING TS. (6) QUALITY CLOSURE. (9)
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) THIS REPORT CONTAINS INFORMATION RECOMMENDED IN THE DOC ON SETTING PERMIT CONDITIONS AND REPORTING TRIAL BURN RI (EPA/612/6-89/019), JANUARY 1989, AND HAS BEEN ORGANIZED SECTIONS: (1) SUMMARY. (2) PROCESS OPERATION. (3) SAM PROCEDURES. (4) ANALYTICAL PROCEDURES. (5) TEST RESULT ASSURANCE SUMMARY. (7) VISITS AND AUDIT SUMMARY. (8) O CONCLUSIONS.	UMENT ENTITLED "GUIDANCE ESULTS" D INTO THE FOLLOWING NINE MPLING AND MONITORING TS. (6) QUALITY CLOSURE. (9)
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) THIS REPORT CONTAINS INFORMATION RECOMMENDED IN THE DOCT ON SETTING PERMIT CONDITIONS AND REPORTING TRIAL BURN RE (EPA/612/6-89/019), JANUARY 1989, AND HAS BEEN ORGANIZED SECTIONS: (1) SUMMARY. (2) PROCESS OPERATION. (3) SAM PROCEDURES. (4) ANALYTICAL PROCEDURES. (5) TEST RESULT ASSURANCE SUMMARY. (7) VISITS AND AUDIT SUMMARY. (8) CONCLUSIONS. 10060117 105	UMENT ENTITLED "GUIDANCE ESULTS" D INTO THE FOLLOWING NINE MPLING AND MONITORING TS. (6) QUALITY CLOSURE. (9)
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) THIS REPORT CONTAINS INFORMATION RECOMMENDED IN THE DOCU ON SETTING PERMIT CONDITIONS AND REPORTING TRIAL BURN RE (EPA/612/6-89/019), JANUARY 1989, AND HAS BEEN ORGANIZED SECTIONS: (1) SUMMARY. (2) PROCESS OPERATION. (3) SAM PROCEDURES. (4) ANALYTICAL PROCEDURES. (5) TEST RESULT ASSURANCE SUMMARY. (7) VISITS AND AUDIT SUMMARY. (8) CONCLUSIONS. 199060117 105 199060117 105	UMENT ENTITLED "GUIDANCE ESULTS" D INTO THE FOLLOWING NINE MPLING AND MONITORING TS. (6) QUALITY CLOSURE. (9)
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) THIS REPORT CONTAINS INFORMATION RECOMMENDED IN THE DOC ON SETTING PERMIT CONDITIONS AND REPORTING TRIAL BURN RE (EPA/612/6-89/019), JANUARY 1989, AND HAS BEEN ORGANIZED SECTIONS: (1) SUMMARY. (2) PROCESS OPERATION. (3) SAN PROCEDURES. (4) ANALYTICAL PROCEDURES. (5) TEST RESULA ASSURANCE SUMMARY. (7) VISITS AND AUDIT SUMMARY. (8) CONCLUSIONS. 199600117 105 199600117 105 19960117 105 199701	UMENT ENTITLED "GUIDANCE ESULTS" D INTO THE FOLLOWING NINE MPLING AND MONITORING TS. (6) QUALITY CLOSURE. (9)
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) THIS REPORT CONTAINS INFORMATION RECOMMENDED IN THE DOC ON SETTING PERMIT CONDITIONS AND REPORTING TRIAL BURN RE (EPA/612/6-89/019), JANUARY 1989, AND HAS BEEN ORGANIZED SECTIONS: (1) SUMMARY. (2) PROCESS OPERATION. (3) SAM PROCEDURES. (4) ANALYTICAL PROCEDURES. (5) TEST RESULT ASSURANCE SUMMARY. (7) VISITS AND AUDIT SUMMARY. (8) CONCLUSIONS. 199960117 105 14. SUBJECT TERMS	UMENT ENTITLED "GUIDANCE ESULTS" D INTO THE FOLLOWING NINE MPLING AND MONITORING TS. (6) QUALITY CLOSURE. (9) OTTO QUALITY ENSPECTED 1 15. NUMBER OF PAGES
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) THIS REPORT CONTAINS INFORMATION RECOMMENDED IN THE DOC ON SETTING PERMIT CONDITIONS AND REPORTING TRIAL BURN RE (EPA/612/6-89/019), JANUARY 1989, AND HAS BEEN ORGANIZED SECTIONS: (1) SUMMARY. (2) PROCESS OPERATION. (3) SAM PROCEDURES. (4) ANALYTICAL PROCEDURES. (5) TEST RESULT ASSURANCE SUMMARY. (7) VISITS AND AUDIT SUMMARY. (8) CONCLUSIONS. 19960117 105 14. SUBJECT TERMS QA/QC, SAMPLING METHODS, ANALYTICAL METHODS, EQUIPMENT, IRA F	UMENT ENTITLED "GUIDANCE ESULTS" D INTO THE FOLLOWING NINE MPLING AND MONITORING TS. (6) QUALITY CLOSURE. (9) DIFC QUALITY ENSPECTED 1 15. NUMBER OF PAGES 16. PRICE CODE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) THIS REPORT CONTAINS INFORMATION RECOMMENDED IN THE DOC ON SETTING PERMIT CONDITIONS AND REPORTING TRIAL BURN RE (EPA/612/6-89/019), JANUARY 1989, AND HAS BEEN ORGANIZED SECTIONS: (1) SUMMARY. (2) PROCESS OPERATION. (3) SAMP PROCEDURES. (4) ANALYTICAL PROCEDURES. (5) TEST RESULT ASSURANCE SUMMARY. (7) VISITS AND AUDIT SUMMARY. (8) CONCLUSIONS. 14. SUBJECT TERMS QA/QC, SAMPLING METHODS, ANALYTICAL METHODS, EQUIPMENT, IRA F	UMENT ENTITLED "GUIDANCE ESULTS" D INTO THE FOLLOWING NINE MPLING AND MONITORING TS. (6) QUALITY CLOSURE. (9) DTTC QUALITY ENSPECTED 1 15. NUMBER OF PAGES 16. PRICE CODE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) THIS REPORT CONTAINS INFORMATION RECOMMENDED IN THE DOC: ON SETTING PERMIT CONDITIONS AND REPORTING TRIAL BURN R (EPA/612/6-89/019), JANUARY 1989, AND HAS BEEN ORGANIZEI SECTIONS: (1) SUMMARY. (2) PROCESS OPERATION. (3) SAI PROCEDURES. (4) ANALYTICAL PROCEDURES. (5) TEST RESULT ASSURANCE SUMMARY. (7) VISITS AND AUDIT SUMMARY. (8) CONCLUSIONS. 14. SUBJECT TERMS QA/QC, SAMPLING METHODS, ANALYTICAL METHODS, EQUIPMENT, IRA F 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY 19.	UMENT ENTITLED "GUIDANCE ESULTS" D INTO THE FOLLOWING NINE MPLING AND MONITORING TS. (6) QUALITY CLOSURE. (9) DITC QUALITY ENSPECTED 15. NUMBER OF PAGES 16. PRICE CODE ASSIFICATION 20. LIMITATION OF ABSTRA

INTERIM RESPONSE ACTION

BASIN F LIQUID INCINERATION PROJECT

DRAFT FINAL TRIAL BURN REPORT

VOLUME I

SEPTEMBER 1993

932567.01

DISCLAIMER NOTICE

UNCLASSIFIED DEFENSE TECHNICAL INFORMATION OTIC Street in the second UNCLASSIFIED

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

TRIAL BURN SUMMARY REPORT FOR THE INTERIM RESPONSE ACTION BASIN F SUBMERGED QUENCH INCINERATION PROJECT

VOLUME I

DRAFT FINAL

Prepared by: ROY F. WESTON, INC. 1 Weston Way West Chester, PA 19380

September 1993

Work Order No. 05189-008-001-7020

CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to be the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. (Written in accordance with 40 CFR 270.11).

ROY F. WESTON. INC

James H. Dougherty President, Treatment Systems Department

Aceess	ice Fo	r	
NTIS	GRALI		
DTIC 9	AB		
Unanac	nneed		
Justif	'isatio	\$ <u>1</u>	
By Distri Avai	ibution Labilit	/ y Cod	185
Dist A-1	Avail : Spec:	and/o ial	£

TABLE OF CONTENTS

Section	Title	Page
	EXECUTIVE SUMMARY	ES-1
1	SUMMARY	1-1
	1.1 Introduction	1-1
	1.2 Background	1-1
	1.3 Objectives of the Trial Burn	1-5
	1.4 Document Organization	1-6
2	PROCESS OPERATION	2-1
	2.1 General Overview of the Process	2-1
	2.1.1 Waste Feed System	2-1
	2.1.2 Submerged Quench Incinerator	2-1
	2.1.3 Flue Gas Treatment and Emissions Control	2-4
	2.2 Process Operation Data	2-5
	2.2.1 Process Measurement Methods	2-5
	2.3 Deviations from Trial Burn Plan	2-8
	2.3.1 Process Sample Volumes	2-8
	2.3.2 Sample Preservation	2-10
	2.3.3 Liquid Waste Audit Requirements	2-10
	2.3.4 Performance Evaluation Samples2.3.5 Pesticide Surrogates	2-10
1	SAMPI INC AND MONITOPING PROCEDURES	2.1
3	SAMPLING AND MONTOKING PROCEDURES	3-1
	3.1 Sampling Plan	3-1
	3.2 Sample Identification	3-1
	3.3 Sampling Procedures	3-2
4	ANALYTICAL PROCEDURES	4-1
	4.1 Analytical Methods	4-1
	4.2 Analytes	4-1

••

TABLE OF CONTENTS (Continued)

Section		<u>Title</u>	Page
5	TES	T RESULTS	5-1
	5.1	Treatment of Non-Detects, Values Outside of the	
		Calibration Range and Blanks	5-2
		5.1.1 Non-Detects	5-2
		5.1.2 Values Outside the Calibration Range	5-3
		5.1.3 Blank Values	5-3
	5.2	Stack Emissions	5-4
		5.2.1 Particulate/HCl	5-4
		5.2.2 Volatile Organic Compounds	5-5
		5.2.3 Semivolatile Organic Compounds and Pesticides	5-6
		5.2.4 Dioxin/Furans	5-7
		5.2.5 Metals	5-7
		5.2.6 Hexavalent Chromium	5-8
		5.2.7 Continuous Emissions Monitoring	5-8
	5.3	System Influent and Effluent Streams	
		5.3.1 System Influent Streams - Waste Feed,	
		POHC, Makeup Water and Caustic	5-8
		5.3.2 System Effluent Streams - Brine	5-10
6	QUA	LITY ASSURANCE SUMMARY	6-1
	6.1	Summary	6-1
		6.1.1 Document Authority for Criteria	6-2
	6.2	Methods, Analyte Lists, Preservation and Holding Times	6-3
	·	6.2.1 Analytical Methods	6-4
		6.2.2 Analyte Lists	6-4
		6.2.3 Sample Preservation	6-4
		6.2.4 Holding Times	6-4
	6.3	Precision and Accuracy DQOs	6-6
		6.3.1 Variance from TBP-Specific Criteria	6-6
		6.3.2 Stack Gas Analyses	6-9
		6.3.3 Liquid Feed Samples and Brines	6-10
		6.3.4 Blank Analysis	6-11
	6.4	Completeness	6-11

--

TABLE OF CONTENTS (Continued)

Section			Title	<u>Page</u>
7	VIS	ITS AN	D AUDIT SUMMARY	7-1
	7.1	Visitor	s List	7-1
	7.2	Audit	Summary	7-2
8	CLC	SURE		8-1
	8.1	Materi	al Resources	8-1
	8.2	Materi	al Processed	8-1
	8.3	Process	sed Material Disposal	8-1
9	CON	ICLUSI	ONS	9-1
	9.1	Recom	mended Operating Limits	9-1
		9.1.1	Maximum Liquid Feedrate	9-3
		9.1.2	Minimum Residence Time	9-3
		9.1.3	Minimum Combustion Temperature	9-4
		9.1.4	Minimum Stack Oxygen	9-5
		9.1.5	Minimum Quench pH	9-5
		9.1.6	Minimum Scrubber pH	9-5
		9.1.7	Minimum Venturi Differential Pressure	9-6
		9.1.8	Minimum Packed Tower Flow	9-6
		9.1.9	Maximum CO Hourly Rolling Average	9-6
,		9.1.10	Minimum Venturi Flowrate	9-6
		9.1.11	Minimum Feed Nozzle Pressure	9-7
		9.1.12	Minimum Compressure Outlet Pressure	9-7
APPE	NDI	ΧA	TRIAL BURN OPERATION REPORTS AND CERTIFICATES	CALIBRATION

APPENDIX B PROCESS AND STACK SAMPLING DATA

APPENDIX C LABORATORY ANALYSIS

••

LIST OF TABLES

T	able No	<u>o. <u>Title</u></u>	Page
	ES-1	Summary of Operating Parameters and Results during the SQI Trial Burn	ES-2
	2-1	Continuous Emissions Monitoring Equipment	2-6
	2-2	Summary of Operating Parameters During the SQI Trial Burn	2-7
	3-1	Sampling and Monitoring Plan for Liquid Waste	3-5
	3-2	Sampling and Monitoring Plan for POHC Solution (Carbon Tetrachloride)	3-6
	3-3	Sampling and Monitoring Plan for POHC Solution (Chlorobenzene)	3-7
	3-4	Sampling and Monitoring Plan for Makeup Water	3-8
	3-5	Sampling and Monitoring Plan for Caustic Solution	3-9
	3-6	Sampling and Monitoring Plan for Brine	3-10
	3-7	Sampling and Monitoring Plan for Stack Gases	3-11
	3-8	Sampling Equipment	3-12
	3-9	SQI Stack Sample Identification	3-13
	3-10	Sampling Procedures	3-16
	4-1	Summary of Extraction and Analytical Methods	4-2
	4-2	Comparison of EPA Reference Methods to WESTON SOPs	4-5
	4-3	Volatile Organic Compounds (Method 8240)	4-6
	4-4	Semivolatile Organic Compounds (Method 8270)	4-7
	4-5	Pesticides/PCBs	4-8

••

vi

LIST OF TABLES (Continued)

<u>Table</u>	Title	Page
4-6	Dioxins/Furans	4-9
4-7	Metals	4-10
4-8	Total Halides	4-10
5-1	Summary of Particulate/HCl Test Data and Test Results	5-12
5-2	Summary of Volatile Organics Test Data and Test Results	5-13
5-3	Summary of Semivolatile Organic Compounds and Pesticides Test Data and Test Results	5-28
5-4	Summary of Dioxins/Furan Test Data and Test Results	5-39
5-5	Summary of Metals Test Data and Test Results	5-45
5-6	Summary of Hexavalent Chromium Test Data and Test Results	5-48
5-7	CO, CO ₂ , O ₂ , SO ₂ , NO _x , THC and HCl Emission Results	5-49
5-8	Summary of Analytical Results for Basin F Waste Feed (LF)	5-50
5-9	Summary of Analytical Results for POHC Analysis	5-52
5-10	Summary of Analytical Results for Makeup Water (MW)	5-53
5-11	Summary of Analytical Results for Caustic Solution (CS)	5-54
5-12	Summary of Analytical Results for Brine (BR)	5-55
6-1	Water Surrogate Recovery Limits (VOA)	6-13
6-2	Water Matrix Spike Recovery Limits (VOA)	6-13
6-3	Water Surrogate Recovery Limits (BNA/acids)	6-14
6-4	Water Matrix Spike Recovery Limits (BNA/acids)	6-15

..

LIST OF TABLES (Continued)

<u>Table</u>	<u>Title</u>	Page
6-5	Water Surrogate Recovery Limits (Pesticides)	6-16
6-6	Water Matrix Spike Recovery Limits (Pesticides)	6-17
6-7	Water Surrogate Recovery Limits (Dioxins/Furans)	6-17
6-8	Water Matrix Spike Recovery Limits (Dioxins/Furans)	6-18
6-9	Water Matrix Spike Recovery Limits (Inorganics)	6-17
7-1	Summary of Audit Results for Liquid Waste Feed (LF)	7-3
7-2	Summary of Audit Results for Brine	7-5
7-3	Summary of EPA Audit for Volatile Organics Test Data and Test Results	7-7
7-4	U.S. EPA Quality Assurance Division Dioxin/Furan Audit Data	7-9
7-5	Metals Audit Sample Lab Results	7-12
9-1	Waste Feed Cutoff Requirements	9-2

••

LIST OF FIGURES

Figure No.	<u>Title</u>	Page 1
Figure 1-1	Site Location Map - Rocky Mountain Arsenal	1-2
Figure 1-2	Former Basin F Location - Rocky Mountain Arsenal	1-4
Figure 2-1	Process Flow Schematic Diagram	2-2
Figure 2-2	POHC Injection System	2-9
Figure 3-1	Sampling Locations and Parameters to be Determined During Trial Burn	3-4

.

~

LIST OF ACRONYMS

acfs	SQI chamber volume/gas flow rate
BNA	semivolatiles
BR	Brine
CDAP	Chemical Data Acquisition Plan
CDH	Colorado Department of Health
CDM	Camp Dresser & McKee
CEM	continuous emissions monitoring
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CLP	Contract Laboratory Program
CO	carbon monoxide
CO_2	carbon dioxide
CRŌ	control room operator
CS	caustic solution
DQOs	data quality objectives
DRE	destruction and removal efficiency
EPA	Environmental Protection Agency
FIT-04A	Micro-Motion flow transmitter
gr/dscf	grains per dry standard cubic foot
HCl	hydrochloric acid
IDL	instrument detection limit
IRA	Interim Response Action
ITO	Independent Technical Oversite representative
LW	liquid waste
MG	million gallons
MW	makeup water
NO _x	nitrogen oxides
O ₂	oxygen
OCP	chlorinated pesticides/PCBs
OP Pest	organo-phosphorous pesticide compounds
OPPs	organophosphorus pesticides
PCDDs	polychlorinated dibenzo-p-dioxins
PE	Performance Evaluation
PeCDD	1,2,3,7,8-Pentachlorodibenzo-p-dioxin
PeCDF	2,3,4,7,8-Pentachlorodibenzofuran
Pest/PCB	pesticide/PCB compounds
PICs	products of incomplete combustion
PIT-3 1	Rosemount pressure transmitter
PMCS	Process Monitoring and Control System
POHCs	principal organic hazardous constituents
QA/QC	quality assurance and quality control
RMA	Rocky Mountain Arsenal
Shell	Shell Oil Company

.

- -

LIST OF ACRONYMS (Continued)

Sulfur Dioxide
standard operation procedures
Statement of Work
Submerged Quench Incinerator
Trial Burn Plan
Tetrachlorodibenzo-p-dioxin
2,3,7,8-Tetrachlordibenzofuran
target compound list
total dioxins/furans
total dissolved solids
toxic equivalency factor
Total Hydrocarbons
volatiles
Volatile Organic Sampling Train
water column
Roy F. Weston, Inc.

••

EXECUTIVE SUMMARY

A Trial Burn test program consisting of three runs performed under identical test conditions was conducted on the Submerged Quench Incinerator (SQI) located at the Rocky Mountain Arsenal (RMA) in Adams County, Colorado from 10-12 June 1993. This test program followed the approved Trial Burn Plan (submitted September 1992) and subsequent revisions. The oversite groups witnessing the test runs consisted of the U.S. Environmental Protection Agency (EPA), Region VIII; Colorado Department of Health (CDH); Entropy; Camp Dresser & McKee (CDM); and the Independent Technical Oversite (ITO) representative, Fluor-Daniel.

A summary of the operating parameters and results from the three tests conducted during the Trial Burn is provided in Table ES-1. The SQI was in compliance with federal and state guidelines for destruction and removal efficiency (DRE), particulate, hydrogen chloride (HCl), and carbon monoxide (CO) emissions while processing a maximum rate of 179.9 lb/min (18 gpm) of 100% Basin F liquid at an average incinerator temperature of 1835°F.

In order to determine the destruction and removal efficiency of the SQI, the Basin F liquid was spiked with two principal organic hazardous constituents (POHCs). A DRE >99.9990% was demonstrated for monochlorobenzene and >99.9988% was demonstrated for carbon tetrachloride. Both results are better than the minimum regulatory requirement of a DRE >99.99%.

Particulate emissions averaged 0.0214 gr/dscf (corrected to 7% O_2) and 0.0320 gr/dscf (corrected to 12% CO_2). Both values are below the regulatory limits of less than 0.08 gr/dscf (corrected to 7% O_2) and less than 0.10 gr/dscf (corrected to 12% CO_2). HCl emissions averaged 0.229 lb/hr (>97.9% removal), well below the 4 lb/hr regulatory limit. The CO hourly rolling average was 51.5 ppm, less than the regulatory limit 100 ppm.

Table ES-1

.,

Summary of Operating Parameters and Results from the SQI Trial Burn

Parameter	Day #1 10 June	Day #2 11 June	Day #3 12 June	Average	Interim Conditions
Waste Feedrate	171.1 lb/min	176.9 lb/min	179.9 lb/min	176 lb/min	<166 lb/min
SQI Chamber Temperature	1842°F	1831°F	1835° F	1836°F	>1825°F
Residence Time	2.81 sec	2.67 sec	2.68 sec	2.72 sec	>2.7 sec
Excess Oxygen	3.37%	3.74%	3.40%	3.50%	>3%
CO Hourly Rolling Average	49.5 ppm	47.4 ppm	57.6 ppm	51.5 ppm	<100 ppm
Quench pH	Field = 5.0	Field = 5.25	Field = 5.19	Field = 5.15	>4 pH
Scrubber pH	Field = 5.7	Field = 6.07	Field = 5.48	Field = 5.75	>5.25 pH
Venturi Recycle Flowrate	128.9 gpm	125.4 gpm	125.9 gpm	126.7 gpm	> 100 gpm
Venturi Differential Pressure	90" w.c.	90" w.c.	90" w.c.	90" w.c.	>80" w.c.
L/G Ratio	11.6 gal/kcf	10.8 gal/kcf	10.8 gal/kcf	11.1 gal/kcf	>9.3 gal/kcf
Scrubber Recycle Flowrate	295.6 gpm	280.7 gpm	280.9 gpm	285.7 gpm	>270 gpm
DRE - Carbon Tetrachloride DRE - Chlorobenzene	%9666.66 %9666.66	%0666.66 %0666.66	%0666.66 %0666.66	99.9989% 99.9992%	%66.66 <
Particulate - $@7\% O_2$ Particulate - $@12\% CO_2$	0.0194 gr/dscf 0.0290 gr/dscf	0.0238 gr/dscf 0.0360 gr/dscf	0.0209 gr/dscf 0.0311 gr/dscf	0.0214 gr/dscf 0.0320 gr/dscf	<0.08 gr/dscf <0.10 gr/dscf
HCL Emissions	0.1273 lb/hr	0.3103 lb/hr	0.2497 lb/hr	0.2291 lb/hr	<4 lb/hr

MK01\RPT:05189008.001\es

ES-2

08/26/93

Stack sampling for volatile organics, semivolatile organics, pesticides, dioxins/furans, metals, and hexavalent chromium was performed. Process sampling for the waste feed, POHCs, makeup water, caustic, and brine was also performed. All data presented have passed the rigorous quality assurance and quality control (QA/QC) defined in the Trial Burn Plan.

The SQI is currently operating under interim conditions, defined in Table ES-1, that were formally approved by EPA Region VIII in their letter to the Army (Ref: 8HWM-FF). The interim conditions were based upon the demonstrated results of the second mini-burn test, conducted 20-25 May 1993. These are conservative values that will remain in effect until the proposed operating conditions contained in Table 9-1 of this Trial Burn Report have been approved.

SECTION 1 SUMMARY

1.1 INTRODUCTION

A Trial Burn program was conducted on the Submerged Quench Incinerator (SQI) located at the Rocky Mountain Arsenal (RMA or the Arsenal) from 10-12 June 1993. The SQI is designed to thermally destroy the organic components found in Basin F liquid. The SQI employs a single-stage combustion process for incineration of liquid wastes. The combustion chamber has a downfired 30 million Btu/hr natural gas burner. Combustion gases are pushed through a brine solution at the bottom of the combustion chamber, which quenches the gas temperature to approximately 200°F. Flue gas is treated by a pollution control system that removes particulate and neutralizes acid gases.

Trial burn activities were performed by the SQI Operations Team. WESTON was contracted to provide technical direction to the Operations Team and to provide sampling and laboratory analysis for the Trial Burn. A summary of the test runs is given below:

- Test Run 1: 10 June 1993 from 0745 1552.
- Test Run 2: 11 June 1993 from 0710 1341.
- Test Run 3: 12 June 1993 from 0756 1440.

1.2 BACKGROUND

The SQI technology was selected by the Department of the Army (Army) for remediation of Basin F liquids at RMA. RMA is located approximately 10 miles northeast of downtown Denver and immediately north of Stapleton Airport in Adams County, Colorado. Figure 1-1 shows the RMA site location and the surrounding Denver area.

ROCKY MOUNTAIN ARSENAL

RMA was established in 1942 to manufacture chemical weapons and conventional munitions for World War II. After the war, a portion of the manufacturing facility was leased to private industry for the production of herbicides and insecticides. From 1947 until 1982, industrial chemicals were manufactured at RMA. In addition, between 1953 and 1957, RMA was used for the production of GB nerve agent. Munitions continued to be filled with GB at the Arsenal until approximately 1969. In the 1970s, the primary mission of RMA was the disposal of chemical warfare material, mustard agent, explosive components, and the destruction of the GB agent by caustic neutralization and incineration. The current mission of RMA is contamination cleanup; there is no operational military mission. Over the years, wastes from the military and industrial operations have been disposed of in accordance with standard engineering practices in existence at the time. These disposal practices have resulted in the contamination of soil and groundwater.

In 1956, Basin F, a lined evaporative pond, was constructed in the northern part of RMA (Figure 1-2). Basin F had a surface area of 92.7 acres and a capacity of approximately 243 million gallons (MG). The basin was created by the construction of a dike around a natural depression and was lined with a 3/8-inch asphalt membrane. An earthen blanket approximately 1 foot thick was placed on top of the membrane. Wastes were conveyed to the basin from the manufacturing facilities through an underground industrial sewer constructed of vitrified clay pipe. It was subsequently discovered that the liquids in Basin F contained hazardous organic and inorganic constituents.

In 1986, the Army, Shell Oil Company (Shell), and the U.S. Environmental Protection Agency (EPA) Region VIII agreed to undertake an accelerated remediation to contain the liquid and contaminated soils in and under Basin F pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This remediation has been addressed in two parts. The first part of the Basin F Interim Response Action (IRA), which has been completed, included the removal of Basin F liquid to storage tanks and a double-lined surface impoundment (Pond A) and the removal and stockpiling of soil and sludge to a double-lined waste pile, which was subsequently capped.

۰.,

The second part of the IRA calls for treatment of the Basin F liquid contained in the three storage tanks and Pond A. The Army selected a Submerged Quench Incinerator (SQI) as the preferred treatment method.

In May 1990, the Army issued the Final Decision Document for Basin F Liquid Treatment. The recommended treatment concept included a SQI with a venturi/packed tower scrubber for Basin F liquid. The SQI is manufactured and marketed by T-Thermal, Inc. of Conshohocken, Pennsylvania.

Construction of the SQI facility was completed in December of 1992. Following two months of rigorous systems checks, refractory dry-out began in early March 1993. Surrogate testing, using various concentrations of water, sodium chloride, sodium sulfate, ammonium chloride and methanol, was completed in late April 1993. Hazardous waste operations with varying concentrations of Basin F waste and water solutions followed, with two mini-burn tests using 50% and 100% Basin F waste conducted in May 1993. Both mini-burn tests demonstrated a DRE greater than 99.99%, and confirmed the effectiveness and safety of the incinerator in treating Basin F liquid. Mini-burn test summaries are contained in Appendix A.3.

1.3 OBJECTIVES OF THE TRIAL BURN

Trial Burn objectives listed below were defined in order to establish criteria for the acceptance of the SQI and determine conditions to be maintained during routine operations.

- Demonstrate a contaminant destruction and removal efficiency (DRE) of at least 99.99% for each of the principal organic hazardous constituents (POHCs), monochlorobenzene and carbon tetrachloride.
- Demonstrate a minimum hydrochloric acid (HCl) removal of 99% with the selected air pollution control devices, or less than 4 pounds per hour of HCl emissions.

• Demonstrate a maximum particulate emission of less than 0.08 grains per dry standard cubic foot (gr/dscf) corrected to 7% oxygen, and less than 0.10 gr/dscf corrected to 12% CO₂.

1.4 **DOCUMENT ORGANIZATION**

This report contains the information recommended in the document entitled Guidance on Setting Permit Conditions and Reporting Trial Burn Results (EPA/612/6-89/019), January 1989, and has been organized into the following nine sections:

<u>Section</u>	Title
1	Summary
2	Process Operation
3	Sampling and Monitoring Procedures
4	Analytical Procedures
5	Test Results
6	Quality Assurance Summary
7	Visits and Audit Summary
8	Closure
9	Conclusions

SECTION 2

PROCESS OPERATION

2.1 GENERAL OVERVIEW OF THE PROCESS

The SQI is composed of three main processing areas:

- Waste Feed System
- Submerged Quench Incinerator
- Flue Gas Treatment and Emissions Control

A block diagram of the process flow is provided in Figure 2-1. A discussion of the process is provided in the following subsections.

2.1.1 Waste Feed System

The function of the waste feed system is to transfer Basin F liquid and any wastewater (residual process water from decontamination, outdoor/indoor sumps, purge water, etc.) to the SQI combustion chamber. There are approximately 10.5 million gallons (MG) of Basin F liquid stored in Pond A and storage tanks TK-101, TK-102 and TK-103. During the Trial Burn, 100% Basin F liquid was transferred from storage tank TK-102 into two 14,000-gallon capacity day tanks (TK-105 and TK-106) located adjacent to the SQI building. Wastewater was not blended into the Basin F liquid for Trial Burn testing. From the day tanks, Basin F liquid was pumped to injection nozzles and fed directly into the SQI.

2.1.2 Submerged Quench Incinerator

The function of the SQI is to thermally oxidize and destroy the organic components contained in Basin F liquid. The SQI is designed to operate continually utilizing a fully automated control system operated from the main control room. Waste feed and burner interlocks maintain the incinerator within design parameters and operating conditions.

Supplementary fuel (natural gas) is fed to a LV-24 burner to heat the SQI chamber. The LV-24 burner has a 30 million btu/hr capacity. Combustion air to the burner and incinerator is supplied by a 600-horsepower combustion air blower. A 250-horsepower compressor supplies the atomizing air necessary for the waste feed injector nozzles. The incinerator combustion chamber is lined with refractory brick and is designed to operate at approximately 1,900°F with a 2-second retention time. The entire system is operated under positive pressure. Basin F liquid, atomizing air and secondary air are injected into the flame zone just below the down-fired burner.

The Basin F liquid contains a high concentration of salts and inorganics. Molten salts are formed in the incineration process because of the high operating temperatures. Molten salts flow down the walls of the combustion chamber and into the quench tank located below the combustion chamber. Combustion gases pass through a downcomer into the quench tank. The cooled gases exit through the quench separator.

Makeup water and caustic are added to the SQI quench tank to control tank level, pH and temperature. Softened makeup water from process water storage tank TK-203 is supplied by domestic water pumps. A dilute caustic solution is stored in tank TK-205 to provide pH control of both the quench tank and scrubber systems. The blowdown rate is controlled by the total dissolved solids (TDS) content of the quench liquid. The blowdown rate is based upon a specific gravity setpoint in the Process Monitoring and Control System (PMCS), which is input from the control room operator (CRO).

The blowdown brine solution, consisting of approximately 20% (by weight) dissolved salts and some residual heavy metals, is transported off-site where the metals are removed and recycled to a smelter. The residual solution is discharged in compliance with a NPDES permit. At the SQI, a brine-handling system was installed to provide on-site storage and transfer facilities for the brine liquid. Two 42,000-gallon storage tanks are designed to store two days of brine production using a blowdown rate of 27 gpm. The storage tanks operate in parallel on a batch basis. One tank is used to fill tank trucks in the brine loading area

while the other tank is receiving brine from the incinerator process. The tank trucks transfer brine to railcars, which transport the brine to a permitted off-site metals recycle facility.

2.1.3 Flue Gas Treatment and Emissions Control

The function of the venturi is to remove particulate from the incinerator exit gases. The function of the packed tower scrubber is to neutralize the acid vapor component of the combustion gas with a caustic solution.

Differential pressure and recycle flowrate across the venturi throat are monitored and controlled to maintain proper particulate removal. The liquid flow into the throat of the venturi is provided by redundant recycle pumps (P-203A/B).

The packed tower scrubber is a vertical, cylindrical tower which uses a caustic solution (sodium hydroxide, NaOH) as the neutralizing agent. The scrubber system consists of pumps P-203A/B, an absorber section, a mist eliminator to remove water droplets from the flue gases and an exhaust stack. Makeup water to the scrubber is required to maintain level due to evaporation and liquid blowdown to the quench/separator system.

A continuous emissions monitoring (CEM) system is provided to monitor the gaseous emissions leaving the stack and to transmit signals from the CEM analyzers back to the PMCS in the main control room. The oxygen analyzer's signal is used to control combustion air flow into the SQI chamber. The carbon monoxide analyzer's signal is averaged by the PMCS to update a rolling hourly average. The CEM is an extractive type system designed to measure the following seven constituents of the stack emissions:

- Oxygen (O_2)
- Carbon Dioxide (CO_2)
- Carbon Monoxide (CO)
- Hydrochloric Acid (HCl)

- Nitrogen Oxides (NO_x)
- Sulfur Dioxide (SO₂)
- Total Hydrocarbons (THC)

Table 2-1 presents a summary of the CEM equipment. The PMCS uses the signals from the O_2 and CO analyzers to compare with approved ranges for waste feed shutoff values.

2.2 PROCESS OPERATION DATA

The process data represent the average values for the parameters measured during the designated test periods. A summary of the pertinent operational data collected during the Trial Burn test program is presented in Table 2-2. The data were extracted from the PMCS Daily Reports and control room operator logs. The raw data collected during the Trial Burn tests are presented in Appendix A (Subsections A.1.1 through A.1.5).

2.2.1 Process Measurement Methods

The process data from the Trial Burn program were collected using the following field instruments:

- <u>Waste Feedrate</u> The Basin F feedrate was monitored using a Micro-Motion flow transmitter (FIT-04A). The 4-20mA output signal was converted into an equivalent 0-300 lb/min signal, transmitted to the PMCS and averaged on a hourly basis. Calibration data sheets are provided in Appendix A.2.3.
- <u>Process Gas Temperatures</u> Gas temperatures were measured using "R" and "J"-type thermocouples located throughout the gas stream. The SQI chamber temperature is the numerical average of three thermocouples (TE-34A/B/C). The average chamber temperature is transmitted to the PMCS and averaged on a hourly basis. Calibration data sheets are provided in Appendix A.2.3.
- <u>Process Gas Pressures</u> SQI chamber pressure was determined using a Rosemount pressure transmitter (PIT-31). The 4-20mA output signal was converted into an equivalent 0-10 psig signal, transmitted to the PMCS and averaged on a hourly basis.

Table 2-1

Continuous Emissions Monitoring Equipment

Parameter	Manufacturer	Model Number	Analytical Principle	Operating Range
Carbon monoxide	Rosemount	880-14	Nondispersive infrared	0-200 ppm CO
Carbon dioxide	Rosemount	870	Nondispersive infrared	0-20% CO ₂
Oxygen	Rosemount	755	Paramagnetic	0-25% O ₂
Nitrogen oxides	Rosemount	951A	Chemiluminescence	0-1,000 ppm NO _x
Sulfur dioxide	Rosemount	880-16	Nondispersive infrared	0-500 ppm SO,
Hydrochloric acid	Thermo- Environmental	15	Gas filter correlation	0-100 ppm HCl (0-5 ppm with 20:1 dilution)
Total hydrocarbons	JUM Engineering	VE-7	Flame ionization detector	0-10 ppm THC

MK01\RPT:05189008.001\s2

2-6

08/26/93

Table 2-2

Summary of Operating Parameters During the SQI Trial Burn

Parameter	Day #1 10 June	Day #2 11 June	Day #3 12 June
Waste Feedrate	171.1 lb/min	176.9 lb/min	179.9 lb/min
SQI Chamber Temperature	1842° F	1831°F	1835°F
Residence Time	2.81 sec	2.67 sec	2.68 sec
Oxygen	3.37%	3.74%	3.40%
CO Hourly Rolling Average	49.5 ppm	47.4 ppm	57.6 ppm
Quench pH	Field = 5.0 $PMCS = 5.6$	Field = 5.25 PMCS = 6.00	Field = 5.19 PMCS = 6.20
Scrubber pH	Field = 5.7 $PMCS = 6.0$	Field = 6.07 $PMCS = 6.07$	Field = 5.48 PMCS = 5.37
Venturi Recycle Flowrate	128.9 gpm	125.4 gpm	125.9 gpm
Venturi Differential Pressure	90" w.c.	90" w.c.	90" w.c.
L/G Ratio	11.6 gal/kcf	10.8 gal/kcf	10.8 gal/kcf
Scrubber Recycle Flowrate	295.6 gpm	280.7 gpm	280.9 gpm
Natural Gas	433 scfm	445 scfm	435 scfm
Total Combustion Air	6,582 scfm	7,163 scfm	7,107 scfm
SQI Chamber Pressure	3.97 psig	3.94 psig	4.00 psig
Quench Density	1.19 sgu	1.19 sgu	1.19 sgu
Carbon Dioxide	10.14%	9.74%	10.29%
Total Hydrocarbon	5.53 ppm	9.61 ppm	5.06 ppm
Nitrogen Oxides	119.2 ppm	142.0 ppm	130.7 ppm
Sulfur Dioxide	20.7 ppm	1.13 ppm	145 ppm
Hydrogen Chloride	1.74 ppm	2.07 ppm	3.70 ppm
Carbon Tetrachloride Feedrate	6.90 lb/hr	8.66 lb/hr	8.79 lb/hr
Monochlorobenzene Feedrate	8.66 lb/hr	8.98 lb/hr	8.79 lb/hr

.,

- <u>Liquid Flowrates</u> Venturi and scrubber recycle flowrates are determined using Rosemount differential pressure transmitters (FIT-60 and FIT-65 respectively). Pressure drop across an orifice plate is converted into a flow signal (gpm), which is transmitted to the PMCS and averaged on a hourly basis. Calibration sheets are provided in Appendix A.2.3.
- <u>POHC Injection Rates</u> The two POHCs used during testing, monochlorobenzene and carbon tetrachloride, were purchased in pure form and injected into the waste feed stream through metering pumps. The injection rates were determined by differential weight loss over time using certified weigh scales. The weight and time of each POHC drum was manually recorded every 15 minutes during Trial Burn testing. Raw data sheets and the injection rate calculations are attached in Appendix A.1.4. A schematic of the POHC injection system is shown in Figure 2-2.
- <u>Stack Emissions</u> The stack emissions were measured using an extractive-type CEM system. The CEM system components are fully described in Section 7 of the Trial Burn Plan. A formal Performance Specification Test program was conducted according to 40 CFR 60, Appendix B, for the oxygen and carbon monoxide analyzers prior to the Trial Burn (between April 6-22, 1993). A strip chart recording for O₂, CO₂ and CO during each test run is provided in Appendix A.1.10 and is used as a comparison to the hourly averages calculated by the PMCS and reported in the Daily Reports.

2.3 DEVIATIONS FROM TRIAL BURN PLAN

A summary of the deviations from the Trial Burn Plan is presented in the following subsections.

2.3.1 Process Sample Volumes

In order to have an adequate volume of liquid waste and brine samples, the sample volumes defined in Tables 5-1 and 5-6 of the Trial Burn Plan were increased from 100 ml to 1,000 ml. The sample volumes defined in Tables 5-4 and 5-5 of the Trial burn Plan for makeup water and caustic were increased from 100 ml to 500 ml. All grab samples were composited at the end of each test run.

2-9

2.3.2 Sample Preservation

To preserve the integrity of the sample matrices, preservatives were not added to either the liquid waste or caustic samples. Additionally, the cyanide and sulfide samples for the brine were not pH adjusted due to the large amount of caustic required to make the adjustment.

2.3.3 Liquid Waste Audit Requirements

Per request by the EPA during the Trial Burn, the sample type stated in Table 6-7(a) of the Trial Burn Plan was changed from grab to composite for the following parameters: semi-volatiles, pesticides, dioxin/furans, metals, sulfur and total halides.

2.3.4 Performance Evaluation Samples

The EPA provided two Performance Evaluation (PE) samples as an audit of the analytical methods used by the laboratory. One PE sample was characteristic of the liquid waste feed and the other sample was characteristic of the brine. The EPA did not provide samples which were spiked for dioxin/furan, heating value, ash content, pH, TSS or TDS. Therefore, these parameters are not reported in the summary tables in Section 7.

2.3.5 Pesticide Surrogates

Several substitutions were made to the pesticide surrogates defined in Tables 11-5 and 11-6 of the Trial Burn Plan. Inadvertently, the analytical laboratory used routine in-house spiking solutions containing matrix spike compounds different from those defined in the original plan. With respect to the Trial Burn objective to determine the absence or presence of organophosphorous pesticides in Basin F liquids, no adverse effect to useability is presented by the use of the alternate list of spiking compounds for surrogate and matrix spike analysis. Revisions to Tables 11-5 and 11-6 of the Trial Burn Plan are presented in Tables 6-5 and 6-6. Further discussion of the pesticide surrogate substitutions is provided by the Quality Assurance Summary in Section 6.

SECTION 3 SAMPLING AND MONITORING PROCEDURES

3.1 SAMPLING PLAN

This section of the report presents the sampling and monitoring procedures used for the Trial Burn test program. The process and stack sampling was performed by Roy F. Weston, Inc. (WESTON_{\odot}). Figure 3-1 shows the sampling locations. Tables 3-1 through 3-7 define the sampling and analytical plan for each sample location. Each table summarizes the following elements:

- A description of the system or process being sampled or monitored (i.e. liquid waste, makeup water, caustic, brine, or stack gases).
- Number of test runs.
- Test objectives (i.e. to demonstrate performance of the system).
- Sampling objective (i.e. to collect a representative sample).
- Parameters tested (i.e. volatile organics, metals, density, pH).
- Sampling or monitoring method.
- Extraction/analysis method.
- Sampling or monitoring design (i.e. total no. of samples, no. of blanks).

3.2 SAMPLE IDENTIFICATION

The process samples were collected using the sampling equipment identified in Table 3-8 and labeled using a six letter code (XXYY-ZZ-lab) incorporating:

• Sample description (i.e. XX - liquid feed, brine, makeup water, caustic solution).

- Type of sample (YY grab, composite, blank).
- Test designation (ZZ i.e. run 1,2,3).
- Lab abbreviation (used to describe samples which were analyzed for QA/QC purposes).

A detailed listing of the sample description, test designations and laboratory abbreviations for the liquid samples follows:

Sample Description (XX)		Sample Type (YY)		Lab A	Lab Abbreviations	
LF BR MW CS AU <u>Test J</u>	Liquid Feed Brine Makeup Water Caustic Solution Audit Designation (ZZ)	CP GB SB BT TB	Composite Grab Site Blank Blank Train Trip Blank	MS MSD BS BSD DL DF SP	Matrix Spike Matrix Spike Duplicate Blank Spike Blank Spike Duplicate Dilution Limit Dilution Factor Spiked Compound	
D) 74						

RN1Run 1RN2Run 2RN3Run 3

For example, LFCP-RN1 corresponds to the Basin F liquid feed composite sample for test run #1.

Table 3-9 contains a complete listing of the stack gas sample identifiers used on the chainof-custody sheets provided to the analytical laboratory. The sample method (for example, multi-metals is abbreviated MMTL) is shown in the sample description.

3.3 SAMPLING PROCEDURES

Sampling procedures are summarized in Table 3-10. Included in this table is the following information:

- Description of sample stream.
- EPA reference method.
- Measurement technique.
- Duration of sampling.

CONTINUE 1 BUILDING							-								
Description:							Liquid M	Vaste							
No. of Test Runs:							e								
Test Objective:						De	termine the D	RE of the SQ	_						
Sampling Objective:						Coll	ect a Represe	intative Samp	le						
Parameters to be Determined:	Volatile Organics	Semivolatile Organics	Pesticides	Dioxins/ Furans	Metals ¹	Sulfur Content	Total Halides	Density	Heating Value	Ash Content	Hq	Water Content	TSS ²	TDS ³	Volumetric Flow Rate
Sampling or Monitoring Method:	Two (2) random grab samples (40 mL) per test	Grab	sample (1,000) mL) collecte	d every 15 min	utes. At the er	nd of each test	t run, grab sarr	nples will be cc	omposited and	l placed into a	ppropriate con	tainers for ane	alysis.	Flow Rate measured every 15 minutes
ampling Extraction/ Analysis Method(s):	Method 5030/ Method 8240	Dilution Method/ 8270	Dilution Method/ Methods 8080 ⁴ and 8140 ⁴	Dilution Method/ 8290	Digestion Method 3010/ Methods 6010 ⁵ and 7470 ⁵	Method 300	Method 300	Gravi- metric	ASTM Method D240	Method 160.3	Method 150.1	Method 160	Method 160.2	Method 160.1	Flow Meter
Sampling or Monitoring D	esign:														
Total no. of samples	9	3	в	е	3	e	е	e	в	°.	e	e	e	в	AN
Site blanks	1	-	1	۲	-	-	-	0	0	-	-	-	-	-	AN
Trip blanks	-	0	0	0	0	0	0	0	0	0	0	0	0	0	NA
Lab blanks	1/batch ⁶	1/batch	1/batch	1/batch	1/batch	1/batch	1/batch	0	0	1	+	Ŧ	1	-	NA
Blank spikes ⁷	1/batch	1/batch	1/batch	1/batch	1/batch	0	0	0	0	0	0	0	0	0	NA
Replicates ⁸	1/batch	1/batch	1/batch	1/batch	1/batch	1/batch	1/batch	0	0	۰	-	-	1	٢	NA
Matrix spikes	1/batch	1/batch	1/batch	1/batch	1/batch	0	0	0	0	0	0	0	0	0	NA
Total no. of samples analyzed	12	œ	8	8	8	9	9	m	σ	9	G	9	9	9	AN
NOTES: 1. Metals inclu silver, thallin 2. Total suspe- 3. Total dissol- 4. Organochio, 5. Arsenic, bar and zinc - M	de antimony, ars um, vanadium, an nded solids. ved solids rine pesticides - h ium, antimony, br ium, antimony, br	id zinc. d zinc. Aethod 8080; org aryllium, cadmiur. cury - Method 74	yllium, cadmium, (anophosphorus p n, chromium, copy 70.	chromium, coppe esticides - Methr per, lead, nickel,	ır, lead, mercury, vd 8140. selenium, silver, t	nickel, selenium, hallium, vanadiu	ຜ່ ເ [,] ່ ຜ່ ະ	A batch consists A blank spike, or and analyzed wi A replicate samp aliquots. Replici	t of a maximum o r method spike is th the associated by the is obtained by ate sample analy: ate sample	f 20 samples. a sample of labc i sample batch. splitting a field s sis monitors prec	oratory reagent-g ample into two s iston.	rade water spikec eparate analyses	a with the analyte and performing	s of interest tha two separate an	t is prepared alyses on the

1541-3589 7/9/93

TABLE 3-1 SAMPLING AND MONITORING PLAN FOR LIQUID WASTE

3-5

TABLE 3-2 SAMPLING AND MONITORING PLAN FOR POHC SOLUTION (CARBON TETRACHLORIDE)

Sampling Point No.	2	A
Description:	POHC Solution (Ca	urbon Tetrachloride)
No. of Test Runs:	3	3
Test Objective:	Determine the I	DRE of the SQI
Sampling Objective:	Collect Represe	entative Sample
Parameters to be Determined:	Volatile Organics	Mass Rate
Sampling or Monitoring Method:	2 random grab samples (40 mL) per test run	Mass Rate measured every 15
Sampling Extraction/ Analysis Method(s):	GC-FID	minutes by a Weigh Scale
Sampling or Monitoring Design:		
Total No. of Samples	6	NA ¹
- Site Blanks	1	NA
- Trip Blanks	1	NA
- Lab Blanks	1/Batch ²	NA
- Blank Spikes ³	1/Batch	NA
- Replicates ⁴	1/Batch	NA
- Matrix Spikes	1/Batch	NA
- Total No. of Samples Analyzed	12	NA

Notes:

- 1. Not applicable.
- 2. A batch consists of a maximum of 20 samples.
- 3. A blank spike, or method spike is a sample of laboratory reagent-grade water spiked with the analytes of interest that is prepared and analyzed with the associated sample batch.
- 4. A replicate sample is obtained by splitting a field sample into two separate analyses and performing two separate analyses on the aliquits. Replicate sample analysis monitors precision.

TABLE 3-3SAMPLING AND MONITORING PLANFOR POHC SOLUTION (CHLOROBENZENE)

Sampling Point No.	2	В
Description:	POHC Solution ((Chlorobenzene)
No. of Test Runs:	3	3
Test Objective:	Determine the I	DRE of the SQI
Sampling Objective:	Collect Represe	entative Sample
Parameters to be Determined:	Volatile Organics	Mass Flow Rate
Sampling or Monitoring Method:	2 Random Grab Samples (40 mL) per Test Run	Mass Rate Measured Every 15
Sampling Extraction/ Analysis Method(s):	GC-FID	Minutes By a Weigh Scale
Sampling or Monitoring Design:		
Total No. of Samples	6	NA ¹
- Site Blanks	1	NA
- Trip Blanks	1	NA
- Lab Blanks	1/Batch ²	NA
- Blank Spikes ³	1/Batch	NA
- Replicates ⁴	1/Batch	NA
- Matrix Spikes	1/Batch	NA
- Total No. of Samples Analyzed	12	NA

Notes:

- 1. Not applicable.
- 2. A batch consists of a maximum of 20 samples.
- 3. A blank spike, or method spike is a sample of laboratory reagent-grade water spiked with the analytes of interest that is prepared and analyzed with the associated sample batch.
- 4. A replicate sample is obtained by splitting a field sample into two separate analyses and performing two separate analyses on the aliquits. Replicate sample analysis monitors precision.

Sampling Point No.				e			
Description:				Makeup Wate	er		
No. of Test Runs:				e			
Test Objective:		De	stermine Chemical C	Characteristics and	Flow Rate of Makeu	ip Water	
Sampling Objective:			Ö	llect Representativ	e Sample		
Parameters to be Determined:	Volatile Organics	Semivolatile Organics	Pesticides	Dioxins/ Furans	Metals ¹	Total Halides	Volumetric Flow Rate
Sampling or Monitoring Method:	Random Grab Sample (40 mL) Per Test Run	Grab Samp Sample Three Test Cor	ble (500 mL) Collecte s Will Be Composite mposites Will be Com	ad Every 15 Minutes d into Appropriate C nposited Again into	. At the End of Each containers for Analysi One Trial Burn Sampl	Test Run, s. The le for Analysis.	Flow Rate Measured Every 15
Sampling Extraction/ Analysis Method(s):	Method 5030/ Method 8240	Method 3520/ Method 8270	Method 3520/ Methods 8080 ² and 8140 ²	Method 3520/ Methods 8290	Method 3010/ Methods 6010 ³ and Method 7470 ³	Method 300	Minutes By a Flow Meter
Sampling or Monitoring Design:							
Total No. of Samples	3				14		NA ⁵
- Site Blanks	-	÷	-	-	-	-	NA
- Trip Blanks	-	0	0	0	o	0	NA
- Lab Blanks	1/Batch ⁶	1/Batch	1/Batch	1/Batch	1/Batch	1/Batch	NA
- Blank Spikes ⁷	1/Batch	1/Batch	1/Batch	1/Batch	1/Batch	o	NA
- Replicates ⁸	1/Batch	1/Batch	1/Batch	1/Batch	1/Batch	1/Batch	NA
- Matrix Spikes	1/Batch	1/Batch	1/Batch	1/Batch	1/Batch	0	NA
- Total No. of Samples Analyzed	ŋ						AN
 NOTES: 1. Metals include antimut 2. Organochlorine pesti 3. Antimony, arsenic, bit Method 7470. 4. Three samples will be Test Samples will Be 5. Not Applicable. 6. A batch consists of a 7. A blank spike, or metal with the associated si 8. A replicate sample is replicate sample ana 	ony, arsenic barium cides - Method 808(arium, beryllium, ca e collected (one fror e Archived for future maximum of 20 sar hod spike is a samp ample batch. obtained by splittin ulysis monitors preci	, beryllium, cadmiur); organophosphoru Jmium, chromium, c n each test). These use if necessary. nples. ole of laboratory rea 3 a field sample intr sion.	m, chromium, coppe us pesticides - Meth copper, lead, seleni s samples will be coi is samples will be coi is samples will be coi of two separate analy	ar, lead, mercury, r od 8140. um, silver, thallium mposited into one a piked with the anal yses and performir	ickel, selenium, silve , vanadium, and zinc sample for analysis. ytes of interest that i g two separate anal	er, thallium, vanadii - Method 6010; Me The three Individu s prepared and an yses on the aliquot	um, and zinc. ercury - al s.

TABLE 3-4 SAMPLING AND MONITORING PLAN FOR MAKEUP WATER

1541-3592 7/9/93

					Volumetric Flow Rate	Flow Rate Measured Everv 15	Minutes By a Flow Meter		NA ⁵	NA	NA	NA	NA	NA	NA	NA	170. 1 be									
					Density	Samples mposited	Gravimetric			0	0	0	0	0	0		dium, and zinc. nercury - Method 7. Jal test samples wil alyzed with the ots. Replicate									
			Solution		Total Halides	ch Test Run, Grab posites Will be Col sis.	Method 300			-	0	1/Batch	0	1/Batch	0		ver, thallium, vanac nc- Method 6010; r s. The three individ t is prepared and a alyses on the aliqu									
	E		low Rate of Caustic	Sample	Metals ¹	ss. At the End of Ea The Three Test Corr n Sample for Analys	Method 3010/ Methods 6010 ³ and Method 7470 ³		41		0	1/Batch	1/Batch	1/Batch	1/Batch		nickel, selenium, sil n, vanadium, and zi sample for analysis ilytes of interest tha ng two separate an									
4	Caustic Solution	e	naracteristics and F	lect Representative	Dioxins/ Furans	ted Every 15 Minute priate Containers. T into One Trial Buri	Method 3520/ Methods 8290			+	0	1/Batch	1/Batch	1/Batch	1/Batch		per, lead, mercury, thod 8140. nium, silver, thalliun omposited into one spiked with the ana alyses and performi									
			ermine Chemical Cl	Ö	Pesticides	ole (500 mL) Collect nposited into Appro Agai	Method 3520/ Methods 8080 ² and 8140 ²			-	0	1/Batch	1/Batch	1/Batch	1/Batch		um, chromium, cop rus pesticides - Me , copper, lead, sele se samples will be c sagent-grade water tto two separate an									
			De	Ō	Dete	Determ	Determ	Determi	Determin	Determine			Uetermine Chemical Cha Colle	Semivolatile Organics	Grab Samp Will Be Cor	Method 3520/ Method 8270			-	0	1/Batch	1/Batch	1/Batch	1/Batch		m, beryllium, cadmi 180; organophospho admium, chromium om each test). Thes amples. nple of laboratory re ing a field sample ir
					Volatile Organics	Random Grab Sample (40 mL) Per Test Run	Method 5030/ Method 8240		3	-	-	1/Batch ⁶	1/Batch	1/Batch	1/Batch	6	nony, arsenic bariu disides - Method 80 barium, beryllium, c be collected (one fr use if necessary. a maximum of 20 s athod spike is a sar batch. s obtained by splitti nitfors precision.									
Sampling Point No.	Description:	No. of Test Runs:	Test Objective:	Sampling Objective:	Parameters to be Determined:	Sampling or Monitoring Method:	Sampling Extraction/ Analysis Method(s):	Sampling or Monitoring Design:	Total No. of Samples	- Site Blanks	- Trip Blanks	- Lab Blanks	- Blank Spikes ⁷	- Replicates ⁸	- Matrix Spikes	- Total No. of Samples Analyzed	 NOTES: 1. Metals include antii 2. Organochlorine pes 3. Antimony, arsenic, 3. Antimony, arsenic, 4. Three samples will archived for future to 5. Not applicable. 6. A batch consists of 7. A blank spike, or m associated sample 8. A replicate sample 8. A replicate sample 									

۰.

TABLE 3-5 SAMPLING AND MONITORING PLAN FOR CAUSTIC SOLUTION

1541-3595 8/25/93

WISIN.

r

Description: No. of Test Buns:														
No. of Test Runs:							Brine							
							e							
Test Objective:					Detern	nine chemical	characteristics a	and flow rate c	of brine					
Sampling Objective:						Collect a	Representative	Sample						
Parameters to be Determined: Oi	/olatile rganics	Semivolatile Organics	Pesticides/ PCBs	Dioxins/ Furans	Metals ¹	Total Halides	Density	풘	Total Suspended Solids	Total Dissolved Solids	Cyanide	Fluoride	Sulfide	Volumetric Flow Rate
Sampling or Monitoring F Method: ((Random ab sample (40 mL) per test	Grab sar	nple (1,000 mL) collected eve	ry 15 minutes.	At the end of e	ach test run, gra	b samples will	be composited	and placed into	o appropriate cc	intainers for ane	alysis.	Flow Rate measured every
Sampling Extraction/ h Analysis Method(s): h	Method 5030/ Method 8240	Method 3520/ Method 8270	Method 3520/ Methods 8080 ² and 8140 ²	Method 3520/ Method 8280	Digestion Method 3010/ Methods 6010 ³ and 7470 ³	Method 300	Gravimetric	Method 150.1	Method 160.2	Method 160.1	Method 335.2	Method 340.2	Method 376.2	15 minutes by a Flow Meter
Sampling or Monitoring Desig	Ë													
Total no. of samples	e	e	3	в	m	e	8	e	e	e	e	3	Э	NA ⁴
Site blanks	-	+	-	-	-	-	0	-	-	-	-	-	-	NA
· Trip blanks	-	0	0	0	0	0	0	0	0	0	0	0	0	AA
- Lab blanks 1,	/batch ⁵	1/batch	1/batch	1/batch	1/batch	1/batch	0	۲	1	1	1/batch	1/batch	1/batch	NA
Blank spikes ⁶ 1,	/batch	1/batch	1/batch	1/batch	1/batch	0	0	0	0	0	1/batch	1/batch	1/batch	NA
Replicates ⁷ , 1,	/batch	1/batch	1/batch	1/batch	1/batch	1/batch	0	0	-	-	1/batch	1/batch	1/batch	AN
Matrix spikes 1.	/batch	1/batch	1/batch	1/batch	1/batch	0	0	0	0	0	1/batch	1/batch	1/batch	NA
Total no. of samples analyzed	G	œ	ω	ω	ω	9	n	£	9	9	8	ω	œ	AN
NOTES: 1. Metals include an 2. Organochlorine pr	ttimony, arsenik esticides - Metl	c, barium, berylliur hod 8080; Organo	m, cadmium, chron phosphorus, pesti	nium, copper, lea cides - Method 81	d, mercury, nickel, 140.	, selenium, silver,	thallium, vanadium,	zinc.						
 Arsenic, antimony A. Not applicable. 	y, barium, bery	llium, cadmium, cl	rromium, copper, l	ead, nickel, selen	iium, silver and the	allium, vanadium,	zinc - Method 6010;	mercury - Metho	od 7470.					
 A batch consists (A blank spike, or i A replicate sample 	of a maximum method spike i e is obtained b <u>i</u>	of 20 samples. s a sample of labc y splitting a field s.	rratory reagent-gra ample into two sep	de water spiked v ıarate analyses aı	with the analytes o nd performing two	if interest that is p separate analyse	repared and analyze s on the aliquots. F	ed with the assoc teplicate sample	ciated sample batcl analysis monitors	h. precision.				

1541-3593 7/9/93

3-10

TABLE 3-6 SAMPLING AND MONITORING PLAN FOR BRINE

Volumetric Flow Rate in conjunction with Method 0010, 23, Multi-Metals, 0050, and Hexavalent AA ¥ ¥ A replicate sample is obtained by splitting a field sample into two separate analyses and performing two separate analyses on the aliquots. Replicate sample analysis monitors precision. A ¥ A blank spike, or method spike is a sample of laboratory reagent-grade water spiked with the analytes of interest that is prepared and analyzed with the associated sample batch. ¥ ¥ ¥ AN ٩ Methods 1 and 2, Chromium All samples spiked with 37 CL-TCDD, 13CL₂-PeCDF 234, 13 CL₂-HxCDF 478, 13 CL₂-HxCDD 478 and 13 CL₂-HpCDF 789. Water Content NA⁴ ¥ ¥ ¥ ¥ ¥ ٩V ٩N ٩N A 10. All samples spiked with Contractor Laboratory Program (CLP) Volatile Organic Analysis (VOA) surrogates. Method 9057 Hydro-chloric acid² Method 0050 ≥50 dscf 2 ო -0 0 ---0 œ Method 25A Total² Hydro-carbons Method 25A ¥ 11. All samples spiked with CLP Pesticide and Base/Neutral/Acid (BNA) surrogates. AN ¥ ¥ ¥ ¥ ¥ ¥ ¥ Carbon² Monoxide Method 10 Method 10 ٩Z ₹ AN A ٩N ٩ ٩ A A Set includes solvents, filter, XAD-2 resin, and HPLC water. Continuous Nitrogen² Oxides Method 7E Method 7E ¥ A ¥ ¥ ¥ § § ¥ ₹ Method 6C Method 6C Sulfur² Dioxide ¥ ¥ A M ¥ ¥ ¥ ₹ AN Collect a Representative Sample Determine the DRE of the SQI Oxygen² 60-80 L Multipoint Integrated Gas Smp 0 0 0 9 ო 0 0 0 ი Stack Gas Method 3 Method 3 ç 6 ŝ ۲. œ Carbon² Dioxide ო 0 0 0 0 0 9 0 ი Carbon dioxide, oxygen, sulfur dioxide, nitrogen oxides, carbon monoxide, total hydrocarbons, and hydrochloric acid were monitored by CEM system. In addition, carbon dioxide, oxygen and hydrochloric acid were also monitored by integrated sampling. Antimorry, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, vanadium, and zinc. Particulate Method Method 0050 ≥30 dscf ŝ 0 0 0 0 0 ო -0 4 Semivolatile organics - Method 8270; organochlorine pesticides - Method 8080; organophosphorous pesticides - Method 8140. Hexavalent Chromium Each sample includes a Tenax and Tenax charcoal tube pair. Each tube was analyzed individually as a means of determining compound breakthrough. Hexavalent Chromium Method >50 dscf EPA Method 0010 and 23 site and trip blanks run only if contamination problems were found. ო 0 0 ---æ >50 dscf Metals¹ Multi-metals ო -0 0 œ --Method 23 Dioxins/ Furans Method 23 >106 dscf 1 set 7 all ¹² 0 ო ω Semivolatile Organics/ Pesticides Method 8270/8080/ 8140³ >106 dscf Method 0010 all ¹¹ 1 set 7 ო 0 œ --6 collected/ 6 analyzed ⁵ Method 5040/8240 Volatile Organics Approx. 120 liters Method 0030 all ¹⁰ 1 set 0 23 ---Sampling or Monitoring Design: Not applicable. - Site blanks (train blanks) - Blank spike duplicates ^f Sampling or Monitoring Method: Site and trip blanks ⁶ (solvents, resins) Total no. of samples analyzed Total no. of samples Sampling Extraction/ Analysis Method(s): Sampling Objective: Sampling Point No. No. of Test Runs: Parameters to be Determined: Test Objective: ຕ່ ś . ف Sample size - Blank spikes Matrix spikes - Replicates 9 Description: - Lab blanks NOTES: 7/29/93 1541-3594

TABLE 3-7 SAMPLING AND MONITORING PLAN FOR STACK GAS

3-11

Sampling Equipment

Sample Point No.	Stream	Sampling Equipment
1	Liquid Waste (Basin F)	VOA samples: 40 ml glass vial. All other samples: wide-mouth glass bottle with Teflon-lined lid.*
2	POHC Spike Solution	VOA samples: 40 ml glass vial. All other samples: wide-mouth glass bottle with Teflon-lined lid.*
3	Makeup Water	VOA samples: 40 ml glass vial. All other samples: wide-mouth glass bottle with Teflon-lined lid.*
4	Caustic Solution	VOA samples: 40 ml glass vial. All other samples: wide-mouth glass bottle with Teflon-lined lid.*
5	Brine	VOA samples: 40 ml glass vial. All other samples: wide-mouth glass bottle with Teflon-lined lid.*
6	Stack Gases	Integrated sampling: EPA Method 0030 sampling train (VOST) EPA Method 0010 sampling train EPA Method 23 sampling train Multi-metals sampling train Hexavalent chromiunm sampling train EPA Method 0050 sampling train EPA Method 3 sampling train

* With the exception of VOA samples, all samples were collected every 15 minutes. At the end of each test run, samples were composited and placed into appropriate containers for analysis. At least one random grab sample was collected during each test for VOA analysis.

SQI Stack Sample Identification

Sample ID Code	Sample Description
Particulate — EPA Method 0050	
RMA-TBURN-M5-RN 1-3-FHA	Front half acetone
RMA-TBURN-M5-RN 1-3-FILT	Filter
RMA-TBURN-M5-SB-ACETONE	Acetone
RMA-TBURN-M5-SB-FILT	Filter
HCL - EPA Method 0050	
RMA-TBURN-M0050-RN 1-3-H ₂ SO ₄	Impingers containing 0.1 N sulfuric acid
RMA-TBURN-M0050-SB-H ₂ SO ₄	0.1 N sulfuric acid solution
RMA-TBURN-M0050-SB-H ₂ O	H ₂ O
Metals - EPA Multi-Metals	
RMA-TBURN-MMTL-RN 1-3-FHN	Front half 0.1 N nitric acid
RMA-TBURN-MMTL-RN 1-3-FILT	Filter
RMA-TBURN-MMTL-RN 1-3-BHN	Back half 5% nitric acid/10% hydrogen peroxide solution
RMA-TBURN-MMTL-RN 1-3-IMP4	Impinger 4 condensate catch
RMA-TBURN-MMTL-RN 1-3-KMNO4	Potasium permanganate/sulfuric acid solution
RMA-TBURN-MMTL-RN 1-3-HCl/H ₂ O	Hydrochloric acid/distilled water
RMA-TBURN-MMTL-SB-NITRIC	0.1 N nitric acid solution
RMA-TBURN-MMTL-SB-FILTER	Filter
RMA-TBURN-MMTL-SB-NITRIC/H2O2	5% nitric acid/10% peroxide solution
RMA-TBURN-MMTL-SB-KMNO₄	4% potasium permanganate/10% sulfuric acid solution
RMA-TBURN-MMTL-SB-HCl/H2O	8 N hydrochloric acid
RMA-TBURN-MMTL-AUDIT-L341	Metals audit sample
RMA-TBURN-MMTL-AUDIT-H341	Metals audit sample
Semivolatiles - EPA Method 0010	
RMA-TBURN-M0010-RN 1-3-FHS	Front half solvent (50% methanol/50% methylene chloride)
RMA-TBURN-M0010-RN 1-3-XAD	XAD resin trap
RMA-TBURN-M0010-RN 1-3-FILT	Filter
RMA-TBURN-M0010-RN 1-3-COND	Condensate and distilled water rinse
RMA-TBURN-M0010-RN 1-3-BHS	Back half solvent (50% methanol/50% methylene chloride)
RMA-TBURN-M0010-BT-SOL	Front-half solvent (50% methanol/50% methylene chloride)
RMA-TBURN-M0010-BT-FILT	Filter
RMA-TBURN-M0010-BT-XAD	XAD resin trap

~

SQI Stack Sample Identification (Continued)

Sample ID Code	Sample Description
RMA-TBURN-M0010-BT-COND	Condensate and distilled water rinse
RMA-TBURN-M0010-BT-BHS	Back half solvent (50% methanol/50% methylene chloride)
RMA-TBURN-M0010-SB-SOL	Solvent (50% methanol/50% methylene chloride)
RMA-TBURN-M0010-SB-FILT	Filter
RMA-TBURN-M0010-SB-XAD	XAD resin trap
RMA-TBURN-M0010-SB-WATER	HPLC grade distilled water
PCDD/PCDF - EPA Method 23	
RMA-TBURN-M23-RN 1-3-FHS	Front half solvent (50% acetone/50% methylene chloride)
RMA-TBURN-M23-RN 1-3-FILT	Filter
RMA-TBURN-M23-RN 1-3-XAD	XAD resin trap
RMA-TBURN-M23-RN 1-3-COND	Condensate and distilled water rinse
RMA-TBURN-M23-RN 1-3-BHS	Back half solvent (50% acetone/50% methylene chloride)
RMA-TBURN-M23-RN 1-3-TOL	Toluene (QA/QC rinse)
RMA-TBURN-M23-BT-SOL	Front half solvent (50% acetone/50% methylene chloride)
RMA-TBURN-M23-BT-FILT	Filter
RMA-TBURN-M23-BT-XAD	XAD resin trap
RMA-TBURN-M23-BT-COND	Condensate and distilled water rinse
RMA-TBURN-M23-BT-BHS	Back half solvent (50% acetone/50% methylene chloride)
RMA-TBURN-M23-BT-TOL	Toluene (QA/QC rinse)
RMA-TBURN-M23-SB-SOL	Solvent (50% acetone/50% methylene chloride)
RMA-TBURN-M23-SB-XAD	XAD resin trap
RMA-TBURN-M23-SB-WATER	HPLC distilled water
RMA-TBURN-M23-SB-FILT	Filter
RMA-TBURN-M23-SB-TOL	Toluene
RMA-TBURN-M23-AUDIT-1156	PCDD/PCDF audit
RMA-TBURN-M23-AUDIT-8863	PCDD/PCDF audit
RMA-TBURN-M23-AUDIT-NO. 3	PCDD/PCDF audit
Volatiles - EPA Method 0030	
RMA-TBURN-M0030-RN 1-3-TP1	Tube Pair 1
RMA-TBURN-M0030-RN 1-3-TP2	Tube Pair 2
RMA-TBURN-M0030-RN 1-3-TP3	Tube Pair 3

••

SQI Stack Sample Identification (Continued)

Sample ID Code	Sample Description
RMA-TBURN-M0030-RN 1-3-TP4	Tube Pair 4
RMA-TBURN-M0030-RN 1-3-TP5	Tube Pair 5
RMA-TBURN-M0030-RN 1-3-TP6	Tube Pair 6
RMA-TBURN-M0030-RN 1-3-COND1	Condensate 1
RMA-TBURN-M0030-RN 1-3-COND2	Condensate 2
RMA-TBURN-M0030-RN 1-3-COND3	Condensate 3
RMA-TBURN-M0030-RN 1-3-COND4	Condensate 4
RMA-TBURN-M0030-SB-TP1	Tube Pair 1
RMA-TBURN-M0030-SB-COND1	Condensate 1
RMA-TBURN-M0030-BT-TP1	Tube Pair 1
RMA-TBURN-M0030-BT-COND1	Condensate 1
RMA-TBURN-M0030-AUDIT 1-TP1	VOST audit (cylinder 567)
RMA-TBURN-M0030-AUDIT 1-TP2	VOST audit (cylinder 567)
RMA-TBURN-M0030-AUDIT 1-TP3	VOST audit (cylinder 567)
RMA-TBURN-M0030-AUDIT 1-TP4	VOST audit (cylinder 567)
RMA-TBURN-M0030-AUDIT 2-TP1	VOST audit (cylinger 568)
RMA-TBURN-M0030-AUDIT 2-TP2	VOST audit (cylinger 568)
RMA-TBURN-M0030-AUDIT 2-TP3	VOST audit (cylinger 568)
RMA-TBURN-M0030-AUDIT 2-TP4	VOST audit (cylinger 568)
Hexavalent Chromium - EPA Cr ⁺⁶ Method	
RMA-TBURN-Cr ⁺⁶ -RN 1-3-KOH	Potasium hydroxide solution
RMA-TBURN-Cr ⁺⁶ -SB-KOH	Potasium hydroxide solution
RMA-TBURN-Cr ⁺⁶ -SB-H ₂ O	Distilled water

SB = Site/reagent blank samples BT = Blank train samples

RN = Test run number

•.

Sampling Procedures

Sample Stream	EPA Reference Method(s) ^a	Measurement Technique	Sampling Frequency or Duration
Liquid Waste (Basin F)	S004	NA ^b	15 min
POHC Spike Solution	S004	NA	15 min
Makeup Water	S004	NA	15 min
Caustic Solution	S004	NA	15 min
Brine	S004	NA	15 min
Stack Gas Integrated Sampling Volatile Organics	Method 0030 ^e (VOST)	Single-point, integrated constant rate	· 2 hrs
Semivolatile Organics, Pesticides, Water Vapor	Method 0010	Multipoint, integrated isokinetic, <u>+</u> 10%	4 hrs
Dioxins/Furans, Water Vapor	Method 23	Multipoint, integrated isokinetic, <u>+</u> 10%	4 hrs
Metals, Water Vapor	Multi-metals ^d	Multipoint, integrated isokinetic, <u>+</u> 10%	2 hrs
Hexavalent Chromium	Hexavalent chromium	Multipoint, integrated isokinetic, <u>+</u> 10%	2 hrs
HCl/Particulate	Method 0050	Multipoint, integrated isokinetic, <u>+</u> 10%	2 hrs
CO_2 and O_2	Method 3	Multipoint, integrated isokinetic, <u>+</u> 10%	2 and 4 hrs
Water Content, Volumetric Flowrate	Methods 1 with Meth multi-met chron	and 2 (in conjunction ods 0050, 0010, 23, tals and hexavalent nium methods)	2 and 4 hrs

••

.

Sampling Procedures (Continued)

Sample Stream	EPA Reference Method(s) ^a	Measurement Technique	Sampling Frequency or Duration
Continuous Emissions Monitoring			
Sulfur Dioxide	Method 6C	CEM System	Continuous
CO_2 and O_2	Method 3A	CEM System	Continuous
Carbon Monoxide	Method 10	CEM System	Continuous
Nitrogen Oxides	Method 7E	CEM System	Continuous
Total Hydrocarbons	Method 25A	CEM System	Continuous
Hydrochloric Acid	NRM ^e	CEM System	Continuous

^aEPA test procedures as specified in 40 CFR 60, Appendix A - Reference Method 5. ^bNA - Not applicable.

Sampling and Analytical Methodologies for Addition to Test Methods for Evaluating Solid Waste -

<u>Physical/Chemical Methods</u>, EPA SW-846, 3rd Edition, 1984, will be used to quantify the principal organic hazardous constituent (POHC) and volatile products of incomplete combustion (PICs).

^dMulti-metals - <u>Methodology for the Determination of Metals Emissions in Exhaust Gases from Hazardous</u> <u>Waste Incineration and Similar Combustion Processes</u>, EPA/530-SW-91-010.

"NRM: No reference method.

SECTION 4 ANALYTICAL PROCEDURES

Except for the dioxin/furan and hexavalent chromium analyses of the stack gas and liquid feed samples, all analyses were conducted by the WESTON Analytics Division laboratories located in Lionville, PA. WESTON's Lionville laboratory has participated in the EPA Contract Laboratory Program (CLP) to provide organic and inorganic target compound list (TCL) analyses. WESTON routinely analyzes samples and prepares litigation-quality data packages in accordance with EPA protocols for volatile and semivolatile organics, organochlorine pesticides/PCBs, metals, and cyanide in soil and water matrices.

Dioxin/furan analysis of the SQI stack samples and liquid feed samples by EPA Method 23 procedures was performed by Triangle Laboratories, located in Durham, NC. The hexavalent chromium analysis of the stack samples was performed by Research Triangle Institute, located in Research Triangle Park, NC.

4.1 ANALYTICAL METHODS

A summary of the extraction and analytical methods employed during the Trial Burn test is provided in Table 4-1. A comparison of WESTON standard operation procedures (SOPs) and EPA references is provided in Table 4-2.

4.2 ANALYTES

The list of analytes within the following analytical groups are presented in Tables 4-3 through 4-8:

- Volatile Organic Compounds (Table 4-3).
- Semivolatile Organic Compounds (Table 4-4).
- Pesticides/PCBs (Table 4-5).
- Dioxins/Furans (Table 4-6).
- Metals (Table 4-7).
- Total Halides (Table 4-8).

Table 4-1

Summary of Extraction and Analytical Methods

Sample Stream	EPA Reference Extraction Method	EPA Reference Analytical Method
LIQUID WASTE (LW)/BRINE (I	BR)	
Volatile Organics	5030	8240
Semivolatile Organics	3510/3520	8270
Pesticides • Organochlorine • Organophosphorous	3510/3520 3510/3520	8080 8140
Dioxins/Furans	LW - 8290 Brine - 8280	LW - 8290 Brine - 8280
Metals	Digestion Methods 3010/3020	Antimony - 6010 Arsenic - 6010(7060) Barium - 6010 Beryllium - 6010 Cadmium - 6010 Lead - 6010(7421) Mercury - 7470 Nickel - 6010 Selenium - 6010(7740) Silver - 6010 Thallium - 6010(7841) Vanadium - 6010 Zinc - 6010
Sulfur Content (LW Only)	ASTM D129	Method 300.0
Total Halides	ASTM D808-81	Method 300.0
Density	Not Applicable	ASTM D1429-76
Heating Value (LW Only)	Not Applicable	ASTM D240
Ash Content (LW Only)	Not Applicable	Method 160.3
pH	Not Applicable	Method 150.1
Water Content (LW Only)	Not Applicable	Method 160
Total Suspended Solids	Not Applicable	Method 160.2
Total Dissolved Solids	Not Applicable	Method 160.1
Cyanide (Brine Only)	Not Applicable	Method 335.2
Fluoride (Brine Only)	Not Applicable	Method 340.2
Sulfide (Brine Only)	Not Applicable	Method 376.2

••

Table 4-1

Summary of Extraction and Analytical Methods (Continued)

Sample Stream	EPA Reference Extraction Method	EPA Reference Analytical Method
POHC SOLUTIONS		
Volatile Organics	Not Applicable	8100
MAKEUP WATER (MW)/CAUS	FIC SOLUTION (CS)	
Volatile Organics	5030	8240
Semivolatile Organics	3510/3520	8270
Pesticides • Organochlorine • Organophosphorous	3510/3520 3510/3520	8080 8140
Dioxin/Furan	8290	8290
Metals	Digestion Methods 3010/3020	Antimony - 6010 Arsenic - 6010(7060) Barium - 6010 Beryllium - 6010 Cadmium - 6010 Copper - 6010 Lead - 6010(7421) Mercury - 7470 Nickel - 6010 Selenium - 6010(7740) Silver - 6010 Thallium - 6010(7841) Vanadium - 6010 Zinc - 6010
Total Halides	ASTM D808-81	Method 300
Density	Not Applicable	ASTM D1429-76
STACK GAS		
Volatile Organics	5040	8240
Semivolatile Organics	3540/3550	8270
Pesticides • Organochlorine • Organophosphorous	3540/3550 3540/3550	8080 8140
Dioxins/Furans	Method 23	8290

Table 4-1

Summary of Extraction and Analytical Methods (Continued)

Sample Stream	EPA Reference Extraction Method	EPA Reference Analytical Method
Metals	Digestion Methods 3010/3020	Antimony - 6010 Arsenic - 6010(7060) Barium - 6010 Cadmium - 6010 Copper - 6010 Lead - 6010(7421) Mercury - 7470 Nickel - 6010 Selenium - 6010(7740) Silver - 6010 Thallium - 6010(7841) Vanadium - 6010 Zinc - 6010
Hexavalent Chromium	Not Applicable	7196
Particulate	Not Applicable	Method 5
Carbon Dioxide/Oxygen	Not Applicable	Method 3 & 3A
Sulfur Dioxide	Not Applicable	Method 6C
Nitrogen Oxides	Not Applicable	Method 7E
Carbon Monoxide	Not Applicable	Method 10
Total Hydrocarbons	Not Applicable	Method 25A
Hydrochloric Acid	Not Applicable	9057

,

۰.

4-4

Table 4-2

Comparison of EPA Reference Methods to WESTON SOPs

Analysis Method	EPA Reference	WESTON SOP
Metals Digestion	SW 846 3010/3020	OP21-15-3020.1
Metals by ICP	SW 846 6010	OP21-15-0200.7
Metals by GFAA or ICP	SW 846 7000 Series	OP21-15-0200.2
Heat of Combustion	ASTM D240	OP21-15-0051
Sulfur Content	ASTM D129	NA
Percent Ash	209F	OP21-15-0160.6
Percent Moisture	209F	OP21-15-0160.6
Multi-metals	SW 846 7000 Series	SW 846 7000 Series
Volatile Organics (stack gas)	5040	OP21-16-5040.1
Volatile Organics (liquids)	8240	OP21-16-8240.3
Semivolatile Organics	8270	OP21-16-8270.1
Dioxin/Furan	8280	OP21-16-8280.1
PCBs (stack gas)	8080	OP21-16-8080.1
PCBs (liquids)	8080	OP21-16-8080.1
Pesticides	8080/8140	OP21-16-8080.1/8140.1
Total Halides	300.0	OP21-15-0300.0
Total Suspended Solids	160.2	OP21-15-0160.2
Total Dissolved Solids	160.1	OP21-15-0160.1

SOP Standard Operating Procedure

NA Not Available (EPA reference method used for analysis)

ICP Inductively Coupled Plasma

GFAA Graphite Furnace Atomic Absorption

Table 4-3

Volatile Organic Compounds (Method 8240)

Chloromethane	Trichloroethene
Bromomethane	Dibromochloromethane
Vinyl Chloride	1.1.2-Trichloroethane
Chloroethane	Benzene
Methylene Chloride	Trans-1.3-Dichloropropene
Acetone (not included in VOST)	Bromoform
Carbon Disulfide	Trans-1,3-Dichloropropene
1,1-Dichloroethene	Bromoform
1,1-Dichloroethane	4-Methyl-2-pentanone
1,2-Dichloroethene (total)	2-Hexanone (not included in VOST)
Chloroform	Tetrachloroethene
1,2-Dichloroethane	1,1,2,2-Tetrachloroethane
2-Butanone (not included in VOST)	Toluene
1,1,1-Trichloroethane	Chlorobenzene
Carbon Tetrachloride	Ethylbenzene
Vinyl Acetate (not included in VOST)	Styrene
Bromodichloromethane	Xylene (total)
1,2-Dichloropropane	Dimethyldisulfide (TIC only*)
cis-1,3-Dichloropropene	

*TIC: <u>T</u>entatively <u>I</u>dentified <u>C</u>ompound.

Table 4-4

Semivolatile Organic Compounds (Method 8270)

2 NT/4
3-Nitroaniline
Acenaphinene
2,4-Dinitrophenol
4-Nitrophenol
Dibenzoturan
2,4-Dinitrotoluene
Diethylphthalate
4-Chlorophenyl-phenylether
Fluorene
4-Nitroaniline
4,6-Dinitro-2-methylphenol
N-Nitrosodiphenylamine (1)
4-Bromophenyl-phenylether
Hexachlorobenzene
Pentachlorophenol
Phenanthrene
Anthracene
Di-n-Butylphthalate
Fluoranthene
Pyrene
Butylbenzylphthalate
3,3'-Dichlorobenzidine
Benzo(a)anthracene
Chrysene
bis(2-Ethylhexyl)phthalate
Di-n-Octyl phthalate
Benzo(b)fluoranthene
Benzo(k)fluoranthene
Benzo(a)pyrene
Indeno(1.2.3-cd)pyrene
Dibenzo(a,h)anthracene
Benzo(g,h,i)pervlene
4.4-Dichlorobinhenvl (TIC only*)
Pentachlorobenzene (TIC only*)
(110 only)

*<u>T</u>entatively <u>i</u>dentified <u>c</u>ompound.

Table 4-5

Pesticides/PCBs

Organochlorine Pesticides/PCBs (Method 8080)	Organophosphorous Pesticides (Method 8140)
Alpha-BHC	Azinphos methyl
Beta-BHC	Bolstar
Delta-BHC	Chlorpyrifos
Gamma-BHC (Lindane)	Coumaphos
Heptachlor	Demeton-O
Aldrin	Demeton-S
Heptachlor epoxide	Diazinon
Endosulfan I	Dichlorvos
Dieldrin	Disulfoton
4,4'-DDE	Ethoprop
Endrin	Fensulfothion
Isodrin	Fenthion
Endosulfan II	Malathion
4,4'-DDD	Merphos
Endosulfan sulfate	Mevinphos
4,4'-DDT	Naled
Methoxychlor	Parathion ethyl
Endrin ketone	Parathion methyl
Alpha-chlordane	Phorate
Gamma-chlordane	Ronnel
Toxaphene	Stirophos
Arochlor-1016	Supona
Arochlor-1221	Tokuthion
Arochlor-1232	Trichloronate
Arochlor-1242	
Arochlor-1248	
Arochlor-1254	
Arochlor-1260	

۰.

Table 4-6

Dioxins/Furans

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)
2,3,7,8-Tetrachlordibenzofuran (TCDF)
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)

۰.

Table 4-7

Metals

Antimony
Arsenic
Barium
Beryllium
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
Silver
Thallium
Vanadium
Zinc

Table 4-8

Total Halides (Method 300)

Fluoride Chloride Bromide Iodide

SECTION 5 TEST RESULTS

This section contains a summary of test results for the stack emissions and process influent and effluent streams sampled during the Trial Burn program. The raw sampling data, calculations, and emission tables prepared by WESTON are provided in Appendix B of this report. The analytical data and results tables prepared by WESTON Lionville Analytical Laboratories are provided in Appendix C of this report. Pertinent data from the associated tables in Appendices B and C of this report have been summarized and are provided in the following summary tables:

- Table 5-1: Particulate/HCl Emission Results
- Table 5-2: Volatile Organic Compounds Emission Results
- Table 5-3: Semivolatile Organic Compounds and Pesticides Emission Results
- Table 5-4: Dioxins/Furans Emission Results
- Table 5-5: Metals Emission Results
- Table 5-6: Hexavalent Chromium Emission Results
- Table 5-7: CO, CO₂, O₂, SO₂, NO_x, THC 2nd HCl Emission Results
- Table 5-8: Summary of Analytical Results for Basin F Waste Feed
- Table 5-9: Summary of Analytical Results for POHCs
- Table 5-10: Summary of Analytical Results for Makeup Water
- Table 5-11: Summary of Analytical Results for Caustic Solution
- Table 5-12: Summary of Analytical Results for Brine

For convenience of the reader, Tables 5-1 through 5-12 are provided at the end of Section 5.

5.1 TREATMENT OF NON-DETECTS, VALUES OUTSIDE OF THE CALIBRATION RANGE AND BLANKS

Treatment of non-detects (analytical results for which the concentration of the species of interest is below the detection limit of the method) and blank values is of critical importance to this program because detection levels and blank concentrations are often on the same order of magnitude as sample values. This section describes how blank and non-detect values are presented in the Trial Burn Report.

5.1.1 Non-Detects

The following discussion explains how averages and reported emission values were calculated for all species given various combinations of detected and non-detected concentrations.

- <u>All concentrations detected.</u> The arithmetic average of the individual values is taken. No special techniques are required.
- <u>All concentrations below the detection limit.</u> For individual test runs or species, the analytical results will be reported as "ND". For species where all three test runs of the Trial Burn are below the detection limit, the average is reported in the Trial Burn data as "ND".
- <u>Some concentrations are detected and some are non-detects.</u> As an approximation, half of the detection limit for nondetect values and the actual value for detects will be used to determine averages. As an example, an average for three test runs with results 10, 8 and ND<(6) would be 7. The only exception to this rule occurs when the average is less than the highest detection limit of the non-detected values. In this case, the average is reported as ND<(highest detection limit). For example, 5, ND<(4) and ND<(3) would be reported as ND<(4).

This approach was also used to obtain test train totals which required analyses of separate fractions for each individual run. Specifically, the volatiles, semivolatiles (including

pesticides) and metals test train totals for each run were obtained by addition of test train fractions which were analyzed separately.

Fractions from the volatile test train included separate analyses of the tenax and tenax/charcoal tubes for each sample period. A total of six tube pairs was collected for each of the three tests. Separate analyses was conducted on the filterable and gaseous test train components for both the semivolatiles and metals test trains.

5.1.2 <u>Values Outside of the Calibration Range</u>

It is possible that the reported lab data will be outside the calibration range of the instrument. Data reported below the lower detection limit will be flagged with the qualifier "J". Data with the "J" flag will have been tentatively identified and tentatively quantified. Data reported above the upper detection limit will be flagged with the qualifier "E". Data with the "E" flag will have been positively identified and tentatively quantified. Data with the "E" flag will have been positively identified and tentatively quantified. Data with either qualifier will be estimated. WESTON considered "J" and "E" values to be quantitatively representative when calculating averages. Neither flag causes a value to be weighted more or less important.

When a "J" or "E" qualifier was assigned to a test train fraction and added to either a detection limit or a detected value, the test train total was also assigned the "J" or "E" qualifier.

5.1.3 Blank Values

When a method does not specify how a sample will be blank corrected, WESTON subtracts appropriate blank train values. Laboratory and site/reagent blanks were analyzed and the results evaluated for identification of contamination. In no case were the blank corrected values reported below the method detection limit. If a sample compound was corrected by the blank train, the data was flagged by a qualifier "B". If the value is blank train corrected

to the detection limit, it will be reported as ND < (highest detection limit) B. In cases where a blank value exceeds the level found in a sample, the sample value will be corrected to the detection limit ND < (highest detection limit)BC. The "BC" qualifier signifies that the compound was detected in higher concentrations in the blank than in the sample.

Blank trains were setup, recovered and analyzed for the volatiles, semivolatiles (including pesticides) and dioxins/furans. The quantified blank train values were used to blank correct the measured test values. Site/reagent blanks were collected and analyzed for the purpose of blank correcting the measured values obtained for the particulates, hydrochloric acid and metals test trains. The metals blank adjustments adhered to the criteria outlined in the multi-metals test procedure.

5.2 STACK EMISSIONS

Summary tables of the analytical results for stack emissions are presented in this subsection. For convenience, Tables 5-1 through 5-7 are provided at the end of Section 5. The raw analytical data are provided in Appendix B of this report.

5.2.1 Particulate/HCl

During the Trial Burn test program, stack emissions were sampled using EPA Method 0050. The filterable particulate analysis was performed using EPA Method 5; the HCl determination was conducted using Method 9057 (ion chromatography) procedures. Analytical results are presented in Table 5-1. The regulatory criteria for particulate and HCl emissions are as follows:

- Particulate emissions shall be less than 0.08 gr/dscf corrected to $7\% O_2$ and less than 0.10 gr/dscf corrected to $12\% CO_2$, whichever is more stringent.
- Hydrogen chloride emissions shall be less than 4 lb/hr or greater than 99% removal efficiency.

5-4

As shown in Table 5-1, particulate emissions for test runs 1, 2, and 3 were 0.0194, 0.0238 and 0.0209 gr/dscf (corrected to $7\% O_2$) and 0.0290, 0.0360 and 0.0311 gr/dscf (corrected to $12\% CO_2$), respectively. HCl emissions for test runs 1, 2 and 3 were 0.1273, 0.3103 and 0.2497 lb/hr, respectively. All of the reported values are well below the regulatory criteria defined above.

5.2.2 Volatile Organic Compounds

The results of the Method 0030 sampling train for the POHC compounds are provided below.

Test Data			
Test Run No.	One	Two	Three
Test Date	6/10/93	6/11/93	6/12/93
Test Time	0808-1109	0738-1047	0830-1124
Average stack gas volumetric flow (dscf/min)	7775	7900	7875
	Emission Resul	lts	
Carbon Tetrachloride (lb/hr)	ND<(8.26x10 ⁻⁵)	8.98x10 ⁻⁵	ND < (8.92x10 ⁻⁵)
Chlorobenzene (lb/hr)	3.20x10 ⁻⁵	ND<(8.58x10 ⁻⁵)	ND<(8.71x10 ⁻⁵)
DRE Test Results			
Carbon Tetrachloride			
Feed rate (lb/hr)	6.90	8.66	8.79
DRE (%)	>99.9988	99.9990	> 99.9990
Chlorobenzene			
Feed rate (lb/hr)	8.66	8.98	8.79
DRE (%)	99.9996	>99.9990	> 99.9990

The laboratory analysis for the POHC compounds indicate a destruction and removal efficiency (DRE) greater than the regulatory limit of 99.99%. The DRE is calculated as follows:

$$DRE = \frac{W_{in} - W_{out}}{W_{in}} \times 100$$

where:

W_{in} = POHC mass rate in W_{out} = POHC mass rate out (emissions)

A DRE >99.9990% was demonstrated for monochlorobenzene, and >99.9988% was demonstrated for carbon tetrachloride.

A summary of the volatile organic emissions in the stack gas is provided in Table 5-2. Products of incomplete combustion (PICs) were identified in the stack gas. Only 9 compounds have averages greater than the detection limit value, and the total PIC emission concentration averaged less than 59 ppb/v. These compounds are identical to those found in the previous mini-burn emission results, summarized in Appendix A.3.1 and A.3.2.

5.2.3 Semivolatile Organic Compounds and Pesticides

The results of the Method 0010 sampling train for semivolatile organic compounds and pesticides are provided in Table 5-3. Of the 69 semivolatile organic compounds listed, only 4 compounds have values greater than the detection limit value: diethylphthalate, di-n-butylphthalate, butylbenzylpthalate and bis(2-ethylhexyl)phthalate. These compounds were also found in the previous mini-burn emission results. Two of these compounds appear to be the result of sample contamination since they were detected in the blank trains.

Twenty-eight organochlorine pesticide/PCB compounds (Pest/PCB) and 25 organophosphorous pesticide compounds (OP Pest) were also analyzed and reported in Table 5-3. Only 1 Pest/PCB compound was detected in the stack gas of run #1 - heptachlor epoxide. The emission value averaged 9.92E-07 lb/hr.

5.2.4 Dioxin/Furans

Stack sampling using a Method 23 sampling train was performed in order to determine emission levels of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). The summary results of the dioxin/furan analysis are provided in Table 5-4. There was no detectable concentration of 2,3,7,8-TCDD in the stack gas. Detected isomers of total PCDD averaged 1 ppq/v and isomers of total PCDF averaged 7 ppq/v. Total PCDD and PCDF for each test averaged less than 0.018 ng/dscm and 0.091 ng/dscm, respectively. The dioxin/furan toxic equivalency factor (TEF) was equal to 1.74E-11 lb/hr.

5.2.5 <u>Metals</u>

Stack sampling using the multi-metals sampling train was performed to determine the emission level of 15 critical metals defined in the Trial Burn Plan. The summary results of the multi-metals analysis are provided in Table 5-5. The mass rate emissions are comparable to those reported for the second mini-burn (reference Appendix A.3.2).

5.2.6 Hexavalent Chromium

Stack sampling for hexavalent chromium was performed; results are provided in Table 5-6. The mass rate emission averaged 6.37E-06 lb/hr (or 0.226 ug/dscm).

5.2.7 Continuous Emissions Monitoring

An extractive-type continuous emissions monitoring system was used to record the stack emissions for carbon monoxide (CO) and oxygen (O_2). The average readings for each test run are presented in Table 5-7. The CO hourly rolling average over the three test runs averaged 51.5 ppm, while excess oxygen averaged 3.50%.

5.3 SYSTEM INFLUENT AND EFFLUENT STREAMS

Summary tables of the analytical results for system influent and effluent streams (excluding stack samples) are presented in this subsection. Only detectable concentrations are presented in the summary tables. None of the reported concentrations are blank corrected. For convenience, Tables 5-8 through 5-12 are provided at the end of Section 5. The raw analytical data are contained in Appendix C of this report, which provides the detection limits for parameters not present in measurable quantities.

5.3.1 <u>System Influent Streams — Waste Feed, POHC, Makeup Water and Caustic</u> 5.3.1.1 Waste Feed

Basin F waste feed was sampled and analyzed for volatile organics, semivolatile organics, pesticides, dioxins/furans, metals, sulfur, halides, density, heating value, ash content, pH, water content, total dissolved solids and total suspended solids per the monitoring plan defined in Table 3-1. Individual 1,000-mL samples were collected every 15 minutes during the test runs, and composited at the end of the day. Additionally, two 40-mL random grab samples were collected per run for volatile organic analysis. As stated in Section 2.3.1, the grab volume was increased from 100-mL to 1,000-mL to ensure a sufficient sample volume was collected for analyses and splits.

A summary of the analytical results for the waste feed is provided in Table 5-8. Analytes that are not listed in the summary table were reported as non-detects. The complete list

08/26/93

of analytes within each analytical group is presented in Tables 4-3 through 4-8. It should be noted that Method D240 for heating value analysis does not provide for the addition of an additive, and since the samples did not ignite, a btu value is not reported. The average heating value of the Basin F waste was determined to be 1,356 btu/lb using Method D2015 during the second mini-burn test.

5.3.1.2 POHCs

The two principal organic hazardous constituents (POHCs) which were injected into the Basin F feed for the Trial Burn were carbon tetrachloride and monochlorobenzene. The POHCs were selected in accordance with the EPA document <u>Guidance on Setting Permit</u> <u>Conditions and Reporting Trial Burn Results</u>, Volume II, Hazardous Waste Incineration Guidance Series, January, 1989. The selection of these POHCs was made to cover aromatic and aliphatic types of compounds.

Since both of these compounds were purchased pure, in 55-gallon drums, the laboratory analysis was limited to volatile organics. Purity certificates for each POHC compound are attached in Appendix A.2.4. Two random grab samples were taken in 40-mL vials at the beginning and end of each test run. The analytical results for the POHCs is provided in Table 5-9. DRE calculations are based upon the assumption that the POHCs were 100% pure, and are not based upon the analytical recovery results.

A significant concentration of chlorobenzene was detected in the carbon tetrachloride analysis for grab sample 2 in run #2. This contamination has unknown origin, and may possibly be due to improper sampling techniques. In a worst case calculation for DRE, assuming an average POHC purity of only 93% (based upon the recoveries in Table 5-9), a DRE > 99.9987 was still demonstrated (reference calculations in Appendix B – Volume III).

5-9

5.3.1.3 Makeup Water

The makeup water was sampled and analyzed for volatile organics, semivolatile organics, pesticides, dioxins/furans, metals, and halides per the monitoring plan defined in Table 3-4. Individual 500-mL samples were collected every 15 minutes during the test runs, and composited at the end of the day. Additionally, two 40-mL random grab samples were collected per run for volatile organic analysis. As stated in Section 2.3.1, the grab volume was increased from 100-mL to 500-mL to ensure a sufficient sample volume was collected for analysis and splits. A summary of the analytical results for the makeup water is provided in Table 5-10.

5.3.1.4 Caustic Solution

The caustic solution was sampled and analyzed for volatile organics, semivolatile organics, pesticides, dioxins/furans, metals, halides and density per the monitoring plan defined in Table 3-5. Individual 500-mL samples were collected every 15 minutes during the test runs, and composited at the end of the day. Additionally, two 40-mL random grab samples were collected per run for volatile organic analysis. As stated in Section 2.3.1, the grab volume was increased from 100-mL to 500-mL to ensure a sufficient sample volume was collected for analysis and splits. A summary of the analytical results for the caustic solution is provided in Table 5-11.

5.3.2 System Effluent Streams - Brine

Brine was sampled and analyzed for volatile organics, semivolatile organics, pesticides, PCBs, dioxins/furans, metals, halides, density, pH, total suspended solids, total dissolved solids, cyanide, fluoride and sulfide per the monitoring plan defined in Table 3-6. Individual 1,000-mL samples were collected every 15 minutes during the test runs, and composited at the end of the day. Additionally, two 40-mL random grab samples were collected per run for volatile organic analysis. As stated in Section 2.3.1, the grab volume was increased from

100-mL to 1,000-mL to ensure a sufficient sample volume was collected for analysis and splits. A summary of the analytical results for the brine is provided in Table 5-12. There were no reported values for volatile organics, semivolatile organics, pesticides or dioxins/ furans above the detection limit.

RMA – SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM TABLE 5–1 SUMMARY OF PARTICULATE AND HCL TEST DATA AND TEST RESULTS

TEST DATA			
Test run number	1	2	3
Test location	-	INCINERATOR STACK	5
Test date	06-10-93	06-11-93	06-12-03
Test time period	0745-1041	0843-1341	0756-1047
SALDI DIC DATA			
Sampling duration min			
Namla diamatan in	120.0	120.0	120.0
Nozze diameter, m.	0.363	0.363	0.363
Cross sectional nozzle area, sq.n.	0.000719	0.000719	0.000719
Autometric pressure, m. rig	24.79	24.57	24.62
Avg. ornice press. and m H2O	1.60	1.66	1.56
Avg. ory gas meter temp., deg F	81	93	86
Avg. abs. ury gas meter temp., deg. R	541	553	546
Total inquid confected by train, mi	2566.0	2543.0	2473.0
Sta. Vol. of H2O vapor coll., cu.tt.	120.8	119.7	116.4
Dry gas meter calibration factor	0.9923	0.9923	0.9923
Sample vol. at meter cond., dcf	87.391	89 .93 3	87.209
Sample vol. at std. cond., dscf (1)	70.385	70.285	69.169
Percent of isokinetic sampling	100.3	99.4	99.2
GAS STREAM COMPOSITION DATA			
∞_2 , % by volume, dry basis	10.1	9.9	10.1
02, % by volume, dry basis	3.4	3.5	3.6
00, % by volume, dry basis	0.0	00	0.0
N ₂ , % by volume, dry basis	86.5	86.6	86.4
Molecular wt. of dry gas, lb/lb mole	29.75	20.73	20.4
H-O vapor in gas stream, prop. by vol.	0.632	0.630	0.627
Mole fraction of dry gas	0 368	0.370	0.373
Molecular wt. of wet gas, lb/lb mole	22.3	22.3	22.4
0			dadara T
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA			
Static pressure, in. H ₂ O	-0.18	-0.19	-0.17
Static pressure, in. Hg	-0.013	-0.014	-0.013
Absolute pressure, in. Hg	24.78	24.56	24.61
Avg. temperature, deg. F	183	183	183
Avg. absolute temperature, deg.R	643	643	643
Pitot tube coefficient	0.84	0.84	0.84
Total number of traverse points	12	12	12
Avg. gas stream velocity, fL/sec.	54.2	54.8	53.6
Stack/duct cross sectional area, sq.ft.	9.62	9.62	9.62
Avg. gas stream volumetric flow, wacf/min.	31300	31700	30900
Avg. gas stream volumetric flow, dscf/min.	7800	7900	7800
LABORATORY REPORT			
Particulate			
Front half acetone rinse, g	0.0184	0.0220	0 0779
Filter, g	0.0931	0 1137	0.0030
Total catch. g	0 1115	0 1357	0.0353
HCI	001220	0.1307	0.1100
Total mg HCl	8.65	20.91	16.79
PADTICI II ATE ENICOLONIC			
Concentration of/dscf	0.0044	0.0000	· · · · · · ·
Concentration or/dscf @7% On	0.0244	0.0298	0.0261
Concentration, gr/dscf @12% CO	0.0194	0.0238	0.0209
Mass rate. lbc/hr	0.0290	0.0360	0.0311
	1.0408	2.0140	1.7374
HCI EMISSIONS			
Concentration, lbs/dscf	2.71E-07	6.56E-07	5.35E-07
Concentration, ppm/v	2.8650	6.9336	5.6571
Mass rate, lbs/hr	0.1273	0.3103	0.2497
POHC Chloride Feed Rate, lb/hr (as HCL)(2)	9.35	11.13	11.11
HCL Removal Efficiency, %	> 98.64	> 97.21	> 97.75

(1) Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 inches Hg (760mm Hg)

 (2) Inlet chloride feed rate based on carbon tetrachloride and chlorobenzene (POHC) injection rates. This does not account for other chlorides present Basin F liquid, therefore greater than values are reported for HCl removal efficiency.
SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS **TRIAL BURN TEST PROGRAM** DENVER, COLORADO TABLE 5-2 RMA-SQI

HEST DATA:

Test date Test time

1 STACK 06-10-93 1049-1109 6 20.00 1.500 33.25 91.85 551.85 551.85 251.85 0.9963 0.9963 0.9963 0.6226 0.6226 1 STACK 06-10-93 1019-1039 5 20.00 1.500 32.00 89.60 549.60 0.9963 0.9963 22.360 0.9963 24.79 24.79 24.79 24.79 1 STACK 06-10-93 0946-1006 4 1 STACK 06-10-93 0914-0934 3 20.00 1.500 30.50 86.90 546.90 546.90 22.435 0.9963 0.9963 24.79 24.79 0.6340 1 STACK 06-10-93 0840-0900 2 20.00 1.475 29.25 84.65 544.65 544.65 22.450 0.9963 0.9963 0.9963 24.79 24.79 24.79 24.79 24.79 24.79 24.79 24.79 24.79 24.79 24.79 24.75 22.450 24.75 27.450 27.75 27.450 27.75 27.450 27.75 27.450 27.75 2 1 STACK 06-10-93 0808-0828 1 20.00 1.450 27.75 81.95 541.95 541.95 22.362 0.9963 24.79 0.6376 0.6376 Average dry gas meter press, in. H_2O Average dry gas meter temp, deg. C Average dry gas meter temp, deg. RAverage absolute meter temp, deg. RBarometric pressure, in. Hg Sample volume, dscf Volumetric flow rate, dscf/min (2) Bromomethane (Methyl Bromide) Vinyl Chloride LABORATORY DATA, ng Chloromethane (Methyl Chloride) Chloroethane (Ethyl Chloride) Methylene chloride (1) Carbon Disulfide Actual sample volume, liters 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethane (total) Meter box calibration, Y SAMPLING DATA: Duration, minutes Test run number Test location Test tube pair

Kylenes(total) Dimethyldisulfide

Styrene

Bromoform Tetrachloroethere (PCE) 1,1,2,3-Tetrachloroethane Toluene

Chlorobenzene Ethylbenzene

trans-1,3-Dichloropropene

1,1,2-Thichloroethane

Benzene

J = Quantified below the detection limit.
 B = Detected in blank train; reported values have been blank corrected
 B = Compound to detected detection limits hown. Detection limits are based on the sum of the tenax and tenax/chrucsal tube fractions (ie. 50 or 100 ng)
 E = Compound detected above the instrument alibration range.
 Commonly used labovatory solvents detected in samples and blanks, the reported values may not be representative.
 Commonly used labovatory solvents detected in samples and blanks, the reported values may not be representative.
 Volumetric flow rates based on data gathered during isokinetic test truns.

24-Aug-93

1,2-Dichleroethane (EDC) 1,1,1-Thichloroethane (TCA) Carbon Tetrachloride Bromodichloromethane

Chloroform

cis-1,3-Dichloropropene Thichloroethene (TCE) Dibromochloromethane

1,2-Dichloropropare

TRIAL BURN TEST PRÓGRAM SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS DENVER, COLORADO TABLE 5-2 (cont) RMA-SQI

Lest run number	1	ď		-	1	•	-
Test location	STACK	STACK	STACK	STACK	STACK	a TATE	ETACV
Test date	06-10-93	06-10-93	06-10-93	1640-02		OK 10.03	ALTER AND AL
Test time	0808-0828	0840-0900	0914-0934	0046-1006	0501-00	1040100	AVERAUE (2)
Test tube pair	1	2	3	4	2 S	4011-49-01	
POHC EMISSIONS (Ibs/dscf);						•	
Carbon Tetrachloride	6.05B-11	6.06E-11	4.87EH1	ND< 1.74E+0	7,19E-11		
Chlorobenzene	7.435-11	7.09E-11	6.43B-11	6.80EH1	6.49E-11	6.91B-11	11-3099 980E-11
VOST EMESIONS (Ibs/dscf):							
Chloromethane (Methyl Chloride)	3.23E-09	9.868-10	5.398-10	5.063-10	6.28840	4 4312-10	1 0420 00
Bromomethane (Methyl Bromide)	1.638-10	1.11E-10	1.08E-10	ND< 3.49E-10	1.688-10	ND< 3.54R40	
Vinyl Chloride	QN	Ð	QN	Ð	CN CN		
Chloroethane (Ethyl Chloride)	QN	QN	Q	QN	Q		25
Methylene chloride (1)	6.0813-09	7.13E-09	6.99E-09	1.775-09	1.757-09	5 27F-00	6 3 TE-00
Carbon Disulfide	7.438-11	ND< 1.73E40	ND< 1.74E40	6.45E-11	6.84E-11	ND< 1.77640	
1,1-Exchloroethene	Ð	QN	Ð	QN	QN	e e e e e e e e e e e e e e e e e e e	
1,1-Dichloroethane	QN	Ð	Ð	QN	QN	Ę.	Ē
1,2-Dichloroethene (total)	Ð	Ð	QN	CIN CIN	Ð	Ð	Ē
Chloroform	2.12E-09	2.47 15 -09	2.32E-09	2.85E-09	2.98 <u>B-09</u>	2.88E-09	2.608-09
1,2-Dichloroethane (EDC)	Ð	Ð	Ê	Ð	Ð	ÛZ	UN NO
1,1,1-Trichloroethane (TCA)	Q Z	QN	Ð	Û	QN	Ð	2 E
Bromodichloromethane	4.93E-10	5.28E+10	5.6533-10	6.36E-10	5.358-10	6.11E40	2611210
1,2-Dichloropropane	Ð	Q	QN	QN	QN	GN	
cis-1,3-Dichloropropene	CIN	Q	Q	QN	Q	- CR	
Trichloroethene (TCE)	Q	Q	QZ	Q.	QN	Q	Ē
Dibromochloromethane	8.82E-11	9.17E-11	9.91E-11	1.06340	9.29E-11	1.01E-10	9.65FH1
1,1,2-1 inchloroethane	Q	Ð	CN CN	Ð	Ð	Ð	Q
Benzene	3.89E-10	ND < 1,73E40	ND < 1.74E-10	2.6713-10	3.45E-10	ND< 1.77E40	2.11840
trans-1,3-Dichloropropene	Ð	Ð	Q	Ð	Ð	Q	QZ
Bromoform	Ð	Q	Ð	Ð	Q	QN	Ē
Tetrachloroethene (PCE)	Ð	Ð	QN	Ð	QN	- E) F
1,1,2,2-Tetrachloroethane	Q	QZ	Ð	Ð	Q2	í Z	Ē
Toluene	5.29EH0	3.89E-10	3.84E-10	4.2775-40	3.94E-10	3.98E-10	4.20840
Ethylbenzene	ND< 1.73B-10	ND< 1.73BH0	ND< 1.74EH0	1.06E-10	ND < 1.75E40	ND< 1.778-10	
Styrene	1.88E-09	1.77E-09	1.78E-09	1.93E-09	1.73E-09	1.748-09	1.80E-09
Xylenes(total)	8.4/15-11	6.4015-41	6.43EH1	9.59E-11	7.89EH1	6.55B-11	7.56E-11
Dimetrylcasuruce	UN	NU	UN	CIN	QN	Q	Q

ND = Compound not detected in any of the tube pairs.
 ND <= Compound not detected in sample and quantified in another tube pair.
 ND <= = Compound not detected in sample and quantified in another tube pair.
 (1) Commonly used laboratory solvents detected in samples and Hanks, reported values have been blank connected using a blank train value. The reported values from the pairs in samples and thanks, reported values have been blank connected using a blank train value. The reported values from each of test runs 4 and 5 was above the each not be representative. The average for methylene chloride reported for tube pairs 4 and 5 are atole to a calibration mage of the instrument, therefore the measured values for methylene chloride reported for tube pairs 4 and 5 are atole are atole are atole are atole are able to the two tubes from each of test runs 4 and 5 was above the editorian in the pair non-detected value is average for the measured values for methylene chloride reported for tube pairs 4 and 5 are atole are atole are atole are atole are atole at the pair non-detected value is averaged with a tube pair detected value. If the average for the six tube pairs is less than the highest full detection limit is are based on the sum of the tenax and tenax/charcoal then the new tube fair to the reax and tenax/charcoal tube fair tube fair to the fair tube pair.

RMA-SQI

ND = Compound not detected in any of the tube pairs.
ND <= Compound not detected in sample and quantified in another tube pair.</p>
ND <= = Compound not detected in sample and quantified in another tube pair.</p>
(1) Commonly used laboratory solvants detected in samples and planks reported values have been blank corrected using a blank train value. The reported values may not be already any solvant detected in samples and the sample and planks reported values may not be representative. The average for methylene chloride is based upon tube pairs 1,2,3, and 6. One of the two tubes from each of test runs 4 and 5 was above the calibration range of the instrument, threfore the measured values for methylene chloride reported for tube pairs 4 and 5 are estimates.
(2) If a tube pair non-detect value is reverged with a tube pair detection limit is used for the pairs 4 and 5 was above the average for the two prises that the detection limit for a tube pair for the two tubes from each of test runs 4 and 5 was above the realization range of the instrument, threfore the measured values for methylene that for detection limit is used for the two tubes from each of test runs 4 and 5 was above the realization range of the instrument, threfore the measured values for the the pair.
(2) If a tube pair is provided a values for the pairs it less than the highest full detection limit of rany single tube pair the average for the size tube pairs it less than the highest full detection limits are based on the sum of the tenax and tenax/charcoal tube fractions (e. 50 or 100 ng).

cc/sharedainteant/ma/tb/tb/ost1.wk3

SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS TABLE 5-2 (cont) TRIAL BURN TEST PROGRAM DENVER, COLORADO RMA-SQI

TEST DATA:							
Test run number		1	1	.1	1		1
Test location	STACK	STACK	STACK	STACK	STACK	STACK	STACK
Test date	06-10-93	06-10-03	06-10-93	06-10-93	064040		AVED ACT (*)
Test time	0808-0828	0840-0900	0914-0934	0946-1006	10194039	10494109	
Test tube pair	1	2	3	4	5	6	
POHC EMISSIONS (Ib/m): (3)							
Carbon Tetrachloride	2.82E-05	2.83E-05	2.27E-05	ND< 8.13E-05	3.35E-05	ND < 8.26E-05	ND < 8.26E-05
Chlorobenzene	3.4713-05	3.31E-05	3.00B-05	3.1735-05	3.03E-05	3.22E-05	3.20E-05
NOST EMESIONS (Ib/hr): (3)							
Chloromethane (Methyl Chloride)	1.51B-03	4.60 B-0 4	2.51E-04	2.36E-04	2.93E-04	2.068-04	PU-HC0 P
Bromomethane (Methyl Bromide)	7.588-05	5.178-05	5.03E-05	ND< 1.63E-04	7.85E-05	ND< 1.65F-04	ND < 1 65F-04
Vinyl Chloride	Ð	Ð	Ð	Ð	Ð	CN CN	
Chloroethane (Ethyl Chloride)	QN	Ð	Ð	Ð	QN	Ę	Ē
Methylene chloride (1)	2.84E-03	3.32E-03	3.26E-03	8.285-04	8.16E-04	2.46F-03	2 0 TE-01
Carbon Disulfide	3.47E-05	ND < 8.07E-05	ND< 8.11E-05	3.01E-05	3.19E-05	ND < 8.26E-05	ND< 8 26F405
1,1-Dichloroethene	Ð	QN	QN	Ð	QN	CIN N	
1,1-Dichloroethane	Q2	Q	Ð	Ð	CIN	C N	
1,2-Dichlomethene (total)	Q	Q	Ð	Ð	Ð	QN	
Chloroform	9.88 <u>F-04</u>	1.15E-03	1.08E-03	1.33E-03	1.395-03	1.34E-03	1.2114-03
1,2-Dichloroethane (EDC)	Q	Ð	QN	Ð	Q2	(F	
1,1,1-Trichloroethane (TCA)	QU	QN	QN	CIN CIN	Ð	12	ŝ
Bromodichloromethane	2.30E-04	2.46 B- 04	2.64E-04	2.978-04	2.498-04	2.85E-04	2 678-04
1,2-Dichloropropane	QN	Q	Ð	Ð	Q	GN	CIN I
cis-1,3-Dichloropropene	QN	Q	QN	Ð	Q	QN) E
Trichloroethene (TCE)	QN	Q	QN	Q2	QN	QN	
Divinochloromethane	4.11E-05	4.288-05	4.62E-05	4.96B-05	4.33E-05	4.71E-05	4.508-05
1,1,2-Inchloroethane	CZ.	Q	<u>R</u>	Q	Ð	QN	QN
Benzene	1.81E-04	ND < 8.07E-05	ND< 8.11E-05	1.24E-04	1.61E-04	ND < 8.26B-05	9.82E-05
trans-1,3-13 chloropropene	Q.	£	Ð	Ð	QN	Q	Q
Bromotorm	Q.	Ð	QN	Ð	Q	QZ	- Ez
Tetrachloroethene (PCE)	Ð	Ê	Ð	Ð	Ð	QN	Ē
1,1,2,2-Tetrachloroethane	C Z	QN	Ð	Ð	Ð	Ð	QN
Loluene	2.4715-04	1.825-04	1.79E-04	1.995-04	1.84E-04	1.86E-04	1.968-04
Ethylbenzene	ND < 8.06E-05	ND< 8.07E-05	ND< 8.11E-05	4.96E-05	ND < 8.18E-05	ND < 8.26E-05	ND< 8.26B-05
Styrene Xulenes(holpil)	8.75E-04 3 05F2-05	8.27E-04 2 00E-05	8.31E-04 3 00E.05	8.99 <u>E-04</u>	8.06E-04	8.145-04	8.42E-04
Timethul find for		CIN CIN		CU-11/4/4	3.081±403	3.068-05	3.523-05
annimitht	NL	NU	NU	ND	CIN	Ð	Ð

ND = Compound not detected in any of the tube pairs.
ND <= Compound not detected in sample and quantified in surdier tube pair.
ND <= a Compound not detected in sample and quantified in surdier tube pair.
(1) Commonly used laboratory solvenus detected in samples and fanks; reported values have been blank corrected using a blank train value. The reported values may not be more any solvenus detected in samples and quantified in surdies from excited using a blank train value. The reported values may not be more any solvenus detected in samples and fanks; reported values have been blank corrected using a blank train value. The reported values from service and the more and the train value in the pair for the pair to be pair to be pair to be pair non-detect value is averaged with a tube pair detected value is the averaged with a tube pair detected value the helphest ful detection limit is used for the pair non-detect value is averaged with a tube pair detection limit for any single tube pair non-detect value is averaged with a tube pair detection limit for any single tube pair the trank detection limit for a tube pair non-detect value is averaged with a tube pair detection limit for any single tube pair the trank detection limit for a tube pair the factors (e. 50 or 100 ng).
(3) Volumethic flow rates used to calculate mass emissions are based on data gathered during isokinetic test runs.

cc\shared\airteam\nua\tb\tbwcst1.wk3

24-Aug-93

RMA – SQI	DENVIER, COLORADO	TABLE 5-2 (cont)	TRIAL BURN TEST PROGRAM	SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS
-----------	-------------------	------------------	-------------------------	---

TEST DATA: Test run number	-	1					_		-		-	•	
Test location	STACK	ST/	NCK	STAC	M	IS	ACK	20	LACK		STACK	L CLAC	4
Test date	06-10-93	F 90	0-93	0640	93	8	10-03	8	H0-03		North Contraction		6 4 8
Test time	0808-0828	0840	0060-	0-14-0	34	004	64006	10	194039	, H	0494109		(v) 1
Test tube pair	1		2	£			4		5		ø		
POHC EMISSIONS (ug/m ³):													
Chlombenzene	011		1.1.4		8/	ř	2.79		1.15	ě	2.84	ě	2.84
			6717	-			60.1		1.04		1.11		1.10
VOST EMESSIONS (叱/m3);													
Chloromethane (Methyl Chloride)	51.78	1	5.80	80	53		8.10		10.05		7 00		14.01
Bromomethane (Methyl Bromide)	2.60		1.77	4	73	Ň	5.58		2.70	×0N	2.67	NCN N	16.01
Vinyl Chloride	Ð	Ð		Ð		Ð		QZ		Ē	1000	é	10.0
Chloroethane (Ethyl Chloride)	QN	Ð		Q2		Ð		Ð		Ē		2 E	
Methylene chloride (1)	97.41	11	4.14	111.	89		28.43		28.02		84.45		101.07
Carbon Disulfide	1.19	Ň	2.77	ND < 2.	78		1.03		1.10	>CIN	2.84		10101
1,1-Dichloroethene	QU	Ð		Q		Ð		Q		Ē		é	40.7
1,1-Dichloroethane	QN	Ð		Ð		ę				Ē		2 E	
1,2-Dichloroethene (total)	QN	Ð		Ð		Ð		Ð		e e		2 5	
Chloroform	33.92		9.52	37.	15		45.57	2	47.73	1	46.17	Ð	41 60
1,2-Dichloroethane (EDC)	Q	£	-	Ð		þ		ſz		Ę	11:01	Ę	00'14
1,1,1-Trichloroethane (ICA)	Ð	Q		Ę		þ		e e		ee		2 E	
Bromodichloromethane	7.89		8.45	. 6	35		10.19		8.56)	0.78		00 8
1,2-Dichlompropane	Q	Ð		Ð		Ð		Ð		Ę			~~~
cis-1,3-Dichloropropene	QN	Q		Ð	-	þ		Ð		Ē		Ē	
Trichloroethene (ICE)	Ð	QN	-	Ŕ	-	þ		Ð		Ð		2 E	
Libromochloromethane	1.41	!	1.47	7	6		1.70		1.49		1.62		1.55
1,1,2-1 ncnoroethane		Ê.		Ð		þ		Ð		ę		£	
Benzene	6.23	Ň	2.77	No. 2.	18		4.27		5.53	×Q2	2.84		3.37
trans-1,3-1Xchloropropene	Ê	Ð	-	Ð	-	þ		Ð		£		(z	
Bromotorm	an	£	~	e		þ		QN		Ð		Ê	
Tetrachloroethene (PCE)	Ê	Ð		Ð		ę		Q		Ð		Ē	
1,1,2,2-Tetrachloroethane	Ð	Ð	-	e	-	ę		Ð		Ð		Ē	
Toluene	8.47		6.24	6.1	S.		6.84		6.32		6.38		673
Ethylbenzene	ND< 2.77	Ň	2.77 1	ND<	8		1.70	ě	2.81	ě	2.84	NDA NDA	7 84
Siyrene Xylenes(total)	30.04 1.36	Ċ,	8.41 1.03	28.	5 E		30.85 1 54		27.66 1.76		27.93		28.91
Dimethyldisulfide	CN CN	Ð		Ê	-	Ę		Ę	1.4V	Ę	1.00	ļ	17.1
•		1)	•)				R		R	

5-17

ND = Compound not detected in any of the tube pairs. ND <= Compound not detected in sample and quantified in another tube pair. ND <= Compound not detected in sample and quantified in another tube pair.</p>
ND <= Compound not detected in sample and quantified in another tube pair.</p>
ND <= Compound not detected in sample and quantified in another tube pair.</p>
ND <= Compound not detected in sample and quantified in another tube pair.</p>
ND <= Compound not detected in sample and quantified in another tube pair.</p>
ND <= Compound not detected in samples and tanks, reported values have been blank corrected using a blank train value. The reported values may not be representative. The average for methylene doloride is taked upon tube pairs 1,2,3, and 6. One of the two tubes from each of test runs 4 and 5 was above the calibration range of the instrument, therefore the metsured values for methylene doloride reported for tube pairs 4 and 5 was above the pair non-detect value is averaged with a tube pair detection limit is used for the pairs and for the pair non-detected value. If the average for the size tube pairs is less than the highest full detection limit of any single tube pair the nearge for the pairs tube pair non-detected value. If the average is reported as ND < (nighest detection limit for a tube pair). Detection limit of any single tube pair tube pair tube fractions (e. 50 or 100 ng).</p>

cc/shared/airteam/mra/ttb/tbwcst1.wk3

DENVER, COLORADO TABLE 5-2 (cont) TRIAL BURN TEST PROGRAM SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS RMA-SQI

TEST DATA:						
Lest run number	2	6	6	2	2	2
lest location	STACK	STACK	STACK	STACK	STACK	STACK
lest date	0641-93	0641493	06-11-93	06-11-93	0641-93	0641-03
Test time	0738-0758	0810-0830	0848-0908	0920-0940	0954-1014	10774047
Test tube pair	-	2	3	4	ŝ	6
SAMPLING DATA:						
Duration. minutes	20.00	20.00	00.00	00.00		
Average dry pas meter press in H.O	1 500	1 450	1 500	200,002	00.02	20.00
Average dry oas meter temp deo C		37 50	1.000	1,4/3	1.425	1.475
Average of the most support	00.10	00.50	23.72	35.00	35.50	36.25
Average uny gas mener temp. deg. F	00.00	00.06	92.75	95.00	95.90	97.25
Average absolute meter temp. deg. R	547.80	550.50	552.75	555.00	555.90	22725
Actual sample volume, liters	22.196	21.688	21.975	22.047	21 565	21.046
Meter box calibration, Y	0.9963	0.9963	0.9963	0 0063	00061	00000
Barometric pressure, in. Hg	24.57	24.57	24.57	23 42	23 10	0066'D
Sample volume, dscf	0.6207	0.6034	0.6090		0 5041	10.42
Volumetric flow rate, dscf/min (2)	0061	2000	2006	0061	1660	7600'N
LABORATORY DATA. ne:						
Chloromethane (Methyl Chloride)	515	155	105	165	1.1	
Bromomethane (Methyl Bromide)	35 1	1001	11001	11 001		CC2
Vinvl Chloride	1001	11001	10001			31 J
Chloroethane (Ethyl Chloride)	1001	1001		0.001	1000	100 U
Methylene chloride (1)	1388 B	1108 B	1508 13			1001
Carbon Disulfide	19 J	50 11	2011	40 0001 50 11	10/0	1/08 B
1,1-Dichloroethene	50 U	50 11	20 11	50 11	[6]	
1,1-Dichloroethane	50 U	50 U	20 11	105	11 05	
1,2-Dichloroethene (total)	50 U	50 U	50 U	50 11	11 05	
Chloroform	897 J	842 J	821 J	916	030 1	1 V 00
1,2-Dichloroethane (EDC)	50 U	50 U	50 U	50 U	50 11	(to)
1,1,1-Thichloroethane (TCA)	20 J	50 U	50 U	50 U	50 U	11 05
Carbon Tetrachloride	186 J	31 J	50 U	50 U	50 U	50 U
Bromodichloromethane	173	183	163	193	193	163
	20 0	50 U	50 U	50 U	50 U	50 U
		50 U	50 U	50 U	50 U	50 U
	30 U	50 U	50 U	50 U	50 U	20 U
Litomoculoromethane	29 J	32 J	28 J	34 J	35 J	29 J
1,1,2-1 n coloros trans	20 02	50 U	50 U	50 U	50 U	50 U
		20 N	50 U	50 U	50 U	50 U
trans-1,	50 U	50 U	50 U	50 U	50 U	50 U
Bromotom	50 U	50 U	50 U	50 U	50 U	50 U
Tetrachloroethene (PCE)	50 U	50 U	50 U	50 U	50 U	20 U
1,1,2,2-1 etrachioroethane	50 U	50 U	50 U	50 U	50 U	50 U
Ioluene		113	102	123	133	102
Culorocerzene	30 J	18 J	50 U	19 J	I 9 I	18 J
Lunyiberzene Sturmene	50 U	50 U	50 U	50 U	50 U	50 U
Vilener(total)		443	393 	503	513	383
Ayrenes(uza)			50 U	19 J	27 J	33 J
	2 22	D UC	U UC	50 U	50 U	50 U

J= Quantified below the detection limit.
 B= Detection is blank train; reported values have been blank corrected
 B= Detected in blank train; reported values have been blank corrected
 C= compound not detected; detection limit shown. Detection limits are based on the sum of the tenax and tenax/charcoal tube fractions (ie. 50 or 100 ng)
 C= commonly used laboratory solvents detected in samples and blanks reported values have been blank corrected. The reported values may not be representative.
 Volumetric flow rates based on data gathered during isokinetic test runs.

oc/shared/airteam/mra/th/thvost2 wk3

DENVER, COLORADO TABLE 5-2 (cont) TRIAL BURN TEST PROGRAM SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS RMA-SQI

TIEST DATA:							
I est run number	2	. 2	7	2	7	2	"
lest location	STACK	STACK	STACK	STACK	STACK	STACK	STACK
Test date	06-11-93	06-11-93	06-11-93	06-11-93	06-11-93	1-01	AVERACE (2)
Test time	0738-0758	0810-0830	0848-0908	0920-0940	0954-1014	2701-2001	(*)
Test tube pair	1	2	3	4	5	9	
POHC EMISSIONS (Ibs/dscf):							
Carbon Tetrachloride	6.61E-10	1.11E-10	ND< 1.81E-10	ND< 1.81E-10	ND< 1.86E-10	ND< 1878-10	1 002 10
Chlorobenzene	1.078-10	6.39E-11	ND< 1.81E-10	6.70B-11	6.86E-11	6.40B-11	ND< 1.81B-10
VOST EMISSIONS (1bs/dscf):							
Chloromethane (Methyl Chloride)	1.83E-09	5.66E-10	7.068-10	5.988-10	5 7511-10	0370-10	
Bromomethane (Methyl Bromide)	1.24B-10	ND< 3.65B-10	ND< 3.62B-10	ND< 3.62E-10	ND< 3.71E-10	1138-10	01-5100.0 MD- 3 717 10
Vinyl Chloride	QN	Q	Q	QN	CIN I		
Chloroethane (Ethyl Chloride)	Ð	CN CN	CR CR	Q	Q	Ē	2 5
Methylene chloride (1)	4.93 <u>B-09</u>	4.033-09	5.46E-09	6.0113-09	6.23 E- 09	0 46F2-00	00 203 2 001
Carbon Disulfide	6.57B-11	ND< 1.83E-10	ND< 1.81E-10	ND< 1.81E-10	6.868-11	7,138-11	
1,1-Dichloroethene	QN	QN	QN	QN	QN	CIN	
1,1-Dichloroethane	Ð	QU	Ð	QN	CN ON	Ę	2
1,2-1X chloroethene (total)	QN	Q	QN	QN	Q.	C N	
Chloroform	3.19E-09	3.08E-09	2.97E-09	3.32B-09	3.48E-09	2.798-00	3 148-00
1,2-Dichloroethane (EDC)	QN	Q	Ð	CR CR	Ð	CIN	CIN CIN
1,1,1-Trichloroethane (TCA)	6.93E-11	ND< 1.83E-10	ND< 1.81E-10	ND< 1.81E-10	ND< 1.86E-10	ND< 1.83F-10	
Bromodichloromethane	6.13E-10	6.67E-10	5.88E-10	6.9713-10	7.14B-10	5.94B-10	V TOOL OF TOOL
1,2-Dichloropropane	QN	Q	QN	QN	Q	GN CN	CIN CIN
as-1,3-1X chloropropene	CIN	QN	QN	ÛZ	QN		e F
Trichloroethene (TCE)	Ð	Q	QN	QN	QN	Q	Ð
Lubromochloromethane	1.01E-10	1.15E-10	9.96E-11	1.21E-10	1.288-10	1.04E-10	1.12E-10
1,1,2-1 nculoroethane		CIN CIN	Ê	CN CN	Ð	Ð	QN
Benzene		CIN		Ð	QN	QN	Ð
uans-1, 3-1, cnloropropene		CN .		QN	Q	Ð	Ð
	UN .	CIN	CIN	CZ.	Ð	QN	6Z
I etrachloroethene (PCE)	e 9	£ !	Ð	QN	CIN	QN	Ð
1,1,2,2–1 euronoeurane			CIN	Q	Q.	Ð	Ð
	3.941-10	4.1115-10	3.6715-10	4.44E-10	4.92E-10	3.71E-10	4.13B-10
Eunyl benzene	CIN	CIN	Ð	CN CN	QN QN	QN	QN
Styrene	1.22E-09	1.6215-09	1.42E-09	1.82E-09	1.90E-09	1.40E-09	1.56B-09
Ayterres (Mar)	11-200.0	11-30/.0	01-5118.1 > UN	6.7013-41	9.83E-11	1.19E-10	ND< 1.81B-10
LAmeinylaisunac	UN	ND	UN	Ð	QN	QN	QN

ND = Compound not detected in any of the tube pairs. ND <= Compound not detected in sample and quantified in another tube pair. (1) Commonly used laboratory solvants detected in samples and blanks; reported values have been blank corrected. The reported values may not be representative. (2) If a tube pair non-detected value is averaged with a tube pair detected value then half the detection limit is used for the tube pair (2) If a tube pair non-detected value is averaged with a tube pair detected value then half the detection limit is used for the tube pair (3) If a tube pair non-detected value. If the average for the six tube pairs is estab an tub fuection limit is used for the sir then the average is reported as ND < (highest detection limit for a tube pair). Detection limits are based on the sum of the tenax and tenax/chatroval tube fractions (ie. 50 or 100 ng).

24-Aug-93

o:\shared@irteam\rma\tb\cbvost2.wk3

		SUMMARY C	I TRIA TRIA	DENVER, TABLE L BURN 7 3 ORGANI	COLORADO 5-2 (cont) IEST PROGI CS TEST DA) RAM ATA AND	TEST RESUL	SI					
TEST DATA: Test tun number Test location Test date Test time Test tube pair	2 STACK 06-11-93 0738-0758	0816 0816	2 ACK 11-93 0-0830 2	ST 0845	2 ACK H193 9008	85 <u>8</u>	2 ACK 11-93 0-0940 4	ST 060054	2 4CK 11-93 5 5	ST7 06-1 1027	2 VCK 1-93 1-1047 5	2 STACK AVERAGE	(3)
COEC FAMISSIONS (ppt/v): Carbon Tetrachloride Chlorobenzene	1.66		0.28 0.22	>00 200	0.45 0.62	>CIN	0.45 0.23	>CIN	0.46 0.24	×QN	0.46 0.22	>ŒN	0.47 0.62
OST FAMISSIONS (ppb/r): Chloromethane (Methyl Chloride) Bromomethane (Methyl Bromide) Vinyl Chloride Chlorochane (Ehyl Chloride) Archardac (2) (1)	13.96 ND ND ND 25.0	× € € €	4.32 1.48	ŘEE	5.39 1.47		4.56 1.47	ě e e	4.39 1.51	ର ଜ	7.11 0.46		6.62 1.51
Mentylene curonue (1) Carbon Disulfide 1,1-1X chlororethene 1,2-1X chlororethene 1,2-1X chlororethene (total)	CC22 CN CN CN CN CN CN	×	18.37 0.92	ě e e e	24.77 0.92	× An an an	27.26 0.92	<u>888</u>	0.35 0.35	ÊÊÊ	9.32 0.36	ě e e e	25.06 0.92
Chloroform 1,2-JXchloroethane (EDC) 1,1,1-Hichloroethane (TCA) Bronnodichloropromethane 1,2-JXchloropropane ds-1,3-JXchloropropane ds-1,3-JXchloropropane Trichloroethane (TCE)	10.29 ND 10.20 ND 1.44 ND 1.44 ND 1.44	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9.93 0.53 1.57	<u> </u>	9.59 0.52 1.38		10.71 0.52 1.64		1.25 0.54 1.68		9.01 0.53 1.40		10.13 0.54 1.52
Diffromochloromethane 1,1,2-Tidehloroethane Benzene Braus-1,3-Alchloropropene Bronnoform Tetrachloroethene (PCE) 1,1,2,2-Tetrachloroethane	61.9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	<u>22222</u>	0.21	<u>e e e e e e</u>	0.18		0.22	<u> </u>	0.24		0.19		0.21
Tduene Ethylbenzene Syrene Syrenes(total) Dimothyldisulfide	1.65 ND 4.50 ND 0.21 ND 0.21	ହ ହ	1.72 5.98 0.25		1.54 5.26 0.66	ê ê	1.86 6.74 0.24	G G	2.06 7.04 0.36		1.55 5.17 0.43		1.73 5.78 0.66

RMA-SQI

ND = Compound not detected in any of the tube pairs. ND <= Compound not detected in sample and quantified in another tube pair. (1) Commonly used laboratory solvents detected in samples and biakis, reported values have been blank corrected. The reported values may not be representative. (2) If a tube pair non-detected value is averaged with a tube pair detected value then half the detection limit is used for the tube pair (2) If a tube pair non-detected value is averaged with a tube pair detected value then half the detection limit is used for the tube pair (3) for the non-detected value. If the average for the six tube pairs is betten the helder of limit of any single tube pair then the average is reported as ND < (highest detection limit for a tube pair). Detection limits are based on the sum of the tenax (charcoral tube fractions (ie. 50 or 100 ng).

24-Aug-93

o:\shared\airteam\rma\th\thvost2.wk3

TRIAL BURN TEST PROGRAM SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS DENVER, COLORADO TABLE 5-2 (cont) RMA-SQI

TIEST DATA:							
lest run numoer	77	2	2	2	2	ç	ſ
Test location	STACK	STACK	STACK	STACK	STATE		7
Test date	06-11-93	06-11-93	06-11-93	06-11-03	10411-03		ALL
Test time	0738-0758	0810-0830	0848-0908	0920-0940	0054-1014		AVENAUE (2)
Test tube pair	1	2	3	4	5	/101-101	
POHC FMISSIONS (Ib/hr): (3)							
Carbon Tetrachloride	3.135-04	5.28 B-0 5	ND< 8.58E-05	ND< 8.59E-05	ND< 8.79E-05	ND< 8.66E-05	R ORFLUS
Chlorobenzene	5.05E-05	3.03E-05	ND< 8.58E-05	3.1813-05	3.25B-05	3.03E-05	ND< 8.58E-05
VOST EMISSIONS (Ib/hr): (3)							
Chloromethane (Methyl Chloride)	8.67E-04	2.68 E-04	3.35E-04	2.83E-04	2.738-04	4 4712-04	1115 01
Bromomethane (Methyl Bromide)	5.89E-05	ND< 1.73B-04	ND< 1.72E-04	ND< 1.72E-04	ND < 1.76B-04	201212-05	
Vinyl Chloride	QN	QN	QN	CN	CN	CIN N	
Chloroethane (Ethyl Chloride)	CN CN	CIN	QN	QN	Ð	Ē	
Methylene chloride (1)	2.345-03	1.92E-03	2.59E-03	2.85E-03	2.958-03	3.068-03	2 6712 02
Carbon Disulfide	3.11E-05	ND< 8.66E-05	ND< 8.58E-05	ND< 8.59E-05	3.2514-05	3 1812-05	CO-170.2
1,1-Dichloroethene	QN	Q	CN CN	QN	CDX DX	e a caracteria de la ca	
1,1-Dichloroethane	QN	QN	Ð	QN	E E		
1,2-Dichloroethene (total)	CIN	QN	CN CN	QN	Ē		
Chloroform	1.51E-03	1.46E-03	1.41E-03	1.575-03	1.6515-03	1 378-03	CIN 00 107 1
1,2-Dichloroethane (EDC)	Ð	QN	QN	Ð	GN		1.49E-U3
1,1,1-Trichloroethane (TCA)	3.28 <u>B-05</u>	ND< 8.66E-05	ND< 8.58E-05	ND< 8,59E-05	ND< 8.79R-05		
Bromodichloromethane	2.90B-04	3.16E-04	2.79E-04	3.31E-04	3 302-04		00-36/19 XUN
1,2-Dichloropropane	QN	QN	QN	GN	CIN CIN	40-5110'7	3.0015-04
cis-1,3-Dichloropropene	CN CN	Ð	QN	Ē	i fa	5 9	
Trichloroethene (ICE)	CN	QN	QN	QN	- F	ŝ	
Demochloromethane	4.80E-05	5.46E-05	4.72E-05	5.75B-05	6.078-05	4 94R-05	SO AND S
1,1,2-1 richloroethane	CIN	QN	CIN CIN	QN	Q2	CIN CIN	CONTRACT ON
Benzene	C R	Ð	QN	Q	QZ	CIX.	Ę
trans-1,3-1Achloropropene	Ð	Q	QN	QN	Q	G Z	Ē
Bromoform	Ð	Q	QN	Q2	QZ		
Tetrachloroethene (PCE)		Ð	GN	GN	QN	Q	
1,1,2,2-1 etracatoroethane		CN CN	Ð	Q2	Q	QN	CIN CIN
	1.8/15-04	1.958-04	1.74E-04	2.103-04	2.33E-04	1.768-04	1.968-04
Etnyl cenzene	CIN	Ê	Ð	QN	CIN	Q.	
Styrene	5.77B-04	7.668-04	6.73B-04	8.63E-04	9.01E-04	6.63E-04	7.4115-04
	CU-4760.2	3,201 2 102	ND< 8.58E-05	3.18E-05	4.66 <u>E-05</u>	5.63E-05	ND< 8.58E-05
инепримиче	ND	ND	CIN	Q	CN CN	CIN	QN

ND = Compound not detected in any of the tube pairs.
ND <= Compound not detected in sample and quantified in another tube pair.
(1) Commonly used laboratory solvents detected in samples and blanks, reported values have been blank corrected. The reported values may not be representative.
(2) If a tube pair ron-detected value have pair tube pair is used for the tube pair non-detected value tube pair son-detected value than laft the detection limit is used for the tube pair non-detected value than the pair son-detected value. If the average for the six tube pairs is laster that detection limit of any single tube pair non-detected value. If the average for the six tube pairs is laster that detection limits are based on the sum of the tenax/charcoral tube the tube tube pair to average is reported as ND < (highest detection limit for a tube pair). Detection limits are based on the sum of the tenax and tenax/charcoral tube functions (ie. 50 or 100 ng).
(3) Volumetric flow rates used to calculate mass emissions are based on data gathered during isokinetic test runs.

IEST DATA: Test run number Test location	2 STACK	2	2 FACK	2	2. ACK		2 TACK		2 STACK	Ū	2 2	2 5 6TAOY	
Test date Test time Test nibe reir	06-11-93 0738-0758 1	06 081	-11-93 0-0830 2	06 084	-1193 8-0908	08	6-11-93 20-0940	0.6	6-11-93 954-1014	, 9 5	6-11-93 27-1047	AVERAGE	3 (2)
	-		7		n		4		5		Q		
ЮНС EMISSIONS (ug/m ³): Carbon Tetrachloride	10.58		1.78	>CIN	2.90		0 CU	Ň	50 6		5		
Chlorobenzene	1.71		1.02	Ň	2.90		1.07		1.10		1.02	>QN	3.04 2.90
NOST HALISSIONS (ug/m ³):													
Chlorometrane (Methyl Bromide) Bromomethane (Methyl Bromide)	1.99	>QN	9.07 5.85	ND<	11.31 5.80	N N N	9.58 5.80		9.21 5 04		14.93	i i i	13.90
Vinyl Chloride	QN	QN		Ð			222			Ę	10'1	ž	96°C
Chloroethane (Ethyl Chloride)	QN	QN		Ð		Q		Q		Ę			
Methylene chloride (1)	78.96	-	64.84		87.44		96.22		99.73		103.49		88.45
Carbon Disultide	1.05	è	2.93	ě	2.90	ě	2.90		1.10		1.14	à	2.93
1, 1 Technoroeurene		2 Ø		2				£		Q		Ð	
1,1-1.4 chloroethare 1.2-13 chloroethene (total)	2 E			î f		2		2 9		2		E :	
Chloroform	51.03		49.27		47.60	2	53.16	2	55.81	ND	6L VV	UN	20.02
1,2-Dichloroethane (EDC)	CIN	QN		Ð		Ð		QN	10100	ſz	77.64	Ę	17.00
1,1,1-Trichloroethane (ICA)	1.11	×QN	2.93	>QN	2.90	Ň	2.90	à	2.97	Ň	2.93	à	107
Bromodichloromethane	9.81		10.68		9.42		11.17		11.44		9.51		10.34
1,2-Dichloropropane	Ð	Ð		Ð		QN		Ð		QN		CIX	
cis-1,3-13 chloropropene	2 !	£!		Q I		QN		Ð		Q		Ð	
	ST CIN	ſŊ		CIN I		Q		£		QN		Ð	
Lataonocurrenzare 1.1.2-Frichlomethane	70'T (IN	Ę	1.64	Ę	66.1	Ę	1.94	CIN.	2.05	ļ	1.67		1.79
Benzene	QZ	Ð		Ē		Ē		Ē				2	
trans-1, 3-11 chloropropene	Q	Ð		Ð				e cu		Ē			
Bromoform	CIN	QN		Q		Ê		Ð		Ē		Ē	
Tetrachloroethene (PCE)	CIN	QN		Q		QN		£		Ê		Ē	
1,1,2,2-Tetrachloroethane	Ð	£		Q		Q		Ð		Ê		Ē	
Toluene	6.31		6.58		5.89		7.11		7.88		5.94		667
Ethyl benzene	<u>f</u>	Ð		Ð		Ð		Ð		Q		CIN	
Styrene Styrene	19.49		25.89	Ę	22.76		29.16		30.46		22.39		25.02
Aytenes(way) Dimethyldisulfide	IGN CIN	CIN N	1.00	ž	0677	Ę	1.07	Ę	1.58	ļ	1.90	ě	2.90
		2]		1		<u>UN</u>		UN N		QN	

5-22

TRIAL BURN TEST PRÓGRAM SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS

RMA--SQI DENVER, COLORADO TABLE 5-2 (cont)

ND = Compound not detected in any of the tube pairs. ND <= Compound not detected in sample and quantified in another tube pair. (1) Commonly used laboratory solvents detected in samples and blanks; reported values have been blank corrected. The reported values may not be representative. (2) If a tube pair non-detect value is averaged with a tube pair detected value then full the detection limit is used for the tube pair non-detected value. If the average for the six tube pairs is less than the highest full detection limit of any single tube pair then the average for the six tube pairs is less than the highest full detection limit of any single tube pair then the average is reported as ND < (highest detection limit for a tube pair). Detection limits are based on the sum of the tenax and tenax/charcoral tube fractions (ie. 50 or 100 ng).

o:\shared\afream\rma\tb\tbvost2.wk3

DENVER, COLORADO TABLE 5-2 (com) TRIAL BURN TEST PROGRAM SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS RMA-SQI

TEST DATA:						
Test run number	ຄ	6	ę	ę	ę	e
Test location	STACK	STACK	STACK	STACK	STACK	C CTA/W
Test date	06-12-93	06-12-93	06-12-93	0642-09		WOHIG WORK
Test time	0830-0850	0859-0919	0928-0948	1003-1023	1034-1054	CG-71-001
Test tube pair	1	2	s.	4	5	9 9
SAMPLING DATA:						
Duration, minutes	20.00	20.00	20.00	20.00	ωuc	20.00
Average dry gas meter press. in H ₂ O	1.500	1.450	1.450	1.500	1 450	20,00
Average dry gas meter temp, deg, C	35.50	37.00	38.00	39.00	00.05	25.05
Average dry gas meter temp, deg, F	95.90	98.60	100.40	102.20	0.20	27.40
Average absolute meter temp. deg. R	555.90	558.60	560,40	562.20	027201	103.33
Actual sample volume, liters	22,338	21.590	21.313	21.898	15 500	200.00
Meter box calibration, Y	0.9963	0.9963	0.9963	0.9963	0.0063	1 60.77
Barometric pressure, in Hg	24.62	24.62	24.62	24.62	3462	5055-D
Sample volume, dscf	0.6168	0.5932	0.5837	0.5979	0 5894	24:02
Volumetric flow rate, dscf/min (2)	7875	7875	7875	7875	7875	7875
LABORATORY DATA, ng:						
	10201	785	625	365	155	925
Bromomethane (Methyl Bromide)	34 J	40 J	32 J	100 U	100 U	10001
Virity Chlonde	100 U	100 U	100 U	100 U	100 U	1001
Chloroethane (Ethyl Chloride)	100 U	100 U	100 U	100 U	100 U	1001
Methylene chlonde (1)	1032 B	1662 B	1742 B	1632 B	1942 B	2412 R
Carbon Disultide	50 U	18 J	50 U	50 U	19 J	50 U
1,1-Unchloroethene	20 U	50 U	50 U	50 U	50 U	50 U
1, 1-Dictionoethane	50 U	50 U	50 U	50 U	50 U	50 U
1, +-Ji alloroettene (10121)	50 U	50 U	50 U	50 U	50 U	50 U
		1000	1008	868	830 J	638
1 1 1-Thichlomethene (PLA)	0 0C	0.00	30 U	50 U	50 U	50 U
Carthyn Tetrachlonide	2 2	1000		20 0	50 U	50 U
Bromodichloromethane	213	2000	21 00	0.00	50 U	20 U
1,2-Dichloropropane	50 U	50 U	11 05	20 11	507 11 03	143
cis-1,3-Dichloropropene	50 U	50 U	50 U	10%	11 05	
Trichloroethene (ICE)	50 U	50 U	50 U	20 U	1105	1000
Dibromochloromethane	41	42	39	33 J	37 1	1 00
1,1,2-Trichloroethane	50 U	50 U	50 U	50 U	50 U	20 02
Berzene	50 U	50 U	50 U	50 U	67	20 U
trans-1, 3-1 schlor opropene	20 0	50 U	50 U	50 U	50 U	50 U
Bromotorm	23 J	22 J	50 U	50 U	50 U	20 U
letrachloroethene (PCE)	50 U	50 U	50 U	50 U	50 U	20 U
1,1,4,4-1 etraculoroetrane Tohuwa	0.00	20 0	50 U	50 U	50 U	50 U
Chicabenzene	[90]	I /71	123	102	123	132
Ethylburgene	11 03 50 11	[6]	[6]	20 U	19 J	50 U
Sturne	383	0 0C	20 0	50 U	50 U	50 U
Xvlenes(total)	I IC	1 66	1 5	403		423
Dimethyldisulfide	20 U	20 C	20 U	1 U US	[[2]	22 J
1				F 1	2	2

I = Quantified below the detection limit.
 I = Detected in blank main: reported values live been blank corrected
 U = Compound not detected detection limit shown. Detection limits are based on the sum of the termx and termx/charcoal hube fractions (ie. 50 or 100 ng)
 U = Commondy used laboratory solvents detected limit samples and blanks: reported values frave been blank corrected.
 (1) Commondy used laboratory solvents detected limit superied values have been blank corrected. The reported values may not be representative.
 (2) Volumetric flow rates based on the guitered during isokinetic test runs.

o:\shared\airteam\mua\tb\tbvost3.wk3

24-Aug-93

TABLE 5-2 (cont) TRIAL BURN TEST PROGRAM SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS DENVER, COLORADO RMA-SQI

TEST DATA:							
I est run number	6	6 0	3	£	6	e	6
Test location	STACK	STACK	STACK	STACK	STACK	et ACV	
Test date	06-12-93	06-12-93	06-12-93	10-11-20		V THE	SIACK
Test time	0830-0850	0859-0919	0928-0948	1003-1033	1034 1021	00-7 I-00	AVERAGE (2)
Test tube pair	1	2	3	4	5 2	9211-4011 6	
FOHC EMISSIONS (Ibs/dacf):							
Carbon Tetrachloride	2.11E-10	ND< 1.86E-10	ND< 1.89E-10	ND< 1848-10			
Chlorobenzene	5.72E-11	6.88E-11	6.998-11	ND< 1.84E-10	6.92E-11	ND< 1.83E-10	ND< 1.89E-10 ND< 1.84E-10
VOST EMISSIONS (Ibs/dscf):							
Chloromethane (Methyl Chloride)	3.658-09	2.928-09	3 3612-00	1 352-00			
Bromomethane (Methyl Bromide)	1.22B-10	1.498-10	1.21E-10	ND< 3 60F-10	01-300-10	00-5162.5 Min - 2 605 40	2.378-09
Vinyl Chloride	QN	CN	CIN CIN	ND CON		ND< 3.00E-10	ND< 3.74E-10
Chloroethane (Ethyl Chloride)	QN	QN	Ð	Ē		5	2
Methylene chloride (1)	3.6913-09	6.18 <u>E-09</u>	6.58E-09	6.02H-09	1 7 751 00		
Carbon Disulfide	ND< 1.79E-10	6.50B-11	ND< 1.89FH0	ND< 184R-10			0.4359-09
1,1-Dichloroethene	Ð	Q	Ð	CIN CIN			ND< 1.89E-10
1,1-Dichloroethane	QN	QN	QN	E E	2	D. A.	
1,2-Dichloroethene (total)	CN	CN	QN	GZ	e E		
Chloroform	3.62E-09	3.72E-09	3.81E-09	3.2014-09	3 1012-00	134E 00	
1,2-Dichloroethane (EDC)	QN	Ð	QN	CN N	ND TOTAL		3.305-09
1,1,1-Trichloroethane (TCA)	CIN	UN	QN	Ð	Ē		
Bromodichloromethane	7.60E-10	8.18E-10	8.03E-10	6.738-10	7 5772-10	01 ACC 3	
1,2-Dichloropropane	CIN	QN	Q	CIN CIN	CIN CIN	01-477.0	7.225-10
cis-1,3-EXchloropropene	CIN	QN	QN	E			
Trichloroethene (ICE)	CN CN	CIN	QN	Ð		2 5	
Dibromochloromethane	1.45E-10	1.54E-10	1.4513-10	1.20E-10	1.378-10	1.048-10	1 345-10
1,1,2-Thchloroethane	CR CR	Ð	Ð	QN	QN	GN	UN
Benzene	ND< 1.79E-10	ND< 1.86E-10	ND< 1.89E-10	ND< 1.84E-10	2.49E-10	ND< 1.83E-10	
trans-1,3-13 chloropropene	Ð	Q	QN	CZ.	QN	CIN	
Bromoform	8.0413-11	7.998-11	ND< 1.89E-10	ND< 1.84E-10	ND < 1.87E-10	ND< 183E-10	
Tetrachloroethene (PCE)	QN	QN	QN	QN	CI Z		
1,1,2,2-Tetrachloroethane	Q	Ð	Q	QN	CIN N		2
Toluene	3.79E-10	4.72B-10	4.63E-10	3.74B-10	4.588-10	4.84F-10	1385-10
. Ethyl benzene		QU QU	Q	QN	QN		
Styrene	1.3715-09	1.93E-09	1.758-09	1.48E-09	1.998-09	1.558-09	1.688-09
	01-41111	11-5166.1	7.74E-11	6.82E-11	9.168-11	7.88E-11	8.45E-11
LAmeraylaisuinge	(IN	CIN	QN	Q	Ð	QN	Q

ND = Compound not detected in any of the tube pairs. ND <= Compound not detected in sample and quantified in another tube pair. (1) Commonly used laboratory solvents detected in samples and blanks, reported values have been blank corrected. The reported values may not be representative. (2) If tube pair non-detect value is averaged with a tube pair detected value than half the detection limit is used for the tube pair non-detected value. If the average for the six tube pairs is loss than the highest full detection limit of any single tube pair then the average is reported as ND < (highest detection limit for a tube pair). Detection limits are based on the sum of the tenax/charcocal tube fractions (ie. 50 or 100 ng).

o:\shared\sirteam\rma\th\thvost3.wk3

	3 STACK ERAGE (2)	D< 0.47 D< 0.63	18.11 D< 1.52 D	29.16 D < 0.96 D < 0.96	0 10.65 0 10.65	D D D C 0.23 0.23 0.23	D0.29D1.83D1.830.310.31
	AV	ZZ	Z Z Z	Z Z Z Z		zz zzz	
	3 STACK 06-12-93 1104-1124	o≺ 0.46 0< 0.63	25.86 >< 1.49	40.09 <pre> 40.09</pre>	7.54	0.19	 0.28 0.28 2.02 5.73 0.29
		N N	<u> </u>				
	3 STACK 06-12-93 1034-1054 5	0.24	4.43	32.96 0.35	10.02	0.25	0.29 1.92 7.37 0.33
ESULTS		ND<	È E E	ê e e	<u> </u>		È E E E
ND TEST R	3 STACK 06-12-93 1003-1023 4	0.46 0.63	10.27 1.50	27.30 0.93	10.33 1.58	0.22	0.28 1.57 5.49 0.25
t) OGRAM FDATA AI		×QN N		Ě E E E		22 2Ž2	
LE 5-2 (cont N TEST PRC INICS TEST	3 STACK 06-12-93 1928-0948 3	0.47 0.24	18.02 0.49	29.85 0.96	12.29 1.89	0.27 0.93	0.29 1.93 6.46 0.28
TABI RIAL BURI ILE ORGA	0	Ň	an an	ĚEEE		ee eée	É E E E
T OF VOLAT	3 STACK 06-12-93 859-0919 2	0.47 0.24	22.27 0.60	28.03 0.33	12.00 1.92	0.29	0.12 1.97 7.12 0.29
UMMARY		×QN	ê ê	e e e		88 8Š8	<u> </u>
S	3 51'ACK 66-12-93 130-0850 1	0.53	27.83 0.49	16.74 0.90	11.69 1.79	0.27 0.88	0.12 1.58 5.06 0.40
			CN CN			ee eěe	<u> </u>
			(a)				
	5	NNS (ppb/v): Noride	NS (ppbv): (Methyl Chlori (Methyl Bromi Ethyl Chloride)	oride (1) de sene sane sene (sotal)	rane (EDC) ethane (TCA) methane ypane	opropene e (ICE) methane ethane ropropene	me (PCE) loroethane de
	THEST DATA: Test run numt Test location Test date Test time Test tube peir	POHC PMISSIC Carbon Tetrad Chlorobenzene	VOST EMISSIC Chloromethank Bromomethank Vinyl Chloride Chloroethane (Methylene chi Carbon Disulfi 1,1-Dichloroeti 1,1-Dichloroeti 1,2-Dichloroeti	Chloroform 1,2-JXchloroeti 1,1,1-Thichloro Bromodichloro 1,2-DXchloropn	cis-1,3-DAchlon Trickloroethen Dibromochloru 1,1,2-Trichloro Benzene trans-1,3-13.chl	Bromoform Tetrachloroeth 1,1,2,2-Tetrach Ted uene Ethyl benzene Styrene Xylenes(toral) Dime thyldisulf

DENVER, COLORADO RMA-SQI

ND = Compound not detected in any of the tube pairs. ND <= Compound not detected in sample and quantified in another tube pair. (1) Commonly used laboratory solvents detected in samples and bianks, reported values have been blank corrected. The reported values may not be representative. (2) If a tube pair non-detect value is averaged with a tube pair detected value then half the detection limit is used for the tube pair (2) If a tube pair non-detect value is averaged with a tube pair detected value then half the detection limit is used for the tube pair then the average is reported as ND < (highest detection limit for a tube pair). Detection limits are based on the sum of the renax/charcoral tube fractions (ie. 50 or 100 ng).

24-Aug-93

o:\shared\ahteam\rma\th\thvost3.wk3

DENVER, COLORADO TABLE 5-2 (cont) TRIAL BURN TEST PROGRAM SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS

RMA-SQI

TEST DATA:							
Test run number	9	3	ę	e		e	٣
Test location	STACK	STACK	STACK	STACK	STACK	CLACK	C TACK
Test date	06-12-93	06-12-93	06-12-93	06-12-03	UK-I JUS	DC 11 D3	VALUE VALUE
Test time	0830-0850	0859-0919	0928-0948	1003-1023	1034-1054	1104-1124	AVENUE (2)
Test tube pair	1	2	3	4	5	9	
POHC EMISSIONS (Ib/hr): (3)							
Carbon Tetrachloride	9.96E-05	ND< 8.78E-05	ND< 8.92E-05	ND< 8.71B-05	ND< 8.84E-05	ND< 8.65F-05	ND-5 & 00FLOS
Chlorobenzene	2.708-05	3.25E-05	3.30E-05	ND< 8.71B-05	3.27B-05	ND< 8.65E-05	ND< 8.71E-05
VOST EMISSIONS (1b/hr): (3)							
Chloromethane (Methyl Chloride)	1.72E-03	1.388-03	1.12 <u>E-0</u> 3	6.36B-04	2.74F-04	1 6012-013	1 175-03
Bromomethane (Methyl Bromide)	5.74E-05	7.0215-05	5.71E-05	ND< 1.74E-04	ND< 1.77E-04	ND< 1.73E-04	ND< 1 778-04
Vinyl Chloride	QN	Ð	Q	QN	QN	GN	
Chloroethane (Ethyl Chloride)	CN CN	QN	CIN CIN	CN CN	QN	CR.	Ē
Methylene chloride (1)	1.748-03	2.92E-03	3.11E-03	2.84E-03	3,43E-03	4.1775-03	3 048-03
Carbon Disulfide	ND< 8.44E-05	3.0713-05	ND< 8.92E-05	ND< 8.71E-05	3.27B-05	ND< 8.65E-05	ND< 8.92FL05
1,1-Dichloroethene	Ð	QN	E	Û	QN	QN	C N
1,1-Dichloroethane	Q2	Q	Ð	CIN	QN	QN	ź
1,2-Dichloroethene (total)	Ð	Q	Ð	QN	C N	Ð	GZ
Chloroform	1.71B-03	1.76E-03	1.80E-03	1.51E-03	1.47E-03	1.10E-03	1 564-03
1,2-Dichloroethane (EDC)	QN	QN	QN	QN	Ê	GN	CIN
1,1,1-Trichloroethane (ICA)	QN	GN	Q	<u>G</u>	CIN	Ð	2 6
Bromodichloromethane	3.59E-04	3.86E-04	3.79E-04	3.185-04	3.58E-04	2.4775-04	3 41 E-04
1,2-Dichloropropane	QN	QN	QN	Ð	QZ	CIX CIX	UN UN
cis-1,3-Dichloropropene	Ð	QN	CIN	QN	Q2	- E	
Trichloroethene (ICE)	QN	QN	Q	CIN CIN	QN	Q	
Dibromochloromethane	6.84E-05	7.29E-05	6.87E-05	5.66E-05	6.45E-05	4.93E-05	6.34 E- 05
1,1,2-Trichloroethane	Ð	Ð	QN	QN	QN	Q	Q
Benzene	ND< 8.44E-05	ND< 8.78E-05	ND< 8.92E-05	ND< 8.71E-05	1.18E-04	ND< 8.65E-05	ND< 8.92E-05
trans-1,3-Dichloropropene	Q.	QN	QN	Q	QN	QN	CZ.
Bromoform	3.803-05	3.78E-05	ND< 8.92E-05	ND< 8.71E-05	ND< 8.84E-05	ND< 8.65E-05	ND< 8.92F-05
Tetrachloroethene (PCE)	QN	CN CN	QN	Q	QN	QN	CN
1,1,2,2-Tetrachloroethane	<u>R</u>	Ð	QN	Ð	QN	Q	CN
Toluene	1.798-04	2.23B-04	2.19B-04	1.77E-04	2.173-04	2.28E-04	2.0715-04
Ethyl benzene	QN	Ð	Ð	Q	QN	Q	CIN
Styrene	6.46H-04	9.10E-04	8.25 <u>E-04</u>	7.01E-04	9.41E-04	7.31E-04	7.928-04
Xylenes(total)	5.24B-05	3.78E-05	3.66E-05	3.22E-05	4.33E-05	3.72E-05	3.99 <u>E-05</u>
Dimethyldisulfide	Q	Q	QN	Q	CN CN	CIN	QN

5-26

ND = Compound not detected in any of the hube pairs. ND <= Compound not detected in sample and quantified in another hube pair. (1) Commonly used laboratory solvants detected in samples and blanks; reported values have been blank corrected. The reported values may not be representative. (2) If a hube pair non-detected is averaged with the pair detected value then half the detection limit to used for the tube pair (2) If a hube pair non-detected value is averaged with the pair detected values then half the detection limit of any single tube pair (2) If a hube pair non-detected value. If the average for the six tube pairs detection limit of any single tube pair then the average is reported as ND < (highest detection limit for a hube pair). Detection limits are based on the sum of the tenax and tenax/charcoal tube fractions (ie. 50 or 100 ng). (3) Volumettic flow rates used to calculate mass emissions are based on data guithered during isokinetic test runs.

		SUMMARY	TRL OF VOLATIL	DENVER, TABLE AL BURN E ORGAN	COLORADC 15-2 (cont) TEST PROG TCS TEST D) RAM ATA AND	TEST RESU	SLI					
TEST DATA: Test summumber	٩				•								
Test location	STACK	•	TACK	5	J LACK	5	3 Ark	5	3 Arte	E	3	3	
Test date	06-12-93	. 0	6-12-93	9	-12-93		10-01-	5	12.03	Te de	201	ALTER ACTE	ę
Test time	0830-0850	õ	59-0919	60	8-0948	101	3-1023	103	4-1054		4-1124	AVENUE	(7)
Test tube pair	1		3		3		4		S		6		
POHC FMISSIONS (ug/m ³): Carbon Tatarahlarida	97 E		80 6		ŝ	ļ	200	ļ					
Chlorobenzene	0.92	VOW	1.10	Y DA	2.02 1.12	Ž	2.95	>/IN	3.00	ěě	2.93 2.93	ěě	3.02 2.95
Agmyany SNOISSIMH ISON													
Chloromethane (Methyl Chloride)	58.39		46.73		37.81		21.56		9.29		54.77		10.12
Bromomethane (Methyl Bromide)	1.95		2.38		1.94	×QN	5.91	×QN	5.99	>QN	5.87	ND<	10.00
Vinyl Chloride	Ð	Ð		£		QN		Ð					
Chloroethane (Ethyl Chloride)	Ð	Ð		QN		Ð		Ð		QN		Ð	
Methylene chloride (1)	59.08		98.94		105.39		96.39	-	16.35	1	41.51		102.94
Caroon Lisuince 1 1Yehiomethene	00'7 >/IN	Ę	1.04	×q	3.02	ě	2.95		1.11	YON	2.93	Ň	3.02
1,1-1) chloroethane	e e			2 E				29		£!		Q	
1,2-Dichloroethene (total)	e e	22		22				2 E				2	
Chloroform	57.99		59.53	1	60.98		51.27		49.73	Ð	17 43	UN	57 87
1,2-Dichloroethane (EDC)	QN	Ð		Q		Q		Q		C Z		Ę	70.70
1,1,1-Trichloroethane (ICA)	QN	Q		QN		Q		Ð		Ê		E	
Bromodichloromethane	12.17	ļ	13.10		12.86		10.78		12.13		8.36	1	11.56
1,2-1, chloropropane						Ð		Q		Q		QN	
as-1,3-1,4auoropropra Tricklonnethene (TCR)				2 2		2 9		£ £		£ !		Ð	
Dibromochloromethane	2.32)	2.47		2.33		1 97	R	710	ND	1 67	QN	
1,1,2-Trichloroethane	QN	QN		ę		CIN		CIN		ÛX	101		C1.2
Benzene	ND< 2.86	×QN	2.98	>QN	3.02	×Qu	2.95		3.98	Ì	2.03	È	505
trans-1,3-Dichloropropene	Ð	Ð		Q		Q		QN			2	ź	70.0
Bromoform	1.29		1.28	×QN	3.02	ND<	2.95	YQN	3.00	Ň	2.93	Ň	3 02
Tetrachloroethene (PCE)	Ð	Ð		Q		QN		QN				Ę	40.0
1,1,2,2-Tetrachioroethane	Q2	Ð		Ð		Ê		Q		QN		Ę	
Toluene	(0.9 ····	!	7.56		7.41		5.99		7.34		7.74		7.02
Ethyl benzene		QN		Ð		Ð		Ð		Q		Q	
styrene Xylenes(total)	1.77		30.84 1.28		27.98 1.24		23.77 1.09		31.90 1.47		24.79 1.26		26.86 1 35
Dimethyldisulfide	Ð	Ð		Ð		QN		Q		QN		CIN	1.11
												!	

5-27

RMA-SQI

ND = Compound not detected in any of the tube pairs. ND <= Compound not detected in sample and quantified in another tube pair. (1) Commonly used laboratory solvents detected in samples and blanks, reported values have been blank corrected. The reported values may not be representative. (2) If the tube pair non-detect value is averaged with a tube pair detected value then half the detection limit is used for the tube pair non-detected value is averaged with a tube pairs is less than the highest full detection limit of any single tube pair then the average for the six tube pairs is less than the highest full detection limits are based on the pair then the average is reported as ND < (highest detection limit for a tube pair). Detection limits are based on the sum of the terax and tenax(charcoal tube fractions (ie. 50 or 100 ng).

RMA – SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM TABLE 5-3

· ·

TABLE 5-3 SUMMARY OF SEMIVOLATILE ORGANIC COMPOUNDS TEST DATA AND TEST RESULTS

Test Data			
Run number	1 .	2	3
Location		INCINERATOR STACK	•
Date	06-10-93	06-11-93	06-12-93
Time period	0745-1501	0710-1258	0756-1416
Sampling Data			
Sampling duration, min.	240.0	240.0	240.0
Nozzle diameter, in.	0.355	0.355	0.355
Cross sectional nozzle area, sq.ft.	0.000687	0.000687	0.000687
Barometric pressure, in. Hg	24.79	24.57	24.62
Avg. orifice press. diff., in H2O	1.35	1.45	1.44
Avg. dry gas meter temp., deg F	76	80	81
Avg. abs. dry gas meter temp., deg. R	536	540	541
Total liquid collected by train, ml	4703.0	4823.0	4830.0
Std. vol. of H2O vapor coll., cu.ft.	221.4	227.0	227.4
Dry gas meter calibration factor	0.995	0.995	0.995
Sample vol. at meter cond., def	160.728	167.415	167.077
Sample vol. at std. cond., dscf (1)	131.135	134.248	134.118
Percent of isokinetic sampling	99.7	99.0	101.3
GAS STREAM COMPOSITION DATA			
∞_2 % by volume, dry basis	10.1	9.9	10.2
O2 % by volume, dry basis	3.4	3.5	3.6
CO, % by volume dry basis	0.0	0.0	0.0
N ₂ , % by volume, dry basis	86 <i>.5</i>	86.6	86.3
Molecular wt. of dry gas, lb/lb mole	29.75	29.73	29.77
H2O vapor in gas stream, prop. by vol.	0.628	0.628	0.629
Mole fraction of dry gas	0.372	0.372	0.371
Molecular wt. of wet gas, lb/lb mole	22.4	22.4	22.4
GAS STREAM VELOCITY AND VOLUMETRIC FLOW	V DATA		
Static pressure, in. H ₂ O	-0.13	-0.15	-0.13
Static pressure, in. Hg	-0.010	-0.011	-0.010
Absolute pressure, in. Hg	24.78	24.56	24.61
Avg. temperature, deg. F	184	184	183
Avg. absohute temperature, deg.R	644	644	643
Pitot tube coefficient	0.84	0.84	0.84
Total number of waverse points	12	12	12
Avg. gas stream velocity, ft./sec.	52.7	54.8	, 53.4
Stack/duct cross sectional area, sq.ft.	9.62	9.62	9.62
Avg. gas stream volumetric flow, wacf/min.	30400	31600	30800
Avg. gas stream volumetric flow, dscf/min.	7700	7900	7700

(1) Standard conditions = 68 degrees F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)

•

Test Data								
Run number	1		• •		-			
Location	*				3		AVERAC	æ
Date	06 10 00		INCINERATO	SIACK				
Time period	00-10-93		06-11-93		06-12-93			
	0/45-1501		0710-1258		0756-1416			
			•					
Semivolatile Organic Compounds Laborator	y Report Data, ng							
Phenol	ND		ND		ND		ND	
Bis (2-chloroethyl) ether	ND		ND		ND		ND	
2-Chlorophenol	ND		NTO		ND		200	
1.3-Dichlorobenzene	ND		NTD		110		ND	
1 4-Dichlorobenzene	100		ND		ND		ND	
Bentri alchehol	ND		ND		ND		ND .	
1 C Dichlashan	ND		ND		ND		ND	
1.2-Dichlorobenzene	ND		ND		ND		ND	
2-Methylphenol	ND		ND		ND		NTO	
bis-(2-Chloroisopropyl)ether	ND		NTO		ND			
4-Methylohenol	ND		NTD		200		ND	
N-Nitroso-Di-n-cropylamine	ND		ND .		ND		ND	
Herachiomethane			ND	•	ND		ND	
Ninehouse	ND		ND		ND		ND	
Nilobelizene	ND		ND		ND		ND	
Isophorone	ND	В	ND	BC	ND	в	ND	
2-Nitrophenol	ND		ND		ND	-	ND	
2.4-Dimethylphenol	ND		ND		NTO			
Benzoic acid	ND<	50 B	ND-	50 P	ND	<i>C C D</i>	ND	
bis/2-Chloroethory)methane		50 B		30 5		222 12	ND<	50
2 4 Dichlorophenol			ND		ND		ND	
1.2 A.Trichlombanan-	ND		ND		ND		ND	
1,2,4-1 HCILOTODENZEDE	ND		ND		ND		ND	
Naphinaiene	ND	В	ND	BC	ND	BC	ND	
4-Chloroaniline	ND		ND		ND		ND	
Hexachlorobutadiene	ND		ND		NTD.		ND	
4-Chloro-3-methylpheno]	NT		NTO		200			
2-Mehtvinanthalene	NT		ND		ND		ND	
Herachlomovelonentadiene			ND		ND		ND	
246 Trichlemanhanal	ND		ND		ND		ND	
	ND		ND		ND	•	ND	
24.2~1 ncaloropacaol	ND		ND		ND		ND	
2-Chloronapthalene	ND		ND		ND		ND	
2-Nitronaline	ND		ND		NTD		NTO	
Dimethylothalate		5	NT -	10		••		
Acenaphthylene	NTN	•	11D <	10		10	NDC	10
2 6-Dinitratokuene			ND		ND		ND	
	ND		ND		ND		ND	
3-MILOHIMINE	ND		ND		ND		ND	
Acceptione	ND		ND		ND		ND	
2,4-Dinitrophenol	ND		ND		ND		NTO	
4-Nitrophenol	ND				NTD		ND	
Dibenzofuran	ND		NTD				ND	
2.4-Dinitrotohuene	ND				ND		ND	
Diethylphthalate	ND	•	ND	_	ND		ND	
A Chlomethanni shanninkan		9		7		27		14
4-Choropheny Pheny Jener	ND		ND		ND		ND	
Photene	ND		ND		ND		ND	
4-Nitroanaline	ND		ND		ND		ND	
4.6-Dinitro-2-methylphenol	ND		ND		ND		NTD	
n-Nitrosodiphenylamine(1)	ND		ND		. NTD .		NTD	
4-Bromophenyl-phenylether	ND		NTD					
Hexachlorobenzene	ND				ND		ND	
Pentachionophenol			ND		ND		ND	
Phenometherene			ND		ND		ND	
	ND		ND		ND		ND	
Anuracene	ND		ND		ND		ND	
Carbazole	ND		ND		ND		ND	
Di-n-butylphthalate		30 B		23 B		26 B		26
Fluoranthene	ND		NTD		ND	20.0		20
Pyrene	NTD		ND		110		ND	
Butylhen zy intha late			110		ND		ND	
33 Dichlomber ridine		14		14	ND<	10		11
Bener/obenhamen	ND		ND		ND		ND	
Benzoja janumacene	ND		ND		ND		ND	
Chrysene	ND		ND		ND		ND	
bis(2-Ethylhexyl)phthalate		20 BC		12 BC	-	14 BC		15
Di-0-Octylpthalate	ND		ND		NTO		NTO	15
Benzo(b)fluoranthene	NT		NTO		NT		100	
Benzo(k)fluoranthene	NTD							
Benzo(a)ravrene			ND		ND		ND	
Indexe(1.7.2.ed)	ND		ND		ND		ND	
	ND		ND		ND		ND	
LIDENZO(a.h.)anthracene	ND		ND		ND		ND	
Benzo(g,h,i)perylene	ND		ND		ND		ND	
Quinoline	ND		ND		ND		ND	
4.4-Dichlorobiphenyl	ND				NTO		NTD	
Pentachlorobenzene			NT		NTO		110	
			1.10		1412		nD.	

B = Detected in blank train; reported values have been blank corrected.BC = Detected in blank train; test run values were less than blank train values.

۰.

RMA-SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM

TABLE 5-3 (cont) SUMMARY OF SEMIVOLATILE ORGANIC COMPOUNDS TEST DATA AND TEST RESULTS

.

Test Data								
Runnumber	1		a .		•			
Location	1		2		3		AVERA	GE
Date	06 10 00		INCINERATOR	STACK				
Time period	00-10-53		00-11-93		06-12-93			
- and per and	0743-1301		0/10-1258		0756-1416			
Organochlorine Pesticides/PCB Laborato	ev Report Data, up						۰.	
Alpha-BHC			NT				·	
Beta-BHC	NTD		ND				ND	
Delta-BHC	ND		ND ND		ND		ND	
garoma-BEIC	ND	ъ	ND		ND	_	ND	
Heptachlor	ND	Б	ND	Б	ND	в	ND	
Akhin			ND		ND		ND	·
Hentachlor enoride	ND	-	ND		ND		ND	
Endosulfan I			ND<	0.1	ND<	0.1		0.13
Diektrin	ND		ND		ND		ND	
	ND		ND		ND		ND	
Endein	ND		NĐ		ND		ND	
Teachin	ND		ND	•	ND		ND	
Endomline II	ND		ND		ND		ND	
	ND		ND		ND		ND	
	ND		ND		ND		ND	
	ND		ND		ND		ND	
	ND		ND		ND		ND	
Methorychior	ND		ND		ND		ND	
Enterin Ketone	ND		ND		ND		ND	
aipha-Chlordane	ND		ND		ND		ND	
gamma-Chlordane	ND		ND		ND		ND	
loraphene	ND		ND		ND		ND	
Arocior-1016	ND		ND		ND		ND	
Aroclor-1221	ND		ND		ND		ND	
Arocior-1232	ND		ND		ND		ND	
Arocior-1242	ND		ND		ND		ND	
Arocior-1248	ND		ND		ND		ND	
Aroclor-1254	ND		ND		ND		ND	
Arocior-1260	ND		ND		ND		ND	
Organophosphorops Posticidos/PCB Com	nonde l'abasetare Desare r							
Atrazine	ND	ALLE, UZ			· · · ·			
Dichlorvos	ND		ND		ND		ND	
Mevinphos	ND		ND		ND		ND	
Ethorop	ND		ND		ND		ND	
Naled	ND		ND		ND		ND	
Phorate	ND		ND		ND		ND	
Derroton O	ND		ND		ND		ND	
Demeton S	UN		ND ·		ND		ND	
Diazinon	ND		ND		ND		ND	
Disulform	ND		ND		ND		ND	
Methyl Provision	ND ND		ND		ND		ND	
Poppel	ND		ND		ND		ND	
Malathian	ND		ND		ND		ND	
Emphice	ND		ND		ND		ND	
Ethni Destrice	ND		ND		ND		ND	
Chlommine	ND		ND		ND ·		ND	
Emplothin	ND		ND		ND		ND	
Trichlomen	ND		ND		ND		ND	
Marshaa	ND		ND		ND		ND	
Merpuos Seimekaa	ND		ND		ND		ND	
Suropuos Polate	ND		ND		ND		ND	
	ND		ND		ND		ND	
A companyi	ND		ND		ND		ND	
Counterplos	ND		ND		ND		ND	
Supona Talanti-	ND		ND		ND		ND	
ICLUMICE	ND		ND		ND		ND	

B = Detected in blank train; reported values have been blank corrected.

BC = Detected in blank train; test run values were less than blank train values.

.

.

o:\shared\airteam\mma\tbtbsvoc.wk3

• -

Test	These	
194		

les Den							
Run number	1	2		3		AVE	RAGE
Location		INCINERATI	OR STACK				
Date	06-10-93	06-11-93		06-12-03			
Time period	0745-1501	0710-1258		0756 1 416			
	0745-1501	0/10-1200		0730-1410			
Seminalatile Oranie Commande Victoria							•.
Scanvolatile Organic Compounds Emission	Concentration Linta, In/osci					-	
	ND	ND		ND		ND	
Bis (2-chioroethyl) ether	ND	ND		ND		ND	
2-Chlorophenol	ND	ND		ND		ND	
1,3-Dichlorobenzene	ND	ND		ND		ND	
1,4-Dichlorobenzene	ND	ND		ND		ND	
Benzyl alchohol	ND	ND		ND		ND	
1,2-Dichlorobenzene	ND	ND		ND		ND	
2-Methylphenoi	ND	ND		ND		ND	
his-(2-Chlomisonony) ether	ND	ND		ND			
(Methylphenol	ND ND			ND		ND	
N Newson Dia membrasian	ND ND	ND		ND		ND	
Transition attack	ND	ND	•	ND		ND	
HERACINOTOCULANC .	ND	ND		ND		ND	
Nitrobenzene	ND	ND		ND		ND	
Isophorone	ND	B ND	BC	ND	В	ND	
2-Nitrophenol	ND	ND		ND		ND	
2.4-Dimethylphenol	ND	ND		ND		ND	
Benzoic acid	ND< 8.41E-10	B ND<	8.21E-10 B		8.79E-10 B	ND<	8.41 E-1 0
bis(2-Chloroethoxy)methane	ND	ND		ND		ND	
2.4-Dichlorophenol	ND	ND		ND		ND	
1.2.4-Trichlorobenzene	ND	ND		ND		ND	
Naphthalene	ND	B ND	PC	ND	PC		
4-Chlomaniline	ND		BC.		BC		
Vensklasskandisse		ND		ND		ND	
A Chiene 2 methodala - 1	ND	ND		ND		ND	
4-Caloro-3-meury/pacaol	ND	ND		ND		ND	
2-Mehtyinapthalene	ND	ND		ND		ND	
Hestachlorocyclopentadiene	ND	ND		ND		ND	
2.4.6-Trichlorophenol	ND	ND		ND		ND	
2,4,5-Trichlorophenol	ND	ND		ND		ND	
2-Chloronapthalene	ND	ND		ND		ND	
2-Nitroanaline	ND	ND		ND.		ND	
Dimethylothalate	8 41E-11	NDC	1.6415-10	ND	1 6/15-10		16/10-10
Accompletiviene	NT	ND	1.041-10	ND V	1.042-10	10	1.042-10
2 6-Dinitratohana	ND			ND	•	ND	
2 Nitemanline	ND	ND		ND		ND	
	ND ND	ND		ND		ND	
Acetaputene	ND	ND		ND		ND	
2.4-Dinitrophenol	ND	ND		ND		ND	
4-Nitropheaol	ND	ND ·		ND		ND	
Dibenzofuran	ND	ND		ND		ND	
2,4-Dinitrotoluene	ND	ND		ND		ND	
Diethylphthalate	1.51E-10	F	1.15E-10		4.44E-10		2.37E-10
4-Chlorophenyl-phenylether	ND	ND		ND		ND	
Fluorene	ND	ND		NT		ND	
4-Nitroanaline	ND			NTO		ND	
4 6-Dinitm-2-methylphenol	ND	ND		ND		110	
n-Nitroscolinhensthemine(1)	ND	112					
A Dromonhamil showilsthan		ND		· ND ·		ND	
- anousopaany - possy seller		ND		UN.		DND	
Protection of the second second	ND	ND		ND		ND	
r chiadhoropocaol	ND	ND		ND		ND	
Phenanthrene	ND	ND		ND		ND	
Anthracene	ND	ND		ND		ND	
Carbazole	ND	ND		ND		ND	
Di-n-butylphthalate	5.04E-10	В	3.78E-10 B		4.27E-10 B		4.36E-10
Fluoranthene	ND	ND		ND		NÐ	
Pyrene	ND	ND		ND		NT	
Butvibenzvirthalate	2355-10		2 305-10	NDC	1645-10		1 825-10
3.3'-Dichlombenzidine	ND	ND	2001-10	ND	1.042-10	NT	1.026-10
Ben 20/2) anthra cane	ND	110					
Charmen	ND			ND		ND	
hin (2. Ether la arrest) whether have	ND AND	ND		ND		ND	
	3.36E-10	<i>в</i> С	1.97E-10 BC		230E-10 BC		2.54E-10
Drifocyphaate	ND	ND		ND		ND	
Benzo(b)fluoranthene	NĎ	ND		ND		ND	
Benzo(k)fluoranthene	ND	ND		ND		ND	
Benzo(a)pyrene	ND	ND		ND		ND	
Indeno(1.2.3-ci)pyrene	ND	ND		ND		ND	
Dibenzo(a,h)anthracene	ND	ND		ND		ND	
Benzo(g.h.i)perviene	ND	ND					
Quinoline	ND	NTO				 NTD	
4.4-Dichlombinhenvl	ND	202		212		200	
Pentachlorohenzene	NT					ND ND	
	RD .	ND		ND		ND	

B = Detected in blank train; reported values have been blank corrected.BC = Detected in blank train; test run values were less than blank train values.

.

٤

RMA – SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM

TABLE 5-3 (cont) SUMMARY OF SEMIVOLATILE ORGANIC COMPOUNDS TEST DATA AND TEST RESULTS

Test Data				
Run number	1	2	3	AVEDACE
Location		INCINERATOR STACK	5	AVERAGE
Date	06-10-23	06-11-02	06 12 02	
Time period	0745-1501	0710-1258	0756-1416	
•		0710-1200	0750-1416	
Organochlorine Pesticides/PCB Emission Concentr	ation Data, Ib/dacf			۰.
Alpha BHC	ND	ND		NTD .
Beta-BHC	ND	NT	ND	ND
Delta-BHC	ND	ND	ND	
gamma-BHC	ND R	ND P	ND P	ND
Heptachior	ND	ND B	ND B	ND
Aldrin	ND	ND	ND	ND
Heptachlor enoxide	4 705-12		ND	ND
Endosulfan I	ND	ND ND	ND< 1.04E-12	2.145-12
Diektrin	ND		ND	ND
4.4'-DDF	ND		ND	ND
Fadrin	ND		ND	ND
Isodrin	ND	ND	ND	ND
Endosulfan II			ND	ND
		ND	ND	ND .
Endouitm sulfate	ND	ND	ND	ND
	ND	ND	ND	ND
Methormohlor	ND	ND	ND	ND
Endrin katana	ND	ND	ND	ND
alaba-Chlorina	ND	ND	ND	ND
ages-cubicate	ND	ND	ND	ND
Toranhene		ND	ND	ND
Amelon 1016			ND	ND
Ampine 1221		ND	ND	ND
Arocion 1221	ND	ND	ND	ND
Ameloni 242	ND	ND	ND	ND
Ampion 1242	ND	ND	ND	ND
Amelon 1954	ND	ND	ND	ND
Amelon 1200	ND	ND	ND	ND
1200011200	ND.	ND	ND	ND
Orthophoniamon Posticides/PCR Unission Cone	entention Data Bildert		•	
Atrazine	ND	NT	· ·	
Dichloryos	ND	ND		ND
Mevinnhos	ND	ND	ND .	ND
Ethonop	ND	ND	ND ·	ND
Naled	ND	ND		ND
Phorate	ND	ND		ND
Demeton, O				ND
Demeton, S		ND		ND
Diazinon	ND	ND		ND
Disulform	ND	ND		ND
Methyl Parathion	ND	ND	ND.	ND ND
Ronnel	ND	ND	ND	ND
Malathion	ND	ND	ND	ND ND
Fenthion	ND	ND	ND.	DN D
Ethyl Prathion	ND	ND		ND
Chlorovnins	ND	ND		ND
Fensulfothion	ND	ND	ND	ND
Trichloromate	ND	ND	ND	
Merphos	ND	ND	ND	
Stirophos	ND	ND		
Boistar	ND	ND		UN UN
Azimphos-methyl	ND	ND		ND
Countrathos	ND			עא
Supona	ND	ND		ND
Tokuthion	ND		ND	ND
	10	ND	ND	ND

B = Detected in blank train; reported values have been blank corrected.BC = Detected in blank train; test run values were less than blank train values.

.

o:\shared\airteam\rma\tb\tbsvoc.wk3

•

.

Test Data								
Run number	1		2 .		3		AVERA	Œ
Location			INCINERATO	R STACK				
Date Time resid	06-10-93		06-11-93		06-12-93			
Tube period	0745-1501		0710-1258		0756-1416			
Semivolatile Organic Compounds Emission Co.	accentration Data.	pob/v					۰.	
Phenol	ND	rr	ND		ND		ND '	
Bis (2-chloroethyl) ether	ND		ND		ND		ND	
2-Chlorophenol	ND		ND		ND		ND	
1.3-Dichlorobenzene	ND		ND		ND		ND	
1,4-Dichlorobenzene	ND		ND		ND		ND	
Benzyl alchohol	ND		ND		ND		ND	
2 Methological	ND		ND		ND		ND	
bio//b (biopring and back on	ND		ND		ND		ND	
A Methylphenol	ND		ND		ND		ND	
N-Nitros-Di-n-more lamine	ND		ND		ND		ND	
Herachloroethane	ND		ND	•	ND		ND	
Nitrobenzene	ND		ND		ND		ND	
Isophorone	ND	в	ND	BC		ъ	ND	
2-Nitrophenol	ND	-	ND	.	ND	d		
2.4-Dimethylphenol	ND		ND		NTO		ND	
Benzoic acid	ND<	2.65 B	ND<	2.59 B		2.78 B	ND<	2.65
bis(2-Chloroethory)methane	ND		ND		ND		ND	2.00
2,4-Dichlorophenol	ND		ND		ND		ND	
1,2,4-Trichlorobenzene	ND		ND		NÐ		ND	
	ND	в	ND	BC	ND	BC	ND	
	ND		ND		ND		ND	
A how - methylation	ND		ND		ND		ND	
2-Mehtyinanthalene			ND		ND	•	ND	
Hexachlorocyclopentadiene	ND				ND		ND	
2,4,6-Trichlorophenol	ND				ND			
2.4.5-Trichlorophenol	ND		ND					
2-Chloronapthalene	ND		ND		ND		ND	
2-Nitroanaline	ND		ND		ND .		ND	
Dimethylpthalate		0.17	ND<	0.33	ND<	0.33	ND<	0.33
Aceuaphthylene	ND		ND		ND		ND	
2.6-Dinitrotoluene	ND		ND		ND		ND	
3-Nitroanaline	ND		ND		ND		ND	
2 4-Divitementaria	ND		ND		ND		ND	
4-Nitwohenol	ND		ND		ND		ND	
Dibenzofuran	ND				ND		ND	
2,4-Dinitrotoluene	ND				ND		ND	
Diethylphthalate		0.26	112	0.70	ND	0.77	ND	0.41
4-Chlorophenyl-phenylether	ND		ND	020	ND	0.77	ND	0.41
Fluorene	ND		ND		ND		ND	
4-Nitroanaline	ND		ND		ND		ND	
4.6-Dinitro-2-methylphenol	ND		ND		ND		ND	
n-Nirosodiphenyiamme(1)	ND		ND		. ND		ND	
Herechloroben mene	ND		ND		ND		ND	
Pentachiorophenol	ND		ND		ND		ND	
Phenanthrene	ND		ND		ND		ND	
Anthracene	ND		ND		ND		ND	
Carbazole	ND		ND		ND		ND	
Di-n-butyiphthalate		0.70 B		0.52 B		0.59 B	ND	0.60
Fluoranthene	ND		ND		ND		ND	0.00
Pyrene	ND		ND		ND		ND	
Butylbenzylpthalate		0.29		0.28	ND<	0.20		0.23
3.3'-Dichiorobenzidine	ND		ND		ND		ND	
Denzo(a)anun'acene	ND		ND		ND		ND	
bir (2. Ethnikany Dahaha bas	ND		ND		ND		NÐ	
Diss Cryhthalare	177	0.33 BC		0.19 BC		0.23 BC		0.25
Benzo(b)fluoranthene	ND		ND		ND		ND	
Benzo(k)fluoranthene	ND				ND		ND	
Benzo(a)pyrene	ND				ND		ND	
Indexo(1,2,3-cd)pyrene	ND		ND					
Dibenzo(a,h)anthracene	ND		ND		ND		ND	
Benzo(g,h,i)perylene	ND		ND		ND		ND	
Quinoline	ND		ND		ND		ND	
4.4-Dichlorobiphenyl	ND		ND		ND		ND	
Pentachlorobenzene	ND		ND		ND		ND	

B = Detected in blank train; reported values have been blank corrected.BC = Detected in blank train; test run values were less than blank train values.

-

RMA – SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM TABLE 5-3 (cont)

TABLE 5-3 (cont) SUMMARY OF SEMIVOLATILE ORGANIC COMPOUNDS TEST DATA AND TEST RESULTS

Run number	1		2 .		3		AVERAGE
Location			INCINERATO	R STACK	-		
Date	06-10-93		06-11-93		05-12-03		
Time period	0745-1501		0710-1258		0756-1416		
•					0/30-1410		
Organochlorine Perticides/PCB Emission O	oncentration Data, pr	ob∕v					
Alpha-BHC	ND		ND		ND		ND
Beta-BHC	ND		ND		ND		ND
Delta-EHC	ND		ND		ND		ND
gamma BHC	ND	В	ND	В	ND	в	ND
Heptachlor	ND		ND		ND	_	ND
Aldrin	ND		ND		ND		ND
Heptachlor epoxide		0.0049	ND<	0.0017	ND<	0.0017	0.0022
Endosulfan I	ND		ND		ND		NTI
Diekhrin	ND		ND		ND		NTO
4,4'-DDE	ND		ND		ND		ND
Endrin	ND		ND		ND		NTD
Isodrin	ND		ND		ND		ND
Endosulfan II	ND		ND		ND		
4,4'-DDD	ND		ND		ND		
Endosulfan sulfate	ND		ND		NTO		
4,4'-DDT	ND		ND		ND		ND
Methoxychlor	ND		ND		ND		
Endrin ketone	ND		ND		NTD		ND
alpha-Chlordane	ND		ND		NT		ND
gamma-Chlordane	ND		ND		NTO		ND
Toxaphene	ND		ND		NTO		ND
Arocior-1016	ND		ND		NTD		ND
Aroclor-1221	ND		ND		ND		ND
Arocior-1232	ND		ND		ND		ND
Aroclor-1242	NT		ND			•	ND
Arocior-1248			ND		ND		ND
Arocior-1254	ND		ND		ND		ND
Arocion-1260	ND		ND		ND		ND
	112		112		ND		UN.
Organophosphorous Pesticides/PCB Emissio	a Concentration Data	, ppb/v					
Atrazine	ND		ND		ND		NTO
Dichlorvos	ND		ND		ND		ND
Mevinphos	ND		ND		ND	•	ND
Ethoprop	ND		ND		ND	',	ND
Naled	ND		ND		ND		ND
Phorate	ND		ND		ND		ND
Demeton, O	ND		ND		ND		ND
Demeton, S	ND		ND		ND		ND
Diazinon	ND		ND		ND		ND
Disulfoton	ND		ND		ND		ND
Methyl Parathion	ND		ND		ND		ND
Ronnel	ND		ND		ND		ND
Malathion	ND		ND		ND		ND
Fenthion	ND		ND		ND '		ND
Ethyl Prathion	ND		ND		ND		ND
Chlorpyrifos	ND		ND		ND		ND
Fensulfothion	ND		ND		ND		ND
Trichloronate	ND		ND		ND		ND
Merphos	ND		ND		ND		ND
Stirophos	ND		ND		ND		ND
Bolstar	ND		ND		ND		ND
Azinphos-methyl	ND		ND		ND		ND
Courraphos	ND		ND		ND		ND
Supona	ND		ND		ND		ND
Tokuthion	ND		ND		ND		ND

B=Detected in blank train; reported values have been blank corrected. BC=Detected in blank train; test run values were less than blank train values.

Test Data								
Run number	1		2 .		3		AVERA	GE
Location			INCINERATO	RSTACK				
Date	06-10-93		06-11-93		06-12-93			
Time period	0745-1501		0710-1258		0756-1416.			
Semivolatile Organic Compounds Emission Con-	centration Data,	ug/dscm					۰.	
Phenol	ND	-	ND		ND		ND	
Bis (2-chloroethyl) ether	ND		ND		ND		ND	
2-Chlorophenol	ND		ND		ND		ND	
1,3-Dichlorobenzene	ND		ND		ND		ND	
1,4-Dichlorobenzene	ND		ND		ND		ND ·	
Benzyi alconol	ND		ND		ND		ND	
2-Methylinkenel	ND		ND		ND		ND	
bia_/2_Chlomicommulather	ND		ND		ND		ND	
4-Methylohenol			ND		ND		ND	
N-Nitroso-Di-p-grouvlamine	ND		ND		ND		ND	
Hexachloroethane	ND		ND	•	ND		ND	
Nitrobenzene	ND		ND		ND		ND	
Isophorene	ND	в	ND	BC	ND	в	NTO	
2-Nitrophenol	ND		ND		ND	-	ND	
2.4-Dimethylphenol	ND		ND		ND		ND	
Benzoic acid	ND<	13.46 B	ND<	13.15 B		14.09 B	ND<	13.46
bis(2-Chloroethoxy)methane	ND		ND		ND		ND	
2,4-Dichlorophenol	ND		ND		ND		ND	
1.2.4-Trichlorobenzene	ND		ND		ND		ND	
Naphthaiene	ND	В	ND	BC	ND	BC	ND	
4-Chloroanime	ND		ND		ND		ND	
A Chierra a mathematica a l	ND		ND		ND		ND	
2. Mehrwinsetislene	ND		ND		ND		ND	
Herachlomovelonentacliene			ND		ND		ND	
2.4.6-Trichlorophenol	ND		ND		ND		ND	
2,4,5-Trichlorophenol	ND		ND		ND		ND	
2-Chloronapthalene	ND		ND		NTO			
2-Nitroanaline	ND		ND		ND		ND	
Dimethylphalate		1.35	ND<	2.63	ND<	2.63	ND<	2.63
Acenaphthylene	ND		ND		ND		ND	
2,6-Dinitrotoluene	ND		ND		ND		ND	
3-Nitronnaline	ND		ND		ND		ND	
Accurptione	ND		ND		ND		ND	
Z.4-Dimitrophenol	ND		ND		ND		ND	
4-Nixopicio: Dibertativa	ND		ND /		ND		ND	
2 4-Dinimatohene	ND		ND		ND		ND	
Diethylohthalate	ND	2 42	ND	1.84	ND		ND	
4-Chlorophenyl-openylether	NT	2.42	NTD	1.04		/.11		3.79
Fluorene	ND		NTO		ND			
4-Nitronaline	ND		ND		ND		ND	
4,6-Diniro-2-methylphenol	ND		ND		ND		ND	
n-Nitrosodiphenylamine(1)	ND		ND		ND .		ND	
4-Bromophenyl-phenylether	ND		ND		ND		ND	
Hexachlorobenzene	ND		ND		ND		ND	
Personal and a second s	ND		ND		ND		ND	
A sthere are a	ND		ND		ND		ND	
Carbanie	ND		ND		ND		ND	
Di-o-buty hhthatate	ND	8 08 B	ND	6 06 B	ND	(85 B	ND	<i>c</i>
Fluoranthene	NTD	0.00 B	NTO	0.05 B	NTD	635 B		6.99
Pyrene	ND		ND				ND	
Butylbenzylpthalate		3.77	1.2	3.68	ND<	2.63	ND	292
3.3 - Dichlorobenzidine	ND		ND		ND	2.00	ND	2.72
Benzo(a)anthracene	ND		ND		ND		ND	
Chrysene	ND		ND		ND		ND	
bis(2-Ethylhexyl)phthalate		5.39 BC		3.16 BC		3.69 BC		4.08
Dr-n-Octylpthalate	ND		ND		ND		ND	
Benzo(b)fluoranthene	ND		ND		ND		ND	
Denza (K)IAionaninene	ND		ND		ND		ND	
Indexe(1) 2.2 adverses	ND		ND		ND		ND	
Denary 1,40-00 pyrene	ND		ND		ND		ND	
Benzo (g.h.i) perviene	ND		ND		ND		ND	
Ouinoline	ND ND				ND		ND	
4,4-Dichlorobiphenvl	ND							
Pentachlorobenzene	ND		ND		ND		ND	

 $B = \mbox{Detected in blank train; reported values have been blank corrected. } BC = \mbox{Detected in blank train; test run values were less than blank train values. }$

Test Data

Run number	1		2		3		A3/07D /	~~
Location	-		INCINERATO	RSTACK	5		AVERA	aje.
Date	06-10-93		06-11-03	N JIACK	06-12-02			
Time period	0745-1501		0710-1258		0756-1416			
•	0,40 1001		0/10-1208		0/30-1410.			
Organochlorine Pesticides/PCB Emission	a Concentration Data, ug/	/dscm					•.	-
Alpha-BHC	ND		ND		ND		NTD ·	
Beta-BHC	ND		ND		ND			
Deha-BHC	ND		ND				ND	
gamma-BHC	ND	в	ND	в	ND	7		
Heptachior	ND	-	ND	2	ND	Ь	ND	
Aldrin	ND		ND		ND		ND ·	. • '
Heptachlor exercise	112	0.08			ND .		ND	
Endosulfan I	NO	0.00	NDC	0.05	ND<	0.03		0.03
Diektrin	ND	•	ND		ND		ND	
44-005	ND		ND		ND		ND	
Entrin	ND		ND		ND		ND	
Icadein	ND		ND	•	ND		ND	
	ND		ND		ND		ND	
	ND		ND		ND		ND	
	ND		ND		ND		ND	
Endosultan sultate	ND		ND		ND		ND	
4,4-1,00	ND		ND		ND		ND	
Methorychior	ND		ND		ND		ND	
Endrin Ketone	ND		ND		ND		ND	
alpha-Chlordane	ND		ND		ND		ND	
gamma-Chlordane	ND		ND		ND		ND	
Toxaphene	ND		ND		ND		ND	
Arocior-1016	ND		ND		ND		ND	
Arocior-1221	ND		ND		ND		ND	
Aroclor-1232	ND		ND		ND		ND	
Aroclor-1242	ND		ND		ND		ND	
Aroclor-1248	ND		ND		ND		ND	
Aroclor-1254	ND		ND		ND		ND	
Arocia=1260	ND		ND		ND		ND	
							,	
America	sion Concentration Data,	ug/dscm			-			
Auazme	ND		ND		ND /		ND	
Manipula	ND		ND		ND		ND	
Mevinphos	ND		ND		ND		ND	
Emoprop	ND		ND		ND		ND	
Naled	ND		ND		ND		ND	
Phorate	ND		ND		ND		ND	
Demetor, O	ND		ND,		ND		ND	
Demeton, S	ND		ND		ND		ND	
Diaznon	ND		ND		ND		ND	
Disultoion	ND		ND		ND		ND	
Methyl Parathion	ND		ND		ND		ND	
Ronnel	ND		ND		NÐ		ND	
Malathion	ND		ND		ND		ND	
Feathion	ND		ND		ND		ND	
Ethyl Prathion	ND		ND		ND		ND	
Chlorpyrifos	ND		ND		ND		ND	
Fensulfothion	ND		ND		ND		ND	
Trichloronate	ND		ND		ND		ND.	
Merphos	ND		ND		ND		ND	
Stirophos	ND		ND		ND		ND	
Bolstar	ND		ND		ND		ND	
Azinphos-methyl	ND		ND		ND		ND	
Countraphos	ND		ND				ND	
Supona	ND		ND		ND	•	ND	
Tokuthion	ND		ND		ND		ND	
							1410	

B = Detected in blank train; reported values have been blank corrected.

BC = Detected in blank train; test run values were less than blank train values.

.

Test Data								
Run number	1		2		3		AVE	RACE
Location			INCINERAT	OR STACK				
Date	06-10-03		06-11-03	OR DI LOIL	06.12.03			
Time period	0745 1501		0710 1959		0756 1416			
	0/43-1301		0/10-1258		0/30-1410			
Seminabile Ornania Companyeda Mara Ristoria, Data B. S.						,	۰.	
Schwoldene Organie Composities mans Emission Data, Infit			·					
	ND		ND		ND		' ND	
Bis (2-chioroethyl) ether	ND		ND		ND		ND	
2-Chlorophenol	ND		ND		ND		ND	
1,3-Dichlorobenzene	ND		ND		ND		ND	
1,4-Dichlorobenzene	ND		ND		ND		ND	
Benzvi alchohol	ND		ND		ND		NTD.	
1.2-Dichlorobenzene	ND				ND		ND	
2-Methylphenol	ND		ND		ND		NTD	
bis/2 Chlominonnenilather	ND ND		ND		ND ND		ND	
A Mahahamal	ND		ND		ND		ND	
	ND		ND		ND		ND	
N-Nitroso-Di-n-propylamine	ND		-ND		ND		ND	
Hetachloroethane	ND		ND		ND		ND	
Nitrobenzene	ND		ND		ND		ND	
Lophorone	ND	в	ND	BC	ND	в	NTD	
2-Nitrophenol	NT	-	ND		ND			
24-Dimethylphenol	ND		ND		200			
Benthic acid		2 PTT 04 D	200	4.000 04 D				
birth Chienethematications	NDC	3.5/2-04 B	ND<	3.908-04 8		4.06E-04 B	ND<	3.90E-04
Dis(2-Chioroethoxy intenane	ND		ND		ND		ND	
2,4-Dichlorophenol	ND		ND		ND		ND	
1.2.4-Trichlorobenzene	ND		ND		ND		ND	
Naphthalene	ND	в	ND	BC	ND	BC	ND	
4-Chloroaniline	ND		ND		ND		ND	
Hexachlorobutadiene	ND		ND		ND		ND	
4-Chloro-3-methylphenol	NTD						ND	
2-Mehtuinanthalene	NTD							
Herschlemenschene	200		110					
	ND		ND		ND		ND	
2,4,0-1 nonorophenoi	ND		ND		ND		ND	
2.4.5-Trichlorophenoi	ND		NĎ		ND		ND	
2-Chloronapthalene	ND		ND		ND		ND	
2-Nitronaline	ND		ND		ND		ND	
Dimethylphalate		3.87E-05	ND<	7.79E-05	ND<	7.62E-05	ND<	7.79E-05
Acenaphthylene	ND		ND		ND			
2.6-Dinitratohrene	NTO		ND		ND		NTD	
3-Nimproline	ND							
A support of a	ND		ND		ND		ND	
Assessment	ND		ND		ND		ND	
2,4-Dimuophenol	ND		ND		ND		ND	
4-Nitrophenol	ND		ND		ND		ND	
Dibenzofuran	ND		ND		ND		ND	
2.4-Dinitrotohuene	ND		ND		ND		ND	
Diethylphthalate		6.97E-05		5.45E-05		2.065-04		1.10E-04
4-Chiorophenyl-phenylether	ND		NT		ND		NT	
Fluorene	NTD		NTD		ND		NTD	
A C Distance Construction of the	ND		ND		ND		ND	
4.0-Dimitro 2-methyipoenoi	ND		ND		ND		ND	
n-Nitrosodiphenylamine(1)	ND		ND ·		ND		ND	
4-Bromophenyl-phenylether	ND		ND		ND		ND	
Hexachlorobenzene	ND		ND		ND		ND	
Pentachlorophenol	ND		ND		ND		ND	
Phenanthrene	ND		ND		ND		NT	
Anthracene	NT		NTD		200		ND	
Carternale	ND							
The hereinheite here	ND		ND		ND		ND	
Drubulyiphusiale		232E-04 B		1.79E-04 B		1.98E-04 B		2.03E-04
Fluoranchene	ND		ND		ND		ND	
ryrene	ND		ND		ND		ND	
Butylbenzylpthalate		1.08 E-0 4		1.09E-04	ND<	7.62E-05		8.52E-05
3,3'-Dichlorobenzidine	ND		ND		ND		ND	
Benzo(a)anthracene	ND		ND		ND		ND	
Chrysene	ND		ND		ND		ND	
bis(2-Ethylhexyl)phthalate		1.555-04 80		0355-05 80		1.075-04 PC		1182-04
DimActylinthalate	NT			JUJU-UJ DU	200	TOUT OF DC	P.175	1.100-04
Benzahlfhametere	20		ND		ND			
	ND		ND		ND		ND	
DEUIZO(K)LINOTAIIUNEINE	ND		ND		ND		ND	
Henzo(a)pyrene	ND		ND		ND		ND	
Indeno(1,2.3-cd)pyrene	ND		ND		ND		ND	
Dibenzo(a,h)anthracene	ND		ND		ND		ND	
Benzo(g.h.i)perviene	ND		ND		ND	-	NTO	
Quinoline	רוא		ND		NTO			
4 4-Dichlombinhenvi			200		110		2122	
Pertodo londen me	110				ND			
	ND		ND		ND		ND	

B = Detected in blank train; reported values have been blank corrected.BC = Detected in blank train; test run values were less than blank train values.

۰.

RMA – SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM

TABLE 5-3 (cont) SUMMARY OF SEMIVOLATILE ORGANIC COMPOUNDS TEST DATA AND TEST RESULTS

Test Data				
Run number	1	· 2	3	AVERAGE
Location		INCINERATOR STACK		
Date	06-10-93	06-11-93	06-12-03	
Time period	0745-1501	0710-1258	0756-1416	
Organochlorine Pesticides/PCB Mass Emission Data	, lb/hr			·.
Alpha-BHC	ND	ND	ND	· ND
Beta-BHC	ND	ND	ND	ND
Delta-HHC	ND	ND	ND	ND
gamma-BHC	ND	B ND B	ND B	ND
Heptachior	ND	ND	ND	ND
Akirin	ND	ND	ND	. ND
Heptachlor epoxide	2.21E-06	ND< 7.79E-07	ND< 7.62E-07	9.92E-07
Endosulfan I	ND	ND	ND	ND
Diektrin	ND	ND	ND	ND
4,4'-DDE	ND	ND	ND	ND
Endrin	ND	ND	ND	ND
Isodrin	ND	ND	ND	ND
Endosulfan II	ND	ND	ND	ND
4,4'-DDD	ND	ND	ND	ND
Endosulfan sulfate	ND	ND	ND	ND
4,4'DDT	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	ND
Endrin ketone	ND	ND	ND	ND
alpha-Chlordane	ND	ND	ND	ND
gamma-Chlordane	ND	ND	ND	ND
Toxaphene	ND	ND	ND	ND
Aroclor-1016	ND	ND	ND	ND
Aroclor-1221	ND	ND	ND	ND
Aroclor-1232	ND	ND	ND	ND
Aroclor-1242	ND	ND	ND	ND
Arocior-1248	ND	ND	ND	ND
Arocior-1254	ND	ND	ND	ND
Arocior-1260	ND	ND	ND	ND
Organophosphorous Pesticides/PCB Mass Emission I	Data, Ib/hr		· · · · · ·	
Attazne	ND	ND	ND	ND
Lichorvos	ND	ND	ND	ND
Mevinpicos	ND	ND	ND	ND
Naled	ND	ND	ND	ND
Theret	ND	ND	ND	ND
Photale	ND	ND	ND	ND
Demetor S	ND	ND	ND	ND
Denteron, S	ND	ND	ND	ND
Digulation	DN ND	ND	ND	ND
Mathul Banchion	D ND	ND	ND	ND
Poppel	ND ND	ND	ND ND	D
Molectrice		ND	ND	ND
Fenthion	ND	ND	ND	ND
Ethyl Prothion	ND	ND	ND	ND
Chlomatice	ND	ND	ND	ND
Emsulfathion	ND	ND ND	ND	ND ND
Trichloronate	ND	NTO	ND	
Merphos	ND		ND	
Stirophos				
Boktar		ND	ND	
Azinphos-methyl	ND	NTO	ND	ND
Coursebos	ND	ND	ND	ND
Supora	ND	ND	ND	ND
Tokuthion	ND	ND		ND

B = Detected in blank train: reported values have been blank corrected. BC = Detected in blank train: test run values were less than blank train values.

TEST DATA			
Test run number	1	2	3
Test location	-	INCINERATOR STACK	5
Test date	06-10-93	06-11-93	06-12-93
Test time period	0745-1501	0710-1258	0756-1416
SAMPLING DATA			
Sampling duration, min.	240.0	240.0	240.0
Nozzle diameter, in.	0.355	0.355	0.355
Cross sectional nozzle area, sq.ft.	0.000687	0.000687	0.000687
Barometric pressure, in. Hg	24.79	24.57	24.62
Avg. orifice press. diff., in H2O	1.42	1.51	1.44
Avg. dry gas meter temp., deg F	78	80	81
Avg. abs. dry gas meter temp., deg. R	538	540	541
Total liquid collected by train, ml	4892.0	4914.0	4952.0
Std. vol. of H2O vapor coll., cu.ft.	230.3	231.3	233.1
Dry gas meter calibration factor	1.010	1.010	1.010
Sample vol. at meter cond., dcf	168.721	173.104	170.963
Sample vol. at std. cond., dscf (1)	139.101	140.945	139.109
Percent of isokinetic sampling	104.7	103.3	105.4
GAS SIREAM COMPOSITION DATA			
O_2 , % by volume, dry basis	10.1	9.8	10.2
O2. % by volume, dry basis	3.4	3.7	3.4
CO, % by volume dry basis	0.0	0.0	0.0
N2, % by volume, dry basis	86.5	86.6	86.4
Molecular wt. of dry gas, lb/lb mole	29.75	29.71	29.76
H2O vapor in gas stream, prop. by vol.	0.623	0.621	0.626
Mole fraction of dry gas	0.377	0.379	0.374
Molecular wt. of wet gas, lb/lb mole	22.4	22.4	22.4
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA		<i>2</i>	
Static pressure, in. H ₂ O	-0.13	-0.13	-0.14
Static pressure, in. Hg	-0.010	-0.010	-0.010
Absolute pressure, in. Hg	24.78	24.56	24.61
Avg. temperature, deg. F	184	183	184
Avg. absolute temperature, deg.R	644	643	644
Pitot tube coefficient	0.84	0.84	0.84
Total number of traverse points	12	12	12
Avg. gas stream velocity, ft./sec.	52.5	54.1	52.9
Stack/duct cross sectional area, sq.ft.	9.62	9.62	9.62
Avg. gas stream volumetric flow, wacf/min.	30300	31200	30500
Avg. gas stream volumetric flow, dscf/min.	7800	8000	7700

(1) Standard conditions = 68 degrees F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)

TEST DATA:						
Test run number		1		2		3
Test location		-	INC	INERATOR STACK		-
Test date		06-10-93		06-11-93		06-12-93
Test time period		0745-1501		0710-1258		0756-1416
DIOXIN LABORATORY REPORT DATA, ng						
2,3,7.8-TCDD	ND		ND		ND	
1,2,3,7,8-PeCDD	ND		ND		ND	·
1,2,3,4.7,8-HCDD	ND		ND		ND	
1.2.3.6.7.8-HxCDD	ND		ND		ND	
1.2.3.7.8.9 HxCDD	ND		ND		ND	
1.2.3.4.6.7.8 HbCDD		0.020	ND<	0.020		0.020
OCDD		0.040		0.030		0.070
Total TCDD	ND<	0.020		0.010		0.006
Total PeCDD		0.020	ND<	0.010	ND<	0.010
Total HxCDD	ND	0.020	ND	0.010	ND	0.010
Table Heren	ιψ	0.020		0.020	nu	0.020
Total PCDD		0.020		0.030		0.020
		0.000		0.040		0.090
DIOXIN CONCENTRATION, ppt/v						
2,3,7,8-TCDD	ND		ND		ND	
1,2,3,7,8-PeCDD	ND		ND		ND	
1,2,3,4,7,8-HxCDD	ND		ND		ND	
1,2,3,6,7.8-HxCDD	' ND		ND		ND	
1,2,3,7,8,9-HxCDD	ND		ND		ND	
1,2,3,4,6.7,8+1pCDD		2.87E-04	ND<	2.83E-04	•	2.87E-04
OCDD		5.31E-04		3.93E-04		9.30E-04
Total TCDD	ND<	3.79E-04		1.87 E-04		1.14E-04
Total PeCDD		3.43E-04	ND<	1.69E-04	ND<	1.71E-04
TotalHxCDD	ND		ND		ND	
Total HpCDD		2.87E-04	ND<	4.25E-04		2.87E-04
Total PCDD		1.16E-03		5.81E-04		1.33E-03
DIOXIN EMISSIONS, IMdscf						
2,3,7,8-TCDD	ND		ND		ND	
1.2.3,7,8-PeCDD	ND		ND		ND	
1,2,3,4,7,8-HxCDD	ND		ND		ND	
1.2.3.6.7.8-HxCDD	ND		ND		ND	
1.2.3,7,8,9-HxCDD	ND		ND.		ND	
1,2,3,4,6,7,8HpCDD		3.17 E-1 6	ND<	3.13E-16	-	3.17 E-1 6
OCDD .		6.34E-16	• = •	4.69E-16		1.11E-15
Total TCDD	ND<	3.17E-16		1.56E-16		9.51 E-1 7
Total PeCDD		3.17 E-1 6	ND<	1.56E-16	ND<	1.58E-16
Total HxCDD	ND		ND		ND	
Total HpCDD		3.17 E-1 6	ND<	4.69E-16		3.17E-16
Total PCDD		1.27E-15		6.26E-16		1.52E-15

ND = Not detected in sample train.

ND <= Either not detected in sample train and quantified in another test run, or test run values were less than blank train values and the detection limit is reported.

TEST DATA:						
Test run number		1		2		3
Test location			INC	INERATOR STACK		
Test date		06-10-93		06-11-93		06-12-93
Test time period		0745-1501		0710-1258		0756-1416
DIOXIN CONCENTRATION, ug/dscm						
2,3,7,8-TCDD	ND		ND		ND	141
1,2,3,7,8-PeCDD	ND		ND		ND	. ~
1,2,3,4,7,8-HxCDD	ND		ND		ND	
1,2,3,6,7,8-HxCDD	ND		ND		ND	
1,2,3,7,8,9-HxCDD	ND		ND		ND	
1,2,3,4,6,7,8 HpCDD		5.08E-06	ND<	5.01E-06		5.08F-06
1,2,3,4,6,7,8,9-OCDD		1.02E-05		7.52E-06		1.78E-05
TotalTCDD	ND<	5.08E-06		2.51E-06		1.52E-06
Total PeCDD		5.08E-06	ND<	2.51E-06	ND<	2.54E-06
TotalHxCDD	ND		ND		ND	
TotalHpCDD		5.08E-06	ND<	7.52E-06		5.08E-06
Total PCDD		2.03E-05		1.00E-05		2.44E-05
DIOXIN EMISSIONS, Ib/hr						
2,3,7,8-TCDD	ND		ND		ND	
1.2.3.7.8-PeCDD	ND		ND		ND	
1,2,3,4,7,8-HaCDD	ND		ND		ND	
1,2,3,6,7,8-HaCDD	ND		ND		ND	
1,2,3,7,8,9-HxCDD	ND		ND		ND	
1,2,3,4,6,7,8 HpCDD		1.47 E-1 0	ND<	1.49E-10		1.46E-10
1.2.3.4,6,7,8,9-OCDD		2.95E-10		2.24E-10		5.12E-10
				2		
Total TCDD	ND<	1.47 E-1 0		7.47 E-1 1		4.39E-11
Total PeCDD		1.47 E-1 0	ND<	7.47 E- 11	ND<	7.32E-11
TotalHxCDD	ND		ND	t	ND	
TotalHpCDD		1.47 E-1 0	ND<	2.24E-10		1.46 E-1 0
Total PCDD		5.90E-10		2.99E-10		7.03E-10

ND = Not detected in sample train.

ND <= Either not detected in sample train and quantified in another test run, or test run values were less than blank train values and the detection limit is reported.

.

۰.

TEST DATA:			
Test run number	1	2	3
Test location		INCINERATOR STACK	•
Test date	06-10-93	06-11-93	0 6-12-9 3
Test time period	0745-1501	0710-1258	0756-1416
FURAN LABORATORY REPORT DATA, ng			
2.3.7,8-TCDF	0.020	0.020 NI	D< 0.010
1,2,3,7, 8 Pe CDF	ND	ND NI	5
2,3,4,7, 8 Pe CDF	ND	ND NI	Ś
1.2.3,4,7, 8 Hx CDF	0.020	ND< 0.010 NI	0.008
1,2.3,6,7,8 HxCDF	ND	ND NI	2
1,2.3,7,8,9-HxCDF	ND	ND NI	5
2.3.4.6.7.8 HxCDF	ND< 0.020	0.002 NI	0.010
1.2.3.4,6.7.8-HpCDF	0.020	0.010 NI	0.010
1,2,3,4,7,8,9 HpCDF	ND	ND NI	>
OCDF	ND	ND NI)
TotalTCDF	0.210	0.310	0.470
Total PeCDF	0.030	ND < 0.080 NE	0.060
Total HxCDF	0.032	0.002 NI	>< 0.010
Total HpCDF	0.020	0.010 NE	0.010
Total PCDF	0.292	0.322	0.470
FURAN CONCENTRATION, ppt/v			
2,3,7,8-TCDF	3.99E-04	3.94E-04 ND)< 2.00 E -04
1.2.3,7,8-PeCDF	ND	ND NE)
2.3.4,7,8-PeCDF	ND	ND ND) · ·
1.2.3.4.7,8-HxCDF	3.265-04	ND < 1.61E-04 ND)< 1.30 E -04
1.2.3.6.7.8-HxCDF	ND	ND ND)
1.2.3.7,8.9 HxCDF	ND	ND ND	1
4,5,4,6,7,8 HRCDF	ND < 3.26E-04	3.22E-05 ND	< 1.63E-04
1.2.3.4.0.7.8 HIPCDF	2.98 E-04	1.47E-04 ND	< 1.49E-04
1,2,3,4,7,8,9 HpCDF	ND	ND ND)
CLDF	ND	ND ND	*
Total TCDF	4.19 E-0 3	6.11E-03	9.38E-03
Total PeCDF	5_38E-04	ND < 1.42E-03 ND	< 1.08E-03
Total HxCDF	5.21E-04	3.22E-05 ND	< 1.63E-04
Total HpCDF	2.98E-04	1.47E-04 ND	< 1.49E-04
Total PCDF	5.55E-03	6.29 E- 03	9.38E-03
FURAN EMISSIONS, Ib/dscf			
2.3.7.8-TCDF	3.17 E- 16	3.13E-16 ND	< 1.58E-16
1.2.3.7.8 PeCDF	ND	ND ND	ļ.
2,3,4,7,8-PeCDF	ND	ND ND	с
1.2.3.4.7. 8 Hx CDF	3.17 E-1 6	ND < 1.56E-16 ND	< 1.27E-16
1,23,6,7,8-HxCDF	ND	ND ND	
1,2,3,7,8,9 HxCDF	ND	ND ND	
	ND < 3.17E-16	3.13E-17 ND	< 1.58E-16
1.2.2.4.0.1. 6.110.DF	3.17E-16	1.56E-16 ND	< 1.58E-16
140,4.7.8. 7 I PULF	ND	ND ND	
CUr .	ND	ND ND	
Total TCDF	3.33E-15	4.85E-15	7.45E-15
	4.75E-16	ND < 1.25E-15 ND	< 9.51 E-1 6
Total Harme	5.U/E-16	3.13E-17 ND	< 1.58E-16
TabiPCDE	3.175-16	1.56E-16 ND	< 1.58E-16
	4.636-15	5.04E-15	7.45E-15

ND = Not detected in sample train.

ND <= Either not detected in sample train and quantified in another test run, or test run values were less than blank train values and the detection limit is reported.

TEST DATA:						
Test run number		1		2		3
Test location			Г	NCINERATOR	STACK	•
Test date		06-10-93	_	06-11-93		06-12-03
Test time period		0745-1501		0710-1258		0756-1416
FURAN CONCENTRATIONS, ug/dscm						
2.3.7.8-TCDF		5.08E-06		5.01E-06	ND<	2.545-06
1,2,3,7, 8 Pe CDF	ND		ND		ND	
2,3,4.7,8-PeCDF	ND		ND		ND	
1,2,3,4,7,8-HxCDF		5.08E-06	ND<	2.51E-06	ND<	2-03E-06
1,2.3,6,7,8 HxCDF	ND		ND		ND	2002 00
1,2,3,7,8,9-HxCDF	ND	•	ND		ND	
2.3.4.6.7.8-HxCDF	ND<	5.08E-06		5.01E-07	ND <	2 545-06
1,2,3,4,6,7,8-HrCDF		5.08E-06		2 515-06		25/15-06
1.2.3.4.7.8.9-HbCDF	ND		ND		ND	2
OCDF	ND		ND		ND	
T-+- 1 (70)						
Total I CDF		5.33E-05		7.77E-05		1.19E-04
10al rel Dr		7.62E-06	ND<	2.00E-05	ND<	1.52E-05
Iozi HACDF		8.12E-06		5.01E-07	ND<	2.54E-06
IoalHpCDF		5.08E-06		2.51E-06	ND<	2.54E-06
TotalPCDF		7.41E-05		8.07E-05		1.19E-04
FURAN EMISSIONS, Ib/br						
2.3.7.8-TCDF		1.47 E- 10		1.49E-10	ND<	7.325-11
1.2.3.7.8-PeCDF	ND		ND		ND	
2,3,4,7.8 PeCDF	ND		ND		ND	
1.2.3.4,7,8-HxCDF		1.47E-10	ND<	7.47E-11	ND<	5.85-11
1.2.3.6.7.8-HxCDF	ND		ND	····	ND	0.002 11
1.2.3.7.8.9-HxCDF	ND		ND		ND	
2.3.4.6.7.8-HxCDF	ND<	1.47E-10		1.49E-11	ND<	7 325-11
1,2,3,4,6,7,8 HpCDF		1.47E-10		7475-11	NDC	7 325-11
1.2.3.4.7.8.9 HbCDF	ND		NT		ND	/
OCDF	ND		ND		ND	
TateITCDF		1 555-00		2 225 00		- 4 -
Total PeCDF		2 21 5-10		2.32E-09 5.09E-10	NTD -	3.44E-09
Total HyCDF		2265-10	ND<	3.985-10	ND<	4_595-10
Total HorDE		1 475-10		1.492-11	ND<	/_345-11
Total BCDE		2155.00		/.4/E-11	ND<	7.52E-11
		~1JE~09		2.415-UY		3.44E-09

ND = Not detected in sample train. ND <= Either not detected in sample train and quantified in another test run, or test run values were less than blank train values and the detection limit is reported.

TEST DATA						
Test run number		1		2		3
Test location			INC	INERATOR ST	ACK	•
Test date		06-10-93		06-11-93	• •	06-12-93
Test time period		0745-1501		0710-1258		0756-1416
TOXICITY EQUIVALENCY EMISSIONS (F-TEFs/89), 10/br						
2.3.7.8-TCDD	ND		NT			·
1.2.3.7.8-PeCDD	ND		ND			. •
1.2.3,4.7,8-HxCDD	ND		ND		ND	
1.2.3.6.7.8-HxCDD	ND		ND		ND	
1,2,3,7,8,9-HxCDD	ND		ND			
1,2,3,4,6,7,8-HpCDD		1.47F-12	ND<	1 405-12	i U	1 465-10
OCDD		2.95E-13		2.24 E-1 3		5.12E-13
Total TCDD		0.0		• •		
Total PeCDD		0.0		0.0		0.0
TotalHxCDD		0.0		0.0		0.0
Total HnCDD		0.0		0.0		0.0
		0.0		0.0		0.0
2,3,7,8-TCDF		1.47E-11		1 401-11		7 205-10
1.2.3,7,8-PeCDF	ND		ND	1.472 11		1000-10
2.3.4.7.8-PeCDF	ND		ND		ND	
1.2.3.4.7,8-HxCDF		1.47E-11	ND<	7.475-12		5 85E-12
1.2.3.6.7. 8 Hx CDF	ND		ND	/		J.0JE-14
1.2.3.7.8.9 HxCDF	ND		ND			
2.3.4.6.7.8 HxCDF	ND<	1.47E-11		1.49F-12	NDC	7 375-12
1,2,3,4.6,7,8 HpCDF		1.47E-12		7.47E-13		7 375-13
1.2,3.4.7.8.9-HpCDF	ND		ND		ND	
1.2.3,4.6,7,8.9-OCDF	ND		ND		ND	
Total TCDF		0.0				
Total PeCDF		0.0		0.0		0.0
TotalHxCDF		0.0		0.0 /		0.0
Total HpCDF		0.0		0.0		0.0
TOTAL 2.3.7.8-TODD FOUTVALENTS IN A-		2.075 11				0.0
		5-6/2-11		1./4E-11		1.98E-12

ND = Not detected in sample train.

ND <= Either not detected in sample train and quantified in another test run, or test run values were less than blank train values and the detection limit is reported.

.

TEST DATA						
Test run number		1		2		3
Test location		-	т	NONERATOR	STACK	5
Test date		06-10-93	-	06-11-03	OTTION D	06-12-03
Test time period		0745-1501		0710-1258		0756-1416
TOXICITY EQUIVALENCY EMISSIONS (1-TEFs/89),	ug/dscm					0,00 1410
2.3,7,8-TCDD	ND		ND		ND	· · ·
1,2,3,7,8-PeCDD	ND		ND			
1.2.3.4.7.8-HxCDD	ND		ND			
1.2.3.6.7.8-HxCDD	ND		ND		ND	
1.2.3.7.8.9 HxCDD	ND		ND		ND	
1.2.3.4.6,7,8-HpCDD		5.08E-08	ND<	5015-08	ND I	5 095-09
1.2.3,4,6,7,8,9-OCDD		1.025-08		7 576-00		3.000-00
		1.0120 00		1.545-05		1.700-00
Total TCDD		0.0		0.0		0.0
Total PeCDD		0.0		0.0		0.0
Total HxCDD		0.0		0.0		0.0
Total HpCDD		0.0		0.0		0.0
-				0.0		0.0
2.3,7,8-TCDF		5.08E-07		5.015-07	NDC	2 545-07
1,2.3,7,8 PeCDF	ND		ND	5.012 07	ND	2242-07
2,3,4,7,8-PeCDF	ND		ND		ND	
1.2.3.4.7.8-HxCDF		5.08E-07	ND<	2.515-07		2 035-07
1,2,3,6,7,8-HxCDF	ND		ND			2.001-07
1.2.3,7,8,9-HxCDF	ND		ND		ND	
2.3.4.6.7.8 HxCDF	ND<	5.08E-07		5.01E-08	ND <	2 545-07
1.2.3.4.6.7.8 HpCDF		5.08E-08		2.51E-08	ND<	2 545-08
1.2.3,4,7.8,9 HpCDF	ND		ND		ND	
1.2.3,4,6,7,8,9-OCDF	ND		ND		ND	
				•		
Total TCDF		0.0		0.0		0.0
Total PeCDF		0.0		0.0		0.0
Total HxCDF		0.0		0.0		0.0
Total HpCDF		0.0		0.0		0.0
TOTAL 2,3,7,8-TCDD EQUIVALENIS, ug/dscm		1.13E-06		5.84 E-0 7		6.85E-08

ND = Not detected in sample train.

ND <= Either not detected in sample train and quantified in another test run, or test run values were less than blank train values and the detection limit is reported.

RMA – SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM TABLE 5–5 SUMMARY OF METALS TEST DATA AND TEST RESULTS

TEST DATA			
Test run number	1	2	3
Test location		INCINERATOR STACK	
Test date	06-10-93	06-11-93	06-12-93
Test time period	0745-1032	0710-0953	0756-1101
SAMPLING DATA			
Sampling duration, min.	120.0	120.0	120.0
Nozzle diameter, in.	0.375	0.375	0.375
Barometric pressure, in. Hg	24.79	24.57	24.62
Avg. onfice press. diff., in H2O	1.75	1.70	-1.77
Avg. dry gas meter temp., deg F	78.50	81.63	80.69
Avg. abs. dry gas meter temp., deg. R	539	542	541
Total liquid collected by train, ml	2735.0	2636.0	2526.0
Std. vol. of H2O vapor coll., cu.ft.	128.7	124.1	118.9
Dry gas meter calibration factor	1.001	1.001	1.001
Sample vol. at meter cond., dcf	91.757	91.638	92.469
Sample vol. at std. cond., dscf ⁽¹⁾	74.974	73.777	74.742
Percent of isokinetic sampling	100.2	98. 6	94.7
GAS STREAM COMPOSITION DATA			
∞_2 , % by volume, dry basis	10.1	9.9	10.1
O_2 , % by volume, dry basis	3.4	3.5	3.6
CO, % by volume, dry basis	0.0	0.0	0.0
N_2 , % by volume, dry basis	86.5	86.6	86.4
Molecular wt. of dry gas, lb/lb mole	29.8	29.7	29.8
H2O vapor in gas stream, prop. by vol	0.632	0.627	0.614
Mole fraction of dry gas	0.368	0.373	0.386
Molecular wt. of wet gas, lb/lb mole	22.3	22.4	22.5
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DAY	TA		
Cross sectional nozzle area, sq.ft.	0.000767	0.000767	0.000767
Static pressure, in. H ₂ O	-0.13	-0.15	-0.17
Static pressure, in. Hg	-0.010	-0:011	-0.013
Absolute pressure, in. Hg	24.78	24.56	24.61
Avg. temperature, deg. F	185	184	183
Avg. absolute temperature, deg.R	645	644	643
Pitot tube coefficient	0.84	0.84	0.84
Total number of traverse points	30	30	30
Avg. gas stream velocity, ft./sec.	5 4.3 /	54.0	5 4.9
Stack/duct cross sectional area, sq.ft.	9.62	9.62	9.62
Avg. gas stream volumetric flow, wacf/min.	31300	31200	31700
Avg. gas stream volumetric flow, dscf/min. ⁽¹⁾	7800	7800	8300

 $^{(1)}$ Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)

RMA – SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM TABLE 5–5 (cont) SUMMARY OF METALS TEST DATA AND TEST RESULTS

TEST DATA			
Test run number	1	2	3
Test location		INCINERATOR STACK	
Test date	06-10-93	06-11-93	06-12-93
Test time period	0745-1032	0710-0953	0756-1101
METALS LABORATORY REPORT DATA, ug			
Antimony (Sb)	10.40	11.25	11.20
Arsenic (As) N	D< 40.30	11.40 ND	< 40.30
Barium(Ba) N	D< 80.60	38.50 ND	< 80.50
Beryllium(Be) N	D< 2.06	ND< 0.40 ND	< 2.06
Cadmium (Cd)	1.65	ND < 1.96 ND	< 2.06
Chromium (Cr) N	D< 4.00	2.83 ND	< 4.00
Copper(Cu)	3808.80	4319.20	3666.00
Lead (Pb)	56.25	62.30	55.05
Mercury (Hg)	124.57	109.22	143.88
Nickel (Ni)	D< 16.10	7.20 ND	< 16.10
Selenium(Se) N	D< 40.30	ND< 22.20 ND	< 40.30
Silver(Ag)	3.25	ND< 3.60 ND	< 4.00
Inalium(II) N	D < 40.30	ND< 33.50 ND	< 40.30
Vanadium(V) N	D< 20.10 522.20	2.35 ND ⁻ 081.65	< 20.10
	522.20	961.00	105655
METALS CONCENTRATIONS, ug/m ³ (1)	4.00	C 00	5.00
Anumony (SD)	4.90	5.38	5.29
Arsenic (As) N Borium (Bo) N	D < 10.90	5.40 ND	28.02
Banun(Ba) IN	D< 37.90	10.43 ND-	< <u>36.03</u>
Codmium (Cd)	0.79		< 0.97
Chromium (Cr) N	0.78	125	< 1.97
	1702.85	2067.22	1721.05
Lead (Pb)	26.40	2007.22	26.01
Mercury (Ho)	58.67	52 27	67.97
Nickel (Ni)	D< 7.58	3.45 ND	c 7.61
Selenium(Se)	D< 18.98	ND < 10.63 ND	19.04
Silver(Ag)	1.53	ND < 1.72 ND	< 1.89
Thallium/TI) N	D< 18.98	ND < 16.03 ND	19.04
Vanadium(V) N	D< 9.47	1.12 ND-	9.50
Zinc(Zn)	245.94	469.83	490.55
METALS CONCENTRATIONS, Ib/dscf ⁽¹⁾			
Antimony (Sb)	3.06E-10	3.36E-10	3.30E-10
Arsenic (As) N	D< 1.19E-09	3.41E-10 ND -	< 1.19E-09
Barium(Ba) N	D< 2.37E-09	1.15E-09 ND -	< 2.37E-09
Beryllium(Be) N	D< 6.06E-11	ND < 1.20E-11 ND -	< 6.08E-11
Cadmium (Cd)	4.85E-11	ND < 5.86E-11 ND -	< 6.08E-11
Chromium (Cr) N	D< 1.18E-10	8.46E-11 ND •	< 1.18E-10
Copper(Cu)	1.12E-07	1.29E-07	1.08E-07
Lead (Pb)	1.65E-09	1.86E-09	1.62E-09
Mercury (Hg)	3.66E-09	3.26E-09	4.24E-09
Nickel (Ni) Ni	D< 4.73E-10	2.15E-10 ND-	: 4.75E-10
Selenium(Se) NI	D< 1.19E-09	ND< 6.63E-10 ND-	: 1.19E-09
Silver(Ag)	9.56E-11	ND< 1.08E-10 ND	1.18E-10
Thailium(II) N	D< 1.19E-09	ND < 1.00E-09 ND -	1.19E-09
Vanadium(V) Ni $Zin \sim Zn$	D< 5.91E-10 1 54E-08	7.02E-11 ND 4	3.05E-08
	1.541-08	2.932-06	3.002-00
METALS CONCENTRATIONS, Ib/hr (1)	1.400.04	1.007.01	4 6 6 6 6 6
Antimony (Sb)	1.44E-04	1.58E-04	1.64E-04
Arsenic (As) N	0 < 3.301-04	1.00E-04 ND 4	5.891-04
Banum(Ba)	D< 1.11E-03	5.40E-04 ND 4	
Berylinum(Be) Ni	2.8415-05	ND < 0.755.05	3.0112-05
Chumum (Ct)	2.202-03		5 84C 0C
	5 265 02	5.9/E-00 ND 4	5 25000
Copper(CL)	3.2015-02 7.760-04	0.00E-02 8.74E-04	3.335-02 8.045-04
Mercury (Ha)	1 775-02	0./+15-04 1 5316.02	0.0+15-04 2 1015-02
Nickel (Ni)	1.725-05	1 01E.04 NT -	· 235ELA
Selenium(Se) NT			< 5 80E.04
Silver(Ag)	4 401-05		5.845-05
Thallium/Tl) NT	D< 5.56F-04	ND < 4.70E-04	5.895-04
Vanadium(V) NT	D< 2.77E-04	3.30E-05 NT	2.94E-04
Zinc(Zn)	7.21E-03	1.38E-02	1.52E-02

 $^{(1)}$ Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)

۰,

RMA – SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM TABLE 5-6

SUMMARY OF HEXAVALENT CHROMIUM TEST DATA AND TEST RESULTS

TEST DATA:				
Test run number	1	2		2
Test location	•	INCINEDATOD STACE		3
Test date	06-10-03	110010EXATOR 31ACF		06-10-02
Test time period	1130-1552	1034-1341	÷	1137-1440
SAMPLING DATA:				
Sampling duration, min.	120.0	120.0		120.0
Nozzle diameter, in.	0 354	0.354		120.0
Cross sectional nozzle area, sq.ft.	0:000683	0.004		0.004
Barometric pressure, in. Hg	24 70	0.000003		0.000683
Avg. orifice press. diff., in H-O	1 27	1 22		24.02
Avg. dry gas meter temp., deg F	1.27	1.54		1.33
Avg. abs. dry gas meter temp., deg. R	548	00 546		88
Total liquid collected by train. ml	2212.0	340		548
Std. vol. of H ₂ O vapor coll. cuft.	2313.0	2547.0		2297.0
Dry gas meter calibration factor	108.9	110.5		108.1
Sample vol. at meter cond. def	0.9923	1.0010		0.9923
Sample vol at std cond. dscf (1)	/9./21	80.888		82.397
Percent of isokinetic sampling	03.388	64.492		65.008
room, or possible company	102.4	98.4		100.0
GAS STREAM COMPOSITION DATA:				
ω_2 , % by volume, dry basis	10.1	9.9		10.2
O_2 , % by volume, dry basis	3.4	3.5		3.4
CO, % by volume, dry basis	0.0	0.0		0.0
N_2 , % by volume, dry basis	86.5	86.6		86.4
Molecular wL of dry gas, lb/lb mole	29.75	29.73		29.76
H ₂ O vapor m gas stream, prop. by vol.	0.632	0.631		0.625
Mole traction of dry gas	0.368	0.369		0.375
Molecular wt. of wet gas, ib/lb mole	22.3	22.3		22.4
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:				
Static pressure, in. H ₂ O	-0.24	-0.20		-0.18
Static pressure, in. Hg	-0.018	-0.015		-0.013
Absolute pressure, in. Hg	24.77	24.56		24.61
Avg. temperature, deg. F	183	182		182
Avg. absolute temperature, deg.R	643	642		642
Pitot tube coefficient	0.84	0.84		0.84
Total number of traverse points	12	12		12
Avg. gas stream velocity, ft./sec.	50.3	53.6		52.0
Stack/duct cross sectional area, sq.ft.	9.62	9.62		9.62
Avg. gas stream volumetric flow, wacf/min.	29000.	30900		30000
Avg. gas stream volumetric flow, dsc/min.	7300	7700		7600
LABORATORY REPORT:				
Total Cr ⁺⁶ catch, ug	0.37 B	0.07 B	<	0.80 BC
HEXAVALENT CHROMIUM EMISSIONS				
Concentration, ug/dscm	0.206	0.000		
Mass rate, lbs/hr	U.200	0.038	<	0.435
	2-015-00	1.105-06	<	1.24E-05

(1) Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 inches Hg (760mm Hg)

< = Not detected in sample train.

B = Detected in site blank: reported values have been blank corrected.

BC = Detected in site blank; test run values were less than site blank values; detection limit is reported.
CO, CO₂, O₂, SO₂, NO_x, THC and HCl Emission Results

Parameter	Run #1	Run #2	Run #3	Average
Carbon Monoxide (1-hr rolling avg.)	49.5 ppm	47.4 ppm	57.6 ppm	51.5 ppm
Carbon Dioxide	10.14%	9.74%	10.29%	10.06%
Oxygen	3.37%	3.74%	3.40%	3.50%
Sulfur Dioxide	20.7 ppm	1.13 ppm	145 ppm	55.6 ppm
Nitrogen Oxides	119.2 ppm	142.0 ppm	130.7 ppm	130.6 ppm
Hydrogen Chloride	1.74 ppm	2.07 ppm	3.70 ppm	2.50 ppm
Total Hydrocarbons	5.53 ppm	9.61 ppm	5.06 ppm	6.73 ppm

Summary of Analytical Results for Basin F Waste Feed (LF)

Parameter ^a	Run #1	Run #2	Run #3
Volatile Organics ^b • Chloromethane (ug/L) • Methylene Chloride (ug/L) • Acetone (ug/L) • 2-Butanone (ug/L) • Toluene (ug/L) • Dimethyldisulfide (ug/L)	1750 410 B° 3100 B° <250 ^d ND <120 ^d	1,350 41 B 2,700 B 165 < 50 ^d 18.5 J	1,550 82.5 B 4,000 B 130 J <50 ^d 32 J
Semivolatile Organics	ND	ND	ND
Pesticides Mevinphos (ug/L) Diazinon (ug/L) Methyl Parathion (ug/L) Ronnel (ug/L) Fenthion (ug/L) Ethyl Parathion (ug/L) Merphos (ug/L) Azinphos Methyl (ug/L) Tokuthion (ug/L) Aldrin (ug/L) Dieldrin (ug/L) Endrin ketone (ug/L)	ND ND 4.7 4.6 23 ND ND 2.5 J 2.6 55 51 48 2.0	170 6.9 22 4.3 18 14 3.8 J ND 4.7 52 45 42 ND	150 6.3 19 3.6 J 12 11 37 ND 5.5 89 86 72 2.9
Halides • Bromide (mg/L) • Chloride (mg/L) • Fluoride (mg/L)	999 153,000 2,220	1,010 162,000 2,500	1,060 167,000 2;450
Sulfate (mg/L)	18,000	18,500	19,300
Density (g/mL)	1.20	1.20	1.20
Heating Value	S	ample did not ignite.	
Dioxins/Furans • 1234678-HpCDD (ppq) • OCDD (ppq) • 123478-HxCDF (ppq) • 123678-HxCDF (ppq) • 234678-HxCDF (ppq) • 1234678-HpCDF (ppq) • OCDF (ppq)	ND ND ND ND ND ND	292 2,320 ND ND 90.3 (120)° 326	204 1,580 58.2 26.8 (76.4) ^e 213 766

~

Table 5-8

Summary of Analytical Results for Basin F Waste Feed (LF) (Continued)

Parameter ^a	Run #1	Run #2	Run #3
Dioxins/Furans (continued)			
• TOTAL TCDD (ppg)		(80 G)*	NTD
• TOTAL HpCDD (ppq)	ND	202	140
• TOTAL TCDF (ppg)	ND	(70.6)*	76.4
• TOTAL PeCDF (ppg)	519	273	112
• TOTAL HxCDF (ppq)	ND	88.1	143
• TOTAL HpCDF (ppq)	ND	(153)°	367
Metals			
• Antimony (mg/L)	ND	ND	ND
• Arsenic (mg/L)	3.1	2.5	2.6
• Barium (mg/L)	ND	ND	ND
• Beryllium (mg/L)	ND	ND	ND
• Cadmium (mg/L)	ND	ND	ND
• Chromium (mg/L)	1.5	1.7	ND
• Copper (mg/L)	3,420	3,550	64.9
• Lead (mg/L)	0.48	1.84	0.65
• Mercury (mg/L)	0.14	0.13	0.13
• Nickel (mg/L)	32.0	33.2	33.9
• Lead (mg/L)	0.36	ND	19.0
• Selenium (mg/L)	19.4	19.4	ND
• Silver (mg/L)	ND	ND	ND
• Thallium (mg/L)	ND	ND	ND
• Vanadium (mg/L)	1.2	ND	ND
• Zinc (mg/L)	26.6	22.6	21.9
Ash Content (%)	46.5	46.4	45.3
рН	6.2	6.0	6.1
Water Content (%)	65.4	64.8	63.5
Total Suspended Solids (mg/L)	25	144	95
Total Dissolved Solids (mg/L)	270,000	210,000	271,000

^aAnalytes not listed were reported as non-detects.

^bAverage reported value of two grab samples taken at beginning and end of each test run.

"The "B" flag is used when the analyte is found in the associated blank and in the sample. It indicates possible/probable laboratory blank contamination.

"The average value for the two grab samples was less than the highest detection limit value.

"() indicates the estimated maximum possible concentration.

Table 5-9

Summary of Analytical Results for POHC Analysis

Parameter	Run #1	Run #2	Run #3
POHC - Chlorobenzene • Grab Sample 1 • Grab Sample 2	92% 94%	94% 93%	92% 92%
POHC - Carbon TetrachlorideGrab Sample 1Grab Sample 2	95% 95%	93% 73%*	91% 93%

*A significant concentration of chlorobenzene was found in this analysis; sampling technique error suspected.

Table 5-10

Summary of Analytical Results for Makeup Water (MW)

Parameter*		Runs #1, 2, 3	
<u>Volatile Organics</u> • Methylene Chloride (ug/L) • Acetone (ug/L) • Chloroform (ug/L) • Bromodichloromethane (ug/L) • Dibromochloromethane (ug/L) • Bromoform (ug/L)	<u>Run 1</u> 13 B ^c ND 30 6 0.7 J 0.7 J	Run 2 3 J ND 41 8 ND ND	Run 3 10 B 3 J 32 7 2 J ND
Semivolatile Organics ^b • Di-n-Butylphthalate (ug/L) • bis(2-Ethylhexyl)phthalate (ug/L)		1 JB 1 JB	
Pesticides ^b		ND	
Dioxins/Furans ^b • OCDD (ppq) • 123478-HxCDF (ppq) • 123678-HxCDF (ppq) • 234678-HxCDF (ppq) • 1234678-HpCDF (ppq) • OCDF (ppq) • TOTAL TCDD (ppq) • TOTAL HxCDF (ppq) • TOTAL HpCDF (ppq)		(32.0) ^d (3.6) ^d 2.6 8.7 10.5 68.9 (13.0) ^d 11.8 13.4	
Metals ^b Antimony (ug/L) Arsenic (ug/L) Barium (ug/L) Beryllium (ug/L) Cadmium (ug/L) Chromium (ug/L) Copper (ug/L) Lead (ug/L) Mercury (ug/L) Nickel (ug/L) Silver (ug/L) Silver (ug/L) Thallium (ug/L) Vanadium (ug/L) Zinc (ug/L)		ND 3.0 ND 1.9 ND ND 19.3 ND ND ND ND ND ND ND 7.7 55.2	
<u>Total Halides^b</u> • Chloride (mg/L)		30.4	

^aAnalytes not listed were reported as non-detects.

^bThe three test runs were composited into one sample for analysis.

"The "B" flag is used when the analyte is found in the associated blank and in the sample. It indicates possible/probable laboratory blank contamination.

^d() indicates the estimated maximum possible concentration.

Parameter ^a	R	Luns #1,2,3 ^b	
Volatile Organics • Methylene Chloride (ug/L) • Acetone (ug/L)	<u>Run 1</u> 160 B° 110 B°	<u>Run 2</u> 160 B 91 J	<u>Run 3</u> 160 B 63 J
Semivolatile Organics		ND	
Pesticides		ND	
Dioxins/Furans ^d • 123478-HxCDD (ppq) • 123678-HxCDD (ppq) • 123789-HxCDD (ppq) • OCDD (ppq) • 23478-PeCDF (ppq) • 123478-HxCDF (ppq) • 123678-HxCDF (ppq) • 234678-HxCDF (ppq) • 1234678-HpCDF (ppq) • TOTAL TCDD (ppq) • TOTAL HxCDD (ppq) • TOTAL PeCDF (ppq) • TOTAL HxCDF (ppq) • TOTAL HxCDF (ppq) • TOTAL HxCDF (ppq) • TOTAL HxCDF (ppq)		$(33.3)^{d}$ $(29.7)^{d}$ $(41.0)^{d}$ $(94.4)^{d}$ $(29.3)^{d}$ 29.9 $(24.0)^{d}$ 70.4 28.6 $(75.8)^{d}$ $(103)^{d}$ $(29.6)^{d}$ 95.6 36.7	
Metals • Antimony (ug/L) • Arsenic (ug/L) • Barium (ug/L) • Beryllium (ug/L) • Cadmium (ug/L) • Chromium (ug/L) • Copper (ug/L) • Lead (ug/L) • Mercury (ug/L) • Nickel (ug/L) • Selenium (ug/L) • Silver (ug/L) • Thallium (ug/L) • Vanadium (ug/L) • Zinc (ug/L)		69.9 645 14.3 3.8 ND 66.8 10.6 12.5 ND 70.1 ND ND ND 208 823	
<u>Total Halides</u> • Chloride (mg/L) • Fluoride (mg/L)		1,900 240	
Density (g/mL)		1.10	

Summary of Analytical Results for Caustic Solution (CS)

^aAnalytes not listed were reported as non-detects.

^bThe three test runs were composited into one sample for analysis.

"The "B" flag is used when the analyte is found in the associated blank and in the sample. It

indicates possible/probable laboratory blank contamination.

d() indicates the estimated maximum possible concentration.

Summary of Analytical Results for Brine (BR)

Parameter*	Run #1 ^b	Run #2 ^b	Run #3 ^b
Volatile Organics			
• Methylene Chloride (ug/L)	11 B°	120 B ^c	17 J
Semivolatile Organics			
• Phenol (ug/L)	7 J	ND	ND
• Benzoic Acid (ug/L)	36 J	42 J	40 J
• Diethylphthalate (ug/L)	ND	1 J	3 J
• Pentachlorophenol (ug/L)	ND	2 J	ND
• Di-n-Butylphthalate (ug/L)	3 JB	3 JB	3 JB
• bis(2-Ethylhexyl)phthalate (ug/L)	ND	ND	2 J
Pesticides	ND	ND	ND
Dioxins/Furans	ND	ND	ND
Metals			
 Antimony (mg/L) 	ND	ND	ND
• Arsenic (mg/L)	3.1	2.7	2.9
• Barium (mg/L)	ND	ND	ND
• Beryllium (mg/L)	0.10	ND	ND
 Cadmium (mg/L) 	ND	ND	ND
• Chromium (mg/L)	1.8	2.0	2.1
• Copper (mg/L)	2,550	2,650	2,730
• Lead (mg/L)	0.67	1.12	ND
• Mercury (mg/L)	0.01	0.01	ND
 Nickel (mg/L) 	24.8	25.6	26.7
• Selenium (mg/L)	0.22	ND	ND
• Silver (mg/L)	ND	ND	ND
• Thallium (mg/L)	ND	ND	ND
• Vanadium (mg/L)	1.1	ND	ND
• Zinc (mg/L)	25.1	17.7	17.8

.

Summary of Analytical Results for Brine (BR) (Continued)

Parameter ^a	Run #1 ^b	Run #2 ^b	Run #3 ⁶
Total Halides • Bromide (mg/L) • Chloride (mg/L) • Fluoride (mg/L)	1,040 131,000 37.4	970 131,000 35.2	983 140,000 33.1
Density (g/mL)	1.20	1.20	1.20
рН	5.3	5.1	4.9
Total Suspended Solids (mg/L)	6,600	5,160	4,730
Total Dissolved Solids (mg/L)	269,000	287,000	199,000
Cyanide (ug/L)	ND	ND	ND
Sulfide (mg/L)	ND	ND	ND

^aAnalytes not listed were reported as non-detects.

^bAverage reported value of two grab samples taken at beginning and end of each test run.

"The "B" flag is used when the analyte is found in the associated blank and in the sample. It indicates possible/probable laboratory blank contamination.

^dThe average value for the two grab samples was less than the highest detection limit value. ^eND: None Detected.

SECTION 6

QUALITY ASSURANCE SUMMARY

6.1 SUMMARY

Test data reviewed for this report represent Trial Burn samples collected 9-12 June 1993, and analyzed by Roy F. Weston Analytics Division, and Triangle Laboratories of RTP, Inc. (for dioxins/furans by method 8290). Analyses were logged and tracked by WESTON RFW batch assignment for the following analyses: Volatile Organic Sampling Train (VOST), volatiles (VOA), semivolatiles (BNA), chlorinated pesticides/PCBs (OCP), organophosphorus pesticides (OPP), total dioxins/furans (TDF), metals, and inorganics. Inorganics may include anions (bromide, chloride, fluoride, iodide, sulfate, sulfide), ammonia, cyanide, pH, BTU, density, HCl, and various solids analyses (particulates, %ash, %moisture, total dissolved solids, total and suspended solids). In summary:

RFW #	Sample Type	Analysis
9306L822	Stack Gas Audit	VOST
9306L857	Stack Gas	VOST
9306L858	Stack Gas	BNA, OCP, OPP
9306L859	Stack Gas, & Audit	Metals
9306L860	Liquid Waste	VOA, BNA, OCP, OPP, Inorganics, Metals
9306L861	Makeup Water, Brine	VOA, BNA, OCP, OPP, TDF, Inorganics, Metals
9306L862	Stack Gas	BNA, OCP, OPP
9306L863	Stack Gas	Metals
9306L864	Stack Gas	HCl, Particulates
9306L865	Caustic Solution	VOA
9306L866	Stack Gas	VOST
9306L885	Stack Gas	VOST
9306L901	Liquid Waste	VOA, BNA, OCP, OPP, Inorganics, Metals
9306L902	Brine	VOA, BNA, OCP, OPP, TDF, Inorganics, Metals

MK01\RPT:05189008.001\s6

08/26/93

RFW #	Sample Type	Analysis
9306L903	Makeup Water	VOA, BNA, OCP, OPP, Inorganics, Metals
9306L904	Caustic Solution	VOA, BNA, OCP, OPP, Inorganics, Metals
9306L905	Stack Gas	BNA, OCP, OPP
9306L906	Stack Gas	HCl, Particulates
9306L907	Stack Gas	Metals
9306L909	Brine PE	VOA, BNA, OCP, OPP, Inorganics, Metals
9306L910	Liquid Waste PE	VOA, BNA, OCP, OPP, Inorganics, Metals
9306L926	Stack Gas	РОНС
none ^{1, 2} . subbed to Triangle	Caustic Solution, Liquid Waste, Makeup Water	TDF by Method 8290

¹Corresponds to liquid feed samples received at WESTON from the following RFW Batches: 9306L860, 9306L901, 9306L903, 9306L904.

²TDF analysis of the stack gases by Method 23 was subbed under separate contract to Triangle Laboratories. These results are not evaluated in this QA Summary.

6.1.1 Document Authority for Criteria

Test data in support of the RMA-SQI Trial Burn were reviewed for conformance to project analytical requirements and data quality objectives (DQOs). Required methods, analyte lists, preservation and holding times are presented in Sections 1.4, 5, 6.4-6.13, 8, 11 of the project Trial Burn Plan, Volume I, September 1992. A memo dated 10 June 1993 regarding analysis of the brine samples for dioxins/furans analysis by method 8280 outlines four items of method clarification. These items with respect to analyte list, number of replicates to be used for the multi-point calibration curve, reporting limit, and surrogate list were approved prior to sample analysis of the brines, and were considered as amended to the Trial Burn Plan for the purpose of this QA summary evaluation.

DQOs for precision, accuracy, and completeness are presented in Section 11 of the project Trial Burn Plan and Section 2.4 of the project Chemical Data Acquisition Plan (CDAP), October 1992.

- For convenience, precision and accuracy DQOs are provided in Tables 6-1 through 6-9 of this report.
- The project QA objective for laboratory completeness is to have 95% of the method control data within control criteria. The laboratory completeness goal was met for both the stack gases as a stand alone entity, and the project overall. For this Trial Burn, 95% of the control QC sample results associated with the stack gas samples were within the accuracy and precision goals stated in Tables 6-1 through 6-9; and 98% of the control OC sample results associated with the entire project met QC criteria. QC goals by parameter group are addressed in subsequent sections of this report. The ability to meet or exceed completeness objectives is dependent on the nature of samples submitted for analysis. For example, the analytical methods proposed for use (particularly for organics analyses) are intended for analysis of environmental samples of low and medium concentrations. The applicability of these methods to the RMA-SQI non-routine matrices such as stack gases, Basin F liquids, makeup water, brines and caustic solution may result in poor method performance and therefore adversely impact achievement of the data completeness goal.

Project specific completeness goals account for all aspects of sample handling, from collection through data reporting. The level of completeness can be affected by loss or breakage of samples during transport, as well as external problems which prohibit collection of the sample. The project QA objective for overall completeness is to have no less than 80% of the data usable without qualification. The project completeness goals was met for both the stack gases as a stand alone entity, and the project overall. A total of 97% of the method and matrix QC precision and accuracy data associated with the stack gases is within QC control limits. A total of 93% of the method and matrix QC precision and accuracy data associated with the entire project is within QC control limits.

6.2 <u>METHODS, ANALYTE LISTS, PRESERVATION AND HOLDING TIMES</u>6.2.1 <u>Analytical Methods</u>

A summary of the analytical methods employed during the Trial Burn is provided in Table 4-1. The methods used are in 100% conformance to the objectives stated in the Trial Burn Plan.

6.2.2 <u>Analyte Lists</u>

A summary of the analytical parameters specified in the Trial Burn Plan is provided in Tables 4-3 through A-8, which provides a listing of the analytes in the following requested parameter groups: volatile organic compounds, semivolatile organic compounds, pesticides/ PCBs (both organochlorine pesticides and organophosphate pesticides), dioxins/furans, metals, and total halides. Chlorobenzene is listed in the Trial Burn Plan (TBP) as a target analyte for both VOA and BNA. EPA methods recommend this compound be analyzed as a purgeable (VOA) and list it as a target analyte for VOA. Data are reported for this compound as a VOA. A total of 100% of the requested analytes was reported.

6.2.3 <u>Sample Preservation</u>

Sample preservation is discussed in Section 2.3.2 of this Trial Burn Report.

6.2.4 Holding Times

Holding times were evaluated from time of collection to time of preparation, and from time of preparation to time of analysis. In some instances (e.g., VOA or halide analysis), the preparation date is the same as the analysis date. TBP holding times were met for the initial analysis of 100% of the samples for all parameters except dioxins/furans analyzed by method 8290.

EPA method holding times were met for all dioxins/furans extractions, analyses and re-analyses; and <u>are useable without qualification according to the EPA published methods</u>. For SW-846, both method 8280 and 8290 indicate a holding time of 30 days to extraction and 45 days to complete analysis. However, the TBP holding time from collection to extraction for analyses by method 8290 all exceeded the TBP-specified 7 days to extraction by 9-11 days.

A summary of holding time criteria checks follow:

Analysis:	Holding Time Criteria Evaluation:
VOST	all matrices analyzed within 14 days of collection
VOA	all matrices within 7 days of collection when not acid-preserved, and within 14 days of collection when acid-preserved with HCl
BNA	all matrices extracted/analyzed within TBP specification (7 days to extraction, 40 days for analysis of extract)
OCP	all matrices extracted/analyzed within TBP specification (7 days to extraction, 40 days for analysis of extract)
OPP	initial analysis for all matrices extracted/analyzed within TBP specification (7 days to extraction, 40 days for analysis of extract)
	 Brines: 2 of 3 brines required re-extraction due to low surrogate recoveries. This re-extraction was one day past hold, and should not prevent use of the data. Makeup Water: makeup water sample required re-extraction due to low surrogate recoveries. This re-extraction was one day past hold, and should not prevent use of the data.

Analysis:	Holding Time Criteria Evaluation:
TDF	 Stack Gases: not evaluated Brines: all 4 samples were initially extracted/analyzed within TBP specification for method 8280 analyses (7 days to extraction, 40 days for analysis of extract). 1 sample required re-extraction due to low internal standard recovery. This re-extraction was 5 days past hold¹. Liquid Feed Samples: (caustic solution, liquid waste, makeup water) all 6 samples exceeded the TBP extraction holding time for method 8290 (7 days to extraction, 40 days for analysis of extract)¹ ¹Note: all evaluated samples and re-extractions were extracted and analyzed within the EPA SW-846 method recommendation of 30 days from collection for extraction and 45 days from collection to complete analysis.
Inorganics	all matrices prepped/analyzed within TBP specification
Metals	all matrices digested/analyzed within TBP specification (28 days to preparation for Hg, 180 days for other metals)

6.3 PRECISION AND ACCURACY DOOS

6.3.1 Variance from TBP-Specified Criteria

6.3.1.1 <u>VOST</u>

DQOs for VOST analysis are not specified in the TBP. For this review, a 50-150% recovery window was used to evaluate surrogate performance. 100% of all analyses met this criteria.

6.3.1.2 **OPP Surrogate/Matrix Spike Components**

For OPP, the TBP-specified list of surrogate and target spiking compounds was changed. With respect to the Trial Burn objective to determine absence/presence of organophosphorus pesticides (OPPs) in Basin F Liquids, <u>no adverse affect to useability is</u> presented by use of the alternate list of spiking compounds for surrogate and matrix spike analysis. The target compound list for this project, with the compounds presented in order of elution on the primary analysis column, is shown in Table A. Historical data for the Basin F liquid shows no previous history of OPPs (Trial Burn Plan, Table 1-1). With no

site-specific compounds of interest, selection of the spiking solution components for presentation in the TBP was based on operating practices in the Analytics Division at the time the TBP was initially drafted. Since that time the components of the spiking solution have been changed, providing:

- A <u>greater number of</u> <u>compounds</u> (8 versus 5) as indicators of QC performance.
- A QC check at approximately five minute intervals over the chromatographic run for <u>more frequent indication</u> <u>of performance</u> throughout the run.
- <u>Good separation to allow</u> for positive identification, i.e., minimized co-elution and interferences.

Table A				
RT	RT	RMA Trial Burn		
TBP	Lab	Surrogate and Target		
List	List	OPP Compound List:		
	2.01	Dichlorvos		
4.28	ļ	Mevinphos		
8.40		Ethoprop		
		Naled		
		Phorate		
		Demeton,O		
	10.48	Demeton,S		
	11.02	Atrazine		
12.38		Diazinon		
		Disulfoton		
14.25	14.25	Methyl Parathion		
		Ronnel		
	16.45	Malathion		
	16.45	Fenthion		
		Chlorpyrifos		
		Ethyl Parathion		
		1 richloronate		
		Merphos		
		Supona		
	20.42	Tolathion		
	20.42	Fensulfothion		
	22.52	Ethion (surrogate)		
	<i>22.</i> 00	Roletar		
28 13	28 13	Azinnhos methyl		
20.13	20.10	Coumanhos		
i	I	Coumapilos		

(If all OPP target compounds were

present in a single sample, they would overlap, and inhibit or prevent correct compound identification. For calibration, three separate mixes are required in order to adequately separate all target compounds for identification and quantification).

The retention times of the compounds specified for spiking in the Trial Burn Plan, as well as those actually used for spiking, are provided in <u>Table A</u>, to show the greater coverage provided by the spiking mix used over the full run time of approximately 35 minutes.

6.3.1.3 OPP Control Limits

Control limits used to evaluate the surrogate ethion were the same as those listed for the TBP-specified surrogate triphenylphosphate: 40-140% recovery. Control limits for the target compounds methyl parathion and methyl azinphos were obtained from the TBP. For other spiked target compounds not addressed in the TBP, a 50-150% recovery window and 30% RPD were used to evaluate target compound performance. These criteria are equivalent to, or in most instances are more stringent than, the limits provided for the compounds specified in the TBP. Tables 6-5 and 6-6 show these spiking compounds and criteria.

6.3.1.4 Stack Gas Extractables: Sample Prep

In order to maintain the desired project detection limits, a single limited-volume extract was obtained for all organic extractables (BNA, OCP, and OPP). This precluded addition of OPP surrogates and spikes due to co-elution with OCP surrogates and target analytes, therefore, 12 of the 48 analyses have no recovery data available for OPP. The corresponding OCP recoveries for the composites provide information on general extraction efficiency and recovery for these batches. The respective RFW numbers are:

TBURN-SB-WATER
COMP FH RN1
COMP BH RN1
COMP FH SB

6-8

6.3.2 Stack Gas Analyses

Stack gas samples were collected for VOST, BNA, OCP, OPP, metals, HCl, and particulates in three separate test burns over three consecutive days, 10, 11, and 12 June 1993. On 9 June, a VOST audit sample was collected, and on 10 June a multi-metals audit sample was collected. Evaluation of QC indicators analyzed concurrent to these audit samples is included in this QC Summary. Results of audit samples are discussed in Section 7.2.

Test	Number of Samples	Method QC: % of total meeting QC criteria	Sample QC: % of total meeting QC criteria
VOST	A total of 67 investigative samples (including blank train and site blank samples), plus associated quality control checks, were analyzed for VOST.	100% of 91 results met QC precision and accuracy criteria	99% of 156 recoveries met QC precision and accuracy criteria
BNA	A total of 8 investigative samples (including blank train and site blank samples), plus associated quality control checks, were analyzed for BNA.	93% of 102 results met QC precision and accuracy criteria	100% of 66 results met QC precision and accuracy criteria
OCP	A total of 8 investigative samples (including blank train and site blank samples), plus associated quality control checks, were analyzed for OCP.	89% of 45 results met QC precision and accuracy criteria	100% of 20 results met QC precision and accuracy criteria
OPP	A total of 8 investigative samples (including blank train and site blank samples), plus associated quality control checks, were analyzed for OPP.	rol Due to the nature of the sample preparation, OI QC indicators could not be analyzed. Samples were extracted concurrently with OCP, refer to OCP results for OC performance.	
metals	A total of 11 investigative samples (including blank train and site blank samples), plus associated quality control checks, were analyzed for metals.	96% of 48 results met QC precision and accuracy criteria	Only mercury was spiked. 100% of the 5 obtainable results met QC precision and accuracy criteria (4 MS recoveries were unusable due to the high concentration of mercury in the unspiked samples)
HCl, part	A total of 13 investigative samples (including blank train and site blank samples), plus associated quality control checks, were analyzed for HCl and particulates.	100% of 4 results met QC precision and accuracy criteria	100% of 7 results met QC precision and accuracy criteria

6.3.3 Liquid Feed Samples and Brines

For purpose of this report, liquid feed samples include caustic solution, liquid waste, and makeup water. Liquid feed and brine samples were collected for VOA, BNA, OCP, OPP, TDF, metals, and inorganics on three separate test burns over three consecutive days, 10, 11, and 12 June 1993. On 11 June, PE samples characteristic of the liquid waste feed and of the brine were collected concurrently with the Trial Burn samples. Evaluation of QC indicators analyzed concurrent to these audit samples is included in this QC Summary. Results of audit samples are discussed in Section 7.2. In the following summary table, results of laboratory control samples analyzed concurrently with the stack gas samples are not repeated in the totals formatted QC.

Test	Number of Samples	Method QC: % of total meeting QC criteria	Sample QC: % of total meeting QC criteria
VOA	A total of 20 investigative samples (including blank train and site blank samples), plus associated quality control checks, were analyzed for VOA.	100% of 36 results met QC precision and accuracy criteria	96% of 196 results met QC precision and accuracy criteria
BNA	A total of 8 investigative samples (including blank train and site blank samples), plus associated quality control checks, were analyzed for BNA.	95% of 74 results met QC precision and accuracy criteria	77% of 174 obtainable results met QC precision and accuracy criteria
OCP	A total of 11 investigative samples (including blank train and site blank samples), plus associated quality control checks, were analyzed for OCP.	95% of 44 results met QC precision and accuracy criteria	84% of 70 obtainable results met QC precision and accuracy criteria
OPP	A total of 11 investigative samples (including blank train and site blank samples), plus associated quality control checks, were analyzed for OPP.	96% of 74 results met QC precision and accuracy criteria	63% of 85 obtainable results met QC precision and accuracy criteria
metal s	A total of 11 investigative samples (including blank train and site blank samples), plus associated quality control checks, were analyzed for metals.	100% of 359 results met QC precision and accuracy criteria	90% of 469 obtainable results met QC precision and accuracy criteria
Inorg	A total of 78 investigative samples (including blank train and site blank samples), plus associated quality control checks, were analyzed for inorganics	100% of 73 results met QC precision and accuracy criteria	93% of 100 results met QC precision and accuracy criteria

6.3.4 Blank Analysis

Methylene chloride was reported above the laboratory reporting limit in some VOST/VOA method blanks and trip blanks; however, contamination levels are all less than three times the reporting limit for this common laboratory solvent.

Laboratory blanks for BNA, OCP, OPP and TDF showed no contamination at or above the reporting limit.

For metals analyses, the method blank for silicon associated with the stack gas samples showed elevated levels of analyte (>9,000 ug) above the laboratory reporting limit. Most hits in the samples were of significant enough levels that this blank contamination had no impact; however, results for samples 9306L859-003 (MMTL-RN1-BHN @ 1,850 ug) and 9306L863-003 (MMTL-RN2-BHN @ 89,500 ug) should be examined as potential for false positives. All other method blanks were reported at levels less than the reporting level, although quantities between the instrument detection limit (IDL) and reporting limit were reported in some blanks for arsenic, boron, calcium, lead, selenium, silicon, thallium, vanadium and zinc.

All method blanks for inorganics showed no contamination at or above the reporting limit.

6.4 COMPLETENESS

Review of reported analytes against requirements of the TBP showed the following:

Analysis:	Analysis of Requested Analytes Criteria Evaluation:
VOST/VOA	• all specified analytes reported
BNA	 chlorobenzene was not reported with BNA; however, was reported with the VOST and VOA results
OCP	• all specified analytes reported
OPP	 all specified analytes reported surrogate and target compounds for spiking were not as specified in the TBP, however, the substituted compounds provide a larger number of compounds for evaluation than originally specified (refer to Sections 6.3.1.2)
TDF	 all specified isomers reported in method 8290 totals are reported for each congener group in method 8280
Inorganics	• analytes with TBP specified DQOs were not applicable to this Trial Burn data set; however, all analytes specified on the chain of custody were reported
Metals	• all specified analytes reported

The laboratory completeness goal of 95% and project completeness goal of 80% with respect to precision and accuracy DQOs were met. For the stack gases the laboratory completeness (based on control QC sample results) and project completeness (based on control QC and matrix QC results) were 95% and 97%, respectively. For the overall project (stack gas samples and other matrix samples), laboratory and project completeness assessment were 98% and 93%, respectively.

6-12

Table 6-1

Water Surrogate Recovery Limits - VOA

Fraction	Surrogate Compound	% Recovery Limits
VOA	Toluene-d ₈	81-117
VOA	4-Bromofluorobenzene	74-121
VOA	1,2-Dichloroethane-d ₄	70-121

Note: This list includes selected compounds used for QA/QC accuracy and precision control in the groups (fractions) of analytes shown. Selected compounds are consistent with guidance presented in the U.S. EPA SW-846, 3rd edition and/or the U.S. Contract Laboratory Program (CLP) Statement of Work (SOW 2/88). Stated control limits are performance based and have been adopted from the referenced SOW.

Table 6-2

Fraction	Matrix Spike Compound	% Recovery Limits	Relative % Difference
VOA	1,1-Dichloroethene	61-145	14
VOA	Trichloroethene	71-120	14
VOA	Chlorobenzene	75-130	13
VOA	Toluene	76-125	13
VOA	Benzene	76-127	11

Water Matrix Spike Recovery Limits - VOA

Note: This list includes selected compounds used for QA/QC accuracy and precision control in the groups (fractions) of analytes shown. Selected compounds are consistent with guidance presented in the U.S. EPA SW-846, 3rd edition and/or the U.S. Contract Laboratory Program (CLP) Statement of Work (SOW 2/88). Stated control limits are performance based and have been adopted from the referenced SOW.

Table 6-3

Water Surrogate Recovery Limits - BNA/Acids

Fraction	Surrogate Compound	% Recovery Limits
BNA	Nitrobenzene-d ₅	35-114
BNA	2-Fluorobiphenyl	43-116
BNA	p-Terphenyl-d ₁₄	33-141
BNA	Phenol-d ₅	10-94
BNA	2-Fluorophenol	21-100
BNA	2,4,6-Tribromophenol	10-123

Note: This list includes selected compounds used for QA/QC accuracy and precision control in the groups (fractions) of analytes shown. Selected compounds are consistent with guidance presented in the U.S. EPA SW-846, 3rd edition and/ or the U.S. Contract Laboratory Program (CLP) Statement of Work (SOW 2/88). Stated control limits are performance based and have been adopted from the referenced SOW.

Table 6-4

Water N	Aatrix S	Spike	Recovery	Limits	- BNA	/Acids
---------	----------	-------	----------	--------	-------	--------

Fraction	Matrix Spike Compound	% Recovery Limits	Relative % Difference
BN	1,2,4-Trichlorobenzene	39-98	28
BN	Acenaphthene	46-118	31
BN	2,4-Dinitrotoluene	24-96	38
BN	Pyrene	26-127	31
BN	N-Nitroso-Di-n- Propylamine	41-116	38
BN	1,4-Dichlorobenzene	36-97	28
Acid	Pentachlorophenol	9-103	50
Acid	Phenol	12-110	42
Acid	2-Chlorophenol	27-123	40
Acid	4-Chloro-3-Methylphenol	23-97	42
Acid	4-Nitrophenol	10-80	50

Note: This list includes selected compounds used for QA/QC accuracy and precision control in the groups (fractions) of analytes shown. Selected compounds are consistent with guidance presented in the U.S. EPA SW-846, 3rd edition and/ or the U.S. Contract Laboratory Program (CLP) Statement of Work (SOW 2/88). Stated control limits are performance based and have been adopted from the referenced SOW.

Table 6-5

Water Surrogate Recovery Limits - Pesticides

Fraction	Surrogate Compound	% Recovery Limits
Pesticide (organochlorine)	Dibutylchlorendate	24-154
Pesticide (organophosphorous)	Ethion	40-140

Note: This table shows the selected compound used for QA/QC accuracy and precision control. Selected compound is consistent with guidance presented in the U.S. EPA SW-846, 3rd edition and/or the U.S. Contract Laboratory Program (CLP) Statement of Work (SOW 2/88). Stated control limits are performance based and have been adopted from the referenced SOW.

Table 6-6

Fraction	Matrix Spike Compound	% Recovery Limits	Relative % Difference
Pesticide (organochlorine)	Lindane	56-123	15
Pesticide (organochlorine)	Heptachlor	40-131	20
Pesticide (organochlorine)	Aldrin	40-120	22
Pesticide (organochlorine)	Dieldrin	52-126	18
Pesticide (organochlorine)	Endrin	56-121	21
Pesticide (organochlorine)	4,4-DDT	38-127	27
Pesticide (organophosphorous)	Dichlorous	50-150	30
Pesticide (organophosphorous)	Demeton-s	50-150	30
Pesticide (organophosphorous)	Methyl parathion	52-172	30
Pesticide (organophosphorous)	Atrazine	50-150	30
Pesticide (organophosphorous)	Fenthion	50-150	30
Pesticide (organophosphorous)	Tokuthion	50-150	30
Pesticide (organophosphorous)	Fensulfothion	50-150	30
Pesticide (organophosphorous)	Methyl azinphos	54-138	25

Water Matrix Spike Recovery Limits - Pesticides

Note: This list includes selected compounds used for QA/QC accuracy and precision control in the groups (fractions) of analytes shown. Selected compounds are consistent with guidance presented in the U.S. EPA SW-846, 3rd edition and/ or the U.S. Contract Laboratory Program (CLP) Statement of Work (SOW 2/88). Stated control limits are performance based and have been adopted from the referenced SOW.

Table 6-7

Water Surrogate Recovery Limits - Dioxins/Furans

Fraction	Surrogate Compound	% Recovery Limits
Dioxin	2,3,7,8- TCDD - C ₁₃	40-120
Dioxin	1,2,3,6,7,8-HCDD - C ₁₃	40-120
Dioxin	1,2,3,6,7,8-OCDD - C ₁₃	40-120
Dioxin	1,2,3,4,7,8- HxCDD - C ₁₃	40-120
Furan	2,3,1,7,8- PeCDF - C ₁₃	40-120
Furan	1,2,3,4,7,8- HxCDF - C ₁₃	40-120
Furan	1,2,3,4,7,8,9- HpCDF - C ₁₃	40-120

Note: These analyses will be performed by a subcontractor.

Table 6-8

Water Matrix Spike Recovery Limits - Dioxins/Furans

Fraction	Matrix Spike Compound	% Recovery Limits
Dioxin	2,3,7,8-TCDD	60-140
Dioxin	1,2,3,6,7,8-HCDD	60-140
Dioxin	1,2,3,6,7,8-OCDD	60-140
Furan	2,3,7,8-TCDF	60-140
Furan	1,2,3,6,7,8-HCDF	60-140
Furan	1,2,3,6,7,8-OCDF	60-140

Note: These analyses will be performed by a subcontractor.

Table 6-9

Water Matrix Spike Recovery Limits - Inorganics

Matr	ix Spike Compound	% Recovery Limits	Relative % Difference
Metals -	Arsenic, barium, beryllium, cadmium, chromium, lead, thallium, and mercury	75-125	20
	Antimony	40-160	20
	Silver	60-140	35
Sulfur		70-130	30
Ammonia		70-130	30
Total hali	des	70-130	30

Note: This list includes selected compounds used for QA/QC accuracy and precision control in the groups (fractions) of analytes shown. Selected compounds are consistent with guidance presented in the U.S. EPA SW-846, 3rd edition, and/ or the U.S. Contract Laboratory Program (CLP) Statement of Work (SOW 2/88). Stated control limits are performance-based and have been adopted from the referenced SOW.

SECTION 7 VISITS AND AUDIT SUMMARY

7.1 VISITORS LIST

This section includes a list of personnel from the various oversight and state agencies and their designated subcontractors who were present at RMA to observe and monitor the Trial Burn test program. The individuals listed were present during part or all of the Trial Burn test days 10-12 June 1993.

EPA:	Carl Daly, Larry Diede, Brent Truskowski
Entropy:	David Brintle
<u>CDH:</u>	Celia Van Derloop, Lynn Olson
<u>CDM:</u>	Tim McCandless, Kelly Velasquez
<u>ITO:</u>	George Hritz

7.2 AUDIT SUMMARY

EPA, in conjunction with their oversight responsibilities for cleanup efforts performed by the Army and their subcontractors at the RMA, observed all activities associated with the Trial Burn program, including an audit of the analytical methods used by the WESTON laboratory. Two Performance Evaluation (PE) samples were prepared and submitted to the Lionville laboratory for analysis. One PE sample was characteristic of the liquid waste feed and the other sample was characteristic of the brine. A summary of the analytical results for the liquid waste feed and brine is located in Tables 7-1 and 7-2, respectively.

Stack audit samples for the volatile organic sampling train (VOST), dioxins/furans and multi-metals were also received from EPA and analyzed. The dioxin/furan analysis of the SQI stack samples by EPA Method 23 procedures was performed by Triangle Laboratories, located in Durham, North Carolina. Summaries of the test results for VOST, dioxins/furans and multi-metals are located in Tables 7-3, 7-4, and 7-5, respectively.

Procedural checklists used by the Stack Team while sampling are provided in Appendix B.1.2, and calibration data sheets for sampling equipment are provided in Appendix B.1.3.

Table 7-1

Summary of Audit Results for Liquid Waste Feed (LF)

Parameter	Results
Volatile Organics	
• Chloromethane (ug/L)	8,900
• Methylene Chloride (ug/L)	350 B
• 1,1-Dichloroethene (ug/L)	310
• 1,2-Dichloroethene (ug/L)	260
• Chloroform (ug/L)	150
• 1,2-Dichloroethane (ug/L)	230
• 1,1,1-Trichloroethane (ug/L)	260
• Carbon Tetrachloride (ug/L)	80 J
 Bromodichloromethane (ug/L) 	160
• Trichloroethene (ug/L)	200
• Dibromochloromethane (ug/L)	190
• Benzene (ug/L)	190
 Bromoform (ug/L) 	110 J
• Tetrachloroethene (ug/L)	130
• Toluene (ug/L)	61 J
 Chlorobenzene (ug/L) Ethylbenzene (ug/L) 	
Chlorobenzene (ug/L) 59 J Ethylbenzene (ug/L) 250 Xylene (ug/L) 160	
• Xylene (ug/L)	160
Semivolatile Organics	
• Phenol (ug/L)	78
• 2-Chlorophenol (ug/L)	22
• 2-Methylphenol (ug/L)	31
• 2,4-Dimethylphenol (ug/L)	43
• 2,4,6-Trichlorophenol (ug/L)	100
• Pentachlorophenol (ug/L)	67
• Di-n-Butylphthalate (ug/L)	1 JB

Notes:

- "J" Indicates an estimated value. This flag is used in cases where a target analyte is detected at a level less than the lower quantification level (e.g., if the limit of detection is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- "B" This flag is used when the analyte is found in the associated blank and in the sample. It indicates possible/probable laboratory blank contamination.

Table 7-1

Summary of Audit Results for Liquid Waste Feed (LF) (Continued)

Parameter	Results
Pesticides	
• Beta-BHC (ug/L)	1.3
• gamma-BHC (Lindane) (ug/L)	12
• Heptachlor (ug/L)	2.0
• Aldrin (ug/L)	6.8
• Dieldrin (ug/L)	5.6
• 4,4-DDE (ug/L)	2.7
• Endrin (ug/L)	3.8
• 4,4-DDD (ug/L)	5.8
• 4,4-DDT (ug/L)	7.2
 alpha-Chlordane (ug/L) 	8.8
Metals	
• Silver (mg/L)	5.6
• Boron (mg/L)	1.8
• Calcium (mg/L)	5.0
• Copper (mg/L)	281
• Mercury (mg/L)	0.0001
• Nickel (mg/L)	20.9
• Silicon (mg/L)	3.4
• Zinc (mg/L)	3.1
Halides	
• Bromide (mg/L)	ND
• Chloride (mg/L)	135.000
• Fluoride (mg/L)	214
• Iodide (mg/L)	ND

••

Table 7-2

Summary of Audit Results for Brine

Parameter	Results
Volatile Organics	
• Vinyl Chloride (ug/L)	33
• Methylene Chloride (ug/L)	36 B
• Acetone (ug/L)	9 JB
• 1,1-Dichloroethene (ug/L)	110
• 1,2-Dichloroethene (ug/L)	69
• 1,2-Dichloroethane (ug/L)	86
• 1,1,1-Trichloroethane (ug/L)	130
• Carbon Tetrachloride (ug/L)	51
• 1,2-Dichloropropane (ug/L)	73
• Trichloroethene (ug/L)	22
• 1,1,2-Trichloroethane (ug/L)	42
• Benzene (ug/L)	25
• Tetrachloroethene (ug/L)	21
• Toluene (ug/L)	48
• Chlorobenzene (ug/L)	72
• Ethylbenzene (ug/L)	31
• Styrene (ug/L)	54
• Xylene (ug/L)	160
Semivolatile Organics • 2-Methylphenol (ug/L) • 2-Nitrophenol (ug/L) • 2,4,6-Trichlorophenol (ug/L) • 2,4,5-Trichlorophenol (ug/L) • Pentachlorophenol (ug/L)	28 92 56 62 150
Total Halides	
• Bromide (mg/L)	321
• Chloride (mg/L)	ND
• Fluoride (mg/L)	ND
• Iodide (mg/L)	ND
Pesticides	
• Alpha-BHC (ug/L)	2.0
• Beta-BHC (ug/L)	1.6
• Heptachior (ug/L)	0.3
• Aldrin (ug/L)	1.2
 Dialdrin (ug/L) 	3.2
• Dielarin (ug/L)	0.33
• $4,4$ -DDE (Ug/L) • Endmin (Ug/L)	2.4
• Elurin (Ug/L)	3.6
• 4,+DDD (ug/L)	2.1
• gamma-Chiordane (ug/L)	2.2

•

Table 7-2

Summary of Audit Results for Brine (Continued)

Parameter	Results
Metals	
• Aluminum (mg/L)	6.6
• Arsenic (mg/L)	0.23
• Boron (mg/L)	4.9
• Calcium (mg/L)	16.7
• Copper (mg/L)	1.2
• Manganese (mg/L)	0.61
• Silicon (mg/L)	6.4
• Zinc (mg/L)	0.95
Ammonia (mg/L)	29.4
Cyanide (ug/L)	417
Sulfide (mg/L)	ND

Notes:

- "J" Indicates an estimated value. This flag is used in cases where a target analyte is detected at a level less than the lower quantification level (e.g., if the limit of detection is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- "B" This flag is used when the analyte is found in the associated blank and in the sample. It indicates possible/probable laboratory blank contamination.

RMA – SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM TABLE 7-3 SUMMARY OF EPA AUDIT FOR VOLATILE ORGANICS TEST DATA AND POSITIVE TEST RESULTS

TEST DATA:

~

Cylinder number	567	567	567	567	567
Test date	06-09-33	06-09-33	06-09-93	06-09-93	AVERACE
Test time	1143-1153	1212-1222	1235-1245	1302-1312	
Test tube pair	1	2	33	4	
SAMPLING DATA:					
Duration, minutes	10.00	10.00	10.00	10.00	
Average dry gas meter press. in. H ₂ O	1.35	1.30	1.30	1.30	
Average meter temp. deg. C	22.25	26.25	28.00	29.25	
Average absolute meter temp. deg. R	532.05	539.25	542.40	544.65	
Actual sample volume, liters	9.680	9.312	9.454	9.230	
Meter box calibration, Y	0.996	0.996	0.996	0.996	
Barometric pressure, in. Hg	24.74	24.74	24.74	24.74	
Sample volume, dscf	0.2805	0.2662	0.2687	0.2612	
VOST EMISSIONS (ppb/v):					
Chloromethane	5.2	17.1	5.6	0.0	7.0
Bromomethane	0.0	0.2	0.0	0.3	0.1
Vinyl Chloride	25.7	26.8	20.7	33.7	26.7
Chloroform	33.0	32.5	32.7	33.5	32.9
Carbon Tetrachloride	111.1	10.5	10.4	10.8	10.7
Benzene	32.2	30.2	31.2	32.1	31.4
Tetrachloroethane	6.6	9.6	6.6	10.6	10.0
Toluene	6.7	2.0	0.6	0.5	2.4

NOTE: Complete volatile analyte listing can be found in Table 4-3.

RMA – SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM TABLE 7–3 (cont.) SUMMARY OF EPA AUDIT FOR VOLATILE ORGANICS TEST DATA AND POSITIVE TEST RESULTS

TEST DATA:					
Cylinder number	568	568	568	568	568
Test date	06-09-93	06-09-93	06-09-93	06-09-93	AVERACE
Test time	1332-1342	1354-1404	1446-1456	1508-1518	
Test tube pair	1	2	6	4	
SAMPLING DATA:					
Duration, minutes	10.00	10.00	10.00	10.00	
Average dry gas meter press. in. H ₂ O	1.30	1.30	1.30	1.30	
Average meter temp. deg. C	30.25	31.00	29.00	29.00	
Average absolute meter temp. deg. R	546.45	547.80	544.20	544.20	
Actual sample volume, liters	9.267	9.570	9.455	9.225	
Meter box calibration, Y	0.996	0.996	0.996	0.996	
Barometric pressure, in. Hg	24.74	24.74	24.74	24.74	
Sample volume, dscf	0.2614	0.2693	0.2678	0.2613	
VOST EMISSIONS (ppb/v):					
Chloromethane	13.5	11.9	9.4	24.5	14.8
Vinyl Chloride	1.0	0.0	0.0	0.4	0.4
Carbon Disulfide	0.7	14.9	6.3	13.7	8.9
1,1-Dichloroethene	10.4	10.4	10.6	11.5	10.7
Toluene	10.9	11.0	10.7	10.9	10.9
Chlorobenzene	10.4	10.9	11.0	11.0	10.8

NOTE: Complete volatile analyte listing can be found in Table 4-3.

26-Aug-93

TABLE 7-4

U.S. EPA QUALITY ASSURANCE DIVISION DIOXIN/FURAN AUDIT DATA

ADDRESS <u>801 Capitola Inc.</u>	
Durham, NC 27713	
AUDIT SAMPLE NO1156	
DATA AUDIT SAMPLE RECEIVED 6/12/93	
DATE ANALYZED6/27/93	
CONFIRMATION ANALYSIS USED: YES 2378-TCDF NO	
AUDITEE'S NAME Don Harvan	

COMPOUND	AUDITEE RESULTS (ng sample)	COMPOUND	AUDITEE RESULT (ng/sample)
2378-TCDD	0.95	*2378-TCDF	0.75
OTHER TCDD	1.75	*OTHER TCDF	0.85
12378-PCDD	0.97		1.1
OTHER PCDD	2.5	23478-PCDF	1.1
123478-HxCDD	1.4	OTHER PCDF	1.5
123678-HxCDD	1.0	123478-HxCDF	1.4
123789-HxCDD	2.9		1.1
OTHER-HxCDD	1.2	123789-HxCDF	1.1
1234678-HpCDD	2.2		1.3
OTHER HpCDD	1.4	OTHER HxCDF	2.6
OCDD	2.3	1234678-HpCDF	2.0
		1234789-HpCDF	2.6
		OTHER HpCDF	ND (0.01)
_		OCDF	2.4

* From DB-225 GC column

•.

TABLE 7-4(continued)U.S. EPA QUALITY ASSURANCE DIVISIONDIOXIN/FURAN AUDIT DATA

ADDRESS <u>801 Capitola Inc.</u> <u>Durham, NC 27713</u> AUDIT SAMPLE NO. <u>8863</u>
Durham, NC 27713 AUDIT SAMPLE NO. 8863
AUDIT SAMPLE NO. <u>8863</u>
DATA AUDIT SAMPLE RECEIVED 6/12/93
DATE ANALYZED6/27/93
CONFIRMATION ANALYSIS USED: YES 2378-TCDF NO
AUDITEE'S NAME Don Harvan

.

COMPOUND	AUDITEE RESULTS (ng sample)	COMPOUND	AUDITEE RESULT (ng/sample)
2378-TCDD	0.47	*2378-TCDF	0.62
OTHER TCDD	0.83	*OTHER TCDF	0.58
12378-PCDD	0.48	12378-PCDF	0.57
OTHER PCDD	1.22	23478-PCDF	0.56
123478-HxCDD	0.64	OTHER PCDF	0.87
123678-HxCDD	0.51	123478-HxCDF	0.71
123789-HxCDD	1.3		0.55
OTHER-HxCDD	0.65		0.55
1234678-HpCDD	1.1		0.70
OTHER HpCDD	0.7	OTHER HxCDF	1.29
OCDD	1.2		0.94
_			1.2
_		OTHER HpCDF	ND (0.01)
		OCDF –	1.1

From DB-225 GC column

••

.
TABLE 7-4 (continued) U.S. EPA QUALITY ASSURANCE DIVISION DIOXIN/FURAN AUDIT DATA

AUDITEE COMPANY <u>Triangle Laboratories of RTP</u>		
ADDRESS 801 Capitola Inc.		
Durham, NC 27713		
AUDIT SAMPLE NO. <u>2782</u>		
DATA AUDIT SAMPLE RECEIVED		
DATE ANALYZED6/27/93		
CONFIRMATION ANALYSIS USED: YES 2378-TCDF	NO	
AUDITEE'S NAME Don Harvan		

COMPOUND	AUDITEE RESULTS (ng sample)	COMPOUND	AUDITEE RESULT (ng/sample)
2378-TCDD	0.17	*2378-TCDF	0.22
OTHER TCDD	0.31	*OTHER TCDF	0.23
12378-PCDD	0.17	12378-PCDF	0.19
OTHER PCDD	0.18	23478-PCDF	0.20
123478-HxCDD	0.23	OTHER PCDF	0.27
123678-HxCDD	0.19		0.24
123789-HxCDD	0.48		0.20
OTHER-HxCDD	0.2	123789-HxCDF	0.19
1234678-HpCDD	0.40	234678-HxCDF	0.24
OTHER HpCDD	0.24	OTHER HxCDF	0.43
OCDD	0.41	1234678-HpCDF	0.34
-		1234789-HpCDF	0.44
-		OTHER HpCDF	ND (0.01)
		OCDF	0.39

* From DB-225 GC column

••

RMA - SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM TABLE 7-5

METALS AUDIT SAMPLE LAB RESULTS

	Multi Metals Filters Low Level	Multi Metals Filters High Level
Elements	Reported Values (ug)	Reported Values (ug)
Beryllium (Be)	3.6	46.3
Cadmium (Cd)	6.8	58.7
Chromium (Cr)	8.8	63.3
Copper (Cu)	9.6	60.6
Phosphorus (P)	*	*
Lead (Pb)	43.4	302
Manganese (Mn)	9.3	60.3
Nickel (Ni)	19.8	274
Silver (Ag)	2.9	7.2
Zinc (Zn)	89	172
Arsenic (As)	6.8	15.0
Antimony (Sb)	4.0	6.5
Selenium (Se)	3.7	9.6
Thallium (Tl)	5.8	9.0
Mercury (Hg)	< 0.05	0.07

* Phosphorus not analyzed. No value reported.

SECTION 8 CLOSURE

8.1 MATERIAL RESOURCES

All of the Basin F liquid processed during the Trial Burn was obtained from storage tank TK-102. The excess drums of carbon tetrachloride and monochlorobenzene are currently being stored until the results of the Trial Burn have been approved. All remaining POHC liquids will then be burned in the SQI.

8.2 MATERIAL PROCESSED

From the beginning of Shakedown Testing on 28 April 1993 using 25% Basin F liquid through the end of Trial Burn Testing on 12 June 1993 using 100% Basin F liquid, 293,563 gallons of hazardous wastes have been processed in the SQI. All of the Basin F liquids burned to date have been from one of the three 1.3-million-gallon storage tanks (TK-101, -102, -103). During the Trial Burn an average feedrate of 176 lb/min was demonstrated. A minimum feedrate of 142 lb/min (Run #1) and a maximum feedrate of 188 lb/min (Run #3) was experienced during testing. A complete summary of the feedrate calculations is provided by the daily analysis reports in Appendices A.1.1 - A.1.3.

8.3 PROCESSED MATERIAL DISPOSITION

The material processed through the SQI was sampled and analyzed as stated in Section 5. The by-product of Basin F incineration is a brine solution, which is sampled and analyzed daily during routine operations by the on-site analytical laboratory. This liquid is transported by tank trucks to railroad cars located at RMA, which transport the brine offsite to a metals recycle facility. Transportation and disposal records for the brine solution are available from the Army.

SECTION 9 CONCLUSIONS

The primary objective of the Trial Burn test program was to maximize the Basin F liquid feedrate while simultaneously demonstrating the capability of the SQI to safely destroy organic contaminants in the incinerator discharge gases. The SQI successfully demonstrated a destruction and removal efficiency (DRE) greater than 99.999% for monochlorobenzene and greater than 99.9988% for carbon tetrachloride, both values well above the minimum regulatory limit of 99.99%.

During the three days of testing, the SQI operated smoothly and consistently with minimal upsets. During the first day of testing, stack sampling was temporarily stopped for approximately 100 minutes to clean waste feed nozzles. Days 2 and 3 proceeded without interruptions. The on-line availability of the SQI during Trial Burn testing was 92%.

Analytical results from stack testing indicate that the SQI effectively treated volatile and semivolatile organic contaminants in the Basin F liquid. Additionally, the air pollution control equipment controlled emissions of particulate and HCl to within regulatory limits.

9.1 <u>RECOMMENDED OPERATING LIMITS</u>

The SQI is currently operating under interim conditions, which were formally approved by EPA Region VIII in their letter to the Army (Ref: 8HWM-FF). The interim conditions were based upon the demonstrated results of the second mini-burn test, conducted 20 - 25 May 1993 using 100% Basin F waste. The post-Trial Burn cutoff values for interim operating conditions are provided in Table ES-1.

Table 9-1 represents the proposed waste feed cutoff values based upon previous testing and Trial Burn results. A brief description of each interlock value is provided.

9-1

Table 9-1

Waste Feed Cutoff Requirements

Parameter	Routine Operations	
Liquid Feedrate (lb/min)	\geq 188 lb/min for 30 sec.	
Residence Time (seconds)	≤2 sec. for 3 min.	
Combustion Temperature (°F)	<1800°F for 0.5 sec.	
Stack Oxygen	<3% for 3 min. ≤1% for 5 sec.	
Quench pH	≤4 instantaneous	
Scrubber pH	≤5.25 for 30 sec.	
Venturi Differential Press. (in. w.c.)	≤80 for 1 min.	
Packed Tower Flowrate (gpm)	≤270 for 30 sec.	
CO Hourly Rolling Average (ppm corrected to $7\% O_2$)	≤100 instantaneous	
Venturi L/G Ratio (gallons/kcf)	≤9.3 instantaneous	
Venturi Flowrate (gpm)	≤100 for 1 min.	
Feed Nozzle Pressure (psig)	≤50 at >60 lb/min feedrate for 30 sec.	
Compressor Outlet Pressure (psig)	≤85 instantaneous	

••

9.1.1 Maximum Liquid Feedrate

During Trial Burn testing, the daily average feedrate for Basin F liquid varied between 171.1 - 179.9 lb/min. Each test day, POHCs were injected to determine DRE. All three test days had a DRE greater than the regulatory requirement of 99.99%. Therefore, it is proposed that the waste feed cutoff value be based upon the maximum instantaneous feedrate demonstrated during Trial Burn testing, which is 188 lb/min.

The average feedrate for the test runs was determined from the daily analysis report generated each test day (Appendix A.1.1 - A.1.3). The daily report generates minimum and maximum readings and calculates hourly averages for critical parameters, which were again averaged over the Trial Burn test period. For example, the 179.9 lb/min feedrate reported for run #3 is based upon a low reading of 172 lb/min and a high reading of 188 lb/min. The maximum instantaneous reading for run #1 was 185 lb/min and for run #2 was 184 lb/min. It is proposed that the waste feed cutoff value be based upon the maximum demonstrated instantaneous feedrate value of 188 lb/min, with a 30-second time delay to eliminate random waste feed trips caused by the introduction of liquid feed into the nozzle headers.

9.1.2 Minimum Residence Time

During Trial Burn testing, the residence time calculation varied between 2.67 - 2.81 seconds. This calculation is based upon the following formula:

Residence Time (sec) = SQI chamber volume/gas flow rate (acfs) ACFS = SCFS $\cdot \{(460 + TY-34)/530\} \cdot \{(12.2/(12.2 + PIT-31))\}$ SCFS = $\{(FIT-16 + FIT-09 + FIT-30) + \Sigma FIT-15A/E + (FIT-04A \cdot 21.5)\}/60$

where:

TY-34: SQI chamber temperature PIT-31: SQI chamber pressure FIT-16: Primary combustion air flow to the burner FIT-30: Secondary combustion air flow to the chamber FIT-09: Natural gas flowrate FIT-15A/E: Atomizing air flow to the waste feed nozzles FIT-04A: Aqueous waste flowrate

This calculation is based upon parameters that are constantly changing as incinerator process conditions vary. To limit the waste feed cutoff value to the minimum demonstrated residence time would be overly restrictive, especially since the SQI is already regulated on many parameters used in the residence time calculation (e.g., waste feedrate, SQI chamber temperature, SQI chamber pressure, combustion air flowrate, etc.). It is proposed that the waste feed shutoff value remain ≤ 2 seconds for longer than 3 minutes, which is below the average demonstrated value but provides flexibility for the variable process conditions.

9.1.3 Minimum Combustion Temperature

During Trial Burn testing, the daily average SQI combustion chamber temperature varied from 1831 – 1842°F. A minimum temperature of 1804°F (run #1) and a maximum temperature of 1856°F (run #1 & 2) was experienced during testing. Chamber temperature is a critical parameter in determining DRE. As stated in Section 9.1.1, all three test days had a DRE greater than the regulatory requirement. In fact, throughout all of the previous mini-burn tests, the SQI has successfully passed DRE. During the first mini-burn test program, the incinerator passed DRE at a chamber temperature of 1760°F. Since the average value generated in the daily reports is based upon minimum and maximum readings, it is proposed that the minimum temperature shutoff value be 1800°F. This is well above

08/26/93

the demonstrated temperature from the first mini-burn test, and would allow a reasonable temperature span for SQI operations.

9.1.4 Minimum Stack Oxygen

During Trial Burn testing, the stack oxygen varied from 3.37% - 3.74%. The secondary air control valve (AIC-30) is able to maintain excess air within a close tolerance. It is requested that the current waste feed shutoff value of <3% for longer than 3 minutes remain unchanged. In addition, the low level oxygen shutoff of <1% for longer than 5 seconds would remain unchanged.

9.1.5 Minimum Quench pH

During Trial Burn testing, the quench pH probes (AE-64A/B) were not operating properly. Periodic field pH readings indicated that the quench liquid pH was significantly lower than recorded by the PMCS. The field readings were used during testing to control acid gas emissions. The quench pH field readings varied from 5.0 - 5.25. It is requested that the current waste feed shutoff value of <4 pH remain unchanged. This pH value was recommended by the equipment manufacturer for proper process operation and has remained unchanged throughout surrogate and Shakedown Testing.

9.1.6 Minimum Scrubber pH

During Trial Burn testing, the scrubber pH probes (AE-56A/B) were not operating consistently. Periodic field pH readings indicated that the scrubber pH was sometimes lower than recorded by the PMCS. The field readings were used during testing to control acid gas emissions. The scrubber pH field readings varied from 5.48 - 6.07. It is requested that the current waste feed shutoff value of < 5.25 pH for longer than 30 seconds, which was demonstrated during the second mini-burn (Appendix A.3.2), remain unchanged.

9.1.7 Minimum Venturi Differential Pressure

During Trial Burn testing, the venturi differential pressure was maintained at 90" water column (wc). This pressure drop, coupled with the venturi recycle flowrate, resulted in acceptable particulate emissions. In order to provide margin between the 90" wc venturi differential pressure operating setpoint, it is requested that the current waste feed shutoff value of < 80" wc for longer than 1 minute remain unchanged.

9.1.8 Minimum Packed Tower Flow

During Trial Burn testing, the scrubber packed tower recycle flowrate varied between 280 - 296 gpm. This recycle rate, coupled with the scrubber and quench tanks pH, is responsible for the HCl removal. Due to the very low emissions level, it is requested that the current waste feed shutoff value of < 270 gpm for longer than 30 seconds remain unchanged.

9.1.9 Maximum CO Hourly Rolling Average

During Trial Burn testing, the carbon monoxide hourly rolling average varied between 47 – 58 ppm. It is requested that the current waste feed shutoff value of >100 ppm (corrected to 7% O_2) remain unchanged.

9.1.10 Minimum Venturi Flowrate

During Trial Burn testing, the venturi recycle flowrate varied between 125 - 128 gpm. This recycle flowrate, coupled with the pressure drop across the vanes, resulted in acceptable particulate emissions. During mini-burn #2 testing, this recycle flowrate was decreased to 100 gpm, which still resulted in acceptable particulate emissions. It is requested that the current waste feed shutoff value of <100 gpm for longer than 1 minute remain unchanged.

9.1.11 Minimum Feed Nozzle Pressure

The waste feed nozzle pressure is monitored by pressure transmitters PIT-27A/E. These values are displayed, but not recorded, by the PMCS. It is requested that the current waste feed shutoff value of <50 psig at flow rates >60 lb/min through a nozzle for longer than 30 seconds remain unchanged.

The feed nozzle shutoff value was established during Shakedown Testing when it was noted that backpressure recorded by pressure indicating transmitters PIT-27A through E rarely reached 50 psig. The pressure monitored at the nozzles fluctuated between 35 – 55 psig during waste feed operations. Subsequent discussions with the equipment vendor confirmed that the multi-port teat nozzles were designed for maximum turndown, so proper waste feed atomization is achieved by supplying sufficient atomizing air flow rather than a minimum liquid feedrate. By tying the interlock definition to the maximum design flow through a nozzle (60 lb/min) for longer than 30 seconds, the PMCS is capable of detecting a catastrophic nozzle failure.

9.1.12 Minimum Compressor Outlet Pressure

The waste feed atomizing air pressure is monitored by pressure transmitters PIT-18A/E. These values are displayed, but not recorded, by the PMCS. The header pressure is interlocked to the waste feed through pressure switch PSLL-13. It is requested that the current waste feed shutoff value of < 85 psig remain unchanged to ensure proper atomization of the waste feed.