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FD-TLM SIMULATION OF JOSEPHSON JUNCTION LOGIC 

CIRCUITS 

Josephson junction (JJ) integrated circuits (ICs) are capable of operating at clock 

frequencies from 1 to 100 GHz. At these frequencies, analysis of signal propagation 

delay, crosstalk, dispersions, radiation, and reflections must be included to determine 

proper response of the circuit. Much effort is required in simulating high frequency 

behavior, where the cross-sectional dimensions of conductors are comparable to the 

signal wavelength, with conventional circuit simulation methods as SPICE. A simulation 

method capable of modeling high-frequency behavior by solving Maxwell's curl 

equations, the finite-difference transmission line matrix method (FD-TLM), is modified 

to model JJ logic circuits and provide simultaneous time-domain three-dimensional full- 

wave electromagnetic field and JJ device analysis. The FD-TLM method is further 

extended to model superconducting quantum interference devices (SQUIDs). 

Techniques for simulation and simulation results for a Josephson Atto-Weber switch 

(JAWS), a two-junction superconducting quantum interference device (SQUID), and a 

modified variable threshold logic (MVTL) gate are provided. Interconnection lengths are 

kept intentionally short so the FD-TLM simulations can be validated by conventional, 

low frequency, quasi-static analysis. The general behavior observed in FD-TLM 

simulation and good agreement with quasi-static conventional circuit simulation validate 

the FD-TLM method. 
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Chapter 1 

Introduction 

The Josephson junction is a superconducting tunneling device that allows fabrication 

of logic gates with much lower power dissipation and much faster switching speeds 

than logic gates utilizing silicon or GaAs technology. Because Josephson junctions 

are capable of operating at much higher frequencies, circuit simulation is significantly 

more complex. Quasi-static conventional circuit becomes inaccurate at frequencies 

where the wavelength of the signal becomes comparable to the cross-sectional dimen- 

sions of the circuit layout. Thus, a full-wave simulation method must be found that 

is capable of modeling JJ circuits at high frequencies. 

The full-wave finite-difference transmission line matrix (FD-TLM) method [1], 

completely models the time evolution of electromagnetic field interaction with dif- 

ferent media and devices by solving Maxwell's curl equations. In this method, three 

dimensional space is divided into a set of nodes which are selectively modified to model 

material properties such as permittivity, permeability, and conductivity. Nonlinear 

devices are modeled in the method by altering the conductivity and permittivity of 

the nodes representing the device as a function of voltage and time. 

The FD-TLM method, by solving Maxwell's curl equations, naturally simulates 

the operation of a circuit while simultaneously determining high frequency effects. 

The JJ is implemented as a nonlinear device in the method with conductivity and 
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permittivity that change with applied voltage and time. Substrates and interconnects 

are modeled by specifying the values of permeability, conductivity, and permittivity 

at the nodes representing them. The FD-TLM method can model JJ logic circuits as 

well as the substrate layers and insulating layers used to fabricate the logic circuit. 

Additionally, there is no need to extract parasitic component values since these are 

automatically simulated while solving Maxwell's equations. The FD-TLM method is 

discussed in Chapter 3. 

Many logic circuits utilizing JJs use a property of JJs that arises when several 

JJs are placed in a superconducting loop. That is, two or more JJs placed in the 

same superconducting loop become quantum mechanically coupled with a relation- 

ship controlled by the presence of a magnetic flux within the superconducting loop. 

This configuration is referred to as a Superconducting Quantum Interference Device 

(SQUID). 

The Josephson junction and SQUID are implemented in the FD-TLM method as 

described in Chapter 4. Chapter 5 discusses the resistively coupled Josephson logic 

gate which utilizes the characteristics of individual JJs while Chapter 6 discusses the 

magnetically coupled Josephson logic gate which utilizes magnetic coupling between 

several JJs placed in a superconducting loop. 

The results from the FD-TLM method can be validated by observing the general 

logic operation obtained from the simulation. In addition, further validation is ob- 

tained by performing a conventional circuit simulation. A program FastHenry [2] is 

used to extract inductance values from the physical layout of the JJ logic gate. The 

inductance values are required to accurately simulate J J circuits when using a conven- 

tional circuit simulation method. In contrast, the FD-TLM method does not require 

a separate inductance extraction since it solves Maxwell's curl equations rigorously. 

Since methods such as SPICE [3] do not currently implement the JJ device, con- 



ventional circuit simulation proceeds with nodal analysis of the equivalent circuit for 

the logic gate to obtain a set of simultaneous differential equations. MAPLE V [4] 

is used to symbolically solve these differential equations for the standard form where 

the first-order derivatives are on the left-hand side of the equations. Then, the new 

set of differential equations are solved numerically using a fifth-order Runge-Kutta [5] 

method, providing the response of the circuit with time. Validation of the FD-TLM 

method for each type of logic gate is discussed in Chapters 5 and 6. 

Chapter 7 ends with a summary discussion of the results obtained from the simu- 

lation of all logic gates along with a statement on the ability of the FD-TLM method 

to simulate circuits incorporating JJ devices. Possible future work in this area will 

be discussed as well. 



Chapter 2 

Background and Rationale 

Theoretically, superconducting digital logic gates should be capable of achieving high 

speeds with low power consumption. However, early superconducting digital circuits 

dating back to the 1950s utilized cryotrons and were slow by semiconductor standards. 

Cryotron digital circuits relied on the physicall change between a superconducting and 

normal state to switch between a logic "1" and "0" [6]. Resultant switching times 

were a few microseconds. With superconducting digital technology unable to compete 

with semiconductor technology, further research was abandoned. 

Research into the use of the Josephson junction (JJ) for superconducting digital 

logic circuits began in the mid-1960s. The Josephson junction utilizes tunneling of 

Cooper pairs, superconducting transport particles, across a thin tunneling barrier 

consisting of a non-superconductive material. Early JJs utilized lead alloy supercon- 

ductors with Si02 as tunneling barriers. The tunneling barrier is designed to allow 

tunneling of Cooper pairs but also allow tunneling of normal electrons. As is typical 

for all superconductive materials, the JJ can only support up to a maximum super- 

conducting current density. Once this current density is reached, the device switches 

to conduction of normal electrons through the thin barrier rather than conduction 

of superconducting Cooper pairs. In other words, the device switches between a 

superconducting and normal conducting state.   This is done without, for example, 



changing the temperature of the device meaning that much higher switching speeds 

can be obtained than with the cryotron. 

Although JJ logic circuits exhibit high speed, low power performance, silicon 

ICs are still used in most applications today for several reasons. Research into JJs 

and superconducting ICs declined after a short burst in the 1960s due to the low, 

liquid Helium, temperatures required for operation, the inability to precisely control 

parameters of the J J in fabrication, and the dramatic changesin parameters of the J J 

with extended storage and temperature. As a consequence of the impracticality of 

use of JJs in IC circuits at the time, IBM discontinued research into JJ technology 

in 1983. 

With the advent of Type II superconductors capable of operating at liquid ni- 

trogen temperatures, JJs recently became more practical for digital logic ICs. In 

addition to operating at much higher temperatures, JJs using superconductive ma- 

terials such as YBaCuO and Nb are much more stable than their predecessors in 

that their parameters such as critical current do not change significantly over time. 

Furthermore, it is easier to reproduce JJs with similar electrical properties on an IC 

with the newer superconductive materials. 

Unfortunately, while several JJs can be fabricated with the same properties, it is 

still impossible to fabricate ICs with more than a few thousand JJs all having similar 

properties. Therefore, while small scale integration is feasible, it is still impossible to 

create superconducting ICs with the level of integration used in silicon technology. 

Furthermore, even though Josephson junction logic gates consume far less power 

and have much higher switching speeds than their counterparts in GaAs or silicon 

technology, the performance of GaAS and silicon technology is rapidly approaching 

that of JJ technology while remaining more economical. 

Despite the stumbling blocks, research is still ongoing in the design of even faster 



JJ logic gates. Many JJs being fabricated today have switching times as low as 2.5 

ps. Furthermore, several 4-bit microprocessor architectures utilizing JJs have been 

fabricated and tested. Of particular note, in 1988, a team of researchers developed 

a 4-bit microprocessor using 2.5 /mi Nb technology [7]. The processor consisted of a 

64-bit Non-Destructive Read-Out (NDRO) RAM, an ALU, and control circuits using 

a total of 1841 Josephson junction gates. The microprocessor operated at a maximum 

clock frequency of 770 MHz. 

Research is still ongoing in developing many types of logic gates utilizing the 

JJ. Research time and cost can be minimized given an ability to simulate JJ logic 

circuits before fabrication. Accurate circuit simulation reduces the amount of trial- 

and-error fabrication. In simulating JJs that can switch in only 2.5 ps, propagation 

delays, dispersion, reflections, and parasitic capacitance and inductance, must all be 

considered. 

Many methods have been used to simulate J J [8] circuits including a recent method 

where SPICE is extended to model JJs [9]. Rollins [9] provides a starting point for 

implementing JJ circuits in other simulation methods. However, in Rollins' approach, 

SPICE was used to simulate a J J circuit with nanosecond switching times and was not 

developed to ensure proper modeling for higher clock frequencies. Additionally, the 

SPICE method presented by Rollins appears to omit several important parasitics in- 

cluding mutual inductance between the control line and superconducting loop, capac- 

itance between the control line and superconducting loop, and capacitance between 

the circuit and the superconducting ground plane. However, stray capacitances and 

inductances can be extremely important as illustrated in [10]. Here it is emphasized 

that parasitic capacitance between the control line and superconducting loop can 

create resonances in a SQUID circuit. 

In summary, the SPICE method, while simulating the characteristics of the JJ 



itself rather well, is inept at modeling JJ logic circuits where the wavelength of the 

signals become comparable to the cross-sectional dimensions of conductors in the 

circuit. For instance, with the small voltage signal, approximately 2 mV, used in 

JJ logic circuits, electromagnetic noise may determine whether the circuit functions 

correctly. A method, then, must be used that is capable of solving Maxwell's equa- 

tions to provide the full electromagnetic response of the circuit and its surrounding 

packaging. 

Several methods exist which solve Maxwell's curl equations for electromagnetic 

fields. Most notably, the finite-difference time-domain (FD-TD) method which solves 

discretizes three dimensional space into a set of nodes and solves for Maxwell's curl 

equations in time and space using the "leap-frog" method for integrating the differ- 

ential equations. The finite-difference transmission line matrix (FD-TLM) method 

works in a similar manner, however, this method solves for voltages and currents 

rather than electric and magnetic fields by using an analogy between transmission 

line equations and Maxwell's curl equations. 



Chapter 3 

The FD-TLM Method for 
Josephson Junction Simulation 

Several methods exist for simulating the Josephson junction device. SPICE [9], for 

example, can be used to obtain the behavior of a Josephson junction logic circuit. 

Conventional circuit analysis methods such as SPICE are excellent for simulation of 

circuits including high speed circuits given that the parasitics such as inductance and 

capacitance are extracted from the physical chip layout or are supplied as part of the 

circuit for simulation. However, extraction of parasitic inductance and capacitance 

from a physical chip layout can be inaccurate and may only be correct for certain 

frequencies. Phenomena such as the skin effect, lumped versus distributed capaci- 

tance and inductance, dispersion, electromagnetic noise, and resonance within the IC 

package cannot be readily modeled in a SPICE simulation. 

The FD-TD and FD-TLM methods, by solving Maxwell's curl equations, com- 

pletely model the time-evolution of electromagnetic field interaction with different 

media and devices. As a result, high speed integrated circuits can be simulated as 

with the SPICE method while, in addition, simultaneously modeling distributed par- 

asitic capacitance and inductance, dispersion, electromagnetic noise and reflections, 

and cavity resonance given the physical layout of materials and devices within the 

circuit. 

8 
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While the FD-TD method solves Maxwell's curl equations directly using a dif- 

ferential equation integration technique, the FD-TLM method relies on an analogy 

between Maxwell's curl equations and the equations describing transmission lines. 

As a result, the FD-TLM method actually solves for voltages and currents that are 

propagated through space along interconnecting transmission lines instead of solving 

for magnetic and electric fields directly. Permittivity and permeability of free space 

become distributed capacitance and inductance, respectively, along the transmission 

lines. 

Within the FD-TLM method [1], space is divided into a set of three dimensional 

nodes as depicted in Fig. 3.1 and along the faces of each cell, every E (electric) 

node is surrounded by an H (magnetic) field node in any of four directions and, 

similarily, every H field node is surrounded by four adjacent E field nodes (Fig 3.2). 

There are three electric field nodes for each dimension of space Ex, Ey, and Ez, 

as well as three magnetic field nodes Hx, Hy, and Hz, where each node in the FD- 

TLM space has a one-to-one correspondence with points discretizing space containing 

the structure to be modeled. The H-field and E-field nodes are connected through 

transmission lines having characteristic inductance and capacitance determined by 

free space permittivity and permeability. Each electric field node connects the 

two conductor transmission lines in a parallel fashion while the magnetic field nodes 

connect the transmission lines in series. Therefore, the E-field node is referred to as 

a shunt node (Fig 3.3) while the H-field nodes referred to as a series node (Fig 3.4). 

Within the FD-TLM method, a variable mesh is used to change the relative dis- 

tance between adjacent nodes as opposed to a uniform mesh where all of the nodes 

are equidistant in space. This allows fewer cells to be used for many types of circuit 

simulations, and, therefore shorter simulation time due to fewer number of nodes to 
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Figure 3.1: Depiction of three-dimensional space divided into cells. 

1 1 1 

1 

Hx 

N 
TRANSMISSION LINES 

Figure 3.2: Each cell in space contains a set of nodes representing the magnetic and 
electric field nodes. Note that the nodes are on the surface of the cube and are 
connected with transmission lines. 
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PERMITTIVITY 
STUB 

LOSS 
STUB 

Figure 3.3: Depiction of the E-field shunt node where transmission lines are connected 
in a parallel fashion. Each line represents two conductors. 

- v,  + 

PERMEABILITY   - 
STUB V, 

V, + 

Figure 3.4: Depiction of the H-field series node where transmission lines are connected 
in a series fashion. 
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be calculated. To optimize simulation time and accuracy, a larger number of closely 

spaced cells are used in areas where fields are expected to have a larger spatial gra- 

dient, while a fewer number of widely spaced cells are used in the area, for example, 

between the circuit and the IC package. This is analagous to an ordinary differential 

equations solver method which uses smaller steps in the integration in places where 

the function changes most rapidly. 

Simulation within the FD-TLM method begins by defining a signal which is ap- 

plied to an electric field node or array of electric field nodes. This signal propagates 

along the transmission lines to the neighboring magnetic field nodes, where part of 

the signal is reflected back to the source E field nodes and part is transmitted along 

transmission lines connected to other E field nodes. The FD-TLM method alternates 

calculating E an H field nodes at each time as signals propagating at a cerain velocity 

travel from the E field nodes to the H field nodes and vice versa. The propagation 

of signal pulses along the transmission lines and the scattering of pulses at the nodes 

models electromagnetic wave propagation. The voltage calculated across a shunt node 

corresponds to the electric field at that point in space and the current flowing through 

a series node corresponds to the magnetic field at that point in space. 

3.1    Modeling Linear Devices 

Linear devices such as capacitors, inductors, and resistors that maintain fixed values 

with applied voltage and time are easily modeled in the FD-TLM method [1]. Note 

the addition of a permittivity stub and loss stub to the E-field node and addition of a 

permeability stub to the H-field node in Fig. 3.3, and Fig. 3.4. These stubs are used 

to describe conductivity, permittivity, and permeability at each point in geometric 

space and, therefore, provide the means for describing layers of materials, resistors, 

and capacitors. 
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Resistors are implemented in the FD-TLM method by incorporating conductivity 

via the loss stubs for the E field nodes in the volume representing the resistor. Con- 

ductivity, a, is calculated from resistance, #, using the relationship R = -^ where 

the length of the resistor, L, is determined to be in the direction of current flow and 

A is the cross-sectional area perpendicular to current flow. 

When setting the conductivity of the nodes in space representing a resistor, the 

region of influence for each node must be considered. That is, at a point between 

two adjacent nodes, the actual conductivity is an average of the conductivity at each 

node. As a result, while each node in the FD-TLM method can be thought of as 

representing a cell with dimensions specified by the spacing between adjacent nodes 

in each direction (see Fig. 3.1). the conductivity within the cell is not equal to the 

conductivity of the Ex, Ey, or Ez node, but, rather, is an average of the conductivities 

in adjacent nodes or of the nodes on the surface of the cell. The actual value of 

conductivity needed to implement a resistor, where (u,v,w) is the dimension of the 

(x,y,z) cell, is determined from 

An 
Rx = — . (3.1) 

axvw + <rXtj-iVj-iw + axik-ivwk-i + aXtj-i}k-iVj-iWk-i 

The subscripts i, j, k refer to the location of each cell (see Fig 3.1) where the H field 

nodes on the bottom, left side, and front of the cell (Fig 3.2) and the E field nodes on 

the bottom-left, bottom-front, and left-front of the cell (Fig 3.2) belong to the (i,j,k) 

cell and all other nodes belong to adjacent cells. The previous equation establishes 

a resistance in the x direction; however, conductivity can be specified differently for 

the x, y, or z direction at each cell allowing modeling of anisotropic materials. 

Capacitors are implemented by altering the permittivity at a set of nodes. The 

determination of permittivity for implementation of the capacitor follows that of the 

resistor. The equation defining the capacitance value for an x-directed E field node is 
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n  _ evw + eXij-iVj-iW + eXtk-ivwk-i + Csj-i.fc-ifj-iWfc-i 
Cx - - • [6.Z) 

Substrates and layers of material are common in ICs, and, therefore, the FD- 

TLM method must be capable of simulating these layers in order to properly model 

ICs. These layers are specified by setting the permittivity values of the nodes in the 

FD-TLM method corresponding to the materials. 

3.2    Modeling Nonlinear Devices 

Within a non-linear device, the current and voltage do not have a linear relationship 

meaning that the conductivity of the device is a function of the applied voltage. 

Furthermore, capacitance for the device may change with applied voltage as occurs for 

the diode or any P-N junction capacitance. Due to the relationship between voltage 

and current, a non-linear device cannot be implemented by specifying conductivity 

or permittivity in an input data set for the FD-TLM method. Instead, the FD-TLM 

method must be given a current-voltage (I-V) equation for the node representing 

the non-linear device. The FD-TLM method then uses the I-V equation to update 

the conductivity of the node representing the non-linear device as a function of the 

voltage or electric field at the node. Note that non-linear devices are implemented at 

E-field nodes. 

Many non-linear devices, such as the Josephson junction, contain storage elements 

which may lead to a large negative conductivity. Within the FD-TLM method a 

voltage is calculated at each time step and, from this voltage, the current through 

the non-linear device and its conductance is calculated and implemented at the node 

for the next iteration. However, an analysis of the circuit equivalent for a non-linear 

device may reveal current sources which are capable of driving current in an active 

convention rather than passive convention with respect to voltage leading to negative 
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Figure 3.5: Equivalent circuit of the JJ showing current source. 

conductivity at the node. Within the FD-TLM method, negative conductivity creates 

a large instability and resultant oscillations. As a result, the storage elements of such 

a device cannot be simulated as a changing conductivity at the electric field node. The 

I-V equation is modified, from the circuit equivalent, to contain all but the storage 

elements in question. The storage elements, specifically current sources, are modeled 

by updating the electric field at the electric field node representing the nonlinear 

device to reflect the current. Figure 3.5, shows the current source which is modeled 

by updating the value of the E field node at each iteration while the resistance ^ 
Gr(V) 

is modeled as a conductivity that changes with time and applied voltage, ie the value 

of the loss stub is changed at the E field node. 

Non-linear capacitance as well as conductance can be implemented in the FD- 

TLM method by changing the permittivity at the node representing the device as a 

function of the present value of the electric field node. In the case of the Josephson 

junction, the capacitance is linear and is modeled as a constant permittivity. 



Chapter 4 

Modeling the Josephson Junction 

4.1     Characteristics of the Josephson Junction 

Before beginning with implementation of the JJ and the analysis of JJ logic gates, it 

is important to understand the characteristics of the device. Figure 4.1 shows the dc 

current-voltage characteristics of the Josephson junction. 

There are two parts to the dc curve which combine to describe the superconduct- 

ing tunneling current and single particle tunneling current. The superconducting 

tunneling current represents current in the zero voltage state (ZVS) of the device 

where current flows through the device with no associated voltage drop. Note that 

the current in the ZVS cannot exceed the critical current, Ic, in magnitude. If the 

current through the junction should exceed the critical current of the device, the de- 

vice switches to another state commonly referred to as the high voltage state (HVS) 

shown as a jump from point 1 to point 2 in Fig. 4.1. A voltage develops across the 

junction in the HVS and follows the I-V characteristics of the single-particle tunnel- 

ing curve. Typically, in the HVS, the voltage across the junction will equal the gap 

voltage Vgap, a JJ process parameters used to describe the JJ current-voltage rela- 

tionship, with currents just above the critical current of the device. When current 

is decreased to a value below the critical current, instead of returning to the ZVS, 

16 
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Figure 4.1: DC current-voltage characteristics of the Josephson junction. The vertical 
line at the V=0 line represents the ZVS and Cooper pair tunneling while the HVS 
curve or nonzero voltage curve represents single-particle tunneling. 



Ic sin(phi) 

HU 

1/G(V) 

T 

18 

Cj 

Figure 4.2: Equivalent circuit for the Josephson junction. 

the device remains in the HVS and the I-V characteristics continue to follow the 

single-particle tunneling curve. The device does not return to the ZVS until current 

through the device is lowered to zero. As a result, the JJ has a hysteresis. 

The dc I-V curve for the JJ is reconciled by the two fluid model of supercon- 

ductivity [11]. The two fluid model provides the ability for both superconducting 

Cooper pairs and normal conducting electrons to contribute to current flow in the 

superconductor at any time. That is, normal conduction and superconduction can 

occur in tandem within the superconductor. This model explains many phenomena 

within the superconductor including the existence of resistance in the superconductor 

at very high frequencies, as wells as how the JJ is capable of switching between tun- 

neling of Cooper pairs and electrons to transition between a superconductive state 

and a resistive state. 

The circuit equivalent for the Josephson junction is shown in Figure 4.2. 

Insight into the ac as well as dc characteristics of the JJ is gained by examining the 

equivalent circuit. This consists of three components, a current source which repre- 

sents the tunneling of Cooper pairs, a resistance ^ which represents single particle 

tunneling, and a capacitor C, which is the capacitance created by the tunneling bar- 

rier sandwiched between the superconductive electrodes. As seen from the equivalent 
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circuit, superconducting current with its zero associated voltage drop can only be 

represented by the current source. This is defined as 

/ = Icsin(<f>): (4.1) 

The J J critical current is Ic and the phase </>, the quantum mechanical phase difference 

across the junction, is related to voltage across the junction by 

% = P.V. (4.2) 

The superconducting current can be rewritten as 

/ = Icsin(P0 j Vdt) (4.3) 

One interesting ac characteristic of the JJ can be seen immediately from (4.3). 

With a constant applied voltage, the current through the current source will oscillate 

at a frequency w, where 

» = % = '•"■ <"> 

The JJ current-voltage curve can be derived from the equivalent circuit. Observing 

Fig. 4.2, we start initially by assuming that the current through and the voltage 

across the device are zero. As an externally applied current is increased through the 

device, the current first flows through the capacitor which appears as a short. Then, 

as a voltage is developed across the capacitor, current begins to flow through the 

resistance ofy]- The voltage, generated by current flow through the capacitor and 

resistance, changes the current through the current source by (4.3). The voltage varies 

as the current begins to flow through the current source rather than the capacitor 

and resistor, and the entire process continues until all of the current is absorbed 

by the current source and there is no voltage drop across the junction. Thus, the 

JJ has remained in the ZVS. Once the system is stabilized, a change in externally 

applied current will repeat the entire process for the new current until, once again, 
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the current source absorbs all of the current.   Thus, a change in externally applied 

current generates a temporary spike in voltage until the system stabilizes. 

If the externally applied current through the junction is greater than the critical 

current, Ic, of the device, a voltage is generated across the capacitor and resistor as 

before; however, the current source cannot absorb all the externally applied current 

lext in that / = Icsin(4>) can never be equal to lext. Thus, some of the externally 

applied current must flow through the resistor, causing a voltage drop across the JJ. 

The JJ is now in the HVS and the current source oscillates at the frequency given by 

(4.4). Once in the HVS, the JJ merely behaves as a resistor since essentially all of the 

externally applied current flows through the resistor. The oscillating current from the 

current source is generally shorted by the capacitor in parallel; however, some of this 

current shows up as a small ripple in the output voltage and current of the device 

when in the HVS. 

Earlier, it was noted that a hysteresis exists in the dc characteristics of the J J. That 

is, the JJ, once in the HVS, is not capable of returning to the ZVS until the current 

through the device is returned to zero. This behavior can be explained considering 

the ac characteristics of the JJ, particularly that oscillations are created in the current 

source for a constantly applied voltage. When the JJ enters the HVS, a voltage of 

approximately 2 mV is developed. This creates a high frequency oscillation in the 

current source, as mentioned before, representing the energetic instability in the JJ 

for currents higher than the critical current of the device. As the externally applied 

current decreases below the critical current, a voltage of approximately 2 mV is 

still observed across the JJ which does not allow the current source to match the 

externally applied current even though the externally applied current may be less 

than the critical current. The only way to force the JJ back into the ZVS is to 

completely cut off the oscillations of the current source by reducing the externally 
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applied current to zero and subsequently the voltage across the junction to zero. 

4.2    Implementation of the Josephson Junction in 

the FD-TLM method 

The equivalent circuit of the JJ is used to determine the conductance as a function 

of voltage to implementing the JJ in the FD-TLM method. The capacitance for the 

JJ, Cj is not used in the conductivity calculation, but is implemented directly as a 

capacitance within the FD-TLM method following the method outlined in Chapter 

3. The following equations are needed to determine the conductivity of the JJ as a 

function of voltage [9] 

I = hsin(<j,) + G(V) + C~ (4.5) 

P.V = f± (4.6) 
at 

G(V) = GlV + (/, + G,\V]) { i + ex'p v - 1 + ex'p ^ } (4.7) 

where P0 is the plasma dampening frequency of the JJ, <f> is the quantum mechanical 

phase difference for the Cooper pair particle across the junction and changes with time 

as a function of voltage according to (4.2), I0 is the critical current of the JJ, and 

G(V) describes the single-particle tunneling curve. A discussion of the parameters for 

G(V) is obtained from [13,9] and are determined from the measured properties of the 

J J after fabrication. With the current-voltage relationships of the J J determined, the 

device can be implemented at an E-field node or array of E-field nodes by altering the 

conductivity at the node or nodes as a function of the value of the E-field as discussed 

in Chapter 3. However, as was discovered during the research stage, there are some 

problems inherent in modeling the JJ as a conductance using its equivalent circuit. 
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An analysis of the value of conductivity for the JJ with respect to time reveals 

a problem with simulating the JJ as just a conductivity which changes with time. 

Initially, the FD-TLM method begins by setting the conductivity of the node repre- 

senting the JJ to zero. As signals develop within the FD-TLM method, a voltage will 

eventually be established across the JJ node due to the capacitance at the node and 

conductivity can begin to change accordingly. The problem arises when the JJ is in 

the ZVS since current must flow through the device with no associated voltage drop. 

This, indeed, occurs in the FD-TLM method as the current source within the circuit 

equivalent begins to absorb all of the input current. However, the conductivity of the 

node approaches infinity at this point. This immediately creates a problem in any 

numerical method, but, even if this problem is corrected by imposing a maximum 

value for conductivity and accepting the error, another problem still arises. With 

an infinite conductivity, any new currents through the JJ will have no effect on it 

since there is no longer any way to generate a voltage drop across the node, and, as 

a result, the JJ behaves merely as a shorted node. Finally, it is possible to have a 

situation where the current source in the circuit equivalent is directing current in an 

active rather than passive convention with respect to voltage. In other words, there 

is energy storage in the device and it is possible for the JJ to behave as a battery 

leading to a negative conductivity at the node. This creates instability within the 

FD-TLM method. Obviously, a different method must be used for implementing the 

JJ. 

Instead of simulating the entire device as a node whose conductivity changes with 

time, only the resistance ^r is modeled as a conductivity at the E-field node. Ca- 

pacitance is implemented as a linear capacitance using methods discussed in Chapter 

3. 

The current source, however, is incorporated in the FD-TLM method following a 
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procedure analogous to the implementation of a resonant tunneling diode [12]. That 

is, modify the value of the electric field at the E-field node representing the JJ by 

adding the time-averaged current source current expressed as 

ISave = [Is(Vn+1) + Is(Vn)}/2, (4.8) 

where V™ represents voltage at the present time step, and Vn+1 is the voltage at 

the next time step (n + l)r where r is the FD-TLM time step. Current Is(Vn) is 

calculated as Iosin(cf)n) where <f>n is the phase at time TIT, the present time step, and is 

obtained by integrating (4.2) as the sum of the product P0V
nT at each time step. At 

the start of the simulation, the phase, <f>, is initially zero. The new superconducting 

current, current through the current source, is found as 

Is(Vn+1) = Is(V
n) + 

dIs{V = Vn)i 

dV 
(yn+l _ yny (4.9) 

Using a truncated Taylor series, the derivative in the above expression is 

dIc(V = Vn) T 

dv      = IoCOS^n^vnv^v-^ (4-10) 

Incorporating the time-average JJ superconducting current yields the new FD-TLM 

equation for updating the electric field node voltage 

V, n+1 1 — —I0COs(<f>n)P0T yn (4.11) 

_2Zo     +(1/2) _ ™+(i/2) 
J(   L-'xJ-l 1x 

■   p+(l/2)_   rn+(l/2) 
-T1y 1y,i-l 

+Iosin{<l>n)] 

where V™+1 and V™ are the shunt node voltages and the subscripted / are the currents 

flowing in neighboring series (magnetic field) nodes [12]. This equation is for an 

electric field node for z-directed electric fields. Analogous equations can be derived 

for electric field nodes in the x and y directions. 
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Conductivity for the node is calculated as G(V) which will never be infinite since 

this represents normal current flow through the resistance of the JJ. The current 

source is modeled as a current source within the FD-TLM method rather than mod- 

eling it as part of the conductivity of the electric field node representing the JJ. 

Therefore, once the system is stable in the ZVS, all of the current through the JJ will 

be represented by the current source while maintaining a reasonable conductivity of 

the node as being G(0) which is just the R5ap resistance, where Rgap is the equivalent 

resistance of the JJ in the HVS. For any additional applied current, the FD-TLM 

method responds by creating voltages across the capacitance and G{V) to readjust 

the current source for the newly applied current. To summarize, this JJ model imple- 

mentation never creates a short at the E field node and thus never becomes trapped 

in the ZVS, and lacks the instability of having negative conductivity, solving all of 

the problems associated with the original flawed modeling approach. 

Figure 4.3 shows the typical simulation of a single JJ device with the FD-TLM 

method. In the simulation, a 5 mV pulse is in series with a 27.0 ohm resistor and the 

JJ, providing current greater than the critical current of the JJ. The voltage level and 

current through the circuit rises until the JJ enters the HVS and an output voltage 

is appears across the junction. Furthermore, the externally applied current decreases 

once the JJ is in the HVS showing that the JJ has switched from a superconducting 

state to a resistive state. The externally applied current is created by a voltage 

source in series with a resistor. Thus, when there is a non-zero voltage across the JJ, 

the circuit current decreases according to Kirchhoff's voltage law. The characteristic 

ripple created by the oscillating current source in the HVS can also be observed in 

both the voltage across the JJ and in the current through the JJ. Next, the voltage 

source is cut off in the circuit reducing the current to zero in the circuit while the JJ 

requires time to leave the HVS and settle back into the ZVS. Comparison to references 
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Figure 4.3: FD-TLM simulation for a single Josephson junction. 
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Figure 4.4: Depiction of the arrangement of JJs within the SQUID loop. 

[13, 9], show that this is, indeed, the correct general behavior for the JJ. The single 

JJ was also modeled using conventional circuit simulation performed by solving the 

differential equations for the JJ using a fifth-order Runge-Kutta method (use of this 

method is discussed in the next chapter). Fig. 4.3 reveals good agreement between 

FD-TLM and conventional simulation validating the FD-TLM JJ modeling approach. 

results of conventional circuit simulation 

With the implementation of the JJ devices discussed so far, a wide variety of JJ 

logic circuits can be simulated with the FD-TLM method. However, when JJs are 

placed within a superconducting loop as depicted in Fig. 4.4, the two JJs become 

coupled as a result of the requirement that the flux through a superconducting loop 

is quantized. This configuration is referred to as a Superconducting Quantum 

Interference Device (SQUID). Within the SQUID loop, the JJs are coupled via the 

vector magnetic potential existing within the superconducting material forming the 

loop connecting the two JJs, or equivalently, via the magnetic flux passing through 

the loop. This flux forces a fixed phase change difference between the JJs to quantize 
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the flux through the loop. Therefore, instead of behaving independently, the phase of 

one JJ becomes a function of the phase across the other JJ. Since the phase across the 

junction determines the current through the junction as given by (4.1), the current 

flowing through one JJ becomes a function of the current traveling through the other 

JJ and is also a function of the magnetic flux passing through the SQUID loop. 

Quantum mechanics must be used to determine the relationship between the JJ 

currents and the applied external magnetic flux. Consider a Cooper pair wave function 

that circulates through the SQUID loop and then integrate the phase of this wave 

function around the loop as described in [13]. This yields the following equation 

where a discontinuity of the phase occurs at the junction interface yielding, 

<fv6-dl = 2nir = 9i + 62 (4.12) 

where 6\ is the phase across Ji and 62 is the phase across J2, and the integration of 

the phase around the loop must be an integer multiple of 2n. Through the use of the 

gauge-invariant phase we obtain 

2e   r 
02 = 0l + — j>A-dl-2nir, (4.13) 

which gives a relationship between phase and the magnetic potential vector. Use of 

Stokes' theorem relating the magnetic vector potential to flux gives the final equation 

for expressing the phase relationship between Ji and J2 for an externally applied flux 

27r$e 
02 =61 - -*^' (4-14) 

where $e is the externally applied flux through the loop and 4>0 is the flux quan- 

tum and is equal to 2.068xlO-15 Wb/m2. The total current through the SQUID is 

obtained from the following expression 

IT = Iasin^) + IC2sin{el - ^), (4.15) 
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Figure 4.5: Total critical current versus applied flux for the symmetric SQUID. 

which is used to determine the total critical current of the SQUID as a function of 

the applied flux by finding the phase which maximizes the total current at each value 

of flux. For the case of the SQUID where both JJs are identical and the SQUID loop 

is symmetric, a simple expression can be obtained for the total critical current 

hc{$e) = 2/cl COS 
$, 

(4.16) 

A plot of the total critical current versus applied flux is given in Fig. 4.5, in which the 

interference pattern formed classifies the SQUID as an interference device. Note 

that the critical current versus applied flux oscillates with increased flux rather than 

changing linearly. An applied flux equal to one-half of the flux quantum yields a total 

critical current of zero, and a flux equal to an integer multiple of the flux quantum 

yields the maximum critical current. Physically, this occurs due to the adjustment of 

JJ currents to keep an integer multiple of the flux quantum flowing through the loop. 

An analytical expression for total critical current versus externally applied flux 
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was obtained for the case of the symmetric loop. A symmetric loop is one where the 

Josephson junctions have the same properties and are placed symmetrically within 

the loop. However, in the case where the loop is assymmetric, it is difficult to derive 

an analytical expression for total critical current. Instead, a numerical technique must 

be used which directly solves for the maximum allowable current through the SQUID 

at each value of applied magnetic flux. 

It has been assumed that currents through the loop do not contribute to the 

magnetic flux through the loop when, in fact, they do. Inclusion of the contribution 

to magnetic flux in the loop from currents in the loop leads to a new expression for 

the JJ phases versus applied flux 

* =«, - M«. + fa/.-M.) 

where Li is the self-inductance for the side of the SQUID loop containing Ji, L2 is 

the self-inductance for the side of the loop containing J2, Ii is the current through 

Li, and I2 is the current through L2 [13]. 

To make the expression for total critical current of the SQUID more complete, 

the effect of finite junction size can be included.   Previously, we have assumed for 

purposes other than the calculation of critical current density and capacitance, that 

the junction is a point junction. However, with finite area, it is possible for magnetic 

flux to exist in the J J tunneling barrier, altering the critical current of the J J via the 

expression 

sin(n$/$0) 
/c($) = /c(0) (4.18) 

(TT$/$0) 

where $ is the flux contained within the Josephson tunneling area. 

Considering these nonidealities, the expression for determining the total critical 

current for the SQUID loop as a function of externally applied magnetic flux can 

become unwieldy, requiring a numerical method for solution. This is where the FD- 

TLM method becomes advantageous. 
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To implement the SQUID in the FD-TLM method, a new model is created which 

will couple two JJs using the methods just described. That is, one JJ within the 

SQUID loop is allowed to vary freely as if acting alone according to the relationships 

(4.5,4.6,4.7). However, the second JJ in the loop specified with SQUID parameters 

given to the FD-TLM method adjusts its phase based upon a calculation of the 

flux through the surface area inside the loop and the phase of the JJ to which it 

is coupled. Here, instead of determining a function of total critical current versus 

applied flux and then treating the SQUID as a single JJ as is done in many methods 

[9], a coupling relation between the JJs within the loop is directly implemented. Since 

the value for externally applied flux is calculated by the summation of H field nodes, 

the self-induced flux described earlier is included since currents through the loop 

in the FD-TLM method will automatically create magnetic fields as a result of the 

solution of Maxwell's equations. 



Chapter 5 

Resistively Coupled Josephson 
Logic Circuits 

5.1    Introduction 

In the previous chapter, all of the concepts needed to implement a single JJ or a 

SQUID were covered along with a method for implementing the devices within the 

FD-TLM method. In this and the next chapter, emphasis is placed on logic circuits 

utilizing the JJs and validation of the simulation results from the FD-TLM method. 

The FD-TLM method as discussed in Chapter 3 solves Maxwell's equations for elec- 

tric and magnetic fields points in discretized three-dimensional space at each time 

step within the numerical method. Within the discretized three-dimensional space, 

properties such as conductivity, permittivity, and permeability are specified for each 

point. As a result, to simulate a circuit, the FD-TLM method requires the physical 

properties and dimensions of the circuit as it would be fabricated. A CAD system 

such as MAGIC [4] could be altered to create a data set necessary for the FD-TLM 

method allowing a chip design to be analyzed quickly without component parasitic 

extraction. 

One technique for simulating JJ logic circuits is to perform a SPICE [3] analysis 

with component values extracted from the physical layout of the circuit.   Since a 
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Figure 5.1: The JAWS logic gate. 

version of SPICE modified to model JJs was not readily available, a conventional 

circuit analysis based on Kirchkoffs' current law is used instead. It will be found that 

the FD-TLM method not only obtains good results, but often predicts the existence 

of additional parasitics or other phenomena omitted in conventional circuit analysis. 

5.2    The JAWS circuit 

The Josephson-Atto Weber Switch (JAWS) [14]will be the first JJ logic circuit to 

be analyzed with the FD-TLM method. This circuit is commonly referred to as 

resistively coupled Josephson logic (RCJL) in that the circuit switches output states 

from "low" to "high" by increasing the amount of current injected into the JJ devices 

beyond their critical current. A better understanding is obtained by analyzing the 

circuit for the JAWS logic gate (Fig. 5.1). Initially, both JJs within the circuit 

are in the ZVS and appear as "shorts". A steady-state biasing current is established 

by Vso and Rso in the circuit which flows through J2 to ground. Voltage inputs Va 

and V6 are applied at the input resistances Ra and R6, respectively. Voltage applied 
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to the inputs creates additional current through J2. If the sum of the input currents 

and bias current exceeds the critical current of J2, J2 will proceed to the HVS where 

it behaves as a resistance rather than a short. At this point, the 10 resistor, R^, will 

have a much smaller resistance than the equivalent resistance of J2 and the biasing 

current will flow through Ji and then to ground through Rd while the input currents 

flow through R^. Note that although J2 is in the HVS at this point, there is still no 

output current flowing through Rout- This leads to the purpose of Ji. Ji has a critical 

current designed so that the sum of the input currents flowing through Ji will not 

force Ji into the HVS, while, in contrast, the biasing current flowing through Ji will 

force Ji into the HVS. Therefore, with the biasing current flowing through Ji after J2 

has reached the HVS, Ji proceeds to the HVS, forcing the input current to continue 

flowing through R^ while the biasing current now flows through Rout. As a result, 

the JJ logic circuit or JAWS circuit has gated "high". To return to a logic "low", the 

bias current and input currents must all be returned to zero due to the hysteresis of 

the JJ. 

Josephson junction logic circuits operate on the principle of switching current 

among different paths. The JAWS gate is considered a resistively coupled logic gate 

because it relies on forcing a current through the JJ greater than its critical current 

to switch logic levels. Later, a discussion of magnetically coupled logic (MCJL) gates 

will clarify the distinction between RCJL and MCJL. Nevertheless, in this circuit, 

J2 performs all the work in terms of switching the logic gate while Ji isolates the 

input from the output, forcing the input current through R^ and the biasing current 

through the output resistor. 

The JAWS logic gate can operate as either an AND gate or an OR gate depending 

on the value of the biasing current established through J2. This is performed by 

establishing the bias current using the relationship Ia + h + hias > h, where Ic is 
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the critical current of J2, and Ia and If, are the input currents. The gate behaves as 

an OR gate when Ia + hias > Ic or If, + hias > h and behaves as an AND gate only 

when Ia + Ib + hias > h but with the constraints h + hias < h and Ia + hias < h- 

5.2.1    FD-TLM implementation 

The fdtgraph [16] program was developed to create data sets for simulation of the var- 

ious JJ logic circuits in the FD-TLM method. Fdtgraph is a mouse-driven graphical 

interface allowing the user to graphically layout the circuit. Fdtgraph then automat- 

ically creates the ASCII text data set required for the FD-TLM simulation of the 

circuit layout. 

The JAWS circuit is simulated within a 50x50x50 /am3 (x,y,z) box filled with air 

dielectric with a grid spacing (spacing between points in space) of 1 fira. The walls 

of the box are modeled using perfect conductors as boundary conditions, and the 

bottom of the box is used as a superconducting ground plane. 

Fig.   5.2 shows the typical fabrication steps for JJ integrated circuits. This 

structure is simulated within the FD-TLM method; however, since the silicon sub- 

strate is used as a base for construction and electrical properties are the primary 

concern within circuit simulation, the silicon substrate is excluded from the layout 

within the FD-TLM method. Thus, the bottom surface of the box containing the 

circuit is used as the superconducting ground plane and a 2 fj,m thick layer of SiC"2 

is used as the insulator between the ground plane and base electrodes or first layer 

of metal for the JJs. The tunneling barrier is implemented as a y-directed, the Ey 

field node, which has current-voltage characteristics representing that of the single 

JJ, centered in the area representing the JJ tunneling material as shown in Fig. 5.3. 

Superconducting wiring is implemented as infinitely thin, perfectly-conducting seg- 

ments of metal within the FD-TLM method.  Interconnects are made intentionally 
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AIO, tunneling barrier 

Nb wiring 

Nb counter electrode 
SiO, 

Nb base electrode 1 
Si02 insulator 

Nb ground plane 

Si substrate 

Figure 5.2: Cross-section of layers used in fabrication of JJ ICs. 

Ey node implementing the Josephson junction 

Tunneling barrier 

Figure 5.3: Depiction of the actual placement of the Ey node in the tunneling barrier 
used to simulate the JJ. 
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Figure 5.4: JAWS layout used for FD-TLM simulation. 

short to reduce reflection and electromagnetic noise enabling comparison with conven- 

tional circuit analysis. The FD-TLM layout is shown in Fig. 5.4. The parameters 

are implemented following [12] Ic = 0.1 mA, Gx = 4.0 mS, h =0 A, G2 =0.1 S, 

V, =2.0 mV, Vt =0.1 mV, P0 =3.039 x 1015 Wb"1, and Cj =0.5 pF for the JJ. Three 

voltage sources are implemented as shown in Fig. 5.1. 

The entire simulation is performed for 350 ps with a 1.7 ps time step. The results 

of the FD-TLM simulation are shown in Fig. 5.5. 

The biasing current was established to allow the JAWS logic gate to behave as 

an AND gate. In Fig. 5.5, the biasing current is established by Vso and, as soon as 

the system is stable, an input voltage of 2 mV is applied to input A. At this point, 

the output voltage remains at zero as J2 absorbs all of the input current without 

triggering to the HVS. At a later time, while leaving the input at A "high" a 2 mV 

voltage is also applied to input B. At this point, with some delay, J2 is triggered into 

the HVS and the gate goes "high". A signal of approximately 1.7 mV is observed at 

the output which can be used as the input for a subsequent gate.  From the results 
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Figure 5.5: Results of simulation of the JAWS logic gate. 
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of simulation, it is seen that the FD-TLM simulation method provided the correct 

general behavior of the circuit. 

5.2.2    Validation of FD-TLM results 

Conventional circuit analysis is used to validate the FD-TLM results and, for the 

Josephson junction circuit, involves a three step process noting that SPICE version 

3f.4 cannot model a JJ. Nodal analysis is performed on the circuit followed by a run 

through MAPLE to solve for a set of first order differential equations which are, then, 

solved using an numerical ordinary differential equation integration method. 

First, nodal analysis is performed on the circuit to obtain a set of differential 

equations governing operation of the circuit. The following are the nodal equations 

for the JAWS circuit. 

^ + ^ + ^ + & + 'i = ° 

-h + C3
d-^^ + (?!(V2 - V3) + Iasinifa) = 0 

^ + C^ + G1(V3) + IcnsHh) ~ C3
d-^^ 

-Gi(V2 - V3) - Iasinifa) + /2 = 0 

-h + CouT^ + ^ = 0 (5.1) 

dJt = Po(V2-V3) 

d~t = po(Vs) 

Vi-V2 = Ii^ 

V3-V4 = L2% 

MAPLE [4] is then used to solve for the first order derivatives of each variable (see 

Fig. 5.6) from (5.1). 

Using Borland C/C++ version 4.0 on a PC, a program was written using the 

fifth-order Runge-Kutta adaptive time step routine [5] to solve the set of first-order 

differential equations (Appendix B). The fifth-order Runge-Kutta method is the pre- 



>  ans[l]; 

|phil(/) = P0(V2(0-V3(/)) 

>  ans[2]; 

|phi2(/) = .Po V3(0 

>  ans[3]: 

i.Vim=   2/Mvl(Q-^Va(0-/&/Vb(0 + Vl(0/Ziii + !!(/) RinRd 
& Cd RinRd 

>  ans[4] 
d 
jt V2(0 = - (-2 11(0 Rso + V3(0 - Vso(/) + Gl( V3(0) Rso + Ic2 sin(phi2(0) Rso 

+ I2(0flso + G1(V2(Q-V3(0)foo + Id sin(phil(0) Rso)/(CjRso) 
>   ans[5]: 

JLv3(n=   -IKQRso + V3(t)-Vso(t) + G\(V3(t))Rso + Ic2sin(phi2(t))Rso + ]2(t)Rso 
^ CjRso 

>  ans[6]; 
3y:(.,_l2(t)Rout-W4(t) 
dt     v ; CoutRout 

>   ans[7]; 

i-iim- -VK/) + V2(0 
dtn(t)-' LI 

>  ans[8]; 
d V3(Q-V4(Q 

Figure 5.6: MAPLE is used to solve first order derivatives. 

39 



40 

ferred method for solving the ordinary differential equations, in this instance, since 

lookup tables are used to determine the values of input voltages at each time step and 

the input voltage curves are not smooth. The results for the Runge-Kutta method 

applied to the characteristic differential equations of the JAWs circuit are shown in 

Fig. 5.5 as well as the comparison to the simulation of the JAWS circuit with the 

FD-TLM method. 

During the process of simulating the JAWS circuit with the Runge-Kutta method, 

it was discovered that a few parasitics automatically modeled by the FD-TLM method 

were not included in the conventional circuit analysis. Upon analysis of the differing 

results between the two methods, the inclusion of two inductors Li and L2 within the 

conventional circuit analysis resulted in very close agreeement between the FD-TLM 

and Runge-Kutta methods. The physical dimensions for the segments of conductors 

important for parasitic inductance determination were fed to the FastHenry program 

[2] which gave realistic values for inductances listed in Fig. 5.1. Capacitances Cd and 

Cout were added to the circuit to represent capacitance between the circuit and ground 

plane through the SiC"2 insulating layer. In this case, it was discovered that the FD- 

TLM method often predicts the existence of parasitics which might be overlooked in 

conventional circuit analysis. 

Slight differences between the FD-TLM and conventional circuit analyses method 

can be attributed to slightly inaccurate extraction of the parasitic component values. 

For example, within the FastHenry inductance calculation program, the conductors 

were assumed to be 0.1 microns thick while the conductors are modeled as being 

infinitely thin in the FD-TLM method. Furthermore, instead of describing the entire 

superconductor wiring layout, only the physical dimensions and locations for conduc- 

tors considered most important in determining parasitic inductance were included 

in the FastHenry data set.   There is very close agreement between the FD-TLM 



and circuit analyses, and the results agree with the general behavior expected which 

validates the FD-TLM method approach for simulating RCJL logic circuits. 



Chapter 6 

Magnetically Coupled Josephson 
Logic Circuits 

6.1 Introduction 

In chapter 5, FD-TLM simulations of resistively coupled Josephson logic circuits were 

performed and verified. However, as discussed in Chapter 4, MCJL circuits operate 

on a different principle than RCJL circuits requiring a different simulation method to 

include the dependence of critical current for the JJs as a function of externally applied 

flux. This chapter will show that the FD-TLM method is capable of implementing 

magnetically coupled Josephson logic circuits. Two different types of logic circuits 

will be analyzed, the DC SQUID and the (Modified Variable Threshold Logic) MVTL 

[14] circuit. 

6.2 DC SQUID Simulation 

The circuit for the 2 JJ DC SQUID is shown in Fig 6.1. This circuit is referred to 

as magnetically coupled Josephson logic (MCJL) as opposed to resistively coupled 

Josephson logic (RCJL) discussed for the JAWS circuit. The difference is that the 

MCJL circuit uses magnetic coupling to switch between the HVS and ZVS instead 
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Figure 6.1: Equivalent circuit for the 2 JJ DC SQUID. 

of current injection.  This will be discussed in detail. The fundamental part of 

the two JJ DC SQUID logic gate is the SQUID loop which operates as discussed in 

Chapter 3. In Fig. 6.1, a biasing current is established by Vso with resistor Rso which 

will flow through the SQUID loop since, initially, both JJs are in the ZVS and appear 

as superconducting shorts. 

Later, an input voltage Vcin is applied to the control line creating a current and, 

thus, a magnetic flux. The control line is magnetically coupled to the SQUID and 

creates the "external" flux which changes the total critical current of the SQUID loop. 

Switching of the SQUID to the HVS follows the basic procedure discussed in Chapter 

3. If the current through the control line and, therefore, the externally applied flux, 

is high enough, the SQUID will no longer be capable of supporting the bias current 

as a superconducting current and the JJs within the loop will change to the HVS. 

As a result, the bias current will be shunted through the output resistance R0ut and 

the gate will be in the "high" voltage state. To reset the SQUID to the ZVS (logic 

"low") from the HVS, the bias current established by Vso must be reduced to zero. 
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Figure 6.2: Physical layout of the DC SQUID. 

6.2.1    FD-TLM implementation 

Once again, fdtgraph is used to create the layout of the circuit and the data set for the 

FD-TLM method. The circuit layout is seen in Fig. 6.2. A 50x50x50 /mi3 (x, y, z) 

metal box is filled with air dielectric with perfectly-conducting boundary conditions 

for the walls of the box. Using the typical fabrication technique for JJ circuits 

the bottom of the box is used as the superconducting ground plane while a 3-/im- 

thick layer of Si02 is used between the ground plane and the base electrodes. All 

of the conductors are modeled as 1 /xm thick perfect conductors and are generally 5 

lira. wide. The JJ parameters are the same as for the JAWS circuit discussed in the 

previous chapter and each JJ is implemented as a single node centered in the area 

to representing the tunneling barrier as before. Resistors are implemented following 

that of Chapter 3.  Finally, voltage sources are implemented as shown in Fig.  6.1. 
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Figure 6.3: Results of simulation of the DC SQUID logic gate. 

The simulation duration was 185ps and the time step was 1.7 fs. The results of the 

simulation are shown in Fig. 6.3. 

During the simulation, as shown in Fig. 6.3, a voltage signal Vso is applied to 

generate a bias current through the SQUID loop. At this time, the output voltage 

remains zero, and, at a later time, a voltage is applied to the control line, Vcin creating 

a current. With a small delay, the output voltage increases to approximately 1.7 mV. 

When the input signal, Vcin returns to zero, the output voltage remains at 1.7 mV 

until Vso returns to zero. This follows the expected general behavior of the circuit 

validating the FD-TLM method. 

6.2.2    Validation of FD-TLM results 

The same procedure used for the JAWS circuit is used to validate the FD-TLM results 

for the two JJ DC SQUID. The circuit with labeled nodes as shown in Fig.  6.1 is 
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used for nodal analysis and to obtain the following set of equations. 

Cj^ + Icsin(<f>i) + G(V1)-I1 = 0 

Cj^ + Icsin(<h) + G(V2)-I2 = 0 

h + I2-U + h = 0 

t^COUT 

I  + Y^nm = o 

I  + Y^sa = o 
KIN 

-U + -^- = 0 

V3      Vl      ni dt      lVil dt 

V3-V2 = L2%- + M;dI> 

(6.1; 

V5-V4 = L3^-M1^- + M:
,'J! 

V6-V3 = L4f 

<h = <f>i- 27r(M//3 + ^2/2 - Lih)l$o 

All inductance values and mutual inductances were extracted from the layout by 

providing a description of the layout to the FastHenry program (see Appendix C). 

MAPLE was then used to solve the nodal equations for a set of first-order differential 

equations (see Appendix C). The fifth-order adaptive-time step Runge-Kutta method 

was used to solve the set of differential equations, the results of which are shown in 

Fig. 6.3. along with comparison to the results of the FD-TLM method. Excellent 

agreement between the two methods validates the FD-TLM method. 

Several conventional circuit simulations of the SQUID were performed to judge 

the sensitivity of the circuit performance to changes in the values of parasitic compo- 

nents. Capacitance to ground and capacitance between the control line and SQUID 

loop were included in prior simulations and were found to have little effect on cir- 
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Figure 6.4: Equivalent Circuit for the MVTL logic gate. 

cuit operation while different inductances values greatly altered the operation of the 

circuit. Minor differences in the results for the FD-TLM method and the conven- 

tional circuit simulation method can be attributed to slightly inaccurate values for 

the inductances extracted from the physical layout of the circuit. 

6.3    MVTL Simulation 

The MVTL circuit uses a combination of current injection, increasing current 

through the JJ to trigger the onset of the HVS, and magnetic coupling to lower the 

effective critical current of the SQUID loop. Fig. 6.4 shows this clearly, where the 

input current flows through the control line creating flux to lower the total critical 

current of the SQUID and, at the same time, is injected into the the top of the 

SQUID loop to increase the current through the SQUID loop and force a more rapid 

transition to the HVS. The combination of current injection and magnetic coupling 
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is the key to giving the MVTL logic gate the fastest switching time of all the logic 

gates discussed. 

Analyzing the operation of the MVTL circuit, a biasing current through the 

SQUID loop is established by the voltage source Vso. At this point, the total current 

through the SQUID loop is less than the total critical current, and the JJs remain 

in the ZVS, behaving as superconducting shorts. When an input signal is applied to 

the control line, the current creates a flux which, when coupled to the SQUID loop, 

lowers the total critical current of the SQUID loop. The input current flows to ground 

through J3 and the SQUID loop, which are both in the ZVS. The reduction of total 

critical current and injection of additional current sends the SQUID into the HVS. 

At this point, the biasing current will flow through J3 and Rcout to ground, and the 

input current caused by Vcin will flow through Rcout to ground. The biasing current 

has a larger value than the input current and will force J3 into the HVS, which then 

steers the input current through Rcout, while the biasing current flows through the 

output resistance Rout. At this point, the MVTL circuit is in the logic "high" state. 

Due to the hysteresis of the JJs, the input and biasing currents must both be reduced 

to zero to allow the JJs to return to the ZVS and, thus, return the logic gate to a 

logic "low". 

6.3.1    FD-TLM implementation 

As before, the circuit is placed in a 50x50x50 /xm3 (x, y, z) box filled with air and the 

walls of the box are modeled as perfect conductors. The bottom surface of the box 

is used as the superconducting ground plane and a 3 fj,m thick layer of SiC>2 is placed 

at the bottom of the box on which the rest of the circuit is modeled. All conductors 

are modeled as perfect conductors being 1 jim thick, and generally 5 jim. wide. Fig 

6.5. shows the physical layout of the circuit. 
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Figure 6.5: Physical layout of the MVTL circuit used in FD-TLM simulation. 
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Figure 6.6: Results of simulation of the MVTL logic gate. 

The voltage source waveforms are shown in Fig. 6.6. The JJs are implemented 

using the same parameters as before with the exception of J2 having a critical current 

and junction capacitance three times that of Ji and J3. 

As before, the JJs are implemented as a node centered in the area representing 

the tunneling barrier of the JJ. Appendix D lists the FD-TLM data set describing 

the MVTL circuit. The simulation is performed for 185 ps with a 1.7 fs time step 

dictated by the 1 fj,m uniform grid spacing used in the FD-TLM method. FD-TLM 

method results are shown in Fig. 6.6. 

6.3.2    Validation of the FD-TLM results 

To perform conventional circuit analysis for comparison to the FD-TLM results, nodal 

analysis is performed on the circuit giving the following equations: 
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-h + Ic3sin(<j>3) + G3(Vi - V4) + Cj3l&£& = 0 

Ic2sin(<h) + Cj2^ + G2(V2) + ^ - /2 = 0 

^ 

A+^ + ^r+^-o 
*- - /a - kssinfa) ~ C3(Vi - V4) - CJ3^^ = 0 ÄCOC/T J ^^""'VV^ -JV'l '1/ -JO d( 

-/4 +   R^-  = 0 
"■OUT 

,3 = V^ _  (^-^^W (6.2) 

V3 - V, = L^ - M^-fr 

V3 - V2 = L2% + M2
dh 

it     ' l it 

  —  P„\L 
it 

Ite. 
it 

^ = PoV, 

^-Po{Vi-V*) 

V3-V5 = L\% 

<f>2 = <f>i- 2ir(MfI3 + L2I2 - Ii/i)/$o 

Important pieces of the physical layout of the circuit used for the FD-TLM method 

are extracted and the physical dimensions and parameters were provided to the Fas- 

tHenry program to calculate and extract the inductances and mutual inductances as 

well as the coupling between the control line and SQUID loop (see Appendix D). 

MAPLE is used to solve for a set of first-order differential equations (see Appendix 

D) and these equations were then solved using the fifth-order time-adaptive Runge- 

Kutta method. Results of this method are shown in Fig. 6.6 along with the FD-TLM 

method results. 

Comparison of the FD-TLM method results and the Runge-Kutta results show ex- 

cellent agreement therefore validating the FD-TLM method for modeling the MVTL 

circuit. Furthermore, the results for both the FD-TLM and Runge-Kutta methods 

agree with the expected logic functioning of the circuit described earlier. Minor differ- 

ences can be attributed to inexact values for the inductances and magnetic coupling 
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calculated with FastHenry as will as parasitics that are modeled by the FD-TLM 

method and are omitted in the conventional circuit analysis. 



Chapter 7 

Conclusion 

With the advent of high speed digital integrated circuits, analysis and design is be- 

coming ever more difficult with the need for determination of the effects of propaga- 

tion delay, crosstalk, dispersion, signal reflections, signal reflections from the package 

walls, radiation, and modal dispersion. Furthermore, additional parasitics must be 

analyzed at the higher operating speeds where the capacitances and inductances often 

need to be simulated as distributed rather than lumped components. JJ logic circuits 

can operate at frequencies from 1 GHz to 100 GHz necessitating consideration of high 

frequency electromagnetic effects just discussed. 

Quasi-static simulation methods such as SPICE are inadequate at modeling JJ 

logic circuits since the cross-sectional dimensions of the circuit may be comparable 

to the wavelength of the signals involved. Furthermore, although a conventional 

circuit simulation method can analyze propagation delays, crosstalk, and parasitics, 

such analysis requires painstaking effort to extract the values of capacitances and 

inductances within the circuit. 

The FD-TLM method allows an individual to describe the physical geometry of a 

J J logic IC where the the parasitics are automatically modeled and separate extraction 

is not required. The FD-TLM method solves Maxwell's curl equations, as described 

in Chapter 3, allowing simultaneous simulation of the operation of the logic gate 
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and electromagnetic parasitics. As a result, the user can simulate a JJ logic circuit 

with confidence that the circuit being simulated will work as predicted. The only 

extraction required is that of the process parameter values for the JJ describing the 

current-voltage relationship of the JJ. 

In Chapters 5 and 6 several different logic circuits were simulated and analyzed 

to validate the FD-TLM method for modeling JJ circuits. Before performing conven- 

tional circuit analysis, special care was taken in designing the FD-TLM layout so that 

parasitics which could not be simulated in conventional circuit analysis were mini- 

mized. This often required several trial and error simulations to reduce, for example, 

the lengths of conductors, or rearranging the geometry of the layout. 

Upon examining the FD-TLM results, earlier statements concerning the utility of 

the FD-TLM method were substantiated. That is, the FD-TLM method often pre- 

dicts the existence of parasitics omitted in conventional circuit simulation. Differing 

results between conventional circuit simulation and FD-TLM simulation usually indi- 

cated that not all parasitics had been included in the conventional circuit simulation. 

Adjusting the conventional circuit simulation to take these effects into account ulti- 

mately lead to close agreement between the two methods. As a result, the FD-TLM 

method often became a tool for learning details about the JJ and JJ logic circuit 

operation that are not discussed in reference papers and books. 

The final results of Chapters 5 and 6 showed that the FD-TLM method is not 

only reliable for simulating JJ logic circuits, but that it is invaluable as well. In this 

thesis, effort was focused on simulating and validating the results of simulation for 

JJ logic circuits. The conclusion was that with proper incorporation of both dc and 

ac characteristics of the JJ device, any type of JJ circuit can be simulated correctly. 

Simulations of JJ logic circuits using the FD-TLM method took approximately 

two hours on average.  On the other hand, conventional circuit simulation using the 
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Runge-Kutta method often took approximately 15 minutes. The justification for using 

the FD-TLM method in this situation is that the FD-TLM method provides the full 

electromagnetic behavior of the circuit instead of using, possibly unjustified, quasi- 

static approximations. In addition, the process required to perform a nodal analysis 

for each circuit and extract the parasitic inductance and capacitance was far more 

time consuming than the two hour simulation time for FD-TLM simulation. With this 

new method for simulating Josephson junction circuits, it is possible for fabrication 

procedures to be directly converted to an FD-TLM data set for full electromagnetic 

simulation of the fabricated JJ IC circuit. This means that the FD-TLM method can 

be used to directly simulate a fabricated IC and determine problems with design as 

well as theoretical circuit operation. 

Future work in this area includes extension of the FD-TLM method to model 

the skin effect in superconductivity where resistance exists at high frequencies within 

superconductors. The skin effect becomes important at frequencies above 100 GHz, 

and has already been modeled with the FD-TD method [18]. Future work may also 

include simulation of several types of JJ logic circuits appearing in print as well as 

simulation of chip packages. Ultimately, work should be pursued in collaboration with 

individuals performing fabrication of JJ IC circuits to compare FD-TLM simulation 

with real-time results to further validate the method. 



Appendix A 

FORTRAN Code for JJ 
Implementation 

This section contains the portions of the FORTRAN source code for the FD-TLM 

method which was updated to model the Josephson junction (JJ) and SQUID. 

C PROGRAM FDVCUFOR 
C Modified March, 1995 by Christopher G. Sentelle 

C 
C Josephson Junctions are specified by the following parameters: 
C JJIC, the critical current, JJPO, the plasma oscillation frequency 

C JJG1, subgap conductance (linear resistance), JJI1, JJG2, JJVS, and JJVT, 

C parameters based on manufacture of the Josephson Junction. 

C In order to include magnetic effects on the critical current, 

C we specify PHIO. 
C The equation describing non-SC conductance is taken from 

C Rollins, Greg J., "Numerical Simulator for Superconducting 

C Integrated Circuits", IEEE Trans, on Comp.-Aided Design, 

C Vol 10, No 2., p 246, Feb. 1991. 

C 
C The Josephson Junction is specified by 'R' as the model indicator 

C and indicates implementation 
C of changing conductance specified by the Josephson Junction model at 

C the xyz location specified by the 'R' statement. 

C 

C In addition to implementing the simulation of the JJ, 
C this version of the FDTLM program allows coupling of the 

C SQUID device by forcing a couple between two JJ's that are 

C connected in a superconductive ring. This method alters the 

C critical current of the JJ's based on the magnetic flux evident 

C in the loop. The following device card is used to specify a 

C Josephson Junction SQUID. 
C 

C H XI X2 YPLN Zl Z2  JJ1 JJ2 
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c 
C    where X1.X2.Z1, and Z2 specify the area of the superconducting ring. 

C    JJ1 and JJ2 are the number specifiers for the JJ's that are affected 

C    by the superconductive ring and are coupled.  YPLN specifies the 

C    location of the flux area 

C 

C 
C    H 2 JJ SqUID coupling 

C    R Josephson Junction 

C 

C 

C    Read DATA for the Josephson Junction Model 
C    Josephson Junctions (R or r). 

C 

C 
C    Get the X,Y,Z directions for the Josephson Junction 

C 

1000 CALL GETDAT(IXL0,FJUNK,AJUNK,ICURSR(AINPUT,1) 

IF ((IXLO .LT. 1) .OR. (IXLO .GT. NX)) THEN 

WRITE(8,160) AINPUT 

WRITE(8,482) IXLO,NX 

STOP 
END IF 

C 

CALL GETDAT(IXHI,FJUNK,AJUNK,ICURSR,AINPUT,1) 

IF ((IXHI .LT. 1) .OR. (IXHI .GT. NX)) THEN 
WRITE(8,160) AINPUT 

WRITE(8,482) IXHI, NX 
STOP 

END IF 

C 

CALL GETDAT(IYP0S,FJUNK,AJUNK,ICURSR,AINPUT,1) 

IF ((IYPOS .LT. 1) .OR. (IYPOS .GT. NY)) THEN 
WRITE(8,160) AINPUT 

WRITE(8,483) IYPOS,NY 

STOP 

ENDIF 

C 

CALL GETDAT(IZLO,FJUNK,AJUNK,ICURSR,AINPUT,1) 
IF ((IZLO .LT. 1) .OR. (IZLO .GT. NZ)) THEN 
WRITE(8,160) AINPUT 

WRITE(8,484) IZLO, NZ 

STOP 

ENDIF 
C 

CALL GETDAT(IZHI,FJUNK,AJUNK,ICURSR,AINPUT,1) 

IF ((IZHI .LT. 1) .OR. (IZHI .GT. NZ)) THEN 
WRITE(8,160) AINPUT 

WRITE(8,484) IZHI, NZ 
STOP 

ENDIF 
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c 
C    Get the Plasma Frequency Po 

C 
CALL GETDAT(IJUNK,JJPO.AJUNK,ICURSR,AINPUT,2) 

C 
C    Get the Critical Current of the Josephson Junction 

C 
CALL GETDAT(IJUNK,JJIC,AJUNK,ICURSR,AINPUT,2) 

C 
C    Get the sub-gap conductance for the Josephson Junction 

C 

C 

C 

C 

C 

C 

C 

C 

C 

CALL GETDAT(IJUNK,JJG1,AJUNK,ICURSR,AINPUT,2) 

CALL GETDAT(IJUNK,JJI1,AJUNK,ICURSR,AINPUT,2) 

CALL GETDAT(IJUNK,JJG2,AJUNK(ICURSR,AINPUT,2) 

CALL GETDAT(IJUNK,JJVS.AJUNK,ICURSR,AINPUT,2) 

CALL GETDAT(IJUNK,JJVT,AJUNK,ICURSR,AINPUT,2) 

CALL GETDAT(IJUNK,JJCJ,AJUNK,ICURSR,AINPUT,2) 

CALL GETDAT(IJUNK,JJDEP,AJUNK,ICURSR,AINPUT,2) 

NJJ = NJJ + 1 

C 
C    Check whether the array will overflow. 

C 

IF (NJJ .GT. LJJ) THEN 

WRITE(8,160) AINPUT 
WRITE(8,930) LJJ 

930      FORMAT(' The number of Josephson Junctions ', 

1 'is greater than'/'the array size LJJ : 

2 15,'. Increase LJJ and recompile. ') 

STOP 

END IF 

C 

IJJ(i.NJJ) = (IXHI+IXL0)/2 

IJJ(2,NJJ) = IYPOS 

IJJ(3,NJJ) = (IZHI+IZL0)/2 

IJJ(4,NJJ) = IXLO 

IJJ(5,NJJ) = IXHI 
IJJ(6,NJJ) = IZLO 

IJJ(7,NJJ) = IZHI 
C 

FJJ(l.NJJ) = JJPO 

FJJ(2,NJJ) = JJIC 
FJJ(3,NJJ) = JJG1 

FJJ(4,NJJ) = JJI1 
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9999 

9998 

C 

FJJ(5,NJJ) = JJG2 
FJJ(6,NJJ) = JJVS 

FJJ(7,NJJ) = JJVT 

FJJ(8,NJJ) = JJCJ 

FJJ(10,NJJ) = JJDEP 

FJJ(13,NJJ) = ZERO 

F0RMAT(G10.4) 

FORMAT(15) 

C 

C 

GOTO 1500 

C 

C 

C 

Data Entry for the Squi Dupling Device. Parameter 'H' 

1200 NSqUID = NSqUID + 1 

IF ( NSqUID .GT. LSqUID ) THEN 
WRITE(8,160) AINPUT 

WRITE(8,1201) LSqUID 

1201 FORMATC The number of Squids exceeds the maximum allowed ',15) 

STOP 

END IF 
CALL GETDAT(IXLO,FJUNK,AJUNK,ICURSR,AINPUT,1) 
CALL GETDAT(IXHI,FJUNK,AJUNK,ICURSR,AINPUT,1) 

CALL GETDAT(IYPOS,FJUNK,AJUNK,ICURSR,AINPUT,1) 

CALL GETDAT(IZLO,FJUNK,AJUNK,ICURSR,AINPUT,1) 

CALL GETDAT(IZHI,FJUNK,AJUNK,ICURSR,AINPUT,1) 

CALL GETDAT(JJ1,FJUNK,AJUNK,ICURSR,AINPUT,1) 
CALL GETDAT(JJ2,FJUNK,AJUNK,ICURSR,AINPUT,1) 

C 

C    Check to be sure there are no obvious errors in the the device parameters 

C 

IF ((IXLO .LT. 1) .OR. (IXLO .GT. NX)) THEN 
WRITE(8,160) AINPUT 

WRITE(8,482) NX 

STOP 

END IF 

C 

IF ((IXHI .LT. 1) .OR. (IXHI .GT. NX)) THEN 
WRITE(8,160) AINPUT 

WRITE(8,482) NX 

STOP 

END IF 
C 

IF ((IYPOS .LT. 1) .OR. (IYPOS .GT. NY)) THEN 
WRITE(8,160) AINPUT 

WRITE(8,482) NY 

STOP 

END IF 

C 

IF ((IZLO .LT. 1) .OR. (IZHI .GT. NZ)) THEN 
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WRITE(8,160) AINPUT 

WRITE(8,484) NZ 

STOP 

END IF 

C 
IF ((IZHI .LT. 1) .OR. (IZHI .GT. NZ)) THEN 

WRITE(8,160) AINPUT 

WRITE(8,484) NZ 

STOP 

END IF 

C 
IF ((JJ1 .GT. NJJ) .OR. (JJ2 .GT. NJJ)) THEN 

WRITE(8,160) AINPUT 

WRITE(8,1202) 
1202   FORMAT('Specify JJs before specifying SQUID couplings..') 

STOP 

ENDIF 
C 
C    Place the information into the Squid array 

C 
ISQUID(l,NSqUID) = IXLO 

ISQUID(2,NSqUID) = IXHI 
ISQUID(3,NSqUID) = IYPOS 

ISQUID(4,NSQUID) = IZLO 

ISqUID(5,NSqUID) = IZHI 

ISqUID(6,NSQUID) = JJ1 

ISqUID(7,NSqUID) = JJ2 

FJJ(13,JJ1) = ZERO 
FJJ(13,JJ2) = NSqUID 

C 

GOTO 1500 

C 

C 
C    ***** E field calculations 

C 

C$DOACROSS LOCAL(I,J,K) 
DO 5350 K = 1, NZ 

DO 5300 J = 1, NY 
DO 5250 I = 1, NX 

EX(I,J,K) = EXE(I,J,K)*EX(I,J,K) + EXH(I,J,K)+ 

1 (HZ(I,J,K) - HZ(I,J-1,K) + HY(I,J,K-1) - HY(I,J,K)) 

C 

EY(I,J,K) = EYE(I,J,K)*EY(I,J,K) + EYH(I,J,K)* 

1 (HX(I,J,K) - HX(I,J,K-1) + HZ(I-1,J,K) - HZ(I,J,K)) 
C 

EZ(I,J,K) = EZE(I,J,K)*EZ(I,J,K) + EZH(I,J,K)+ 

1 (HY(I,J,K) - HY(I-1,J,K) + HX(I,J-1,K) - HX(I,J,K)) 

5250      CONTINUE 

5300    CONTINUE 
5350  CONTINUE 

C 
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C    Special FD-TLM Ey field equations are used for the JJ. 

C 
DO 5400 M=l, NJJ 

I = IJJ(i.M) 

J = IJJ(2,M) 

K = IJJ(3,H) 

C 
C    Calculate the old Ey electric field from the new Ey. 

EY(I,J,K) = (EY(I,J,K) - EYH(I,J,K)* 
1 (HX(I,J,K)-HX(I,J,K-1)+HZ(I-1,J,K)-HZ(I,J,K))) 

2 /EYE(I,J,K) 

C 
C    Calculate the JJ phase 

IF (FJJ(13,M) .EQ. ZERO) THEN 
FJJ(ll.M) = FJJ(11,M) - FJJ(l,M)*DELTAT*EY(I,J,K) 

ELSE 
IXLO = ISqUID(l,FJJ(13,M)) 

IXHI = ISQUID(2,FJJ(13,M)) 

IYPOS = ISQUID(3,FJJ(13,M)) 

IZLO = ISQUID(4>FJJ(13,M)) 
IZHI = ISQUID(5,FJJ(13,M)) 

JJ1 = ISQUID(6,FJJ(13,M)) 
JJ2 = ISQUID(7,FJJ(13,M)) 

FLUXJJ = ZERO 

DO 5500 Jl = IXLO, IXHI 
DO 5501 Kl = IZLO, IZHI 

FLUXJJ = FLUXJJ+UO*HY(Ji,IYPOS,K1)*DELTAL*U(J1) 
1 *W(K1)/V(IYP0S) 

5501      CONTINUE 

5500   CONTINUE 

FLUXJJ = TWO*PI*FLUXJJ/FLUXO 

FJJ(11,M) = FJJ(11,JJ1) - FLUXJJ 

END IF 
C    Prevent phase overflow. 

IF (FJJ(ll.M) .GT. (TWO+PI)) FJJ(11,M) = FJJ(ll.M) - TWO+PI 

C 

C    Calculate the total flux magnitude at the JJ node 

FLUXJJX = ZERO 
FLUXJJZ = ZERO 

C     DO 5401 I1=IJJ(4,M),IJJ(5,M) 
C       FLUXJJZ = FLUXJJZ + HZ(I1,J,K) 

C 5401 CONTINUE 

C     DO 5402 II = IJJ(6,M),IJJ(7,M) 

C       FLUXJJX = FLUXJJX + HX(I,J,I1) 
C 5402 CONTINUE 

C     FLUXJJZ = FLUXJJZ * UO * FJJ(IO.M) 

C     FLUXJJX = FLUXJJX * UO * FJJ(10,M) 

C     FLUXJJ = SQRT(FLUXJJZ*FLUXJJZ+FLUXJJX*FLUXJJX) 

C     IF (FLUXJJ .LT. 1.0D-200) THEN 
C       FLUXJJ = ONE 

C     ELSE 
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C       FLUXJJ = ABS(SIN(PI*FLUXJJ/FLUXO)/((PI*FLUXJJ)/FLUXO)) 

C     END IF 

FLUXJJ = ONE 

C 

C 
C    Calculate the JJ superconducting current including 
C    critical current effects from the magnetic flux 

FJJ(12,M) = FJJ(2,M)*SIN(FJJ(11,M))*FLUXJJ 

C 
C    Calculate the new Ey field including the effect of the JJ. 

EY(I,J,K) = EY(I,J,K) * (EYE(I,J,K) 
1 - HALF * EYH(I,J,K) * FJJ(2,M) 

2 * COS(FJJ(il,M)) * FJJ(1,M) 

3 * DELTAT) 

4 + EYH(I,J,K) * (HX(I,J,K) - HX(I,J,K-1) 

5 + HZ(I-1,J,K) - HZ(I,J,K) 

6 + FJJ(12,M)) 

C 
5400 CONTINUE 

C 
C  ■ Update the Josephson Junction conductances, capacitances remain constant 

C 
C    Remember the following assignments 

C    IJJ(1,I) = x position of JJ 
C    IJJ(2,I) = y position of JJ 

C    IJJ(3,I) = z position of JJ 

C 
C    FJJ(1,I) = Plasma Frequency Po 

C    FJJ(2,I) = Critical Current IC 

C    FJJ(3,I) = sub-gap conductance Gl 

C    FJJ(4,I) = II  (parameter based on manufacture) 

C    FJJ(5,I) = G2  (parameter based on manufacture) 
C    FJJ(6,I) = VS (parameter based on manufacture) 

C    FJJ(7,I) = VT (parameter based on manufacture) 
C    FJJ(8,I) = Cj Capacitance of the JJ 

C    FJJ(9,I) = node admittance without the Josephson Junction 

C    FJJ(10,I) = Depth of Josephson Junction 
C    FJJ(ii,I) = phi for the JJ 

C    FJJ(12,I) = IJ for the JJ 
C    FJJ(13,I) = Boolean, Update phase based on voltage? Used for Squid couple 

C 

DO 6000 I = l.NJJ 

C 

C    Calculate the voltage across the JJ. 

VJJ = -EY(IJJ(1,I),IJJ(2,I),IJJ(3,I)) 

C 

GJR = FJJ(3,I)*VJJ+(FJJ(4,I)+FJJ(5,I)*ABS(VJJ))*(l/(l+ 

1 EXP((FJJ(6,I)-VJJ)/FJJ(7,I)))- 

2 1/(1+EXP((FJJ(6,I)+VJJ)/FJJ(7,I)))) 
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C    Calculate conductance to give required current at specified V 

IF (VJJ .EQ. ZERO) THEN 

GJJ = ZERO 

ELSE 
GJJ = Z0*GJR/VJJ 

END IF 

C 
YSJ = TW0*H*FJJ(8,I)/(E0*DELTAL) 

EYE(IJJ(i,I),IJJ(2,I),IJJ(3,I)) = ONE - 

1   TW0*GJJ/(GJJ+FJJ(9,I)+YSJ) 

EYH(IJJ(1,I),IJJ(2,I),IJJ(3,I)) = TWO * ZO 

1    /(GJJ+FJJ(9,I)+YSJ) 

C 

6000 CONTINUE 

C 
C    Calculations for coupling between JJ devices to form a two junction SQUID 

C 
C ISQUID(l.I) = IXLO 

C ISQUID(2,I) = IXHI 
C ISqUID(3,I) = IZLO 

C    ISqUID(4,I) = IZHI 
C ISqUID(5,I) = 1st Josephson Device to be linked 
C ISqUID(6,I) = 2nd Josephson Device to be linked 

C 
C     DO 6001 I = l.NSqUID 

C        IXLO = ISQUID(l.I) 
C        IXHI = ISqUID(2,I) 

C        IYPOS = ISqUID(3,I) 
C        IZLO = ISqUID(4,I) 

C      IZHI = isquiD(5,i) 

C      JJ1 = isquiD(6,i) 

C      JJ2 = isquiD(7,i) 

C FLUXJJ = ZERO 
C We first calculate the flux, Hy going through the area 

C DO 6002 J = IXLO, IXHI 
C DO 6003 K = IZLO, IZHI 
C FLUXJJ = FLUXJJ+UO*HY(J,IYPOS,K)*DELTAL*U(J)*W(K)/V(IYPOS) 

C 6003   CONTINUE 
C 6002 CONTINUE 
C We will link the squid JJ's with the pi*flux/fluxo relationship 

C by adjusting the phase of the second JJ listed, JJ2 

C In a coupled squid, the only way to change the value of 

C the phase of the second JJ is by altering the first JJ or 

C altering the flux. This altercation is only performed at this 
C stage.  In the main iterative loop, the phase for JJ2 of this couple 

C is not allowed to change. This routine will set its phase. 

C 

C The next step will be to determine the phase differences 

C 

C FLUXJJ = TWO*PI*FLUXJJ/FLUXO 

C 



C    We now adjust the coupled Josephson Junctions 

C     FJJ(li,JJ2) = FJJ(il,JJl)+FLUXJJ 

C 
C 6001 CONTINUE 



Appendix B 

JAWS Simulation Data 

The section contains the FD-TLM Data Set, the FastHenry extraction data set, 

MAPLE V results, and the C program for performing the conventional circuit simu- 

lation for the JAWS circuit. 

B.l    FD-TLM Data Set 
NFRCJL5 
T RCJL Josephson Junction Logic 
♦Generated by FDTGRAPH, copyright 1993, by Christopher G. Sentelle 
*Data in format to be used by FD-TLM copyright by Dr. Robert H. Voelker 

♦University of Nebraska-Lincoln 
♦ 
♦Modified for simtime and pulses on Sept 6, 1995 
♦ 

♦Created on: Thu Jun 29 13:02:33 1995 
♦ 
♦ In this simulation, we try to reduce parasitic capacitance and inductance 
♦ with a couple of methods. First, all of the conducting lines are 

♦ made to be infinitely thin to take care of parasitic inductance. 
♦ There should be little to no crosstalk in this circuit because 
+ everything is orthogonalized as much as possible. We also reduce 

♦ the area of the JJs in order to try to reduce a capacitance that may 
♦ be occuring between the junction overriding the capacitance we are 
+ trying to create via the Josephson Junction itself. We are also 

♦ moving the entire circuit at a higher level, 2 microns from 
♦ ground in order to reduce the parasitic capacitance to ground. 
♦ 

♦Medium material used throughout 
♦Relative permittivity 
E 1 50 1 25 1  50 1 1 1 
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♦Conductivity throughout 
L  1 50 1 25 1 50 0 0 0 
♦Magnetic susceptibility 
M 1 50 1 25 1 50 0 0 0 
♦Relative permeability 
U 1 50 1 25 1 50 1 1 1 
♦Add for a Si02 substrate 
E 1 50 121 50 3.53.53.5 
+ Josephson Junction #1 
R 6 7 3 12 13 3.039e+15 7e-05 0.004 0 0.1 0.002 0.0001 5e-13 5e-ll 
♦ Josephson Junction #2 
R 6 7 3 22 23 3.039e+15 0.0001 0.004 0 0.1 0.002 0.0001 5e-13 5e-ll 
♦Infinitely Thin object, xz-plane Conductor 
L 6 8 3 3 3 8-1-2-1 
L 9 9 3 3 3 8-2-2-1 
L 6 8 3 3 9 9-1-2-2 
♦Infinitely Thin object, xz-plane Conductor 
L  12 14 3 3 3 8 -1 -2 -1 
L 15 15 3 3 3 8 -2 -2 -1 
L 12 14 3 3 9 9 -1 -2 -2 
♦Infinitely Thin object, xz-plane Conductor 
L 9 11 3 3 6 8 -1 -2 -1 
L 12 12 3 3 6 8 -2 -2 -1 
L 9 11 3 3 9 9 -1 -2 -2 
♦Infinitely Thin object, xz-plane Conductor 
L 2 5 3 3 6 8-1-2-1 
L 6 6 3 3 6 8-2-2-1 
L 2 5 3 3 9 9-1-2-2 
♦Infinitely Thin object, xz-plane Conductor 
L 6 8 3 3 9 11 -1 -2 -1 
L  9 9 3 3 9 11 -2 -2 -1 
L 6 8 3 3 12 12 -1 -2 -2 
♦Infinitely Thin object, xz-plane Conductor 
L 6 7 3 3 12 13 -1 -2 -1 
L 8 8 3 3 12 13 -2 -2 -1 
L 6 7 3 3 14 14 -1 -2 -2 
♦Infinitely Thin object, xz-plane Conductor 
L  18 20 4 4 3 18 -1 -2 -1 
L 21 21 4 4 3 18 -2 -2 -1 
L 18 20 4 4 19 19 -1 -2 -2 
♦Infinitely Thin object, xz-plane Conductor 
L 6 17 4 4 16 18 -1 -2 -1 
L  18 18 4 4 16 18 -2 -2 -1 
L 6 17 4 4 19 19 -1 -2 -2 
♦Infinitely Thin object, xz-plane Conductor 
L 6 8 4 4 14 15 -1 -2 -1 
L 9 9 4 4 14 15 -2 -2 -1 
L 6 8 4 4 16 16 -1 -2 -2 
♦Infinitely Thin object, xz-plane Conductor 
L 6 7 4 4 12 13 -1 -2 -1 
L 8 8 4 4 12 13 -2 -2 -1 
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L 6 7 4 4 14 14 -1 -2 -2 
♦Infinitely Thin object, xz-plane Conductor 
L 2 5 4 4 16 18 -1 -2 -1 
L 6 6 4 4 16 18 -2 -2 -1 
L 2 5 4 4 19 19 -1 -2 -2 
♦Infinitely Thin object, xz-plane Conductor 
L 6 8 4 4 19 21 -1 -2 -1 
L 9 9 4 4 19 21 -2 -2 -1 
L 6 8 4 4 22 22 -1 -2 -2 
♦Infinitely Thin object, xz-plane Conductor 
L 6 7 3 4 22 23 -1 -2 -1 
L  8 8 3 4 22 23 -2 -2 -1 
L 6 7 3 4 24 24 -1 -2 -2 
♦Infinitely Thin object, xz-plane Conductor 
L  1 5 3 3 22 24 -1 -2 -1 
L 6 6 3 3 22 24 -2 -2 -1 
L 1 5 3 3 25 25 -1 -2 -2 
♦ These values of resistance had to be corrected by hand. 
♦Infinitely Thin object, xz-plane Resistor 45 ohm z-directed 
L 12 14 3 3 2 2 -2 -2 5555.56 
L 15 15 3 3 2 2 -2 -2 5555.56 
♦Infinitely Thin object, xz-plane Resistor 45 ohm z-directed 
L 683322-2-2 5555.56 
L 9 9 3 3 2 2-2-2 5555.56 
♦Infinitely Thin object, xz-plane Resistor 1 ohm 

•L 113 3 6 8 250000 -2 -2 
L 113 3 9 9 250000 -2 -2 
♦Infinitely Thin object, xz-plane Resistor 12k ohms 
L  18 20 4 4 2 2 -2 -2 20.8333 
L 21 21 4 4 2 2 -2 -2 20.8333 
♦Infinitely Thin object, xz-plane Resistor 45 ohm x-directed 
L  1 1 4 4 16 18 5555.56 -2 -2 
L  1 1 4 4 19 19 5555.56 -2 -2 
♦ 1 ps = 600 iterations 
♦ 

♦ Minimum Grid Spacing 
A le-06 
♦ 

♦Simulation time (ps) 300 
S 210000 
♦Backup Interval (ps) 200 
B 220000 
♦Plot Interval (ps) 0.1 
P 60 
♦ 

♦ A Voltage Source 
♦ A Pulse waveform 
♦ Zero Initial Time 0(ps) 
♦ Rise Time 15(ps) 
♦ On Time 185(ps) 
♦ Fall Time 15(ps) 
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* On Voltage -0.7 
* Off Voltage 0 
* 
V P 18 21 4 4 1 1 Z 0 9000 111000 9000 -0.7 0 
* A Voltage Source 
* A Pulse waveform 
* Zero Initial Time 35(ps) 
* Rise Time 15(ps) 
* On Time 30(ps) 
* Fall Time 15(ps) 
* On Voltage -0.002 
* Off Voltage 0 
* 
VP693311Z 21000 9000 57000 9000 -0.002 0 
VP12 15 3311Z 60000 9000 18000 9000 -0.002 0 
♦Voltage Paths 
W Y 1 3 19 4 
W Y 1 2 13 4 
W Y 1 2 7 4 
W Y 1 2 7 10 
W Y 1 3 7 17 
W Y 1 3 7 21 
* 
♦Current Loops 
J Z 17 21 3 5 4 
J Z 11 15 2 4 4 
J Z 5 9 2 4 4 
J Z 5 9 2 4 10 
J X 3 5 15 19 4 
J X 2 4 21 25 3 
* Variable Mesh Array 
* Variable Mesh in the 
G X 1 50 1 
* Variable Mesh in the 
G Y 1 25 1 
♦ Variable Mesh in the 
G Z 1 50 1 

X direction 

Y direction 

Z direction 
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B.2    FastHenry Data Set 

This is the data set provided to the FastHenry program to determine the values of 

the two parasitic inductances in the JAWS circuit. 

* Determination of inductances in the JAWS circuit for 

* verification of simulation at home 

* Performed on 18 July 1995 

* Uses fasthenry 

.Units urn 

* Use a high value for conductivity, Superconductor 

.Default nhinc = 1 nwinc = 5 sigma=1.0e20 z=2.5 w=3 h=0.1 

* Ground Plane 

gl xi=0 yl=0 zl=0 
+ x2=50 y2=0 z2=0 
+ x3=50 y3=50 z3=0 
+ segl=20 seg2=20 

+ thick=l 

* Setup for the system 

Nl x=3 y=7 
N2 x=24 y=7 
N3 x=22.5 y=6 

N4 x=22.5 y=2 

♦Connect the segments 
El Nl N2 

E2 N3 N4 
♦Make needed electrical connections between segments. 
.equiv N2 N3 
♦Define output 
.external Nl N4 

.freq fmin=le9 fmax=le9 ndec=l 

.end 
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B.3    MAPLE V Results 

These are the results after using MAPLE V to solve the set of differential equations 

obtained from nodal analysis in terms of a set of first order derivatives of each variable. 
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> eqnl:=(VI{t)-Va(t))/Rin+(VI(t)-Vb(t))/Rin+Cd*di ff(VI(t),11+V1f t) 
> /Rd+Il(t)   =  0; ' 

> eqn2:=-Il(t)+Cj*diff(V2(t)-V3(t).t)+Gl(V2(t)-V3(t))+Icl*sin(phil > (t))=0; 

e?«2:=-Il(O + Cy^|v2(oJ-[|v3(OjJ + Gl(V2(O-V3(O) + /c/sin(phil(O) = 0 

> eqn3: = (V3(t)-Vso(t))/Rso+Cj *dif f(V3(t).t)+G1(V3(t))+Ic2*sin(phi2 
> (tn-Cj*diff(V2(t)-V3(t).t)-Gl(V2(t)-V3(t))-Icl*sin(phil(t))+I2( 

eqn3 ~ V3(°^JS0(° +Cj[jt V3(o]+Gl(V3(0) + /c2sin(phi2(r)) 

"Q'((|V2('))~(|V3(/)))-G1(V2(')-V3('))-/c/sin(phil(O) + I2(O = 0 

> eqn4:=-I2(t)+Cout*diff(V4(t).t)+V4(t)/Rout=0; 

{sH- eqn4 := -12(0 + Cout I ^ V4(/) 1 + -^^- = 0 
Rout 

>   eqn5:=diff(phil(t).t)=Po*(V2(t)-V3(t)J 

'dt 
eqn5-jvm{t) = Po{\2{t)-V2{t)) 

>   eqn6:=diff(phi2(t).t)=Po*V3(t); 

dt eqn6 := — phi2( /) = Po V3( /) 

>   eqn7:=Vl(t)-V2(t)   = Ll'diff(II(t).t); 

e?/i7:=Vl(0-V2(0 = I/[|ll(o) 
>   eqn8:=V3(t)-V4(t)   = L2»diff(12(t).t); 

eqn8~V3(t)-V4(t) = ^(|l2(0) 
> ans:=solve({eqnl.eqn2.eqn3.eqn4.eqn5,eqn6.eqn7.eqn8}.{di f f(VI(t) 
> .t).diff(V2(t).t)..diff(V3(t).t).diff(V4(t),t).diff(Il(t),t).diff 
> (I2(t).t).diff(phil(t).t).diff(phi2(t).t)}): 

ara:=j|phil(/) = /'0(V2(0-V3(0))|phi2(0 = /5oV3(0, 

lVim-   2^v'(0-MVa(Q-RdVb(Q + V1(QRin + 11(f)RinRd d ,„, x 

»     () CdRinRd 'äV2(') = -( 

-2Il(OÄi'o + V3(0-Vso(/) + Gl(V3(/))Äso + /c2sin(phi2(/))Äso + I2(OÄso 

+ Gl(V2(/)-V3(0)Ä»o + /c/sin(phil(0)ÄK»)/(Q-ÄJoX^V3(/) = 

-11(0 foo + V3(0-Vso(0 + G1(V3(Q)/fro + /c2sin(phi2(0)ftvo + I2(Q Rso 
CjRso 



3,,,,,    \2(t)Rout-V4(t)  a„„,      -V1(0 + V2(Q   3 V3(Q-V4(Q] 

>  ans[l]; 

|phil(/) = ^o(V2(0-V3(/)) 

>  ans[2]: 

|phi2(/)=/'OV3(0 

>   ans[3] ; 
d_ 2 RdW\(t)- RdVajt)- fo/Vb(Q + Vl(Q Rin + l\(t) Rin Rd 

dt     ^>~~ CdRinRd 

— V2(/) = -(-2Il(/)Äso + V3(0-Vso(0 + Gl(V3(0)Äso + /c2sin(phi2(0)/^o 
dt 

> ans[4]; 

 + I2(Ofoo + Gl(V2(Q-V3(0)fooWc/sin(phil(0)foo)/(Cyfoo)  

> ans[5]; 
d_ -H(Q too + V3(0 ~ Vso(0 + Gl(V3(t)) Rso + Ic2 sin(phi2(Q) Rso + I2(Q foo 
&     (')_" QRso 

>  ans[6]; 

>  ans[7] : 

>  ans[8]; 

3 12(/)tef-V4(/) 
5/     *■ J CoulRout 

a„m_ -vi(/)+v2(/) 

aT?,n    V3(Q-V4(Q 
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B.4    C Code 

This is a portion of the C Code used to solve the set of first order differential equations 

provided by MAPLE using the Runge-Kutta fifth-order method. Conventional circuit 

simulation results are then obtained. 

#include "nrutil.c" 
#include "odeint.c" 

#include "rkqs.c" 

#include "rkck.c" 

#include "linint.c" 

#define NOVAR 8 

#define Icl 0.7e-4 

»define Ic2  1.0e-4 
#define Po 3.039ei5 

«define Cd 0.292e-15 

#define Cout 0.327e-15 
«define LI 7.0e-12 

«define L2 18.00e-12 

«define Cj1 7.0e-13 

«define Cj2 7.0e-13 

«define Cj 5.0e-13 
«define Rd 1.0 

«define Rso 12.0e3 
«define Rin 45.0 

«define Rout 45.0 

«define Rl 45.0 

«define PI 3.141592763 
«define SIMTIM 350.0e-12 

«define EPS 1.0e-2 

int kmax=1200,kount; 
float *xp,**yp,dxsav=3.0e-13; 

float Gl(float v) 

{ 
float gl=4e-3; 
float g2=0.1; 
float i1=0.0; 
float vs=2e-3; 
float vt=0.1e-3; 
float ans; 

ans = gl*v + (il + g2*fabs(v))*((l/(i+exp((vs-v)/vt))) 
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-(l/(l+exp((vs+v)/vt)))); 

return ans; 

float Vso(float t) 

•C 
float starttime = 0.0e-12; 
float risetime = 15.0e-12; 
float ontime = 185.0e-12; 
float falltime = 15.0e-12; 
float hicur = 0.7; 

if (t <=starttime) 

return 0.0; 

if ((t>starttime) && (t<=starttime+risetime)) 

return (t-starttime)*hicur/risetime; 

if ((t>starttime+risetime)&&(t<=starttime+risetime+ontime)) 

return hicur; 

if((t>startt ime+riset ime+ont ime)&&(t<=starttime 

+riset ime+ont ime+falltime)) 

return (hicur - (t-(starttime+risetime+ontime)) 
*hicur/falltime); 

else 

return 0.0; 

float Va(float t) 

•C 
float starttime = 35.0e-12; 
float risetime = 15.0e-12; 
float ontime = 95.0e-12; 
float falltime = 15.0e-12; 
float hicur = 2.0e-3; 

if (t <=starttime) 

return 0.0; 

if ((t>starttime) && (t<=starttime+risetime)) 

return (t-starttime)*hicur/risetime; 
if ((t>starttime+risetime)&&(t<=starttime+risetime+ontime)) 

return hicur; 

if((t>starttime+risetime+ontime)&&(t<=starttime+risetime+ontime 
+falltime)) 

return (hicur - (t-(starttime+risetime+ontime)) 
*hicur/falltime); 

else 

return 0.0; 

> 
float Vb(float t) 

{ 
float starttime = 100.0e-12; 



75 

float risetime = 15.0e-12; 

float ontime = 30.0e-12; 

float falltime = 15.0e-12; 

float hicur = 2.0e-3; 

if (t <=starttime) 

return 0.0; 
if ((t>starttime) && (t<=starttime+risetime)) 

return (t-starttime)*hicur/risetime; 

if ((t>starttime+risetime)&&(t<=starttime+risetime+ontime)) 

return hicur; 
if((t>starttime+risetime+ontime)&&(t<=starttime+risetime+ontime 

+falltime)) 

return (hicur - (t-(starttime+risetime+ontime)) 

*hicur/falltime); 

else 

return 0.0; 

void derive (float t, float yv[] , float dydtD) 

{ 
int i; 
/*In this new system, the following variables apply: 

yv[i]=Vl(t); 
yv[2]=V2(t); 
yv[3]=phil(t); 

yv[3]=phi2(t); 

*/ 

float Gl(float v); 

float Vso(float t); 
float Va(float t); 
float Vb(float t); 

/* The following set of equations  include two  inductors,   one 
at the output  in order to see if we can reduce oscillation 
magnitude in the output when the circuit is  in HVS 

yv[l] = Vl(t) 
yv[2] = V2(t) 
yv[3] = V3(t) 
yv[4] = V4(t) 
yv[5] = Il(t) 
yv[6] = I2(t) 
yv[7] = phil(t) 



76 

yv[8] = phi2(t) 

*/ 

dydt[i] = ~(2.*Rd*yv[i]-Rd*Va(t)-Rd*Vb(t)+yv[l]*Rin 

+yv[5]*Rin*Rd)/(Cd*Rin*Rd); 

dydt[2] = -(-2.*yv[5]*Rso+yv[3]-Vso(t)+Gl(yv[3])*Rso 

+Ic2*sin(yv[8])*Rso 

+yv[6]*Rso+Gl(yv[2]-yv[3])*Rso+Icl*s in(yv[7])*Rso) 

/(Cj*Rso); 

dydt[3] = -(-yv[5]*Rso+yv[3]-Vso(t)+Gi(yv[3])*Rso+Ic2*sin(yv[8])*Rso 

+yv[6]*Rso)/(Cj*Rso); 

dydt[4] = (yv[6]*Rout-yv[4])/(Cout*Rout); 

dydt[5] = -(-yv[l]+yv[2])/Ll; 

dydt[6] = (yv[3]-yv[4])/L2; 

dydt[7] = Po*(yv[2]-yv[3]); 

dydt[8] = Po*yv[3] ; 

int main(){ 

FILE *file; 

float *vstart; 

float result; 

int i; 
int nok, nbad; 

float ts; 
/* This next simulation will simulate the MVTL circuit. Simulation 

will be performed with this system followed by simulation with the 

FDTLM method. 

The following configurations will be used. 

We shall drive a current through the system that is just under the 

maximum critical current of 2.0e-4 amps. We will then 

apply a control current to the control circuitry linked 

to our JJ's through the inductance L. This should alter 

the configuration of the system and create a HVS. 



77 

We shall analyze the input current, the currents 
through each JJ, and the voltage across each JJ to 

determine what state the system is in! 

Later models will add the output resistance to shunt the 

current along with an input current through a voltage and 
a resistor. An inductance will be used later to model 

effects of the loop and its self inductance. 

We want to see what the basic operation of the SQUID should be*/ 

printf("Allocating memory.An"); 

xp = vector(i,kmax); 
yp = matrix(l,NOVAR,l,kmax); 

vstart = vector(l,NOVAR); 

/♦Clear the Matrices*/ 
printf("Clearing memory\n"); 
f or(i=1;i<=N0VAR;i++){ 

vstart[i]=0.0; 

} 
printf("Performing Runge Kutta 5th order adaptive integration.\n"); 

odeint(vstart,NOVAR.O.O.SIMTIM,EPS,1.0e-13,HMIN,&nok, 

fenbad,derive,rkqs); 
printf ("nok= '/,d nbad= */,d\n" ,nok,nbad); 
printf ("Memory allocated = '/.fK\n", (kmax*NOVAR*sizeof (float) 

+kmax*sizeof(float))/1000.0); 

printf("Simulation over, calculating and printing results\n"); 

/♦Print Va results*/ 
f ile=f openC'jrcjlva.dat", "w"); 

for(ts=0.0;ts<=SIMTIM;ts+=i.0e-13) 
fprintf(file,,"/.g '/.g\n",ts,Va(ts)); 

fclose(file); 

/♦Print Vb results*/ 
file=fopen("jrcjlvb.dat","w") ; 
for(ts=0.0;ts<=SIMTIM;ts+=1.0e-13) 

fprintf (f ile,"'/.g y,g\n" ,ts,Vb(ts)); 
fclose(file); 

/♦Print output results Vl*/ 
f ile=f openC'jrcjlvl.dat", "w"); 
for(i=l;i<=kount;i++) 

fprintf (f ile, '7.g\n" ,yp[i] [i] ); 
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fclose(file); 

/♦Print out the output  current*/ 
printf("Interpolating:  Output  current\n"); 
file=fopen("jrcjlv2.dat","w"); 
for(ts=0.0;ts<=SIMTIM;ts+=l.0e-13){ 

linint(&xp[l],&yp[4][1],kount,ts,&result); 
f printf (file ,'"/.g '/.g\n" ,ts .result); 

} 
fclose(file); 

/♦Print out the Vso*/ 
file=fopen("jrcjlvo.dat","w"); 
for(ts=0;ts<=SIMTIM;ts+=1.0e-13) 

fprintf (f ile,'7.g '/.g\n",ts,Vso(ts)); 
fclose(file); 

/♦Print source current*/ 
file=fopen("jrcjlcin.dat","w"); 

for(i=l;i<=kount;i++) 
fprintf (file,'"/.g\n",(Vso(xp[i])-yp[2] [i])/Rso); 

fclose(file); 

/♦Print the time scale */ 
file = fopen("timescal.dat","w"); 
for(i=l;i<=kount;i++) 

f printf (file, '7.g\n" , xp [i] ); 
fclose(file) ; 

/♦Determine shunted current*/ 

printf ("Done \n"); 

return(O); 



Appendix C 

2 JJ DC SQUID Simulation Data 

The section contains the FD-TLM Data Set, the FastHenry extraction data set, 

MAPLE V results, and the C program for performing the conventional circuit simu- 

lation for the 2 JJ DC SQUID circuit. 

C.l    FD-TLM Data Set 
NDATATEST 
T 2 JJ Squid Simulation 8/7/95 
♦Generated by FDTGRAPH, copyright 1993, by Christopher G. Sentelle 
♦Data in format to be used by FD-TLM copyright by Dr. Robert H. Voelker 
♦University of Nebraska-Lincoln 
* 
♦ 

♦Created on: Mon Aug 7 14:42:20 1995 
♦Medium material used throughout 
♦Relative permittivity 
E 1 50 1 50 1  50 1 1 1 
♦Conductivity throughout 
L 1 50 1 50 1 50 0 0 0 
♦Magnetic susceptibility 
M 1 50 1 50 1 50 0 0 0 
♦Relative permeability 
U 1 50 1 50 1 50 1 1 1 
♦Add a Si02 Substrate or Ground Plane Insulator 
E 150 13 1 50 3.53.53.5 
* Josephson Junction #1 
R 11 15 3 4 8 3.039e+15 0.0001 0.004 0 0.1 0.002 0.0001 5e-13 5e-ll 
* Josephson Junction #2 
R 11 15 3 25 29 3.039e+15 0.0001 0.004 0 0.1 0.002 0.0001 5e-13 5e-ll 
* Coupling device 
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H 10 18 4 9 24 i 2 
♦3 dimensional object, Superconductor 
L 5 9 4 4 4 29 -1 -1 -1 
♦Top Surface 
L 5 9 5 5 4 29 -1 -2 -1 
L 10 10 5 5 4 29 -2 -2 -1 
L 5 9 5 5 30 30 -1 -2 -2 
♦Right Side Surface 
L 5 9 4 4 30 30 -1 -1 -2 
L 10 10 4 4 30 30 -2 -1 -2 
♦Back Side Surface 
L 10 10 4 4 4 29 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 10 15 4 4 25 29 -1 -1 -1 
*Top Surface 
L  10 15 5 5 25 29 -1 -2 -1 
L 16 16 5 5 25 29 -2 -2 -1 
L 10 15 5 5 30 30 -1 -2 -2 
♦Right Side Surface 
L  10 15 4 4 30 30 -1 -1 -2 
L 16 16 4 4 30 30 -2 -1 -2 
♦Back Side Surface 
L 16 16 4 4 25 29 -2 -1 -1 
*3 dimensional object, Superconductor 
L 10 15 4 4 4 8 -1 -1 -1 
♦Top Surface 
L  10 15 5 5 4 8 -1 -2 -1 
L  16 16 5 5 4 8 -2 -2 -1 
L  10 15 5 5 9 9 -1 -2 -2 
♦Right Side Surface 
L 10 15 4 4 9 9 -1 -1 -2 
L 16 16 4 4 9 9 -2 -1 -2 
♦Back Side Surface 
L 16 16 4 4 4 8 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 17 22 4 4 25 29 -1 -1-1 
♦Top Surface 
L 17 22 5 5 25 29 -1 -2 -1 
L 23 23 5 5 25 29 -2 -2 -1 
L 17 22 5 5 30 30 -1 -2 -2 
♦Right Side Surface 
L 17 22 4 4 30 30 -1 -1 -2 
L 23 23 4 4 30 30 -2 -1 -2 
♦Back Side Surface 
L 23 23 4 4 25 29 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 17 22 4 4 4 8 -1 -1 -1 
♦Top Surface 
L 17 22 5 5 4 8 -1 -2 -1 
L 23 23 5 5 4 8 -2 -2 -1 
L 17 22 5 5 9 9 -1 -2 -2 
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♦Right Side Surface 
L 17 22 4 4 9 9 -1 -1 -2 
L 23 23 4 4 9 9 -2 -1 -2 
♦Back Side Surface 
L 23 23 4 4 4 8 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 19 22 4 4 9 24 -1 -1 -1 
♦Top Surface 
L 19 22 5 5 9 24 -1 -2 -1 
L 23 23 5 5 9 24 -2 -2 -1 
L 19 22 5 5 25 25 -1 -2 -2 
♦Right Side Surface 
L 19 22 4 4 25 25 -1 -1 -2 
L 23 23 4 4 25 25 -2 -1 -2 
♦Back Side Surface 
L 23 23 4 4 9 24 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 11 18 2 2 4 8 -1 -1 -1 
♦Top Surface 
L 11 18 3 3 4 8 -1 -2 -1 
L 19 19 3 3 4 8 -2 -2 -1 
L 11 18 3 3 9 9 -1 -2 -2 
♦Right Side Surface 
L 11 18 2 2 9 9 -1 -1 -2 
L 19 19 2 2 9 9 -2 -1 -2 
♦Back Side Surface 
L  19 19 2 2 4 8 -2 -1 -1 
+3 dimensional object, Superconductor 
L 11 18 2 2 25 29 -1 -1 -1 
♦Top Surface 
L 11 18 3 3 25 29 -1 -2 -1 
L  19 19 3 3 25 29 -2 -2 -1 
L  11 18 3 3 30 30 -1 -2 -2 
♦Right Side Surface 
L  11 18 2 2 30 30 -1 -1 -2 
L  19 19 2 2 30 30 -2 -1-2 
♦Back Side Surface 
L 19 19 2 2 25 29 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 17 18 3 3 4 8 -1 -1 -1 
♦Top Surface 
L 17 18 4 4 4 8 -1 -2 -1 
L 19 19 4 4 4 8 -2 -2 -1 
L 17 18 4 4 9 9 -1 -2 -2 
♦Right Side Surface 
L 17 18 3 3 9 9 -1 -1 -2 
L 19 19 3 3 9 9 -2 -1 -2 
♦Back Side Surface 
L 19 19 3 3 4 8 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 17 18 3 3 25 29 -1 -1 -1 
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♦Top Surface 
L 17 18 4 4 25 29 -1 -2 -1 
L  19 19 4 4 25 29 -2 -2 -1 
L  17 18 4 4 30 30 -1 -2 -2 
♦Right Side Surface 
L 17 18 3 3 30 30 -1 -1 -2 
L 19 19 3 3 30 30 -2 -1 -2 
♦Back Side Surface 
L 19 19 3 3 25 29 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 1 4 4 4 15 17 -1 -1 -1 
♦Top Surface 
L 1 4 5 5 15 17 -1 -2 -1 
L 5 5 5 5 15 17 -2 -2 -1 
L  1 4 5 5 18 18 -1 -2 -2 
♦Right Side Surface 
L 1 4 4 4 18 18 -1 -1 -2 
L 5 5 4 4 18 18 -2 -1 -2 
♦Back Side Surface 
L 5 5 4 4 15 17 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 23 34 4 4 11 22 -1 -1 -1 
♦Top Surface 
L 23 34 5 5 11 22 -1 -2 -1 
L 35 35 5 5 11 22 -2 -2 -1 
L 23 34 5 5 23 23 -1 -2 -2 
♦Right Side Surface 
L 23 34 4 4 23 23 -1 -1 -2 
L 35 35 4 4 23 23 -2 -1 -2 
♦Back Side Surface 
L 35 35 4 4 11 22 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 30 34 4 4 3 10 -1 -1 -1 
♦Top Surface 
L 30 34 5 5 3 10 -1 -2 -1 
L  35 35 5 5 3 10 -2 -2 -1 
L 30 34 5 5 11 11 -1 -2 -2 
♦Right Side Surface 
L 30 34 4 4 11 11 -1 -1 -2 
L 35 35 4 4 11 11 -2 -1 -2 
♦Back Side Surface 
L 35 35 4 4 3 10 -2 -1 -1 
♦3 dimensional object, Superconductor 
L  35 49 4 4 14 22 -1 -1 -1 
♦Top Surface 
L 35 49 5 5 14 22 -1 -2 -1 
L 50 50 5 5 14 22 -2 -2 -1 
L 35 49 5 5 23 23 -1 -2 -2 
♦Right Side Surface 
L 35 49 4 4 23 23 -1 -1 -2 
L 50 50 4 4 23 23 -2 -1 -2 
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♦Back Side Surface 
L 50 50 4 4 14 22 -2 -1 -1 
*3 dimensional object, Superconductor 
L 19 22 6 6 3 39 -1 -1 -1 
*Top Surface 
L 19 22 7 7 3 39 -1 -2 -1 
L 23 23 7 7 3 39 -2 -2 -1 
L 19 22 7 7 40 40 -1 -2 -2 
♦Right Side Surface 
L 19 22 6 6 40 40 -1 -1 -2 
L 23 23 6 6 40 40 -2 -1 -2 
♦Back Side Surface 
L 23 23 6 6 3 39 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 2 18 6 6 35 39 -1 -1 -1 
♦Top Surface 
L 2 18 7 7 35 39 -1 -2 -1 
L 19 19 7 7 35 39 Back Side Surface 
L 35 35 4 4 11 22 -2 -1 -1 
+3 dimensional object, Superconductor 
L 30 34 4 4 3 10 -1 -1 -1 
♦Top Surface 
L 30 34 5 5 3 10 -1 -2 -1 
L 35 35 5 5 3 10 -2 -2 -1 
L  30 34 5 5 11 11 -1 -2 -2 
♦Right Side Surface 
L 30 34 4 4 11 11 -1 -1 -2 
L 35 35 4 4 11 11 -2 -1 -2 
♦Back Side Surface 
L 35 35 4 4 3 10 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 35 49 4 4 14 22 -1 -1 -1 
♦Top Surface 
L 35 49 5 5 14 22 -1 -2 -1 
L 50 50 5 5 14 22 -2 -2 -1 
L 35 49 5 5 23 23 -1 -2 -2 
♦Right Side Surface 
L 35 49 4 4 23 23 -1 -1 -2 
L 50 50 4 4 23 23 -2 -1 -2 
♦Back Side Surface 
L 50 50 4 4 14 22 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 19 22 6 6 3 39 -1 -1 -1 
♦Top Surface 
L 19 22 7 7 3 39 -1 -2 -1 
L 23 23 7 7 3 39 -2 -2 -1 
L 19 22 7 7 40 40 -1 -2 -2 
♦Right Side Surface 
L 19 22 6 6 40 40 -1 -1 -2 
L 23 23 6 6 40 40 -2 -1 -2 
♦Back Side Surface 
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L 23 23 6 6 3 39 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 2 18 6 6 35 39 -1 -1 -1 
♦Top Surface 
L 2 18 7 7 35 39 -1 -2 -1 
L 19 19 7 7 35 39 -2 -2 -1 
L 2 18 7 7 40 40 -1 -2 -2 
♦Right Side Surface 
L 2 18 6 6 40 40 -1 -1 -2 
L 19 19 6 6 40 40 -2 -1 -2 
♦Back Side Surface 
L 19 19 6 6 35 39 -2 -1 -1 
♦ The following conductivity values were modified to 
+ inaccuracy of the Fdtgraph program.. 
♦Infinitely Thin object, xz-plane SRC RES 60 OHMS 
L 30 34 4 4 2 2 -2 -2 2777.78 
L 35 35 4 4 2 2 -2 -2 2777.78 
♦Infinitely Thin object, xz-plane LOAD RES 16 OHM 
L 50 50 4 4 14 22 6250 -2 -2 
L 50 50 4 4 23 23 6250 -2 -2 
♦Infinitely Thin object, xz-plane CNTR SRC RES 16 OHMS 
L 19 22 6 6 2 2 -2 -2 12500 
L 23 23 6 6 2 2 -2 -2 12500 
♦Infinitely Thin object, xz-plane CNTR LOAD RES 1 OHM 
L 1 1 6 6 35 39 166666.67 -2 -2 
L  1 1 6 6 40 40 166666.67 -2 -2 
♦ 1 ps = 600 iterations 
* 
♦ Minimum Grid Spacing 
A le-06 
♦ 

♦Simulation time (ps) 120 
S 111000 
♦Backup Interval (ps) 130 
B 120000 
♦Plot Interval (ps) 0.1 
P 60 
* 
♦ A Voltage Source 
♦ A Pulse waveform 
♦ Zero Initial Time 0(ps) 
+ Rise Time 5(ps) 
♦ On Time 100(ps) 
♦ Fall Time 5(ps) 
♦ On Voltage -0.01 
♦ Off Voltage 0 
♦ 

VP30 35 4411Z0 3000 60000 3000 -0.01 0 
♦ A Voltage Source 
♦ A Pulse waveform 
♦ Zero Initial Time 40(ps) 
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* Rise Time 5(ps) 
* On Time 20(ps) 
* Fall Time 5(ps) 
* On Voltage -0.004 
* Off Voltage 0 

VP19 23 6611Z 24000 3000 12000 3000 -0.004 0 
♦Voltage Paths 
W Y 1 3 32 5 
W VI B 21 4 
W Y 1 5 9 37 
W Y 1 3 18 6 
W Y 1 3 18 27 
W Y 1 3 12 6 
W Y 1 3 12 27 
W Y 1 3 26 16 
W Y 1 3 44 18 
* 
♦Current Loops 
J Z 29 35 3 5 5 
J Z 18 23 5 7 4 
J X 5 7 34 40 9 
J X 3 5 3 9 18 
J X 3 5 24 30 18 
J X 3 5 3 9 12 
J X 3 5 24 30 12 
J X 3 5 10 23 26 
J X 3 5 13 23 44 
* Variable Mesh Array 
* Variable Mesh in the X direction 
G X 1 50 1 
* Variable Mesh in the Y direction 
G Y 1 50 1 
* Variable Mesh in the Z direction 
G Z 1 50 1 



86 

C.2    FastHenry Data Set 

This is the data set provided to the FastHenry program to determine the values of 

the two parasitic inductances in the 2 JJ DC SQUID circuit. 

♦Determination of Inductance for Squid Loop 
* August 7,   1995  ,   Christopher Sentelle 
* Uses fasthenry 
.Units um 
* Use a high value for conductivity,  Superconductor 
.Default nhinc = i nwinc = 3 sigma=1.0e20 z=3 w=5 h=l 
* Ground Plane 
gl xi=0 yi=0 zl=0 

+ x2=55 y2=0 z2=0 

+ x3=55 y3=55 z3=0 
+ segl=25 seg2=25 

+ thick=l 

* Setup for the system 

* Squid Loop 

N5 x=29.0 y=3.0 

N6 x=31.0 y=5.5 
N7 x=40.0 y=5.5 

N8 x=42.5 y=3.0 

N9 x=42.5 y=15.0 
N10 x=42.5 y=17.0 

Nil x=42.5 y=29.0 
N12 x=40.0 y=26.5 

N13 x=31.0 y=26.5 

N14 x=29.0 y=29.0 

N15 x=29.0 y=17.0 
N16 x=29.0 y=15.0 
* Control Line 
N17 x=29.0 y=2.0 z=5.0 

N18 x=29.0 y=39.0 z=5.0 

N19 x=31.0 y=36.5 z=5.0 

N20 x=48.0 y=36.5 z=5.0 

♦Connect the segments 
* Squid Loop 

E3 N16 N5 w=4 

E4 N6 N7 

E5 N8 N9 

E6 N10 Nil 
E7 N12 N13 

E8 N14 N15 w=4 

* Control Line 

E9 N17 N18 w=4 

E10 N19 N20 

* Added for Mf calculations 

Ell N9 N10 



*Make needed electrical connections between segments. 

.equiv N5 N6 

.equiv N7 N8 

.equiv Nil N12 

.equiv N13 N14 

.equiv N18 N19 

♦Define output 
♦Changed for Mf calculation 
.external N16 N15 

.external N17 N20 

.freq fmin=le9 fmax=le9 ndec=l 

.end 



C.3    MAPLE V Results 

These are the results after using MAPLE V to solve the set of differential equations 

obtained from nodal analysis in terms of a set of first order derivatives of each variable. 
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> eqnl:=Cj*diff(Vl(t).t)+Ic*sin(phil(t))+G(Vl(t))-Il(t)=0; 

eqnl := Cj\j( V1(0J + Ic sin(phil(0) + G( V1(0) - 11(0 = 0 

> eqn2:=Cj*diff(V2(t).t)+ICsin(phil(t)-2*PI*(Mf*I3(t)+L2*I2(t)-Ll 
> *Il(t))/FLo)+G(V2(t))-I2(t)=0: 

eqn2 := 

Q(|v2(,)),;cs;„(p1,iU,)-2n'^a("^^'"-"""»),G(V2(,))-.2(,) 

= 0 
> eqn3:=Il(t)+I2(t)-I4(t)+I5(t)=0: 
 eqn3:= I1(Q + I2(Q- I4(Q + I5(Q = 0  
> eqn4:=V4(t)/Rcout-I3(t)=0; 

V4(0 
 H Rcout       v '  
>eqn5:=I3(t)+(V5(t)-Vcin(t))/Rcin=0; 

.     „. ,    V5(Q-Vcin(0    . 
eqnz :=I3(/)+ —L- — =0 

Rein 
>   eqn6:=14(t)+(V6(t)-Vso(t))/Rin=0: 

,     „, ,    V6(Q-Vso(0    . 
eqn6:=l4(/) + —*- —-=0 

Rin 
>   eqn7:=-I5(t)+V7(t)/Rout=0; 

^7:="I5(')+^7=° 
> eqn8:=V3(t)-Vl(t)=Ll*diff (I'l(t) , t) -Ml*dif f (13 (t) . t) 

e^:=V3(0-V1(/) = L/(!ll(o)-A//(|l3(0 

> eqn9:=V3(t)-V2(t)=L2*diff(I2(t).t)+M2*diff(13(t),t), 

eqn9 := V3( /) - V2( /) = L2 (112( /) J + AC f 113( /) 

> eqnlO:=V5(t)-V4(t)=L3*diff(I3(t).t)-Ml*diff(II(t),t)+M2*diff(12(, 
> t).t); 

e^/0:=V5(0-V4(/) = o(^|l3(o]-A//[|ll(o] + AC^|l2(/)j 

> eqnll:=V6(t)-V3(t)=L4*dIff(I4(t).t); 

eqnl I := V6(0 - V3(/) = L4 [ j [4(0 j 

> eqnl2:=V3(t)-V7(t)=L5*diff(I5(t).t): 

e9n/2:-V3(0-V7(0 = Aj[|l5(o] 

> eqnl3:=diff(phil(t).t)=Po*Vl(t); 

eqn!3 :=|-phil(/) = I'o Vl(/) 



> eqnlOa:=subs({V5(t)=solve(eqn5.V5(t)),V4(t)=solve(eqn4.V4(t))},e 
> qnlO): 

eqnlOa:— 

|D(/)-5^ij/?ci/i-l3(/)ÄcoH/ = Zj[|D(/)j-M[|ll(/)j + Aß[|l2(o) 
> eqnlla:=subs(V6(t)=solve(eqn6.V6(t) ) .eqnll) ; 

/sop 
Rin 

eqnlla := -| 14(0 - ^T) Rin - V3(/) = IA (f I4(/)j 

>   eqnl2a:=subs(V7(t)=solve(eqn7.V7(t)),eqnl2); 

eqnI2a := V3(/) - 15(0 Rout = L5 [ j I5(0J 

>   eqnl: 

Q{fvi(0| + /Csin(phil(0) + G(Vl(0)-11(0 = 0 
>   eqn2; 

Qf|v2(0V/csi{phil(0-2n(^I3(/) + ^°(f)-L/I1(/))] + G(V2(0)-I2(0: 

0 
>  eqn3: 

11(0+ I2(/)-I4(/) +15(/) = 0 
>   eqnS: 

V3(/)-V1(/) = i/[|ll(Oj-W/[|l3(0 

>   eqn9; 

V3(/)-V2(/) = L2^I2(/)j + Afi[|l3(o) 
>   eqnlOa; 

{ö(0-:5^i)Äci«-I3(/)ÄCO«/ = ü(|D(/))-A//[|ll(0) + W2(|l2(0) 
>   eqnlla: 

{'4<"-iia)ffi"-V3('>-"(fH<'> 
>   eqnl2a; 

V3(0-I5(/)/?oH/ = Li[^I5(/) 

> eqn8a:=subs(V3(t)=solve(eqnl2a,V3(t)),eqn8); 

e?ii8a:=I5(/)Äo«/ + «f^I5(/)J-Vl(/) = L/f^Il(Oj-A//f^I3(/) 

> eqn9a:=subs(V3(t)=solve(eqnl2a.V3(t)),eqn9); 

eqn9a := 15(0 Äow/ + L5 ij 15(0 ) - V2(0 = £2 [ |-12(0 ) + Aß [j 13(0 

> eqnllb:=subs(V3(t)=solve(eqnl2a.V3(t)).eqnlla): 

90 
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eqnllb ~^14(0~^^yin-I5(t)Rout-L5^\5(t)yL4^l4(t)] 

> eqnl; 

Cy[|vi(7)j + /csin(phil(O) + G(Vl(O)-Il(/) = 0 

T(fv2(o) + /csi{ph^^ 

0 
> eqn3; ~~ 
  Il(O + I2(O-I4(/) + I5(O = 0 
>   eqn8a; 

>   eqn9a; 

>   eqnlOa; 

I5(0/?^ + Z.5^|[5(/)j-Vl(0 = /./[|ll(o)-A//[|l3(/)j 

I5(0 Rout + LS [| I5(o) - V2(/) = L2 [j( I2(o) + AC (| I3(/)) 

>   eqnllb; 

eqnllc:=subs(I4(t)=solve(eqn3.I4{t) ).eqnllb); 
/so(i 
Rin eqnllc--\ !!(/) +12(0 +15(0—^T-|/J«-I5(/)Äoiir-i5f^I5(ol = 

^f|ll(0 + I2(/) + I5(0 

>   eqnl; 

Q(|vi(o] + /csin(phil(0) + G(Vl(0)-11(0 = 0 

>   eqn2; 

0 

V2(0) + /csin(phil(0-2n^^/) + ^^-^I1^)) + G(V2(0)-12(0 

>   eqn8a; 

I5(0/?^ + Ai[|l5(o]-Vl(0 = i/(|n(o]-A//(^|l3(o) 
>   eqn9a; 

I5(0/?ot/r + /.5^|l5(o]-V2(/) = /J^|l2(/)j + M2f|l3(/)j 
>   eqnlOa ; 
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{I3(/)-:^)ÄC''"-I3(,)/?COM/=Li(lI3('))-A//(lI1(/))+^(|I2(o) 
> eqnllc; 

-"(li5"»j- 

> eqnl3; 

et phil(0= Po Vl(/) 

ans:=solve({eqnl.eqn2.eqn8a.eqn9a,eqnlOa.eqnllc.eqnl3},{diff(VI( 
t).t).diff(V2(t).t).diff(Il(t).t).diff(I2(t).t),diff(I3(t).t),di 
ff(I5(t).t).diff(phil(t).t)}): 

ans := |phil(0 = /'oVl(0,|v2(0 = 

Ic sinj 
-phil(Q FLo + lU MfU(t) + 2 n L2 I2(Q - 2 n Ll ll(t) 

FLo -G(V2(0) + I2(0 

Q 

j( 11(0 = (Vso(0 M22 L5 + L5 L4 M2 13(0 Rcout - L4 V2(t)L3 L5 - L5 L4 M2 Vcin(0 

+ L5 L4 L3 V1(0 + L5 L4 M2 13(0 Rein + Ml L5 L4 13(0 Rein + MI L5L4 13(0 Rcout 
- Ml L5 M2\\{t) Rin + Ml L5 M2 Vso(t)-Ml L5 M2 \5(t)Rin- Ml L5 M2 \2{t)Rin 

- Ml L5 L4 Vcin(0 - L5 M22 Vl(/) + 15(0 Rin L3 L5 L2 + L5 L3 V1(0 L2 

-\\{t)Rin M22 L5 +11(0 Rin L3 L5 L2 - 12(0 Rin M22 L5 + L5 13(0 Rcout Ml L2 
+ L513(0 Rein Ml L2 - L5 M2 Ml V2(0 - L5 Vcin(0 MI L2 - Vso(0 L3 L5 L2 

+12(0 Rin L3 L5 L2 - 15(0 Rin M22 L5 + M1 L4 M2 \5{t) Rout - M22 L4 Vl(/) 

- M2 Ml L4 V2( 0 + M22 L4 I5(t)Rout + L4 I3(t) Rein Ml L2 - L4 Vcin(t)Ml L2 

+ L4 13(0 Rcout Ml L2 - L4 L3 15(0 Rout 12 + L4 L3 V1(0 Z2)/(%1), |-13(0 = - ( 

-Z.J ZV 13(0 Rcout L2 - L5 L413(0 Rein L2 + M2 Ll L5 V2(/) - M2Ll Vso(/) L5 

+ L5 L4 Vcin(0 Z.2 + M2 Ll 12(0 &'« ZJ + M2 Ll 15(0 #'" Zo + M2 Ll 11(0 &'« ü 
-M2L1L4 15(0 &>«' + M2 Z7 Z.V V2(0 + L4Ml 15(0 /&«" Z.2 + L5Ml Vso(/) Z2 
+ L5M2L4W2{t)-L5Ml 11(0#'« Z.2- ZoMl 15(0ÄinZ.2 + 1/ Z5L4 Vcin(/) 
-y\{t)MlL5L2-V\{l)MlL4L2-V\{t)MlL5L4-LlL5L4\2{t)Rcin 
- Ll L5 L4 13(0 footrf + Ll L4 Vcin(0 Z2 - Ll L513(0 /&»"' Z.2 - Ll L513(0 Zte/Vz L2 
+ LIL5 Vcin(0 Z.2 - ZV Z-/13(0 ■&*>«/ L2-L1 L413(0 #«'" L2-L4M2 Vl(/) Z.5 

+ ZV /W V2(0L5-L5Ml 12(0 Rin £2)/(%l), 112(0 = (M!
2
 L5 VSO(0 

- Ml2 V2(0 L5 - L5 L4 M2 13(0 bewirf + Z5ZJ Ll \\{t)Rin + L4 V2(/) L3 L5 
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-L5 L3 LI Vso(t)+L5 L4 M2 Vcin(/) + V2(/) L3LI L5 + M2 LI L5 Vcin(/) 
- L5 L4 L3 V1(0 + L5 L3 LI 12(0 fa" ~ L5 L4 M2 13(0 Rein + L5 L3 LI I5(t) Rin 

- M2 LI L5 I3(/) Rcout - M2 LI L513(0 Rein - Ml2 L5 \\(t) Rin - Ml2 L512(0 fa« 

- MI2 L515(1) Rin - Ml L5 L-f 13(0 Rein - Ml L5 L4 13(0 fa™/ - Ml L5 M2 11(0 fa« 
+ A// 15 A/2 Vso(0 - Ml L5 M2 15(0 fa« - A/7 Aß V1(0 L5 - Ml L5 M212(0 fa« 

+ A// L5 L4 Vcin(0 - A//2 ZV V2(0 + Ml L4 M2 15(0 Raut + M12L4 15(0 fa«' 
- A// Z-/ Aß V1(0 -Zi Z/ /,-/ 15(0 fa«' + L3 LI L4 V2(/) - Z-/13(0 Rein M2 LI 

+ L4 Vcin(0 M2 LI - L413(0 Rcout M2 Z/)/(%l ),j(l5(i) = (A//
2

 ZV V2(0 

- 2 A// Z-/ A/2 15(0 Rout - Ml2 L4 15(0 fa"' + A//2 Vso(0 L2+M22 LI Vso(0 

+ M22L4 Vl(0 + A/7 ZV A/2 Vl(t) + L3LI L4 \5(t) Rout - L3 LI L4 V2(t) 

- M22 LI 11(0 Rin - M22 LI 12(0 fa« - M22 LI [5(0 Rin - M22 LI 15(0 Rout 

+ M2 Ml L4 V2(0 - Aß2 L415(0 fa«" - A-"//2 11(0 fa« L2 - Ml2 12(0 Am L2 

-Ml2 15(0 fa« L2-M12 15(0 RoutL2 + L3 LI 11(0 fa« L2 + L3L1 \2(t)RinL2 
+ L3 LI 15(0 fa« £2 - Ü £/ Vso(0 Z2 + ZJ Z/ 15(0 fa«' ^ + /.-*13(0 Äcw Aß £' 
- Z-^ 13(0 fa'« A// Z2 - L4 Vcin(0 Aß Z/ + Z-/ Vcin(0Ml L2 + L4 13(0 Rcout M2 LI 

-L4 I3(t) Rcout Ml L2 + L413 15(0 fa«' 12 -L4 L3 V1(0 L2)/(%\), 

d /csin(phil(0) + G(Vl(0)-Il(Q 
dt     v ' Q 

%1 :== A//2 L5 L4 + 2 Ml L5 L4 M2 - L3 LI L5 L4 + A/22 LI L5 + M22 LI L4 + M22 L5 L4 

+ M12 L5 L2 + Ml2 L4 L2 - L3 LI L5 L2 - L3 LI L4 L2 - L3 L5 L4 L2 
>   ans[l]; 

|phil(/) = PoVl(0 

>   ans[2]; 
d 
a,V2(') = 

ie sin(-pHii(')^ + 2nA/mo^2nz2i2(o-2nz/n(oj_G(V2(0) +12(/) 

Cj 
>  ans[3]: — -— 

j( l\(t) = \Vso(t) M2L L5 + L5L4 M2 13(0 Reout-L4 V2(0 L3 L5- L5L4M2 Vcin(/) 

+ L5L4 L3 V1(0 + L5L4 M2\3(t) Rein + MI L5 L413(0 Rein + Ml L5 L4 13(0 Rcout 
- Ml L5 M211(0 fa« + Ml L5 M2 Vso(/) - Ml L5 M2 15(0 fa« - Ml L5 M2 12(0 fa« 

- Ml L5 L4 Vcin(0 - L5 M22 Vl(/) +15(0 Rin L3 L5 L2 + L5 L3 Vl(t)L2 



94 

-11(0 Rin M22 L5 + 11(f) Rin L3 L5 L2 -12(0 Rin M22 L5 + L513(0 Rcout Ml L2 
+ L513(0 Rein MI L2 - L5 M2 Ml V2(0 - L5 Vcin(0 A« £2 - Vso(/) L3 L5 L2 

+12(0 Rin L3 L5 L2 -15(0 Rin M22 L5 + Ml L4 M215(0 Rout - M22 L4 Vl(/) 

- M2 MI L4 V2(t) + M22 L4 I5(/) Rout + L4 I3(/) Rein Ml L2 -L4 Vcin(t)Ml L2 

+ L413(0 RcoutMl L2 -L4 L3 15(0 ÄoirfL2 +L4 L3 V1(0 L2)J(M1
2
L5L4 

+ 2MIL5L4M2-L3L1L5 L4 + M22 LI L5 + M22 LI L4 + M22 L5 L4 + M12 L5 L2 

+ Ml2 L4 L2 - L3 LI L5 L2 - L3 LI L4 L2 - L3 L5 L4 L2)  
ans[4]; ~ 

— 13(0 = - (-L5 L413(0 Rcout L2 - L5 L4 13(0 RcinL2 + M2L1L5 V2(/) 

-M2LlVso(t)L5 + L5L4Vcm(t)L2 + M2LlU(t)RinL5 + M2LIl5(t)RinL5 
+ M2L1 Il(/) Rin L5 -M2 LI L415(0 Rout + M2 LI L4 V2(0 + L4 Ml 15(0 Rout L2 
+ L5 Ml Vso(0 L2 +15 M2 L4 V2(0 - UMl 11(0 »« i2 - L5Ml 15(0 Ä« ^ 
+ L1 L5 L4Vcm(t)-V\(t)Ml L5 L2 -Vl(t)Ml L4 L2 -V\(t)Ml L5 L4 
- LI L5 L413(0 Rein - LI L5L413(0 #<*>«/ + Z,/ Z,V Vcin(0 L2 - LI L513(0 Rcout L2 
- LI L513(0 Rein L2 + LI L5 Vcin(/) L2 - LI L4 13(0 Reout L2 - LI L413(0 Rein L2 

-L4 M2 V1(0L5 + L4 Ml V2(/) L5 - L5 Ml I2(t) RinL2)/{M1
2

 L5L4 + 2 MI L5L4 M2 

- L3 LI L5 L4 + M21 LI L5 + M22 LI L4 + M22 L5 L4 + MI2 L5 L2 + M12 L4 L2 

- L3 LI L5 L2 - L3 LI L4 L2 - L3 L5 L4 L2) 
> ans[5]; 

jt 12(0 = (MI2 L5 VSO(0 - Ml2 V2(0 L5 - L5 L4 M2 13(0 Rcout+ L5 L3 LI 11(0 Rin 

+ L4V2(t)L3L5-L5L3LlVso(t) + L5L4M2Vcm(t) + V2(t)L3LlL5 
+ M2LlL5Vzin{t)-L5L4L3\\{t) + L5L3LlY2{t)Rin-L5L4M2U{t)Rcin 

+ L5 L3 LI 15(0 R'm - M2 LI L513(0 Reout -M2L1L513(0 Rein - MI2 L5ll(t) Rin 

-Ml2 L512(0 Rin -Ml2 L515(0 Rin - Ml L5 L413(0 Rein - Ml L5 L4 13(0 Rcout 
- Ml L5 M2 11(0 Rin + Ml L5 M2 Vso(/) - MI L5 M215(0 Rin -M1M2 Vl(/) L5 

-MlL5M2]2(t)Rin + Ml L5 L4 Vcm(t) - Ml2 L4 \2(t) + Ml L4 M215(t) Rout 

+ M12L415(0 Rout -MlL4M2Wl(t)-L3 LI L415(0 Rout + L3 LI L4 V2(0 

- L4 13(0 Rein M2 LI + L4 Vcin(0 M2 LI - L4 \\t) Rcout M2 LI)J[M1
2

 L5 L4 

+ 2 Ml L5 L4 M2 - L3 LI L5 L4 + M22 Ll L5 + M22 LI L4 + M22 L5 L4 + M12 L5 L2 

+ M12L4L2- L3 LI L5 L2-L3L1L4L2- L3 L5 L4 L2)  
> ans[6]: ~ [ ~ 

^15(0 = \MI2 L4 V2(0 -2M1L4 M215(0 Rout - Ml2 L415(0 Rout + Ml2 Vso(0 L2 
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+ M22LI Vso(t)+M22 L4 Vl(/) + Ml L4 M2 Vl(/) + L3 LI L415(/) Rout 

-L3LlL4W2(t)-M22LIll(t)Rin-M22Lll2{t)Rin-M22LH5(t)Rin 

-M22 LI 15(1) Rout + M2 Ml L4 V2(/) - M22 L415(0 Rout -Ml2l\(t) Rin L2 

- Ml2 U(t)RinL2-Ml2 I5(t) RinL2-MI215(t) Rout L2+L3 LI U(t)RinL2 
+ L3LlU(t)RinL2 + L3LIl5(t)RinL2-L3LlVso(t)L2 + L3Lll5(t)RoutL2 
+ L413(0 Rein M2L1-L413(0 Rein Ml L2 - L4 Vcin(0 M2L1 + L4 Vcin(0 Ml L2 

+ L4 13(0 Rcout M2L1-L413(0 Rcout Ml L2 + L4 L3 15(0 Rout L2 - L4 L3 Vl(/) L2)j{ 

Ml2 L5 L4 + 2MIL5L4 M2-L3 LI L5[L4 + M22 LI L5 + M22 LI L4+M22 L5 L4 

+ M12 L5 L2 + M12 L4 L2-L3 LI L5 L2-L3 LI L4L2- L3 L5 L4 hi) 
>  ans[7]: ~ ' — 

Avu.,_   /csin(phil(Q) + G(Vl(0)-Il(0 
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C.4    C Code 

This is a portion of the C Code used to solve the set of first order differential equations 

provided by MAPLE using the Runge-Kutta fifth-order method. Conventional circuit 

simulation results are then obtained. 

#include "nrutil.c" 
#include "odeint.c" 

#include "rkqs.c" 

«include "rkck.c" 

#define NOVAR 6 

#define L3 6.0e-12 

#define L4 6.0e-12 

#define Ml 2.0e-12 

#define M2 2.0e-12 

#define Mf 6.068e-12 
#define LI 8.39e-12 

#define L2 8.39e-12 

#define Ic 1.0e-6 

»define Gl 4.0e-3 
#define 11 0.0 
#define G2 0.1 
#define Vs 2.0e-3 
#define Vt 1.0e-4 
#define Io 1.0e-4 
#define Po 3.039el5 
#define Cj 5.0e-13 
#define Rein 16.0 
#define Rcout 1.0 
#define Rin 60.0 

#define Rout 16.0 

#define FLo 2.068e-15 

#define PLT 0.1e-12 

#define PI 3.141592763 
#define SIMTIM 120.0e-12 
#define EPS 1.0e-2 

int kmax=1300,kount; 

float *xp,**yp,dxsav=i.0e-13; 

float G(float v) 

{ 
float ans; 
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ans = Gl+v + (II + G2*fabs(v))*((l/(l+exp((Vs-v)/Vt))) 
-(l/(l+exp((Vs+v)/Vt)))); 

return ans; 

float Vso(float t) 

{ 
float starttime = 0.0e-12; 
float risetime = 5.0e-12; 
float ontime = 100.0e-12; 
float falltime = 5.0e-12; 
float hicur = 0.010; 

if (t <=starttime) 

return 0.0; 
if ((t>starttime) && (t<=starttime+risetime)) 

return (t-starttime)*hicur/risetime; 
if ((t>starttime+risetime)&&(t<=starttime+risetime+ontime)) 

return hicur; 
if((t>starttime+risetime+ontime)&&(t<=starttime+risetime 

+ontime+falltime)) 

return (hicur - (t-(starttime+risetime+ontime)) 

*hicur/falltime); 

eise 

return 0.0; 

> 
float Vcin(float t) 

{ 
float starttime = 25.0e-12; 

float risetime = 5.0e-12; 
float ontime = 20.0e-12; 

float falltime = 5.0e-12; 

float hicur = 0.003; 

if (t <=starttime) 

return 0.0; 

if ((t>starttime) && (t<=starttime+risetime)) 

return (t-starttime)*hicur/risetime; 
if ((t>starttime+risetime)&&(t<=starttime+risetime+ontime)) 

return hicur; 

if((t>starttime+risetime+ontime)&&(t<=starttime+risetime+ontime 

+falltime)) 

return (hicur - (t-(starttime+risetime+ontime)) 

*hicur/falltime); 
eise 

return 0.0; 
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void derive(float t,  float yv[],  float dydt[]) 
•C 

int  i; 
/*In this new system,  the following variables apply: 

y[i]=Vl 
y[2]=V2 
y[3]=ll 
y[4]=I2 
y[5]=phil 

*/ 
float G(float v); 

float Vso(float t); 
float Vcin(float t); 

dydt[i]=-(Io*sin(yv[6])+G(yv[l])-yv[3])/Cj; 
dydt[2]=(Io*sin((-yv[6]*FLo+2*PI*(Mf*yv[5]+L2*yv[4]-Ll*yv[3]))/FLo)- 

G(yv[2])+yv[4])/Cj; 
dydt[3]=-(M2*M2*Rout*Vso(t)+M2*Ml*Rout*Vso(t)-M2*Ml*Rout*yv[3] 

*Rin-M2*Ml*Rout*yv[4]*Rin-M2*M2*yv[1]*Rin-M2*M2*yv[1] 
*Rout+L3*L2*yv[l]*Rin+L4*L2*Rout*yv[4] *Rin- 
L4*L2*Rout*Vso(t)+L4*L2*Rout*yv[3]*Rin+L4*L2*yv[1]*Rin 
+L4*L2*yv[l]*Rout-L3*L2*Rout*Vso(t)+L3*L2*Rout*yv[3] 
*Rin+L3*L2*Rout*yv[4]*Rin+L3*L2*yv[1]*Rout-M2*M2*Rout 
*yv[3]*Rin-M2*M2*Rout*yv[4]*Rin-M2*Mi*yv[2]*Rin 
-M2*Ml*yv[2]*Rout-Vcin(t)*L2*Ml*Rin-Vcin(t)*L2*Ml*Rout 
+yv[5]*Rcout*L2*Ml*Rin+yv[5]*Rcout*L2*Ml*Rout+yv[5]*Rcin 
*L2*Ml*Rin+yv[5]*Rcin*L2*Ml*Rout)/ 
((L2*L1*L4+L2*L1*L3-L2*M1*M1-L1*M2*M2)*(Rin+Rout)); 

dydt[4]=-(-Ml*Ml*yv[2]*Rin+Ml*Ml*Rout*Vso(t)-Ml*Ml*yv[2]*Rout 
+Ll*L4*Rout*yv[3]*Rin-Ll*L4*Rout*Vso(t)+Ll*L4*Rout*yv[4] 

*Rin+Ll*L4*yv[2]*Rin+Ll*L4*yv[2]*Rout 
-Ll*L3*Rout*Vso(t)+Ll*L3*Rout*yv[3]*Rin+Ll*L3*Rout 
*yv[4]*Rin+Ll*L3*yv[2]*Rin+Li*L3*yv[2]*Rout-Ml*Ml*Rout 
*yv[3]*Rin-Ml*Ml*Rout*yv[4]*Rin+M2*Ml*Rout*Vso(t) 
-M2*Ml*Rout*yv[3]*Rin-M2*Ml*Rout*yv[4]*Rin-M2*Ml*yv[l]*Rin 
-M2*Ml*yv[l]*Rout+M2*Ll*Vcin(t)*Rin+M2*Ll*Vcin(t)*Rout 
-M2*Ll*yv[5]*Rcout*Rin-M2*Ll*yv[5]*Rcout*Rout-M2*Ll*yv [5] 
*Rcin*Rin-M2*Ll*yv[5]*Rcin*Rout) 
/((L2*Ll*L4+L2*Ll*L3-L2*Ml*Ml-Ll*M2*M2)*(Rin+Rout)); 

dydt[5]=-(-L2*Ml*Rout*Vso(t)+L2*Ml*Rout*yv[3]*Rin+L2*Ml*Rout 
*y v[4]*Rin+L2*Mi*yv[1]*Rin+L2*Ml*yv[1]*Rout-L2*Ll*Vcin(t) 
*Rin-L2*Ll*Vcin(t)*Rout+L2*Ll*yv[5]*Rcout*Rin+L2*Ll*yv[5] 
*Rcout*Rout+L2*Ll*yv[5]*Rcin*Rin+L2*Ll*yv[5]*Rcin*Rout+Rout 
*Vso(t)*Ll*M2-Rout*yv[3]*Rin*Ll*M2-Rout*yv[4]*Rin*Ll*M2 
-yv[2]*Rin*Ll*M2-yv[2]*Rout*Ll*M2)/((L2*Ll*L4+ 
L2*L1*L3-L2*M1*M1-L1*M2*M2)*(Rin+Rout)); 

dydt[6]= Po*yv[l]; 
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int main(){ 
FILE *file; 

float *vstart = vector(1,NOVAR); 

float result; 
int i; 

int nok, nbad; 

/♦Now we wish to merely step through the algorithm and determine 
a set of results. We will be using just a fourth order Runge-Kutta 

method as of now.  I may change this later. We are merely 

solving the differential equations for a JJ pair assumed to be 

in the configuration of a squid. We can then view the results 

which will be placed in a file for viewing 

The following configurations will be used. 

We shall drive a current through the system that is just under the 

maximum critical current of 2.0e-4 amps.  We will then apply a 

control current to the control circuitry linked to our JJ's 

through the inductance L. This should alter the configuration 
of the system and create a HVS. We shall analyze the input current, 

the currents through each JJ, and the voltage across each JJ 

to determine what state the system is in! 

Later models will add the output resistance to shunt the current 
along with an input current through a voltage and a resistor.  An 
inductance will be used later to model effects of the loop and its 

self inductance. 

We want to see what the basic operation of the SQUID should be*/ 

xp = vector(l,kmax); 

yp = matrix(i,NOVAR,l,kmax); 

/♦Clear the Matrices*/ 

for(i=i;i<=NOVAR;i++){ 
vstart[i]=0.0; 

> 
printf("Performing Runge Kutta 5th order adaptive integration.\n"); 

odeint(vstart,NOVAR,O.O.SIMTIM,EPS,1.Oe-13,1.0e-16,&nok, 

fenbad,derive,rkqs); 

printf ("nok= '/.d nbad= '/.d\n" ,nok,nbad); 

printf("Simulation over, calculating and printing results\n"); 
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/♦We now should have our answer and we just need to print out*/ 
file = fopen("JJCONjj","w"); 
for(i=l;i<=kount;i++) 

fprintf (file,'7.g '/.g\n",xp[i] ,yp[5] [i] ); 
fclose(file); 

/♦Print out the  input current */ 
file = fopenO'JJINjjV'w"); 
for(i=l;i<=kount;i++){ 

result=(Vso(xp[i])-(Vso(xp[i])*Rout-Rin*Rout*(yp[3][i] 
+yp[4][i]))/(Rin+Rout))/Rin; 

fprintf (file, "'/.g '/.g\n" , xp [i] , result); 
> 
fclose(file); 

/♦Print out the output current*/ 
file = fopenO'JJOUTjjV'w"); 
for(i=i;i<=kount;i++){ 

result=((Vso(xp[i])*Rout-Rin*Rout*(yp[3][i]+yp[4][i])) 
/(Rin+Rout))/Rout; 

fprintf (file,"'/.g '/.g\n",xp[i] .result); 
> 
fclose(file); 

/♦Print out II */ 
file = fopen("JJIijj","w"); 
for(i=0;i<=kount;i++) 

fprintf (f ile, "V.g '/.g\n",xp [i] , yp [3] [i] ); 
fclose(file); 

/♦Print out 12*/ 
file = fopen("JJI2jj","w"); 

for(i=0;i<=kount;i++) 
fprintf (file,'"/.g '/.g\n",xp[i] ,yp[4] [i] ); 

fclose(file); 

/♦Print out Itotal*/ 
file = fopen("JJITjj","w"); 
for(i=0;i<=kount;i++) 

fprintf (file,'"/.g '/.gV ,xp[i] ,yp[3] [i]+yp[4] [i] ); 
fclose(file); 

/♦Print out the total voltage ♦/ 
file = fopenO'JJVOLjj'V'w"); 
for(i=l;i<=kount;i++) 

fprintf(file,'7.g '/.g\n" ,xp[i] ,Vso(xp[i] )); 
fclose(file); 

printf ("Done \n"); 

exit(O); 



Chapter 4 

MVTL Simulation Data 

The section contains the FD-TLM Data Set, the FastHenry extraction data set, 

MAPLE V results, and the C program for performing the conventional circuit simu- 

lation for the MVTL circuit. 

4.1    FD-TLM Data Set 
NMVTL 
T JJ MVTL Ciruit 
♦Generated by FDTGRAPH, copyright 1993, by Christopher G. Sentelle 
♦Data in format to be used by FD-TLM copyright by Dr. Robert H. Voelker 
♦University of Nebraska-Lincoln 
* 
* 

♦Created on: Fri Aug 11 12:40:33 1995 
♦Medium material used throughout 
♦Relative permittivity 
E 1 50 1 50 1  50 1 1 1 
♦Conductivity throughout 
L 1 50 1 50 1 50 0 0 0 

♦Magnetic susceptibility 
M 1 50 1 50 1 50 0 0 0 

♦Relative permeability 
U 1 50 1 50 1 50 1 1 1 

♦Add an insulator of Si02 
E 1 50 131 50 3.53.53.5 

♦Substrate Materials 
♦ Josephson Junction #1 
R 17 19 3 17 22 3.039e+15 0.0001 0.004 0 0.1 0.002 0.0001 5e-13 5e-ll 

+ Josephson Junction #2 

R 17 19 3 38 43 3.039e+15 0.0003 0.012 0 0.3 0.002 0.0001 1.5e-12 5e-ll 
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* Josephson Junction #3 
R 23 26 5 18 21 3.039e+lS 0.0001 0.004 0 0.1 0.002 0.0001 5e-13 5e-ll 
* Coupling H field 
H 13 27 4 23 37 1 2 
♦3 dimensional object, Superconductor 
L 28 33 4 4 17 43 -1 -1 -1 
♦Top Surface 
L 28 33 5 5 17 43 -1 -2 -1 
L 34 34 5 5 17 43 -2 -2 -1 
L 28 33 5 5 44 44 -1 -2 -2 
♦Right Side Surface 
L 28 33 4 4 44 44 -1 -1 -2 
L 34 34 4 4 44 44 -2 -1 -2 
♦Back Side Surface 
L 34 34 4 4 17 43 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 21 27 4 4 17 22 -1 -1 -1 
♦Top Surface 
L 21 27 5 5 17 22 -1 -2 -1 
L 28 28 5 5 17 22 -2 -2 -1 
L 21 27 5 5 23 23 -1 -2 -2 
♦Right Side Surface 
L 21 27 4 4 23 23 -1 -1 -2 
L 28 28 4 4 23 23 -2 -1 -2 
♦Back Side Surface 
L 28 28 4 4 17 22 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 21 27 4 4 38 43 -1 -1 -1 
♦Top Surface 
L 21 27 5 5 38 43 -1 -2 -1 
L 28 28 5 5 38 43 -2 -2 -1 
L 21 27 5 5 44 44 -1 -2 -2 
♦Right Side Surface 
L 21 27 4 4 44 44 -1 -1 -2 
L 28 28 4 4 44 44 -2 -1 -2 
♦Back Side Surface 
L 28 28 4 4 38 43 -2 -1 -1 
♦3 dimensional object, Superconductor 
L  13 19 4 4 17 22 -1 -1 -1 
♦Top Surface 
L 13 19 5 5 17 22 -1 -2 -1 
L 20 20 5 5 17 22 -2 -2 -1 
L 13 19 5 5 23 23 -1 -2 -2 
♦Right Side Surface 

' L 13 19 4 4 23 23 -1 -1 -2 
L 20 20 4 4 23 23 -2 -1 -2 
♦Back Side Surface 
L 20 20 4 4 17 22 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 13 19 4 4 38 43 -1 -1 -1 
♦Top Surface 
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L 13 19 5 5 38 43 -1 -2 -1 
L 20 20 5 5 38 43 -2 -2 -1 
L 13 19 5 5 44 44 -1 -2 -2 
♦Right Side Surface 
L 13 19 4 4 44 44 -1 -1 -2 
L 20 20 4 4 44 44 -2 -1 -2 
♦Back Side Surface 
L 20 20 4 4 38 43 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 7 12 4 4 17 43 -1 -1 -1 
*Top Surface 
L 7 12 5 5 17 43 -1 -2 -1 
L 13 13 5 5 17 43 -2 -2 -1 
L 7 12 5 5 44 44 -1 -2 -2 
♦Right Side Surface 
L 7 12 4 4 44 44 -1 -1 -2 
L 13 13 4 4 44 44 -2 -1 -2 
♦Back Side Surface 
L 13 13 4 4 17 43 -2 -1 -1 
+3 dimensional object, Superconductor 
L 21 21 3 3 17 22 -1 -1 -1 
♦Top Surface 
L 21 21 4 4 17 22 -1 -2 -1 
L 22 22 4 4 17 22 -2 -2 -1 
L 21 21 4 4 23 23 -1 -2 -2 

' ♦Right Side Surface 
L 21 21 3 3 23 23 -1 -1 -2 
L 22 22 3 3 23 23 -2 -1 -2 
♦Back Side Surface 
L 22 22 3 3 17 22 -2 -1 -1 
*3 dimensional object, Superconductor 
L 21 21 3 3 38 43 -1 -1 -1 
♦Top Surface 
L 21 21 4 4 38 43 -1 -2 -1 
L 22 22 4 4 38 43 -2 -2 -1 
L 21 21 4 4 44 44 -1 -2-2 
♦Right Side Surface 
L 21 21 3 3 44 44 -1 -1 -2 
L 22 22 3 3 44 44 -2 -1 -2 
♦Back Side Surface 
L 22 22 3 3 38 43 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 17 21 2 2 17 22 -1 -1 -1 
♦Top Surface 
L 17 21 3 3 17 22 -1 -2 -1 
L 22 22 3 3 17 22 -2 -2 -1 
L 17 21 3 3 23 23 -1 -2 -2 
♦Right Side Surface 
L 17 21 2 2 23 23 -1 -1 -2 
L 22 22 2 2 23 23 -2 -1 -2 
♦Back Side Surface 
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L 22 22 2 2 17 22 -2 -1 -1 

*3 dimensional object, Superconductor 
L 17 21 2 2 38 43 -1 -1 -1 

♦Top Surface 
L 17 21 3 3 38 43 -1 -2 -1 

L 22 22 3 3 38 43 -2 -2 -1 

L 17 21 3 3 44 44 -1 -2 -2 

*Right Side Surface 

L 17 21 2 2 44 44 -1 -1 -2 

L 22 22 2 2 44 44 -2 -1 -2 

♦Back Side Surface 
L 22 22 2 2 38 43 -2 -1 -1 
♦Infinitely Thin object, xz-plane DAMP RES 1 OHM 

L 25 26 4 4 23 37 -2 -2 5.0e+06 

L 27 27 4 4 23 37 -2 -2 5.0e+06 

♦3 dimensional object, Superconductor 
L 34 39 4 4 38 43 -1 -1 -1 

♦Top Surface 
L 34 39 5 5 38 43 -1 -2 -1 
L 40 40 5 5 38 43 -2 -2 -1 

L 34 39 5 5 44 44 -1 -2 -2 

♦Right Side Surface 
L 34 39 4 4 44 44 -1 -1 -2 

L 40 40 4 4 44 44 -2 -1 -2 

♦Back Side Surface 
L 40 40 4 4 38 43 -2 -1 -1 ' 

+3 dimensional object, Superconductor 

L 40 45 4 4 3 43 -1 -1 ■ -1 
♦Top Surface 
L 40 45 S 5 3 43 -1 -2 ■ -1 
L 46 46 5 5 3 43 -2 -2 - -1 

L 40 45 5 5 44 44 -1 -2 -2 

♦Right Side Surface 
L 40 45 4 4 44 44 -1 -1 -2 

L 46 46 4 4 44 44 -2 -1 -2 

♦Back Side Surface 
L 46 46 4 4 3 43 -2 -1 • -1 

♦Infinitely Thin object, xz-plane SRC RES 60 OHMS 
L 40 45 4 4 2 2 -2 -2 2380.95 

L 46 46 4 4 2 2 -2 -2 2380.95 

♦3 dimensional object, Superconductor 
L 46 49 4 4 38 43 -1 -1 -1 

♦Top Surface 
L 46 49 5 5 38 43 -1 -2 -1 
L 50 50 5 5 38 43 -2 -2 -1 

L 46 49 5 5 44 44 -1 -2 -2 

♦Right Side Surface 
L 46 49 4 4 44 44 -1 -1 -2 

L 50 50 4 4 44 44 -2 -1 -2 - 

♦Back Side Surface 
L 50 50 4 4 38 43 -2 -1 -1 
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♦Infinitely Thin object, xz-plane LOAD RES 16 OHM 
L 50 50 4 4 38 43 8928.57 -2 -2 
L 50 50 4 4 44 44 8928.57 -2 -2 
*3 dimensional object, Superconductor 
L 28 33 6 6 3 47 -1 -1 -1 
*Top Surface 
L 28 33 7 7 3 47 -1 -2 -1 
L 34 34 7 7 3 47 -2 -2 -1 
L 28 33 7 7 48 48 -1 -2 -2 
♦Right Side Surface 
L 28 33 6 6 48 48 -1 -1 -2 
L 34 34 6 6 48 48 -2 -1 -2 
♦Back Side Surface 
L 34 34 6 6 3 47 -2 -1 -1 
+3 dimensional object, Superconductor 
L 2 27 6 6 46 47 -1 -1 -1 
♦Top Surface 
L 2 27 7 7 46 47 -1 -2 -1 
L 28 28 7 7 46 47 -2 -2 -1 
L 2 27 7 7 48 48 -1 -2 -2 
♦Right Side Surface 
L 2 27 6 6 48 48 -1 -1 -2 
L 28 28 6 6 48 48 -2 -1 -2 
♦Back Side Surface 
L 28 28 6 6 46 47 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 2 3 6 6 6 45 -1 -1 -1 
♦Top Surface 
L 2 3 7 7 6 45 -1 -2 -1 
L 4 4 7 7 6 45 -2 -2 -1 
L 2 3 7 7 46 46 -1 -2 -2 
♦Right Side Surface 
L 2 3 6 6 46 46 -1 -1 -2 
L 4 4 6 6 46 46 -2 -1 -2 
♦Back Side Surface 
L 4 4 6 6 6 45 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 4 26 6 6 6 9 -1 -1 -1 
♦Top Surface 
L 4 26 7 7 6 9 -1 -2 -1 
L 27 27 7 7 6 9 -2 -2 -1 
L 4 26 7 7 10 10 -1 -2 -2 
♦Right Side Surface 
L 4 26 6 6 10 10 -1 -1 -2 
L 27 27 6 6 10 10 -2 -1 -2 
♦Back Side Surface 
L 27 27 6 6 6 9 -2 -1 -1 
♦3 dimensional object, Superconductor 
L 24 26 6 6 10 17 -1 -1 -1 
♦Top Surface 
L 24 26 7 7 10 17 -1 -2 -1 



107 

L 27 27 7 7 10 17 -2 -2 -1 
L 24 26 7 7 18 18 -1 -2 -2 
♦Right Side Surface 
L 24 26 6 6 18 18 -1 -1 -2 
L 27 27 6 6 18 18 -2 -1 -2 
*Back Side Surface 
L 27 27 6 6 10 17 -2 -1 -1 
*3 dimensional object, Superconductor 
L 22 26 6 6 18 22 -1 -1 -1 
*Top Surface 
L 22 26 7 7 18 22 -1 -2 -1 
L 27 27 7 7 18 22 -2 -2 -1 
L 22 26 7 7 23 23 -1 -2 -2 
♦Right Side Surface 
L 22 26 6 6 23 23 -1 -1 -2 
L 27 27 6 6 23 23 -2 -1 -2 
♦Back Side Surface 
L 27 27 6 6 18 22 -2 -1 -1 
♦Infinitely Thin object, xz-plane CNTR SRC RES 16 OHMS 
L 28 33 6 6 2 2 -2 -2 8928.57 
L 34 34 6 6 2 2 -2 -2 8928.57 
♦Infinitely Thin object, xz-plane CNTR LOAD RES 1 OHM 
L  1 1 6 6 45 47 250000 -2 -2 
L 1 1 6 6 48 48 250000 -2 -2 
♦3 dimensional object, Superconductor 
L 1 6 4 4 38 43 -1 -1 -1 
♦Top Surface 
L 1 6 5 5 38 43 -1 -2 -1 
L 7 7 5 5 38 43 -2 -2 -1 
L 1 6 5 5 44 44 -1 -2 -2 
♦Right Side Surface 
L 1 6 4 4 44 44 -1 -1 -2 
L 7 7 4 4 44 44 -2 -1 -2 
♦Back Side Surface 
L 7 7 4 4 38 43 -2 -1 -1 
+ 1 ps = 600 iterations 
♦ 

♦ Minimum Grid Spacing 
A le-06 
* 
♦Simulation time (ps) 120 
S 111000 
♦Backup Interval (ps) 125 
B 120000 
♦Plot Interval (ps) 0.1 
P 60 
♦ 

♦ A Voltage Source 
♦ A Pulse waveform 
♦ Zero Initial Time 0(ps) 
♦ Rise Time 5(ps) 
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* On Time lOO(ps) 
* Fall Time 5(ps) 
* On Voltage -0.02 
* Off Voltage 0 
* 
V P 40 46 4 4 1 1 Z 0 3000 60000 3000 -0.02 0 
* A Voltage Source 
* A Pulse waveform 
* Zero Initial Time 40(ps) 
* Rise Time 5(ps) 
* On Time 20(ps) 
* Fall Time 5(ps) 
* On Voltage -0.004 
* Off Voltage 0 
* 
VP28 34 6611Z 24000 3000 12000 3000 -0.004 0 
♦Voltage Paths 
W Y 1 3 42 6 
W Y 1 5 31 8 
W Y 1 5 20 46 
W Y 1 3 27 19 
W Y 1 3 27 41 
W Y 1 3 14 20 
W Y 1 3 13 40 
W Y 1 3 36 39 
W Y 1 3 46 41 
* 
♦Current Loops 
J Z 39 46 3 5 6 
J Z 27 34 5 7 8 
J X 5 7 45 48 20 
J X 3 5 16 23 27 
J X 3 5 37 44 27 
J X 3 5 16 23 14 
J X 3 5 37 44 13 
J X 3 5 37 44 36 
J X 3 5 37 44 47 
* Variable Mesh Array 
* Variable Mesh in the X direction 
G X 1 50 1 
* Variable Mesh in the Y direction 
G Y 1 50 1 
* Variable Mesh in the Z direction 
G Z 1 50 1 
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4.2    FastHenry Data Set 

This is the data set provided to the FastHenry program to determine the values of 

the two parasitic inductances in the MVTL circuit. 

♦Determination of  Inductance for Squid Loop 
* June 2,     1995   ,   Christopher Sentelle 
* Uses fasthenry 
* This  is the inductances used for fmvtl4.dat 
* where the inductance values had been updated. 
.Units urn 
* Use a high value for conductivity,  Superconductor 
.Default nhinc = 1 nwinc = 5 sigma=1.0e20 z=3 w=6 h=l 
* Ground Plane 
gl xl=0 yl=0 zi=0 
+ x2=50 y2=0 z2=0 

+ x3=50 y3=50 z3=0 

+ segl=20 seg2=20 

+ thick=l 

* Setup for the system 

* Squid Loop 
Nl x=19 y=36 

N2 x=19 y=16 
N3 x=22 y=19 

N4 x=37 y=19 
N5 x=40 y=16 
N6 x=40 y=36 

N7 x=40 y=37 

N8 x=40 y=43 

N9 x=37 y=40 

N10 x=22 y=40 
Nil x=19 y=43 

N12 x=19 y=37 

El Nl N2 

E2 N3 N4 

E3 N5 N6 

E4 N7 N8 
E5 N9 N10 

E6 Nil N12 

.equiv N2 N3 

.equiv N4 N5 

.equiv N8 N9 

.equiv N10 Nil 

♦Control line 
N13 x=19 y=2 z=5 

N14 x=19 y=47 z=5 

N15 x=22 y=46 z=5 

N16 x=46 y=46 z=5 

N17 x=47 y=47 z=5 
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N18 x=47 y=5 z=5 
N19 x=46 y=7 z=5 

N20 x=26 y=7 z=5 

N21 x=24.5 y=5 z=5 

N22 x=24.5 y=17 z=5 

E7 N13 N14 
E8 N15 N16 w=2 

E9 N17 N18 w=2 

E10 N19 N20 w=4 

Ell N21 N22 w=3 

* Used to determine Mf 

E12 N6 N7 
.equiv N14 N15 

.equiv N16 N17 

.equiv N18 N19 

.equiv N20 N21 

♦Define External Ports 
.external Nl N12 

.external N13 N22 

.freq fmin=le9 fmax=le9 ndec=l 

.end 
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4.3    MAPLE V Results 

These are the results after using MAPLE V to solve the set of differential equations 

obtained from nodal analysis in terms of a set of first order derivatives of each variable. 



> eqnl:=Icl*sin(phil(t))+Cjl*di f f(VI(t).t)+G1(VI(t)) + (VI(t)-V2(t)) 
> /Rd-Il(t)+Ic3*sin(phi3(t))+G3(Vl(t)-V4(t))+Cj3*diff(Vl(t)-V4(t), 
> t)=0; 

egn/:-/C/sin(phil(/)) + Cy7^|vi(o] + Gl(Vl(0)+VU0^/
V2(0-n(/) 

+ /cJsin(phi3(O) + G3(Vl(O-V4(/)) + Q3^|vi(Oj-(|v4(/)JJ = 0 

> eqn2:=Ic2*sin(phil(t)-2*PI*(Mf*I3(t)+L2*I2(t)-Ll*Il(t))/Flo)+Cj2 
> *di f f(V2(t),t)+G2(V2(t)) + (V2(t)-VI(t))/Rd-I2(t)=0; 

^r-fc;^ph.l(,)-2n'*JTO')t^("-""")))^2(|v2(0 

,G2(v2(0),v2">;/'<'>-■2(0.0°  
> eqn3:=Il(t)+I2(t)+(V3(t)-Vin(t))/Rin+I4(t)=0: 

g^:=Il(/) + I2(/)+
V3(/)^Vin(0

+14(0 = 0 

> eqn4:=V4(t)/Rcout-I3(t)-Ic3*sin(phi3(t))-G3(Vl(t)-V4(t))-Cj3*dif 
> f(Vl(t)-V4(t),t)=0; 

eqn4: 
V4(0 
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Rcout 
-I3(O-/c5sin(phi3(O)-G3(Vl(O-V4(O)-Q'3^|vi(Oj-[|v4(ojJ = 0 

>   eqn5:=-I4(t)+V5(t)/Rout=0; 

eqn5:=_U{t)+ym=0 

> eqn6:=I3(t)=(Vcin(t)-(L3*diff(13(t).t)-Ml*diff(II(t).t)+M2*diff( 
> I2(t),t)+V4(t)))/Rcin: 

eqn6:=l2(t)-- 

Vcin(0-Ai[|l3(0J + W/[|ll(0j-^[|l2(0|-V4(0 
Rein 

> eqn7:=V3(t)-Vl(t)=Ll*diff(Il(t).t)-Ml*diff(13(t).t); 

e^7:=V3(/)-Vl(/) = L/^|ll(o)-M/^|l3(o) 

> eqn8:=V3(t)-V2(t)=L2*diff(I2(t).t)+M2*diff(13(t). t); 

eqn8 := V3(t) - V2(f) = L2 {j( I2(/)) + M2 \j( I3(/) 

> eqn9:=diff(phil(t).t)=Po*Vl(t); 

eqn9:=jtphil(t) = PoV\(t) 

> eqnlO:=diff (phi2(.t) , t )=Po*V2 (t) ; 

eqnIO := |-phi2(0 = Po V2(t) 
ct 

> eqnll:=diff(phi3(t).t)=Po*(VI(t)-V4(t)); 
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eqnll~ — phi3(t) = Po(Vl(t)-V4(t)) 

>   eqnl2:=V3(t)-V5(t)=L4"diff (I4(t).t) 

>   auxl:=solve(eqn3.V3(t)); 

eqnl2 := V3(0 - V5(0 = L4 f| 14(f)] 

^r;:=-^Il(0 + I2(0-^^- + I4(o]/?/>i 

> aux2:=solve(eqn5,V5(t)) 
  aux2~\4{t)Rout  
> eqn7a:=subs(V3(t)=auxl.eqn7): " 

e?«7a:=^Il(0 + n(0-^i+I4(o]/?/>7-Vl(0 = i/[|ll(o)-M/f|l3(0 
> eqn8a:=subs(V3(t)=auxl.eqn8 

e9^a:=|ll(/) + 0(0-^|^+I4(/)j^-V2(/) = I2('|l2(/)j + A/2f|l3(o] 

> eqnl2a:=subs({V5(t)=aux2.V3(t)=auxl}.eqnl2); 

eqnl2a=i^\(t) + n{t)-^^+\A{ARin-lA{t)Rout = L4[j\A{t^ 

> ans:=solve({eqnl.eqn2.eqn4.eqn6.eqn7a.eqn8a.eqn9.eqnll,eqnl2a} { 
> diff(Vl(t).t).diff(V2(t).t).diff(V4(t).t).diff(Il(t).t),diff(I2( 
> t).t).diff(l3(t).t).diff(I4(t).t).diff(phil(t).t).diff(phi3(t).t 

aW:=||phil(0 = PoVl(0,|phi3(0 = Po(Vl(/)-V4(/)),|v4(0 = -( 

Cj3 Rcoutlcl sin(phil(/)) Rd+ Cj3 Rcout G1(V1(/)) Rd- Cj3 Rcoul V2(l) 
+ Cj3 Rcout V1(0 - Q3 Rcout 11(0 Rd+ Q3 RciV4(t) - Cj3 Rdl3(t) Rcout 
+ Cjl RdV4(t) - Cjl Rdl3(t) Rcout-CjlRdIc3 sin(phi3(0) Rcout 

- Cjl RdG3(V\(t) - V4(/)) Rcout)/'{Cjl Rd Rcout Cj3), 111(0 = - (L2 Ml 13(0 Rein 

- L2 Ml Vcin(0 + L2 Ml V4(0 + L2L3 11(0 Rin + L2L3 12(0 Rin -L2L3 Vin(0 
+ L2 L3 14(0 Rin + L2 L3 Vl(/) - M2 11(0 Rin M1-M212(t)Rin M1+M2 Vin(0 Ml 

-M2\4(t) Rin M1-M2 V2(0 Ml - M22 11(0 Rin - M22 12(0 R'" + M22 Vin(0 

-M22 14(0Rin-M22 Vl(t))/(-M22LI + L2L3LI-L2Ml2),112(0 = -( 

-13(0 Rein M2 LI + Ml2 Vin(0 - Ml2 V2(0 + M2 Vin(0 Ml - Ml M2 Vl(/) 
+ L3LIU(t)Rin + L3Lll2(t)Rin-L3LIVm(t) + L3Lll4(t)Rin + L3LlV2(t) 

-Ml2l\(t)Rin-Ml2 12(0 R'n -Ml2 14(0 R'n -M2U(t) Rin Ml-M2U(l) Rin Ml 

- M2 14(0 Rin Ml + Vcin(0 M2L1- V4(0 M2 Ll)/(-M22 LI + L2 L3 LI - L2 Ml2), 

-I3(0 = -(-Vin(0L2Ml + V\(t)L2Ml +L1 L2\3{t)Rein-LI Z.2 Vcin(0 
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+ LI L2 V4(0 -L1M2 Il(/) Rin - LI M2 12(0 Rin+Ll M2 Vin(/) -L1M214(0 /?,« 

-Z-7 A/2 V2(/) +11(0RinL2Ml +12(0 RinL2Ml +14(0 Rin L2 Ml)/( 

-M22 LI + L2 L3 LI - L2Ml2), | Vl(/) = - (Rcout Id sin(phil(0) Rd 

+ Rcout G\(Vl(t))Rd-Rcout V2(t) +Rcout V\(t)-Rcout l\(t)Rd+RdV4(t) 

- ft/13(0 Rcout)l{Cjl Rd Rcout), j V2(0 = f 

-Ic2-J WO) Flo-2nMfU(t)-2TlL212(Q + 2ULllUt)^ nJ lU Sl\ Jf0 — —J Rd- G2( V2(r)) Rd 

- V2(0 + Vl(/) +12(0 Rd)/(Q2 Rd), 

1 H( f)      "(0 Rin + 12(0 Rin - Vin(Q + I4(t)Rin + 14(l) Rout} 
8t 1.4 S 

>   ans[l] 
L4 f 

|Phii(o = PoVi(o 5/ 
>   ans[2]; 

^phi3(0 = /MVl(0-V4(0) 
>   ans[3]; 

d C7 

j( V4(0 = -(Qi/Zcouf Id sin(phil(0)Rd+ Cj3 Rcout Gl(VI(/)) Rd- Cj3Rcout V2{t) 

+ Q3 Rcout V1(0 - Cj3 Rcout 11(0 Rd+ Cj3 RdV4(t) - Q3 RdU(t) Rcout 
+ Cjl Rd V4(0 - Cjl RdB(t) Rcout - Cjl Rdlc3 sin(phi3(0) Rcout 
- Cjl Rd G3( Vl(/) - V4(0) Rcout)/(Cjl Rd Rcout Cj3) 

> ans[4]; '       ~ ^— _ _ 

jt 11(0 = - \L2 Ml 13(0 Rein - L2 Ml Vcin(0 + L2 Ml V4(0 + L2 L3 11(0 Rin 

+ L2L3 12(0Rin-L2L3 Vin(t) + L2L3 U(t)Rin + L2L3 Vl(/)-M2 Il(/) /?/« A/7 

- M212(0 Am A/7 + M2 Vin(/) M7 - M214(0 Ä'« A/7 - M2 V2(/) Ml-M22U(t) Rin 

- M2212(0 Ä« + A/22 Vin(0 - A/22 14(0 /On - M22 Vl(r))/( 

-A/22 7,7 + L2 L3 LI - L2 MI2) 
> ans[5]; " ~ ■  

Jl
n(<) = -(-B(t)RcinM2LI+Ml2Vm(l)-Ml2V2(l) + M2Vin(t)Ml-MIM2V\(t) 

+ L3LlU(t) Rin + L3 LI 12(0 Rin - L3 LI Vin(/) + L3 LI 14(0 Rin + L3 LI V2(/) 

- Ml211(0 Rin - Ml2 12(0 Rin -Ml2l4(t) Rin - Aß 11(0 Rin M1-M212(0 Rin Ml 

- M214(Q *in M7 + Vcin(Q M2L1- V4(Q A/2 Ll)/(-M22 LI + L2 L3 LI - L2Ml2) 
>   ans[6]; 
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jt13(t) = -(-Vin{t)L2Ml + Vl(t)L2Ml+LlL2B(t)Rcin-LIL2Vcin(t) + LlL2V4(t) 

-LlWU(t)Rin-LIM2l2(t)Rin + LIM2Vm(t)-LlM2W(t)Rm-L!M2V2(t) 

+ I1(Q Rin L2 Ml + I2(Q Rin L2 Ml + I4(Q Rin L2 Ml)/(-M22 LI + L2 L3 L1-L2 Ml2) 
> ans[7]; :   ' " 

% V1(0 = - {Rcoutlcl sin(phil(0) Rd + Rcout Gl( V1(0)Rd-Rcout V2(0 + Rcout Vl(t) 

- Rcout 11(f) Rd+RdV4(t) - RdU(t) Rcout)/(Cjl RdRcout) 
> ans[8]: ~ ' ~ 

- V2(0 = {-Ic2 -J^HnFlo-2UMfB(t)-2nL2U(t) + 2IlLlll(t)\ Rd 

- G2( V2(/)) Rd- V2(/) + V1(0 +12(0 Rd)/(Q2 Rd) 

>  ans[9]; 

Hu(t\-   "(0R'm +I2(Qfl/w- Vin(Q +I4(QRin + I4(QRout 
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4.4    C Code 

This is a portion of the C Code used to solve the set of first order differential equations 

provided by MAPLE using the Runge-Kutta fifth-order method. Conventional circuit 

simulation results are then obtained. 

#include "nrutil.c" 
#include "odeint.c" 

#include "rkqs.c" 

«include "rkck.c" 

#define NOVAR 6 

#define L3 6.0e-12 
#define L4 6.0e-12 

#define Ml 2.0e-12 

#define M2 2.0e-12 

#define Mf 2.068e-12 
#define LI 8.39e-12 

#define L2 8.39e-12 

#define Ic 1.0e-6 

#define Gl 4.0e-3 
#define 11 0.0 
#define G2 0.1 
»define Vs 2.0e-3 
»define Vt 1.0e-4 
»define Io 1.0e-4 
»define Po 3.039el5 
»define Cj 5.0e-13 
»define Rein 17.78 
»define Rcout 1.19 

»define Rin 71.99 

»define Rout 20.0 

»define FLo 2.068e-15 
»define TS 1.0e-15 /*0ne femtosecond shall be used*/ 
»define PLT 0.1e-12 
»define PI 3.141592763 
»define SIMTIM 180.0e-12 

»define EPS 1.0e-2 

int kmax=1300,kount; 

float *xp,**yp>dxsav=1.0e-13; 

float G(float v) 

■C 
float ans; 
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ans = Gl*v + (II + G2*fabs(v))*((i/(l+exp((Vs-v)/Vt))) 
-(l/(l+exp((Vs+v)/Vt)))); 

return ans; 

} 

float Vso(float t) 

■C 
float starttime = 0.0e-12; 

float risetime = 5.0e-12; 

float ontime = 100.0e-12; 
float falltime = 5.0e-i2; 

float hicur = 0.010; 

if (t <=starttime) 

return 0.0; 
if ((t>starttime) && (t<=starttime+risetime)) 

return (t-starttime)*hicur/risetime; 
if ((t>starttime+risetime)&&(t<=starttime+risetime+ontime)) 

return hicur; 
if((t>starttime+risetime+ontime)&&(t<=starttime+risetime+ontime 

+falltime)) 
return (hicur - (t-(starttime+risetime+ontime))*hicur 

/falltime); 

eise 

return 0.0; 

> 
float Vcin(float t) 

■C 
float starttime = 30.0e-i2; 

float risetime = 5.0e-12; 

float ontime = 20.0e-12; 

float falltime = 5.0e-12; 
float hicur = 0.003; 

if (t <=starttime) 

return 0.0; 
if ((t>starttime) && (t<=starttime+risetime)) 

return (t-starttime)*hicur/risetime; 
if ((t>starttime+risetime)&&(t<=starttime+risetime+ontime)) 

return hicur; 
if((t>starttime+risetime+ontime)&&(t<=starttime+risetime+ontime 

+falltime)) 
return (hicur - (t-(starttime+risetime+ontime))*hicur 

/falltime); 

eise 

return 0.0; 
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void derive(float t, float yv[], float dydt[]) 

■C 
int i; 

/*In this new system,  the following variables apply: 
y[l]=Vl 
y[2]=V2 
y[3]=V4 
y[4]=Il 
y[B]=I2 
y[6]=I3 
y[7]=phil 
y[8]=phi3 

*/ 
float G(float v); 
float Vso(float t); 
float Vcin(float t); 

dydt[1]=(Rd*yv[6]*Rcout-Rd*G(yv[3]-yv[1])*Rcout-2.*Rd*yv[6] 
*sin(yv[8])*Rcout-Rd*yv[3]+Rcout*yv[4]*Rd+Rcout*yv[2] 
-Rcout*yv[l]-Rcout*G(yv[l])*Rd-Rcout*yv[4]*sin(yv[7]) 
*Rd-Rcout*G(yv[l]-yv[3])*Rd)/(Cjl*Rcout*Rd); 

dydt[2]=-(-yv[5]*Rd+yv[2]-yv[1]+G(yv[2] )*Rd+Ic2*sin((yv[7] *Flo-2 
*PI*(Mf*yv[6]-L2*yv[5]+Li*yv[4]))/Flo)*Rd)/(Cj2*Rd); 

dydt[3] = (Cj 3*Rd*I3(t)*Rcout-Cj3*Rd*G(yv[3]-yv[1])*Rcout 
-2*Cj3*Rd*Ic3*sin(yv[8])*Rcout-Cj3*Rd*yv[3]+Cj3*Rcout 
*yv[4]*Rd+Cj3*Rcout*yv[2]-Cj3*Rcout*yv[l]-Cj3*Rcout 
*G(yv[i])*Rd-Cj3*Rcout*Icl*sin(yv[7])*Rd 
-Cj 3*Rcout*G(yv[1]-yv[3])*Rd+Cjl*Rd*yv[6]*Rcout-Cjl*Rd 
*G(yv[3]-yv[i])*Rcout-Cjl*Rd*Ic3*sin(yv[8] )*Rcout-Cjl*Rd 
*yv[3])/(Cjl*Rcout*Rd*Cj3); 

dydt[4]=-(Ml*L2*yv[6]*Rcin-Ml*L2*Vcin(t)+Ml*L2*yv[3]+M2*Ml*yv[l] 

int main(H 
FILE *file; 
float  *vstart = vector(1,NOVAR); 
float result; 
int  i; 
int nok,  nbad; 

/* This next simulation will simulate the MVTL circuit. Simulation 
will be performed with this system followed by simulation with the 

FDTLM method. 

The following configurations will be used. 

We shall drive a current through the system that is just under the 

maximum critical current of 2.0e-4 amps. We will then apply a 
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control current to the control circuitry linked to our JJ's 

through the inductance L. This should alter the configuration of 

the system and create a HVS. We shall analyze the input current, 

the currents through each JJ, and the voltage across each JJ to 

determine what state the system is in! 

Later models will add the output resistance to shunt the 

current along with an input current through a voltage and a 

resistor. An inductance will be used later to model effects 

of the loop and its self inductance. 

We want to see what the basic operation of the SQUID should be*/ 

xp = vector(l,kmax); 

yp = matrix(l,NOVAR,l,kmax); 

/♦Clear the Matrices*/ 

for(i=l;i<=N0VAR;i++){ 
vstart[i]=0.0; 

} 
printf("Performing Runge Kutta 5th order adaptive integration.\n"): 

odeint(vstart,N0VAR,0.0,SIMTIM,EPS,i.0e-13,i.0e-i6,&nok, 
ftnbad,derive,rkqs); 

printf ("nok= '/.d nbad= '/.d\n",nok,nbad); 

printf("Simulation over, calculating and printing results\n"); 

/*We now should have our answer and we just need to print out*/ 

file = fopen("JJCON","w"); 
for(i=l;i<=kount;i++) 

fprintf (file,'"/.g '/.g\n",xp[i] ,yp[5] [i] ); 
fclose(file); 

/♦Print out the input current */ 
file = fopen("JJIN","w"); 

for(i=i;i<=kount;i++){ 

result=(Vso(xp[i])-(Vso(xp[i])*Rout-Rin*Rout*(yp[3][i] 

+yp[4][i]))/(Rin+Rout))/Rin; 

f printf (file, "'/.g '/.g\n" ,xp[i] .result); 
} 
fclose(file); 

/♦Print out the output current*/ 
file = fopen("JJOUT","w"); 
for(i=l;i<=kount;i++){ 

result=((Vso(xp[i])*Rout-Rin*Rout*(yp[3][i]+yp[4][i])) 
/(Rin+Rout))/Rout; 
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fprintf(file,'"/.g '/.g\n",xp[i] .result); 

} 
fclose(file); 

/♦Print out Ii */ 
file = fopen("JJ];i","wM); 
for(i=0;i<=kount;i++) 

f printf (file, "'/.g '/.g\n" , xp [i] , yp [3] [i] ); 
fclose(file); 

/♦Print out  12*/ 
file = fopen("JJI2")"w"); 
for(i=0;i<=kount;i++) 

f printf (f ile, "'/.g '/.g\n",xp [i] , yp [4] [i] ); 
fclose(file); 

/♦Print out Itotal*/ 
file = fopenC'JJIT","»"'); 
for(i=0;i<=kount;i++) 

f printf (file, "'/.g '/.g\n" ,xp[i] ,yp[3] [i]+yp[4] [i] ); 
fclose(file); 

/♦Print out the total voltage ♦/ 
file = fopen("JJVOL","w"); 
for(i=l;i<=kount;i++) 

fprintf (f ile,'"/.g '/.g\n",xp[i] ,Vso(xp[i] )); 
fclose(file); 

printf ("Done \n"); 

exit(O); 
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