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AFIT/GSO/ENY/95D-02 

Abstract 

The purpose of this research is to understand and describe the process by which the 1986 

Polar BEAR gravity-gradient research satellite of John Hopkins University/Applied Physics 

Laboratory achieved an orbital attitude correction (re-inversion) from an inverted orientation 

through the utilization of its momentum wheel. Understanding this process provides an 

analytical foundation from which a universal attitude inversion process for other gravity- 

gradient satellites with similar anomalous motions may be sought and developed. 

The equations of motion for a gravity-gradient satellite with a momentum wheel are 

derived and implemented in FORTRAN for simulation of the dynamics of the spacecraft. 

Several re-inversion characteristics are observed, in particular, the dynamics about the pitch 

axis. The resulting observations demonstrate an unexpected non-linear relationship between 

the oscillation angle of the pitch axis and the despin time of the momentum wheel. This 

phenomenon depends in part on the size of the momentum wheel compared to that of the 

spacecraft and on the pitch angle at the time of motor torque application. 
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ANALYSIS OF GRAVITY-GRADIENT SATELLITE 

ATTITUDE INVERSION 

/. Introduction 

1.1 General Issue 

Gravity-gradient satellites are designed to utilize the Earth's gravitational force as a 

passive method of maintaining Earth-pointing attitude control. For added stability, several 

devices such as momentum wheels, magnetic rods, and eddy current dampers are included in 

the satellites. Despite these efforts, some gravity-gradient satellites have experienced extreme 

deviations from their designed attitudes due to unforeseen phenomena. Correcting these 

anomalous motions with the devices of the satellites requires an understanding of how and 

when to utilize them for proper attitude remediation. 

1.2 Scope 

Although the amount of attitude deviation from designed attitude varies in size and 

effect, the focus of this research is on the re-inversion of gravity-gradient satellites which have 

undergone complete attitude inversion. The methods of remediation also vary in technique 

and efficiency, but only the employment of the momentum wheel as a mechanism for recovery 

is examined and discussed. 



1.3 Specific Problem 

An example of a gravity-gradient satellite with extreme motions is the Polar Beacon 

Experiment and Auroral Research (BEAR) satellite of John Hopkins University Applied 

Physics Laboratory. In November 1986, the satellite was launched into orbit to measure the 

properties of the near-earth plasma. However, as it entered its first period of fully sunlit orbit 

in February 1987, its attitude degraded significantly. The roll, pitch, and yaw angles began 

oscillating until the satellite finally inverted in May 1987 [4]. Consequently, several attempts 

to re-invert the satellite were undertaken. The third attempt proved to be successful when the 

momentum wheel was allowed to despin for an orbit before spinning it back to its maximum 

spin rate. The torque from the wheel in combination with the pitch rate induced from the 

despinning wheel inverted the satellite and captured it in the desired orientation [5]. 

1.4 Methodology 

In this research, simulation of Polar BEAR's re-inversion is conducted to demonstrate 

and discuss the process by which it occurred. This provides an analytical foundation of the 

effects of the momentum wheel on the dynamics of the satellite. A universal attitude inversion 

process for gravity-gradient satellites is then sought through the analysis of the satellite's 

motion about the pitch axis only since the pitch angle effectively describes when the satellite 

is inverted. 



1.5    Outline of Paper 

The structure of this thesis follows the methodology described above. However, be- 

fore analyzing the re-inversion of Polar BEAR, background information on gravity-gradient 

satellites and the gravity-gradient torques that it may experience is presented in Chapter 2. 

Furthermore, the equations of motion employed to simulate the dynamics of the momentum 

wheel and the spacecraft are presented in Chapter 3. With the background information and 

the equations of motion, simulation and analysis of the re-inversion of Polar BEAR are subse- 

quently presented and discussed in Chapter 4. The effectiveness of the momentum wheel as a 

means of inverting the spacecraft is successfully demonstrated. This permits the development 

of the universal recovery process in Chapter 5 where the inversion of the spacecraft in the 

least amount of time and with the least amount of energy expended is sought. The motion 

of the spacecraft is simplified to that about the pitch axis only and the resulting inversion 

dynamics are observed and discussed. Chapter 6 of the thesis gives the conclusions and 

recommendations. 



//. Background 

2.1    Coordinate Reference Frames 

By design, gravity-gradient satellites employ the inverse square law of the Earth's 

gravitational field as a passive attitude control method. This requires a specific spacecraft 

attitude orientation where the spacecraft's minimum principal moment of inertia is aligned 

with the spacecraft's local vertical (yaw axis), the maximum principal moment of inertia is 

normal to the orbital plane (pitch axis), and the intermediate principal moment of inertia 

is aligned with the velocity vector of the spacecraft (roll axis) [1]. The orientation of the 

spacecraft relative to Earth in Cartesian coordinate systems is shown in Figure 1. I is the 

Figure 1. Gravity-Gradient Satellite with Coordinate Reference Frames 

inertial reference frame with its origin fixed at the center of Earth and Ö is the orbit-fixed 

reference frame. From the inertial frame, O rotates about its third axis as it follows the 

spacecraft along the orbit. <Yaw, Roll, Pitch> represent the body-fixed reference frame of 



the spacecraft. Using the right hand rule, positive spacecraft rotation about the yaw axis is a 

"left turn", roll axis is "left wing up", and pitch axis is "nose down". 

2.2 Pitch Mounted Momentum Wheel 

The stability of the spacecraft about the pitch axis is critical for gravity-gradient satellites 

with earth-pointing accuracy requirements. The environment can impose disturbance torques 

on the spacecraft, causing oscillatory motions of varying degree about the axes. Since the 

pitch axis is decoupled from the yaw and roll axes for small angle oscillations, the pitch 

axis is highly susceptible to disturbance torques [9]. Mounting a momentum wheel with a 

large angular momentum about the pitch axis provides the gyroscopic stiffness required for 

that axis. The effects of the disturbance torques are thereby significantly reduced, if not 

eliminated. Figure 2 shows the coordinate reference of the momentum wheel relative to the 

spacecraft, ä is the axial direction of the momentum wheel relative to the body-fixed frame. 

For a pitch axis mounted momentum wheel, the components of ä in the body frame are [0 0 

1]T. 

2.3 Gravity-Gradient Torques 

The gravitational field of Earth changes in magnitude with altitude. Consequently, the 

gravitational forces over a body in orbit are not constant, creating gravitational torque about the 

mass center of the body [2]. The magnitudes of these torques depend on the orientation of the 

spacecraft to the gravitational field. For Polar BEAR, the gravity-gradient torques per single 

axis rotation are shown in Figure 3, assuming spherical Earth. Note that the roll and pitch axes 



Pitch 

Roll 

Yaw 

r\ 

Figure 2. Momentum Wheel with Coordinate Reference Frame 

have maximum gravity-gradient torques (0.0013 Nm) at 45° rotation intervals and minimum 

(zero) torques at 90° rotation intervals. The zero torques (90° rotations) represent either an 

alignment of the spacecraft with the gravitational field or an orientation where the gravitational 

forces are uniformly distributed along the body. Neither case induces gravitational torques on 

the spacecraft. When this occurs, the spacecraft is said to be in an equilibrium configuration. 

Any deviation from the configuration will induce gravitational torques attempting to restore 

the spacecraft back to the equilibrium configuration. This in turn induces motion about the 

axis. Note that any rotation about the yaw axis produces no gravity-gradient torques. 

2.4   Equilibrium Points 

There are 24 equilibrium configurations possible for a gravity-gradient satellite in 

circular orbit. They are obtained by aligning any of the three principal axes with the orbit 
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normal and either of the remaining two axes with the local vertical [10]. In other words, 

rotating any principal axis through 90° intervals provides an equilibrium configuration. This 

is substantiated by the lack of gravity-gradient torques at 90° rotation intervals as discussed 

above. 

2.5    Spacecraft Stability 

Not all equilibrium orientations are stable. A stable orientation is one where the satellite 

will not "swing away from the equilibrium point" if the satellite is disturbed [10]. In other 

words, if the spacecraft is in a stable configuration, it will have stable motions about the 

equilibrium point. If not, it will completely deviate from that point. Assuming a rigid 

spacecraft where the momentum wheel is locked (not spinning) with the platform of the 

spacecraft, then the criteria for pitch stability are 

B > A (1) 

I + 3h + hk2 > 4^hk~2 (2) 

hk2 > 0 (3) 

where 

C ~ A 

h = — (4) 

h = °-=^- (5) 



A, B, and C are principal moments of inertia of the spacecraft along the local vertical, the 

velocity vector, and the orbit normal, respectively [10]. For example, if Polar BEAR is in the 

designed orientation, then the values for k\ and k2 are 0.97 and 0.10 respectively. All criteria 

are satisfied, indicating a stable equilibrium configuration. If Polar Bear was rotated by 90° 

or —90° about the pitch axis only, then the values for A, B, and C would change. B would 

equate to the minimum spacecraft moment of inertia and A would equate to the intermediate 

moment of inertia. This configuration does not satisfy the first criterion, indicating an unstable 

equilibrium orientation. 

2.6   Assumptions 

Two major assumptions are considered in this simulation. The first pertains to the 

rigidity of the wheel and the platform of the spacecraft. The wheel and platform are assumed 

to be a rigid where no structural deformation or change in their center of mass occur. This 

assumption allows for the development of equations of motion for the rigid platform of the 

spacecraft given a rigid momentum wheel. The second assumption is that the spacecraft is in 

a circular orbit about a perfectly spherical Earth. 



///. Equations of Motion 

Changing the attitude of a spacecraft requires an adjustment of its angular momen- 

tum. This can be accomplished through applied torques or energy dissipation techniques 

[6]. However, in this simulation, only the applied torque of the momentum wheel on the 

gravity-gradient satellite is considered. The equations of motion for such a system have been 

extensively derived in several books, including the book Spacecraft Attitude Dynamics by Pe- 

ter C. Hughes [2]. In this chapter, the equations are presented to illustrate how the momentum 

wheel is incorporated in the equations of motion of the spacecraft. Furthermore, they are the 

equations used to do all simulations and obtain the kinematics of the spacecraft. 

3.1    Angular Momentum of Momentum Wheel 

We begin with the axial angular momentum of the momentum wheel which is defined 

as 

ha = Iwu)a (6) 

where Iw is the axial moment of inertia of the wheel and ua is the angular velocity of the 

wheel about its symmetry axis relative to the inertial reference frame. ua is composed of the 

angular velocity of the wheel relative to the platform (u>w) and the axial component of the 

angular velocity of the spacecraft relative to the inertial frame (to • a): 

ua=uw + u -a (7) 
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However, to change the angular momentum of the wheel, an external torque must be applied 

to the wheel [1]. This leads us to the first equation of motion which is the time derivative of 

the angular momentum of the momentum wheel 

ha = Ta (8) 

Ta is the axial torque of the wheel and is composed of the torque from the wheel's motor (Tm), 

the frictional torque (Tf), and the gravity-gradient torques (Tgg_wh). 

Ta  =  Tm  + Tf + Tgg-Wh (9) 

Tm is assumed constant and when applied, produces a torque about the wheel's spin axis which 

spins up the wheel. Tf depends on the relative speed of the wheel: 

Tf = -CLOW (10) 

where c > 0 is the damping constant. If the wheel is not spinning relative to the platform, then 

there is no frictional torque on the wheel. Conversely, the maximum frictional torque occurs 

at maximum wheel spin rate. Tf is negative since it opposes the spin of the wheel. Tgg-Wh 

represents the axial torque on the wheel due to the gravity-gradient field. However, since the 

wheel is symmetric about its spin axis, no axial gravity-gradient torque is induced on it. 

11 



3.1.1 Approximations. Given the equation of motion for the momentum wheel, the 

angular velocity (spin rate) of the wheel at a given time can be approximated. Substituting 

equation (7) into equation (6) and taking the time derivative of the equation yields 

ha = IW((JW + -j:(ä- «)) C1!) 

However, if the motor is turned off (Tm = 0) and the momentum wheel is despinning, then 

the angular velocity of the spacecraft is small (relative to inertial frame). Therefore, we can 

assume that 

jt(u-a)n0 (12) 

which results in 

ha = IWJW (13) 

Now substituting equation (9) for equation (13) and solving for <JW yields 

c 
LOw = ——LOu 

-'■in 

(14) 

which is an approximate first order differential equation for the angular velocity of the wheel. 

Its solution is a time dependent exponential function 

uw{t) = u^e-^1™ (15) 

12 



where uWi is the initial spin rate of the wheel. Understand that this is an approximation of the 

momentum wheel during the despin phase. 

We can also approximate the spin-up time of the wheel from any initial spin rate. 

First, by assuming the motor torque is significantly greater than the frictional torque, friction 

becomes negligible (Tf = 0). Thus, <JW from equations (9) and (13) yields 

ujw = -j1 (16) 

Integrating equation (16) and solving for the spin-up time of the wheel yields 

tsp = 7f-(uWf -U3Wi) (17) 

where uWf is the final spin rate of the wheel. Again, this is an approximation of the wheel 

spin-up time. 

With the angular velocity of the despinning wheel at a given time and the amount of 

time it takes to spin it up, we can approximate the amount of angular impulse expended during 

the spin-up of the wheel. The angular impulse is defined as the integral of the torque over its 

application time 

M= [tSPTadt (18) 
Jo 

Note, if the wheel torque is applied for a relatively short period of time, then that makes it an 

impulsive torque. This is significant when analyzing the resulting dynamics of the spacecraft. 

13 



However, equation (18) can be re-written as 

ft3p 

M = Tmtsp - c /     Low(t)dt (19) 
Jo 

and substituting equation (15) into equation (19) yields 

M = Tmtsp + Iwu)Wo{z-
ctsv'Iw - 1) (20) 

where uWo is the angular velocity of the wheel at the time of spin-up. Observe that the angular 

impulse is a function of the spin rate of the wheel at the time of motor torque is applied and 

the duration of its application. Furthermore, the time of motor torque application depends on 

the amount of time the wheel is allowed to despin. 

3.2   Angular Momentum of Spacecraft 

The second equation of motion is a vector differential equation describing the change 

in angular momentum of the spacecraft, and is defined as 

h = -u>xh + T3a (21) 

where 

w = (Isp - /waaT)-1(h - haR) (22) 

14 



h, <Jü, and Tgg are column matrices containing the components of the angular momentum 

vector, the angular velocity vector relative to inertial frame (to), and the gravity-gradient 

torque of the spacecraft respectively. Isp is the moment of inertia tensor of the spacecraft with 

wheel and aT is the transpose of the components of the axial vector a. a?x is the skewed 

matrix 

0 — UJo,        U>2 

U>3 0 —U>i 

—0J2    ^1       0 

As expected, equations (8) and (21) illustrate the relationship between the angular momentum 

of the wheel as it affects the dynamics of the spacecraft. In equation (8), a torque applied to 

the wheel changes the angular momentum of the wheel. With the new angular momentum, 

a change in the angular momentum of the spacecraft is then achieved, equation (21). This 

relationship is necessary if the momentum wheel is to be utilized as the sole mechanism for 

attitude recovery. The angular momentum vector is defined as 

h = Iavoj + IwLowa (23) 

As for Tgg, it may be shown to be 

Tgg = 3co0'01
x(Isp01) (24) 

15 



where u0 is the constant orbital velocity of the spacecraft, assuming circular orbit [9]. 

3.2.1 Pitch Axis Coupling. An important factor embedded in the equations of 

motion is the coupling of pitch motion to yaw and roll. This is unlike the linearized equations 

of motion where the motion of the pitch axis is decoupled from yaw and roll for small angles 

[9]. In the non-linear equations, the pitch axis depends on both the motion of the yaw and 

roll angles and on the external torques. This is evident in the equation for the pitch axis in the 

spacecraft equation of motion 

Up — \Jrr     ' -lyyJ^r^dy T J- gg—pitch \A^) 

Irr and Iyy are the axial moments of inertia about the roll and yaw axis respectively. ur and 

ujy are the angular velocities of the spacecraft about the roll and yaw axes. Tgg-Pitch is the 

gravity-gradient torque about the pitch axis. 

3.3    Quaternion 

The kinematics of the spacecraft can be described using the Euler axis and Euler angle, 

which may be combined to define the quaternion. Any body rotating relative to another can 

be represented by a single angular rotation (Euler angle) about a single fixed axis (Euler axis) 

[1]. The quaternion is defined as the combination of the Euler vector (A), and a scalar (q4) 

q = A sin — (26) 

16 



q4 = cos V- (27) 

A is the unit vector of the axis of rotation (Euler axis) and p, is the rotation angle (Euler angle). 

For example, rotating about the pitch axis only means A in matrix form equates to [0 0 1] . 

Substituting this into equation (26) yields 

q = 

o 

o 

sinf 

Since q3 and q4 are trigonometric functions, their interaction becomes significant when de- 

scribing the motion of the spacecraft. For example, if a body is inverted (180° of rotation) and 

rotates through -180° back to zero, then q3 goes from 1 to 0 and q4 goes from 0 to 1 (Figure 

4). Also, if a body at 0° rotates through -180°, then q3 goes from 0 to -1 and q4 goes from 1 

toO. 

Since the quaternion describes the rotation of a body relative to a reference frame, 

its elements are functions of time. Taking their time derivatives in turn provides us with 

additional equations of motion describing the kinematics of the spacecraft. They are 

q = -(qxu>bo + q4Iubo) (28) 

17 
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and 

4i = --qrw6o (29) 

where u>6o is the column matrix of the components of the angular velocity of the spacecraft 

with respect to the orbit and I is the identity matrix [1]. 

3.4   Pitch Equation 

The equations of motion presented above describe the kinematics of the spacecraft in 

any motion. However, the equation of motion for the pitch angle, assuming motions about the 

pitch axis only, is defined as 

••        öLü0  [lyy      lrr) a     ■    a    i f m /ir\\ 
Op =  f-^-J ~ cos °P Sln °P +  T     _ T    ~   T    _ T (-30) 

where Ipp is the axial moment of inertia about the pitch axis. Notice that the equation is 

composed of three terms, each respectively corresponding to the contributions of the gravity- 

gradient torque, the frictional torque, and the torque of the motor to the dynamics of the pitch 

angle. This means that no changes to the pitch angle occurs unless one of these torques is in 

effect. 

19 



IV. Analysis of Re-Inversion of Polar BEAR Satellite 

4.1 Cause of Inversion 

As previously stated, Polar BEAR inverted after experiencing extreme oscillatory mo- 

tions about all three axes in May 1987 after its first full sun orbit. The specific cause of 

these anomalous motions remains an unsolved problem to date. Many sources of attitude 

disturbance such as the Earth's magnetic field, aerodynamic drag, spacecraft charge accu- 

mulation, solar radiation pressure, and solar-induced bending of Polar BEAR's boom have 

been investigated as the potential cause of the inversion. However, neither have been able 

to substantially produce the instability of the satellite when considered individually. Instead, 

the subtle accumulation of all environment sources on the spacecraft, working together to 

overcome the gravity-gradient restoring torques, has been hypothesized. Further analysis of 

the thermal bending of the boom has also been done, where similar instabilities and anomalous 

motions were produced. However, the results remain inconclusive [4]. 

4.2 Spacecraft and Momentum Wheel Parameters 

Polar BEAR, in a 1000 km circular orbit, has moments of inertia about the principal yaw, 

roll, and pitch axes of 29 kgm2, 934 kgm2, and 937 kgm2, respectively [8]. Its momentum 

wheel, with an axial moment of inertia of 0.01137 kgm2, provides 2.4 Nms of angular 

momentum when at its maximum spin rate of 2049 rpm. The spin rate is achieved in 

approximately 4.5 minutes from zero spin, given a motor torque magnitude of 0.0093 Nm [3]. 

20 



The motor torque was determined using equation (17) and adjusted accordingly given the 

assumptions of the equation. This demonstrates the overwhelming capability of the motor 

torque to counter even the maximum gravity-gradient torques of Polar BEAR (0.0013 Nm). 

Conversely, allowing friction to despin the wheel from maximum spin rate takes approximately 

5 to 6 hours [3]. For the re-inversion simulation, a spin-down time of 5.5 hours was chosen 

to reach a near-zero spin rate of 25 rpm. A near-zero spin is arbitrarily chosen to reduce 

the amount of time it takes the wheel to reach zero spin since reaching zero spin rate with 

only viscous damping would take an infinite amount of time (cf. equation (15)). Therefore, 

the damping constant of the frictional torque to despin the wheel was determined to be 

2.53 xl0~6 kgm2/s using equation (15). The resulting dynamics of the momentum wheel 

given these parameters are illustrated in Figure 5. 

With the performance of the momentum wheel, the approximations derived in the 

previous chapter are compared in Figure 6. Observe that the approximations are reasonably 

close to the actual performance of the momentum wheel. The wheel despins to 25.7 rpm in 

330 minutes (5.5 hours) and correspondingly spins up in 4.25 minutes. This results in an 

expenditure of « 2.4 Nms of angular impulse. The close approximations are beneficial when 

developing a universal recovery process for inverted gravity-gradient satellites. Being able 

to approximate the dynamics of the wheel helps in determining the minimum requirements 

for spacecraft inversion, especially in turns of angular impulse. It theoretically represents 

the amount of energy expended by the motor in order to spin-up the wheel.  Inverting the 
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Figure 5. Dynamics of Momentum Wheel 
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spacecraft with the least amount of angular impulse would be required considering the limited 

amount of energy available in a satellite. 

4.3   Re-inversion Simulation 

The re-inversion simulation begins with the inverted orientation of the spacecraft at the 

time of the third attitude correction attempt: -10°, -20°, and -180° for the yaw, roll, and 

pitch angles respectively [5]. The motor is turned off for one satellite orbit to despin the wheel 

from maximum spin rate. The motor is then turned back on, spinning the wheel back up until 

it reaches spin-up saturation and remains spinning at its maximum spin rate. This is modelled 

by equating the torque on the wheel (Ta) to zero once maximum spin rate is achieved. 

It is important not to confuse the wheel spin-up saturation as an absorption of the energy 

generated by the motor torque. The forces of the motor torque remain constant until the motor 

is turned off. It is the increase in frictional torque as the wheel spins up that eventually equates 

to the motor torque and causes saturation. The frictional forces do not absorb or dissipate the 

motor torque. Without any devices or mechanisms to absorb or dissipate the motor torque, the 

resulting motions of the spacecraft would continue endlessly [6]. For example, if the motor 

torque caused the spacecraft to spin (or oscillate) about an axis, it would continuously spin 

(or remain in oscillatory motions) for an infinite amount of time. The lack of motion damping 

devices or energy dissipation mechanisms to absorb the energy generated by the motor torque 

causes the resulting motions to continue. These dynamics are expected in the re-inversion 

simulation since energy absorption or dissipation is not modelled. 

23 



Wheel Despin vs Time (mins) 
2500 

200C 

£.1500 
05 
CD 
I 1000 

1 1                     1 

 Approximation; 

o    Simulation 

1 "       © 1- fi 1 o_ 

50 100 150 200 250 

Wheel Spin-up Time vs Time (mins) 

50 100 150 200 250 

Angular Impulse vs Time (mins) 

300 

300 

350 

b I 

n    :               o 

«4 
c 

I3 c 
Q. 

E 
^1 

/ 1 

350 

350 

Figure 6. Comparison of Momentum Wheel Dynamics 

24 



4.3.1 Momentum Wheel and Torques. The dynamics of the momentum wheel and 

of the torques during the re-inversion process are illustrated in Figure 7. In the first two plots, 

the wheel despins to « 450 rpm where only the frictional torque acts on the wheel. Observe 

that during the spin-up phase, the torque on the wheel is applied for a relatively short period 

of time. This short time span makes the application wheel torque an impulsive torque as 

discussed earlier and expends approximately 1.67 Nms of angular impulse. 

The third plot shows the gravity-gradient torques experienced by Polar BEAR during 

the re-inversion process. The inverted configuration of the spacecraft induces restoring 

gravity-gradient torques throughout the process. Note that no gravity-gradient torques exist 

at approximately 138 minutes into the re-inversion process which can only occur at rotation 

intervals of 90°. The corresponding spacecraft orientation is examined in the next section. 

The last plot illustrates the torque difference of the torque on the wheel and the restoring 

torques. It affirms the overwhelming capability of the motor over any other external torque 

on the satellite. 

4.3.2 Yaw, Roll, and Pitch Angles. The dynamics of the spacecraft about the three 

axes during the re-inversion process are illustrated in Figure 8. Recall that any spacecraft 

deviation from its equilibrium configuration induces gravity-gradient torques and subsequently 

creates motion about that axis. This justifies the oscillatory motions of the yaw and roll angles 

induced from their initial inverted angles. These motions continue and do not dampen to 

within specifications since motion damping devices (such as the eddy current dampers of 
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Figure 7. Momentum Wheel and Torques 

26 



Polar BEAR) are not modelled in the simulation.   In actuality, Polar BEAR dampened to 

within 10 degrees of mission specifications for all three axes [5]. 

The pitch angle, although at an inverted equilibrium point initially, produced uneven 

motions during the despin of the momentum wheel. These motions are the results of the 

motions of the yaw and roll angles coupled with the pitch axis and of the frictional torque 

during wheel despin. However, after motor torque application, the pitch axis decreased to 

~ —400° before settling in an oscillatory motion about —360°. This is a complete inversion of 

the spacecraft about its pitch axis where the decrease in pitch angle is indicative of a negative 

rotation about the axis. As expected, the positive motor torque about the pitch axis produced 

an opposing frictional torque on the spacecraft which in turn generated a negative rotation. 

Furthermore, the pitch angle stabilized about —360° instead of continuously decreasing given 

the lack of energy dissipation in the simulation. The lack of continuous spacecraft spin is 

attributed to the coupled motions of yaw and roll with the pitch angle. 

Observe that at 138 minutes, the yaw, roll, and pitch angles are approximately 41°, —28°, 

and —262° respectively. This was not previously identified as an equilibrium configuration, 

where zero gravity-gradient torques exist. However, if the rotation angle (ft) is at a 90° rotation 

multiple at 138 minutes, then this spacecraft orientation is in some form of an equilibrium 

configuration. This is examined in the next section. 

4.3.3 Quaternion. As previously stated, the re-inversion process can be described 

using the Quaternion (Figure 9). For this case, qi and q2 induced oscillatory motions which 

indicates and affirms that the rotation of the spacecraft was not solely about the pitch axis. 
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However, the re-inversion of the spacecraft is seen through the interactions of q3 and q4. q3 

begins at 1 until it decreases and oscillates about 0. Similarly, q4 begins at 0 and increases to 

« 1. These interactions describe ft -180° of rotation about the pitch axis as expected from 

the dynamics of the pitch angle as discussed in Chapter 3. 

As for the Euler rotation angle //, it begins at 180° of rotation, corresponding to the 

inverted position of the satellite. It then decreases to ft 60° by the end of the inversion. This 

again demonstrates the combined rotation of the spacecraft about all three axes. If the rotation 

was solely about the pitch axis, n would decrease to 0°. Furthermore, note that at 138 minutes, 

H is 90° of rotation. This corresponds to the lack of gravity-gradient torques which indicates 

the rotation of the spacecraft through an equilibrium configuration. 
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V. Analysis of Pitch-Only Motion 

Having analyzed the re-inversion process, development of an optimal recovery process 

for inverted gravity-gravity satellites is developed by initially simplifying the spacecraft's 

motion. The analysis is simplified to motions about the pitch axis for two reasons: the pitch- 

mounted momentum wheel primarily affects the dynamics of the pitch axis and the pitch angle 

effectively describes when the spacecraft is inverted. Of specific interest is the amount of 

time required to despin the momentum wheel in order to invert the spacecraft in the shortest 

amount of time and with the least amount of energy expended. 

5.1 Methodology 

The orientation of the spacecraft begins with all three axes at 0° of rotation, which is a 

stable equilibrium configuration. The momentum wheel despins from its maximum spin rate 

for a specified amount of time before application of the motor torque. Gradually the despin 

time is increased until satellite inversion is achieved. The dynamics are then observed for any 

relationship which may lead to a universal recovery algorithm and formula. 

5.2 Results 

The inversion of the spacecraft was not achieved in all inversion attempts even though 

the torque of the motor was greater than the maximum restoring torques as discussed earlier. 

Evidently, the overwhelming magnitude of the motor torque is not exclusively sufficient of a 

criteria to invert the spacecraft. Other factors must be involved. 
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5.2.1 Failure to Invert. An example of the spacecraft not inverting occurs when 

the wheel is allowed to despin for 87 minutes only (Figure 10). Beginning with the despin 

phase, we see the frictional torque of the motor causes oscillatory motions about the pitch axis 

where the center of oscillation is offset by 10° from the original equilibrium point (0°). This 

is expected since the continuous application of a torque about an axis will initially offset the 

oscillation center to a new equilibrium angle. The location of the new center is where the 

frictional torque and the gravity-gradient torque are of equal magnitude. Recall that the pitch 

equation, (30), is a function of the frictional torque and the gravity-gradient torque (for zero 

motor torque). However, as the frictional torque decreases due to the despinning wheel, the 

location of the oscillation center gradually returns back to the original point. This is illustrated 

in Figure 11 where the wheel is allowed to despin for a longer time and the oscillations 

eventually return to oscillate about 0°. Observe also that the first set of negative pitch angles 

occurs between 52.8 and 75.2 minutes where the pitch angle is pa 0° at these times. This 

becomes relevant in a later discussion of the results. 

In the lack of inversion example, we also see the pitch angle oscillating between 86.7° 

and —86.7° after the motor torque is applied. These oscillations occurred instead of the 

inversion of the spacecraft. Again, these motions induced by the impulsive torque on the 

wheel can be expected. An impulsive torque will produce oscillations about the current center 

(which may be the original equilibrium point) unless it is large enough to oscillate (or rotate the 

spacecraft) through the 90° of rotation equilibrium orientation [7]. Recall that the equilibrium 

orientation with the pitch angle at 90° of rotation is an unstable configuration.  Therefore, 
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spacecraft inversion requires an impulsive torque of enough magnitude to pass the spacecraft 

through the unstable configuration. Otherwise, the spacecraft will only oscillate to within 90° 

and about the current oscillation center. Determining the required amount of impulsive torque, 

or the corresponding amount of angular impulse from the wheel, is the basis of the recovery 

process. Recall also that Polar BEAR similarly rotated through an equilibrium configuration 

during its re-inversion process, although it was not established as an unstable one. 

The lack of inversion is also equivalently illustrated with the quaternions (Figure 12). 

After the motor was turned on, the Euler angle reached 86.7° of rotation periodically. Observe 

that q3 and q4 are -0.686 and 0.686 respectively at the first 86.7° of rotation. This corresponds 

to äS —90° of rotation about the pitch axis as discussed in Chapter 3. Recall that q3 and q4 are 

-0.7071 and 0.7071 respectively if a body rotates -90° about the pitch axis only. 

5.2.2 Spacecraft Inversion. Letting the momentum wheel despin for one additional 

minute results in the inversion of the spacecraft (Figure 13). The same dynamics occur for the 

pitch axis during the wheel despin phase, but after the motor torque is applied, the pitch angle 

decreases continuously. This represents an inversion of the spacecraft (—180° of rotation in 

54.86 minutes) even though it was not maintained due to lack of energy dissipation in the 

simulation model. The decrease in angle is another indication of a negative rotation from the 

positive wheel torque, which is expected from the positive motor torque about the pitch axis. 

Again, we see the equivalent dynamics with the quaternions (Figure 14). This time, 

note that q3, q4, and // show complete spacecraft rotations instead of oscillations. 
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5.3   Pitch Angle Oscillations 

Having the magnitude of the motor torque greater than the maximum gravity-gradient 

torque is not the only requirement to invert the spacecraft as previously stated. It is the 

amount of angular impulse that dictates the inversion of the spacecraft. If the relationship 

between the angular impulse and its corresponding pitch oscillation angle can be developed, 

then a universal recovery algorithm can be developed. If the relationship were linear, then 

development of the algorithm would be simple. However, the relationship is not linear (Figure 

15). The oscillation angles of the pitch axis do not increase correspondingly to an increase in 

angular impulse as shown in the plot of pitch oscillation angle verses wheel angular impulse. 

Similarly, if compared with the wheel despin times (the times of motor torque application), 

the oscillation angle does not correspondingly increase. A decrease in oscillation angle occurs 

despite an increase in angular impulse or a specific oscillation angle is reached from varying 

amounts of angular impulse (or despin times). For example, the pitch axis decreases in 

oscillation from the local maximum of 73° to the local minimum of 52° despite the increase 

in angular impulse. The local maximum and minimum occur after « 53 and « 75 minutes 

of wheel despin respectively. Recall that the pitch angle is 0° at these times during wheel 

despin. Furthermore, the pitch axis oscillates within 60° given 0.97 Nms, 1.38 Nms, and 1.59 

Nms of angular impulse. This phenomenon, although unexpected, must be resolved before 

developing any recovery process. 

However, once the angular impulse is sufficient to invert the spacecraft (w 1.68 Nms), 

the amount of time taken to achieved attitude inversion decreases to a minimum of 24 minutes 
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at ?s 150 minutes (Figure 16). Note that the angular impulse to re-invert Polar BEAR (1.676 

Nms) from its anomalous motions is close to the angular impulse to invert the spacecraft in 

the pitch-axis only simulation. This indicates that the simplification of the spacecraft's motion 

about the pitch axis only is a good approximation. In other words, the additional motions 

about the roll and yaw axes do not appear to significantly affect the amount of angular impulse 

required to invert the spacecraft. 

5.3.1 Non-Linear Relationship. One factor causing the decrease in oscillation 

angle, despite an increase in angular impulse, is the orientation of the spacecraft at the time 

the motor torque is applied. Recall that as the momentum wheel despins, the pitch angle 

oscillates through negative angles at times (Figure 11). If the motor torque is applied when the 

pitch angle is negative and further decreasing, then the resulting oscillation angle decreases as 

angular impulse increases. If the pitch angle is negative, but increasing, then the oscillation 

angle increases as angular impulse increases. If the pitch angle is zero, the corresponding 

oscillation angle is either the local maximum or minimum. These parameters are illustrated 

in Figure 17 and Table 1 where the motor torque is applied just before and just after zero pitch 

angle. For positive initial pitch angle, the resulting oscillation angle increases until the local 

maximum is reached then decreases once negative initial angles are reached. The oscillation 

angles continue to decrease to the local minimum before increasing again when positive initial 

angles are reached again. In other words, the application of a positive motor torque when 

the pitch rate is decreasing during wheel despin causes a reduction in the resulting oscillation 

angle. When the pitch rate increases again, the resulting oscillation angle increases. 
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Table 1. Results of Pitch Oscillation Angle about Local Inflection Points 

Plot Motor Torque Time 0p and 9p Oscillation Angle and Slope 
1 51.1 minutes > 0°, decreasing 72.8°, increasing 

52.8 minutes = 0°, decreasing 73°, no slope (maximum) 
2 56.2 minutes < 0°, decreasing 70.2°, decreasing 
3 71.5 minutes < 0°, increasing 52.8°, decreasing 

75.2 minutes 0°, increasing 52°, no slope (minimum) 
4 76.5 minutes > 0°, increasing 52.2°, increasing 

Another factor causing the non-linear phenomenon is the relationship between the 

inertia of the momentum wheel and that of the spacecraft. Even though the response of 

the spacecraft increases as the moment of inertia of the wheel increases, the relationship 

between the oscillation angle and the wheel despin time is still non-linear (Figure 18). For 

larger moments of inertia, we see the spacecraft returning to oscillatory motion as the wheel 

despin time increases even though it had already achieved inversion with lesser despin times. 

This behavior continues until the moment of inertia of the wheel is large enough to not 

cause oscillatory motions once inversion is achieved. For example, when Iw = 0.023 kgm2, 

the spacecraft no longer experiences oscillatory motions once inversion is achieved. This 

indicates that a minimum moment of inertia ratio between the wheel and spacecraft is required 

to have the resulting oscillation angle increase as the wheel despin time increases. 

Similarly, when comparing the oscillation angle with the corresponding angular impulse 

produced from spinning up the wheel, the non-linear relationship exists (Figure 19). Here 

we see that spacecraft inversion is first achieved with an angular impulse of 1.22 Nms for all 

wheels with moments of inertia of «0.013 kgm2 or higher. This indicates that a gravity- 

gradient satellite is invertible with a minimum amount of angular impulse for any wheel 
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moment of inertia above a certain minimum. The minimum angular impulse only guarantees 

the inversion of the spacecraft, but not necessarily in the quickest time. 

As expected, the relationship between the time it takes to reach inversion and the wheel 

despin time is also non-linear (Figure 20). We see the spacecraft returning to oscillatory 

motions for Iw < 0.023 kgm2. When Iw = 0.023 kgm2, a local minimum inversion time of 

Time To Reach Inversion vs Wheel Despin Time 
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Figure 20. Time Until Inversion and Wheel Despin Time Relationship 

42 minutes at m 57 minutes of wheel despin exists. The local maximum is 58.5 minutes at 

« 74 minutes of wheel despin. The angular impulse for the local minimum is 1.48 Nms as 
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illustrated in Figure 21. Here, the local minimum is the shortest amount of time it takes to 

invert the satellite with the least amount of angular impulse expended. 

Time To Reach Inversion vs Angular Impulse 
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Figure 21. Time Until Inversion and Angular Impulse Relationship 

The location of the pitch angle at the time of motor torque application for Iw = 0.023 

kgm2 is illustrated in Figure 22. Again we see that the times of the local minimum and 

maximum (57 and 74 minutes respectively) occur when the pitch angle is 0° when the motor 

torque is applied. This indicates that for a wheel to spacecraft moment of inertia ratio above 

a certain minimum, the quickest time to reach inversion with the least amount of energy 

expended is attainable when the pitch angle during despinning of the wheel is first 0°. 
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Figure 22. Despin Pitch Motion for Wheel Mass Inertia of 0.023 kgm 
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It is also important to note that the local maximum and minimum occur only for the 

first set of negative pitch angles. Recall that this was also the case for the previous local 

maximum and minimum points of the original wheel moment of inertia of Polar BEAR. In 

both cases, the subsequent negative pitch angles no longer significantly affects the dynamics 

of the spacecraft after inversion is achieved. 
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VI. Conclusions and Recommendations 

The purpose of this research was to explain the process by which the Polar BEAR 

gravity-gradient satellite recovered from its anomalous motions. From this analysis, an 

algorithm for attitude inversion of similar satellites with the momentum wheel was sought 

through the motions of spacecraft about the pitch axis only. 

6.1    Conclusions 

6.1.1 Re-inversion. The re-inversion of the Polar BEAR satellite was successfully 

accomplished in our simulation process. Although all attitude control and motion damping 

devices of the Polar BEAR satellite were not modelled and utilized for attitude inversion, 

the effectiveness of the momentum wheel as the sole attitude inversion mechanism was 

demonstrated. Attitude inversion was achieved when the momentum wheel was allowed to 

despin for an orbit in the simulation as it was in the actual re-inversion of Polar BEAR in 

1987. This subsequently enabled the spin-up motor torque to provide an impulsive torque 

large enough to rotate the spacecraft through an equilibrium configuration where no gravity- 

gradient torques were induced. Furthermore, the rotation was mostly a negative rotation about 

the pitch axis given the positive motor torque on that axis. The re-inversion process finished 

with the satellite oscillating about all three axes, although not within the oscillation angles 

of the actual re-inversion process. This is attributed to the lack of energy dissipation in the 

simulation model. 
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6.1.2 Pitch-Only Motion. The pitch-only motions of a spacecraft produced an 

unexpected non-linear relationship between the oscillation angles of the pitch axis and the 

wheel despin time. The impulsive torque on the wheel induced oscillations that did not 

linearly increase as the angular impulse from the wheel (or the wheel despin time) increased. 

This phenomenon in part is attributed to the value of the pitch angle during wheel despin. If 

the spin-up motor torque is applied when the pitch angle is 0° or less, the oscillation angle 

decreases even though the angular impulse from the wheel increases. When the pitch angle 

increases back to positive angles during wheel despin, the oscillation angles increase also 

until spacecraft inversion is achieved. Inversion is achieved when the angular impulse is 

large enough to rotate the spacecraft through the 90° unstable configuration. Subsequently, 

the amount of time it takes for inversion to be reached linearly decreases to a minimum as 

wheel despin time increased. Obtaining this minimum requires a large expenditure of angular 

impulse. 

Another factor involved in the phenomenon is the relationship between the moment of 

inertia of the wheel to that of the spacecraft. If the wheel to spacecraft moment of inertia is 

above a certain minimum, then the spacecraft no longer experiences oscillatory motions once 

inversion is achieved with a lesser amount of angular impulse. Given the same wheel moment 

of inertia quantities, the relationship between the time until inversion is reached and the wheel 

despin time is also non-linear. Instead, a local minimum, indicating the shortest inversion 

time with the least amount of angular impulse, occurs. This minimum occurs when the pitch 

angle is 0° during the despinning of the wheel and the motor torque is applied. The dynamics 
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described above for both non-linear cases only occur for the first set of negative pitch angles 

during wheel despin. For the intermediate wheel moments of inertia, the dynamics of the 

spacecraft do not appear to be affected by initial pitch angles at the time of motor torque 

application. 

6.1.3    Universal Recovery Algorithm. The universal attitude inversion process 

for gravity-gradient satellites through application of a momentum wheel torque was not 

completely obtained in this research thesis. However, two conditions are relevant in the 

recovery process: the wheel to spacecraft moment of inertia ratio and the pitch angle at the 

time of wheel spin-up. For the former condition, if the inertia ratio is above a certain minimum, 

the optimal time to spin-up the wheel is when the pitch angle is first at 0° during wheel despin. 

Application of the motor torque at that time results in a minimum spacecraft inversion time 

with the least amount of energy expended. 

6.2   Recommendations 

Further analysis for the optimal parameters of the recovery process is required, in 

particular, the minimum angular impulse required to invert the spacecraft given any inertia 

ratio. Developing a mathematical formula that would define this parameter would in turn 

define the required despin time of the wheel. Furthermore, additional analysis of the inversion 

process with roll and yaw motions or with other attitude control devices would also be 

beneficial for the development of the universal recovery algorithm. 
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