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AFIT/GAP/ENP/95D-14

Abstract

This thesis is a continuation of a previous effort which developed a finite element

solution of Schr6dinger's Equation. The purpose of this research is to extend this

previous work, and develop a chemical laser engineering tool for the identification of

transition lines. Identification of laser transitions for a new chemical gain medium

requires knowledge of Einstein's Coefficients. These transitions rates can be obtained by

solving Schr6dinger's Equation for diatomic molecules using the method of finite

elements. Experimental vibrational eigenvalues for a given electronic state are used to

determine the molecular potential surface which yields the closest numerical result. A

non-linear minimization routine is used to hunt for this surface by adjusting parameters of

energy functions such as the Harmonic, Morse, Lennard-Jones, and Mie potentials. For

each set of new parameters selected by the minimization routine, the method of finite

elements is used to solve Schr6dinger's Equation. The eigenvalues from these solutions

are then compared to the experimental values. Through this iterative process, the best

potential surface is isolated. Franck-Condon factors, which are proportional to Einstein's

coefficients, can be computed with the numerical eigenfunctions from two different

potential surfaces found in this way.

vii



This numerical technique was able to isolate potential surfaces whose eigenvalue

solutions had relative errors better than 10-3 and 10-6 percent when compared to the

analytical solutions of the Harmonic and Morse oscillators, respectively. Comparisons of

the wavefunctions also yielded excellent agreement. Initial work with H2 (X lEg+)

verifies the lower eigenstates can be approximated by the Morse potential with an

anharmonicity term of 1.0912 inverse a.u. and a dissociation energy of 0.177 Hartrees.

Viii



IDENTIFICATION OF MOLECULAR LASER TRANSITIONS USING THE

FINITE ELEMENT METHOD

I .Introduction

Backaround

The Air Force has on-going research to develop new and/or better battlefield laser

weapon systems which will prove powerful and economical in the field. This thesis

research project contributes to this effort by aiding the identification of molecular

candidates for chemical laser systems in a cheap and effective manner. Military

applications of these laser systems include countermeasures against infrared guided

missiles, theater defense, weapons guidance, and other battlefield applications.

To determine whether a molecule is a good candidate for lasing, the molecule's

energy transition rates must be understood. These transition rates, calculated using

Einstein's Coefficients, identify if a sufficient population inversion can be achieved to

establish lasing between two energy levels of an atom or molecule (1:179-183,616-624).

Often, this data is not available or incomplete leaving the researcher unable to analyze the

molecule for its lasing potential. At this point, the investigator must endeavor in a time
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consuming and possibly expensive laboratory research to obtain this data, and then

evaluate the molecule as a lasing candidate.

However, Franck-Condon probability factors which are related to these transition

rates can be obtained through theoretical calculations if sufficient spectroscopic data is

available. Commonly, molecular spectroscopists use the semi-classical Rydberg-Klein-

Rees (RKR) method with an Inverted Perturbation Approach (IPA) refinement for these

calculations. The Air Force Institute of Technology in the early 1980's (2; 3; 4) used a

RKR-IPA model developed by Vidal and Scheingraber (5) as a research tool for previous

work related to this thesis.

The RKR method uses constants experimentally derived from spectroscopic data

to calculate the classical turning points of vibrating diatomic molecules. These turning

points are then used to construct the potential energy curve and, thereby, garner the

wavefunctions needed to calculate the transition probabilities. RKR does not rely on the

actual spectral data nor the energy eigenvalues for this operation, but molecular constants.

Problems can arise from reducing large sets of spectroscopic data into molecular

constants. "Because of the inadequacy of the Born-Oppenheimer separation of the total

molecular energy into electronic, vibrational, and rotational parts, a large number of

molecular constants must be introduced to account for the energy level structure of the

molecule. These constants appear in the expressions for the levels in an often complex

and nonlinear manner so that their determination poses a burdensome problem...

Moreover, additional difficulties may arise from the need to determine the molecular

constants using proper statistics." (6:38) With these difficulties in mind, and possible

1-2



systematic errors in the rotational constants "within the experimental limit (are) sufficient

to cause substantial non-physical behavior in the potential obtained on inversion." (7:248)

This non-physical behavior often manifests itself in the repulsive branch of the

potential. The repulsive arm can either have a ripple or may bend over (7:244) making

the potential double-valued and non-physical, typically at the higher energy levels which

have greater experimental uncertainty or are unknown. This situation leaves the

transition calculations for the higher energy levels suspect. Tellinghuisen and Henderson

(8) circumvent this problem by replacing the repulsive branch of the potential with the

Morse potential (9). However, this technique does not attack nor change the fundamental

problem of with the RKR-IPA method, that being this method sometimes yields

pathological potential energy curves.

In 1984, Shankland, Dorko, and Ostdiek developed a new approach to find the

potential energy curve for diatomic molecules (10). Their method, unlike RKR, is a

quantum mechanical approach, and uses the actual absorption and emission spectral data

for its calculations. This numerical technique, involves a finite element solution of

Schrddinger's Equation for a given potential energy curve. Each computed eigenvalue,

along with its associated experimental eigenvalue, is then compared and a residual is

recorded. The potential energy function is constructed so that a non-linear minimization

routine can then vary the parameters within this function. Then for each new potential

curve selected by the minimization routine, Schr6dinger's Equation is re-solved. Thereby,

through an iterative process, the potential curve which yields the smallest residual is

found. The wave functions can now be garnered from this potential. Along with the
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wave functions from another electronic state, the transition probabilities are then

calculated.

The Shankland-Dorko-Ostdiek (SDO) method has several advantages over the

RKR method. One, it is completely a quantum mechanical approach, not a hybrid of

classical and quantum mechanics. Therefore, its solutions are rooted in physical law and

theory as understood today. Second, it bypasses the problems RKR encounters with

molecular constants by using eigenvalues derived directly from the spectroscopic data.

This spectroscopic data does not have to be reduced into spectroscopic constants, but only

assigned to the proper transition. Lastly, any potential function can be used for the fit.

Possibilities include the Morse, Lennard-Jones, Mie potentials, or even a custom potential

function. Therefore, this method will never render a potential function which is

pathological. The accumulative effect of these advantages means that this method has the

prospect of yielding results of greater accuracy than RKR, especially at the higher energy

states.

However, the SDO method, after initial development, underwent very little testing

and evaluation. Many questions went left unanswered. Will this numerical technique

converge for sophisticated potentials such as a Morse or a Mie? Will this method work

for a real molecule?
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Objectives

The main objective of this research is to validate the SDO method as a reliable

numerical solution of Schr~idinger's Equation. Reliability and accuracy will be

determined by comparing the numerical eigenvalues and functions with the analytical

solutions of oscillators such as the Harmonic and Morse. Second, demonstrate that this

method can be used for finding the potential energy curve of a molecule which is

previously known.

Scope

The scope of this research project is to validate the use of this numerical technique

to predict energy transitions and their associated probabilities for diatomic molecules.

Validation will include comparisons to the analytical solutions of a simple harmonic,

analytical solutions of an anharmonic oscillator, and one real molecule with a large,

accurate, empirical knowledge base. This study is only concerned with the analysis of

diatomic molecules, even though this code with some modification could be extended to

linear triatomics or even more complicated molecules. No attempt will be made to

collect any spectroscopic data in a laboratory environment, only published spectroscopic

data will be used. Also, no effort will be made to apply this code to predict undiscovered

data for some arbitrary molecule.
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Approach

This thesis report is organized in a linear fashion starting with theory and

background, and ending with validation studies. The objective of this organization is

convince the reader that this numerical approach is a reliable tool for calculating

transition probabilities for diatomic molecules.

Chapter II begins to lay the theoretical foundation by relating Einstein's

Coefficients to the Franck-Condon Factors through a quantum mechanical treatment.

This development is followed by a discussion of molecular forces, and the electronic

shepherding which is this binding force. These molecular forces can be approximated by

the Harmonic and Morse Oscillators. The analytical solutions of these potentials are

shown in prelude to a discussion about the Franck-Condon Principle. Unfortunately, real

molecules do not behave like these potentials, which leads to the requirement for

numerical techniques such as the SDO method. The rest of the chapter is dedicated to

this method of finite elements as used to solve Schr6dinger's Equation.

Chapter III continues with this thought by explaining how the SDO method is

implemented on a computer. Discussions include how spectroscopic data is converted

into a format acceptable to the model, how the model searches and finds the "best"

potential surface with a non-linear minimization routine, and how the Franck-Condon
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Factors are calculated using the eigenfunctions garnered from this optimal surface. These

discussions include a basic recipe for executing each section of the code.

Finally, chapter IV demonstrates that this numerical technique is a valid approach

for solving Schr6dinger's Equation. This validation is accomplished by comparing the

analytical and numerical solutions of the Harmonic and Morse Oscillators. Then, a

known potential surface for the hydrogen molecule is used as a test to see if indeed this

potential surface could find this potential in the blind.

A concluding chapter summarizes these results and presents recommendations for

more research.
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II. Literature Background and Theory

Introduction

The motivating force behind this research is to develop a tool a laser engineer can

use to analyze the electronic and vibrational transitions taking place within the gain

medium. In order to analyze these transitions, the quantum mechanical or molecular

properties of this gain medium must be known.

Therefore, this chapter introduces the theory and concepts needed to understand

how the Shankland-Dorko-Ostdiek (SDO) numerical technique reveals these quantum

mechanical properties of the molecule. First, an overview of transition theory lays the

foundation for what knowledge is required of the molecule for the laser engineering

analysis to happen, namely the Franck-Condon Factors related through Einstein's

Coefficients. To calculate these factors, quantum mechanics is invoked to garner the

molecule's wave functions. Therefore, a short discussion follows which sets up

Schr6dinger's Equation, a solution of which gives the wave functions, and shows how

several different potential functions can be used to approximate the molecular forces.

The SDO technique, a solution for Schr6dinger's Equation numerically using a finite

element method, is briefly explained. Finally, with the wave functions in hand, the last

section outlines the procedure for using the wavefunctions to calculate the Franck-

Condon Factors, and describes the principle on which they are founded.
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Laser Transitions

A laser (Light Amplification by Stimulated Emission of Radiation) is a device

which utilizes the natural energy transitions of atoms and molecules to produce a

coherent, amplified, and monochromatic source of electromagnetic radiation. For an in-

depth discussion of lasers see Verdeyen (1).

Briefly, however, a fundamental requirement to initiate lasing is to establish a

population inversion between two transition levels. This non-equilibrium state is

accomplished by pumping the molecules of the gain medium from a lower energy state to

an upper state with an external energy source. These excited molecules then relax back to

their ground state, giving up their energy through either radiative or non-radiative events.

The wavelength of the radiation is determined by the difference in energy between the

two states on which the transition happened. The rate of the radiative processes described

by the Einstein Coefficients, coupled with the non-radiative rates determine if the

population inversion can be sustained. If the population inversion is lost, the lasing

activity ceases. Figure 11-1 illustrates the transition process for a hypothetical four level

laser.
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A 3 2 , K 3 2

Pump Lase - B2 11/c A 2/C

/1
A10 , K10

Figure I-1 This schematic diagram shows a possible arrangement of the energy levels for the gain
medium of a laser. The pumping action promotes some of the ground state's population (labeled 0)
to the highest energy level. From this energy level, the excited population relaxes back to the ground
via the path and rates as indicated. Note: the rates are also proportional to the population of the
states initiating the transition. Lasing actually occurs on the transition from state 2 to 1, where the
field stimulates emission adding constructively more energy to the field. Einstein's Coefficients are
labeled A and B (for a more detailed definition see the following discussion), the rate of non-radiative
processes are indicated by the symbol K, I is the intensity of the lasing field, and c is the speed of
light.

The determination of these process rates called Einstein's Coefficients, therefore,

are critical to the transition analysis of any laser. These coefficients can be derived

through time-dependent perturbation theory of Schr6dinger's Equation (2:TP 1-TP 12b;

3:267-277; 6:12-18,24-25). If the Hamiltonian, a quantum mechanical representation of

the atom's or molecule's energy, is perturbed by an in-coming time-dependent

electromagnetic field then the rate of transition, or absorption for this example, is found

to be
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Rk-m - I(C0mk) (mI )2 IIk'i)
3ch 2 o.

where R is the rate of transition from state k to state m, k is the initial state of the system,

m is the final state, c is the speed of light, h is Planck's constant*, &o is the permittivity of

free space, I is the intensity of the electromagnetic field at the frequency omk

corresponding to the transition, gx is the electric dipole operator, and (m II k) 2

defined as the transition moment.

In Figure II-1, for example, k would be state 1 and m would be state 2. Therefore,

the absorption rate from energy state 1 to 2, indicated by B12 I/c, must be the same

quantity as defined by Equation II-1. With that, setting them equal to each other and

keeping the units straight yields

B (m k)2 (II-2)
mk 3h 26.J ° g

Now if the pump was turned off, and the system allowed to reach thermal

equilibrium, the relationship governing the populations of states 2 and 1 must still hold at

thermodynamic equilibrium. Each radiative process going down in energy must equal

* Special note: due to a font limitation, hbar will always be written as h/2ir. Also, the 27t factor may be
simplified into the expression.
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each process going up. Therefore, the time rate of change of each population for level 1

and 2 must be equal to each other. Mathematically this means

dN 2  - N
adiative = -AzN 2 +B 12 NP(021)-B 2,N 2 P(0 21 ) = - dN-,ive = 0 (11-3)

dt adt

must be true. Where N1,2 is the population of each respective level, P(o)21) is the energy

density of the field previously referred to as I(O)mk)/C, A21 is the probability per second for

spontaneous emission of a photon, B12 P((021) is the probability per second for absorption

of a photon, and B 2 1 P((02 1) is the probability per second of spontaneously emitting a

photon. Since, the system is at thermal equilibrium, P(021) must be equal to energy

density defined by Planck's Blackbody formula. This formula is

V 2 1

Iv 2 1 ) - C3  e kT -1 (11-4)

where v21 is the frequency of light equal to 0)21/27t, k is Boltzman's constant, and T is the

temperature at thermal equilibrium (6: 24).

Solving Equation 11-3 for P(0)21) and setting it equal to Planck's Blackbody

formula, "Einstein forced the fit with identification of various interrelationships between
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the coefficients" (4:182). Designating the degeneracy of each respective level as gl,2,

Einstein found

g2 B21 = g1 B12

(II-5)

3__ h4 g01  B12

A21 _ h (021 B2____ B 2

27[ 3C3  27E3 C3 g2

Casting in general terms, Einstein's Coefficients become

Bab m gmg mk  2E. 4 (m L k) 2
gk 3h 2 s.
gm-km---- ' m m } (II-6)

Am h0)3k B gk 2 (omk (m, 1  k)j2
Am k - 3~ 3  mk g c627Cc' gm 3C's°

The transition moment can be further simplified for the simple case of diatomic

molecules. Using the Born-Oppenheimer (5 ) approximation, the wavefunction for each

state, m and k, can be separated into independent electronic, vibrational, and rotational

functions. Therefore, the total diatomic wavefunction for each state can be expressed as

(6:136-137)

m)= TI) X Xj)

(I--7)
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where Tel represents the electronic wave function, X, represents the vibrational wave

function of the molecule, Xj represents the rotational wavefunction of the molecule, and r

and R represent the sets of electronic and nuclear coordinates, respectively.

Since changes in electronic, vibrational, and rotational states are possible both r

and R dependencies must be considered in the dipole operator Ig when calculating electric

dipole (E 1) transition probabilities. Therefore, the dipole operator may be written as

X=-_er + j eZNRN - e+ inuc (11-8)
I N

Where e is the charge of an electron, i is an index for each electron in the molecule, Z is

the charge of the nucleus, and N is the index for each nuclei.

Ignoring the rotational behavior of the molecule (for simplicity) the transition

moment becomes

(m~x k}=(TF: Xm  g"I + PL..., kI'ekXv

(m pt k) = ('V'x ~eI~ '~' ~

= KIjl ITeIk)K X
m Xk) + (Te I (1-9)

S Me(R)(X m Xk) + 0

Each dipole operator only operates on its corresponding wavefunction. Therefore, each

dipole operator is distributed, and after some factoring, each then operate on its

corresponding wavefunction. The following simplifications are then made. Immediately,
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the second term goes to zero because the two electronic wavefunctions are orthogonal to

each other. The first term, however, does not go to zero because the two vibrational

wavefunctions are from two distinct basis sets and not necessarily orthogonal. The

integration of (Te ItelWIl ) over r yields the transition moment, Me(R). Me(R) is a

function of nuclear position R because the electronic wave functions depend on both r

and R. However, if M e (R) is assumed to vary slowly with R, then further simplification

yields

(m ,t k) = Me(R) (Xv Xk)

M, M(R) KyP vI)II

where Me (R) is the average value of the electronic transition moment. From here on, a

shorthand is introduced to represent the upper electronic state's vibrational wavefunction

as v', and v" will represent the lower electronic state's vibrational wavefunction. The

probability of the electronic transition is then proportional to the total transition moment

squared, or in mathematical terms (m Ig k) 1. Then, substituting Equation 11-10 into

Equation 11-6 produces the final result
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B mabs 47' eR 2 Ky' " 2

gk 3h2 s)

Am-*k = ht)k Bk gk 20'. MJ)2vrvf

27r3C3  g m 3c s *

where (v' v") 2 is defined as the Franck-Condon Factor. The Franck-Condon Principle

is discussed in detail later. Thus, Einstein's Coefficients are directly proportional to the

Franck-Condon Factors for diatomic molecules.

Diatomic Molecules

Clearly, the Franck-Condon Factors are important to laser engineering in regards

to transition analysis. To calculate these factors, Schr6dinger's Equation must be solved

for the molecule of interest. The following discussion outlines the theory and procedure

for solving Schr6dinger's Equation analytically.

For simplicity, imagine a reduced mass representation of a vibrating molecule that

is fixed in space, i.e. not translating, and not rotating. Then Schr6dinger's Equation may

be expressed as (7:98-101)

(HhE) Tib h 2 a 2 'lvib+[ V(R) E vib] b 0 (11-12)
87t2  1R2  LJ
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where FH is the Hamiltonian Operator, E is the energy of molecule, TI-b is the

wavefunction which describes the nuclear position, pt is the reduced mass of the

molecule, R is the internuclear separation, and V(R) is the potential energy of the system

as a function of R. If the potential, V(R), is known, then Equation 11-12 written in matrix

form can be diagonalized, thereby, garnering the wavefunctions and energies and

ultimately the Franck-Condon Factors are calculated from the wavefunctions.

aV(R)
Physically, V(R) represents the force, related by FA B - , which binds

the two atoms together into one molecule. This force arises from the variation of total

electronic energy with internuclear separation. In other words, the molecular electron

cloud shepherds the two nuclei keeping them bundled together. This shepherding process

overcomes the nuclear-nuclear repulsive forces yearning to dissociate the molecule.

This shepherding process is extremely complex. In principle, however, the

complete Hamiltonian could be written down for the entire molecular system. This

expression would include all of the forces, such as the Coulombic electron-nuclear

attractive and electron-electron repulsive forces, the rotational terms, spin coupling,

relativistic corrections, and so on. But these Hamiltonians are extremely difficult to

solve, even for the simplest of molecules like H2. Therefore, one way to avoid this

problem is to lump all of these terms together, call it V(R), and, thereby, analyze only the

accumulative molecular potential.

This potential energy surface, however, cannot be represented by any one general

function for all diatomic molecules. There are, however, some general properties the
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potential must possess to model the physical behavior correctly. One, it must be smooth

and continuous. This condition ensures the force is always finite. Second, the function

needs to be always single valued. That is, at any given internuclear separation, only one

energy configuration is allowed. Next, as internuclear distance goes to infinity the

molecular forces must go to zero to allow for dissociation, therefore, the slope of the

potential must go to zero. Conversely, as the internuclear distance approaches zero the

nuclear-nuclear repulsive forces increase dramatically. Therefore, the slope of the

potential needs to be steep and negative to model this force. Finally, a stable molecule

implies an equilibrium position exists where the force is zero, i.e. the potential energy is

at a minimum. Figure 11-2 illustrates such potential energy surface.
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Intermolecular Force Model

V R)

; A B

0D

~~~~V(R) =~(~e 2 D
ReaR

drawn with the solid line exemplifies all of the characteristics needed to model the intermolecular
forces, FA,,B, between atoms A and B. The steep repulsive branch captures the large forces the two
nuclei experience at small R, and the attractive branch on the right allows the molecule to dissociate
at large internuclear separations. The well defines the region of a lower energy configuration
centered by the radius of equilibrium, Rk, where the energy is a minimum. De is dissociation energy
as defined from the bottom of the well to the dissociation limit. The graph of the harmonic oscillator
shows where this approximation is valid.

A Taylor expansion of some general potential, V(R) , which meets these

conditions, about the equilibrium position, Re, yields

V(R) =V(R) + (R -R ) ) + I-(R-R )2+R =R e e aR R R=Re 2! e R=R e2 ...

-D --- VR) = k(RR)2

-D + 0 + k(
e 2 e

(H1-13)
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where the value of the potential at R, is -De (the dissociation energy). The first derivative

vanishes at R, because the potential is at a minimum. A constant, k, is the curvature of

the potential. Figure 11-2 illustrates this Taylor expansion as the dashed curve. This

truncated expansion is immediately recognized as the harmonic oscillator.

The solution of Schridinger's Equation for the harmonic oscillator is (8:176-202)

En=h n+ n=0,1,2,..
27r (

TIn =[ a - Hn(q)t2" nL!f e/-

Where En is the energy of state n, o is the angular frequency of the oscillation equal to

k
,k is the force spring constant, t is the reduced mass, Tn is the eigenfunction of

state n, ac = q= jax, x = (R-R), and Hn(q) is the Hermite polynomial

-n eq2 
,n e -

_
2 . Figure 11-3 shows 4 wave functions for this simple oscillator.

q3
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Figure 11-3. This graphic shows four eigenstates of the harmonic oscillator (9:67-73). Each
eigenfunction is plotted at its corresponding energy level for illustrative purposes only, the amplitude
of the waves have units of probability/(unit length) V2. Notice each wavefunction is symmetric about
the radius of equilibrium, R., and the number of nodes corresponds to its state number. The
amplitude squared of these wavefunctions is the probability of finding the reduced mass particle at
that location. Notice, the wavefunctions imply the particle can actually tunnel through its classical
turning point, where the wavefunctions crosses the potential curve. Plotted with Mathematica®.
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The utility of this harmonic approximation is limited to the region very near

equilibrium. Morse proposed instead the following function as a suitable approximation

for the diatomic molecular energy curve (10)

V(r) = De e- 2 a(R - Re) - 2De e- a (R - Re) (II-15)

where a is referred to as the anharmonicity term. This variable has units of inverse

length. See Figure 11-4 for an illustration of the Morse potential.

The width of the Morse potential at half max, AWI/2, is inversely proportional to

a. Therefore, the larger a is, the stronger the molecular forces are, and the narrower the

well becomes. The dissociation energy De stretches the well vertically. De and a

determine the number of bound states which are allowed by this potential. Large De and

small a yield large numbers of bound states.
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V(R) Morse Anharmonic Oscillator

V(R) = De-(1Rea Re)) 2 -De

Internuclear Separation

-D e

Figure 11-4. This figure illustrates the Morse Potential. This curve exhibits all of the characteristics
required to model molecular forces. In fact, this model is a good approximation, however, no
molecule is known to exactly mimic the Morse Oscillator. The width at half max, AW 1 2, is inversely
proportional to a. Therefore, the larger a is, the stronger the molecular forces are, and the narrower
the well becomes. The dissociation energy parameter De stretches the well vertically.

Morse analytically calculated the eigenvalues and functions for this oscillator as

En= De+ h )n2+ n+ n=0, 1, 2, 3,..

(11-16)

2d z br
T,, Fd~ae 2 Z2L bz

N2  L
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where n is a non-negative integer which labels the eigenstate, co = a
pt

27c -2 t D e N 2 (n +b),- -,
d= , ha-- n ,b=k-l-2n,k=2d, z=2de ( ,and Lz] isthe

ha n!

Associated Laguerre Polynomial (11: 59-60; 12: 725-726) given by

Lb[ ] n (n + b)! zm, b >-1-

M=o (- (n- m)!(b + m)! m!

Morse commented that this was the first solution of Schr6dinger's Equation which

yielded a finite number of discrete energy states. In fact, the condition on b (see Equation

11-17) for the Laguerre Polynomial to be defined implies n must always be less than d.

Expressed mathematically this condition is

n 2D where n = 0, 1, 2, 3, .. (II-18)

ah
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, ,, 
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n8 n 11

Figure 11-5. This figure illustrates 4 eigenfunctions of a Morse Oscillator. Each eigenfunction is
plotted at its corresponding energy level for illustrative purposes only, the amplitude of the waves
have units of probability/(unit length)1 2. Notice each wavefunction is asymmetric about the radius of
equilibrium, Re. Re is denoted by the dashed vertical line. The wavefunctions are stretched towards
the classical turning point associated with the attractive branch. The large amplitudes imply the
probability of finding the reduced mass particle at this location is greatest here. Notice the ground
state (n--O) is very similar to the Harmonic Oscillator's (see Figure I-3). This region of the well can
be approximated by a harmonic oscillator. Plotted with Mathematica®.
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Circling back, the Morse Oscillator can itself be approximated by the Harmonic

Oscillator near equilibrium. The force constant k of the Harmonic Oscillator can be

related to the Morse Oscillator by expanding it into a Taylor Series(see Equation 11-13).

This relationship is found by setting the second order term of the expansion equal to the

Harmonic Oscillator yielding

k=2Dea 2 (-19)

Franck-Condon Principle

"The Franck-Condon Principle governs the intensity of spectral transitions

between the vibrational levels of different electronic states of molecules."(13:78-81).

Therefore, as discussed earlier, the Franck-Condon Principle is central to the process of

determining laser line transition probabilities. The following section describes the

Franck-Condon Principle in more detail.

By recognizing the great difference between the masses of the electrons and

nuclei, the Born-Oppenheimer approximation can be invoked. Consider two different

molecular states, then each state can be separated into electronic, vibrational, and

rotational wavefunctions. Recalling Equation 11-7, the wavefunction were separated and

written as
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(11-20)

Then Equation 11-9 allows us to calculate the El transition between these states as

(ignoring rotation)

= Me(R)(v' v")

where Me (R) is the average electronic transition moment, and (v' v") is defined as the

vibrational overlap integral. The double prime notation traditionally represents the lower

electronic state, and single prime the upper state. The electronic transition moment, a

resultant of the two electronic wavefunctions and the dipole operator, is averaged over the

range of R and is considered constant. The probability of making a transition from v' to

v" is then given by the absolute value of Equation 11-21 squared where the Franck-

Condon Factor is defined as the quantity

qv'v, = v' v") where 0 < 1 (11-22)

where v' and v" are two vibrational wavefunctions each from a different electronic state.

For illustrative purposes, Figure 11-6 shows several Morse wavefunctions depicting
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V(R)
Franck-Condon Principle

R

Figure 11-6. This figure illustrates the concept of the Franck-Condon principle. Transitions occur
vertically where the overlap integral is non-zero. Following the Born-Oppenheimer approximation,
the electronic transition happens so fast that the nuclei can be considered to be at rest. In other
words, from the start of the transition to the end of the transition, the nuclei will not have moved.
Therefore, a transition can only occur from one state to the next if the nuclei have a probability of
existing at that location in both states.
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the vibrational states v' and v". These vibronic (a contraction of the words vibrational

and electronic) transitions seldom occur without a change in the vibrational state label.

For example, the upper electronic state might be at vibrational level 3 and then transition

down to the lower electronic state with a vibrational state of 1 as depicted in Figure 11-6.

These transitions are considered to be vertical. That is, the transitions take place

at a fixed nuclear separation. The Born-Oppenheimer approximation, based on the large

differences between the masses of the electrons and nuclei, establishes also that the

relative kinetic energy of the electrons is extremely large compared to the nuclei.

Therefore, during a vibronic transition the electronic molecular cloud reconfigures itself

so quickly that the nuclei virtually haven't moved in this time frame. With the nuclei

being fixed in position, the probability of this vibronic transition can only be non-zero if

and only if the nuclei have a probability of existing at this location in both states.

Summing all of the Franck-Condon Factors from one vibrational state in the upper

electronic state to all of the vibrational states of the lower electronic state

2

jv (v' v")

- (v' v")(v" v'), but I v)(v -= 1 (11-23)

VII
=q -(v' v,) =- 1r

where closure has been invoked to eliminate the summation. Since v' is orthogonal with

itself, the expression reduces to 1. Or simply put, a single vibrational state in the upper
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electronic level has a 100% probability of transitioning to some vibrational level in the

lower electronic state.

Certainly then, if the vibrational wavefunctions are known for each electronic

state, each and every Franck-Condon Factor can be calculated.

Numerical Solution of Schrodin-ger's Equation

Numerical methods are essential for any realistic molecular potential functions.

The Harmonic and Morse potentials are functions which can be reduced analytically.

Unfortunately, nature does not provide molecular potential curves which behave so nicely

as these. Real molecular potential functions can't be modeled by simple functions due to

the sophistication and complexity of the electronic molecular cloud. This complexity

means an analytic solution for the vibronic wavefunction may never be found for

molecules.

Previous to 1984, the Air Force Institute of Technology used the customary tool,

the RKR-IPA method, to numerically calculate the Franck-Condon Factors of diatomic

molecules. Even with fine tuning and "work arounds", the RKR method was limited to

the lowest vibrational states (See Chapter I, The Introduction). Therefore, Shankland,

Dorko, and Ostdiek sought to develop a new and better method. The technique they

developed, which exploits the method of finite elements, abandoned all of the methods
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previously employed by the spectroscopy community. Even though this method of finite

elements was new to this community, it was certainly not to the engineering world.

The emergence of computers was the genesis of the finite element method.

Computers enabled scientists and engineers to tackle problems previously unsolvable.

Mathematical techniques such as the classical Rayleigh-Ritz method, variational calculus,

and Galerkin's weighted residuals method, much developed at the turn of the century,

were assembled into what's now called the finite element method. This method was first

developed in the early 1950's "to solve continuum problems in elasticity using small

discrete elements to describe the overall behavior of simple elastic bars..." (14:1-2) Over

time, this method grew in sophistication and has been used successfully to analyze an

eclectic assortment of problems, such as electromagnetism, heat conduction, fluid flow,

and mechanical stresses, even in three dimensions.

The SDO method finds the "best" empirical molecular potential in an exhaustive

search. Central to this search algorithm is a numerical solution of Schr6dinger's Equation

solved with the method of finite elements. The following discussion explains briefly how

the finite elements method is used to solve Schr6dinger's Equation. Later, the Computer

Modeling Chapter explains how this technique is used in an iterative fashion to find the

best potential.

Schr6dinger's Equation in the coordinate representation is

(a-E)vib - - 2 IVi b + W(R)- Evib]tvib (11-24)
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where V(R) caputures only the vibrational energies. For simplicity the rotational energies

are ignored. This simplification means that this algorithm will not handle rotational

energies. Rewriting Equation 11-24 in the time independent Dirac notation yields

HIWtvib) = E 'ITvib)

K"'vib T1'vib) E (Tvib T{'vi) (11-25)

- T Kw l TH 'vj) _ vi 2 ± V (R ) ''T , b

The wavefunction is assumed to be spherically symmetric, therefore, in the

P2 h 2  1 a 2

coordinate representation --- - - - R2 - and integration is conducted
2,. 87r2  R2 OR OR

over the volume element aT = 47tR 2OR. With the substitution of Ivi b = U(R) , Ostdiek

R

showed (15:18-36), with the aid of integration of parts, that Equation 11-25 can be cast in

the weak form in the coordinate representation as

82° UJ ) aR +' U2(R) V(R) OR

0 (11-26)

f U2(R) OR
0

11-25



where now = R. U is now treated as the spherical wavefunction.

To employ the finite element method, a grid is laid over the space of integration.

The goal of finite elements is to approximate the integral (the value of the function) in

each discretized element. Since this problem has been reduced to one dimension, each

element has the step length of h (not to be confused with Planck's constant). Each local

element is then transformed by a natural coordinate system to ease integration later.

Figure 11-7 illustrates the finite element grid.

Finite Element Grid

I I
Potential

wavefunction U - -"

Ri-2 Ri_1 Ri Ri+I R i+2

Natural Coordinate System

R i-I R i  R i-2

Figure 11-7. This diagram depicts the Finite Element Grid and Natural Coordinate System. The
wavefunction and potential's value and slope are approximated at each gridpoint Ri. The stepsize of
each element is h. The stepsize does not necessarily have to be constant, but for the algorithm
developed here, h is constant. The natural coordinates 11 and 12 are introduced to ease the integration
later on.
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The following relationships are true for the natural coordinate system

R = Ri + 12h,

R = Ri+1 - 11h, (11-27)

h =Ri+ -R,

11 + 12 = 1

where Ri is the location of the ith grid point, and 11 and 12 are the natural coordinates.

The finite element method converges as long as the requirements for completeness

and compatibility are satisfied (16:114-115;15:22). Namely, the value of U and its slope

must be continuous at each grid point. Therefore, U can be approximated at the local

element to be

I I

Ue(R) = Ue(ll,1 2 ) = U 0 fl(1 1 ,1 2 ) + U 0 f 2 (11 ,1 2 ) + U 1 f 3 (11 ,1 2 ) + U 1 f 4 (1 1,1 2 ) (11-28)

where the superscript e means this formula is only valid for the local element in question.

UO and U1 are constants which have values of wavefunction located at the endpoints Ri

I I

and Ri+l. U0 and U1 are constants which represent the slope of U at Ri and Ri+1,

respectively. The interpolating polynomials, fl-4, turn off and on in order for Equation II-

28 and the derivative of this equation to meet boundary conditions. For example,

Ue(R=Ri) should equal UO, and Ue (R = Ri+ 1) should equal U etc.
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Since, V(R) is required for the integration of Equation 11-26, in a similar fashion

as this, it is also approximated.

The natural coordinates are then used to build the interpolating functions as cubic

polynomials. The basis set for cubics in 11 and 12 is {11 ; 112 12 ; 11122 ; 12 }. The cubic

interpolating functions are then substituted into Equation 11-26. Now the integrals are

P

simple polynomials completely in terms of 11 and 12, and the constants U0 , U0 , U1, and

U1  Using the formula (17:37; 15:25)

lp ' l~d = hp!q!

lP 12 dd2 =(p + q + 1)!(-29)

computing the integrals becomes straight forward and trivial. As an example, the first

integral in the numerator of Equation 11-26 (after some clever manipulation) evaluates to

[144 12h -144 12h U 0

/auau\ I ' ' I 12h 16h2 -12h -4h 2  U °  (11-30)

U U U°U° UU 20 -144 -12h 144 -12h U1

12h -4h2 -12h 16h 2  u

In a similar manner, the rest of Equation 11-26 is tackled. The second integral in the

numerator, which includes the potential energy, breaks apart into four separate integrals.
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Therefore, including the denominator, six different integrals are evaluated and

manipulated into forms similar to Equation 11-30. For complete details see reference 15.

An important note, these matrices are a consequence of the finite element method, and

should not be confused with matrices found in the formalization of quantum mechanics.

Now that each of the six integrals have been transformed into matrices for the

local element only, it's now time to assemble the global system. This equation is the

matrix system which represents the entire grid, not just the local element. Each local

element has a neighboring element on either side. Therefore, the boundary values of each

element (its edges) should match its neighbor. With this in mind, a global matrix can be

assembled by overlapping the matrices on top of each other. See Figure 11-8 to see how

this is done.
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Building the Global Matrix -\I
14144 12h - 144 12h1

X -2 14 1 12h 16h 2 - 12h - 4h122IU

-144 -144-12 12hL12h -4h 2 - 12h 16h'J

A [ U  U  U 2
,

. . ..
]

-1 . _ - 1.. . .... . . . . .... .... 14 4 1 2h U

S1 - _12h 16h 2 -12h -4h2

1 144 - 12h 144 - 12h

24[12M -4h2  -_M2 16h 2 j.

Figure 11-8. This figure illustrates how the global finite element matrix is assembled. Each grid
element consists of two endpoints. At each endpoint, the unknowns are the wavefunction value and
its slope. Hence, that's four unknowns. But, each element has a neighbor to each side, and at these
common boundaries their functional values need to match. Therefore, each local matrix overlaps
with its neighbors matrix. See Equation II-30 for a sample matrix equation which could represent
the element. This diagram, however, only depicts the first two elements being overlapped. The
building process actually continues until every grid element has been included. Notice the square
matrix is banded, it consists of one main diagonal plus three lower and upper diagonals. Therefore,
the vast majority of its elements are zero. The "X" in the diagram indicates matrix multiplication.
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For simplicity, Figure 11-8 only shows the global matrix being built for one

integral. Remember, there are five other integrals to do. Five integrals are summed

together in the numerator and manipulated into a form similar to Equation 11-30 which is

just one of these five integrals. The denominator is fashioned in a similar way.

If we identify the column vector (this contains the unknown U and U' values) as

Z, the square matrix in the numerator as H, and the square matrix in the denominator as S

Equation 11-26 becomes

Z T H Z E - 01-31)

Z T SZ

In summary, Z contains information about the wavefunctions, H describes the energy,

and S contains information about the grid. The S matrix is a normalization operator.

To find the eigenvalues and eigenvectors, the H matrix needs to be diagonalized.

However, this form does not lend itself immediately to an eigenvalue problem.

Therefore, Equation 11-31 is manipulated into
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HZ ESZ =0

HZ ELLT Z =0

H(LT)LTZ - E LLT Z =0
(11-32)

IH(LT)LTz - EL- LLT Z 0

XY - EY = 0

where X = L-IH (LT) and Y = LT Z, and LLT is the Cholesky decomposition of S

(15:32-35).

X has the same eigenvalues as H. Therefore, the eigenvalues can be immediately

found by diagonalizing the matrix X. The diagonalization is easily done with "off the

shelf' math routines (see Chapter 3). Recovery of the eigenvectors, on the other hand,

requires an extra step. The eigenvectors are simply related to Y, that is, Z = (LT)-'Y. The

eigenvectors are normalized by the relationship N2 = ZTSZ, where N is the normalization

factor.

The rank of the matrices goes as m = 2 (ne+ 1), where m is the rank of the matrix,

and ne is the number of elements. Therefore, when X is diagonalized m eigenvalues will

be found. Also, Z (which contains the eigenvectors) is an mxm matrix. Each column of

Z is an eigenvector, where each column contains (ne+l) pairs of data. This data is the

eigenfinction's value and slope at each gridpoint.

11-32



The accuracy of this solution is related to the number of elements. As the number

of elements increases the stepsize decreases (assuming the endpoints of the grid are

fixed). The convergence is (14:37-38)

ile(x)l < ch+j (11-33)

where e(x)J is the residual between the exact solution and the numerical solution, c is a

constant, h is the stepsize, and n is the order of the interpolation polynomial. Hence, for

cubic elements, the error decreases as order ha .

An interesting consequence of this solution, is that the number of elements must

be increased to decrease the stepsize h in order to increase the accuracy of the solution,.

However, as the number of elements is increased, so do the number of eigenvalues and

eigenfunctions calculated.

Now that the eigenfunctions have been found, the Franck-Condon Factors can be

calculated.

Conclusion

This chapter showed how the knowledge of Einstein's Coefficients are vital to

transition analysis and laser engineering. Einstein's Coefficients can be derived through
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the relation of Franck-Condon Factors. However, these factors are only revealed if the

molecule is known intimately, namely through its eigenfunctions which describe the

nuclear motion. Morse found the eigenfimctions analytically for a potential energy curve

similar to a molecule. Unfortunately, this model is adequate only for the lowest bound

states of molecules

The SDO method showed how Schr6dinger's Equation can be solved numerically

for an arbitrary potential, V(R). But, if V(R) is not known for the molecule, how do you

solve for the molecule's eigenfunctions?

The next chapter, Computer Modeling, describes how the SDO method

exhaustively solves Schr6dinger's Equation over and over again hunting down that

elusive V(R). Once, a good representation of V(R) is found, the eigenfunctions are

computed.
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III. Computer Modeling and Programs

Introduction

This chapter describes how the SDO method is implemented on a computer to

calculate the Franck-Condon Factors. Contrary to the emphasis of the previous chapter,

the most important feature of the SDO method is how it searches and finds the "best"

potential curve for the molecule in question. Thereby, knowing the potential, the

wavefunctions can be calculated with the method of finite elements, which lead to the

Franck-Condon Factors.

Experimental spectroscopic data is central to the search for the "best" potential.

First, this chapter explains how this transition data needs to be presented to the computer

model. Next, a description explains how this spectroscopic data is used in the hunt, that

is, the search for the "best" potential. Followed by a section which describes how to run

the code which includes execution strategies. And finally, once the potential curve has

been identified, how to numerically calculate the Franck-Condon Factors.
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Background of Computer Models

The vast majority of this research effort was spent fixing, changing, creating, and

testing FORTRAN code. This section documents these efforts. The specific details of

these codes is discussed later.

Four major FORTRAN codes previously written in 1984 (2) were used for this

project. Unfortunately, these codes survived only on paper. Therefore, the codes were

either typed in by hand or scanned in with a machine. Neither of these processes worked

all too well. A great deal of time was spent searching for bothersome bugs created by

typos and mistakes, and some were not obvious. To add to the confusion, the FORTRAN

compiler used for this project interpreted some of this old code differently. Again, more

modifications had to be made to make the code work as intended.

Several of the commercial subroutines used by these programs no longer existed

and/or were missing. These routines included IMSL Math/Library® functions and a non-

linear minimization routine (5). Both of their intended functions are discussed later in

detail.

After 1984, IMSL decided to completely revamp their libraries. This meant the

algorithms previously used did not exist any more. In fact, much of the code previously

written had been specifically adapted to use these missing routines. These adaptations

mainly included matrix storage modes compatible with these math routines. Therefore,
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not only did new IMSL routines have to be figured out, but the old matrix storage modes

within the code had to re-written.

Why bother with these IMSL routines in the first place? The purpose for using

the IMSL math routines is simple. This code requires large matrix manipulations and

calculations. Due to the complexities of this math, such as diagonalizing a 1500x1500

matrix, this commercial product was selected to avoid any possible math problems.

The non-linear minimization routine used by the main program no longer existed

in digital format either. This routine, acquired from Professor Pearson of the University

of Washington, is an older code written before modem programming conventions became

standard. This situation created run-time errors that were not initially anticipated.

Further, new code and subroutines were written to handle unforeseen complexities

encountered with this research. The code previously depended on a rigid placement of

the finite element grid. However, convergence problems were discovered with this

approach. Therefore, a new algorithm was written to adaptively change the grid during

code execution. Another grid problem was discovered when calculating the Franck-

Condon Factors. These overlap integrals require the same grid be employed for two

distinct executions of the code. A new subroutine was written to ensure these two grids

coalesced, even sliding one of the grids if needed.

Countless other small coding changes were also made. These included improved

output listings and re-dimensioning of variables to handle larger matrices.
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The rest of the chapter now focuses on a detailed discussion about these four main

programs. The remaining sections include explanations about some of the algorithms,

"how to run" the codes, and execution strategies.
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Preparation of Spectroscopic Data

To find the best potential surface which describes the molecular forces,

experimental spectroscopic data must be supplied to the model. This spectroscopic data

is used as the benchmark for the model to decide which potential "best" matches the

molecule. This spectroscopic data must be presented in a vibrational eigenvalue format

for each electronic state of interest.

To develop the vibrational eigenvalues, the experimental spectroscopic data can

be furnished in either of two forms. The first form, and the most obvious, is a listing of

the actual observed emission or absorption lines of the molecule. The other acceptable

way is to offer the spectroscopic data in terms of the Dunham Coefficients.

In 1932, Dunham devised a formula which compactly describes the energy of a

rotating vibrator in terms of coefficients (1). His formula is

FVK ~ V+i1 Ki (K+1))

where FvK is the energy (the eigenvalue) of the rotating vibrator, v is the vibration level, K

is the rotational level, and Yj are the Dunham coefficients.
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Therefore, if the Dunham coefficients are known for a given electronic state of the

molecule, then the energy eigenvalues can be calculated. Often, these coefficients are

reported in journal articles in lieu of the actual spectroscopic data.

Ostdiek developed a FORTRAN code (2: 5-6, 44-48, Al, B l-B8), called dunham,

which automatically calculates the energy eigenvalues given these coefficients as input.

Figure 111-1 illustrates a sample input file for the program dunham.

A title for the output file he maximum numbe

>LBL=PbO X State
>ROT=O
>VIB=25 The maximum number
>LVL=25 of vibrational levels

S>DEQ=0"0 "-.

/>YOO=O.
>Y10=722.67TeDiscaion Energ
>Y20=-3.613 -.."

T e number of levels \

t~obe written to output fil-e
(...The Dunham Coefficients

Figure III-1. This figure illustrates a sample input file for the Dunham software (2:47). This
example only gives the first three Dunham coefficients for the ground electronic state of PbO. The
accuracy of the energy eigenvalues can be increased by supplying more Dunham coefficients. Since,
the rotational fine structure is not needed, ROT is always set to zero. The output of dunham are
vibrational eigenvalues for the electronic state of interest.
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A second FORTRAN code, called efit (2: 6-14, 48-54, C1-C2, D1-D13), takes

observed vibronic transition data and fits the data into an eigenvalue form. This code

provides an alternative method over dunham. The observed spectra from diatomic

molecules often are the electronic transitions. Within these transitions is buried the

vibrational structure. This structure, or splitting of the lines, is measured with a

monochrometer or some similar device. The eigenvalues can then be determined by some

differencing techniques using these observed spectral lines. Figure 111-2 demonstrates this

point. The figure shows three vibronic transitions, all from a common upper vibrational

level. When illustrated such as this, clearly two of the lower vibrational eigenvalues can

be determined by differencing the observed transitions.

111-7



Molecular Transitions

e o t id lObserved Emission

V"9= 0

Figure 111-2. This figure illustrates vibronic transitions of diatomic molecules. In this example,
electronic state A is transitioning to the ground state labeled X. The observed spectrum is indicative

of the energy difference between the levels. If the transitions can be identified as to which are taking
place, such as v'=3 to v"--0, then the vibrational eigenvalues of each state can be determined. For
clarity, only three transitions are illustrated here. A simple differencing method could be employed
to garner the first two eigenvalues of the ground state. The output of efit is a list of the vibrational
eigenvalues for each electronic state used for the fit.

Due to measurement error and uncertainty in the data, several transitions may

indicate different values for the same eigenvalue. Obviously, this can't be true. The

program efit uses a least squares fit to resolve these inconsistencies between the data. A

transition line involving one energy level is, therefore, made to agree with other

transitions lines involving the same energy level. (2: 8-9) This correction is obtained by

minimizing the sum
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S = P 
l I 

jI

l +I= I. .,ij (lii -&ij( -)
2 j=1 j=l

where S is the sum to be minimized, wij is the weighting factor, 10 is the observed

transition line between state i and j, Ei and cj are the eigenvalues of state i and j,

respectively.

This program can accept up to 62,500 transition lines, involving 250 energy levels

from 10 different electronic states. Figure 111-3 illustrates for a sample input file for the

program efit.

Associates the first
level with label X Indicates which vibrational

t i d m levels should be included in
fleast squares fit

>STAT01=X2>STAT02=A
>LVLS01=0 12

The alu ofthe >SHIFTS=-30854.15
lowst eve of >A08X01=22483.5

th oetsae >A06X01 =21675.0
>A04X00=21519.3 ; 0.9
>A03X00=21047.8 *,

"A0 6 X 0 2 = 2 0 9 4 2 "0

ST ran sition from state asin cofdec
SA (v'=6) to X (v"=) l Ojl dt

Figure 111-3. This figure illustrates the input file for the program efit. This sample input file should
not be taken literally, a real input would include more transitions than indicated here. The user
specifies the energy for each transition with it s assignment. The weighting factor defaults to 1.0 if
none is specified. The output of efit is the energy eigenvalues for each electronic state used during the
fit.
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Now that the eigenvalues have been determined for each electronic state, it is now

time to find the "best" potential which describes this state.

The Hunt

The program diatom is responsible for hunting down the "best" potential surface.

The "best" potential is identified by finding the potential surface which yield numerical

eigenvalues which are the closest to the experimental data (2: 54-84, El -E2, F1 -F44).

But before the procedure for executing diatom is explained, some background

information about this algorithm must first be addressed. For a complete description of

diatom's input files, and execution strategies see the next section, Executing the Code.

This background material includes a discussion about the iterative hunting

process, the parameterized potential functions, the non-linear minimization routine, and

automatic gridding.

The program diatom uses a non-linear minimization routine to find the "best"

potential curve. The minimization routine accomplishes this by adjusting parameters of a

selected potential function. Then to test its hypothesis, Schr6dinger's Equation is solved

with the finite element method using for this potential curve with these new parameter

values. (see Chapter II). The difference between the computed and experimental

eigenvalues then is used to provide feedback to the minimization routine. This process is

repeated exhaustively until the optimum potential surface has been found
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The following equations lists the parameterized potential functions which are

available to diatom and the user. These functions model the vibrational energy forces

only. The rotational energy is not modeled with this finite element method (see Chapter

II), nor do the following equations capture the rotational energy. The parameters of these

function are what the minimization routine adjusts in its search for the global minimum.

V(R; k) = I k (R - Re) 2 + Te  (Harmonic)2

V(R; De, a) = De (I - e-a(R-Re)) 2 
- 1) + T (Morse)

V(R; De) = De  -2 -) + Te (Lennard - Jones)

V(R; De, a, D3) = D [J Te(
e 3 -c - + T (Mie)

where V is the potential function, R is the internuclear separation, k is the harmonic force

constant, R, is the equilibrium distance, De is the dissociation energy, a is the Morse

anharmonicity term, a and 3 are exponents in the Mie potential, and Te measures the

energy separation between the minima of the two electronic state potential energy curves.

(3:136). The adjustable parameters are k, De, a, cc, and 13.

The Harmonic and Morse functions are the only functions listed in Equation 111-3

that have known analytic solutions. They were explicitly included in this list for this very
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reason. Their solutions are discussed in Chapter II and are invaluable for the validation

process. For more information about the validation process see Chapter IV.

Next on the list is the Lennard-Jones potential. The Lennard-Jones potential is

cleverly constructed to take advantage of the fact that van der Waals' intermolecular

attractive forces go as R. This attraction is a "self-generating boot-strap force", called

the London dispersion force. The London dispersion force is caused by the fluctuating

electron density of each molecule. In effect, a temporal dipole moment from one

molecule induces a dipole moment on a neighboring molecule, which in turn induces

back (4: 52-54,115-117). The repulsive branch, modeled by the R"12 term, has no

physical foundation. This repulsion term was chosen as a mathematical convenience to

ensure the minimum of this potential occurs at Re.

The Mie potential is formed when both exponents of the Lennard-Jones potential

are parameterized. Most molecular forces don't exactly go as R"6 and R"12. By varying

these exponents, the Mie potential can be adapted to match these actual forces. Both the

attractive and repulsive branches of the Mie can be varied independently, unlike the

others. Therefore, the Mie potential is the most flexible of the potentials listed in

Equation 111-3. The additional coefficients ensure the minimum of this potential remains

at R. With a few algebraic substitutions, the Morse and Lennard-Jones potentials can be

shown to be special cases of the Mie potential (2: 17).

The equilibrium distance, Re, and the energy separation, Te, are not variable

parameters. Within diatom, these values are treated as constants. Since this analysis does

not include the rotational fine structure, Re must be supplied by the user. Te must also be
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supplied by the user. Te is defined as zero for the ground electronic state. For details on

how to calculate these values see the section labeled Executing the Code.

For the potential selected by the user, the minimization routine (5) adjusts the

potentials parameters in a systematic manner. First, the eigenvalues are computed for an

initial "guess" of the parameters in question. Then, the sum of residuals squared is

calculated by differencing the experimental eigenvalues (the bench mark) and the newly

computed eigenvalues. The formula used is

2Sum (i E' -E
Sum = - Wi Eexperimental - calculated (III-4)

2

where wi is the weight factor, E'experimental is the observed eigenvalue, Ecalculated is the

computed solution, and n is the maximum number eigenvalues furnished by the user. The

minimization routine then adjusts the parameters of the chosen potential (hopefully in the

direction to the global optimum), the eigenvalues are then re-computed, the sum of

residuals squared is recomputed, and so on. This process is exhaustively repeated until

the sum of the residuals squared has been minimized, thereby, the "best" solution has

been isolated. See Figure 111-4.
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Determine Direction

0

Adjust
Parameters
of Poetial

Figure 111-4. This figure illustrates schematically the iterative hunting process. From an initial
starting place given by the user, the model computes the vibrational eigenvalues using the method of
finite elements. The sum of the residuals squared is then computed (See Equation 111-4) and the non-
linear minimization routine then determines which direction must be made to find the minimum. The
minimization routine then adjusts the parameters of the potential accordingly, and reseeds the
process. The process is complete when the global minimum has been found, that is, the best potential
which yields the eigenvalues closest to experimental results.

This non-linear minimization routine searches for the global minimum of an N-

dimensional parameter space by making a series of gradient steps, random direction steps,

average directional steps, and random jumps within the parameter space. This program

uses the method of steepest descents for its gradient maneuvers. If the routine hits a
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boundary of the parameter space it will "slide" along the boundary until improvement

ceases. The random jumps ensure the routine does not fall into a local minimum, thereby,

missing the global optimum.

The parameter space in which this minimization routine searches for the global

optimum is graphically shown in Figure 111-5. This surface was generated by calculating

the sum of the residuals squared for over 1000 points. The analytical eigenvalues of the

Morse Oscillator were provided as the benchmark for a dissociation energy (De) of

15000.0, and an anharmonicity term (a) of 6.0. Then the sum of the residuals squared

was calculated as a was varied from 1.0 to 12.0, and De was varied from 6000.0 to

24000.0. The height of the surface in Figure 111-5 is the log of the sum of residuals

squared at each (a, D) coordinate pair. This height was then truncated so the lowest

value was 6. This truncation was done in order to see more resolution in the plot.

The graph shows some very important features of this parameter space. The most

important feature is that there is only one minimum. And this minimum is extremely

pronounced. Another feature is that the surface which the minimization routine moves

upon appears smooth, for the most part. A gradient search method should be sufficient to

find the global minimum for a surface such as this. The two triangular bumps are real

and were calculated independent of each other. The origin of these bumps is not currently

understood.
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Figure 111-5. This figure illustrates the parameter space for where the hunt occurs. The
minimization routines roams around on this surface until it finds the global optimum. The analytical
solutions of the Morse potential where a-6.0 and D,=I5000.0 were provided as the benchmark. This
benchmark included all 28 bound states. The height of this surface represents the order of
magnitude (log scale) of the sum of residuals squared (i.e. a measure of how close the computed
eigenvalues are to the benchmark). The sum of the residuals squared was computed for a from 1.0 to
12.0 (the x-axis), and for De from 6000.0 to 24000.0 (the y-axis) for 300 grid elements. The bottom of
this well's order of magnitude is actually 101, it was truncated at 106 for illustrative purposes.
Another important point, because this is an order of magnitude graph, subtle changes in value may
be washed out. The two triangular bumps were calculated independent of each other.

The math routines which diagonalizes H matrix (see Chapter II) are two IMSL®

Math/Library T FORTRAN subroutines (6: 307-311). The first routine, DEVLSF,

computes the eigenvalues of a real symmetric matrix by an orthogonal similarity

transformation to an equivalent symmetric tridiagonal matrix, then it performs an implicit
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QL algorithm to compute the eigenvalues of this matrix. The second routine, DEVCSF,

does the same thing, but also returns the eigenfunctions. These eigenfunctions are

normalized such that the infinity norm of each vector is one.

The important point here is, while the minimization routine is hunting for the best

potential, DEVLSF is the routine that is used to compute the eigenvalues. This saves time

because DEVLSF works faster than DEVCSF. Once the best potential has been found,

then DEVCSF is called to calculate the eigenfunctions. Therefore, DEVCSF is only

called once at the very end of execution.

In the original version of diatom, the user had complete control over the finite

element grid. The user specified where the two grid endpoints were located, and the

number of elements to be used. Once the grid was defined, however, this grid was used

for all calculations, no matter how the minimization might adjust the parameters of the

potential. Refer to Figure 11-7.

The convergence of the finite element method, as it turned out, is very sensitive to

how the grid was laid down. See Chapter IV for a discussion on convergence. For

example, if the endpoints of the grid were positioned so that only a small part of the

potential was included for the calculation, the solution would not to converge. This

situation is easily obtained. Recall the global minimization routine adjusts the parameters

of the potential function. And these adjustments may be systematic or even random.

Therefore, the potential curve may swing completely off a previously defined grid.

Therefore, the program diatom has been modified in this work to automatically

adjust the grid during execution for the user. The endpoints of the grid are adjusted so
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that the potential curve, and the bound state wavefunctions do not get truncated by the

grid endpoints as the minimization adjusts the parameters of the potential function. This

smart grid algorithm automatically "walks the endpoints in and out" every time the

potential function's parameters are changed by the minimization routine.

The endpoints are adjusted so that the value of the potential satisfies certain

conditions. The value of the repulsive branch at the left endpoint must fall between 10

times and 1000 times De. The value of the attractive branch at the right gridpoint must

fall between -104 and -10-6 times De. These values were chosen from experience and

experiment. Other than the fact these limits work, they were chosen arbitrarily.

Executing the Code

This section does two things. First, the input files are explained in detail. Second,

execution strategies are discussed.

The program diatom requires two input files for execution. One input file defines

the bench mark for the best potential, that is the experimental vibrational eigenvalues for

the electronic state of interest. The second input file is a master control file which

manages the execution.
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Figure 111-6 shows a sample eigenvalue energy input file.

diatomenergy.input

>LBL=MORSE: De=-15000 cm-1, a = 6.0
>VOO=-14484.8847577293

.6542731880

Title to be Included7886467
i33041054

47.9628195640
>V05=-9828.7323350227

>V23=-518.583613 Vibrational Energy
>V24=-343.353 12 Eigenvalue at v5
>V25=-204. 122644
>V26=- 100.8921596549
>V27=-33.6616751135
>V28=-2.4311905722

Figure 111-6. This figure illustrates the energy input file for diatom ("diatom_energy.input"). This
file defines the benchmark for the best potential. The model will attempt to find a potential whose
eigenvalues match most closely to these. As an example, this list includes the 28 analytical
eigenvalues for a Morse Oscillator where a=6.0 and De=15000.0. The format for each energy input is
">Vxx", where xx is the state label. Labels less than 10 still must have digits, such as ">V05".
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Figure 111-7 shows the master control input file.

diatomcontrol.input
>GP-- I'''SelcsHam

eits e BG=4.0 Oscillator _ c o pan Ed >EN=8.0
GiPons >NE=300""--( .2 2"

Smrt rd >SG=0
>GA= 1-*----- Aig

Run Min >RM=0

Sw re s >NT=40 of t ri es

>NW= on andoff
n >NR=

tries >NG=I favrg
Numbr of >NA=I iecin

m Jump >NJ=I
l~and Jum >FR=I aeRsda

Ru Wv >FP=I n oeta
>RW=I.l .
>HB=. h1. ar
>MU=I.0  LwrLmt
>Ll=3.0

1 ntt# e>pl=4.0. [InitialIGuess,

>UI=5.0 Upper Limit]
>C1=2.0 ofPrme#

(C ntn 2T >C2=0.0

Figure 111-7. This figure illustrates the master control input file for diatom ("diatom-control.input").
This file's syntax is ">AA--" where AA is a two letter code. All of the possible codes are exemplified
in this sample. This input files consists of three main groups. The first group controls the grid, the
second group controls the minimization routine, and the third group controls the potential and its
associated parameters and constants. The two letter code, RM, turns the non-linear minimization
routine on and off.
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The two letter code GP selects the generalized potential as shown Table I11-I.

Table 111-1. This table shows how to select the GP flag.

Potential Function GP value

Simple Harmonic Oscillator 1

Morse Anharmonic Oscillator 2

Lennard-Jones Potential 3

Mie Potential 4

Each potential function has a number of parameters and constants (refer to

Equation 111-3). The user has the ability to define a search space for each parameter. That

is, define the upper and lower limits for each parameter, and define its initial starting

value. These values define the parameter space where the minimization routine hunts for

the best potential.

Table 111-2. This table shows the relationship between the parameter and constant variables, and the
numbers they are identified by in the control input file.

Potential Parameter 1 Parameter 2 Parameter 3 Constant 1 Constant 2

Harmonic k R T

----------- ----------------- --------- r --------- --Morse I De a I e TII I I I-- -- - --rT - -- - -r -- - -- -r -- - -- -r -- - - -r - - - -

Lennard-Jones r De Re' T,

-- ---- - - -- ----------- e------ ------------------Mie I De I a , Re , Te
II I I

__ _ _ _ _ _ _ _ _ _ _ _ _ I __ _ _ _ _ _I __ _ _ _ _ _I I _ _ _ _ _
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For example, the lower limit, upper limit, and initial value of a (Morse's

anharmonicity term) would be denoted by the codes L2, P2, and U2, respectively. See

Figure ffI-7 for the example input file.

Optimally, the user wants to initialize the parameters as close to the expected

values as possible. This preemptive measure will help the search routine find the "best"

potential sooner. Also, set the lower and upper limits as tight as possible. This will limit

the search volume, and again speed things up. Later, Chapter IV will show that solutions

of acceptable accuracy require a lot of elements, which translates into lots of time. Some

quick estimates of the solution can be extremely beneficial.

Since this analysis does not include the rotational fine structure, Re must be

supplied by the user. The equilibrium distance, R, can be computed by using the

rotational spectral constant Be. Te may be approximated by finding the difference

between the ground vibrational eigenvalue of the upper electronic state and the ground

vibrational eigenvalue of the ground state However, a preferable solution is to calculate

T, by subtracting I Coe - 1 (O e X from the ground vibrational eigenvalue of each
2 4

electronic state, and then subtracting these two values. This method assumes the

potential energy curve behaves like a Morse Oscillator at the bottom of the well, which in

most cases is a good approximation. Again, coe and WoeXe are vibrational constants.

The grid is controlled by five settings. The settings, BG and EN, position the left

and right grid endpoints respectively. These values have dimensions of length. The

setting NE carves up the grid into the number of elements specified, all of equal size.
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The setting SG, the smart grid algorithm, has three settings. Setting this parameter to 0

turns it off, 1 and 2 turns it on. With SG turned on, the smart grid walks the grid

endpoints in and out as needed to keep the grid space defined properly for the potential

curve in question. With SG set to 1, the initial stepsize is kept constant, therefore, the

number of elements vary as the endpoints are adjusted. With SG set to 2, the number of

elements is kept constant, therefore, the stepsize varies as the endpoints are adjusted. The

setting GA, the grid alignment algorithm, co-aligns grids of separate executions. Setting

it to 0 turns it off, and setting it to 1 turns it on. This algorithm records previously

defined grids by writing data to a special output file. This information is then used to

align the grids. The grid alignment algorithm must be turned on if the eigenfunctions are

going to be used for Franck-Condon calculations. Note, turning the grid alignment on

overrides the smart grid assignment of 2, switching it to 1.

The non-linear minimization routine has 7 settings to control its execution. The

flag RM turns the minimization routine on and off with 1 and 0, respectively. If the

minimization routine is off, the code will calculate the eigenvalues for the initial

parameter settings only. When on, the minimization routine will make NT number of

attempts to find the global minimum. The flags NR, NG, NA, NJ control the relative

number out of NT tries each of these strategies will be attempted. The setting NR

controls the number of times it tries a random direction looking for the minimum, NG is

the number of times gradient steps should be taken, NA is the number of average

directions it should take, and NJ is the number of times it should take a random jump to

some other point in the parameter space. NW controls the number of times it reports
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diagnostic information to the screen. It will never provide diagnostics if it is set to 0, but

will report back every other step if the setting is 2, etc.

The designators HB and MU set the values of Planck's Constant over 2rt (h bar)

and the reduced mass of the molecule. Units are important. The grid endpoints, BG and

EN, liB, MU, and the energy eigenvalues all need to use the same unit system. Atomic

units are recommended, because atomic units allow HB to be set to one, thereby,

reducing numerical error introduced by using very small numbers. As an example, in SI

units Planck's constant is on the order of 10- 3 4 . Using such a small number could lead to

significant numerical error, especially when using any algorithm to diagonalize matrices

such as DEVLSF.

The last settings, RW, FP, and FR are option flags which turn on and off with

settings of 1 and 0, respectively. RW instructs the diagonalization math routine to return

both the eigenfunctions and eigenvalues. This setting saves time for the user when turned

off if the user is not interested in the eigenfunctions. FP and FR instruct the model to

save a potential and residual output file. The potential file contains 1000 coordinate pairs

of position versus the value of the "best found" potential at each position. The residual

file contains the listing of residuals for each experimental eigenvalue compared to its

associated "best found" numerical eigenvalue.

A good strategy for running diatom is to start simple. Runs with lots of elements

are expensive. The global minimization routine may solve Schr6dinger's Equation

hundreds of times depending on the execution and its input. Therefore, starting with a

large search volume and a lot of elements could be costly. Start with not as many
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elements, like a 150 or 200. As the minimization routine starts to hunt down the best

potential, winnow the search volume. Also, run with the smart grid algorithm on. An

initial setting of 2 will help control the number of elements used, and, therefore control

time. The hunt for the best solution may take 5 to 10 runs, each run a refinement over the

previous.

From experience, several of the minimization options should be turned off. These

options include NR (random directions) and NA (average direction). Both of these

options redirect the minimization routine away from the direction to the global optimum.

Refer to Figure 111-5 for justification of this recommendation. Figure 111-5 suggests the

parameter space is smooth and only one minimum exists. With this figure in mind, only

gradient steps should be required to find this minimum. Random jumps to a new location

in the parameter space may help avoid identifying the local minima as the global minima

if they exist. The minimization routine identifies a minimum by comparing previous

values. It could very well find a local minimum created by numerical noise. Therefore,

the recommendations are to set NR and NA to zero, NG to 5, and NJ to 1.

The program diatom produces several output files. The first one is diatom. output

which is the main output file. Another is inputforfcfoutput, this file contains the

wavefunctions and S matrix required for the Franck-Condon Factor calculations. The last

two output files are plot__potential output and plot residual output. These files were

described earlier.
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Once the best potential has been found for both of the electronic states of interest,

the Franck-Condon Factors can be calculated.

Franck-Condon Factor Calculations

This section describes how to calculate the Franck-Condon Factors with the

program calledfcf (2: 36-40, 66-70, G1-G2, H1-HO). This program uses the numerical

wavefunctions obtained by executing diatom and its finite element method algorithm.

To calculate the Franck-Condon Factors, the overlap integral for every

combination of upper electronic and lower electronic vibrational states must be

computed. The eigenvectors garnered through the finite element method contain

information about the wavefunction's value and slope at each gridpoint. However, this

data just runs in successive order, and is not explicitly labeled for each gridpoint.

Therefore, information about the grid is required to compute the overlap integral. This

information is found in the S matrix as developed in Chapter II.

The Franck-Condon Factors are then calculated using the following formula:

q v'v = v T S V " 
(111-5)
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where q,,, is the Franck-Condon Factor, v' is one of the wavefunctions for the upper

electronic state, v" is one of the wavefunctions for the lower electronic state, and S is the

matrix which describes the grid space.

After a successful completion of diatom (with RW= 1) the program automatically

saves a file which contains the first 25 wavefunctions and the S matrix in the file

inputlor_fcf output. Two of these output files are required for the Franck-Condon

calculation, one for each electronic state. For this algorithm to work, both files must have

the same S matrix. The automatic grid alignment algorithm (GA=I) must be invoked for

both diatom runs to ensure they both have the same grid spacing. The S matrix, which

depends on the number of elements and grid spacing, is adjusted to work for the largest

wavefunction.

This grid alignment algorithm, new to diatom, does two things. One, it makes

sure both runs have the same stepsize. And two, if the gridpoints are not co-aligned, this

algorithm slides one of meshes over to coalesce with the other. In that way, both output

files are ensured to have the same S matrix.

The FORTRAN program, fcf, takes these two output files (renamed by the user to

fcf low. input andfcf high. input) and calculates the Franck-Condon factors. This

program has been modified to handle wavefunctions derived from grids with different

endpoints. The algorithm builds a 25x25 table of factors by looping over Equation II1-5.

The vector-matrix multiplication is carried out with two IMSL® Math/LibraryT

FORTRAN subroutines (6: 993-995). The first one is DMURRVwhich multiplies a real
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rectangular matrix by a vector. The other is DMURB V which multiplies a real band

matrix in band storage mode by a real vector.

The final output is the table of Franck-Condon Factors calledfcf output.

Conclusion

This chapter explained how starting with little information, namely some

spectroscopic data, the Franck-Condon Factors can be calculated. The most important

feature of this method, however, was not the calculation of the molecule's wavefunction

which give you these factors. But. how it searched for and found the "best" potential

curve for the molecule in question.
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IV. Validation

Introduction

This chapter demonstrates that Schr6dinger's Equation can be solved using the

numerical method of finite elements. This validation includes comparisons between the

analytical and numerical solutions of the Harmonic and Morse potentials. These sections

are then followed by a discussion about the convergence of this method and its associated

cost. And finally, the eigenvalues from a numerical H2 molecule potential are used to

demonstrate how the model can search and find an unknown potential.

Validation is an important effort for any model. No model should be trusted until

it has the proven ability to predict known solutions accurately. Since the method of finite

elements has not been used a lot in quantum mechanics, special emphasis is taken in this

chapter to demonstrate the validity of this technique.

Simple Harmonic Oscillator

The harmonic oscillator is one of a few potentials known to have analytical

solutions. The use of harmonic oscillator, therefore, is an obvious choice for validating

any numerical solution of Schr6dinger's Equation. This section details comparisons
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between the analytical eigenvalues and functions, and their numerical equivalents

computed with the method of finite elements.

The harmonic oscillator, as modeled in Equation 111-3, was numerically evaluated

using diatom. The force constant (k) was chosen to be 4.0, and the reduced mass (gt),

h/27t, and the radius of equilibrium (Re) were all set to 1.0. The minimization routine

was not used.

A finite element grid was laid down over this potential energy curve with the left

endpoint at -5.0 and the right endpoint at 7.0. This grid, therefore, is symmetric about

Re. A solution for 300 elements was arbitrarily chosen for this demonstration.

With the parameter choices listed earlier, the analytical eigenvalues conveniently

become 1.0, 3.0, 5.0, and so on using Equation 11-14. These values were then input to the

diatom as the bench mark for residual calculations.

The residuals for the first 25 states yielded values on the order of 10-4. That is, the

difference between the analytical and numerical eigenvalues. The agreement

demonstrated by the relative errors proved just as good. They ranged in value from

4.0xl 0-2 to 8.0xl 0"4 percent as shown in Table IV-1. This excellent agreement was found

to be ubiquitous for all values of force constants and reduced masses tested.
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Table IV-1. This table demonstrates the accuracy of the finite element method when solving
Schr~dinger's Equation for the Simple Harmonic Oscillator. For this test, k=4.0, h/27t=1.0, and
p=1.0. A residual is defined as the difference between the expected and calculated eigenvalues.

Eigenstate Level Calculated Eigenvalue Residual j Relative Percent Error

0 1.000427 0.427E-03 i 0.427E-01
I I
I I

1 3.000427 0.427E-03 r 0.142E-01

---------- ----------- --- -- F--------------2 5.000427 0.427E-03 0.853E-02

- - - - - - - -- - - - ----
F ---------- ---- -I-------------- -----------

2 5.000427 0.427E-03 0.89E-02I I
I I

---- --- --- --- --- --- ---- r - --- -- --------------------

22 i 45.000424 70.424E-03 0.941E-03

23 47.000412 0.412E-03 0.876E-03

24 49.000368 0.368E-03 0.751E-03
I I
I I

Sum of Residuals Squared 0.2245169E-05

The sum of the residuals squared was on the order of 10-6. For this comparison,

the minimization routine had been turned off. However, if a search had been conducted,

this value would have identified the global minimum.

The eigenfunctions also exhibited excellent agreement with the analytical

solutions. These eigenfunctions were obtained using the following method. The

inputfor_fcf output file contains a the listing for each eigenfunction. Eigenvectors for

states 0, 1, 6, and 9 were then selected from this file. Two even states and two odd states
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were chosen for their symmetry and asymmetry properties, respectively. Each vector is

represented by a long column of numbers. This column is a sequential listing of pairs of

numbers, each pair is the wavefunction's value and slope at each gridpoint, in successive

order. For this analysis, only the wavefunction's value at each gridpoint was kept. The

slopes were discarded.

These four eigenfumctions were then tested for proper normalization and

orthogonality. All integrations were conducted using Simpson's rule. Normalization was

tested by integrating each wavefunction squared over the finite element grid space. All

four wavefunctions yielded a normalization factor of 1.0, even though only 7 significant

digits were used to represent each point. Because these wavefunctions are from the same

electronic state, they are expected to be also orthogonal to each other. The product of

each vector with another vector, including all permutations, was then integrated. This

integration resulted in no value greater than 2.92x1 0-8. When considering precision, these

numbers all can be interpreted as zero, thereby, demonstrating orthogonality. Therefore,

all four eigenfunctions tested were properly normalized and orthogonal.

These four orthonormal eigenvectors were then plotted with Mathematica®. For

comparison purposes, the analytical wavefunctions were also plotted on the same graph.

Because these two wavefunctions coalesced so closely together, the analytical solutions

were multiplied by -1 to separate the curves. Otherwise, the curves, to within plotting

quality, would lay right on top of each other. Their excellent agreement can be observed

in
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Figure IV-1 and in Figure IV-2. Notice how the amplitudes are the same for the numerical

and analytical functions. Also notice their shapes and where they cross the horizontal

axis are identical.
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Figure IV-I. This figure shows the excellent agreement between the numerical eigenfunctions and
analytical eigenfunctions of the Simple Harmonic Oscillator. Each solid curve is the numerical
solution, and each dashed curve is the analytical solution. For illustrative purposes, the analytical
solution has been reflected about the horizontal R-axis. The top curves are for the ground state
(n=O), and the bottom curves are for the first excited state (n=l). Note the symmetry about R=1.0.
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Figure IV-2. This figure also shows the excellent agreement between the numerical eigenfunctions
and analytical eigenfunctions for the Simple Harmonic Oscillator. Each solid curve is the numerical
solution, and each dashed curve is the analytical solution. For illustrative purposes, the analytical
solution has been reflected about the horizontal R-axis. The top curves are for the state n=6, and the
bottom curves are for the state n--9. Note the symmetry about R= -1.O .
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The Morse Anharmonic Oscillator

The Morse potential is another function with known analytical solutions. And as

an added benefit, because the Morse function is such an excellent approximation of the

molecular forces, this function provides a more rigorous test than the Harmonic

Oscillator.

The validation process for the Morse potential proved to be more challenging than

that encountered with the Harmonic Oscillator. In fact, during the validation and analysis

of this function, the requirement for a subroutine to automatically correct grid placement

was realized. The reason for the need for an automatic grid involves convergence issues

which is discussed in the next section.

The Morse Oscillator's analytical eigenvalues and functions were calculated using

Equation 11-16. A dissociation energy (De) of 15000.0 and an anharmonicity term (a) of

6.0 was chosen for this demonstration. Again, h/27 and the reduced mass, jt, were set to

1.0. These parameters bear no resemblance to any real molecule. But, the choice of

these two parameters yields 28 bound states, which is reasonable for a molecule.

A finite element grid of 300 elements was arbitrarily chosen. The grid endpoints

were located at 1.5 and 2.5, and the radius of equilibrium (Re) was chosen to be located at

2.0.

The residuals, the difference between the numerical and analytical eigenvalues,

ranged in value from 10-6 to 10-3 , except for the last two bound states which faired a little
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worse. Looking at the relative errors in Table IV-2, these values ranged froml10 8 to 1O -

percent, again except for the last two states. The states very near the dissociation limit

always proved more difficult to calculate. These states are on the cusp of being free

states which means the grid needs to have infinite extent to model these wavefunctions.

Table TV-2. This table verifies the accuracy of the numerical solution of Schriidinger's Equation for
the Morse Potential. For brevity, only selected levels of the 28 bound states are shown.

Eigenstate Analytical Calculated Residual Relative

Level Eigenvalue Eigenvalue Percent

Error

0 i-14484.885 -14484.885 0.457E-04 i 0.315E-06
1 -'-13481.654 -13481.654 0.429E-04 0.318E-06
2 i-12514.424 -12514.424 0.371E-04 0.296E-06
3 i-11583.193 _ -11583.193 0.254E-04 0.219E-06
4 -10687.963 -10687.963 0.482E-05 0.451E-07
5 1 -9828.732 -9828.732 i-0.273E-04 , 0.278E-06

-r --- - -- - ------ 1------------ -- - ------

r -- -- -- -7------------r- -- -- -- -- -- --- -- -- -
17 1 -2325.967 -2325.965 ,-0.103E-02 0 .443E-04

r - -- - -- - - - ---------------------- - - -------18 i -1934.736 i -1934.735 i-0.106E-02 0.550E-04
~~~~~~ --------- 1--- -- -- -- --

19 -1579.506 -1579.504 i-0.107E-02 0.680E-04

25 1 -204.123 i -204.122 -0.576E-03 0.282E-03
26 -100.892 -100.892 i-0.416E-03 i0.412E-03

27 1 -33.662 1 -33.669 , 0.699E-02 i0.208E-01

28 i -2.431 .-- 3.651-- 0.122E+01 i0.502E+02
Sum of Residuals Squared I0.7439557 1

The numerical wavefuinctions were then developed for states 0, 1, 6, and 9 in a

similar fashion as described for the harmonic wavefunctions. These four Morse

wavefuinctions were then tested for normalization and orthogonality.
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The integration, again using Simpson's Rule, yielded normalization factors of

0.990000, 0.990001, 0.990015, and 0.989975 for states 0, 1, 6, and 9, respectively. These

results can be attributed to the fact that only around 130 out of the 300 gridpoints are

significant to the integral. Even though a grid was required with endpoints at 1.5 to 2.5

for convergence, these wavefunctions only exist between the points 1.85 and 2.29. The

test of orthogonality yielded results not greater than 2.34x1 0-7, except for the integrals

involving state 6. These values averaged around 2.33x10 "3. Again, these numbers,

except for state 6, can be considered zero due to precision. The integrals involving state 6

can be argued to almost vanish. Therefore, considering the approximations made with

Simpson's rules and the sparse data, these functions are orthonormal.

Figure IV-3 and Figure IV-4 show the excellent agreement with the analytical

solutions. Again, the analytical solutions were multiplied by -I to separate the curves.

Otherwise, they would literally lay right on top of each other. Notice the amplitudes of

the analytic and numerical solutions are virtually identical. The wavefunctions also cross

the horizontal exactly at the same point.
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Figure IV-3.. This figure shows the excellent agreement between the numerical eigenfunctions and
analytical eigen functions of the Morse Anharmonic Oscillator. Each solid curve is the numerical
solution, and each dashed curve is the analytical solution. For illustrative purposes, the analytical
solution has been reflected about the horizontal R-axis. The top curves are for the ground state
(n=O), and the bottom curves are for the first excited state (n=l). Note the asymmetry about 1Rg=2.O.
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Figure IV-4. This figure also shows the excellent agreement between the numerical eigenfunctions
and analytical eigenfunctions for the Morse Anharmonic Oscillator. Each solid curve is the
numerical solution, and each dashed curve is the analytical solution. For illustrative purposes, the
analytical solution has been reflected about the horizontal R-axis. The top curves are for the state
n=6, and the bottom curves are for the state n--9. Note the asymmetry about R=2.0.
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Convergence

This section details convergence testing done for the Harmonic and Morse

potentials. Convergence, in the case of the method of finite elements, means that the

solution should approach the "correct" answer as more elements are added to the grid,

thus reducing the stepsize. However, there is a penalty for adding elements to the grid.

This penalty is the cost of time. In fact, as shown later, the time required for the

calculations increases cubicly as the number of elements are increased.

The solutions for the Simple Harmonic Oscillator were first tested for

convergence. For this model, convergence is determined by using the sum of the

residuals squared as reference. This number should approach zero as the number of

elements is increased.

To test for convergence, executions of diatom were conducted for the harmonic

oscillator in a similar fashion as described earlier in the validation section. The force

constant was set equal to 4.0, and h/27t and the reduced mass were set equal to one. The

grid was constructed from -5.0 to 7.0 with R=I.0. Then diatom was executed to see

how well it predicted the analytical eigenvalues as measured by the sum of residuals

squared.

Figure IV-5 shows the results of these executions as the number of elements was

increased from 25 to 450. The graph clearly shows convergence, that is, as the number of
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elements is increased, the solution approaches the analytical solution and the sum of the

residuals squared vanishes.

Simple Harmonic Oscillator: Sum of Residuals
Squared

1.OOE-01

" 1.0 E-03-

"a= 1.00E-07

cn 1.00E-07 : :

25 50 100 150 200 250 300 350 400 450

Number of Elements

Figure IV-5. This graph demonstrates the convergence of the finite element method for the Simple
Harmonic Oscillator. As the number of elements is increased, the sum of the residuals squared
begins to approach zero. A plausible argument would be, given an infinite number of elements and
an infinitely precise computer, the solution would converge to the analytical solution exactly. The
data point at 300 corresponds to the data presented earlier in the validation section.

Next the Morse Oscillator was tested for convergence. Again, the executions

were set up with De=15000.0 and a=6.0. The reduced mass and h/27r were set to one.

The radius of equilibrium (Re) was chosen as 2.0 .The left grid endpoint was set at 1.883

and the right endpoint was positioned at 4.500. At this location, the potential energy

curve crosses the horizontal axis. That is, where the potential equaled zero. The thought

was that the repulsive branch above zero because the solution of the free states was not

wanted.
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Figure IV-6 shows how the solution did not converge as expected when the

number of elements was increased. The solution actually diverges. Clearly, something

was wrong with the model. At the time, the reasons were unclear. In fact at this time, the

method of finite elements was questioned as a reliable technique for these problems.

Morse Oscillator: Sum of Residuals Squared
1.OOE+08
1.00E+07 ....

1.OOE+05

o 0 1.00 E+04 -----------
E 1.00E+03
nu} 1.OOE+02

25506075901010101011111215202530354045
03670550000000

Number of Beemnts

Figure IV-6. This graph shows how the solutions for the Morse potential did not converge. This
graph shows how the solution diverges after the number of elements is larger than 106. Notice the
scale of the Sum of Residuals Squared. The residuals diverge and round off at about 10 4. This lack
of convergence is unacceptable.

The code was then tested thoroughly because of this divergence. All of the

algorithms and codes were combed through looking for errors. Then, the position of the

right grid endpoint was tested to see if it affected the solutions. For this check the right

gridpoint was extended towards infinity. This remedy, however, did not improve the

convergence problems. Nothing seemed to work until the left grid endpoint was moved
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left to 1.70. This placement captured a large part of the repulsive branch previously

thought unneeded.

Figure IV-7 shows the solution for the Morse Oscillator converging nicely to the

analytic solution with this remedy. The initial lack of convergence is because the free

eigenstates were not being modeled correctly.

The free states were discovered to affect the solution of the bound states. In

effect, when more elements are added to the solution, more eigenstates are calculated.

The rank of the H finite element matrix as discussed in Chapter II goes as 2(ne+1), where

ne is the number of elements. Since this potential has only 28 bound states, any ne

greater than 13 yields solutions beyond the last bound state. Therefore, to model these

free states the positive repulsive branch of the potential must be included in the

calculation. This requirement can be understood by realizing that within the H matrix, a

lot of its matrix elements represent the free states. When this matrix is diagonalized, these

poorly represented states will perturb the solution of the bound states.
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Convergence of the Morse Oscillator
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Figure IV-7. This graph shows how the finite element method does indeed converge for the Morse
Oscillator. The left gridpoint was moved in from 1.883 to 1.700 capturing more of the repulsive
branch. The free states interact with this part of the potential. The solution of the free states turns
out to be important for the convergence of the bound states.

Further testing explored the relationship between convergence of the left grid

endpoint's position. Figure IV-8 shows this relationship. As background, the number of

elements for all of these solutions was fixed at 300, therefore, 702 eigenstates were being

calculated. The solution can be seen to slowly converge as the left gridpoint is moved to

the right. This convergence is attributed to the shrinking stepsize. At a critical point,

somewhere around 1.861, the solution diverges. This divergence happens because the

repulsive branch of the potential is truncated when the left endpoint is set to the right of

1.861. The free states, therefore, won't get modeled correctly. These poorly formed free

states perturb the solution of the bound states.

This discovery was the genesis of the automatic grid algorithm. As the

minimization routine changes parameters of the potential, the potential's repulsive branch
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may swing off a previously defined grid. If this situation happens, the solutions will

diverge, and the minimization routine may never find the correct solution. Therefore, an

automatic system must be in place to ensure the potential is always well defined on the

grid.

Convergence/Divergence as Position of Left Grid Endpoint
1.00E+09

. 1.00E+08

" 1 .0 0 E + 0 6 -- - - - - - - - - - - - - - - - - - - - - - - -
0"
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1.002+04
1.00 -03
1.00E+02

, 1.0003
0 1.002±02 ---- - - - - - --- - - - - - - - - - - - -o 1.002±0
E
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0 c5 c5 l- - N co Vo 0) o
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Left Gridpoint Position

Figure IV-A. This graph shows the convergence/divergence behavior of the finite element solution of
the Morse Oscillator as the left grid endpoint is moved about. The solution slowly converges as this
position is moved from 0 to 1.861 . This convergence can be attributed to the decrease in the stepsize.
The number of elements, which was 300, was kept constant for of these calculations. The solution
then quickly diverges as the repulsive branch gets truncated. The repulsive branch is required to
help model the free states. A poorly modeled free state perturbs the solutions of the bound states.

The solutions do converge given the proper position of the grid endpoints have

been found. Assuming this is true, the solution should get better as the number of

elements is increased. But at what cost? Recall, Equation 11-33 established a relationship

between the residual and the stepsize. Taking the natural logarithm of this equation

yielded
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ln( e(x)j) > ln(c) + 4 ln(h) (IV-1)

assuming cubic interpolating polynomials and the residual is less than one. The slope of

this equation should be at least 4.

Figure IV-9 shows a convergence rate was far greater than 4. In fact, it averages

around 10 for the stepsizes tested. The data used to generate this graph are identical to

that used to for Figure IV-7. This curve was constructed by computing the natural

logarithm of each residual and stepsize, then the slope of this curve was calculated.

Convergence Rate

U 12
4) 10- - - - -

0o 6 -- - -- --- - -

0

o 0
N O 0 00 0 0O

o 0 0CD

Stepsize (h)

Figure IV-9. This graph shows the slope of curve formed by evaluating the natural log of the
residual versus the natural log of the stepsize. In this graph, the stepsize gets smaller to the right.
The slope of this curve averages about 10, far greater than 4 as predicted. These calculations are for
the identical execution parameters as used to generate Figure IV-7.
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However, there is a cost for increasing the number of elements. The rank of the

matrices to be solved are 2(ne+l), where ne is the number of elements. The cost for most

matrix solving algorithms is normally the rank of matrix cubed.

To find the actual cost of running diatom, the "user time" was recorded as a

function of the number of elements. The number of elements was increased from 25 to

450 for this measurement,and the time was measured on a Sun Sparc20 ®. Figure IV-10

graphically shows these results for both the Morse and Harmonic potentials. The cost for

adding elements is heavy. In fact, anything over 500 gets prohibitively slow.

This curve was then found to fit the polynomial listed below

time = 8.535 x 10- 6 ne3 (seconds) (IV-2)

where time has units of seconds.

This cubic relationship correlates to the cost expected when solving matrices.

This cubic result implies that very little time is spent building the matrices.
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Figure IV-10. This graph illustrates the cost of adding elements. As seen previously, the more
elements used for the solution, the better the answers are. However, the time for solving the finite
element method goes as the number of elements cubed.
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Hydrogen Molecule

In the previous section, the finite element method was shown to converge nicely

for the Harmonic and Morse Oscillators. But can the full algorithm, with its non-linear

minimization routine, find an unknown potential?

To test the diatom algorithm, a numerical (synthetic) potential for the H2 (X lEg+)

molecule was used to calculate the vibrational eigenvalues(1, 2). This synthetic potential

is an accepted approximation for the H2 potential. A variational technique was used to

calculate these eigenvalues. This calculation included 151 harmonic wavefunctions as a

finite basis set for this approximation (3). Due to numerical limitations, only the energy

values up to state 14 were used. Ground state H2 has 17 bound states. These eigenvalues

now represent experimental data, except this synthetic potential is exactly known unlike

that of a molecule.

The vibrational eigenvalues (in atomic units) were input into diatom as the

experimental values. The reduced mass was input as 911.422 a.u., and Re was set at

1.424 a.u. The Morse potential was selected to see if it could model the H2 molecule.

The program diatom had no other information beyond this. A perfect fit was not

expected.

The program diatom was then executed "in the blind" over six times. That is, the

numerical H2 potential described earlier was kept in confidence until all calculations were

completed.
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After each run, the parameter space was fine tuned as the minimization routine

began to close in. At the same time, the number of elements was increased to aid the

search.

The program diatom finally settled on an anharmonicity term of 1.0912 inverse

a.u. and a dissociation energy of 0.177 Hartrees. At this point, the grid consisted of 550

elements on the interval 0.04 to 13.80 a.u. An interesting note, these grid endpoints were

selected by the "smart grid" algorithm, not by the user. The reported dissociation energy

is 0.1745 Hartrees (2:2467), therefore, diatom slightly over predicted this energy.

However, the new found potential showed excellent agreement with the numerical

H2 potential energy curve. The Morse potential, as it turns out, provides for an excellent

approximation of the H2 molecule. Figure IV- 11 shows a Mathematica® plot of these

two curves.
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Figure IV-11. This figure shows the comparison between the potential diatom found for the H2
molecule, and the numerical potential used to calculate the vibrational eigenvalues. The dashed
curve is the accepted numerical H2 molecule potential, and the solid curve is the potential found by
diatom. The program diatom "found this curve in the blind." The only information it had to work
with was the reduced mass of the molecule, the equilibrium position, and the vibrational eigenvalues.
The Morse function, therefore, can be used to model the H2 molecule with a great deal of accuracy,
though not perfect. The units of this plot are in atomic units, therefore, the vertical axis is energy in
Hartrees, and the horizontal axis is distance measured by Bohr radii.

The numerical eigenvalues also showed excellent agreement. The program

diatom attempts to fit all of the eigenvalues simultaneously. This process means it tries

just as hard to fit the upper states as the lower states, but not always with success. For the

first 11 states, the relative error was less than 10%, and for the bottom five levels it's less

than 2%. From this table, it is clear the Hydrogen molecule can't be exactly be modeled
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by the Morse function because in some places it under predicts, and others it over

predicts. The residuals do not follow a systematic pattern.

Table IV-3. This table shows the accuracy of diatom's predictions for the H2 molecule. The accepted
values are the eigenvalues calculated using the accepted potential curve. The units of these energies
are in Hartrees.

Energy Level j Accepted Predicted Residual Percent Relative

0 -0.165 1 -0.166 1 .187E-02 1 O. 11413+0 1
Sr -0.146 1 -0.146 1 0.64 1E-03 I 0.440E+00

1 1~----- ----- - -- -- -- -- -- - - - -- -- -- -- -- ---
2 i -0.128 -0.127 1 -0.362E-03 0.28313+00

-0.111 -0_.1 10 1 -0. 111 E-02 0.999E+00

4-0.950E-01 0.935E-01 -0. 158E-62 o-.166E+01

5 -0.803E-01 -0.785E-01 -0. 178E-02 0.222E+01
T - - -- - --------------- 1-- - - ------ - - -- -- -- - - -1- -- -- -- -- -- --6 1 -0.665E-0 I 0.648E-01 -0. 172E-02 I 0.258E+01

----- - - - - --------------- - -- ------ -- -- -- -- -- - - -- -- -- -- -- --7 7 -0.539E-01 -0.525E-01 -0. 140E-02 0.260E±01
8 1 -0.423E-01 7 0 -4E-01C -0-.862E-63 7 .24E

9-0.3 18E-01 -0.317E-01 -0. 169E-03 I 0.532E+00
10 T -0.22-6-01 -I 0T I3Eo 7 E-03 I 0.7E+01

11 -Z-04E -061I- 0 IT 161 1 0. 140E-02 0.95E0
12-083r0 0. 102E-0 1 0.20213-02024E2

12 1 -- 7------------ -- ------ - ------ F -- --------------

13 -0.345E-02 -0.573E-02 0.228E-02 I 0.660E+02
14~~~ T060-3 5E0 0. 188E-02 0.29E0
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Conclusion

In conclusion, the program diatom and the method of finite element was proven to

provide credible solutions of SchrSdinger's Equation. These solutions included

wavefunctions, energy eigenvalues, and potential curves for diatomic molecules.

The numerical wavefunctions of the Morse and Harmonic oscillators were shown

to be orthonormal. The relative error of the eigenvalues was typically on the order of 10-6

and 10"3 percent for the Morse and Harmonic functions, respectively. Convergence and

cost of convergence was also discussed.

The H2 molecule was then used to show the model could be used to find an

"unknown" potential curve. The model predicted an anharmonicity of 1.0912 inverse a.u.

and a dissociation energy of 0.177 Hartrees for the ground state of H2. The graphical

comparison of the accepted potential energy curve and the predicted curve showed

excellent agreement.
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V. Conclusion

Summary

The method of finite elements was proven to be a viable technique for solving

Schr6dinger's Equation for the vibrational states of diatomic molecules. The calculation

of Franck-Condon Factors was explained using experimental spectroscopic data in

conjunction with four computer programs (efit, dunham, diatom,fcj). The focus of this

research, however, centered on the validation of one of those programs, diatom.

The program, diatom, requires as input the experimental vibrational eigenvalues

for each electronic state. Then using the method of finite elements, the program solves

Schr6dinger's Equation and computes the eigenvalues. These eigenvalues are then

compared to the experimental values to establish how well the selected potential energy

model resembles the unknown real potential surface. The adequacy of this selected

potential model is measured by the sum of the residuals squared. A non-linear

minimization routine then modifies the parameters of the potential energy model to

reduce this value, the sum of the residuals squared. This process is repeated until the sum

of residuals squared has been minimized identifying the optimal parameter choice. After

the optimal potential model has been isolated, the vibrational eigenfunctions are then
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calculated. The vibrational eigenfunctions from two different electronic states are then

used to calculate the Franck-Condon Factors.

To validate the program diatom, the Simple Harmonic and Morse Anharmonic

Oscillators were exploited for their known analytical solutions. The relative error of the

computational eigenvalues was typically on the order of 10-6 and 10-3 percent for the

Morse and Harmonic functions, respectively. The numerical wavefunctions of these

oscillators were shown to be orthonormal, and matched the analytical wavefunctions

extremely well when plotted.

Next, to demonstrate the model could indeed be used to isolate an optimal

potential surface, the H2 molecule was selected for the test. The H 2 molecule is the

simplest and one of the most studied molecules, lending itself for an this test ideally. The

vibrational eigenvalues for the electronic ground state were generated using an accepted

potential surface for the H2 molecule. These eigenvalues were then input into the model.

Using a Morse potential model, diatom isolated the optimal surface with an

anharmonicity term of 1.0912 inverse a.u. and a dissociation energy of 0.177 Hartrees.

The graphical comparison of the accepted potential energy surface and predicted surface

showed excellent agreement.
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Recommendations

In summary, this numerical technique has proved to be an excellent method for

finding unknown potential surfaces of real molecules. However, before this method can

be shown to provide solutions which equal or better the RKR-IPA approach, more testing

needs to be accomplished. The following suggestions outlines areas for additional

research and improvements:

" Perform extensive testing of the code on more complicated molecules to

demonstrate the utility of this numerical approach. Preferably, a molecule

such as PbO or some other would be chosen which has a large empirical

knowledge base, and has been similarly solved with the RKR method. The

results of these studies should be published.

" Validate the code for a real molecule (such as PbO) at the Franck-Condon

Factor level. A molecule's wavefunctions and potential energy curve can not

be directly observed. Only the spectral locations and intensities of the

molecule's transitions can be directly observed. Experimental Franck-Condon

Factors can be obtained by removing the population influence of the transition

intensities, and then normalizing each intensity. The normalization factor is

the sum of the intensities after the population influence has been removed.

Comparisons at this level mark the code's final test for validity.
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* Add more potential functions to the menu the user can choose from. This list

now only includes the Simple Harmonic Oscillator, Morse Anharmonic

Oscillator, Lennard-Jones, and Mie potentials. This numerical technique lends

itself very nicely to very sophisticated potential functions which may model

the physics better.

* Replace the non-linear minimization routine currently used with a faster and

more efficient routine. The current routine is an excellent choice for a

turbulent parameter space with lots of tiny local minima. However, this

research suggest that these parameter spaces are fairly smooth and the

existence of only one minimum. This enhancement could dramatically

decrease run time.

* Integrate all four codes (efit, dunham, diatom,fcj) into one seamless code.

This modification would make the work required of the user simpler. In this

way, the user would only have to manage one input file. This enhancement is

necessary before this code is distributed in any way.

* Consider replacing the IMSL® math routines with non-proprietary code. This

modification would eliminate any portability issues which may arise.
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