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1    INTRODUCTION 

This final technical report summarizes the work performed for the project entitled "System 
Resource Management for Distributed Real-Time Systems," in fulfillment of contract data item 
CLIN 008 SRI International (SRI) is investigating mechanisms and techniques for (1) a distributed 
real-time operating system characterized by the global, decentralized control of processing, 
storage and communications components that are coordinated toward a common goal; and 
(2) global performance optimization, within consistency and security constraints. We have 
implemented a simple distributed application that demonstrates the feasibility of these techniques. 

1.1 BACKGROUND 

Military computer systems are becoming larger, more complex, and more distributed. 
In addition, they are increasingly required to operate in a highly dynamic environment 
characterized by 

• Limited processing, communication, and data storage resources, and unpredictable 
loss of these resources 

• Dynamic topology and configuration 
• Changing threats and modes of operation 

• Time-constrained operations. 
Despite this hostile and complex environment, the systems are required to be high performance, 
secure, reliable, and survivable. 

Unfortunately, few operating systems used in military systems (or in commercial 
applications, for that matter) have satisfactory support for many of these requirements. For 
example, few operating systems consider time constraints, and those that do typically support hard 
real-time constraints that are too restrictive for many applications in this environment. Instead, 
systems that support soft real time (for example, the Alpha operating system [Northcutt and Clark 
1988]), and consider both the importance and the time constraints of competing activities when 
detennining an execution plan, are more appropriate. Soft real-time systems support the graceful 
degradation of performance by dropping low-priority tasks during overloads. However, if resource 
availability is too limited or highly variable, additional support that considers resource limitations 
is required. 

In addition, current operating systems manage individual system resources such as 
processing, communication, and data storage in an ad hoc manner. Different policies are used to 
manage different resources, and the management of the different resources is not coordinated, 
particularly when the resources are distributed. The relative importance of different activities is 
seldom considered in a uniform way across all the system resources. Such uncoordinated 
management results in suboptimal use of resources, especially when the availability of resources 
changes. For example, if radar data about incoming missiles are processed at a higher priority than 
sensor data about the weather, but weather data are transmitted on the communication channels at 
the same priority as missile data, then processing and communication resources will be wasted and 
military objectives may not be met. 
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Another problem is that current systems are too static for a dynamic military environment. A 
nonadaptive system can fail if it incorrectly assumes that its environment is known and predictable. 
Distributed systems in the military environment are subject to long-term, permanent changes due 
to failures or configuration modifications. Such changes mean that the underlying system will fail 
or will perform inefficiently unless fault tolerance and/or adaptability is incorporated into the 
system. Abstractions currently used by operating systems are not expressive enough to support 
adaptability. The ability to express and utilize tradeoffs in terms of resources used and benefit 
gained is missing. For example, the ability to select among alternate tasks with varying degrees of 
precision is not supported. 

Under the sponsorship of Rome Laboratory (RL), the problem of allocating limited resources 
among competing activities, according to command preferences for the activities and the usage 
restrictions imposed by the resources, has begun to be addressed in such projects as the Alpha Soft 
Real-Time Operating System (Alpha) project, the Adaptive Fault Resistant Systems (AFRS) 
project, and the Cooperative Gateway project. Many important issues in integrated resource 
management have not been addressed by these projects; the System Resource Management (SRM) 
project is intended to address these issues. Alpha considers both the importance and the urgency 
(time constraints) of competing activities when detennining an execution schedule, but it currently 
does not handle attributes other than time constraints (for example, precision requirements), and it 
does not coordinate the management of resources other than processing time; nevertheless, it 
provides a good starring point for further research. The AFRS project focuses on fault tolerance, 
but its adaptability techniques may be generalized to include other application objectives. The 
Cooperative Gateway project deals mainly with communication resources and is not explicitly 
concerned with real-time issues; however, its use of policies for making routing decisions may be 
applicable to some aspects of integrated resource management. 

1.2 OVERVIEW OF PROJECT GOALS 

The overall goal of the SRM program is to develop techniques for coordinated but 
decentralized control of system resources in distributed systems. These techniques will provide 
integrated management of (1) multiple system resources, including the processing, 
communication, and data storage components of the system; (2) multiple system objectives (i.e., 
level-of-service preferences) such as timeliness, precision, and correctness; (3) multiple activities 
(e.g., applications or tasks) compering for resources; (4) multiple nodes in a distributed system; and 
(5) multiple techniques and mechanisms for meeting objectives. The resource management system 
will allocate distributed system resources to multiple competing activities in such a way that the 
objectives as a whole can be satisfied to the highest degree possible. 

This project is the first phase of a multiphase program. During this phase we have developed 
and demonstrated the major concepts to be refined in later phases. The goals of the research for this 
phase were to: 

1. Develop abstractions that model common system objectives such as performance, 
functionality, availability, precision, and security 

Develop abstractions that model system components (e.g., processing, 
communication, and storage subsystems) and higher level services that are based on 
these components (e.g., distributed database systems or distributed file systems) 



3. Develop abstractions and mechanisms that provide integrated control across the 
objectives and components of a distributed system 

4. Show the validity of the abstractions by applying them to one or more sample 
scenarios and implementing a proof-of-concept demonstration application. 

Our goal was not to develop techniques, mechanisms, or strategies that satisfied specific 
objectives, but instead to develop a model that integrated existing and future techniques so as to 
enable them to work together toward a common set of objectives. 

1.3 OVERVIEW OF PROJECT APPROACH 

Our approach to developing a model of system resource management for distributed real-time 
systems was (1) to extend and generalize the abstractions used in the Alpha soft real-time operating 
system, namely time-value functions, objects, and threads [Northcutt and Clark 1988], and (2) to 
validate these abstractions by applying them to one or more application domains. We selected two 
application domains, distributed multimedia and distributed command and control (C ), with an 
emphasis on the former. We then refined the model, using an iterative approach in which we 
developed abstractions, applied the abstractions to the application scenarios, identified problems 
with the abstractions, and revised the abstractions. 

When the abstractions were sufficiently complete, we implemented a simple proof-of-concept 
application that demonstrated the key concepts. 

1.4 OUTLINE OF THE REPORT 

In our first interim report [Downing and Davis 1992a], we proposed an initial set of 
abstractions with which user objectives, system resources and constraints, and characteristics of 
execution techniques (e.g., resources used and objectives satisfied) can be described. In the second 
interim report [Downing and Davis 1992b], we notionally applied the abstractions to a simple 
multimedia conferencing application. In the third interim report [Downing and Davis 1993], we 
revised the general abstractions for integrated control and described a sample architecture for 
integrated resource management. In this report, we summarize the results of the project, including 
the implementation of a simple demonstration program, and we make recommendations for future 
work. We do not attempt to repeat all the material covered in previous reports. 

In Section 2, we present an overview of a model for integrated system resource management 
that serves as a framework for the discussions in the rest of the report, and we briefly describe 
sample application scenarios that are used as examples throughout the report. We next discuss the 
key abstractions and components of the model, including objectives and objective functions 
(Section 3), system resources and their metrics (Section 4), and characteristics of techniques for 
meeting objectives (Section 5). Next, we discuss our architecture for making resource management 
decisions, including decisions that involve issues of integrated system control (Section 6). In 
Section 7, we discuss an information model for the resource management system. In Section 8, we 
discuss the implementation of a simple video playback application that demonstrates some of the 
concepts developed during the project. In Section 9, we discuss some related work in resource 
scheduling and briefly describe other relevant work sponsored by Rome Laboratory and others. 



Next, we summarize our conclusions and identify the areas of future research required to support 
SRM goals (Section 10). Finally, in Section 11 we provide a list of references and an annotated 
bibliography. 

Appendix A discusses the relationship of system resource management to network 
management standards. AppendixB is a reprint of a paper on SRM that was presented 21-23 June 
1994 at the Symposium on Command and Control Research and Development and Decision Aids 
in Monterey, California [Davis, Downing, and Lawrence 1994].   Appendix C contains a 
survey of work on low-level  integrated  control;   the  survey was part  of  a 
previous  SRM report   [Downing and Davis   1992b], 



2 SRM MODEL AND SAMPLE SCENARIO 

The goal of the SRM project is to develop an approach to allocating distributed system 
resources (such as CPU, disk, memory, and communication channels) to multiple competing 
activities so that the objectives (e.g., level of service preferences) of each of these activities may 
be satisfied to the highest degree possible. We have developed a set of abstractions with which user 
objectives, system resources and constraints, and characteristics of execution techniques (e.g., 
resources used and objectives satisfied) can be described, and have applied the abstractions to a 
simple multimedia conferencing application. (We also applied the abstractions to a distributed 
command and control application, as discussed in previous interim reports.) In the following 
subsections, we present an overview of our model for integrated system resource management, and 
we briefly describe the multimedia scenario. 

2.1    OVERVIEW OF THE MODEL 

Figure 1 is a high-level representation of the control loop for system resource management. 
Application objectives, such as desired levels of timeliness, precision, and correctness, are 
communicated to the decision-making components of the resource management system. The 
management system compares the requests of competing processes with the ability of system 
resources to satisfy those requests. Sample system resources include the local and remote 
processing, storage, and communication assets in a distributed system. In addition, the resource 
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management system considers the software configuration and other current status information to 
make a scheduling decision to queue, execute, or drop a computing activity. There may be multiple 
ways or techniques to satisfy a given objective. The resource management system weighs the 
characteristics of these techniques and selects the one that will produce the most desirable result. 

To support adaptation, objectives such as precision and timeliness are specified using 
objective functions (also called benefit functions). Objective functions express the benefit to the 
user, or to the system as a whole, of achieving different levels of satisfaction of objectives, and can 
be used to determine appropriate tradeoffs among objectives. The objectives can be application 
specific (e.g., the benefit of different frame rates in a multimedia system) or system specific 
(e.g., the benefit of not exceeding various covert-channel bandwidths). The model assumes that 
execution techniques (e.g., various data-compression techniques) exist to produce results that fully 
or partially satisfy the objectives. There is a mapping between the techniques (and their parameters) 
and the degree to which they satisfy objectives. In addition, there is a mapping between the 
techniques and the amount of communication, storage, and processing resources they require. 

Resource management decisions are made at two levels, based upon information about 
objectives and resources. Decisions involving medium- to long-range tradeoffs among activities 
and their objectives are made by a set of cooperating high-level decision makers. High-level 
decision makers base their decisions upon long-term resource usage statistics, external events, and 
domain-specific knowledge such as military doctrine or the observable effects of differences in 
multimedia quality. High-level decisions include the starting and stopping of periodic tasks; the 
setting of modes in commonly invoked objects (e.g., the correlation or weapon assignment objects 
of a C application); and the admission control and resource allocation decisions for connection- 
oriented applications (e.g., a multimedia conferencing system). 

Real-time scheduling decisions among compering tasks and threads (subtasks) within the 
selected activities are made by low-level schedulers for each resource. Each low-level scheduler 
uses status information about its resource, as well as process control abstractions passed down from 
the high-level decision makers, to make local decisions. While low-level resource scheduling is 
decentralized, integrated control (through shared resource status information and consistent 
interpretation of process control abstractions) is used to ensure that the schedulers complement 
each other's decisions. 

2.2   OVERVIEW OF CONCEPTS AND ABSTRACTIONS IN MODEL 

The following concepts and abstractions are used in our model. Many of them are based on 
abstractions used in the Alpha Operating System. Where our definitions differ significantly from 
those used in Alpha, we point out the differences. 

Thread. A thread in our model is similar to an Alpha thread. It is defined as a locus 
of control that specifies the state of an execution; a thread can span physical nodes. 
Associated with a thread are objectives and other attributes that are used for system 
resource management. 

Object. An object in our model is similar to an Alpha object or a server process. It 
is a passive entity that is similar to an abstract data type (a set of data plus the code 
used to manipulate the data). Any number of threads can execute concurrently 



within an object. The data within an object can be accessed only by invoking an 
operation on the object, using a mechanism similar to a remote procedure call. An 
object can provide multiple operations. 

Objective. An objective specifies the desired degree of attainment of a given 
attribute such as timeliness or precision. Objectives are specified via extensions 
and generalizations of the Alpha time-value function, which we call objective 
functions or benefit functions. (The Alpha time-value function specifies both the 
importance and the urgency of producing a result by expressing the value to the 
system of producing a result as a function of when the result is produced.) 

System Resource. A system resource is a hardware or software facility that 
enables a computation to occur. Examples of low-level system resources include 
processing, communication, and storage hardware. We also refer to higher-level 
system resources such as locks and semaphores. Access to system resources is 
controlled by resource manager objects. 

Mode. A mode is a semistatic set of operating conditions for an object or set of 
objects. Modes are usually set during system initialization or reconfiguration: for 
example, the security level for an object may be determined by its mode. 

Node. A node (or processing node) is a set of processors and memory storage units 
that are tightly enough connected that they can be considered a single entity. A 
single-processor or multiprocessor computer is considered a node. A local-area 
network consists of multiple nodes. 

Activity. An activity is a unit of computation that produces a result. An activity 
may be the execution of an application, process, or thread. 

We look upon a distributed system as a layered set of objects (see Figure 2), in which the 
objects in each layer make use of the services provided by objects in lower layers In the top layer 
are the application-level objects. In the middle layer are the system-level objects, which provide 
operating system services and interfaces needed by application-level objects. The bottom layer of 
objects manage the system resources (e.g., they provide access to resources and maintain 
information about the status of resources). Resource management objects have operations that are 
explicitly invoked by other objects, as well as operations that are invoked in response to events 
such as interrupts. Each layer shown in the figure can actually be several layers, and the functions 
of the layers are not strongly differentiated. In some cases, application and system objects can act 
as managers of high-level resources such as databases, files, and locks. For the purposes of our 
model, we do not differentiate between objects that execute inside the operating system kernel and 
those that execute outside. 

The management of the system is done in several different time scales and at several different 
degrees of localization. During system initialization and during reconfiguration (as might occur in 
response to a significant loss of resources), gross decisions about resource allocation are made; 
these decisions can be made slowly and in advance of need, based on average measured or 
projected resource usages. Such high-level management decisions are global or are made on behalf 
of a large part of a distributed system. During steady-state execution of the system, scheduling 
decisions are made in real time, based on information about instantaneous availability of resources. 
Such low-level management decisions are localized to a single node and perhaps to a single 



Figure 2. Layered Model of System 

resource. The decisions required for adaptation occur at a rate somewhere between these extremes, 
use information about short-term-average availability of resources, and affect a subset of the 
distributed system. 

The overall management of the system is done conceptually and in a layered manner. 
Managers at each layer use information about the objectives of the layers above and the resources 
provided in the layers below to make decisions about resource usage for their own layers. 

2.3   INTEGRATED CONTROL 

Integrated control is the process of using common abstractions and mechanisms in a 
consistent manner to manage different resources. Integrated control confers the following 
advantages: 

• System design and management are simplified, because a small set of abstractions 
and mechanisms can be shared across the system. 

• Resources are used efficiently, because a system with integrated control will use an 
available resource when the originally intended resource is busy. 

• By using appropriate mechanisms that integrate control across a distributed system, 
it is possible to approach global optimization (maximizing the total utility of the work 
accomplished across a distributed system). 
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To achieve integrated control, the activities and the managers of system resources must 
cooperate in achieving common goals. A single manager may control which activities use its 
resource, but multiple managers must cooperate for activities to complete satisfactorily. Similarly, 
an activity can control which method to use to perform a function, but the activity needs to 
cooperate with the resource managers for the system as a whole to perform optimally. 

We separate the problem of integrated control into two categories: 

• Coordination of multiple activities among resource managers 
• Achievement of objectives despite resource constraints within a single activity or 

closely related sets of activities. 
The first category emphasizes integration across resources such as CPU, storage, and 
communication; integrated control across nodes in a distributed system can be considered a 
variation of this category. The second category emphasizes integration across objectives such as 
timeliness and precision. Together, these two categories represent an effort to achieve a system that 
best meets its objectives, given the available resources. We briefly discuss each of these categories 
in the next two subsections. 

2.3.1   Integration of Multiple Activities 
Multiple activities share the same set of resources. Figure 3 illustrates some of the resources 

used in common in any distributed system: CPU, memory, disk, and communication channels. 
These hardware resources operate asynchronously with respect to each other. Associated with 
these physical resources are resource managers that determine when and how activities use the 
resources. Some of the resources, such as the CPU and memory, are used implicitly by activities 

Figure 3. Activities Sharing the Same Set of Resources 



that do not formally invoke the resource management objects. However, the resource managers 
exert direct control by deciding which activities get to use the CPU and memory. Other resource 
managers, such as the disk and communication managers, are explicitly requested by the activities 
to perform operations like reading or writing data. Explicit requests can be performed 
synchronously or asynchronously. Only in the case of synchronous requests, where an activity is 
blocked until the manager satisfies the request, does the disk or communication resource manager 
have direct control over an activity. 

Therefore, the resource managers have partial control over the same set of activities and 
should work together to achieve their common objective (such as maximizing the performance of 
the highest priority activities, or making all hard deadlines, or maximizing the benefit for 
completing activities). To achieve the common objective, the resource managers must have a 
consistent view of what the system objective is, and have cooperating policies that manage the 
activities to best meet the objective. Furthermore, the managers must consistently interpret 
information about the activities that use them. What this information is depends on the system, but 
it can include priorities or time-benefit functions, expected computation time, and security levels. 
Since the physical resource managers are at the lowest layer of a distributed system, the amount of 
information they are required to understand should be minimized. 

The physical resources are the lowest common denominator of all activities. However, there 
are higher-level system objects that exert indirect control over multiple activities. For example, 
locks and semaphores are shared logical resources that can block the progress of multiple activities. 
Physical resource managers must know the effects of using these logical resources in order to make 
effective decisions about how to allocate their resources. (For example, the processing resource 
manager uses information to avoid repeatedly scheduling an activity that is waiting for a lock 
instead of the activity that currently holds the lock). 

In addition to providing control over a resource, the logical and physical resource 
management objects should also provide information about the resource (e.g., its load). Such 
information is required to provide integrated control within an activity. 

2.3.2   Integrated Control Within an Activity 

We now present a general description of a system model to provide integrated control within 
an activity. More detailed examples can be found in the first SRM interim report [Downing and 
Davis 1992a]. Figure 4 depicts a simple example showing the layered relationships among some 
higher-layer objects and some resource management objects that coordinate and manage access to 
disk and communications hardware. Object B explicitly uses the communication and disk 
resources; Object A uses Object B and explicitly uses the disk resource. 

Threads entering each object carry (or have associated with them) objectives, specified in 
terms of objective functions. Each objective function expresses the benefit to the application of 
obtaining a result that achieves a quantifiable amount of an attribute. For example, a thread might 
specify a time-benefit function (the benefit as a function of the time the result was produced) and 
a precision-benefit function (the benefit as a function of the precision of the results), or might 
combine the two into a composite time-precision-benefit function. 
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Figure 4. Example of Layered Relationships 

Each object or resource manager also provides information about its currently available 
resources (e.g., the amount of its capacity that is not already reserved or in use, the length of 
queues, and so forth) to other objects that use it. 

The objects (or parts of the resource management system acting on behalf of the objects) 
interpret the objective functions carried by the threads and estimate the resource requirements to 
meet the objectives. For each objective that an object understands how to interpret, the object 
contains (or can access) information that allows it to determine the amount of the resources 
required as a function of the value of the attribute associated with the objective. For example, an 
object that computes a mathematical function would have access to information regarding the 
processing time required to provide a given level of precision; an object that retrieves an image 
from a remote database would have access to information regarding the disk and communication 
time required to retrieve an image of a given resolution. Such information about resource usage, 
which is necessary if tradeoffs among objectives are to be made, might be determined analytically 
or measured experimentally. The information could be encoded within the object or be managed 
by a system resource manager, as appropriate. 

If an object does not deal with a particular objective function, the object ignores the function 
and passes it through to other objects that the object invokes. 
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For each object, decisions must be made regarding tradeoffs among the objectives that the 
object deals with, and the values of some attributes must be fixed (i.e., some objectives must be 
"actualized"). For example, if an object can produce results of varying degrees of precision, a 
decision must be made regarding which degree of precision to produce. This decision is logically 
made within each object, but may actually be made by a system resource manager on behalf of the 
object. The information that is required for making the decision is (1) the objectives for the thread, 
(2) the resource requirements to meet the objectives, and (3) the resources available. 

There are tradeoffs regarding the best layer in which to make management decisions. 
Decisions made at the lower layers, close to the resources that are being managed, are based on 
resource utilization information that is more complete and current. However, decisions made in 
higher-layer objects can take advantage of knowledge of the semantics of the objectives, can 
provide coordination among multiple lower-layer objects, and can provide more flexibility in 
carrying out decisions. In addition, making decisions at higher layers simplifies the algorithms in 
the lower layers. 

We have generally considered resource usage in terms of time (e.g., processing time, disk 
time, and communication time). It is possible to generalize resources to include, for example, 
considerations of space (e.g., memory, disk blocks, and communications buffers). In this case, the 
objective function passed to the resource would be a space-benefit function rather than a time- 
benefit function. The object would have to know the space requirements to produce a given 
objective, rather than only the time requirements. 

2.4   MULTIMEDIA CONFERENCING APPLICATION 

Multimedia applications can consume large amounts of system resources; any or all of the 
processing, communication, and storage resources may become bottlenecks. Many multimedia 
applications, such as conferencing systems, have timing preferences that are not necessarily in the 
form of hard deadlines. In addition, multimedia applications have quality-related objectives such 
as video resolution and audio/video synchronization that have large impacts on resource usage. 

For these reasons, we have defined a simple multimedia conferencing application to provide 
a framework for discussion of SRM issues and to form the basis for the proof-of-concept 
implementation. The application enables a user at one node to present a briefing to a user at another 
node (see Figure 5). The media include real-time video of the presenter, real-time audio of the 
presenter's voice, images of maps and slides (possibly overlaid by a movable pointer), and 
prerecorded audio/video cups. Most of the information flow is unidirectional, but there is a limited 
amount of feedback from the recipient to the presenter (e.g., audio questions). We assume that the 
resources (CPU, communication, storage) are not necessarily sufficient to fully satisfy the 
recipient's performance and quality objectives. Much of the discussion in this paper will be 
presented in terms of this sample application. 

Although the example application uses point-to-point communication, there is nothing in the 
model that precludes more complex applications that involve one-to-many or many-to-many 
communication. 
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3   OBJECTIVES AND OBJECTIVE FUNCTIONS 

Users of a distributed system have requirements and preferences regarding the resources that 
should be made available for accomplishing various tasks. For example, in a multimedia 
conferencing application, the recipient of a briefing has preferences regarding how the briefing 
information will be communicated and presented (e.g., the audio quality, the frame rate, and the 
image quality). These quality-of-service preferences, which we call objectives, must be represented 
in such a way that they can be used by the system resource manager for making tradeoffs among 
different tasks and execution strategies. 

In the following subsections, we discuss the various kinds of objectives that are relevant in 
real-time distributed systems, issues related to categorizing objectives, how to specify objectives 
using objective functions, and examples of objective functions for the multimedia scenario. 

3.1    OBJECTIVES 

Objectives are application specific, so there is necessarily a wide range of objectives that 
might be appropriate in various situations. We believe that it is useful to divide objectives into a 
small number of classes that share common attributes. The following are definitions of some 
classes of objectives that are applicable for distributed real-time systems: 

• Timeliness—a measure of how well the execution of a system meets time constraints 

• Precision—a measure of the quantity and quality of work performed by a system 
(e.g., the number of decimal places of results in a computation, the resolution of an 
image, or the amount of data transferred) 

• Correctness—a measure of the accuracy and consistency of the state of a system 
(e.g., the degree to which events are correctly ordered, the degree to which a value 
matches other values or external truth, or the absence of errors) 

• Fault tolerance—a measure of how many faults a system can tolerate before it fails 

• Security—a measure of how well protected a function is from disclosure or 
tampering. 

The above list is not the only possible way to classify the objectives of interest to us; for 
example, we could replace correctness by two or three more narrowly defined classes, or could 
consider fault tolerance and security to be subcategories of correctness. Furthermore, the above 
classes are not completely orthogonal. For example, suppose an application processing a stream of 
sensor data needs to process four out of every five data items for the results to be meaningful, but 
the best results are achieved if all sensor data are processed. Also, suppose that each sensor data 
item must be processed within a certain time period. If a data item is processed late, there is clearly 
a failure of the timeliness objective; however, the precision and correctness objectives might fail 
as well. 

Objectives may be defined at many levels of abstraction, including mission objectives, 
application objectives, and result objectives (see Figure 6). In the SRM model, objectives are 
associated with an application's results. All objectives are not relevant to all types of applications 
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Figure 6. Objectives Defined at Different Levels of Abstraction 

and results. For example, some applications do not have unique security objectives; they are 
willing to accept whatever security policy the system enforces. The security objectives may be 
applicable only to special management objects that make security-related decisions. An application 
can have many results and many ways of representing the results, and objectives can be associated 
with each one of these results. 

As a hypothetical example, let us examine ways of assigning objectives to simulation results. 
The manner of displaying the data can be considered a result. The same numerical results can be 
presented to a user as a listing of values, as a simple bar graph, or as a series of 3-D images. These 
are different examples of a "display quality objective" of the numerical data. Li addition, all of 
these displays can be presented in color or black and white, which could be considered an example 
of meeting a "display precision objective." Depending on the application, a decision to use black 
and white or color can indirectly affect performance, storage space, and communication 
bandwidth. In addition, the numerical data could be broken into pieces, each with its own time- 
benefit objective function. If performance becomes an issue, only parts of the data might be 
simulated in order to save time. The simulation results as a whole will have a precision objective, 
which specifies the number of runs versus the benefit (e.g., in terms of being statistically 
meaningful). This specification allows partial data to be returned to the user of the application 
instead of all or nothing. Finally, there must be a way to express the relationships among the 
different objectives, such as their relative benefits. This expression scheme allows the resource 
manager to determine how to allocate its limited resources and to avoid wasting resources, for 
example, by doing a high-quality presentation of low-quality results. 
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3.2   PROBLEMS WITH SPECIFYING ORTHOGONAL OBJECTIVES 

Our informal definition of an objective is tiie degree of satisfaction of some criterion that an 
entity (e.g., an application, a user, or the system as a whole) finds desirable. In a complex, 
distributed, real-time application, there are many possible criteria upon which objectives can be 
based, some of which are closely related to each other. Examples of such criteria include 
performance, throughput, delay (timeliness), synchronization, ordering, precision, accuracy, 
correctness, consistency, functionality, availability, reliability, fault tolerance, survivability, 
security, and safety. We will not attempt to formally define these terms, but will use them in their 
generally accepted meanings, which will be sufficiently precise for this discussion. 

In addition to these generic criteria, there are application-specific criteria that can be 
considered specializations of the generic criteria. For example, in an application involving the 
display of video information, image resolution would be a specialization of precision, and frame 
rate would be a specialization of throughput. Depending on one's point of view, frame rate could 
also be considered a specialization of precision, because a higher frame rate yields more 
information about the video sequence being displayed. 

There are many possible ways in which the criteria and their related objectives might be 
categorized. For example, performance, throughput, delay, synchronization, and ordering are all 
related to time and therefore might be grouped together. Similarly, precision, accuracy, 
correctness, and consistency are all related to quality and therefore might be grouped together. 
Another possible grouping is functionality, availability, reliability, fault tolerance, and 
survivability, which are concerned with whether services can be accessed. Yet another possible 
grouping is security and safety, which are concerned with limiting interaction between a computing 
system and the outside world. 

Unfortunately, many criteria can fit into more than one category. For example, it might make 
sense to group synchronization, ordering, and consistency, since they all deal with dependencies 
among two or more entities. As another example, throughput can sometimes be considered a 
quality criterion as well as a time-based criterion. 

Other possible categorizations divide the objectives into groups such as time-based versus 
non-time-based, or deterministic versus probabilistic criteria. The group of probabilistic criteria 
might include availability, reliability, and fault tolerance; if security and consistency were defined 
in such a way that violations were occasionally allowed (e.g., a certain convert channel bandwidth), 
then these criteria might also fit into the probabilistic category. 

There are many interrelationships among the criteria and their objectives. Often the 
attainment of one objective will implicitly assume the attainment of another. For example, 
availability implicitly assumes adequate timeliness and quality (e.g., correctness). Depending on 
the exact definitions, timeliness sometimes implicitly assumes quality. It is very difficult to devise 
definitions of criteria that are completely independent of other criteria. 

Some criteria are intrinsically interdependent. For example, in the area of communications, 
the criteria of packet delay and loss at first appear to be independent; however, further thought 
reveals that loss can be considered infinite delay, and the two criteria are therefore interdependent. 
Similarly, a synchronization objective that requires in-order packet delivery will affect how well 
the delay and reliability objectives are met. In the case of video display, frame rate appears at first 
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to be independent of resolution; however, the properties of human perception cause high resolution 
for moving objects to become less important as the frame rate increases. Thus, objectives based on 
these two criteria can be interdependent. 

In other cases, criteria that are intrinsically independent become interdependent because of 
competition for the same resources; for example, increasing the precision may decrease the 
performance in a CPU-limited system. This is a situation in which the specifications are 
independent but the implementations are interdependent. As another example, the color of a table 
and the size of the table may seem to be independent, but if the amount of paint is limited, the color 
that can be implemented may depend on the size. 

3.3   OBJECTIVE FUNCTIONS 

An objective describes the importance to the system of producing a given result according to 
a given service specification. An objective has two aspects: (1) the degree or level to which some 
service is provided (e.g., the precision of a result), and (2) the relative benefit to the system of 
obtaining a given level of the service. The objective can be quantified by expressing it as a function 
relating the benefit to the level of service; for example, we could express a precision objective in 
terms of a precision-benefit function, where benefit = /(degree of precision). 

This abstraction is similar to the time-value function used in the Alpha operating system, in 
which the value of a computation is related to the time at which it is completed. We extend and 
generalize the Alpha abstraction to allow the specification of arbitrary objectives, not just 
performance, and to include resources other than time—for example, memory or disk space. We 
generally use the term benefit rather than value when discussing objectives, since "value" is already 
used in many other contexts. 

Figure 7(a) shows a graphical representation of a typical Alpha time-value function. The time- 
value (or time-benefit) function specifies the benefit to the system of completing a computation at 
various times. The time-value function expresses both the importance of completing a computation 

Value Benefit 

Execution 
Time 

Time of Completion Quality of Service Attained 

(a) Alpha Time-Value Function (b) Generic QOS-Benef it Function 

Figure 7. Time-Value Function and Generic Benefit Function 
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(as indicated by the value) and the urgency (as indicated by the time constraint). For reference, an 
indication of the expected execution time is also included, to allow a determination to be made of 
the time that a computation must be started in order to finish by a specified time. 

Figure 7(b) shows a generic quality-of-service (QOS)-benefit function (which we also refer 
to as a benefit function or an objective function). The generic benefit function specifies the benefit 
to a user or to the whole system as a function of the quality of service (for example, precision or 
correctness) attained during a computation. In order to fully specify an objective function, it is 
necessary to define a metric that quantifies the level at which a service is provided; it is useful if 
the metric is related to a quantity that can readily be measured or observed. For example, a metric 
for precision relating to a numerical calculation might be the number of decimal places in the result. 
It is also necessary to quantify the relative benefit of achieving different values of the level-of- 
service metric, e.g., the relative benefit of three decimal places of precision versus four decimal 
places. The assignment of relative benefits is subjective and highly application and mission 
dependent, and may require experimentation. For some applications, the benefit increases as the 
precision is increased; other applications might not be able to take advantage of more precise data 
(for example, may have a low-resolution display), and the benefit would remain constant no matter 
how much the precision increased. 

In a multimedia conferencing application, the recipient of a briefing has objectives regarding 
how the briefing information will be communicated and presented. For example, the benefit to a 
user of a stream of audio/video information is a function of the video resolution, the image size, 
the video frame rate, the time delay between the generation and display of the information, the 
audio fidelity, the degree of audio/video synchronization, and so forth. The recipient's objectives 
include human factors considerations relating to assimilation of video and audio information. 
Ideally, the recipient would prefer the highest-quality audio and video for all aspects of the 
briefing. However, the ideal resources may be unavailable or unnecessary, due to limited resources, 
hardware capabilities, or different application requirements. For example, images of maps and 
slides can have a range of acceptable luminance and chrominance settings, with different resource 
requirements. For display of the presenter's face, the recipient may accept low frame rates, low 
resolution, and gray scale. However, a high frame rate, high resolution, and wide color range are 
desirable for prerecorded video cups of reconnaissance flights. The recipient may prefer as high a 
level of audio fidelity as possible, but may also be willing to accept telephone quality; may be able 
to tolerate several seconds of delay in the overall presentation, but may prefer that audio and video 
be synchronized to within a tenth of a second. Figure 8 shows two sample objective functions for 
multimedia streams. In Figure 8(a), the benefit increases as the frame rate increases, up to a plateau 
after which the user perceives no improvement. In Figure 8(b), the benefit decreases as the time 
difference between the corresponding audio and video streams increases. 

The benefits associated with given objectives can vary with the mission of the system, and in 
response to conditions. For example, some objectives are different during combat and noncombat 
periods; the changes in these objectives can be triggered by a change in the operational mode of 
the system. Objectives can also change dynamically based on the state of the system; for example, 
as a missile gets closer, the importance of dealing with the missile increases relative to the 
importance of other activities. 
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Figure 8. Sample Objective Functions for Multimedia 

By quantifying the level of service for a given objective and then assigning relative benefits 
to various levels, we can construct an objective function for any objective we wish to define. The 
major complication is in relating the benefit values for one objective to the benefit values for 
another objective. Assuming that it is possible to develop methods to compare benefits across 
objectives, a resource manager can use generic objective functions to make trade-offs among 
objectives, without needing to understand the semantics of particular objectives. The use of generic 
objectives means that we do not have to define a fixed set of objectives that apply to all 
applications, but instead have the flexibility to define new objectives as appropriate. 

When making control decisions, the various system management objectives must be 
considered together. One approach is to try to combine the various objectives for each activity into 
a single composite objective that can be plugged into the resource management algorithm. Such an 
approach is likely to be computationally intractable when several objectives are involved, except 
possibly when it is used to configure the system. Another approach is to fix certain of the objectives 
on the basis of requirements and the environment, and use the remaining objectives for scheduling 
decisions. For example, all the objectives other than timeliness might be fixed (by the selection of 
operating modes that provide appropriate levels of each) and the scheduling would then be done in 
such a way as to maximize the timeliness objective. The order in which the objective functions are 
evaluated and the objectives are fixed must be carefully chosen, since the order can affect the 
outcome. 

3.4   LIMITATIONS OF OBJECTIVE FUNCTIONS 

The purpose of an objective function is to be a general, expressive abstraction that can be used 
by a scheduler or decision maker to determine whether to schedule an application, when to 
schedule it, and how to execute it (e.g., how much execution time to allocate for variable-length 
applications). The objective functions are generalizations of time-value functions and cost 
functions that have proven to be well understood, intuitive to users, and usable by scheduling 
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algorithms such as Best Effort Scheduling [Locke, Jensen, and Tokuda et al. 1985] and Cost-Based 
Scheduling [Peha and Tobagi 1991]. Unfortunately, objective functions also have limitations that 
may have to be addressed with additional abstractions. 

Objectives that depend on the history of the system rather than just on the current state are 
difficult to attain by using objective functions as we have described them. Examples of realistic 
objectives in this category are (1) to have a covert channel below a certain bandwidth, or (2) to have 
a certain probability that a class of applications will be executed. Attempts to dynamically adjust 
the time-benefit functions on the basis of the current state of the system with respect to the 
objectives are likely to lead to instability; periods of time in which the objectives are met will 
alternate with periods in which the objectives are not met. For example, suppose that there is an 
objective to process at least 78% of all sensor input. Adjusting time-benefit functions (for example, 
by increasing the importance of processing a given sensor input when the recent average success 
rate is less than 78% and decreasing the importance when the recent rate is greater than 78%) may 
cause a pattern such as 78 successes followed by 22 failures. What is really desired is that each 
sensor input has a 78% chance of being processed regardless of the fate of the previous sensor 
inputs. This underlying aim implies the existence of some sort of "distribution objective" that has 
not been explicitly expressed. 

Another problem with objective-benefit functions is the difficulty in quantifying the benefit 
of satisfying an objective. Not everything can be quantified as easily as a manufacturing 
environment where benefits can be expressed in dollars. For example, the long-term benefit of a 
military objective like fault tolerance is hard to quantify. Also, how well a technique satisfies 
objectives is difficult to understand. For example, a replicated file can either improve performance 
or hurt performance, depending on how it is used in the long run. In addition, a replicated file can 
improve read-availabihty; but it can also hurt or help write-availability, depending on the technique 
used to maintain consistency. 
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4   SYSTEM RESOURCES 

All complex distributed systems have components for processing, communication, and 
storage. Applications compete for the use of these components through the use of management 
software such as device drivers, schedulers, databases, file systems, and communication protocols. 
This management software is a logical extension to hardware components such as CPU, disks, and 
communication transmitters and channels. It is worthwhile to distinguish between the management 
software and the hardware components, since it is only at the hardware/firmware level that 
orthogonality and independence of the functions truly exist. For example, although a distributed 
file system can be considered an extension of the storage component, it competes with other 
software for the use of both the processing and the communication components. 

In the following subsections, we take a bottom-up approach to defining system resources: we 
first describe the primitive hardware components, including the processing, communications, and 
storage components common to all systems. Next, we discuss the management software that 
extends the concepts of processing, communication, and storage. We also suggest an approach to 
management software called "stackable layers" that seems especially appropriate to the SRM 
goals. Finally, we discuss the software to monitor and distribute the status of system resources— 
a function that is critical for control integration. 

4.1    PRIMITIVE HARDWARE COMPONENTS 

In this report, when we refer to the processing, communications, and storage components, we 
are typically referring to the primitive hardware components of the system. Furthermore, we are 
discussing generic hardware components, and not specific implementations. For example, our 
discussions on the hardware components should not be confused with the subsystems in Alpha 
Release 1* [Northcutt et al. 1988]. Alpha Release 1 had a separate processor dedicated to the 
functions of processing, communication, storage, and scheduling; this processor performed both 
high- and low-level management functions; for example, the communication subsystem executed 
protocols for communication, thread maintenance, transactions, and replication. While such an 
approach maintains the orthogonality of the management software for each hardware component, 
it is not commonly used. 

The processing hardware component consists of a CPU and its associated firmware. A 
multiprocessor can have multiple hardware components. Associated with the processing 
components are attributes such as MOPS (millions of instructions per second) and MFLOPS 
(millions of floating point operations per second). The major resource that can be consumed by 
users of the hardware component is time. The processing component is of special interest in that it 
is often the main cause of contention; all management software and application software requires 
processing time. In the past, the processing component has typically been the system bottleneck, 
although the speed of the processing components has been improving faster than that of the storage 
or communication components. 

*A11 product names mentioned in this document are the trademarks of their respective holders. 
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The communication hardware component consists of the physical transmitters and receivers 
and the communication channel. A single computer can have multiple communication 
components. Attributes associated with the communication component include bandwidth and 
latency. The major resources consumed by users of the communication component are time and 
buffer space. The communication component differs from the other components in that a 
computer's communication management software (e.g., a device driver) may not have complete 
control over the resource. For example, contention for an Ethernet can result from simultaneous 
transmissions from multiple sources. 

The storage hardware component consists of disks and disk controllers as well as read-only 
memory (both shared and distributed in the case of a multiprocessor) and memory caches. The 
storage component's attributes include disk and memory capacity (percentages used, reserved, and 
available) and the speed of performing seeks, reads, and writes. Users of the storage component 
consume the time resource, but they can also consume disk space. This project emphasized the time 
resource, since time is consumed by all of the processor, communication, and storage components. 

The processing, communication, and storage components, as defined above, are the main 
hardware resources that SRM is concerned about. However, these are not the only primitive 
hardware components. For example, the Silicon Graphics, Inc. (SGI) VGX hardware supports 
65,000 test-and-set variables that can be used by management software for locks and 
synchronization. 

4.2 MANAGEMENT OBJECTS AND STAC KABLE LAYERS 

In this section, we define and discuss the role of management objects. We also discuss the 
concept of stackable layers, which can exemplify a set of management objects as well as a model 
to help support the meeting of objectives. Finally, we discuss the resources consumed by these 
objects. 

The primitive hardware components discussed above cannot function without management 
software, which can be considered as logical extensions of the hardware components. For example, 
although a distributed database system uses the processing, communication, and storage 
components, it can also be considered a high-level system function that can be dealt with as a single 
entity by an application. Such high-level functions would be implemented as management objects 
in the system. 

Management objects are typically hierarchical or layered, where the higher layer extends the 
functionality of the lower layer. For example, in BSD UNIX systems, interprocess communication 
is layered: a device driver is the lowest layer, the protocol layer (which may itself have multiple 
layers as with TCP/IP) comes next, and the socket interface is the top layer, used by all applications 
to communicate. A programmer deals with the socket interface as a single entity, even though it 
maps to multiple lower-level protocols. In our model, the device driver, each protocol, and the 
socket interface would be separate management objects that can be hierarchically layered. 

More recently, the concept of "stackable layers" has emerged from the communication and 
distributed system research communities as a way to define system architectures. Stackable layers 
allow the same operations or methods to be used for lower-level communication and storage 
management objects as well as for higher-level management objects. Such a design enables 
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functionality to be added transparently by inserting new layers. Stackable layers are often 
implemented via object-oriented techniques, and have been used to describe communication 
protocols and file systems [Peterson et al. 1990; Popek et al. 1990]. 

Figure 9 illustrates how a stackable layer architecture has been used for a distributed file 
system, one of the most important hierarchies of storage management objects. Each of the 
stackable layers of the Virtual File System (VFS), the Network File System (NFS), Ficus, 
transactions, and the UNIX File System (UFS) can be considered a storage management object that 
performs a particular function that remains transparent to the user of the storage resource. VFS 
defines a general object-oriented-like interface for accessing a UNIX file system, including 
operations such as read, write, open, and close. Each lower layer supports the same interface as 
VFS. NFS is logically below VFS and provides access to files located across the network. Ficus, 
which actually consists of three layers, provides weak-consistency replication of file system 
volumes over a wide-area network. The transaction layer is a planned layer that supports atomicity 
and other features. UFS, or a similar file system, is the lowest layer. If a function is not used or 
supported by one of the layers, calls to that function are merely passed through to the next layer. 

VFS 

NFS 

Ficus 

Transactions (planned) 

UFS 

Figure 9. Stackable Layers of a Distributed File System 

Stackable layers of management objects can play an important role in the SRM model. Each 
management layer can be used to satisfy one or more of the application objectives. In addition, 
multiple layers can support different techniques to support the same objective. For example, an 
objective that a file be available can be supported by replicating the file via Ficus, if the operations 
on this file need not be synchronized across the network; if synchronization is required, however, 
a management layer could be added for that purpose without modification to the other layers. In 
the SRM model, a thread would carry its availability objective through the management layers until 
one of the layers could satisfy it. 

Management objects that satisfy specific objectives can also be created with stackable layers. 
For example, suppose that MLS security is not required, but some level of security is desired: an 
encryption layer could be added to satisfy this objective. Another example is a compression layer 
that can be used for resource management to reduce the load on the communication and storage 
components. 
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4.3    MONITORING OF SYSTEM STATE 

System state information is used for (1) making admission control and reservation decisions, 
(2) scheduling and dropping activities, (3) selecting system and object modes and execution 
techniques, (4) load-balancing tasks across a network, and (5) tuning and optimizing applications. 
System state information includes configuration information, resource attributes, and the current 
status of the resources. The characteristics of the system state information include the following: 

• Time Properties. The data can refer a single instant, can include time sequences of 
historical data, or can consist of time averages and other statistical aggregations. In 
a distributed system in which there are significant time delays in distributing resource 
status data, instantaneous data is of little use. 

• Level of Detail. The data can contain details or can be summaries of lower-level data. 
Typically, in a layered or hierarchical system, resource monitors will collect detailed 
data from the resources being monitored, but will pass summaries to higher layers. 

• Level of Abstraction. The data can be at various levels of abstraction, from the status 
of low-level system resources to information about high-level application 
abstractions. 

• Dynamic Properties. The data can vary slowly, as in the case of configuration 
information, or rapidly, as in the case of scheduling queues. 

Configuration information is static or varies slowly. Sample types of configuration 
information are 

• The number and type of machines 

• The network topology 

• Where objects or other system resources are located in the network 

• The number of copies of a particular resource, such as a shared file. 

Associated with the configuration are the attributes of system resources; this information is 
static and includes 

• The total size of the disk, memory, or buffer pools 

• The speed of the CPU, disk, or communication channel 

• The latency of a communications channel. 

The current status of system resources is relatively dynamic and includes such information as 

• The up/down status of resources 

• Loads and queue lengths 

• The degree to which objectives are being met 

• External conditions (e.g., normal operation vs. alert) 

• Hardware and software failures and exceptions. 

The status information must be maintained appropriately. Decisions must be made as to the 
level of detail is appropriate for each type of status information, and how to obtain the information. 
Information can be distributed by contacting an agent or set of agents (e.g., monitors) or by 
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passively piggy-backing information on threads. If monitors are used, they will have to exchange 
information so that local information and some remote status information are available at each 
node. Status information can be obtained by having a monitor contacted by a management object 
when an event occurs, by having the management object regularly update a monitor, or by having 
a monitor actively poll management objects. If the monitor is regularly updated, then a pulling or 
pushing interval must be selected that is appropriate for the resource being monitored and the 
algorithms using the status information. Much research has already been done on monitoring 
[Craig 1991; De Boor 1990; Zhao and Ramamritham 1985]. In Appendix B, we discuss the use of 
open-systems-based management standards to collect status information. 
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5   CHARACTERISTICS OF EXECUTION TECHNIQUES 

A key capability of SRM is the ability to switch among alternative execution techniques in 
response to changing conditions. In the following subsections, we discuss the kinds of information 
that must be known about the execution techniques for this adaptation to occur; and we discuss 
some representative techniques that are useful for the multimedia scenario. 

5.1    EXECUTION TECHNIQUES 

The resource management system, as embodied in a set of resource management objects, may 
have one or more ways of satisfying an objective. Therefore, it is necessary to select which 
technique or set of techniques should be used to best match the objective. The characteristics of the 
techniques must be known, including (1) the degree to which an objective can be met, (2) the type 
and level of resources consumed by the technique, and (3) the dependencies among the techniques. 
If the degree of objective satisfaction and the resource usage characteristics are known, the benefits 
of the technique can be weighed against the resource availability. If the dependencies are known, 
the transitions among techniques can be evaluated. 

For example, in a distributed multimedia presentation scenario, tradeoffs must be made and 
appropriate execution techniques must be selected, based on the objectives expressed by the 
recipient (and, to a lesser extent, by the presenter), and on the availability of system resources. By 
using appropriate compression techniques, it may be possible to reduce the use of communication 
resources, although at the expense of using more CPU resources (assuming no special hardware 
support). Using lower frame rates and lower video resolutions may free CPU and communication 
resources to provide higher-quality audio. Using additional memory and disk buffers may improve 
audio/video synchronization while increasing delays. The characteristics of the various execution 
techniques (in terms of the resources used and their effect on objectives satisfied) must be 
represented in such a way that the system resource manager can use them when selecting effective 
execution plans. 

Although a resource management object can be considered an extension of the hardware 
component, it does not necessarily consume resources only on the component it manages; for 
example, a communication device driver uses processing time as well as memory buffers. For the 
resource management system to determine how to meet an objective, it needs to know the 
characteristics of the objects in terms of the resources they consume. For example, the SRM system 
needs to know the amount of time required by an object to execute an activity, in order to determine 
whether the deadline specified by the application can be met. Similarly, the SRM system needs to 
know the precision, fault tolerance, and security characteristics of the objects, as well as the amount 
of resources (processor, communication, and storage time and possibly space) required to perform 
various tasks. These characteristics are most reasonably associated with the objects or their 
operations (methods). 

Typically, real-time systems consider only the overall expected execution time of the units of 
computation being scheduled. However, if the SRM system is to provide the potential for load 
balancing across the hardware components, it is necessary to decompose the task execution time 
for each object into a finer level of granularity, possibly including information like 
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• The time spent within the different components 

• Where and when the different components are used during execution of the object 

• The shared resources used, such as particular locks. 

A scheduler could then use this information to make better scheduling decisions. For example, the 
scheduler could combine configuration information about where objects are located with resource 
use information about the expected sequence of objects to be used by a thread (see Figure 10) in 
order to balance loads across components and nodes. Such an approach could also help avoid the 
"false overload" problem experienced in Alpha. Unfortunately, the complexity of scheduling to 
such a low level of detail is likely to be prohibitively expensive; and the necessary computations 
may be infeasible in real time. Instead, the scheduler could use higher-level abstractions, such as 
the expected percent of time spent in each component, to make decisions. 

CPU Storage CPU Com Remote Node Com CPU Storage CPU 

Time 

File A B ^ Rle A, B 
Locked Unlocked 

Figure 10. Task Execution Times of Resource Usage 

In addition to decomposed task execution times, the ability of the objects to switch techniques 
in order to better satisfy application objectives must also be known. While decisions involving 
memoryless techniques, such as different Fast Fourier Transform (FFT) algorithms on a set of input 
data, can be made on a thread-by-thread basis, decisions involving other techniques, such as 
concurrency control techniques, cannot be made on a per-thread basis because these decisions 
involve multiple threads. Switching among the memory-using techniques is modal, and is slower 
than switching memoryless techniques. Furthermore, the modal techniques may have rules 
involving how to shift between techniques. For example, Figure 11 shows sample relationships 

Dynamic Voting 

Voting Splitting 

Primary Copy 

Tokens 

Figure 11. Sample Relationships among Mutual Consistency Methods 
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among mutual consistency techniques for replicated data. It is possible to transition among these 
techniques, but it may be desirable for implementation reasons for each of the techniques to switch 
only to and from the lowest common denominator (the primary copy of the data) [Bhargava and 
Riedl 1988]. Therefore, it would not be possible to switch directly from a token-based scheme to 
dynamic voting. Such interdependencies must be known in advance. 

5.2   EXAMPLE TECHNIQUES FOR MULTIMEDIA 

We have investigated various execution techniques for multimedia. These techniques can 
produce results that satisfy the objectives related to multimedia conferencing to varying degrees, 
using varying resources. For example, there are several categories of compression and encoding 
algorithms, including frequency-, prediction-, and importance-oriented categories. Within each 
category are several related techniques, such as subband or transform coding in the frequency- 
oriented category. Which technique to select in order to maximize the benefit depends on the 
available resources (possibly including special-purpose hardware) and the user objectives (e.g., the 
loss of information tolerated). We have also identified other techniques for selecting and 
maintaining frame rates, improving audio/video synchronization, reducing jitter, and supporting 
varying degrees of error correction. 

Several compression and encoding techniques for audio and video cause the data to be 
conceptually separated into layers, such that the lowest layer provides at least the minimal 
acceptable quality (e.g., resolution) and each successive layer improves upon the resolution of the 
lower ones. Typically, the higher layers depend on the lower ones, and are worthless without them. 
This encoding scheme is known as hierarchical encoding [Shacham 1992]. Hierarchical encoding 
allows a system to adapt quickly to varying environments; if it is not possible to process all the data, 
the system can simply drop the data in the highest layers. In a resource-rich environment, all layers 
are processed and high-resolution images are displayed; whereas in a resource-poor environment, 
only the lowest layers are processed and low- resolution images are displayed. 

We have described these and other techniques in a previous SRM interim technical report 
[Downing and Davis 1992b]. 
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6   DECISION MAKING 

As discussed above in Subsection 2.4, a two-level approach to resource management and 
scheduling is appropriate for the multimedia conferencing application. A set of cooperating high- 
level decision makers make decisions involving medium- to long-range trade-offs among activities 
and their objectives, and select the activities that will be permitted to run. Decentralized low-level 
schedulers associated with each resource make real-time scheduling decisions among competing 
threads within the selected activities. A conceptual architecture for decision making is shown in 
Figure 12 and is discussed in the following subsections. 

Benefit 
Functions 

Resource Usage 
Characteristics 
of Techniques 

Available 
Resources 

Tasks, 
Distribution, 
Techniques, 

Priorities, 
Time Constraints, 

Dependencies 

Resource 
Status 

Schedules (Run/Drop) 

Figure 12. Conceptual Architecture for Decision-Making 

6.1    HIGH-LEVEL DECISION MAKER 

The high-level decision maker considers user objective functions, resource constraints, and 
characteristics (e.g., resource usage and the degree to which they meet objectives) of candidate 
techniques, including the resources required to transition between techniques, and system status 
information. On the basis of this information, the decision maker chooses which activities 
(e.g., which multimedia conferences or periodic tasks) to execute; the nominal amount of resources 
to devote to each activity; and which techniques and parameters to use when executing these 
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activities, such that the objectives can be met to the optimal degree consistent with satisfaction of 
the resource constraints. The decision maker then uses these decisions as the basis for generating 
the information that is required by the low-level real-time schedulers: (1) the expected job lengths 
(execution times) for the threads within each activity, based on the selected techniques and 
parameters; and (2) the time-benefit functions for the threads, based partly on a composition of 
higher-level objective functions. 

The high-level decision maker monitors the resource usage and the level of objectives that are 
being met. If the measured values differ significantly from the goal values previously specified by 
the decision maker, the decision maker takes compensating actions such as revising resource 
allocations, techniques, and parameters. 

Given the combinatorial growth of the high-level scheduling problem (due to the number of 
alternative techniques, parameters, resources, activities, and so forth), the use of exhaustive or even 
statistical techniques is not feasible in real-time and dynamic environments. Various AI techniques 
have proven their ability to reduce the dimensions of large search spaces such as occur in the SRM 
problem domain. The SRM decision maker may use different AI techniques for initial scheduling 
and revised scheduling: namely, knowledge-based scheduling (which uses goals and constraints) 
and rule-based expert systems, respectively. Specifically, we are investigating the capacity 
scheduling technique [Sycara et al. 1991], which has been proven successful in resource- 
constrained scheduling. Note that while the extensively adaptable application described here may 
use such techniques, other applications with fewer modes of adaptability could use simple decision 
makers based on tables generated from simulations or experimentation. 

6.2   LOW-LEVEL DECISION MAKER 

Decentralized low-level resource schedulers are responsible for scheduling the threads within 
each activity (e.g., a thread that processes a frame within a briefing activity). Low-level scheduling 
decisions must have relatively low overhead and must be made quickly. The resource schedulers 
are associated with physical resources such as processors, disks, memory buffers, and 
communication channels, as well as with logical resources such as databases. Although 
decentralized, resource schedulers use integrated policies when determining their schedules. 

The low-level schedulers use resource status information, control abstractions provided by the 
high-level decision makers (time-benefit functions and job-length functions), and additional 
information (such as dependencies) that is maintained by the application. Sample scheduling 
algorithms that use information similar to this include Locke's Best Effort Scheduler (LBES) 
[Locke, Jensen, and Tokuda 1985], Cost-Based Scheduling (CBS) [Peha and Tobagi 1991], and 
Dependent Activity Scheduling (DAS) [Clark 1990]. To adapt to short-term congestion, the low- 
level schedulers can drop the least important layers of hierarchically encoded multimedia 
information, enabling the multimedia application to gracefully degrade quality. 

Integrated control among low-level schedulers requires that the schedulers consistently 
interpret abstractions (e.g., time-benefit functions, execution lengths, dependencies, and security 
levels) associated with the threads. The schedulers do not necessarily have to use identical policies, 
but they must work toward a common goal (unlike, for example, systems with processor schedulers 
that rrunimize missed deadlines, but disk and communication schedulers that maximize 
throughput.) 
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7   INFORMATION MODEL 

An information structure diagram (based on the entity relationship diagram) models the 
entities in the resource management system and the relationships among them. Such a tool is useful 
in organizing a complex system and helping the designer understand it and reason about it. 

Figure 13 shows a preliminary version of an information structure diagram for SRM based 
upon the requirements of the multimedia scenario. Boxes represent entities, and arcs (lines) 
represent relationships between entities. The arrowheads indicate the multiplicity (or cardinality) 
of the relationships, with a single arrowhead indicating that one instance of an entity is associated 
with each instance of the relationship, and a double arrowhead indicating that many instances of 
an entity are associated with each instance of the relationship. A verb describing the relationship is 
placed at one end of an arrow, and describes the relationship from the point of view of the entity at 
the other end of an arrow. Generally, the sense of the verb can be inverted, and the inverted verb 
can be placed on the opposite arrowhead. For example, the leftmost relationship in the figure can 
be read as "an application contains many threads" or "many threads are contained in an 
application." 

Another type of relationship is also shown in the figure, namely supertype/subtype or "is a." 
This relationship is indicated by arcs without arrowheads but with a short perpendicular line on the 
end of the arc closest to the supertype entity. For example, in the lower right corner of the figure, 
"processing," "communications," and "storage" are subtypes of "resource"; or we can say that 
processing, communications, and storage are resources. 
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8    PROOF-OF-CONCEPT IMPLEMENTATION 

We implemented a simple remote video presentation application in which video from a video 
camera or video cassette recorder is captured and digitized at a computer workstation, transferred 
across a lccal-area network to a destination workstation, and displayed on the monitor of the 
destination workstation. The key concept demonstrated is the adaptation of the distributed 
application to limited communication resources, according to preferences specified by the user. 

The application provides the following functionality: 
• A computer workstation with appropriate video hardware captures full-motion video 

from a video camera or video cassette recorder, digitizes the video frames, and 
compresses them, using the Joint Photographic Experts Group (JPEG) image- 
compression algorithm. 

• The stream of digitized video frames is sent via a local-area network (an Ethernet) to 
a destination workstation, using standard communication protocols (TCP/IP). 

• The destination workstation reads the digital video stream from the local-area 
network, uncompresses the frames, and displays them in full motion on its color 
monitor. 

• Via a graphical user interface on the destination workstation, the user can connect to 
the source workstation, start and stop the video playback process, and exit the 
program. The user can also specify objective (benefit) functions that express his or 
her preferences regarding frame rate, frame size, and quality (Q) factor (the latter 
controls the lossiness of the compression and therefore the quality of the images). 

• The application monitors the amount of video data transferred; on the basis of the 
observed data transfer rate, the application determines the combination of objective 
function parameters (frame rate, frame size, and Q factor) that maximizes the total 
benefit, and controls the video capture, compression, and transfer process 
accordingly. 

• The user interface continuously displays running averages of the frame rate, 
bandwidth usage, and Q factor that are attained by the application. 

The following hardware and software are required to execute the demonstration application: 

• Two Sun Microsystems, Inc. (Sun) SPARC workstations with color monitors, 
connected via a local-area network 

• SunOS (UNIX) operating system, version 4.1.3 
• Sun OpenWindows, version 3.0, with extensions to support Parallax hardware 
• Motif graphical user interface, version 1.1.4 (required for compilation but not for 

execution) 
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• A video camera or VCR with NTSC* video output 

• A Parallax Graphics, Inc. (Parallax) XVideo video board and XVideo Toolkit 
software. 

The logical architecture of the SRM multimedia demonstration is shown in Figure 14. The 
application consists logically of three parts: a sending process (executing on the source 
workstation), a receiving process (executing on the destination workstation), and a controlling 
process (executing on an arbitrary workstation, but typically on the destination workstation). 

Video Camera 

Controlling Process 

Disp ay 

/ monitoring              monitoringx^ 

1         ■ 

/          and                        and           \. 
/           control                   control            >v 

1 I 

Receiving Process 
video stream 

Figure 14. Logical Architecture of SRM Multimedia Demonstration 

A more detailed view of the architecture used for the implementation is shown in Figure 15. 
An OpenWindows server process on the source workstation manages interactions with the video 
camera (via a Parallax board) and acts as the sending process. The functions of the controlling and 
receiving processes are combined in a process that executes on the destination workstation. An 
OpenWindows process on the destination workstation manages interactions with the display (via a 
Parallax board). 
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Figure 15. Implementation Architecture of SRM Multimedia Demonstration 

*NTSC: National Television Standard Committee. 
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A video camera or VCR generates an analog video signal that is digitized and compressed by 
a Parallax board in the source workstation. The sending process and the Parallax board perform 
various operations on the digital video stream, such as modifying the frame rate, frame size, or Q 
factor. The resulting digital video stream is transmitted over the network to the destination 
workstation via TCP/IP. Additional processing is optionally done at the destination, and the video 
stream is then passed to a Parallax board, which uncompresses each frame and displays it in a 
window. 

The controlling process has a user interface that allows the user to specify frame rate, frame 
size, and Q factor preferences, and to control operations such as starting and stopping the video 
capture and display. A high-level decision maker combines user preference information and status 
information from the receiving process to determine the optimal values for the frame rate, frame 
size, and Q factor. The selected values are communicated to the sending process, where they affect 
the operations performed by the Parallax board. 

The key algorithm used in the application is the one used by the high-level decision maker, 
this algorithm is described in pseudocode below. 

LOOP: 
determine which parameter can be decreased with the least loss of benefit; 
if image quality reduction is best then 

reduce the image quality (by changing the Q factor); 
run with the new Q factor, collect statistics, and calculate the resulting bandwidth; 
if satisfactory then 

gotoDONE(finished); 
else 

go to LOOP (try again); 
else if frame size reduction is best then 

calculate the resulting bandwidth assuming a reduced frame size; 
if satisfactory then 

reduce the frame size; 
go to DONE (finished); 

else 
calculate the resulting bandwidth assuming a reduced frame rate; 
if satisfactory then 

reduce the frame rate; 
go to DONE (finished); 

else 
reduce the frame size; 
go to LOOP (try again); 

else if frame rate reduction is best then 
calculate the resulting bandwidth assuming a reduced frame rate; 
if satisfactory then 

reduce the frame rate; 
go to DONE (finished); 

else 
calculate the resulting bandwidth assuming a reduced frame size; 
if satisfactory then 

reduce the frame size; 
go to DONE (finished); 

else 
reduce the frame rate; 
go to LOOP (try again); 

DONE: 

39 



The high-level decision maker considers the three objective functions and the measured 
average throughput when determining which values for the frame rate, frame size, and Q factor are 
best. Because the bandwidth usage is proportional to the frame rate and the frame size, it is easy to 
calculate the change in required bandwidth that will result from a given change in frame rate or 
frame size. However, there is no simple relationship between changes in Q factor and changes in 
required bandwidth; for a given Q factor, the amount of compression attained (and therefore the 
required bandwidth) depends on the complexity of the contents of the frame. The decision maker 
must therefore determine the effect of changes in the Q factor by monitoring the changes in 
bandwidth as the Q factor is varied. 
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9    RELATED WORK 

In the following subsections, we briefly discuss related work on aspects of the system resource 
management problem. We discuss algorithms for scheduling individual resources, as well as 
algorithms that consider more than one objective. We discuss recent or current projects sponsored 
by Rome Laboratory and other agencies that show potential for symbiosis with the SRM project 
and follow-on work. 

9.1 SCHEDULING 

Considerable research has been done to develop algorithms for the real-time scheduling of 
individual low-level resources such as CPU, disks, buffers, and communication channels. Many of 
the algorithms use information that can be derived from time-benefit functions and estimated task 
execution times. In general, when more information is used, better results are obtained, but at 
higher scheduling overheads. 

Some scheduling approaches have considered trade-offs among particular objectives: for 
example, timeliness and importance (e.g., LBES [Locke, Jensen, and Tokuda 1985], CBS [Peha 
1991], and DAS [Clark 1990]); timeliness and precision (e.g., Liu's algorithms for scheduling 
imprecise computations [Liu et al. 1991] and CHAOS [Gopinath and Schwan 1989]); and 
timeliness, importance, and precision (e.g., Better Late than Never [Moiin and Smith 1992]). The 
approaches that trade off precision, importance, and timeliness are the most general, since many 
high-level objectives can be mapped into these low-level objectives. There are alternative 
abstractions for supporting precision: precision-value functions, OR dependencies, and precedence 
constraints. The advantages and disadvantages of these abstractions for precisions should be 
further investigated, for example, by using simulations to compare (1) CBS with OR dependencies 
of alternate precisions; (2) LBES adapted to support alternate precisions using an approach like that 
of Liu et al.; and (3) the approaches proposed by Moiin and Smith. 

Related work in low-level integrated scheduling and control was discussed in a previous SRM 
interim report [Downing and Davis 1993]. 

9.2 RELATED PROJECTS SPONSORED BY ROME LABORATORY 

Under the sponsorship of Rome Laboratory, the problem of managing limited system 
resources to meet objectives has begun to be addressed in such projects as the Alpha Soft Real- 
Time Operating System project, the Adaptive Fault-Resistant Systems project, the Cooperative 
Gateway project, and the Multilevel Secure Real-Time Distributed Operating System project. In 
the following subsections, we briefly describe the aspects of these projects that are relevant to 
SRM. 

9.2.1   Alpha Soft Real-Time Operating System 
The Alpha operating system provides support for mission-critical, real-time computing in 

large, complex, distributed environments. Alpha considers both the importance and the urgency of 
competing activities when determining an execution schedule, and expresses these attributes using 
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time-value functions. Scheduling is done using "best-effort" algorithms that provide graceful 
degradation under overload conditions. The Alpha distributed computing model is based on threads 
and objects. 

Many SRM abstractions are extensions and generalizations of Alpha abstractions; for 
example, SRM objective functions are generalizations of Alpha time-value functions. Alpha 
currently does not handle attributes other than time constraints (for example, precision 
requirements), and it does not coordinate the management of resources other than processing time 
(e.g., buffers); nevertheless, it provides a good starring point for SRM. 

In a project currently sponsored by Rome Laboratory, the Alpha/Mach Integration Study 
[Burke 1993], the important features of Alpha, such as distributed threads and best-effort 
scheduling, are being integrated into the Mach kernel. The resulting Alpha/Mach Integrated 
Operating System, expected to be demonstrated in early 1996, will be a useful research tool for 
future SRM concepts. 

9.2.2   Adaptive Fault-Resistant Systems 

The Adaptive Fault-Resistant Systems project [Goldberg et al. 1993] is developing a model 
for adapting among different techniques for providing fault tolerance. Figure 16 shows the data 
flow of AFRS, which is similar at a high level to the data flow for SRM. The AFRS project focuses 
on fault-tolerance issues, while the SRM project is concerned with developing a model for system 
resource management as a whole. In future SRM work, the model and the adaptivity techniques 
developed within the AFRS project may be generalized to include other application objectives. 

In a related project [Gupta 1993], a prototype implementation is being developed that 
demonstrates the dynamic adjustment of fault management techniques in response to changes in 
system requirements. 
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Figure 16. High-Level Data Flow in the Adaptiv© FaüSt-Ftesistatit Syster 
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9.2.3 Cooperative Gateway 
The goal of the Cooperative Gateway project [Lee et al. 1993] is to design and demonstrate a 

prototype cooperative gateway for interdomain, policy-based communications that satisfies the 
requirements of the International Military Internet. The Cooperative Gateway project allows the 
specification of objectives and requirements (i.e., policies) for routing messages; some of the 
abstractions will be relevant for future phases of the SRM project. A brief outline of objectives that 
are being considered for the Cooperative Gateway, including an indication of each objective's 
priorities and whether the objective is planned to be demonstrated is provided below. 

Access Restrictions 
— Path 

* Source user class identification, host, or domain (1 )*t 
* Destination host or domain (1) * 
* Entry/exit domain* 
* Domain (to be) traversed (1) 

— Time of day (5) 
— Traffic type 

* Protocol (e.g., FTP or mail) 
* Data, voice, or video 
* Traffic sensitivity levels (e.g., security) (3) 
* Data semantics (e.g., sensor data) (3)* 

— Service 
* Precedence (e.g., priority) (4) 
* Mutual aid 
* Resource allocation (i.e., congestion) (2) 

- Usage limitation* 
- Sharing on a noninterfering basis 
- Sharing with guaranteed percentage of resources 

•       Quality of Service: Performance (e.g., throughput, delay, reliability) 
Cost: 

— Bytes transmitted 
— Packets transmitted. 

'Asterisks denote policies planned for prototyping. 

fNumbers in parentheses indicate the relative importance of the policies: higher numbers indicate greater importance. 

The Cooperative Gateway project deals mainly with communication resources and is not 
explicitly concerned with real-time issues; however, its use of policies for making routing 
decisions may be applicable to some aspects of integrated resource management. 

9.2.4 Multilevel Secure Real-Time Distributed Operating System 
The Multilevel Secure Real-Time Distributed Operating System project (also known as 

Secure Alpha) [Greenberg et al. 1993] developed abstractions related to trade-offs among security 
and other requirements such as timeliness, distribution, robustness, and adaptability. Applications 
are able to specify information to the Secure Alpha operating system that allows Secure Alpha to 
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make informed tradeoffs when all application requests cannot be satisfied. For example, 
applications can specify time constraints, the relative importances of different activities, guidelines 
for trading off among requirements, and scheduling policies. 

The Secure Alpha project studied the tradeoff between timeliness and covert channel 
bandwidth. (A covert channel is a communication channel that allows a process to transfer 
information in violation of a system's security policy. A covert timing channel is one in which a 
process signals information by using system resources in such a way that the response times of 
other processes are affected.) The statistical nature of security violations is related to the statistical 
nature of other kinds of system faults that are relevant to the SRM project. 

9.3 OTHER RELATED PROJECTS 

The following efforts that are currently underway at SRI are relevant to the SRM project. 

9.3.1    Heterogeneous Multicast 
In a current project sponsored by ARPA, Heterogeneous Multicast (HMC) [Shacham 1992], 

SRI is researching techniques for efficiently communicating multimedia information from a single 
source to multiple destinations in a heterogeneous networked environment. Because of differing 
capacities on the various links, and differing display capabilities on the various terminals, it is 
desirable to route different parts of the multimedia information to different destinations. The 
approach used by HMC is to separate the data into multiple layers of varying quality, in such a way 
that the data in each layer augments the data in lower layers. The layers are communicated as 
separate data streams. Each user specifies which layers are needed, and the HMC system routes the 
layers appropriately to conserve communication resources. A typical set of layers is shown in 
Figure 17. Layer 0 contains an audio stream, which is considered the most important information. 
Layers 1 and above contain streams of video frames; each frame is encoded via JPEG compression 
algorithm. The lowest layers contain low-quality images, as reflected by large Q factors. (The Q 
factor is an indication of the amount of data loss; a large Q factor indicates more compression and 
greater data loss, and therefore lower quality.) Higher layers contain successively higher-quality 
images. In the particular coding method used within HMC, each video layer is independent of the 
lower layers, resulting in some redundancy (since the information at lower layers is repeated in the 
upper layers). A different coding algorithm could eliminate this redundancy and therefore use the 
communication resources more efficiently. 
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Figure 17. Typical Layers for Hierarchical Multicast 
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The HMC project deals only with communication resources, but the concepts are transferable 
to other kinds of resources. For example, applications could be structured to produce sets of partial 
results with different levels of precision; similar approaches have been used for scheduling 
imprecise computations [Liu et al. 1991]. 

9.3.2   Multimedia Multiplexer 
In a recent project sponsored by the Electronics and Telecommunications Research Institute 

(ETRI) of Korea, SRI has developed a multimedia input/output server, the Multimedia Multiplexer 
(MuX) [Rennison et al. 1993]. The MuX server is coresident with the X Window System server 
and provides support for the integration and synchronization of time-based media streams. Key 
aspects of MuX include a client-server model to facilitate distributed computing; a well-developed 
media integration model; fine-grained synchronization and integration; network-transparent access 
to multimedia data; and a scripting language to specify time and space relationships among the 
media. The MuX server has already incorporated some of the concepts of SRM, including using 
objective functions to specify user preferences and scheduling competing threads using best-effort 
scheduling. Multimedia applications built on a modified MuX server may be useful for 
demonstrating SRM concepts. 
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10   CONCLUSION 

In the following subsections, we briefly review the status of the current SRM effort and 
recommend areas for future research. 

10.1 STATUS 

We have developed a model for integrated resource management in distributed real-time 
systems that considers user objectives, resource constraints, and adaptable execution techniques. 
In developing the model, we have explored a wide range of topics, have defined the scope of the 
problems that should be addressed under this program, and have identified potential approaches to 
solving these problems. 

Our model used key abstractions from the Alpha soft real-time operating system as a starring 
point, including such abstractions as distributed threads, objects, and time-value functions. We 
developed the objective function abstraction as a generalization of the Alpha time-value function. 

We notionally applied the model to a multimedia scenario (and, to a lesser extent, a C 
scenario). We implemented a proof-of-concept demonstration of high-level integrated control, 
using a simple distributed multimedia application. 

10.2 RECOMMENDATIONS FOR FUTURE WORK 

In follow-on work to the SRM project, it will be necessary to further develop and apply the 
work begun in the first phase. We recommend the following efforts: 

1.  Refine the concepts developed during the first phase. 
A. Further develop and formalize the models (e.g., the objective functions and the 

architecture of the control model) developed during the first phase; develop a 
model for combining and trading off multiple, possibly conflicting, objective 
functions. 

B. Further develop algorithms for making distributed control decisions. 

(1) Determine the required inputs to the algorithms (e.g., information about 
resource status, application resource usage, and application objectives). 

(2) Determine what will be controlled and/or managed, and what the 
required outputs of the algorithms will be. 

(3) Develop decision algorithms. Such algorithms must be capable of 
efficient and scalable implementation in distributed tactical computing 
environments. Examine alternate approaches for limiting the search 
space, such as heuristic or knowledge-based approaches. 
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Develop the necessary support software. 

A. Determine the required application support and interfaces to the underlying 
resource management system. 

B. Implement the key resource management algorithms and mechanisms within 
or above an operating system such as UNIX, Alpha, Mach, or integrated 
Alpha/Mach. When appropriate, use existing products or standards (for 
example, network management protocols and management information 
bases). 

C. Implement a toolkit that allows applications to access the services of the 
resource management system. 

Develop a demonstration application. 

A. Implement a demonstration application (or extend an existing one) that uses 
the toolkit and the resource management system, and that shows the benefits 
of the selected approach. Potential applications include an extended 
multimedia conferencing application based on one developed during the first 
phase of the SRM project, or a C2 application based on a demonstration 
command, control, and battle management (C2BM) system developed for the 
Alpha operating system at Carnegie Mellon University and Concurrent 
Computer Corporation. 
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A.1    INTRODUCTION 

The System Resource Management (SRM) program goal is to define mechanisms for 
real-time management and control of distributed resources for specific classes of users and 
applications. This goal poses formidable problems; yet, by extending SRM to incorporate existing 
standards-based management work, the SRM program can effectively advance its goals. In this 
appendix we seek to define a strategy for expanding the SRM work into two areas: integration of 
communication resource management, and utilization of open systems based management 
standards. 

Several communities have participated in the management standardization efforts 
representing various interests. Although past work has focused on management of communication 
resources, the architectural models proposed are applicable to system and communication resource 
management Standards not only define an overall architectural model for system management, but 
also provide a common syntax for defining management information, a common protocol for 
accessing that information, and the beginnings of functional units for manipulating that 
information. By basing the SRM management information structure, manager interactions, and 
management functions on standardized interfaces, SRM can leverage existing standardized 
products, as well as provide a flexible and extensible framework for future distributed integrated 
management efforts at Rome Laboratory. 

This appendix has five sections. Section 2 presents background information on the scope and 
status of the standardization efforts and outlines how SRM fits into these system management 
models. Section 3 presents a more detailed look at the standards and how they apply to 
communication resources; initial strategies for defining how SRM can use these management 
standards are discussed. Section 4 presents the preliminary work within the standardization 
communities in the area of host and system resources. Again, strategies are presented for defining 
how SRM can benefit from this existing work. Section 5 lays out possible future strategies for the 
System Resource Management Program. 
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A.2 SYSTEM MANAGEMENT STANDARDS 

For a more comprehensive description of standardization efforts, the reader is referred to the 
general texts [Westgate 1992; Rose 1990]; the International Standards Organization (ISO) 
standards; and the Internet Requests for Comments (RFCs). 

A.2.1    SCOPE 

System management, in its most general sense, is the management of resources. The term 
resource can mean anything that plays a part in the operation of a system, including hardware, 
software, a process, or stored data. Although the system management effort was initially focused 
on communication resource management, the basic models proposed are being extended to apply 
to the management of distributed applications. The discussion and examples presented here are 
focused mainly on communication resources. Within any management framework, there are 
various levels at which a "management" task might be performed: 

• Management within the operation of an instance of communication (i.e., negotiation 
of quality of service parameters). These mechanisms are generally provided by the 
protocol in use. 

• Management within a given layer of the communication stack (i.e., routing tables 
updates for network layer protocols, or station management for FDDI), which can 
affect several instances of communication. These mechanisms generally use a 
special-purpose layer management protocol to perform their function. 

• Management of system resources through the use of general-purpose management 
tools and protocols. 

The goal of integrated system management implies that one utilizes the latter (i.e., general 
purpose management tools and protocols), to monitor, control and coordinate the operation and 
layer management tasks. To achieve this goal, management standardization efforts have defined 
the following: 

• A structure for the representation of management information 

• Common management functions and services 

• A common protocol as a means of communicating management information. 

Note that the above are defined independently of the particular resource being managed. 
System management, therefore, is really more the management of the abstraction of a resource 
(i.e., a managed object). 

As with other areas of computing technology, there are multiple methods and proposals for 
system management. Each method has its advantages and disadvantages when applied to a given 
system. These efforts, however, are not diametrically opposed, and through intermediaries such as 
application gateways and proxies, are being brought together in integrated management systems. 
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A.2.2   SYSTEM MANAGEMENT ARCHITECTURE 

The following discussions of system management architecture have a decidedly OSI slant. 
This is not meant as a wholesale endorsement of that approach, but rather, a recognition and 
acceptance of the terminology and functional divisions and units they propose. Similar capabilities 
may or may not be found in other approaches, but the author believes that most commercial 
management future strategies will necessarily accommodate at a minimum both the Internet and 
the OSI methods. 

OSI divides the functional requirements of system management into five broad categories. 
The following descriptions have been taken from ISO standard 7498-4: 

Fault management is the set of faculties which enables the detection, isolation and 
correction of abnormal operation of the OSI Environment (OSIE). Faults cause open 
systems to fail to meet their operational objectives and they may be persistent or 
transient. Faults manifest themselves as particular events (e.g., errors) in the operations 
of an open system. Error event detection provides the mechanism for recognizing faults. 
Fault management is the set of faculties to: 

maintain and examine error logs; 
accept and act upon error detection notifications; 
trace faults; 
carry out sequences of diagnostic tests; 
correct faults. 

Configuration management identifies, exercises control over, collects data from and 
provides data to open systems for the purpose of preparing for, initializing, starting, 
providing for the continuous operation of, and terminating interconnections services. 
Configuration management includes functions to 

• set the parameters that control the routine operation of the open system; 
• associate names with managed objects and sets of managed objects; 
• initialize and close down managed objects; 
• collect information on demand about the current condition of the open 

system; 
• obtain announcements of significant changes in the condition of the open 

system; and 
• change the configuration of the open system. 
Performance management enables the behavior of resources in the OSIE and the 

effectiveness of communication activities to be evaluated. Performance management 
includes functions to 

• gather statistical information; 
• maintain and examine logs of system state histories; 
• determine system performance under natural and artificial conditions; and 
• alter system modes of operation for the purpose of conducting 

performance management activities. 
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The purpose of security management is to support the application of security 
policies by means of functions which include 

• the creation, deletion and control of security services and mechanisms; 
• the distribution of security-relevant informations; and 
• the reporting of security-relevant events. 
Accounting management enables charges to be established for the use of resources 

in the OSIE, and for costs to be identified for the use of those resources. Accounting 
management include functions to 

• inform users of costs incurred or resources consumed; 
• enable accounting limits to be set and tariff schedules to be associated with 

the use of resources; and 
• enable costs to be combined where multiple resources are invoked to 

achieve a given communication objective. 

Although these areas are useful for general discussion and analysis requirements, they quickly 
become amorphous when one is talking about actual management applications and the functions 
they perform (e.g., consider a management application that detects degradation of service between 
two hosts, but upon closer examination determines a communication link is at fault, and corrects 
the problem by reconfiguring the line). This recognition that management applications are actually 
built upon functional units led the OSI community to define common management capabilities and 
objects as well as support routines and objects for those management functions. 

A.2.2.1    Management Information 

Fundamental to system management is the concept of the managed object (MO). The MO 
represents the resource to the management system. The management information is accessed via 
management operations, the results of those operations, and notifications representing events of 
significance as passed from the MO to the manager. Hence, in ISO terminology, a MO is defined 
in terms of 

• The properties or characteristics visible at the managed object boundary—these are 
termed its attributes, and each attribute has a value 

• The management operations that may be applied to it 

• The behavior it exhibits in response to management operations 

• The notifications it emits. 

The ISO standards 10165-2 and 10165-4 represent the ISO definition of management 
information and guidelines for the definition of managed objects (GDMOs), respectively. The 
Internet equivalent is defined in RFC 1155. 
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A.2.2.2   Management Functions 

The concept of management of functional areas in OSI grew out of a lengthy process of 
analyzing the requirements for network management. It was recognized that among the five areas 
of network management, common functional requirements existed for the logging of information, 
notification of events, scheduling of tasks, alarm reporting, and so forth. In addition, because of the 
chosen structure of management information, functional units specifically for the management of 
management information (i.e., object, state, and relationship management) were required. 

The work load monitoring function (ISO 10165-11) and summarization functions (ISO 
10165-13) are sample functions utilized in performance management. The work load monitoring 
function provides parameters from which a work load value can be calculated; it also provides the 
ability to capture the data (through polling), enhance the data through statistical averaging, and 
gauge the data according to specified thresholds. The summarization function extends the work 
load monitoring capabilities by being able to aggregate data from one or more attributes that may 
be obtained from one or more managed objects. Underlying the concept of summarization is the 
concept of a scanner. The standard defines various types of scanners that are differentiated by the 
statistical algorithms they use when enhancing and analyzing the data, and the nature of the objects 
and attributes to be monitored. 

An additional functional unit of interest to SRM is the accounting meter function (ISO 
10164-10), currently in draft status. This standard identifies the following objects of concern to 
accounting management: 

• An accounting meter, which accounts for the usage of an resource 

• An accounting record, which is a structure representation of accounting data 

• An accounting log, which provides a repository for accounting records 
• A quota record, which maintains information to authorize the use of a resource by a 

particular user. 

A.2.2.3   Management Communication 

The services and protocols supporting OSI management are provided by the Common 
Management Information Service Element (CMISE) and the Common Management Information 
Protocol (CMIP). Although originally specified to run over full OSI stacks (i.e., underlying 
connection-oriented transport of TP4), implementations exist that run over a TCP/IP stack (RFC 
1006), and within LAN environments at the data link layer level (IEEE standard 802. IF). The 
Internet approach utilizes the Simple Network Management Protocol (SNMP). 

In general, these approaches provide services for the retrieval and manipulation of 
information (gets and sets), and event-driven services such as event notifications and information 
reports. In addition to these, the OSI approach provides services for managed object manipulation 
such as the creation and deletion of a managed object and the invocation of a management action. 
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A.2.2.4   Management* Model 

The OSI model for management is shown in Figure A-l [Westgate 1992, p. 8]. 

A managing process exists in a managing system and communicates with a managed system 
concerning one or more managed objects. The managed system contains an agent process, which 
is responsible for controlling access to the managed object (i.e., the management operations), and 
disseminating results of the operation in the form of event reports, and/or confirmations as 
appropriate. This simple manager/managed model can be hierarchically extended such that a 
system may act as a managing system in one interaction, and as the managed system in another. 
Figure A-2 is an illustration of such possible multisystem configurations [Westgate 1992, p. 11]. 

A central problem of management is compressing vast amounts of real-time operational data 
to accomplish management decisions. Although the concept of layering the management allows 
increasing levels of abstraction and distillation of information, it can also distance the final 
management decision from the actual resource to the point where delays and overhead may make 
that decision potentially useless. The desire for an indication of the instantaneous resource state 
must be weighed against the overhead incurred in obtaining that status. 

Managing System 

Managing 
Process <- 

transfer of 
management 

operations and 
notifications 

Sufis';3■?}■?> "^vl ^^^TiT^l BiJj-SJd i.i&l ■i-| <Sy id   ^5y ■aD'ii'-.S'J li j 

Managed 
Objects 

Figure A-1. Basic M@de3 for GOTMoMsslJi®^ 

A.2.3   EXISTING STANDARDS AND ORGANI^TB©Mi 

The two primary organizations that promote management standards are the Network 
Management Area within the Internet Engineering Task Force (IETF) and the Network 
Management Working Groups within the ISO OSI community. The former is by far the most 
ubiquitous in terms of products, installations, and accessibility. The latter has yet to reach its full 
potential, but is gaining support from substantial industry partners. A third organization promoting 
yet another alternative is the Open Software Foundation (OSF) and the proposals for Distributed 
Computing and Management Environments (DCE and DME). Very generally, it can be said that 
the IETF proposals come from the data communication perspective, the OSI proposals from the 
telecommunication perspective, and the OSF proposals come from the relatively newer distributed 
computing perspective. To further characterize these approaches, it could be said that the Internet 
approach was bottom up (focused on end devices) and the ISO approach has been top down 
(defining application requirements). The DME approach is somewhere in the middle, attempting 
to generalize management services and interfaces to those sen/ices. The following sections briefly 
review these various approaches. 
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Figure A-2. Multisystem Configuration 

A.2.3.1    SNMP 
The structure and identification of management information for TCP/IP-based internetworks 

was first proposed in a collection of Internet RFCs in 1988. The underlying premise behind the 
approach was simplicity with extensibility; hence the name of the protocol: the Simple Network 
Management Protocol. At the time SNMP was initially proposed, it was viewed as a short-term 
solution, and it was assumed that the longer-term approach would be OSI's Common Management 
Information Protocol running over TCP/IP (CMOT). An evolutionary path was guaranteed by 
maintaining a similar structure of management information for both protocols. The increased 
complexity of supporting CMOT led the developers to abandon the CMOT transition path. SNMP, 
in the meantime, has gained a strong foothold in the marketplace, ensuring in some form its 
continued longevity. The SNMP protocol operates over a connectionless service (UDP) and 
assumes a polling paradigm. SNMP offers basic services for the retrieval and manipulation of 
management information (get, get-next and set) and basic event notification (trap). The next 
version of SNMP, SNMPv2, expands on basic services by providing mechanisms for large 
information transfer and a confirmed transfer (getBulk and informPDU, respectively), and 
additional security provisions. 
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In keeping with the concept of SNMP's simplicity, the SNMP developers chose a simple 
structure for management information. Managed objects are accessed via a virtual information 
store, termed the Management Information Base (MIB). Although management information is 
described by the data description language Abstract Syntax Notation One, (ASN.l), only a small 
subset of primitive types were allowed. The concept of an object type was also kept simple in that 
it basically is an abstraction of a single variable. Objects are related to each other by being grouped 
together in conceptual tables. Initial MIB definitions have focused primarily on end devices (e.g., 
modems, bridges, terminals, hubs, and concentrators). Application working groups are currently in 
the process of defining MIBs for such applications as electronic mail and directory services. 

A.2.3.2   CMIP/CM1SE 

Subsection A2.2 above has provided some background on the OSI architecture for system 
management. The OSI management approach provides a complex and extensive structure for 
management information. In contrast to the SNMP approach in which managed objects must be 
statically defined, CMIP/CMISE provides services and functions for the dynamic creation, 
deletion, and manipulation of managed objects. 

A.2.3.3   OSFDME 

The Distributed Management Environment (DME) was created by the Open Software 
Foundation (OSF) to address the need for an integrated approach to distributed resource 
management. DME itself does not include much in the way of traditional management 
applications. Instead, it provides common platforms for developing those applications. Much of 
DME relies on previous OSF technology, the Distributed Computing Environment (DCE), and is 
oriented towards system management. DME consists of several components. The network 
management option (NMO) provides a platform for traditional network management applications. 
The NMO includes both SNMP and CMIP as underlying protocol options accessed via a common 
interface. For system management, DME provides an object management framework (OMF) and 
an object-oriented platform for distributed peer-to-peer applications. Lastly, DME provides a set 
of general services for distributed printing, event notification, license management, and software 
distribution. 

A.2.4   SRM ARCHITECTURE AND SYSTEM MANAGEMENT STANDARDS 

SRM proposes a generic model of management that is both bottom up and top down. From 
the bottom, the integrated control occurs at the points of potential conflict, i.e., the shared 
resources. From the top, objectives are used to resolve or avoid the resource conflicts. The major 
functions required by SRM are 

• Monitoring (capacity analysis) 

• Decision making (decision makers) 

• Control (resource scheduling). 
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The components of the SRM architecture are resource managers, resource monitors, decision 
makers, and user interfaces. Outside of the user interface, the requirements of each component map 
into structures and services provided by the management model. The monitoring and control of a 
resource requires an abstraction of the resource in the form of management information, as well as 
protocols for the access to that information. Most of this information, although voluminous, is 
fairly generic and applicable to any number of management applications. Examples of existing 
MIB definitions that are potentially applicable to these needs are presented in the following 
sections. The decision-making component will require knowledge of user requirements and of how 
well those requirements can be met by the underlying resources, in terms of how well the objective 
functions map to the observed performance and capabilities of the resource. The resource managers 
provide the needed control over the resource in terms of both preventive operations (e.g., routing, 
scheduling, and bandwidth allocation) and reactive operations (e.g., overload control and 
window/rate control). 

A.2.4.1    SRM Architecture 
The SRM architecture defines at its lowest level resource monitors responsible for 

mamtaining and reporting the status of the processing, communication, and storage resources. The 
resource monitor process represents an abstraction of the actual physical resource. In standards 
terminology, the resource monitor is the management agent. Each agent process provides basic 
information about the state of its resource and control over it. This syntactic information is 
represented by the MIB, is independent of higher-level management functional areas and can be 
architecture specific (by architecture, we mean the chosen structure of management information 
and communication, i.e., SNMP vs.CMIP/CMISE vs. others). Above this layer are generalized 
manager processes that perform some form of correlation and coordination of management 
information and control. It should be noted that many manager processes may also be significantly 
removed from the actual management applications, so as to be incapable of providing the needed 
semantic integration of the information. The SRM resource high-level decision makers represent 
application-specific manager processes. These applications provide the management and control 
of a distributed set of resources and hence the mechanisms necessary for performing the integration 
of SRM. However, by utilizing a uniform view of the resources in terms of standardized manager 
and agent interfaces and structure, the SRM management processes are reduced in complexity. 
This next level of abstraction within the management processes has been recognized as the next 
step in the evolution of management architectures. The recent lblP conference on Integrated 
Network Management (IFIP 93) presented many works in progress in this area [Neumair 1993]. 

A.2.4.2   SRM Layered Approach 

To begin the process of deriving our layered model, it is necessary first to select a generic 
system management model that will be suitable as a basis for refinement of the SRM-specific 
requirements: i.e., modelling the processor, communication, and storage resources and the SRM 
component requirements of performance monitoring and control. The natural choice is the use of 
the object-oriented paradigm. Among other reasons, this choice facilitates the mapping of the SRM 
requirements to the standardized management information. We have initially identified as our 
model the OSI object-oriented model, because it is felt to provide the needed abstractions and 
extensibility to support our project; however, other models should also be investigated for their 
suitability to SRM program and objectives. 
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The second step requires the characterization of performance-related properties that can be 
uniformly applied to all classes of relevant resources and are adequate for integrated performance 
management. This definition will be based on the information demands (objective functions) of the 
applications supported by SRM. Essentially, these high-level objective functions must be mapped 
to low-level capabilities. Some have referred to this mapping as the defining of "health functions" 
of the resource [Goldszmidt and Yemini 1993], while others use the term "quality of service." 
Health functions define observable, distilled points of resource behavior. SRM objective functions 
define what it means to be healthy as far as the user is concerned (i.e., the boundaries or thresholds 
of good health and bad health). To reduce the complexity, it is important that the identified health 
functions be small in number, yet accurately capture the essence of the capability of the resource. 

The third step is to uniformly apply the health functions to the resources in our generic system 
management model. This step requires a mapping of our identified SRM health functions to the 
available standardized management information. Some of these capabilities and quantities are 
supported by the existing standards (ISO standard 10165-11 and RFC 1271); others can be derived 
from the provided information or will need to be defined completely by SRM developers. The next 
sections discuss these issues. 

A.3   COMMUNICATION RESOURCES 

SRM currently uses a simple model of communication resources, based on the end-to-end 
transmission time (which may be a function of the message length). This metric may be adequate 
when a traditional CSMA/CD single LAN environment is under consideration. However, when 
one expands the network across multiple LANs and into a WAN, the concept of delay does not 
accurately gauge the type of service available from the myriad communication resources in a 
heterogenous environment. The challenge is to distill the definition of capacity from the volumes 
of information coming from the communication resources. 

A.3.1    COMMUNICATION SERVICE AND HEALTH METRICS 

Very generally, communication resources provide transport services to end users. The types 
of service can be characterized as connection oriented, connectionless, and transactional. These 
service class distinctions will become important because they are a means of further refining the 
mapping of user objective functions (i.e., service requests) to resource health functions (i.e., the 
quality of a service). From the ISO perspective, it should be noted that the concept of service 
provider and service user is repeated throughout the layers of the underlying transport stack (i.e., 
the transport protocol machine uses the services of the network-layer protocol machine); hence, the 
concept of quality of service will vary with this relationship. Ideally, we would like to focus on the 
nature of the relationship of the user, as defined at the presentation layer and above, to the 
underlying service provided by the session layer and below. 
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The following list provides a simplified definition of communication resources health 
metrics: 

• Connectivity: the current reachability of end-user systems. 
• Throughput: the rate of transmitted and/or received user data. 
• utilization: the current load on the resource vs. its maximum capacity. 

• Interarrival time: the time between packet arrivals; synchronous and isochronous 
data will require a near-constant interarrival time. 

• Error rate: the ratio of packets lost to packets delivered, or the ratio of connections 
lost or released to the total number of connections. 

• Delay: the length of time between the request for transfer of data by the source to the 
time of arrival at the destination. 

It should be noted that many of the above quality-of-service metrics map directly to the ISO 
quality-of-service parameters (ISO standard 8072). Unfortunately, although the ISO community 
had thought to add the hooks for such concepts, up until recently very little work had been done on 
refining the QOS parameters, integrating them into the upper layers of the ISO stack, and, lastly, 
supporting them in commercial products. The Internet suite of protocols has not advanced further 
along in this aspect. 

A.3.2   COMMUNICATION CONTROL 

The monitoring of the communication-resource quality of service meets part of the SRM 
goals. The second and more complex aspect is the control of those resources. In the SRM model of 
operation, the SRM user requests a certain level of service expressed in terms of high-level 
objective functions. The SRM maps these requests to low-level capabilities and then either denies, 
negotiates, and/or expedites the request. During the period of service, the nature of the service may 
also change, requiring further potential termination or negotiation of service. The extent to which 
the SRM decision maker can control these resources is an area requiring further investigation. As 
an example, if alternate paths exist between two hosts, it is possible that each path can provide a 
different level of service (i.e., one path could be over a multihop extended LAN, and the other 
could utilize a high-speed ATM backbone). Whether the SRM is capable of specifying which route 
to take is dependent on the underlying protocols (i.e., source- and policy-based routing protocols). 

A.3.3   MANAGEMENT DOMAINS 

Additional issues that add to the complexity of communication resource monitoring and 
control are the possibility that the end hosts may reside in different administrative domains, or that 
they may require traversing publicly administered domains (i.e., the telephone network) for which 
little or no monitoring and control information is available. 
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A.4    HOST AND SYSTEM RESOURCES 

The initial SRM studies have identified considerable work to date in the area of what can be 
termed low-level shared host resources and the techniques for controlling access to those resources. 
The initial target host for SRM, the Alpha operating system, provides the needed source code 
access to the host resources and scheduling algorithms. If SRM is to be viable on other platforms 
and environments, however, abstract structures and platform-independent mechanisms are 
required. 

The concept of abstracting hostresources within the system management model is new to both 
the Internet and OSI communities. As with all other efforts, the Internet community has made the 
quickest advances in identifying and formulating the attributes of a management information base 
for host resources. This work on a host-resources MIB is found in a draft document by Grillo and 
Waldbusser [1993]. Currently, this MIB definition is focused mainly on providing configuration 
information for the host (i.e., system up time, system storage capacity, available system devices, 
and installed software). A limited amount of performance data is defined and/or can be derived 
from the defined metrics (e.g., process load as a function of current loaded/running process 
contexts vs. the maximum number of process contexts supported; storage load as a function of 
storage size vs. storage used). This MIB definition (as with most other Internet MIBs) provides 
very few basic characterizations of an object's temporal behavior. Currently the MIB defines, on 
a per-process basis, the process's percentage of CPU usage and its total amount of allocated real 
system memory. SRM could participate in the refinement and extension of the host resources MIB 
as a starting point for modeling host resources. 

An additional group providing mechanisms for management of hostresources is the Desktop 
Management Task Force (DMTF). The DMTF is defining a desktop management interface (DMI) 
that lets host systems provide information to network management systems. The group has been 
working on the specification for over a year and preliminary products are expected within the next 
year. 

A.5    FUTURE WORK 

This appendix has sought to provide a rationale and strategy for future directions of the SRM 
program. The strategy is twofold. First, we propose to further the definition of communication 
resources within the SRM model. Second, we propose to base the management structure and 
communication as much as possible on standardized management interfaces and protocols. This 
latter strategy allows SRM to leverage considerable work within the network management 
community. 
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The tasks involved in these future directions are as follows: 
• Identify communication-level objectives and characteristics for all classes of SRM 

users and applications. 
• Identify existing efforts and progress in the implementation of standardized 

management models and architectures. 
• Model SRM resource monitors and managers in terms of standardized models and 

architectures. 
Demonstration milestones for these tasks would include the following: 
• Initially, provide limited monitoring capabilities (identify key host and 

communication-level characteristics), but provide no control or low-level decision 
making. 

• In the middle term, expand the monitoring capabilities to include additional metrics, 
and provide limited control and decision-making capabilities. 

• In the long term, expand the decision making and control for SRM within an 
integrated system management environment. 
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Abstract 

SRI International (SRI), under the sponsorship of 
Rome Laboratory,1' has developed a model for 
resource management in distributed soft real-time 
systems. The model considers user objectives, 
resource constraints, and adaptable execution 
techniques. We have developed the model in the 
context of a multimedia conferencing application 
within a command and control environment. We have 
implemented a prototype distributed multimedia 
display application that demonstrates key aspects of 
the model, including adaptation to a changing 
execution environment. 

1.   Introduction 

The new world order will bring significant changes to the 
global mission of the United States military forces. As 
budgets shrink and strategies change, there will be an 
increased emphasis on joint operations and system 
integration; thus, commanders will need to do much of their 
planning in a distributed collaborative environment 
Distributed database systems will maintain a common 
picture of the battlefield, and a common plan. Multimedia 
information such as imagery and video will become 
important components of the distributed planning process. 

The information used for carrying out the planning 
process, and the results of the planning process, will be 
communicated among many users around a large, complex, 
distributed computing environment. This military computing 
environment will be a highly dynamic one characterized by 
• Limited processing, communication, and data storage 

resources, and unpredictable loss of these resources 
• Dynamic topology and configuration 
• Changing threats and modes of operation 
• Time-constrained operations. 

Mr. Downing's current address is Oracle Corporation, 400 Oracle 
Parkway, Redwood City, CA 94065. 
Contract F30602-91-C-0099, Rome Laboratory. 

Even in this hostile and complex environment, high 
performance, security, reliability, and survivability will be 
required. 

Unfortunately, few operating systems used in military 
systems (or in commercial systems, for that matter) have 
satisfactory support for many of these requirements. For 
example, real-time operating systems typically support hard 
real-time constraints that are too restrictive for many 
applications in this environment. Instead, systems that 
support soft real time (for example, the Alpha operating 
system [Northcutt and Clark, 1988]), and consider both the 
importance and the time constraints of competing activities 
when tetermining an execution plan, are more appropriate. 
Soft real-time systems support the graceful degradation of 
performance by dropping low-priority tasks during 
overloads. However, if resource availability is too limited or 
highly variable, additional support that considers resource 
limitations is required. 

In addition, current operating systems manage individual 
system resources such as processing, communication, and 
data storage in an ad hoc manner. Different policies are used 
to manage different resources, and the management of the 
different resources is not coordinated, particularly when the 
resources are distributed. The relative importance of 
different activities is seldom considered in a uniform way 
across all the system resources. Such uncoordinated 
management results in suboptimal use of resources, 
especially when the availability of resources changes. For 
example, if radar data about incoming missiles are processed 
at a higher priority than sensor data about the weather, but 
weather data are transmitted on the communication channels 
at the same priority as missile data, then processing and 
communication resources will be wasted and military 
objectives may not be met. 

Another problem is that current systems are too static for 
a dynamic military environment. A nonadaptive system can 
fail if it incorrectly assumes that its environment is known 
and predictable. Distributed systems in the military 
environment are subject to long-term, permanent changes 
due to failures or configuration modifications. Such changes 
mean that the underlying system will fail or will perform 
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inefficiently unless fault tolerance and/or adaptability is 
incorporated into the system. Abstractions currently used by 
operating systems are not expressive enough to support 
adaptability. The ability to express and utilize tradeoffs in 
terms of resources used and benefit gained is missing. For 
example, the ability to select among alternative tasks with 
varying degrees of precision is not supported. 

Under the sponsorship of Rome Laboratory, SRI 
International (SRI) has begun to address the problem of 
allocating limited resources among competing activities, 
according to command preferences for the activities and the 
usage restrictions imposed by the resources. In this paper, we 
discuss the results of a recent project sponsored by Rome 
Laboratory in which SRI considered this problem. We 
outline a high-level architecture for an adaptable soft 
real-time resource management system, and briefly describe 
a prototype application that can take advantage of such a 
system. 

2.   System Resource Management Model 

In the System Resource Management (SRM) project Pavis, 
1994], SRI developed a model for resource management in 
distributed real-time systems. This model considers user 
objectives, resource constraints, and adaptable execution 
techniques. The overall goal of the SRM project was to 
develop an approach to allocating distributed system 
resources (such as CPU, disk, memory, and communication 
channels) to multiple competing activities so that the 
objectives (e.g., level of service preferences) of each of these 
activities can be satisfied to the highest degree possible. We 
have developed a set of abstractions that make it possible to 
describe user objectives, system resources and constraints, 
and characteristics of execution techniques (e.g., resources 
used and objectives satisfied). We have implemented a 
prototype distributed video display application that 
demonstrates adaptation to a changing execution 
environment, using a subset of the elements of the model. 

To support adaptability, objectives such as precision and 
timeliness are specified by means ofobjective functions (also 
called benefit functions or value functions). Objective 
functions express the benefit to the user or the system as a 
whole of achieving different levels of satisfaction of 
objectives, and can be used to determine appropriate 
tradeoffs among objectives. The objectives can be 
application specific (e.g., the benefit of different frame rates 
in a multimedia system) or system specific (e.g., the benefit 
of not exceeding various covert-channel bandwidths in a 
secure system). The model assumes that execution 
techniques (e.g., various data compression techniques) exist 
to produce results that fully or partially satisfy the 
objectives. There is a mapping between the techniques (and 
their parameters) and the degree to which they satisfy 
objectives. In addition, there is a mapping between the 
techniques and the amount of communication, storage, and 
processing resources they require. 

Based upon information about objectives and resources, 
resource management decisions are made at two levels, as 
shown conceptually in Figure 1. Decisions involving 
medium- to long-range tradeoffs among activities and their 
objectives are made by a set of cooperating high-level 
decision makers. High-level decision makers base their 
decisions upon long-term resource usage statistics, external 
events, and domain-specific knowledge such as military 
doctrine or the observable effects of differences in 
multimedia quality. 

Real-time scheduling decisions among competing tasks 
and threads (subtasks) within the selected activities are made 
by low-level schedulers for each resource. Each low-level 
scheduler uses status information about its resource, as well 
as process control abstractions passed down from the 
high-level decision makers, to make local decisions. While 
low-level resource scheduling is decentralized, integrated 
control (through shared resource status information and the 
consistent interpretation of process control abstractions) is 
used to ensure that the schedulers complement each other's 
decisions. 

3.   Multimedia Conferencing Application 

Multimedia applications can consume large amounts of 
system resources; any or all of the processing, 
communication, and storage resources may become 
bottlenecks. Many multimedia applications, such as 
conferencing systems, have timing preferences that are not 
necessarily hard deadlines. In addition, multimedia 
applications have quality-related objectives such as video 
resolution and audio/video synchronization that have large 
impacts on resource usage. 
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For these reasons, we have defined a simple multimedia 
conferencing application to form the basis for a 
proof-of-concept implementation of adaptable system 
resource management concepts. The application enables a 
user at one site in a distributed system to present a briefing to 
a user at another site. The media include real-time video of 
the presenter, real-time audio of the presenter's voice, 
images of maps and slides (possibly overlaid by a movable 
pointer), and prerecorded audio/video clips. Most of the 
information flow is unidirectional, but there is a limited 
amount of feedback from the recipient to the presenter 
(e.g., audio questions). We assume that the resources (CPU, 
communication, storage) are not necessarily sufficient to 
fully satisfy the recipient's performance and quality 
objectives. Much of the discussion in this paper will be 
presented in terms of this sample application. 

4.   Objectives 

The users of a distributed system have requirements and 
preferences regarding the resources that should be made 
available for accomplishing various tasks. For example, in a 
multimedia conferencing application, the recipient of a 
briefing has preferences regarding how the briefing 
information will be communicated and presented (e.g., the 
audio quality, the frame rate, and the image quality). These 
quality-of-service preferences, which we call objectives, 
must be represented in such a way that they can be used by 
the system resource manager for making tradeoffs among 
different tasks and execution strategies. 

Objectives may be defined at many levels of abstraction, 
including mission objectives, application objectives, and 
result objectives. In our model, objectives are associated 
with an application's results. All objectives are not relevant 
to all types of applications and results. For example, some 
applications do not have unique security objectives; they are 
willing to accept whatever security policy the system 
enforces. The security objectives may be applicable only to 
special management objects that make security-related 
decisions. An application can have many results and many 
ways of representing the results, and objectives can be 
associated with each one of these results. 

As a hypothetical example, let us examine ways of 
assigning objectives to simulation results. The manner of 
displaying the data can be considered a result. The same 
numerical results can be presented to a user as a listing of 
values, as a simple bar graph, or as a series of 3-D images. 
These are different examples of a "display quality objective" 
of the numerical data In addition, all of these displays can 
be presented in color or black and white, which could be 
considered an example of meeting a "display precision 
objective." Depending on the application, a decision to use 
black and white or color can indirectly affect performance, 
storage space, and communication bandwidth. In addition, 
the numerical data can be broken into pieces, each with its 
own   time-benefit   objective   function.   If  performance 

becomes an issue, only parts of the data might be simulated 
in order to save time. The simulation results as a whole will 
have a precision objective, which specifies the number of 
runs versus the benefit (e.g., in terms of being statistically 
meaningful). This specification allows partial data to be 
returned to the user of the application, instead of all or 
nothing. Finally, there must be a way to express the 
relationships among the different objectives, such as their 
relative benefits. This expression scheme allows the resource 
manager to determine how to allocate its limited resources 
and to avoid wasting resources, for example, by doing a 
high-quality presentation of low-quality results. 

5.   Objective Functions 

An objective describes the importance to the system of 
producing a given result according to a given service 
specification. An objective has two aspects: (1) the degree or 
level to which some service is provided (e.g., the precision 
of a result), and (2) the relative benefit to the system of 
obtaining a given level of the service. The objective can be 
quantified by being expressed as a function relating the 
benefit to the level of service; for example, we could express 
a precision objective in terms of a precision-benefit function, 
where benefit = /(degree of precision). 

This abstraction is similar to the time-value function used 
in the Alpha operating system, in which the value of a 
computation is related to the time at which it is completed. 
We extend and generalize the Alpha abstraction to allow the 
specification of arbitrary objectives, not just timelines, and to 
include resources other than time—for example, memory or 
disk space. We generally use the term benefit rather than 
value when discussing objectives, since "value" is already 
used in many other contexts. 

Figure 2(a) shows a graphical representation of a typical 
Alpha time-value function. The time-value (or time-benefit) 
function specifies the benefit to the system of completing a 
computation at various times. The time-value function 
expresses both the importance of completing a computation 
(as indicated by the value) and the urgency (as indicated by 
the time constraint). For reference, an indication of the 
expected duration of execution is also included, to allow a 
determination to be made of the time that a computation 
must be started in order to finish by a specified time. 

Figure 2(b) shows a generic quality-of-service 
(QOS)-benefit function (which we also refer to as an 
objective function). The generic benefit function specifies 
the benefit to a user or to the whole system as a function of 
the quality of service (for example, precision or correctness) 
attained during a computation, hi order to fully specify an 
objective function, it is necessary to define a metric that 
quantifies the level of service that is provided; it is useful if 
the metric is related to a quantity that can readily be 
measured or observed. For example, a metric for precision 
relating to a numerical calculation might be the number of 
decimal places in the result It is also necessary to quantify 

B-3 



Value Bensfit 

Time of Comptetion 

(a) Alpha Time-Value Function 

Figure 2. Time-Value Function and Generic QOS-Benefit Function 

Quality of Sarvios Attained 

(b) Generic GOS-Benefit Function 

the relative benefit of achieving different values of the 
level-of-service metric, e.g., the relative benefit of three 
decimal places of precision versus four decimal places. The 
assignment of relative benefits is subjective and highly 
application and mission dependent, and may require 
experimentation. For some applications, the benefit increases 
as the precision is increased; other applications might not be 
able to take advantage of more precise data (for example, an 
application might be executing on a computer that has a 
low-resolution display), and the benefit would remain 
constant no matter how much the precision increased. 

In a multimedia conferencing application, the recipient of 
a briefing has objectives regarding how the briefing 
information will be communicated and presented For 
example, the benefit to a user of a stream of audio/video 
information is a function of the video resolution, the image 
size, the video frame rate, the time delay between the 
generation and display of the information, the audio fidelity, 
the degree of audio/video synchronization, and so forth. The 
recipient's objectives include human factors considerations 
relating to assimilation of video and audio information. For 
display of the presenter's face, the recipient may accept low 
frame rates, low resolution, and gray scale. However, a high 
frame rate, high resolution, and wide color range are 
desirable for prerecorded video clips of reconnaissance 
nights. The recipient may prefer as high a level of audio 

Benefit^,. 

1 10        15 24     30 
Video Frame Rate (framss/s) 

fidelity as possible, but may also be willing to accept 
telephone-quality audio; and may be able to tolerate several 
seconds of delay in the overall presentation, but may prefer 
that audio and video be synchronized to within a tenth of a 
second. 

Figure 3 shows two sample objective functions for 
multimedia streams. In Figure 3(a), the benefit increases as 
the frame rate increases, up to a plateau after which the user 
perceives no improvement. In Figure 3(b), the benefit 
decreases as the time difference between the corresponding 
audio and video streams increases. 

The benefits associated with given objectives can vary 
with the mission of the system, and in response to 
conditions. For example, some objectives are different 
during combat and noncombat periods; the changes in these 
objectives can be triggered by a change in the operational 
mode of the system. Objectives can also change dynamically 
with the state of the system; for example, in a missile 
defense system, as a missile gets closer the importance of 
dealing with the missile increases, relative to the importance 
of other activities. 

By quantifying the level of service for a given objective 
and then assigning relative benefits to various levels, we can 
construct an objective function for any objective we wish to 
define. It is necessary to relate the benefit values for one 
objective to the benefit values for another objective. Using 

Benefit^ .ync 
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Figure 3. Sample Objective Functions for Multimedia 
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methods to compare benefits across objectives, a resource 
manager can use generic objective functions to make 
tradeoffs among objectives, without needing to understand 
the semantics of particular objectives. The use of generic 
objectives means that we do not have to define a fixed set of - 
objectives that apply to all applications, but instead have the 
flexibility to define new objectives as appropriate. 

When conuol decisions are made, the various system 
management objectives must be considered together. One 
approach is to try to combine the various objectives for each 
activity into a single composite objective that can be plugged 
into the resource management algorithm. Such an approach 
is likely to be computationally intractable when several 
objectives are involved, except, possibly, when it is used to 
configure the system. Another approach is to fix certain of 
the objectives on the basis of requirements and the 
environment, and use the remaining objectives for 
scheduling decisions. For example, all the objectives other 
than timeliness might be fixed (by the selection of operating 
modes that provide appropriate levels of each) and the 
scheduling would then be done in such a way as to maximize 
the timeliness objective. The order in which the objective 
functions are evaluated and the objectives are fixed must be 
carefully chosen, since the order can affect the outcome. 

6.   Characteristics of Execution Techniques 

Based on the objectives expressed by the recipient (and to a 
lesser extent, the presenter), and on the availability of system 
resources, tradeoffs must be made and appropriate execution 
techniques must be selected. For example, by using 
appropriate compression techniques, it may be possible to 
reduce the use of communication resources at the expense of 
using more CPU resources (assuming no special hardware 
support). Using lower frame rates and lower video 
resolutions may free up CPU and communication resources 
to provide higher-quality audio. Using additional memory 
and disk buffers may improve audio/video synchronization, 

while increasing delays. The characteristics of the various 
execution techniques (in terms of resources used and effect 
on objectives) must be represented in such a way that they 
can be used by the system resource manager when selecting 
effective execution plans. 

The important characteristics of execution techniques 
related to system resource management are (1) the resources 
required by a technique, (2) the benefits (in terms of meeting 
of objectives) provided to the user by a technique and (3) the 
dependencies among techniques. For example, providing 
one second of video of a given size, resolution, and frame 
rate at the receiving site, using a given encoding technique, 
may (1) require a certain amount of processing time and a 
certain amount of communication time, (2) meet the user's 
needs to a given extent, and (3) require that a certain 
communication protocol be used. 

We have investigated various execution techniques that 
can produce results satisfying the objectives related to 
multimedia conferencing to varying degrees, using various 
resources. For example, there are several categories of 
compression and encoding algorithms, including frequency-, 
prediction-, and importance-oriented categories. Each 
category includes several related techniques, such as 
subband or transform coding in the frequency-oriented 
category. Which technique to select in order to maximize the 
benefit depends on the available resources (possibly 
including special-purpose hardware) and the user objectives 
(e.g., loss of information tolerated). We have also identified 
other techniques for selecting and maintaining frame rates, 
improving audio/video synchronization, reducing jitter, and 
supporting varying degrees of error correction 

When choosing among techniques, the resource manager 
must know how well each technique meets the current 
objectives, how many resources are consumed by each 
technique, and when changes in techniques or parameters 
can occur. Objectives such as delay, video resolution, and 
audio quality are all affected by the encoding technique 
used. Figure 4 illustrates approximate tradeoffs between 
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quality (as expressed by a mean opinion score determined 
via experimentation), required processing resources 
(correlated with the delay objective), and transmission rates 
for various audio compression techniques [Daumer, 1982]. 
As expected, a low-complexity pulse code modulation 
(PCM) coder must transmit more data than a 
high-complexity coder to achieve the same subjective 
quality. A high-complexity vocoder, which takes advantage 
of the characteristics of human speech, can achieve the 
greatest compression factor but is limited to low-quality 
voice reproduction. 

Similarly, there are tradeoffs among compression factors, 
quality, and resource usage for different video compression 
techniques. Video compression typically can achieve 1 bit/ 
pixel (from the uncompressed value of 24 bits^»ixel) with 
little perceivable loss of quality, which would reduce the 
data rate from the National Television Standard Committee 
(NTSC) value of 221 Mb/s to 9.216 Mb/s. Some algorithms 
are able to reduce video data rates to 1.5 Mb/s, although 
quality is lost. With further loss of quality (such as in video 
teleconferencing, i.e., CCITT H.261), data rates can be as 
low as 64 Kb/s or multiples thereof, with increasing quality 
up to about 1.5 Mb/s. Another example is the DVI system 
for compressed video, which uses lowered image and color 
resolution to achieve a factor of about 13 in data reduction 
and then applies a compression technique to yield an 
additional factor of about 15, resulting in about 8 MB/min of 
video image [Ripley, 1989]. 

Several compression and encoding techniques for audio 
and video separate the data conceptually into layers, such 
that the lowest layer provides at least the minimal acceptable 
quality (e.g., of resolution) and each successive layer 
improves upon the quality of the lower ones. Typically, the 
higher layers depend on the lower ones, and are worthless 
without them. This encoding scheme is known as 
hierarchical encoding [Shacham, 1992]. Hierarchical 
encoding allows a system to adapt quickly to varying 
environments; if it is not possible to process all the data, the 
system can simply drop the data in the highest layers (and 
therefore the data with the lowest relative importance), hi a 
resource-rich environment, all layers are processed and 
high-resolution images are displayed, whereas in a 
resource-poor environment, only the lowest layers are 
processed and low-resolution images are displayed. 

7.    Scheduling Approach 

As discussed earlier, a two-level approach to resource 
management and scheduling is appropriate for the 
multimedia conferencing application A set of cooperating 
high-level decision makers make decisions involving 
medium- to long-range tradeoffs among activities and their 
objectives, and select the activities that will be permitted to 
run. Decentralized low-level schedulers associated with each 
resource make real-time scheduling decisions among 
competing threads within the selected activities. 

The high-level decision maker considers the user 
objective functions, resource constraints, characteristics of 
candidate techniques, and system status information. The 
characteristics of the candidate techniques include the 
resources used by each technique, the degree to which each 
technique permits the objectives to be met, and the resources 
required to transition between techniques. On the basis of 
this information, the decision maker chooses the activities 
(e.g., multimedia conferences or periodic tasks) to execute; 
the nominal amount of resources to devote to each activity; 
and the techniques and parameters to use when executing 
these activities, such that the objectives can be met to the 
optimal degree consistent with satisfying the resource 
constraints. On the basis of these decisions, the decision 
maker then generates the information that is required by the 
low-level real-time schedulers, namely (1) the expected job 
lengths (execution times) for the threads within each activity, 
based on the selected techniques and parameters, and (2) the 
time-benefit functions for the threads, based partly on a 
composition of higher-level objective functions. 

The high-level decision maker monitors the resource 
usage and the level of objectives that are being met. If the 
measured values differ significantly from the goal values 
previously specified by the decision maker, the decision 
maker takes compensating actions such as revising resource 
allocations, techniques, and parameters. 

Given the combinatorial growth of the high-level 
scheduling problem (due to the number of alternative 
techniques, parameters, resources, activities, and so forth), 
the use of exhaustive or even statistical techniques is not 
feasible in real-time and dynamic environments. Various AI 
techniques have proven their ability to reduce the 
dimensions of large search spaces, such as occur in the SRM 
problem domain. The SRM decision maker may use 
different AI techniques for initial scheduling and revised 
scheduling, namely knowledge-based scheduling (which 
uses goals and constraints) and rule-based expert systems, 
respectively. Specifically, we are investigating the use of the 
capacity scheduling technique [Sycara et al., 1991], which 
has been proven successful in resource-constrained 
scheduling. Note that while the extensively adaptable 
application described here may use such techniques, other 
applications with fewer modes of adaptability could use 
simple decision makers based on tables generated from 
simulations or experimentation. The current prototype 
implementation uses simple heuristics rather than more 
powerful AI techniques. 

Decentralized low-level resource schedulers are 
responsible for scheduling the threads within each activity 
(e.g., a thread that processes a frame within a briefing 
activity). Low-level scheduling decisions must have 
relatively low overhead and must be made quickly The 
resource schedulers are associated with physical resources 
such as processors, disks, memory buffers, and 
communication channels, as well as with logical resources 

B-6 



such as databases. Although decentralized, resource 
schedulers use integrated policies when determining their 
schedules. 

The low-level schedulers use resource status information, 
control abstractions provided by the high-level decision 
makers (time-benefit functions and job-length functions), 
and additional information, such as dependencies, that is 
maintained by the application. Sample scheduling 
algorithms that use information similar to this include LBES 
[Locke, Jensen, and Tokuda, 1985], CBS [Peha and Tobagi, 
1991], and DASA [Clark, 1990]. To adapt to short-term 
congestion, the low-level schedulers can drop the least 
important layers of hierarchically encoded multimedia 
information, enabling the multimedia application to 
gracefully degrade quality. 

Integrated control among low-level schedulers requires 
that the schedulers consistently interpret abstractions 
(e.g., time-benefit functions, execution lengths, 
dependencies, and security levels) associated with the 
threads. The schedulers do not necessarily have to use 
identical policies, but they must work toward a common goal 
(unlike, for example, systems with processor schedulers that 
minimize missed deadlines, but disk and communication 
schedulers that maximize throughput). 

8.   Proof-of-Concept Implementation 

We implemented a simple remote video presentation 
application in which video from a video camera or video 
cassette recorder (VCR) is captured and digitized at a 
computer workstation, transferred across a local area 
network to a destination workstation, and displayed on the 
monitor of the destination workstation [Davis and Siravara, 
1993]. The key concept demonstrated is the adaptation of the 
distributed application to limited communication resources 
according to preferences specified by the user. 

Video Camera 

fj 

Parallax Board Control parameters 

Open Windows 
Server 

Sending Process 

Video 
Stream 

The architecture used for the implementation is shown in 
Figure 5. The implementation is done on Sun Microsystems, 
Inc. (Sun) SPARC workstations * connected via an Ethernet 
local-area network, and executing version 4.1.3 of the 
SunOS (UNIX) operating system. An OpenWindows server 
process on the source workstation manages interactions with 
the video camera (via a Parallax video capture/compression 
board) and acts as a sending process. A controlling/receiving 
process executes on the destination workstation. An 
OpenWindows process on the destination workstation 
manages interactions with the display (via a Parallax board). 

A video camera or VCR generates an analog video signal 
that is digitized and compressed by a Parallax board in the 
source workstation The sending process and the Parallax 
board perform various operations on the digital video 
stream, such as modifying the frame rate, frame size, or 
Q (quality) factor. The resulting digital video stream is 
transmitted over the network to the destination workstation 
via TCP/IP. Additional processing is optionally done at the 
destination, and the video stream is then passed to a Parallax 
board, which uncompresses each frame and displays it in a 
window. 

The controlling process has a user interface that allows 
the user to specify frame rate, frame size, and Q factor 
preferences, and to control operations such as starting and 
stopping the video capture and display. A high-level decision 
maker combines user preference information and status 
information from the receiving process to determine the 
optimal values for the frame rate, frame size, and Q factor. 
The selected values are communicated to the sending 
process, where they affect the operations performed by the 
Parallax board. 

The user interface for specifying a typical benefit function 
(the benefit as a function of the video frame rate) is shown in 

* All product names mentioned in this document are the trademarks 
of their respective holders. 
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Figure 5. Implementation Architecture of SRM Multimedia Demonstration 
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Figure 6. The user draws the desired shape, via a computer 
mouse. The horizontal axis displays frame rates of 0 to 30 
frames per second. The vertical axis displays the benefit on 
an arbitrary scale of 0 to 100. 

The high-level decision maker considers the three 
objective functions and the measured average throughput 
when determining which values of frame rate, frame size, 
and Q factor are best. Because the bandwidth usage is 
proportional to the frame rate and the frame size, it is easy to 
calculate the change in required bandwidth that will result 
from a given change in frame rate or frame size. However, 
there is no simple relationship between changes in the 
Q factor and changes in the required bandwidth; for a given 
Q factor, the amount of compression attained (and therefore 
the required bandwidth) depends on the complexity of the 
contents of the frame. The decision maker must therefore 
determine the effect of changes in the Q factor by monitoring 
changes in bandwidth as the Q factor is varied. 

Using a simple heuristic technique, the decision maker 
determines the combination of frame rate, frame size, and 
Q factor that produces the highest total benefit, given 
resource constraints. The heuristic initially assumes that the 
maximum frame rate, frame size, and quality can be attained. 
If measurements indicate that these results are not being 
attained, the heuristic determines which parameter can be 
decreased with the least loss of benefit. The appropriate 
parameter is modified, and the results are computed or 
measured, as appropriate. The process is repeated until the 
system is able to sustain the quality of service specified by 
the parameters. 

The implementation is currently in the prototype stage, 
but preliminary results show that the system is able to adapt 
to available resources according to the preferences expressed 
by the user. 
F- 
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Figure 6. Specifying Frame Rate Benefit Function 

9.   Conclusion 

We have developed a model for resource management in 
distributed soft real-time systems. The model considers user 
objectives, resource constraints, and adaptable execution 
techniques. We have developed the model in the context of a 
multimedia conferencing application in a command and 
control environment We have implemented a prototype 
distributed multimedia display application that demonstrates 
key aspects of the model, including adaptation to a changing 
execution environment. 
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1    RELATED WORK IN LOW-LEVEL INTEGRATED CONTROL 

This appendix is derived from the SRM Interim Technical Report of March 1993 [Downing 
and Davis 1993]. In it we summarize existing work related to low-level integrated control, and 
recommend areas where additional work would be useful. 

Operating systems typically are designed with a particular objective in mind. For example, 
real-time systems may try to maximize the performance of the highest-priority activity, or to make 
all deadlines hard, or to maximize the benefit achieved by completing activities. Other systems try 
to maximize throughput, or promote fairness among competing activities. To best achieve any of 
these system objectives, it is important to use all the system resources in an integrated manner. 

Unfortunately, many systems today do not have integrated resource management. In real-time 
systems, it is not unusual for the scheduler to use a real-time scheduling algorithm to determine 
which thread to execute next, while a disk manager or a communication manager in the same 
system uses a simple first-come-first-serve (FCFS) queue. Such conflicting policies prevent the 
system from meeting its objectives. For example, suppose a static priority scheduler starts a thread 
with priority 9 that quickly proceeds to asynchronously send 10 megabytes to disk. Soon thereafter, 
a thread is created with priority 10. Since this thread has the highest priority, the scheduler executes 
it; almost immediately the thread requests a synchronous read of one page from the disk. Since the 
disk manager uses a simple FCFS policy, the higher-priority task with very little information to 
read must wait a significant amount of time for the writes queued for the lower-priority thread to 
finish. Obviously, the policies used by the disk manager and scheduler to choose between activities 
should have been better integrated; they both could have used schemes based upon static priority 
scheduling. While this example shows only two threads with extremes in resource requirements, 
the same effect can be observed if there are many threads with similar resource requirements. 
Furthermore, similar examples can be easily constructed for many other scheduling algorithms 
(e.g., earliest deadline first) and other resource conflicts (e.g., "thrashing" caused by activities 
competing for memory). 

Choosing a set of integrated policies for physical resource managers would normally be done 
when the system is being designed and would be nonadaptive. However, determining which are 
the optimum set of policies and the degree to which they should be integrated to produce the best 
overall results is difficult. For example, having the scheduler and the disk manager both use the 
same static-priority algorithm may not produce the best results in the case where the disk manager, 
for any kind of reads and writes, must choose between a read of a single page for a thread of priority 
8 and a read of hundreds of pages for a thread of priority 10, while the CPU is idle. 

Low-level integrated control would enable the managers of system resources used by multiple 
computational activities to cooperate among themselves in order to meet common goals, and would 
enable the computational activities to adjust the ways in which they use system resources. The 
manager of each resource can control which activities use the resource, but multiple managers must 
cooperate, for the activities to complete satisfactorily. Similarly, each activity controls which of 
multiple ways (using different amounts of resources) it uses to perform its function; but the 
activities need to cooperate with the resource managers, for the resources of the system as a whole 
to be used efficiently. 
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We separate the problem of integrated control into two categories: 
• Coordinated control across resources such as processors, storage, and 

communication. Control policies must be chosen that can work together effectively 
for the different resources. Integrated control across nodes in a distributed system can 
be considered a variation of this category. 

• Control based on multiple objectives for each activity, such as performance and 
precision. Resource constraints force trade-offs to be made regarding which 
objectives can be met. 

In Subsections 1.1 and 1.2, we provide a review of past research on integrated control of 
resource schedulers. We identify the abstractions that are currently being used; any proposed 
abstractions should be a superset of the given abstractions. In Subsection 1.3, we identify future 
work. 

1.1    INTEGRATED CONTROL ACROSS RESOURCES 
Much of the research to date in integrated control across resources has been performed for 

real-time databases. Real-time databases use a rich set of resources and typically utilize soft, rather 
than hard, real-time control techniques; for these reasons they provide a good example for us to 
examine. In this section, we discuss integrated control across resources in the context of real-time 
database systems, with emphasis on concurrent transactions that compete for resources. In a more 
generic (nondatabase) example, we would be concerned with tasks or subtasks rather than 
transactions. 

1.1.1   Work to Date 

In Table 1 we list several resources that are controlled in real-time database systems, and a 
small sampling of the techniques used to manage each resource. In addition to the standard CPU, 
storage, and communication resources that we have discussed in previous SRM reports, we include 
memory buffer and shared data resources (the latter affects scheduling via concurrency control 
policies); we also list a small sampling of various techniques for managing overload. 

We now briefly discuss each resource and its associated techniques. 
CPU Scheduling. Many algorithms exist for scheduling the CPU resource for real-time 

transactions (or alternatively, for assigning priorities to transactions). These algorithms include the 
following: 

• Earliest Deadline First (EDF)—The transaction with the earliest deadline is executed 
first. 

• Static Priority (SP)—Each transaction is assigned a fixed priority that does not vary 
over time (which might be considered the importance or criticality of the 
transaction); the transaction with the highest priority is executed first. 

• Least Laxity (LL)—The transaction with the least laxity (i.e., the least delay in 
starting such that it can still meet its deadline) is executed first. 

• Locke's Best Effort Scheduler (LBES)—Unlike other scheduling techniques, LBES 
computes an entire schedule based on known jobs, rather than just deterniining the 
next job to be executed. LBES uses a two-pass algorithm to add potential jobs with 
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Table 1. System Resources and Techniques Used to Control Them 

SHARED RESOURCE 

CPU 

Buffers 

I/O (Storage) 

REPRESENTATIVE TECHNIQUES 

Earliest Deadline First, Static Priority, Least 
Laxity, Locke's Best Effort Scheduling, 
Dependent Activity Scheduling, Cost-Based 
Scheduling, Adaptive Earliest Deadline First 

Least Recently Used, Least Frequently Used, 
Cost-Based Dropping, Priority Least Recently 
Used 

Shared Data 

Communication 

Overload Management 

First Come First Served, Shortest Seek Time, 
Elevator Scan, Earliest Deadline First, Highest 
Priority First, Feasible Deadline, Highest 
Priority Group First 

Optimistic Concurrency Control (Broadcast, 
Wait), Two-Phase Locking (High Priority, Wait, 
Wait Promote, Conditional Restart), 
Timestamp, Multiversion 

Earliest Deadline First, Least Laxity, Cost- 
Based Scheduling, Priority Token Bank 

All Eligible, Not Tardy, Feasible Deadlines, 
Last Come First Dropped, Static Priority 
Dropping 

the highest value densities (value accrued per unit of remaining computation time) 
added to a schedule, in EDF order, as long as the jobs can feasibly make their 
deadline. 
Dependent Activity Scheduling (DAS)—DAS considers potential value density 
(which includes the effect of dependencies such as precedence constraints and 
resource requirements) and deadline when determining a schedule. It constructs a 
schedule by considering activities in order of their value density, and inserting them 
into a partial schedule that is ordered by deadline. K the addition of the activity fails 
to produce a feasible schedule, the activity is dropped. Like LBES, DAS constructs 
a complete schedule of known activities rather than just determining the next activity 
to execute. 
Cost-Based Scheduling (CBS)—This algorithm was originally developed for 
communication scheduling and is now being adapted for CPU scheduling. The 
priority of a transaction depends on (1) the cost of not executing the transaction (as 
a function of time); (2) the expected execution time for the transaction; and (3) the 
anticipated delay in starting the execution. In high-level terms, the priority is a 
weighted average of the slopes of the cost function (which is similar to a time-benefit 
function). 
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• Adaptive EDF—The priority depends not only on the deadline, but also on the 
(static) importance of the transaction. The algorithm tries to maximize the total value 
of in-time transactions. It does not require job-length estimates, which may be hard 
to obtain in nondeterministic database systems. 

In addition to deadline and laxity, other attributes that can be used to determine the priority of 
a transaction include importance (criticality), job length, amount of unfinished work, amount of 
work already invested, and arrival time. 

Buffer Management. Buffer management allocates memory space among concurrently 
executing transactions, using admission control and buffer replacement algorithms. Buffer 
management policies include the following: 

• Least Recently Used (LRU)—When it is necessary to reuse a buffer, the buffer that 
has not been used for the longest time is chosen. 

• Least Frequently Used—The buffer that has been used the least frequently during a 
recent time interval is chosen for replacement. 

• Cost-Based Dropping (CBD)—This algorithm was originally developed for 
managing communication buffers, but can be adapted to manage other buffer pools. 
The technique is analogous to CBS. In fact, a study was performed that investigated 
the combined affects of CBS and CBD, and reached the interesting conclusion that 
CBS with CBD is not much better than CBS with static-priority dropping. 

• Priority LRU—Buffers are grouped into priority classes, based on the priorities of the 
transactions that used them. Both the priority and recency of use are considered when 
a buffer is chosen for replacement. 

I/O Scheduling. The following algorithms are used for scheduling read and write operations to 
disk storage systems. Disk storage systems have the property that the major part of the latency is 
due to seeking between tracks. Sometimes, the assumption is made that only reads must be 
scheduled in real time, and that writes can be flushed to the disk at leisure. 

• First Come First Served (FCFS)—Requests are processed in the order in which they 
are received. 

• Shortest Seek Time—The request with the shortest seek time (based on the current 
position of the disk head and its direction of motion) is processed first. 

• Elevator Scan—The disk head moves back and forth from end to end, servicing 
whatever requests are on its way, and changes direction whenever there are no more 
requests ahead in the direction it is moving. 

• Earhest Deadline First (EDF)—The request with the earliest deadline is serviced 
first. 

• Highest Priority First (HPF)—The request with the highest priority (as determined 
from the priority of the associated transaction) is serviced first. 

• Feasible Deadline Scan—The disk head is sent in the direction of the highest-priority 
request, but feasible requests that can be serviced on the way are also serviced. (This 
is a combination of the elevator scan and HPF algorithms.) 

• Highest Priority Group First (HPGF)—The requests are grouped into a small number 
of priority levels. The requests are scheduled in order of priority group; within each 
group, the elevator algorithm is used. 
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Shared Data. Concurrency control techniques, which determine which transactions can gain 
access to shared data and which transactions must abort or wait, affect scheduling because they 
remove activities from the run queue and place them on the wait queue. Database concurrency 
control techniques include the following: 

• Optimistic Concurrency Control (OCC)—A transaction execution has three phases: 
a read phase, a validation phase, and a (possibly empty) write phase. If a conflict is 
detected during the validation phase, one or more transactions are aborted. In forward 
validation, the set of items read by the transaction is compared with items written by 
recently committed transactions. In backward validation, the set of items to be 
written by the transaction is compared with the items read by other currently active 
transactions. The following are some of the variations of OCC (backward 
validation): 
- OCC-Broadcasting Commit—The validating transaction always commits; all 

conflicting transactions are aborted. This is the traditional OCC approach. 
- OCC-Wait. If there is a conflicting transaction with higher priority than the one 

attempting to commit, the one attempting to commit waits. 
• Two-Phase Locking (2-PL)—A transaction execution has two phases: a lock 

acquisition phase and a lock release phase. A transaction must obtain a lock before 
accessing a shared resource. The following variations of two-phase locking policies 
determine which transaction gets the lock when there is contention. 
- High Priority—The transaction with the highest priority gets the lock. If a 

lower-priority transaction was holding the lock, that transaction is aborted. In a 
variation of this algorithm (High Priority Without Cyclic Restart), the lower- 
priority transaction is not aborted if its priority immediately after being aborted 
would be greater than that of the current requester. 

- Wait—The requesting transaction must wait until the holder of the lock releases 
it, regardless of the relative priorities. 

- Wait Promote—The requesting transaction must wait. If the requesting 
transaction has a priority higher than that of the lock holder, the priority of the 
lock holder is raised to be the same as that of the requester. 

- Conditional Restart—This is the same as High Priority without Cyclic Restart, 
except that a lower-priority lock holder is allowed to continue running (with its 
priority promoted to that of the requester) if the remaining execution time for 
the lock holder is less than the slack time for the requester. 

• Timestamp—Transactions are assigned timestamps when they enter the system, and 
are serialized in timestamp order. Any read or write operation that would invalidate 
the ordering causes the requesting transaction to abort. There is some question 
whether timestamp-based concurrency control is a feasible approach for real-time 
scheduling [Graham 1992]. 

• Multiversion Concurrency Control—Transactions are assigned timestamps when 
they enter the system. Transactions are allowed to read out-of-date versions of data 
items (in particular, they read the version with the most recent write timestamp that 
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is less than the timestamp of the transaction). A write operation is rejected if it 
invalidates a result previously returned by a read operation (in particular, if the next 
higher timestamp for the data item is associated with a read operation). 

Communication Scheduling. Communication scheduling is necessary in distributed systems 
in which transactions communicate across nodes. Many scheduling algorithms for communication 
are analogous to the ones used for CPU scheduling, and include the following: 

• Earliest Deadline First (EDF)—The request with the earliest deadline is serviced 
first. 

• Least Laxity (LL)—The request with the least laxity is executed first. 
• Cost Based Scheduling (CBS)—The priority of a request depends on the cost of not 

transmitting the packet (as a function of time), the length of the packet, and the 
anticipated delay. 

• Priority Token Bank (PTB)—This algorithm attempts to allocate communication 
resources to multiple data streams in such a way that each stream's minimum 
performance requirements can be met. The algorithm uses a combination of stream 
admission control and packet scheduling. Packets to be transmitted are assigned to 
classes based on performance objectives. A counter associated with each class 
(which is decremented when a packet is transmitted and is incremented periodically) 
assures fairness among the classes. 

Overload Management. If the system becomes overloaded (which is indicated if it begins to 
miss some of its deadlines), decisions must be made regarding which transactions (if any) to drop/ 
abort. Some policies for dropping transactions are analogous to policies for scheduling 
transactions. Policies for overload management include the following: 

• All Eligible—No transactions are dropped or aborted. (An assumption is made that 
there are sufficient resources to process all transactions eventually.) 

• Not Tardy—Transactions that have missed their deadlines are dropped or aborted. 
• Feasible Deadlines—Transactions whose estimated remaining execution time 

extends beyond their deadlines are aborted. 
• Last Come First Dropped (LCFD)—The last transaction to arrive is dropped. 
• Static Priority Dropping (SPD)—The transaction with the lowest static priority is 

dropped. 

1.1.2   Sample Results 
Combinations of many of the algorithms discussed above have been analyzed or simulated. 

The results indicate that certain algorithms work well together, while others do not. In addition, the 
best algorithm or combination of algorithms depends on the system load, the application, the 
resource capabilities, the costs of transaction restart, and other factors. While a few results can be 
stated generally (for example, EDF performed very poorly in overload situations, and OCC 
performed better than 2-PL and timestamp concurrency control for most real-time database 
systems), it is better to review the related documentation to understand the associated assumptions 
and conditions. 
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In general, the more information the algorithms used, the better the results. For example, 
FCFS used the least amount of information, and consistently performed the worst of the 
algorithms. With a little more information associated with a job, such as a deadline or a static 
priority, significantly better results are possible. Slightly betterresults can be achieved if job length 
is known. Further improvements are possible with the use of time-value functions and estimates of 
transaction restart costs. While additional information improved results, it often diminished 
returns. Obtaining additional information can be difficult or expensive; for example, queries to 
database systems typically have nondeterministic execution times. 

Consistent policies must be used to manage resources. For example, FCFS with EDF can 
conflict, causing priority inversion. Unfortunately, real-time systems often use this combination, 
because many commercial communication or I/O systems do not use priorities or other real-time 
information. Even those algorithms that use the same information may have conflicting policies. 
For example, a system using High Priority to resolve shared data conflicts, where priority is 
defined by Least Laxity, could result in cyclic scheduling where the aborted job aborts the job that 
aborted it. 

1.2   INTEGRATION OF OBJECTIVES 
Several scheduling algorithms allow trade-offs among multiple (typically, two) objectives, in 

contrast to the traditional scheduling approach, which considers a single objective such as fairness 
(FCFS), static priority, or a deadline. In Table 2 we list several algorithms that consider two or 
more competing objectives. 

Table 2. Scheduling Algorithms That Consider Two or More Objectives 

OBJECTIVES REPRESENTATIVE ALGORITHMS 

Timeliness and importance Locke's Best Effort Scheduling, Cost-Based Scheduling, 
Dependent Activity Scheduling 

Timeliness and precision Liu et al. [1991], Epsilon Serializability, Chaos, COBASE 

Timeliness, importance, and precision Moiin and Smith [1992], SRM's OR-Dependency 
Approach 

Recency and priority Priority-Least-Recently-Used Buffer Scheduling 

Meeting deadlines and response time Highest-Priority-Group First I/O Scheduling 

Timeliness and covert channel bandwidth Secure Alpha 

We now briefly describe each algorithm and how the trade-offs can be specified. 
Timeliness and Importance. Several algorithms use both timeliness (based on such measures 

as deadline and expected execution time) and importance or criticaüty (often expressed as "value" 
or its opposite, "cost") in determining schedules. The algorithms described here use time-value or 
time-cost functions to express both importance and timeliness objectives. 

• LBES—LBES has been described in Subsection 1.1.1. It uses time-benefit functions 
and job lengths as its abstractions. 

• CBS—CBS has been described in Subsection 1.1.1. It considers cost functions 
(which are similar to time-benefit functions), anticipated delay, and expected 
execution times to determine the highest priority task to execute. 
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• DAS—DAS has been described in Subsection 1.1.1. It uses time-benefit functions, 
precedence constraints, and job lengths as its abstractions. 

Timeliness and Precision. Several researchers have considered both timeliness and precision 
in their scheduling algorithms. In some cases, the importance of a task (as expressed in a value 
function) has also been included. These algorithms typically consider computations in which the 
degree of precision varies with execution time, because of the periodic checkpointing of partial 
results that become more accurate as the execution progresses; or different modes of operation that 
give different precisions (and require different execution times); or splitting the execution into 
subtasks that build upon each other to increase precision. 

• Liu et al. [1991]—This algorithm considers tasks that can be broken into mandatory 
tasks and optional subtasks; there is a partial benefit from doing only the mandatory 
subtasks, and additional benefit from doing the optional tasks. The algorithm uses a 
variation of EDF to schedule mandatory tasks first and then as many optional 
subtasks as possible. The algorithm computes a complete schedule of known tasks, 
rather than just the highest-priority task. 

• Epsilon Serializability—This technique trades off timeliness and accuracy 
(consistency) by allowing the reading of out-of-date data for certain types of queries. 
Knowledge about the semantics of the data is used to bound the degree of 
inconsistency. 

• Concurrent Hierarchical Adaptable Object System (CHAOS)—This hard real-time 
system modifies the modes of operation (trading off less precise but faster modes for 
more precise but slower ones) in response to changing loads or other events. 

• COB ASE—If a query results in a null response, the query is relaxed, and 
approximate, summary, or related results are returned instead. This system sacrifices 
precision (or accuracy) in order to provide timeliness and partial functionality. 

Timeliness, Importance, and Precision. The algorithms that consider these three objectives 
more closely address the problems of the SRM project, because many high-level objectives can be 
mapped into these three low-level objectives. 

• Moiin and Smith [1992]— This algorithm considers the case of tasks that are capable 
of generating intermediate results with varying degrees of precision, and in which the 
overall value can be considered a function of both time and precision. Optimal and 
heuristic solutions for various categories of time-value and precision-value functions 
are analyzed. 

• SRM's OR-Dependency Approach—If there are several ways in which aresult could 
be generated (with different precisions), the scheduler considers all of them. As soon 
as one of the alternatives is executed, the others are dropped. This approach uses 
time-benefit functions, job lengths, and OR dependencies. 

Recency and Priority. As described in Subsection 1.1.1, Priority LRU (PLRTJ) buffer 
replacement uses a single parameter to control the tradeoff between recency and priority. 
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1.3   RECOMMENDED FUTURE WORK ON LOW-LEVEL INTEGRATED CONTROL 
Low-level integrated control involves the research and development of real-time scheduling 

policies and abstractions for resources such as communication, disks, CPUs, and shared data. 
Analysis, simulations, and implementations should be used to determine which scheduling policies 
complement each other, and if, when, and how these policies can be enhanced to consider more 
complex abstractions (e.g., to support tasks of variable precision). 

Our investigation of low-level integrated control across resources has revealed several areas 
that have not yet been sufficiently researched. First, the work to date has emphasized databases 
with nondeterministic query lengths. On the other hand, scheduling approaches that use time- 
benefit functions for nondatabase activities of deterministic lengths have been partially studied 
only twice: (1) the integration of CPU scheduling and conditional-restart conflict resolution using 
DAS, and (2) the integration of CBS scheduling and buffer management techniques. In addition, 
the integrated control of communication with other resources has not been considered. For 
example, how would CBS scheduling for the CPU with priority token bank scheduling for the 
communication channels perform, compared to LBES with EDF? 

Even real-time control of single resources needs additional research. For example, predictable 
communication over multiple hops is an open research area, as are I/O scheduling techniques that 
use more enriched information (e.g., time-value functions). Alternate techniques of using time- 
benefit functions, such as CBS and LBES, have not been sufficiently compared. In addition, 
security abstractions that allow trade-offs between covert channels and performance require more 
investigation. 

Some scheduling approaches have considered trade-offs among particular objectives. The 
approaches that trade off precision, importance, and timeliness are the most general, since many 
high-level objectives can be mapped into these low-level objectives. There are alternative 
abstractions for supporting precision: precision-value functions, OR dependencies, and precedence 
constraints. The advantages and disadvantages of these abstractions for precisions must be further 
investigated, for example, by using simulations to compare (1) CBS with OR dependencies of 
alternate precisions; (2) LBES adapted to support alternate precisions using an approach like that 
of Liu et al. [1991]; and (3) the approaches proposed by Moiin and Smith [1992]. 

Nonheuristic approaches that deal with multiple objectives are likely to be far too 
computationally complex to be of practical use in real-time systems. More research on heuristic 
techniques is needed. 

Most of these areas of investigation would probably best be addressed through a wide range 
of simulations. Additional insight into low-level integrated control should be obtained through 
actual prototype implementation on a real operating system, such as Alpha OS. 
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