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NOMENCLATURE 

A.. = Laminate stiffness matrix 

E-j = Young's modulus in 1 - (fiber) direction 

E2 = Young's modulus in 2 - (transverse) direction 

F = Contact force 

G-J2 = In-plane shear modulus 

k = Contact coefficient 

k, = Reloading rigidity 

a = Indentation 

a = Permanent indentation 

c^  = Maximum indentation before unloading 

a  = Critical identation 

y-|2 = Poisson's ratio for strain in the 2-direction when stressed 
in the 1-direction 

vn 



1. INTRODUCTION 

Due to their lack of through-the-thickness reinforcement, laminated 

fiber composites are susceptible to impact damage. The past effort in 

the study of FOD (foreign object damage) of composites can be categorized 

into three aspects, namely, examination of impact damage by testing, wave 

propagation study, and the search for new impact resistant hybrid compo- 

sites. Ballistic impact tests on various composites have been conducted 

by many people [1-4]. Under the sponsorship of NASA Lewis Research Center, 

a number of aircraft engine companies have carried out full scale testings 

on impact of composite fan blades [5-7]. Observations made from these 

tests have led to some understanding of the failure modes and the impact 

effect on the reduction in the strength of composites. 

Some authors have approached the FOD problem by studying stress 

wave propagation in laminated composites [8-16]. Since the impact resis- 

tant properties of composites are not pure material properties but are 

greatly dependent on the dynamic structural behavior, the understanding 

of wave propagation in composites due to impact loads is of great impor- 

tance to the FOD problem. 

Recently, attention has been called to the use of super-hybrid 

composites as a possible solution to the FOD problems [17]. As the 

search for highly impact-resistant composites continues, the need for 

better testing procedures and accurate analytical models remains. 

Since the impact phenomenon involves both material response at the 

contact zone and the structural response in the form of stress waves, 

it is desirable to separate these two. In the past, the classical 

Hertzian contact law was used to calculate the contact force which was 

then used as the forcing function in the analysis of the subsequent 



dynamic response of the structure after an impact [12, 13, 15]. Recently, 

Yang and Sun [18] have conducted indentation tests on a graphite/epoxy 

laminate using spherical indenters and concluded that the classical 

Hertzian law is not valid. In particular, they found that the permanent 

deformation at the contact zone is very  large and that the unloading 

path substantially deviates from the loading path. Based upon experi- 

mental data, the loading and unloading contact behaviors were modeled 

in terms of power laws. Since these contact laws were established based 

on static indentation tests, the validity of these laws in the dynamic 

impact analysis remains to be verified. 

The purpose of this study was to conduct dynamic impact experiments 

to provide a basis for comparison with the analytical solution using 

these static contact laws. 



2. Material Properties and Contact Laws 

The graphite/epoxy laminates were provided by NASA Lewis Research 

Center. Specimens were cut from [0/45/0/-45/0]2s panels of 28 cm x 23 cm 

x 0.254 cm. When cut in the transverse direction, [90/45/90/-45/90]? 

laminate specimens were obtained. 

The ply elastic constants E,, E2> G,«, and v,„ were determined 

experimentally by an indirect procedure. According to the classical 

lamination theory, for a symmetric and balanced laminate, we have 

Nx = All exx+A12£yy 0> 

Ny = A12 £xx + A22 *yy ^ 

where Nx and N are the in-plane forces in the x- and y- direction, re- 

spectively. exx and e  are the normal strains, and A., are elements 

of the plate in-plane stiffness matrix [19]. The quantities A., are 

functions of the ply elastic constants as well as the fiber orientation. 

Simple tension specimens of 2.54 cm width were cut from the large 

panels into [0/45/0/-45/0]2s and [90/45/90/-45/90]2s laminates. Uni- 

axial tension tests (N i 0, N = 0) were then performed and the longi- x   y 
tudinal and transverse strains were measured. With the two types of speci- 

mens, four equations in the form of Eqs. (1) and (2) were obtained from the 

experimental data. Since these equations are highly nonlinear in the 

elastic constants, a numerical iterative procedure was used to find the 

solution. The results are 



E1 = 120 GPa (17.5 x 106 psi) 

E0 = 7.9 GPa (1.15 x 10
6 psi) 

2 (3) 

G12 = 5.5 GPa (0.8 x 10
6 psi) 

v12 = 0.30 

The contact laws used in this study were obtained by Yang and 

Sun [18]. For the loading process, the contact force F and the inden- 

tation a have the relation 

F = k a3/2 (4) 

where k is a contact coefficient whose value depends on the target 

material properties and the identer size. For the graphite/epoxy 

laminate under consideration we have 

k = 3.36 x 104 N/mm1*5 (9.7 x 105 lb/in.1'5)        (5) 

for the 12.7 mm (0.5) in.) diameter steel identer, and 

k = 0.94 x 104 N/ran1,5 (5.6 x 105 lb/in.1-5) (6) 

for the 6.35 mm (0.25 in.) diameter indenter. 

The unloading process is modeled by the following equation 

2.5 
a - a 

F = Fm [ 2_] (7) 
m  o 

where F is the contact force corresponding to the indentation a where 
m m 

unloading starts, and a is the corresponding depth of the permanent 

crater. The following formula was suggested by Yang and Sun [18] for 

computing a : 



ao/am = ] - ^cr^)275 (8) 

with 

a„ = 0 if a < a (Q\ o      m - cr \*) 

In Eq. (8), the parameter acr is constant for both sizes of indenter. 

For this graphite/epoxy, 

acr = 8.0 x 10  mm (10) 

The reloading behavior is modeled by 

F = k^a - aQ)
3/2 (11) 

in which 

kl ■ V<%, - «f2 (12) 

is the reloading rigidity. This formula has been experimentally veri- 

fied by Yang and Sun [18]. 

A higher order beam finite element with six degrees of freedom was 

used in conjunction with the contact laws for the dynamic impact analy- 

sis. A complete listing of this program can be found in [20]. This 

program is able to calculate the transient contact force, the dynamic 

deformation, and stresses in the beam under any impact condition. For 

all the numerical solutions, the beam was modeled with finite elements 

of size 6.25 mm and a 0.2 x 10~6 sec. time increment was chosen for 

the time integration. This finite element size and time increment 

have been tested and found to yield convergent solutions. 



3. Experimental Procedures 

The schematic diagram for the experimental set-up is shown in Fig. 1. 

A pendulum with a steel ball of 12.7 mm diameter was used as the impac- 

tor for low velocity impact (below 5 m/sec), and an air gun was used to 

shoot a 6.35 mm diameter steel ball for high velocity impacts. By ad- 

justing the pressure of the compressed air in the chamber of the air 

gun the velocity of the projectile ranges from 20 m/sec to 100 

m/sec. 

Two light emitting diodes (LED) and two photo detectors were used 

to find the velocity of the projectile. When the projectile interrupts 

the first light beam, a pulse is generated to start the time counter. 

Once the projectile cuts the second light beam, another pulse is 

generated to stop the counter. The velocity of the projectile is ob- 

tained by dividing the distance between the two LED's by the time 

registered on the counter. 

Two boundary conditions were realized in the impact experiments, 

namely, clamped-clamped and free-free conditions. For the clamped-clamped 

condition, the specimen was tightly gripped to a massive stand while in 

the case of free-free end condition, the specimen was hung on two thin 

strings. Strain gages were mounted on the specimen at various locations. 

One gage was placed exactly on the back side of the impact point for 

triggering the oscilloscope which recorded the strain signals from 

other gages. The strain gages (EÄ-13-062 AQ 350) were marketed by 

Micro Measurement Co. and Eastman 910 was used as the bonding glue. 

Signals from the gages were amplified by a 3A9 Textronix amplifier 

and displayed on the screen of the oscilloscope. 



All test specimens were approximately 25.4 mm (1 in.) wide. The 

length of the beam specimens ranged from 177.8 mm to 381 mm. 
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4. Results and Discussions 

Daniel et al [14] have concluded from their transverse impact 

experiments that the in-plane membrane deformation is negligible. To 

verify this in our case, a series of tests were conducted with two 

strain gages mounted on the opposite faces of the laminated beam to 

record the longitudinal normal strain histories at a certain location. 

From the results presented in Figs. 2 and 3, it can be seen that the 

strains on the opposite sides of the beam have the same magnitudes but 

opposite signs. This indicates that the deformation is dominated by 

bending, i.e., the impact-induced motion is predominantly a flexural 

wave. 

4.1 [90/45/90/-45/90]2s 

Figure 4 shows the typical dynamic contact force, the displace- 

ment of the impacting ball and the displacement of the beam at the 

impact point predicted by the finite element program along with the contact 

laws. The difference between the ball and beam displacements is the 

indentation. The multiple impacts are the results of waves reflected 

from the clamped ends. 

In Figs. 5-7, the longitudinal surface strains at different 

locations on a clamped-clamped [90/45/90/-45/90]2s laminate subjected 

to impact of a 12.7 mm diameter steel ball are presented. The impact 

velocity was 3.16 m/sec. The finite element solutions seem to agree 

very well with the experimental data at the initial period after the 

wave arrives. The agreement is especially good at points closer to 

the impact point. After the initial wave train passes the gage 



location, discrepancies between the finite element solutions and experi- 

mental results are noted. 

Initially, such discrepancies were thought to be originated from 

the numerical instability in the finite element program. However, a 

study on the numerical stability indicated that the finite elements 

had already converged. This led to the re-examination of the boundary 

conditions. It was suggested that the clamped end condition as modeled 

by the finite elements was not actually realized in the experiment and 

part of the wave might have penetrated into the grips and was reflected 

totally as predicted by the finite element solution which exhibits a 

strong oscillatory behavior due to wave reflections. To verify this 

point, a free-free laminated beam (2.82 mm x27.9 mm x 177.8 mm) was 

used. The dynamic strain history at 38.1 mm from the impact point 

is shown in Fig. 8. Excellent agreement between the finite element 

solution and the experimental data up to 400 y sec. is noted. 

More experiments with a free-free beam were then conducted. This 

beam was substantially longer (381 mm) than the previous one (177.8 mm). 

The experimentally obtained strain histories at three different loca- 

tions are shown in Figs. 9-11. It is evident that the experimental 

results also show a pronounced oscillatory behavior as predicted by 

the finite element solutions, although of a lesser magnitude. This 

smaller strain magnitude at the later time could be due to material 

damping which has not been taken into account in the finite element 

solution. It is also noted that the wave predicted by the finite ele- 

ment solution travels at a slightly lower velocity than the measured 

value. This could be due to the fact that the displacement-formulated 

finite element tends to be stiffer than the actual structure. 
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The results for higher impact velocities (in the range of 30 m/sec) 

are shown in Figs. 12-15. From Fig. 12, it is noted that at higher 

impact velocities, multiple impacts exist no more. The basic charac- 

teristics are similar to those at lower impact velocities. 

4.2 [0/45/0/-45/0]2s Graphite/Epoxy Beam 

Unlike the [90/45/90/-45/90]2s laminated beam, the [0/45/0/-45/0]2s 

laminated beam has much greater bending rigidity in the longitudinal 

direction. It would take longer time for waves to travel across the 

width of the specimen. As a result, the use of beam finite element to 

model the specimen (25.4 mm wide) may not be adequate. 

For this type of laminate, the specimen was clamped at both ends 

during the impact test. The impact force was calculated by using the 

finite element program with the result shown in Figs. 16-17 for low 

and high impact velocities, respectively. 

Figure 18 shows the strain response at a location 38.1 mm from 

the impact point on a beam of dimensions 2.72 mm x 27.7 mm x 228.6 mm 

subjected to impact of a 12.7 mm diameter steel ball. The impact velo- 

city is 3.16 m/sec. Figures 19-21 present the strain histories at 

three different locations on a beam of similar dimensions under the 

same impact condition. From these results, it is clear that, although 

the finite element solutions yield the same trend, they predict higher 

peak strain magnitudes than the experimental data. 

The results for higher impact velocities are shown in Figs. 22-25. 

Two phenomena are readily observed. First, the wave is reflected and 

returns much faster due to the higher bending rigidity of the beam. 
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Second, there seems to be a wave of significant magnitude traveling in 

the width-direction that is reflected by the free edges and returns to 

interact with the main flexural wave in the longitudinal direction. 

The hump in the strain curve for the point located at 38.1 mm from 

the impact point (at 50 y sec after impact) could be attributed to the 

arrival of the transverse flexural wave. Indeed, if plate finite 

elements are used, the analytical solution also exhibits such behavior. 

The plate finite element solution will be discussed in a forthcoming 

report. 

4.3 Span Effect 

To further study the phenomenon of the longitudinal reflected 

waves, several experiments with specimens of different lengths were 

conducted. Fig. 26 shows the experimental results for two [90/45/90/- 

45/90]2s laminated beams of 203.2 mm and 355.6 mm in length, respectively. 

These beams were clamped at both ends and were subjected to impact of 

a 6.35 mm steel ball at a velocity of 30 m/sec. It is evident that 

initially before the reflected wave arrives, the strains in these two 

beams are identical. 

Fig. 27 shows the experimental results for two [90/45/90/-45/90]2s 

laminated beam subjected to impact at a lower velocity (3.16 m/sec). 

The results for the [0/45/0/-45/0]2 laminated beam are presented in 

Fig. 28. Again, the same conclusion can be drawn. 
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5. Conclusions 

Experiments were conducted to study flexural wave propaga- 

tion in a graphite/epoxy lamianted composite. Both [90/45/90/-45/90]2_ 

and [0/45/0/-45/0]2s laminates were used in these experiments. Dynamic 

strain responses at various locations of a steel ball impact were 

measured by strain gages. The impact velocity considered ranges from 

3 m/sec to about 37 m/sec. A finite element program which incorporated 

statically measured contact laws was employed to calculate the dynamic 

impact responses. The experimental results were compared with the 

finite element solutions. 

The result of this study indicates that the statically determined 

contact laws are adequate for the dynamic impact analysis. The beam 

finite element is more suitable for modeling the [90/45/90/-45/90]2S 

laminate due to its higher transverse bending rigidity. The 

[0/45/0/-45/0]ps laminate, on the other hand, exhibits strong plate 

bending effects even for a large aspect ratio. For more accurate 

analytical results, plate finite elements should be used. 

Acknowledgment 

The authors wish to acknowledge the financial support by NASA 

Lewis Research Center under Grant No. NSG 3185. They are also grate- 

ful to Dr. C.C. Chamis for his interest in this work and many helpful 

discussions during the course of this research. 



13 

6. References 

[1] Foreign Object Impact Damage to Composites, ASTM STP 568, Ameri- 
can Society for Testing and Materials, 1973. 

[2] Ross, C.A., and Sierakowski, R.L., "Studies on the Impact Resis- 
tance of Composite Plates," Composites, July 1973, pp. 157-161. 

[3] Starnes, J.H., Rodes, M.D., and Williams, J.G., "The Effect of 
Impact Damage and Circular Holes on the Compressive Strength of 
a Graphite-Epoxy Laminate," NASA Technical Memorandum 78796, 
October, 1978. 

[4] Rodes, M.D., Williams, J.G., and Starnes, J.H., "Low-Velocity 
Impact Damage in Graphite-Fiber Reinforced Epoxy Laminates," 
Proceedings, the 34th .nnual Conference, Reinforced Plastics/ 
Composites Institute, the Society of the Plastics Industry, Inc., 
New Orleans, Louisiana, 1979. 

[5] Graff, J., Stoltze, L., and Varholak, E.M., "Impact Resistance 
of Spar-Shell Composite Fan Blades," NASA CR-134521, 1973. 

[6] Premont, E.J., and Stubenranch, K.R., "Impact Resistance of 
Composite Fan Blades," NASA CR-134515, 1973. 

[7] Oller, T.L., "Fiber Composite Fan Blade Impact Improvement 
Program," NASA CR-135078, 1976. 

[8] Moon, F.C., "Wave Surface Due to Impact on Anisotropie Plates," 
Journal of Composite Materials, Vol. 6, 1972, pp. 62-79. 

[9] Moon, F.C., "A Critical Survey of Wave Propagation and Impact 
in Composite Materials," NASA CR-121226, 1973. 

[10] Moon, F.C., and Kim, B.S., "Impact Induced Stress Waves in an 
Anisotropie Plate," AIAA Journal, Vol. 17, No. 10, 1979, 
pp. 1126-1133. 

[11] Sun, CT., "Propagation of Shock Waves in Anisotropie Composite 
Plates," Journal of Composite Materials," Vol. 7, 1973, pp. 366- 
382. 

[12] Sun, C.T. and Chattopadhyay, S., "Dynamic Response of Anisotropie 
Laminated Plates under Initial Stress to Impact of a Mass," 
Journal of Applied Mechanics, Vol. 42, 1975, pp. 693-698. 

[13] Sun, CT., "An Analytical Method for Evaluation of Impact Damage 
Energy of Laminated Composites," Composite Materials: Testing 
and Design (Fourth Conference), Asm SIP b\l,  American Society 
for Testing and Materials, 1977, pp. 427-440. 



14 

[14] Daniel, I.M  Liber, T., and LaBedg, "Wave Propagation in 
Lrh.nlT^ ImPact^ Composite Laminates," Experimenta 
Mechanics, January 1979, pp. 9-16.      — — 

Cl5] Lh?U- PrC-  and Mon'mer> R-W-, "Impact Behavior of Polymeric 
Matrix Compos!te Plates," AFML TR-76-242, Air Force Mater als 
Laboratory, December, 1976. materials 

[16] Takeda, N., Sierakowski, R.L., and Malvern, L.E., "Wave Propa- 
gation Experiments on Ballistically Impacted Composite Laminates " 
Journal of Composite Materials. Vol. 15, 1981, pp? 99-194 

[17] Chamis C.C. Lark, R.F., and Sullivan, T.L., "Super-Hybrid 
K1.^/ An Emerging Structural Material " Proceedings of 

[18] Yang, S.H  and Sun, CT., "Indentation Law for Composite 

Cl9] S!:v*'^^^SLS^m*te Materials. Scripta Book 

[20] Sun, CT., and Yang, S.H., "Contact Law and Impact Responses 
of Laminated Composites," NASA CR-159884, 1980   KesP°nses 



15 

I/) 
3 
+J 
(O 
S- 
(O 
Q. 
O- 

10 

c 
cu 

s- 
<u 
Q. 
X 
tt) 
4- 
o 

s- 

A3 

O •^ 
4-> 
(O 
E 
QJ .c o 

CD 



16 

ili in 
süs§Pm »ÜBl 

ifflÄisi Hi •ffw&AwMlffiM 

mm* „..-,- ÄiÄ^Sfe^Ki^Hi 
ilillil§PiIiIPM 

Fig. 2 Strain-gage signals on opposite faces at 38.1 mm from the 
impact point on the ['90/45/90/-45/90]2 beam (2.62 mm x 27.74 mm 

x 228.6 mm) impacted with a 6.35 mm diameter steel ball at 
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Fig. 3 Strain-gage signals on opposite faces at 38.1 mm from the 
impact point on the [90/45/90/-45/90]2s beam (2.59 mm x 

27.91 mm x 228.6 mm) impacted with a 6.35 mm diameter steel 
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Fig. 18 Experimental and theoretical strain responses for 
a clamped-clamped [0/45/0/-45/0]? beam at 38.1 mm 
from the impact point. 
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