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ABSTRACT 

Modeling transition radiation is a method to simulate the radiation produced by a 

relativistic charged particle passing through a stack of foils when variables such as foil 

thickness, interfoil spacing, number of cells, beam energy, and absorption change from 

an idealized case. The results of the modeling show how rapidly the radiation intensity 

produced in the foil stack decreases as randomness in foil thickness and spacing increase 

and can be used to establish practical tolerances for stack design. Including the effect of 

photon absorption by the foils will give a realistic radiation intensity for a particular 

material. The choice of foil material will determine the level of energy, below which the 

photon energy is strongly absorbed. Modeling the effect of absorption in certain foil 

materials also indicates the x-ray absorption K edge can be used to isolate particular 

energies and angles of photon emission. 
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I. INTRODUCTION 

The interaction of a relativistic charged particle with the medium which it 

transverses may lead to the generation of Cherenkov radiation, which is broad banded 

and dependent on the length of the interaction path. The mechanism is the acceleration 

of the molecules of the medium in the vicinity of the charged particle. 

Transition radiation consists of photons generated by an energetic charged 

particle transversing an interface between two media. If the dielectric constant has a 

spatial discontinuity, as in the interface between two different media, a charged particle 

experiencing this sudden change produces transition radiation. Unlike Cherenkov 

radiation, where radiation is produced only when the particle velocity exceeds the phase 

velocity of light in the direction of the particle; for transition radiation this velocity 

matching is not necessary. [Ref. 1] Also, transition radiation always has an angular 

spread, where Cherenkov radiation may be confined to a small angular cone in the 

direction of the particle. 

In the case of a single slab or foil, transition radiation will be produced by each 

interface, ie. both sides, as the charged particle passes through. Transition radiation is 

rather low intensity and to increase the radiation intensity, multiple foils may be used. 

With the correct foil thickness and interfoil spacing, the transition radiation produced by 

each foil can be added coherently as in Fig. 1, analogous to an optical diffraction grating, 

to greatly increase the intensity. [Ref. 2] Figure 1 shows two such rays emitted at the 

angle 0. 

Transition radiation has been the subject of many papers, primarily for an 

idealized case where the foil thickness and spacing described above are exact throughout 

the multiple foils. Some authors consider the case to be idealized as long as the deviation 

in the foil thickness, At, and the deviation in spacing, A2, satisfy the inequalities 

Al<<vlv' 



and 

A, «   J—, 2    4TN 

where r, 2 are the formation lengths, a quantity to be defined later, and N is the number 

of foils. [Ref. 1] This paper will address (1) the production of transition radiation for the 

ideal case; (2) the effects of variations in foil thickness and spacing; (3) the effects of 

absorption for different materials; and (4) discuss what limits and considerations should 

be taken into account for designing foil stacks for different materials. 

Transition radiation has several possible applications. One application is in 

particle identification and energy measurements. Transition radiation is analogous to 

Cherenkov radiation and could possibly replace existing Cherenkov detectors. Transition 

radiation could also be used for threshold detectors for detecting particles with energies 

above a given value or in particle beam diagnostics, to accurately measure the beam 

energy and identify the type of particle. Another possible application is as a source 

enhancement. A foil stack can be used to increase the spectral brightness (photons per 

unit solid angle per unit area of source) of a transition radiation sourcefRef 1]. 

Fig. 1 Transition radiation from a periodic medium with uniform spacing. If the phase 

of the emitted radiation varies by 2rm (n an integer) for each foil interface, the radiation 

adds in phase and the intensity varies as the square of the number of foils. [Ref. 1] 



II. TRANSITION RADIATION 

At the interface the charged particle will interact over a set distance, called the 

formation length, given by 

z, = 
2c 

O) l- ß(s,-sin2ey (1) 

where co is the angular frequency of the radiation, 9 is the angle of emission, CDJ is the 

respective plasma frequency of the medium, c is the speed of light in a vacuum and 

CO 

is the permitivity of the medium, /? = v /c, and y = (1 - ß2)2. Considering a small 

emission angle and a foil in a vacuum, the formation lengths become, 

2X 

7t 

( 1 fm \ COi 

\a> ) 

2\ 

(2) 

for the foil and, 

Z2 = 

-1 

^ 
(3) 

for the vacuum since there is no plasma frequency for vacuum. 

Transition radiation can conveniently be considered as the product of several 

factors. Fx is the contribution from a single interface. It describes the photons produced 

as an electron crosses a single boundary between two different media and is given by: 

aco sin2 0, 
F,= 

16/r2c2 ■{zx-h) . (4) 

where a is the fine structure constant. The coherent superposition of radiation from the 

two surfaces of a single foil is another factor given by 

F2=4sin2r, (5) 

where 



Y = K (6) 
T 

and /[ is the foil thickness. 

For N equally spaced foils of identical thickness in a vacuum, the number of 

photons per frequency per solid angle is given by: 

^L=FlF2Fy (7) 
dadQ. 

The third factor F3 gives the summation of the contribution of each foil in the stack. 

For N foils, F3 has the form: 

„    sin2 NX /Sx 
F' = ^T' (8) 

where, 

X = ^ + ^, (9) 
z,    z2 

and /, is the foil thickness and l2 is the vacuum spacing. [Ref. 2] 

These equations assume N idealized foils with no reflections or absorption of 

photons or particles. By idealized, it is meant that the thickness and spacing of foils is 

exact and precise; there is no variation in either the spacing or foil thickness. 



III. IDEALIZED THIN FOIL STACKS 

In the preceding chapter, the equations were developed for the radiation produced 

by an electron transversing a foil in a vacuum. The foil stack that will be referred to 

throughout this paper consists of N foils separated by a vacuum spacing. The foil stack is 

considered to be made so that there are JV cells where each cell is a foil and vacuum 

spacing. The mechanics of making the stack is difficult only because of the small sizes 

and tolerances required. Future chapters will discuss these tolerances further. 

Equation 7 shows that the distribution of transition radiation is the product of three 

factors, FX,F2, and F3. It is convenient to discuss each of these factors in order. 

For Fx there is an angle, 6„ that maximizes the function, which is to a first order 

approximation, 

1* 
(10) 0, 

1 

7+ 
-    \co 

0)2 

where co2 is the plasma frequency of the medium surrounding the foil. For a foil in 

vacuum, Eq. 10 reduces to the rule of thumb, 0t=\ly. For example, an electron beam of 

855 MeV has an 9, value of 0.5 mrad. Thus for a foil in vacuum, the relatively broad 

maximum of Fx is determined only by the value of y ■ For this reason, this paper 

concentrates on the role of F2 and F3 in determining the photon emission given by Eq. 7. 

This is appropriate since Fx is relatively slowly varying. 

From Eq. 6, F2will have a maximum value of 4 for odd integer values of s. So, 

Y = s—    for 5=1,3,5,.... 

Similarly, from Eq. 8, which is the optical grating equation, F3 will have a maximum for 

X = rx  forr=l,2,3.... 

The maximum value of F3 will be N2 at integer values of r, and the maximum value of 

F2F3 is 4 N2 for integer values of r and odd integer values of s. [Ref. 1] 



These conditions may be plotted for a specific case. With the photon energy 

E-tico ranging from 0 to 10 keV and the emission angle 0 ranging from 0 to 2 mrad, 

the calculated results for a stack of 4 equally spaced foils are plotted in Fig. 2. The solid 

lines represent odd integer values of s or maximas of F2 and the dotted lines represent 

integer values of r or maximas of F3. Intensity peaks are expected to occur for the values 

of £ and 9 where the solid and dotted lines intersect. A corresponding plot of the 

radiation intensity is plotted in Fig. 3. The maximums of Fig. 3 are where the predictions 

of Fig. 2 show, the intersections of the r and s lines. 

The maximum value of the contour plot, Fig. 3, occurs for the r=T, s=\ 

intersection. Each contour in the figure has a value of 20 and the maximum for four foils 

is 64. From this maximum, at this particular energy and angle, the intensity tapers off as 

the energy and angle are changed. 

Additional foils have the obvious effect of increasing the intensity, which varies 

as 4N2. But, additional foils also have effect of sharpening the intensity contour to a 

narrower angle, much as an optical grating with more slits tends to intensify the image. 

A plot with the same values as Fig. 3 except for a stack of 8 foils demonstrates this in 

Fig. 4. 
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Fig. 2 With /j= 7.5 (im, /2=169 jam, and 4 Kapton foils, the maximum of the function F2 

is represented by the dashed line. The maximum of the function F3 is represented by the 

solid lines. In both cases, the lowest order resonance are the top lines. Intersections 

maximize the product F2F3. 
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Fig. 3 Radiation intensity contours for the product F2F3 with 4 Kapton foils, /j- 7.5 [im, 

/2=169 urn, maximum intensity =63.972. 
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IV. MODELING THE FOIL STACK 

The use of Eq. 5 and Eq. 8 is a convenient method for studying the radiation 

pattern. However, these equations are for an ideal case. If the foil thickness and spacing 

have variations, another method must be used to calculate the radiation pattern. 

The next step is to develop an algorithm to simulate each of the factors producing 

transition radiation as the variables of foil thickness and spacing are changed. Since the 

first factor, Fp is independent of length and spacing, we will concentrate on the 

algorithm for simulating F2 and Fy In the study of idealized thin foils, the factors F2 

and F3 were derived for the case of no variation. To study the effects of variations, 

consider the sum 

yV-l 

E 
m=0 

X^fl-e"5»} (11) 

where 

Am = -<pYj ak-(p0 £Vi> (12) 
k=m+2 k=m+2 

and 

öm = -P<*m+v (13) 

The sum is over the N cells of the stack, where the foil thickness and spacing of the k\h 

cell are given by ak and bk respectively. [Ref. 3] The constants <p and p0are yet to be 

defined. 

To show how Eq. 11 reduces to the factors given in the idealized case, again 

consider the case of no variation so that ak=a,bk=b. Eq. 12 and 13 then reduce to 

A„ = -<p(N - m+2)a - <p0( N - m + 2)b, 

and Sm = -cpa. 

Inserting these values into Eq. 11, before taking the absolute value squared, one obtains, 

11 



N-\ ,V-l 
YeMl-e'M = V e't-H^-'"+2)-?)0Ä(1v-m+2)]r1_^i 

■0 

[\-e"payi'pa{N+2)e' 

m=0 

y-itpa(N-m+2)   -i<p<jb(N-m+2) 

-icp0b(N+2)^    i(<pa+(p<J>)m T< (14) 

Now, let R = cpa + (p0b, in which case the right hand side of Eq. 14 reduces to 

\\ _ e'1>a ^-'ViN+D^iip^iN+l 

= [l-el9a] 

l-e iRN 

*(^)sin(M?/2) 
sin(#/2) ' 

= [l-^a]e-'('v+2)VAV/V iR/2 sm(NR/2) 
sin(/?/2) ' 

2«?' sin 
<pt/ -«P^)sinQ/?/2) 

sin(/?/2) 

Thus, the summation in Eq. 11 becomes, 

iV-l 

5>^{l-e*-} = 2«T' 
»»=0 

sin 
^w -«(^]sin(M?/2) 

sin(#/2) : (15) 

Now, taking the square of the absolute value, 

N-\ 

][>"• {!-*«-} 
i=0 

=4 sin" 2[<pa sin2(NR/2) 
sin2(R/2) 

(16) 

which is the same as F_R if Y = cpa 12 and X = R12. This procedure defines the 

constants <p = 21 zx and <p0 = 21 z2. As a further check, an intensity plot from this 

summation is shown in Fig. 5 for the same values as Fig. 3. As expected from this 

derivation, the two figures are identical. This similarity says that Eq. 11 is adding the 

phase of the photons and the interference produced by the various cell foils together. 

Whether the interference is constructive, like an optical grating, or destructive will show 

in the result of the left hand side of Eq. 16. This is the algorithm to use for the case 

where foil thickness and spacing are not ideal. 

12 



Now that an algorithm for finding the intensity has been established, consider the 

effects of letting variations occur in the cell. To do this , a quantity called percent 

randomness, which is defined as a random number in the range ofthat value plus or 

minus the percent times the value, is used. For example, a ten percent randomness in l^ 

would be a random number falling within the range /, ± 0.1/j. 

In creating the model, the intensity is averaged for a more consistent result. If the 

summation is done for just one particular random value, the intensity could be a higher or 

lower value than a statistical average, depending on what the actual random values are. 

To determine the statistical average, the result of M summations is added together and 

the answer is divided by Mto obtain an average. This computation is carried out for 

every calculated point in the selected range of E and 9. Depending on the values of each 

particular cell, the intensity will have a value for a particular E and 6. If these values are 

the same for each random cycle, the average intensity will be close to the intensity 

calculated from a single cycle. If the intensity varies from cycle to cycle, the average 

intensity could be quite different from the intensity for each cycle. 

This gives rise to the question of how many cycles to average over. In doing this 

average, the results from 10,20 and 100 cycles were considered. To complete 100 cycles 

took the computer 4.5 days while 10 cycles took 2.5 hours. It turned out that the average 

converged very quickly, the difference in the maximum intensity between 10 and 100 

cycles was less than 0.25. Plots to compare the difference between 10 and 100 cycles are 

shown in Fig. 6 and Fig. 7 respectively. Since there is essentially no difference, 10 cycles 

were used for all calculations. 

Another consideration is the random number that is used in each cycle. To make 

a truly random number each cycle, and thereby obtain better averages, the random 

function requires a different seed or start point to generate the random number. The 

random function on the computer which was used took the number of seconds past 

midnight on the internal clock as the seed number. Since this number would always be 

different for each cycle, the numbers are considered random. 

13 
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Fig. 5 Result of Eq. 11 for the product F2FZ with 4 Kapton foils, /,= 7.5 um, /2=169 um 

Compared to Fig. 3 the result is exactly the same. Maximum intensity =63.972. 

14 



6%  RANDOM AVG. VAR.  IN  SPACING   10CY 
10 

> 

*: 
>- 
o 
en 
ÜJ 
z 
ÜJ 

o 
o 
Q_ 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 
0 

ANGLE(mR) 

Fig. 6 Modeling the product F2F3 with 4 Kapton foils, lx= 7.5 urn, /2=169 |im, for 10 

cycles to calculate an average which is shown above. Maximum intensity = 62.610. 6% 

randomness in spacing. 
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Fig. 7 Modeling the product F2F3 with 4 Kapton foils, lx= 7.5 um, /2=169 urn, for 100 

cycles to calculate an average. Intensity contours match with Fig. 6. Maximum intensity 

= 62.829. 6% randomness in spacing. 
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V. MODELING VARIATIONS FOR A STACK OF FOUR FOILS 

In considering variations, the first case examined is random spacing. The foil 

thickness held fixed and precise, while the spacing is allowed to vary by a certain percent 

randomness. The algorithm described in the previous chapter was used with 10 cycles. 

The process was done for 10 percent randomness increments from 0 to 100 percent. In 

addition to plotting intensity contours, the value of the maximum intensity was also 

recorded. The intensity contours for two different degrees of randomness are shown in 

Fig. 8 and 9. As can be seen in the figures, the increasing randomness in spacing has the 

effect of narrowing the energy range of the radiation as the randomness is increased.. 

The second case is the opposite of the first. The spacing is held constant and the 

foil thickness is allowed to vary. Again, the intensity contours were computed for the 

same range, and the value of the maximum intensity recorded. Plots to contrast with 

Fig. 8 and 9 are shown in Fig. 10 and 11. This time the figures show that the increasing 

randomness in foil thickness has the effect of narrowing the angular spread of the 

radiation as the randomness is increased. 

The third case is where both the foil thickness and the spacing vary by the same 

percent randomness. In this case the peak intensity dropped much quicker than in the 

first two cases. Both the energy narrowing of the spacing variations and the angular 

narrowing of the foil thickness variations appear to be more than just additive as 

randomness increases. Intensity contours for the first two values of randomness are 

shown in Fig. 12 and 13. Comparing the 20 percent randomness plot for the three cases, 

Fig. 8,10, and 13, shows the rapidity of this effect. 

The value of the maximum intensity also decreases as randomness increases. 

Fig. 14 shows the plot of the maximum intensity for all three cases as randomness 

increases. The ordinate in the figure is the normalized maximum intensity, that is the 

calculated value divided by the maximum value for four foils. In this figure, the solid 

line represents randomness in spacing only, the dotted line represents randomness in foils 

17 



only, and the dashed line represents randomness in both foils and spacing. The same 

representation is used throughout the paper. The figure shows that the spacing variations 

have less of an effect in the maximum than the foil variations. Also, if one variable, 

either spacing or foil thickness , can be held to small random variations, the other 

variable can have considerable randomness and the peak will still be close to the 

maximum intensity of the idealized stack. This may be a more cost effective way to 

construct the foil stacks. For example, if both foil and spacing have 10 percent 

randomness, the maximum intensity will be at 87.5%. If the foils were precise, the 

spacing could vary by up to 25% and still be above this value. 

In the idealized foils chapter, additional foils showed the effect of increasing the 

maximum intensity and narrowing the angular spread. The variations study described 

above was conducted for the same three cases for an eight foil stack. The effects of 

variations on the intensity of an eight foil stack became evident much quicker than for 

four foils as randomness increased. Not only did the maximum value drop faster, but the 

radiation intensity pattern also seemed to break down . In the four foil case, variations in 

either spacing or foils caused a narrowing in angle or energy respectively, but the 

radiation intensity pattern could still be seen. The intensity contours of an idealized eight 

foil stack are shown in Fig. 4. The deterioration of the radiation intensity pattern for 

eight foils is shown in Fig. 15-18. In each plot, both foil and spacing vary by the same 

percent randomness. As seen in Fig. 16, the radiation pattern begins to deteriorate at 

20% randomness and is totally gone by 40% randomness, Fig. 18. A contrasting plot of 

the maximum intensity value for eight foils is shown in Fig. 19. Each of the three cases 

is shown, as in Fig. 14. In the eight foil case, Fig. 19 shows the maximum intensity falls 

about 10% faster with increasing randomness than the four foil plot in Fig. 14. 
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Fig. 8 20% randomness in spacing for the product F2F3 with 4 Kapton foils, 4= 7.5 ^m, 

/2=169 ^im, for 10 cycles. Maximum intensity = 58.201. 
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Fig. 9 70% randomness in spacing for the product F2F3 with 4 Kapton foils, /,= 7.5 ^im, 

/2=169 urn, for 10 cycles. Maximum intensity = 33.778. Note the narrowing in energy 

range compared to Fig. 8. 
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Fig. 10 20% randomness in foils for the product F2F3 with 4 Kapton foils, /t= 7.5 fxm, 

/2=169 [im, for 10 cycles. Maximum intensity = 54.240. 
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Fig. 11 70% randomness in foils for the product F2F3 with 4 Kapton foils, lx= 7.5 ^m, 

l2 =169 urn, for 10 cycles. Maximum intensity = 30.602. Angular range of main 

maximum is much narrower than Fig. 10. 
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Fig. 12 10% randomness in foil and spacing for the product ^F3 with 4 Kapton foils, lx
: 

7.5 |j.m, /2=169 (j.m, for 10 cycles. Maximum intensity = 56.261. 
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Fig. 13 20% randomness in foil and spacing for the product F^ with 4 Kapton foils, lY= 

7.5 ^im, 4=169 urn, for 10 cycles. Maximum intensity = 40.593. Note decrease in energy 

and angular width compared to Fig. 12. 
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Fig. 14 Plot of maximum intensity as randomness increases for 4 Kapton foils. Solid line 

represents variations in spacing only. Dotted line represents variations in foils only. 

Dashed line represents variations in both foil and spacing. 
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Fig. 15  10% randomness in foil and spacing for the product F2F3 with 8 Kapton foils, 

/j =7.5 fim, /2 = 169 |xm, for 10 cycles. Radiation intensity pattern still coherent. 
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Fig. 16 20% randomness in foil and spacing for the product F2F3 with 8 Kapton foils, 

/j = 7.5 (im, l2 = 169 urn, for 10 cycles. Note beginning of the deterioration of radiation 

intensity pattern. 
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Fig. 17 30% randomness in foil and spacing for the product F2F3 with 8 Kapton foils, 

l1 = 7.5 urn, l2 = 169 jim, for 10 cycles. Further deterioration of radiation intensity 

pattern. 
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Fig. 18 40% randomness in foil and spacing for the product F2F3 with 8 Kapton foils, 

lx = 7.5 [im, 4 = 169 |im, for 10 cycles. Radiation intensity pattern totally deteriorated. 
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Fig. 19 Plot of maximum intensity as randomness increases for 8 Kapton foils. Solid line 

represents variations in spacing only. Dotted line represents variations in foils only. 

Dashed line represents variations in both foil and spacing. Compare to Fig. 14. 
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VI. EFFECT OF ABSORPTION 

In considering absorption, the same algorithm is used as in the previous section. 

However, the effect of the imaginary part of the permitivity which will effectively absorb 

part of the photons produced must be considered. To do this, a new termfRef. 3] is added 

to Eq. 12, 
m N N 

An = -2/"'  Xa* " V Z   ak ~ <P0   Z bk-\ > (17) 
t=m+2 k=m+2 *=m+2 

where ß is the absorption coefficient of the material and is given by: 

ß = cxE
c\ (18) 

where c, andc2 are constants depending on the material and E is the energy. [Ref. 4] 

Determining the absorption constants for different elements was done using the 

Nuclear Data Tables[Ref. 5]. Using the Photo A column for the element, a linear 

regression was done for this column versus energy with: 

log10 A = c2E+b 

where A is the value of the Photo A column and E is the energy in keV. From the 

regression, the value of c2 for Eq. 18 is obtained directly. The value of c, is 

c, = mlO* 

where m is the atomic concentration. [Ref. 4] 

The absorption coefficients were determined for three materials, Kapton, 

Aluminum, and Titanium. For the case where the foils are made of Kapton, with the 

same dimensions as Fig. 3, the result for absorption taken into account is plotted in 

Fig. 20 with no random variations. The figure shows what Eq. 17 predicts, since c2 is 

negative, the effects of absorption are greatest for low energy. In Fig. 20, the radiation 

intensity is attenuated strongly below 2.5 keV and less above that value. The maximum 

intensity value, as expected, is slightly lower as compared to Fig. 6 with value of 61.156. 

This figure shows the effects of absorption in Kapton is rather small with no variations. 

The case of absorption in Aluminum with no random variations is plotted in 
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Fig. 21. Since the value of c, is a factor often higher for aluminum than Kapton, the 

absorption is much higher and the radiation below 4 keV is attenuated. The value of the 

maximum intensity is 44.626, much lower than Kapton. Aluminum has a K edge at 1.5 

keV, so the values of c, and c2 remained constant over the range of energy in this 

calculation. 

The case of absorption in Titanium with no variations in foil thickness or spacing, 

Fig. 22, shows an interesting effect. The K edge for titanium is just below 5 keV. Below 

the K edge, the value for c, is on the order of aluminum, but is an order of magnitude 

higher above the K edge. The value for c2 remains almost the same above and below the 

K edge. This change in absorption at 5 keV causes the break in the radiation intensity 

seen in Fig. 22. The value of the maximum intensity occurs below the K edge with a 

value of 44.621, which, as expected, is close to aluminum. 

Considering the effects of variations and absorption raised an interesting result in 

aluminum and titanium. As with variations in four foils, results for three cases were 

calculated. The three cases are randomness in spacing, randomness in foil thickness, and 

equal randomness in both. The above cases were averaged over 10 cycles for a particular 

percent randomness twice. Both values of the maximum intensity were recorded and 

averaged. For some values, the two values coincided well and in other cases there was 

considerable scatter, up to 15% of the average value. 

The results of the maximum intensities calculated are plotted in Fig. 23,24, and 

25 for aluminum, titanium and kapton respectively. Fig. 23 shows the results of 

randomness in spacing and randomness in both to give similar results for aluminum. 

Randomness in foil thickness had a minor effect in decreasing the maximum. This is 

totally different than the case of no absorption. In that case, randomness in spacing had 

the least effect, and randomness in both had a much greater effect than the other two 

cases. This plot predicts that for maximum intensity in aluminum, a stack could be made 

with precise spacing, and the foil thickness can vary by a wide amount. Titanium also 

shows this effect, Fig. 24, but not as strongly as aluminum. The plot of variations in 
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spacing shows several peaks in the curve for titanium compared to plot for aluminum. 

These peaks are the result of the statistical averaging done in the modeling. The 

expected values would have a smoother curve, like the plot for aluminum. 

Since absorption in kapton has little effect, in Fig. 25 the results for the three 

cases are similar to that of variations only, where variations in both foil and spacing have 

a much greater effect than the other two cases of variations in either foil or spacing. 

Despite the greater absorption in titanium, the effect of the K edge can be useful. 

The absorption and variations can be used to make a pattern that, while lower in 

intensity, only occurs for a narrow energy and angle. Fig. 26 shows the effect of 20% 

randomness in both foil and spacing. Only the pattern below the K edge remains, the rest 

is absorbed. For increased intensity, eight foils with 20% randomness are plotted in 

Fig. 27. Since each contour represents an interval of 20, the intensity in the lowest peak 

is almost twice as high as the other peaks, and the energy and angular range are about the 

same as Fig. 26. 
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Fig. 20 No randomness in foil and spacing for the product F2F3 with 4 Kapton foils, 

1 = 7.5 fim, /2=169 fim, for 10 cycles with absorption taken into account. Maximum 

intensity = 61.156. 
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Fig. 21 No randomness in foil and spacing for the product F2F3 with 4 Aluminum foils. 
/j= 7.5 jim, /2=169 Jim, for 10 cycles with absorption taken into account. Maximum 
intensity = 45.626. 
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Fig. 22 No randomness in foil and spacing for the product F2F3 with 4 Titanium foils, 

1 = 7.5 urn, /2=169 urn, for 10 cycles with absorption taken into account. Maximum 

intensity = 44.621. 
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Fig. 23 Plot of maximum intensity as randomness increases for 4 Aluminum foils with 

absorption. Solid line represents variations in spacing only. Dotted line represents 

variations in foils only. Dashed line represents variations in both foil and spacing. 
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Fig. 24 Plot of maximum intensity as randomness increases for 4 Titanium foils with 

absorption. Solid line represents variations in spacing only. Dotted line represents 

variations in foils only. Dashed line represents variations in both foil and spacing. 
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Fig. 25 Plot of maximum intensity as randomness increases for 4 Kapton foils with 

absorption. Solid line represents variations in spacing only. Dotted line represents 

variations in foils only. Dashed line represents variations in both foil and spacing. 
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Fig. 26 20% randomness in foil and spacing for the product F2F2 with 4 Titanium foils, 

/j= 7.5 urn, /2=169 |nm, for 10 cycles with absorption taken into account. Maximum 

intensity = 26.758. 
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Fig. 27 20% randomness in foil and spacing for the product F2Fi with 8 Titanium foils, 

/,= 7.5 um, /2=169 um, for 10 cycles with absorption taken into account. Maximum 

intensity = 60.084. 
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VII. SELECTION OF PARAMETERS WHICH PLACE INTENSITY 

PEAK AT A DESIRED ENERGY AND ANGLE 

Since the intensity peaks occur for particular values of energy and angle, it is 

interesting to examine how these two values vary as a function of /, and l2. Because 

various detectors have different capabilities, it is important to design the stack of foils to 

have a maximum intensity at the sensors maximum sensitivity. In order to produce a 

maximum, the following equations must be satisfied, 

s = 

and, 

r = 

111 
he 

lxE 

2hc 

r E2 

■>   K ± + 02+-£- 
r E 

+ l2E 
2hc 

+ + 01 

which result from maximizing Eq. 5 and Eq. 8. This gives two equations and six 

unknowns which cannot be solved analytically but may be plotted for specific cases. 

Consider a pattern which is produced from F2F3 for the particular case of the r=2, 

5=3 intersection with the values of /,=13.5 p.m and /2=10.25 |am as shown in Fig. 28. As 

noted earlier, the maximum of Fx occurs at \/y. To maximize the intensity, the r=2,5=3 

intersection must be moved to this particular angle. This is accomplished by changing /, 

and l2. Fig. 29 shows the effect of changing /, on the r=2,5=3 intersection. Increasing /, 

has the effect of decreasing the angle for the intersection but increasing the energy. 

Increasing l2 has little effect on the angle, but decreases the energy coordinate for the 

intersection. To move the intersection to an angle of 0.6 mrad and energy of 4 keV, the 

computer calculations show that /, =23.5 jam and /2=450 jam is appropriate. The 

corresponding r=2,5=3 plot is shown in Fig. 30. The respective contour plots for 
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Fig. 28 and 30 are shown in Fig 31 and 32 for four Kapton foils with no absorption. The 

maximum for the r=2, s=3 intersection appears where predicted. Any values of r and s 

can be predicted in a similar manner. 

One consideration in moving to thicker foils is the effect of absorption on thicker 

foils. For the case /, =23.5 u.m and /2=450 urn, the absorption in four foils of kapton is 

shown if Fig 33. In this figure, 11% of the maximum intensity is absorbed compared to 

5% in Fig. 20. As expected, the absorption is higher in thicker foils. 
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Fig. 28 With /,= 13.25 \im. 4 Kapton foils separated by a vacuum spacing of l2 =10.25 

|im, the r=2 maximum of F2 is represented by the dashed line. The ^=3 maximum of F3 is 

represented by the solid line. Intersections maximize the product F2F3. 
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Fig. 29 Plot of the intersection of the r=2,.s=3 maximum as /2 varies . Intersection moves 

from right to left as lx increases, and from low energy to high energy. 
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Fig. 30 With 1= 23.5 (im, l2 =450 urn, for 4 Kapton foils, the r=2 maximum of F2 is 

represented by the dashed line. The 5=3 maximum of F2 is represented by the solid line. 

Intersections maximize the product F2F3. 
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Fig. 31 With lY= 13.25 um, l2=10.25, the radiation pattern for 4 Kapton foils with no 

absorption is shown. 
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Fig. 32 With l{= 23.5 urn, l2 =450 urn, the radiation pattern for 4 Kapton foils with no 

absorption is shown. 
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Fig. 33 With /x= 23.5 [im, /2=450 um, the radiation pattern for 4 Kapton foils taking 

absorption into account is shown. Compare to Fig. 32. 
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VIII. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

The algorithm developed and used in this thesis is an excellent way to predict the 

radiation produced by a foil stack. Once a stack is constructed, if precise cell 

measurements can be made, one can predict the angle and energy of maximum intensity. 

Since the sizes in the cell are small, manufacturing the foil stack to precise tolerances can 

be difficult and expensive. In the analysis of the four foil case, the figures show that if 

randomness is kept to within 10%, the maximum intensity will be above 90% of AN2. 

Taking absorption into account simply lowered the maximum intensity from AN1, 

depending on the absorption constants. Again, randomness up to 10% kept the maximum 

intensity to within 90% of this new lower value. Increasing the number of foils shows 

that this range decreases, for eight foils the randomness must be kept to within 5% to 

keep the maximum intensity above 90% of 4 N2. 

The analysis of absorption in foil stacks gives several interesting conclusions. 

Obviously, absorption is material dependent, having demonstrated materials with both 

low absorption and high absorption, kapton and aluminum respectively. But, for 

materials with high absorption, the results show that precision in spacing is more 

important than precision in foil thickness. This is the opposite of the no or low 

absorption case and an important consideration in designing foil stacks. 

Another conclusion is that the peak is enhanced compared to the lower energy 

radiation, as a result of the decrease in absorption with increasing energy. The effect is 

to create an apparent threshold energy at the peak energy, below which radiation is highly 

absorbed. The value of this apparent threshold is material dependent, but it may be 

useful in designing detectors. 

The last conclusion is the effect of the K edge on the radiation pattern. This 

result shows this effect can be used to isolate a narrow energy and angle, particularly if 

some randomness in foil and spacing is incorporated into the design. The technique of 
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using the K edge to isolate energy is similar to the technique in X-rays of the long known 

Ross filter where the K edge is used to isolate a particular wavelength. [Ref. 6] 

B. FUTURE WORK 

In demonstrating how changing the foil thickness and spacing change the energy 

and angle of a particular maximum, thicker foils were used. While thicker foils have the 

obvious effect of increasing the amount of absorption, consideration of multiple electron 

scattering must be included. For thin foils, multiple electron scattering is a negligible 

effect. To consider this effect, a Monte Carlo type calculation could be done to simulate 

the random events. 
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APPENDIX A. ABSORPTION CONSTANTS 

The constants used to determine the linear absorption coefficients for Kapton, 

Aluminum, and Titanium are listed below. The constants for Kapton and 

AluminumfRef. 4] and Titanium[Ref 5] were determined using a linear regression of the 

Photo Absorption vs. energy. The constants for Kapton were determined by using a 

weighted average of its components. 

Material 
Kapton 

Aluminum 
Titanium 

(Above K edge) 

Absorption Constants 
cx [m1] 

2.9286x10" 
4.3544xl06 

2.547xl06 

1.7406xl07 

-2.9238 
-2.7876 
-2.6848 
-2.6014 
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APPENDIX B. MAXIMUM INTENSITIES 

Values of the maximum intensities for increasing randomness for the both no 

absorption and absorption in different materials are listed below. The normalized values 

are divided by AN2 to make comparisons between different materials. These values 

were used to create Fig. 14, 19, 23, 24, and 25. Each set of values has been averaged 

over ten cycles. 

Kapton 4 foils No Absorption 
% 

Rand 
Variation 
in Space 

Normalized 
value 

Variations 
in Foil 

Normalized 
value 

Variations 
in Both 

Normalized 
value 

0 
10 
20 
30 
40 

63.972 
62.406 
58.201 
52.518 
46.718 

1.0 
0.976 
0.910 
0.821 
0.730 

63.972 
61.196 
54.240 
46.392 
39.601 

1.0 
0.957 
0.848 
0.725 
0.619 

63.972 
56.261 
40.593 
28.038 
20.535 

1.0 
0.879 
0.635 
0.438 
0.321 

Kapton 8 Foils No Absorption 
% 

Rand 
Variations in 

Spacing 
Variations in 

Foils 
Variations in 

Both 
Value Norm Avg Value Norm Avg Value Norm Avg 

0 255.73 1.0 1.0 255.73 1.0 1.0 255.73 1.0 1.0 
10 230.61 0.902 226.26 0.885 195.44 0.764 
10 226.88 0.887 0.895 224.07 0.876 0.881 203.20 0.795 0.779 
20 190.11 0.743 155.05 0.606 103.33 0.404 
20 179.07 0.700 0.722 166.89 0.653 0.629 94.803 0.371 0.387 
30 160.32 0.627 146.50 0.573 63.960 0.250 
30 138.62 0.542 0.585 134.66 0.527 0.550 67.290 0.263 0.257 
40 94.378 0.369 88.524 0.346 40.400 0.158 
40 120.72 0.472 0.421 84.254 0.329 0.338 56.065 0.219 0.189 
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Aluminum 4 Foils with Absorption 

Rand 

% 
Rand 

Variations 
Spacing 

in Variations in 
Foils 

Variations in 
Both 

Value Norm Avg Value Norm Avg Value Norm Avg 

0 45.626 0.713 0.713 45.626 0.713 0.713 45.626 0.713 0.713 
10 38.245 0.598 43.999 0.688 36.717 0.574 
10 38.245 0.598 0.598 43.999 0.688 0.688 37.710 0.589 0.582 
20 31.344 0.490 38.440 0.601. 28.066 0.439 
20 31.344 0.490 0.490 40.367 0.631 0.616 30.442 0.476 0.457 
30 23.154 0.362 33.855 0.529 18.883 0.295 
30 23.154 0.362 0.362 37.553 0.587 0.558 19.913 0.311 0.303 

40 16.067 0.251 32.209 0.503 16.126 0.252 
40 16.067 0.251 0.251 37.345 0.584 0.543 16.030 0.251 0.252 

Kapton 4 Foils with Absorption 
Variations 

Spacing 
in Variations in 

Foils 
Variations in 

Both 

Value Norm Avg Value Norm Avg Value Norm Avg 

0 61.156 0.956 0.956 61.156 0.956 0.956 61.156 0.956 0.956 

10 58.209 0.910 57.953 0.906 56.801 0.888 
10 57.785 0.903 0.907 57.260 0.895 0.899 56.004 0.875 0.882 
20 49.687 0.777 48.821 0.763 40.419 0.632 
20 50.784 0.794 0.786 50.256 0.786 0.775 42.417 0.663 0.646 
30 40.648 0.635 43.579 0.681 25.022 0.391 
30 38.711 0.605 0.620 41.361 0.647 0.664 25.113 0.393 0.392 
40 32.789 0.513 31.848 0.498 22.696 0.355 
40 36.479 0.570 0.542 30.563 0.478 0.488 22.228 0.347 0.351 

Titanium 4 Foils with Absorption 

% Variations i n Variations in Variations in 

Rand Spacing Foils Both 

Value Norm Avg Value Norm Avg Value Norm Avg 

0 44.621 0.696 0.696 44.621 0.696 0.696 44.621 0.696 0.696 

10 39.851 0.623 42.289 0.661 39.601 0.619 

10 41.561 0.650 0.637 43.378 0.678 0.670 37.825 0.591 0.605 

20 27.028 0.442 40.067 0.626 26.758 0.418 
20 32.899 0.514 0.478 37.370 0.584 0.605 31.805 0.497 0.458 

30 28.036 0.438 31.776 0.497 19.044 0.298 

30 30.699 0.480 0.459 28.621 0.447 0.472 16.796 0.263 0.281 

40 21.751 0.340 27.019 0.422 17.007 0.256 

40 17.087 0.267 0.304 27.060 0.423 0.423 14.540 0.227 0.242 

56 



APPENDIX C. COMPUTER PROGRAMS 

Programs used in calculating the plots of this thesis. The programs are written in 

IDL and were run on a Micro VAX. The first two programs were written by Dr. J. R. 

Neighbours, and the rest by CPT Nicholas J. Prins. 

Program to calculate the r vs. s plots: 

Print "******** nroeram TR E 1 PRO ****************" 
;INPUT IS IN KEV AND MICROMETERS HOWEVER, ELECTRON BEAM IS 
;INMEV 
PN=101 
PPN=5 
I=INDGEN(PPN) 
J=INDGEN(PN) 
E=FLTARR(PN) 
ZS=FLTARR(PPNJ>N) 
ZR=FLTARR(PPN,PN) 
R=FLTARR(PPN) 
S=FLTARR(PPN) 
ANGR=FLTARR(PPN,PN) 
ANGS=FLTARR(PPN,PN) 

H=4.12567E-18 
C=2.997925E14 
EB=855 
Ll=7.5 
L2=169 
EP=25.0E-3 
SZERO=l 
RZERO=l 
E0=0.5 
INTERVAL=9.5 
DE=INTERVAL/PN 
DI=1.0 

;PLANCK IN KEV SEC 
C IN MICROMETERS /SEC 
ELECTRON BEAM ENERGY (MEV) 
FOIL THICKNESS IN MICROMETERS 
FOIL SPACING IN MICROMETERS 
FOIL PLASMA ENERGY IN KEV 
AN ODD INTEGER 
;AN INTRGER 
;BEGINNING PHOTON ENERGY 
;PHOTON ENERGY INTERVAL IN KEV 

GAM=EB/0.511 
L=L1+L2 

FOR I=0,(PPN-1) DO BEGIN 
S(I)=SZERO+2.0*I 
R(I)=RZERO+I 

GAMMA 
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FOR J=0,(PN-1) DO BEGIN 
E(J)=E0+J*DE 
ZS(U)=-1/GAMA2-(EP/E(J))A2+S(I)*(H*C)/(L1*E(J)) 
ZR(I,J)=-1/GAMA2-(L1/L)*(EP/E(J))A2+2.0*R(I)*H*C/(E(J)*L) 
ANGR( I,J)= 1000*SQRT(ZR( I,J)) 
ANGS(LJ)=1000*SQRT(ZS(I,J)) 
ENDFOR 

ENDFOR 

SET_PLOT,l 
!TYPE=28 
!FANCY=3 
!XMAX=2.0 
!XMIN=0 
!YMAX=10.0 
!YMIN=0 
!XTICKS=2 
!YTICKS=5 
!PSYM=0 
!XTITLE='ANGLE (mR) 
!YTITLE=' PHOTON ENERGY (KeV)' 
!MTITLE='L1=7.5 L2=169' 
!LINETYPE=0 
PLOT,ANGR(0,*),E 
!LINETYPE=1 
OPLOT,ANGS(0,*),E 

FOR I=1,(PPN-1) DO BEGIN 
!LINETYPE=0 
OPLOT,ANGR(I,*),E 
!LINETYPE=1 
OPLOT,ANGS(I,*),E 
ENDFOR 

!LINETYPE=0 
STOP,"CONTINUE FOR TEK PLOT" ;  
SET_PLOT,'4014' 
!TYPE=28 
!FANCY=3 
!LPNETYPE=0 
!PSYM=0 
TITLE='L1_7_L2_169_E_VS_ANG' ; FILENAME OF PLOT 
OPENW,5,TITLE+'_TEK.PLT/NONE' 
PLOT_TO,-5 
SET VT£WPORT,0.25,0.75,0.1,0.9 
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!XTITLE='ANGLE (mR)' 
!YTITLE=' PHOTON ENERGY (KeV)' 
!MTITLE='L1=7.5 L2=169' 
!XMAX=2.0 
!XMIN=0 
!YMAX=10.0 
!YMIN=0 
!XTICKS=2 
!YTICKS=5 
!LINETYPE=0 
PLOT,ANGR(0,*),E 
!LINETYPE=1 
OPLOT,ANGS(0,*),E 

FOR I=1,(PPN-1) DO BEGIN 
!LINETYPE=0 
OPLOT,ANGR(I,*),E 
!LINETYPE=1 
OPLOT,ANGS(I,*),E 
ENDFOR 

CLOSE,5 
PLOT_TO,0 
PRINT,"=—=END=—END—=END—=' 
END 

Program to calculate the contour plots: 

Print, "******** program TR_E_l_CONT.PRO ****************" 
;INPUT IS IN KEV AND MICROMETERS HOWEVER, ELECTRON BEAM IS 
;IN MEV THIS PROGRAM INCLUDES M THE NUMBER OF FOILS TO MAKE 
; A CONTOUR PLOT 
PN=101 
PPN=5 
I=INDGEN(PPN) 
J=DMDGEN(PN) 
E=FLTARR(PN) 
THET=FLTARR(PN) 
BRAK=FLTARR(PPN,PN) 
BRAK2=FLTARR(PPN,PN) 
Y=FLTARR(PPN,PN) 
X=FLTARR(PPNPN) 
F2=FLTARR(PPN,PN) 
F3=FLTARR(PPNJ>N) 
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H=4.12567E-18 ;PLANCK IN KEV SEC 
C=2.997925E14 ;C IN MICROMETERS /SEC 
EB=855 ; ELECTRON BEAM ENERGY (MEV) 
L1 =7.5 ;FOH THICKNESS IN MICROMETERS 
L2= 169 ;FOIL SPACING IN MICROMETERS 
EP=25.0E-3 ;FOIL PLASMA ENERGY IN KEV 
M=8 
E0=0.5 BEGINNING PHOTON ENERGY 
INTER VAL=9.5 ;PHOTON ENERGY INTERVAL IN KEV 
DE=INTERVAL/PN 
THET0=0.10 ;INITIAL THETA VALUE 
THETINTER=1.90 ;THETA INTERVAL IN MILLIRADIANS 
DTHET=THETINTER/PPN 

GAM=EB/0.511 ;GAMMA 
CONSTl=!PI/(H*C*2) 
L=L1+L2 

FOR I-0,(PPN-1) DO BEGIN 
THET(I)=(THETO+I*DTHET)/1000 

FOR J=0, (PN-1) DO BEGIN 
E(J)=E0+J*DE 
BRAK(I,J)=1/GAMA2+THET(I)A2+(EP/E(J))A2 
Y(I, J)=CONST 1 *L 1 *E( J)*BRAK(I, J) 
F2(I,J)=4*(SIN(Y(I,J))A2 
BRAK2(I,J)=L*(1/GAMA2+THET(I)A2+L1*(EP/E(J))A2 
X(I, J)=CONST 1 *E( J)*BRAK2(I, J) 
F3(I,J)=(SIN(M*X(I,J))/SIN(X(I,J)))A2 
ENDFOR 

ENDFOR 

SET_PLOT,l 
!TYPE=28 
!FANCY=3 
!XMAX=2.0 
!XMIN=0 
!YMAX=10.0 
!YMIN=0 
!XTICKS=2 
!YTICKS=5 
!PSYM=0 
!XTITLE='ANGLE (mR) 
!YTITLE=' PHOTON ENERGY (KeV)' 
!MTITLE='L1=7.5 L2=169 M=4' 
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!LINETYPE=0 
!N0RMALC0NT=2 ;CONTOURS NOT LABELED 
CONTOURXY,F2*F3,THET*1000,E,0,30,10 
STOP,"CONTINUE FOR TEK PLOT" ;  
SETPLOT/4014' 
!TYPE=28 
!FANCY=3 
!LINETYPE=0 
!PSYM=0 
TITLE='L1_7_L2_169_C0NT' ; FILENAME OF PLOT 
OPENW,5,TITLE+'_TEK.PLT/NONE' 
PLOT_TO,-5 
SET_VDEWPORT,0.25,0.75,0.1,0.9 
!XTITLE='ANGLE (mR)' 
! YTITLE=' PHOTON ENERGY (KeV)' 
!MTITLE='L1=7.5 L2=169 M=4' 
!XMAX=2.0 
!XMIN=0 
!YMAX=10.0 
!YMIN=0 
!XTICKS=2 
!YTICKS=5 
!LINETYPE=0 
!NORMALCONT=2 ;CONTOURS NOT LABELED 
CONTOIJRXY,F2*F3,THET*1000,E,0,30,10 
CLOSE,5 
PLOT_TO,0 
PRINT,"——END===END—END—=' 
END 

Program to verify the summation for Eq. 15: 

PRINT '************ PROGRAM F2F3INT 1 PRO ********************" 
;GIVES THE RESULTING F2*F3 FOR N FOILS WHEN THICKNESS AND SPACING 
;VARY. THE RESULT OF F2*F3 IS FROM THE SUMMATION 
PN=201 
PPN=3 
N=4 
I=INDGEN(PPN) 
J=INDGEN(PN) 
R=FLTARR(PN) 
S=FLTARR(PN) 
ROA=FLTARR(N+3) 
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R0B=FLRARR(N+3) 
A=FLTARR(N+3) 
DELB=FLTARR(4*PN) 
F23=FLTARR(PN,PN) 
Z1=FLTARR(PN,PN) 
Z2=FLTARR(PN,PN) 
E=FLTARR(PN) 
ANG=FLTARR(PN) 
F2F3=FLTARR(N+3) 

H=4.12567E-18 
C=2.997925E14 
EB=855 
Ll=7.5 
L2=169 
EP=25.0E-3 
PI=3.14159 
E(0)=0.001 
ANG(0)=0.0 

;PLANCK IN KEV SEC 
;C IN MICROMETERS /SEC 
; ELECTRON BEAM ENERGY (MEV) 
;FOIL THICKNESS IN MICROMETERS 
;FOIL SPACING IN MICROMETERS 
;FOIL PLASMA ENERGY IN KEV 

FOR 1=1,100 DO BEGIN 
E(I)=I/10.0 
ANG(I)=(I/( 100/2.0))* 1E-3 

ENDFOR 

-ENG AND ANG VARY 

 CALCZ1&Z2 
;GAMMA GAM=EB/0.511 

FOR 1=0,100 DO BEGIN 
FOR J=0,100 DO BEGIN 
Z1(I,J)=2*C*H/(PI*E(J)*(1/GAMA2+(EP/E(J))A2+ANG(I)A2)) 
Z2(I,J)=2*C*H/(PI*E(J)*(1/GAMA2+ANG(I)A2)) 
ENDFOR 

ENDFOR 
; CALC DELTA IN SPACING 
AN=0 
BN=0 
FOR K=1,N DO BEGIN 

ROA(K)=AN 
ROB(K)=BN 

ENDFOR 

FOR 1=0,100 DO BEGIN 
FOR J=0,100 DO BEGIN 

-FIND F2*F3 

-CALC AM 
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FOR M=0,N DO BEGIN 
ADUM=0 
BDUM=0 
FOR K=(M+2),N DO BEGIN 

ADUM=ADUM+(ROA(K)/L 1)+1 
BDUM=BDUM+(ROB(K-1 )/L2)+1 

ENDFOR 
A(M)=-2*L1*ADUM/Z1(I,J)-2*L2*BDUM/Z2(U) 
ENDFOR 
; CALCF2*F3 
FSUM=COMPLEX(0,0) 
FOR M=0,(N-1) DO BEGIN 

R0M=(-1/Z1(I,J))*L1 
FR=2*SIN(A(M)+ROM)*SIN(ROM) 
FI=-2*SIN(ROM)*COS(A(M)+ROM) 
F=COMPLEX(FRJFI) 
FSUM=FSUM+F 

ENDFOR 
F23(I,J)=(FSUM*CONJ(FSUM)) 

ENDFOR 
ENDFOR 

SET_PLOT,l 
!TYPE=28 
!FANCY=3 
!XMAX=2.0 
!XMIN=0 
!YMAX=10.0 
!YMIN=0 
!XTICKS=2 
!YTICKS=5 
!PSYM=0 
!LINETYPE=0 
!NORMALCONT=2 ;CONTOURS NOT LABELED 
CONTOURXY,F2*F3,ANG* 1000,E,0,30,10 
STOP,"CONTINUE FOR TEK PLOT" ;  
SET_PLOT,'4014' 
!TYPE=28 
!FANCY=3 
!LINETYPE=0 
!PSYM=0 
TITLE='F2F3INT_1' ; FILENAME OF PLOT 
OPENW,5,TITLE+'_TEK.PLT/NONE' 
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PL0T_T0,-5 
SET_VTEWPORT,0.25,0.75,0.1,0.9 
!XTITLE='ANGLE (mR)' 
!YTITLE=' PHOTON ENERGY (KeV)' 
'MTITLE='F2F3 FROM SUMMATION' 
!XMAX=2.0 
!XMIN=0 
!YMAX=10.0 
!YMTN=0 
!XTICKS=2 
!YTICKS=5 
!LINETYPE=0 
!NORMALCONT=2 ;CONTOURS NOT LABELED 
CONTOURXYJF2*F3,ANG* 1000,E,0,30,10 
CLOSE,5 
PLOT_TO,0 
PRINT," END—END END 
END 

Program to use randomness and average over n cycles: 

PRINT '************ PROGRAM F2F3INT7 PRO ********************" 
;GIVES THE RESULTING F2*F3 FOR N FOILS WHEN THICKNESS AND SPACING 
;VARY BY A RANDOM AMOUNT. THE RESULT OF F2*F3 IS CALCULATED FOR 
; R CYCLES, SUMMED AVERAGED AND CONTOURED. 
PN=101 
R=10 
N=4 
A=FLTARR(N+3) 
F23=FLTARR(PN,PN) 
Z1=FLTARR(PN,PN) 
Z2=FLTARR(PN,PN) 
E=FLTARR(PN) 
ANG=FLTARR(PN) 
F2F3=FLTARR(PN,PN) 
TH=FLTARR(N+3) 
SP=FLTARR(N+3) 
ASM=FLTARR(N+3) 
BSM=FLTARR(N+3) 
F23AV=FLTARR(PNJ>N) 

H=4.12567E-18 ;PLANCK IN KEV SEC 
C=2.997925E 14 ;C IN MICROMETERS /SEC 
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EB=855 ; ELECTRON BEAM ENERGY (MEW) 
LI =7.5 ;FOIL THICKNESS IN MICROMETERS 
L2= 169 ;FOIL SPACING IN MICROMETERS 
EP=25.0E-3 ;FOIL PLASMA ENERGY IN KEV 
PI=3.14159 
DELTH=0.1 *L 1 VARIATION IN THICKNESS 
DELSP=0.1 *L2 VARIATION IN SPACING 
; . ENG AND ANG VARY 
FOR 1=1,100 DO BEGIN 

E(I)=I/10.0 
ANG(I)=(I/(100/2.0))* 1E-3 

ENDFOR 
E(0)=0.001 
• C ALC Z1 &Z2 
GAM=EB/0.511 ;GAMMA 
FOR 1=0,100 DO BEGIN 

FOR J=0,100 DO BEGIN 
Z 1(I,J)=2*C*H/(PI*E(J)*( 1/GAMA2+(EP/E(J))A2+ANG(I)A2)) 
Z2(I,J)=2*C*H/(PI*E(J)*(1/GAMA2+ANG(I)A2)) 
ENDFOR 

ENDFOR 
FOR T=0,R-1 DO BEGIN        ;BEGEN R CYCLES 

FOR 1=0 JST DO BEGIN 
TH(I)=L1 
SP(I)=L2 

ENDFOR 
SP=SP+DELSP*RANDOMN(S,N+3) 
TH=TH+DELTH*RANDOMN(S,N+3) 
SP(N:N+2)=0.0 
TH(N+l:N+2)=0.0 
SP(0)=0.0 
TH(0)=0.0 
; FINDF2*F3 
FOR 1=0,100 DO BEGIN 

FOR J=0,100 DO BEGIN 
; C ALC AM 
FOR M=0,N DO BEGIN 

ASUM=0.0 
BSUM=0.0 
FOR P=(M+2),N DO BEGIN 

ASUM=ASUM+TH(P) 
BDUM=BDUM+SP(P-1) 

-CALC DELTA IN SPACING 
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ENDFOR 
ASM(M)=ASUM 
BSM(M)=BSUM 
A(M)=-2*ASM(M)/Z 1 (I,J)-2*BSM(M)/Z2(I,J) 
ENDFOR 
; CALCF2*F3 
FSUM=COMPLEX(0,0) 
FOR M=0,(N-1) DO BEGIN 

ROM=(-TH(M+l)/Zl(I,J) 
FR=2*SIN(A(M)+ROM)*SIN(ROM) 
FI=-2*SIN(ROM)*COS(A(M)+ROM) 
F=COMPLEX(FRJFI) 
FSUM=FSUM+F 

ENDFOR 
F23(T,J)=(FSUM*CONJ(FSUM)) 

ENDFOR 
ENDFOR 
F2F3=F2F3+F23 
ENDFOR 
F23AV=F2F3/10.0 

PRINT,MAX(F23AV) 
SET_PLOT,l 
!TYPE=28 
!FANCY=3 
!XMAX=2.0 
!XMIN=0 
!YMAX=10.0 
!YMIN=0 
!XTICKS=2 
!YTICKS=5 
!PSYM=0 
!LINETYPE=0 
!NORMALCONT=2 ;CONTOURS NOT LABELED 
CONTOURXYJ^ AV,ANG* 1000,E,0,30,10 
STOP,"CONTINUE FOR TEK PLOT" ;  
SET_PLOT,'4014' 
!TYPE=28 
!FANCY=3 
!LINETYPE=0 
!PSYM=0 
TITLE='F2F3INT7_1' ; FILENAME OF PLOT 
OPENW,5,TITLE+'_TEK.PLT/NONE' 
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PL0T_T0,-5 
SET_VIEWPORT,0.25,0.75,0.1,0.9 
!XTITLE='ANGLE (mR)' 
! YTITLE=' PHOTON ENERGY (KeV)' 
!MTITLE=' 10% RANDOM KAPTON 4 FOILS 
!XMAX=2.0 
!XMIN=0 
!YMAX=10.0 
!YMIN=0 
!XTICKS=2 
!YTICKS=5 
!LINETYPE=0 
!NORMALCONT=2 ;CONTOURS NOT LABELED 
CONTOURXY,F23 A V,ANG* 1000^,0,30,10 
CLOSE,5 
PLOT_TO,0 
PRINT;'—END—END—END c 

END 

Program to take absorption into account: 

PRINT '************ PROGRAM ABSORB3 PRO ********************" 
;COPY OF F2F3INT7.PRO WHICH IS MODIFIED TO TAKE ABSORPTION IN 
;EFFECT GIVES THE RESULTING F2*F3 FOR N FOILS WHEN THICKNESS AND 
;SPACING VARY BY A RANDOM AMOUNT. THE RESULT OF F2*F3 IS 
;CALCULATED FOR ; R CYCLES, SUMMED AVERAGED AND CONTOURED. 
PN=101 
R=10 
N=4 
A=FLTARR(N+3) 
F23=FLTARR(PN,PN) 
Z1=FLTARR(PN,PN) 
Z2=FLTARR(PN,PN) 
E=FLTARR(PN) 
ANG=FLTARR(PN) 
F2F3=FLTARR(PN^N) 
TH=FLTARR(N+3) 
SP=FLTARR(N+3) 
ASM=FLTARR(N+3) 
BSM=FLTARR(N+3) 
F23AV=FLTARR(PN,PN) 
MU=FLTARR(PN) 
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H=4.12567E-18 ;PLANCK IN KEV SEC 
C=2.997925E14 ;C IN MICROMETERS /SEC 
EB=855 ; ELECTRON BEAM ENERGY (MEV) 
L 1=7.5 ;FOIL THICKNESS IN MICROMETERS 
L2= 169 ;FOIL SPACING IN MICROMETERS 
EP=25.0E-3 ;FOIL PLASMA ENERGY IN KEV 
PI=3.14159 
DELTH=0.1*L1 ;VARIATION IN THICKNESS 
DELSP=0.1 *L2 ;VARIATION IN SPACING 
Cl=29286 ;ABSORPTION CONSTANT FOR KAPTON 
C2=-2.9238 ;OTHER ABSORPTION CONSTANT 
; ENG AND ANG VARY 
FOR 1=1,100 DO BEGIN 

E(I)=I/10.0 
ANG(I)=(I/(100/2.0))*lE-3 

ENDFOR 
E(0)=0.001 
FOR 1=0,100 DO BEGIN 

MU(I)=C1*E(I)AC2 
ENDFOR 
; C ALC Z1 &Z2 
GAM=EB/0.511 ;GAMMA 
FOR 1=0,100 DO BEGIN 

FOR J=0,100 DO BEGIN 
Z1 (I, J)=2*C*H/(PI*E(J)*( 1/GAMA2+(EP/E(J))A2+ANG(I)A2)) 
Z2(I,J)=2*C*H/(PI*E(J)*(1/GAMA2+ANG(I)A2)) 
ENDFOR 

ENDFOR 
FOR T=0,R-1 DO BEGIN        ;BEGIN R CYCLES 
; CALC DELTA IN SPACING 
FOR I=0,N DO BEGIN 

TH(I)=L1 
SP(I)=L2 

ENDFOR 
SP=SP+DELSP*RANDOMN(S,N+3) 
TH=TH+DELTH*RANDOMN(S,N+3) 
SP(N:N+2)=0.0 
TH(N+l:N+2)=0.0 
SP(0)=0.0 
TH(0)=0.0 
; FINDF2*F3 
FOR 1=0,100 DO BEGIN 

FOR J=0,100 DO BEGIN 
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; CALCAM 
FOR M=0,N DO BEGIN 

ASUM=0.0 
BSUM=0.0 
FOR P=(M+2),N DO BEGIN 

ASUM=ASUM+TH(P) 
BDUM=BDUM+SP(P-1) 

ENDFOR 
ASM(M)=ASUM 
BSM(M)=BSUM 
A(M)=-2*ASM(M)/Z1(I,J)-2*BSM(M)/Z2(I,J) 
ENDFOR 
; CALCF2*F3 
FSUM=COMPLEX(0,0) 
FOR M=0,(N-1) DO BEGIN 

ROM=(-TH(M+l)/Zl(I,J) 
FR=2*SIN(A(M)+ROM)*SIN(ROM) 
FI=-2*SIN(ROM)*COS(A(M)+ROM) 
F=COMPLEX(FR,FI) 
FSUM=FSUM+F*EXP(-2MU( J)* ASM(M)/Z 1 (I, J)) 

ENDFOR 
F23(I,J)=(FSUM*CONJ(FSUM)) 

ENDFOR 
ENDFOR 
F2F3=F2F3+F23 
ENDFOR 
F23AV=F2F3/(1.0*R) 

PRINT,MAX(F23AV) 
SETPLOTJ 
!TYPE=28 
!FANCY=3 
!XMAX=2.0 
!XMIN=0 
!YMAX=10.0 
!YMIN=0 
!XTICKS=2 
!YTICKS=5 
!PSYM=0 
!LINETYPE=0 
!NORMALCONT=2 ;CONTOURS NOT LABELED 
CONTOURXY J23 A V,ANG* 1000^,0,30,10 
STOP,"CONTINUE FOR TEK PLOT" ;  
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SET_PLOT,'4014' 
!TYPE=28 
!FANCY=3 
!LINETYPE=0 
!PSYM=0 
TITLE='ABS0RB3_1' ; FILENAME OF PLOT 
OPENW,5,TITLE+'_TEK.PLT/NONE' 
PLOT_TO,-5 
SET_VIEWPORT,0.25,0.75,0.1,0.9 
!XTITLE='ANGLE (mR)' 
!YTITLE=' PHOTON ENERGY (KeV)' 
!MTITLE=' 10% RAND ABSORB KAPTON 4 FOILS 
!XMAX=2.0 
!XMIN=0 
!YMAX=10.0 
!YMIN=0 
!XTICKS=2 
!YTICKS=5 
!LINETYPE=0 
!NORMALCONT=2 ;CONTOURS NOT LABELED 
CONTOURXY,F23AV,ANG*1000,E,0,30,10 
CLOSE,5 
PLOT_TO,0 
PRINT;'=======END====END========END======' 
END 

Program to find the angle and energy of the r = 2, s = 3 intersection: 

Print, "******** program L1INT.PRO ****************" 
;INPUT IS IN KEV AND MICROMETERS HOWEVER, ELECTRON BEAM IS 
•IN MEV CALCULATES R=2,S=3 INTERSECTIONS AS LI VARIES AND L2 IS 
JHELD CONSTANT 
PN=101 
PPN=5 
I=INDGEN(PPN) 
J=INDGEN(PN) 
E=FLTARR(PN) 
ZS=FLTARR(PPN,PN) 
ZR=FLTARR(PPN,PN) 
R=FLTARR(PPN) 
S=FLTARR(PPN) 
ANGR=FLTARR(PPNJPN) 
ANGS=FLTARR(PPN,PN) 
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ABOVE=FLTARR(20*PN) 
B=FLTARR(PN) 
D=FLTARR(PN) 
ANGINT=FLTARR(2*PN) 
ENGINT=FLTARR(2*PN) 
AI=FLTARR(PN) 
EI=FLTARR(PN) 

H=4.12567E-18 
C=2.997925E14 
EB=855 
L2=169 
EP=25.0E-3 
SZEROl 
PvZEROl 
E0=0.5 
INTERVALS. 5 
DE=INTERVAL/PN 
DI=1.0 

;PLANCK IN KEV SEC 
;C IN MICROMETERS /SEC 
; ELECTRON BEAM ENERGY (MEV) 
;FOIL SPACING IN MICROMETERS 
;FOIL PLASMA ENERGY IN KEV 
;AN ODD INTEGER 
;AN INTRGER 
BEGINNING PHOTON ENERGY 
iPHOTON ENERGY INTERVAL IN KEV 

GAMMA 
.FOIL THICKNESS IN MICROMETERS 

GAM=EB/0.511 
FOR Ll=5,100 DO BEGIN 
L=L1+L2 
1=1 

S(I)=SZERO+2.0*I 
R(I)=RZERO+I 

FOR J=0,(PN-1) DO BEGIN 
E(J)=E0+J*DE 
ZS(I,J)=-1/GAMA2-(EP/E(J))A2+S(I)*(H*C)/(L1*E(J)) 
ZR(I,J)=-1/GAMA2-(L1/L)*(EP/E(J))A2+2.0*R(I)*H*C/(E(J)*L) 
ANGR(I,J)=1000*SQRT(ZR(I,J)) 
ANGS(I,J)= 1000*SQRT(ZS(I,J)) 
ENDFOR 
B=ANGR(1,*) ;R=2 
D=ANGS(1,*) ;S=3 
ABOVE=B(WHERE(B LT D)) 
ANGINT(L 1 )=ABO VE( 1) 
EENG=PN-SIZE( ABOVE) 
ENGINT(L I )=E(EENG( 1)) 
ENDFOR 
AI=ANGINT(WHERE(ANGINT GT 0)) 
EI=ENGINT(WHERE (ENGINT GT 0)) 
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SET_PL0T,1 
!TYPE=28 
!FANCY=3 
!XMAX=6.0 
!XMIN=0 
!YMAX=40.0 
!YMIN=0 
!XTICKS=6 
!YTICKS=8 
!PSYM=0 
!LINETYPE=0 
PLOTAI,EI 
STOP/'CONTINUE FOR TEK PLOT" ;  
SETPLOT/4014' 
!TYPE=28 
!FANCY=3 
!LINETYPE=0 
!PSYM=0 
TITLE='L1_VARIES'; FILENAME OF PLOT 
OPENW,5,TITLE+'_TEK.PLT/NONE' 
PLOTTO,-5 
SET_VIEWPORT,0.25,0.75,0.1,0.9 
!XTITLE='ANGLE (mR)' 
!YTITLE=' PHOTON ENERGY (KeV)' 
!MTITLE='L1 VARIE FROM 5 TO 100' 
!XMAX=6.0 
!XMIN=0 
!YMAX=40.0 
!YMIN=0 
!XTICKS=6 
!YTICKS=8 
!LINETYPE=0 
PLOT,AI,EI 
CLOSE,5 
PLOT_TO,0 
PRINT;'======END====END======END== 
END 
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