
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

THE OBJECT-ORIENTED DATABASE
AND PROCESSING OF ELECTRONIC

WARFARE DATA

by

J. J. Lee
and

Thomas D. McKenna

March 1996
Thesis Advisor:
Co-Advisor:

David K. Hsiao
C. Thomas Wu

Approved for public release; distribution is unlimited.

19960122 075 ^ JMBj^HZniin

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) |2. REPORT DATE 13. REPORT TYPE AND DATES COVERED
1 March 1996 1 Master's Thesis

4. TITLE AND SUBTITLE

The Object-Oriented Database and Processing of Electronic Warfare
Data

5. FUNDING NUMBERS

6. AUTHOR(S)

J. J. Lee
Thomas D. McKenna

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The Electronic Warfare Integrated Reprogramming (EWIR) database is the primary Department of

Defense source for technical parametric performance data on noncommunications emitters. It has been

identified by the National Air Intelligence Center as difficult to use in its current hierarchical database form.

There are two problems addressed by this thesis. First, is an object-oriented EWIR database a superior

method for managing complex electronic warfare data collections? Second, is the prototype Object-Ori-

ented Interface (O-OI) developed at the Laboratory for Database System Research in the Naval Postgradu-

ate School capable of supporting a complex object-oriented database such as EWIR?

(continued on back)

14. SUBJECT TERMS

Object-Oriented Database; Electronic Warfare Integrated Reprogramming;
Multimodel and Multilingual Database

15. NUMBER OF PAGES

101
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

Unlimited

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Unclassified

To answer these questions, a subset of the EWIR Object-Oriented Specification developed

in a separate thesis is implemented on the O-OI. Using the O-OI Data Definition Language, the

object-oriented EWIR database schema and its associated record data are stipulated and loaded to

create the live database. Using the O-OI Data Manipulation Language, nine EWIR transactions

are elaborated and executed.

The first result of this thesis is the O-OI performs as specified, but requires additional data

manipulation and logical control functions to handle complex databases. The minimum additional

functions include Insert, Delete, and If-then-else. The inheritance feature also requires a generali-

zation-to-specialization data retrieval capability. The second result of this thesis is the straightfor-

ward data manipulation capability of the object-oriented version of the EWIR database. The

object-oriented specification more accurately captures data relationships. The inheritance, path,

and object comparison features streamline the linkage of related data, thus simplifying ad hoc

query construction.

Standard Form 298, (Reverse) Unclassified

u

Approved for public release; distribution is unlimited

THE OBJECT-ORIENTED DATABASE AND PROCESSING
OF ELECTRONIC WARFARE DATA

J. J. Lee
Lieutenant Colonel, Taiwan Army

B.S.E., Chung-Cheng Institute of Technology, 1981

Thomas D. McKenna
Lieutenant Commander, United States Navy

B.S., University of South Carolina, 1980

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 1996

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

By
Distribution /

D

Availability Codes

Dist

m
Avail and/or

Special

Authors:

Approved by:

C^<ML-^V
J. J. Lee

Ulr^^f). fWJüU
Thomas D. McKenna

David K. Hsiao, Thesis Advisor

C. iFftomas WuyCo-Advisor__

Ted Lewis, Chairman
Department of Computer Science

in

IV

ABSTRACT

The Electronic Warfare Integrated Reprogramming (EWIR) database is the pri-

mary Department of Defense source for technical parametric performance data on non-

communications emitters. It has been identified by the National Air Intelligence Center as

difficult to use in its current hierarchical database form. There are two problems addressed

by this thesis. First, is an object-oriented EWIR database a superior method for managing

complex electronic warfare data collections? Second, is the prototype Object-Oriented

Interface (O-OI) developed at the Laboratory for Database System Research in the Naval

Postgraduate School capable of supporting a complex object-oriented database such as

EWIR?

To answer these questions, a subset of the EWIR Object-Oriented Specification

developed in a separate thesis is implemented on the O-OI. Using the O-OI Data Defini-

tion Language, the object-oriented EWIR database schema and its associated record data

are stipulated and loaded to create the live database. Using the O-OI Data Manipulation

Language, nine EWIR transactions are elaborated and executed.

The first result of this thesis is the O-OI performs as specified, but requires addi-

tional data manipulation and logical control functions to handle complex databases. The

minimum additional functions include Insert, Delete, and If-then-else. The inheritance

feature also requires a generalization-to-specialization data retrieval capability. The sec-

ond result of this thesis is the straightforward data manipulation capability of the object-

oriented version of the EWIR database. The object-oriented specification more accurately

captures data relationships. The inheritance, path, and object comparison features stream-

line the linkage of related data, thus simplifying ad hoc query construction.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

II. M2DBMS BACKGROUND 3
A. AN OVERVIEW OF THE M2DBMS 3
B. THE DATA DEFINITION IN THE OBJECT-ORIENTED

INTERFACE 5
1. The Class Specification 6
2. The Inheritance Specification. 7
3. The Cover Relationship 8
4. Set Relationships 8

C. THE DATA MAINIPULATION IN THE OBJECT-ORIENTED
INTERFACE 9

1. Object Identifiers 11
2. Object-Oriented Operations 11
3. The Query Constructs 12

D. LIMITATIONS AND ADVANTAGES 12

IE. THE NEW EWIR DATABASE SPECIFICATION 15
A. SOME BACKGROUND ON EWIR 15
B. THE EWIR DATA MODEL: THE OLD HIERARCHICAL

VERSUS THE NEW OBJECT-ORIENTED 16
C. THE OBJECT-ORIENTED IMPLEMENTATION

OF EWIR DATA 18
D. THE NEW EWIR OBJECT-ORIENTED DATABASE 21

1. A Top-Level View of the New EWIR Database 21
2. The Antenna Data 22
3. The EWIR Signal Data 24
4. The EWIR Receiver Data 25
5. The EWIR WARM Data 25
6. The EWIR Parametric Data 28

IV. THE IMPLEMENTATION OF THE EWIR DATABASE 31
A. THE DATA DEFINITION OF THE EWIR DATABASE 31

1. The Schema Listing 33
2. The Data Dictionary 33
3. The Template File 33
4. The Descriptor File 36

B. THE EWIR DATABASE RECORD DATA 39
1. A Proposed EWIR Record Template 40
2. The Mass Load Record File (EWIROODB.r) 40

vu

V. THE MANIPULATION OF EWIR DATA 45
A. THE GOALS OF THE EWIR TRANSACTIONS 45
B. THE EWIR TRANSACTIONS 45

1. An Attribute Look-up (Query_l) 47
2. A Single-level Inheritance and its 1:1 Relationship

(Query_2) 48
3. Multi-level 1:1 Relationships (Query_3) 49
4. A Two-level Inheritance (Query_4) 52
5. A Five-level Inheritance and One-level

1:1 Relationship (Query_5) 54
6. The Retrieval of the Emitter ELNOT (Query_6) 55
7. The Retrieval of Parametric Data Given an ELNOT

(Query_7) 56
8. Multiple Logical Operators and Changing Data (Query_8) 59
9. The Data Retrieval From Multiple Subsections

of EWIR (Query_9) 60

VI. CONCLUSIONS 63
A. THE THESIS METHODOLOGY SUMMARY 63
B. THE EVALUATION OF THE OBJECT-ORIENTED

INTERFACE 64
C. THE EVALUATION OF THE OBJECT-ORIENTED

EWIR DATABASE 65

APPENDIX A. THE EWIR SPECIFICATION 67

APPENDIX B. THE NEW EWIR DATABASE DATA DICTIONARY 75

APPENDIX C. THE EWIR TEMPLATE FILE 81

LIST OF REFERENCES 87

INITIAL DISTRIBUTION LIST 89

VUl

ACKNOWLEDGEMENTS

We would like to thank Dr. David K. Hsiao and Dr. C. Thomas Wu for their time

and advice during the research and writing of this thesis. Without their knowledge and

expertise this thesis would not have been possible.

We would also like to thank CDR Bruce Badge«, LTjg Aykut Kutlusan, LTjg

Erhan Senocak, LT Kevin Coyne, and Army Captain T.W. Kwon. Their technical

assistance was pivotal in the success of this thesis.

IX

I. INTRODUCTION

The objective of our thesis is to research into the application of object-oriented

database management for the Electronic Warfare Integrated Reprogramming (EWIR)

data. This research is driven by the following factors:

• Object-oriented database management is the latest database technology.

• The effectiveness of object-oriented data management has not been realized on
any electronic warfare data.

• DOD representatives have requested our database reengineering research with
object-oriented methodology and technology on the EWIR data.

In conducting this research, the following goals are achieved:

• Determine whether the object-oriented EWIR database is more effective, effi-
cient, and intuitive for managing complex electronic warfare data collections
than conventional database systems.

• Evaluate the new object-oriented-data-model-and-data-language interface (for
brief, the Object-Oriented Interface) of the Multimodel and Multilingual Data-
base System (NfDBMS) and its capability in supporting the object-oriented
EWIR database.

To achieve the above, this thesis consists of the specification, implementation, pro-

cessing, and evaluation of a proposed object-oriented EWIR database (for brief, the new

EWIR database). The new EWIR database is derived from the object-oriented specifica-

tion of the existing EWIR database [Ref. 1]. The EWIR evaluation includes a sequence of

object-oriented queries through the Object-Oriented Interface of the M2DBMS.

This thesis is the second of a two-thesis project designed to transform the existing

EWIR data into a working object-oriented database. The first thesis [Ref. 1] is responsible

for the conceptual design of the object-oriented specification of the existing EWIR data-

base. The conceptual design transforms the EWIR's existing hierarchical and flat-file data

collections into an object-oriented database specification. This second thesis uses the con-

ceptual design of Ref. 1 to create an implementable subset of the EWIR database on the

M2DBMS. The Object-Oriented Data Definition Language (O-ODDL) is used to specify

and create the EWIR object-oriented database [Ref. 2]. The Object-Oriented Data Manip-

ulation Language (O-ODML) is used to specify and write a series of object-oriented que-

ries on the newly created object-oriented EWIR database for processing [Ref. 3].

In Chapter II of this thesis, an overview of the M DBMS is given. In Chapter HI,

an examination of the existing EWIR database and the new EWIR database implemented

in this thesis is presented. The implemented subset is in terms of a new object-oriented

specification. In Chapter IV, an examination of the new EWIR database schema in terms

of the O-ODDL is detailed. The new EWIR database record data is also specified. In

Chapter V, we cover the O-ODML specification of nine transactions, their processing pur-

pose, and an analysis of the returned results. In Chapter VI we have concluding remarks.

II. M2DBMS BACKGROUND

In this chapter, the necessary system software, language features, and supporting

architecture are expounded. Our new object-oriented EWIR database is implemented on

the Object-Oriented Interface of the M2DBMS [Ref. 4]. To this end, Section A will pro-

vide an overview of the M2DBMS.

The first step in creating the EWIR database on the Object-Oriented Interface

involves EWIR data definition. Thus, the Object-Oriented Interface data definition process

is examined in Section B as well as the DDL constructs. There must also exist a Data

Manipulation Language (DML) to process the data. Data manipulation in a database is

done via queries. How the Object-Oriented Interface processes a query and the DML con-

structs are the subjects of Section C.

Because M DBMS and its associated Object-Oriented Interface are research

projects, some limitations have been designed into the system. Section D will summarize

those limitations plus list some of the system advantages.

A. AN OVERVIEW OF THE M2DBMS

A major goal of this thesis is to evaluate the performance of the object-oriented

interface of the M2DBMS with a complex data set, namely EWIR. An understanding of

the unique approach that M2DBMS brings to database systems design is important for two

reasons. First, this system offers a distinct paradigm shift for accessing information across

heterogeneous multi-databases. Second, any subsequent discussion on the design and

implementation features of the Object-Oriented Interface must first be placed in the con-

text of its host database system.

The definition of a multi-database system includes the support of heterogeneous

databases, each of which is based on a different data model. The M2DBMS differs in that

it is not a collection of separate data models and database languages. Instead, the

M2DBMS organizes all of its heterogeneous databases on a single data model and data

language. As depicted in Figure 1, this common data model and data language is called the

database kernel. The M2DBMS kernel uses the attribute-value pair as the atomic unit of

A hierarchical db user An object-oriented user

the hierarchical data
language interface

the object oriented data
language interface

A hierarchical schema An object-oriented schema

database kernel

A hierarchic
database
in the
attribute / A
form / network1

database
in the

attribute form

A relational
database
in the
attribute
form

An object-oriented
database in the
attribute form

An attribute-
based database

(interface not
shown)

A relational schema
for the hierarchical
database

A relational schema
for the object-oriented dh

A relational schema

The relational model/
SQL interface

A relational database user

Figure 1. Data Sharing in the M2DBMS - An Example of the Relational User
Accessing Object-Oriented Data Relationally.

data. The attribute-value pair consists of a system generated object identifier (attribute)

and its associated value. To distinguish one kernelized database from the other within

JvrDBMS, we use their corresponding Schemas. A database schema is a database defini-

tion of the attributes and the relations in the database. The M2DBMS contains a relational

schema, hierarchial schema, network schema, functional schema, and the newly com-

pleted object-oriented schema.

The database user needs no knowledge of how the underlying system translates the

data to a kernel format. In addition, the kernel system and Schemas of the M2DBMS allow

translation to occur between heterogeneous databases within the system. For example, a

relational user can access information from an object-oriented database in a relational

query language. The relational schema for an object-oriented database will translate the

object-oriented data into its relational equivalent for display. Also in Figure 1 is a concep-

tual diagram of how heterogeneous database data is shared.

B. THE DATA DEFINITION IN THE OBJECT-ORIENTED
INTERFACE

Because all physical data resides in the kernel, the object-oriented data model (O-

ODM) must be mapped to its Attribute-based Data Model (ABDM) equivalent. A map-

ping is a translation from one data representation to another. The mapping from object-ori-

ented to ABDM is as follows: The Object-Oriented Data Definition Language (O-ODDL)

accepts as its input the specification of an object-oriented database schema [Ref. 5]. The

O-ODDL compiler checks the correctness of the specification via a scanner and parser.

The scanner checks the O-ODDL statement syntax while the parser checks ensures the

statement follows the grammatical rules of the language. The compiler also generates a

data dictionary for use by the query constructor. The compiler descriptor and template

files are the object-oriented specification in an equivalent kernel database. In Figure 2 is a

diagram of the data definition process.

user select 0-0 interface

G
1

language interface layer
)

input oodb schema

(scanner j

Q
i

parser

Q
i

data dictionary descriptor and
template files

query constructor
T

language interface
controller

Figure 2. The Data Definition Process.

The 0-ODDL provides the constructs for creating a new database schema. The fol-

lowing 0-ODDL specifications are used by the Object-Oriented Interface to create a

schema for an object-oriented database.

1. The Class Specification

A class is the grouping of objects which share common attributes and methods.

Attributes are data types which provide value and meaning to a class. A method is a proce-

dure within a class used to manipulate information. In Figure 3 is the 0-ODDL template

for the specification of a class. Methods have not been implemented on the Object-Ori-

ented Interface and are omitted from the class specification.

Class Class name{
attribute_type_l attribute_name_ 1;

attribute jypejn attributejiamejn;
};

Figure 3. The Specification of a Class.

Attribute type represents the domain of the attribute. The domain may be of a

simple type, such as an integer or character, or a complex type, such as another class. The

attribute name is the user assigned name of the attribute and functions as the placeholder

for its value.

2. The Inheritance Specification

Inheritance is the receipt of all attributes and methods from another class. Inherit-

ance is described as a hierarchy. In this hierarchy, a subclass inherits from the superclass.

The subclass has attributes in addition to those which were inherited. Thus, the subclass is

a specialization of the superclass. The inheritance specification is listed in Figure 4.

Classjiamel is the subclass (specialization) of Classjiamel (generalization). The

attributes in this specification are unique to Classjiamel and not part of Class_name2.

Class Classjiamel :Inherit Classjiame2{
attribute type_1 attribute jiamel ;

attribute jypejn attribute name jn;
};

Figure 4. The Inheritance Specification.

3. The Cover Relationship

Covering defines a mapping relationship between an object in a class (the cover

class) to a set of objects in a second class (the member class). The covering specification is

depicted in Figure 5. In this instance, Class jiamel is the cover class and Classjiamel is

the member class. This means an object of class Class namel maps to a subset of objects

from class Class namel.

Class Class jiamel /Cover Class namel {
attribute_type_l attribute name 1;

attributejypejn attribute_name_l ;
};

Figure 5. The Cover Specification.

4. Set Relationships

The set relationship allows an attribute of a class to be more than just a singleton

value. Set_of forms a one-to-many (1:N) relationship. Inverse of is the complement of

set of and allows a many-to-many (M:N) relationship. Figure 6 specifies the set_of and

inverse of constructs allowing the O-ODM to represent 1:N and M:N relationships of two

object classes.

set_of Class_name attribute jiame;

inverse of Class name.attribute name attribute name

Figure 6. The Specification for Set_of and Inverse_of.

C. THE DATA MANIPULATION IN THE OBJECT-ORIENTED
INTERFACE

A query uses DML constructs to manipulate data in a database. The O-ODML

compiler delineates the language constructs used to process and execute high-level queries

[Ref. 6]. A high-level query language specifies what data is to be manipulated rather than

how to manipulate the data.

In Figure 7 is a diagram of the steps involved in O-ODML compiler processing.

First, a query expressed in a high-level query language must be scanned, parsed and vali-

dated. The scanner identifies the language components (tokens) in the text of the query

while the parser checks the query syntax to ensure it is formulated in accordance with the

syntactical rules of the query language. The scanner builds a symbol table composed of a

variable name, variable type, and class name. The symbol table information is required for

later use by the query constructor.

The parser completes an intermediate table. The intermediate table stores the perti-

nent information from the query. Pertinent information includes the data manipulation

operation to be performed and any associated arguments. Some query optimization may

also be possible using the intermediate table data. Optimization is the reordering and

restructuring of query information to minimize the time spent searching for data in the

database. Ultimately, the intermediate table information is used by the query constructor.

The query constructor extracts information stored in the Data Dictionary, Symbol

Table, and Intermediate Table and produces as output either a nearly-executable equiva-

lent transaction or a well-formed query. Nearly-executable means some of the ABDML

statements require additional information that must be retrieved from the kernel data.

Well-formed means all information required to execute the query is immediately avail-

able. Retrieval of any missing information is the responsibility of the Real Time Monitor.

The Real Time Monitor accepts these nearly executable or well-formed ABDML

statements from the query constructor and, using the data dictionary, assembles the requi-

site information to create fully executable queries in the ABDBMS [Ref. 7]. The Real

Time Monitor also sends the returned results of the query to a Kernel Formatting System

(KFS). The KFS puts the retrieved information in the proper format for output to the user

[Ref. 8].

intermediate (parSer (YACC) ")
fa WP v ' table

; control

1

ariables

data dictionary

query constructor

kernel
formatting

schema info
nearly executable
query

Response *
^system y^fn^Aeal-time monitor ^

ABDML query
language Interface

response in ABDL format

kernel system c Attribute Based Interface ce)

Figure 7. Query processing.

The O-ODML is designed for writing transactions and processing queries which

can be executed within the M2DBMS via the Object-Oriented Interface. Manipulating a

database includes such functions as retrieving specific data, updating the database, and

10

generating reports. Typical manipulations include insertion, deletion, retrieval and modifi-

cation of the data. In Ref. 3, Appendix A is the full Object-Oriented DML Users Manual

for the Object-Oriented Interface. Important concepts of the object-oriented DML include:

1. Object Identifiers

Every object has a unique, system generated identifier. Identifiers uniquely label

each data object and provide the system a means to identify and perform manipulations on

created objects in the database. Identifiers are maintained by the system and are not avail-

able to the users.

2. Object-Oriented Operations

Although methods are an integral part of object-orientation, the Object-Oriented

Interface does not currently support methods for objects. The addition of method function-

ality to the Object-Oriented Interface is a topic for future research on this system.

Instead of methods, the Object-Oriented Interface uses object-oriented operations.

Object-oriented operations are transactions defined for use on an object of the object class.

These are not methods because they are not contained within any object class of the data-

base. These operations are generic and not tied to specific data aggregates. In Figure 8 is

an example of two operations available as listed in Table 1 of Ref. 3.

OPERATION SYNTAX SEMANTICS

Find_one find_one class jiame Searches and returns only the
first object from class jiame
that satisfies the expression.

add add (obj_ref, attr) Adds an attribute, a single
value, to a list or set of
attributes in a cover relation.

Figure 8. Examples of Operations.

11

3. The Query Constructs

The Object-Oriented Interface query is a structured collection of declarations and

operations in a block format. The object-oriented operations [Ref. 3, Table 1], the DML

production rules [Ref. 3, Table 2], and reserved words [Ref. 3, Table 3] provide the func-

tionality needed to construct high-level queries. Each query is compiled by the object-ori-

ented compiler [Ref. 6]. The compiler ensures each query is formatted and structured

within strict guidelines to be recognized as a legitimate. The format of a query is divided

into five basic parts as illustrated in Figure 9.

Syntax Semantics Example

part 1: QUERY id IS Query Heading QUERY add_radar IS

part 2: type id; Declarations Part obj_ref p;

part 3: BEGIN Reserved word BEGIN

part 4: statement_list, body of executable
statements and ops

p:= insert Radar;
p.freq:= 12345

part 5: END; Reserved word END;

Figure 9. Query Constructs.

D. LIMITATIONS AND ADVANTAGES

The M2DBMS uses many of the features and constructs of object-oriented pro-

gramming languages. These features include the concepts of unique objects, object

classes, inheritance, encapsulation and covering. Because the M2DBMS is a research

project, it does not have the full range of features and functionality expected in a commer-

cial product Some current limitations on the system include:

• No methods within a class.

• No floating-point arithmetic.

12

• Only four logical operators in a single statement.

• Only a subset of the operations listed in Table 1 of Ref. 3 have been imple-
mented. The operations currently available axefind_one,find_many, display, add,
and contains. The remaining operations are to be implemented at a later date.

The kernel system must service several different database systems while being

limited to an attribute-value pair format. All database functionality, as perceived by the

user, is emulated in software above the kernel system. This makes implementation more

complex than a simple uni-database system, but the advantage and flexibility achieved in a

multimodel and multilingual system more than offsets the more complex implementation.

13

14

in. THE NEW EWIR DATABASE SPECIFICATION

As stated in Chapter I, the implementation of the EWIR database using the Object-

Oriented Interface is a primary objective in this theses. Thus, it is important to understand

the background and structure of the existing EWIR database. In Section A of this chapter,

the basic background information on the existing EWIR database is provided. In Section

B, a comparison of the existing, non-object-oriented EWIR data model versus the object-

oriented specification of the existing EWIR database [Ref. 1] is given. In Section C,

implementation issues of the new EWIR database are given. In Section D, there is the

object-oriented specification of the new EWIR database.

A. SOME BACKGROUND ON EWIR

The existing EWIR database is the primary Department of Defense approved

source for technical parametric and performance data on noncommunications emitters and

associated systems. The EWIR system provides an up-to-date and accurate source of

information for reprogramming United States Electronic Warfare (EW) Combat Systems.

EWIR includes parametric data on radars, jammers, navigational aids, and numerous non-

communication electronic emitters.

The EWIR database is chosen as the test database for an object-oriented imple-

mentation for several reasons. First, it is a widely used, real-world application with suffi-

cient complexity to adequately evaluate the versatility and utility of the Object-Oriented

Interface. Second, the EWIR database is identified by the National Air Intelligence Center

(NAIC) as difficult to understand and use in its current form. Third, it possesses properties

that make it an acceptable candidate for object-orientation. These properties include easily

identifiable objects and relationships between objects.

Users of the present EWIR database are united in their assessment that the current

hierarchical data model relies heavily on the users' understanding of the data relation-

ships, many of which are not explicitly depicted in the data model. In addition to the poor

data modeling, the EWIR database format is difficult to interpret where codes are not stan-

15

daxdized for all record types. Further, the database is described in terms of the physical

storage structure.

B. THE EWIR DATA MODEL: THE OLD HIERARCHICAL VERSUS
THE NEW OBJECT-ORIENTED

A detailed analysis and comparison of the two EWIR data models is presented in

Ref. 1. This thesis validates the object-oriented model of EWIR data as a vast improve-

ment over the original hierarchical one by creating a live object-oriented EWIR database.

The parametric data associated with electronic emitters in the EWIR is represented

as a logical tree. A small part of the EWIR parametric tree is shown in Figure 10. This

parametric tree orders a long list logically and hierarchically in a way that proceeds from

broad characteristics through levels of successively finer ones. Parametric data exist in

subfiles of the tree structure. Subfiles are major groupings, or subtrees, within the para-

metric tree which contains logically related data.

fixed
polarization

antenna
polarization

variable
polarization

linear
polarization

circ or ellipt
polarization

adaptive
polarization

manual
polarization

periodic_prog
polarization

polarization
modulation

cross
polarization

Figure 10. The EWIR Parametric Tree.

16

The parametric tree of Figure 10 demonstrates how poorly data relationships are

modeled. For example, the hierarchical tree structure leads you to believe that antenna

polarization is divided into three distinct types: fixed, cross and variable. In reality,

antenna polarization can only be fixed or variable. The cross polarization is a characteris-

tic or relationship of all antennas and not a discrete type of the antenna polarization. Thus,

semantics of the cross polarization are not captured in the model. The responsibility for an

understanding of the cross polarization is incumbent upon the user.

A second example of shortcomings of the current EWIR data model is the relation-

ship of linear polarization to fixed polarization. Linear polarization is a potential charac-

teristic of all antenna polarization types but is depicted as a part of the fixed polarization

only. The hierarchical EWIR model again fails to accurately depict this relationship.

The above examples of the current EWIR model show deficiencies in capturing

essential data relationship information. Related information is often scattered over many

relations or records. A solution to this information gap is the use of an Object-Oriented

Data Model (O-ODM). The O-ODM supports the modeling of object structures and inter-

relationships in a natural way. The O-ODM not only supports object structural definitions,

but also the modeling of object behaviors and their dynamic constraints.

To illustrate the above, we present in Figure 11 an object-oriented version of the

same subset of information as depicted in Figure 10. Notice that the polarization is divided

into fixed and variable only. The cross polarization is depicted as an attribute of polariza-

tion and not a distinct type of polarization. Also observe that the linear polarization is a

specialization type of the antenna polarization and not strictly a subset of the fixed polar-

ization. The object-oriented data model embeds these data relationships into the data

model. The responsibility for any knowledge of data relationships is no longer incumbent

upon the user. When integrating object-oriented concepts into a database, the end result is

a much more intuitive, natural, and powerful database system.

17

across
^polariz

/" lineäJv^ (~} ►/'circ_or_ ellipt "\
Vpolarization! Sp "^ ^polarization J

_/pölarization\

antenna

C

/manual "\ /periodicN
Vpojarizatioy Vjolarizatiop'

inheritance

fixed polariztion >—\0

attribute class (1:1 relationship)

^f variable polarization \

CpolarizationN
modulation J

Figure 11. The Object-Oriented Model of the EWIR Tree in Fig. 10.

C. THE OBJECT-ORIENTED IMPLEMENTATION OF EWIR DATA

The exhaustive examination of the entire EWIR database [Ref. 1] and its object-

oriented modeling are beyond the scope of this thesis. Here, we derive a subset of the

object-oriented specification of the EWTR database [Ref. 1] and implement it on

M2DBMS as a live object-oriented database using the Object-Oriented Interface. The live

database is to evaluate and demonstrate the effectiveness of the Object-Oriented Interface

and its ability to manage complex object-oriented data relationships.

18

Approximately 20 percent of the fully specified object-oriented EWIR database

[Ref. 1] is implemented in this thesis. This percentage is sufficient to test the Object-Ori-

ented Interface and evaluate the effectiveness of an object-oriented EWIR database sys-

tem. The thesis objectives are achieved for the following reasons:

• All of the data relationships (inheritance, 1:1,1:N, M:N) represented in the fully
specified object-oriented EWIR database are captured in the implemented sub-
set. This includes the depth of inheritance relationships and levels of data rela-
tionships (i.e.,path or dot notation).

• The scale is smaller, but the complexity of data relationships is not diminished.
Essential classes from each major EWIR sub-section are retained to allow for
cogent and pertinent data manipulation. Thus, it is possible to evaluate whether
or not the Object-Oriented Interface is more effective, efficient, and intuitive for
managing the complex data collections of EWIR.

A change to the object-oriented specification of the existing EWIR database [Ref.

1] is required to implement the inheritance relationship. A problem with the current

Object-Oriented Interface is that it allows the data retrieval in an inheritance relationship

only from a specialization class to a generalization class. In other words, if transactions are

in a specialization class, they can retrieve information from any generalization class from

which it inherits. However, no transaction can retrieve data in an inheritance relationship

starting from a generalization class and attempting to retrieve information from a special-

ization class from which it is inherited.

In Ref. 1, many of the relationships involve multiple levels of inheritance. Many of

these inheritance hierarchies have entries at the highest level of the abstraction (generali-

zation). Thus, using the Object-Oriented Interface it is impossible to retrieve data from

successive specialization classes. In referring to Figure 12(a), the following is an example

of information which cannot be retrieved: "For a given Transmission_power, list an

attribute of constant_powef\ The current Object-Oriented Interface cannot navigate

through the database in the generalization-to-specialization direction. On the other hand,

the Object-Oriented Interface can process the following request: "List the

Transmission_power when constant_power.data = xyx". This is specialization-to-gener-

alization and the system can successfully navigate in this direction.

19

In Figure 12(b), we depict our modification in order to avoid classes that cannot be

reached in the Object-Oriented Interface. The solution is the following: Any "leaf nodes

in the object-oriented specification of the existing EWIR database [Ref. 1] which are spe-

cialization classes are modified to include a 1:1 relationship with a generalization class.

This allows an entry into the lowest-level specialization, thus providing access to data in

all of its generalization classes.

constant
ower -e- ■0 not constant power

disjoint inheritance s transmission power \

)

1:1 relationship

specialization class

generalization class

(signal)

Figure 12(a): The Object-Oriented Specification [Ref. 1].

(constant power *

c

 ^J not constant power

inheritance * 4
)

transmission power 3 ,0
1:1 relationship

\ signal y
Figure 12(b):The Object-Oriented Interface Implementation.

Figure 12. A Comparison of Object-Oriented Specifications and Object-Oriented
Implementation.

20

D. THE NEW EWIR OBJECT-ORIENTED DATABASE

This section is composed primarily of figures depicting the new EWIR object-ori-

ented specification. In Figure 1 is the key for use in clarifying Figures 14 through 19. To

minimize cluttering the figures, individual attributes of each class are omitted. Specific

attribute information for each class is provided in Chapter IV. For ease of reference,

Appendix A contains the object-oriented specification of the existing EWIR database

[Ref. 1].

Inheritance:

class A >> class B

Class A is a generalization of Class B
Class B is a specialization of Class A

One-to-one relationship:

class A class B

Class A has an attribute type of Class B

(1,2,3) 1 = 1*-1 to textual data of parametric data 2 = 1:1 to specific value
V_x 3 = 1:1 to value range of parametric data

One-to-manv relationship:

class A class B

Class A has a set_of objects of Class B

Figure 13. The Data Model Key.

1. A Top-Level View of the New EWIR Database

A top-level view of the new EWIR database shown in Figure 14. When comparing

the new EWIR database with the object-oriented specification of the existing EWIR data-

21

base [Ref. 1], the most notable difference is the density and structuring of the data classes.

Subsequent figures illustrate details of each major subdatabase of Figure 14. What is

important to note in Figure 14 is that all subdivisions in the object-oriented specification

of the existing EWIR database also exist in the new EWIR database. Thus, important data

relationships between major subdatabases of EWIR remain intact.

One notable difference between the two data specifications is how the new EWIR

database depicts 1:1 relationships between classes in parametric data and classes in all of

the other databases. Many of the 1:1 relationships tie parametric data to the leaf nodes of

the EWIR database. This tie-in must occur to avoid having the unreachable inheritance

specialization classes as discussed in Chapter II.

2. The Antenna Data

The antenna data form a fundamental component of an emitter. One emitter can

have many different antenna components, and thus the emitter-antenna relationship is

modeled as a 1:N. The antenna has a profound effect on signal characteristics throughout

the range of EW activities. The antenna characteristics used in this thesis are but a small

representation of the entire spectrum of antenna data.

In Figure 15 is the depiction of the antenna classes in the new EWIR database. The

key concepts retained from the original EWIR specification [Ref. 1] are the antenna polar-

ization, antenna radiation patterns, antenna scanning methods, and antenna tracking meth-

ods. The classes omitted from the original specification are, for the most part, sibling

branches in a hierarchical tree rooted at the antenna class. These sibling branches are typi-

cally just variations of inheritance specializations. For example, the original specification

[Ref. 1] for the class Scan has three inheritance specialization hierarchies - Mechanical

scan, Manual scan, and Electronic scan (See also Appendix A). By implementing only

Mechanical scan in the new EWIR database, an essential function of Scan is retained

while eliminating the near-duplicate information. The ability to successfully manipulate

data in the Mechanical Scan inheritance hierarchy adequately validates the ability of the

Object-Oriented Interface to manipulate all of the branches of Scan in the original EWIR

specification.

22

23

(Polarization \ -►/rcirc_or_ellip"\
I polarization)

a Emitter

■

1^) (Antenna) NX'

)

(^ f Directional) T Radiation Pattern
)

(Sector \^ f

(ScIT)©

Mechanical scan D
o

(Mechanical tracking\^ (Track j

© ©

Figure 15. The Antenna Specification.

3. The EWIR Signal Data

The Signal data form the sum and substance of the EWIR database parametric

data. The control of the electromagnetic spectrum requires an intimate knowledge of the

characteristics of signals produced by adversary emitters. The EWIR parametric data are

designed to convey the emitter signal information which forms the "fingerprint" used in

24

identifying emitters.

In deciding how to reduce signal data to an implementable size, we focus primarily

on retaining the most useful signal information. A second priority is to retain some of the

complex data relationships. The signal data of the EWIR database contains multiple-level

inheritance and 1:1 relationships. By following the pulsed RF inheritance specialization of

Signal, a four-level inheritance hierarchy is attained (See Appendix A). In Figure 16, this

four-level inheritance is integrated into the new EWIR database. A 1:1 relationship

between signal and both constant power and not-constant power is shown in Figure 16.

This change from the original specification is to avoid having unreachable specialization

classes.

Although most of classes of signal data in are not implemented in the new EWIR

database, the essential purpose of signal data is retained. The signal RF, power, agility, and

structure remain in the new database. The retained classes provide adequate structure and

content to evaluate the merits of its object-oriented implementation.

4. The EWIR Receiver Data

The receiver, like the antenna, is a fundamental component of the emitter. One

emitter can have many receivers, and the emitter-receiver relationship is therefor modeled

as a 1 :N. The parameters of a receiver reveal an emitters' capability to evaluate incoming

signals. The capability is a major determinant in the emitters overall performance.

The receiver is primarily concerned with the signal processing. Thus, the signal

processing classes are included in the new EWIR implementation. The classes and

attributes retained are based on the most frequently used data in the receiver subsection.

The receiver specification of the new EWIR database is shown in Figure 17 and can be

compared with the original object-oriented specification reproduced in Appendix A.

5. The EWIR WARM Data

The meaning of WARM is the War Reserve Mode. Many emitters have special

modes to be used only in a time of war. The intended purpose is to create some confusion

about EW sources in order to gain an advantage over the enemy. Therefore, any prior

25

(Emitter)-

0 o
c

©
Constant Power

)*

c
*c ot Constant Power

)

Transmission Power

'(Signal ")

0 /

C Pulsed RF) ► /RFLine A
\Structure)

C RP Not Constant 0

(Pulsed RF Agility) (T)

.(Discrete Agility)

Figure 16. The Signal Data.

26

o C Emitter

c Receiver 3—o
3

©
(A-D converter j

Section) (SignalProcessor j
Section y

© \ Doppler Processing \

Figure 17. The Receiver Data.

an enemy's war reserve modes is of major importance. The EWIR database tracks avail-

able emitter WARM data.

The WARM data [Ref. 1], is a hub and spoke structure (See Appendix A). WARM

is the hub and functions as the generalization class for all the spokes (i.e., the specializa-

tion classes). The new EWIR database retains only the RF ECCM class as one of the

inheritance specializations (See Figure 18). This single specialization adequately repre-

sents the purpose and structure of WARM in the new EWIR object-oriented specification.

27

6. The EWIR Parametric Data

The parametric data classes in the new EWIR database are essentially repositories

of logically related EW parametric data. The parametric data classes in this thesis are pri-

marily part of 1:1 relationships with the specialization classes of the major subsections.

With only the specialization-to-generalization path available in the Object-Oriented Inter-

face, all of the classes are reachable. The parametric data specification in the new EWIR

database is shown in Figure 19.

Emitter

To Signal Data o

WARM 3

**V— —(RFEC ECCM

Figure 18. The WARM Data.

28

f Specific Value A [Value Range |
1 (value) 1 1 (upper value) 1
\^ y V^ (lower value) J x /

[Numeric Data |
/•j--. X (units))

/
/textual Data A «/"comment "\
^ (text) J ^(comment))

\

\ *
\ i \ *
\ #'

r \ I Data Description j
1 (contrib_agency) 1
I (last_update) J

Figure 19. The Parametric Data.

29

30

IV. THE IMPLEMENTATION OF THE EWIR DATABASE

In Chapter III the object-oriented specification of the existing EWIR database is

reduced to an implementable size. The next step is to translate the new EWIR specifica-

tion in Chapter IE into a database schema usable by the Object-Oriented Interface. The

database schema is constructed using the O-ODDL as specified and referenced in Chapter

II. In Section A of this chapter, the schema of the new EWIR database is presented. The

files created by the Object-Oriented Interface which are derived from the schema are the

Data Dictionary, the Descriptor File, and the Template File. These files are also described

in Section A.

Once the Object-Oriented Interface has accepted the database schema and created

the requisite files, it is ready to accept the record data. In Section B, the process of insert-

ing the EWIR record data into the newly created EWIR database is discussed. This section

also includes the record format used by the mass load function of the Object-Oriented

Interface. With the loading of the EWIR data into the new EWIR database, the process of

creating a live EWIR database is complete. The database is now ready to execute transac-

tions.

A. THE DATA DEFINITION OF THE EWIR DATABASE

Using the new EWIR database specification developed in Chapter HI, the object

classes to be implemented are easily identified. The Object-Oriented Interface requires

strict formatting for the schema definition. In the object-oriented specification of the exist-

ing EWIR database [Ref. 1], no formatting restrictions were applied to class and attribute

specifications because the specification was not tied specifically to the Object-Oriented

Interface. In conforming to the Object-Oriented Interface standards, the following restric-

tions are applied when translating classes and attributes from the object-oriented specifica-

tion to the database schema:

• Class names are limited to seven characters.

• Attribute names are limited to fifteen characters.

31

• No class names or attribute names can be identical.

• All inherited classes must be specified before the class that inherits.

• The second character of attribute name is not an underscore. This restriction is
evident only when mass loading the record file onto the backend system. The
DDL compiler of the Object-Oriented Interface will allow the underscore. The
source or reason for this restriction during the mass load is unknown.

The restriction of class names to seven characters creates two problems. The first

problem is not being able to have semantically meaningful class names. In a large, com-

plex database such as EWIR, a seven-character limit is inadequate for users to easily asso-

ciate class names with their purpose. A second problem is correlating a class name in the

new EWIR database schema with the class name used in the EWIR specification in Chap-

ter III. To facilitate translation, Figure 20 is a listing of identical classes in the EWIR

schema and the EWIR specification.

Specification Schema Specification Schema

Elnot Elnot Data_admin_info Data_ds
Comment Comment Numeric_data Numjtat
Specific_value Spec_va Value_range Valjan
Transmission_power Trans_p Constant_power Const_p
Not_constant_power N_con _p Signal Signal
Textual_data Textjda Rf_line_structure Rfjjt
Pulsed_rf Pulsed Rf_not_constant Rfnco
Pulsed_rf_agility Pulrf Discrete_agility Discag
Warm Warm Rf_eccm Rf_eccm
Polarization Polariz Circ_or_ellip_polariz C_el_po
Scan Scan Mechanical_scan Mech_sc
Track Track Mechanical_tracking Mechjr
Sector Sector Radiation_pattern Rad_pat
Directional Dir ecu Antenna Antenna
Doppler_processing Doperjp Signal_processing Sig_pce
A_d_converter A_d_con Receive Receiver
Emitter Emitter

Figure 20. The Conversions of EWIR Specifications to Schema Class Names.

32

To this point, the only class attributes depicted are those which are themselves

classes connected via a 1:1 relationship. For example, an attribute of Antenna is ant_direc

(of type DirectX) which is another class. In the EWIR schema, a listing of all attributes of

each class is included. The attributes in the new EWIR schema do not include all of the

class attributes delineated in the object-oriented specification of the existing EWIR data-

base [Ref. 1]. The attributes of the new EWIR schema are those which best capture the

function of the class. This allows the new EWIR database to retain the essential function-

ality and characteristics of the existing EWIR yet be of implementable size for the Object-

Oriented Interface.

1. The Schema Listing

In Figure 21(a) and 21(b) is a listing of the new EWIR schema file (filename:

EWIROODL). In Chapter II, Figures 3 through 6 explain the DDL constructs used in the

class specifications on the Object-Oriented Interface:

2. The Data Dictionary

The Object-Oriented Interface accepts the new EWIR schema and creates a data

dictionary (filename: EWIROODB.dict). A data dictionary describes the database struc-

ture, information, and physical database design such as storage structures, access paths

and record sizes. The data dictionary in the Object-Oriented Interface is referenced by the

query constructor when performing data manipulation functions.

The data dictionary generated by the Object-Oriented Interface for the EWIR data-

base is listed in Appendix B. In Figure 22, a description of the data dictionary constructs

used in the Object-Oriented Interface is given. Detailed information on the Object-Ori-

ented Interface Data Dictionary can be found in Ref. 5.

3. The Template File

The Object-Oriented Interface also creates a template file (filename:

EWIROODB.t). The purpose of the template file is to provide the specification of the

33

class Elnot{
char_string elint_notation;
Emitter emit_system;

class N_con_p : inherit Trans_p{
j Spec va max change;

f ,;
t;

class Data_ds{
char_string ctrib_agency;
char_string last_update;

/ class Signal {
/ Const_p scon_pwr;
/ N con p sn con pwr,

};

class Comment{
char string comt data;

};

1 class Text_da{
1 char_string text_dpU
I Comment text_com;
I Data ds text dsp;

Flo
class Num_dat{

char_string units;
Comment num_com;
Data ds num dsp;

};

„);
class Rf_l_st{

Spec_va db3_s_width;
Text da txmitter type;

};

class Spec_va: inherit Num_dat{
char string value;

};

class Pulsed: inherit Signal{
Rf 1 st coherence;

};

class Val_ran: inherit Num_dat
char_string lwr_value;
char_string upr_value;

class Rf_n_co: inherit Pulsed{
char string dummy;

};
}; /

class Trans_p{ /
Spec_va tx_ls_tx; /
Val_ran pk_pw_rad; /
Spec_va pk_pw_txmittei /

class Pul_rf: inherit Rf_n_co{
Text da agt f carrel;

};

class Disc_ag : inherit Pul_rf {
Text_da mod_waveform;
Val_ran rf_limits;

class Const j): inherit Trans_p- /
Spec va tto switch; —'

};

Spec va no disc steps;
};

Figure 21(a). The EWIR Schema Specification.

34

class Directi: inherit Rad_pat{
class Warm{ Spec_va bwdth_az;

char string prob code;
};

j Spec_va bwdth_el;
4f Spec_va first_az;
/ Spec_va first_el;

class Rf_eccm : inherit Warm{ / Sector sec char,
set_of Disc_ag rf_disc_agility;

/ }; h
/ class Antenna{

class Polariz{ / Text_da ant_type;
char string polar data; I Text_da ant_function;

}; 1 Spec_va hor_dimension;
1 Spec_va vert_dimension;

class C_el_po: inherit Polariz{ 1 C_el_po ac_el_pol;
Text_da sense; 1 Directi ant_direc;
Spec va ax ratio;

};

1 inverse of Emitter.ant comp anten emit;

class Scan{ 1 class Doper_p{
Spec_va smp_avg_time; 1 Spec_va coh_pcess_int;
Spec_va threshold_meas; Spec va num pulses cpi;
Text_da plane_scan; >•>

Fi0W class Sig_pce{
class Mech_sc : inherit Scan{ Doper p doppler calc;

Text_da stp_cg_ability; };
Text da sc function;

}; class A_d_con{
Spec_va ad_samp_period;

class Track{ Text da conv trig metho;
Text_da planejrack;

1 ,
};

};
class Receive!

class Mech_tr: inherit Track! Text_da receiver_type;
Val_ran max_r_a Sig_pce sig_processor;
Val_ran max_r_e A d con ad section;

};

class Sector: inherit Met / class Emitter!
Text_da secjype; /
Val_ran per_limits; /

Elnot unique_id;
Rf_eccm erf_eccm;

Spec_va sec_w_az: / set_of Receive rec_comp;
Spec_va sec_w_el; / set_of Antenna ant_comp;
Mech tr sm track; / set_of Const_p econ_pwr;

}; / set_of N_con_p en_con_pwr;
set_of Disc_ag edis_agility;

class Rad_pat{ / Text_da weap_system;
Spec va ant_gain; S Text_da emit_function;

}; -~^ Text da emit ptf_gen;
};

Figure 21(b). The EWIR Schema Specification.

35

EWIROODB -«
@ ^
Elnot -^-
-<
OID -^-
s ~+

ELINT_NOTATION
s

EMIT_SYSTEM
s
emitter
ref "*

Name of the database
Marks the beginning of a new class
Class name
Separates attribute fields within the class
System generated OID attribute field
Type of attribute field (s = character string)

Attribute name

Attribute EMIT SYSTEM is of type (class) emitter

Figure 22. The Data Dictionary Format.

object-oriented EWIR database in an equivalent kernel database. The template creates the

attribute-value pair used by the kernel system. In Appendix C, a complete listing of the

new EWIR database template file is provided. The format of the template file used in the

Object-Oriented Interface is provided in Figure 23. For more information on the Object-

Oriented Interface template file, see Ref. 6.

4. The Descriptor File

The Object-Oriented Interface creates an EWIR descriptor file (filename:

EWTROODB.d). The descriptor file is used by the Language Interface Controller for com-

munication with the kernel system. The descriptor file provides the kernel system a listing

of all database classes including those not specified by the user. For example, the set_of

relationship in the database schema results in a new class generated by the Object-Ori-

ented Interface. Specifically, the class Emitter has an attribute of type set of receivers. In

Figure 24, the new system generated class Receiver emitter is listed. Receiver_emitter

36

was not a user-defined class in the EWIR schema. The entire EWIR descriptor file is listed

in Figure 24. See Ref. 5 for more information on the Object-Oriented Interface descriptor

file.

EWIROODB
39 **
4 -*
Elnot
TEMPs
OIDs
ELINT_NOTATION s
EMIT_SYSTEM s
4
Data_ds
TEMPs
OIDs
CTRIB_AGENCY s
LASTJJPDATE s„
3
Comment
TEMPs
OIDs
COMT_DATA s
5
Num_dat
TEMPs
OIDs
UNITS s
NUM.COM s
NUM_DSP s
4
Specjva
TEMPs
OIDs
OID_NUM_DAT s
VALUES

Name of the database
Number of classes in the entire database
Number of attribute fields of the next class
Name of the class
First attribute (always a temp) and type (s)
OID attribute
User Defined Attributes and type (s).

type s is a character string.

value

ttribute.
. attribute-value pair

Figure 23. The EWIR Template File Format.

37

EWIROODB -<
TEMPbs

Elnot
Data_ds
Comment
Num_dat
Spec_va
Val_ran
Trans_p
Const_p
N_con_p
Signal
Text_da
Rf_l_st
Pulsed
Rf_n_co
Pul_rf
Disc_ag
Warm
Rf_eccm
Disc_ag_rf_eccm
Polariz
C_el_po
Scan
Mech_sc
Track
Mech_tr
Sector
Rad_pat
Directi
Antenna
Doper_p
Sig_pce
A_d_con
Receive
Emitter
Receive_emitter
Antenna_emitter
Const_p_emitter
N_con_p_emitter
Disc_ag_emitter

Name of the database

Listing of all classes in the database

System-generated classes from set_of
relationships defined in the schema

Figure 24. The EWIR Descriptor File.

38

B. THE EWIR DATABASE RECORD DATA

The Insert function of the Object-Oriented Interface has not been implemented,

and thus a record-by-record insertion of data is not available. Instead, the mass load func-

tion is used to load all record data. The EWIR record file (filename: EWIROODB.r) is cre-

ated by the user to mass load all of the EWIR record data into the EWIR database. When

using the mass load option, the user must adhere to the following conventions when spec-

ifying the record data:

• Classes occur in the same order as the schema file (EWIROODL).

• Attributes are in the same order as listed in the schema.

• The @ symbol is used to separate classes.

• The user generates the OID's.

• If a class inherits from another class, then the OID format of the generalization
class is used by the specialization class followed by "na". Thus a specialization
class record would have the following format:

< OID of generalization> na attribute 1 attribute2 attributeN

• An illustration of how to translate the schema specification into the record data
format is illustrated in Figure 25:

Schema file

class Num_dat{
char_string
Comment
Data ds

Record file
@
Num_dat
m 30_deg CM1 DD1

: unique OID
data value for units
Comment and Data ds OID's

Figure 25. The Record File Format.

39

1. A Proposed EWIR Record Template

When entering data into a database, the database user typically has an interface

designed to collect related record information. The database interface can be of many dif-

ferent types. User-friendly interfaces may include a menu-based interface, a graphical

interface, or a forms-based interface. A logical choice for inserting, data into the EWIR

database is a forms-based interface. A forms-based interface allows the user to insert data

into an Emitter template form which collects logically related information and then inserts

the data into the database.

A sample forms-based interface for the new EWIR database is provided in Figure

26. The user-provided EWIR data is in italics. This sample database insertion form is very

large and packed with information about a single emitter. The nature of the EWIR data-

base is such that large amounts of information is logically related to a single emitter.

Because the mass load function is the only available method for insertion of data, this

sample template is not actually used in this implementation. It is presented in this thesis to

illustrate the complexity of a single object "emitter". The template also provides a logical

collection of emitter data for testing the accuracy of transactions on the sample emitter.

When the Object-Oriented Interface implementation is expanded to include the insert

function, a well designed and user-friendly interface can be developed.

2. The Mass Load Record File (EWIROODB.r)

In a commercial database system, the user will never be concerned with the physi-

cal storage structures of the database. The insert function will handle the data storage

details. For the purposes of this thesis, it is important to show the EWIR record data used

by the mass load function because it must be created by the user. The EWIR mass load

record is listed in Figure 27(a) and 27(b). The logically related record of Figure 26 is inte-

grated into the mass load record file as well as generic test data. Please note that all record

data names (i.e.,names of radars) and values (parameters) are not actual real-world

EWIR database names and values. Creating and testing the EWIR database on the Object-

Oriented Interface is an unclassified research project and thus precludes the use of real

40

EWIR data. The mass loading of the EWIROODB file completes the creation of the new

EWIR database.

Receiver_type: pulse wave
Signal processor:

doppler calc:
coh_pcess_int: 300_kw
num_pulses_cpi: 20_cpi

A_D section:
ad_sample_period: 325 _rns
conv_trig_method: sin_wave

SIGNAL DATAfSTG^
mod_waveform:pu/,ye_vvav
rf_limits:728_/iz
no_disc_steps:i2

EM CON PWR(TPI)
trans_loss_on_tx:5_d£
pk_pwr_rad: 300_kw
pk_pwr_tx: 300Jew

Emitter: Sample_l
Unique_id:

elint_notation:e//z0f_i
Probability code: prob_l
Receiver components:RECl
Antenna component: Al
Econ_pwr: TP1
non_constant_pwr: TP3

Discrete_agility: SIG5
Weapon system-AA-6

comment:satellite_detect
contributing agency: Airforce
last update: 08-95

Emitter function: longrangeaa
comment: aircraft mounted
contributing agency: Airforce
last update: 08-95
Emitter_ptf_gen: mod_pulse_wave

ANT COMPONENT! fAI^
antenna_type: parabolic

antenna_function: long_range_aa
horizontal_dim: 3_ft
vertical_dim: 4Jt

circ_or_ellip polarization:
sense: left

ax_ratio: 20_db
antenna_direction:

bwdth_azim: one_way_3db
bwdth_elev: 6_deg
first_az: 12 jib
first_el: 15_deg
Sector:

sector_type: unidirct
per_limits: 6 sec
spc_w_az:6sec
sec_w_el: 6_sec

Mechanical_track:
plane_track:45_Aor
max_r_az: 20_db
max r el: 5 db

Figure 26. A Sample EWIR Record Template.

41

EWIROODB -
@
Elnot -^
El e_notl EMI
E2 e_notl EM2
E3 e_notl EM3
@ -<
Data_ds ^—
DD1 airforce 08_95
DD2 airforce 08_95
@
Comment
CM2 satellite_det
CM3 aircraft_mount
@
Num_dat
N130_degCM3DDl
N2 45_deg CM3 DD2.
N3 unit3 CM3 DD2
N4unit4CM2DDl
N5 unit5 CM2 DD2
N6 unit6 CM2 DD2
@
Spec_v
Nl na 325_ms
N2 na 300 kw

Name of database

Class name

three records in class

 Signal a new class

"contributing agency" attribute
"last update" attribute

attribute is of type datajts

Spec_va is a specialization ofNum_dat
as signified by the "na" and OID ofNl

Figure 27(a). The EWIR Record File.

42

(continued from Figure 27(a))
N3na4_ft @
N4na3 ft ^ Rflst
N5na20 db r RFL1N1TE1
N6 na 5_db / RFL2N2TE2
N7 na 20 cpi / @
N8 na10 db / Pulsed
@ / SIGlnaRFLl
Val_ran / SIG2naRFL2
N4 na 100_ms 128_ms / @
N5 na lower_val2 upper_val2 / Rf_n_co
N6 na lower val3 128 hz / SIGlna dummy 1
@ / @
Trans p / Pul rf
TP1N1N4N2 1 SIGlna TE1
TP2N2N5N1 / SIG2naTE2
TP3 N3 N6 N2 SIG3naTE3
TP4N1N6N3 @
TP5N6N6N3 1 Disc ag
@ SIGlna TE5N4N1
Const p SIG2naTE2N5N2 *

TPlnaN2 SIG3naTE3N6N3
TP2naN3 SIG5naTE3N3N6
@ @
N con_p Warm
TP3naN3 Wl probl
TP4naNl W2 prob2
@ flo W @
Signal Rf eccm
SIG1 TP1 TP3 Wlna
SIG2 TP2 TP4 @
SIG3 TP3 TP4 Disc ag rf eccm
SIG4 TP2 TP3 I DCA1 SIG1 Wl
SIG5 TP5 TP3 1 DCA2 SIG2 W2
@ @
Text_da 1 Polariz
TE1 phased_array CM1 DD1 / PI pdatal
TE2 parabolic CM2 DD2 / P2pdata2
TE3 mod_pulse_wave CM1DD3 / @
TE4 lng_rang_aa CM2 DD1 / C el po
TE5 pulse wave CM1 DD2 / PlnaTE6N5
TE61eftCMlDD2 / P2naTE2N2
TE7 45_horCM2DD2 / P3naTE2N5
TE8 square sail CM2 DD1 / P4naTE6N5
TE9 aa 10CM2DD1 / @
TE10 aa 6 CM2 DD2 / Scan
TEH sa_21 CM2 DD2 / SCA1 Nl N3 TE1
TE12 unidirct CM2 DD2^ SCA2N2N1TE2

SCA3 N3 N2 TE3

Figure 27 (b). The EWIR Record Data.

43

@ Emitter
Mech_sc j EM1E1W1TE9TE2TE3
SCAlnaTElTE2 f EM2E2W2TE10TE3TE1
SCA2 na TE2 TE3 / EM3 E3 W3 TEH TE1 TE2
@ / @
Track / Receive emitter
TR1TE7 / REM1 REC1 EMI
TR2TE2 / REM2REC2EM2
TR3TE3 @
@ 1 Antenna emitter
Mech tr AEM1 Al EMI
TRlnaN4N5 AEM2A2EM2
TR2naN5N6 @
@ Const p emitter
Sector CEM1 TP1 EMI
SCA1 na TE12 N4 Nl N2 TR1 CEM2TP2EM2
SCA2 na TE2 N5 N2 N3 TR1 @
SCA3 na TE12 N3 N2 N4 TR2 N con p emitter
@ NEM1 TP3 EMI
Rad pat NEM2 TP4 EM2
RAD1N8 @
RAD2 N8 fll W Disc_ag_emitter
RAD3N3 DEMI SIG5 EMI
@ DEM2 SIG5 EM2
Directi DEM2 SIG5 EM3
RAD1 na Nl N2 N3 Nl SCA1 V RAD2 na N2 N3 Nl N2 SCA2 \
@ \
Antenna 1 \
Al TE1 TE4 N4 N3 PI RAD1 End of File
A2TE8TE4N4N3P2RAD2 1
A3TE2TE4N1N2P3RAD2 I
@ /
Doper p /
DOl Nl N2 /
D02N2N7 /
@ /
Sig pee /
SP1D02 /
SP2 D02 /
@ /
A d con /
AD1 Nl TE1 /
AD2N2TE2 /
AD3 N3 TE3 /
@ /
Receive /
REC1 TE1 SP1 AD1 /
REC2 TE2 SP2 AD2 '

Figure 27(c). The EWIR Record Data.

44

V. THE MANIPULATION OF EWIR DATA

In Chapter III of this thesis, we derived the new EWIR database from the object-

oriented specification of the existing EWIR database. In Chapter IV, the new EWIR data-

base was transformed from an O-ODM specification into a live database using the DDL of

the Object-Oriented Interface. In Section A of this chapter, we state the objectives and

goals achieved through the execution of transactions on the live EWIR database. In Sec-

tion B, we present the nine transactions on the live EWIR database using the DML of the

Object-Oriented Interface.

A. THE GOALS OF THE EWIR TRANSACTIONS

The transactions or queries on the EWIR database are the final step required to

reach our thesis goals and objectives. They provide a basis for evaluating the effectiveness

of the Object-Oriented Interface as well as the merits of an object-oriented implementa-

tion of the EWIR database. The transactions or queries utilize and test the implemented

functions of the Object-Oriented Interface while capturing the EWIR database functional-

ity. In particular, the transactions are intended for the following:

• To test every type of relationship in the database. These relationships include
inheritance, 1:1, 1:N and M:N.

• To span the most complex data relationships encountered in the live EWIR data-
base. These include the multiple-level inheritance and multiple-level 1:1 rela-
tionships.

• To utilize all available DML operations currently implemented on the Object-
Oriented Interface. These operations include Objset, Objectrefs, Findone,
Find many, Display, Contains, And, Or, and the looping structure (For Each
<obj_ref> In <obj_set>).

• To access and manipulate data from disparate sections of the database. In other
words, the information from the antenna, signal, and receiver sections can be
accessed and manipulated in a single query.

B. THE EWIR TRANSACTIONS

The queries presented in this section are representative of the type of ad-hoc trans-

45

actions an analyst might submit to the EWIR database. These queries are designed for

testing the database and do not reflect any strategic relevance. It is also important to note

once again that the data values and names used in the new EWIR database are not the

actual values and names of "real world" parametric data, thereby keeping the research

project unclassified.

Nine queries are presented in this thesis. A standard format is used for presenting

all the nine queries. The query presentation format is explained in Figure 28. The compiler

output is useful for debugging the queries and for following the sequence of execution of

each query [Ref. 6].

#. < Subsection Title >

Purpose: The research purpose of the query.

Request: The transaction to be performed stated in English.

Query: The query in the DML of the Object-Oriented Interface.

Result: The values returned by the query.

Remarks: Any remark or figure as required.

Figure 28. The Query Presentation Template.

The limitations experienced in writing the queries are mainly a function of the lim-

itations of the Object-Oriented Interface. The specialization-to-generalization path for an

inheritance limits the scope of retrievable information. The lack of an if-then-else state-

ment limits the complexity and sophistication of the queries. Given the functions currently

available, the following nine queries evaluate the current data manipulation capabilities of

the Object-Oriented Interface. These queries also provide enough context to evaluate the

effectiveness of an object-oriented approach to manipulation of EWIR data.

46

1. An Attribute Look-up (Queryl)

Purpose: The primary purpose of Query_l is to explain the mechanics of how the Object-

Oriented Interface processes a query using only the schema and record files. An illustra-

tion of the Query_l execution logic is provided in Figure 29. Query_l is a simple attribute

look-up involving a 1:1 relationship.

Request: Find an antenna with the long-range, anti-air capability.

Query:

Query Find_antenna IS

obj_refp;

Begin

p:= find_one Antenna where ant_function.text_dpt = 'lng_rang_AA';
display(p.ant_type.text_dpt);

End;

Result: Text_dpt: phasedarray

Remarks: When hand-tracing the execution of an EWIR query, we use the schema file

and the record file. Refer to Figure 29 when reading the following explanation.

We start with the assignment statement in the body of Query_l. It assigns to the

variable p the ODD of the Antenna whose function is long-range-anti-air (lng_rang_aa).

Thus, by first looking at the schema, the ant Junction attribute is observed to be of type

Text da. therefore, we now locate the class Textda and, following the dot notation, locate

the attribute text_dpt. The text_dpt attribute is the first attribute of class Textda. Using

this information, we now move to the record file and locate the class Text_da. The inspec-

tion of class Text_da records terminate when we locate the value "lng_rang_aa" in its first

attribute field. A match is made with the record having an OID of TE4.

The OID value of TE4 is required as a second attribute in a record of class

Antenna. Thus, the Antenna records in the record file are searched until TE4 is found in

the second attribute field. The match is made with the Antenna having an OID value of

Al. The Antenna OID value of Al is now assigned to the variable p.

The display statement now uses the antenna with the OID of Al to output the

47

requested information. Note that the display statement in this query also involves dot nota-

tion:

display (p.ant_type.text_dpt);

The p.antjype is the first attribute of Antenna. For the antenna with an OID of Al, the

antjype attribute is TEL The record with the ODD of TE1 is located. The textjdpt

attribute is the first attribute field in the record. The text_dpt attribute of TE1 has the value

phased_array. Thus, phasedarray is the output of the query.

class Antenna {
Text_da antjype;

'" Text da ant function;

ant_funct.text_dpt

class Text_da{
char_string
Comment
Data_ds

};

text_dptr
text_com;
Text_dsp;

Antenna
Al TE1 TE4.

CTE

The

Text_da
4 lng_rang_aa CM2 DD1

\

ji match

The Text_da record that has lng_rang_aa
in the text dpt position has an OID
ofTE4.

The antenna record that has a TE4 in the antJunct position
has an OID of Al. Thus, p:= Al.

\
The Display statement outputs the antjype attribute of the antenna
saved in the variable p. Thus, the TE1 field of OID Al = phasedjarray

Figure 29. The Query_l Execution Flow.

2. A Single-level Inheritance and its 1:1 Relationship (Query_2)

Purpose: The purpose of Query_2 is to complete a one-level 1:1, one-level inheritance

transaction. Also, new to this query are multiple outputs in a single display statement. The

display statement is recoded to handle multiple outputs in a single statement. The previous

48

version allowed only one output per display statement. The display statement in Query_2

uses the three-level dot notation for its output. A graphic representation of Query_2 is pre-

sented in Figure 30.

Request: Find the antenna type, antenna function, contributing agency and last update of

an antenna with cross polarization.

Query:

Query Cross_polorization IS

obj_ref p;

Begin

p:= find_one antenna where ac_el_pol.polar_data = 'cross_polarize';
Display (p.ant_type.text_dpt, p.ant_function.text_dpt,

p.ant_type.text_dsp.ctrib_agency, p.ant_type.text_dsp.last_update)

End;

Result: ant_type: phased array
ant_function: lng_rang_aa
ctrib_agency: airforce
last_update: 08 - 95

Remarks: The inheritance hierarchy makes the attributes of the inherited classes to

appear as if they are part of the inheriting class. This negates the requirement for path

statements using dot notation to access multi-level inherited data. It greatly simplifies the

query while providing powerful data manipulation functionality.

In Figure 30 is a depiction of Query_2. Notice the depiction of polar_data as an

attribute of Circ_or_Ellip_Polarization by virtue of an inheritance. All of the inherited

class attributes become "virtual" attributes of the class which inherits.

3. Multi-Level 1:1 Relationships (Query 3)

Purpose: The most complex relationship in the Antenna Data section involves four levels

of 1:1 relationships plus a one-level inheritance. This query requests information that fol-

lows the four-level path statement plus a single-level inheritance. Also presented in

query_3 is the logical operator Or. It is used for an alternative decision path involving a

three-level 1:1. Query_3 also introduces the findmany statement resulting in multiple

49

poiar_datä\.. inherit.

Q Polarization J

,' 'inherited"* *»
\ attribute ♦'

polar_data \

X Circ_or_Ellipt
Polarization

(ac_el_pol in the schema iJ

Q Antenna j

The path statement (from query_2)"is
ac_el_pol.polar data. The polar data
attribute is actually an attribute of class
Polarization, yet through inheritance the
path statement makes polar_data appear
to be an attribute of aceljpol.

Figure 30. The Logic of Query_2.

object retrievals in a single statement. The output of these multiple objects is achieved

using the looping structure For each <var> in <var>.

Request: Find the antennas with a tracking plane of 45 degrees horizontal OR a sector

scan that is unidirectional.

Query:

Query track_plane IS

obj_ref i;
obj_set p;

Begin

p:= find_many antenna where

50

ant_direc.sec_char.sm_track.plane_track.text_dpt = '45_hor'
OR ant_direc.sec_char.sec_type.text_dpt = 'unidirct';

For each i IN p
display(i.ant_type.text_dpt);

End_loop;

End;

Result: Text_dpt: phased_array
parabolic
square_sail

Remarks: A graphical depiction of the query is presented in Figure 31. Unlike the inherit-

ance hierarchy, the multiple-level 1:1 structure must be explicitly expressed via a path

statement using the dot notation. The statement "p:= find_many antenna" indicates that

the class Antenna is the starting point in the path. The statement "where

ant_direc.sec_char.sm_track.plane_track.text_dpt" is a listing of the attributes to follow to

find the data value '45_hor'.

The 1:1 relationship is useful because it allows a class (or object) to be composed

of other classes. This enables high levels of abstraction for the user. For example, a car is a

collection of objects (engine, body, seats, etc.). These objects are in turn composed of

other objects (engine => block, cylinders, fuel system, etc.). The division of a car into

smaller subcomponents continues until it reaches the indivisible (atomic) parts. Thus, it is

easier to understand a car as a small collection of major subcomponents (engine, body,

etc.) than a huge collection of thousands of small parts (plugs, bolts, fabric, rubber, etc.).

An atomic-level component can be identified by successively identifying smaller and

smaller subcomponents along a logical path until it reaches the desired atomic-level com-

ponent.

An example of a path statement using the car example is the following: To find the

car with a spark plug gap of 0.05 inches. Starting at the Class Car, the example can then

traverse the following path:

Find_one Car where engine.elect_system.ignition_system.spark_plug.gap = '.05'

This path follows a series of specialization attribute classes until it reaches the target class

and the attribute of interest. This logic is employed by the Object-Oriented Interface when

51

executing multi-level 1:1 relationships. A depiction of the multi-level 1:1 relationship of

query_3 is illustrated in Figure 31.

path 1 —

ant.jdir
i

<d'pt>
■
i

?
sec_char

<äot>

sm track

C Antenna J

C Directional 3

, !_
f Sector J

OR path 2

antjdir
i
i

<dot>
i
■

T
secjchar

i

*sec_type.text_dpt= unidirect

<dot> T
^ r Mech_track\«

*plane_track (inherit)^ _ <
Track D

planetrack = 45_hor

* Both of the paths lead to retrieval of an ODD from the Text da class. The
OID is then matched with the ODD in the textjda attribute location in the
antenna records. Ultimately, the Antenna OID's are retrieved which contain
the correct Text da OID attribute.

Figure 31. The Multi-level 1:1 Relationship of Query_3.

4. A Two-level Inheritance (Query_4)

Purpose: The purpose of Query_4 is to illustrate a two-level inheritance. Thus far we

have done a simple attribute look-up (query_l), a one-level inheritance and 1:1 relation-

ship combination (query_2), a multi-level 1:1 (query_3). The multi-level inheritance of

this query completes the testing of basic EWIR data relationships on the Object-Oriented

Interface.

Request: What are the sector type and the upper and lower values of the period limits of

an antenna with a sample average scan time of 325 ms?

Query: Query Find_sector IS

52

obj_ref p;

Begin

p:= find_one sector where
smp_avg_time.value = '325_ms';
display(p.sec_type.text_dpt,p.per_limits.lwr_value,

p.per_limits.upr_value);
End;

Results: Text_dpt: unidirect
Lower_value: lOOjns
Upr_value: 128 jns

Remarks: The relative simplicity of queries involved in inheritance hierarchies is a major

strength of object-oriented database systems in general and the Object-Oriented Interface

in particular. For example, the attribute smp_avgjime is not an attribute of sector, but sec-

tor inherits from Mech_sc. The smp_avg_time attribute is not located in Mech_sc, but

Mech_sc inherits from Scan. The attribute is located in Scan where a match is made. The

inheritance structure does not require the use of any dot notation, thus greatly simplifying

the structure of the query. The query_4 logic is illustrated and explained in Figure 32.

p:= findone sector where
smp_avg_time. value = '325_ms';

smp_av_time is an attribute
of Scan. The match with
value '325_ms' is made and the
ODD is returned.

check sector
attributes

(Scan ~^)

C Sector j < Mechanical scan J
V smp_av_time is

not an attribute
of Sector. Check
Mechanical Scan

inherited
class

smp_av_time is not
inherited class an attribute of Mechanical

Scan. Check Scan.

Figure 32. The Two-Level Inheritance of Query 4.

53

5. A Five-level Inheritance and One-level 1:1 Relationship (Query_5)

Purpose: The purpose of query_5 is the data retrieval from Signal Data via the most com-

plex structure available. The complexity is defined in terms of depth of data relationships.

This particular query will traverse through five levels of inheritance plus a 1:1 relationship

in total. This is the deepest inheritance structure in the entire live EWIR database. Notice

that despite the complexity of the query in terms of the depth, the query structure itself is

very simple.

Request: What are all modified waveforms (discrete agility) of a signal that is transmitted

at a constant peak power of 300 kw?

Query:

Query Find_waveforms IS
obj_set p;
obj_ref i;

Begin

p:= find_many disc_ag where
scon_pwr.pk_pw_txmitter.value = '300_kw';

For Each i IN p

display(p.mod_waveform.text_dpt);

End_loop;

End;

Result: Text_dpt: pulsejvave
mod_pulse_wave

Remarks: In Figure 33 is a graphical depiction of the path taken through the five levels of

inheritance and the 1:1 relationship. The mechanics of inheritance relationships is

explained in both Query_2 and Query_4. Query_5 is the initial test of a change to the

Object-Oriented Interface code allowing four-levels of an inheritance in a single query.

The previous code restricted the inheritance hierarchy to three-levels.

54

<!
Constant Power

>

level-five inheritance

V
1:1 relationship "«

r^.C ot Constant Power
)

* pk_pw_txmitter~\

c Transmission Power y/
* _

_ level-four inheritance C Signal)

_ level-three inheritance (PulsedRFj

level-two inheritance C RF Not Constant)

_ level-one inheritance ^Pulsed RF Agility)

retarn tfie OID for Discrete
Agility. The Query must find the
attribute pk_pw_txmitter

(Discrete Agility)

Figure 33. The Multi-level Inheritance Hierarchy of Query_5.

6. The Retrieval of the Emitter ELNOT (Query_6)

Purpose: The ELNOT is the notation used to uniquely identify the emitter in the EWIR

database. It is essential to be able to provide ELNOT information to the user, given an

emitter's parametric data. When given parametric data, the query_ 6 retrieves the associ-

ated emitter ELNOT.

55

In Query_6 we use the contains statement for the first time. The contains statement

is a set comparison function. It returns the objects in a set which satisfy an expression or

match objects in a second set.

Request: What is the ELNOT and the weapon system for an emitter with an antenna hav-

ing a mechanical scan tracking plane of "45_hor"?

Query:
Query find_emitter IS

obj_ref p,i;
obj_set q

Begin;

p:= find_one antenna where
ant_direc.sec_char.sm_track.plane_track.text_dpt = '45_hor';

q:= find_many emitter where ant_comp contains p;

For Each i IN q

display(q.unique_id.elint_notation, q.weap_system.text_dpt);

Endjoop;
End;

Results: Elint_notation: enotl
Text_dpt: aa_6

Remarks: In Figure 34 is a depiction of the Query_6 logic. The EWIR schema file shows

that the class Emitter uses the set_of construct for the antenna_component (ant_comp)

attribute. The meaning of set_of is that one emitter can have many antennas. In this query,

all of the antennas of an emitter are searched, using the contains statement, for a match

with the data contained in the variable p. The results are stored in the variable q for even-

tual display.

7. The Retrieval of Parametric Data Given an ELNOT (Query_7)

Purpose: The purpose of query_7 is to retrieve the parametric data of an emitter given

only its ELNOT. The ELNOT is the highest-level identification of an emitter and can

therefore be used to retrieve any of the related emitter data. This is essentially a reverse

operation of Query_6 which returned an emitter ELNOT given specific parametric data.

56

(Emitter)

a three-level 1:1
and one-level inherit
results in a match for
Antenna

f Antenna j vCx

(Directional)

■

(Sector)

the contains statement
checks the set of ant comp
of an emitter for the ÖID
of the Antennas which

satisfies the query

(MechanicaFV^-
Tracking J

 f Track \

Plane track.value = 45 hor

Figure 34. The Retrieval of an ELNOT (Query_6).

This query also utilizes the inverse_of function for the first time. The inverse_of

function creates an M:N capability when used in conjunction with the set_of function.

Specifically, this query uses the following EWIR classes to create the M:N relationship

Class Emitter!
set_of Antenna ant_comp;

Class Antenna{
inverse_of Emitter.ant_comp anten_comp;

Request: Retrieve all weapon systems and the associated antenna type for a given an

emitter ELNOT of enotl.

Query: Query findemitters IS
obj_ref i;
obj_set p, q;

57

Begin

p:= find_many emitter where
unique_id.elint_notation = 'e_notl';

q:= find_many antenna where anten_emit contains p;

For Each i EN p
display(i.weap_system.text_dpt);

End_loop;

For Each i IN q
display (i. ant_type. text_dpt);

End_loop;

End;

Results: Text_dpt: su_22
mig_21
mig_23

Text_dpt: phased array
squaresail

Remarks: A visual depiction of Query_7 is illustrated in Figure 35.

1. The variable p is assigned the
OID of all emitters with
unique_id.elint_notation = 'e_notl'

1:N
ant_comp

C Antenna
Emitter

2. The variable q is assigned
the OID's of all antennas'
where anten_emit contains p.

)
attr: unjque_id

)

<dot>

J>T
attr: elint notation

3. The display statements output information about
the emitter and the antenna by using the OID's assigned
to p and q.

Figure 35. The Retrieval of Parametric Data for a given an ELNOT.

58

8. Multiple Logical Operators and Changing Data (Query_8)

Purpose: The primary purpose of query_8 is to retrieve data using multiple logical opera-

tors, change the value of an attribute, and store the new value in the database. Thus,

Query_8 only replaces the attribute value of an existing EWIR attribute and no modifica-

tion in the schema takes place.

Request: Downgrade the pulse wave radar from a long-range-aa to a medium-range-aa

platform if the antenna type is phased array and its axial ratio value is '20_db'.

Query: Query Changeantenna IS
obj_ref p;

Begin
p:= find_one Antenna Where ant_runction.text_dpt = 'lng_rang_aa'
AND ant_type.text_dpt = 'pulse_wave'
AND ac_el_pol.ax_ratio. value = '20_db';
Display (p.ant_type.text_dpt, p.ant_function.text_dpt);
p.ant_function.text_dpt:= 'medium_rng_aa';
Display (p.ant_type.text_dpt, p.ant_function.text_dpt);

End;

Results: Text_dpt: phased_array; lng_rng_aa;
Text_dpt: phased_array; med_rng_aa

Remarks: Figure 36 is the graphical depiction of query_8.

.attr:ax_ratio.value (Circ_or_Ellipt Polarization)

••" "4 V—r^ '
<dot>

attr: ac_el_pol -c Antenna J

ant_function.text_dpt = 'lng_rng_aa'

AND
!

ant_type.text_dpt = 'phased_array'

AND
T

 ■► ac_el_pol.ax_ratio.value = '20_db'

The antenna that meets all three criteria is assigned to the variable p. The
antenna function (ant_function) is then changed via an assignment statement.

Figure 36. The Changing of a Data Value (Query_8).

59

9. The Data Retrieval From Multiple Subsections of EWIR (Query_9)

Purpose: The purpose of Query_9 is to retrieve data from all three major subsections of

the EWIR database using the logical operators. Query_9 demonstrates that there are no

limits to the number of major subsections of the EWIR database in performing a transac-

tion. Without any higher level functions such as if-then-else, the complexity of the transac-

tion is limited to logical comparisons of retrieved information.

Request: Determine which weapon systems have a transmission loss on a transmit

of 5_db or a receiver with doppler processing of 20_cpi or a directional radiation pattern

antenna gain of 10_db.

Query:

Query multiple_choice IS

obj_set q,z,y,p;
objjref i;

Begin

q:= Find_many disc_ag where scon_pwr.tx_ls_tx. value = '5_db';
z:= find_many Receive Where

sig_processor.doppler_calc.num_pulses_cpi.value ='20_cpi';
y:= find_many antenna Where ant_direc.ant_gain.value = '10_db';
p:= find_many Emitter where edis_agility contains q OR

rec_comp contains z OR
ant_comp contains y;

For Each i in p
display(i.weap_system.text_dpt);

Endjoop;

End;

Results: Text_dpt: aaJO
aa_6
sa_21

Remarks: In Figure 37 is the graphical depiction of Query_9. The variables q, z, and y

contain the OID's of the qualifying objects from the Signal, Receiver, and Antenna sub-

sections respectively. The variable p contains the OID's of emitters whose attributes

(edis_agility, rec_comp, ant_comp) contain the OID's in q, z, and y.

60

scon_pwr.tx_ls_tx.value = '5_db'

(Discrete Agility) T

(Receiver)

sig_processor.doppler_calc.num_pulses_cpi.vaIue = '20_cpi'

ant_direc.ant_gain.value =' 10_db'

C
i

Antenna 3

q:= OID's z:= OID's y:=OID's

' edis_agility. contains q OR 'jec_< :omf>, OR
cöhta ins z

Emitter

•' attribute V

aht_comp"contains y

p:= OID's of the emitters which
satisfy the logical statement.

Figure 37. Data Retrieval From Different EWIR Subsections (Query_9).

61

62

VI. CONCLUSIONS

In this thesis we first create a live EWIR database given only the object-oriented

specification of the existing EWIR data. In Section A is a summary of the methodology

used in this thesis to create the live EWIR database. We then create a number of live

object-oriented transactions for the purpose of accessing and manipulating the newly cre-

ated and live object-oriented EWIR database. In Section B is an evaluation of the perfor-

mance of the Object-Oriented Interface in its support of our new and live transactions. In

Section C, there is a conclusive discussion on the merits of the object-oriented implemen-

tation of the EWIR database and its transactions.

A. THE THESIS METHODOLOGY SUMMARY

The Electronic Warfare Integrated Reprogramming (EWIR) database is the pri-

mary Department of Defense source for technical parametric performance data on non-

communications emitters. It has been identified by the National Air Intelligence Center as

difficult to use in its current hierarchical database form. There are two problems addressed

by this thesis. First, with object-oriented database management being the latest database

technology, is an object-oriented EWTR database a superior method for managing com-

plex electronic warfare data collections? Second, is the prototype Object-Oriented Inter-

face of the Multimodel and Multilingual Database Management System developed at the

Laboratory for Database System Research in the Naval Postgraduate School capable of

supporting a complex object-oriented database such as EWIR and its transactions?

To answer these questions, we first examine the object-oriented specification of the

existing EWIR database [Ref. 1] and derive a subset for our implementation on the Object

Oriented Interface. Using the Object-Oriented Interface DDL, the new object-oriented

EWIR database schema and its associated data are stipulated and loaded into M2DBMS in

order to create the live database. Using the Object-Oriented Interface DML, nine object-

oriented transactions for EWIR processing are elaborated and executed. The following

sections summarize the results of this research.

63

B. THE EVALUATION OF THE OBJECT-ORIENTED INTERFACE

The EWIR database is the first large, complex database implemented on the

Object-Oriented Interface of the M2DBMS. The EWIR implementation is designed to test

the effectiveness, correctness, and efficiency of the Object-Oriented Interface. Specific

conclusions on the Object-Oriented Interface include:

• All functions currently implemented on the Object-Oriented Interface work as
specified. Some minor code changes have been made during the course of this
thesis to correct logic errors or expand the usability of the functions.

• The inheritance relationship allows the data retrieval from a specialization class
to a generalization class only. The inheritance functionality should be expanded
to include data retrieval capability for the generalization class to specialization
class direction.

• The only functions which provide data manipulation capabilities are the
find_one,find_many, contains, logical or, and logical and. These functions
restrict transactions to object and object-set comparisons. Additional functions
are needed to meet the extensive data manipulation requirements of large, real-
world databases such as the full set of EWIR data. Recommended additional
functions include insert, delete, and the if-then-else or case statement.

• In keeping with the object-oriented paradigm, it is recommended that future stu-
dents implement methods. The methods provide to the user an external interface
and also encapsulate the intended data operations for specific objects. The exter-
nal interface is a key component of a complete object-oriented database system.

• The character-length restriction on class names and attribute names should be
eliminated. A large, complex database needs the versatility to clearly name
objects. In this thesis, many class and attribute names are cryptic and difficult to
understand due to this restriction.

In summary, the Object-Oriented Interface forms an excellent foundation on which

to create a complete object-oriented database system. The underlying kernel system is

well designed and has a proven ability to support transactions from several different data-

base systems. The prototype Object-Oriented Interface evaluated in this thesis fully sup-

ported the complex EWIR database within the scope of its currently available features. We

see no impediment to the further design and implementation of additional Objection-Ori-

64

ented Interface functionality. The cross-model accessing capability to the other non-

object-oriented databases in the M2DBMS is also recommended.

C. THE EVALUATION OF THE OBJECT-ORIENTED EWIR DATA-
BASE

As stated in Chapter I, a primary goal of this thesis is to determine whether the

object-oriented EWIR database is more effective, efficient, and intuitive for managing

complex electronic warfare data collections than the non-object-oriented EWIR database.

The evaluation of the object-oriented EWIR database implemented on the Object-Ori-

ented Interface yields the following conclusions:

• The object-oriented specification is easier to understand than the existing hierar-
chical structure. Data relationships in the object-oriented specification are more
naturally depicted and not subject to the user interpretation errors of the existing
EWIR specification.

• The Inheritance feature of object-orientation greatly simplified query construc-
tion. Inherited attributes are available to a class without a requirement to explic-
itly define either path statements or relations.

• Accessing specific data elements via the path statement is a simple process. By
referencing the object-oriented specification, path construction is no more diffi-
cult than following a "roadmap" that leads to the class or attribute of interest.

• The construction of ad-hoc queries is quick and easy. This is due primarily to the
ease of understanding the data relationships given a well designed specification.
The inheritance, path, and object comparison features streamline the linkage of
related data, thus simplifying query construction.

The major complaint from the users of the existing EWIR data is the heavy reli-

ance on the user's understanding of the complex data relationships. From the user's per-

spective, the object-oriented paradigm is proven to be a superior method of modeling data.

It naturally follows that a well designed object-oriented specification of a database would

enhance user understanding.

This thesis demonstrated that the object-oriented specification of the EWIR data

produces a data model that more accurately reflects the true data relationships. This thesis

65

demonstrated that users with little prior knowledge of the EWIR data could take an object-

oriented specification and construct a live EWIR database that is accurate in its EWIR data

definition. This thesis demonstrated that with little prior knowledge of EWIR, users can

quickly construct and execute ad-hoc queries. In summary, a good object-oriented EWIR

database specification implemented on a proven object-oriented database system is a via-

ble and preferred option from the perspective of database users.

66

APPENDIX A. THE EWIR SPECIFICATION

The figures presented in this appendix are the object-oriented specification of the

existing EWIR database as presented in Ref. 1. This appendix is used to assist in the com-

parison of the EWIR specification of Ref. 1 with the derived subset of EWIR as specified

in Chapter III of this thesis.

67

68

69

70

71

72

V
■•->

■s

Hi ■? § £
8

l o

1
Jo

is

3
C/l en T§ 0) o

a
vö
3
S

Ks&fi

s
•43 £ 11
n J3 $!

Sww &
to
c/l

at

s
1?

§1
tj Tl!

Kfl£! 1
2
5 11

O «:
99 °<

B***-

1
I •

73

74

APPENDIX B. THE NEW EWIR DATABASE DATA DICTIONARY

EWIROODB s

@
/ #

J #
4 UPR VALUE

Elnot / UMTS / S " #
* OK) @

s # 1 Trans p
NUM COM #

—

s ?m
ELINT_NOTATION comment

ref
s

s # #
NUM_DSP TX_LS_TX

s s
EMIT_SYSTEM data_ds spec_va
o ref ref

emitter
ref

@
Spec va

PK_PW_RAD
s

@ OID val_ran
Data_ds s ¥\o\ ' uf

Flov #

OID # PK_PW_TXMITTER
OID_NUM_DAT s

s s spec va
num_dat ref

inherit @
CTRIB_AGENCY # Const p
s VALUE #

s 1 OID

LAST UPDATE @

Val ran 1

s

S # ODD_TRANS_P

OID 1 s

@
Comment

s 1 trans_p

/
inherit

OID_NUM_DAT / TTO_SWITCH
OID s / s
S num_dat / spec_va

inherit / ref
/ @

COMT DATA 1 LWR.VALUE /
s J

N con p

S

OID
s

@ /
Num dat /

" /
OID

75

MAX_CHANGE DB3_S_WIDTH OID_RF_N_CO
s s s
spec_va
ref

spec_va
ref

rf_n_co
inherit

@ TXMITTER_TYPE AGT_F_CORREL
Signal s s
text_da text_da
OID ref ref
s @ @

Pulsed Disc ag

OID OID
SCON_PWR s s
s
const_p # #

ref OID_SIGNAL OID_PUL_RF

SN_CON_PWR

s
signal
inherit

s
pul_rf
inherit

s # #
n_con_p COHERENCE MOD_WAVEFORM
ref s s

@
Text_da

rf_l_st text_da
ref
@
Rf n co

ref

RF_LIMITS
OID # s
s OID val_ran

s ref

NO_DISC_STEPS

TEXT_DPT
OID_PULSED s

s s spec_va
pulsed ref

inherit @
TEXT_COM # Warm
s DUMMY #

s OID
comment s
ref

@
Pul rf #
TEXT_DSP # PROB_CODE
s OID s

data_ds s
ref @

Rf eccm
@ #
RfJ_st

OID
s

76

OID ff #
s OID_RF_N_CO OID_POLARIZ

rf_n_co
s
polariz

inherit inherit
OID_WARM # #
s AGT_F_CORREL SENSE
warm s s
inherit

text da
ref
@

text_da
ref
RF_DISC_AGILITY Disc ag AX_RATIO

set_of # s
disc_ag_rf_eccm OID spec va
store s ref
@ #

OID_PUL_RF

@

Disc_ag_rf_eccm Scan

s OID
OID pul_rf s
s inherit

MODJWAVEFORM SMP_AVG_TIME
OID_DISC_AG
s

s
text da
ref

s
spec_va
ref

disc_ag # #
asc RF.LIMITS THRESHOLD_MEAS
s s
OID_RF_ECCM val_ran spec_va

ref ref s # #
rf_eccm NO_DISC_STEPS PLANE_SCAN
asc s s
@ spec va text da
Polariz ref ref
@ @
OID

Warm

Mech sc

OID
s

s OID
s

POLAR.DATA PROB_CODE
s

OID_SCAN
s

o

@
@ Rf eccm
C_el_po #

OID
s

77

scan @ S

inherit Sector spec va
ref

STP_CG_ABILITY ODD
s

@
Directi

s #
text_da OID
ref # s
OID_MECH_SC
SC_FUNCTION s

mech_sc # s
inherit OID_RAD_PAT

text_da # s
ref SEC_TYPE rad_pat
@ s inherit
Track text_da #
ref BWDTH_AZ /

OID #
PER_LIMITS

s
spec va

s s ref
val ran #
ref BWDTHJEL

s
PLANE_TRACK SEC_W_AZ spec_va

s
text_da

s ref
spec_va
ref

FIRST_AZ

ref # s
@ SEC_W_EL spec_va
Mech_tr s ref
spec_va #

OID ref HRST_EL
s

s SM_TRACK spec_va
s ref
mech_tr #

ref SEC_CHAR

OID_TRACK @ s
o Rad pat sector
a # ref
track OID @
inherit s Antenna

MAX_R_AZ OID
s # s

val_ran ANT.GAIN

ref

MAX_R_EL
s
val_ran
ref

78

ANT_TYPE
s
text_da
ref

ANT_FUNCTION
s
text_da
ref

HOR_DIMENSION
s
spec_va
ref

VERT.DIMENSION
s
spec_va
ref

AC_EL_POL
s
c_el_po
ref

ANT_DIREC
s
directi
ref

ANTEN.EMIT
inverse_of
emitter.ant_comp
store
@
Doper_p

OID
s

COH_PCESS_INT
s

spec_va
ref

text da
ref

NUM_PULSES_CPI SIG_PROCESSOR
s s
spec va
ref

sig_pce
ref

@
Sig pee

AD_SECTION
s

ODD a d con
s ref

@
Emitter

DOPPLER_CALC OID
s s
doper p
ref
@
A d con

UNIQUEJD
s

OID elnot
s ref

ERF_ECCM

s
AD_SAMP_PERIOD rf eccm
s ref
spec_va
ref

REC_COMP

set_of
CONV_TRIG_METHO receive_emitter
s store
text da #
ref ANT.COMP
@ set_of
Receive antenna_emitter
store
OID #
s ECON.PWR

set_of

const_p_emitter
store

RECEIVER_TYPE #
s EN_CON_PWR

79

set_of #
n_con_p_emitter OID_ANTENNA
store s
antenna
EDIS_AGILITY
set_of
disc_ag_emitter

asc

OID_EMITTER
s

store emitter
asc
WEAP_SYSTEM
s
text_da
ref

@
Const p emitter

OID
s

EMIT_FUNCTION
s
text_da

OID_CONST_P

ref

EMIT_PTF_GEN

s
const_p
asc

s OID_EMITTER
text_da
ref
@
Receive_emitter

s
emitter
asc
@
N con p emitter

OID
s

OID
s

OID_RECEIVE

OID_N_CON_P
s

s n_con_p
receive
asc

OID_EMITTER

asc

OKLEMITTER
s
emitter

s asc
emitter @
asc
@
Antenna_emitter

OID
s

Disc_ag_emitter

OID
s

OID_DISC_AG
s
disc_ag
asc

OID_EMITTER
s
emitter
asc
$

80

APPENDIX C. THE EWIR TEMPLATE FILE

EWIROODB
39
4
Elnot
TEMPs
OIDs
ELINT_NOTATION s
EMIT_SYSTEM s
4
Data_ds
TEMPs
OIDs
CTPJB_AGENCY s
LAST_UPDATE s
3
Comment
TEMPs
OIDs
COMT_DATA s
5
Num_dat
TEMPs
OIDs
UNITS s
NUM_COM s
NUM_DSP s
4
Spec_va
TEMPs
OIDs
OID_NUM_DAT s
VALUE s
5
Val_ran
TEMPs
OIDs
OID_NUM_DAT s
LWR_VALUE s
UPR_VALUE s
5
Trans_p
TEMPs
OIDs
TX LS TX s

81

PK_PW_RAD s
PK_PW_TXMITTER s
4
Const_p
TEMPs
OIDs
OID_TRANS_P s
TTCLSWITCH s
4
N_con_p
TEMPs
OIDs
OID_TRANS_P s
MAX_CHANGE s
4
Signal
TEMPs
OIDs
SCON.PWR s
SN_CON_PWR s
5
Text_da
TEMPs
OIDs
TEXT_DPT s
TEXT_COM s
TEXT_DSP s
4
Rf_l_st
TEMPs
OIDs
DB3_S_WIDTH s
TXMITTER_TYPE s
4
Pulsed
TEMPs
OIDs
OID_SIGNAL s
COHERENCE s
4
Rf_n_co
TEMPs
OIDs
OID_PULSED s
DUMMY s
4

82

PuLif
TEMPs
OIDs
OID_RF_N_CO s
AGT_F_CORREL s
6
Disc_ag
TEMPs
OIDs
OID_PUL_RF s
MOD_WAVEFORM s
RF_LIMITS s
NO_DISC_STEPS s
3
Warm
TEMPs
OIDs
PROB_CODE s
3
Rf_eccm
TEMPs
OIDs
OID_WARM s
4
Disc_ag_rf_eccm
TEMPs
OIDs
OID_DISC_AG s
OID_RF_ECCM s
3
Polariz
TEMPs
OIDs
POLAR_DATA s
5
C_el_po
TEMPs
OIDs
OID_POLARIZ s
SENSE s
AX_RATIO s
5
Scan
TEMPs
OIDs
SMP_AVG TIME s

83

THRESHOLD_MEAS s
PLANE_SCAN s
5
Mech_sc
TEMPs
OIDs
OID_SCAN s
STP_CG_ABILITY s
SC_FUNCTION s
3
Track
TEMPs
OIDs
PLANE_TRACK s
5
Mech_tr
TEMPs
OIDs
OID_TRACK s
MAX_R_AZ s
MAX_R_EL s
8
Sector
TEMPs
OIDs
OID_MECH_SC s
SEC_TYPE s
PER_LIMITS s
SEC_W_AZ s
SEC_W_EL s
SM_TRACK s
3
Rad_pat
TEMPs
OIDs
ANT_GAIN s
8
Directi
TEMPs
OIDs
OID_RAD_PAT s
BWDTH_AZ s
BWDTH_EL s
FIRST_AZ s
FIRST_EL s
SEC CHARs

84

8
Antenna
TEMPs
OIDs
ANTTYPE s
ANT_FUNCTION s
HOR_DIMENSION s
VERT_DIMENSION s
AC_EL_POL s
ANT_DIREC s
4
Doper_p
TEMPs
OIDs
COH_PCESS_INT s
NUM_PULSES_CPI s
3
Sig_pce
TEMPs
OIDs
DOPPLER_CALC s
4
A_d_con
TEMPs
OIDs
AD_SAMP_PERIOD s
CONV_TRIG_METHO s
5
Receive
TEMPs
OIDs
RECEIVER_TYPE s
SIG_PROCESSOR s
AD_SECTION s
7
Emitter
TEMPs
OIDs
UNIQUEJD s
ERF_ECCM s
WEAP_SYSTEM s
EMIT_FUNCTION s
EMIT_PTF_GEN s
4
Receive_emitter
TEMPs

85

OIDs
OID_RECEIVE s
OID_EMITTER s
4
Antenna_emitter
TEMPs
OIDs
OID_ANTENNA s
OID_EMITTER s
4
Const_p_emitter
TEMPs
OIDs
OID_CONST_P s
OID_EMITTER s
4
N_con_p_emitter
TEMPs
OIDs
OID_N_CON_P s
OID_EMITTER s
4
Disc_ag_emitter
TEMPs
OIDs
OID_DISC_AG s
OID EMITTER s

86

LIST OF REFERENCES

[1] Coyne, K., The Design and Analysis of an Object-Oriented Database of Electronic
Warfare Data, Master's Thesis, Naval Postgraduate School, Monterey, California,
March 1996 (unpublished).

[2] Badgett, B., The Design and Specification of an Object-Oriented Data Definition
Language (O-ODDL), Master's Thesis, Naval Postgraduate School, Monterey, Cal-
ifornia, September 1995.

[3] Stevens, M., The Design and Specification of an Object-Oriented Data Manipula-
tion Language (O-ODML), Master's Thesis, Naval Postgraduate School, Monterey,
California, September 1995.

[4] Hsiao, David K., "Interoperable and Multidatabase Solutions for Heterogeneous
Databases and Transactions", a speech delivered at ACM CSC '95, Nashville,
Tennessee, March 1995.

[5] Ramirez, L. and Tan, R., M., The Design and Implementation of a Compiler for the
Object-Oriented Data Definition Language (O-ODDL Compiler), Master's Thesis,
Naval Postgraduate School, Monterey, California, September 1995.

[6] Barbosa, C. and Kutlusan, A., The Design and Implementation of a Compiler for the
Object-Oriented Data Manipulation Language (O-ODML Compiler), Master's
Thesis, Naval Postgraduate School, Monterey, California, September 1995.

[7] Senocak, E., The Design and Implementation of a Real-Time Monitor for the Execu-
tion of Compiled Object-Oriented Transactions (O-ODDL and O-ODML Monitor),
Master's Thesis, Naval Postgraduate School, Monterey, California, September
1995.

[8] Kellett, D, and Kwon, T., The Instrumentation of a Kernel DBMS for the support of
a Database in the O-ODDL Specification, Master's Thesis, Naval Postgraduate
School, Monterey, California, September 1995.

87

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
8725 John J. Kingman Rd., S&E
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Code 13
Naval Postgraduate School
Monterey, CA 93943-5101

3. Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4. Dr David K. Hsiao, Code CS/HS.
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

5. Dr C. Thomas Wu, Code CS/KA.
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

6. LCDR Thomas D. McKenna ..
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

7. LtCol JJ. Lee
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

8. Ms Doris Mleczko, Code p22305
Weapons Division
Naval Air Warfare Center
Pt. Mugu, CA 93042

89

9. Ms Sharon Cain
MAIC/SCDD
4115HebbleCreekRd
Wright Patterson AFB, OH 45433-5622

90

