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AFIT/GA/ENY/95D-03 

Abstract 

This study investigated the ability to control the chaotic reentry of a Delta Clipper- 

like vehicle by setting the values of the initial and final principal dynamical directions as 

well as the Lyapunov exponents. A model of the original controlled reentry vehicle was 

created through the use of the equations of motion in conjunction with an atmospheric 

model. A modified linear quadratic regulator allowed the set up of a boundary value 

problem which specified the Lyapunov exponents and determined the gain matrix as a 

function of time. The gain matrix can eventually be used in the control system of the 

vehicle. 

IX 



FULL LYAPUNOV EXPONENT PLACEMENT 

IN REENTRY TRAJECTORIES 

I. INTRODUCTION 

1.1 Overview   The goal of this paper is to apply the algorithm developed by Wiesel [13] 

for specifying Lyapunov exponents, as well as initial and final principal dynamical 

directions in a controlled chaotic system. The algorithm makes use of a modified linear 

quadratic regulator to set up a boundary value problem. When solved, this yields the 

specified Lyapunov exponents (which describe the stability of the system), the initial and 

final dynamical directions and the gain matrix over a specified period of time. The gain 

matrix can then be used in the control system of the reentry vehicle. The real world system 

used to apply this methodology is a Delta Clipper-like launch vehicle. In the second 

chapter of this paper, we discuss the development of the dynamics model of the vehicle 

reentry trajectory. The third chapter develops the control algorithm. We then detail the 

computer code used to implement the model and control algorithm in Chapter 4. Chapter 

5 evaluates the results obtained when we attempt to stabilize the chaotic reentry trajectory 

of the vehicle model. Finally, Chapter 6 contains conclusions drawn from the results of 

this research and recommendations for further study. 

1.2 Vehicle Background    The Delta Clipper Experimental Launch Vehicle (DCX) was 

a Single Stage To Orbit (SSTO), Vertical Take-off, Vertical Landing (VTVL) vehicle 



developed by the McDonnell Douglas Corporation under the guidance of the Air Force's 

Ballistic Missile Defense Organization (BMDO). This was the first in a series of planned 

advanced technology demonstration programs whose eventual goal was to develop 

operational SSTO systems. It was hoped that, when fully developed, these systems would 

significantly lower the cost per pound to orbit of the U.S. space fleet. The BMDO 

designed, fabricated, and flight tested the Delta Clipper vehicle in less than 2 years for 

under $70 million. Since then, the BMDO has been directed to deal only with ground- 

based missile defense, effectively halting their research in the area of SSTO technology 

upon completion of the DCX test program. Currently, the SSTO program is under the 

control of NASA, which continues to develop two separate SSTO systems, the X-33 and 

the     X-34. Of the two vehicles, the X-33 is more likely to resemble the Delta Clipper in 

operation and appearance. 

A 15 month NASA Concept Definition and Design Phase, initiated in April 1995, 

solicited industry teams to compete for the contract to build the X-33. There are three 

contractor teams currently involved in this phase. Since the McDonnell Douglas design is 

the only one following the VTVL philosophy, we will be using a design similar to theirs 

for this project. The final specifications of this version of the X-33 have yet to be 

determined, so we will use variations on one of the several proposed designs, seen in 

Figure 1-1, as a model for this research. 

The main goal of the Delta Clipper program was to create aircraft-like operations 

within the space community. The current X-33 vehicle design uses liquid oxygen and 

hydrogen for its main engines, and gaseous oxygen and hydrogen for its reaction control 



engines. The on-board adaptive guidance will allow the vehicle to handle winds during 

both launch and landing. During the ascent to orbit, the 8 main engines provide axial 

acceleration and lateral control. Upon reentry, the aerodynamic controls are used to affect 

the orientation of the vehicle The pre-landing rotation maneuver covers the angle of 

attack range of 10° to 180°. The control of this rotation is handled by gimballing the main 

engines. 

Vertical Height: 127 ft 
Base Width 18 ft 
Empty Weight: 104,1001b 
3 main engines 
5 Maneuevering Engines 

/ 

i 

/ \ 

} 
^OACA □ era 

18 ft 

Figure 1-1 X-33 Proposed Design Alternative 



Figure 1-2 illustrates a typical launch as well as a rotation maneuver. In standard 

operations, the rotation maneuver occurs at the end of the trajectories discussed in this 

study. 

Reentry/Landing 

^> 
Rotation Maneuver 

Launch to Orbit 

Pitchover 

Figure 1-2 Typical Launch and Landing Rotation Maneuver 

1.3 Control Background Since the late 1880's when Floquet developed the first solutions 

for time periodic linear systems, there has been extensive work done in the field, especially 

in the area of celestial mechanics with the restricted three body problem. Most of this 

work has concentrated on determining the stability of a given orbit rather than controlling 

said orbit. 

Literature on control theory, while plentiful, tends to focus on the linear constant- 

coefficient case. Although many systems can be linearized, few systems can be specified 



independent of time, which restricts the use of control. Breakwell et al. [2] dealt with the 

control of unstable periodic orbits through use of the Linear Quadratic Regulator. In their 

work, Wiesel and Calico [12] designed a method for single pole placement in periodic 

systems. Some years later, Wiesel [14] developed a method for dictating the value for a 

single pole in a general time-dependent linear system. Recently, Wiesel has extended the 

pole placement algorithm to allow full Lyapunov exponent determination in a general 

time-dependent linear system. This method also allows specification of the principal 

dynamical directions, and will be the main focus of this study. 

1.4 Principal Accomplishments The principal accomplishments of this research are: 

- Development of a 6 state trajectory design algorithm for a Delta Clipper-like 
reentry vehicle. 

- Successful application of Wiesel's full pole placement algorithm for several 
example reentry trajectories. 

- Discovery of algorithm difficulties in controlling extended trajectory arcs. 

- Detection of problems in algorithm calculation of a finite gain matrix. 



II. TRAJECTORY MODEL DESIGN 

2.1 Assumptions    In order to model the reentry trajectory accurately, several general 

assumptions must apply. They are as follows. 

1. The vehicle specifications will be those listed in Section 1.2. 

2. The control variables will be roll and angle of attack. 

3. The aerodynamic model, from which the coefficients of drag and lift, CD and 
CL. are determined, is accurate. 

4. The atmospheric model described in Section 2.4 adequately describes the 
atmosphere through which the reentry vehicle will travel. 

5. The 6 dimensional state vector, described in the next section, is sufficient to 
model the dynamics of the reentry trajectory. 

2.2 Equations of Motion    The dynamics model we use for the reentry of a vehicle into 

the atmosphere is based on a six dimensional state space. Vinh's [11:19-27] formulation 

of the equations of motion is used in the following development. We start with the three 

parameters which define the motion of the vehicle with respect to the center of the earth: 

position vector, f, velocity vector, v, and mass, m. Since the reentry vehicle travels in 

the earth centered inertial frame, the position vector of the vehicle, r, is defined by its 

magnitude, r, the longitude, 6, and the latitude, ((),. We also define y as the flight path 

angle or the angle between the local horizontal plane and the velocity vector, v, and \\J as 

the heading or the angle between the local parallel of latitude and the projection of the 

velocity vector, v, on the horizontal plane. We now have the six components of the state 

space as follows. 



r - magnitude of the radius vector 
9 - longitude 
§ - latitude 
v- speed 
y - flight path angle 
\\i - heading 

At this point, we must determine the equations of motion for the state space 

vector. At a given point in time the vehicle is subject to the following force: 

F = f + Ä + mg. 

f is defined as the force due to thrust, while A is the aerodynamic force, the quantity 

mg is the force due to gravity. Since we are assuming an unpowered reentry, T = 0 

resulting in the equation, 

F = Ä + mg. 

Since the vehicle will be moving about within the inertial earth centered frame, we want to 

define a rotating frame such that the x axis is aligned with the position vector, the y axis is 

in the equatorial frame with positive values toward the direction of motion, and the z axis 

completes the right handed system, as seen in Figure 2-1. We can therefore write the 

position and velocity vectors as follows: 

f = ri (2-0) 

v = (vSiny)i + (vCosyCosy)j + (vCosySin\)/)k . (2-1) 



z 
z 

/v /         Y 

\ !       x 

Figure 2-1. - Reference Frames 

We know that in the rotating system the following definition of velocity is valid, 

-    df    -    _ 
v = — = co x r, 

dt 

with the value of w being defined as : 

co = (Sin<[> —) l - (—) j + (Cos(|> — )k. 
dt dt dt 

Since we know that 

dr     .dr.r    ,di. 
— = (—)i +(—)r, dt    V     vdt' 

(2-2) 

where 

di     -    r    .„    ,d9-    ,d(j> - 
— = © x i = (Coscp—)j + (-J)k, 
dt dt dt 

we can equate equations 2-1 and 2-2 to get the following three equations of motion: 



— = vSiny 
dt 

d9 _ vCosyCosy 

dt rCos(() 

d(|) _ vCosySin\|/ 

dt~~ r ' 

Now if we take the derivative of equation 2-0 and perform a similar procedure, we can 

come up with the following equations of motion for the last three states: 

dv       D      _. 
— = gSiny 
dt        m 

dy = LCosa_gCosy + vCosY 

dt        vm v        r 

— = CosyCosvj/Tantj), 
dt     vmCosy    r 

with D, L, and a being the values of drag, lift and roll respectively. Roll and angle of 

attack, a, are the two control variables which we will be able to manipulate in this 

problem. Angle of attack is defined as the angle between the vi component of the velocity 

vector and the bi axis of the vehicle as defined in Appendix A. Roll is defined as the angle 

between the local vertical plane ( containing the radius vector, f, and the velocity vector, 

V) and the aerodynamic plane (containing the aerodynamic force, A, and V). Drag and 

lift will be functions of velocity and cross sectional area of the vehicle, angle of attack and 

density of the atmosphere as follows: 



D = 
pSCD(a)V2 

L 
pSCL(a)V2 

The angle of attack can be used to determine the coefficients of drag and lift, Cd and CL. 

The method of calculating the coefficients of lift and drag is contained in the next section. 

2.3 Coefficients of Lift and Drag    In order to determine the coefficients of lift and drag, 

we must first determine the shape of the reentry vehicle. Using the vehicle shown in 

Figure 1-1, we can extrapolate a model for the vehicle which is represented by a cone with 

an 8° cone half angle, %, and a base diameter of 12.19 meters (see Figure A-l). Appendix 

A contains the derivation of the following equations which allow us to determine CD and 

CL based upon the angle of attack of the vehicle. 

Tan(x)^ 

CDA = L2{ 

2[Sin(x)Cos(a) + Cos(C)Cos(x)Sin(a)]2 

x  [Sin(x)Cos(a) + Cos(x)Cos(QSin(a)] 

Cos(x) 
Mc 

CLA = L2{ 

2[Sin(x)Cos(a) + Cos(QCos(x)Sin(a)] 
2 Tan(x) 

Cos(x) 

where C, = 

x  (Sin(x)Sin(a) - Cos(x)Cos(C)Cos(a)] 

K when     a < x I 
Cos'[-Tan(x)Ctn(a)]     when     a>xj 

dC 

10 



These equations allow us to calculate a CD and a CL for any angle of attack if we 

are given a cone half angle, C,. For the 8 degree cone half angle of our vehicle, this 

converts to the graph of CD and CL versus angle of attack in Figure 2-2. 

10 20 30 40 50 60 
Angle of Attack (degrees) 

70 80 90 

Figure 2-2 CL and CD vs Angle of Attack 

2.4 Atmospheric model    Once the coefficients of lift and drag have been determined, it is 

necessary to find the density of the atmosphere at the altitude of the reentry vehicle. We 

use the method developed by Regan [10:21-45] which utilizes a linear model of the 

atmosphere, divided into 21 discrete sections from 0 to 700 km. The model assumes 

11 



several characteristics of the atmosphere including thermodynamic fluid behavior and 

equilibrium under both pressure and gravitational forces. These two characteristics result 

in the following equations: 

dP 

where 

dZ 
-Pg 

PV=R* T. 

g = acceleration due to gravity 
P = pressure 
R = gas constant for air 
p = density of air 
T = temperature 
V = volume 

These equations lead to an atmosphere with several break points indicating 

changes in the slope of density curves. Table 2-1 gives the base parameters and the lapse 

rate which defines the changes in the respective regions.   To determine the actual density 

at an altitude we use the following equations: 

If Lapse Rate = 0 

P = Pi exp 

If Lapse Rate *0 

go(Z-Zi)' 

RT Mj 

i-f(z-z.) 

p = pi 

fi   \ 

v iMi. 
(Z-Zj) + 1 

80 

RLZi,< 

RLZi    .   ,   TM 

So 
1+b -^--Z, 

expi g0b (Z-Zi) 

where i indicates the value at the bottom of the respective region listed in Table 2-1. 

12 



This model represents a standard atmosphere. It does not take into account any daily 

variations or changes due to unpredicted solar activity. It also ignores the effects of 

atmospheric winds on the pressure in a given area. 

Layer Index Geometric 
Altitude (km) 

Molecular 
Temperature (K) 

Lapse Rate 
K/km 

0 0.0 288.15 -6.5 

1 11.0102 216.65 0.0 

2 20.0631 216.65 +1.0 

3 32.1619 228.65 +2.8 

4 47.3501 270.65 0.0 

5 51.4125 270.65 -2.8 

6 71.8020 214.65 -2.0 

7 86.0 186.10 +1.7 

8 100.0 210.65 +5.0 

9 110.0 260.65 + 10.0 

10 120.0 360.65 +20.0 

11 150.0 960.65 +15.0 

12 160.0 1110.65 +10.0 
13 170.0 1210.65 +7.0 
14 190.0 1350.65 +5.0 
15 230.0 1550.65 +4.0 
16 300.0 1830.65 +3.3 

17 400.0 2160.65 +2.6 
18 500.0 2420.65 + 1.7 
19 600.0 2590.65 +1.1 
20 700.0 2700.65 

TABLE 2-1    21 Layer Atmosphere 

2.5 State Space Version of the Equations of Motion     The equations of motion for a 

nonlinear time-dependent system are usually written in the following form: 

X=f(X,U,t). 

13 



X is the vector of state variables, U is the vector of control variables, and t is time. Since 

we require a linear system for this particular control algorithm, this system can be 

rewritten as a displacement off a given trajectory X0(t) and nominal control U0(t). 

[X(t)-X0(f)] = fi|]      [X(t)-X0(t)] + f^l      [U(t)-U0(t)] 

For ease of notation, we define the following values. 

mjm        B(„=(f) 

x = X(t)-X0(t) u = U(t)-U0(t) 

The component equations for the A and B matrices are listed in Appendices C and D 

respectively. The last two equations define x as the first order deviation from the nominal 

trajectory, and u as the first order deviation from the control theory. In order to "control" 

this system, we wish to choose u(t) such that X(t) is linearly stable. 

In order to efficiently evaluate all possible trajectories, we define a matrix, O, 

called the state transition matrix which allows us to view trajectories near a nominal 

trajectory. Further explanation of $ and its use is described in Appendix B. 

In order to update the initial <J> matrix, we must determine an equation of motion 

for Ö, typically called the equation of variation. Experience and the definition of the O 

matrix tell us that this equation is Ö = A® . A more extensive development of this 

equation can be seen in Appendix B. The A matrix is the same one defined above. 

14 



2.6 Trajectory Specifications    With the equations of motion determined, we are able to 

propagate the vehicle through its trajectory from any initial condition. In order to 

accomplish the entire integration, we must first design a trajectory. Basically, this involves 

setting the initial conditions and the control law based on the probable reentry point and 

the characteristics of the vehicle. Since in this example we are using a DCX-like launch 

vehicle, we assume that we will be able to control both angle of attack and roll using the 

control system of the reentry vehicle. This allows us to specify these two control variables 

at any given time. The control law we will be using is very simple; the law checks to see if 

the vehicle is at a pull-up point. This is the point in the trajectory where the aerodynamic 

forces cause enough lift on the vehicle to cause it to increase in altitude. If it is, from that 

point on the angle of attack is adjusted so that it produces just enough lift to keep the 

vehicle in level flight. The roll is maintained at its initial value. We look at five trajectories 

in order to fully validate the flexibility of the control algorithm. The first trajectory is a 

ballistic trajectory with the vehicle reentering with both control variables, roll and angle of 

attack, set equal to zero. 

The second trajectory has roll set equal to zero for the entire flight, while the pitch 

is maintained at the initial value until the vehicle reaches the point at which it begins to pull 

up. At this point the angle of attack is adjusted so that the vehicle maintains a level flight 

for as long as possible. The initial angle of attack will be selected to maximize the flight 

time. This trajectory is designed to give us the longest possible time at a higher altitude, 

thereby avoiding the aerodynamic forces the vehicle is subject to at lower altitudes. Since 

the only way the vehicle can maintain level altitude is by generating lift, it experiences 

15 



some aerodynamic forces. However, staying higher until its velocity has decreased reduces 

the overall negative effects of reentry such as heating and deceleration. 

The third trajectory is identical to the second trajectory, except the roll is set a 

specific non-zero value for the entire reentry. This maintains the benefit of less 

aerodynamic forces while allowing the vehicle to adjust for any cross range error which 

might be present. The fourth trajectory has zero initial angle of attack and 0.5 radian 

initial roll. This allows us to determine how the algorithm handles roll with no angle of 

attack. The final trajectory has no initial roll and a 1.5 radian initial angle of attack. This 

allows us to evaluate how the algorithm will handle large angles of attack. 

With the trajectory designed, we will iterate the state vector and the O matrix 

through the entire flight. The trajectory is terminated when the radius drops below the 

radius of the earth.   Upon termination of the trajectory, the final d> matrix is used to 

determine the stability of the trajectory (see next section). All these trajectories are 

simplistic, in that they do not contain any post-reentry maneuvering independent of the 

control law we have established for angle of attack. This simplicity is due to the fact that 

the trajectories are being used only to observe the control algorithm discussed in the next 

section and therefore represent certain extremes of the possible trajectories. 

16 



III. Control Algorithm 

3.1 Introduction    Control theory often deals with the control of constant coefficient 

linear systems. Some extensive work has also been done with time periodic systems. 

However, Wiesel [14] has recently developed a modal decomposition for the general time- 

dependent system and formulated a method for moving a single pole to any desired 

location. A later Wiesel paper [13] details a method for placing all the control system's 

Lyapunov exponents and dynamical directions. The general features of this control 

method are detailed below. 

3.2 Lyapunov Exponents    The stability of a general system is determined by its 

Lyapunov exponents which are defined as follows: 

Li=^logl*('.ffJ, ,3-0) 

and are maximized over all initial displacements, e;(t0). The e;(to) vectors represent the 

maximums in the growth rate of the norm of the final displacement vector |x(tf )| with 

respect to the initial displacement vector x(t0). We would usually include a limit as tf goes 

to infinity in this definition of a Lyapunov exponent, but since we are dealing with a 

control algorithm, we need to restrict ourselves to finite times. In order to be able to 

control a system, we must be able to predict its future behavior in order to be able to 

affect its eventual outcome. In a chaotic trajectory we are only able to predict the future 

for finite periods of time. 

17 



We must constrain maximization described earlier in order to avoid a large initial 

displacement resulting in a final displacement too large to handle. To accomplish this, we 

simply assume the magnitude of the principal dynamical direction vectors, u and v, to be 

unity, suchthat: 

h(to)| = H = i = K(tf)| = |u|. 

3.3 Algorithm Development    In their work, Bryson and Ho [3] develop the concept of a 

Linear Quadratic Regulator (LQR) used below. We start with the following formulation 

of the system developed from the above equations: 

x = A(t)x + B(t)u. (3-1) 

We then create a performance index which we will attempt to minimize. In normal 

LQR's, the matrices Sf, C, and D are positive definite and discourage deviations from the 

nominal trajectory final conditions, deviations from the nominal trajectory and the use of 

control, respectively. We are modifying the LQR so that we are actually specifying the 

Lyapunov exponents of the system, therefore we are no longer able to ensure that these 

matrices, especially Sf, will be positive definite. 

tf 

J = -xf
TSfxf+-j(xTCx + uTDu)dt (3-2) 

2 2t„ 

By manipulating equation 3-1, we are able to incorporate Lagrange multipliers creating 

the following equation: 

1 1 tf 

J' = -xf
TSfxf+-J(xTCx + uTDu + 2A,T[Ax + Bu-x])dt. 

18 



If we integrate thex by parts we get 

J' = -xf
TSfxf-^Tx|;;+-j(xTCx + uTDu + 2^T[Ax + Bu] + 2^Tx)dt. 

Since we are trying to minimize J', we must zero the first variation of J', 5J' = 0, 

which, along with equation 3-1, results in the following equations: 

x = A(t)x + B(t)u (3-3) 

Ä = -ATA-CTx (3-4) 

u = -D"'BTX (3-5) 

A,f=Sf
Txf. (3-6) 

For this particular problem, we ignore the C matrix. Rather than simply discouraging the 

deviation from the nominal trajectory, we will actually specify the stable Lyapunov 

exponents for the closed loop system. This alters equation 3-4 into the equation 

X = -ATl. (3-7) 

Combining equations 3-3 and 3-5 leads to another formulation of the derivative of the 

state vector: 

x^Ax-BD-'B1^. (3-8) 

We now want to solve the above equations as a boundary value problem. In most 

cases, we have initial conditions x(t0) and the freedom to choose one more set of 

boundary values. The logical choice is equation 3-6, which is then used in its general 

form, A, = Sx, along with equation 3-7 to yield 

Sx + Sx = -ATSx, 

which when combined with equation 3-8 results in the next equation, 
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S = SBD 'BTS-ATS-SA. 

This equation is called the matrix Ricatti Differential equation and can be propagated 

independently of the closed loop linear system and the Lagrange multiplier equations. 

Since we know the final value, Sf, we are able to use the Ricatti equation to sweep back 

through the trajectory and determine S0. This in turn yields X(t0) from equation 3-6 and 

the initial conditions. Now equations 3-7 and, subsequently, 3-3 can be integrated 

forward through the designated period of time. This algorithm is called the dual sweep 

method. It also allows us to rewrite equation 3-4 in the following form: 

x = (A-BD"'BTS)x 

Using equation 3-5, we define the following value as the gain matrix, 

G(t) = -D"'BTS, which allows us to write equation 3-3 in this form: 

x = (A + BG)x. 

If we are able to determine the values of the G matrix with respect to time, these values 

can be input into the reentry vehicle's control system allowing the vehicle to actually fly 

the specified reentry trajectory. 

Previously, we assumed that the final value of S was known. Instead of simply 

defining how much we want the final conditions to deviate from the nominal final 

conditions, we would rather establish stability conditions on the dynamics of the system. 

One measure of the stability of a given path of the trajectory is its Lyapunov exponents. It 

is a fairly simple exercise to determine the open loop Lyapunov exponents. Since we 

know the open loop system follows the restriction, 

<t>   = AO , 

20 



where Ox (t0) = I, and I is the identity matrix. By decomposing the Ox matrix at t=tf, 

we are left with singular vectors u and v and diagonal matrix W of the form 

(Dx(tf) = uWvT. 

The vector v is an orthonormal vector that gives the directions that the initial 

conditions of the given trajectory differ from the initial conditions of the reference 

trajectory in state space on a unit sphere at time t=t0 • This matrix propagates through the 

trajectory in the directions on the ellipsoid defined by the orthonormal u matrix at time 

t=tf. The values of the components in the diagonal W matrix are the axis lengths of the 

ellipsoid at t=tf. The Lyapunov exponents are then defined as a variation of equation 3-0 

or 

—log(wi). 
tf -t0 

The above equations are valid for both the open and closed loop cases. Since we 

want to be able to specify what the closed loop Lyapunov exponents will be, we will 

simply set the closed loop principal dynamical directions equal to the open loop values 

such that, Uo=Uc and v0=vc. We know the open loop Lyapunov exponents, L;.0, and we 

will specify the closed loop Lypunov exponents, Lj,c. Using equations 3-7 and 3-8 and 

taking the partial derivatives with respect to initial conditions, x(t0), we get the following 

result: 

A<j>     -AO^-BC^O, (3-9) 
dt   x'c 
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Aa>. =-A
T

<D,, (3-io) 
dt  x 

where Oxc = ck(t)/3x(t0) 

and      ®}=dX(t)/dx(t0) 

These equations then form a linear boundary value problem. To solve the problem for the 

values of ®x(t0), we must integrate equations once to get the open loop solution and then 

(order)2 or 36 times to get the numerical partial derivatives, dOx c (tf )/5$x (t0). Once we 

have these values, one iteration of the Newton Rhapson method, 

"^x.c(tf)n_1 

<Mt<>) 
9*x(to) 

(d>xC(tf)-Ox0(tf)). 

will yield the value for Ox(t0) for the given value of Ox c (tf). 

Previously we implied that by specifying the closed loop Lyapunov exponents, we 

were in effect eliminating the need to define an Sf matrix. Now we can prove this 

assumption is valid. Since we are able to calculate the value of O^ (t0), using equation 

3-6 and the initial conditions give us the values of S0, we can then integrate forward using 

the Ricatti equation to get Sf. So, Sf is implicitly determined by our choice of the 

Lyapunov exponents and the principal dynamical directions. Recall that since we are using 

a modified LQR, there is not guarantee that Sf will be positive definite as it would be in a 

normal LQR. 
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IV. Implementation of the Control Algorithm 

4.1 Introduction    There are basically three programs which are required to implement 

Wiesel's control algorithm. The trajectory design program, DESIGN, the open loop 

calculation program, FIRST, and the boundary value program, BVP. In order to avoid 

problems which arose in trying to decompose matrices and solve linear equations that 

were written in terms of metric units, most units in the code are handled in non- 

dimensional units. These units which we will call Distance Units (DUs) and Time Units 

(TUs) are defined below. 

1DU = 6378.145km 

ITU =806.8118744 sec 

1^ = 7.90536828^1 
TU sec 

The only subroutine which uses metric units is the atmospheric model which is part of the 

dynamics model and will be described below. The flow chart for the three different 

programs can be found in Appendices E, F, and G. The main characteristics of the 

programs and subroutines listed below can be found in Appendix H and the input files 

required by each program can be found in Appendix I. 

4.2 Trajectory Design Program    In order to test the control algorithm, we must first set 

up the computer model of the trajectory dynamics. The trajectory design program, 

DESIGN, accepts the initial conditions of the state vector, control variables, and other 

miscellaneous parameters from an input file. It then calls a routine developed by Dr 

Wiesel, called AERO, which accepts the angle of attack of the vehicle, uses a reference 
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table derived by the method detailed in Appendix A, and outputs the coefficients of drag 

and lift, CD and CL, and derivatives of these values with respect to angle of attack. At this 

point, DESIGN provides the maximum lift angle of attack, causing AERO to output the 

maximum lift CL and Co- 

The code then initializes an integration routine called HAMING. This subroutine 

is an ordinary differential equations integrator using a fourth-order predictor-corrector 

algorithm. The code saves the last four values of the state vector and O matrix and uses 

these to determine the predicted value of the state vector and the O matrix. This 

predicted value is then corrected using the equations of motion and the A matrix to find 

the new value of the state vector and <J> matrix. Since we only provide the trajectory 

design program with one set of initial conditions rather than the four required by the 

Haming subroutine, an algorithm called a Picard iteration is used to find the other three. 

This process is not used for the entire iteration since it is much slower than the Haming 

algorithm. Within the HAMING routine, a subroutine called PHIRHS is implemented. 

PHIRHS calls a dynamics routine and uses the output of this to calculate the equations of 

motion for the state vector and <£ matrix which HAMING in turn uses to propagate the 

orbit. 

The dynamics subroutine that PHIRHS calls is named DYNAM. After defining 

some initial parameters, this subroutine calls the AERO subroutine described earlier and 

determines the CL and CD for the current angle of attack. The routine then checks to see if 

the vehicle is in a pull up maneuver. If it is, DYNAM determines the new CL and CD, if it 

is not, the program checks to see if the vehicle is within an altitude range for which the 
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atmospheric model is valid. If the vehicle is outside the acceptable altitude range (0- 

700km), the code outputs that the model is not valid. If the vehicle is within the 

acceptable range, DYNAM calls the atmospheric model subroutine called ATM. This 

routine first converts the altitude and density at sea level to metric units. It then 

determines which of the 21 layers of the atmosphere the vehicle is in and calculates the 

density, pressure and temperature at the current altitude. These values are converted back 

to non-dimensional units and returned to DYNAM. The code determines the current 

values for the equations of motion for the state vector and the values of the A and B 

matrices. 

Once HAMTNG has been initialized, it is run a pre-selected number of times. After 

each run of HAMING, the program checks to see if the vehicle has reached the point 

where it is starting to pull up (i.e. an increase in altitude). If it has, the CL is adjusted so 

that the vehicle remains in level flight; HAMING is reinitialized; and a flag is initiated to 

ensure that CL will be continuously adjusted for level flight. If a pull up has not occurred 

yet, the iteration continues. 

At this juncture the program checks for whether the vehicle has dropped below a 

minimum height signifying impact. The impact value can be set at any value (ie sea level 

or some point above to represent the point at which a Delta Clipper-like vehicle would 

perform its rotation to vertical maneuver prior to landing). After this check, the necessary 

variables are written to several output files. The trajectory design program creates 

numerous files which can be used to graph different combinations of the state variables. It 

also creates an output file called FIRST.IN which is used in the next program, FIRST. 
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This file contains the number of iterations of HAMING that have been accomplished as 

well as the initial conditions and parameters that were input to DESIGN. Three other files 

that will be used in both FIRST and BVP are created as well. These files, CONTROL, 

CONTROL2.0UT, and CONTROL3.0UT, contain a control history of the trajectory, 

including the time, pitch, roll, CD, and CL values at each iteration of HAMING. 

4.3 Open Loop Value Program    Once the trajectory has been designed, we are able to 

implement the control algorithm. The first program that accomplishes this is appropriately 

called FIRST. This program accepts the output of DESIGN, and iterates through the 

trajectory, updating the state vector and the O matrix. It then uses the program 

SVDCMP, which performs a singular value decomposition of the <D matrix, to get the 

orthonormal dynamical direction vectors, u and v and the W matrix. From the W matrix, 

it calculates the open loop Lyapunov exponents. Since the next program implements the 

boundary value portion of the control algorithm, FIRST outputs all the initial conditions 

and parameters to a file called BVP. IN along with two copies of the open loop Lyapunov 

exponents , the open loop u and the open loop v vectors. Two copies are written to this 

file because the input file for the boundary value program, BVP, requires both the open 

loop values and the required closed loop values. Since the closed loop u and v vectors 

will be set equal to their open loop values for our purposes, it is convenient to simply edit 

the BVP.IN file prior to running BVP so that the second Lyapunov exponents are our 

desired closed loop values. 
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4.3 Boundary Value Problem Program The program BVP needs both the open loop 

Lyapunov exponents and principal directions, as well as the desired closed loop Lyapunov 

exponents and principal directions in order to set up the boundary value problem so, as 

stated above, we now edit BVP.IN to include the desired closed loop values of the 

Lyapunov exponents. Once this is done, BVP accepts the input file BVP.IN and 

constructs a desired closed loop O matrix based on the closed loop u and v vectors and 

the Lyapunov exponents. The program initializes both the <t» matrix and another matrix, 

called the O Lagrangian matrix which is made up of the Lagrangian multipliers. It iterates 

through the trajectory calculating the open loop O and O Lagrangian values. The 

program then iterates through the trajectory (order)2 or 36 times to construct the O 

Lyapunov numerical partials.   This is accomplished by adding a delta value to the initial O 

Lagrangian element and determining the final O element after the trajectory is integrated. 

The value of the final element without perturbation is subtracted from the value with 

perturbation and the difference is divided by the delta value in the following manner. 

PO      O        -O 
*-' ^*^ Pprfnt+ipH I Pcttuibed Unpereturbed 

50x delta 

From these partials, the program calculates the final <f> Lagrangian matrix. This is 

done by solving the following matrix equation of the partials (Basis), the O Lagrangian 

matrix and the error matrix. 

(Basis)(<D?J = E 

Where    E = 0DeiS).rerf - ^ Unperturbed 
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This results in a <$>x at t=t0. The code iterates through the trajectory one final time to 

validate the solution. During this iteration, the gain matrix is written to an output file 

along with the time and the value of the state variables at that point in time. After this run 

through the trajectory, the achieved <X> matrix and the closed loop Lyapunov exponents 

and u and v vectors are output. 
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V. RESULTS 

5.1 Reentry Trajectory Alternatives For our purposes, all the trajectories will start with 

the same initial conditions listed below in Table 5-1. The only values that will be changed 

are the initial control variables, angle of attack and roll. In order to test the control 

algorithm on the extremes of possible trajectories, we must first determine what those 

extremes are. 

Radius 6528.145 km 
Longitude 0.000 rad 
Latitude 0.000 rad 
Velocity 7.807 km/sec2 

Flight path Angle -0.085 rad 
Heading 0.000 rad 
Mass of the Vehicle 45994.740 kg 

Table 5-1 Initial Conditions 

It would make sense that the ballistic trajectory (Case 1), in which initial roll and 

angle of attack are zero, would result in a short trajectory with a high deceleration. From 

Figure 5-1, we can see that the output of the DESIGN program seems to agree with this. 

Since the initial roll and angle of attack of zero produce no lift, the vehicle never gets the 

chance to pull up, so according to our original control law, the angle of attack never 

changes. Therefore, we get a smooth short trajectory as seen in Figure 5-1, an altitude vs 

range plot, and Figure 5-2, an altitude vs time plot. There is a constant roll of zero so we 

see no crossrange component in the trajectory. 
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Fiaure 5-2 Case 1: Altitude vs Time 

From the speed vs time graph in Figure 5-3, we can see that there is practically no 

speed change until about 175 seconds. At this point we get significant reduction in speed 

and the expected large deceleration, shown in Figure 5.4. This is caused by the dominance 

of the aerodynamic forces at this altitude, which result in large amounts of drag on the 

vehicle producing a drop in velocity. To decrease the effect of the atmosphere on the 

vehicle, we would rather keep the vehicle higher for a longer period of time. 

Intuitively, it seems that the best angle of attack to choose, in order to keep the 

vehicle at high altitudes for as long as possible, would be the angle of attack which causes 

the maximum lift. The maximum lift angle of attack, chosen from the data file that 
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Figure 5-4 Case 1: Acceleration vs Time 

produced Figure 2-2, is 0.7893 radians. Figures 5-5 through 5-8 show the results of a 

DESIGN run with the initial angle of attack set to this value and the roll set to zero. 

Comparing these with Figures 5-1 through 5-4, we see that increasing the initial angle of 

attack does in fact decrease the deceleration and therefore the heating and stress on the 

vehicle. While the initial deceleration occurs at approximately the same time in both 

trajectories, it occurs at a higher altitude and is considerably less when the initial angle of 

attack is set at the maximum lift angle of attack. 
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Figure 5-7 Maximum Lift Angle of Attack: Speed vs Time 
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In order to check the validity of our assumption that the maximum lift angle of 

attack will give us the maximum time reentry trajectory, we checked other values near the 

maximum lift angle of attack and discovered that the actual maximum time trajectory was 
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accomplished with an initial angle of attack of 0.325 radians. The results of the DESIGN 

run accomplished with this initial angle of attack value can be seen in Figure 5-9 through 

5-12 (Case 2). We see that at this angle of attack, we get less deceleration and a longer 

trajectory than with the maximum lift angle of attack in terms of both time and range. 
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Figure 5-12 Case 2: Acceleration vs Time 

To understand why the maximum lift angle of attack does not keep the vehicle at 

higher altitudes for longer periods of time than a non-maximum lift angle of attack, we 

must look at the development of the coefficients of lift and drag performed in Appendix A 

as well as the resulting Figure 2-2. From this figure, we can see that at the maximum lift 

angle of attack of approximately 0.7893 radians, the value of CL is at its highest value of 

3.3646, but the value of CD is also very high at 3.3622. Although the vehicle is producing 

much lift at this angle of attack, it is also producing a lot of drag. This means that the 

vehicle is in turn slowing down, which referring back to the equations of lift and drag, 

indicates that the overall magnitudes of lift and drag will be decreasing with the velocity. 

If we take a look at the angle of attack which actually produced the longest flight at higher 
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altitudes, 0.3250 radians, we see that the corresponding values of CL and CD are 1.199 and 

0.6583 respectively. Therefore, even though the CL value is over 50% less, the CD value 

is 500% less. The vehicle is able to maintain a high velocity and therefore a high lift for 

significantly longer periods, resulting in a longer trajectory in terms of time and distance. 

Now that we have the shortest and longest trajectory with respect to angle of 

attack, we will look at cases with different initial conditions. The results of the DESIGN 

run with the angle of attack and roll set to 0.325 and 0.5 respectively is shown in 

Figures 5-13 through 5-16 (Case 3). When compared with Figures 5-9 through 5-12 

where the roll was set to 0 radians, these graphs show a trajectory with the same shape 

and about 20% shorter range and time. When we look at graph 5-17 we see that the extra 

distance missing in downrange is translated into about 3500 km of crossrange. 
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In order to fully test the control algorithm, we want to look at two more extreme 

trajectories. The first one, with DESIGN results shown in Figures 5-18 through 5-21, has 

the angle of attack set at a very high value of 1.5, with the roll again set at zero (Case 4). 
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From these results, we can see that while there is some lift generated at this angle of 

attack, the drag is also very high, therefore, the trajectory, while longer than the ballistic 

trajectory, is significantly shorter than the trajectories with a lower angle of attack. 
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Figure 5-18 Case 4: Altitude vs Range 
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The last trajectory we will examine is one with a roll of 0.5 radians and zero angle of 

attack (Case 5). As we can see from Figures 5-22 through 5-25, this trajectory is almost 

identical to the ballistic trajectory. The only difference can be seen in Figure 5-26, where 

the very slight crossrange can be seen. This crossrange value is equal to about 150 

nanometers, which can be attributed to round off error in the integration. 
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Since, in this case, we have roll with no angle of attack and we are using a cone to 

model our vehicle, we do not expect to get any change in the trajectory by simply varying 

the roll. 
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The summary of all the cases and their basic trajectory characteristics is listed 

below in Table 5-2. As predicted, cases 2 and 3 are the better trajectories, in terms of 

length of flight and deceleration experienced during reentry. Operationally, the large 

downrange values allow for correction in the event of an error in the initial conditions of 

the trajectory. By initially planning on overshooting the launch pad, we are able to correct 

for any errors in our trajectory entry point conditions by simply adjusting the control 

variables in the middle of the reentry. Therefore if no errors are made, we are able to cut 

the trajectory length down to the required value. However, if errors do occur, we can 

simply make use of the planned overshoot to get the vehicle to the landing pad. Cases 1, 4 

and 5 represent the other extreme trajectories which allow us to further test the control 

algorithm. 

Case Initial Angle 
of Attack 

(rad) 

Initial 
Roll 
(rad) 

Time of 
Trajectory 

(sec) 

Downrange 
(km) 

Crossrange 
(km) 

Maximum 
Deceleration 

(km/s2) 

1 0.0000 0.0 261.16 1535 0 0.173 

2 0.3250 0.0 3090.91 13310 0 0.021 

3 0.3250 0.5 2721.15 10777 3664 0.024 

4 1.5000 0.0 596.15 1150 0 0.175 

5 0.0000 0.5 261.54 1533 1.53e-10 0.173 
Table 5-2 Trajectory Characteristics 

5.2 Trajectory Control    Now that the test cases have been set up using DESIGN, we 

can begin to implement the control algorithm by running FIRST. As discussed earlier, this 

program iterates through the given trajectory and determines the open loop Lyapunov 

exponents and principal dynamical directions for that case's initial conditions. Table 5-3 
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contains the open loop Lyapunov exponents from the results of the FIRST runs for each 

case. 

CASE1 CASE 2 CASE 3 CASE 4 CASE 5 

Initial Angle of Attack 0.0 0.325 0.325 1.5 0.0 

Initial Roll 0.0 0.0 0.5 0.0 0.5 

Lyapunov Exponents -26.3763 
-7.7822 

-1.9174 
-0.0394 

-0.0072 
24.1390 

-11.9515 
-10.5145 

-3.6924 
-1.1031 

0.0000 33.4578 25.2178 -0.0159 0.0000 
0.0000 40.7560 32.7295 0.0000 0.0000 
0.0699 41.3092 32.9773 0.0091 0.0098 
13.6055 50.4748 40.6461 4.9930 1.8985 

Table 5-3 Open Loop Lyapunov Exponents 

Looking at the Lyapunov exponents, we can see that all the trajectories are 

unstable, that is, they have unstable, positive, Lyapunov exponents. We can also see that 

they are all chaotic. For our purposes, we will define a chaotic system as one that has 

both positive and negative Lyapunov exponents. The presence of positive exponents 

means that we cannot fully predict where the system will be at some future time. This 

means that we will have problems controlling longer trajectories. 

Due to the negative exponents, we also cannot determine where the system was in 

the past. The reason for the presence of large negative exponents in Case 4 can be seen in 

Figures 5-18 and 5-19. From these graphs we can see that for this trajectory the vehicle 

accomplishes all its downrange flight in roughly the first three minutes of the trajectory. 

For the remaining 6.5 minutes, the vehicle is basically falling out of the sky. This 

convergence of velocity vectors to the vehicle's terminal velocity is what causes the 

presence of the highly negative exponents. All the cases' trajectories have this 
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convergence of velocity vectors, but the differing lengths of the trajectories will dictate 

how much of a problem results from the convergence. 

The problem with large negative open loop Lyapunov exponents can be found in 

the following development. We will start with the adjoint of the open loop <£?. equation as 

follows. 

Using the derivative of the identity matrix I = Ox<J>x 
-i 

£(i) = *,*;'+•,£(»;■) = <>, 

and the equation of variation, <t>x = AOx, we get the following equation. 

Ox(Ö-') = -AI = -A 

by matrix algebra this reduces to 

when combining this with the adjoint equation listed above, we get the following 

significant relationship where C is a constant. 

^ = c(ox;0L)
T 

This means that large negative open loop Ox Lyapunov exponents equate to large 

positive Ox Lyapunov exponents, which result in the <I\ matrix blowing up. Therefore, 

while negative exponents are usually considered favorable, this algorithm cannot handle 

very large negative Lyapunov exponents for long periods of time. 
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Because Cases 2 and 3 have very large positive unstable exponents, we could 

expect to have some trouble controlling them for large lengths of time since the system 

will react proportional to eLt where L is the Lyapunov exponent. We could also predict 

some difficulties with Case 1 since it has both highly negative and positive exponents. 

However, since this is the shortest trajectory, we may avoid significant problems. The 

open loop dynamical direction vectors u and v for each of the cases can be found in 

Appendix J. 

We now want to use the control algorithm to stabilize the trajectories. We will 

make runs with BVP and specify that the closed loop dynamical direction vectors u and v 

will be the same as their open loop values and the closed loop Lyapunov exponents will be 

arbitrarily chosen as follows. 

Desired Closed Loop Lyapunov Exponents 
-0.1000 
-0.2000 
-0.3000 
-0.4000 
-0.5000 
-0.6000 

The closed loop Lyapunov exponents resulting from the BVP runs for the different cases 

are listed in Table 5-4. 

It is obvious from these results that the algorithm performs very well on the first 

and last cases, and very poorly on the other three cases. Cases 1 and 5 actually produce 

Lyapunov exponents that agree with the desired values to the seventh decimal place. 

Therefore we can say that for all intents and purposes, the problem of stabilizing the 
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trajectories in these two cases has been solved. The closed loop dynamical direction 

vectors, u and v, can be found in Appendix K. 

CASE1 CASE 2 CASE 3 CASE 4 CASE 5 

Initial Angle of Attack 0.0 0.325 0.325 1.5 0.0 

Initial Roll 0.0 0.0 0.5 0.0 0.5 

Lyapunov Exponents -0.09999 
-0.20000 
-0.30000 
-0.40000 
-0.49999 
-0.59999 

50.84818 
49.74232 
42.82911 
41.98179 
34.29443 
-0.59297 

41.69156 
39.80656 
33.84590 
31.43286 
25.58373 
-0.00735 

9.02201 
4.23818 
0.00415 
0.00001 
-3.84421 
-7.10920 

-0.10000 
-0.19999 
-0.30000 
-0.39999 
-0.50000 
-0.59999 

Table 5-4 Closed Loop Lyapunov Exponents 

We must, however, look at the cases for which the control algorithm was unable 

to accomplish the desired Lyapunov exponent values and determine the reasons why the 

algorithm was unsuccessful.    If we look closely at Figures 5-18 and 5-19, we can see a 

possible reason for the inability of the algorithm to set the desired exponents in case 4. As 

discussed earlier, in Figure 5-19 we see that the altitude decreases to a value of 

approximately 36 km at a downrange value of about 1150 km at which point the vehicle 

basically drops out of the sky. While this is never a good thing for a launch vehicle to do, 

we can allow this kind of trajectory for now, since we are testing the algorithm. If this 

were an actual trajectory being flown by a launch vehicle, the necessary adjustments could 

be made. While the vehicle reaches this altitude near the end of its trajectory in terms of 

range, Figure 5-18 shows that it only takes about 200 seconds to reach this altitude. This 

means that roughly the last 6.5 minutes of the trajectory is spent in freefall, which for our 

purposes, is not worth trying to control. Therefore, if we cut down the time of the 

trajectory arc that we are trying to control to about 200 seconds, the algorithm should be 
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able to control it. We can see from Case 4 in Table 5-5 that this is true. For the important 

(non-freefall) portion of the trajectory, we are able to determine the closed loop Lyapunov 

exponents and dynamical direction vectors (see Appendix K). 

Now we must focus on Cases 2 and 3. There is one major difference which is 

initially apparent between Cases 2 and 3 and the other three. This difference can be seen 

in Table 5-2 in the total time of the trajectories. Cases 2 and 3 have times from 5 to 10 

times greater than Cases 1, 4, and 5. To understand the reason why these longer 

trajectories may cause problems, we must look back at our development of the boundary 

value problem in Chapter 3. 

In the development of the algorithm in Chapter 3, we see that the dual sweep 

method requires that we sweep the Sf matrix back through time to get the S0 matrix and 

then the X0(t) values. We then sweep forward to get the state and A, values throughout the 

trajectory. Since the trajectories that had problems are the longer ones, it appears that our 

earlier assumption, that the trajectories we were evaluating were short enough to be 

performed in one piece, was invalid. Recall that finite integrations are needed for all 

chaotic trajectories. To determine whether this was our problem, we can simply cut down 

the length of the trajectory that we are attempting to control and see if that allows us to 

control it. In order to accomplish this, we use DESIGN, but limit the maximum time to a 

length of the trajectory we think is controllable. After testing, it becomes apparent that 

the algorithm can handle initial trajectory arcs up to about 1.0 TU or 806 seconds for 

cases 2 and 3. Table 5-5 contains the open and closed loop Lyapunov exponents for cases 

2 and 3 for these shortened trajectory arcs. Recall the results from Case 4 are also 
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included even though we shortened that case's trajectory for a different reason. The 

closed loop dynamical direction vectors for these arc are also in Appendix K. 

We can see that the desired closed loop dynamical direction vectors, u and v, for 

all the cases match to within a couple of significant figures. The only apparent problem is 

the fact that in some cases (ie Case 1 u4 and v4) the entire vector is the negative of the 

specified desired closed loop value. No information is lost here, but the vector is set up in 

a left handed frame instead of a right handed one. This problem can be traced to the 

method in which the O matrix is decomposed in the subroutine SVDCMP. 

CASE 2 CASE 3 Case 4 
0.0-1.0 TU 0.0-1.0 TU 0.0-0.25 TU 

Initial Angle of Attack 0.325 0.325 1.5 

Initial Roll 0.0 0.5 0.0 

Lvapunov Exponents Open Closed Open Closed Open Closed 

-9.7556 -0.1076 -9.9592 -0.1101 -34.134 -0.0984 
-0.5318 -0.2000 -0.5532 -0.2000 -22.803 -0.2000 
-0.0959 -0.3000 -0.1191 -0.3000 0.0002 -0.3000 
0.0880 -0.4000 0.0887 -0.4000 0.0531 -0.4000 
1.5695 -0.5000 1.4576 -0.5000 0.09130 -0.5000 
8.3264 -0.5999 8.6196 -0.5999 21.9392 -0.6000 

Table 5-5 Open and C osed Loof ) LyapunoA f Exponent s for Limit ed Traject ory Arc 

For Cases 2 and 3, we can control the rest of the trajectory in small arcs that the 

program can handle. We must then paste together the short arcs of the trajectories so that 

by controlling the separate pieces, we are in effect controlling the whole reentry trajectory. 

To do this correctly, we must review what the u and v vectors represent. Since we want 

the control to be smooth throughout the entire trajectory, we must set the v vector of the 

second arc equal to the u vector of the first arc and so on throughout the trajectory as 
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seen in Figure 5-27. Up to this point, we have simply set the closed loop dynamical 

direction vectors equal to their open loop values; but since the control algorithm allows us 

to set both the closed loop Lyapunov exponents and dynamical direction vectors, this 

should not pose a problem. 

v and u are actually 6 
6-dimensional unit vectors in state space 

=Vi 

tf=to tf2=to3 »3^4 

%=\ 

% 

Figure 5-27 Piecemeal Trajectory 

After attempting to obtain the remaining portions of the trajectory for cases 2 and 

3, we found that as we get closer to the impact point, we are able to control only 5 of the 

6 Lyapunov exponents. This is most likely due to the same problem encountered in Case 

4. The convergence of the velocity vectors is simply too swift in this region for the 

algorithm to handle. 

For each of these 5 cases, the gain matrix, which will be used in the reentry vehicle 

to implement the control of the trajectory, has been printed to a file at every iteration of 
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For each of these 5 cases, the gain matrix, which will be used in the reentry vehicle 

to implement the control of the trajectory, has been printed to a file at every iteration of 

the trajectory, along with the time and the state vector at that time. To ensure that these 

gains can be implemented in the real world vehicle, we will graph the individual 

components of the gain matrix vs time. A plot of this type for Case 1 can be seen in 

Figure 5-28. 

50 250 300 100 150 200 
time 

Figure 5-28 Case 1: Gain Plot 

There seem to be several points which require very high gain to stabilize them. We 

can see from Figure 5-4 that these seem to occur at the point in the trajectory where the 

vehicle is going through a sizable deceleration due to aerodynamic forces.   It would make 

sense that at this point the vehicle would be hard to control. It appears as though these 
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problem points may go to a gain value of infinity which would signify that although the 

control algorithm was able to set the Lyapunov exponents, it required an unrealistic, 

unachievable amount of control by the mechanical systems of the vehicle to accomplish it. 

Therefore, while the algorithm is able to specify stable Lyapunov exponents, the real 

world system would not be able to accomplish them. 

Figures 5-29 through 5-32 show the gain plots for the other 4 cases. We see that 

these are very similar to the plot for Case 1. Looking at acceleration vs time plots for 

these cases, we can see that most of the problem points seem to appear in the area of 

maximum deceleration in the trajectory. One possible method for eliminating these spikes 

of infinite gain is to choose the stable Lyapunov exponents such that the control algorithm 

is able to accomplish the required trajectory without resorting to infinite gain. Despite 

numerous attempts, we were unable to choose Lyapunov exponents which allowed a finite 

gain at all points. We were, however, able to change the position and number of infinite 

spikes. 

Figures 5-33 through 5-35 are gain plots of the shortened trajectory of Case 2 with 

the desired closed loop Lyapunov exponents changed. Notice in Figure-33, where the 

Lyapunov exponents were all set to zero, there are only three spikes, with one being at the 

very end of the trajectory. All other times have very reasonable gains. Figure 5-34, which 

had Lyapunov exponents of-1, -2, -3, -4, -5, and -6, has the same number of spikes, but 

the two mid-trajectory spikes have moved much closer together. Figure 5-34, where the 

Lyapunov exponents are all set to -100.0, has only two infinite spikes, but the gain values 

towards the end of the trajectory get very large long before they actually go to infinity. 
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The fact that we can alter the number and position of these infinite spikes leads to the 

conclusion that a combination which produces no spikes should exist, even though we 

were unable to discover it. 

400        500 600        700 800        900 
time 

Figure 5-29 Case 2 (0-1.0 TU): Gain Plot 
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time 

Figure 5-30 Case 3 (0-1.0 TU): Gain Plot 

50 100      time       150 
Figure 5-31 Case 4 (0-0.25 TU): Gai 
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Figure 5-34 Case 2 (0-1.0 TU): Gain Plot with Lyapunov exponents = -1, -2, -3, -4, -5, -6 
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Figure 5-35 Case 2 (0-1.0 TU): Gain Plot with Lyapunov exponents = -100.0 
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VI. Conclusions and Recommendations 

6.1 Conclusions. Having looked at five cases and the control algorithm's ability to 

control them, there are several conclusions we can draw. First, we must realize that these 

test cases do not necessarily correspond to any operationally useful trajectories that a 

Delta Clipper-like vehicle would fly. They were chosen because they had characteristics 

which would challenge the bounds at which the algorithm performs.   The initial control 

law modeled in the vehicle was chosen to keep the vehicle at high altitudes for as long as 

possible given the initial conditions. This may or may not be the desired objective of a 

given reentry. Therefore, while only two of the cases were controlled in their entirety, we 

can still claim to have successfully proven the strengths and weaknesses of Wiesel's 

algorithm. 

Cases 1 and 5 were handled completely successfully by the algorithm. Cases 2 

through 4 are longer trajectories which have swift convergence of the velocity vectors in 

the middle of the trajectory as the aerodynamic forces strongly affect the vehicle. While 

this is a shortfall in algorithm performance, the inability of the algorithm to specify all 

stable Lyapunov exponents in these cases is more based on the inherent characteristics of 

the trajectories themselves than the robustness of the control algorithm. From the results 

of the previous section it is clear that the algorithm can handle pole placement for large 

arcs, if not entire trajectories for most reentry situations. Another problem became 

apparent when comparing the desired and achieved closed loop dynamical direction 
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vectors. Certain vectors ended up being the negative of their desired values. While no 

information is lost, this is still something that needs to be addressed. 

Another weakness was discovered in the gain matrices produced by the program. 

For randomly chosen stable exponents, the gain matrix produced by the algorithm had 

several points which approached infinity. This is obviously a problem since no real world 

system would be able to implement such gain. While changing the desired Lyapunov 

exponents affected the number and location of these infinite spikes, we were unable to 

totally eliminate them. The ability to affect the singularities by changing the desired 

Lyapunov exponents leads to the conclusion that choosing the correct exponents would 

allow the gain matrix to be finite. 

Still, despite the weaknesses stated above, the usefulness of this algorithm should 

not be overlooked. The ability to place the poles and dynamical direction vectors of a 

given chaotic time dependent system without modeling it as a constant coefficient system 

is invaluable. Due to the nature of chaotic systems, there may be some limits on the length 

of time a given system can be controlled. This will tend to be a problem for any control 

algorithm dealing with time dependent chaotic systems. Wiesel's method gives us the 

ability to do realistic control for long periods of time. 

6.2 Recommendations    There are several areas which rate further research before 

Wiesel's control algorithm can be termed a complete success. The research in this paper 

concentrated on a Delta-Clipper like vehicle with two control variables and a given control 

law. A more vigorous test of the algorithm would be to vary the vehicle's control law for 
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given initial conditions and evaluate how the algorithm handles the different trajectories. 

Another possible test would be to increase the number of control variables and vary the 

control matrix away from the identity matrix which was used in this research. 

More work should be done in determining the exact reasons for and quantifying 

the boundaries of the inability of the algorithm to handle long arcs of trajectory. While we 

discussed the dual sweep algorithm and the difficulties it poses, the actual limits of the 

Linear Quadratic Regulator as well as possible alternative methods need to be explored in 

depth. 

As stated earlier, the problem with the SVDCMP subroutine, which returned the 

negative of the u and v vectors in a seemingly random pattern, needs to be evaluated 

further. This is a situation which can be worked around in the short term since the 

resulting values are simply the negative of the desired vectors. This may well be a 

problem which can be solved by implementing a different decomposition routine, but the 

matter needs to be examined. 

Finally, the problems with the gain matrix discussed above need to be more 

thoroughly examined. Other possible methods for calculating the gain matrix need to be 

evaluated as do the ranges of acceptable stable exponents. More work needs to be done 

to see if it is possible to choose stable exponents that actually give finite gain at all points. 

If we are eventually able to iterate through exponents and pick ones which do not cause 

infinite spikes, we should be able to discover an algorithm which takes this into account 

when calculating the gain matrix. At the very least, there should be a method of 

determining, at the outset of the problem, which Lyapunov exponents would tend to move 

us closer to a continuously finite gain matrix vs those that would move us away from one. 
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While, overall, Wiesel's algorithm is both very powerful and very useful, addressing these 

issues could lead to a more full proof method which has the potential to gain acceptance 

throughout the control community. 
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APPENDIX A: Lift and Drag on a Cone 

In order to determine the coefficients of lift and drag it will be necessary to model 

the vehicle. For our purposes, we will use a cone with and 8° half angle. While this is 

obviously not a perfect representation, Figure A-l shows that it should be adequate for 

our purposes. 

r- 

18ft 

Vehicle Specifications 

18ft 

Vehicle Model 

Figure A-l Vehicle Aerodynamic Model 

Now that we have determined a model, we must set up the coordinate frames we 

are going to use in our development. Figure A-2 shows the two main coordinate frames 

and some of the important variables we will use in our discussion. The velocity dependent 

coordinate frame will consist of a vi axis in the direction of the vehicle's velocity vector, a 
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Figure A-2 Coordinate Frames and Important Variables 

v2 axis in line with the radius vector from the center of the earth and a v3 axis completing 

the right-handed system. The body centered coordinate frame will consist of a bi axis 

along the vertical center line of the vehicle, with the b2 and b3 axes fixed to the base, b3 in 

the direction of the v3 vector. We can now define some important values. The angle 

between the vi vector and the bi vector will be the angle of attack of the vehicle, a, and 

the angle between the local vertical plane (containing r and V vectors) and the 

aerodynamic plane (containing V and A) will be the roll, o. These are our two control 

variables. We will also define % as the cone half angle, which ends up being the angle 

between the b2, b3 plane and the surface normal vector. C, will be defined as the angle 

between the projection of the normal vector on the b2, b3 plane and the b2 axis. 
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With these definitions accomplished, we are now able to write the equation of the 

normal vector from the surface of the cone as follows: 

n = Sin(X)b, - Cos(x)Cos(Qb2 + Cos(x)Sin(Qb3. 

Using the following coordinate transform, 

b, = Cos(a)v, + Sin(a)v2 

b2 = -Sin(a)v, + Cos(a)v2, 

b3=v3 

we are able to determine the normal vector in terms of the velocity coordinate frame. 

n = (Sin(/)Cos(a) + Cos(x)Cos(C)Sin(a))v, 

+ (Sin(x)Sin(a) - Cos(x)Cos(C)Cos(a))v2 

+ (Cos(x)Sin(C))v3 

Now if we look at an infinitesimally small surface element of the cone in Figure A-3, we 

L Tan(x) / 

i 
i 

\^l       ^Ltan(X)dC 

\    Xxäx=dL/Cos(x) 

^n 
Figure A-3 Surface Element 
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can carry the derivation farther and determine the incremental area, such that 

LTan(x) 
dS 

Cos(x) 
■dLdC 

Then, if we picture the surface element flying through the reentry trajectory, we can see 

that the mass intercepted over time dt is as follows 

dm = dSh»Vdtp. 

Now that we have the mass and the velocity, we will be able to calculate the change in 

momentum. Looking at Figure A-4, we can see the value of the change in momentum, 

Ap. 

dp.  =dmv 
'in 

^\. / 

"\   n 
/ 4ji=-2dm(v»n)n 

\ 
\^ 

«-V ^ 

Figure A-4 Change in Momentum 

Knowing this and assuming that the altitude and speed of the vehicle allow us to model the 

air as a Newtonian fluid, we are able to use Newton's third law to calculate the 

aerodynamic force, Fd in the following manner: 

dFd = ^ = -2(n. v)2pdSn = -2(n« v)2p^^dLdCn, 
dt Cos(x) 
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which leads to the following. 

Fd =-2JdLjdC(Sin(x)Cos(a) + Cos(x)Cos(C)Sin(a)) v2p 

xLTanOOxs 

Cos(x) 

(Sin(x)Cos(a) + Cos(x)Cos(C)Sin(a))v, 

(Sin(x)Sin(a) + Cos(x)Cos(C)Cos(a))v2 

(Cos(x)Sin(a))v3 

In this equation, the vi component is the drag component, the v2 is the lift 

component and the v3 component is the side force component. Based on Figure A-5, we 

can see that the amount of surface area, while dependent on the angle of attack can not be 

handled by a single integral. When the angle of attack gets larger than the cone half 

Velocity 

angle of attack 

Velocity 

Side Views 

Nose On Views 
Figure A-5 Angle of Attack vs Surface Area 

angle, the nose is now outside the original circular cross section. If we consider the 

extreme where the normal vector to the surface and the velocity are perpendicular, we can 
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perform the following development. 

n« v = 0 

Sin(x)Cos(a) + Cos(x)Cos(QSin(a) = 0 

Cos(x)Cos(C)Sin(a) = -Sin(x)Cos(a) 

Cos(C) = -|!^^=Ta„(x)C,n(«) 
Cos(x)Sin(a) 

This means that when the angle of attack is less than the half angle of the cone, 

Cos(C) < -1 and therefore the limits of C are±7i. If a > x then Cos(Q > -1 and 

therefore C = Cos^1 (-Tan(x)Ctn(a)). From the text, we know the definition of Lift and 

Drag, so referring back to Figure A-2 and the fact that the area of the base of the triangle 

is A = 7ir2 = 7iL2 Tan2(x), results in the following equation. 

CDL2 _       CD 

A2        ltTan2(x) 

By rearranging the equations of lift and drag and substituting them into the 

previous equation, we get the following equations which can be used to determine the 
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coefficients of lift and drag based on the angle of attack. 

c, 3A = = L2 xj. 

c, A = Fd#V2 

}/pv2 = L2 4 

2(Sin(x)Cos(a) + Cos(x)Cos(QSin(a)) 
2 Tan(x) 

Cos(x) 
((Sin(x)Cos(a) + Cos(x)Cos(QSin(a) 

dC 

2(Sin(x)Cos(a) + Cos(x)Cos(C)Sin(a)) 

x(Sin(x)Cos(a) + Cos(x)Cos(C)Cos(a) 

2 Tan(x) 
Cos(x) dC 

where c± = - 
± 7C when     a < x ] 

±Cos"'(-Tan(x)Ctn(a))     when   a>xj 

The graph of angle of attack vs CD and CL, resulting from these can be seen in the text in 

Figure 2-2. 

65 



APPENDIX B: Equation of Variation 

When we integrate the state vector through a given trajectory, we are concerned 

with more then just one ideal trajectory. We would like to be able to determine the 

characteristics of nearby trajectories. We define the phi matrix, $, as the n-dimensional 

matrix of small differences between some reference trajectory and a given trajectory very 

near it. The use of a phi matrix allows us to specify how initial errors in the trajectory 

propagate through to final errors. In order to obtain a final phi, we must have an equation 

of motion to propagate the phi matrix. In order to generate this equation, we will start 

with a reference or ideal trajectory and another trajectory which starts from a point whose 

initial conditions are the original I.C.'s plus a small 5x as seen in Figure B-l. 

reference trajectory 

nearby trajectory 

Figure B-l Reference Trajectory 

Now if we take the equation of the nearby trajectory to be x = xr (t) + 8x(t), we 

66 



get the following equation of motion for the nearby trajectory, 

x = xr(t) + 8x(t) = f((xr+8x),t). 

Taking the Taylor series yields 

xsf(xr,t)+ —   Sx + H.O.T.. 
dx „ 

■V 

We know that xr (t) = f(xr ,t). Using this and truncating the higher order terms gives us 

the equation of variation as follows: 

-    of  ^ 
Sx = — 8x 

dx. 

pif -* 
By the definition A = — and this equation we get the equation of variation, 8x = ASx . 

dx 

From the definition of the phi matrix, we know that it is simply the square matrix of the 

Sx's. So we now have the following equation of variation: 

Ö = A(t)0> 

By convention, the phi matrix at time equals zero, ®(t0, t0), is equal to the identity 

matrix, I. So we are now able to extend our knowledge of the reference trajectory to all 

the nearby trajectories by simply calculating the A matrix and using it in the equation of 

variation. 
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APPENDIX C: A Matrix Equations 

dt 
— = 0 
dr 

*=0 
dd 

aj) 

5f 

3v 
Siny 

— = vCosy 

öij) _    vCosySinv|/ 

cd 

cty 

0 

= 0 

ö<j> _ CosySin\|/ 

dv r 

3(j) _ -vSinySin\|/ 

dy r 

<3cj> _ vCosyCosy 

d\\) r 

Equations 

vCosyCosv|/Sec9 

3r ~~ r2 

c©_ 
0 ae~ 

dd _ vCosyCosv|/Sec(j)Tan(t) 

dfy~ r 

dQ _ CosyCos\|/Sec()) 

dv' r 

dQ -vCosv(/SinySec()) 

dy = r 

dd -vCosySinvj/Sec(|) 

d\\> r 

dv 
= 0 ¥" 

dv _ 
= 0 

cQ~ 

dv 
= 0 

äfr~ 
dv _ CdPSv 

dv m 

dv 
= -gCosy 

öT 
dv — = 0 
d\\i 



dy vCosy SCLV
2
COSG 
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aj> 

fCLpSvCoso | 2vCosy'N 

dy _ 

Sv 
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V 

dy _ 

dy 

f   A g— Siny 

CLpSvCosa 

2m 

-> 
v" 

\ 

g— Cosy 
r J 

= 0 

d\\i vCos\j/CosyTan(j) 
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■f 

V 

d\\i 
= 0 

d\\r vCos\|/CosySec2(|) 
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cV ~ 2m r 
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dy r 2m 
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69 



Appendix D: B Matrix Equations 

da 

da 

*=0 
da 

av_Pv2g(scD)_o 

da     2m     da 

iUf»3&lc«o-H^Sin<, 
5a    2m    5o 2m 

^=     pV     a(C^Sina + -P^^Cosa 
da     2mCosy   da 2mCosy 

de' 
0 

59 _ 
5e " 
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5v pv2 5(SCD) 

5e 2m     de 
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= 

PV
^

SCL
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2m    5e 
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5e 2mCosy     5e 
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APPENDIX E: Flowchart for Program DESIGN 
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Accept Input File 

X 
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CD and CL 
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phi matrix 

Set inital roll and 
angle of attack 

EC 

Initialize HAMING 

HE 

Integrate Trajectory 

Determine & print 
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of the Earth? 

Print important 
states to output files 
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APPENDIX F: Flowchart for Program FIRST 

Start 

Accept Input File 

I 
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phi matrix 
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Initialize HAMING 

Calculate open loop Lyapunov 
exponents and principal 

directions 
I 

Output two copies of 
Lyapunov exponents and 
principal directions to file 
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APPENDIX G: Flowchart for Program BVP 

(     Start    J                                                                            ± 
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AERO 

TYPE: 

PURPOSE: 

INPUTS: 

OUTPUTS: 

CALLS: 

AUTHOR: 

Appendix H: Code Summary 

Subroutine 

This routine iterates through a list of data points to determine the CD 
and CL values for a given angle of attack. Once the closest data point is 
found, the code uses interpolation to get the exact values of CD and CL. 
The numerical derivatives of CD and CLwith respect to angle of attack are 
also calculated. 

Angle of Attack 

Coefficients of Drag and Lift 
Partials of the coefficients of Drag and Lift with respect to Angle of Attack 

None 

William E. Wiesel 

ATM 

TYPE: 

PURPOSE: 

Subroutine 

This routine determines the temperature, density and pressure at the 
current altitude of the vehicle. 

INPUTS:        Altitude, Density at sea level 

OUTPUTS:    Pressure, Temperature, and Density at altitude. 

CALLS: None 

AUTHOR:      Michael H. Platt 
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BVP 

TYPE: 

PURPOSE: 

INPUTS: 

OUTPUTS: 

CALLS: 

AUTHOR: 

Main Program 

This program solves the boundary value problem such that the 
numerical partials of the phi matrix are determined and used to determine 
what gain will be needed to achieve the final Lyapunov exponents and 
principal direction vectors. 

State initial Conditions 
Control history of flight 
Open loop Lyapunov exponents and principal direction vectors. U and V 
Desired closed loop Lyapunov exponents and principal vectors U and V 

Gain as a function of time 
Achieved phi matrix 
Achieved Lyapunov exponents and principal direction vectors, U and V 

HAMING 
LEQT2F 
LINV1F 
SVDCMP 

Dr William E. Wiesel 
modified bv Michael H. Platt 

DESIGN 

TYPE: 

PURPOSE: 

INPUTS: 

OUTPUTS: 

CALLS: 

AUTHOR: 

Main Program 

The purpose of this program is to design the reentry trajectory of the 
vehicle based on the initial conditions provided. This code makes use of a 
control law which is specified in the text of this paper. 

Initial state conditions 
Parameter values 
initial control variables 

Control history of trajectory 
Miscellaneous plot files 
Final state and control values 

AERO 
HAMING 

Dr William E. Wiesel 
modified bv Michael H. Platt 
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DYNAM 

TYPE: 

PURPOSE: 

Subroutine 

This subroutine implements the control law which keeps the vehicle at 
maximum altitude for as long as possible. It also calls the various 
subroutines to determine CD, CL, and characteristics of the atmosphere at 
altitude. 

INPUTS: nxt (flag) 

OUTPUTS. Equations of Motion 
A matrix 
B matrix 

CALLS: AERO 
ATM 

AUTHOR: Dr William E. Wiesel 
modified by Michael H. Platt 

FIRST 

TYPE: 

PURPOSE: 

INPUTS: 

OUTPUTS: 

CALLS: 

AUTHOR: 

Main Program 

This program iterates through the trajectory, takes the phi matrix, 
decomposes it and calculates the open loop Lyapunov exponents and the 
principal direction vectors, U and V. It then outputs these to a file which 
will eventually be used in the program BVP. 

Initial Conditions 
Parameters 
Control History of Trajectory 

Open Loop Lyapunov exponents 
Open Loop Principal Direction Vectors 

HAMING 
SVDCMP 

Dr William E. Wiesel 
modified by Michael H. Platt 
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HAMING 

TYPE: 

PURPOSE: 

INPUTS: 

Subroutine 

This routine is an ordinary differential equations integrator. It uses a 
fourth order predictor-corrector algorithm such that it carries along the last 
four values of the state vector. It extrapolates these values to obtain the 
next value (the prediction part) and then corrects the extrapolated value to 
find a new value for the state vector. 

state vector 

OUTPUTS: 

CALLS: 

AUTHOR: 

State vector 

RHS 

Dr William E. Wiesel 

LEOTF 

TYPE: 

PURPOSE: 

Subroutine 

This routine is a linear equation solver, which makes use of Gaussian 
elimination with maximal pivoting. 

INPUTS: 

OUTPUTS 

CALLS: None 

AUTHOR:      IMSL 

Matrices A and B from the equation Ax=B 

x from the above equation 
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LINV1F 

TYPE: Subroutine 

PURPOSE: This subroutine inverts a matrix 

INPUTS: Matrix to be inverted 

OUTPUTS: Inverted matrix 

CALLS: None 

AUTHOR: IMSL 

RHS 

TYPE: Subroutine 

PURPOSE: This routine calculates the quantity 
the phi matrix. 

INPUTS: state vector 

OUTPUTS: Equations of Motion 
A phi 

CALLS: DYNAM 

AUTHOR: Dr William E. Wiesel 
modified bv Michael H. Platt 

SVDCMP 

TYPE: Subroutine 

PURPOSE: This routine performs the singular value decomposition of the input 
matrix. 

INPUTS: Matrix top be decomposed 

OUTPUTS: Resulting vectors and diagonal matrix 

CALLS: None 

AUTHOR: "Numerical Recipes" [pp60-64] 
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APPENDIX I: Input Files 

DESIGN.IN 

# of States, # of Parameters, # of Controls 
Parameters 
Initial State Conditions (radius, longitude, latitude, velocity, flight path angle, heading) 
Initial Control Conditions (roll, pitch) 
Maximum Time, # of Points, # of Points to Skip 

FIRST.IN 

# of States, # of Parameters, # of Controls 
Parameters 
Initial State Conditions (radius, longitude, latitude, velocity, flight path angle, heading) 
Initial Control Conditions (roll, pitch) 
Maximum Time, # of Points, # of Points to Skip 

BVP.IN 

# of States, # of Parameters, # of Controls 
Parameters 
Initial State Conditions (radius, longitude, latitude, velocity, flight path angle, heading) 
Initial Control Conditions (roll, pitch) 
Maximum Time, # of Points, # of Points to Skip 
Open Loop Lyapunov Exponents 
Open Loop Principal Direction Vectors U and V 
Desired Closed Loop Lyapunov Exponents 
Desired Closed Loop Principal Direction Vectors U and V 
Order of Control Matrix 
Control Matrix 
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APPENDIX J: Open Loop Dynamical Direction Vectors 

CASE1 
u 

1 1   -0.01028543050235800060 

2 1   0.00363444199734480004 

3 1   -0.00000000000000469740 

4 1   0.08214474583247899364 

5 1   0.99656070637109994692 
6 1   -0.00000000001125988246 

-0.97168401832455997269 

0.00003107162937948000 

0.00000000000002290337 

-0.03569012010809000102 

-0.23357307827285000990 

-0.00000000000009349885 

1 2 -0.00089665641974298995 

2 2 -0.99996954401282001079 

3 2 -0.00000000000011928163 

4 2 0.00712768995717460042 

5 2 0.00305009670780599998 

6 2 -0.00000000001996683656 

0.00796246377915789914 

-0.97579409007383999253 

0.00000000000453068203 

-0.21854627299113998928 

0.00013967542602473000 

-0.00000000001895038530 

1 3 -0.12171244904868999681 

2 3 0.00690662913636379966 

3 3 0.00000000000000457848 

4 3 0.98908086295801000976 

5 3 -0.08280956919816499784 

6 3 0.00000000000058194711 

0.22179652742774000340 
0.10524131864098999756 

-0.00000000000204756123 

-0.46235891461048000961 

-0.85202981130470001325 

0.00000000000862846213 

1 4 -0.99251170555979995047 

2 4 0.00001876508221094700 

3 4 -0.00000000000000005374 

4 4 -0.12214943020019999875 

5 4 -0.00017514685499890999 

6 4 -0.00000000000000003907 

-0.08107446036942800305 

0.19170330634143001314 

0.00000000000001332149 

-0.85859651523201996337 

0.46849631614879999608 

-0.00000000000008494051 

1 5 -0.00000000000006291855 

2 5 -0.00000000001992965083 

3 5 0.00771671613673619982 

4 5 0.00000000000049162056 

5 5 0.00000000001132995245 
6 5 0.99997022570278004672 

-0.00000000000191225029 

-0.00000000001992963855 

-0.23082828392586998700 

-0.00000000000023507429 

0.00000000000757627134 
0.97299450324236003151 

1 6 0.00000000000000096663 

2 6 0.00000000000003463015 

3 6 0.99997022570278004672 

4 6 -0.00000000000000700461 

5 6 -0.00000000000008201465 

6 6 -0.00771671613673600033 

0.00000000000000000000 
0.00000000000003458703 

0.97299450324236003151 

0.00000000000000149329 

0.00000000000000278481 

0.23082828392586998700 

80 



CASE 2 (0.0-1.0 TU) 
u 

1 1   -0.06513334848611600225 
2 1   0.08123799463349500039 
3 1   -0.09214490890452099736 
4 1   0.40856082818428002268 
5 1   -0.53349110099935004303 
6 1   -0.72741504365373998997 

-0.98233526721117003788 
0.00001966208784733900 
0.00012344799140762001 

-0.03676190204151300045 
-0.18348284244442000790 
-0.00012749098910065000 

1 2 -0.05909772630751399664 
2 2 -0.42440813732748000620 
3 2 0.34883167171661999539 
4 2 -0.29514532828202000303 
5 2 -0.72701775086806996740 
6 2 0.28113356547897999649 

0.10507018593484999947 
-0.08834185895499800656 
-0.00026492752091081002 
-0.90984883644657998936 
-0.38030822618972998095 
0.09325582934395500179 

1 3 -0.99488239960038005183 
2 3 0.00000217186183196260 
3 3 0.00002335921155600400 
4 3 -0.03458991987095100251 
5 3 0.09493443608945199841 
6 3 0.00002650879976210500 

-0.12758862379124999431 
0.03746385565551300229 
-0.10489380108456000662 
-0.26425770193451997292 
0.73554924314832004217 
0.60037494198603003071 

1 4 0.00659393826681990008 
2 4 -0.61186947499749000379 
3 4 -0.77535346913045000150 
4 4 -0.14171256413912999839 
5 4 0.01769099672166399989 
6 4 -0.06327591367903200037 

-0.06457644432611399365 
-0.56030766996837999550 
-0.39874751101654998253 
-0.17243074346014000686 
0.38036046915558002768 
-0.59032124515761996708 

1 5 -0.02818112547849700028 
2 5 -0.29353527557349001764 
3 5 0.04090872648305499820 
4 5 0.85124937207759998614 
5 5 0.01470462107028499936 
6 5 0.43188843804269999582 

0.05840774375848799965 
-0.49957398211156001100 
-0.53008406985981004755 
0.26096667465457001889 
-0.36575846116713001122 
0.51394785100386997101 

1 6 0.04045319234070700321 
2 6 -0.59391153276705999087 
3 6 0.51670035226388999483 
4 6 -0.00792956572542049924 
5 6 0.42105901091864000874 
6 6 -0.44866447124517999656 

-0.01082775170848999935 
-0.65366147695959997410 
0.74095108233067996650 
0.05617435155750000186 
0.04704967707934799848 
0.13502480156904000941 



CASE 3 (0.0 -1.0 TU) 
u 

1 1   -0.06389959006247300510 
2 1   0.07831410885031099556 
3 1   -0.07481340127633999415 
4 1   0.36301192648443997291 
5 1   -0.56829488266759997650 
6 1   -0.72763312548164005289 

-0.98258845740532996249 
0.00001413839874403200 
0.00009350141821937500 

-0.03477221682566800087 
-0.18251246080158001206 
-0.00009497680907610600 

1 2 -0.05264048512495699689 
2 2 -0.46576529173300001974 
3 2 0.31555588699281000853 
4 2 -0.30706995163021000295 
5 2 -0.69832947170930004255 
6 2 0.31426127390260000238 

0.10385091218924000223 
-0.10843137532169999648 
-0.01516064742741900055 
-0.90317797911088004703 
-0.38709910220319998508 
0.10794259018358999536 

1 3 0.00508511554381889993 
2 3 -0.52968321718317001867 
3 3 -0.83826363559234995382 
4 3 -0.12253006393467000268 
5 3 0.00992349524661539917 
6 3 -0.04014742771513900299 

-0.06392369442280200487 
-0.48472424352228998812 
-0.48575829257165997754 
-0.17365098034786000114 
0.37725113305793001039 
-0.59373560602483999027 

1 4 0.99534969609505996591 
2 4 -0.00000171062338637060 
3 4 -0.00001901692147163200 
4 4 0.03415835918811700039 
5 4 -0.09006768631214200072 
6 4 -0.00002233515044160400 

0.12658611719581999711 
-0.03617232547061600273 
0.10619068515049999435 
0.25712774058570997404 
-0.73011780701259998416 
-0.61008554244057000560 

1 5 -0.03071106195926399940 
2 5 -0.26391747948327998197 
3 5 0.01941350196523499924 
4 5 0.87042914625278000607 
5 5 -0.00938157158515089996 
6 5 0.41387509964507002147 

0.05812527505084000290 
-0.45890691292737001428 
-0.55742526528196001401 
0.28956397897627000892 
-0.36867962124332998020 
0.50550075198002997201 

1 6 0.03815463893647400018 
2 6 -0.65323261310700997395 
3 6 0.43790938560041997585 
4 6 0.01015270009756000062 
5 6 0.42553283952603998541 
6 6 -0.44596577432547002129 

-0.01568693839398100157 
-0.73578601000916998842 
0.66468762530795999499 
0.05425675175635699676 
0.07435317138578399765 
0.08995020286136899690 
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CASE 4 (0.0 -0.25 TU) 

1 1 -0.00424501835640509959 
2 1 0.00486853551608860003 
3 1 0.00051177705371614995 
4 1 -0.00365524018172130004 
5 1 -0.98150231201513005175 
6 1 -0.19130568730045999226 

-0.98275212517203003326 
0.00002020102189509900 
0.00014408704217409000 
-0.01788005846675300159 
-0.18405959217574999198 
-0.00078060107066167997 

1 2 0.00015856428007883001 
2 2 -0.98598227258126003303 
3 2 -0.03237860992992400155 
4 2 0.00068161489029038003 
5 2 0.02656846007968500026 
6 2 -0.16150607097566999082 

0.02342717615886300009 
-0.96373444626989002160 
-0.00289809927635030018 
-0.18260604405283001328 
-0.10677154859475999904 
-0.16097687596897999884 

1 3 0.00081477086986990997 
2 3 0.16243344365060999324 
3 3 0.03600438154295500237 
4 3 0.00096219023103698005 
5 3 0.18943181631452998825 
6 3 -0.96769471332630996319 

0.01779211106295799927 
0.164602243 94226000144 
0.21131587728035000628 
0.02973016257455799935 
-0.09363821513029199628 
-0.95827091377273998507 

1 4 0.00002274309356453900 
2 4 0.03781992876969399869 
3 4 -0.99882683543490002887 
4 4 0.00004280878599849200 
5 4 0.00546410109994549965 
6 4 -0.02974469788537199844 

0.00168081358645540005 
0.03781834147168299659 
-0.97735343387202000542 
0.00489308065307680028 
-0.00932881973904150022 
-0.20793326837375000760 

1 5 -0.03369417688200600225 
2 5 -0.00053312347196117005 
3 5 -0.00003206112777283000 
4 5 -0.99942425398929002345 
5 5 0.00393192329604650018 
6 5 -0.00034309305819740999 

-0.17241850223978999468 
-0.15944814598802001249 
0.00892191453331350054 
0.39359067675171000023 
0.88278711677471999320 
-0.10267343326363999323 

1 6 -0.99942282981326002744 
2 6 -0.00002585417719523500 
3 6 0.00000039281516633206 
4 6 0.03371064395236499783 
5 6 0.00419511431231320026 
6 6 0.00000892650091013410 

0.06001586142085699876 
-0.13140806574665001016 
-0.00615182967721980035 
0.90028544948462996267 
-0.40810987146214000587 
0.04499570965845500065 
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CASE 5 

1 1 -0.01041367828494699915 
2 1 0.00337819864074320004 
3 1 0.00000000000001214309 
4 1 0.08037935879455899990 
5 1 0.99670421979557000114 
6 1 -0.00000000000877931300 

-0.97167057239938003921 
0.00002933637589193600 
0.00000000000001827429 
-0.03571246813911099771 
-0.23362559254466999659 
-0.00000000000007401808 

1 2 -0.00088850219598885004 
2 2 -0.99997201756267994899 
3 2 -0.00000000000015860298 
4 2 0.00686937597676139967 
5 2 0.00282600940400740000 
6 2 -0.00000000001535902870 

0.00792159671889250058 
-0.97580439758499004643 
0.00000000000341644084 
-0.21850152435160000164 
0.00033138383146531000 
-0.00000000001457042648 

1 3 -0.12504998895203001119 
2 3 0.00667469197903149992 
3 3 0.00000000000000257644 
4 3 0.98881004102974001668 
5 3 -0.08107189099091000051 
6 3 0.00000000000035182400 

0.22178708445351999479 
0.10521059958065999418 
-0.00000000000127910980 
-0.46311014966396002457 
-0.85162797522375000003 
0.00000000000539344279 

1 4 -0.99209539164917004417 
2 4 0.00001877611933808500 
3 4 0.00000000000000014074 
4 4 -0.12548574864192998946 
5 4 -0.00024577166175789001 
6 4 0.00000000000000001726 

-0.08126522139322900351 
0.19166769818894999200 
-0.00000000000016630747 
-0.85820201162293996422 
0.46920013268241000937 
0.00000000000074047692 

1 5 -0.00000000000006105413 
2 5 -0.00000000001533198355 
3 5 0.00627845312630180043 
4 5 0.00000000000046327297 
5 5 0.00000000000882206040 
6 5 0.99998029031892998741 

-0.00000000000112323390 
-0.00000000001533197506 
-0.23224721542661000417 
-0.00000000000005440161 
0.00000000000435169797 
0.97265678989383996811 

1 6 0.00000000000000088139 
2 6 -0.00000000000006234910 
3 6 0.99998029031892998741 
4 6 -0.00000000000000529162 
5 6 -0.00000000000006683849 
6 6 -0.00627845312630120021 

0.00000000000000000000 
-0.00000000000006240077 
0.97265678989383996811 
-0.00000000000000078611 
0.00000000000000261258 
0.23224721542661000417 
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APPENDIX K: Closed Loop Dynamical Direction Vectors 

Casel (Full Trajectory) 

1 1 -0.01030196743589699947 
2 1 0.00363519794936909999 
3 1 -0.00000269712930276840 
4 1 0.08215147129278900506 
5 1 0.99655997723858003035 
6 1 -0.00004823075400571100 

-0.97168348266467996499 
0.00003598647879645000 
0.00000695859965293510 
-0.03570886302410700153 
-0.23357243750167999696 
-0.00004140344651853700 

1 2 -0.00089705510246072004 
2 2 -0.99996953333970994837 
3 2 -0.00000007726882264421 
4 2 0.00712887931237249969 
5 2 0.00305069197477219993 
6 2 -0.00000653618027104730 

0.00796202149669830023 
-0.97579391837360995865 
0.00000132604342975910 
-0.21854705630080001333 
0.00013865925542491000 
-0.00000573366677570370 

1 3 -0.12170074252679000115 
2 3 0.00690777256897090030 
3 3 0.00000126580746497530 
4 3 0.98908156631773003209 
5 3 -0.08281826900950700621 
6 3 0.00003786428065245200 

0.22180600744673001357 
0.10524011426266000058 
-0.00000708564145476850 
-0.46234794239902998747 
-0.85203344554194004878 
0.00003460671460691000 

1 4 0.99251295011246998268 
2 4 -0.00001903828123642700 
3 4 -0.00000134867301182800 
4 4 0.12213914161319999740 
5 4 0.00019164511472974000 
6 4 -0.00019197112673628001 

0.08105497925627799805 
-0.19170483534745000331 
0.00004290624056404200 
0.85860142768133995705 
-0.46849002173213999400 
-0.00018033916462201999 

1 5 0.00019464471915760001 
2 5 -0.00000662625511493670 
3 5 0.00766005984867070000 
4 5 -0.00001000118430728300 
5 5 0.00005127731661911400 
6 5 0.99997064098065002735 

-0.00003346437354563100 
-0.00004499363566479400 
-0.23088536749260998859 
0.00017270391510402000 
-0.00006654596705623000 
0.97298094003864998847 

1 6 -0.00000002622088171184 
2 6 -0.00000002547469277593 
3 6 0.99997066130583001087 
4 6 -0.00000078855055026103 
5 6 0.00000240046040188910 
6 6 -0.00766006013041200043 

-0.00000296158151728740 
-0.00000012708358433498 
0.97298095825996000485 
0.00000030596932204931 
0.00000033361930094311 
0.23088537167723999222 
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Case 2 (0.0-1.0 TU) 

1 1 -0.06403794634675200048 
2 1 0.08104454666619399783 
3 1 -0.09152908323148399583 
4 1 0.40839753831084002478 
5 1 -0.53423972957695997632 
6 1 -0.72715384331608001744 

-0.98197198903211002641 
0.00003854206213596400 
0.00034680135676126998 

-0.03735085165286099879 
-0.18529866553367999038 
-0.00045763730138782002 

1 2 -0.05903755451191700088 
2 2 -0.42448063072810998664 
3 2 0.34891450328283002413 
4 2 -0.29551058145622000062 
5 2 -0.72653876711373999164 
6 2 0.28178776911191000254 

0.10628079270262999478 
-0.08834193353221600487 
-0.00026562707974199003 
-0.90980191219835004901 
-0.38008400816391002541 
0.09325584497946799722 

1 3 -0.99495714713326000034 
2 3 0.00009601858723680201 
3 3 -0.00008003936800790900 
4 3 -0.03411823921992700182 
5 3 0.09431619478986699723 
6 3 -0.00081295477612005002 

-0.12900962363557000323 
0.03746454580284599989 
-0.10489259283410999612 
-0.26431336390713000561 
0.73528040842211994654 
0.60037624489685004203 

1 4 -0.00656852952997049981 
2 4 0.61184116433513002775 
3 4 0.77538594511035996426 
4 4 0.14156557938782998729 
5 4 -0.01749934702153600058 
6 4 0.06353612953725400192 

0.06508464381380499320 
0.56030832780411998773 
0.39874807164386000258 
0.17245108740557998916 
-0.38026589288300999270 
0.59031941815917998717 

1 5 0.02817996314232600052 
2 5 0.29353482224404997547 
3 5 -0.04090995975545200225 
4 5 -0.85124432762849999712 
5 5 -0.01471300783230499939 
6 5 -0.43189836198010000956 

-0.05863769153244700189 
0.49957296615830998343 
0.53008397131011997239 
-0.26097697232051997318 
0.36571538624006999507 
-0.51394818042416001713 

1 6 0.04045649577632599858 
2 6 -0.59391553619007997344 
3 6 0.51670504277926998515 
4 6 -0.00794821454630850049 
5 6 0.42108323034417999287 
6 6 -0.44863041091354000089 

-0.01084127020287400066 
-0.65366163906047003440 
0.74095095104871999681 
0.05617368131237700235 
0.04704656477642599893 
0.13502501579976000645 
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Case 3 (0.0-1.0 TU) 

1 1 -0.06278771840705099638 
2 1 0.07758655902839599328 
3 1 -0.07308126470797199348 
4 1 0.36251257820206000959 
5 1 -0.57034039074792997059 
6 1 -0.72663169924717996295 

-0.98192814311970999519 
0.00009643533037484300 
0.00049327354493162003 
-0.03680018579577300220 
-0.18564101112188000076 
0.00017448767022450000 

1 2 -0.05246989309574699722 
2 2 -0.46597925612702001397 
3 2 0.31575448226028002274 
4 2 -0.30805768113385001428 
5 2 -0.69677893169020999053 
6 2 0.31624189405809999265 

0.10692042755274999699 
-0.10843304324871999578 
-0.01516354659180800014 
-0.90306699128979994740 
-0.38652152013084001281 
0.10794205796189999813 

1 3 0.00502321536616699964 
2 3 -0.52959933437120998434 
3 3 -0.83834300983364995474 
4 3 -0.12214355309983999931 
5 3 0.00932162215460139928 
6 3 -0.04091906646739700004 

-0.06516520699071000344 
-0.48472447768119997225 
-0.48575794479201001019 
-0.17369187049047998816 
0.37701522525385999796 
-0.59373862065583005165 

1 4 0.99543029559637996595 
2 4 -0.00009858415344814100 
3 4 0.00007994123973226300 
4 4 0.03369496482236500334 
5 4 -0.08934395475991299684 
6 4 0.00090420846448446000 

0.12827746061542000255 
-0.03616913545493599669 
0.10619360079761999693 
0.25718811750865999688 
-0.72980305301406001028 
-0.61008309426818996268 

1 5 0.03069744553109399893 
2 5 0.26393126842742997695 
3 5 -0.01942787267304599969 
4 5 -0.87036042917246003725 
5 5 0.00927288390453519934 
6 5 -0.41401358323414000351 

-0.05859718947410400003 
0.45890617494841001722 
0.55742494271582998522 
-0.28958219051766997953 
0.36859270286652001669 
-0.50550024683154004546 

1 6 -0.03815197884664100342 
2 6 0.65322927030137001303 
3 6 -0.43790613710825998517 
4 6 -0.01016960432960200070 
5 6 -0.42550644856043001729 
6 6 0.44599888272934001821 

0.01580829538758799988 
0.73578622085724998403 
-0.66468744158085002471 
-0.05425234410640199928 
-0.07433015940442400105 
-0.08995026714864599870 
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Case 4 (0.0-0.2 TU) 

1 1 0.00407560477945550018 
2 l -0.00487234534914969975 
3 1 -0.00051323591184877998 
4 1 0.00447495449078090003 
5 1 0.98145270338973999991 
6 1 0.19154621394497001186 

0.98291684951499003198 
0.00006991163479859799 
-0.00019469659306152999 
0.01772321612742299921 
0.18319148775701998844 
0.00109113179880259998 

1 2 -0.00016394463631259001 
2 2 0.98598421230249999603 
3 2 0.03237821518398800030 
4 2 -0.00065507830183980003 
5 2 -0.02660171169414399933 
6 2 0.16148893832468000364 

-0.02343298383793299827 
0.96373990106692997148 
0.00289931053690890015 
0.18260103730450000237 
0.10674047139919000393 
0.16096964092386001344 

1 3 0.00081850249847946000 
2 3 0.16242177366460000543 
3 3 0.03600486866152999982 
4 3 0.00095321871769173995 
5 3 0.18966981630667001379 
6 3 -0.96765003957124995360 

0.01800059560175500117 
0.16459064390700001157 
0.21131676834402998710 
0.02973311783532000055 
-0.09358959244208800432 
-0.95827347443369004232 

1 4 0.00002362447437384800 
2 4 0.03781926605567499655 
3 4 -0.99882683009985995248 
4 4 0.00003680641205110400 
5 4 0.00547029621903729994 
6 4 -0.02974458831665499972 

0.00168374693179929990 
0.03781689603535000332 
-0.97735319227367001282 
0.00489445487060819959 
-0.00932235185911369987 
-0.20793490084717999866 

1 5 0.03369177436230599842 
2 5 0.00051280696685644005 
3 5 0.00002598670125070800 
4 5 0.99942094042370999141 
5 5 -0.00472805468852129963 
6 5 0.00017330743813465999 

0.17153162469818999947 
0.15942269880883000455 
-0.00892565734256530081 
-0.39361250849436002497 
-0.88295663680890001945 
0.10265674914884000135 

1 6 -0.99942361209034003000 
2 6 -0.00003040863980805300 
3 6 -0.00000065150278624133 
4 6 0.03371082195183500163 
5 6 0.00400275957858800026 
6 6 -0.00003271507700252800 

0.05979471122629299862 
-0.13141386388390999262 
-0.00615221112746930018 
0.90027991644683003081 
-0.40815316982269000956 
0.04499112349002200306 
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Case 5 (Full Trajectory) 

1 1 
2 1 
3 1 
4 1 
5 1 
6 1 

-0.01041530053179800033 
0.00337808160847269997 
-0.00000047045397049255 
0.08038163439867100635 
0.99670401965090005270 
-0.00001193261960161800 

-0.97167013709261995658 
0.00002980091470781400 
0.00000118715607556220 
-0.03571525579333000022 
-0.23362697668509999072 
-0.00000784210261012930 

1 2 -0.00088854274873018005 
2 2 -0.99997201770775001606 
3 2 -0.00000000807164993311 
4 2 0.00686940589491800025 
5 2 0.00282587259153440013 
6 2 0.00000016311292912141 

0.00792175728112910066 
-0.97580438366291000207 
-0.00000004128749735507 
-0.21850158067385000438 
0.00033140435482745002 
0.00000011574655821605 

1 3 0.12504809255749999020 
2 3 -0.00667472935027269964 
3 3 -0.00000042080464192042 
4 3 -0.98881007888376004633 
5 3 0.08107435086673600577 
6 3 -0.00000806762111479700 

-0.22178979420664998723 
-0.10521024529781000667 
0.00000103491962083450 
0.46310826072090999217 
0.85162834046241997488 
-0.00000650769066518860 

1 4 0.99209561234791998618 
2 4 -0.00001882075046282100 
3 4 -0.00000025218505800159 
4 4 0.12548399105543001086 
5 4 0.00024724356235660000 
6 4 -0.00004965017436717500 

0.08126301495186599722 
-0.19166796324950999275 
0.00001048813803644300 
0.85820289960444995359 
-0.46919878021680000435 
-0.00004368402372055200 

1 5 0.00005014330648767700 
2 5 0.00000014857307140196 
3 5 0.00625139842847079966 
4 5 -0.00000079115124702147 
5 5 0.00001256208153426500 
6 5 0.99998045848150995951 

-0.00000548684001444840 
-0.00000918255128935160 
-0.23227629793377999046 
0.00004134220013669600 

-0.00001733014940955000 
0.97264984413417998610 

1 6 -0.00000001556067545741 
2 6 -0.00000001022468468011 
3 6 0.99998045981770000701 
4 6 -0.00000034164025119689 
5 6 0.00000042458270688477 
6 6 -0.00625139844164640003 

-0.00000076427793 797184 
-0.00000005560964818876 
0.97264984516818997484 
0.00000016034660024542 
0.00000029983772252792 
0.23227629817439998661 
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