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ABSTRACT 

Today's modern avionics systems rely heavily on the integration of Global Posi- 

tioning System (GPS) data and the air vehicle's accelerations obtained by an Inertial 

Measurement Unit (IMU). To properly resolve the GPS and the IMU data, one must 

have an understanding of the different coordinate systems involved. Since the GPS 

provides data in one coordinate reference frame and the IMU measures accelerations 

in another, transforming the data freely from one frame to the next is imperative if 

the avionics system is to provide meaningful data to the aircrew. 

This thesis provides a uniform approach to analysis and design of an inte- 

grated GPS/IMU avionics system using MATLAB/Simulink software development 

tools. Topics covered include: 

• Coordinate Systems and Transformations 

• Fundamentals of Inertial Sensors 

• Tangent Plane Navigation 

• Kinematic Equations and Error Analysis 

• Global Positioning System (GPS) Sources and Errors 

• Kaiman Filter Design 

Emphasis is placed on addressing the theory and providing detailed examples 

to support each topic. 
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I. INTRODUCTION 

The research conducted in the Avionics lab at the Naval Postgraduate School 

(NPS) Aeronautical Engineering Department, centers around the flight control of 

Unmanned Autonomous Vehicles (UAV's). Today's battlefield has become increas- 

ingly hostile to manned airborne vehicles as weapons have become more accurate 

and lethal. In order to reduce the risk, while still providing forward reconnaissance, 

the military has increasingly turned toward remotely operated aircraft. Autonomous 

vehicles, allow the commander in the field the opportunity to survey his environment 

and employ the UAV as a targeting, weapons, or intelligence gathering platform. 

The reduced risk to the pilot and the decreased cost when compared to a current fleet 

aircraft, makes the deployment of UAV's a high priority in future battles. 

In order to control the vehicle in a variety of battlefield environments, precise 

knowledge of it's velocity and position is essential. Using on-board inertial navi- 

gation systems, the vehicle's accelerations can be precisely measured and used by 

on-board navigational computers to calculate the vehicle's velocity and position in 

some particular reference frame. An inertial navigation system, alone, can provide 

accurate position information in the short term, but must be integrated with an ad- 

ditional source if precise positional data is to be maintained for the long term. The 

UAV's requirement to operate aboard ships or in rugged locations makes it essential 

that extremely accurate position information is calculated. To meet this requirement 

an inertial navigation system can be integrated with an Global Positioning System 

(GPS) receiver. This provides the vehicle's navigation system with an additional, 

highly accurate positioning data source. 



The purpose of this thesis is to provide the framework for designing an integrated 

inertial measurement / GPS system. To understand the system integration as a whole, 

it is necessary to have a solid understanding of the reference frames in which both 

systems operate and how the angular and translational motion of the vehicle relative 

to these reference frames is calculated. In an effort to make the three dimensional 

(3-D) relationships and the associated mathematics more understandable, numerous 

3-D graphical examples are provided. 

A brief overview of current inertial sensors; ring laser gyros and fiber optic gyros, 

is included in order to understand how vehicle accelerations are measured and how 

they are related to the body of vehicle. 

As with any system, the IMU errors are inherent in the IMU's computations. 

Detailed analysis of errors is essential if the IMU accuracy is to be fully realized [Ref. 

1, p. 231]. Since the IMU is not a position fixing system, incorporating a GPS as 

the fixing source and using a Kaiman filter to combine the two, provides the best 

estimate of the vehicle's velocity and position. Kaiman filter design will be discussed 

and developed using MATLAB/Simulink software development tools. 



II. COORDINATE SYSTEMS 

To develop the relationship between GPS and the IMU, an understanding of 

each coordinate system is essential. In this chapter, eight coordinate frames will be 

discussed with particular attention paid to only four. They are the Earth-Centered- 

Inertial (ECI) coordinate system, the Earth-Centered-Earth-Fixed (ECEF) coordi- 

nate system, the tangent plane coordinate system and the Wander Azimuth coordi- 

nate system. 

A. TRUE INERTIAL {/} 

The True Inertial coordinate system is a set of mutually perpendicular axes 

that neither accelerate nor rotate with respect to some fixed point in space. Newton 

assumed there was a reference frame whose absolute motion was zero (fixed relative 

to the stars) [Ref. 1, p. 9], and it is in this reference frame where they are valid. 

However, Newton's laws of motion can also be applied to any reference frame as long 

as the proper coordinate transformations are applied. 

B. EARTH-CENTERED-INERTIAL {?'} 

The Earth-Centered-Inertial (ECI) coordinate system is centered about the 

origin of the earth and maintains a fixed orientation with respect to some inertial 

reference in space. As the earth rotates the frame stays oriented with respect to 

this inertial reference. Even though the ECI frame is referenced to the earth and 

translates as the earth rotates about the sun, it's rotational motion relative to the 

fixed point is space is minimal and can be ignored. This allows the assumption that 

Newton's laws of motion apply here also. In the cases we will discuss, we will assume 



the ECI frame stays fixed and all other frames will rotate with respect to the ECI 

frame. 

C.    EARTH-CENTERED-EARTH-FIXED {e} 

The Earth-Centered-Earth-Fixed coordinate system, is similar to the ECI sys- 

tem except that the frame itself is connected to earth, that is, it rotates with the earth. 

Every twenty-four hours the ECEF frame coincides with the ECI frame. The system 

origin, as the name implies, is centered at the Earth's origin. The X-axis is directed 

through the intersection of the Greenwich meridian, 0° longitude and the equator, 0° 

latitude. The Y-axis is directed from the origin to intersect the equator at 90° east 

longitude. The Z-axis is directed along the Earth's spin axis from the origin through 

the north pole at 90° north latitude. The ECEF frame is depicted in Figure 2.1. The 

Greenwich 
meridian 

Figure 2.1: Earth-Centered, Earth-fixed Coordinate System 

earth-centered earth-fixed system is independent of the mathematical model of the 

earth's surface. However, both the geodetic and the local geodetic systems depend on 



the specification of the earth model. The current standard for modeling the surface of 

the earth is the WGS-84 ellipsoid. This ellipsoid is generated by rotating an ellipse, 

whose semi-major axis is 6378137.0 meters and whose semi-minor axis is 6356752.3 

meters, about its minor axis. The resulting closed surface is the model of the earth's 

surface. The true north pole (conventional terrestrial pole) and true south pole are 

the endpoints of the minor axis of the ellipsoid. 

D. GEODITIC COORDINATE SYSTEM 

The output of navigation systems used on aircraft today is generally latitude, 

longitude, and altitude — i.e. resolved in the geodetic coordinate system. This is the 

system used for describing positions of most earth bound objects. Charts developed 

for long range land and sea navigation invariably use geodetic coordinates. 

The geodetic coordinate system is somewhat analogous to spherical coordinate 

system. The primary difference is that the elevation angle or latitude, <j>, is the angle 

between the ellipsoidal normal and the equatorial plane. This means that the ray 

that defines this angle does not intersect the equatorial plane at the exact center of 

the earth. Instead, it intersects the equatorial plane at a small radius outside of the 

center as shown in Figure 2.2. 

The longitude, A, is identical to the spherical concept of that angle. It is the 

angle in the equatorial plane from 0° latitude and 0° longitude to any given point. 

Finally, h, the geodetic height or altitude, is the distance along the ellipsoidal normal 

away from the surface of the earth. 

E. TANGENT PLANE COORDINATE SYSTEM 

Typically, pure inertial systems navigate in a so-called tangent plane coordinate 

system, before outputting position in geodetic coordinates. The tangent plane system 

is defined by passing a plane at any point on the earth's surface. The intersection of 



Spherical 
model 

Greenwich 
meridian 

Ellipsoidal 
model 

► ra 

Equator 

Figure 2.2: Geodetic Coordinate System 

the plane with the surface of the earth becomes the origin of the system. The x-axis 

points toward true east. The y-axis points toward true north. Lastly, the 2-axis is 

perpendicular to the defining plane of the system, away from the center of the earth. 

It is the z coordinate of the triad which defines a point's altitude in this system. This 

frame is sometimes referred to as the universal {u} frame. This is shown in Figure 2.3. 

F.    NAVIGATION COORDINATE SYSTEM {n} 

The navigation coordinate system is attached to the aircraft's frame. It's ori- 

gin is located at the center of the aircraft's inertial navigation system [Ref. 1]. It 

maintains a local-level orientation to the reference ellipsoid in the same manner as 

the tangent plane but the orientation of the axes can be chosen at random. If the 

origin of the aircraft is co-located at the origin of the tangent plane, then the tangent 

plane and the navigation plane are one in the same. The frame shown in Figure 2.3, 

represents an East-North-Up (ENU) orientation where the a;-axis points east, the 

6 



Ze 

Greenwich 
meridian {NEU} 

Tangent 
plane 

► *• 

Equator 

Figure 2.3: Tangent Plane Coordinate System 

«/-axis points north and the z- axis points up.  The orientation of the frame can be 

specified any number of ways; North-East-Up (NEU) or North-East-Down (NED). 

G.    WANDER AZIMUTH COORDINATE SYSTEM {c} 

The Wander Azimuth coordinate system is a frame centered at some reference 

point on the body, most likely the center of the aircraft's inertial system, the origin 

of the navigation frame. The x and y plane is tangent to the local vertical with the 

z axis perpendicular. The frame is defined with respect to the ECEF frame using 

longitude A, latitude <j> and the wander azimuth angle a. The angle a is positive when 

the frame is to the west of true north, the angle A is positive east of the Greenwich 

meridian, and <f> is positive north of the equatorial plane. If the wander azimuth frame 

is aligned with the ECEF frame at the Greenwich meridian, the angle a is zero. The 

Wander Azimuth, co-located tangent and navigation planes and the ECEF frames 

are depicted in Figure 2.4. 



{NEU} 

► ye 

Figure 2.4: Wander Azimuth, Navigation and ECEF Coordinate Systems 

H.    PLATFORM FRAME {p} 

The platform coordinate system is the right-handed orthogonal frame defined by 

the input axes of the inertial sensors. If the inertial navigation device is a "strapdown" 

model, the aircraft's accelerations are measured in the platform frame. Imagine the 

inertial system, perhaps a ring laser gyro, bolted to the frame of the aircraft and all 

accelerations experienced by the aircraft are directly measured by the sensors of the 

inertial unit. Platform accelerations are equivalent to body fixed accelerations if the 

unit is a "strapdown system". In this case the platform frame would be referred to 

as the body fixed frame {b}. This assumption will be valid throughout this thesis. 

I.    ACCELEROMETER FRAME {a} 

The accelerometer frame is a non-orthogonal frame defined by the sensitive axes 

of the accelerometers which make up the inertial navigation system [Ref. 2]. If the 



axes of the inertial measurement unit are not properly aligned with the platform, 

errors in acceleration measurements can exist [Ref. 1]. 
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III. COORDINATE TRANSFORMATIONS 

The kinematic equations that relate the motion of a body relative to a fixed 

reference frame must be given in terms of the relative angular velocity and coordinate 

transformations between each frame. In order to use these coordinate systems, one 

must be able to transform between them freely. For example, satellite positions for 

the GPS computations are given in ECEF coordinates. Suppose the aircraft posi- 

tion is wanted in the tangent plane coordinate system. Therefore, a transformation 

between ECEF and tangent plane systems is required. For the three systems above, 

six conversions are required. By being able to convert from geodetic to ECEF, and 

ECEF to local geodetic, one can convert from geodetic to local geodetic by chaining 

the two conversions together. Thus, the only four transformations discussed are: 

• geodetic to ECEF 

• ECEF to geodetic 

• ECEF to tangent plane 

• tangent plane to ECEF 

A.    EULER ANGLES 

Euler angles are used to define the orientation of two coordinate systems with 

respect to each other. For example, consider the aircraft body fixed coordinate system 

{&} and how it is oriented with respect to the tangent plane or universal frame {u}. 

We define the angles the aircraft's body makes with this system in terms of roll <f>, 

11 



pitch #, and yaw ib. Written in vector format: 

A = e (3.1) 

Figure 3.1 represents body and universal coodinate frames where the origins are 

collocated. 

Figure 3.1: Collocated Universal {u} and Body {&} Coordinate Systems 

x 

y , what are the components of y Given a vector y, resolved in {u}: yu = 

in {&} or J/J? This can be accomplished using Euler angles as follows. First, let's 

rotate the {u} frame about the z-axis. Since the angle ip describes rotation about 

the z axis, our first rotation matrix will be a function of ip. Figure 3.2 depicts the 

rotation about the z-axis. The z-axis should be considered positive outward from the 

x-y plane. The rotation is considered positive using the right-hand-rule. 

The new axes of the rotated frame have been labeled (x',y',z'). Since the 

transformation matrix describes the trigonometric relationships between the old and 

new frames let's use Figure 3.3 to determine what these relationships are. 
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Figure 3.2: Rotation About the z Axis 

,.-"'y sin\|/ 

y cosvj/ 

X   COSlj/ 

z,z' 

x sin\|/ 

Figure 3.3: Trigonometric Relationships Between Rotated Frames 

We see x' consists of two components.  One, is the projection of x onto x' or 

x cos i}). The other is the y sin^. Writing x' as a function of x and y we get: 

x' = x cos ip + y sin ^ (3.2) 
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The same relationship exists for y'. In this case the xsin^> component is in the 

direction opposite of our sign convention. Therefore y' written as a function of the 

components of x and y becomes: 

y' = —x sin ip + y cos tp (3.3) 

Since the rotation occurred about the z-axis, z' = z. Gathering the terms in matrix 

format we have the following transformation matrix: 

cost/'    sin^     0        x 
- sin^>   cos^     0        y     . (3.4) 

0        0   1 J L z J 
Let's now perform the rotation about the new y' axis. This time the rotation 

angle is 0 and the resulting axes will be (x", y", z"). Figure 3.4 shows the relationship 

between the new axes. 

\ x' ] 
y' = 

z' 

Figure 3.4: Rotation About the y' Axis 

Using the same process we used to calculate (x',y',z'), we develop a transfor- 

mation matrix based on the trigonometric relationships between the new axes. These 
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relationships are shown in Figure 3.5. 

x'cosö 

z'cosö 

x'sinG 

**'k     z" 
z'    \ 

*--- z'sinö 

Figure 3.5: Trigonometric Relationships Between Rotated Frames 

The new transformation matrix becomes: 

x cos9   0   — sinö 
0      1        0 

sinö   0     cos# 

x 
y (3.5) 

Notice that the negative sign now appears in the first row with the sin term. 

This is due to the fact that the rotation was through the angle 8 in the positive 

direction, or nose up. The x" component, —z'sm.8, was in the direction opposite of 

the sign convention chosen. 

The last transformation will be about the x" axis which is a rotation of <j>, 

right wing down. This is the final orientation of the body frame and results in a 

transformation matrix: 
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\ x'" 1 
y'" = 

z1" 

0 0 1 
0 coscp sin 
0 — smS cos 

X 

(3.6) 

Combining equations 3.4, 3.5, and 3.6, we have the final (3-2-1) transformation 

from (x,y,z) to (xb,yb,zb) as: 

x 1 0 0 ' cos0   0 — sin# cos?/> sin^' 0 X 

y = 0 COS</> sin</> 0      1 0 — sim/> COS?/' 0 y 
z b 0 — sin</> COS(f) sin0   0 COS0 0 0 1 z 

(3.7) 

When performing transformations, the Euler angles associated with each rota- 

tion are not vectors. That is, 6 + <j> ^ <j> + 0. This implies that the order of rotation 

is important. In the previous example, the rotation order was 3-2-1, or tß,8,4>. To 

verify, perform a 2-3-1, or tß,4>,6 and compare the final transformation matrix with 

equation  3.7. 

B.    GEODITIC TO ECEF COORDINATE TRANSFORMATION 

In order to compute the transformation from geodetic to ECEF coordinates, 

three auxiliary quantities — /, e, and N — must first be defined [Ref. 5]. The 

flattening factor, /, represents the relative flatness of the ellipsoid. A zero flattening 

factor would mean an unflattened ellipse (a sphere), while a unity value would mean 

a totally flattened ellipsoid (a circle in the plane perpendicular to the minor axis). 

The mathematical definition of / is 

a — b 
I (3.8) 

where a and b are the semi-major and semi-minor axes of the ellipsoid, respectively. 

Directly related to the flattening factor is the eccentricity, e. It is defined by 

e2=2f-f. 
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The eccentricity is a variable similar to the flattening factor. It represents how close 

the ellipsoid is to a sphere. It, too, is zero for a sphere and one for a completely 

flat figure. The eccentricity, rather than the flattening factor, is typically used in 

coordinate transformations. 

Lastly, N is the length of the ellipsoidal normal from the ellipsoidal surface to 

its intersection with the ECEF z-axis. Mathematically, N is 

N=    L      \ . 2   > (3-10) 

where <f> is the geodetic latitude. 

Using these quantities, one may define the transformation 

x = (N + h) coscf) cosA 

y = (N + h) coscf) sinA 

z   =   [N(l - e2) + h]sm<f>. (3.11) 

C.    ECEF TO GEODITIC COORDINATE TRANSFORMATION 

The transformation from ECEF to geodetic coordinates is clearly the inverse of 

the process presented in the previous section. First, A, the longitude, can be found 

by dividing first two expressions of Equations 3.11 yielding 

tanA = -. (3.12) 

By examining the geometry in Figure 2.2, one can determine the following relationship 

,      (N + h) sinS ***=\*l/' (3'13) 

which is a non-linear equation in <f>.   Solving the third of Equations 3.11 for (TV + 

h) sin <j> and substituting into Equation 3.13 yields 

/ z       /,      e2Nsmd>^ 

*»* = ^T7(l + —r-*5, (3-14) 
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which is still an analytically unsolvable equation in geodetic latitude. To solve this 

equation, one initially assumes that h is zero, an excellent assumption for intra- 

atmospheric flight. Now, the z equation in Equation 3.11 can be simplified to 

zh=0 = N(l-e2)sm<i>. (3.15) 

This equation can be substituted into Equation 3.14 to give the initial solution for <j> 

1 «; , 
tan& = -  3.16 

1 — el y/x2 + y2 v       ' 

This initial solution for <f> can be substituted back into the second term of Equa- 

tion 3.14 to yield an updated <f>. Iteration of this process commencing with Equa- 

tion 3.14 continues until the geodetic latitude stops changing. Finally, solving Equa- 

tion 3.13 for h 

h = ^±? - N, (3.17) 
cosq> 

which completes the conversion. 

If we assume a spherical earth model, a and b in Equation 3.8 are equal, resulting 

in a flattening factor / = 0. (Assume a = b = R0, radius of the earth). Substituting 

/ in Equation 3.9, the eccentricity factor e also equals zero.  Applying these values 

to Equation 3.10, the length of the ellipsoidal normal N is now simply the radius of 

the earth R0. Substituting these values in equations 3.11 through 3.18, the altitude 

h can now be defined as 

h = Vx2+/ - R0 (3.18) 
COS<£> ' 

The physical representation can be seen in Figure 3.6. 

D.    ECEF TO TANGENT PLANE COORDINATE TRANSFORMATION 

Anytime one uses a local geodetic or tangent plane coordinate system, one must 

first specify the geodetic coordinates — latitude and longitude - of the origin. Once 
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/-►  *« 

' Ax ' x2 — Xi 

Ay = 2/2- Vl 

Az 
e z2- Zi 

Figure 3.6: ECEF Spherical Model with Altitude 

specified, the origin must be expressed in ECEF coordinates. Then, a vector from this 

origin to the point being transformed can be formed, resolved in the ECEF system 

(3.19) 

where the '2' subscript denotes the point being transformed. The product of two 

rotation matrices operates on the difference vector defined in Equation 3.19 to yield 

the local geodetic coordinates of the point Pu, where the subscript {u} represents the 

universal frame. 

cos A 0 
■ sine/» sinA   cos</> R,. = 

x 

y 

— sinA 
— sin<2> cosA 

coscf) cosA       cos</> sinA    sin<^ 

Ax 
Ay 
Az 

(3.20) 

where A is the geodetic longitude and <f> is the geodetic latitude. 

E.    TANGENT PLANE TO ECEF COORDINATE TRANSFORMATION 

The transformation from tangent plane to ECEF can be derived by merely 

reversing the process developed in the previous section. 

19 



First, the origin of the local geodetic system must be converted from geodetic 

to ECEF coordinates. Next, the inverse of the rotations performed in Equation 3.20 

must be executed yielding the A vector from the origin of the tangent plane system 

to the point being transformed. This vector, expressed in ECEF coordinates is 

" Ax ' 
Ay = 

Az 
e 

— sinA   — sine/) cosA   cos<j) cosA 
cosA     — sin</> sinA    cos</> sinA 

0 coscb sind> 

x 

y 
z 

(3.21; 

X •Eorig " Ax ' 
y = yorig + Ay 
z 

e Zorig e 
_ Az J 

Clearly, adding the A vector to the position of the origin of the tangent plane system 

(both now in ECEF coordinates) completes the transformation: 

(3.22) 
■is   J e        L  ^

Z  J e 

F.    VECTOR NOMENCLATURE 

In order to proceed further, there must be a firm understanding of the nomen- 

clature used to define the vector of interest and the frame of reference where it is 

resolved. The vectors we will be interested in are position P, linear velocity V, and 

angular velocity ui. Each vector has a magnitude and direction and a reference frame 

to which it is attached. For the purpose of this discussion, we will be concerned only 

with two reference frames, the tangent (universal), denoted by u, and the body fixed 

frame, denoted by {b}. As we become more familiar with other reference frames we 

will use different characters. 

Let Q be an arbitrary point located on the body of the aircraft. We can draw a 

position vector to that point from the origin of the body reference frame. This vector 

would be identified as 6
PQ . The P stands for a position vector, the subscript Q for the 

point of interest and the superscript b for the reference frame the point is measured 

with respect to. Simply put, bPQ is the position of point Q resolved in {b}. As with 

any vector, the position vector can be described in terms of any reference frame. An 
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example would be to define the point Q with respect to the universal frame or U
PQ 

Figure 3.7 illustrates the position vectors in both reference frames. 

Yb 

Figure 3.7: Position Vectors of Point Q 

If the position vector P refers to the origin of a reference frame, the subscript 

will be ox where o refers to the origin and x refers to the frame of interest. Therefore, 

lP0h would refer to the position of the origin of the {b} frame, resolved in the universal 

frame {u}. 
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G.    TRANSFORMATION OF ANGULAR VELOCITIES 

Now that we can describe the position of a point on a body with respect to an 

arbitrary reference frame, we also need to express the motion of the body as well. 

As the vehicle moves in inertial space, the angles that describe it's relative position 

change as well. Question: How do we define the Euler angular rates in terms of the 

body's angular rates? 

A 

Answer: Let fi&n be the angular velocity of {b} with respect to {n}. We can 

obtain A by considering the derivative of the Euler angle in the coordinate system it 

was defined. The total angular velocity is: 

<f> p 
e = ?w=? q 

UJ r 

' 0 " "0 " \ <f>] 
0 + DB 9 + D 0 

UJ . 0 _ 0 

Where C is the transformation matrix from {n} —> {b}: 

C = 

(3.23) 

1 0 0   n ' cos0   0 — sin# cos^ sin^>   0 
0 COS(f) sin</> 0      1 0 — smiß cos^   0 
0 — sin^ COS(f) sin0   0 COS0 0 0      1 

D B 

DB is the transformation matrix from {n1} —»■ {&}, and D is the transformation 

matrix from {n"} —»• {b}. Combining terms results in: 

u> 
1 0 - sin0 
0     cosci»      cos0 sin<^ 
0   — sine]!»    cos0 coscf> 

4> 
6 (3.24) 

Finally, £C - yCS{w), where: 

0 -uz Lüy 

S{u) = uz 0 —u;. 

. ~uv ux 0 

is a skew symmetric matrix. 

(3.25) 
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H.    SPECIFIC TRANSFORMATIONS 

1.    ECI to ECEF: p 

First, we need to determine Earth's sidereal rate, Q,ei The subscript ei im- 

plies the angular rate of {e} measured with respect to {i}. This convention is the 

reverse of the nomenclature in [Ref. 1] and will be maintained due to it's simplic- 

ity. Assume the navigation frame and universal frame are co-located as shown in 

Figure 3.8. Consider Figure 3.9. It is clear from this figure that ttei resolved in {n} 

Zi,Ze 

Figure 3.8: ENU Navigation Frame 

is: 

"a 
0 

ficos^> 
flsmS 

(3.26) 

where fi is the magnitude of Earth's rotation and is given by: 

360° n = 
23 + 

56+3 
60 

Ü = 15.041^£ = 7.2 xlO-5^ 
hr sec 
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Q . sind) 
Q ei 

Q   . COS(|) 

Figure 3.9: Earth's Sidereal Rate 

where one sidereal day equals 23hr 56min 4.09sec. 

Resolving the angular velocity in the ECEF {e} frame: 

« 'e?   — 

0 
0 
ft 

(3.27) 

This vector implies that the only component of Oe;, in the {e} frame is in the z 

direction, see Figure 3.8. 

Now, consider the rotation viewed in the equatorial plane, where Z{ = ze. 

Over a time At, the earth rotates at a rate Q,At, figure 3.10. The transformation 

matrix from {i} to {e} can be calculated as: 

x 

y 
z 

cosftAi     sinftAf   0 
- smQAt   cosft At   0 

0 0        1 

x 

y (3.28) 

Let A = Q(t —10) — 2mr, where n is chosen such that 0 < A < 2% h (t —10) is the time 

elapsed since vernal equinox. Since the two frames are orthogonal the transformation 

from {e} to {i} would be the inverse of the transformation matrix in Equation 3.28. 

Substituting A and inverting the matrix gives: 
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zi'*e 

Figure 3.10: Sidereal Rate in the Equatorial Plane 

X " cA -sA   0 " X 

y = sA cA     0 y 
z 0 0      1 z 

(3.29) 

Finally, determine a point on the Earth's surface in terms of latitude and longitude 

(<p, A). Let P be the vector describing the point Q, Figure 3.11, then: 

y' R C(j) ck 

Figure 3.11: Point on Earth's Surface 
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°~p = 

R cos</>cos A 
i?cos</>sinA 

Rsmd> 
(3.30) 

where R is the radius of the Earth. 

2.    ECEF to Navigation: £C 

Now consider the transformation from {e} to {n}.  Let the orientation of 

the navigation frame be: 

xn = U, yn = E, zn = N 

Oe 

JL ,Q 

zn /   n 

rX« 

e            /:'::ISS: 

On ', 

P-y* 

s 

'\/<t> 
J[sji 

&£3aifc>&!,&^ 

Figure 3.12: ECEF to Navigation 

Then 

Rotating around ze by A (longitude) 

Rotating around ye by <f> (latitude) 
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to obtain: 

X C(p 0   s<f> 1 cX     sX   0 " X 

y = 0 1    0 -sX   cX   0 y 
z — S(ß 0   c<j) 0      0    1 z 

:CTQ (3.3i; 

Note: Since the origins in Figure 3.12 are not coincident =^> Eq. 3.31 is not completely 

correct. We need to include position of the origin of the navigation frame, eP0n. 

ePQ = ePon + 
e

nC
nPQ =* nPQ = :C(TQ - T0J 

Use vector calculus to define unit vectors for {n}: 

•   IE 

• IN 

tu 

\neixR\ 

Rx(üejXR) 
\Rx(QeixR)\ 

JL 
\R\ 

3.     ECEF to Wander Azimuth {c}: %) 

To obtain c
nC we must rotate {n} by an angle a around xn: 

where: 

:c = 
1      0       0 
0     ca     sa 
0   — sa   ca 

Then f = c
nC^C, see figure 3.13. 

(3.32) 

Now, for {n} = NEU 

\C = 
ca —sa 0 
sa ca 0 
0 0 1 

(3.33) 
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Figure 3.13: ECEF to Wander Azimuth {UEN} 
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Here: 

►ya= * 

Figure 3.14: Wander Azimuth (NEU) 

For {n} = UEN 

x 
!--"'^ 

Zn=N 

L 

\ a 

y 

T a 
—Ji yn= E 

xn= *c 

Figure 3.15: Wander Azimuth (UEN) 

Look carefully at the orientation of {c} and {n}. To understand each element of the 

transformation matrix, write out each component of {c} separately and compare with 

the matrix form in Equation 3.34. 

xc   =   —yn sin a + zn cos a 
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yc   —   yn cos a + zn sin a 

or 
X 0 —sa ca 

y — 0 ca sa 
z 1 0 0 

4.     Navigation to Body: b
nC 

Define {b} & {n} using right hand rule =>■ NED 

Figure 3.16: NED Orientation 

Convention: 

• 4> positive when right wing down. 

9 positive when nose up. 

• %l> positive when nose rotates N —> E. 

(3.34) 

Then: 
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X 

Figure 3.17: Positive </>, Positive 0, Positive ib 

1 0       0  " ' c6   0 -se' ciß     sij)   0 
0 C(j)      s<j> ,  Ce = 0    1 0 ,  C^ — — 5^     Clf)     0 

0 — S(j>    c<f> s6   0 c9 0       0    1 

where: 

C6=     0     c<j)    s4>    ,  Cf>=     0    1      0       .  C.,,=     -sw   ab   0 (3.35) 

I.    COORDINATE FRAMES FOR INS MECHANIZATIONS 

Types of INS configurations 

• Local level (torqued) 

• Space Stabilized 

• Strap down 

Local Level 

The x, y accelerometers are always in a plane tangent to local ellipsoid (ideally 

{n}). Torque is applied to vertical axis to maintain certain orientation of x, y axes: 

There are four types of local-level mechanizations: 
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Figure 3.18: Torque Applied to Maintain Orientation 

• North Slaved 

• Unipolar 

• Free Azimuth 

• Wander Azimuth 

In order to maintain a local-level orientation, the accelerometer platform must be 

torqued to align with the axes of the local-level frame.   Each of these systems is 

defined by the azimuth torquing rate. 

Question: How to compute the torque? ■ 

Answer: Must know angular velocity of platform with respect to the inertial frame. 

Let: {n} = ENU 
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Zn 

"►Xn       1 

►JO 

Figure 3.19: Geographic and Inertial Torque Model 

Now, 

fim- = Q,ne -f f2e,-,   where ftm- = angular velocity of {n} wrt {i} 

Note: in Siouris [Ref. 1], p is used to define fine. 

Recall Equation 3.26 

(3.36) 

^ "ei — 

0 
ficos<; 
Qsin< 

(3.37) 

Let: 

v = VN 

Vu 

(3.38) 

be the velocity of {n} wrt {e}. 

Now, the angular velocity Vlne can be described as a function of the distance from the 

Earth's center and the linear velocity v at a point. Therefore, let: 

"ne — 

UN 

(3.39) 
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Consider Figure 3.20, the angular velocity U>E can be expressed in terms of the 

radial distance and the linear velocity u/v, or: 

Figure 3.20: uE 

UJE 

VN 

Rt + h 

Next, from Figures 3.21 and 3.22 LJN and ujy are: 

Figure 3.21: w/y 

(3.40) 

uN 
VE 

Rx + h 
(3.41) 

Lüjj = u)N tan (f> 
VE 

Rx + h 

For a spherical Earth, Rx = R<f, = R0, otherwise, 

RJl-e2) 

tan(j) 

Rd 
^(l-E2sm2J>) 

where Re = equatorial radius 
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Q.t 

a, 

EC 

Figure 3.22: LüV 

Rx = 
Rr 

^ e
2 sin2 

(3.44) 

where 

and 

e = 1  =  eccentricity factor 

a = semi-major axis and b = semi-minor axis 

From Figure 3.23 we obtain 

ea (A + 0) cos</> 
(i + f2)sin<^ 

(3.45) 

Let the orientation of the navigation frame {n} be UEN.  Therefore, Qni re- 

solved in the {n} frame is: 

na 
c<f>     0   s<j) 

0      1    0 
—s(f>   0   c4> 

cX     sX   0 

-sX   cX   0 

0      0    1 

r   o   i 
0 + 

[ X + Ü _ 

ccj)     0   s<j> 

0      1    0 

-s<f)   0   c<j) 

0 

■t 
0 

nn •m 

(X + Q,)s<f> 
0 

(Ä + ft)c<^ 
+ 

0 
-6 

(X + ti)c<t> 

(3.46) 

(3.47) 

The negative sign in front of the </> term comes from the orientation of the axes. Since 

the y-axis is east, the upward rotation of </> is negative using the right-hand-rule. 
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. u 

Figure 3.23: Qni 

To verify, point the thumb in the direction of the y-axis and curl the right hand. A 

positive rotation would be down instead of up. Hence, the negative sign. 

Now convert to ENU orientation 

(Ä + ü)<4 nQ ■ — 

(\ + tt)s 

J.    PLATFORM MECHANIZATIONS 

(3.48) 

Let a determine the drift (wander) angle of {c} = {p} with respect to {n} = {g}, 

the geographic frame and is a function of both the sidereal rate, Q,ei and ttne, as shown 

in Equation 3.49. 

0 ca     sa   0 1  [ 0 
0     =     -sa   ca   0 0 (3.49) 

. ä J      [    0       0    1 J [ (Ä + 0).^ J 
Figure 3.24 shows the commanded drift angle a. The rate of change of a or ä is 

the difference between the platform angular velocity about the z-axis uzp and the 

geographic angular velocity u>zg or 

a~iüzp- Lüzg = LOZC - uzg (3.50) 
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Figure 3.24: Platform Frame {p} with Angular Rate, ä 

In order to keep the platform aligned we must command the angle a at a rate equal 

to uzp, we which we have denned as u>zc. We can now define each mechanization in 

terms of 6c. 

North Slaved 

To maintain a north pointing system we must keep xp pointing North, {NEU} ori- 

entation. If we apply torque to keep a. — 0 

=> uzc = (A + Q)s<f) 

Free-Azimuth 

In a Free-Azimuth system, the vertical axis is not torqued, therefore: 

uzc = 0 

Substituting into Equation 3.50, we get 

a. = — uzg = —flei sin <f> 

The equation at the top of page 46 in [Ref. 1] is incorrect and should be the same as 

Equation 3.50. 
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Unipolar 

In the Unipolar system, the wander angle, a, is kept equal to the longitude, A, of the 

geographic frame or ä = ±A. Substituting into Equation 3.50: 

wzc = u)zg ± A  (sign changes when crossing the equator) 

Wander-Azimuth 

In the Wander-Azimuth system, commanded torque cozc is equal to the vertical com- 

ponent of the earth's sidereal rate, fie; sin <f>. Substituting into Equation 3.49: 

a.   —   Clei sin 4> — Qei sin 0 — A sin <6 

ä   =   A sin <f> 

(No singularity at the pole) 

Space Stabilized 

Maintains constant orientation wrt inertial space. 

Strap-down 

Inertial sensors are mounted directly on the vehicle =£• transformation from sensor to 

inertial axis is computed rather than mechanized. 

K.    PLATFORM MISALIGNMENT 

Platform to Accelerometer: £C 

Imperfections in accelerometer installation result in errors between {p} and {a}. 

Assume misalignment angles are small: i.e. s<j> ~ </>, c<f> ~ 1. Error angles: 

• rotate by <j> about xp 

• rotate by 9 about yp 
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rotate by iß about zp 

ciß     siß 0 
—sip   aß 0 

0       0 1 _ 

1     iß   0 
-iß   1 0 

0     0   1 

cß 0 
0 1 

sO   0 

-s9 
0 

cB 

l o -e 
o i   o 
e o   i 

i 
o 
0 

0      0 
c6       s6 
-SO     CO 

1     0     0 
0     1     <ß 
0   -6   1 

1     iß   0 
-iß   1   0 
0     0   1 

i  e<j>  -o 
o    1      <ß 
e -s   i 

1     0<f> + iß   -6 + iß<ß 
—iß       1 <f> + iß(ß 
9-6 1 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

Ignoring higher order terms, we get: 

IC 
1    iß 

-iß    1      6 
e   -6   i 

e 
«3a;3 + 

0 iß -0 1 
-Iß 0 <ß 

9 -6 0 

/te3 + 5'(A),A = 

(3.55) 

(3.56) 

=$■ %C is a linear function of A. In general, for small changes, Euler angles 

act like vectors. These small misalignment angles can be used to compensate for 

misalignment errors. (In this derivation we have assumed {a} to be orthogonal). 

L.    ESTIMATE OF PLATFORM TO NAVIGATION TRANSFORMA- 

TION: n
pC 

Let pC be the estimate: 

™C = pC + 8pC (small error) 

= (i + 8;czc);c 

(3.57) 

(3.58) 
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Since nß "f7 = I we obtain: 

(/ + (qp) ic) ;cic (i +p
nc(sp)T) = I 

i + (s;c) ;c + ic{spf + (sp)(sp)T = i (3.59) 

Since 6CSCT ?s 0, we get: 

^ (6^);C = - {(6p);c]T := M (3.60) 

Post multiplying the left and right sides of Equation 3.60 by £C gives: 

S;C = Mp
nC (3.61) 

Adding ™C to both sides and remembering that p
nC = —"C for a skew symmetric 

matrix, Equation 3.61 becomes: 

^n
pC = (I-M);C (3.62) 
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IV. INERTIAL SENSORS 

A.    LASER GYRO FUNDAMENTALS: PASSIVE SAGNAC INTERFER- 

OMETER 

Light 
Source 

Figure 4.1: Ideal Rotating Sagnac Interferometer [Ref. 1, p. 87] 

Light is split at A to travel cw and ccw. Suppose Q = 0. Then: 

c 

Suppose tt^O. Let X be the distance A traveled in inertial space for light to return 

to beam-splitter. Then: 

t± = 2-KR ±X±, whereXt = ffllt± 

Then: 

2irR     RQt± 
t± = + - => t± 

2wR 
c^Rft 
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Then: 

ZU 
2-KR 

t+- i_ = 
~ c-Rtt 

2TVR 
r   2RÜ   i 

lc2-£2ß2J 
4TTä

2
0 

c2 - R?W 
' ATTR RÜ 

c      c 

C 1 

A-KRRÜ 
1  -1  

2TTR 

c + Rtt 

c     c 
+ 

c 

Rtt 
+ 

Now, to a first approximation: 

AirflR2 

ZA£ = -— <(=  Sagnac effect 

The optical path difference: 

AL = c£st = c 
AirOR2 

4TTR
2
      AAtt 

A = AirR2 <=  area enclosed by the circular path 

Sagnac effect is used in RLG and FOG. 

B.    FIBER OPTIC GYRO 

tt is measured by analyzing the phase shift caused by Sagnac effect 

• Ideal behavior assumes reciprocity =4> the paths of cw and ccw beams are iden- 

tical =$■ the phase shift is due to inertial distance traveled 

• Non-reciprocity may arise from non-linear index changes caused by unequal 

intensities =£• is handled by using broadband source 

• Non-reciprocity due to external magnetic fields like Faraday effect can be re- 

duced by magnetic shielding 
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Photo 
Detector 

Light 
Source 

Figure 4.2: Fiber Optic Gyro [Ref. 1, p. 119] 

Fiber length: 50m to 1km 

FOG elements: 

• Laser diode that acts as a light source 

• beam splitter 

coil of optical fiber 

• photo detector 
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Light from laser diode is split into two beams =>■ cw k ccw. The beams are super- 

imposed and the resulting interference is monitored =>■ measure phase shift by using 

photo detector => convert light into electrical current. Current is sampled every 

frame. Let A be the wavelength of the light. Then: 

T 

and phase shift AS 

A 

c 
2TTA 

T 
.    iTiüR2 c 

[27r27r(27T R)Rtt] 

Ac 
47rL.fi 
—-—(2, for N = 1, number of turns 

Ac 

For N > 1, I = 27ri?iV and A = TTJR
2 

87ri\M =^ A^ = ——n 
AC 

STTNA 
A    =    — sensor scale factor 

Ac 

Note, Sagnac effect can be viewed in terms of At or A<j>. 

=> Two practical approaches to obtain 0: 

1. Measure A<f> (=j> At) 

2. Change the frequency of one of the beams until A^ = 0. 

Then: 

* = (Ü)n («) 
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V. TANGENT PLANE NAVIGATION 

A. TANGENT PLANE EQUATIONS 

Consider the case of flight in a limited region. Use tangent plane: 

X   =   North 

Y   =   East 

Z   =   Up: Away from the earth's center 

observer 

f'ffi-S 

\J 
HPüiiäSüitiii 

Figure 5.1: Tangent Plane 

Let iR be the unit vector in the direction away from the earth's center. Then, 

the local gravity vector g acting on the observer is 

9 
GM 

-iR 
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where 

R   =   P0-R0 and R= \R\, 

R0   =     vector connecting E.C. with the origin of the tangent plane. 

P0   =    position of the observer in the tangent plane. 

Let P0 = (z,t/,z) then, 

||£|| = ^x* + y> + (z + Roy 

X 0 X 

y 
z ~ 

0 
— R0 

— y 
_z + R0 _ 

R 

11*11 

L   ||ß|| 
Therefore , the local gravity vector is: 

GM 
X \\Rf 

\\R\?y 

GM(z+Ro) 
\\R\\3 

Note, for flights near the Earth's surface, R ~ J?0, then: 

< 9y ^ -jtj 

Where 

GM 

(5.1) 

,0-   ^ 

B.    GENERAL NAVIGATION EQUATIONS 

• Idea: Compute vehicle's position based on accelerometer readout & equations 

derived above. 

• Constraint: Einstein's Uncertainty Principle =>- Accelerometers cannot distin- 

guish between inertial and gravitational forces. 
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Therefore: Let 

R   =     geocentric position vector of vehicle 

lV   =    vehicle's inertial velocity- 

Then 

Where 

f  R    =   lV 
[ %V   =   A + gm(R)<=  Einstein's principle 

A       =     specific force measured by accelerations 
gm(R)   =    gravitational acceleration 

(5.2) 

Equation 5.2 represents a system of differential equations that can be integrated to 

get vehicle's position in an inertial frame. 

Recall, r = A + g, and we get: 

Ax   -   x - gx = x + j^x 

Ay  =  y-gy = y + jfoy 
. Az   =   z-gzKz- 2j±z + g0 

where 

g0 + 
GMR? - GM(z + R0)3R2^^ 

Re 

z=0    J 

(5.3) 

gM(z + R0) 

R3 =    -\9o + 
d_ 
dz 

gM(z + R0) 
R3 

90 + 
GMR3 - {GM(z + R0)3R2) (^A) 

Re 

9o 
2GMRR0 

R6 

2<?0 
-9c + -z-z 

tio 

The mechanization for Ax,Ay,Az is shown in Figure 5.2. 



± ± 
[x2 +y2+ (z+R?] ~2 

it a 

GM 
R3 

y(0) 

i ± 

Figure 5.2: Block Diagram of Inertial Navigation System 

Solve the differential equations in Equation 5.3 for ^-, ^f-, and ^- to get: 

a; 
D =             l _ COS \    ~D~'' 
Ro 9o    \ \ Ro   J 

JL 
R0 

z 

R0 

Ay (, \9o , 
—     1 — COS ■ / ——t 
9o   V 

A-z - 9o 

2g0 

Ro 

cosh \ / —r-t — 1 
V Ro 

Therefore, for constant thrust acceleration in x and y direction the vehicle is 

displaced to an average position such that the gravitational component in x or y 

direction is equal to imposed thrust acceleration. The vehicle oscillates about this 

mean position with a period of: 

T=-U/5~84min 
2TT V 9o 

48 



Thrust acceleration in the z-direction greater than g0 causes exponentially increasing 

velocity and position. 

C.    ERROR ANALYSIS 

Linearize eq. 5.3 at (x0,y0,z0); 

Sx   =   -jfSx + 8 Ax 
Sy   =   -f-Jy + SAy (5.4) 
Sz   =   2^Sz + SAz 

Therefore: 

Sx 8Ax ( fg^\       8y 
— ' I — cos ,   -—-t    — 

Ro 9o    \ y R0 J      Ro 

*±   =    Mf   coshÄ-l 
Ro 2g0  \        V Ro ) 

Therefore, errors in x and y are sinusoidal, but errors in z increase exponentially 

with time. => do not use dead reckoning to compute z. 

D.    THE VERTICAL CHANNEL 

• Integrating acceleration in z leads to divergent solution 

• Use altimeter measurements together with az to obtain altimeter data. 

• Altitude is computed in CADC (Central Air Data Computer) based on 

— TFAT — free air temperature 

— Ps =static pressure 

Definition's 

• Absolute altitude (Habs) Height above the earth surface at a given location. 
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absolute 
altitude 

true 
altitude pressure 

altitude 

29.92 

system 
altitude 

Mean Sea Level 

Figure 5.3: Altitude Definitions [Ref. 1, p. 199] 

• True altitude (Htrue) Actual height above the standard sea level. 

• Pressure altitude (Hp) Height in model atmosphere above pressure datum plane 

of 29.92 in. (760mm) of mercury. (Does not consider variations in pressure and 

temperature at sea level, unlike true h). 

• System altitude Computer corrected Hp for non-standard day variations. 

ICAO Standard Atmosphere [Ref. 1, p. 201]. 

• Earths atmosphere 

- Troposphere: Lowest layer. Characterized by decrease in atmosphere (neg- 

ative lapse rate). Contains most of air and moisture. 

- Stratosphere:   Lapse rate changes direction.   Marked decrease in water 

vapor. 

- Metosphere: Lapse rate again reverse and T decreases with altitude. 
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- Thermosphere: Above 80km, air temperature decreases with altitude . Gas 

molecules are separated by large distances. 

E.    ATMOSPHERIC MODEL 

P   =    pressure 

Z   —    geometric altitude 

dP   —   —pgdz (5.5) 

Where 

9oR\ 
G      — 
y                (Re + Zf 

g0   =   9.87m/s2 (32.2ft/s2) 

p   =   atmospheric density 

From the ideal gas law 
MP 

(5.6) 

Where 

M =    mean molecular weight of the air 

R* =    universal gas constant 

T =    absolute temperature 

dP   .      gM 1 

* P =    R*Tdz 

=>dlnP=     iMdz 
R*T 

=*• P = P0exp-^—-z F    R*T 
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Where P0 = pressure at sea level 

Similarly 

gM 
p = p0exp - 

Let 

p = p0exV-—z 

dT 
1" = - 

Then for a given layer 

r = — ——   (lapse rate) 

T   =   T0-Tz 

V   =   -^ 
dz 

( gM \    . 

(  gM \    , 

Also, from US atmosphere model, we get: 

T = T(HP - H0) + T0 

and from Equations 5.5 and 5.6 

Hp   =   H0+   °[p°    ^M     ^,IV0 

Hp   =   #o-^§ln(PPo),r = 0 

Where, T0,H0,P0 are obtained from US Standard Atmosphere Model. Numer- 

ical examples [Ref. 1,  p. 204]. 
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F.    VERTICAL CHANNEL DAMPING: COMPLEMENTARY FILTER- 

ING 

Idea: Use altimeter information in steady state and at low frequencies (altitude 

is noisy). Use acceleration data at higher frequencies. 

How? Consider: 

, s2 + as + b , 
h   =   — -h 

sz + as + b 

s2        , as + b 
h + -Z-. —h 

s2 -\- as + b        s2 + as + b 

as -\-b 
s'h + 

s2 + as + b s2 + as + b 

Note: 

s h = h — vertical acceleration in inertial z-direction 

=> use \az + gz) => ^-acceleration computation in inertial frame. The mecha- 

nization is shown in Figure 5.4. 
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/ 

(tangent, plane) 

h  =    (a   +  gz) 

Recall:   t   =   {NEU} 

1/s § 
A 

h 
1/s 

I 

Figure 5.4: Complementary Filter Mechanization 

54 



Consider Figure 5.5 (see Figure 4-16 [Ref. 1]). We can write the following: 

-•-^~V^ XI 
1/s 

XI 

C2 

T 

1/s 
X2 

Cl 

I 
2ao 
Ro 

-► h = xz 

(from CADC) 

Figure 5.5: Complementary Filter: ^-Channel 

ii   =   xz — c2(hs + x2) 

x2   =   xi-c1(hs + x2) 
(5.7) 

Xi   =    -c2x2 - c2hs + xz 

x2   =    — cxx2 + xi — cxhs 

In state space form we have: 

x2 
= ' 0   -c2 " 

-1   -c> . 

Xi 

. X2. 
4 

-c2 

-Cl 
hs + 

l 
1 

r-H
    O

 

XJ2 

J5 

h = x, = 0   1 
^2 

c 

In transfer function form, h(s) = C(sl — A)~1B we get: 

h(s) = [ 0   1 

Taking the inverse of (SI — A): 

s        c2 

-1    s + Ci 
-c2 

-Cl 
Ä,+ 

1 
0 

x7. 

(si-A)-' 0   1 
5 C2 

— 1     5 4- Ci ■s2 + Ci5 + c2 

s 4- ci   c2 

1 5 

(5.8) 

(5.9) 
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Substituting 5.9 into 5.8 and multiplying through gives: 

1 
h(s)   = 

s2 + cxs + c2 
0   1 

(•S + Ci)c2-CiC2 

— Ox — SCi 
hs + 

S + Ci 
1 

X y_ 

"(sCi+Ca)    h 1 

s2 + cts + c2 ' s '  s2 + as + c2 

Compare with our filter: 

Now add a. 

a = a,  c2 = b 

xi   =   az + 2u2x2 - c2(hs + x2) 
x2   —   xi - a(hs + x2) 

(5.10) 

xi   =   (-c2 + 2Lü
2
)X2 - c2As + az 

x2   =   —cix2 + xi - ahs 
(5.1i; 

Xi 

X2 

02 

c2 + 2u) 

h = xz = 

This gives the transfer function h(s): 

— (.SCi + c2 

^2 

0   1 

+ -c2 

-Ci 
Ä.+ 

1 
0 

X 7 

A(*) ^-A,+ 

Where: 

Substituting: 

S2 + Ci5 + C2 S2 + as + C2 

a   =   a 
b   =   c2 - 2w? = b - 2u;2 

* as + &-2u;2 

M*) = ~ ——;Hr ^ + 
1 

.s2 + as + 6 - 2a;2 s2 + as + 6-2u;2 («z - Jo) 

56 



Note, in steady state az must equal g0. Suppose az measurement has errors, i.e. let 

az = CLZO + 8az,  azo = g0 

and suppose 8azo / 0 in steady state. Compute h in steady state. 

Using the Final Value Theorem: 

h(0)   =   limsA(s) 
S—t-0 

=   \ims Ti(s) hs(s) + limsT2(s)8az(s) 

Where: 

Tl(s)   =        a* + h~W 

T2(s)   = 

s2 + as + b- 2u2 

 1  
s2 + as + b - 2u2 

Suppose: 

s c    / \      const2 baz   =     const2 =£■ oaz(s) =  
s 

i.                             L / \      consti ns   =    consti => hs(s) =   

MO) - 3i(o)Ä,(o) + r2(o)^(o) 

Note, we want A(0) = hs(0). 

Consider 

s3 + as2 + bs + c 
s3 + bs + c —2 

7      /     \ ÜS r        /    x 

■s3 + as2 + bs + c s3 + as2 + bs + c 
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Where 

c — c — 2ur — c — 
2go_ 

R0 

Now, let hs(0) — consti, 6az(0) = const2 

s-+0 
h(0) = lim s fi(s) h{s) + s f2(s) Saz(s) 

Note, 

sT1(s)ha{s)\s=0   =   fi(0) = l 

sr2(s)k2(s)|s=0     =     sf2(f 
const 2 

f2(0) = 0 

=» MO) = MO) 

Now the bandwidth of TUs) is selected based on the bandwidth of the altitude sensor. 
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VI. KINEMATIC EQUATIONS AND ERROR 
ANALYSIS 

A.    ROTATING COORDINATES 

Suppose: 

Then: 

Figure 6.1: Rotating Coordinates 

%
PQ = lPop + \C pPQ 

lPop = 0 and P
PQ = const 

(6.1) 

Differentiating: 

X
PQ= \C*Pq 

d 
*,pQ = *tf'pQ = i;(F)'P< dt    v     dt dt 
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Note 

p = ;cs(püpi) £■■■ 
dt 

=   lfiS{?C%i) 

= senpi);c 

—      ilpi X   PQ 

=   'w x % 

Now, suppose PPQ ^ const. Let | 'PQ = vector of time derivatives of each element of 

%■ 

Then: 

In general, Coriolis theorem: 

<ft St 

Now, let's compute: 

<i 6 
A=—A + coxA (6.2) 

di2 ,p< = ji&'Yli^*') 
S^iPQ+tuJXTtiPQ + Tt(luX TQ)+i(*x{i>x %) 

Note: 

— (axb) = äxb + axb (6.3) 
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Therefore: 

Note 

INx ip« = (it")x ^ +iu x jtp* ^ 

d • 5 ,        <—^^      £  . 
w = 77 w + 'w X  'w = 77 '<*> (6.5) dt St St 

Therefore, we get: 

62 XpQ   =   Tr2ipQ+i"xilPQ+(il")xiPQ + 

s_ 
St 

,U.X-iJPg+  '»X  ('u>X   'PQ) 

Notation J^a; = i; 

Now, suppose iP0p ^ 0, then 

'£? = %p + ^% + ^ XP
Q+

2%i XTtpQ+ ^pi X (iüpi X iPq) 

Using the notation in Siouris [Ref. 1], 

%    =   P 

Pop   =   R 

r   =   R + p 

Then: 
C   2 

f = ^+Jr + 'fip,-xp+ ifi?1x(ifipixp) + 2%x^ (6.6) 
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Where: 

■■    S2p 
r, i?, —-    =     linear acceleration terms 

Tlpi x p   =     tangential component of acceleration due to %(lf 

Vtvi x (Ttpi x p)   =     centripetal acceleration 

Sp 

~8t 
2 inpi x —    =     Coriolis acceleration 

Recall the general navigation equations. 

Idea: Compute vehicle's position based on accelerometer readout & equations 

derived above. 

Constraint:  Einstein's Uncertainty Principle =>■ Accelerometers cannot distin- 

guish between inertial and gravitational forces. 

Therefore: Let 

Then 

Where 

R   =     geocentric position vector of vehicle 

lV   =     vehicle's inertial velocity 

( R   =   {V 

\ lV   =   A + gm(R)<=  Einstein's principle 

A       =     specific force measured by accelerations 
gm{R)   =    gravitational acceleration 

(6.7) 

Equation 6.7 represents a system of differential equations that can be integrated to 

get vehicle's position in an inertial frame. As shown in Figure 6.2 the accelerometers 

measure PA = specific force resolved in {p}. 
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IC'S IC's 

Accelerometer's 

PA p 

£A 
\ I 

J y^ l/S  ► l/S 
XR 

*K ̂
 

~      fi -n \ 
»m 1 «/ 

Therefore: 

Notation 

Figure 6.2: Calculation of Velocity and Position 

lV= pvA+'gJß) 

dt 
d_ 
dt 

( )t.   =    wrt {i} 

( )e   =    wrt {e} 

Let R be position vector of the vehicle and 0e; be the earth's turning rate. Then by 

the coriolis theorem, (Equation 6.2): 

(dR\        (dlC 
dt dt 

+ tteixR = V + ttei x R (6.8) 

Where 

'■(". 

Differentiating Equation 6.8 wrt {i} and remembering that Qei is a constant, we get 

(6.9) 
Jt Ji   \dt)i \dt, 

Now substitute Equation 6.8 into Equation 6.9 we get 

(d2R\       (dV^ 

dt2 dt 
+ nei xv + nei x (ttei x R) 
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Now, using the Coriolis theorem for {^) .'■ 

(dV\      fdVs 

Where 

ftpi =  angular velocity of {p} wrt {i} 

Equation 6.9 becomes 

( ~~dF )     =    \~dt)   +npixV + üeixV + neix {Üei x R) 

Since 

(d2R' 

\dt2. 

we re-arrange Equation 6.10 to obtain 

A + gm{R), 

A=i—\   +{Qpi + ttei) xV + ttei x(ttei xR)-gm{R) (6.1i; 

Now, let 

g(R)     =     9m{R) - ttei X (ftei X R) 

which is 
N  11*11 

Substituting into Equation 6.11, we get 

"^" R <=  Schüler frequency 

^A= HH   +(npi + nei)xV-g{R) (6.12) 

Where 

Then substituting into Equation 6.12 

A=(lP)   +(üpe + 2^)xV-g(R) 
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Rearranging terms 

(dV 
= A- (ßpe + 2ttei) x V + g(R) (6.13) 

Since V is a vector, or 

=* V = vx vy vz 

We can re-write Equation 6.13 [Ref. 1, p.246] as 

Vx   =   Ax-{üpey + 2Üeiy)Vz + (üpez + 2netz)Vy+gx 

Vy   =   Ay-{ttpez + 2tteiz)Vx + (npex + 2tteix)Vz+gy 

_ Vz   -   Az-(ttpex + 2neix)Vy + (ttpey + 2tteiy)Vx+gz 

B.    GRAVITATIONAL MODEL 

• Assumes Earth's mass distribution is symmetric around Earth's ze axis 

• Gravitational potential in {e} 

oo 

u{RA) = -^(i-Y.M^)nPn{^<t>)) 

based on reference ellipsoid 

Where 

fj.   =    earth's gravitational constant 

a   =     mean equatorial radius of earth 

R   =   ^xl + yl + zl 

(f>   =     latitude (sin <j) = -^) 
R 

Jn   =    coefficients of zonal harmonics (constants determined 

from observations of orbit perturbations of artificial 

satellites) 

Pn(sin<^)   =    associated Legendre Polynomial of the 1st kind 

—   =    potential of spherical mass 
-ft 
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The rest account for: 

* Earth is bulged at the equator 

* Flattened at the poles 

Generally asymmetric 

Note, if symmetry wrt equator is assumed => odd harmonics vanish. 

gravity vector => g(R) — 9x   gy   9z 

dU dU dU 
9x ~ dx ' 9y - dy ' 9z ~ dz 

g(R) in ECI is given in [Ref. 1, p. 147]. 

Formula for Computing Vehicle's Position fc Velocity in {n} 

dV 
dt 

= A-(ttne + 2nei)xV + g(R) 

Compute in {n} = ENU. Then 

nQ ■ — 

r VE I 0      ] 
&N = Ocos <f> 
Üu _ ft sin <f> 

Also 

lQ    — 

CUE Rj,+h 

Rx+h "•01- 

R\+h tan </> 

, where nV 
\VE 1 \VX] 

vN = Vy 

L Vu J [vz\ 

lft A cos <j> 

Asin<^ 
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Therefore: 

from pg.152 

d_ 

dt 

dnV 

dt 
= nA - (T2ne + 2"net-) x nV + ng(R) 

r v^i r^i 
VW = AAT — 

Vu Ay 

0 — Lüu — 2QE    uN + 2ÜN 

uu + 2üu 0 -WE - 2ttE 

—LÜN — 2QN      UE + 2&E 0 

(6.14) 

^ #* 
vN + 52/ 
Vu 9z 

In {n} for spherical earth: 

VEdt VE   =    f 
Jo 

VN  =   fvNdt 
Jo 

Vu   =    f\ 
Jo 

Vvdt 

ngm(R)~ n
9l{R) 

Finally, note: 

<j>   = 

X   = 

0 
0 

ymo\ R ) 

VN 

R^ + h 

VE 

0 
0 

9mo(l - fa) 

(R\ + h) cos <f> 

Figure 6.3 shows the standard mechanization for Equation 6.14. 

Wander Azimuth Mechanization 

Let 

V = 
'dlV 

dt , 

dpV' 
dt 

'A - ( ?£lpe + 2 pttei) xT+ pg(R) 
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Compute 

X,q 

Accel 
platform 

gravity 

p + 2 Q 

torque compensation 

g(R) 

dV 

dt. 

■Hi 

+li 

1' —I— 
Compute 

K>§0 

Figure 6.3: Standard Mechanization 

Recall for {n} = ENU 

Note 

nQ    - 

v, A_ 
Ra+fc 

v* 
R^+A 

1E_ tan ^ 
A cos </> 

A sin oi> 

i ^ez — 

0 
Ocos (f> 
Clsin 6 

p
nc 

ca     sa   0 
—sa.   ca   0 

0       0    1 

m pe »'zm ~Tr, Is    J'r; "pn    I n 

0 
0 
ä 

+ 
ca     sa   0 

—sa   ca   0 
0       0     1 

Xc<f> 

Xs(j) 
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And 

Sea + Xcösa 

bsa + XcSca 

ä + Xs(p 

pnP 

py    _ 

ca sa   0 0 
—sa   ca   0 ficos 

0       0 1 _ Osin 

Qc<f>sa 

Clccpca 

Qs<f> 

ca     sa   0 r vE i 
—sa   ca   0 vN 

0       0 1 _ Vu \ 

rpKn 
P
Vy 

[pvz \ 

VE 

VN 

Vu 

ca     sa   0 
—sa   ca   0 

0       0    1 

pvx 
PVy 
PV 

x = V N 

R<t, + h 

i VE 

(Rx + h)c4> 

ä = — Asin</> (wander azimuth) 

Alternatively, compute A, <j>, and a from direction cosines: 

ic= ics(mne) 

Integrate Equation 6.15 to get \C. Then, for {n} = ENU: 

Where 

V 
cacX — sas(f>s\     saccf)   —casX — sascf>cX 

—sacX — cas(f>sX   cac<j)     sasX — cas<f>cX 
cSsX 

V 

S(f> 

C\\     C\2 C\z 

C21    C22 C23 

C31   C32 C- 

c(f>cX 

(6.15) 

33 
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And 

A   =   tan' 

a   —   tan' 

sin a C32 

C33 
-1 C\i 

C22 

Wander Azimuth; North Slaved 

Assume elliptical earth (geodetic) 

i^ = i?0(l-2/ + 2/sin2<£) 

Rx = R0(l + /sin2 </>), where / = J(l - ^) 
z or 

Note, the spherical earth (R$ = Rx = R0) and / = 0. 

Recall 

v, 
Rx+h 

Rx+h 
^rtani \s(i 

1. Compute torquing rates 

°a 'pi Ok upe "t       u 6g 

2. Compute pf2: pe 

Also, 

R$+h 
Vv. 

Rx+h 

Rx+h 

"pe 

tanoi» 

«"De      —        " "ne ~r*   * ^ "pn 

0 
0 
ä 

— (f>ca -\- Xccfisa 
(j)sa + \c<j)ca 

\s(j> + 0 

torquing rate blows up near poles (for North Slaved) 
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Now wander-azimuth 

°rt. pez 

~^   " t"pe — 

0 =^> Q =  -\s<j) 

—(j>ca -f Xccpsa 

<f>sa + \c</>ca 

\s<l> + ä = 0 

4. 

M - (*ttpe + 2 ^e2) xV + <?(#) 
jp 

Ä 

vN 

VE 

(Rx + h)c(b 

—\sd> (for wander-azimuth). 

5. Compute h 

Where 

eR 
(Rx + h)c<pc\ 
(Rx + h)c<j>s\ 

(Rx(l - s2) + h)s< 

=>h=^--(l-e*)Rx,  l-e2 = -2, e*=2f 
s<p a1 

dt 
eR = e

nc
nv = icw 

C.    SPACE STABILIZED MECHANIZATION 

* The accelerometer platform is always aligned with {i} (maintain constant ori- 

entation) 

* Assume spherical earth 

* Torquing: u>x = u>y — LüZ = 0 



* Governing equation: 

{R = \C PA + lg = ;C{ PA + pg) 

►Y 

Figure 6.4: Latitude and Longitude in {i} Frame 

Therefore 

Recall 

lR = 

A = tan' 

(R + h)c(f)cA 
(R + h)c(/)sA 

(R + h)s(j> 

->(!)=A-A. + I* 

=*. A = A0 + tan-1 ( —- j + Sit 

lRz 

'R 

ny 

'<m\ 

sin 

rar     n 

lR + ht 

'dR\ 
dt 

'dms 

dt , 
+{nei x m 
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Then 

* Computed: 

nV = %! 
'dlV 

dt . 
?C( {R - XI x %R) 

?C   = 
c<f>     0   scp " r   cA sA   0 1 
0      1    0 -sA   cA   0 

—s(f>   0   c<j) 0       0    1 _ 

c(f>cA      c<psA S(f> 
-sA        cA 0 

—s^cA    — S(f) s/ L      C(f) 

Finally, ' C = const = initial values 

>g = \Cn
9] 

l
nC= ?cJ 

0 
0 

9z 

Accelerometer'fl 

»A 

i. ^Qvj^ 

"c 

T 

*R 
l/s 

Sm(iR) 

R 

Compute 
i_ 

Figure 6.5: Navigation Mechanization vA —> nV 

* Assume ellipsoidal earth 

Compute 

T 
Mo 
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Torquing =4> the same 

Governing equation: 

lR 

A 

A 

=   tan 

(R\ + h)c(f)c\ 
(Rx + h)c</>s\ 

{{l-e2)Rx + h)s<f> 

\lRj 
X0 + A-Üt 

. _i /        lRz sin 

or consider 

Xl-e2)Rx + h/ 

(lRl + *R2
yyi2 = ((i?A + />)2 cos2 ^)1/2 = (i?A + h) cos, 

tan i 
*'J£ + ^ 

Example Wander Azimuth Navigation 

{n} = UEN 

Vehicle is traveling in a plane defined by <f>0 - 45' with the equitorial plane. Vehicle's 

velocity V along it's path is 400^. Vehicle has wander azimuth system aboard. 

1. What is nVl 

ny 

2. what is *nne, 
nnei, 

nnnt 

0 0 
400 

0 
178^ sec 

0 

0 r o i 
0 = 0 
V Ä (Rco s4>o)    ■ 
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Xe 

*~Ye 

Figure 6.6: Wander Azimuth Navigation 

Now 

C<f>0 

0 
0 
1 

s4>0 

0 
. s(j)0   0 c4>0 _ 

Xs<p0 

0 

.  -Wo 
-gtan< 

0 
V 

I         R 

Po  ' 

cX     sX   0 " r o i 
-sA   cA   0 0 
0       0    1 A 

Check Figure 6.7 

and solve for 

nti ■ - 

flS(f)0 

0 

Q,c<f>0 
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X 

N  =   Zn     / U   =   Xn 

Figure 6.7: U and N Transformation 

"0 ■ - 

Xscf>0 + fts(j)0 

0 
Xcd>0 + Slc(b0 

-^ tan <j)0 + Q,sd>0 

0 
^ + ttc(p0 R 

3. What is vüpi1 

ptt pi 
p

nc("nni+ "n 
1      0       0 
0     ca     sa 
0   —sa   ca 

pn) 

For wander azimuth: 

^ tan 4>0 + 0,s</>0 + a 
0 

P + ttc<f>0 R 

R tan <^0 + tts(f)0 + ä 
(^ + Q,c<f>0)sa 

a -\s<f>0 

V 

R 
tan <j)0 

Therefore: 

\{t) 

a(t) 

const = (j)0 

rt      V 

fuikdt=ik{t-t')+x{t') Rc<t>0 
rty V p V 

J   — tan <j>0dt =- — t<mcf>0(t-t0)+ a0(t0) 
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Platform torquing: 

iüxn    =    Us wander azimuth 

Uyc   =   (# + tic<fr0)sa 

Uzc   =    (^4- fts(f)0)sa 

4. What do accelerometers measure? 

Jd2R\ 
dt2     . 

pgm(R) 

pA+ v9m{R), 

-JL- 

0 
0 

(Ro+kf 
0 
0 

5. What is (^jf). in terms of nV, Pftne, Pftri? 

Recall 

=   V + tteix R 

Differentiating: 

d2Rs dV 
+ ftei x(V + ttei x R) 

\ dt2 I.      \dt 

Applying the Coriolis theorem to (jf) . and expanding the cross product terms, 

we get: 

(d2R\ (dV\       n 

dt2 

=      \~dt)    + ^ + Üe^ xV + ^eiXV + Üei X (ftei X R) 

=  (~dT) + ^0pe + 20et') x y + °et' x ^ei x v^ 

=    f -^- )   + (fipe + 20ei) x V + Qei x (ftri x V), where fiei « 0 

(6.16) (ftPe + 2n„-)x v+(^ 
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Apply the Coriolis theorem to ( 

'dV' 

dt . 
= ßr) +n"xV 

Solving for f^M   and remembering that (£jpj   = Q: 

[dt), 
Substituting 6.17 into 6.16 we get: 

(d2R\ 

-ftpe X V 

dt2 -ttpe X V + {ttpe + 2ttei)  xV 

(6.17) 

(6.18) 

Therefore, 

\ dt* . 
(pnpe + 2pftei)x w 

Q,S(ß0 

(|j + £lc(p0)sa 
_ (^ + Q,c(f>0)ca 

■p5Q + 3Slc(f)0sa 
ftCa + 3ftc(f)0ca 

+ 2 
Vts(f)0 

Clc<ß0sa 
Qc(f)0ca 

0 
Vca 
-Vsa 

x 
1 0 0   1 \ ° 1 
0 ca sa V 
0 — SOL ca 0 

Note, Ü = 7.5 x 10-7 ^ 

'd2Rs 

dt2 . 

r o  i r   o   i 
V nSO 
V 

L   RCa  1 
X Vca 

—Vsa 

A B 

Making "A" a skew symmetric matrix and applying Ax B — S(A)B, we get: 

'd2Rs 

dt2 , 

0 
v 

~RSa 

V2 Jl 
R c a 

v v 

0 0 
0 0 

■ V2 „2 

0 
Vca 
-Vsa 

0 
0 

R s a R 
0 
0 

= pA+pg(R) 

ax 9x 
ay + 0 => < 

. a* . _ 0 
=   0 
=   0 

Yl _ • R     9x 
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Recall from classical physics =4> centrifugal acceleration = j^- 

Therefore, 
1782 

ax = 9.8 sa -9.8 
m 

sec* 6.4 x 106 

Where I assumed R = R0 — 6400 km 

D.    ERROR ANALYSIS 

* Idea: Perturb the navigation equations around the true values of the position 

and velocity vectors. Consider tangent plane mechanization, Figure 6.8. 

+ a 
y~^i/s r 

► l/S 
r 

L 

g(R) 

Figure 6.8: Tangent Plane Mechanization 

Let V = r 

Then V = A + g{R) 

r    =    V 
V   =   g(R) + A 

From Figure 6.9 R= *R= *REC + V 

\\R\\ = yJx2 + y2 + (z + Roy 

Therefore we obtain 

=     ^    • 
\\R\?h    IW 

r    =   V   . 

V   =   A + 

11*11 
,|ÄJK hßo) (z+Ro) 

\\R\\
3 

ß(z+R0) 
\\R\\3 

(*) 
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{t} 

Figure 6.9: REC 

Now, suppose pC is known exactly but, 

r     =   r0 + Sr 
V  = v0 + sv 
'A   =   An + SA 

(6.19) 

Where r0, V0, A0 are true values and 6's are small errors.  Now let's linearize   6.19 

around r0, V0, A0 to obtain a linear model of the error dynamics. 

f   Sr    =   SV 

SV   =   SA + 

Where 

Now 

Consider 

dg(R)      dg(R)      8g(R) 
dx dy dz 

Sx 
Sy 
Sz 

Sr = 

d_ 
dx 

Sx \SVX] ' SAX ' 
Sy , sv = svy , SA = SAy 

. 6z . [svz \ [SAZ\ 

ßX 

m\\3 

ß(z+R0) 

IW 

d_ 
dz 9(R) 

Ro 
0 
0 

0 
0 

d  ..z+R„ 
dzVm\3 

same for 7— q(R) 
dyyy   ' 

0 
0 

2go 
Ro 
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Where 

V 
8 (Z + R; 

dz [ ||Ä||3 t 

\\R\\3-(z + R0)3\\Rf±2(z + R0)/\\R\\ 

\\R\\6 

\\Rf - 3(z + Roy\\R\\ 

ty 

m 
\\R\\6 

2— 
R0 

and 

dz 

Therefore: 

d 
\\R\\   =   —y/x* + y* + (z + R0f 

dz 
1 1 
2   lxi + y2 + (z + Roy 

2(z + R0) 

8rx   =   8VX 

8rv    =   6VV 

8vz 8rz 

8VX   =   -j?-8rx + 8Ax = 
6VV   = 
8VZ   = 

R, 

-§tjrv + SAv = fy 
2%8rz + 8Az = fz 

z + R0 

\\R\\ 

(6.20) 

rx   =   -j^8rx + 8AX =$■  sinusoid 
■JtJry + 8Ay sinusoid 

2f-8rz + 8AX =>-  hyperbola 

We have shown INS equations have the form 

x = f(x,u) (6.21) 

where 

x   =   state vector consisting of vehicle position and velocity 

u   =   accelerometer inputs 

Now one can be used to obtain error equations for INS mechanization. 
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Let 

x   =   x0 + Sx 

u   =   u0 -r 6u 

where x0, u0 are true values and 6x,6u are errors. 

Then 

6x   = 
dx 

Sx + 
du 

8u 

=   ASx + B8u (6.22) 

Equation 6.22 describes error dynamics of the navigation equation 6.21. Now, let's 

consider the vertical channel equation in the tangent plane. The mechanization is 

shown in Figure 6.10. 

+ i\ 

1/s 1/s 

(S+Ro) n 
l|J?ll3 ^ x,Y 

Figure 6.10: Tangent Mechanization: Vertical Channel 

where 

or 

Now let 

||Ä|| = Jx2 + y2 + (z + R0)
2 

z    =   vz 
■       _      (z+R0)        A 

z = z0 + 6z, vz = vzo + 6vz, Az = Azo + SAZ 

(6.23) 
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then from Equation 6.20 we obtain: 

I   8z    =   8vT 

8vz   =   ^8z + 8Az 

The mechanization for the vertical channel error equations is shown in Figure 6.11, 

5A O 
+ n 

1/s 
bz 

1/s 

(2a0) 
Ro 

Figure 6.11: Vertical Channel with Error 

8z(s) 
8Az{s)      52 + 2£ 

where the poles are ±A/R   which show that the errors in the vertical channel blow 
V   ■f*'0 

up. Therefore, let's use a complementary filter to stabilize the errors, Figure 6.12. 

812- 

a 

+. 

A 
b 

+ S    X 0X2 
1/s 

0X2 + ^ 
2/s 

6X1 ÖZ 
2s 

5A 

+ 

z 

w+ A — ~~ A 

2ao 
Ro £ a 

1 h i 
Figure 6.12: Vertical Channel Complementary Filter 

Here 8 hs represents changes in hs. Complementary filter equations: 

8x1   =   —a 8x1 + 8x2 + a 8hs 

<   8x2   =   -(b-%g)8x1 + (b-^)6ha + 6Az6x1 + 8x2 + a8ha 

.  8z    =   8x1 



8x\ 
8x2 

-a   1 
4   0 

8z = 

8x\ 
8x2 

1  ol 

+ 

8x\ 
8x2 

b 
8hs + 0 

1 
8AZ 

(6.24) 

Question: How do we implement filter 6.24 with the nonlinear Equations 6.23? 

Answer: Replace 6's with full scale signals in Figure 6.11 and ^ with pLjj^ß 22 
II-RII3 

l/s 
X2 

l/s 
Xi 

Figure 6.13: Linearized Vertical Channel Filter 

Linearize Figure 6.13 at x0, y0, z0, Azo to get Equation 6.24. 

Xi 

x2 

z 

—axi + x2 + ahs 

-bxx + bhs + ^|±F + Az 

=    Xi 

Let 

x\ = x10 + 8xi, x2 = x2o + 8x2, hs = kso + 8hs,. 

z 

(6.25) 

{8xi   —   —a8x\ + 8x2 -f a8hs 

8x2   =   -bSxi + b8hs + 2%r8x1 + 8AZ 

Note Equation 6.26 is the same as Equation 6.24. 

(6.26) 
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Summary: Filter design process 

1. Obtain INS mechanization equations. 

2. Linearize around true values of INS states and inputs. 

3. Design a filter for the linear equations obtained in step 2. 

4. Implement the filter on the non-linear equations in step 1. 

Probability and Stochastic Processes 

The errors in accelerometers, altimeters, GPS, gyros, ... are usually modeled 

as random signals having certain statistical (stochastic properties) properties. This 

is shown in Figure 6.14. 

random process 
E(x(t))    =  X 

x(t)  

E[(x-  xf(t)J 

tl t 

Figure 6.14: Random Process 

Definitions 

• Freeze time: x(ti) is a random number with values in some interval of R (real 

line). 

• E(x(t)) = average (mean) value of x over time. 

• E[(x(t) — x(t))2] = variance of x(t) {rms2). 
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• E[(x(t) — x(t))(x(T) — X(T))], t / T is called covariance of x(t) and is denoted 

by Px(t,r). Note: variance of x(t) = P(t,t). 

• Given x(t) and ?/(£): two random processes, we define 

Pxy = E[(x(t) - x(t))(y(r) - y(r))} 

as the cross-covariance of x(t) and j/(i). 

If x(£) is a vector of random processes: 

x(t) = 
X] it)' 

iit). 

x(t)) = x(t) = 

■E(. *(*))" 

Cn(<))  . 

P^i, r)   =   £[(x(i) - x(i))(x(r) - z(r))T] <- is a matrix 

/ *i(*) - *i(*) 

E[(x1{t)-X1(t))(x1(T)-X1(T))) 

XI(T)-XI(T)    ■••   xn(r)-xn(r) 

•    £[(xi(<)-Si(*))(*n(r)-S„(r))] 

£[(*»(*)-*n(*))(*i(r)-5i(r))]    ••■    £[(xn(<) - xn(t))(xn(r) - xn(r))] 

P is a n x n symmetric positive definite matrix with variances on the diagonal and 

cross-covariances off the diagonal. 

Definition: x(t) is called wide sense stationary (wws) if x(t) = constant and 

P(t,r)   =   E[(x(t) - x(0)(x(r) - x(r)f] 

=   ^(*-r) 
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From now on we will deal with E(-) which is a linear operator: 

E(x1 + x2)   = E(x2 + x1) 

£"(const)    =     const 

E{Mx)   = ME(x), where M is any constant: scalar, matrix 

E(xM)   = E{x)-M 

=> E[(x(t) - X)(X(T) - x)T]   = E[x(t)x{T)-x(t)xT-xx(r)T + xxT)] 

= E[x(t)x(r) - E(x{t))xT - XE(X(T))
T

 + xxT)) 

= E(x(t)x(r)) - xxT - xxT + xxT 

= E(x(t)x(r)) - xxT 

If y = Ms, x & : y are wss processes and M € RnXn - constant matrix. 

Then 

f   y    =   E(Mx) = ME{x) = Mx 
\ Ry   =   M Rx M

T,  Rx = covariance of x 

Those are important identities. Suppose x(ii) is independent of x(t2), x(t3) 

for all ii, • • • ,tn. 

Then 

, X\Xnj 

E[(x{h) - x)(x(t2) - x)T]   =   E[x(t1)x(t2)]-xxT 

=   E{x(h))E{x(t2)) - xxT 

=   0,  V<i,<2 

Note, for independent random wss process x(t), 

Rx(t,r)   = 

EKX^-X^XX^-X^T))]      ..-     ^[(llW-ÄlWK^nW-änCr))] 

£[(*„(*) - xn(t))(Xl(r) - Xl(r))]    •••   J5[(a;n(*)-S»(<))K(r)-xn(r))] 

(   R,t = T 

\ 0,^0 
£ £(2 - r), is symmetric, positive semi-definite matrix 
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Definition: x(t) is white gaussian noise if it is independent and for each fixed 

timeij, x(ti) has gaussian distribution f(x(ti)), Figure 6.15. 

f(x(ti))   

Covariance  of x(ti)   = P 

~ x(ti) 

Figure 6.15: Gaussian Distribution 

Here £ is a scalar random process. 

1 
/(x('«0) =    /z—.^exP   ~ 

1 (x(U) — x) 

V2^R        l    2 R 

in the matrix case: 

f{x{ti)) =     h«   w      n   6XP {VX{ti) ~ *)TP?(XM ~ *< yj{2ir)ndet Px        V2 

If x(t) is white gaussian we write: 

x ~ N(x, Px) 

Finally, consider 

Then 

k 

is a solution of: 

x = Ax + Bw, w ~ N(0, Ru 

x(t) = E(x(t)) = eA^-^E(x(t0)) 

PS) = E[{x(t) - x{t))(z(t) ~ x(t)? 
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Px(t) = A Px(t) + Px{t) A
T + B Rw BT 

If A has all A's in left half plane, then Px(oo) = Px (steady state covariance): 

0 = A Px + Px A
T + B Rw BT (Lyapunov Equation) 
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VII. NAVIGATION USING NAVAIDS 

Purpose: Compute vehicle's position and velocity using navaids and determine 

how accurate these computations are. 

Let x E Rn be the vehicle's position, (n = 3). Let y e Rp be the vector of 

navaid measurements p < n = 3. In general (by geometry, trigonometry, ...) we have 

Let x0, y0 be nominal quantities of x & y, then 

(7.1) 

x - x0 + 6x, y = y0 + 8y 

k 

8y = V 
dx 

Equations   7.1 and   7.2 represent p equations with n unknowns. 

Exj Planar navigation using bearing fixes, Figure 7.1. 

j/i   =   arctan 

y%   =    arctan 

xi—a-) 
x\—a\ 
Xf—b 
xi-h . 

y = ^C») 

(7.2) 

(7.3) 

Measure y1: y2: assume (al5 a2), (6a, ft2) are known and solve for xx, a;2. In 

Equation 7.3, t/8- is called a fix. The nature of the surface y{ — const determines 

the nature of the fix: linear, conic, circular, hyperbolic, etc... It is difficult and time 

consuming to solve y = g{x) directly. We need to come up with an interative method: 

Let p = n and 

V   =   Vo + Sy 
X    =   x0 + 8x 
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Beacon 1 

Beacon 2 

\    Yi 

£fr 
Vehicle   (Xi,X2) 

Figure 7.1: Two Bearing Fix 

Sy 
dx 

8x = CSx 

=>• 8x — C    Sy (if inverse exists) 

The estimation mechanization is shown in Figure 7.2. 

+ i i 

Compute 8xi 
Xo + I&Xi 

8Yi =   Yi  +   Yi 
ff(Xi)     *+ 

Figure 7.2: Error Estimation 

Xi 

6xi 

Sy 

,-T 

Xi-i + ÖXi 

Vi - g(xi) 

8yi = C l8y. 

Estimation Newton Algorithm 
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Error Analysis 

Usually y is corrupted by noise 

y — g(x) + v <—  vector of measurement noise, 

Assume v is small and v0 — 0 :   v — Sv 

Then 

Sy 
dx 

8x + v = C 5x + v 

and the estimate error tx is: 

ex   =   Sx — 6x = 8x — C    Sy 

=   6x-C-\C6x + v) 

=    Sx — Sx — C~l V 

-C~xv = 
.dx. 

Let v ~ N(0,Rv). Then 

E(ea E 
dx 

-T 

V     =0 

and 

i?ex = C"1 Rv C'T = (CT i?;1 C)-1 (7.4) 

This formula allows us to determine the best combination of fixes: uRex should 

not be much greater than Rv." 

Rule of thumb: Have the fix surfaces as orthogonal as possible, Figure 7.3. =» 

Columns of C will become orthonormal. The less orthogonal the more dependent the 

columns of C are, the greater the noise amplification in  7.4. 
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Yx =   g-i (x) =   const 

Figure 7.3: Orthogonal Fixes 

Note 

C dl' 
dx 

VT9i(x) 

VT9P(X) 

If C has linearly dependent rows it is not invertible, Figure 7.4: 

g,d(3c)=   const 

gi (x) =  const 

Figure 7.4: Dependent Fixes 

In this case we cannot compute x given y. 

Example 

V2 

,tan 1 

tan-1 

Xf -a? 

x?- -t>? 

.*1- -6iJ 

94 



Note: 

d_.     _, 1 
du 

dx1 

dyi 
dx2 

dy2 

dx-i 

dy2 

dx2   "      (xa - fei)2 + (x2 - b2y 

1 + u2 

X2 - 02 

(Xi- - aa)
2 + (x2 - 

Xi — a\ 

-a2)
2 

(Xx - - CLi)2 + (x2 - 

x2 - b2 

-a2)
2 

(xi - -h¥ + (x2- 
Xi - 61 

-&2)
2 

_    /3<AT    r |^  fa- dx\ dx2 
dV2 dy2 

dx\      dx2 

ex = C lv 

Rex = c-1 RV c~T = (cT R-1 cy1 

Suppose p > n => redundant measurements. 

Given 

y=g(x) + v (7.5) 

Question: Do redundant measurements help? 

First, how can we use redundant measurements? Suppose we know fv{v) = 

probability density function of v. Note, the values of v for which fviy) is large are 

more likely to occur than those for which fv(v) is small: 

fv(v = a)dv ~ P[a < v < a + dv] (dv is small) 

From Equation 7.5 

v = y -g{x) 

=> find x which makes fv(v) = fv(y — g(x)) large: 

maxxL(x) = maxxfv(y — g(x)) 
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Here L(x) is called the likelihood function =>- maximum likelihood method. 

In practice we assume 

v~N(0,Rv) 

fv(v) = 
1 

^(2TT)P det Rv 

It turns out we only need to maximize 

exp ~vT^v 

L1(x)=1-[(y-g(x))TR:1(y-g(x)) 

How: 
dLjXx] 

dx 
= 0 : n equations and n unknowns 

Recall, in the neighborhood of nominal position 

T 

Consider 

Sy = 

1 

21 
dx. 

Sx = C Sx 

L^Sx) = ^(Sy - C 8x)T R-1 (Sy - C Sx) 

dLx{Sx) d 
dS x dSx 

^(SyT R'Hy - SxT C R'1 Sy - SyT R;1 C Sx + SxTCTR;1CSx) 

^(-2CR;18y + CTR;1CSx) = 0 

=4> Sx C
T
R:

1
C C'R-'Sy (7.6) 

Compare equation   7.6 with equation (6.47) in the text.  For Rv = I this is the so 

called "least squares solution". 

Example: 1-D navigation. Suppose we measure position x with two errors. 

f S/i    =   x + ui 
\ y2   =   x + v2 

V = x + 
V2 
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Assume 

V2 
N 

0 
0 

1   0 
0   3 

i.e. t/2 is 3 times less reliable than y^. 

1 
maxxLi(x)   =   - 

yi-x 
T 

' 1   0 " 
-i 

2/i - - X 

V2-x _ L°  3J .  2/2" - X _ 

(2/1 - xf + ~{y2 - 

dLx{x) 

dx 
~(yi -x)- -{y2-x) 

3j/i 4- 2/2 
x   = ^  weighted sum 

Where more reliable measurements are given more weight. 

Note 

x   = CTRZ1C 
-1           rp 

CTR 
V V 

( 
' i r ' 1   0 " " 1' 

1 r l  l ' " 1   o" 2/i 

. ^2 . 

2/1 ~ 0^2 
3t/i + 2/2 

Error Analysis (p > n) 

=   6x — 6x 

Sx — CTR: 
xc 1CTRvSy 

Sx — CTR^C _1 CTRV (CSx + v 

— CTR~1C] _1 CTR-V\ 

c TR ?c] c- TR-Xv = Mü 
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Rex   =   MRVM
T =  CTR;lC\    CTR-^RvR^C CTR7lC CTR^C 

Example 

1    0 
0   3 ;C 

3 1 
4 4 

3 1 
4 4 

' 1 0 " 
0 3 

" 3 " 
4 
1 

. 4 . 

M   = 

_9_    £_3 
16 + 16 ~ 4 

Compare this with noise for y\ : Rvl = 1 & y2 : Rv2 = 3. 

We do better by using both signals. 

Use Maximum Likelihood: The mechanization is shown in Figure 7.5. 

i 
~\ 

S^i Maximum 6xL 
x0+ E 5xi 

A 
xi 

i - 

A 

y 

Likelinood 

g(xi) 
^  

Figure 7.5: Maximum Likelihood Mechanization 

C    = 

Sx{   = 

<**{ — 

\dx) ■ % = 2/i - ft; 

Error Model for Wander Azimuth Navigation 

SR =  vehicle position in {e} 
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'-V 
'dlV 

dt 
= V 

Then 
' (T?),. = ev+eneix *R 

= ;cpv + eneix eR 
-- PA + pg( eR) - ( ?npi + 

pttei) X PV 

= - (pÜpe + 2 pttei) x 
PV+ PA + pg( eR) 

\  dt  ). 

Now, let 

W   =    PV0 + 
PSV = PV0 + SV 

eR   =   PR0 + 
p<5i? = eR0 + SR 

pA   =    pA0 + 
P6A = M0 + M 

Note, given a, 6, c, G i?3 and c = a x b: then 

dc _ d(a x b) _ d{-bxa) _ dS(-b)a 
da dt dc 

S(-b) 

and 

dc _ d(a x b) _ dS(a)b 
db~       db      ~     db     ~b{a) 

Therefore, we get 

d'R   =   pC6V+S(ettei)6R 
d'V   =   S(pnpe + 2pnei)6V + 6A+^§^6R 

(7.7) 

(7.8) 

Note, in equation   7.8 ( ) was used for differentiation.   This is abuse of notation. 

However, since we integrating both sides which are resolved in correct coordinate 

systems, it is OK. 

Recall, 

The vector i# is shown in Figure 7.6. 

where 

ei* = ^ & Ä = PJ2|| 
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Figure 7.6: Unit Vector, in 

y9 = 

1   0 0 ß   ' 

0   0 ß 
R? 

= 0 
0   1 J 0    J L    °    J 

Therefore, we get 

dpg{eR)   _   d?Cpg(eR) 
deR       ~ deR 

dpg(eR) 
\0 

\c 

deR 
'   —So. 

Ro 0 0    " 
0 

Ro 
0 

L  o 0 — US- 
RQ   ~ 

Finally, we obtain 

&_ 

dt 
SR 
8V vnso. 

^ Ro 

IC 

We should be able to verify this model in Simulink. 

SR 
8V + I 

0 
8A 
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VIII. THE NAVSTAR GPS 

The NAVigation Satellite Timing And Ranging Global Positioning System is a 

satellite-based radio navigation system with the capability to provide locating data 

to an unlimited number of users 1. The first satellite was deployed in 1978 although 

the first receiver did not become commercially available until 1982 [Ref. 10, section 

1.2]. This system is the product of experience gained from several previous space- 

based navigation systems like TRANSIT AND USAF System 621B. It is comprised 

of three segments: 

• Space segment 

• User segment 

• Control segment 

Each segment is discussed in the following sections. 

A.    SPACE SEGMENT 

A total of 24 satellites now constitute a fully operational space segment. Twenty- 

one of theses space vehicles (shown in Figure 8.1 operate continuously, while the re- 

maining three act as orbiting spares. Today, only three Block I satellites remain in 

orbit. These satellites were the first GPS satellites in space. They were launched from 

1978 through 1985 [Ref. 10, section 1.2]. Block I space vehicles weigh 960 pounds 

and generate 420 watts of electrical power [Ref. 8, p. 27]. The remaining satellites in 

orbit were creatively named the Block II vehicles. These vehicles are less vulnerable 

to radiation and have more memory. With this increase in capability has come an 

xThis chapter is an abridgement of Marquis [Ref. 5, Chap. 2] and is included for continuity. 
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increase in weight and power requirements. These newer satellites weigh 2000 pounds 

and generate 700 watts of electrical power. 

The space vehicles are inserted into orbits defined by the six Keplerian constants: 

• semi-major axis, a 

orbital eccentricity, e 

• orbital inclination, i 

• ascending node, 0 

argument of perigee, u 

• time of perigee passage, T 

Figure 8.1: A NAVSTAR GPS Satellite from [Ref. 5, p. 4.01] 
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The semi-major axis of a GPS satellite orbit is nominally 26,560 kilometers. It 

is half of the length of the ellipse which defines the space vehicle's path. Second, the 

eccentricity (different from the eccentricity defined with respect to the shape of the 

WGS-84 ellipsoid) or oblateness of the satellite's orbit is defined as follows: 

e = 
f~a       Tp 

(8.1) 
ra + rv 

where ra is the apogee radius and rp is the perigee radius. For GPS satellites, the 

eccentricity cannot exceed two percent. The third of the Keplerian elements is orbital 

inclination. It is the angle between the plane defined by the orbit and the equator. 

For example, satellites in a polar orbit have a 90° orbital inclination; those in an 

equatorial orbit have 0° orbital inclination. Block I NAVSTAR GPS vehicle orbits are 

inclined at 63° while Block II satellites are inclined at 55°. The ascending node is the 

satellite's geodetic longitude as it passes through 0° of latitude toward the northern 

hemisphere. GPS satellites orbit in six different planes. Thus, there are exactly six 

different ascending nodes. The last two Keplerian elements are the argument of the 

perigee and the time of perigee passage. The argument of the perigee is the angle 

in the orbital plane between the ascending node and the closest point of approach 

of the satellite to earth. The time when the vehicle reaches this point is the time of 

perigee passage. The ranges of these last two parameters span all possible values for 

GPS satellites. That is, satellites reach their perigee at all different times of day and 

different locations. 

Ideally, the six Keplerian elements would be sufficient to define any satellite's 

three-dimensional position and velocity vectors for all time. However, the orbits 

become perturbed by lunar and solar gravity and the earth's equatorial bulge, as 

well as several other less significant effects. Thus, the number of quantities required 

to fully specify the position and velocity of a satellite in a real orbit is increased 
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to 16. The extra elements consist of time rates of change of the ascending node 

and inclination, i. e. Q and i, as well as six other coefficients which account for 

variation in the earth's gravitational field. These 16 coefficients must become part of 

the navigation message. 

The navigation message is the framework in which the GPS satellites broadcast 

their data. One "frame", the complete message, consists of five subframes of 300 

bits each. Subframe one contains coefficients used to correct the satellite's clock to 

exact GPS time. The 16 pieces of ephemeris data are broadcast in the second and 

third subframes. Subframe four contains special messages, ionospheric correction 

coefficients, and coefficients for conversion of GPS time to Universal Coordinated 

Time. Ephemeris and health data for the entire GPS constellation is transmitted in 

subframe five. Because of the volume of data in subframes four and five, both must 

be subdivided into 25 pages. Therefore, it takes 25 full frames, broadcast at the rate 

of 30 seconds per frame, or 750 seconds (12.5 minutes) to receive the entire navigation 

message. Critical navigation data - ephemerides, and clock correction coefficients — 

are updated every frame. Secondary data transmitted in subframes four and five is 

provided primarily to assist the receiver in acquiring other satellites. These data are 

not intended to be precise so the lower update rate of once every 12.5 minutes is 

satisfactory. 

Satellites use a pseudorandom binary code superimposed on the two carrier 

frequencies to communicate. The two frequencies are LI (1575.42 MHz) and L2 

(1227.6 MHz). The Ll frequency carries both the C/A- (coarse acquisition) and 

P-(precise) codes, while L2 carries only the P-code. The less precise C/A-code is 

broadcast at a rate of 1.023 million bits per second (Mbps) and is 1023 bits long. 

Therefore, this code repeats itself every millisecond. The C/A-code is unique to each 

satellite and does not change, allowing GPS receivers to quickly distinguish between 
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space vehicles, even without access to the P-code. The P-code, being more precise, 

is transmitted at 10.23 Mbps with a code length of approximately six trillion bits. 

This code takes 37 weeks to repeat. Since the codes are reset every week at midnight 

between Saturday and Sunday, there are sufficient "code weeks" available in the P- 

code such that one can be assigned to each space vehicle each week. Therefore, 

GPS receivers can easily distinguish satellites from each other with their individual, 

weekly-assigned P-codes. The remaining code weeks are available for uplink from 

the control segment to the satellites. 

B.    USER SEGMENT 

The many thousands of GPS receivers constitute the user segment. The re- 

ceiver's functions are to receive and interpret the navigation message and to calculate 

and output position. GPS receivers must determine the time the navigation message 

takes to travel the distance from the satellite to the receiver. This is achieved by 

autocorrelating the pseudorandom binary pulse train received from the satellite with 

the one in memory. A typical civilian GPS receiver must have the C/A-codes for all 

24 satellites in its memory (requiring only three kilobytes). As the pseudorandom 

code is received, the receiver slews its code until the result of the autocorrelation 

function jumps to one. The receiver is now "locked-on" to that code. Multiplying 

the length of time that the receiver must slew its code to achieve a unity correlation 

by the speed of light yields the "pseudorange". This is not the actual range because 

the offset of the receiver clock is uncertain. When the receiver can lock-on to four 

satellites and thus measure pseudoranges to each, is three-dimensional position and 

clock error can be solved for by inverting this set of four equations 

Pi    =   V (xsah - xrcvr)
2 + (ysatl - yrcVTf + (zsah - zrcvr)

2 + cAt 

P2   =   y(xsat2 - xrcvr)
2 + (ysat2 - yrcvr)

2 + (zsat2 - zrcvT)2 + cAt 
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Pz   =   y(xsat3 - xrcvr)
2 + (ysat3 - yrcvr)

2 + (zsat3 - zrcvrf + cAt 

PA   =    \J{xsati - xrcvr)
2 + (ysati - yTCvrf + (zsati - zrcvr)

2 + cAt, (8.2) 

where pt are pseudoranges, [xsati,ysatnzsati] are the ECEF coordinates of a satellite, 

[xrcvriVrcvr, Zrcvr] are the ECEF coordinates of the GPS receiver, c is the speed of 

light, and At is the receiver's clock error. Having solved this set of equations, the 

receiver now need only transform the solution to the geodetic system and display the 

results. 

C.    CONTROL SEGMENT 

The GPS Control segment is responsible for generating and uplinking clock 

correction coefficients and ephemeris corrections for all satellites in the constella- 

tion. Five control stations — Hawaii, Ascension Island, Diego Garcia, Kwajalein, 

and Colorado Springs, Colorado - comprise this segment. These control stations are 

essentially GPS receivers capable of constantly tracking all satellites in view. Ad- 

ditional capabilities include highly accurate Cesium clocks and recording facilities. 

The first four of these stations track all satellites in view and record pseudorange 

information continuously. This data is sent to the Master Control Station at Col- 

orado Springs where it is processed. When all four monitor stations have locked-on 

to a single space vehicle simultaneously, the exact inverse of the standard naviga- 

tion problem mentioned in the previous section exists. Since the exact locations of 

the monitor stations are known and their clocks are extremely accurate, the four 

unknowns become the three coordinates of the space vehicle position and its clock 

offset. The Master Control Station calculates these quantities and from them, derives 

the necessary ephemeris and clock corrections. This information is uplinked to each 

space vehicle at least daily. 
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D. DIFFERENTIAL GPS 

Although GPS alone provides highly accurate positioning, it can be made still 

more accurate by augmenting it with a differential station. A differential station 

is merely another GPS receiver whose exact location is known. When this second 

receiver is near the first receiver, both are subject to nearly the same errors, i. e. the 

same local atmospheric properties, nearly identical elevation angles and propagation 

paths to any given GPS satellite, the same clock errors and the same ephemeris 

errors for each satellite. By employing the Pythagorean theorem on its position and 

the satellite position broadcast in the navigation message, the differential station 

can calculate the exact range to that satellite. Meanwhile, it can also calculate 

pseudorange in the standard way (see Section B.). By comparing these two values 

for each satellite in view, the differential station can evaluate the pseudorange error 

to each satellite. These values can be broadcast periodically to be used by receivers 

in the local area to improve accuracy. By using the differential corrections, GPS 

accuracy, even for single frequency C/A-code users, can be improved to one to seven 

meters rms [Ref. 8, p. 64]. 

E. GPS ERROR SOURCES 

Despite its exceptional accuracy, GPS is subject to numerous error sources. 

Clearly, the major error sources must be included in the DGPS model. Error sources 

are: 

• atmospheric delays 

• Selective Availability 

• clock differences 

• ephemeris error 
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• multipath 

receiver noise 

• Dilution of Precision (DOP) 

Each of these error sources is discussed in detail in the following sections. 

1.    Atmospheric Delays 

a.    Ionospheric Delays 

The ionosphere is a layer of charged particles between 100 and 1000 

kilometers above the earth's surface. These particles interact with the transmitted 

GPS signal and slow it, increasing pseudoranges. The equation describing this delay 

is 

40 3 
M = ~c~P TEC' ^ 

where At is the delay in seconds, c is the speed of light (3 x 108 m/s), / is the 

system frequency (1575.42 MHz for LI), and TEC is the Total Electron Content 

(electrons/m2) along the signal's path. The TEC is strongly effected by the solar 

cycle, season, time of day, and latitude. TEC maxima occur: 

• daily: 1400 local 

• seasonally: spring equinox 

• solar cycle: every 11 years (next 2001-2002) 

• geographic: 20° magnetic latitude 

It varies ± 25% rms at all latitudes during daylight [Ref. 10, section 2.5, p. 24]. The 

pseudorange error due to ionospheric effects can be as great as 40 meters [Ref. 10, 

section 2.5, p. 13]. 
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Figure 8.2: Diurnal Ionospheric Delay from [Ref. 6, p.208] 

The algorithm described in [Ref. 12] which removes 55-60% of the 

ionospheric delay is based on Figure 8.2, which shows the typical diurnal variation of 

the ionospheric delay. The "ACTUAL DATA" curve shown in Figure 8.2 is modeled 

with the "COSINE MODEL" curve, a half-cosine. The equation of the model curve 

is 

At = DC + Acos 
2it{t - Tp 

P 
(8.4) 

where DC, A, Tp, and P (constant offset, amplitude, phase, and period, respectively) 

describe the diurnal variation of the ionospheric delay. DC and Tp are assumed 

constant at five nanoseconds and 1400 local time, respectively. Amplitude and period 

are each modeled as four term power series as follows: 

71=0 

n=0 
(8.5) 

where the a„'s and ßn's are constants which are broadcast in the GPS navigation 

message, chosen based on the day of the year and average solar flux over the past five 

days, and <j)m is the geomagnetic latitude of the ionospheric subpoint. The ionospheric 

subpoint is the intersection of the line between the space vehicle and the receiver with 
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the surface at the mean height of the ionosphere. 

Next, one must first find the subtended earth angle between the user 

and the satellite, EA (degrees) 

445 

where el is the elevation angle of the satellite with respect to the user in degrees. 

Knowing EA, the geodetic location of the ionospheric subpoint can be approximated 

by 

<f>I     —     <ßrcvr + EA COS ÜZ 

\     _ EA sin az 
Ai   =   Arcvr H ■—, (8.7) 

cos (pi 

where <j> and A denote geodetic latitudes and longitudes, respectively and az is the 

azimuth of the satellite with respect to the receiver. Now the geodetic latitude can 

be converted to geomagnetic latitude (the required quantity) with the following ap- 

proximation: 

^m = ^/ + H.6cos(Aj-291), (8.8) 

where all angles are in degrees. 

The dimensionless scale factor (SF) which scales the entire delay is 

SF = l + 2(9-^lf. (8.9) 

The final expression for At is a three term Taylor series expansion of 

Equation 8.4 is 

At   =   !SF-[DC + A(l-$ + $)]   for  | * |< f 
\ SF ■ [DC] '       '      for  | x |> f 

where 

2TT(* - Tv) 
(8.10) 
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Due to the 25% rms variation, the error is modeled with a 25% stan- 

dard deviation. Therefore, the random part of the error remains within ±25% of 

nominal 68% of the time. 

b.    Tropospheric Delays 

The lower section of the atmosphere also causes signal propagation 

delays. Typical tropospheric delay is approximately two meters for 90° satellite ele- 

vation (directly overhead) up to 28 meters at a five degree elevation angle [Ref. 13, 

p. 218]. In this application, the atmosphere can be modeled as being composed of 

"wet air" and "dry air". Dry air is responsible for 90% of the total tropospheric de- 

lay, whereas, wet air is responsible for only ten percent. While the moisture content 

in the troposphere is virtually impossible to model accurately, this inaccuracy has 

minimal impact. Numerous models which calculate the tropospheric delay have been 

developed. Black developed the following model in [Ref. 14]. Let 

As = Asd + Asw, 

where 

Asd = 2.343P -[(T~^l2)]- I(h = hd,E), 

Asw = kw ■ I(h = hw,E), 

i(h,E) = {i-{-—cos£;      in(-i/2) 
K      J        l      L(1 + (1-ZC)-£

J ' 

hd = 148.98(T-4.12)m, 

hw = 13,000 m, 

"■w — U.2, 

rs = 6378137 m, 

P = 1 atm, 

T = 15 °C, (8.11) 
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and As is the wet or dry delay in meters, rs is the distance from the center of the earth 

to the station, P is the surface pressure in atmospheres, E is the satellite elevation 

angle, and T is the surface temperature in degrees Celsius. It should be noted that lc 

is an empirical constant. The value of 0.85 is only valid for elevation angles above five 

degree (GPS receivers typically ignore satellites at lesser elevation angles). Similarly, 

kw is an empirical constant which varies based on latitude and season. The value 

0.20 corresponds to the value for spring or fall in mid-latitudes. This model has been 

shown to be virtually exact at elevation angles greater than 40°, with its worst error 

of about 0.045 m occurring between five and ten degrees of elevation. 

This tropospheric model is assumed to vary 15% from the nominal 

value. Therefore, it is modeled with a 7.5% nominal standard deviation. This main- 

tains the random part of the error within 15% of the model value 95% of the time. 

2.     Selective Availability 

Selective Availability is a method that the Department of Defense can use 

to intentionally degrade the accuracy of pseudorange measurements. Typically, this is 

accomplished by dithering the space vehicle clock signal. Dithering the clock involves 

encoding the binary time signal the space vehicle broadcasts. The decryption process 

is classified and available only to DOD authorized users. 

The use of SA essentially results in the satellites' "lying" to the receiver 

about their position. Clearly, this adversely impacts precision. Currently, SA is in 

operation on all Block II space vehicles which comprise the majority of the constel- 

lation. The DOD's stated goal for the positioning accuracy under SA is 100 meters 

(twice rms) for a two-dimensional fix [Ref. 15]. According to [Ref. 16, p. 420], 

the selective availability error can be modeled as a zero-mean, five meter standard 

deviation low frequency noise. The suggested cutoff frequency for SA noise is ^Hz. 

112 



3.     Clock Differences 

The clock model used in this treatment of DGPS is a two state model 

shown in Figure 8.3.   It is reasonable to expect the clock to have both a bias and 

\i W 

clock noise (bias) 
wl 

-NlA 
x2 

baa—na—na 
Sum xl delta t 

clock noise (drift) 
w2 

Figure 8.3: Receiver Clock Model 

drift. From daily exposure to clocks, the average person realizes that most clocks 

are slightly offset from correct time (bias), and that their accuracy tends to degrade 

with time (drift). From an engineering standpoint, these two phenomena can be best 

modeled with zero mean, white, Gaussian noise. Rewriting the model in state space 

form for further analysis yields 

x   = 
[oil [ 1   0 1 

0   0 x + 
0   1 

w 

where 

E(wwT)   = 
Si    0 
0    S2 

(8.12) 

The covariance of the clock error state (zi) can be found by solving the Lyapunov 

equation which can be found numerous control textbooks, one of which is [Ref. 17, p. 

104]. This equation must be solved over a finite time interval (At) because the two 

state clock model is unstable. This interval would normally be the sampling time, if 
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the model were discrete. The result is 

E{xi) = S1Ai + SoAt3 

(8.13) 

By taking the square root of the variance and dividing by At, one finds the more 

standard clock parameter the Allan variance, VA 

..        /Si      S2At 
(8.14) 

A representative plot of the two state model Allan variance as a function of averaging 

time (i. e.   At) is shown in Figure 8.4. 

10 10 10 10 10 
averaging time in seconds 

10 10 

Figure 8.4: Ideal Allan Variance 

Real clocks behave somewhat differently from this simple model. A typical 

Allan variance plot for a real clock is shown in Figure 8.5. 
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10 10 10 10" 10' 
averaging time in seconds 

10 10 

Figure 8.5: Real Allan Variance 

The flat portion of the curve is called the flicker floor. It is the result of 

a non-linear effect which cannot be modeled by the two state model. This causes a 

significant discrepancy between this simple model and the real world. 

In order for the model to better represent reality, it must be carefully 

crafted to fit the actual plot as much as possible. By carefully choosing the values of 

Si and S2, it is possible to make the actual and model curves fairly close. The key 

Allan variance parameters between 0.1 and ten seconds of averaging time are h0: ä_I, 

and /i_2 [Ref. 18]. Values of these three parameters for three common GPS timing 

standards are shown in the Table 8.1 from [Ref. 16, p. 428]. 

Brown [Ref. 16] finds that one must choose where the 2-state model is 

accurate. Since normal averaging times are in the 0.1 to ten second interval already 

mentioned, this is the region where the model is made accurate. Maximizing the 

accuracy of the model in that region dictates the following values for the noise spectral 
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TABLE 8.1:  ALLAN VARIANCE PARAMETERS FOR THREE COM- 
MON TIMING STANDARDS 

densities: 

timing standard h0 Ä-1 h-2 

crystal 2 x 1(T19 7 x 10"21 2 x 10-20 

ovenized crystal 8 x 10~2° 2 x 10-21 4 x 10-23 

Rubidium 2 x 1(T20 7 x 10~24 4 x 10~29 

5i 
ho 
2 

S2   ~   2TT
2
/I_2 S-

2
. (8.15) 

In order to remain conservative in this generic model of DGPS, the least 

accurate clock — the crystal clock — is used. The values for 5*1 and £2 for this clock 

are 

-19 Sx    =   4 x 10" 

S2   =   1.58 x 10"18 s"2. (8.16) 

These values are be used in the DGPS error model. 

4.     Ephemeris Error 

In converting the pseudoranges of at least four satellites (six in this model) 

to a three-dimensional position and clock error, one must solve a series of non-linear, 

coupled algebraic equations. In these equations, the positions of the satellites are 

critical. The only way a GPS receiver or navigation filter knows the space vehicle 

positions is the navigation message. If broadcast satellite positions are incorrect, 

the accuracy of the resulting receiver position suffers. The control segment of the 

GPS system maintains positions on the entire constellation quite accurately.However, 

it would be folly to expect the satellites to broadcast inerrantly accurate positions. 
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Typical ephemeris inaccuracies according to [Ref. 19] are shown in Figure 8.6. 

Planar Error 
3.5  meters 

Radial  Error 
0.5  meters M 

GPS 
Satellite 

Figure 8.6: Ephemeris Error 

These errors are resolved in a coordinate system local to each space vehi- 

cle. The three mutually perpendicular directions are radial, along track, and cross 

track. Because the DGPS model developed in this thesis does not account for satel- 

lite motion, along track and cross track directions cannot be resolved. To remain 

conservative, these two errors are combined into a circular error in the plane they 

define. This error is modeled as zero mean, white, Gaussian noise with a standard 

deviation of 3.5 meters. Likewise, the radial error is modeled as zero mean, white 

Gaussian noise with a 0.5 meter standard deviation. Both of these errors make the 

stated accuracy the two rms point. In other words, the value stays within the stated 

accuracy 95% of the time. 

Since the space vehicle location enters the model in earth centered, earth 

fixed Cartesian coordinates while the error is added in geodetic coordinates, a trans- 

formation is between the two coordinate systems must be performed. Having con- 

verted the satellite positions to geodetic coordinates, the random errors can be added. 
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However, since the geodetic coordinates contain angles, the random errors in position 

must be converted to equivalent angles in latitude and longitude by dividing by the 

radius of the space vehicles' orbits, ~26,560,000 meters. The position and the error 

are now in compatible coordinates and can thus be summed. 

5.     Multipath 

The signal radiated by a satellite is not required to take a direct path to 

a receiver. If the signal encounters an electromagnetically reflective object, it may 

bounce off that object and still find its way to the receiver. This signal has now 

traveled a greater distance than the straight line joining the space vehicle and the 

receiver. Because the receiver assumes the direct path is used, this multipath phe- 

nomenon can introduce pseudorange errors. Due to the satellite/receiver geometry, 

multipath is far more likely at low elevation angles. The GPS system has several 

attributes that minimize multipath effects [Ref. 10]: 

• The L band frequency (1227.6 MHz) tends to undergo diffuse rather than spec- 

ular reflection. 

• The receiver antennas tend to reject multipath signals. 

• The navigation message is broadcast with circular polarization. Circularly po- 

larized signals undergo reversal upon reflection. 

• GPS receivers generally use mask angles (the elevation angle below which the 

satellite is ignored) of at least five degrees. 

All of these factors tend to attenuate the strength of any reflected signal making the 

multipath effect insignificant. Therefore, it is not modeled. 
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6. Receiver Noise 

All receivers corrupt the signals they receive. GPS receivers are no excep- 

tion. Inaccuracies resulting from quantization error, loop tracking errors and other 

hardware inadequacies corrupt the pseudorange accuracy. According to [Ref. 10], 

representative GPS receiver noise has a standard deviation of 7.5 m. Receiver noise 

is thus modeled as a zero mean, white Gaussian noise with 7.5 m standard deviation. 

As the differential station and the aircraft receivers are assumed identical, both air- 

craft pseudoranges and differential station pseudoranges are contaminated with this 

noise. The noise in the two receivers is assumed to be independent. 

7. Dilution of Precision 

All of the errors discussed to this point directly effect pseudorange accu- 

racy. The various delays and noise sources can cause the receiver's evaluation of range 

to the space vechicle's to be inaccurate. However, the pseudoranges themselves are 

irrelevant. The science of navigation is concerned with positioning. Dilution of Pre- 

cision is the effect that links pseudorange accuracy to position accuracy DOP can 

be further classified into several different types: 

• VDOP — Vertical DOP (z) 

• HDOP — Horizontal DOP (x,y) 

• PDOP — Position DOP (x,y,z) 

• TDOP — Time DOP (t) 

• GDOP — Geometric DOP (x,y,z,t) 

The equation which relates DOP and pseudorange error is 

o-p = DOP • <7o, (8.17) 
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where ap is the standard deviation of the position error and <70 is the standard devia- 

tion of the pseudorange error, often called the User Equivalent Range Error (UERE). 

Dilution of Precision is a function of satellite to receiver geometry.   As 

Figure 8.7 shows for a four satellite constellation, GDOP is minimized with the space 

POOR GDOP 
satellites bunched 

together 

GOOD GDOP 
(ideal case) 

• one satellite overhead 
• 3 on horizon, 

120° apart in azimuth 

Figure 8.7: Dilution of Precision from [Ref. 5, p. 4.22] 

vehicles spread out as much as possible. In fact, the volume of the tetrahedron 

formed by the unit vectors from the receiver to each satellite is an empirical measure 

of DOP. PDOP is inversely proportional to the volume of the tetrahedron. If, for 

example, all of the space vehicles a receiver was using for positioning were in the 

same plane, PDOP would approach infinity (the volume of the tetrahedron would be 

zero). Likewise, minimum PDOP is achieved with the geometry shown at the right 

of Figure 8.7. 

The goal for the design of the entire GPS constellation of satellites is a 

PDOP no greater than six everywhere on the earth. With the entire set of 24 space 

vehicles now in orbit, users can expect PDOP values under three [Ref. 20]. 
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The entire concept of GPS navigation has now been thoroughly discussed. 

All of the information put forth in this discussion will be used in developing the DGPS 

computer model in the next chapter. To complete the sensor discussion, a description 

of INS follows. 

F.    INERTIAL NAVIGATION 

Inertial navigation has long been the standard for self-contained, long-range 

aircraft navigation. An Inertial Navigation System (INS) senses aircraft thrust accel- 

eration, angular rates and spatial orientation resolved in an orthogonal system and 

computes the inertial acceleration. This acceleration can now be integrated — once 

to find velocity, and twice to find position. 

The primary component in any inertial navigation system is the Inertial Measur- 

ing Unit (IMU). The IMU is composed of three accelerometers, three rate gyros, and 

two inclinometers. The accelerometers measure thrust acceleration. Thrust accelera- 

tion is composed of linear, centripetal, and gravitational effects. Einstein's Principle 

states that it is impossible for a sensor to distinguish between the effects of gravity 

and acceleration. Thus, the thrust acceleration that it provides is 

ha =bv + huj x bv +bg, (8.18) 

where ba is the thrust acceleration, bv is the linear acceleration, bu> is the angular 

velocity, bv is the velocity, and bg is gravity. All quantities are in the body frame. This 

principle necessitates that the computation portion of the INS compute and remove 

local gravity from the measured accelerations. 

Rate gyros sense angular velocities. These angular velocities can be resolved 

in either the body or inertial frame, depending on the type of IMU implementation. 

The two inclinometers sense aircraft inertial orientation, i.e., Euler angles. 
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There are two conceptual methods for implementing inertial navigation: 

• Gimbaled IMU 

• Strapdown IMU 

Brief discussions of each method follow. 

1.     Gimbaled IMU 

A gimbaled IMU rotates about its four gimbals during operation (see Fig- 

ure 8.8). Aircraft IMU's must have four gimbals to prevent gimbal lock, while earth- 

inner Gimbal (Roll) 

OutGimbaHRoU) 

Stable Member 
(Gyros 

Accelerometers) 

Middle Gimbal 

Airfiime Base 

Figure 8.8: Gimbaled IMU from [Ref. 15, p. 193] 

bound IMU's require only three gimbals [Ref. 21, p. 192]. A controller maintains 

the IMU in a constant inertial orientation toward true North and lying in the locally 

horizontal plane. By maintaining this orientation, the gimbaled IMU measures iner- 

tial quantities directly. This data can be integrated without transformation to yield 

inertial velocity, position and Euler angles. From a navigation standpoint, this con- 

figuration seems ideal. However, gimbaled systems are large and heavy, making them 
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impractical for small aircraft. Also, kinematic quantities resolved in the aircraft-fixed 

coordinate system, necessary for stability augmentation and control, are not directly 

available. Instead, they must be computed through a series of Euler rotations. The 

computations required take time and thus introduce delays into an often time critical 

control problem. This fact makes the gimbaled system less than desirable for control. 

2.     Strapdown IMU 

Strapdown IMU is conceptually the reverse of the gimbaled system men- 

tioned above. Rather than maintaining a constant inertial orientation, a strapdown 

system is "strapped down" to the aircraft, thus maintaining a constant orientation 

in the aircraft-fixed coordinate system. Therefore, the output of the IMU is resolved 

in the local coordinate system. Kinematic quantities are immediately available for 

the control system. The extra computational burden now rests on the navigation 

computer which must transform the accelerations and angular velocities sensed in 

the local coordinate system to the inertial system. Currently, most inertial systems 

are of the strapdown variety. With the advent of high speed, low cost, lightweight 

computing power, the required calculations in transforming from the aircraft-fixed 

to the inertial coordinate system are no obstacle to navigation. This is the system 

which is modeled in this thesis. 

G.    INS COMPUTATIONS 

In the strapdown configuration, the IMU measures angular velocities and thrust 

acceleration in the body frame, as well as Euler angles. However, the INS must provide 

position and orientation, both in the inertial frame. In order to compute position and 

orientation in the inertial, tangent plane coordinate system, inertial accelerations and 

Euler rates must be calculated. Before converting the inertial acceleration from the 

body frame to the inertial frame, it is necessary to compute the inertial orientation. 
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Computing the Euler rates is a tricky endeavor. The Euler rates are simply related 

to the body angular rates by Poisson's equation 

0 
1   sin $ tan 0   cos $ tan 0 
0 cos $ - sin $ 
0    sin $ sec 0    cos $ sec 0 

P 
q 
r 

(8.19) 

where p, q, and r are the components of bu, the body's angular velocity. Obviously, 

this formula requires the exact Euler angles. However, one can only measure these 

angles directly at very low frequency. At frequencies greater than a fraction of a Hertz, 

one must integrate the Euler rates found from Equation 8.19 to find the angles. This 

presents the seeming paradox of needing to know the Euler angles in order to find 

the Euler rates which must be integrated to find the Euler angles. This process 

must be implemented recursively. That is, the results of the integration to find the 

angles must be fed back into Equation 8.19. Furthermore, a complementary Kaiman 

filter is necessary to provide an optimal estimate of the Euler angles, trusting the 

inclinometers at the low frequencies and the rate gyros at high frequencies. 

Now having inertial acceleration in expressed in the body frame and the orien- 

tation of the body (Euler angles), the transformation from body to inertial can be 

executed. This coordinate transformation is defined by 

UP= %Cba + ug, (8.20) 

where $, 0, and ^ are the roll, pitch and yaw Euler angles, respectively, UP is the 

aircraft's acceleration in inertial coordinates, ba is thrust acceleration in the aircraft- 

fixed coordinate system, ug is gravity in inertial coordinates and %C is the transfor- 

mation matrix from the body-fixed coordinates to inertial tangent plane coordinates 

as follows 

cos $ cos ©       cos $ sin 0 sin $ - sin \P cos $       cos \P sin 0 cos $ + sin W sin $ 
- sin f cos 0    - sin 0 sin $ sin $ + cos * cos $    - sin 0 cos $ sin $ - cos $ sin $ 

sin 0 - cos 0 sin $ - cos 0 cos $ 
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It is UP which can be integrated to provide velocity and position in the inertial, 

tangent plane frame. 

H.    INS ERROR SOURCES 

The Inertial Measuring Unit is subject to a few main error sources. These are: 

• bias 

• cross-axis sensitivity 

• noise floor 

All of these errors apply to both accelerometers and rate gyros. Brief descriptions of 

these problems follow. 

1. Biases 

A bias in an accelerometer or a rate gyro is defined as a constant offset of 

the output of the device from the true value. In other words, an accelerometer might 

constantly read 0.01 m/s2 while the device is not accelerating. This 0.01 m/s2 would 

be referred to as a bias. This error is modeled with a series of small step functions, 

one for each accelerometer and rate gyro. 

2. Cross-Axis Sensitivity 

Cross-axis errors are caused by misalignment of the IMU with the aircraft 

coordinate axes. Ideally, the components of the IMU — the accelerometers and the 

rate gyros — would each be perfectly aligned with the three axes of the aircraft-fixed 

coordinate system. Unfortunately, even the highest fidelity inertial sensors are never 

precisely coincident with the appropriate axes. Misalignment of both types of devices 

causes errors. The cross-axis errors are modeled with the following equation: 

(8.21) 
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where aca is the cross-axis error, ex, ey, and ez are the cross-axis error terms and 

a is the actual acceleration resolved in the aircraft coordinate system. The e's from 

the previous equation are determined by the amount of angular offset of each sensor 

from the correct position. 

3.     Noise Floor 

All sensor devices corrupt the quantities they measure. Various factors 

including thermal noise can cause a constant output of white noise, regardless of the 

actual acceleration (or angular velocity). This noise floor makes accelerations below it 

not measurable. That is, the output of the sensor still includes the actual quantities, 

but it is "invisible" because the noise floor obscures it. This process is modeled by in- 

troducing a threshold to the actual acceleration in the aircraft coordinate system and 

adding white noise. Taking these steps result in the accelerometer always reporting 

noisy, zero-mean acceleration unless the actual value is above the threshold. When 

the actual value exceeds the threshold, that value is added to the noise floor value 

(and the bias) to create the output of the accelerometer. This process also applies to 

the rate gyros. Now both of the sensors — GPS and INS — have been completely 

investigated. 
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IX. KALMAN FILTER DESIGN 

First, recall the general process for filter design: 

1. Obtain navigation equations: 

x   =   f(x,u) 

y   =   h(x,u) (9.1) 

2. Linearize 9.1 at (x0,u0): 

Sx   =   A6x + BSu 

8y   =   C6x + D8u (9.2) 

3. Now, we need to use 9.2 to design a filter: 

i) Use  9.2 to create a synthesis model: 

Sxs   —   As8xs + BlsSw + B2s8u 

8ys   =   Cs6xs + 6v (9.3) 

where 

Sx, = 
8x 
6xt 

8xt are the states resulting from appended integrators. 

8x 
8xt 

A   Ki 
0     0 

Sx 
Sxt 

+ 

8y C   0 

I 
8w + B 

0 
Su 

Sx 
8xt 

+ 8v (9.4) 
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Figure 9.1: Synthesis Model 

ii) Let W = I and V = I (intensity) where: 

E (8w{t)8w{t)T)    =   W£(<-r) 

£ (<^(*)<^(if)    =   VS(t-T) 

and solve the Ricatti equation for the Kaiman gain: 

ASX + XAT
S - XCjV^CsX + BlsWBl = 0 

Hs = XCA
S V-1 = [H Hj] 

iii) Form the filter: 

Sx   =   AsSxs + Hs (Sy - Sy) 
Sy   =   CSxs 

(9.5) 

iv) Now compute the transfer function from Sy to Sy. 

v) If the bandwidth is not sufficient to meet the design criteria, go back to 

step (ii) where a new value of V is chosen. 

4. Now implement the filter on the non-linear plant: 

( x3   =   f(xs,u) + Hs{y-y) 
\   y    =    h(x„u) (9-6) 
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Figure 9.2: Kaiman Filter Model 

5. Now linearize 9.6 at (x0,u0) and compare the result with 9.5.   They must be 

the same. 
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Figure 9.3: Tangent Plane Mechanization 
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Figure 9.4: Body Frame and Tangent Plane Relationship 

Now let's apply this process to Kaiman filter design for tangent plane navigation. 

1. Obtain navigation equations:    Let 

u p 
°b 

X 

y 
z 

=> U
PEC = 

0 
0 

-R0 

=> uP0b = 
U
PEC +UP^ UP =U P0b - 

U
PEC 

up   
X '  o   " X 

y — 0 — y 
z —R0 _ z + R0 _ 
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Figure 9.5: Pseudorange 

Now 

9(P) = nW^ 
V 

\P\\Z 

Therefore, using our notation we get 

u p 
Ob      ~      uob 

Job 

lA + g(P) = UA £— P 

where v0b — uP0b- Note 9.7 is in the form 

x = f(x, u), where x = 

and u = UA 

u p 
Ob 

'Job 

(9.7) 

Now, we need to include the pseudorange equations 

^ = 11^- ePsl\\+cAt (9.8) 
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where cAt = UERE (User Equivalent Range Error). 

Note, all computations here must be done in {e}, since satellite positions are 

given in ECEF. 

Let e
uR be given:   Computing e

uR can be done by selecting the latitude and 

longitude for the origin of {u}. Then: 

UP = e
uR

uP0b+
eP0u 

where 

Now, 

'Po. \R 
0 
0 

Rn 

Px = \\euR
uP0b+ eP0u- ePsx\\ + cAt (9.9) 

Finally, we need to compute At. Since the only real uncertainty in UERE is 

receiver clock error, we get: 

bias 

drift 
1/S 

+ t *rw 
+— 

l/S -► re   =  UERE 

Figure 9.6: User Equivalent Range Error Mechanization 

or 
re     =   Ad + wbias 

Ad     =     Wdrift 
(9.10) 
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Now collect   9.7, 9.8, 9.9, and   9.10: 

( UP = v * ob — Vob 

v0b = uA + g(uP) 
re _ = Ad + wbias 

Ad = Wdrift 

px = || IR uP0b + eP0u - 
ePsx || + re, x = 1 .6 

(9.11) 

Notice how 9.11 is in the form: 

where 

x   =   f(x,u) + 
0 
I 

w 

"ob 

u p 
rob 

re 

Ad 

eR8 

u   =    UA 

w   = 
Wdrift 

Pe 

6 pseudoranges 

(9.12) 

2. Linearize 9.11 at (x0,u0): 

wP0b   =   P0 + 6P, v0b = v0 + 8v 

UA   =   A0 + SA, px = pxo + 8px 

re   =   reo + 8r,  d = d0 + 6d 

SP 

8v 

8re 

Sd 

8px 

8v 

a "P. °b 
8P 

8d + 8wbias 

ÖWdrift 

i—-—\\eRuP   4- eP   — eP \ d"P0,11 w °b    *       rou 
rs: 8P + 8re 

(9.13) 
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ii) It can be shown that given y = \\RP\\, where i?_1 = R? 

d_ 

dP1 
1 r P 

RTRP = 
\RP RP\ 

Using 9.14 we get 

dP °b. 

(lRT(jRuP0b+eP0u -   *PSX))- 
eRup      i    ep 
llJl        *   Oh       I r0: P, »l   T        x  Ou 

(P0+
U

eR(eP0u-   <P„)f 

\\euR
UPo+   *P0u-   *PSX\\ 

Collecting terms, we obtain the linear error equations: 

SP 
6v 
6fe 

8d 

03,3 -^3,3 0     0 " 

Ro 
0 
0 

0 
-äs. 

Ro 
0 

0   " 
0 

2go 
Rn      - 

03x3 0     0 

0l,3 

0l,3 

0l,3 

0l,3 

0     1 
0   0 _ 

(9.14) 

" 6P ' ' 0 " ' 0 " 
8v 
6re 

+ 
I 
0 

SA+ 
0 
0 

. 6d . 0 I 

6w 

(9.15) 
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" 6pi ' 

= 

dpi 

9 Pi 

0   1   0 " 6P ' 
Sv 
6re 

0   1   0 . Sd . 

Note, Equations 9.15 and 9.16 are in the form: 

Sx   =   A8x -f BSu + 

Sy   =   CSx 

3. Use 9.17 to design a Kaiman filter. 

0 
/ Sw 

(9.16) 

(9.17) 
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X. GPS/IMU INTEGRATION 

Now that the kinematic equations and coordinate systems have been discussed 

in detail, the next step is to design the navigation system using MATLAB/Simulink 

software development tools. The aircraft chosen to evaluate the design, was the 

Airplane D, a medium size, high performance business like jet from Roskam [Ref. 4, 

Appendix C]. Mission requirements for the design were consistent with a medium- 

to-high altitude reconnaissance aircraft cruising in straight and level flight, taking 

high resolution photographs of various military and industrial sites. Flight condition 

2 from [Ref. 4, Table C4] specifies a maximum weight of (13,000 lbs.), high altitude 

(40,000 ft) cruise, at 677 feet per second (M=0.7). At this condition, the aircraft has 

a pitch angle of 2.7 degrees (0.047 radians), a trim lift coefficient of 0.41 and a trim 

drag coefficient of 0.0335. Additional aircraft data includes a wing area of 230 square 

feet, a wing span of 234 feet, a mean geometric chord of 7 feet and a center of gravity 

(e.g.) at 0.32 mean aerodynamic chord (MAC). The stability and control derivatives 

used are presented in Roskam [Ref. 4, p. 620] 

A.    EQUATIONS OF MOTION 

The first step in the design of the integrated system is to develop the appropriate 

equations of motion (EOM) for the aircraft. A right-handed body coordinate system 

{b} was chosen referenced to a universal frame {u} with a NED orientation.  The 

derivation of the EOM's starts with the following four equations: 

d bF 
-Vb   =   -bubx bVb + — 
at rn 

hüb   =   -Ib-
1(boübx(lb

bu}b))+I^bN 

A   =   5(A) bub 
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lPb =   u
bc

hvb 

where 

F   =     Forces 

N   =    Moments 

The force and moment terms consist of the thrust, aerodynamic and gravity 

terms. Assuming the moment about the e.g. due to gravity is zero, the force and 

moment equations reduce to: 

F   =   FT + FA + Fg 

N   =   NT + NA 

where 

T   =    Thrust 

A   =    Aerodynamic 

g   =    Gravity 

The thrust terms are computed from the engine thrust settings and aircraft geome- 

try and the gravitational force is computed by resolving the gravitational constant 

32.174^3- from the universal to the body frame. 

The aerodynamic forces are calculated using a first order approximation of the 

stability and control derivatives contained in Roskam [Ref. 4]. Starting with funda- 

mental aerodynamic force equation: 

F = l-PV2SCF (10.1) 

where 

F=[-D,-Y,-L,l,m,n) (10.2) 
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the first order linear approximation becomes: 

dx' efcr' dA 

where 

X     = u   v   w   p   q   r 
T 

x'    = 
1 

u   v   w   -f    ^    br 
T 

x'   = ' Ü'   £'   Ö'   p'   q'   r' 
T 

5   =   i Hag ' -S   S   -S   Sb   Sc   Sb ' 

A   = r Se   Sa   8r   ST ]T 

The initial development of the EOM involves only the ft
hVb and j-t

hub equations. 

In matrix form this becomes the basic EOM equation: 

d   b\/ 

d_ b 
dt Ub 

- bub x bVb 

-/^(^(^x^x (lbbub)))) + lC"g 

+ T, ST 

0 + lc   o 
o   lc UNA 

where Ib is the aircraft's inertia tensor and the aerodynamic forces and moments 

are computed in the wind reference frame {w} and must be converted to the body 

frame {&}. The first order approximation of the aerodynamic forces and moments was 

substituted into the basic EOM equation and the A equation was added yielding the 

complete EOM equation. After the trim values were computed, they were included 

as initial conditions in the EOM's integrator. The diagram was then linearized, 

using the MATLAB linmod.m command. EOM verification was done by comparing 

the eigenvalues of the linearized model to Roskam's data. The results are shown in 

Table 10.1. 
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TABLE 10.1: EIGENVALUES 

Roskam EOM 

Long period -0.00593 ± 0.0904z -0.0103 ± 0.09122 
Short period -0.9943 ± 2.64k' -0.7941 ±2.714z 

Spiral -0.0012 ±0.0007 
Dutch roll -0.05848 ±1.6842 -0.0567 ± 1.686z 
Roll mode -0.5023 -0.5036 

The linearized values compare quite nicely to Roskam's values except for one 

unstable eigenvalue in the lateral dynamics. This pole corresponds to the spiral mode 

and has a large time constant. It does not affect stability in the longitudinal dynamics. 

Finally, the three position states were added to the initial EOM model to make the 

final EOM model, shown in Figure 10.1, which is used as an input to the IMU System. 

Vf 2 ->                         r»H 1 
J c >tate 'S 

Demux 

Mux 

MATLAB 
Function [-► .    ■*■ 1/s-^ 

eoml.m 11 

1 

de 

2 

da 

3 

dr 

4 
rlt 

Mux 

Figure 10.1: Equations of Motion Simulink Block Diagram 
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B.    INERTIAL MEASUREMENT UNIT (IMU) 

In order for the IMU to calculate position and velocity in the universal frame u, 

the aircraft's angular rates about the x, y, and z axes (p, q, and r respectively) and 

thrust accelerations in ax, ay, and az, must be measured. A real IMU uses angular 

gyros and accelerometers to provide this data, where the design IMU model, Fig- 

ure 10.2, uses state vector outputs from the EOM model to perform the acceleration 

IMU model (Level 1) 

States 
Demux 

Vb 

Pboul 

wb 

Euler 

Demuxl 

MATLAB 
Function 

Px.Py.Pz 

-►ra— 

□ 
Pbou 

m- 
l>|   States"! 
To Workspace2 

pos.m 

Vb 

Pbo_U 

Demux 
Ax_n 

-K±I 
-ft 

Demux2 

IMU 

Figure 10.2: Inertial Measurement Unit (Level 1) Simulink Block Diagram 

calculations. The IMU inputs consist of the linear velocity components (u,v,w) or 

Vb , angular rates (p,q,r) or tob , Euler angles (<f>,0,i(>) or A , and the position of the 

body in the universal frame, uPb. Additionally, the linear accelerations, Vb, are also 

provided to complete the calculations. 'Given the small size of the aircraft, it was 

assumed that the IMU was located at the aircraft's center of gravity and all calcu- 

lations are based on this assumption. Since real IMU sensors possess some inherent 
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noise and bias characteristics, white gaussian noise was included to simulate the noisy 

sensors and a nominal bias to account for the design limitations of the sensors. 

To calculate the accelerations in the {u} frame, Figure 10.3, the gravity force 
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Az 
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Figure 10.3: Inertial Measurement Unit (Level 2) Simulink Block Diagram 

was calculated and a transformation matrix from {u} to the body frame {&} was 

applied: 

b9=b
uC

ug (10.3) 

The accelerations in the body frame where calculated and the acceleration due 

to gravity was removed: 

ba = - bVb + 
hub x bVb - 

bg 
at 

(10.4) 

The MATLAB routine to perform these calculations was accel.m and is provided 

in Appendix B. After the accelerations in the body frame were calculated, the noise 
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and bias errors were incorporated to simulate actual acceleration measurements from 

the IMU. Since they were calculated in the body frame, the noisy accelerations, ban, 

were transformed to the universal frame using a transformation matrix, £C. The 

MATLAB function used to perform this calculation was abn2un.m. The resulting 

outputs from the IMU were noisy accelerations in the universal frame, uan. 

C.    GLOBAL POSITIONING SYSTEM (GPS) 

In order to provide accurate position information that could be used to up- 

date or verify the position estimates calculated from the IMU accelerations, a GPS 

mechanization was designed. The GPS mechanization, Figure 10.4, was designed to 
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Figure 10.4: GPS Pseudo-range Simulink Block Diagram 

provide a pseudo-range measurement based on the aircraft's estimated position and 

the position of four satellites. Inputs to the GPS came from the EOM linear veloc- 

ity terms, Vb , which were transformed from the body frame to the universal frame 

and integrated to provide a position estimate, uPb . Satellite positions were input 

as a constant value using a satellite initial position MATLAB function, initsat.m. A 
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MATLAB function, exact .m, calculated the exact ranges from each satellite. User 

equivalent range error (UERE) was determined by introducing white gaussian noise 

to simulate the GPS receivers inherent noise bias and clock drift. Combining the 

exact range with the UERE, a pseudo range value was calculated. Along with the 

noisy accelerations calculated in the IMU, the pseudo-range values were input to the 

Kaiman filter. 

D.    K ALM AN FILTER 

The Kaiman filter was designed for the purpose of providing optimal inertial 

velocities and positions given noisy accelerations from the IMU and pseudo-ranges 

from a GPS receiver. To accomplish this, it was desired to have a break frequency of 

1^| as the cutoff below which only GPS information would be valid. This constituted 

steady-state, straight and level flight. For a maneuvering aircraft, frequencies greater 

than 1^, the sampling rate of the GPS would not be capable of providing adequately 

up-dated position information. At this point, the accelerometer data would be con- 

sidered valid. A design criterion of 1 ^ as a -3dB cutoff for the frequency response 

was chosen to meet these requirements. 

1.    Navigation Model 

The first step in the filter design was to develop a navigation model which 

provided velocity and position as outputs. Using the position outputs, pseudo-ranges 

could be calculated. The navigation model was divided into two components. The 

main component, Figure 10.5, received the noisy accelerations from the IMU which 

were then integrated twice to produce velocity and position in the universal frame. 

The second component, Figure 10.6, calculated estimated pseudo-ranges to the four 

satellites given their position, the aircraft's estimated inertial position based on the 

accelerations, and a clock drift error component. The output of the navigation model 

144 



ft 
A_x 

0 
A_z 

EM 
A-y 

Mux 
Au 

Sum      Vbo Pu 

Mux 

rtio_n4 

Exact range 
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Figure 10.6: Kaiman Filter, Pseudo-range Simulink Block Diagram 

was four estimated pseudo-ranges. These estimated ranges were compared to actual 

pseudo-ranges from the GPS receiver. 
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2. Linearized Model 

The next step was to linearize the navigation model at a nominal aircraft 

position. This was accomplished by using the MATLAB function, linmod.m. on the 

navigation model. The linearized state space matrices, [A, B, C, D], were then used in 

the development of the synthesis model. In state space form, the linearized equations 

become: 

8x   —   ASx + B8u 

Sy   =   CSx + D8u 

Here D = 0. 

3. Synthesis Model 

The next step in the design of the Kaiman filter, was to create a sythesis 

model which accounted for measurement and sensor noise inputs. In this case only 

sensor noise bias was considered. By considering only noise bias in each accelerometer 

axis, only one integrator per axis is required. These appended integrators result in 

three poles at the origin. As the gains are increased, the poles will diverge in three 

directions. One on the negative real axis and the other two will depart at 45 degree 

angles out the left-half plane. To insure system stability, three zeros are included 

so that the poles converge to a value along the negative real axis. In the synthesis 

model, zeroes were chosen at -1, which forces the poles to converge on the negative 

real axis. In addition to the noisy inputs, the accelerations in each axis are included 

as inputs. The resulting synthesis model is shown in Figure 10.7. Next, the synthesis 

model is linearized to determine the synthesis state space matrices, [AS,BS,CS,DS]. 

The resulting state space form is: 

8xs   =   As6xs + Bis8w + B2s8u 

8y   =   Cs8x + 8v (10.5) 
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In the equation 10.5, Sv is zero since only input noise is considered. 

4.     Noise Intensity and the Non-Linear Plant 

In order to solve the Ricatti equation 10.6 for the optimal gain 

ASX + XAT
S - XCjV^CsX + BuWBl = 0 ;io.6) 

the noise intensities V and W must be adjusted to provide the optimum frequency 

response. The initial values were chosen to be identity matrices, I. Once the val- 

ues were chosen, the MATLAB function, lqe.m, was used to determine the optimal 

Kaiman gain, Hs. The Kaiman gain Hs was partitioned based on the arrangement of 

the states in the Bs matrix. The partitioned Kaiman gains were implemented on the 

non-linear plant shown in Figure 10.8 
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Figure 10.8: Non-Linear Kaiman Filter 
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Next, a bode plot of the frequency response was generated and the band- 

width's were observed. The process was repeated using a function called, kal.m. This 

allowed the weighting factors to be adjusted until the optimum frequency response 

was obtained. It was necessary to decrease the weighting factor on the outputs V and 

increase the weighting on the inputs W. The optimal bandwidth of 1 ^ was acheived 

at V and W values of 0.05/ and 67, respectively. The frequency responses from the 

pseudo range to the pseudo range estimates are shown in Figures 10.9 and 10.10.    It 
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Figure 10.9: Frequency Response, Pseudo-range to Pseudo-range Estimate 
1 & 2 

can be seen that the -3dB cutoff occurs at exactly 1 ^| for each input. The frequency 

responses of the filter to accelerations in the x, y and z directions are shown in Fig- 

ure 10.11. The 20dB per decade slope of the curve below the frequency of 0.1 —, 

indicates the accelerometer inputs are washed out at low frequencies. This is within 

the design criteria. To verify the response of the filter to a disturbance in accelera- 

tion, a step input was performed in each channel and the pseudo-range responses are 

shown in Figure 10.12. 
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XI. CONCLUSION 

The purpose of this thesis has been to provide the engineer with a solid physical 

and mathematical understanding of the relationship between the GPS/IMU sensors 

and the air vehicle and how to integrate the two systems properly. 

The extensive use of 3-D graphics for depicting the coordinate relationships and 

the corresponding transformations, gives meaning to the physical and mathematical 

relationships between the two systems. By introducing the fundamental concepts 

behind inertial sensors and global positioning systems, the data each provides can 

be understood and integrated properly. Next, the errors that are common to both 

systems are discussed and error analysis is applied to reduce the effects on the output 

of the integrated system. Introducing the design method for Kaiman filtering allows 

the engineer to develop a system which accounts for the inherent errors and guarantees 

positional accuracy no matter which sensor is providing the information. Developing 

the design through the use of MATLAB jSimulink software, allows the engineering 

team the opportunity to apply all of the concepts introduced in this thesis and gives 

them the flexibility to expand on the basic concepts. 

This thesis has provided the uniform framework required in the design of an in- 

tegrated GPS / IMU system using Kaiman Filtering. As GPS and IMU components 

become smaller and more lightweight, their use in Unmanned Autonomous Vehicle's 

(UAV's) will increase dramatically. The need for precise navigational data will con- 

tinue to rise as the requirements for UAV's increase to meet their predicted threat. 

Providing the engineer with a complete document which approaches the design pro- 

cess in a step-by-step manner, is essential if design team is to compete effectively. 
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APPENDIX A: SHOWCASE, SNAPSHOT, 
AND XV UNIX SOFTWARE 

The graphical models used in the development of this thesis were produced 

using the Silicon Graphics Indigo computers available in the Aeronautical Engineering 

Computer Laboratory and the Avionics Design Laboratory, both located in Halligan 

Hall. The software utilized to produce the 3-D models was IRIS Showcase (version 

3.3). 

A.    IRIS SHOWCASE 3.3 

To access the Showcase graphical program, type "showcase" at the prompt in 

the winterm window. Three windows will appear when "Showcase" comes on-line. 

The first and largest window will be the drawing tablet, figure A.l.   This window 

Figure A.l: Showcase Drawing Tablet 

is used for producing the actual picture.  The next window is called the "Showcase 
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Master Gizmo". This is the main tool for selecting 1-D drawing devices, figure A.2. 

The third window is a "status gizmo", figure A.3, which displays the status of each 

j&#?  ifffiifres 

Colors/Patterns 

"Greater 
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xmm 
Line Style mmmUBsam £i^ffej$i 

Font Family 

FontSfee I^.SSa       ligtlii 

Figure A.2: Showcase Master Gizmo 

command selected or action performed in "Showcase". 

Figure A.3: Showcase Status Gizmo 

1.    Creating 1-D and 3-D Objects 

To draw 1-D figures, select the appropriate tool from the "Master Gizmo" 

using the mouse "point and click" method.   The method is similar to all graphics 
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programs used on Macintosh and IBM computers. Type styles can be selected from 

the same tool-box and fonts can be chosen at the lower portion of the "Master Gizmo" 

window. These operations are self-explanatory. 

To draw 3-D objects, the strength of this program, go to the "Gizmo" pull 

down menu at the top of the drawing tablet. Select the "3-D" option from the menu 

and "3D Gizmo", figure A.4, will appear. Using the mouse arrow, select the "Create" 

^^^fi^^^^^im^;^^ ■! 't$ 
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■faceted EäääSSSäS Smooth   ■  1$- ::^8 
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Section Sire Am-'»/stylr- 

Figure A.4: Showcase 3D Gizmo 

tool in the upper right corner of the "3D Gizmo" window. Next, place the mouse 

arrow in the drawing area of the tablet. A red box will appear and move about 

the window as the pointer is moved. Place the window in a selected position and 

click the left mouse button to drop the box. A 3D room will appear on the page. 

This is the drawing surface for the 3D object, figure A.5. Next, return to the "3D 

Gizmo" and select any of the Simple models using the "point and click" method. 
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Figure A.5: Showcase 3D Drawing Window 

Tubular and beveled surfaces can be chosen also. The Faceted and Smooth sliding 

scale tool adjusts the number of surfaces the object will have. The smoother the 

surface, the more memory the object will require. Moving the mouse arrow back to 

the 3D drawing window, place the pointer in the appropriate spot and hold the left 

mouse button down while dragging the object outward, figure A.6. In the case of a 

sphere, the size of the radius depends on how far the pointer has been dragged from 

the initial position. Selecting the Material and Texture of the object produced is self 

explanatory and well worth the time spent experimenting. Once the 3-D object has 

been produced, the orientation of the object within the 3-D drawing window can be 

manipulated using either the "hand" tool on the "3D Gizmo" window or by placing 

the mouse arrow on any surface "wall" inside the 3-D drawing window and holding 

left mouse button down while moving the mouse. The room will rotate to the desired 
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Figure A.6: Showcase 3D Sphere 

orientation. 

Once the 3-D model has been produced, place the mouse arrow outside of 

the 3-D drawing window and click the left mouse button. The drawing window will 

disappear and 1-D objects can once again be produced on or around the 3-D object, 

figure A.7. 

2.     Saving the Drawing 

The object can be saved in a variety of formats. The default style is a 

"Showcase" document. All files should be saved in this format so that they can 

edited at a later date. Encapsulated Postscript (EPS) and Postscript (PS) styles 

are the style of choice, for they can be imported into a variety of word processing 

programs. However, some programs do not allow the operator to choose the size of 

the object when it is imported into the document. Since this thesis was produced 

using I^TgXtypesetting software, both styles will be discussed. 

159 



fite £&, IQgy fage ':G$ms:] s ; .M& 

^:-{:i:iA'A:^^;h^,,a%At^-^^;^.-Xi;i 

'&>':■■■ •'■Wown-.aB'C«: 

Figure A.7: Showcase 3D Sphere in ID Environment 

3. Encapsulated Postscript 

Once the object has been created, return to the pull down menus on the 

drawing tablet. Select the "Edit" pull down menu and choose the "Select All" func- 

tion. This highlights all objects in the drawing window. Next, choose the "File" pull 

down menu and select the "Save as" function. Moving the mouse right an additional 

pull down menu will allow the operator to select the type of file format which the 

object will be saved as. Choose the "...as EPS" function. A "Showcase File Browser" 

window will appear and the file name can either be chosen or typed in at the bot- 

tom of the window, figure A.8. The only problem with importing EPS files into a 

I^TgXdocument is that the size of the object cannot be adjusted using "height and 

width" commands where they can be if a PS file is used. 

4. Postscript 

The same procedure is used for saving the object as a PS file. However, 

when saving a Postscript file, the default device the file will be saved to is the printer. 

An additional menu will appear which will allow the operator to choose whether to 
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Figure A.8: Showcase File Browser 

print the object to a file or the printer, figure A.9. 
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Figure A.9: Showcase PS Save Window 

5.    Additional 3D Goodies 

A slide show presentation function is available by selecting the "Page 

Gizmo" from the "Page" pull down menu on the main drawing tablet, figure A. 10. 

Experimentation is the best way to learn the system! 

B.    SNAPSHOT 

Including graphics from the display requires that they be converted into a 

Postscript file. To do this, the SGI computers have the capability to take a "snap- 
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Figure A. 10: Showcase Page Gizmo 

shot" of the graphic and save it as a "*.rgb" file. This file extension is the default 

to the SGI system. This is accomplished by typing "snapshot" at the winterm win- 

dow. A small window will appear in the upper left portion of the display, figure A.11. 

Place the mouse arrow on the "Snapshot" window and depress the left mouse button. 

I; snapshot; .;•; 

is -object' palmer-\ 

Figure A.ll: SGI Snapshot Window 

Drag the mouse over the object that is to be copied. A red box will position around 

the object. The box size can only be controlled when the mouse arrow is on the 

"Snapshot" window. If the edge of the box does not move, the mouse arrow must be 

re-positioned on the window. Once the object has been boxed, place the mouse ar- 

row on the "Snapshot" window and depress the right mouse button. A small window 

will appear which will allow the object to be saved as a "*.rgb" file. Name the file 

accordingly and then "save" or "save and exit" the program. 
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C.    XV 

Once the object has been saved as an "*.rgb" file, it can be converted to 

Postscript format by using the "XV" program on the SGI computers. Type "xv 

<filename.rgb>" at the in figure A.12. 
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Figure A.12: XV Window 

Place the mouse arrow on the picture and click the right mouse button. An 

"xv controls" window will appear, allowing the operator to save the file, figure A.13. 

Select the "Save" button on the "xv controls" window. A small fish will swim in circles 

Figure A 13: XV Controls Window 

until the "xv save" window appears, figure A. 14. Select the "Postscript" button on 

the lower left side of the window, as well as the "B/W Dithered" button, if the file 
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Figure A. 14: XV Save Window 

is to be saved in black and white. Choose the file name to save and select the "Ok" 

button in the upper right corner. The file can now be accessed as a Postscript file 

and imported into any word processing program that accepts that format. 

D.    SHOWCASE PRESENTATIONS 

Through the use of "Showcase" two animations have been developed to provide 

a visual depiction of the coordinate systems relationships and the coordinate transfor- 

mation from navigation to body frames. These are provided on the following pages. 

They can be accessed through the "Showcase" browser window. 

164 



Zi 
J I 

Wmm**, 

Figure A. 15: Coordinate Transformation, Slide 1 
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Figure A.16: Coordinate Transformation, Slide 2 
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Figure A.17: Coordinate Transformation, Slide 3 
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Figure A. 18: Coordinate Transformation, Slide 4 
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Figure A. 19: Coordinate Transformation, Slide 5 
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Figure A.20: Coordinate Transformation, Slide 6 
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Figure A.21: Coordinate Transformation, Slide 7 
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Figure A.22: Coordinate Transformation, Slide 8 
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Figure A.23: Coordinate Transformation, Slide 9 
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Figure A.24: Navigation to Body Rotation, Slide 1 
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Figure A.25: Navigation to Body Rotation, Slide 2 
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Figure A.26: Navigation to Body Rotation, Slide 3 
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Figure A.27: Navigation to Body Rotation, Slide 4 
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Figure A.28: Navigation to Body Rotation, Slide 5 
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Figure A.29: Navigation to Body Rotation, Slide 6 
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Figure A.30: Navigation to Body Rotation, Slide 7 
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Figure A.31: Navigation to Body Rotation, Slide 8 
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Figure A.32: Navigation to Body Rotation, Slide 9 
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Figure A.33: Navigation to Body Rotation, Slide 10 
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Figure A.34: Navigation to Body Rotation, Slide 11 

184 



cos^i -sin^ ö' 

0 0     1_ 

Zn    Zb 

Figure A.35: Navigation to Body Rotation, Slide 12 
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Figure A.36: Navigation to Body Rotation, Slide 13 
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Figure A.37: Navigation to Body Rotation, Slide 14 
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Figure A.38: Navigation to Body Rotation, Slide 15 
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Figure A.39: Navigation to Body Rotation, Slide 16 
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APPENDIX B: MATLAB FUNCTIONS 

******************************************************************** 

MATLAB functions used in the IMU / GPS Integration 

********************************************************************** 

function y=abn2un(vec) 

7, Transform noisy accelerations from body fixed to universal 

Ax=vec(l) 

Ay=vec(2) 

Az=vec(3) 

euler=vec(4:6); 

Tb2u=rb2u(euler); 

y=Tb2u*vec(l:3); 

********************************************************************** 

function Ab=accel(vec) 

% This function calculates the acceleration terms in the body 

% coordinate frame 

% Establish the order of the states 

vbo=vec(l:3); 
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wb=vec(4:6); 

Lambda=vec(7:9); 

PboU=vec(10:12); 

dvbo=vec(13:15); 

% Calculate the cross product of wb and vbo 

xprod=crpr(wb,vbo); 

% Transform Lambda into the body fixed coordinate frame 

BLambda=ru2b(Lambda); 

% Multiply BLambda by the gravity term gu 

gb=BLambda*gravitya(PboU); 

'/. Calculate dvbo + (wb X vbo) - Ru2b*gu 

Ab=dvbo+xprod-gb; 

function y = crpr(omega,x) 

% This subroutine computes the crossproduct of omega and x 

% y = omega X x 

p = omega(l); 

q = omega(2); 

r = omega(3); 

t = [0 -r q; r 0 -p;-q p 0]; 

y = t * x; 
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***************************************************************** 

function EDMstate=eoml(vec) 

y. This function will calculate the accelerations due to forces, 

% moments, and control inputs. 

% (1) Input aircraft data and initialize velocity terms: 

Vi=677; °/, Initial velocity (fps) 

W=13000; % Weight 

S=230; % Wing planform area 

b=34; %  Wing span 

cbar=7; % Mean aerodynamic chord 

alpha_i=.047; % Initial angle of attack (rad) or 2.7 degrees 

beta_i=0; %  Initial sideslip angle 

rho=.000588; '/„ Density at 40,000 ft 

g=32.174; % Gravitational constant 

m=W/g; •/, Mass of the aircraft 

To=1036.75; %  Initial thrust 

No=zeros(3,l); 

Ib=[28000 0 -1300;0 18800 0;-1300 0 47000]; °/„ Inertia tensor 

Rw2b_i=[cos(alpha_i)*cos(beta_i),-cos(alpha_i)*sin(beta_i),sin(alpha_i); 

-sin(beta_i),cos(beta_i),0; 
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sin(alpha_i)*cos(beta_i)  -sin(alpha_i)*sin(beta_i) cos(alpha_i)]; 

[vbo]=Rw2b_i*[Vi 0 0]'; 

uo=vbo(l);vo=vbo(2);wo=vbo(3); 

1  (2)  Input the derivative coefficients due to the states 

dCx=[.104 0   .3 0  0 0; 

0 -.73 0 0 0   .4; 

.40 0 5.84 0 4.7 0; 

0  -.110 0  -.45 0   .16; 

.05  0  -.64 0  -15.5 0; 

0   .127 0'-.008 0  -.20]; 

dCxdot=[0 0 0 0 0 0; 

0  0  0 0  0  0; 

0  0  2.2 0  0  0; 

0  0  0  0  0  0; 

0 0 -6.7 0 0 0; 

0  0  0  0  0  0]; 

dCdelt=[0 0 0; 

0 0   .140; 

.46  0 0; 

0   .178   .019; 

-1.24 0  0; 
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0 -.02 -.074]; 

Cfl=[.0335 0   .41   0  0  0]'; 

'/   (3)  Define state variables 

vb=vec(l:3); 

u=vb(l);  v=vb(2); w=vb(3); 

wb=vec(4:6);     p=wb(l);   q=wb(2);  r=wb(3); 

lambda=vec(7:9);  phi=lambda(l); theta=lambda(2); psi=lambda(3); 

cont=vec(l0:12);  elev=cont(l);  ail=cont(2);  rud=cont(3); 

dt=vec(13); 

% (4) Determine total velocity and dynamic pressure 

V=sqrt(u"2 + v"2 + w~2); 

qbar=.5*rho*V~2; 

t  (5) Determine angle of attack (alpha) and sideslip (beta) 

alpha=asin(w/V); 

beta=asin(v/V); 

%  (6) Develop diagonal Sbar matrix 

Sbar=diag([-S,S,-S,S*b,S*cbar,S*b]); 
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'/, (7) Develop Ml and M2 matrices 

Ml=diag([l/V,l/V,l/V,b/(2*V),cbar/(2*V),b/(2*V)]); 

M2=diag([0,.5*b/V-2,.5*cbar/V~2,0,0,0]); 

% (8) Calculate mass inertia matrix 

MI=[eye(3)/m zeros(3,3);zeros(3,3) Ib\eye(3)]; 

'/„ (9) Develop wind to body transformation matrix 

Rw2b=[cos(alpha)*cos(beta) -cos(alpha)*sin(beta) -sin(alpha); 

sin(beta) cos(beta) 0; 

sin(alpha)*cos(beta) -sin(alpha)*sin(beta) cos(alpha)]; 

Tw2b=[Rw2b zeros(3,3); zeros(3,3) Rw2b]; 

% (10) Calculate linear and angular velocity terms 

SW=-crpr(wb,vb); 

ISIW=(lb)\crpr(Ib*wb,wb); 

SWM=[SW  ;   ISIW]; 

Y=MI*Tw2b.*qbar*Sbar*dCx*Ml*[vb-vbo;wb]; 

% (11) Calculate universal to body rotation matrix (3-2-1) 

Rpsi=[cos(psi) sin(psi) 0; -sin(psi) cos(psi) 0; 0 0 1]; 
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Rtheta=[cos(theta), 0,-sin(theta);0,l30;sin(theta),0,cos(theta)]; 

Rphi=[l  0  0;   0  cos(phi)  sin(phi);   0  -sin(phi)  cos(phi)]; 

Ru2b=Rphi*Rtheta*Rpsi; 

Rb2u=Ru2b'; 

7„ (12) Calculate gravity and control terms 

Fgravu=[0 0 g]'; 

Fgravb=[Ru2b*Fgravu; zeros(3,1)]; 

%  Calculate thrust force terms. Assume thrust acts through the eg 

%  and there are no moments due to thrust 

T=[To/m;0;0]; 

Fthrust=[T;(Ib)\No]*dt; 

% (13) Calculate aero forces and moments 

FaeroM=MI*Tw2b.*qbar*Sbar; 

FaeroC=CCfl+dCxdot*M2*[(crpr(wb,vb-vbo));zeros(3,l)]+dCdelt*cont]; 

Faero=FaeroM*FaeroC; 

°/. (14) Calculate chi 
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chi=[eye(6) - MI*Tw2b.*qbar*Sbar*dCxdot*M2]; 

% (15) Calculate accelerations 

E0M1_6 = chi\(SWM + Y + (Fgravb + Fthrust + Faero)); 

% (16) Calculate Lambdadot 

QLambda=[l sin(phi)*tan(theta) cos(phi)*tan(theta); 

0 cos(phi) -sin(phi); 

0 sin(phi)*sec(theta) cos(phi)*sec(theta)]; 

E0M7_9=QLambda*wb; '/„ Lambdadot 

% (19) Calculate state output 

E0Mstate=[E0M1_6;E0M7.9]; 

**************************************************************** 

function xout = exact(vec) 

% This function computes the pseudo ranges by adding the clock 

% bias range to the actual range.  Input vector consists of the 

°/, actual aircraft position (PboU) , the position of each satellite 

% (Psi), euler angles, user equivalent range error (re) 
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Ro=20.997e6; 

Puoe=[Ro 0 0]'; % Position of the tangent plane 

% (Greenwich meridian) 

% Assume tangent plane origin remains at 

% the Greenwich Meridian. 

Pbou=vec(l:3); '/. True aircraft positions from EOM 

Posl=vec(4:6); '/. Satellite positions in earth fixed frame 

Pos2=vec(7:9); 

Pos3=vec(10:12); 

Pos4=vec(l3:15); 

°/,Ru2e=[0 0 1; % Transform tangent plane to earth fixed 

y.0 10; 

%1  0 0]; 

Pboe=Pbou + Puoe; '/„ Transform aircraft position from body to 

'/,  earth fixed 

rhol=norm(Pboe+Puoe-Posl); 

rho2=norm(Pboe+Puoe-Pos2); 

rho3=norm(Pboe+Puoe-Pos3) ; 

rho4=norm(Pboe+Puoe-Pos4); 
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xout=[rhol rho2 rho3 rho4]'; 

**************************************************************** 

function g = gravitya(r) 

I 

% This function computes the gravity vector in the tangent plane 

*/, r is the vector of the vehicle's position in tangent plane 

y. 

RO = 20.997e6; 

mu = 32.2*RCT2; 

R = (r(l)~2 + r(2)"2 + (r(3) + R0)~2)*.5; 

gx = -(mu/R"3)*r(l); 

gy = -(mu/R"3)*r(2); 

gz = -(r(3) + R0)*mu/R~3; 

g = [gx; gy; gz]; 

********************************************************************** 

function satpos=initsat 

% Initialize satellite and GPS receiver positions 

Rs=285.885e6;  cl=cos(2*pi/3);  sl=sin(2*pi/3);  s2=-sl; 

satposl=[0    0    Rs]';   satpos2=[Rs    0    0]'; 

satpos3=[Rs*cl Rs*sl 0]';     satpos4=[Rs*cl Rs*s2    0]'; 

satpos^satposl'   satpos2'  satpos3'   satpos4']; 
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*******************************************************###****#;).;);;).;).;).;);;(< 

function out=pos(vec) 

% This function converts velocity in the body frame to velocity in 

% the inertial frame 

vb=vec(l:3); u=vb(l); v=vb(2); w=vb(3); 

wb=vec(4:6); p=wb(l); q=wb(2); r=wb(3); 

lambda=vec(7:9);  phi=lambda(l); theta=lambda(2); psi=lambda(3); 

Rpsi=[cos(psi)  sin(psi)  0;   -sin(psi) cos(psi)  0;   0 0  1]; 

Rtheta=[cos(theta)  0 -sin(theta);  0  10;   sin(theta)  0 cos(theta)]; 

Rphi=[l 0 0;   0 cos(phi)  sin(phi);  0 -sin(phi)  cos(phi)]; 

Ru2b=Rphi*Rtheta*Rpsi; 

Rb2u=Ru2b'; 

out=Rb2u*vb; 

***************************************************************** 

function xout = pseudo(vec) 

%  This function computes the pseudo ranges by adding the clock 

% bias range to the actual range.  Input vector consists of the 

'/. actual aircraft position (PboU) , the position of each satellite 

%  (Psi), euler angles user equivalent range error (re) 
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Ro=6.38e6; 

Puoe=[Ro 0 0] '; % Position of the tangent plane. 

% Assume tangent plane origin remains at 

% the Greenwich Meridian. 

Pbou=vec(l:3); % True aircraft positions from EOM 

Posl=vec(4:6); '/„  Satellite positions in earth fixed frame 

Pos2=vec(7:9); 

Pos3=vec(l0:12); 

Pos4=vec(13:15); 

re=vec(16); °/0 User equivalent range error 

Ru2e=[0 0 1; % Transform tangent plane to earth fixed 

0 10; 

10 0]; 

Pboe=Ru2e*Pbou + Puoe; % Transform aircraft position from body to 

°/0 earth fixed 

rhol=norm(Pboe+Puoe-Posl)+ re; 

rho2=norm(Pboe+Puoe-Pos2)+ re; 

rho3=norm(Pboe+Puoe-Pos3)+ re; 

rho4=norm(Pboe+Puoe-Pos4)+ re; 
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xout=[rhol rho2 rho3 rho4]'; 

***************************************************************** 

function y=rb2u(x) 

% Calculate inertial to body rotation matrix (3-2-1) 

phi=x(l); 

theta=x(2); 

psi=x(3); 

Rpsi=[cos(psi)  sin(psi)  0;   -sin(psi)  cos(psi)  0;   0 0  1] ; 

Rtheta=[cos(theta)  0 -sin(theta);  0  10;   sin(theta)  0 cos(theta)]; 

Rphi=[l 0  0;   0 cos(phi)   sin(phi);   0 -sin(phi)  cos(phi)] ; 

y=[Rphi*Rtheta*Rpsi];; 

********************************************************************** 

function y=ru2b(x) 

% Calculate body to inertial rotation matrix 

phi = x(l); theta = x(2); psi = x(3); 

Rpsi=[cos(psi) sin(psi) 0; -sin(psi) cos(psi) 0; 0 0 1]; 
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Rtheta=[cos(theta)  0 -sin(theta);  0  10;   sin(theta) 0 cos(theta)]; 

Rphi=[l 0 0;   0 cos(phi)  sin(phi);  0 -sin(phi)  cos(phi)]; 

y=Rphi*Rtheta*Rpsi; 

************************************************************** 

% Funct i on kal.m 

°/0 This function performs the linearization of the Kaiman filter. 

% First I will linearize the navigation model "navmod.m". The inputs 

% are Ax, Ay, and Az from the IMU and drift error for the exact range 

'/ calculations.  Outputs are the four pseudo ranges. 

[ajb.Cjd^linmodOnavmod') 

pause 

% Next, I will include these matrices in the synthesis model, 

% "syn.m". Inputs 1 through 4 will be noisy accelerations where 

% I will append transmissions zeros at -1 and include an integrator. 

% Input 4 will be noise from the clock model. Inputs 5 through 7 

'/,  will be the accelerations from the IMU. 

[as,bs,cs,ds]=linmod('syn') 

pause 
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% Next I will determine the Kaiman gains from the noise inputs, 1-4. 

% I chose Q=l and R=l initially. 

Q=eye(4);R=eye(4); 

l=lqe(as,bs(:,1:4),cs,Q,R) 

°/o I will check the bode response of the pseudo range inputs to the 

°/. pseudo range estimates. I will use a function called "bplots.m". 

bplots 

% I will adjust the weighting values to obtain a bandwidth of 

% 1 rad/sec. 

%  Decrease R to 5. 

l=lqe(as,bs(:,1:4),cs,Q,5*R) 

bplots 

l=lqe(as,bs(:,1:4),cs,.5*Q,5*R) 

bplots 

l=lqe(as,bs(:,1:4),cs,.05*Q,50*R) 

bplots 
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l=lqe(as3bs(:,l:4),cs,.05*Q,6*R) 

bplots 

t  I will use the values of Q=.05 and R=6. These provide bandwidths 

°/0 of 1 rad/sec. 

% Next, I will look at the response of the filter from the 

°/„ accelerations (input) to the pseudo ranges (output) .  I will use 

% a function called "accplot.m". 

accplot 

********************************************************************** 

% Function bplots.m 

% This function plots each input bode response 

w=logspace(-4,2,100); 

x=-3*ones(size(w)); 

[mag,phase]=bode(as-l*cs,l,cs,ds(:,1:4),l,w); 

magdb=20*log(mag); 

subplot(211) 

semilogx(w,magdb,w,x,'.;) 

grid 

title('Bode Response for Pseudo ranges 1 & 2') 
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axis([le-4 le2 -10 10]) 

pause 

% print 

[mag,phase]=bode(as-l*cs,l,cs,ds(:,1:4),2,w); 

magdb=20*log(mag); 

subplot(212) 

semilogx(w,magdb,w,x,'.;) 

grid 

axis([le-4 le2 -10 10]) 

pause 

% print 

[mag,phase]=bode(as-l*cs,l,cs,ds(:,1:4),3,w); 

magdb=20*log(mag); 

subplot(211) 

semilogx(w,magdb,w,x,'.') 

grid 

title(JBode Response for Pseudo ranges 3 &  4') 

axis([le-4 le2 -10 10]) 

pause 

°/„ print 

[mag,phase]=bode(as-l*cs,l,cs,ds(:,1:4),4,w); 

magdb=20*log(mag); 

subplot(212) 
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semilogx(w,magdb,w,x,;.') 

grid 

axis([le-4 le2 -10 10]) 

pause 

'/,  print 

% Function accplot.m 

% This function plots each, input bode response for the accelerations 

w=logspace(-4,2,100); 

x=-3*ones(size(w)); 

[mag,phase]=bode(as-l*cs,bs(:,5:7),cs,ds(:,5:7), l,w); 

magdb=20*log(mag); 

subplot(311) 

semilogx(w,magdb,w,x,;.') 

grid 

title(JBode Response for Ax, Ay, Az') 

axis([le-4 le2 -100 100]) 

pause 

% print 

[mag,phase]=bode(as-l*cs,bs(:,5:7),cs,ds(:,5:7),2,w); 

magdb=20*log(mag); 

subplot(312) 

semilogx(w,magdb,w,x,'.') 
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grid 

axis([le-4 le2 -100 100]) 

pause 

I  print 

[mag,phase]=bode(as-l*cs,bs(:,5:7),cs,ds(:,5:7),3,w); 

magdb=20*log(mag); 

subplot(313) 

semilogx(w,magdb,w,x,'.') 

grid 

axis([le-4 le2 -100 100]) 

pause 

% print 

******************************************************************* 

'/, Function plotstep.m 

% This function linearizes the Kaiman filter with gains and produces a 

% step response due to accelerations in the x,y, and z axes. 

[af,bf,cf,df]=linmod(;kfilnav2'); 

[Y,X,t]=step(af,bf,cf,df); 

plot(t3Y) 
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titleOStep response due to inputs in Ax,Ay,Az') 

pause 
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