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ABSTRACT

The purpase of this study was to gain a better understanding of the
paiameters affecting crack growth direction in unidirectional composite
materials, To achieve this, the effect of anisotropy and biaxial load-
ing on the direction of crack growth fn unidirectional off-axis compos-
ite materials were investigated, Specific emphasis was placed on defin-
ing the crack tip stress field and finding a consistent criterion for
predicting the direction of crack growth.

Two models are presented to predict the crack tip stress field, an
anisotropic elasticity solution and a singular isoparametric finite
element formulation, After defining the crack tip stress fieid, three
crack extension direction criteria, the normal stress ratio, the tensor
polynomial and the strain eneryy density criterion, were applied to
predict the direction of crack extension.

The theoretically predicted crack extension directions were then
compared with experimental results. After comparison, it was determined
that only the normal stress ratio criterior correctly predicts the

direction of crack extention.
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Chapter 1
INTRODUCTION

In the last twenty years, a desire for structural materials with
greater strength to weight ratios has led to the development of'fiber
reinforced composites. Early on, composites were used in applications
that were not structurally critical. For those applications, character-
jzation of the mechanical properties of the material was often all that
was necessary before application. Now, when composites are uscd for
main load carrying components in structures; an understanding of the
failure modes of the composite is necessary. Of partiéular interest is
the fracture response of composites, i.e., the influence of initial
flaws and flaws which develop during service, on the structural integ-

rity of the component.

1.1 Motivation and Statement of Purpose

A fundamental problem in predicting the failure of laminated com-
posite materials is an understanding of the direction of crack yrowth in
the 1ndiviQual laminae. The importance of the direction of crack growth
on the failure mode of the laminate, is shown in Fig. 1.0 [1].
Clustered [(6)2/(-6)2]s graphite-epoxy laminates failed in a pure matrix
mode {delamination and eithér intralaminar matrix cracking or fiber
matrix debonding). In contrast, the alternating [(+6/-8),]  laminates
exhibited fiber breakage in half of the plies and either matrix cracking
or fiber matrix debonding in the others; there was no delamination in
the alternatiny laminates. The mode of failure has a cignificant effect

on the strength of the laminate. The strength of the 10° and 30° alter-
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nating laminates was 30 and 50 percent greater, respectively, than the
strength of the clustered laminates [1]. Hence, understanding the
parameters that affect the laminate failure mode, particularly those
influencing the direction of crack growth in the lamina, is of critical
importance in predicting the fracture response of laminates.

The purpose of this study is to gain a better understanding of the
parameters affecting crack growth direction in the lamina. To achieve
this, the effect of anisotropy and biaxial loading on the direction of
crack growth in unidirectional off-axis composite materials will be
investigated. Specific emphasis will be placed on defining the crack
tip stress field and finding a consistent criterion for predicting the

direction of crack growth.

1,2 Literature Review

Several researchers have addressed fracture of unidirectional
composites in the past, Wu [2] and Sih et al. [3] have independently
investigated the fracture response of unidirectional glass/epoxy com-
posites. They have shown success in predicting the critical load for
mode 1, mode 2, and mixed mode problems, with the restriction that the
initial crack be aligned in the fiber direction. Additional work by Wu,
some of which applies to the fracture of composite laminates can be
found in [4-6], while Sih summarizes much of the current research
efforts in composite fracture in [7]. The Wu and Sih theories will be
discussed more fully later in this text,

More recently, Goree and Jones [8] examined the fracture behavior

of uaidirectional boron/aluminum composites, In their unalysis, Goree




and Jones treat the material as an inhomoyeneous anisotropic body con-

taining broken fibers, undamaged fibers and matrix material. They

assume that the fibers carry all of the axial load and that the matrix

transfers load from a fiber break to an adjacent unbroken fiber by

shear. The initial crack is modeled by an arbitrary number of fiber

breaks and the direction of crack extension is predicted by a maximum '
stress criterion,

These researchers have made significant contributions to under-
standing the fracture response of unidirectional composites. However, a
more general analysis is needed. In the precedinyg models, numerous
assumptions have been made on the orientation of the initial crack, the
scope of the analysis (microscopic versus macroscopic), and on the final
mode of failure. In order to provide a more general theory, Buczek and
Herakovich [9,10] studied the direction of crack yrowth and the associ-
ated eneryy release rates in a unidirectional off-axis lamina and edge
delamination in a [0/90]S laminate, They treated the lamina as a homo-
geneous anisotropic material. Using the finite element method to model
the crack tip stress field in conjunction with various crack growth
criteria, Buczek and Herakovich predicted the direction of crack exten-
sion in unidirectional composite tensile coupons. Though the analysis
was limited to tensile coupons subjected to uniaxial displacement load- v
ing, no restrictions were made on the orientation of the initial
crack, Buczek and Herakovich also noted several inconsistencies among
the crack growth direction criteria previously presented. As a result,
they have hypothesized a model to predict the direction of crack exten-

sion in unidirectional composites. For the limited number of cases
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analyzed, the direction of crack yrowth predicted by their new model

correlates well with experimental evidence,




Chapter 2
THEURETICAL CONSIDERATIONS

2.1 Crack Growth Direction Criteria

In this section three crack growth direction criteria are presen-
ted. Thouyh these criteria can also be used to predict load at failure,
the main emphasis in this study is on predictiny crack extension direc- v
tion. The criteria are applied treating the unidirectional composite
lamina as a homoyeneous anisotropic material. Salient features of these
criteria must be the applicability to mixed-mode fracture problems and
the ability to account for the anisotropic nature of crack growth resis-
tance in the unidirectional lamina (i.e., accounting for the fact that
it is more difficult to break fibers than matrix). Three crack exten-
sion criteria addressing these factors have been presented in the liter-
ature, They are the Tensor Polynomial Failure Criterion [11], the
Strain Energy Density Criterion [12], and the Normal Stress Ratio Cri-
terion [10]. Thouyh the Strain Eneryy Density Criterion does not
specifically account for the anisotropy of strenyth in composite materi-
als, Sih argues in [3] that the criterion is applicable at least in

principle to anisotropic fracture problems.

2.1.1 Tensor Polynomial Failure Criterion .
The Tensor Polynomial Criterion is.a phenomenological failure
theory presented by Tsai and Wu [11]., This theory is based on the exis-

tence of a failure surface in stress space of the form:

f(oi) = Fi oy + Fij oy 95 (2.1)

O 2 AL}

B a iR




where Fj; and Fij are strength tensors of second and fourth order,
and o, the contracted form of the stress tensor., Expressions for Fi and

F in both the x-y and 1-2 coordinate systems are presented in Appen-

ij?
dix A,

When applying the Tensor Polynomial Criterion to fracture problems,
the assumed direction of crack extension i1s the radial direction of
maximum f(ai). The stress components o, are those determined by a
continuum mechanics based stress analysis and must be evaluated at a
finite distance, r,, from the crack tip. The érack tip coordinate
system is shown in Fig. 2.0.

A graphical application of the Tensor Polynomial Criterion to
predict the direction of crack growth is shown by Wu in [2]. This
graphical approach is presented in Fiy. 2.1. The contour of the stress
vector acting on radial planes emanating from the crack tip is
represented by S, while the contour of the strength vector on the same
planes is represented by F. The predicted direction of crack extension
is labeled ¢c' It should be noted that the direction of ¢c does not
necessarily correspond to the direction of maximum S as would be the
case for isotropic materials, In anisotropic fracture the crack exten-
sion resistance, represented by F, plays an important role in determin-

ing o and must be accounted for,

2.1.,2 Strain Eneryy Density Criterion
The Strain Enerygy Density Criterion is phenomenological in nature

and is based on variations in the energy stored along the periphery of a




Fi1g. 2.0 Crack Tip Coordinate System.
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where.

F=Contour of Strength Vector
S=Contour of Stress Vector
.= Predicted Direction of Crack Extension

Fig. 2.1 Graphical Application of the Tensor Polynomial Criterion.
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core region surrounding the crack, Sih presents the critertion in [12]
for isotropic fracture and a modified form for application to anisotro-
pic fracture in [3].

Sih defines the strain energy density factor, S, as:

S
ol (2.2)

2]:

where =—— 3V is the strain energy density function and r the distance fraonm
the crack tip, Since the strain energy density function can be

expressed in terms of the crack tip stresses and strains as:

oW
w "% (oxex okt nyxy) (2.3)
an expression for the strain energy density factor, .S, can be obtained

by substitution. This expression is:

S )
S$=% (oxex + ey + txyyxy) (2.4)
The fundamental hypothesis of Sih [3] on unstable crack growth is:
Crack initiation takes place in the radial direction corre-
sponding to a minimum value of the strain energy density fac-
tor, i.e.,
a%s

= 0 and -§-> 0at ¢ = ¢ (2.5)
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Sih cautions that for very small values of r a continuum mechanics
based crack tip stress analysis is invalid, Hence the strain energy
factor should be evaluated at a finite distance, ro» from the crack tip,
where ro 1s of the same order of magnitude as the crack tip curvature,
The crack tip coordinate system for this criterion is similar to that of

the Tensor Polynomial as shown in Fig, 2,0,

2.1.3 Normal Stress Ratio Criterion

Buczek and Herakovich [10] have hypothesized the Normal Stress
Ratio Criterion as a phenomenological crack yrowth direction criter-
fon. The model assumes that the direction of crack extension corre-

sponds to the direction of the maximum value of R(r0.¢). defined as

g

R(r ) = -2 (2.6)
Tos

In the expression for R(r°.¢). %%s corresponds to the normal stress
acting on a radial plane defined by ¢, at a given distance ro from the

crack tip, and T¢¢ is the tensile strength normal to the ¢ plane,

Since the tensile strength of an arbitrary plane is difficult if
not impossible to measure, T¢¢ is defined in a consistent manner with
the tests that can oe performed. To meet these requirements, a mathe-
matical definition of T _ must satisfy the followiny conditions:

¢¢

(1) for an isotropic material, T., must be independent of ¢.

o¢

(2) for crack growth parallel to the fibers, T,. must equal the

¢
transverse tensile strength YT'

O

;
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(3) for crack growth perpendicular to the fibers, T¢’ must equa!

the longitudinal strength X1.
A definftion satisfying these conditions is:
T,, = X sin?(8) + Y. cosé(s) (2.7)
o0 T T ’

where B 1s the angle from the plane of interest to the fiber direc-
tion. These parameters alony with the crack tip coordinate system for

the Normal Stress Ratio are shown in Fig, 2,2,

2.2 Crack Tip Stress Field Models

- Two theoretical models to predict the crack tip stress field in
homogeneous anisotropic materials are presented in this section, The
first is an anisotropic elasticity solution for a blaxially loaded
center cracked infinite plate. The second is a singular finite element

formulation which allows for variable loading and yeometries.

2.2.1 Anisotropic Elasticity Solution

The stress analysis of an infinite homogeneous anisotrepic plate
containing a center crack can be directly related to a homogeneous
anisotropic plate with an elliptic hole. By reducing tne minor axis
dimension to zero and evaluating the stress potential functions in the
neighborhood of the crack tip, Lekhnitskii's complex variable solution
[13] for an elliptic hole in an anisotropic plate can be appiied to

anisotropic fracture problems. Wu presents a detaiiad description of

s .
; i e it




TN NI i A

Rt AR T DS TR TY T T MR LSS L e i e

\&\\ 

13

Fig. 2.2 Normal Stress Ratio Parameters.
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this application in [14] alony with equatiohs describing the crack tip
stresses for an infinite homogeneous anisotropic center éracked plate,
Figure 2.3 shows the problem under consideration alony with the crack
tip coordinate syStem.

The governing partial differential equation for the problem in

terms of the Airy's stress function U is:

2 an,. oM (2aL, +aL) %t aa. ot AL o%u

26 L ‘2R * Ase 16 Rt B
o i T, A 2w raniewe Iy -8)
ax A22 ax~ oy 22 ax- 3y g 3X3y 22 3Y

where Aij are components of the compliance tensor for plane stress or
plane strain depending on the analysis desired.
Assuming U = et Sy’ the cheracteristic equation for (2.8) takes

the form:

4 3 2 =
Alls -»2A165 + (ZA12 + AGG)S - 2A265 + A22 =0 (2.9)

The roots of the characteristic equation, 5 and 52’ are complex and are
functions of the material properties and the orientation of the crack
relative to the material principal direction.

The solution of Eq, 2.8 can be obtained in terms of two holomorphic

functions, °1(zl) and ¢2(zz), in the following form:

U=z Re{Fl(zI) + Folzy)} (2.10)
where oF  (2.) (2.)
z dfF,(z
o(z)) = =1, 0,(z,) = -7522—2 (2.11)
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Fig. 2.3 Infinite Center Cracked Plate with Far Field Stresses.
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and the complex variables are defined as:
z, = x+ Sly » Zy R Xt Szy (2.12)

The stress and displacement components for an anisotropic body

expressed in terms of the complex potentials 01(21) and 02(22) are:
2,' 2,'
o, = 2Re [Slol(zl) + 5202(22)]

o, = 2Re[o,(z)) + 0,(2,)] (2.13)

(] ]
Ty -2Re[5101(zl) + 5202(22)]
and
u= ZRe[plcl(zl) + pzoz(zz)]
(2.14)

v = 2Re[q101(zl) + q2¢2(22)]
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Savin [15] presents complex stress potentials satisfying the bound-
ary conditions for a crack in an infinite plate subjected to ten-
sicn o and shear T at infinity as indicated in Fiy. 2.3. These

complex potential functions are:

' a(r“ + Szcw)
¢, (z,) = -—7—-__—_-_Y— 4
1'"1 2 S1 - 52 1
L o (2'16)
' -a(t + Slo )
¢, (2,) = ——-T—~——--—y— 14
272 2 S1 - 32 2
where
£ rcos¢ + Slrsin¢
(2.17)

8y = rcos¢ + 52r51n¢

These functions were obtained through a conformal mapping of the crack

into a unit circle and satisfy the boundary conditions:
o =1, =0 -2 € X <a o (2.19)

To examine the crack tip stress distribution, these stress poten-

tials are evaluated as the 2 approach 1,

. . (ro Va + S,0 /a)
1"21 ¢ (7)) = :
1 2(S1 - SZ)/2r(cos¢ + stin¢)
(2.19)
(«" /3 + S,0" va)
]im 0'(1 ) = 1
C2+1 2'\°2

2(51 - Sz)/2r(cos¢ + stin¢)
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The potentials are evaluated as the Cj approach 1, because the conformal
mapping transforms the region surroundinyg the crack to the interior of a
unit circle whose radius is represented by cj. The transformation of a
crack 1nto a unit circle is shown in Fiy. 2.4,

Substitution of (2.19) into (2.13) and (2.14) gives the stress and

displacement distribution near the crack tip.

o «® 2 2
SFERRCE IR, B TP CPWRL IS, S}
T s sV WE s s VR
®va 1 S, S ) i
0y = — Re | (L= 2 e e | (- Ly
TGy -s) BV E (s -5y vy
® v 5,5 11 ® Va 1 S, S
e = e S e k- 2y
IS ms) W s -5 W W
(2.20)

LY 1 1/2 1.
u =0 v2ar Re {W[Slpzwz - Szplwlz_”

- — 1 Vo o ¥
+ 1 J/2ar Re {W[DZWZZ' p1w12]}

L e 1 1/2 1.

+ 1 /Zar Re | {q,¥2- qv2]]}
ZSI - SZS 272 1"1
where

wl = cos¢ + Slsin¢ wz = COS¢ + stin¢
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Z-Plane ¢-Plane

Conformal Transformations

»zs-w(§5)=%(§5*-§!;) j=1,2

Fig. 2.4 Conformal Mapping of Crack into a Unit Circle.
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The crack tip stresses exhibit a singularity of 1//r as in the
isotropic case. However, the magnitude of the stresses are not simply a
function of the stress intensity factors as in the isotropic case; the
quantities S; and S, also affect the magnitude of the stresses., This is
an important differencé between anisotropic and isotropic fracture
mechanics. In anisotropic fracture mechanics, the maygnitude of the
crack tip stresses are a function not only of the applied load, specimen
geometry and crack lenyth, but also the material properties and the

orientation of the crack relative to the principal material direction,

2.2.2 Singular Finite Element Formulation

From the anisotropic elasticity solution, it is evident that near
the crack tip there exists a singularity in the stress field of
order 1/Yr. A finite element with a similar singularity incorporated
into the equaticns describing the stress field over the domain of the
element would be advantageous. Barsoum presents such a singular element
in [16] (the idea of applying singular isoparametric elements to frac-
ture problems was presented independently by Barsoum [16] and by
Henshell and Shaw [18]). The advantage of Barsoum's formulation is that
a special crack tip element is not necessary. The 1//r singularity can
be generated in quadratic isoparametric elements by positioning the mid-
side nodes near the crack at the quarter points. The technique is
depicted in Fig. 2.5. (A derivation of the singularity is presented in
Appendix B). Freese and Tracey point out fn [17] that this singularity

is present in both the natural isoparametric triangle and the quadratic

triangular element generated by collapsing one side of an eight noded
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1soparametric quadrilateral element. However, as Barsoum shows in [16],
to obtain the 1//F singularity in the collapsed quadrilateral the
overlaping nodes must be constrained to have the same displacements, An
obvious advantage of the natural isoparametric triangle is that muiti-
point constraints of overlapping nodes is not required. Another advan-
tage shown by Freese et al, [17], is that the natural isoparametric
triangle allows for distorted triangular shapes {e.gy., pie-shaped ele-
ments) while the collapsed quadrilateral requires the element edges to
remain straight,

Though Barsoum [16] only presents applications of the singular
isoparametric element in isotropic fracture mechanics, the element does
have applications in anisotropic fracture. Since Freese et al., f17]
have shown that the natural isoparametric element can represent a radial

displacement variation of the form:
ug = Ayt 81/r + Cyr (2.21)

and since the displacements from the anisotropic elasticity solution

take the form:
uy = AifF (2.22)

the natural isoparametric element has as many applications in anisotro-
pic fracture as in isotropic fracture.
A survey of alternative .inite element methods in fracture mechan-

ics 1s given by Hilton and Sih in [19]. The emphasis of their paper is

.
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on calculation of stress intensity factors using finite elements; how-
ever, several state-of-the-art finite element formulations ‘or solution

of fracture problems are presented.




Chapter 3
CRACK TIP STRESS ANALYSIS
As previously mentioned, one of the objectives of this work is the
prediction of crack tip stresses in anisotropic materials without
restrictions as to the orientation the crack relative to the principal
material direction or the type of loading applied. In this chapter, the
application of the anisotropic elasticity solution and the singular
isoparametric finite element formulation to the general fracture problem
presented in Fiy, 3.0 is discussed. Note there are no restrictions as
to the orientation or the crack, defined by the angle a, or that of the
principal material (fiber) direction defined by 3, A]so, complete
biaxial loadihg is allowed; the far field ]oadsAcan all be specified
independently. The only constraint is that the crack is assumed to have
a finite height. This disallows the specification of far field loadings

that cause crack closure,

3.1 Application of the Anisotropic Elasticity Solution

valid lcadings for the elasticity solution presented in Section
(2.2.1) are shown in Fig. 2.3 and con;ist of a uniform tensile
stress o and a shear stress T, Though the solution allows for inde-
pendent specification of the material principal direction defined by the
angle 8, the crack is assumed to be parallel to the x-axis. This is not
as general as the problem defined in Fig. 3.0 which allows for the
specification of five independent values 5;, 3}, ¥;y’ a and 8, However,
by transforming the far field stresses to a crack tip coordinate system

and realization that the far field stress parallel to the crack does not

24
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contribute to the singularity (this fact is discussed fn Wu [14]) the
elasticity solution can be applied to problems similar to that of F{g.
3.0,

The details ot this transformation and superposition are shown in
Fig. 3.1. First, the far field stresses of Fiy, 3.la are transformed to
a crack tip coordinate system defined by the anyle a shown in Fig. 3.lb
(the crack tip coordinate system is represented by the axes £ and n),
In the £-n coordinate system, the effect of o: and r:n on the crack tip
stress field can be evaluated by applying Eq. 2.20. The stresses are
separated into singuiar and non-singular components as shown in Fig.
3.1c. Before Eq. 2.2U can be applied, the components of the compliance
tensor, Aij' must also be transformed to the crack tip coordinate
system. Since the crack was oriyinally oriented at an angle a and the
material principal direction was defined by the anyle 6, the compliance
tenﬁor must be transformed by the anyle (8-a), Let B represent the
angle (8-a).

The use of stress transformation along with the fact that the far
field stress parallel to the crack dces not contribute to the singular-
ity, allows for the application of specific elasticity solutions to
general fracture problems, In the preceding problem, an elasticity
solution allowing the svecification of two independent values is used to

solve a problem requiring the specification of five values.
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3.2 Application of Sinyular Isoparametric Finite Elements

Since many fracture problems of interest do not satisfy the infi-
nite boundary conditions of the anisotropic elasticity solution, an
anisotropic finite element fracture mechanics code was déveloped. This
code, ANFRAC (aniéotropic fracture mechanics code), incorporates an
isoparametric, quadratic, triangular element and the inherent singular-
ity associated with this element when the mid-side nodes are positioned
at quarter points. The advantage of a finite element model is the
ability to analyze specific yeometries and loading conditions that
cannot be addressed with an elasticity solution.

ANFRAC is a linear, two-dimensional, quadratic, isoparametric
finite element code. The outline of ANFRAC is similar to that of FEM2D,
an isoparametric finite element code presented by Reddy [20]. A des-
cription of the quadratic isoparametric triangular element along with
practical considerations on the use of isoparametric elements is given
in Bathe [21].

The master configuration of this element alonyg with the location of
the integration stations is shown in Fig. 3.2. Numerical integration
over triangular domains is discussed by Cook [22]. The integration
scheme used to calculate the element stiffness matrix is a seven point

Gaussian quadrature. The formula for the numerical integration is:

1
[[ fda =} wy f(r,s) (3.1)
i=1 -
where
f is the function to be inteyrated over the triangular area A,

w. is the weight associated with the ith sampling point,

1
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and

f(r,s) is the value of f evaluated at the ith sampling point,

The interpolation functions and weights for the isoparametric quadratic
traﬁgular element were taken from Bathe [21] and are given in Table 3.0.
As discussed in Barsoum [23], the ratio of element length to half
crack lenygth (designated £/a) siynificantly influences the crack tip
stress field., A similar effect is found in the natural isoparametric
element. Freese and Tracey [17] present stress intensity factor results
for an isotropic plate with an edye crack using the natural isoparamet-
ric trangular element. They have chosen an &£/a ratio of 0,1, and pres-
ent data that is independent of the angle ¢; With their results in
mind, a quarter-symmetry finite element mesh was developed to solve
fracture problems involving a center cracked plate. This mesh is shown
in Fig. 3.3 and an exploded view of the crack tip elements fs given in
Fig. 3.4. The %/a ratio of this mesh is 0.1 and the ratic of 2a/w is
also 0.1. The ratio 2a/w is a measure of the infinite nature of the
cracked plate. As the ratio of the crack length, 2a, to the plate
width, w, decreases, the infinite boudary conditions of the elasticity
solution are closer to being satisfied. A 2a/w ratio of 0.1 implies the
plate width is an order of magnitgde larger than the crack length, For
data given in Hertzberg [24], an isotropic plate of this size adequately
satisfies the infinite boundary conditions. This appears to be true for
anisotropic plates based on data provided by Smith and Mui]inix [25].

Since the mesh shown in Fig., 3.3 is a quarter symmetry mesh it can

only te used for problems with a crack orientation of 0° and dis-
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Symmetry
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Full Plate

A A
Note: See Fig.34 for Enlargement of Region A-A

Fig. 3.3 Quarter Symmetry Mesh of Center Cracked Plate.
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Note: See Fig.3.3 for Relative Location of
Region A-A.

Fig. 3.4 Exploded View of Crack Tip Elements.
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Table 3.0

Interpolation Functions and Numerical Integration Data

Interpolation Functions

Gauss

2r2 - 3r +4rs - 3s + 2s2 +1

2r2 -r

252 - s

-4r2 + 4r - 4rs
4rs

-452 + 4s - 4rs

Point Coordinates and Weights

r - coordinates

ry = 0.10128 65073 235

r2
3
4
Fg
6
r7

0.79742 69853 531
1
0.47014 20641 051
g
0.05971 58717 898
0.33333 33333 333

s - coordinates

51
52
$3

=
=r
= r,
= rg
= ry
g
"7

Weights

0.12593 91805 448
1

"1

0.13239 41527 885
¥4

Y4

0.225
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placement fields symmetric about the x and y axes. Symmetry arguments
allow the analysis to be limited to one-quater of the plate and hence

reduce the deyrees of freedom of the model. Solviny fracture problems
that do not allow the use of symmetry arguments requires significantly
larger amounts of computer storage or more sophisticated storage and

equation solving routines than those used in this tnvestiyation,

3.3 Verification of the Finite Element Model

Distributions of the stress componentt near the crack tip for an
infinite center cracked plate subjected to a uniaxial loading
of 3} equal to 1,0 ksi and a crack orientation of « = 0° are shown in
Figs. 3.5 to 3,13. 1In these figures, the solid lines represent results
from the elasticity solution and the finite element results for yauss
point 1 (Fig. 3.2) are represented by circles. This point was chosen
since it is the nearest integration station to the crack tip and it lies
on a radial line throuyh the centroid of the element., Similar plots for
the stress distributions at other gauss points are presented in Appendix
c.

Figures 3.5 to 3.7 are for a steel plate. For this isotropic
problem, the finite element stress results compare very well to the
elasticity solution, There is excellent correlation both in magnitude
of the stresses and distribution as a function of ¢.

Figures 3.8 to 3.10 correspond to a plate manufactured from
Hercules AS4/3501-6 graphite/epoxy (material properties are given in
Appendix E). For this problem, the fiber orientation angle, 6, is equal

to zero degrees. Overall, there is correlation in the stress
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distribution as a function of ¢ and in the stress magnitudes, However,
the finite element prediction of the maynitude of 9ys shown in Fig, 5.8.
does not compare as well as the other stress components. The lack of
better agreement for this stress component is due to the high gradient
that exists as a function of ¢, If the #/a ratic were reduced and the
concentration of elements increased, the o, component predicted by the
finite element model should improve. Since the gradients in the stress
components for graphite/epoxy are yreater than that of steel, there is
no reason to expect that a mesh that has converged for an isotropic
fracture problem has also converged for a highly orthotropic one,

Similar results are seen in Figs, 3,11 to 3,13 which correspond to
3 plate manufactured from AS4/3501-6 yraphite/epoxy with a fibers
orientation anyle of 90°, The distribution in stress components as a
function of ¢ compares well with the elasticfty solution while there is
some discrepancy in the magnitude of Oye The difference in magnitude is
less than that of the 0 = 0° problem, This fact is not surprising since
the gradient of o, as a function of ¢ 1is an order of magnitude smaller
for the 90° problem.

These results indicate that singular finite elements can be applied
to anisotropic fracture problems, However, prior to their application,
a detailed study on the convergence of singular isoparametric elements
in anisotropic fracture is required. Since stress gradients in aniso-
tropic materials can be significantly larger than those in isotropic
materials, the mesh building guidelines of Freese and Tracey [17] are no
longer applicable. An examplie of the importance of the 1/a ratio on the
prediction of crack tip stresses in anisotropic materials is shown in

Appendix F.
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Chapter 4
OFF-AXIS AND UNIDIRECTIONAL TENSILE COUPGNS

In this section analytical results are presented for graphite/epoxy
tensile coupons containing center cracks, The emphasis of the analysis
was to verify the numerical results of Buczek and Herakovich [5] and to
develop analytical results which when compared to existing experimental
results would test the credibility of the Normal Stress Ratio as a
viable crack extension direction criterion. All results were generated
using the anisotropic elasticity solution of Section (3.1)., Additional
results for analyses presented in this chapter can be found in Appendix

D.

4,1 Unidirectional 30° 0ff-Axis Tensile Coupon

Buczek and Herakovich compared several crack extension direction
theories with experimental results for a 30° off-axis tensile
coupon (6 = 120°) and found surprising results, Of the three crack
growth direction criteria described in Section (2.1), only the Normal
Stress Ratio agreed with the experimental value of 300°, Since the
finite element formulation which they employed was not developed specif-
ically to describe the stress field near a singularity, it was desired
to test the theory usiny a more accurate stress analysis. In an effort
to verify their results, the same 30° off-axis tensile coupon was ana-
lyzed using the anisotropic elasticity solution, |

The geometry of the specimen is shown in Fig. 4.0. The crack tip
stresses were evatuated for an applied load E} = 1,0 ksi at an o value

of 0,005 inches., An r, of 0.005 was chosen to match that selected by

45
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Buczek and Herakovich, The distributions of the crack yrowth direction
criteria as a function of ¢ are shown in Figs. 4.1 through 4,3, A
comparison of the predicted crack growth directions usiny anisotropic
elasticity with those predicted by finite elements [5] is given in Table
4.0,

The direction of crack extension predicted by the Normal Streés
Ratio is very consistent in both the analytical and finite element
solutions, while the direction of crack extension predicted by the
Tensor Polynomial and Strain Energy Density is not consistent., The
discrepancy in the crack growth direction predicted by the Tensor
Polynomial and Strain Energy Density in the two analyses is due to the
finite element formulation used by Buczek and Herakovich [5]. Rather
than concentrating on approximating the stress field around tne crack
tip, their formulation emphasizes evaluation of the strain eneryy
released during crack extension. ‘ ,

It is important to note that the conclusions drawn by Buczek and
Herakovich concerning the inconsistencies of the Tensor Polynomial and
Strain Energy Density Criterion in predicting the direction of crack
extension are supported by the anisotropic elasticity solution, The
difference in the value of ¢ predicted by the two methods is due to the
improved accuracy of the anisotropic elasticity solution relative to the

conventional finite element formulation,

4.2 Influence of r, on the Predicted Direction of Crack Growth
Investigation as to the influence of ro on the crack growth

direction criteria yields interesting results., The direction of crack

i
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Table 4,0

Comparison of Anisotropic Elasticity to Finite Element Results for
Direction of Crack Extension in 30° 0ff-Axis Tensile Coupons

Crack Extension Anisotropic Finite
Criterion Elasticity Element [9]
Normal Stress 301° 300°
Ratio
Tensor Polynomial 248° 90°
Strain Energy 340° 360°
Density

a=0°
0=120°
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extension predicted by the Normal Stress Ratio and Strain Energy Density
Criteria s independent of the value of Fos but this is not the case for
the Tensor Polynomial, These facts are shown dramatically in Fig.

4.4, From this figure, 1t fs apparent that a small change in the value
of ro can affect the value of ¢, 9 predicted by the Tensor Polynomial
by as much as 40°. As seen in Fig. 4.5, the change in the distribution
of the Tensor Polynomfal as a function of ¢ for'an order of magnitude
change in r, is significant. For an ro of 5.0E-03", the Tensor
Polynomial predicts the direction of crack growth to be 248°, while for

an r, of 5,0E-04", the predicted direction is 253°,

4.3 Unidirectional 15° 0ff-Axis Coupons

In an attempt to further verify the consistency of the Normal
Stress Ratio Criterion, the experimental configurations of Herakovich et
al. [26] were also analyzed., The geometries of the specimens analyzed
are shown in Fig. 4.6, The experimental observations for the direction
of crack extension were made with AS4/3501-6 graphite/epoxy. The ana-
lysis consisted of comparing the predicted direction of crack extension
in an Infinite plate (6 = 105°) with an applied load of 3} = 1.0 ksi and
anr, of 0,002 inches with the experimentally observed crack extension
direction, An ro of 0.002 inches corresponds with the location of gauss
point 1 in the singular isoparametric finite element solution,

The first specimen analyzed has a crack orientation angle, a, of
0°. The direction of crack growth predicted by the Normal Stress Ratio
for this sample is 286°. This corresponds very well with the experimen-

tal value of 285° (parallel with the fibers) observed by Herakovich et

LTI
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al. [26]. The distribution of the Normal Stress Ratio as a function
of ¢ for this problem is shown in Fig. 4.7, »

For the second specimen, the crack was aligned perpendicular to the
fibers (a = 15°)., The distribution of the Normal Stress Ratio as a
function of ¢ for this problem is shown in Fig. 4.8, The Normal Stress
Ratio predicts the direction of crack extension to be 271°, while the
experimental results of Herakovich et al. [26] showed crack extension to
occur at 270°, Again there is good correlation bétween the analytical
model and the experimental results.

Analysis of Fiys, 4.7 and 4,8 yields interesting results. For both
problems, the theoretiéal prediction of ¢ differs slightly from the
experimentally observed value. However, for both cases there is a
strong peak in the distribution of the Normal Stress Ratio as a function
of ¢ in the actual direction of crack growth. This fact is very impor-
tant. The Normal Stress Ratio may not have the accuracy to predict the
direction of crack excension correctly to within one degree, However,
when observed graphically, the Normal Stress Ratio represents the direc-

tion of crack extensien exceptionally well,

4.4 \Unidirectional Lamina Subjected to Mixed-Mode Loadings

In order to study crack growth in fibrous composites under more
general loading conditions, and to assist the experimentaltist in verifi-
cation of the Normal Stress Ratio Cfiterion. unidirectional lamina were
analyzed for various mixed-mode loadings and the predicted values

of ¢c determined. Studies of this nature can be very beneficial., In

addition to providing theoretical predictions for the direction of crack
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extension under mixed-mode loadiny, they serve as a yuide to the
experimentalist, with knowledge of the predicted response in hand, one
can then choose the most appropriate laboratory experiments necessary to
critically test the hypothesis, without running a plethora of tests.

The geometry and loading of the specimens analyzed is shown in Fig.
4.9, The fiber orientation angle, 6, is 0°, the crack orienta-
tion, a, is 0° and ro was chosen to be 0,002 inches, Mixed-mode analy-
sis requires the definition of a parameter, A, which is.the ratio
of 3} to ?;y' Mode 1 loading corresponds to A = =, while mode II is
defined as A = 0, Figure 4,10 shows the predicted direction of crack
growth, $c for pure mode II and various degrees of mixed-mode loading.

By analyzing Fig. 4.10 a great deal of information can be gained
about the mixed mode response of 0° yraphite/epoxy material. The direc-
tion of crack extension is strongly dependent on i for smail value
of A (i.e., < 2.0). For A > 2.0 the predicted direction of crack growth
is independent of A, For pure mode II loading, the predicted crack
extension direction is 348°, In contrast, a mixed-mode loading of A =1
generates crack extension at 358°, while pure mode I generates crack
growth at 0°, From these results, an ideal laboratory test to verify
the Normal Stress Ratio would be pure mode Il loadiny, The predicted
direction of crack extension for this loading, 348°, clearly implies
fiber breakaye. A very poor test would be any mixed-mode test that was
not predominantly mode II because the direction of crack extension

appears to be dominated by the mode I response when A > 2.0,
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Chapter 5
CONCLUSIONS AND RECOMMENDATIONS

This study has been concerned with the development of models to
predict the crack tip stress field in unidirectional composite materi-
als, investigation of various crack yrowth direction criteria, and the
effect of biaxial loading on the direction +f crack extension,

For the cases analyzed, the Normal Stress thio has proven to be a
ﬁonsistent crack extension direction criterfa. Two advantageous charac-
teristics of the Normal Stress Ratio are, the presence of a strong peak
in the direction of crack extension when plotted as a function of ¢ and
the independence of ¢, On the choice of r,. Though the Normal Stress
Ratio may not have the accuracy to predict the direction of crack exten-
sion to within one degree, when observed graphically, this criterion
predicts the direction of crack extension exceptionally well. The
independence of ¢, on the choice of ro allows the prediction of crack
éxtension direction in unidirectional composites without prior knowledge
of a proper ro value.

This study has confirmed the discrepancies found by Buczek and
Herakovich [5] regarding the Tensor Polynomial and Strain Energy Density
crack growth criteria, The inability of these theories to predict the
correct direction of cfack growth was not due to an inaccurate finite
element stress analysis, but due to limitations in the theories.

Application of the anisotropic elasticity solution to the analysis
of unidirectional composites containing cracks has been very advantage-
ous. The speed and reduction in cost of analyses based on the aniso-

tropic elasticity solution relative to finite element solutions is
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phenomenal. This access to an inexpensive analytical solution allows
the performance of detailed parametric studies, Through these paramet-
ric studies, critical tests can be determined to better verify and
evaluate crack direction criteria.

It has been shown that sinyular {soparametric finite elements can
also be used to approximate crack tip stresses in anisotropic materi-
als. Though the problems treated in this study where heuristic in
nature, they have proven that singular isoparametric finite elemen:s can
be used to solve anisotropic fracture problems, Finite element solu-
tions are particularly valuable for problems that cannot be addressed by
the anisotropic elasticity solution, i.e., problems with finite size or
complex geometries,

Though this study has proven the potential usefulness of singular
isoparametric finite elements in anisotropic fracture, additional
research is required. Particular emphasis should be given to the devel-
opment of guidelines which will assist the analyst in mesh building,
i.e., proper £/a ratios and element concentrations.

Additional experimental research is required to further verify the
Normal Stress Ratic Criterfon. Particular consideration should be given
to performing tests under mode Il loading. The Normal Stress Ratio
predicts fiber breakage for pure mode Il loading of a unidirectional
graphite/epoxy composite with fiber orientation and crack orientation of
0°. Correspondence between experimentally observed and analytically

predicted values of ¢c for tests involving fiber breakage would add

significant credibility to the Normal Stress Ratio Criterion.
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Lastly, to fully verify the Normal Stress Ratio Criterion other
material systems must be studied. So far, all applications of the
Normal Stress Ratio Criterion have been with yraphite/epoxy. Material
systems representing varfous deygrees of anisotropy from isotropic to

graphite/epoxy need to be investigated,
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APPENDIX A

1-2 Coordinate System

2 2 '
flog) = Floy + Fouy + F 110, + Fppup® + 2F1,50105 + Fee%

2

Mathematical Expressions for the Strength Tensor Terms as a

Function of Measured Strengths
Fy = (1/Sg + 1/%g)
F2 = (I/YT + I/Yc)
Fyp = =1/ (XpXe)
Fap = -1/(¥y¥c)
F66 = 1,(52)

X-Y Coordinate System

- 2
fog) = F oo, + chy + FSTxy *F9y t Fyy°y

+ 2F

2
+ 2ny°x°y + 2FxS°x1xy
Transformation of Strength Tensor Terms

2 2

= 2 = 2
Fy n Fl m Fz

Fg = 2mnF; - 2mnF,
= (md 4 2.2 2.2
Fxx (m Fll +n F22 + 2m“n Flz + m*n F66)

+ FSSTxy

yS°yTxy

2

gy = (n¥Fyy + gy + 2nPn’Fyp + mén’Fgg )

Fgg = (4m2n2F11 + 4m2n2F22 - 3m2ﬂ2F12 + (n? - "2)2F66)

Fay = (mznzFll + mz"zez + (m + %) Flp - m2n2F66)

Fys = (2"39F11 - 2mn3F22 + 2(mn3 - m3n)F12 + (m3 - m3n)F55)
Fys = (2n0%F)) = 20%0F, + 2(n’n - mn®)Fyp + (n'n - mn?)Fg)

where m = cos 6 and n = sin 6.
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APPENDIX B

To provide a better understanding of singular fsoparametric finite
elements, the form of the singularity along the line 1.2 (s = 0) in Fig,

B.1 will be calculated,

For a six noded isoparametric triangular element, the following

relations hold:

n
= 5 n(r, 1)
X 121 '(r S) X' ( }
) ( )
= h N 2
u 121 1 r,s Ui ( )

where

hy is the shape function for the {th node

Xj fs the x-coordinate of the ith node

Uy is the x-direction displacement of the {th node
x is the x-coordinate mapping function

u is the x-direction displacement interpolation function

Evaluation of the shape functions, along the line 1-2 (s = 0),

considering nodes 1, 2 and 4 only ytfelds:
hy = 1-3r+ 2r2
hy = -r+2r

h4 = 4r - 42

Substitution of these shape functions into Eq. 1 yields:
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Fig. B.1 Node Locations 'n Conventional and Singular Isoparametric
Triangular Elements. _
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X = (l-3r+2r2)x1 + (-r+2r2)x2 + (4r-4r2)x4 (3)

Choosing for the singular configuration, X) = o, X; = L and X4 = L/4

substitution into Eq. 3 yields:
x = (-re2r?)L + (4r-4r2)-al= (4)
simplifying,
X = rzL
Rearranging Eq. 5, an expression for r in terms of x is obtained.
r= /%f (6)
An expression for u along the line 1-2 is:
u= (1-3r‘+2r~2)u1 + (-vr+2r2)u2 + (4r-4r2)u3 (7)
Substitution of Eq. 6 into Eq. 7 yields:

u= (1-3/%1 2 -E-)u1 + (-/%_.;2/%-)&12 + (4/%-4/%-)% (8)

The strain in the x-direction is then;

du 2 3 2 1 2 4
€ B ew—— (..,. - —-—.) u + (— - ) u + (—-—- - .—) u ( 9)
X 93X L /XL 1 L 2/xC 2 KU & 3
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Analysis of Eq. 9 reveals that the strain singularity along the line 1-2

is of the order L » which is the required singularity for fracture

v
mechanics applications,




APPENDIX C
The followiny figures show the distribution in the stress
components as a function of ¢ for the seven gauss points, This
information is included to give a better understandiny of the stress
field distribution throuyh the element., The problem under consideration
is a center cracked AS4/3501-6 plate (8 = 90°, 2a = 0.,5") subjected to a .

far field stress 'Jy of 1.0 KSI.
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APPENDIX D
This section is included to pro-ide additional information
concerning the prediction of crack extension in unidirectional
composites. The figures presented, provide insight into the crack tip

stress states and characteristics of the crack extension direction

criteria,
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APPENDIX F
This section is included to provide additional information
concerning the convergence of the singular finite element solution,
Résults presented are for the finite element mesh shown in Fig., F.l.
For this mesh the 2/a ratio is 1.0 and the 2a/w ratio is 0.1, The
problem under consideration is a center cracked AS4/3501-6 plate (6 =
90° and a = 0°) subjected to a far field stress 3} = 1,0 KSI,
Distributions of the stress components near the crack tip as a
function of ¢ are given in Figs. F.2 to F.4, In these figures, the
solid iine represents results from the anisotropic elasticity solution
and the finite element results for gauss point 1 are represented by
circles, Analysis of the figures indicates the finite element solution
adequately approximates the distribution of the stress components as a
function of ¢. However, there is a Targe discrepancy in the magnitude
of the stresses predicted by the finite element solution and those
predicted by the aniseotropic elasticity solution.
Comparison of these results with the results of Chapter 3 shows the
importance of the £/a ratid on the prediction of crack tip stresses.
The finite element mesh used in Chapter 3 has a smaller £/a ratio (1/a =

0.1) and hence better approximates the crack tip stress field.
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VIRGINIA TECH CENTER FOR
COMPOSITE MATERIALS AND STRUCTURES

The Center for Composite Materials and
Structures is a coordinating organization for
research and educational activity at Virginia
Tech. The Center was formed in 1982 to
encourage and promote continued advances in
composite materials and composite structures.
Those advanres will be made from the base of
individual accomplishments of the thirty-four
founding members who represent ten different
departments in two colleges.

The Center functions by means of an
Administrative Board which is elected yearly,
The general purposes of the Center include:

® collection and dissemination of informa-
tion about composites activities at Virginia
Tech,

® contact point for other organizations and
individuals, :

e mechanism for collective educational and
research pursuits,

e forum and mechanism for inrternal inter-
actions at Virginia Tech.

The Center for Composite Materials and
Structures is supported by a vigorous program
of activity at Virginia Tech that has developed
since 1963. Research expenditures for investiga-
tions of composite materials and structures total
well over five million dollars with yearly
expenditures presently approaching two million
dollars.

Research is conducted in a wide variety of
areas including design and analysis of compo-
site materials and composite structures,
chemistry of materials and surfaces, characteri-
zation of material properties, development of
new material systems, and relations between
damage and response of composites. Extensive
laboratories are available for mechanical
testing, nondestructive testing and evaluation,
stress analysis, polymer synthesis and character-
ization, material surface characterization,
component fabrication and other specialties.

Educational activities include eight formal
courses offered at the undergraduate and
graduate
chemistry, mechanics, and design of composite
materials and structures. As of 1982, some 33
Doctoral and 37 Master’s students have
completed graduate programs and several
hundred Bachelor-level students have been
trained in various aspects of composite
materials and structures. A significant number
of graduates are now active in industry and
government,

Various Center faculty are internationally
recognized for their leadership in composite
materials and composite structures through
books, lectures, workshops, professional society
activities, and research papers.

levels dealing with the physics,

FOUNDING MEMBERS OF THE CENTER
Aerospace and Ocean Engineering Science and  Industrial Engineering
Engineering Mechanics and Operations Research
mphae! 'I. Ha;:lta Hal F, Btinus:n joel A. Nachlas
Riam L. Hallauer, Jr. john C. Duke, Jr.
Eric R. johnson Daniel Frederick %‘::gd"v"gz;;:l "8
Chemical Engineering Robert A. Heiler D. P. H. Hasselman
Donald G. Baird Edmund G. Henneke, ii Charles R. Houska
Chemistry Carl T. Herakovich M. R. Louthan, Jr.
Michael W. Hyer
James E. McGrath Robert M. Jones Mathematics
Thomas C. Ward Manohar P. Kamat Werner E. Kohler
P. Wightman p

James P. Wigl Alfred C. Loos Mechanical Engineering
Civil Engineering Don H. Morris Norman S. Eiss, jr.
Raymond H. Plaut Daniel Post Charles E. Knight
Eectrical Engineering jununthula N. Reddy S. W, Zewari

ftoannis M. Besieris Kenneth L Reifsnider

Richard O. Claus Wayne W, Stinchcomb

Inquiries should be directed to: .

Center for Composite Materials & Structures
College of Engineering
Virginia Tech
Blacksburg, VA 24061
Phone: (703) 961-4969
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