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ABSTRACT 

The purpose of this study was to gain a better understanding of the 

parameters affecting crack growth direction in unidirectional composite 

materials. To achieve this, the effect of anisotropy and biaxial load- 

ing on the direction of crack growth In unidirectional off-axis compos- 

ite materials were investigated. Specific emphasis was placed on defin- 

ing the crack tip stress field and finding a consistent criterion for 

predicting the direction of crack growth. 

Two models are  presented to predict the crack tip stress field, an 

anisotropic elasticity solution and a singular isoparametric finite 

element formulation. After defining the crack tip stress field, three 

crack extension direction criteria, the normal stress ratio, the tensor 

polynomial and the strain energy density criterion, were applied to 

predict the direction of crack extension. 

The theoretically predicted crack extension directions were then 

compared with experimental results. After comparison, It was determined 

that only the normal stress ratio criterion correctly predicts the 

direction of crack extention. 
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Chapter 1 

INTRODUCTION 

In the last twenty years, a desire for structural materials with 

yreater strength to weight ratios has led to the development of fiber 

reinforced composites. Early on, composites were used in applications 

that were not structurally critical. For those applications, character- 

ization of the mechanical properties of the material was often all that 

was necessary before application. Now, when composites are used for 

main load carrying components in structures, an understanding of the 

failure modes of the composite is necessary. Of particular interest is 

the fracture response of composites, i.e., the influence of Initial 

flaws and flaws which develop during service, on the structural integ- 

rity of the component. 

1.1 Motivation and Statement of Purpose 

A fundamental problem in predicting the failure of laminated com- 

posite materials is an understanding of the direction of crack growth in 

the individual laminae. The importance of the direction of crack growth 

on the failure mode of the laminate, is shown in Fig. 1.0 [1]. 

Clustered [(9)2/(-e)2]s graphite-epoxy laminates failed in a pure matrix 

| mode (delaminatlon and either Intralaminar matrix cracking or fiber 

I ' matrix debonding). In contrast, the alternating [(+6/-9)Js laminates 
% 
i exhibited fiber breakage in half of the plies and either matrix cracking 
8 
1 or fiber matrix debonding in the others; there was no delamination in 

| the alternating laminates. The mode of failure has a significant effect 

on the strength of the laminate. The strength of the 10° and 30° alter- 
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Fig. 1.0   Failure Modes of Angle-Ply Laminates. 
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natlng laminates was 30 and 5Ü percent greater, respectively, than the 

strength of the clustered laminates [1], Hence, understanding the 

parameters that affect the laminate failure mode, particularly those 

Influencing the direction of crack growth in the lamina, is of critical 

Importance 1n predicting the fracture response of laminates. 

The purpose of this study Is to gain a better understanding of the 

parameters affecting crack growth direction 1n the lamina. To achieve 

this, the effect of anisotropy and biaxial loading on the direction of 

crack growth in unidirectional off-axis composite materials will be 

investigated. Specific emphasis will be placed on defining the crack 

tip stress field and finding a consistent criterion for predicting the 

direction of crack growth. 

1.2 Literature Review 

Several researchers have addressed fracture of unidirectional 

composites in the past. Wu [2] and S1h et al. [3] have independently 

investigated the fracture response of unidirectional glass/epoxy com- 

posites. They have shown success in predicting the critical load for 

mode 1, mode 2, and mixed mode problems, with the restriction that the 

Initial crack be aligned 1n the fiber direction. Additional work by Wu, 

some of which applies to the fracture of composite laminates can be 

found in [4-6], while Sih summarizes much of the current research 

efforts in composite fracture in [7]. The Wu and Sih theories will be 

discussed more fully later In this text. 

More recently, Goree and Jones [8] examined the fracture behavior 

of unidirectional boron/aluminum composites. In their analysis, Goree 



and Jones treat the material as an inhomoyeneous anisotropic body con- 

taining broken fibers, undamaged fibers and matrix material. They 

assume that the fibers carry all of the axial load and that the matrix 

transfers load from a fiber break to an adjacent unbroken fiber by 

shear. The initial crack 1s modeled by an arbitrary number of fiber 

breaks and the direction of crack extension is predicted by a maximum 

stress criterion. 

These researchers have made significant contributions to under- 

standing the fracture response of unidirectional composites. However, a 

more general analysis is needed. In the preceding models, numerous 

assumptions have been made on the orientation of the Initial crack, the 

scope of the analysis (microscopic versus macroscopic), and on the final 

mode of failure. In order to provide a more general theory, Buczek and 

Herakovich [9.1U] studied the direction of crack growth and the associ- 

ated energy release rates in a unidirectional off-axis lamina and edge 

del ami nation in a [0/9U]s laminate. They treated the lamina as a homo- 

geneous anisotropic material, using the finite element method to model 

the crack tip stress field in conjunction with various crack growth 

criteria, Buczek and Herakovich predicted the direction of crack exten- 

sion in unidirectional composite tensile coupons. Though the analysis 

was limited to tensile coupons subjected to unlaxlal displacement load- 

ing, no restrictions were made on the orientation of the Initial 

crack. Buczek and Herakovich also noted several inconsistencies among 

the crack growth direction criteria previously presented. As a result, 

they have hypothesized a model to predict the direction of crack exten- 

sion in unidirectional composites. For the limited number of cases 



analyzed, the direction of crack yrowth predicted by their new model 

correlates well with experimental evidence. 



Chapter 2 

THEORETICAL CONSIDERATIONS 

2.1 Crack Growth Direction Criteria 

In this section three crack growth direction criteria are presen- 

ted. Thouyh these criteria can also be used to predict load at failure, 

the main emphasis in this study is on predicting crack extension direc- 

tion. The criteria are applied treatlny the unidirectional composite 

lamina as a homoyeneous anlsotropic material. Salient features of these 

criteria must be the applicability to mixed-mode fracture problems and 

the ability to account for the anisotropic nature of crack growth resis- 

tance In the unidirectional lamina (i.e., accounting for the fact that 

it is more difficult to break fibers than matrix). Three crack exten- 

sion criteria addressiny these factors have been presented 1n the liter- 

ature. They are the Tensor Polynomial Failure Criterion [11], the 

Strain Energy Density Criterion [12], and the Normal Stress Ratio Cri- 

terion [10], Thouyh the Strain Eneryy Density Criterion does not 

specifically account for the anisotropy of strength in composite materi- 

als, Sin argues in [3] that the criterion is applicable at least in 

principle to anisotropic fracture problems. 

2.1.1 Tensor Polynomial Failure Criterion 

The Tensor Polynomial Criterion is a phenomenological failure 

theory presented by Tsai and Wu [11], This theory is based on the exis- 

tence of a failure surface in stress space of the form: 

f(ot) = Fi 0i + Ftj o, Oj (2.1) 



where F^ and F^ are strength tensors of second and fourth order, 

and o. the contracted form of the stress tensor. Expressions for F^ and 

Fiit in both the x-y and 1-2 coordinate systems are presented in Appen- 

dix A. 

When applying the Tensor Polynomial Criterion to fracture problems, 

the assumed direction of crack extension Is the radial direction of 

maximum f{o*).    The stress components o^ are those determined by a 

continuum mechanics based stress analysis and must be evaluated at a 

finite distance, rQ, from the crack tip. The crack tip coordinate 

system is shown in Fig. 2.0. 

A graphical application of the Tensor Polynomial Criterion to 

predict the direction of crack growth Is shown by Wu in [2]. This 

graphical approach Is presented in Fig. 2.1. The contour of the stress 

vector acting on radial planes emanating from the crack tip 1s 

represented by S, while the contour of the strength vector on the same 

planes 1s represented by F. The predicted direction of crack extension 

is labeled <)>,.. It should be noted that the direction of <fr does not c *• 

necessarily correspond to the direction of maximum S as would be the 

case for isotropic materials. In anlsotroplc fracture the crack exten- 

sion resistance, represented by F, plays an important role In determin- 

ing $ and must be accounted for. 

2.1.2 Strain Energy Density Criterion 

The Strain Energy Density Criterion 1s phenomenological 1n nature 

and 1s based on variations in the energy stored along the periphery of a 



F1g. 2.0 Crack Tip Coordinate System. 

M-M+-:   ---* 



where. 

F= Contour of Strength Vector 
S = Contour of  Stress Vector 

0C" Predicted Direction of Crock Extension 

F1g. 2.1 Graphical Application of the Tensor Polynomial Criterion. 

M 
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core region surrounding the crack. Sin presents the criterion 1n [12] 

for Isotropie fracture and a modified form for application to anlsotro- 

p1c fracture in [3]. 

S1h defines the strain energy density factor, S, as: 

**»* (2 2) 

3W 
where -rrr is the strain energy density function and r the distance from 

I 
the crack tip. Since the strain energy density function can be 

expressed 1n terms of the crack tip stresses and strains as: 

ay   i 

W - 1 < Vx + °yey + Vxy} (2'3) 

an expression for the strain energy density factor,.S, can be obtained 

by substitution. This expression is: 

S " k <Vx + Vy + Vxy} <2'4> I] 

The fundamental hypothesis of Sih [3] on unstable crack growth is: 

Crack initiation takes place in the radial direction corre- 

sponding to a minimum value of the strain energy density fac- 

tor, i.e., 

2 
§| - 0 and ^-| > 0 at * * ^ (2.5) 
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Sih cautions that for very small values of r a continuum mechanic* 

based crack tip stress analysis is invalid. Hence the strain energy 

factor should be evaluated at a finite distance, rQ, from the crack tip, 

where rQ Is of the same order of magnitude as the crack tip curvature. 

The crack tip coordinate system for this criterion is similar to that of 

the Tensor Polynomial as shown in Fig. 2.0. 

2.1.3 Normal Stress Ratio Criterion 

Buczek and Herakovlch [10] have hypothesized the Normal Stress 

Ratio Criterion as a phenomenological crack growth direction criter- 

ion. The model assumes that the direction of crack extension corre- 

sponds to the direction of the maximum value of R(r„,♦), defined as 

K(r0,*) »-*£ (2.6) 

In the expression for R(rQ,$), a     corresponds to the normal stress 

acting on a radial plane defined by <j>, at a given distance r_ from the 

crack tip, and T  is the tensile strength normal to the $ plane. 

Since the tensile strength of an arbitrary plane is difficult if 

not impossible to measure, T  is defined in a consistent manner with 

the tests that can oe performed. To meet these requirements, a mathe- 

matical definition of T  must satisfy the following conditions: 

(1) for an Isotropie material, T  must be independent of <}>. 

(2) for crack growth parallel to the fibers, T  must equal the 

transverse tensile strength Yj. 

! j 

i i 

3 i 
'  -■ i 

.J 
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1J 
(3) for crack growth perpendicular to the fibers, T.A must equal 

99 
the longitudinal strength XT. 

A definition satisfying these conditions Is: 

T^ ■ *T Sln2(ß) + YT cos
2(e) (2.7) 

2.2 Crack Tip Stress Field Models 

Two theoretical models to predict the crack tip stress field In 

homogeneous anlsotroplc materials are presented In this section. The 

first Is an anlsotroplc elasticity solution for a blaxlally loaded 

center cracked Infinite plate. The second 1s a singular finite element 

formulation which allows for variable loading and geometries. 

2.2.1 Anisotropie Elasticity Solution 

The stress analysis of an Infinite homogeneous anlsotroplc plate 

containing a center crack can be directly related to a homogeneous 

anisotropic plate with an elliptic hole. By reducing tne minor axis 

dimension to zero and evaluating the stress potential functions in the 

neighborhood of the crack tip, Lekhnitskll's complex variable solution 

[13] for an elliptic hole in an anisotropic plate can be applied to 

anisotropic fracture problems. Wu presents a detaiUd description of 

! > where ß 1s the angle from the plane of Interest to the fiber direc- 

tion. These parameters atony with the crack tip coordinate system for | I 

the Normal Stress Ratio are shown 1n Fig. 2.2. 

-«s 

i ■•! 



13 

I I Fig. 2.2 Normal Stress Ratio Parameters. 
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this application in [14] along with equations describing the crack tip 

stresses for an infinite homogeneous anisotropic center cracked plate. 

Figure 2.3 shows the problem under consideration along with the crack 

tip coordinate system. 

The governing partial differential equation for the problem in 

terms of the Airy's stress function U is: 

34U  2A26 34U   (2A12+A ) 34U    2A.ß 34U   AU3
4U 

—, _— + — .. + _LL   = o (2.8) 
3x    A22 3x 3y      A22    -dxc^c        A22 3x3y

J  A22 3y* 

where A^j are components of the compliance tensor for plane stress or 

plane strain depending or, the analysis desired. 

Assuming U = ex + y, the characteristic equation for (2.8) takes 

the form: 

AUS
4 - 2A16S

3 + (2A12 + A66)S
2 - 2A26S + A22 - 0      (2.9) 

The roots of the characteristic equation, S1 and S2, are complex and are 

functions of the material properties and the orientation of the crack 

relative to the material principal direction. 

The solution of Eq. 2.8 can be obtained in terms of two holomorphic 

functions, ^Uj) and *2U2), in the following form: 

U = z RejFjUj.) + F2(z2)j (2.10) 

where 
dFi(zi) dF»(z») 

W"-4zp • W"-§ip (2.1D 

i.*^w*^^.-.^:*^Wl&^^V;Wj2.#^ 
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and the complex variables are defined as: 

zl * x + Sly ' z2 "  x + V (2.12) 

The stress and displacement components for an anlsotroplc body 

expressed in terms of the complex potentials *1(z1) and *2(z?) are: 

ax « 2Re [sJ^Zj) + S^z.,)] 

o » 2Re[*1(z1) + »2(z2)j (2.13) 

and 

where 

T  = ^RefS^^) + S2*2(z2)] 

u = 2Re[p1*1(z1) + p2*2(z2)] 

v = 2Re[q1*1(z1) + q2*2(z2)] 

Pl = A11S1 + A12 " A16S1 

(2.14) 

p2 - AnS< + A12 - A16S2 

A12S1 + A22 " A26S1 
(2.15) 

q2 = 
A12S2 + A22 " A26S2 

^'«aA-^L^A'^^iii^^iiiioaW^^^V^- i^sj 
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Savin [lb] presents complex stress potentials satisfying the bound- 

ary conditions for a crack in an infinite plate subjected to ten- 

sion o and shear T at infinity as indicated in Fiy. 2.3. These 

complex potential functions are: 

&(-    + S2o 

where 

*i(zi> 3 z(sl - s2) 
Cl 

,     -a(T + Sjo j 

*2(z2> "  2(SX - S2) 
c2 

C, =» rcos<j> + Sjrsinifi 

C2 * rcos<f> + S2rsin$ 

(2.16) 

(2.17) 

These functions were obtained through a conformal mapping of the crack 

into a unit circle and satisfy the boundary conditions: 

o » T  •» U y   xy -a < x <■  a (2.18) 

To examine the crack tip stress distribution, these stress poten- 

tials are evaluated as the c- approach 1. 
J 

Si 

lim   ', .   [l /a + V /a) 
cri *l(zl} *  2(S1 - S2)/2r(cos1j) + S2sin$) 

(2.19) 

H l      d    d       2(S1 - S2)/2r(cos* + S2sin*) 

~/X^",.u!Jl^^.^,JJ!'Jl.'"BW,!"«IW 
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The potentials are evaluated as the c. approach 1, because the conformal 
J 

mapping transforms the region surrounding, the crack to the Interior of a 

unit circle whose radius is represented by ?..   The transformation of a 

crack Into a unit circle is shown In Fly. 2.4. 

Substitution of (2.19) Into (2.13) and (2.14) gives the stress and 

displacement distribution near the crack tip. 

o x 
/ä S,S?       S9     S. T" /ä 1 S?     S? 

Re {—LL_ [A . _!]) + Re{ h2- - -i]j 

/Zr (Sj - S2) iff    l'i /ZF (Sj - S2) ^2    ^2 

0<* & 1 S.      S, T" /a 1 . 

/2T (Sl - S2)    $    ^ /Zr (Sl - S2)      ^2      <V2 

o" /ä S,S? 11 T" /ä 1 S,      S, 

/5r (Sl-S2)     »*2      $ ^ (Si_Sj)   ^    tV2 

(2.2Ü) 

v . ö- /217 Re {TI-i_.[Sip2^. s2Pl^) 
'1      J2J 

„y2 „,y? 

where 

^ = cos.)» + SjSin* ^ = cos* + S2sin<fr 

t-fc.--■■-Ji- ■■«■■■■ ■■- ^v-^-^-^'^-a^-fri^^ 
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Z-Plane 
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z«x+xy 

-a        B        Q 

Conformal Transformations 

z^« Cutty = £($j+y:)   i-1.2 

F1g. 2.4   ConfortMl Happing of Crack Into a Unit Circle. 
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The crack tip stresses exhibit a singularity of 1//7 as In the 

Isotropie case. However, the magnitude of the stresses are not simply a 

function of the stress intensity factors as in the Isotropie case; the 

quantities Sj and S2 also affect the magnitude of the stresses. This is 

an important difference between anlsotroplc and Isotropie fracture 

mechanics. In anisotroplc fracture mechanics, the magnitude of the 

crack tip stresses are a function not only of the applied load, specimen 

geometry and crack length, but also the material properties and the 

orientation of the crack relative to the principal material direction. 

2.2.2 Singular Finite Element Formulation 

From the anisotroplc elasticity solution, it is evident that near 

the crack tip there exists a singularity in the stress field of 

order 1//F. A finite element with a similar singularity incorporated 

Into the equations describing the stress field over the domain of the 

element would be advantageous. Barsoum presents such a singular element 

in [16] (the idea of applying singular isoparametric elements to frac- 

ture problems was presented independently by Barsoum [16] and by 

Henshel1 and Shaw [18]). The advantage of Barsoum's formulation is that 

a special crack tip element Is not necessary. The 1//F singularity can 

be generated in quadratic isoparametric elements by positioning the mid- 

side nodes near the crack at the quarter points. The technique is 

depicted in Fig. 2.5. (A derivation of the singularity is presented in 

Appendix B). Freese and Tracey point out in [17] that this singularity 

is present in both the natural isoparametric triangle and the quadratic 

triangular element generated by collapsing one side of an eight noded 

^_Ä^«iliiKa*»<-iiiii&>£Ülb' *i wirfai^ia^iiAJiiM^i^^i^Jii^MM" 
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.   K 

Conventional Triangular 
Element 

Singular Triangular 
Element 

Fig. 2.5   Conventional and Singular Isoparametric Triangular Elements. 
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Isoparametric quadrilateral element. However, as Barsoum shows In [16], 

to obtain the 1//F singularity In the collapsed quadrilateral the 

overlaping nodes must be constrained to have the same displacements. An 

obvious advantage of the natural Isoparametric triangle Is that multi- 

point constraints of overlapping nodes is not required. Another advan- 

tage shown by Freese et al. [17], Is that the natural isoparametric 

triangle allows for distorted triangular shapes {e.g., p1e-shaped ele- 

ments) while the collapsed quadrilateral requires the element edges to 

remain straight. 

Though Barsoum [16] only presents applications of the singular 

isoparametric element in Isotropie fracture mechanics, the element does 

have applications In anisotropic fracture. Since Freese et al. [17] 

have shown that the natural isoparametric element can represent a radial 

displacement variation of the form: 

u1 - Aj + Bj/r + Cjr (2.21) 

and since the displacements from the anisotropic elasticity solution 

take the form: 

u1 *  Aj/r (2.22) 

the natural isoparametric element has as many applications in anisotro- 

pic fracture as 1n Isotropie fracture. 

A survey of alternative .inite element methods in fracture mechan- 

ics 1s given by Hilton and Sin in [19]. The emphasis of their paper is 

•L.-&&'£te*SbÄ'itö*iifi£*lii.lJitALt 0!-L *jl>.|—;f ^'^ftv~:y ■ 
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on calculation of stress Intensity factors using finite elements; how- 

ever, several state-of-the-art finite element formulations .or solution 

of fracture problems are presented. 

.mm 



Chapter 3 

CRACK TIP STRESS ANALYSIS 

As previously mentioned, one of the objectives of this work 1s the 

prediction of crack tip stresses 1n anlsotroplc materials without 

restrictions as to the orientation the crack relative to the principal 

material direction or the type of loading applied. In this chapter, the 

application of the anlsotroplc elasticity solution and the singular 

Isoparametric finite element formulation to the general fracture problem 

presented in Fig. 3.U is discussed. Note there are no restrictions as 

to the orientation or the crack, defined by the angle a, or that of the 

principal material (fiber) direction defined by 3. Also, complete 

biaxial loading is allowed; the far field loads can all be specified 

Independently. The only constraint Is that the crack 1s assumed to have 

a finite height. This disallows the specification of far field loadings 

that cause crack closure. 

3.1 Application of the Anisotropie Elasticity Solution 

Valid leadings for the elasticity solution presented 1n Section 

(2.2.1) are shown in Fig. 2.3 and consist of a uniform tensile 

stress a" and a shear stress x . Though the solution allows for inde- 

pendent specification of the material principal direction defined by the 

angle ö, the crack is assumed to be parallel to the x-axis. This is not 

as general as the problem defined 1n Fig. 3.0 which allows for the 

specification of five independent values o , a ,  T , a and e. However, x  y  xy 

by transforming the far field stresses to a crack tip coordinate system 

and realization that the far field stress parallel to the crack does not 

24 
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Fig. 3.0 Infinite Center Cracked Plate Under Biaxial Loading. 
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:■> !  1 
contribute to the singularity (this fact 1s discussed In Wu [14]) the | , 

elasticity solution can be applied to problems similar to that of Fig. 

3.Ü. 

The details of this transformation and superposition are  shown 1n 

Fig. 3.1. First, the far field stresses of F1g. 3.1a are transformed to 

a crack tip coordinate system defined by the angle a shown In Fig. 3.1b 

(the crack tip coordinate system Is represented by the axes £ and n). 

In the 4-n coordinate system, the effect of o and x.    on the crack tip j 

stress field can be evaluated by applying Eq. 2.20. The stresses are j 

separated Into singular and non-singular components as shown 1n Fig. | 

3.1c. Before Eg. 2.2U can be applied, the components of the compliance \ 

tensor, A^, must also be transformed to the crack tip coordinate 

system. Since the crack was originally oriented at an angle a  and the 

material principal direction was defined by the angle e, the compliance 

tensor must be transformed by the angle (e-a). Let ß represent the 

angle (e-a). 

The use of stress transformation along with the fact that the far 

field stress parallel to the crack dees not contribute to the singular- 

ity, allows for the application of specific elasticity solutions to 

general fracture problems. In the preceding problem, an elasticity 

solution allowing the boedficatlon of two independent values is used to 

solve a problem requiring the specification of five values. 

~""»*i 
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3.2 Application of Sinyular Isoparametric Finite Elements 

Sines many fracture problems of Interest do not satisfy the infi- 

nite boundary conditions of the anisotroplc elasticity solution, an 

anlsotropic finite element fracture mechanics code was developed. This 

code, ANFRAC (anisotroplc fracture mechanics code), Incorporates an 

isoparametric, quadratic, triangular element and the inherent singular- 

ity associated with this element when the mid-side nodes are positioned 

at quarter points. The advantage of a finite element model is the 

ability to analyze specific geometries and loading conditions that 

cannot be addressed with an elasticity solution. 

ANFRAC is a linear, two-dimensional, quadratic, Isoparametric 

finite element code. The outline of ANFRAC is similar to that of FEM2D, 

an isoparametric finite element code presented by Reddy [20], A des- 

cription of the quadratic isoparametric triangular element along with 

practical considerations on the use of isoparametric elements is given 

in Bathe [21]. 

The master configuration of this element along with the location of 

the integration stations 1s shown in Fig. 3.2. Numerical integration 

over triangular domains 1s discussed by COOK [22]. The integration 

scheme used to calculate the element stiffness matrix 1s a seven point 

Gaussian quadrature. The formula for the numerical integration is: 

7 
// f dA = I    w, f(r,s) (3.1) 

i=l 1 

where 

f is the function to be integrated over the triangular area A, 

w.j is the weight associated with the ith sampling point, 

i-iifc/Ii^j^-AÄfr'^ 
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F1g. 3.2   Master Finite Element Configuration. 
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and 

f(r,s) is the value of f evaluated at the 1th sampling point. 

The interpolation functions and weights for the isoparametric quadratic 

trangular element were taken from Bathe [21] and are given in Table 3.0. 

As discussed in Barsoum [23], the ratio of element length to half 

crack length (designated A/a) significantly influences the crack tip 

stress field. A similar effect is found in the natural isoparametric 

element. Freese and Tracey [17] present stress Intensity factor results 

for an isotropic plate with an edge crack using the natural isoparamet- 

ric trangular element. They have chosen an £/a ratio of 0.1, and pres- 

ent data that is independent of the angle $. With their results in 

mind, a quarter-symmetry finite element mesh was developed to solve 

fracture problems involving a center cracked plate. This mesh is shown 

in Fig. 3.3 and an exploded view of the crack tip elements is given in 

Fig. 3.4. The fc/a ratio of this mesh is 0.1 and the ratic of 2a/w is 

also 0.1c The ratio 2a/w 1s a measure of the infinite nature of the 

cracked plate. As the ratio of the crack length, 2a, to the plate 

width, w, decreases, the infinite boudary conditions of the elasticity 

solution are closer to being satisfied. A 2a/w ratio of 0.1 implies the 

plate width is an order of magnitude larger than the crack length. For 

data given in Hertzberg [24], an isotropic plate of this size adequately 

satisfies the infinite boundary conditions. This appears to be true for 

anlsotropic plates based on data provided by Smith and Mullinlx [25], 

Since the mesh shown in Fiy. 3.3 is a quarter symmetry mesh it can 

only b» used for problems with a crack orientation of 0° and dis- 

V- - •-   ^ .^.»^.^^^.^^^..fc^^w^v^r^tfr^i^ 
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Note: See Fig. 3.4 for Enlargement of Region A-A 

F1g. 3.3   Quarter Symmetry Mesh of Center Cracked Plate. 
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Note: See Fig. 3.3 for Relative Location of 
Region A-A. 

Fig. 3.4   Exploded View of Crack Tip Elements. 
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Table 3.0 

Interpolation Functions and Numerical Integration Data 

Interpolation Functions 

hj *>  2r2 - 3r + 4rs - 3s + 2s2 + 1 

h2 ■ 2r2 - r 

h3 = 2s
2 - s 

h4 = -4r
2 + 4r - 4rs 

h5 
a 4rs 

hg s  -4s2 + 4s - 4rs 

Gauss Point Coordinates and Weights 

coordinates 

rx = 0.10128 65073 235 

r, =* 0.79742 69853 531 

r3 = rl 

0.47014 20641 051 

r5 s r4 

r6 - 0.05971 58717 898 

r? = 0.33333 33333 333 

coordinates Weights 

sl = rl wl 
S 0.12593 91805 448 

s2 = Pj w2 = Wl 
s3 - r2 w3 = wl 

s4 = r6 w4 = 0.13239 41527 885 

s5 = r4 w5 = w4 

sb - r4 w6 = w4 

s7 - r? w7 
s 0.225 
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placement fields symmetric about the x and y axes. Symmetry arguments 

allow the analysis to be limited to one-quater of the plate and hence 

reduce the deyrees of freedom of the model. Solvlny fracture problems 

that do not allow the use of symmetry arguments requires significantly 

larger amounts of computer storage or more sophisticated storage and 

equation solving routines than those used In this Investigation. 

3.3 Verification of the Finite Element Model 

Distributions of the stress component«- near the crack tip for an 

infinite center cracked plate subjected to a uniaxial loading 

of <jy  equal to 1.0 ksi and a crack orientation of o = 0° are shown in 

Figs. 3.5 to 3.13. In these fiyures, the solid lines represent results 

from the elasticity solution and the finite element results for yauss 

point 1 (Fiy. 3.2) are represented by circles. This point was chosen 

since it is the nearest integration station to the crack tip and it lies 

on a radial line throuyh the centroid of the element. Similar plots for 

the stress distributions at other yauss points are presented In Appendix 

C 

Figures 3.5 to 3.7 are for a steel plate. For this Isotropie 

problem, the finite element stress results compare very well to the 

elasticity solution. There is excellent correlation both in magnitude 

of the stresses and distribution as a function of <f>. 

Figures 3.8 to 3.10 correspond to a plate manufactured from 

Hercules AS4/35Ü1-6 graphite/epoxy (material properties are given in 

Appendix E). For this problem, the fiber orientation angle, 6, is equal 

to zero degrees. Overall, there is correlation in the stress 

J.^._^awi£4ife.!a 
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Steel Plate <JV£ 
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Fig. 3.5 Distribution of a Near the Crack Tip 1n a Center Cracked 
steel Plate. 
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F1g. 3.6 Distribution of o Near the Crack Tip 1n a Center Cracked 
Steel Plate. 
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Steel Plat© 
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Fig. 3.7 Distribution of x  Near the Crack Tip 1n a Center Cracked 
Steel Plate.   ^ 
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distribution as a function of -{• and in the stress magnitudes. However, 

the finite element prediction of the magnitude of cr , shown in Fig. 3.8, 

does not compare as well as the other stress components. The lack of 

better agreement for this stress component is due to the high gradient 

that exists as a function of $. If the i/a ratio were reduced and the 

concentration of elements Increased, the o component predicted by the 

finite element model should improve. Since the gradients 1n th^ stress 

components for graphlte/epoxy are greater than that of steel, there is 

no reason to expect that a mesh that has converged for an Isotropie 

fracture problem has also converged for a highly orthotroplc one. 

Similar results are  seen In F1gs. 3.11 to 3.13 which correspond to 

a plate manufactured from AS4/3501-6 graphlte/epoxy with a fibers 

orientation angle of 90°. The distribution 1n stress components as a \\ 

function of <(. compares well with the elasticity solution while there 1s        I] 

some discrepancy in the magnitude of ox# The difference In magnitude is        ) 

less than that of the 0=0° problem. This fact 1s not surprising since 

the gradient of ox as a function of «ji 1s an order of magnitude smaller        J 

for the 9Ü0 problem. ; j 

These results Indicate that singular finite elements can be applied jjj 

to anisotropic fracture problems. However, prior to their application, j I 

a detailed study on the convergence of singular Isoparametric elements      •   j 
' i 

in anisotropic fracture is required. Since stress gradients 1n anlso- l I 
•: j 

tropic materials can be significantly larger than those 1n Isotropie '. \ 

materials, the mesh building guidelines of Freese and Tracey [17] are no 
:J 

longer applicable. An example of the importance of the 1/a ratio on the j 

prediction of crack tip stresses 1n anisotropic materials 1s shown In i \ 
I i 

Appendix F. . \ \ 
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Fig. 3.8 Distribution of ax Near the Crack Tip 1n a Center Cracked 

GraphIte/Epoxy Plate (e - 0°). 
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Fig. 3.10   Distribution of T     Near the Crack Tip 1n a Center Cracked 
Graphlte/Epoxy Plate (e - 0*). 
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Fig. 3.11 Distribution of ^ Near the Crack Tip i„ a Center Cracked 
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Fig. 3.12 Distribution of ffy Near the Crack Tip 1„ a Center Cracked 
Graph1te/Epoxy Plate (e * 90°). 
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F1g. 3.13 Distribution of Tj{y Near the Crack Tip in a Center Cracked 

Graph1te/Epoxy Plate (e » 90°). 
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Chapter 4 

OFF-AXIS AND UNIDIRECTIONAL TENSILE COUPONS 

In this section analytical results are presented for graphite/epoxy 

tensile coupons containing center cracks. The emphasis of the analysis 

was to verify the numerical results of Buczek and Herakovich [5] and to 

develop analytical results which when compared to existing experimental 

results would test the credibility of the Normal Stress Ratio as a 

viable crack extension direction criterion. All results were generated 

using the anlsotroplc elasticity solution of Section (3.1). Additional 

results for analyses presented 1n this chapter can be found In Appendix 

D. 

4.1 Unidirectional 30° Off-Axis Tensile Coupon 

Buczek and Herakovich compared several crack extension direction 

theories with experimental results for a 30° off-axis tensile 

coupon (6 » 120°) and found surprising results. Of the three crack 

growth direction criteria described in Section (2.1), only the Normal 

Stress Ratio agreed with the experimental value of 300°. Since the 

finite element formulation which they employed was not developed specif- 

ically to describe the stress field near a singularity, 1t was desired 

to test the theory uslny a more accurate stress analysis. In an effort 

to verify their results, the same 30° off-axis tensile coupon was ana- 

lyzed using the anisotropic elasticity solution. 

The geometry of the specimen 1s shown In Fig. 4.0. The crack tip 

stresses were evaluated for an applied load 7y = 1.0 ksi at an r0 value 

of 0.005 inches. An rQ of 0.005 was chosen to match that selected by 
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Fig. 4.0   Center Cracked 30' 0ff-Ax1s Coupon. 
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Buczek and Herafcovich. The distributions of the crack yrowth direction 

criteria as a function of $  are shown In Figs. 4.1 through 4.3. A 

comparison of the predicted crack growth directions using anisotropic 

elasticity with those predicted by finite elements [5] Is given 1n Table 

4.0. 

The direction of crack extension predicted by the Normal Stress 

Ratio is very consistent In both the analytical and finite element 

solutions, while the direction of crack extension predicted by the 

Tensor Polynomial and Strain Energy Density 1s not consistent. The 

discrepancy in the crack growth direction predicted by the Tensor 

Polynomial and Strain Energy Density 1n the two analyses Is due to the 

finite element formulation used by Buczek and Herakovlch [5]. Rather 

than concentrating on approximating the stress field around tne crack 

tip, their formulation emphasizes evaluation of the strain energy 

released during crack extension. 

It is important to note that the conclusions drawn by Buczek and 

Herakovich concerning the inconsistencies of the Tensor Polynomial and 

Strain Energy Density Criterion 1n predicting the direction of crack 

extension are supported by the anisotropic elasticity solution. The 

difference 1n the value of <(> predicted by the two methods is due to the 

Improved accuracy of the anisotropic elasticity solution relative to the 

conventional finite element formulation. 

4.2 Influence of rQ  on the Predicted Direction of Crack Growth 

Investigation as to the influence of rQ on the crack growth 

direction criteria yields interesting results. The direction of crack 
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F1g. 4.1 Normal Stress Ratio vs. * for 30° Off-Axis Graph1te/Epoxy 
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F1g. 4.2 Tensor Polynomial vs. * for 30° Off-Ax1s GraphUe/Epoxy 
Coupon. 
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Table 4.Ü 

Comparison of Anisotropie Elasticity to Finite Element Results for 
Direction of Crack Extension 1n 30° Off-Axis Tensile Coupons 

Crack Extension 
Criterion 

Anisotropie 
Elasticity 

Finite 
Element [9] 

Normal Stress 
Ratio 

301c 300° 

Tensor Polynomial 

Strain Energy 
Density 

248° 

340° 

90° 

360° 
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extension predicted by the Normal Stress Ratio and Strain Energy Density 

Criteria 1s Independent of the value of rQ, but this Is not the case for 

the Tensor Polynomial. These facts are shown dramatically 1n Fig. 

4.4. From this figure, It Is apparent that a small change 1n the value 

of r0 can affect the value of ^ as predicted by the Tensor Polynomial 

by as much as 40°. As seen In F1g. 4.5, the change in the distribution 

of the Tensor Polynomial as a function of $ for an oraer of magnitude 

change In rQ is significant. For an rQ of b.OE-03", the Tensor 

Polynomial predicts the direction of crack growth to be 248°, while for 

an r0 of b.OE-04'', the predicted direction 1s 2b3°. 

4.3 Unidirectional 15° Off-Axis Coupons 

In an attempt to further verify the consistency of the Normal 

Stress Ratio Criterion, the experimental configurations of Herakovlch et 

al. [26] were also analyzed. The geometries of the specimens analyzed 

are shown 1n Fig. 4.6. The experimental observations for the direction 

of crack extension were made with AS4/3501-6 graphUe/epoxy. The ana- 

lysis consisted of comparing the predicted direction of crack extension 

1n an infinite plate (e - lüb0) with an applied load of 7 - 1.0 ksl and 

an r0 of U.UU2 Inches with the experimentally observed crack extension 

direction. An rQ of 0.0Ü2 Inches corresponds with the location of gauss 

point 1 in the singular Isoparametric finite element solution. 

The first specimen analyzed has a crack orientation angle, o, of 

0°. The direction of crack growth predicted by the Normal Stress Ratio 

for this sample is 286°. This corresponds very well with the experimen- 

tal value of 285° (parallel with the fibers) observed by Herakovlch et 
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F1g. 4.6 Center Cracked 15° Off-Ax1s Coupon Configurations. 
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al. [26]. The distribution of the Normal Stress Ratio as a function 

of 4 for this problem is shown 1n F1g. 4.7. 

For the second specimen, the crack was aligned perpendicular to the 

fibers (a = 15°). The distribution of the Normal Stress Ratio as a 

function of * for this problem 1s shown in Fig. 4.8. The Normal Stress 

Ratio predicts the direction of crack extension to be 271°, while the 

experimental results of Herakovlch et al. [26] showed crack extension to 

occur at 27U°. Again there Is good correlation between the analytical 

model and the experimental results. 

Analysis of Figs. 4.7 and 4.8 yields Interesting results. For both 

problems, the theoretical prediction of *c differs slightly from the 

experimentally observed value. However, for both cases there 1s a 

strong peak 1n the distribution of the Normal Stress Ratio as a function 

of + in the actual direction of crack growth. This fact is very impor- 

tant. The Normal Stress Ratio may not have the accuracy to predict the 

direction of crack extension correctly to within one degree. However, 

when observed graphically, the Normal Stress Ratio represents the direc- 

tion of crack extension exceptionally well. 

4.4 Unidirectional Lamina Subjected to Mixed-Mode Loadings 

In order to study crack growth in fibrous composites under more 

general loading conditions, and to assist the experimentalist in verifi- 

cation of the Normal Stress Ratio Criterion, unidirectional lamina were 

analyzed for various mixed-mode loadings and the predicted values 

of #c determined. Studies of this nature can be very beneficial. In 

addition to providing theoretical predictions for the direction of crack 
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extension under mixed-mode loading, they serve as a guide to the 

experimentalist. With knowledge of the predicted response in hand, one 

can then choose the most appropriate laboratory experiments necessary to 

critically test the hypothesis, without running a plethora of tests. 

The geometry and loading of the specimens analyzed is shown in Fig. 

4.9. The fiber orientation angle, e, is 0°, the crack orienta- 

tion, a, is 0° and r0 was chosen to be 0.002 inches. Mixed-mode analy- 

sis requires the definition of a parameter, X, which, is the ratio 

of ÖT to 7 . Mode I loading corresponds to X = », while mode II is 
y   xy 

defined as X = 0. Figure 4.10 shows the predicted direction of crack 

growth, <)> for pure mode II and various degrees of mixed-mode loading. 

By analyzing Fig. 4.10 a great deal of information can be gained 

about the mixed mode response of 0° graphite/epoxy material. The direc- 

tion of crack extension 1s strongly dependent on \  for small value 

of x (i.e., < 2.0). For X >  2.0 the predicted direction of crack growth 

is Independent of X. For pure mode II loading, the predicted crack 

extension direction is 348°. In contrast, a mixed-mode loading of X = 1 

generates crack extension at 358°, while pure mode I generates crack 

growth at 0°. From these results, an ideal laboratory test to verify 

the Normal Stress Ratio would be pure mode II loading. The predicted 

direction of crack extension for this loading, 348°, clearly Implies 

fiber breakage. A very poor test would be any mixed-mode test that was 

not predominantly mode II because the direction of crack extension 

appears to be dominated by the mode I response when X > 2.0. 
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Chapter 5 

CONCLUSIONS AND RECOMMENDATIONS 

This study has been concerned with the development of models to 

predict the crack tip stress field In unidirectional composite materi- 

als, Investition of various crack yrowth direction criteria, and the 

effect of biaxial loading on the direction cf crack extension. 

For the cases analyzed, the Normal Stress Ratio has proven to be a 

consistent crack extension direction criteria. Two advantageous charac- 

teristics of the Normal Stress Ratio are, the presence of a strong peak 

In the direction of crack extension when plotted as a function of $ and 

the Independence of 4>c on the choice of rQ. Though the Normal Stress 

Ratio may not have the accuracy to predict the direction of crack exten- 

sion to within one degree, when observed graphically, this criterion 

predicts the direction of crack extension exceptionally well. The 

Independence of $c on the choice of rQ allows the prediction of crack 

extension direction in unidirectional composites without prior knowledge 

of a proper rQ value. 

This study has confirmed the discrepancies found by Buczek and 

Herakovlch [5] regarding the Tensor Polynomial and Strain Energy Density 

crack growth criteria. The inability of these theories to predict the 

correct direction of crack growth was not due to an inaccurate finite 

element stress analysis, but due to limitations in the theories. 

Application of the anlsotroplc elasticity solution to the analysis 

of unidirectional composites containing cracks has been very advantage- 

ous. The speed and reduction in cost of analyses based on the aniso- 

tropic elasticity solution relative to finite element solutions is 
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phenomenal. This access to an Inexpensive analytical solution allows 

the performance of detailed parametric studies. Through these paramet- 

ric studies, critical tests can be determined to better verify and 

evaluate crack direction criteria. 

It has been shown that singular Isoparametric finite elements can 

also be used to approximate crack tip stresses In anlsotroplc materi- 

als. Though the problems treated In this study where heuristic 1n 

nature, they have proven that singular Isoparametric finite elements can 

be used to solve anlsotroplc fracture problems. Finite element solu- 

tions are particularly valuable for problems that cannot be addressed by 

the anlsotroplc elasticity solution, i.e., problems with finite size or 

complex geometries. 

Though this study has proven the potential usefulness of singular 

isoparametric finite elements In anlsotroplc fracture, additional 

research is required. Particular emphasis should be given to the devel- 

opment of guidelines which will assist the analyst 1n mesh building, 

i.e., proper t/a ratios and element concentrations. 

Additional experimental research is required to further verify the 

Normal Stress Ratio Criterion. Particular consideration should be given 

to performing tests under mode II loading. The Normal Stress Ratio 

predicts fiber breakage for pure mode II loading of a unidirectional 

yraphlte/epoxy composite with fiber orientation and crack orientation of 

0°. Correspondence between experimentally observed and analytically 

predicted values of <j>c for tests Involving fiber breakage would add 

significant credibility to the Normal Stress Ratio Criterion. 
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Lastly, to fully verify the Normal Stress Ratio Criterion other 

material systems must be studied. So far, all applications of the 

Normal Stress Ratio Criterion have been with yraphlte/epoxy. Material 

systems representing various degrees of anisotropy from Isotropie to 

graphite/epoxy need to be Investigated. 
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APPENDIX A 

1-2 Coordinate System 

f(ot) - F^j ♦ F2a2 + F^2 + F22o2
2 + ZF^o,, + F^a/ 

Mathematical Expressions for the Strenyth Tensor Terms as a 

Function of Measured Strengths 

:! - (1/ST + 1/XC) 

-2 - (1/YT + 1/YC) 

ru » -i/(xTxc) 

F22 - -1/(YTYC) 

66 " l/«s2> 

X-Y Coordinate System 

f(°1> " Fx°x + F/y + FSTxy + Fxx°X
2 + Fyy°y2 + FSSTxy2 

y y 
+ l?ty°xay + 2FxS°xTxy + 2FyS°yTxy 

Transformation of Strength Tensor Terms 

» m2Fj + n2F2 

y - n'Fl m£F, 

* 2mnFj - 2mnF2 

(m4Fu + n4F22 + 2m
2n2F12 + m

2n2F66) 

yy  ("
4F

11 
+ m4p22 + 2m2n2F12 + m

2n2F66 ) 

(4m2n2Fn + 4m
2n2F22 - 8m

2n2F12 + (m
2 - n2)2F66) SS 

xy - (m
2n2Fn + m

2n2F22 + (m
4 + n4) F12 - m

2n2F66) 

2mn3F22 + 2(irn
3 - m3n)F12 + (mn

3 - m3n)F66) 

(2mn3Fn - 2m3nF22 + 2(m
3n - mn3)F12 + (m

3n - mn3)F66) 

xS " (2MJ"F11 

ys 

i \ 

where m s cos 6 and n ■ sin 6. 
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APPENDIX B 

To provide a better understanding of singular Isoparametric finite 

elements, the form of the singularity along the line 1-2 (s - 0) 1n Fig. 

8.1 will be calculated. 

For a six noded Isoparametric triangular element, the following 

relations hold: 

X" jI
h'(r'S) X1 (1) 

u " tl   Mr.sju. 

where 

h1 is the shape function for the 1th node 

Xj Is the x-coord1nate of the 1th node 

(if Is the x-d1rect1on displacement of the 1th node 

x Is the x-coordlnate mapping function 

u 1s the x-dlrectlon displacement Interpolation function 

Evaluation of the shape functions, along the line 1-2 (s « 0), 

considering nodes 1, 2 and 4 only yields: 

hj « 1 - 3r + 2r2 

h2 
a - r  + 2r 

1>4 ■ 4r - 4r2 

Substitution of these shape functions Into Eq. 1 yiel ds: 
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Singular Triangular Element 
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Flg. B.l Node Locations »n Conventional and Singular Isoparametric 
Triangular Elements. 

^^.u^^ii.fflr^-^rt^^^^ 



70 

x * (l-3r+2rZ)x1 + (-r+2r
2)x2 + (4r-4r

2)x4 (3) 

Choosing for the singular configuration, Xj * 0, x2 - L and x4 = L/4 

substitution Into Eq. 3 yields: 

x « (-r+2r2)L + (4r-4r2)^ (4) 

simplifying, 

x - r2L 

Rearranging Eq. 5, an expression for r 1n terms of x is obtained. 

r « /T (6) 

An expression for u along the line 1-2 1s: 

u = (l-3r+2rZ)Ul + (--r+2r
2)u2 + (4r-4r

2)u3 (7) 

Substitution of Eq. 6 into Eq. 7 yields: 

/X j. o Xx 
u = (1-3/f + 2 f)uj + (-/£. +2/f )u2 + (4/£ -4/£ )u3      (8) 

The strain in the x-direct1ori is then; 

= iH. - / 2 _    3 2       1 2       4, 
L     2/xT   1        L     2/xI   2       /xT     L    3 (9) 

niiiiiri^W^a.»^ ■r i JBS ̂
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Analysis of Eq. 9 reveals that the strain singularity along the line 1-2 

is of the order — , which Is the required singularity for fracture 
/r 

mechanics applications. 

% 
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APPENDIX C 

The following figures show the distribution In the stress 

components as a function of $ for the seven gauss points. This 

Information is included to give a better understanding of the stress 

field distribution through the element. The problem under consideration 

is a center cracked AS4/3501-6 plate (8 » 90°, 2a * 0.5M) subjected to a 

far field stress ö" of 1.0 KSI. 
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AS4/350I-6 
a*0°   0«9O° 
Cause Point I    r/a»0.004 
Öy «I.OKSI 

si 
JfcJ 

4 

— Anisotropie 
Elasticity Solution 

°  Finite Element 

J L 
0       30      60      90      120     160    180 

4> (Degrees) 

F1g. C.l a   vs. ♦ at Gauss Point 1 for a Center Cracked Graph1te/Epoxy 
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AS4/350I-6 
a«0°   0*90° 
Cause Point I    r/a* 0.004 
ÖJ «1.0 KSI 

60     90      120     160    180 
0 (Degrees) 

F1g. C.2 oy vs. * at Gauss Point 1 for a Center Cracked Graph1te/Epoxy 

Plate. 
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AS4/350I-6 
a«0°   d*909 

Gaus« Point I    r/fe« 0.004 
öy »i.o KSI 

-0.6- 

5  -1.2 

-1.8 

-3.0 

-3.6 

— Anisotropie 
Elasticity 
Solution 

o Finite Element 

_L J_ 
30      60      90      120 
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ftg. C.3 r^ vs. ♦ at Gauss Point 1 for a Center Cracked GraphIte/Epoxy 
Plate. 
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0.8 

AS4/350I-6 
a«0°   0-9O° 
Cause Point 2   ^»O.OS 
Oy »I.OKSI 

ÖL Si 

— Anisotropie Elasticity 
Solution 

0 Finite Element 

(0 

£0.2 

-0.2 

-0.4. J L J L 
30      60     90      120     160    180 

0 (Degrees) 

Fig. C.4 o 
■; vs. « at Gauss Point 2 for a Center Cracked Graph1te/Epoxy 

Plate. 
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n 
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k 

AS4/350I-6 
a«0°   0«9OP 

Gaus« Point 2   r/a«0.08 
Öy «1.0 KSI 

1 
-*J> 

60  90  120 
0 (Degrees) 

160 180 

F1g. C.5 o vs. + at Gauss Point 2 for a Center Cracked GraphUe/Epoxy 
Plate. 
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AS4/350I-6 
a«0*   0«9O9 

Gause Point 2   r^«0.08 
dy »1.0 KSI 
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-1.0, 

—Anisotropie Elasticity Solution 
o Finite Element 

J 1 i i 
0       30      60     90      120     160    IK) 

0 (Degrees) 

Hg. C.6 txy vs. ♦ at Gauss Point 2 for a Center Cracked Graphtte/Epoxy 
Plate. 
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AS4/350I 
a«0°   0*90° 
Gaus« Point 3   r/a«0.08 
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Solution 
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F1g. C.7 ox vs. * at Gauss Point 3 for a Center Cracked Graph1te/Epoxy 
Plate. 
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AS4/350I 
a-O*   0«9O* 
Cause Point 3   r/a«0.08 
ÖJ »1.0 KSI 

<%± 

0       30     60     90      120    ISO    180 
<f> (Degrees) 

F1g. C.8 oy vs. + at Gauss Point 3 for a Center Cracked Graph1te/Epoxy 
Plate. 
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AS4/350I-6 
a*0°   0«9O° 
Gaus« Point 3   r>fc«0.08 
0y »1.0 KSI 
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—Anisotropie Elasticity Solution 

o Finite Element 

-L J L 
0  30  60  90  120  160 

0 (Degrees) 

i ; 

! , 

; ! 

PI" C.9 T)(y vs. * at Gauss Point 3 for a Center 
Plate. 
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AS4/350I-6 
a«0»   0-90» ^ 
Cause Point 4   '^«0.03 
Öy »1.0 KSI 
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Solution 

o Finite Element 
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Fig. CIO ax vs. ♦ at Gauss Point 4 for a Center Cr-cked G-, 
Plate. 
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AS4/350I-6 
Q"0*   0»9O* 
Gout« Point 4   r4«0.03 
ffy -1.0 KSI 
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-*r* 

—Anisotropie 
Elasticity 
Solution 
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Fig. C.ll oy vs. ♦ at Gauss Point 4 for a Center Cracked GraphIte/Epoxy 
Plate. 
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AS4/350I-6 
a»0°   0»9O* 
Gause Point 4   r/a«0.03 
Öy «I.OKSI 
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- — Anisotropie Elasticity Solution 

o Finite Element 
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F1g. C.12 xxy vs. + at Gauss Point 4 for a Center Cracked 

Graph1te/Epoxy Plate. 
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AS4/350I-6 
a-0°   0»9O° 
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— Anisotropie Elasticity Solution 
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Flg. C.13 ox vs. * at Gauss Point 5 for a Center Cracked Graph1te/Epoxy 
Plate. 
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Flg. C.14 ay vs. + at Gauss Point 5 for a Center Cracked Graph1te/Epoxy 
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AS4/350I-6 
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Flg. C.15 T  vs. + at Gauss Point 5 for a Center Cracked 

Graph1te/Epoxy Plate. 
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AS4/35QI-6 
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Flg. C.16 ax vs. * at Gauss Point 6 for a Center Cracked GraphUe/Epoxy 
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AS4/350I-6 
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— Anisotropie Elasticity Solution 
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Flg. C.17 oy vs. o at Gauss Point 6 for a Center Cracked Graph1te/Epoxy 
Plate. 
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F1g. C.18 xxy vs. 4i at Gauss Point 6 for a Center Cracked 

Graph1te/Epoxy Plate. 
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Flg. C.19 ax vs. + at Gauss Point 7 for a Center Cracked Graph1te/Epoxy 
Plate. 
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F1g. C.21 T  vs. * at Gauss Point 7 for a Center Cracked 

Graphlte/Epoxy Plate. 
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APPENDIX D 

This section 1s Included to pro-1de additional Information 

concerning the prediction of crack extension 1n unidirectional 

composites. The figures presented, provide Insight Into the crack tip 

stress states and characteristics of the crack extension direction 

criteria. 
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T300/5203 
a-0°    0-120" 
r0 ■ 0.002 in 
dy-I.OKSI 
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r, «ixio -3 

 r2«5xlO-3 
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Fig. 0.1 Influence of r0 on the Distribution of ax 1n a Center Cracked 
6r«ph1te/Epoxy Plate (e - 120'). 
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F1g. 0.2 Influence of rQ on the Distribution of a   1n a Center Cracked 
Graphlte/Epoxy Plate (e » 120*). 
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F1g. D.3 Influence of rQ on the Distribution of T  In a Center Cracked 

Graph1te/Epoxy Plate (e = 120°). 
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F19- D-4 «M vs. * for a Center Cracked 30° Graph1te/Epoxy Plate. 
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Fig. 0.5   T^ vs. + for a Center Cracked 30° GraphIte/Epoxy Plate. 
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F1g. D.6 Normal Stress Ratio vs. + for a Center Cracked 30° 
Graph!te/Epoxy Plate Under Pure Shear. 
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T300/5208 
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Fig. D.7 Tensor Polynomial vs. « for a Center Cracked 30c 

Graph1te/Epoxy Plate Under Pure Shear. 
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Flg. D.8 Strain Energy Density vs. + for a Center Cracked 30° 
GraphUe/Epoxy Plate Under Pure Shear. 
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AS4/350I-6 
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Fig. 0.9 ow vs. ♦ for a Center Cracked 15» Graph 1te/Epoxy Plate. 
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F1g. 0.10 T  vs. » for a Center Cracked 15° GraphUe/Epoxy Plate. 
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Fig. 0.11 Normal Stress Ratio vs. * for a Center Cracked 15° 
Graph1te/Epoxy Plate. 

-j. 'i 

J. 

\i 

> 

W-:i 

S.I. 

/ ■X; Iv^ / 
■ / 



106 7 

AS4/350I-6 
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Fig. 0.12 Tensor Polynomial vs. * for a Center Cracked 15° 
Graph1te/Epoxy Plate. 
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AS4/350I-6 
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r0 « 0.002 in 
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F1g. 0.13 Strain Energy Density vs. + for a Center Cracked 15° 
Graphlte/Epoxy Plate. 
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AS4/350I-6 
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F1g. 0.14   o     vs. + for a Center Cracked GraphIte/Epoxy Plate (a « 0" 
and e = 0°. 
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Flg. 0.15 T^ vs. * for a Center Cracked Grephlte/Epoxy Plate (« - 0' 
and e « 0°). 
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F1g. D.16 Normal Stress Ratio vs. » for a Center Cracked GraphUe/Epoxy 
Plate (a - Oe and e - 0°). 
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F1g. 0.17 Tensor Polynomial vs. * for a Center Cracked Graph1te/Epoxy 
Plate (o - 0° and e « 0°). 
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Flg. D.18 Strain Energy Density vs. + for a Center Cracked 
Graph1te/Epoxy Plate (a - 0° and e - 0*). 
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APPENDIX F 

This section Is Included to provide additional Information 

concerning the convergence of the singular finite element solution. 

Results presented are for the finite element mesh shown 1n Fig. F.l. 

For this mesh the */a ratio Is 1.0 and the 2a/w ratio Is 0.1. The 

problem under consideration Is a center cracked AS4/3501-6 plate (e - 

90° and a - 0°) subjected to a far field stress 7 - l.o KSI. 

Distributions of the stress components near the crack tip as a 

function of * are given 1n Figs. F.2 to F.4. In these figures, the 

solid line represents results from the anlsotroplc elasticity solution 

and the finite element results for gauss point 1 are represented by 

circles. Analysis of the figures Indicates the finite element solution 

adequately approximates the distribution of the stress components as a 

function of +. However, there 1s a large discrepancy 1n the magnitude 

of the stresses predicted by the finite element solution and those 

predicted by the anlsotroplc elasticity solution. 

Comparison of these results with the results of Chapter 3 shows the 

importance of the */a ratio on the prediction of crack tip stresses. 

The finite element mesh used 1n Chapter 3 has a smaller */a ratio (1/a - 

0.1) and hence better approximates the crack tip stress field. 
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VIRGINIA TECH CENTER FOR 
COMPOSITE MATERIALS AND STRUCTURES 

The Center for Composite Materials and 
Structures is a coordinating organization for 
research and educational activity at Virginia 
Tech. The Center was formed in 1982 to 
encourage and promote continued advances in 
composite materials and composite structures. 
Those advances will be made from the base of 
individual accomplishments of the thirty-four 
founding members who represent ten different 
departments in two colleges. 

The Center functions by means of an 
Administrative Board which is elected yearly. 
The general purposes of the Center include: 

• collection and dissemination of informa- 
tion about composites activities at Virginia 
Tech, 

• contact point for other organizations and 
individuals, 

• mechanism for collective educational and 
research pursuits, 

• forum and mechanism for internal inter- 
actions at Virginia tech. 

The Center for Composite Materials and 
Structures is supported by a vigorous program 
of activity at Virginia Tech that has developed 
since 1963. Research expenditures for investiga- 
tions of composite materials and structures total 
well over five million dollars with yearly 
expenditures presently approaching two million 
dollars. 

Research is conducted in a wide variety of 
areas including design and analysis of compo- 
site materials and composite structures, 
chemistry of materials and surfaces, characteri- 
zation of material properties, development of 
new material systems, and relations between 
damage and response of composites. Extensive 
laboratories are available for mechanical 
testing, nondestructive testing and evaluation, 
stress analysis, polymer synthesis and character- 
ization, material surface characterization, 
component fabrication and other specialties. 

Educational activities include eight formal 
courses offered at the undergraduate and 
graduate levels dealing with the physics, 
chemistry, mechanics, and design of composite 
materials and structures. As of 1982, some 33 
Doctoral and 37 Master's students have 
completed graduate programs and several 
hundred Bachelor-level students have been 
trained in various aspects of composite 
materials and structures. A significant number 
of graduates are now active in industry and 
government. 

Various Center faculty are internationally 
recognized for their leadership in composite 
materials and composite structures through 
books, lectures, workshops, professional society 
activities, and research papers. 

Aerospace and Ocean 
Engineering 
Raphael T. Haftka 
WiWam L Hailauer, Jr. 
Eric R. Johnson 

Chemical Engineering 
Donald C. Baird 

Chemistry 
lame» E. McCralh 
Thomas C Ward 
James P. Wightman 

Gvll Engineering 
Raymond H. Haut 

Electrical Engineering 
toannis M. Besieris 
Richard O. Claus 

FOUNDING MEMBERS OF THE CENTER 
Engineering Science and 
Mechanics 
Hal F. Brinson 
John C Duke, |r. 
Daniel Frederick 
Robert A. Heller 
Edmund C Henneke, II 
Carl T. Herakovkh 
Michael W. Hyer 
Robert M. (ones 
Manohar P. Kamat 
Alfred C loos 
Don H. Morris 
Daniel Post 
Jununthula N. Reddy 
Kenneth L Reifsnider 
Wayne W. Stinchcomb 

Industrial Engineering 
and Operations Research 

Joel A. Nachlas 
Materials Engineering 
David W. Dwight 
D. P. H. Hassdman 
Charles R. Houska 
M. R. Louthan, Jr. 

Mathematics 
Werner E. Köhler 

Mechanical Engineering 
Norman S. I'm, |r. 
Charles E. Knight 
S. W. Zewari 

I 

«t 

/ 

Inquiries should be directed to: 

Center for Composite Materials & Structures 
College of Engineering 

Virginia Tech 
Blacksburg, VA 24061 
Phone: (703) 961-4969 
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