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1. INTRODUCTION 

The most effective weapon of the modern tank against heavy armor threats is the kinetic energy (KE) 

projectile (Figure 1). This projectile consists of a subcaliber penetrator which is carried through the 

cannon by a multipetal sabot The high inertial loads of the penetrator are transmitted to the sabot via a 

geometric traction interface (i.e., annular buttress grooves and/or a threaded friction drive). 

Obturator 

Sabot 

Penetrator 

Windshield 

Figure 1. An isometric view of a fielded kinetic energy projectile. 

However, in a research environment where one-quarter and one-third scale work is often performed, 

these shear transferring mechanisms present several distinct disadvantages. Complex penetrator geometry 

can require additional complexity in the sabot with increased manufacturing costs for the projectile. Due 

to integration and manufacturing considerations, some of the groove characteristics cannot be faithfully 

scaled; the typical affect is an increase in the percentage of groove mass with respect to the entire 

penetrator mass. Furthermore, since subscale tests are typically used to examine phenomenological trends, 

the presence of grooves can greatly increase the complexity of an analysis and can mask important factors. 

Reducing the previous arguments to cost and simplicity, subscale penetrators have traditionally been 

right circular cylinders (except for different nose shapes) and are push launched. However, if the 

combination of penetrator geometry and material properties prohibit a push launch, a traction sabot 

becomes necessary.  (Figure 2 illustrates the conceptual differences between push and traction launch 



technology.) Therefore, a study was performed to design a sabot and a penetrator-sabot interface which 

would minimize the interface geometry for these subscale projectiles. 

/Steel Pusher Rate 

4yion Sabot 

Ugh Density Penetrotor Aluminum Sabot> 

High Density Penetrator\ 

Pusher Type Sabot Traction Sabot 

Figure 2. Comparison between push-launch and traction-launch sabot technology. 

2. THEORY 

The simplest form of traction is friction. However, it is not intuitively obvious that frictional forces 

alone can hold the penetrator in the sabot when the assembly is experiencing 50,000-150,000 g's of 

acceleration. Yet, the simplicity of the solution is attractive enough to merit further investigation. 

As with any new design effort, simplifying assumptions are made and free body diagrams are 

generated to provide insight and governing equations for the problem. The geometry assumptions used 

in this analysis are that the penetrator is a cylinder and the sabot is a frustum (Figure 3). It is also 

assumed that the sabot fills the bore of the cannon and a pressure P is accelerating the projectile at z The 

free body diagrams for each body appear in Figure 4. 

Since the projectile is axisymmetric, radial forces cancel out, leaving force balances on the axial forces 

only. Using Newton's Second Law, force balances on the penetrator and sabot yield Equations 1 and 2, 

respectively. For the frictional concept to work, the acceleration of each body must be equal, and the 

same as the acceleration of the system. Performing a force balance on the system, the internal forces 

cancel, and Equation 3 is obtained. 
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Penetrotor 
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Figure 3. Simplified projectile model. 
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Figure 4. Free body diagrams. 
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where, 

m = penetrator mass 

ms = sabot mass 

z   = acceleration of penetrator e.g. 

zs = acceleration of sabot e.g. 

r   = penetrator radius 

rb = banel radius 

P   = pressure 

Fs = interface shear force 

By subtracting Equation 2 from Equation 1 and removing the acceleration term by substitution of 

Equation 3, the governing equation can be written in terms of component masses, ms and mp, penetrator 

radius, r , barrel radius, rb, pressure, P, and the term specifying the shear force between the bodies, Fs. 

It is the expression for the shear forces which will dictate the feasibility of the concept. To reduce 

Equation 4 into its fundamental parameters, Equations 5 and 6 provide the mass relationships for both the 

penetrator and the sabot. Equation 7 provides the physical foundation for Fs. 

{m-ms)H±L-=^P{2r2-r2
b)+2Fs (4) 

y m
s
+m

P 

mP=%r
P 

L
P Pp (5) 

ms = JLLs(r2
b+rprb-2r2)ps (6) 

Fs = 2%rpLsorv (7) 

where, 

p   s penetrator density 

ps = sabot density 

L   = penetrator length 

Ls s sabot length 

5r s average radial stress at the interface 
p   = static coefficient of friction 



less than 1.0 produces a feasible design since the required sabot length is less than the penetrator length. 

As mentioned earlier, the designer has some control over/, so it was also varied to provide a family of 

curves. 

The results of this analysis are provided in Figure 5 for penetrator aspect ratios of 20, 30, and 40 for 

a 50-mm cannon. Materials used in the analysis were tungsten heavy alloy (WHA) for the penetrator and 

aluminum for the sabot, with densities of 17,600 and 2,700 kg/m3, respectively. These results show that 

for/> 0.3, the concept is feasible if the assumptions are valid. 

1.0 

0.4  - 

0.3 

Increosing f 
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J I L 

0.0       0.1       0.2       0.3       0.4     -0.5       0.6       0.7       0.8 

Penetrator Radius (cm) 

Figure 5. Results from Equation 8 representing minimum sabot length, normalized by penetrator 
length, to successfully launch a penetrator of a given radius from a 50-mm cannon. 



In Equation 7, the term 2%rJ.s represents the area of the interface between the sabot and the 

penetrator, u is the coefficient of friction, and cr is the average radial stress at the interface. Assuming 

that the penetrator geometry is defined, Fs is a function of sabot length, Ls, interface stress, cr, and the 

coefficient of friction, u. 5r is a function of sabot shape, material selections, and pressure, all of which 

the designer has some degree of control over, p is a physical constant which is a function of the materials 

and surface quality. Therefore, the only remaining unknown is Ls . Substituting Equations 5-7 into 

Equation 4 and solving for Ls provides: 

AL?+BLs + C = 0 (8) 

where, 

4 71 _   ,_2  .  _ „ _2^ _    °V 

T A=2£9s(r2
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C = 2izrp
2LpPp(rp

2-rl) (8c) 

The values for rp,Lp, pp,ps, and rb are constants. The terms cr, P, and u are parameters which the 

designer can use to control Ls. For analysis purposes, these three terms are lumped together as term /. 

/= —P (9) P 

To determine the feasibility of the concept, the following parametric study was proposed. The 

variables p , ps, and rb were defined for a system of interest. To study an entire class of penetrators, 

aspect ratio (L/D) was defined. Equation 8 was then solved by holding/constant and varying rp over the 

range of interest To provided a measure of goodness to Ls, it was normalized by Lp; thus, any result 



3. ANALYSIS 

The remaining portion of this report will concentrate on verification of the theory through finite 

element and experimental methods. To limit the scope of this initial finite element study, only one cannon 

bore diameter will be examined—50 mm. 

Because of the nature of the curves in Figure 5, the parametric analysis capabilities in ANSYS 

(DeSalvo and Gorman) were especially useful in examining the assumptions made earlier. A parametric 

model of Figure 3 was constructed in ANSYS, and more than 100 different projectile geometries were 

examined by varying Lp and rp and calculating L,. For the purpose of this study,/ was assumed to be 0.3. 

The finite element model was axisymmetric and the solution was performed quasi-statically (Drysdale 

1981). Nodes along the penetrator-sabot interface were shared to form a simple bimetallic interface. 

Proper boundary conditions, pressure and acceleration, were computed and applied for each set of 

geometry. In addition, one node on the penetrator was fixed in the axial direction, as required for an 

axisymmetric, static solution. 

Using the results from these analyses, two points can be made. First, the expression/= 0.3 can be 

checked for validity. The coefficient of friction is a physical constant; therefore, only the expressionö,.//' 

needs to be evaluated. For each configuration, a, along the material interface was computed. By 

choosing a reasonable value for u, / can now be defined. Results of the parametric analysis put 5r at 

120-150% of P (Table 1). From handbook tables (Oberg, Jones, and Horton 1985), u is at least 0.3-0.4; 

therefore, a value of /-0.3-0.5 is reasonable to expect and, according to Figure 5, many penetrator 

configurations exist for the specifications originally set forth. 

In addition to examining the relationship between or and P along the saboVpenetrator interface, 

another relationship exists between the radial and shear forces. Even though the nodes on the material 

interface are shared, significant information can be extracted. By comparing the product of the radial 

stress and coefficient of friction, orp, to the shear stress, x, the status of a sliding interface can be inferred. 

If the product of the coefficient of friction and the radial stress is larger than the shear stress, sufficient 

traction exists to accelerate the penetrator and sabot together. To provide a measure between the two 

parameters, each was plotted along the length of the sabot (Figure 6) for a group of penetrators (L/D = 

30). Figure 6 illustrates that adequate traction exists to accelerate both bodies together. 



Table 1. Result of 5 IP 

R(m) 
L/D 

20 25 30 35 40 

0.0020 1.64 1.54 1.48 1.42 1.40 

0.0025 1.47 1.41 1.37 1.34 1.31 

0.0030 1.38 1.34 1.31 1.28 1.26 

0.0035 1.32 1.29 1.27 1.25 1.23 

0.0040 1.29 1.26 1.24 1.22 1.22 

0.0045 1.26 1.24 1.22 1.21 1.21 

0.0050 1.24 1.22 1.21 1.20 1.20 

0.0055 1.22 1.21 1.20 1.20 1.21 

0.0060 1.21 1.20 1.19 1.20 1.20 

0.0065 1.20 1.19 1.18 1.19 1.19 

0.0070 1.19 1.18 1.19 1.19 1.19 

0.6 

0.0 0.1 0.2 0.3 

Axial Distance (m) 

0.4 0.5 

Figure 6. Comparison of normalized radial and shear stress along the 
penetrator-sabot interface for L/D 30 penetrators. 

Although the results of the previous analyses tend to support the initial premise that frictional forces 

alone will provide sufficient traction to the penetrator, two significant assumptions were made: the 

penetrator-sabot interface used shared nodes and the analyses were quasi-static. To continue toward a final 



design and manufacture projectiles would be imprudent until these assumptions were removed. Therefore, 

a dynamic analysis with some model of the sliding interface was necessary. 

To conduct a dynamic analysis in ANSYS was very difficult with the present capabilities. ANSYS 

Revision 4.4A has the necessary capabilities to model the sliding interface by using the 2-D interface 

element (STEF12). However, the introduction of friction adds nonconservative forces into the analysis and 

the rate at which loading occurs (from 0 to 400 MPa in 2 ms) forces an extremely small time step to 

ensure convergence. Providing a mesh which would accurately resolve the stresses would severely tax 

the workstation which ANSYS is resident to the point where one analysis would take days or even weeks 

to complete. Therefore, the NIKE2D and DYNA2D hydrocodes were utilized in a supercomputer 

environment. NIKE2D and DYNA2D (Hallquist 1983, 1986, 1988) are two hydrocodes which were 

developed at the Lawrence Livermore National Laboratory to solve dynamic problems. The codes are 

similar with the exception of their integration algorithms; NIKE is implicit and DYNA is explicit Both 

codes have been vectorized to execute efficiently in the CRAY environment and can also resolve sliding 

interfaces more efficiently than ANSYS (Rev 4.4A) can. 

To demonstrate that the sabot concept works, prototype projectiles needed to be manufactured and 

tested. To work towards this objective, the remaining finite element modeling efforts focus on the 

candidate projectile. The penetrator is cylindrical with a length of 0.24 m and a diameter of 0.008 m. 

The sabot length was determined from Equation 8 using a value of 0.3 for/. This is a conservative value 

for/, but the increased margin was desirable due to the novelty of the work. 

The finite element mesh used in the NIKE and DYNA analyses is displayed in Figure 7. Both 

programs were used to provide confidence that different solution techniques yielded similar results, hi 

both models, slidelines with voids and friction (u = 0.3) were utilized. Figure 8 displays the resulting 

displacement, velocity, and acceleration curves for the penetrator from the NIKE analysis. Although these 

curves provide information to compare to the DYNA analysis, the most telling information is penetrator 

displacement relative to the sabot (Figure 9). These curves show the relative axial displacement between 

the penetrator and the sabot at the three locations indicated. The results show that even though there is 

relative displacement, it is small enough to be inconsequential. To be complete, the results of the DYNA 

analysis are also presented (Figure 10). The agreement between the two solutions is quite good. For the 

location at the front of the sabot, there is a 7% difference in the maximum relative displacement and a 



Figure 7. Mesh used in the NIKE and DYNA analyses. 
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Figure 8. Displacement, velocity, and acceleration histories from NIKE. 
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Figure 9. Relative displacement between nodes on the penetrator and the sabot 
at three different locations. (NIKE analysis, ITS = 5.0E-6.) 

slight difference in the shape of the curve beyond the maximum. This is acceptable when considering mat 

the integration time step in DYNA was an order of magnitude smaller. 

The difference between curve 1 and curves 2 and 3 in Figure 9 and 10 is explained in Figure 11. This 

figure shows two curves, the product of the normal interface force and the coefficient of friction (Fn u) 

and the tangential interface force (Fs) as a function of axial distance from the front of the sabot This 

graph shows that a small part of the interface does not have sufficient normal force to prevent sliding; 

therefore, the front of the sabot has a larger relative displacement. This was also the case with the quasi- 

static results from ANSYS shown in Figure 5. In the ANSYS analysis, examination of the front of the 

sabot shows that the shear stress is larger than me product of the radial stress and the coefficient of 

11 



FrfcllonSibot Analysis 

Figure 10. Relative displacement between nodes on the penetrator and the sabot 
at three different locations. (DYNA analysis, ITS = 5.0E-7.) 

friction; therefore, if the nodes along the interface were not shared, slippage would occur. In the ANSYS 

analysis, the shear stress was higher and more localized because the nodes were shared and slippage could 

not occur as in the NIKE and DYNA analyses. 

Based on the successful result of the dynamic analyses, a final sabot design was developed. This 

design incorporated all of the features necessary to interact with the cannon in an appropriate manner, be 

mass efficient, and not violate any of the initial assumptions. Two conditions which must be met within 

the cannon are stability and a seal to prevent gas leakage. A third condition must also be met at muzzle 

exit, a means to use aerodynamic forces to separate the sabot from the penetrator. Finally, the sabot must 

be inexpensive to manufacture. To maintain stability in the cannon, the sabot must have one contact point 

12 
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Figure 11. Sabot-penetrator interface forces at peak pressure. 

at least two-thirds the bore diameter in length or two contact points separated by this distance. Because 

the sabot must be a single-ramp design (initial assumption), only one bore riding surface is possible. The 

required aerodynamic discard forces are generated by incorporating a scoop within the bore riding surface. 

Finally, a high-pressure seal is formed by machining notches into the bore riding surface and inserting 

nylon bands. By making the diameter of the nylon bands larger than the bore and pressing the projectile 

into the cannon, an effective seal is provided. Figure 12 shows a sketch of the proposed final design, 

illustrating the incorporation of the above details. 

Figure 12. Final sabot concept. 
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Now that the sabot design has been conceptualized, final dimensions are required. To provide this 

information and minimize mass while ensuring that stresses did not exceed yield criteria, a parametric, 

quasi-static analysis was conducted in ANSYS. The groove details for the nylon bands were removed and 

a parametric model was generated for the sabot profile. The analysis was performed quasi-statically 

because dynamics were not a concern in determining the stress distribution within the projectile. 

Furthermore, since the sabot mass must be below a specified threshold and not the absolute minimum, the 

optimization algorithm was not utilized. The final stress results for the projectile for the quasi-static 

ANSYS analysis are presented in Figure 13. Also plotted are the NIKE results for the same projectile at 

peak pressure for a dynamic solution. The correlation between solutions is excellent, providing adequate 

verification of the results. 

A = 10 
ANSYS ^TÖft \» /       B = 20 

C = 30 
0 = 40 
E = 50 
F = 60 
G = 70 
H = 80 
1 = 90 

NIKE ^<7W_('\       J = 1°° 
K = 110 

■^>   i    *      ^      )   ~T 

Figure 13. Effective stress contour plot of the final sabot design. Both ANSYS 
and NIKE results are presented in percentage of yield stress. 

Two issues remain to be discussed—discarding the sabot at muzzle exit and manufacturing. To 

discard the sabot, it must be split into at least two parts along the axis of symmetry. This will permit the 

aerodynamic forces to separate the sabot from the penetrator. This poses several problems. First, if the 

sabot is in multiple pieces, there are more than two independent bodies which must be kept together while 

accelerating through the cannon. Second, manufacturing costs will increase. Finally, there is no static 

mechanism to hold the penetrator in the sabot prior to the launch sequence. To solve these problems, the 

following strategy was proposed. The sabot would be turned on a lathe in one piece. The inside details 

would be completed first, leaving a 0.02-0.04 mm interference with the penetrator at the aft end of the 

sabot. Once the turning operations were complete, wire EDM technology would be used to place one (or 

two orthogonal) splits in the sabot along the axis. These splits would start at the front of the sabot and 

extend to the aft, leaving 6-10 mm of length uncut In this region, an interference fit with the penetrator 

would generate sufficient radial stress to hold the two components together while handling the projectile. 

To prevent gas from passing through the splits, a RTV (silicone rubber) seal was placed on the projectile 

in a manner to prevent any RTV from getting into the splits. 

14 



The only question remaining to be answered is how will the sabot break at discard? Will fracture 

occur along the axis of symmetry on each split, or will the fracture plane be perpendicular to the axis of 

symmetry? The desirable fracture plane is parallel to the axis of symmetry, but it is unknown whether 

this will happen. As a stress concentration exists due to the splits, the hypothesis is that fracture will 

continue in the direction of the splits. However, this will not be known until after initial testing has 

occurred. 

4.  TEST RESULTS 

Two projectiles of two separate designs were tested for a total of four tests. The difference between 

the two designs was simply a manufacturing detail; all four projectiles had two orthogonal splits, but two 

were created by wire EDM and two by a band saw. The only substantial difference being the kerf for the 

band saw was much larger. A photograph of a projectile is presented in Figure 14. The front of the 

projectile is on the right and one of the splits is clearly evident. The two annular bands on the forward 

portion of the sabot are the nylon obturation bands. The penetrator is flush with the front of the sabot and 

extends past the aft end of the sabot. 

Figure 14. Photograph of the projectile. 

The launch conditions for each test were kept similar. The maximum breech pressure was 

approximately 400 MPa, resulting in a maximum acceleration of 100,000 g's and a muzzle velocity of 

1,650 m/s. A later test entry will increase the pressure to the cannon's upper limit of 650 MPa, resulting 

in a muzzle velocity in excess of 2,000 m/s. Of four tests, three were successful. The unsuccessful test 

was the first projectile with the band saw splits. In this test, the penetrator experienced setback and 

separated from the sabot while in-bore. One hypothesis for this traction failure the splits in the sabot were 

not deburred well enough, minimizing the contact area between the penetrator and sabot. 

The confirmation of the concept working is provided by flash radiography. Figure 15a shows a 

radiograph of a static projectile. This figure shows the projectile configuration prior to loading it into the 

15 



cannon. Figure 15b shows two images of the projectile within 1.0 meter of muzzle exit. The direction 

of flight is left to right; several observations can be made. First, the penetrator is slightly ahead of the 

sabot; therefore, traction due to frictional forces was sufficient to accelerate the penetrator along with the 

sabot. Second, the right image shows more rotation of the sabot sections and that the fracture plane was 

parallel to the axis of symmetry and that complete mechanical disengagement of the sabot from the 

penetrator has occurred. This radiograph proves conclusively that the concept and analyses were valid. 

A. Static radiograph of a projectile prior to loading. 

MEg 

•»<■'■? I 

B. Radiograph of a projectile at muzzle exit (velocity = 1,650 m/s). 

Figure 15. Radiographs of the projectile. 

5.  CONCLUSIONS 

To support the current and future needs of researchers in the area of penetration mechanics, a new 

concept for the traction launch of subscale KE penetrators has been proposed. By making simplifying 

assumptions, utilizing free body diagrams and simple physical relationships, a set of governing equations 

16 



were developed to specify sabot geometry based on penetrator and cannon geometry. Extensive use of 

finite element techniques were employed to verify the initial assumptions and concept feasibility. 

During the finite element analysis, several different codes were used. In two different analyses, the 

parametric capabilities of ANSYS were utilized to great advantage in quasi-static solutions. However, 

ANSYS did not provide adequate means to solve the dynamic solutions. For these problems, NIKE and 

DYNA were utilized and provided sufficient confidence to continue to the final design. Lastly, 

comparison of results from quasi-static (ANSYS) to dynamic (DYNA) solutions was exceptional. 

Utilization of finite element methods verified the theory presented earlier. However, verification of 

both the theory and finite element analysis can only be accomplished by actual tests. The outcome of the 

tests proved that the concept, assumptions, and analysis process were valid. 
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