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ABSTRACT 

This paper develops realistic benchmarks to assess the applicability of current distributed 

memory massively parallel processors (MPPs) for real-time embedded applications such as 

synthetic aperture radar (SAR) processing and space-time adaptive processing (STAP). The 

benchmarks are applied to the Intel Paragon in anticipation of the availability of the 

Embedded Touchstone. A benchmarking methodology is developed that assesses the level of 

real-time performance provided by the current hardware/software system by determining the 

minimum period that can be sustained for a selected processing and/or communication 

function. Optimized library routines allow efficient processing at the nodes. Improving NX 

message-passing primitives and SUNMOS allow efficient communication on the backplane. 

Processing efficiencies are maintained for pipeline processing in which double buffering is 

used to largely hide the overhead of interprocessor communication. The real-time scalability 

of parallel implementations is considered. A scalable real-time mapping of a generic two- 

dimensional processing chain applicable to SAR and STAP applications is developed and 

analyzed. 
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PREFACE 

This is one of three MITRE Technical Reports documenting work performed during Fiscal 

Year 1994 on MITRE Project 74110, Real-Time Embedded High Performance Computing. 

The complementary reports are: 

1. Parallel Implementation of the Planar Subarray Processing Algorithm, MTR 94B114, 

by Richard A. Games and Dan S. Pyrik, and 

2. Real-Time Embedded High Performance Computing: Communications Scheduling, 

MTR 94B146, by Richard A. Games, Arkady Kanevsky, Peter C. Krupp, and 

Leonard G. Monk. 

ii 



ACKNOWLEDGMENTS 

This work was supported by the United States Air Force Electronic Systems Center and 

performed under MITRE Mission Oriented Investigation and Experimentation (MOIE) 

Project 74110 of contract F19628-94-C-0001, managed by Rome Laboratory/C3CB. This 

work was supported in part by a grant of HPC time from the DOD HPC Major Shared 

Resource Center, Wright-Patterson Air Force Base. We wish to thank the Honeywell 

Corporation, Space Systems, Clearwater, Florida, for the use of their Paragon and for their 

assistance. Thanks to David Scott and other Intel software engineers for their assistance. 

Paragon and i860 are trademarks of Intel Corporation. SKYbolt and SKYvec are trademarks 

of SKY Computers, Inc. HP 9000/735 is a trademark of Hewlett Packard, Inc. 

in 



TABLE OF CONTENTS 

SECTION PAGE 

1    Introduction 1 

1.1 Background 1 
1.2 Summary of Results and Report Organization 2 

2 Fundamental Concepts 5 

2.1 Latency and Throughput 5 
2.2 Pipelined Vector Computing 6 
2.3 Cache Constraint 7 
2.4 Tuning an Algorithm to the Computer Architecture 7 
2.5 Benchmarking 8 

3 FFT Processing 11 

3.1 FFT Performance on the i860 11 
3.2 Block FFT Design 14 
3.3 Planar Subarray Processing 16 

3.3.1 foldfft Processing Kernel 17 
3.3.2 Benchmarking the foldfft 18 

3.4 Conclusion 19 

4 Communication and Clock Benchmarks 21 

4.1 Communication Benchmarks 21 
4.1.1 Adj acent Pair B enchmark 22 
4.1.2 Symmetric Many Pairs Benchmark 24 
4.1.3 Asymmetric Many Pairs Benchmark 26 

4.2 Clock Benchmark 27 
4.3 Real-Time Benchmarks 29 

4.3.1 Hartstone Distributed Benchmark 30 
4.3.2 Programmable Message Passing Benchmark 32 
4.3.3 Corner Turning on a Line 35 

4.4 Conclusion 38 

5 Application Benchmarks 39 

5.1 Real-Time Test Bench 39 
5.2 Single Node Benchmarks 41 

XV 



5.3 Pipeline Benchmarks 45 
5.4 Conclusion 46 

6 Scalable Real-Time Systems 47 

6.1 Real-Time Scalability ^7 
6.2 Generic Processing Chain 49 
6.3 Scalable Real-Time Mapping 51 
6.4 Conclusion 

7 Conclusion 

List of References 



LIST OF FIGURES 

FIGURE PAGE 

2.1 Pipeline Processing 6 

3.1 FFT Performance on the i860 13 

3.2 Signal Flow Diagram for a Length Eight Decimation in Frequency Radix-2 FFT 15 

3.3 Complex FFT Performance on the i860XP with Multiple Instance Optimization 16 

3.4 Dataflow Graph of the foldfft Function 17 

4.1 Symmetric Many Pairs Benchmark 24 

4.2 Asymmetric Many Pairs Benchmark 26 

4.3 Clock Benchmark: Pauses > 500 (is 28 

4.4 Clock Benchmark: Pauses > 50 (is 29 

4.5 Clock Benchmark: Pauses Between 50 and 120 (is 30 

4.6 Corner Turning on a Line 35 

4.7 Corner-Turning pmp Code Sequences: Four Nodes 36 

5.1 Single Node Processing Configurations 43 

5.2 Pipeline Processing Configurations 45 

6.1 Two-Dimensional Distributed Mapping of Generic Processing Chain 50 

6.2 Swap and Quad Primitives 53 

6.3 Eight-Node Corner-Turning Pattern Schematic 53 

6.4 Corner-Turning pmp Code Sequences: Eight Nodes 55 

VI 



LIST OF TABLES 

TABLE PAGE 

3.1 foldfft(64,8) Benchmarking Results (MFLOPS) 18 

4.1 Adjacent Pair Benchmark for OSF/1 23 

4.2 Adjacent Pair Benchmark with Varying Message Size 23 

4.3 Adjacent Pair Benchmark with Varying Packet Size 24 

4.4 Symmetric Many Pairs Benchmark Varying Number of Nodes 25 

4.5 Symmetric Many Pairs Benchmark with 16 Nodes 25 

4.6 Symmetric Many Pairs Benchmark with 16 Nodes 26 

4.7 Distributed Hartstone Benchmark: n = 3 32 

4.8 Programmable Message Passing: Adjacent Pair 34 

4.9 Programmable Message Passing: Four-Node Corner Turning 37 

5.1 Single Node Processing Benchmark Results 44 

5.2 Pipeline Processing Benchmark Results 45 

6.1 Programmable Message Passing: «-Node Corner Turning 55 

vix 



SECTION 1 

INTRODUCTION 

This paper develops realistic benchmarks to assess the applicability of current distributed 

memory massively parallel processors (MPPs) for real-time embedded applications. If the 

computational requirements of current and future real-time embedded systems can be 

satisfied by emerging MPPs, then costly application-specific processors and disparate data 

processors can potentially be replaced by a single homogeneous, scalable, programmable 

computing platform that is designed to track the progression of commercial technology. 

1.1 BACKGROUND 

The ARPA-Honeywell Embedded Touchstone program (Blitzer, 1993) is producing an 

embeddable high performance computer that incorporates commercial microprocessors 

running the same system and application software as its commercial counterpart, the Intel 

Paragon. This paper examines the performance provided by the commercial Paragon from the 

viewpoint of motivating real-time embedded applications. These applications, e.g., sensor 

system processing, have requirements not found in large-scale scientific computing such as 

the need for real-time processing, multi-level security, and fault tolerance. In this paper we 

focus on developing software satisfying hard real-time requirements—results must be 

computed within strict deadlines or they lose their value, potentially causing catastrophic 

system failure. 

Specialized system software is required for real-time processing. A companion report 

(Games, et al., 1994b) discusses the issues involved, especially for the problem of providing 

real-time guarantees on the communication network connecting the processors. Real-time 

system software for the Embedded Touchstone is currently under development by Honeywell 

and the Open Software Foundation-Research Institute (OSF-RI). Because of the current lack 

of real-time system software for the Paragon, we restrict out attention to signal processing 

applications, which have more structured real-time requirements. The results of this paper are 



directly applicable to two current applications: synthetic aperture radar (SAR) processing and 

space-time adaptive processing (STAP). 

Signal processing algorithms are often characterized by static, predetermined data flows. 

Problem instances are repeatedly presented in sequence with a fixed period, and the result for 

any given instance must be computed after its arrival by a fixed deadline. In these 

applications, high sustained processing and communication rates are needed to reduce the 

size, weight, and power requirements of the embedded processor. As a rule of thumb, we 

would like to attain at least 50% of the advertised peak processing rates. 

1.2 SUMMARY OF RESULTS AND REPORT ORGANIZATION 

We describe a benchmarking methodology that assesses the level of real-time performance 

available from today's MPPs for the periodic applications under consideration. The metric 

measured in these benchmarks is the minimum period that can be sustained for the selected 

processing and/or communication function under test. These performance results establish a 

baseline against which the progress of future MPP hardware and system software upgrades 

can be measured. Processing and communication kernels are benchmarked separately as part 

of a real-time parallel software development process. Integrated processing chains containing 

both processing and communication are configured to establish the possible end-to-end 

efficiencies for the application. A more detailed summary of each section follows. 

Section 2 reviews fundamental concepts used in this report: latency and throughput, vector 

pipeline computing, the cache constraint, tuning an algorithm to a processor architecture, and 

benchmarking. 

Section 3 focuses on the fast Fourier transform (FFT) as a representative and important signal 

processing function to evaluate the performance currently available at the processing nodes. 

The performance of vendor supplied optimized library routines for the FFT is assessed for the 

i860 microprocessor. Performance problems for short length FFTs are noted, and an 

assembly language optimization is developed to improve the performance in the situation 



when multiple short FFTs need to be computed. These techniques are applied to create an 

efficient custom library call for the processing kernel of a new multistage procedure for 

forming SAR images (Perry, et al., 1994a,b). The processing kernel, called the foldfft, 

combines a short FFT with memory management and other vector operations. The 

implementation of this kernel illustrates a software development progression that trades off 

ease of programming and portability with the attainment of a desired level of performance. 

The customized library call's processing rate is seven times faster than the original straight 

C-code implementation. 

Section 4 assesses the current message passing performance available on the Paragon. A 

simple single pair benchmark illustrates the progression in the Paragon's message passing 

performance that we were able to obtain as the operating system changed over the last year 

(24 to 75 Megabytes (MB)/second for the NX system, 154 MB/s for SUNMOS on 1/4 MB 

messages). A more complicated benchmark involving many simultaneously communicating 

pairs assesses the impact of link contention in more realistic message-passing patterns. This 

benchmark illustrates how the locally fair merge on the Paragon backplane makes the 

message passing performance of distant nodes dependent on the behavior of intermediate 

nodes. This "failure of fairness" phenomenon motivates the need to schedule the backplane to 

assure real-time communication performance (Games, et al., 1994a). Clock benchmarks 

catalog current operating system dropout behavior and mark the transition in the paper to 

periodic real-time benchmarking. The distributed Hartstone benchmark is used to measure 

real-time communication performance for synchronized dataflow. A programmable message 

passing technique is developed to assess more complicated periodic patterns. As an example, 

the performance of "corner turning on a line," which is a component of a scalable real-time 

mapping introduced in Section 6, is assessed. For this complicated pattern, the NX message 

passing primitives perform near their peak, but SUNMOS does not do very well at all, 

perhaps because of a lack of synchronization in the benchmark. 

Section 5 examines pipeline configurations of relevant processing and communication 

kernels on the Paragon to assess the degree to which high processing efficiencies can be 

maintained in end-to-end implementations. This section demonstrates the use of double 

buffering to overlap communication and computation in pipeline processing. A testbench is 



constructed on the Paragon with a source node (or nodes) that injects data into the processing 

chain under test at a prescribed rate and a sink node (or nodes) that collects and checks the 

output. Single node benchmarks with and without data communication of the FFT and/or 

corner-turning (matrix transpose) functions are used to assess the degree to which the 

communication latency can be hidden. The current buffering and control flow arrangement 

hides between 2/3 to nearly all of the communications latency, depending on the function 

under test. A two-dimensional FFT processing chain, which is applicable to SAR image 

formation, is tested. As expected the throughput of the pipeline is determined by the 

bottleneck node, i.e., the processing node with the largest minimum period. There is no 

further degradation in the minimum period as a result of the longer pipeline. The two FFT 

processing nodes in this three-stage pipeline sustain 53 MFLOPS on multiple instances of a 

512-pointFFT. 

Section 6 considers the scalability of parallel implementations from a real-time perspective. 

Two general mapping approaches that scale with problem size to maintain a fixed throughput 

requirement are described, but each has potential problems maintaining a fixed latency 

requirement, which is usually more difficult. A generic two-dimensional processing chain 

applicable to SAR and STAP applications is considered. A two-dimensional pipeline 

mapping is proposed that can be scaled to implement the processing when one of the problem 

dimensions increases. The real-time scalability of this family of mappings is analyzed in 

terms of its ability to meet both throughput and latency requirements. The limiting 

component is a communication step involved in transposing a distributed matrix between the 

two processing stages. A recursive implementation of this so-called "corner turn on a line" is 

proposed and benchmarked using the techniques of Section 4. The required minimum period 

for this step grows sublinearly, implying that the proposed family of mappings can most 

likely be configured to meet the real-time requirements over practical ranges of input 

parameters. 

Section 7 summarizes our conclusions and suggests areas of future work. 



SECTION 2 

FUNDAMENTAL CONCEPTS 

This section reviews some fundamental concepts used in this paper. It uses the Intel i860 

microprocessor for illustration. 

2.1 LATENCY AND THROUGHPUT 

In many computing applications, the objective is to minimize the amount of time required to 

produce a solution. For a problem instance P, if the inputs become available to the processor 

at time tinitial and the solution is completed at time tfinai, then the processing latency for that 

problem instance is given by tfinai - tinitial- 

Often in applications like sensor processing, a stream of problem instances Pi, P2, ■■■, Pi, — 

must be processed. If there is a fixed time period p between each problem instance, then the 

problem throughput is given by lip. Throughput is a rate, and in applications that are largely 

computational it is customary to express it in terms of the number of operations per second. 

For example, if a problem instance requires/floating point operations, then the throughput of 

lip problems per second implies that the processor must sustain///? floating point operations 

per second (FLOPS). 

In a real-time implementation, the application's throughput and latency requirements are 

specifications that the computing system must satisfy. In high throughput applications, the 

throughput requirement can have a much greater influence on a system's design. For 

example, a batch of output from a radar receiver must be consumed before the next batch 

arrives or else it will be lost. Often the processing latency can be increased to make it 

possible to meet a high problem throughput. For example, pipelining is a technique used to 

increase throughput at the expense of increasing latency. The additional latency is the result 

of more communication and buffering. 



2.2 PIPELINED VECTOR COMPUTING 

Notions of latency, throughput, and pipelining are equally applicable at the single processor 

level of a parallel implementation. To understand the limitations of vector processing on a 

pipelined microprocessor, such as the Paragon's i860 microprocessor, we need to examine 

the pipeline process and its relationship to the algorithm or vector process. Pipelined 

processing is a standard technique that distributes the processes among multiple elements, 

where each element can process a subtask rapidly. The solution is not available until the data 

is passed through all the elements in the chain (see Figure 2.1). 

Stages 

DATA 

2 4 

ANSWER 

Figure 2.1. Pipeline Processing 

The i860 floating-point arithmetic processor is actually composed of both a multiplier and an 

accumulator, with each having three stages of pipelining. Under steady state vector 

conditions the i860XP can perform a single precision multiply and addition in parallel at 50 

million times per second, corresponding to a peak rate of 100 million FLOPS (MFLOPS). To 

start a pipelined vector operation we must first flush the pipeline to initialize the system to a 

known state, which in some cases requires as many as six additional cycles. Similarly, to 

complete a pipelined vector operation we must continue priming the pipeline, up to six 

cycles, to process the last element. Each time a pipelined vector operation is interrupted, 

computer cycles are wasted. This effect is typically referred to as a pipeline stall. As a result, 

operations on short vectors suffer from large amounts of overhead. However, efficient 

operation can be achieved if the data structures in the algorithm are designed to extend the 

effective vector length. 



2.3 CACHE CONSTRAINT 

The i860XP has a large but limited on-chip cache with a 128-bit bus width. High-speed 

vector processing can be performed at the full rate of the i860 clock on data that resides in the 

on-chip cache. Once the vector size exceeds the on-chip cache size, the processor is required 

to access the main memory through the smaller off-chip memory port (64 bits wide). In 

addition, the main memory access time is typically slower. As a consequence, the upper 

bound on the vector size that can be processed with maximum efficiency is fixed at 

approximately the cache size—the cache constraint. Typically most algorithms process 

multiple operands, further reducing the effective vector length and particularly the size of the 

data access stride (increment). Many hardware and software techniques exist to circumvent 

these limitations but they are typically time consuming to develop and expensive to support. 

Intel has inserted a number of hardware optimization techniques into the i860 to reduce the 

overhead; a discussion of the concepts can be found in (Intel, 1990, 1991, 1992a,b). 

2.4 TUNING AN ALGORITHM TO THE COMPUTER ARCHITECTURE 

A critical step in the implementation of an algorithm is the process of mapping the algorithm 

to the processor architecture. Strip-mining and blocking are two general optimization 

techniques used to extract the best performance offered from pipelined and cached systems. 

Operations on large vectors must be decomposed into vector operations that fit into cache yet 

are long enough to limit pipeline stalls. These partitioning techniques are typically referred to 

as strip-mining. At the other end of the spectrum, algorithms with small vector lengths not 

only pose a pipeline stall problem, but also present cache management issues. The goal of 

blocking techniques is to gather enough data with similar vector operations into the cache 

and process them with minimum pipeline stalls. By restructuring algorithms in this fashion a 

higher degree of processor utilization can be achieved. Our block FFT design in Section 3 

illustrates the benefits of tuning an algorithm. A discussion of software optimization 

techniques can be found in (Zima and Chapman, 1990; Golub and Van Loan, 1991; and 

Dowd, 1993). 



2.5 BENCHMARKING 

The most accurate method for measuring system performance is to evaluate it on a fully 

implemented and stimulated system, but this measurement method is available only after the 

system is built. Project development guidance, control, and budgetary factors require the use 

of more timely methods for reducing risks and costs. One practical method is the use of well- 

formed benchmarks to model the performance behavior of the final system. But benchmarks, 

as with all reduced problem set models, yield performance predictions that are only as 

accurate as the benchmarks and their environment allow. A benchmark that is well-formed 

for one platform can become a less accurate model when the operating environment changes. 

We are primarily interested in establishing how long a given computational or 

communication task will take. For embedded applications in which size, weight, and power 

constraints are paramount, the percent of utilization of the processor or communication link is 

also a crucial metric. As a result, it is typical to express benchmarking results in terms of 

processing or communications rates to facilitate comparison with the theoretical peak rates of 

the individual components of a system. We use the number of floating point operations to 

measure the computational complexity of the algorithms under consideration. This number is 

divided by the length of time of the calculation to determine the number of FLOPS. For a 

communication task, the number of bytes transmitted in the interval of time is expressed as 

bytes per second (B/s). 

Parametrically exercising the benchmark is necessary to detect hidden dependencies. For 

example, for the FFT benchmark to be considered later, the transform size and the memory 

system can affect the performance. The benchmarks in this paper were conducted with two 

basic types of data management configurations, called repeated instance and multiple 

instance. A repeated instance benchmark repeats the processing on identical data. This type 

of test primarily exercises the program's ability to use the data cache and the processor 

architecture with minimal external memory dependencies. In the multiple instance case, as 

the name suggests, the algorithm operates on new data with each function execution. This 

exercises the cache-memory interaction and produces more realistic results. 



In a real-time system the correctness of the result depends both on its value as well as when it 

is computed. A benchmarking methodology designed to assess a system's real-time 

performance is introduced in (Weiderman and Kamenoff, 1992). This approach incrementally 

loads the system and then assesses its ability to meet prescribed real-time constraints. In this 

paper we usually have a fixed processing load to perform, and we determine the minimum 

real-time period that can be guaranteed. The idea is to include into the benchmarking 

methodology those components of a real-time system that may impact ultimate performance, 

such as buffering and flow control. The predictive power of the benchmarks is crucial to their 

ultimate value to a parallel software engineering process that depends on knowing the 

capabilities of the MPP on the essential processing and communication kernels. 



SECTION 3 

FFT PROCESSING 

In this section we describe our experiences with implementing an FFT on the i860 

microprocessor. All the results assume single-precision floating point operations. The 

motivation for the work was a benchmarking study of the processing kernel of a new 

synthetic aperture radar image formation procedure (Perry, et al., 1994a,b). The so-called 

"foldfft" function used in this approach involves FFTs with short vector lengths, as short as 

length eight in actual applications. Pulse-doppler radar applications can also involve short 

FFT lengths. Unfortunately, the efficiency of vendor supplied library routines for such short 

lengths is low. In both these applications many short FFTs are required, and we develop a 

"block" FFT call to improve the processing efficiency in this case. We first describe the 

results of an FFT benchmarking study on the i860. Second, we describe the block FFT 

optimization and compare its performance with the existing call. Finally, we describe the 

application of the optimized call to computing the foldfft. 

3.1 FFT PERFORMANCE ON THE i860 

The exact execution time for a function is given by the number of computer cycles required 

to compute the function multiplied by the cycle period of the processor. Due to the 

complexity of the FFT algorithm and the new computer architectures, the number of 

computer cycles required is not easily computed. As a result, the execution time is typically 

measured from an actual implementation. In this work, we are interested in FFTs ranging 

from as small as eight points to as large as 8K points. Many facets of the i860 architecture 

can affect the performance of the FFT including: the pipeline, the memory hierarchy, the 

parallelism, the instruction set, and the clock speed. 

The number of floating-point operations for the classical radix-two Cooley-Tukey FFT 

algorithm for TV points is given by 

11 



10—log2(A0. (3-1) 

This assumes 10 floating-point operations for each butterfly, TV / 2 butterflies per stage, and 

log2(A0 stages required in the Npoint-FFT. Some of these operations involve ± 1 and ±i, 

effectively reducing the operation count below that of expression (3-1). In addition, in some 

cases the FFT can be implemented with other radix bases that can reduce the operation count 

as well. However, in this paper we will uniformly use expression (3-1) for simplicity when 

we express FFT performance in terms of FLOPS. 

Two assembly language FFT library calls were obtained for evaluation, one optimized for the 

i860XP (Kuck & Associates, 1993b) and the other optimized for the i860XR from Intel 

(Margulis, 1990). The source code for the Intel version was also available. The library 

routines were tested with the repeated instance and multiple instance benchmark procedures. 

Both configurations were tested for FFT lengths chosen from the sets {8, 16, 32, 64} and 

{512, 1024, 2048, 4094, 8192}. The benchmarks were run 14 October 1994 on a Paragon 

running OSF/1, revision 1.2.3, with its coprocessor enabled. All computations involve single 

precision, floating point numbers. 

The results are presented in Figure 3.1. Only in the repeated instance case did we measure 

performance figures close to the maximum achievable. It is also apparent that the 

performance degrades for small and large transform sizes. In the multiple instance case, 

further degradation is observed due to constantly accessing external DRAM to obtain the new 

data used in each transform. 

After close examination of the algorithm and the i860 architecture, two dominant effects 

were found to be causing the degradation. For the shorter transforms, the i860 floating-point 

pipeline is plagued with pipeline stalls. Within each FFT stage the pipeline must be primed 

for new data and flushed when completed. Since the i860 pipeline has six stages, this 

represents a significant overhead for transforms with 64 or less points. The second effect for 

the longer transforms is the cache size limitation. Once the data set does not fit into the 

12 



cache, the penalty for external memory accesses is additional memory cycles. The Kuck & 

Associates implementation evidently makes better use of the cache-memory interface for the 

longer transforms. 

10 100 

FFT Size 

1000 10000 

Figure 3.1. FFT Performance on the i860 

It is interesting to note that for the Kuck & Associates FFT call the multiple instance 

benchmark performs better than the repeated instance benchmark for large FFT sizes (see the 

cross over between 2K and 4K in Figure 3.1). Since both benchmarks utilize the same library 

call, what accounts for this switch in performance? A number of subtle differences exist in 

the FFT implementation as the problem size increases that could cause this performance 

switch. One possible explanation involves the way the memory is accessed. The i860 

processor has two types of memory access instructions—the FLD and PFLD instruction. The 

13 



FLD instruction is optimized for in-cache memory accesses and carries a significant time 

penalty for off-chip memory accesses. The PFLD instruction (pipelined floating point load) is 

optimized for off-chip memory access and has a time penalty associated with in-cache 

memory accesses. The programmer must be aware of the memory configuration to optimize 

the performance. The i860 will still operate properly if mismatched instructions are used, 

however at a reduced efficiency. 

The Kuck & Associates FFT call employs both of these instructions depending on the 

memory utilization. The memory utilization is under control of the library routine for all of 

the FFT stages except for the first and last stage. Obviously the library call should assume the 

data is not in cache for the larger FFTs. Thus, the larger FFTs employ the PFLD instruction 

in the first stage. As a consequence the performance is slightly penalized for the repeated 

instance case when accessing in-cache data, which occurs about 25% of the time for the 4K 

case and 12% of the time for the 8K case. The discrepancy is further complicated by the way 

large FFTs are decomposed to fit in the cache to maintain good performance. As the FFT 

size grows, the decomposition /recomposition process overhead also plays a role in the 

performance figures. 

3.2 BLOCK FFT DESIGN 

The benchmark results in the last section clearly indicate that conventional optimization 

techniques employed in the FFT library routines suffer severe performance penalties as the 

FFT size is reduced. After close examination of the FFT algorithm, it was discovered that the 

pipeline stall problem for short input lengths could be addressed by restructuring the 

computations into a block format. 

The signal flow graph for the decimation in frequency version of the FFT is shown in Figure 

3.2 (Brigham, 1974). The i860 FFT algorithms process each stage of the FFT independently, 

thus stalling the pipeline after each stage. To eliminate this problem, the FFT algorithm was 

rewritten to extend the processing of each stage of the FFT across multiple data sets. The 

blocks are organized to fit in the cache independent of the FFT size. For example, for an FFT 

of length eight, we would load the data for 128 FFTs into cache (a 1024 complex word 
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cache) and process the data in stages. Stage 1 of all 128 FFTs would be completed before 

moving to stage 2, etc. In this arrangement, pipeline stalls would occur after 512 butterflies as 

opposed to four. The new arrangement allows the smaller FFTs to be implemented efficiently 

by trading a small amount of latency for throughput. 

stage 1 stage 2 stage 3 
O  X(0) 

O   X(4) 

O  X(2) 

O  X(6) 

O  X(1) 

O  X(5) 

O  X(3) 

O  X(7) 

Figure 3.2. Signal Flow Diagram for a Length Eight Decimation in Frequency Radix-2 FFT 

The block FFT was implemented by modifying the source code of the Intel library call. The 

source code for the more efficient Kuck & Associates call was not available. The 

benchmarking results for the blocked Intel call are shown in Figure 3.3. The performance 

improvement for the repeated instance case is dramatic. Each instance now computes 

multiple short FFTs on vectors contained in a block, but that block is repeated. For the 

multiple instance case, a 23 MFLOPS improvement is realized for 8-point FFTs. An 

improvement in performance continues for the larger vector lengths. The reason for the 

improvement is due to the cache-memory interface. In the FFT, the first and last stages are 

required to access external memory, causing cache misses. Since we are performing the FFT 
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in place, intermediate stages are able to take complete advantage of the on-chip cache. Thus, 

as the number of FFT stages is increased, the cache-memory interface becomes a smaller 

percentage of the cycle overhead. 

10 100 

FFT Size 

1000 10000 

Figure 3.3. Complex FFT Performance on the i860XP with Multiple Instance Optimization 

3.3 PLANAR SUBARRAY PROCESSING 

A new algorithm for forming synthetic aperture radar (SAR) images, called Planar Subarray 

Processing (PSAP) was developed (Perry, et al., 1994a,b) to address the formidable 

computation and storage requirements implied by wide-area, high-resolution surveillance. 

PSAP has a number of features that make it suitable for efficient implementation on a 

distributed memory massively parallel processor (Games and Pyrik, 1994). The PSAP 
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algorithm consists of mostly independent and similar processing tasks whose organization 

permits a variety of possible parallelization strategies. However, this common processing 

kernel, called the foldfft, is more complicated than conventional kernels. A necessary 

condition for an efficient implementation of PSAP is that the foldfft can be implemented 

efficiently. This section applies the block optimization techniques described above to obtain 

an assembly language foldfft library call for the i860 that is seven times faster than a straight 

C-code implementation. 

3.3.1 foldfft Processing Kernel 

The foldfft function consists of a sequence of processing steps, including vector operations, 

array indexing, and an FFT, that makes it useful for comparing, or benchmarking, the 

performance available from current processor technology. Figure 3.4 shows a data flow 

representation and the mathematical description of the foldfft function. All the vectors are 

complex except for r. Typical values for n and/ in the PSAP algorithm include (64, 8), (128, 

16), (256, 32), (16,16), (64, 64), and (512, 512), i.e., the length of the FFT involved can be 

quite short. In the symmetric case with n=f, the "fold to f' stage is eliminated and the foldfft 

reduces to a pre and post-weighted FFT. All the computations are assumed to involve single- 

precision, floating-point numbers. The number of floating-point operations for the algorithm 

is In + 2{n -f) + 5ßogzf+6f. 

foldfft(n,f)      (f is a power of 2 dividing n) 

a 
complex n-vector r<fH b   fold to 

f 
f-point 

FFT Sp   con complex f-vector 

real n-vector 
W 

complex f-vector 
n/f-1 

b(i) = r(i)a(i)       c(j) = £ b(fi+j) 
for i = 1 to n i=0 

for j = 1 to f 

e(i) = w(i)d(i) 
for i = 1 to f 

Figure 3.4. Dataflow Graph of the foldfft Function 
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3.3.2 Benchmarking the foldfft 

Software implementations of the foldfft in "high level languages" have had limited success. 

We used a portable C-code implementation of the foldfft to test eight different workstation 

models and found that the Hewlett Packard HP 9000/735 workstation sustained the highest 

processing rate: 16.6 MFLOPS. The benchmark testing used a foldfft with n = 64 and/= 8. 

When the same code was run on the i860XR in a SKY Computer SKYbolt accelerator board, 

only 3.3 MFLOPS were measured. The performance improved significantly to 13.1 

MFLOPS when SKYvec (SKY, 1993) library calls were included. These were repeated 

instance benchmarks, and so, somewhat optimistic for applications. 

To improve the performance further in anticipation of a high-performance implementation, 

we coded the algorithm in assembly language. Previously developed optimizations 

techniques designed into the block FFT were applied to the foldfft. By restructuring the 

computations in the form of a block to fit within the cache and limiting pipeline stalls we 

dramatically improved the performance of the foldfft. Table 3.1 summarizes the previous 

benchmark results and the assembly language version for the i860XR processor on the 

Skybolt and the i860XP on the Paragon. The assembly language version provides almost a 

factor of 7 improvement over the C routines. 

Table 3.1. foldfft(64,8) Benchmarking Results (MFLOPS) 

Programming 

Approach 

Skybolt 

i860XR 

Paragon 

i860XP 

C 3.3 6.8 

C with Libraries 13.12 not done 

i860 Assembly 44.4 47.3 
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The Paragon result corresponds to simply porting the i860XR code to the i860XP; the 

increase in performance is due to the faster clock, and even better performance would be 

expected if the code was modified to take advantage of the additional XP features. 

3.4 CONCLUSION 

This section examined the performance of the FFT on the i860 microprocessor. Vendor- 

supplied FFT library calls yielded efficient processing on realistic multiple instance 

benchmarks as long as the FFT size allowed efficient use of the cache. We showed that the 

efficiency for multiple short FFTs (sizes 8 through 128) could be improved by incorporating 

blocking into the FFT library call. These blocking ideas were applied to optimize the 

performance of the foldfft processing kernel. The foldfft is the basic building block of a new 

SAR image formation procedure that significantly limits the sizes of the FFTs involved in the 

processing. 

Three different programming approaches were used in the foldfft study: plain C, C with 

optimized library calls, and a customized library call in assembly language. Each successive 

approach involves more programmer effort and is less easily ported to other platforms, with 

the more involved approaches providing increased performance (from 7 to 47 MFLOPS for 

Paragon processing). Obtaining high efficiency on the critical processing kernels is a 

necessary condition for applications that have strict size, weight, and power requirements. 

Maintaining such efficiencies when the processing kernels are combined into a parallel 

implementation depends on a variety of factors, including the performance of the underlying 

communication network. We examine the performance of the Paragon network in the next 

section and then return in Section 5 to the problem of sustaining high efficiencies in concert. 

19 



SECTION 4 

COMMUNICATION AND CLOCK BENCHMARKS 

In this paper, we are considering programs that deliver high performance on MPPs using 

some form of explicit message passing. These programs must surmount several barriers to be 

able to exploit the full bandwidth of the underlying message passing hardware. For example, 

care must be taken to minimize the number of times a message is copied. This section 

describes our experience using the Paragon OSF/1 operating system with the Intel NX 

message passing primitives. We also tested the Sandia-University of New Mexico Operating 

System (SUNMOS) (cf. Wheat et al., 1994). SUNMOS is a "lightweight" alternative to NX 

that eliminates certain features (packets, flow control) to obtain higher message passing rates. 

We start with a simple point-to-point transmission without any contention, and gradually 

increase the complexity and contention involved in the message passing pattern, culminating 

in a pattern that implements a transpose operation or "corner turn" for a matrix that is 

distributed along a line of processors. We also introduce midway through the section a 

benchmarking methodology that assesses periodic real-time performance. 

4.1 COMMUNICATION BENCHMARKS 

The benchmarks in this section test message passing performance on a set of processors 

allocated in a single line. Unless otherwise noted, the benchmarks were run during September 

1994 using the program lin, version 1.4 of 9 September 1994 on a Paragon running OSF/1, 

revision 1.2.3, with its coprocessor enabled. The program lin collected a number of 

previously separate benchmarks into a single framework to facilitate rerunning the 

benchmarks in the future. Again, unless otherwise noted, each node sent 1000 messages, each 

containing 262144 bytes (262144 = 218 or 1/4 MB). OSF/1 sends messages in packets of size 

1792 bytes by default. The default size is the largest packet size supported by OSF/1. 
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The benchmark runs were initiated with the option -plk to make application pages ineligible 

for replacement by the OSF/1 virtual memory system. All message buffers were initialized to 

zero to force their pages to be resident in physical memory prior to the start of the 

benchmark. The nodes running a benchmark were synchronized by using the barrier 

synchronization procedure gsync before any timing began. 

4.1.1 Adjacent Pair Benchmark 

Purpose: The Adjacent Pair Benchmark measures the message transfer rate as a function of 

the message size and packet size of a single pair of processors communicating data in one 

direction. 

Description: The Adjacent Pair Benchmark allocates two adjacent processors. One 

processor repeatedly transmits a message that is received by the other processor. 

Results: The program lin was preceded by a program called pair that implemented just a 

few of the benchmarks in the lin program (the pair program sent twice as many messages 

as lin during each of its runs). The pair program was used to run the Adjacent Pair 

Benchmark at various times during the year using 1/4 MB messages and the default packet 

size. During that period, the OSF/1 operating system was upgraded from revision 1.1 to 

revision 1.2.3, and the message coprocessor was enabled. In June 1994, the SUNMOS 

operating system became available. The SUNMOS kernel provides no message flow control, 

but the original benchmark relied on the flow control mechanism provided by the NX 

message passing system in OSF/1. After adding code that explicitly acknowledged the receipt 

of a message by sending a message of zero length, the benchmark passed messages at the rate 

of 154 MB/s under SUNMOS. To our surprise, adding explicit acknowledgments to the 

benchmark improved the performance under OSF/1. Table 4.1 shows the progression of 

communication performance under OSF/1 over the course of the year. 
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Table 4.1. Adjacent Pair Benchmark for OSF/1 

Date Rate (MB/s) Operating System Comment 

08 Dec 93 24 OSF/1  1.1 NX flow control 

24 Jun 94 33 OSF/1  1.2.1 NX flow control 

24 Jun 94 52 OSF/1  1.2.1 acknowledgments 

29 Jul 94 86 OSF/1  1.2.1 acks and coprocessor 

21Sep94 75 OSF/1   1.2.3 acks and coprocessor 

As Table 4.1 indicates, enabling the message coprocessor provided substantial improvement 

in the performance of the benchmark run under OSF/1. The pair implementation of the 

benchmark ran at 86 MB/s and the lin implementation ran at 84 MB/s under OSF/1, 

revision 1.2. Due to a design problem, multiple i860s configured for symmetric 

multiprocessing can produce spurious writes to random locations unless the write-back cache 

is placed in so-called strong-order mode. All writes must execute in sequence in this mode, 

but allowing out-of-order writes can substantially improve performance. Revision 1.2.3 

places the i860s in strong-order mode. We found the performance degradation for the pair 

version of the benchmark was about 15%. 

Table 4.2 shows the communication performance as a function of message size; Table 4.3 

shows the communication performance for 1000 1/4 Mbyte messages as a function of 

varying packet size. 

Table 4.2. Adjacent Pair Benchmark with Varying Message Size 

Message Size 262144 16384 1024 1 

Rate (MB/s) 73.4 37.4 8.2 0.01 
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Table 4.3. Adjacent Pair Benchmark with Varying Packet Size 

Packet Size 1792 1024 512 256 128 

Rate (MB/s) 73.2 44.2 26.2 13.7 6.4 

Each entry in Tables 4.1-4.3 gives a result measured for one run of the program. We ran the 

benchmark 10 times with the same parameters to assess the variability of the results. The case 

in which 1000 1/4 MB messages were received is typical of our measurements. In the group 

of 10 runs, the average throughput was 72.9 MB/s, the low was 71.9 MB/s, and the high was 

73.6 MB/s. 

The benchmark was modified so as to measure how the message transfer rate changes as a 

function of distance between a single pair of communicating nodes. Our results showed the 

throughput was independent of the separation distance. 

4.1.2 Symmetric Many Pairs Benchmark 

Purpose: The Symmetric Many Pairs Benchmark measures how the message transfer rate 

changes as a function of the number of communicating node pairs which use the same route. 

Description: The Symmetric Many Pairs Benchmark allocates an even number of processors 

in a single line so that all message passing occurs in one dimension. The processors are 

grouped into pairs, one above the midpoint and one below it. Processors below the midpoint 

repeatedly send messages to their mates, which repeatedly receive messages. The layout for 

16 processors is shown in Figure 4.1. 

Senders 

®  ©••■©© 
Receivers 

© © © 
t 

© 

Figure 4.1. Symmetric Many Pairs Benchmark 
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In one version of the benchmark, the receipt of a message is acknowledged by sending a zero 

length message to the sender. A run terminates when any one pair completes the sending of a 

specified number of messages. That pair sends a termination message to all other pairs. Upon 

termination, the benchmark reports the data transfer rate for each receiver and the sum of 

those transfer rates, which is the rate data traveled through the backplane at the midpoint. The 

number of unsent messages for the pairs that are terminated prematurely are tallied. 

Results: Table 4.4 shows the results of running the version of the Symmetric Many Pairs 

Benchmark using acknowledgments on a machine with the coprocessor turned on. The table 

shows the rate at which data passed through the middle communication link and the 

percentage of messages that were not sent due to the receipt of termination messages. This 

percentage gives a measure of the unfairness of the message passing. For the run using 16 

processors, the rate for each pair is given in Table 4.5. 

Table 4.4. Symmetric Many Pairs Benchmark Varying Number of Nodes 

Processors 2 4 6 8 10 12 14 16 

Sum (MB/s) 74.2 138.5 156.2 153.3 157.1 158.8 156.7 157.0 

Unsent (%) 0 0 13 22 27 31 34 36 

Table 4.5. Symmetric Many Pairs Benchmark with 16 Nodes 

From - To 0-15 1-14 2-13 3-12 4-11 5-10 6-9 7-8 Sum 

Rate (MB/s) 1.5 1.5 3.0 5.8 11.5 22.3 41.7 69.7 157.0 

Discussion: The benchmark for 16 processors was run several times. While we did not 

statistically analyze the results of these runs, we observed roughly the same numbers for each 

run. In particular, with the exception of the first node pair, the throughput roughly doubles as 

the distance between nodes is decreased. As expected, the data entering the backplane from a 
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node is mixed packet-for-packet with the data traveling left-to-right. This locally fair merge 

leads to globally unbalanced throughput rates. This so-called "failure of fairness" presents 

problems for applications requiring predictable communication performance, since distant 

communicating pairs are subject to the communications behavior of intermediate nodes. This 

problem is treated in (Games, et al., 1994b), where protocols for "scheduling" the backplane 

are considered to insure predictable communication performance for real-time applications. 

Before acknowledgments were added to the Symmetric Many Pairs benchmark, the 

benchmark would crash a Paragon when running OSF/1, revision 1.1. Apparently, the flow 

control mechanism failed with this benchmark. 

4.1.3 Asymmetric Many Pairs Benchmark 

This benchmark is identical to the Symmetric Many Pairs Benchmark except that the pairs 

are laid out so that the number of links between any two pairs is the same. The layout for 16 

processors is shown in Figure 4.2. The results for 16 processors is shown in Table 4.6. 

Sum 

® O 

Figure 4.2. Asymmetric Many Pairs Benchmark 

Table 4.6. Symmetric Many Pairs Benchmark with 16 Nodes 

From->To 

Rate (MB/s) 

0-8 

1.9 

1-9 

2.0 

2-10 

3.9 

3-11 

7.7 

4-12 

15.0 

5-13 

27.8 

6-14 

46.4 

7-15 

47.2 

Sum 

151.9 
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Discussion: Compared with the symmetric case, the overall throughput is only slightly 

reduced, but the throughput of messages sent from node 7 to node 15 is decreased. We 

suspect that the decrease is explained by the fact that packets sent from node 7 in the 

asymmetric case traverse a number of links, each of which is subject to contention, as 

compared to the symmetric case, which only involves a single link from node 7 to node 8. 

4.2 CLOCK BENCHMARK 

The benchmarks in this section time "drop outs" associated with the operating system. The 

benchmarks in the remaining sections of this paper are periodic real-time benchmarks. These 

benchmarks depend on performing tasks at regular intervals. However, the nonreal-time 

operating system currently preempts application tasks for varying intervals of time. The clock 

benchmark is intended to give some insight into the current state of affairs in this regard. 

Purpose: The Clock Benchmark measures the pauses in program executions due to operating 

system overhead. 

Description: The Clock Benchmark runs on one node. It zeros an array that is used to record 

the results of the experiment. It then reads the node's local clock using the dclock function 

repeatedly and computes the elapsed time since the last call to dclock. When the elapsed 

time is above a threshold, the time and the length of the pause is recorded in the array. 

Results: The benchmark was run under OSF/1, revision 1.2.1, with the coprocessor turned on 

using the program longclk, version 1.2 on 24 June 1994. Figure 4.3 shows the results of a 

run lasting one half hour. There were 137 pauses of length greater than 500 us. Most of these 

pauses have a duration of about 1 ms and occur at a regular rate of about once every 13 

seconds. In addition, there were a small number of pauses in the 2 ms range. 
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Figure 4.3. Clock Benchmark: Pauses > 500 [is 

Figures 4.4 and 4.5 show the Clock Benchmark results for finer time scales. From Figure 4.4, 

we see that there were about 100 pauses of duration greater than 50 (is every second. Figure 

4.4 also shows there is about a 200 \is pause every second and a slightly less than a 350 |is 

pause every two seconds that alternates with a slightly greater than a 350 (is pause. Figure 4.5 

shows a one second interval and that the remaining pauses have a duration mostly in the 

range of 105-120 |is with a period of about 10 ms. We suspect that there is a timer interrupt 

every 10 ms to allow scheduling by the kernel. 

Discussion: When the Clock Benchmark was run under SUNMOS, there were no pauses 

over 50 (is. An early version of this benchmark reported pauses with a duration of 5 ms. 

Zeroing the array that was used to collect the data eliminated those pauses. We concluded 

that the 5 ms pauses corresponded to the time it takes to page elements of the data array into 

physical memory. The early version of the benchmark was run specifying the page lock 
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runtime option (-plk), but this option simply keeps pages in memory once they have 

arrived. We could find no mechanism that forces an entire program into memory before it is 

executed. As a result of this experience, our benchmarks zero data arrays and message 

buffers before a timed test begins. 
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Figure 4.4. Clock Benchmark: Pauses > 50 |is 

4.3 REAL-TIME BENCHMARKS 

The benchmarks in this section are oriented toward real-time processing. They implement 

tasks that are executed at regular rates. Each execution of the task is expected to complete 

within a given period. The result reported for these benchmarks is the minimum period for 

which all deadlines are met. 
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Figure 4.5. Clock Benchmark: Pauses Between 50 and 120 (is 

4.3.1 Hartstone Distributed Benchmark 

Purpose: The Hartstone Distributed Benchmark (Kamenoff and Weiderman, 1991) is one 

measure of how well a distributed computer handles real-time applications. 

Description: The part of the Hartstone Distributed benchmark implemented uses two 

nodes of a distributed system. Each node executes n tasks. Each task on one node is paired 

with a task on the other node. One node contains only sending tasks and the other node 

contains receiving tasks. Future versions of the benchmark could add a processing workload 

at the sending and/or receiving node. There are no acknowledgments in this benchmark. 
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The input for the benchmark includes a period for each task pair. At the regular interval given 

by the period, a task on one node sends a message to its matching task on the other node. If 

the sender completes its transmission before the end of the period, it meets its deadline. The 

receiver meets its deadline if it completes the receipt of a message within the period. 

The implementation of the benchmark takes advantage of the fact that the local node clocks 

on the Paragon are synchronized to within 1 |is. The sending node picks a time in the future 

at which the test will begin and then sends that time to the receiving node. 

This implementation uses two nodes of a Paragon. There is one process on each node, and 

each process can spawn up to n POSIX threads, where n = 3 is the standard test 

configuration. An initial thread on each node spawns a separate thread for each task and waits 

for the completion of all tasks and then prints the results of the benchmark. 

A thread implementing a task awaits the start of its period by reading the value of the local 

clock using dclock. If the period has yet to begin, the thread calls pthread_yield, 

which invokes the scheduler. The program does not attach priority to any particular thread, 

and no thread preempts another thread unless it consumes its time slice. The benchmark also 

has a compile-time switch that allows the program to be compiled so that there is only one 

task per node, and the POSIX thread library functions are not called. 

Results: The benchmark was run under OSF/1, revision 1.2.3. The length of each message 

was 1/4 MB. The duration of the run was 1 second. When compiled so as to eliminate calls to 

the POSIX thread library, the smallest task period which met the deadlines was 4.2 ms and 

data was transferred at a rate of 62.4 MB/s. When the thread library was used, the smallest 

task period which met the deadlines was 5.0 ms and data was transferred at a rate of 52.4 

MB/s. This degradation of .8 ms is evidently due to one call of pthread_yield in the loop 

checking dclock. 

The benchmark was run with three tasks per processor, each passing 1/4 MB messages. The 

task periods were in the ratio of 1:2:4. The smallest period which allowed the benchmark to 
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meet all deadlines was 15 ms. Data was transferred between the nodes at a rate of 30.6 MB/s. 

Table 4.7 gives the individual rates for the three tasks. 

Table 4.7. Distributed Hartstone Benchmark: n = 3 

Period (ms) 15           30           60 

Rate (MB/s) 17.5          8.7          4.4 

Discussion: Every 60 ms all three threads have message passing tasks to perform. The 

current operating system shares the processor equally between the three threads, which puts 

the thread (task) with the shortest period clearly at a disadvantage. As a result, its minimum 

period more than triples compared to the single task case. Real-time operating systems often 

include priority based schedulers that should improve this situation. In the rate monotonic 

scheme, the priorities are assigned so that tasks with shorter periods have higher priority. 

Thus, at those points in the benchmark where all three tasks want to send messages, the task 

with the shortest period would have priority and monopolize the processor. There still would 

be the overhead associated with the potentially more complicated scheduling as well as 

multiple spin waiting loops. Indeed, when there are multiple threads, the spin waiting could 

have a significant impact as each thread is always busy. In the future, the overhead of an 

alarm-interrupt approach should be assessed. 

4.3.2 Programmable Message Passing Benchmark 

Purpose: The Programmable Message Passing Benchmark measures the real-time 

performance of a potentially complicated message passing pattern given as a simple program. 

It is a synchronized benchmark in that the periods are synchronized across all the nodes, and 

all send and receives complete within the common period. 

Description: The Programmable Message Passing Benchmark is implemented using the 

program pmp. The program takes as input a message communication pattern and a period. 
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The benchmark tests if the message passing given by the pattern can be completed within the 

given period. The description of a pattern consists of a code sequence for each node. A code 

sequence specifies the sequence of actions to be performed by a node within a period. The 

following actions are currently supported: 

1. E: Marks the end of a code sequence. 

2. R: The node waits until a previously posted receive request returns a message, posts 

another receive request, and executes the next action in the code sequence. In this 

version of the benchmark, all receive requests are asynchronous. 

3. S No Ni: The node sends an Ni byte message to the node numbered No and executes 

the next action in the code sequence. In this version of the benchmark, all send 

requests are synchronous. 

4. W F: The node waits until the fraction of the period given by F has passed and then 

executes the next action in the code sequence. F is a floating point number such that 

F< 1. 

5. L N Po: The node executes N times the code sequence denoted by Po and then 

executes the next action in the code sequence. N is a nonnegative integer. 

The Programmable Message Passing Benchmark is initiated by the following procedure. The 

message passing pattern and desired period is read by node 0, and the appropriate code 

sequence and common period are distributed to each node. For each node, the message 

buffers are zeroed and one receive request is posted. The processing on each node is 

synchronized by the use of the procedure gsync, after which each processor reads its local 

clock and then waits for one period. Finally, each processor repeats the following actions for 

a prespecified duration: it repeatedly calls dclock checking for the start of a period; at the 

beginning of each period it executes its code sequence; and it then checks to see if all 

processing was completed before the end of the period. 
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The benchmark was programmed to run the simple message passing pattern consisting of 

node 0 periodically sending a 1/4 MB message to node 1 and node 1 acknowledging each 

message with a zero length message. The code sequences at nodes 0 and 1 are respectively: 

0:   S   1   262144     R     E 

1:   R     S   0   0     E 

Results: Table 4.8 lists the results for version 1.6 of the pmp program using three different 

configurations of the operating system. 

Table 4.8. Programmable Message Passing: Adjacent Pair 

Period (ms) Rate (MB/s) OS Coprocessor 

5.0 52.4 OSF/1 R 1.2.1 yes 

7.1 36.9 OSF/1R1.2.1 no 

2.0 131.1 SUNMOS no 

Discussion: The message passing pattern given above is the same one generated by the 

adjacent pair benchmark with acknowledgments, however, measured throughputs are smaller. 

A variety of factors contribute to the differences. The most significant difference is that the 

rate calculated in the previous adjacent pairs benchmark is averaged over 1000 messages, 

while the rate in Table 4.8 is determined from the minimum period set by the worst case 

individual message time, which can be significantly impacted by a single operating system 

drop out. There is also more overhead in both the control and message passing parts of the 

pmp program. A final possibility is that each program aligns message buffers differently, and 

buffers not aligned on page boundaries can result in significant performance losses. 
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4.3.3 Corner Turning on a Line 

The Programmable Message Passing Benchmark was developed to make it easier to evaluate 

complicated message passing patterns. In this section we apply the pmp program to the 

problem of corner turning on a line. Corner turning is the name given for transposing a 

matrix in some signal processing applications. In Section 6 scalable real-time mappings are 

considered in which the matrices involved are distributed across many nodes. The corner- 

turning step then consists of three phases as shown in Figure 4.6. First there are memory 

transposes or "corner turns" at the source nodes that take the matrix stored by rows, say, and 

restore it by columns. This is required if the information is to be packaged into large 

messages for more efficient transmission. The second phase corresponds to the data 

distribution phase shown in step 2 of Figure 4.6. Finally, a second memory corner turn at the 

destination nodes is needed to unpack the messages and to store the result by columns for 

subsequent processing. In this section we focus on the data redistribution at step 2. 

1/4 rows 1/4 rows 1/4 rows 1/4 rows 

Stepl 
form messages 

i 
Tr 

L   JL    J 
Tr Tr Tr 

Step 2 
data 

redistribution 

Step 3 
unpack messages 0      0      0      0 

1/4 columns     1/4 columns     1/4 columns     1/4 columns 

Figure 4.6. Corner Turning on a Line 
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Description: Figure 4.7 shows an example of pmp program input code sequences that 

implement the corner-turn data redistribution on a line of four nodes. Individual messages all 

have size 1/4 MB. The figure shows a graphical interpretation of the message passing 

program as occurring in six stages. This is somewhat misleading. Although the starts of the 

code sequence processing by pmp are synchronized across the nodes, there are no additional 

explicit synchronizations performed during the running of pmp to keep the messages aligned. 

However, because the messages are equally sized, one might expect that the stages shown in 

Figure 4.7 would be roughly correct. 

pmp program input 

0: R  S 3 262144  R  S 2 262144  S 1 262144  R E 
1: S 2 262144  R  S 3 262144  R  R  S 0 262144 E 
2: R  SI 262144  S 0 262144  R  S 3 262144  R E 
3: S 0 262144  R  R  S 1 262144  R  S 2 262144 E 

s*9e1 o* D—»□ n 
stage 2 Q □«« D JO 

stages Q* Q D J[3 

stage 4 Q □«,       »»□ □ 

stages Q *Q Q *Q 

stages Q* □ Q* Q 

Figure 4.7. Corner-Turning pmp Code Sequences: Four Nodes 
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Results: Table 4.9 lists the results for version 1.6 of the pmp program using three different 

configurations of the operating system. The rates shown correspond to the total amount of 

data sent by any one node divided by the minimum period. 

Table 4.9. Programmable Message Passing: Four-Node Corner Turning 

Period (ms) Rate (MB/s) OS Coprocessor 

32.5 24.2 OSF/1R1.2.1 yes 

45.0 17.5 OSF/1 Rl.2.1 no 

44.0 17.9 SUNMOS no 

Discussion: Each node sends three 1/4 MB messages during the period, which accounts for 

the rates given in Table 4.9. But in that same period, each node receives three 1/4 MB 

messages. So the rates in Table 4.9 should be doubled if a fair comparison is to be made to 

the results of previous benchmarks in which nodes were either only sending or receiving, 

e.g., in comparing the results to those shown in Table 4.8. With this proviso, the corner- 

turning message passing performance obtained using OSF/1 appears to be consistent. But the 

performance under SUNMOS is disappointing. 

One possible explanation for the relatively poor performance of SUNMOS is that the lack of 

actual synchrony between the stages in the pmp program may be more problematic for 

SUNMOS. Because SUNMOS does not break up the long 1/4 MB messages into small 

packets, any offsets between the stages of Figure 4.7 would result in serious contention, with 

the result of messages potentially piling up at the nodes. A synchronous version of pmp, 

which partitioned the period into subperiods (six in this case), would potentially avoid this 

problem. 

There are, of course, a large number of alternative pmp code sequences that could be used to 

implement corner turning on a line of four nodes. Assuming the staging shown in Figure 4.7 
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is accurate, the pattern shown in the figure does not contain any contention at the nodes (no 

simultaneous sends and receives) nor on the backplane (messages are traveling in different 

directions). Other message patterns tested with either nodal or backplane contention did not 

perform as well under OSF/1 without the message coprocessor. Interestingly, with the 

message coprocessor turned on, the performance penalty for simultaneous sends and receives 

disappeared. 

4.4 CONCLUSION 

This section focused on pure communication benchmarks—no significant computation was 

performed at each node. The benchmarks determined upper bounds on message passing rates 

for the Intel Paragon. Lower bounds for the periods of repetitive real-time message passing 

were determined. Over the course of the year there was a general trend of improving 

performance as the hardware and operating system were upgraded (e.g., message coprocessor 

enabled) and as we discovered various "tricks" (e.g., explicit acknowledgments). SUNMOS 

provides very efficient use of the backplane, but shifts certain responsibilities to the user. 

High performance message passing at the rates that we have achieved can lead to potential 

predictability problems for a real-time application if communications between distance nodes 

are interfered with by messages involving intervening nodes. Also, as the result for the 

SUNMOS corner-turning benchmark suggests, more precise communications scheduling 

may be required to maintain high performance for complicated message passing patterns. 
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SECTION 5 

APPLICATION BENCHMARKS 

In this section we examine pipeline configurations of relevant processing and communication 

kernels on the Paragon to assess the degree to which high processing efficiencies can be 

maintained in end-to-end implementations. The applications under consideration are those in 

which problems present themselves at a fixed rate. Examples include synthetic aperture radar 

(SAR) image formation or space-time adaptive processing (STAP). To keep up with the 

stream of incoming data, the processor must meet a throughput requirement. The application 

may also prescribe a latency requirement. 

This section demonstrates the use of double buffering to overlap communication and 

computation to maintain high processing efficiencies. Buffers must be appropriately sized to 

take into account a variety of factors. Large buffers usually result in more efficient 

processing or message passing as we have seen in the benchmarks in Sections 3 and 4. Small 

buffers may be required to meet strict latency requirements, as the time to fill a large buffer 

may be too great and result in timing violation. Finally, unpredictable operating system 

behavior will limit the size of the period that can be reliably maintained. This places a lower 

bound on how small the buffers can be. 

5.1 REAL-TIME TEST BENCH 

All benchmarks in this section are "real time" in the sense that the shortest period that can be 

sustained will be the metric measured. Ideally, given an application, a "test bench" would be 

constructed to realistically stimulate the massively parallel processor under test. This is the 

approach that the ARPA-sponsored Rapid Prototyping for Application Specific Signal 

Processors (RASSP) program is taking to assess the performance of the RASSP processors 

(Shaw, 1994). Instead, we construct what amounts to a "test bench" on the MPP itself. 

In the case of applications that would use a single I/O node for input, we identify a single 

node, called the source node, that is responsible for injecting at a prespecified rate blocks of 
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data of a prespecified size into a processing chain under test. In reality, the data might stream 

into an I/O node, where it would be buffered to allow processing at the proper "grain" size. It 

is at this point that we begin our testing. The processing chain under test itself could be one- 

or two-dimensional. 

If the output of the processing naturally coalesces at a single node, then we identify a single 

node, called the sink node, that is responsible for collecting the results for off-line verification 

of correct functionality. This simple test bench pair (source-sink) could be generalized to 

handle applications that naturally would have multichannel inputs or outputs. The major 

deficiency of this current set-up is that it does not assess the real-time I/O capabilities of the 

MPP under test. That will need to be done, especially in the context of actual applications 

that have nonstandard I/O interfaces. 

The source node currently uses a "spin-wait" loop to determine when to send data, i.e., the 

clock is polled using the dclock routine and compared to a threshold. When the threshold is 

exceeded, corresponding to the beginning of a period, and if there is a request for data 

pending, then a data block is transmitted. Otherwise, the source node blocks until a request 

for data is received. After the data block has been sent, the source node checks to see if the 

deadline for that period was met. If a bottleneck occurs downstream, then the data request 

will be posted late, causing the source node to miss a deadline, which is noted. In this way 

the pipelines under consideration in this paper are self-timed. A synchronized pipeline could 

also easily be considered in the future on the Paragon because of the well-synchronized 

clocks at the processing nodes. 

A key concern with this methodology is just how regularly can the data be injected. 

Operating system "drop outs" at crucial points in time affect the degree of regularity. The 

results of the clock benchmarks of Section 4.2 are relevant here. The conclusion for the 

current operating system (OSF/1) is that periods must be on the order of 100s of milliseconds 

if the current drop-out effects are to be ignored, i.e., have only a 1% -2% impact. 

The test bench in this paper uses a single source node, so there is no need to synchronize the 

timers across multiple source nodes. A period and duration are selected at runtime, which 

40 



determine the number of iterations. Long durations account for the behavior of the operating 

system. Short durations that fall between operating system dropouts yield the best results and 

establish the potential for improvement by including a real-time operating system. 

Most scientific codes running on MPPs are designed to be loaded homogeneously, i.e., the 

same code is loaded onto the processing nodes. This approach is well suited to data-parallel 

applications or applications in which the data is distributed across the nodes and the nodes 

cooperate to perform some computation on it. It is easy to synchronize the nodes under this 

model. If the nodes are performing different tasks, then the nodes dispatch to different 

subroutines that implement the proper functionality based on their logical node number. 

Individual nodes only execute a small portion of the common program. Homogeneous code 

is appealing from a software engineering standpoint because there is only a single program to 

maintain. Finally, this approach could support future fault-tolerant options since each node 

has the code to perform any of the required functions. 

If memory is a scarce resource, then loading different code onto the nodes can make sense. 

Heterogeneous code is consistent with pipeline processing, where each node has a distinct 

task. In the present benchmarking context, it allows the test bench (timing, data source, and 

data sink nodes) to be separated from the processing nodes. The data source and data sink 

nodes are oblivious to the processing function under test. We have implemented both 

homogeneous and heterogeneous versions of the benchmarks without noticing much of a 

performance difference. The benchmark results that are reported here correspond to the 

standard homogeneous approach. 

5.2 SINGLE NODE BENCHMARKS 

In this section we take the realistic benchmarking philosophy a step further by including the 

"connective tissue" that will be common to most pipeline processing applications: buffering 

and flow control. We examine the case that the functions under test are implemented on a 

single node. The goal is to have a real-time benchmarking methodology that will produce 

results that can be relied on when these single node implementations are ganged together 
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using well specified communication patterns, e.g., linear or two-dimensional pipelines. We 

again pick the FFT to illustrate the approach, and, for simplicity, focus on a 512-point block 

length. Of course the approach can be generalized to other block lengths and different 

functions altogether. 

Pipelining can be used to achieve high performance by overlapping the communication and 

processing through the use of double buffering. While iteration i is being computed on buffer 

B\, the data for iteration i + 1 is being received into buffer Z?2- If the computation takes at 

least as long as the time to receive the data into B2, the communication overhead is hidden. 

When it comes time to compute iteration i + 1, the roles of the two buffers are reversed. 

Eliminating data copies is also essential to achieve high performance, since data copying is 

an expensive operation, even compared to communication between processing nodes. Data 

copies occur when a message arrives at a node and there has been no corresponding receive 

request posted. Such messages must be buffered by the kernel in a system buffer and later 

copied into the application address space buffer. Messages that arrive for which a receive has 

been posted are copied directly into the application address space buffer and thus do not incur 

the cost of a copy from system to user space. 

We now describe the buffering and flow control sequence that each processing node follows 

in the steady state of our benchmarks. During one iteration a processing node calls irecv to 

post a receive to fill buffer Br with data for the next iteration. Then it sends a 0 byte message 

to the node upstream to request data for Br. Ideally, the data will be received while the node 

computes its function on buffer Bc, which was filled during the last iteration. If the compute 

function is performed in place, then the results are also stored in Bc; otherwise the results of 

the computation are stored in a third (output) buffer B0. After the function has completed on 

Bc, it sends the result, either from Bc or B0, to the next node downstream provided the 

compute node has already received a data request message from the next node. Otherwise 

the node blocks until the request for data is received. After the send returns, the compute 

node will block if Br has not been filled. The goal however is to require enough computation 

so that Br is filled. If this is indeed the case, then the node does not block and proceeds 

immediately to the final step of swapping the pointers to Br and Bc. 
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Figure 5.1 shows the three functions tested and the buffering used: 

1. Applying a 512-point FFT to the rows of a 512 x 512 single precision complex matrix 

using the Kuck & Associates cf f tld call. This computation is performed in place. 

2. Corner turning the 512 x 512 matrix within the memory of a node using the transpose 

function call dtran. This function is not done in place, and the result is stored in the 

output buffer. 

3. A combination of function 1 followed by function 2 on the same node. 

source FFT 

B«=?E| 

sink 

•D 

source CT 

B=SE&0 
sink 

•0 

source FFT + CT 

B=5töa 
sink 

•a 

Figure 5.1. Single Node Processing Configurations 

All benchmarks were run with OSF/1, revision 1.2.4, with the message coprocessor enabled 

on a 16-node Paragon at Honeywell. Table 5.1 lists the results obtained for a 4 second 

duration experiment. Two cases are compared: 

1. Without data flow: In this case the compute nodes just switch between the two input 

buffers; there is no data sent from the source node and no results are sent to the sink 

node. 

2. With data flow: In this case the source node repeatedly sends 512 x 512 single 

precision complex matrices (29 x 29 x 23 = 221 = 2 MB messages) at the prescribed 

periods, and the results containing a similar amount of data are sent to the sink node. 
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Table 5.1. Single Node Processing Benchmark Results 

Without Data Flow With Data Flow 
Min Period (ms) Rate Min Period (ms) Rate 

FFT 205 57.5 MFLOPS 223 52.9 MFLOPS 
CT 64 32.8 MB/s 109 19.2 MB/s 

FFT+CT 267 44.2 MFLOPS 274 43.1 MFLOPS 

Discussion: Comparing the results for the FFT with and without data flow reveals a 

difference in the minimum period that can be sustained of 18 ms. A periodic communication 

benchmark for 2 MB messages reveals that message passing alone requires a period of 26 ms 

(79 MB/s), less than 1/10 of the processing load. This would be approximately doubled to 52 

ms for the receiving and sending that the processing node must do. Evidently about 2/3 of the 

communication overhead is hidden by double buffering. Further evidence of an overlap is 

implied by versions of the FFT benchmark that were run using only single input buffers. In 

this case, the difference in minimum periods is 37 ms. Additional benchmarks that turned off 

the receiving or sending at the processing node separately revealed that the original 18 ms 

were lost due to sends to the sink node and that the receiving communication was completely 

overlapped. A future task will be to modify the infrastructure to also overlap the sending 

phase to as great an extent possible. 

The corner turn, which involves a memory copy to rearrange how the matrix is stored, takes 

about 1/3 the time to complete compared to the FFT computation. Combining the FFT and 

corner-turning function reduces the efficiency of the FFT processing, but with less impact 

when there is data flowing. In that case the communication overhead is almost completely 

hidden (only a 7 ms difference between the two cases with and without data flowing). This 

improvement could be a result of the third output buffer for this case. 
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5.3 PIPELINE BENCHMARKS 

Arbitrary processing chains can be built by stringing together the source node, various 

processing modules, and the sink node. Figure 5.2 shows two pipelines that were tested. Both 

these pipelines implement two-dimensional FFT processing, which is applicable to SAR 

image formation for example. If the second FFT was replaced with an inner product 

calculation, then these pipelines would correspond to part of a pulse-doppler STAP 

application. The adaptive weight computation in the STAP application could be included in 

the corner-turn node of the longer pipeline as that node is lightly loaded. Table 5.2 lists the 

performance obtained for these pipelines when there is data flowing down the pipeline with 

the same parameters as used in Section 5.2. 

source FFT + CT FFT sink 

B=3£]g=^ •0 

source FFT CT FFT 

B=*&==5EÖQ=^] 
sink 

•0 

Figure 5.2. Pipeline Processing Configurations 

Table 5.2. Pipeline Processing Benchmark Results 

Min Period (ms) Rate 
FFT+CT->FFT 274 43.1MFLOPS 
FFT->CT->FFT 223 52.9 MFLOPS 

Discussion: As expected, the throughput of the pipeline is determined by the bottleneck 

node, i.e., the node with the largest minimum period. There is no further degradation in the 
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minimum period as a result of the longer pipeline. This result does mask one important effect 

that we have also measured. Jitter accumulates as we move down the pipeline. In other 

words, if the results are time stamped at various points in the pipeline, and differences 

computed at a single point for successive iterations, then the variability of the differences 

around the prespecified period increases as we move down the pipeline. This is a result of an 

accumulation of "nondeterministic" events occurring at each stage of this self-timed pipeline. 

One way to limit this effect would be to implement synchronized processing in which each 

node performs its function at prescribed intervals by using the dclock procedure to poll the 

synchronized (to within 1 |0.s) local clocks. 

A key issue that was raised at the beginning of this section is the buffer size. This size is 

related to the number of instances of the incoming data stream that are coalesced and 

processed as a group. For example, in the pipelines considered above, the key parameter at 

the first stage is the number of rows that will be processed by the FFT. Such "granularity" 

studies that determine the appropriate buffer size as a function of all the relevant variables 

will be the subject of future work. 

5.4 CONCLUSION 

This section described benchmarks that are more predictive of actual application performance 

since they include both communication and computation. An infrastructure that implements a 

test bench on the Paragon itself was developed for use with a variety of processing functions. 

In particular, the test bench is used in conjunction with pipelined processing chains that 

represent functions relevant to SAR and STAP processing. The test bench is data-request 

driven to minimize data copies (all receives of large data messages are posted) and double 

buffered to hide communication latency. In our 512 x 512 example, approximately 2/3 of the 

communication latency is hidden. Even though the existing operating system is not real-time, 

by operating at a sufficiently coarse level of granularity, we are able to inject and process 

data at a regular rate. The benchmarks sustain 53 MFLOPS on applying FFTs to the rows and 

columns of a 512 x 512 matrix. This level of end-to-end processing efficiency is desired for 

embedded applications with strict size, weight, and power restrictions. 
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SECTION 6 

SCALABLE REAL-TIME SYSTEMS 

Parallel processing uses multiple processors to reduce the amount of time required to execute 

an algorithm, that is to speed up a computer program that implements the algorithm. The rate 

of reduction in the run time as additional processors are added is often regarded as a key 

descriptor of how effective parallel processing is for the particular application. A system's 

scalability refers to the nature of the progression of reduced run times as the number of 

processors is increased. For a fixed problem size, there is a limit to the speedup that can be 

obtained with some applications bottoming out quickly because they contain large 

proportions of unavoidably sequential operation (Amdahl's law). As a result, there have been 

alternative measures of scalability proposed that describe the behavior of the system as both 

the problem size and the number of processors are increased (Gustafson, 1988). In this 

section we discuss the issue of scalability for real-time parallel processing. 

6.1 REAL-TIME SCALABILITY 

Real-time systems must compute their results within prescribed timing requirements, which 

we have described in terms of latency and throughput requirements. One might be interested 

in how many processors are required to satisfy the constraints in the first place, which relate 

to the traditional notion of scalability. We focus on what must be done to continue to meet 

the real-time requirements when some dimension of the problem is increased. In this case we 

desire an extension of the mapping of the larger problem to, most likely, a larger number of 

processors so that the result continues to meet the real-time requirements. The amount of 

work required to obtain the extended mapping is a key concern, with parameterized solutions 

being preferred over mappings that require some fundamental shift in approach, e.g., 

replacing pipelining with data parallelism. Note that the real-time requirements themselves 

may also change as the problem size increases. 
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If the latency I is greater than the period p, then the computing system can be working on 

more than one problem instance at a time. If a processing node can satisfy the latency 

requirement, then a conceptually simple parallel processing approach for meeting any 

throughput requirement is called replication. In the replication approach the individual 

processing node is replicated at least lip times with each copy receiving a successive problem 

instance. When the first processing node finishes the first problem instance, it becomes 

available to process the next available problem instance, and so on. As the problem size 

increases, the replication approach usually can be scaled to maintain the fixed throughput 

requirement (as long as the problem still fits), but the latency is increased. 

Pipelining is another parallel processing approach that has been traditionally used in high 

throughput applications. The notion of a scalable dataflow graph was introduced in (Games, 

et al., 1994) to formalize the notion of scalability for real-time pipeline processing. The idea 

is to associate a parameterized family of dataflow graphs with the problem. The nodes of any 

graph in the family have a constant processing and communication load. This notion was 

based on the model of systolic array computational structures. If the graphs in the 

parameterized family can be mapped to the MPP with the constant workload property 

preserved at the nodes, then pipeline processing can be used to maintain a fixed throughput 

requirement, independent of problem size. Whether or not a fixed latency requirement 

continues to be met depends on whether the "depth" of the parameterized dataflow graph 

increases or not. 

As the above discussion suggests, it is usually more difficult to maintain strict latency 

requirements as a problem size increases. In this section we develop these ideas further for a 

generic processing chain that is applicable to both SAR image formation and STAP 

applications. The goal is to obtain a scalable real-time implementation that maintains a fixed 

throughput and latency. 
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6.2 GENERIC PROCESSING CHAIN 

Consider the following generic "two-dimensional" processing chain that generalizes the 

processing considered in Section 5.3: 

1. the input is an m x n matrix A, 

2. apply a function/to each column of A, creating an m x n matrix B, (for instance, the 

function/could be an FFT), 

3. apply a function g to each row of B. (for instance, the function g could be an FFT or 

convolution in a SAR application or an inner product in a STAP application). 

We are interested in examining the ramifications of scaling the above mxn input matrix in 

either one of its dimensions. Without loss of generality, we consider the case of scaling the 

parameter n. For example, if the columns of A represent the pulse returns of a SAR system, 

then scaling n would correspond to increasing the azimuth or cross-range resolution of the 

SAR image. In a STAP application, the columns could represent the pulse returns at a fixed 

range from a fixed antenna. Scaling n then would correspond to increasing the number of 

antennas, or spatial degrees of freedom. For simplicity, the three-dimensional STAP problem 

(pulses, antennas, and ranges) is reduced to the two-dimensional case we are considering by 

fixing the range dimension. 

The generic processing chain can be implemented as a one-dimensional pipeline similar to 

the ones considered in Section 5. However the amount of work at the first node 

(n applications of the function/) of these mappings is not constant, and so the throughput 

cannot be maintained as n is increased. This suggests that the pipeline processing chain must 

also accommodate processors in a second dimension. That is, the input matrix must be 

partitioned and distributed across a line of processors to maintain a fixed workload per 

processor, independent of the size of n. 

One potential mapping with this property is shown in Figure 6.1 for the case of four nodes on 

the line (four is only used for illustrative purposes). The stage 1 processing nodes receive 1/4 

of the columns of the matrix. We do not consider the issue of input here, but pick up the 

processing at the input of stage 1. This mapping has a latency equal to three periods. The 
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corner turn at the second stage allows the second function g to be implemented on single 

nodes at the third stage, which is usually the most efficient processing approach. This corner- 

turn stage implements the three stages shown in Figure 4.6. The question that we consider 

next is: as the input parameter n is increased, can the mapping in Figure 6.1 be scaled to 

maintain a fixed throughput and latency constraint? 

mx n I 
/ x mxn/4 

I 
1/4 columns     1/4 columns     1/4 columns     1/4 columns 

Stage 1 
apply f 

to columns 

Stage 2 
corner 

turn 

Stage 3 
apply g 
to rows 

111 
I  I  I  I 

ct ct ct ct 

11/4 rows 11/4 rows        I 1/4 rows        I 1/ 

9 9 g 

Figure 6.1. Two-Dimensional Distributed Mapping of Generic Processing Chain 
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6.3 SCALABLE REAL-TIME MAPPING 

To precisely describe the scalability problem for the generic processing chain, we need to 

specify the parameterized family of mappings corresponding to increasing the input 

parameter n. For simplicity we restrict ourselves to the case where n is increased to 2n, An, 

Sn, etc., and limit our discussion to the corresponding mapping for In. The progression to 

higher values of n will then be clear. We will refer to the mapping for the value In as the 

doubled mapping. 

The doubled mapping is obtained by doubling the number of nodes in each line of Figure 6.1. 

The input to the doubled mapping is a matrix of dimension m x In. The input matrix is now 

divided into eight parts and distributed among the stage-1 nodes in a similar manner as in 

Figure 6.1 so that each stage-1 node still receives an m x nIA matrix. Thus the nodes at stage 

1 of the doubled mapping perform precisely the same work as before: nIA applications of the 

function/to the columns of size m. Thus the throughput into stage 1 can be maintained. 

However, the stage-2 corner turn involves twice as many nodes, and the stage-3 nodes 

process longer inputs (in particular the rows of an m/8 x In matrix). The performance of 

these latter two stages must be examined to determine if the doubled mapping still meets the 

real-time requirements. 

Consider first the processing at stage 3. The amount of data involved in the doubled mapping 

at this stage is the same—mnIA elements—so there will be no problem with memory. The 

issue reduces to the relative times of computing ml A applications of the function g to an n- 

point input versus ra/8 applications of g to a 2/t-point input. This obviously depends primarily 

on the function g. For example, for an FFT with operation count given by equation 3-1, the 

ratio of floating point operations required for the doubled (2n) mapping versus the single (n) 

mapping at stage 3 is 1 + l/log2 n. This suggests for the FFT that the stage-3 nodes in the 

doubled mapping will be able to complete their processing in time as long as there is only a 

small amount of margin in stage 3 of the single mapping. A number of issues could affect the 

ultimate performance, for example, the longer input length may not be accommodated in 

cache. Periodic benchmarking would provide the definitive answer. 
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The situation for the corner turn at stage 2 is less clear. Again the amount of data involved at 

each stage-2 node is the same in both the single and doubled mapping. But the number of 

total messages increases quadratically, from 12 to 56 when n doubles from 4 to 8. But each 

message is half the size, and the amount of data sent and received at each node increases only 

slightly (from 3/4 to 7/8 of its data when n doubles from 4 to 8). Thus, the resulting period 

that can be sustained by the corner-turning stage will depend on a number of factors, 

including the amount of concurrency in the larger message-passing pattern (positive factor) 

as well as the drop-off in efficiency as the message size decreases (negative factor). 

The Programmable Message Passing Benchmark, introduced in Section 4, can be used to 

determine the minimum period for corner turning as a function of line size. Again, to make 

this precise, we need to describe the message-passing pattern to be used as the number of 

nodes is doubled: n = 2, 4, 8,..., 2',.... We give a construction of a parameterized family of 

corner-turning message-passing patterns based on two primitives called swap and quad. 

Figure 6.2 shows the swap(/,./) and quad(/,/) primitives for nodes labeled i, i +\,j, and j + 1. 

In each primitive there is a succession of stages with the property that at each stage every 

node is sending or receiving exactly one message, i.e., there is no contention at the nodes. 

When there are two nodes {0,1}, they swap messages: swap(0,1). The 4-node corner- 

turning pattern shown in Figure 4.7 corresponds to a quad(0, 2) followed by a simultaneous 

application of swap(0, 1) and swap(2, 3). An 8-node corner-turning pattern can be 

constructed in three steps by: 

1) simultaneous applications of quad(0, 4) and quad(2, 6); followed by 

2) simultaneous applications of quad(0, 6) and quad(2, 4); and finally 

3) simultaneous applications of the 4-node corner-turning pattern to each half: 

{0,1,2, 3} and {4, 5, 6,7}. 

These three steps are shown schematically in Figure 6.3. 
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Figure 6.2. Swap and Quad Primitives 
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Figure 6.3. Eight-Node Corner-Turning Pattern Schematic 
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We now give the formulas for the general case. Given n processors, n even, and a parameter 

s, called the skip factor, we define a corner-turning step pattern, written step(n, s), as the 

simultaneous application of 

quad(0, nil + s mod nil) 

quad(2, nil + (s + 2) mod nil) 

quad(n/2 - 2, nil + (s + nil - 2) mod nil). 

In this notation, the 8-node corner-turning pattern corresponds to step(8, 0), then step(8, 2), 

and finally the corner-turning pattern for four nodes applied to the two halves. The 16-node 

corner-turning pattern can be constructed as a sequence of steps: step(16, 0), step(16, 2), 

step(16, 4), step(16, 6), and finally the corner-turning pattern for 8 nodes applied to the two 

halves. When the number of processors n = lk, the corner-turning pattern consists of step(n, 

0), step(n, 2),..., step(n, nil - 2), and finally the corner-turning pattern for nil nodes applied 

to the two halves. 

This construction has no contention at the nodes: each stage has nil disjoint send-receive 

pairs. But there is contention on the links for n > 8, and this contention becomes 

exponentially worse as n is increased to 16, 32, etc. This will lead to problems of uneven 

communication rates due to the failure of fairness phenomenon that was previously illustrated 

in the Many Pairs Benchmark of Section 3. This suggests a future problem of developing a 

corner-turning construction that preserves the no-node contention property for the nil send- 

receive pairs with a slower growing link contention problem. A counting argument for the 

middle link, the worst case, reveals that contention for it must grow at least linearly 

(proportional to n/8) as the number of nodes increases. This problem is particularly relevant 

for the Paragon, because its 16 x n layout results in possibly large values of n. On the other 

hand, size, weight, and power requirements of embedded applications would tend to limit the 

size of n. 
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The recursive construction for corner-turning patterns was implemented by a small Scheme 

program that generates pmp input code sequences. Scheme (IEEE, 1991) is a lexically scoped 

dialect of Lisp and is good for manipulating programs as data. Figure 6.4 shows the resulting 

input code sequences for n = 8 in an abbreviated form using the fact that all the messages 

have the same size, i.e., S No Ni is written as SNo- We assume that 1/4 MB messages are 

sent when n = 4, so that for n = 8 the messages have size 1/8 MB. 

pmp program input 
(messages size 1/8 MB) 

0: R  S7 R  S6 R  S5 R  S4 R  S3 R  S2 SI  R E 
1: S6   R S7   R S4   R S5  R S2   R S3   R R  SO E 
2: R  S5 R  S4 R  S7 R  S6 R  SI SO  R S3   R E 
3: S4   R S5  R S6  R S7   R SO   R R  SI R  S2 E 
4: R  S3 S2   R R  SI SO  R R  S7 R  S6 S5   R E 
5: S2   R R  S3 SO  R R  SI S6   R S7   R R  S4 E 
6: R  SI SO  R R  S3 S2   R R  S5 S4   R S7   R E 
7: SO   R R  SI S2   R R  S3 S4   R R  S5 R  S6 E 

Figure 6.4. Corner-Turning pmp Code Sequences: Eight Nodes 

The benchmark was run using pmp, version 1.6 of 30 August 1994 under OSF/1, revision 

1.2.4, with the message coprocessor enabled. The duration was set at 5 seconds. The results 

for lines with 2, 4, 8, 16 nodes are given in Table 6.1. Note there is a slight degradation for 

n = 4 (from 24.2 MB/s reported in Table 4.10 to 20.2 MB/s) because of the strong order 

cache patch. 

Table 6.1. Programmable Message Passing: «-Node Corner Turning 

n Period (ms) Rate (MB/s) Message Size 

2 19 27.6 1/2 MB 

4 39 20.2 1/4 MB 

8 46 19.9 1/8 MB 

16 67 14.7 1/16 MB 
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Discussion: It is clear from these results that the corner-turning implementation is not a 

scalable mapping. But what is also clear is that the rate of increase in the achievable real-time 

period is not dramatic, i.e., even though the number of nodes doubles in each case, the period 

does not. Thus, although the corner-turning stage would most likely ultimately limit the real- 

time scalability of this three-stage mapping, the sublinear increase in the rate implies it 

should be possible to meet the real-time requirements over a usefully large range of values 

of n. The key issue of course would be how the corner-turning period, including the overhead 

of the intranode memory corner turns, compared to the periods of applying the functions/or 

g. At the granularity considered in this paper, the function periods leave significant room to 

make the line considerably longer. Note that the intranode memory corner turns could be 

shifted among the processing stages if that proved useful in terms of load balancing. Also, 

stages of the corner turn could be split among a number of pipeline stages if need be to 

maintain a fixed throughput at the cost of increased latency. 

6.4 CONCLUSION 

This discussion serves to sharply focus the benchmarks required to establish the scalability of 

a particular instance of the generic processing chain. The granularity (block size) at the first 

stage would be determined by the throughput requirement and the performance of the 

function/. The mapping is designed so that the processing and communication load involving 

this first stage is independent of problem size. The key issue at the corner-turn stage is 

determining the available margin that will limit the increase of line size, and hence problem 

size. The key assessment for the function g is the comparison of the performance of g on 

varying size inputs. Functions whose implementation complexity doubles as the length of the 

input doubles will result in scalable real-time behavior. 
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SECTION 7 

CONCLUSION 

This paper investigated the application of commercial massively parallel processors to real- 

time sensor processing. The focus was on a benchmarking methodology that supports the 

development of parallel software for real-time applications. This parallel software 

development process will involve running benchmarks designed to assess the level of 

performance the MPP, or more precisely its components, can deliver on processing and 

communication kernels. These kernels will then be combined into a single implementation 

using a variety of parallelization approaches so that the application's timing requirements are 

satisfied. The process is expected to be iterative and will involve a series of benchmarks that 

incorporate increasingly more of the application's requirements. The approach adopted here 

is to make the initial benchmarking results highly predictive by including in the benchmarks 

much of the infrastructure and overhead required in a real-time implementation. 

This led to the construction of a test bench on the MPP whose purpose was to realistically 

stimulate the processing or communication function under test. The benchmarking metric 

was the minimum period that could be sustained for a selected processing and/or 

communication kernel. This approach assesses the level of real-time performance provided 

by the current hardware/software system and can be used to chart the impact of including a 

real-time operating system in the future. To bound the real-time processing problem, the 

scope of this effort was limited to the front-end signal processing found in such applications 

as synthetic aperture radar (SAR) processing and space-time adaptive processing (STAP). 

Real-time processing such as automatic target recognition or tracking that includes data- 

dependencies will be considered in the future. 

The benchmarks were applied to the Intel Paragon in anticipation of the availability of the 

Embedded Touchstone. Our experiences showed that optimized library routines allowed 

efficient processing at the nodes of the MPP. In the important case of FFT processing, the 

library routines were most efficient at transform lengths commensurate with the size of on- 

chip cache. There is a rather severe penalty paid for short length transforms (8, 16, and 32 
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points) due to modern pipeline microprocessor architectures. Unfortunately, the applications 

we are interested in can involve these small transform lengths. To overcome this problem, we 

developed an FFT library call that keeps the floating-point pipelines filled by completing 

many short FFTs for each call. This resulted in a dramatic improvement in the processing 

efficiency (from 18 to 78 MFLOPS for 8-point transforms). 

Improving message-passing primitives for the Paragon allowed efficient communication on 

the backplane. The message-passing rates we were able to sustain improved by a factor of 

four over the span of the year (from roughly 20 to 80 MB/s). The message-passing rates 

under SUNMOS were higher still (150 MB/s). At these high rates, however, problems with 

messages interfering with each other become more significant. We demonstrated how the 

communication performance of two distance nodes was affected by the behavior of 

intermediate nodes, motivating the need for some type of communications scheduling to 

obtain predictable performance in real-time applications (Games, et al., 1994b). 

We showed that processing efficiencies could be maintained for pipeline processing in which 

double buffering was used to largely hide the overhead of interprocessor communication. The 

real-time scalability of parallel implementations was considered in which the key 

consideration was the maintenance of the real-time requirements as the problem size is 

increased. A scalable real-time mapping of a generic two-dimensional processing chain 

applicable to SAR and STAP applications was developed and analyzed. The mapping 

requires data redistribution along a line of processors to implement a "corner turn." A 

message-passing pattern with sublinear growth was demonstrated for this step, which 

increases the practicality of the proposed mapping. 

We plan to apply these ideas in the future to actual real-time implementations, starting with 

the Lincoln Laboratory Advanced Detection Technology Sensor (ADTS). The ADTS system 

is a Ka-band SAR sensor that the ARPA RASSP program is using as a benchmark (Shaw, 

1994). This system has a throughput requirement determined by a maximum pulse rate of 

556 per second. The RASSP benchmark has a latency requirement of 3 seconds. This latency 

requirement will motivate additional enhancements to our benchmarking methodology. In 

this paper, all the results involved fairly coarse grain processing (e.g., 512 FFTs of size 512 
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points). However such coarse grain processing is incompatible with strict latency 

requirements. A key consideration will be determining what level of granularity the MPP 

reliably can support in a real-time application. The shorter periods involved in finer grain 

processing amplify the problems associated with nonreal-time system software. It is 

anticipated that such granularity studies will be a very effective way to measure the impact of 

improving real-time system software. 
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