
RL-TR-95-103
Final Technical Report
June 1995

REAL-TIME EMBEDDED HIGH
PERFORMANCE COMPUTING
APPLICATION BENCHMARKS

The MITRE Corporation

Curtis P. Brown, Mark I. Flanzbaum, Richard A. Games,
and John D. Ramsdell

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19960122 066
Rome Laboratory

Air Force Materiel Command
Griff iss Air Force Base, New York

Ü.^v COMITY INSPECTED 1

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-95-103 has been reviewed and is approved for publication.

APPROVED:

PAUL SIERAK
Project Engineer

FOR THE COMMANDER:

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3CB) Griff iss AFB NY 13441. This will assist us in maintaining

a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

Form Approved
OMB No. 0704-0188 REPORT DOCUMENTATION PAGE

Put* reporong burdan tar tHa cx*acOon of rforrnatan ia aaftralad toavaraoa 1 hour par raaponaa,
BatharngandnaiUiaiyBTadalarMadad, »Td ujiMaug andravwwr-igtfraccaaapiaf ifunraUn
coaacticriof ifuiratt«iir«ijc>^augua»^»fgrao\jr^
Dawia Highway, Suta1204, Arlir^ VA 22302-4302, and to t»»0fft» of Manarjarrwt and Budg«,

rcijrJ-igB-attTTafar rava^ignamjottona, aaacri ig «dannQ data «OLreaa,
n. Sn) comrn raganig trw burdan aatrnata or any arm •■pact of trm

Sarvioaa. Otauu— for Kumaüun Oparanona andRaporta, 1215 Jaffarson
Papanmork Raduaicn Projaat (070*0186), Waahrqon, DC 20503.

1. AGENCY USE ONLY (Leave Blank) Z REPORT DATE
June 1995

a REPORT TYPE AND DATES COVERED

Final Oct 93 - Oct 94

4. TTTLE AND SUBTITLE
REAL-TIME EMBEDDED HIGH PERFORMANCE COMPUTING:
APPLICATION BENCHMARKS

& AUTHOR(S)

Curtis P. Brown, Mark I. Flanzbaum, Richard A.
and John D. Ramsdell

Games,

& FUNDING NUMBERS
C - F19628-94-C-0001
PE - 62702F
PR - M0IE
TA - 74
WU - 11

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)
The MITRE Corporation
Mail Stop E025
202 Burlington Road
Bedford MA 01730

a PERFORMING ORGANIZATION
REPORT NUMBER

MTR 94B0000145

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)

Rome Laboratory (C3CB)
525 Brooks Rd
Griffiss AFB NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-95-103

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Paul Sierak/C3CB/(315) 330-4065

12a DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

1 a ABSTRACT (Maxrrun 200 wore»)

The final report develops realistic benchmarks to assess the applicability of
current memory massively parallel processors (MPPs) for real-time embedded
applications, such as synthetic aperture radar (SAR) and space-time adaptive
processing (STAP). A scalable real-time mapping of a generic two-dimensional
processing chain applicable to SAR and STAP is developed and analyzed.

14. SUBJECT TERMS

Parallel processing, Real-time, Embedded, Benchmarks

15. NUMBER OF PAGES
80

10. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

1a SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

20. UMfTATION OF ABSTRACT

UL
NSN 7540-01 280-5500 Standard Farm 296 ;f»ev . eqi

Praacrbadby ANSI Sta Z3&e
298-102

ABSTRACT

This paper develops realistic benchmarks to assess the applicability of current distributed

memory massively parallel processors (MPPs) for real-time embedded applications such as

synthetic aperture radar (SAR) processing and space-time adaptive processing (STAP). The

benchmarks are applied to the Intel Paragon in anticipation of the availability of the

Embedded Touchstone. A benchmarking methodology is developed that assesses the level of

real-time performance provided by the current hardware/software system by determining the

minimum period that can be sustained for a selected processing and/or communication

function. Optimized library routines allow efficient processing at the nodes. Improving NX

message-passing primitives and SUNMOS allow efficient communication on the backplane.

Processing efficiencies are maintained for pipeline processing in which double buffering is

used to largely hide the overhead of interprocessor communication. The real-time scalability

of parallel implementations is considered. A scalable real-time mapping of a generic two-

dimensional processing chain applicable to SAR and STAP applications is developed and

analyzed.
Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

D

By
Distribution/

Availability Codes

Dist

M

Avail and/or
Special

PREFACE

This is one of three MITRE Technical Reports documenting work performed during Fiscal

Year 1994 on MITRE Project 74110, Real-Time Embedded High Performance Computing.

The complementary reports are:

1. Parallel Implementation of the Planar Subarray Processing Algorithm, MTR 94B114,

by Richard A. Games and Dan S. Pyrik, and

2. Real-Time Embedded High Performance Computing: Communications Scheduling,

MTR 94B146, by Richard A. Games, Arkady Kanevsky, Peter C. Krupp, and

Leonard G. Monk.

ii

ACKNOWLEDGMENTS

This work was supported by the United States Air Force Electronic Systems Center and

performed under MITRE Mission Oriented Investigation and Experimentation (MOIE)

Project 74110 of contract F19628-94-C-0001, managed by Rome Laboratory/C3CB. This

work was supported in part by a grant of HPC time from the DOD HPC Major Shared

Resource Center, Wright-Patterson Air Force Base. We wish to thank the Honeywell

Corporation, Space Systems, Clearwater, Florida, for the use of their Paragon and for their

assistance. Thanks to David Scott and other Intel software engineers for their assistance.

Paragon and i860 are trademarks of Intel Corporation. SKYbolt and SKYvec are trademarks

of SKY Computers, Inc. HP 9000/735 is a trademark of Hewlett Packard, Inc.

in

TABLE OF CONTENTS

SECTION PAGE

1 Introduction 1

1.1 Background 1
1.2 Summary of Results and Report Organization 2

2 Fundamental Concepts 5

2.1 Latency and Throughput 5
2.2 Pipelined Vector Computing 6
2.3 Cache Constraint 7
2.4 Tuning an Algorithm to the Computer Architecture 7
2.5 Benchmarking 8

3 FFT Processing 11

3.1 FFT Performance on the i860 11
3.2 Block FFT Design 14
3.3 Planar Subarray Processing 16

3.3.1 foldfft Processing Kernel 17
3.3.2 Benchmarking the foldfft 18

3.4 Conclusion 19

4 Communication and Clock Benchmarks 21

4.1 Communication Benchmarks 21
4.1.1 Adj acent Pair B enchmark 22
4.1.2 Symmetric Many Pairs Benchmark 24
4.1.3 Asymmetric Many Pairs Benchmark 26

4.2 Clock Benchmark 27
4.3 Real-Time Benchmarks 29

4.3.1 Hartstone Distributed Benchmark 30
4.3.2 Programmable Message Passing Benchmark 32
4.3.3 Corner Turning on a Line 35

4.4 Conclusion 38

5 Application Benchmarks 39

5.1 Real-Time Test Bench 39
5.2 Single Node Benchmarks 41

XV

5.3 Pipeline Benchmarks 45
5.4 Conclusion 46

6 Scalable Real-Time Systems 47

6.1 Real-Time Scalability ^7
6.2 Generic Processing Chain 49
6.3 Scalable Real-Time Mapping 51
6.4 Conclusion

7 Conclusion

List of References

LIST OF FIGURES

FIGURE PAGE

2.1 Pipeline Processing 6

3.1 FFT Performance on the i860 13

3.2 Signal Flow Diagram for a Length Eight Decimation in Frequency Radix-2 FFT 15

3.3 Complex FFT Performance on the i860XP with Multiple Instance Optimization 16

3.4 Dataflow Graph of the foldfft Function 17

4.1 Symmetric Many Pairs Benchmark 24

4.2 Asymmetric Many Pairs Benchmark 26

4.3 Clock Benchmark: Pauses > 500 (is 28

4.4 Clock Benchmark: Pauses > 50 (is 29

4.5 Clock Benchmark: Pauses Between 50 and 120 (is 30

4.6 Corner Turning on a Line 35

4.7 Corner-Turning pmp Code Sequences: Four Nodes 36

5.1 Single Node Processing Configurations 43

5.2 Pipeline Processing Configurations 45

6.1 Two-Dimensional Distributed Mapping of Generic Processing Chain 50

6.2 Swap and Quad Primitives 53

6.3 Eight-Node Corner-Turning Pattern Schematic 53

6.4 Corner-Turning pmp Code Sequences: Eight Nodes 55

VI

LIST OF TABLES

TABLE PAGE

3.1 foldfft(64,8) Benchmarking Results (MFLOPS) 18

4.1 Adjacent Pair Benchmark for OSF/1 23

4.2 Adjacent Pair Benchmark with Varying Message Size 23

4.3 Adjacent Pair Benchmark with Varying Packet Size 24

4.4 Symmetric Many Pairs Benchmark Varying Number of Nodes 25

4.5 Symmetric Many Pairs Benchmark with 16 Nodes 25

4.6 Symmetric Many Pairs Benchmark with 16 Nodes 26

4.7 Distributed Hartstone Benchmark: n = 3 32

4.8 Programmable Message Passing: Adjacent Pair 34

4.9 Programmable Message Passing: Four-Node Corner Turning 37

5.1 Single Node Processing Benchmark Results 44

5.2 Pipeline Processing Benchmark Results 45

6.1 Programmable Message Passing: «-Node Corner Turning 55

vix

SECTION 1

INTRODUCTION

This paper develops realistic benchmarks to assess the applicability of current distributed

memory massively parallel processors (MPPs) for real-time embedded applications. If the

computational requirements of current and future real-time embedded systems can be

satisfied by emerging MPPs, then costly application-specific processors and disparate data

processors can potentially be replaced by a single homogeneous, scalable, programmable

computing platform that is designed to track the progression of commercial technology.

1.1 BACKGROUND

The ARPA-Honeywell Embedded Touchstone program (Blitzer, 1993) is producing an

embeddable high performance computer that incorporates commercial microprocessors

running the same system and application software as its commercial counterpart, the Intel

Paragon. This paper examines the performance provided by the commercial Paragon from the

viewpoint of motivating real-time embedded applications. These applications, e.g., sensor

system processing, have requirements not found in large-scale scientific computing such as

the need for real-time processing, multi-level security, and fault tolerance. In this paper we

focus on developing software satisfying hard real-time requirements—results must be

computed within strict deadlines or they lose their value, potentially causing catastrophic

system failure.

Specialized system software is required for real-time processing. A companion report

(Games, et al., 1994b) discusses the issues involved, especially for the problem of providing

real-time guarantees on the communication network connecting the processors. Real-time

system software for the Embedded Touchstone is currently under development by Honeywell

and the Open Software Foundation-Research Institute (OSF-RI). Because of the current lack

of real-time system software for the Paragon, we restrict out attention to signal processing

applications, which have more structured real-time requirements. The results of this paper are

directly applicable to two current applications: synthetic aperture radar (SAR) processing and

space-time adaptive processing (STAP).

Signal processing algorithms are often characterized by static, predetermined data flows.

Problem instances are repeatedly presented in sequence with a fixed period, and the result for

any given instance must be computed after its arrival by a fixed deadline. In these

applications, high sustained processing and communication rates are needed to reduce the

size, weight, and power requirements of the embedded processor. As a rule of thumb, we

would like to attain at least 50% of the advertised peak processing rates.

1.2 SUMMARY OF RESULTS AND REPORT ORGANIZATION

We describe a benchmarking methodology that assesses the level of real-time performance

available from today's MPPs for the periodic applications under consideration. The metric

measured in these benchmarks is the minimum period that can be sustained for the selected

processing and/or communication function under test. These performance results establish a

baseline against which the progress of future MPP hardware and system software upgrades

can be measured. Processing and communication kernels are benchmarked separately as part

of a real-time parallel software development process. Integrated processing chains containing

both processing and communication are configured to establish the possible end-to-end

efficiencies for the application. A more detailed summary of each section follows.

Section 2 reviews fundamental concepts used in this report: latency and throughput, vector

pipeline computing, the cache constraint, tuning an algorithm to a processor architecture, and

benchmarking.

Section 3 focuses on the fast Fourier transform (FFT) as a representative and important signal

processing function to evaluate the performance currently available at the processing nodes.

The performance of vendor supplied optimized library routines for the FFT is assessed for the

i860 microprocessor. Performance problems for short length FFTs are noted, and an

assembly language optimization is developed to improve the performance in the situation

when multiple short FFTs need to be computed. These techniques are applied to create an

efficient custom library call for the processing kernel of a new multistage procedure for

forming SAR images (Perry, et al., 1994a,b). The processing kernel, called the foldfft,

combines a short FFT with memory management and other vector operations. The

implementation of this kernel illustrates a software development progression that trades off

ease of programming and portability with the attainment of a desired level of performance.

The customized library call's processing rate is seven times faster than the original straight

C-code implementation.

Section 4 assesses the current message passing performance available on the Paragon. A

simple single pair benchmark illustrates the progression in the Paragon's message passing

performance that we were able to obtain as the operating system changed over the last year

(24 to 75 Megabytes (MB)/second for the NX system, 154 MB/s for SUNMOS on 1/4 MB

messages). A more complicated benchmark involving many simultaneously communicating

pairs assesses the impact of link contention in more realistic message-passing patterns. This

benchmark illustrates how the locally fair merge on the Paragon backplane makes the

message passing performance of distant nodes dependent on the behavior of intermediate

nodes. This "failure of fairness" phenomenon motivates the need to schedule the backplane to

assure real-time communication performance (Games, et al., 1994a). Clock benchmarks

catalog current operating system dropout behavior and mark the transition in the paper to

periodic real-time benchmarking. The distributed Hartstone benchmark is used to measure

real-time communication performance for synchronized dataflow. A programmable message

passing technique is developed to assess more complicated periodic patterns. As an example,

the performance of "corner turning on a line," which is a component of a scalable real-time

mapping introduced in Section 6, is assessed. For this complicated pattern, the NX message

passing primitives perform near their peak, but SUNMOS does not do very well at all,

perhaps because of a lack of synchronization in the benchmark.

Section 5 examines pipeline configurations of relevant processing and communication

kernels on the Paragon to assess the degree to which high processing efficiencies can be

maintained in end-to-end implementations. This section demonstrates the use of double

buffering to overlap communication and computation in pipeline processing. A testbench is

constructed on the Paragon with a source node (or nodes) that injects data into the processing

chain under test at a prescribed rate and a sink node (or nodes) that collects and checks the

output. Single node benchmarks with and without data communication of the FFT and/or

corner-turning (matrix transpose) functions are used to assess the degree to which the

communication latency can be hidden. The current buffering and control flow arrangement

hides between 2/3 to nearly all of the communications latency, depending on the function

under test. A two-dimensional FFT processing chain, which is applicable to SAR image

formation, is tested. As expected the throughput of the pipeline is determined by the

bottleneck node, i.e., the processing node with the largest minimum period. There is no

further degradation in the minimum period as a result of the longer pipeline. The two FFT

processing nodes in this three-stage pipeline sustain 53 MFLOPS on multiple instances of a

512-pointFFT.

Section 6 considers the scalability of parallel implementations from a real-time perspective.

Two general mapping approaches that scale with problem size to maintain a fixed throughput

requirement are described, but each has potential problems maintaining a fixed latency

requirement, which is usually more difficult. A generic two-dimensional processing chain

applicable to SAR and STAP applications is considered. A two-dimensional pipeline

mapping is proposed that can be scaled to implement the processing when one of the problem

dimensions increases. The real-time scalability of this family of mappings is analyzed in

terms of its ability to meet both throughput and latency requirements. The limiting

component is a communication step involved in transposing a distributed matrix between the

two processing stages. A recursive implementation of this so-called "corner turn on a line" is

proposed and benchmarked using the techniques of Section 4. The required minimum period

for this step grows sublinearly, implying that the proposed family of mappings can most

likely be configured to meet the real-time requirements over practical ranges of input

parameters.

Section 7 summarizes our conclusions and suggests areas of future work.

SECTION 2

FUNDAMENTAL CONCEPTS

This section reviews some fundamental concepts used in this paper. It uses the Intel i860

microprocessor for illustration.

2.1 LATENCY AND THROUGHPUT

In many computing applications, the objective is to minimize the amount of time required to

produce a solution. For a problem instance P, if the inputs become available to the processor

at time tinitial and the solution is completed at time tfinai, then the processing latency for that

problem instance is given by tfinai - tinitial-

Often in applications like sensor processing, a stream of problem instances Pi, P2, ■■■, Pi, —

must be processed. If there is a fixed time period p between each problem instance, then the

problem throughput is given by lip. Throughput is a rate, and in applications that are largely

computational it is customary to express it in terms of the number of operations per second.

For example, if a problem instance requires/floating point operations, then the throughput of

lip problems per second implies that the processor must sustain///? floating point operations

per second (FLOPS).

In a real-time implementation, the application's throughput and latency requirements are

specifications that the computing system must satisfy. In high throughput applications, the

throughput requirement can have a much greater influence on a system's design. For

example, a batch of output from a radar receiver must be consumed before the next batch

arrives or else it will be lost. Often the processing latency can be increased to make it

possible to meet a high problem throughput. For example, pipelining is a technique used to

increase throughput at the expense of increasing latency. The additional latency is the result

of more communication and buffering.

2.2 PIPELINED VECTOR COMPUTING

Notions of latency, throughput, and pipelining are equally applicable at the single processor

level of a parallel implementation. To understand the limitations of vector processing on a

pipelined microprocessor, such as the Paragon's i860 microprocessor, we need to examine

the pipeline process and its relationship to the algorithm or vector process. Pipelined

processing is a standard technique that distributes the processes among multiple elements,

where each element can process a subtask rapidly. The solution is not available until the data

is passed through all the elements in the chain (see Figure 2.1).

Stages

DATA

2 4

ANSWER

Figure 2.1. Pipeline Processing

The i860 floating-point arithmetic processor is actually composed of both a multiplier and an

accumulator, with each having three stages of pipelining. Under steady state vector

conditions the i860XP can perform a single precision multiply and addition in parallel at 50

million times per second, corresponding to a peak rate of 100 million FLOPS (MFLOPS). To

start a pipelined vector operation we must first flush the pipeline to initialize the system to a

known state, which in some cases requires as many as six additional cycles. Similarly, to

complete a pipelined vector operation we must continue priming the pipeline, up to six

cycles, to process the last element. Each time a pipelined vector operation is interrupted,

computer cycles are wasted. This effect is typically referred to as a pipeline stall. As a result,

operations on short vectors suffer from large amounts of overhead. However, efficient

operation can be achieved if the data structures in the algorithm are designed to extend the

effective vector length.

2.3 CACHE CONSTRAINT

The i860XP has a large but limited on-chip cache with a 128-bit bus width. High-speed

vector processing can be performed at the full rate of the i860 clock on data that resides in the

on-chip cache. Once the vector size exceeds the on-chip cache size, the processor is required

to access the main memory through the smaller off-chip memory port (64 bits wide). In

addition, the main memory access time is typically slower. As a consequence, the upper

bound on the vector size that can be processed with maximum efficiency is fixed at

approximately the cache size—the cache constraint. Typically most algorithms process

multiple operands, further reducing the effective vector length and particularly the size of the

data access stride (increment). Many hardware and software techniques exist to circumvent

these limitations but they are typically time consuming to develop and expensive to support.

Intel has inserted a number of hardware optimization techniques into the i860 to reduce the

overhead; a discussion of the concepts can be found in (Intel, 1990, 1991, 1992a,b).

2.4 TUNING AN ALGORITHM TO THE COMPUTER ARCHITECTURE

A critical step in the implementation of an algorithm is the process of mapping the algorithm

to the processor architecture. Strip-mining and blocking are two general optimization

techniques used to extract the best performance offered from pipelined and cached systems.

Operations on large vectors must be decomposed into vector operations that fit into cache yet

are long enough to limit pipeline stalls. These partitioning techniques are typically referred to

as strip-mining. At the other end of the spectrum, algorithms with small vector lengths not

only pose a pipeline stall problem, but also present cache management issues. The goal of

blocking techniques is to gather enough data with similar vector operations into the cache

and process them with minimum pipeline stalls. By restructuring algorithms in this fashion a

higher degree of processor utilization can be achieved. Our block FFT design in Section 3

illustrates the benefits of tuning an algorithm. A discussion of software optimization

techniques can be found in (Zima and Chapman, 1990; Golub and Van Loan, 1991; and

Dowd, 1993).

2.5 BENCHMARKING

The most accurate method for measuring system performance is to evaluate it on a fully

implemented and stimulated system, but this measurement method is available only after the

system is built. Project development guidance, control, and budgetary factors require the use

of more timely methods for reducing risks and costs. One practical method is the use of well-

formed benchmarks to model the performance behavior of the final system. But benchmarks,

as with all reduced problem set models, yield performance predictions that are only as

accurate as the benchmarks and their environment allow. A benchmark that is well-formed

for one platform can become a less accurate model when the operating environment changes.

We are primarily interested in establishing how long a given computational or

communication task will take. For embedded applications in which size, weight, and power

constraints are paramount, the percent of utilization of the processor or communication link is

also a crucial metric. As a result, it is typical to express benchmarking results in terms of

processing or communications rates to facilitate comparison with the theoretical peak rates of

the individual components of a system. We use the number of floating point operations to

measure the computational complexity of the algorithms under consideration. This number is

divided by the length of time of the calculation to determine the number of FLOPS. For a

communication task, the number of bytes transmitted in the interval of time is expressed as

bytes per second (B/s).

Parametrically exercising the benchmark is necessary to detect hidden dependencies. For

example, for the FFT benchmark to be considered later, the transform size and the memory

system can affect the performance. The benchmarks in this paper were conducted with two

basic types of data management configurations, called repeated instance and multiple

instance. A repeated instance benchmark repeats the processing on identical data. This type

of test primarily exercises the program's ability to use the data cache and the processor

architecture with minimal external memory dependencies. In the multiple instance case, as

the name suggests, the algorithm operates on new data with each function execution. This

exercises the cache-memory interaction and produces more realistic results.

In a real-time system the correctness of the result depends both on its value as well as when it

is computed. A benchmarking methodology designed to assess a system's real-time

performance is introduced in (Weiderman and Kamenoff, 1992). This approach incrementally

loads the system and then assesses its ability to meet prescribed real-time constraints. In this

paper we usually have a fixed processing load to perform, and we determine the minimum

real-time period that can be guaranteed. The idea is to include into the benchmarking

methodology those components of a real-time system that may impact ultimate performance,

such as buffering and flow control. The predictive power of the benchmarks is crucial to their

ultimate value to a parallel software engineering process that depends on knowing the

capabilities of the MPP on the essential processing and communication kernels.

SECTION 3

FFT PROCESSING

In this section we describe our experiences with implementing an FFT on the i860

microprocessor. All the results assume single-precision floating point operations. The

motivation for the work was a benchmarking study of the processing kernel of a new

synthetic aperture radar image formation procedure (Perry, et al., 1994a,b). The so-called

"foldfft" function used in this approach involves FFTs with short vector lengths, as short as

length eight in actual applications. Pulse-doppler radar applications can also involve short

FFT lengths. Unfortunately, the efficiency of vendor supplied library routines for such short

lengths is low. In both these applications many short FFTs are required, and we develop a

"block" FFT call to improve the processing efficiency in this case. We first describe the

results of an FFT benchmarking study on the i860. Second, we describe the block FFT

optimization and compare its performance with the existing call. Finally, we describe the

application of the optimized call to computing the foldfft.

3.1 FFT PERFORMANCE ON THE i860

The exact execution time for a function is given by the number of computer cycles required

to compute the function multiplied by the cycle period of the processor. Due to the

complexity of the FFT algorithm and the new computer architectures, the number of

computer cycles required is not easily computed. As a result, the execution time is typically

measured from an actual implementation. In this work, we are interested in FFTs ranging

from as small as eight points to as large as 8K points. Many facets of the i860 architecture

can affect the performance of the FFT including: the pipeline, the memory hierarchy, the

parallelism, the instruction set, and the clock speed.

The number of floating-point operations for the classical radix-two Cooley-Tukey FFT

algorithm for TV points is given by

11

10—log2(A0. (3-1)

This assumes 10 floating-point operations for each butterfly, TV / 2 butterflies per stage, and

log2(A0 stages required in the Npoint-FFT. Some of these operations involve ± 1 and ±i,

effectively reducing the operation count below that of expression (3-1). In addition, in some

cases the FFT can be implemented with other radix bases that can reduce the operation count

as well. However, in this paper we will uniformly use expression (3-1) for simplicity when

we express FFT performance in terms of FLOPS.

Two assembly language FFT library calls were obtained for evaluation, one optimized for the

i860XP (Kuck & Associates, 1993b) and the other optimized for the i860XR from Intel

(Margulis, 1990). The source code for the Intel version was also available. The library

routines were tested with the repeated instance and multiple instance benchmark procedures.

Both configurations were tested for FFT lengths chosen from the sets {8, 16, 32, 64} and

{512, 1024, 2048, 4094, 8192}. The benchmarks were run 14 October 1994 on a Paragon

running OSF/1, revision 1.2.3, with its coprocessor enabled. All computations involve single

precision, floating point numbers.

The results are presented in Figure 3.1. Only in the repeated instance case did we measure

performance figures close to the maximum achievable. It is also apparent that the

performance degrades for small and large transform sizes. In the multiple instance case,

further degradation is observed due to constantly accessing external DRAM to obtain the new

data used in each transform.

After close examination of the algorithm and the i860 architecture, two dominant effects

were found to be causing the degradation. For the shorter transforms, the i860 floating-point

pipeline is plagued with pipeline stalls. Within each FFT stage the pipeline must be primed

for new data and flushed when completed. Since the i860 pipeline has six stages, this

represents a significant overhead for transforms with 64 or less points. The second effect for

the longer transforms is the cache size limitation. Once the data set does not fit into the

12

cache, the penalty for external memory accesses is additional memory cycles. The Kuck &

Associates implementation evidently makes better use of the cache-memory interface for the

longer transforms.

10 100

FFT Size

1000 10000

Figure 3.1. FFT Performance on the i860

It is interesting to note that for the Kuck & Associates FFT call the multiple instance

benchmark performs better than the repeated instance benchmark for large FFT sizes (see the

cross over between 2K and 4K in Figure 3.1). Since both benchmarks utilize the same library

call, what accounts for this switch in performance? A number of subtle differences exist in

the FFT implementation as the problem size increases that could cause this performance

switch. One possible explanation involves the way the memory is accessed. The i860

processor has two types of memory access instructions—the FLD and PFLD instruction. The

13

FLD instruction is optimized for in-cache memory accesses and carries a significant time

penalty for off-chip memory accesses. The PFLD instruction (pipelined floating point load) is

optimized for off-chip memory access and has a time penalty associated with in-cache

memory accesses. The programmer must be aware of the memory configuration to optimize

the performance. The i860 will still operate properly if mismatched instructions are used,

however at a reduced efficiency.

The Kuck & Associates FFT call employs both of these instructions depending on the

memory utilization. The memory utilization is under control of the library routine for all of

the FFT stages except for the first and last stage. Obviously the library call should assume the

data is not in cache for the larger FFTs. Thus, the larger FFTs employ the PFLD instruction

in the first stage. As a consequence the performance is slightly penalized for the repeated

instance case when accessing in-cache data, which occurs about 25% of the time for the 4K

case and 12% of the time for the 8K case. The discrepancy is further complicated by the way

large FFTs are decomposed to fit in the cache to maintain good performance. As the FFT

size grows, the decomposition /recomposition process overhead also plays a role in the

performance figures.

3.2 BLOCK FFT DESIGN

The benchmark results in the last section clearly indicate that conventional optimization

techniques employed in the FFT library routines suffer severe performance penalties as the

FFT size is reduced. After close examination of the FFT algorithm, it was discovered that the

pipeline stall problem for short input lengths could be addressed by restructuring the

computations into a block format.

The signal flow graph for the decimation in frequency version of the FFT is shown in Figure

3.2 (Brigham, 1974). The i860 FFT algorithms process each stage of the FFT independently,

thus stalling the pipeline after each stage. To eliminate this problem, the FFT algorithm was

rewritten to extend the processing of each stage of the FFT across multiple data sets. The

blocks are organized to fit in the cache independent of the FFT size. For example, for an FFT

of length eight, we would load the data for 128 FFTs into cache (a 1024 complex word

14

cache) and process the data in stages. Stage 1 of all 128 FFTs would be completed before

moving to stage 2, etc. In this arrangement, pipeline stalls would occur after 512 butterflies as

opposed to four. The new arrangement allows the smaller FFTs to be implemented efficiently

by trading a small amount of latency for throughput.

stage 1 stage 2 stage 3
O X(0)

O X(4)

O X(2)

O X(6)

O X(1)

O X(5)

O X(3)

O X(7)

Figure 3.2. Signal Flow Diagram for a Length Eight Decimation in Frequency Radix-2 FFT

The block FFT was implemented by modifying the source code of the Intel library call. The

source code for the more efficient Kuck & Associates call was not available. The

benchmarking results for the blocked Intel call are shown in Figure 3.3. The performance

improvement for the repeated instance case is dramatic. Each instance now computes

multiple short FFTs on vectors contained in a block, but that block is repeated. For the

multiple instance case, a 23 MFLOPS improvement is realized for 8-point FFTs. An

improvement in performance continues for the larger vector lengths. The reason for the

improvement is due to the cache-memory interface. In the FFT, the first and last stages are

required to access external memory, causing cache misses. Since we are performing the FFT

15

in place, intermediate stages are able to take complete advantage of the on-chip cache. Thus,

as the number of FFT stages is increased, the cache-memory interface becomes a smaller

percentage of the cycle overhead.

10 100

FFT Size

1000 10000

Figure 3.3. Complex FFT Performance on the i860XP with Multiple Instance Optimization

3.3 PLANAR SUBARRAY PROCESSING

A new algorithm for forming synthetic aperture radar (SAR) images, called Planar Subarray

Processing (PSAP) was developed (Perry, et al., 1994a,b) to address the formidable

computation and storage requirements implied by wide-area, high-resolution surveillance.

PSAP has a number of features that make it suitable for efficient implementation on a

distributed memory massively parallel processor (Games and Pyrik, 1994). The PSAP

16

algorithm consists of mostly independent and similar processing tasks whose organization

permits a variety of possible parallelization strategies. However, this common processing

kernel, called the foldfft, is more complicated than conventional kernels. A necessary

condition for an efficient implementation of PSAP is that the foldfft can be implemented

efficiently. This section applies the block optimization techniques described above to obtain

an assembly language foldfft library call for the i860 that is seven times faster than a straight

C-code implementation.

3.3.1 foldfft Processing Kernel

The foldfft function consists of a sequence of processing steps, including vector operations,

array indexing, and an FFT, that makes it useful for comparing, or benchmarking, the

performance available from current processor technology. Figure 3.4 shows a data flow

representation and the mathematical description of the foldfft function. All the vectors are

complex except for r. Typical values for n and/ in the PSAP algorithm include (64, 8), (128,

16), (256, 32), (16,16), (64, 64), and (512, 512), i.e., the length of the FFT involved can be

quite short. In the symmetric case with n=f, the "fold to f' stage is eliminated and the foldfft

reduces to a pre and post-weighted FFT. All the computations are assumed to involve single-

precision, floating-point numbers. The number of floating-point operations for the algorithm

is In + 2{n -f) + 5ßogzf+6f.

foldfft(n,f) (f is a power of 2 dividing n)

a
complex n-vector r<fH b fold to

f
f-point

FFT Sp con complex f-vector

real n-vector
W

complex f-vector
n/f-1

b(i) = r(i)a(i) c(j) = £ b(fi+j)
for i = 1 to n i=0

for j = 1 to f

e(i) = w(i)d(i)
for i = 1 to f

Figure 3.4. Dataflow Graph of the foldfft Function

17

3.3.2 Benchmarking the foldfft

Software implementations of the foldfft in "high level languages" have had limited success.

We used a portable C-code implementation of the foldfft to test eight different workstation

models and found that the Hewlett Packard HP 9000/735 workstation sustained the highest

processing rate: 16.6 MFLOPS. The benchmark testing used a foldfft with n = 64 and/= 8.

When the same code was run on the i860XR in a SKY Computer SKYbolt accelerator board,

only 3.3 MFLOPS were measured. The performance improved significantly to 13.1

MFLOPS when SKYvec (SKY, 1993) library calls were included. These were repeated

instance benchmarks, and so, somewhat optimistic for applications.

To improve the performance further in anticipation of a high-performance implementation,

we coded the algorithm in assembly language. Previously developed optimizations

techniques designed into the block FFT were applied to the foldfft. By restructuring the

computations in the form of a block to fit within the cache and limiting pipeline stalls we

dramatically improved the performance of the foldfft. Table 3.1 summarizes the previous

benchmark results and the assembly language version for the i860XR processor on the

Skybolt and the i860XP on the Paragon. The assembly language version provides almost a

factor of 7 improvement over the C routines.

Table 3.1. foldfft(64,8) Benchmarking Results (MFLOPS)

Programming

Approach

Skybolt

i860XR

Paragon

i860XP

C 3.3 6.8

C with Libraries 13.12 not done

i860 Assembly 44.4 47.3

18

The Paragon result corresponds to simply porting the i860XR code to the i860XP; the

increase in performance is due to the faster clock, and even better performance would be

expected if the code was modified to take advantage of the additional XP features.

3.4 CONCLUSION

This section examined the performance of the FFT on the i860 microprocessor. Vendor-

supplied FFT library calls yielded efficient processing on realistic multiple instance

benchmarks as long as the FFT size allowed efficient use of the cache. We showed that the

efficiency for multiple short FFTs (sizes 8 through 128) could be improved by incorporating

blocking into the FFT library call. These blocking ideas were applied to optimize the

performance of the foldfft processing kernel. The foldfft is the basic building block of a new

SAR image formation procedure that significantly limits the sizes of the FFTs involved in the

processing.

Three different programming approaches were used in the foldfft study: plain C, C with

optimized library calls, and a customized library call in assembly language. Each successive

approach involves more programmer effort and is less easily ported to other platforms, with

the more involved approaches providing increased performance (from 7 to 47 MFLOPS for

Paragon processing). Obtaining high efficiency on the critical processing kernels is a

necessary condition for applications that have strict size, weight, and power requirements.

Maintaining such efficiencies when the processing kernels are combined into a parallel

implementation depends on a variety of factors, including the performance of the underlying

communication network. We examine the performance of the Paragon network in the next

section and then return in Section 5 to the problem of sustaining high efficiencies in concert.

19

SECTION 4

COMMUNICATION AND CLOCK BENCHMARKS

In this paper, we are considering programs that deliver high performance on MPPs using

some form of explicit message passing. These programs must surmount several barriers to be

able to exploit the full bandwidth of the underlying message passing hardware. For example,

care must be taken to minimize the number of times a message is copied. This section

describes our experience using the Paragon OSF/1 operating system with the Intel NX

message passing primitives. We also tested the Sandia-University of New Mexico Operating

System (SUNMOS) (cf. Wheat et al., 1994). SUNMOS is a "lightweight" alternative to NX

that eliminates certain features (packets, flow control) to obtain higher message passing rates.

We start with a simple point-to-point transmission without any contention, and gradually

increase the complexity and contention involved in the message passing pattern, culminating

in a pattern that implements a transpose operation or "corner turn" for a matrix that is

distributed along a line of processors. We also introduce midway through the section a

benchmarking methodology that assesses periodic real-time performance.

4.1 COMMUNICATION BENCHMARKS

The benchmarks in this section test message passing performance on a set of processors

allocated in a single line. Unless otherwise noted, the benchmarks were run during September

1994 using the program lin, version 1.4 of 9 September 1994 on a Paragon running OSF/1,

revision 1.2.3, with its coprocessor enabled. The program lin collected a number of

previously separate benchmarks into a single framework to facilitate rerunning the

benchmarks in the future. Again, unless otherwise noted, each node sent 1000 messages, each

containing 262144 bytes (262144 = 218 or 1/4 MB). OSF/1 sends messages in packets of size

1792 bytes by default. The default size is the largest packet size supported by OSF/1.

21

The benchmark runs were initiated with the option -plk to make application pages ineligible

for replacement by the OSF/1 virtual memory system. All message buffers were initialized to

zero to force their pages to be resident in physical memory prior to the start of the

benchmark. The nodes running a benchmark were synchronized by using the barrier

synchronization procedure gsync before any timing began.

4.1.1 Adjacent Pair Benchmark

Purpose: The Adjacent Pair Benchmark measures the message transfer rate as a function of

the message size and packet size of a single pair of processors communicating data in one

direction.

Description: The Adjacent Pair Benchmark allocates two adjacent processors. One

processor repeatedly transmits a message that is received by the other processor.

Results: The program lin was preceded by a program called pair that implemented just a

few of the benchmarks in the lin program (the pair program sent twice as many messages

as lin during each of its runs). The pair program was used to run the Adjacent Pair

Benchmark at various times during the year using 1/4 MB messages and the default packet

size. During that period, the OSF/1 operating system was upgraded from revision 1.1 to

revision 1.2.3, and the message coprocessor was enabled. In June 1994, the SUNMOS

operating system became available. The SUNMOS kernel provides no message flow control,

but the original benchmark relied on the flow control mechanism provided by the NX

message passing system in OSF/1. After adding code that explicitly acknowledged the receipt

of a message by sending a message of zero length, the benchmark passed messages at the rate

of 154 MB/s under SUNMOS. To our surprise, adding explicit acknowledgments to the

benchmark improved the performance under OSF/1. Table 4.1 shows the progression of

communication performance under OSF/1 over the course of the year.

22

Table 4.1. Adjacent Pair Benchmark for OSF/1

Date Rate (MB/s) Operating System Comment

08 Dec 93 24 OSF/1 1.1 NX flow control

24 Jun 94 33 OSF/1 1.2.1 NX flow control

24 Jun 94 52 OSF/1 1.2.1 acknowledgments

29 Jul 94 86 OSF/1 1.2.1 acks and coprocessor

21Sep94 75 OSF/1 1.2.3 acks and coprocessor

As Table 4.1 indicates, enabling the message coprocessor provided substantial improvement

in the performance of the benchmark run under OSF/1. The pair implementation of the

benchmark ran at 86 MB/s and the lin implementation ran at 84 MB/s under OSF/1,

revision 1.2. Due to a design problem, multiple i860s configured for symmetric

multiprocessing can produce spurious writes to random locations unless the write-back cache

is placed in so-called strong-order mode. All writes must execute in sequence in this mode,

but allowing out-of-order writes can substantially improve performance. Revision 1.2.3

places the i860s in strong-order mode. We found the performance degradation for the pair

version of the benchmark was about 15%.

Table 4.2 shows the communication performance as a function of message size; Table 4.3

shows the communication performance for 1000 1/4 Mbyte messages as a function of

varying packet size.

Table 4.2. Adjacent Pair Benchmark with Varying Message Size

Message Size 262144 16384 1024 1

Rate (MB/s) 73.4 37.4 8.2 0.01

23

Table 4.3. Adjacent Pair Benchmark with Varying Packet Size

Packet Size 1792 1024 512 256 128

Rate (MB/s) 73.2 44.2 26.2 13.7 6.4

Each entry in Tables 4.1-4.3 gives a result measured for one run of the program. We ran the

benchmark 10 times with the same parameters to assess the variability of the results. The case

in which 1000 1/4 MB messages were received is typical of our measurements. In the group

of 10 runs, the average throughput was 72.9 MB/s, the low was 71.9 MB/s, and the high was

73.6 MB/s.

The benchmark was modified so as to measure how the message transfer rate changes as a

function of distance between a single pair of communicating nodes. Our results showed the

throughput was independent of the separation distance.

4.1.2 Symmetric Many Pairs Benchmark

Purpose: The Symmetric Many Pairs Benchmark measures how the message transfer rate

changes as a function of the number of communicating node pairs which use the same route.

Description: The Symmetric Many Pairs Benchmark allocates an even number of processors

in a single line so that all message passing occurs in one dimension. The processors are

grouped into pairs, one above the midpoint and one below it. Processors below the midpoint

repeatedly send messages to their mates, which repeatedly receive messages. The layout for

16 processors is shown in Figure 4.1.

Senders

® ©••■©©
Receivers

© © ©
t

©

Figure 4.1. Symmetric Many Pairs Benchmark

24

In one version of the benchmark, the receipt of a message is acknowledged by sending a zero

length message to the sender. A run terminates when any one pair completes the sending of a

specified number of messages. That pair sends a termination message to all other pairs. Upon

termination, the benchmark reports the data transfer rate for each receiver and the sum of

those transfer rates, which is the rate data traveled through the backplane at the midpoint. The

number of unsent messages for the pairs that are terminated prematurely are tallied.

Results: Table 4.4 shows the results of running the version of the Symmetric Many Pairs

Benchmark using acknowledgments on a machine with the coprocessor turned on. The table

shows the rate at which data passed through the middle communication link and the

percentage of messages that were not sent due to the receipt of termination messages. This

percentage gives a measure of the unfairness of the message passing. For the run using 16

processors, the rate for each pair is given in Table 4.5.

Table 4.4. Symmetric Many Pairs Benchmark Varying Number of Nodes

Processors 2 4 6 8 10 12 14 16

Sum (MB/s) 74.2 138.5 156.2 153.3 157.1 158.8 156.7 157.0

Unsent (%) 0 0 13 22 27 31 34 36

Table 4.5. Symmetric Many Pairs Benchmark with 16 Nodes

From - To 0-15 1-14 2-13 3-12 4-11 5-10 6-9 7-8 Sum

Rate (MB/s) 1.5 1.5 3.0 5.8 11.5 22.3 41.7 69.7 157.0

Discussion: The benchmark for 16 processors was run several times. While we did not

statistically analyze the results of these runs, we observed roughly the same numbers for each

run. In particular, with the exception of the first node pair, the throughput roughly doubles as

the distance between nodes is decreased. As expected, the data entering the backplane from a

25

node is mixed packet-for-packet with the data traveling left-to-right. This locally fair merge

leads to globally unbalanced throughput rates. This so-called "failure of fairness" presents

problems for applications requiring predictable communication performance, since distant

communicating pairs are subject to the communications behavior of intermediate nodes. This

problem is treated in (Games, et al., 1994b), where protocols for "scheduling" the backplane

are considered to insure predictable communication performance for real-time applications.

Before acknowledgments were added to the Symmetric Many Pairs benchmark, the

benchmark would crash a Paragon when running OSF/1, revision 1.1. Apparently, the flow

control mechanism failed with this benchmark.

4.1.3 Asymmetric Many Pairs Benchmark

This benchmark is identical to the Symmetric Many Pairs Benchmark except that the pairs

are laid out so that the number of links between any two pairs is the same. The layout for 16

processors is shown in Figure 4.2. The results for 16 processors is shown in Table 4.6.

Sum

® O

Figure 4.2. Asymmetric Many Pairs Benchmark

Table 4.6. Symmetric Many Pairs Benchmark with 16 Nodes

From->To

Rate (MB/s)

0-8

1.9

1-9

2.0

2-10

3.9

3-11

7.7

4-12

15.0

5-13

27.8

6-14

46.4

7-15

47.2

Sum

151.9

26

Discussion: Compared with the symmetric case, the overall throughput is only slightly

reduced, but the throughput of messages sent from node 7 to node 15 is decreased. We

suspect that the decrease is explained by the fact that packets sent from node 7 in the

asymmetric case traverse a number of links, each of which is subject to contention, as

compared to the symmetric case, which only involves a single link from node 7 to node 8.

4.2 CLOCK BENCHMARK

The benchmarks in this section time "drop outs" associated with the operating system. The

benchmarks in the remaining sections of this paper are periodic real-time benchmarks. These

benchmarks depend on performing tasks at regular intervals. However, the nonreal-time

operating system currently preempts application tasks for varying intervals of time. The clock

benchmark is intended to give some insight into the current state of affairs in this regard.

Purpose: The Clock Benchmark measures the pauses in program executions due to operating

system overhead.

Description: The Clock Benchmark runs on one node. It zeros an array that is used to record

the results of the experiment. It then reads the node's local clock using the dclock function

repeatedly and computes the elapsed time since the last call to dclock. When the elapsed

time is above a threshold, the time and the length of the pause is recorded in the array.

Results: The benchmark was run under OSF/1, revision 1.2.1, with the coprocessor turned on

using the program longclk, version 1.2 on 24 June 1994. Figure 4.3 shows the results of a

run lasting one half hour. There were 137 pauses of length greater than 500 us. Most of these

pauses have a duration of about 1 ms and occur at a regular rate of about once every 13

seconds. In addition, there were a small number of pauses in the 2 ms range.

27

137 Pauses over 500 microseconds
2400 i i i

2200

2000
o
o

1800 -

1600 -

I
1400 -

1200

1000

> o

800 -

600
i o , A 1 1

tpxoeo&^^jtfi^J*^^ «P^W»*«**

200 400 600 800 1000
seconds

1200 1400 1600 1800

Figure 4.3. Clock Benchmark: Pauses > 500 [is

Figures 4.4 and 4.5 show the Clock Benchmark results for finer time scales. From Figure 4.4,

we see that there were about 100 pauses of duration greater than 50 (is every second. Figure

4.4 also shows there is about a 200 \is pause every second and a slightly less than a 350 |is

pause every two seconds that alternates with a slightly greater than a 350 (is pause. Figure 4.5

shows a one second interval and that the remaining pauses have a duration mostly in the

range of 105-120 |is with a period of about 10 ms. We suspect that there is a timer interrupt

every 10 ms to allow scheduling by the kernel.

Discussion: When the Clock Benchmark was run under SUNMOS, there were no pauses

over 50 (is. An early version of this benchmark reported pauses with a duration of 5 ms.

Zeroing the array that was used to collect the data eliminated those pauses. We concluded

that the 5 ms pauses corresponded to the time it takes to page elements of the data array into

physical memory. The early version of the benchmark was run specifying the page lock

28

runtime option (-plk), but this option simply keeps pages in memory once they have

arrived. We could find no mechanism that forces an entire program into memory before it is

executed. As a result of this experience, our benchmarks zero data arrays and message

buffers before a timed test begins.

1000 Pauses over 50 microseconds

■D
C
o

400

350

300

250

200

150

100 i i i i * * 1 1

4 5 6
seconds

10

Figure 4.4. Clock Benchmark: Pauses > 50 |is

4.3 REAL-TIME BENCHMARKS

The benchmarks in this section are oriented toward real-time processing. They implement

tasks that are executed at regular rates. Each execution of the task is expected to complete

within a given period. The result reported for these benchmarks is the minimum period for

which all deadlines are met.

29

98 Pauses between 120 and 50 microseconds

■a c
o

120

118

116

114

112

110

108

106

o o

« 0 *©

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
seconds

Figure 4.5. Clock Benchmark: Pauses Between 50 and 120 (is

4.3.1 Hartstone Distributed Benchmark

Purpose: The Hartstone Distributed Benchmark (Kamenoff and Weiderman, 1991) is one

measure of how well a distributed computer handles real-time applications.

Description: The part of the Hartstone Distributed benchmark implemented uses two

nodes of a distributed system. Each node executes n tasks. Each task on one node is paired

with a task on the other node. One node contains only sending tasks and the other node

contains receiving tasks. Future versions of the benchmark could add a processing workload

at the sending and/or receiving node. There are no acknowledgments in this benchmark.

30

The input for the benchmark includes a period for each task pair. At the regular interval given

by the period, a task on one node sends a message to its matching task on the other node. If

the sender completes its transmission before the end of the period, it meets its deadline. The

receiver meets its deadline if it completes the receipt of a message within the period.

The implementation of the benchmark takes advantage of the fact that the local node clocks

on the Paragon are synchronized to within 1 |is. The sending node picks a time in the future

at which the test will begin and then sends that time to the receiving node.

This implementation uses two nodes of a Paragon. There is one process on each node, and

each process can spawn up to n POSIX threads, where n = 3 is the standard test

configuration. An initial thread on each node spawns a separate thread for each task and waits

for the completion of all tasks and then prints the results of the benchmark.

A thread implementing a task awaits the start of its period by reading the value of the local

clock using dclock. If the period has yet to begin, the thread calls pthread_yield,

which invokes the scheduler. The program does not attach priority to any particular thread,

and no thread preempts another thread unless it consumes its time slice. The benchmark also

has a compile-time switch that allows the program to be compiled so that there is only one

task per node, and the POSIX thread library functions are not called.

Results: The benchmark was run under OSF/1, revision 1.2.3. The length of each message

was 1/4 MB. The duration of the run was 1 second. When compiled so as to eliminate calls to

the POSIX thread library, the smallest task period which met the deadlines was 4.2 ms and

data was transferred at a rate of 62.4 MB/s. When the thread library was used, the smallest

task period which met the deadlines was 5.0 ms and data was transferred at a rate of 52.4

MB/s. This degradation of .8 ms is evidently due to one call of pthread_yield in the loop

checking dclock.

The benchmark was run with three tasks per processor, each passing 1/4 MB messages. The

task periods were in the ratio of 1:2:4. The smallest period which allowed the benchmark to

31

meet all deadlines was 15 ms. Data was transferred between the nodes at a rate of 30.6 MB/s.

Table 4.7 gives the individual rates for the three tasks.

Table 4.7. Distributed Hartstone Benchmark: n = 3

Period (ms) 15 30 60

Rate (MB/s) 17.5 8.7 4.4

Discussion: Every 60 ms all three threads have message passing tasks to perform. The

current operating system shares the processor equally between the three threads, which puts

the thread (task) with the shortest period clearly at a disadvantage. As a result, its minimum

period more than triples compared to the single task case. Real-time operating systems often

include priority based schedulers that should improve this situation. In the rate monotonic

scheme, the priorities are assigned so that tasks with shorter periods have higher priority.

Thus, at those points in the benchmark where all three tasks want to send messages, the task

with the shortest period would have priority and monopolize the processor. There still would

be the overhead associated with the potentially more complicated scheduling as well as

multiple spin waiting loops. Indeed, when there are multiple threads, the spin waiting could

have a significant impact as each thread is always busy. In the future, the overhead of an

alarm-interrupt approach should be assessed.

4.3.2 Programmable Message Passing Benchmark

Purpose: The Programmable Message Passing Benchmark measures the real-time

performance of a potentially complicated message passing pattern given as a simple program.

It is a synchronized benchmark in that the periods are synchronized across all the nodes, and

all send and receives complete within the common period.

Description: The Programmable Message Passing Benchmark is implemented using the

program pmp. The program takes as input a message communication pattern and a period.

32

The benchmark tests if the message passing given by the pattern can be completed within the

given period. The description of a pattern consists of a code sequence for each node. A code

sequence specifies the sequence of actions to be performed by a node within a period. The

following actions are currently supported:

1. E: Marks the end of a code sequence.

2. R: The node waits until a previously posted receive request returns a message, posts

another receive request, and executes the next action in the code sequence. In this

version of the benchmark, all receive requests are asynchronous.

3. S No Ni: The node sends an Ni byte message to the node numbered No and executes

the next action in the code sequence. In this version of the benchmark, all send

requests are synchronous.

4. W F: The node waits until the fraction of the period given by F has passed and then

executes the next action in the code sequence. F is a floating point number such that

F< 1.

5. L N Po: The node executes N times the code sequence denoted by Po and then

executes the next action in the code sequence. N is a nonnegative integer.

The Programmable Message Passing Benchmark is initiated by the following procedure. The

message passing pattern and desired period is read by node 0, and the appropriate code

sequence and common period are distributed to each node. For each node, the message

buffers are zeroed and one receive request is posted. The processing on each node is

synchronized by the use of the procedure gsync, after which each processor reads its local

clock and then waits for one period. Finally, each processor repeats the following actions for

a prespecified duration: it repeatedly calls dclock checking for the start of a period; at the

beginning of each period it executes its code sequence; and it then checks to see if all

processing was completed before the end of the period.

33

The benchmark was programmed to run the simple message passing pattern consisting of

node 0 periodically sending a 1/4 MB message to node 1 and node 1 acknowledging each

message with a zero length message. The code sequences at nodes 0 and 1 are respectively:

0: S 1 262144 R E

1: R S 0 0 E

Results: Table 4.8 lists the results for version 1.6 of the pmp program using three different

configurations of the operating system.

Table 4.8. Programmable Message Passing: Adjacent Pair

Period (ms) Rate (MB/s) OS Coprocessor

5.0 52.4 OSF/1 R 1.2.1 yes

7.1 36.9 OSF/1R1.2.1 no

2.0 131.1 SUNMOS no

Discussion: The message passing pattern given above is the same one generated by the

adjacent pair benchmark with acknowledgments, however, measured throughputs are smaller.

A variety of factors contribute to the differences. The most significant difference is that the

rate calculated in the previous adjacent pairs benchmark is averaged over 1000 messages,

while the rate in Table 4.8 is determined from the minimum period set by the worst case

individual message time, which can be significantly impacted by a single operating system

drop out. There is also more overhead in both the control and message passing parts of the

pmp program. A final possibility is that each program aligns message buffers differently, and

buffers not aligned on page boundaries can result in significant performance losses.

34

4.3.3 Corner Turning on a Line

The Programmable Message Passing Benchmark was developed to make it easier to evaluate

complicated message passing patterns. In this section we apply the pmp program to the

problem of corner turning on a line. Corner turning is the name given for transposing a

matrix in some signal processing applications. In Section 6 scalable real-time mappings are

considered in which the matrices involved are distributed across many nodes. The corner-

turning step then consists of three phases as shown in Figure 4.6. First there are memory

transposes or "corner turns" at the source nodes that take the matrix stored by rows, say, and

restore it by columns. This is required if the information is to be packaged into large

messages for more efficient transmission. The second phase corresponds to the data

distribution phase shown in step 2 of Figure 4.6. Finally, a second memory corner turn at the

destination nodes is needed to unpack the messages and to store the result by columns for

subsequent processing. In this section we focus on the data redistribution at step 2.

1/4 rows 1/4 rows 1/4 rows 1/4 rows

Stepl
form messages

i
Tr

L JL J
Tr Tr Tr

Step 2
data

redistribution

Step 3
unpack messages 0 0 0 0

1/4 columns 1/4 columns 1/4 columns 1/4 columns

Figure 4.6. Corner Turning on a Line

35

Description: Figure 4.7 shows an example of pmp program input code sequences that

implement the corner-turn data redistribution on a line of four nodes. Individual messages all

have size 1/4 MB. The figure shows a graphical interpretation of the message passing

program as occurring in six stages. This is somewhat misleading. Although the starts of the

code sequence processing by pmp are synchronized across the nodes, there are no additional

explicit synchronizations performed during the running of pmp to keep the messages aligned.

However, because the messages are equally sized, one might expect that the stages shown in

Figure 4.7 would be roughly correct.

pmp program input

0: R S 3 262144 R S 2 262144 S 1 262144 R E
1: S 2 262144 R S 3 262144 R R S 0 262144 E
2: R SI 262144 S 0 262144 R S 3 262144 R E
3: S 0 262144 R R S 1 262144 R S 2 262144 E

s*9e1 o* D—»□ n
stage 2 Q □«« D JO

stages Q* Q D J[3

stage 4 Q □«, »»□ □

stages Q *Q Q *Q

stages Q* □ Q* Q

Figure 4.7. Corner-Turning pmp Code Sequences: Four Nodes

36

Results: Table 4.9 lists the results for version 1.6 of the pmp program using three different

configurations of the operating system. The rates shown correspond to the total amount of

data sent by any one node divided by the minimum period.

Table 4.9. Programmable Message Passing: Four-Node Corner Turning

Period (ms) Rate (MB/s) OS Coprocessor

32.5 24.2 OSF/1R1.2.1 yes

45.0 17.5 OSF/1 Rl.2.1 no

44.0 17.9 SUNMOS no

Discussion: Each node sends three 1/4 MB messages during the period, which accounts for

the rates given in Table 4.9. But in that same period, each node receives three 1/4 MB

messages. So the rates in Table 4.9 should be doubled if a fair comparison is to be made to

the results of previous benchmarks in which nodes were either only sending or receiving,

e.g., in comparing the results to those shown in Table 4.8. With this proviso, the corner-

turning message passing performance obtained using OSF/1 appears to be consistent. But the

performance under SUNMOS is disappointing.

One possible explanation for the relatively poor performance of SUNMOS is that the lack of

actual synchrony between the stages in the pmp program may be more problematic for

SUNMOS. Because SUNMOS does not break up the long 1/4 MB messages into small

packets, any offsets between the stages of Figure 4.7 would result in serious contention, with

the result of messages potentially piling up at the nodes. A synchronous version of pmp,

which partitioned the period into subperiods (six in this case), would potentially avoid this

problem.

There are, of course, a large number of alternative pmp code sequences that could be used to

implement corner turning on a line of four nodes. Assuming the staging shown in Figure 4.7

37

is accurate, the pattern shown in the figure does not contain any contention at the nodes (no

simultaneous sends and receives) nor on the backplane (messages are traveling in different

directions). Other message patterns tested with either nodal or backplane contention did not

perform as well under OSF/1 without the message coprocessor. Interestingly, with the

message coprocessor turned on, the performance penalty for simultaneous sends and receives

disappeared.

4.4 CONCLUSION

This section focused on pure communication benchmarks—no significant computation was

performed at each node. The benchmarks determined upper bounds on message passing rates

for the Intel Paragon. Lower bounds for the periods of repetitive real-time message passing

were determined. Over the course of the year there was a general trend of improving

performance as the hardware and operating system were upgraded (e.g., message coprocessor

enabled) and as we discovered various "tricks" (e.g., explicit acknowledgments). SUNMOS

provides very efficient use of the backplane, but shifts certain responsibilities to the user.

High performance message passing at the rates that we have achieved can lead to potential

predictability problems for a real-time application if communications between distance nodes

are interfered with by messages involving intervening nodes. Also, as the result for the

SUNMOS corner-turning benchmark suggests, more precise communications scheduling

may be required to maintain high performance for complicated message passing patterns.

38

SECTION 5

APPLICATION BENCHMARKS

In this section we examine pipeline configurations of relevant processing and communication

kernels on the Paragon to assess the degree to which high processing efficiencies can be

maintained in end-to-end implementations. The applications under consideration are those in

which problems present themselves at a fixed rate. Examples include synthetic aperture radar

(SAR) image formation or space-time adaptive processing (STAP). To keep up with the

stream of incoming data, the processor must meet a throughput requirement. The application

may also prescribe a latency requirement.

This section demonstrates the use of double buffering to overlap communication and

computation to maintain high processing efficiencies. Buffers must be appropriately sized to

take into account a variety of factors. Large buffers usually result in more efficient

processing or message passing as we have seen in the benchmarks in Sections 3 and 4. Small

buffers may be required to meet strict latency requirements, as the time to fill a large buffer

may be too great and result in timing violation. Finally, unpredictable operating system

behavior will limit the size of the period that can be reliably maintained. This places a lower

bound on how small the buffers can be.

5.1 REAL-TIME TEST BENCH

All benchmarks in this section are "real time" in the sense that the shortest period that can be

sustained will be the metric measured. Ideally, given an application, a "test bench" would be

constructed to realistically stimulate the massively parallel processor under test. This is the

approach that the ARPA-sponsored Rapid Prototyping for Application Specific Signal

Processors (RASSP) program is taking to assess the performance of the RASSP processors

(Shaw, 1994). Instead, we construct what amounts to a "test bench" on the MPP itself.

In the case of applications that would use a single I/O node for input, we identify a single

node, called the source node, that is responsible for injecting at a prespecified rate blocks of

39

data of a prespecified size into a processing chain under test. In reality, the data might stream

into an I/O node, where it would be buffered to allow processing at the proper "grain" size. It

is at this point that we begin our testing. The processing chain under test itself could be one-

or two-dimensional.

If the output of the processing naturally coalesces at a single node, then we identify a single

node, called the sink node, that is responsible for collecting the results for off-line verification

of correct functionality. This simple test bench pair (source-sink) could be generalized to

handle applications that naturally would have multichannel inputs or outputs. The major

deficiency of this current set-up is that it does not assess the real-time I/O capabilities of the

MPP under test. That will need to be done, especially in the context of actual applications

that have nonstandard I/O interfaces.

The source node currently uses a "spin-wait" loop to determine when to send data, i.e., the

clock is polled using the dclock routine and compared to a threshold. When the threshold is

exceeded, corresponding to the beginning of a period, and if there is a request for data

pending, then a data block is transmitted. Otherwise, the source node blocks until a request

for data is received. After the data block has been sent, the source node checks to see if the

deadline for that period was met. If a bottleneck occurs downstream, then the data request

will be posted late, causing the source node to miss a deadline, which is noted. In this way

the pipelines under consideration in this paper are self-timed. A synchronized pipeline could

also easily be considered in the future on the Paragon because of the well-synchronized

clocks at the processing nodes.

A key concern with this methodology is just how regularly can the data be injected.

Operating system "drop outs" at crucial points in time affect the degree of regularity. The

results of the clock benchmarks of Section 4.2 are relevant here. The conclusion for the

current operating system (OSF/1) is that periods must be on the order of 100s of milliseconds

if the current drop-out effects are to be ignored, i.e., have only a 1% -2% impact.

The test bench in this paper uses a single source node, so there is no need to synchronize the

timers across multiple source nodes. A period and duration are selected at runtime, which

40

determine the number of iterations. Long durations account for the behavior of the operating

system. Short durations that fall between operating system dropouts yield the best results and

establish the potential for improvement by including a real-time operating system.

Most scientific codes running on MPPs are designed to be loaded homogeneously, i.e., the

same code is loaded onto the processing nodes. This approach is well suited to data-parallel

applications or applications in which the data is distributed across the nodes and the nodes

cooperate to perform some computation on it. It is easy to synchronize the nodes under this

model. If the nodes are performing different tasks, then the nodes dispatch to different

subroutines that implement the proper functionality based on their logical node number.

Individual nodes only execute a small portion of the common program. Homogeneous code

is appealing from a software engineering standpoint because there is only a single program to

maintain. Finally, this approach could support future fault-tolerant options since each node

has the code to perform any of the required functions.

If memory is a scarce resource, then loading different code onto the nodes can make sense.

Heterogeneous code is consistent with pipeline processing, where each node has a distinct

task. In the present benchmarking context, it allows the test bench (timing, data source, and

data sink nodes) to be separated from the processing nodes. The data source and data sink

nodes are oblivious to the processing function under test. We have implemented both

homogeneous and heterogeneous versions of the benchmarks without noticing much of a

performance difference. The benchmark results that are reported here correspond to the

standard homogeneous approach.

5.2 SINGLE NODE BENCHMARKS

In this section we take the realistic benchmarking philosophy a step further by including the

"connective tissue" that will be common to most pipeline processing applications: buffering

and flow control. We examine the case that the functions under test are implemented on a

single node. The goal is to have a real-time benchmarking methodology that will produce

results that can be relied on when these single node implementations are ganged together

41

using well specified communication patterns, e.g., linear or two-dimensional pipelines. We

again pick the FFT to illustrate the approach, and, for simplicity, focus on a 512-point block

length. Of course the approach can be generalized to other block lengths and different

functions altogether.

Pipelining can be used to achieve high performance by overlapping the communication and

processing through the use of double buffering. While iteration i is being computed on buffer

B\, the data for iteration i + 1 is being received into buffer Z?2- If the computation takes at

least as long as the time to receive the data into B2, the communication overhead is hidden.

When it comes time to compute iteration i + 1, the roles of the two buffers are reversed.

Eliminating data copies is also essential to achieve high performance, since data copying is

an expensive operation, even compared to communication between processing nodes. Data

copies occur when a message arrives at a node and there has been no corresponding receive

request posted. Such messages must be buffered by the kernel in a system buffer and later

copied into the application address space buffer. Messages that arrive for which a receive has

been posted are copied directly into the application address space buffer and thus do not incur

the cost of a copy from system to user space.

We now describe the buffering and flow control sequence that each processing node follows

in the steady state of our benchmarks. During one iteration a processing node calls irecv to

post a receive to fill buffer Br with data for the next iteration. Then it sends a 0 byte message

to the node upstream to request data for Br. Ideally, the data will be received while the node

computes its function on buffer Bc, which was filled during the last iteration. If the compute

function is performed in place, then the results are also stored in Bc; otherwise the results of

the computation are stored in a third (output) buffer B0. After the function has completed on

Bc, it sends the result, either from Bc or B0, to the next node downstream provided the

compute node has already received a data request message from the next node. Otherwise

the node blocks until the request for data is received. After the send returns, the compute

node will block if Br has not been filled. The goal however is to require enough computation

so that Br is filled. If this is indeed the case, then the node does not block and proceeds

immediately to the final step of swapping the pointers to Br and Bc.

42

Figure 5.1 shows the three functions tested and the buffering used:

1. Applying a 512-point FFT to the rows of a 512 x 512 single precision complex matrix

using the Kuck & Associates cf f tld call. This computation is performed in place.

2. Corner turning the 512 x 512 matrix within the memory of a node using the transpose

function call dtran. This function is not done in place, and the result is stored in the

output buffer.

3. A combination of function 1 followed by function 2 on the same node.

source FFT

B«=?E|

sink

•D

source CT

B=SE&0
sink

•0

source FFT + CT

B=5töa
sink

•a

Figure 5.1. Single Node Processing Configurations

All benchmarks were run with OSF/1, revision 1.2.4, with the message coprocessor enabled

on a 16-node Paragon at Honeywell. Table 5.1 lists the results obtained for a 4 second

duration experiment. Two cases are compared:

1. Without data flow: In this case the compute nodes just switch between the two input

buffers; there is no data sent from the source node and no results are sent to the sink

node.

2. With data flow: In this case the source node repeatedly sends 512 x 512 single

precision complex matrices (29 x 29 x 23 = 221 = 2 MB messages) at the prescribed

periods, and the results containing a similar amount of data are sent to the sink node.

43

Table 5.1. Single Node Processing Benchmark Results

Without Data Flow With Data Flow
Min Period (ms) Rate Min Period (ms) Rate

FFT 205 57.5 MFLOPS 223 52.9 MFLOPS
CT 64 32.8 MB/s 109 19.2 MB/s

FFT+CT 267 44.2 MFLOPS 274 43.1 MFLOPS

Discussion: Comparing the results for the FFT with and without data flow reveals a

difference in the minimum period that can be sustained of 18 ms. A periodic communication

benchmark for 2 MB messages reveals that message passing alone requires a period of 26 ms

(79 MB/s), less than 1/10 of the processing load. This would be approximately doubled to 52

ms for the receiving and sending that the processing node must do. Evidently about 2/3 of the

communication overhead is hidden by double buffering. Further evidence of an overlap is

implied by versions of the FFT benchmark that were run using only single input buffers. In

this case, the difference in minimum periods is 37 ms. Additional benchmarks that turned off

the receiving or sending at the processing node separately revealed that the original 18 ms

were lost due to sends to the sink node and that the receiving communication was completely

overlapped. A future task will be to modify the infrastructure to also overlap the sending

phase to as great an extent possible.

The corner turn, which involves a memory copy to rearrange how the matrix is stored, takes

about 1/3 the time to complete compared to the FFT computation. Combining the FFT and

corner-turning function reduces the efficiency of the FFT processing, but with less impact

when there is data flowing. In that case the communication overhead is almost completely

hidden (only a 7 ms difference between the two cases with and without data flowing). This

improvement could be a result of the third output buffer for this case.

44

5.3 PIPELINE BENCHMARKS

Arbitrary processing chains can be built by stringing together the source node, various

processing modules, and the sink node. Figure 5.2 shows two pipelines that were tested. Both

these pipelines implement two-dimensional FFT processing, which is applicable to SAR

image formation for example. If the second FFT was replaced with an inner product

calculation, then these pipelines would correspond to part of a pulse-doppler STAP

application. The adaptive weight computation in the STAP application could be included in

the corner-turn node of the longer pipeline as that node is lightly loaded. Table 5.2 lists the

performance obtained for these pipelines when there is data flowing down the pipeline with

the same parameters as used in Section 5.2.

source FFT + CT FFT sink

B=3£]g=^ •0

source FFT CT FFT

B=*&==5EÖQ=^]
sink

•0

Figure 5.2. Pipeline Processing Configurations

Table 5.2. Pipeline Processing Benchmark Results

Min Period (ms) Rate
FFT+CT->FFT 274 43.1MFLOPS
FFT->CT->FFT 223 52.9 MFLOPS

Discussion: As expected, the throughput of the pipeline is determined by the bottleneck

node, i.e., the node with the largest minimum period. There is no further degradation in the

45

minimum period as a result of the longer pipeline. This result does mask one important effect

that we have also measured. Jitter accumulates as we move down the pipeline. In other

words, if the results are time stamped at various points in the pipeline, and differences

computed at a single point for successive iterations, then the variability of the differences

around the prespecified period increases as we move down the pipeline. This is a result of an

accumulation of "nondeterministic" events occurring at each stage of this self-timed pipeline.

One way to limit this effect would be to implement synchronized processing in which each

node performs its function at prescribed intervals by using the dclock procedure to poll the

synchronized (to within 1 |0.s) local clocks.

A key issue that was raised at the beginning of this section is the buffer size. This size is

related to the number of instances of the incoming data stream that are coalesced and

processed as a group. For example, in the pipelines considered above, the key parameter at

the first stage is the number of rows that will be processed by the FFT. Such "granularity"

studies that determine the appropriate buffer size as a function of all the relevant variables

will be the subject of future work.

5.4 CONCLUSION

This section described benchmarks that are more predictive of actual application performance

since they include both communication and computation. An infrastructure that implements a

test bench on the Paragon itself was developed for use with a variety of processing functions.

In particular, the test bench is used in conjunction with pipelined processing chains that

represent functions relevant to SAR and STAP processing. The test bench is data-request

driven to minimize data copies (all receives of large data messages are posted) and double

buffered to hide communication latency. In our 512 x 512 example, approximately 2/3 of the

communication latency is hidden. Even though the existing operating system is not real-time,

by operating at a sufficiently coarse level of granularity, we are able to inject and process

data at a regular rate. The benchmarks sustain 53 MFLOPS on applying FFTs to the rows and

columns of a 512 x 512 matrix. This level of end-to-end processing efficiency is desired for

embedded applications with strict size, weight, and power restrictions.

46

SECTION 6

SCALABLE REAL-TIME SYSTEMS

Parallel processing uses multiple processors to reduce the amount of time required to execute

an algorithm, that is to speed up a computer program that implements the algorithm. The rate

of reduction in the run time as additional processors are added is often regarded as a key

descriptor of how effective parallel processing is for the particular application. A system's

scalability refers to the nature of the progression of reduced run times as the number of

processors is increased. For a fixed problem size, there is a limit to the speedup that can be

obtained with some applications bottoming out quickly because they contain large

proportions of unavoidably sequential operation (Amdahl's law). As a result, there have been

alternative measures of scalability proposed that describe the behavior of the system as both

the problem size and the number of processors are increased (Gustafson, 1988). In this

section we discuss the issue of scalability for real-time parallel processing.

6.1 REAL-TIME SCALABILITY

Real-time systems must compute their results within prescribed timing requirements, which

we have described in terms of latency and throughput requirements. One might be interested

in how many processors are required to satisfy the constraints in the first place, which relate

to the traditional notion of scalability. We focus on what must be done to continue to meet

the real-time requirements when some dimension of the problem is increased. In this case we

desire an extension of the mapping of the larger problem to, most likely, a larger number of

processors so that the result continues to meet the real-time requirements. The amount of

work required to obtain the extended mapping is a key concern, with parameterized solutions

being preferred over mappings that require some fundamental shift in approach, e.g.,

replacing pipelining with data parallelism. Note that the real-time requirements themselves

may also change as the problem size increases.

47

If the latency I is greater than the period p, then the computing system can be working on

more than one problem instance at a time. If a processing node can satisfy the latency

requirement, then a conceptually simple parallel processing approach for meeting any

throughput requirement is called replication. In the replication approach the individual

processing node is replicated at least lip times with each copy receiving a successive problem

instance. When the first processing node finishes the first problem instance, it becomes

available to process the next available problem instance, and so on. As the problem size

increases, the replication approach usually can be scaled to maintain the fixed throughput

requirement (as long as the problem still fits), but the latency is increased.

Pipelining is another parallel processing approach that has been traditionally used in high

throughput applications. The notion of a scalable dataflow graph was introduced in (Games,

et al., 1994) to formalize the notion of scalability for real-time pipeline processing. The idea

is to associate a parameterized family of dataflow graphs with the problem. The nodes of any

graph in the family have a constant processing and communication load. This notion was

based on the model of systolic array computational structures. If the graphs in the

parameterized family can be mapped to the MPP with the constant workload property

preserved at the nodes, then pipeline processing can be used to maintain a fixed throughput

requirement, independent of problem size. Whether or not a fixed latency requirement

continues to be met depends on whether the "depth" of the parameterized dataflow graph

increases or not.

As the above discussion suggests, it is usually more difficult to maintain strict latency

requirements as a problem size increases. In this section we develop these ideas further for a

generic processing chain that is applicable to both SAR image formation and STAP

applications. The goal is to obtain a scalable real-time implementation that maintains a fixed

throughput and latency.

48

6.2 GENERIC PROCESSING CHAIN

Consider the following generic "two-dimensional" processing chain that generalizes the

processing considered in Section 5.3:

1. the input is an m x n matrix A,

2. apply a function/to each column of A, creating an m x n matrix B, (for instance, the

function/could be an FFT),

3. apply a function g to each row of B. (for instance, the function g could be an FFT or

convolution in a SAR application or an inner product in a STAP application).

We are interested in examining the ramifications of scaling the above mxn input matrix in

either one of its dimensions. Without loss of generality, we consider the case of scaling the

parameter n. For example, if the columns of A represent the pulse returns of a SAR system,

then scaling n would correspond to increasing the azimuth or cross-range resolution of the

SAR image. In a STAP application, the columns could represent the pulse returns at a fixed

range from a fixed antenna. Scaling n then would correspond to increasing the number of

antennas, or spatial degrees of freedom. For simplicity, the three-dimensional STAP problem

(pulses, antennas, and ranges) is reduced to the two-dimensional case we are considering by

fixing the range dimension.

The generic processing chain can be implemented as a one-dimensional pipeline similar to

the ones considered in Section 5. However the amount of work at the first node

(n applications of the function/) of these mappings is not constant, and so the throughput

cannot be maintained as n is increased. This suggests that the pipeline processing chain must

also accommodate processors in a second dimension. That is, the input matrix must be

partitioned and distributed across a line of processors to maintain a fixed workload per

processor, independent of the size of n.

One potential mapping with this property is shown in Figure 6.1 for the case of four nodes on

the line (four is only used for illustrative purposes). The stage 1 processing nodes receive 1/4

of the columns of the matrix. We do not consider the issue of input here, but pick up the

processing at the input of stage 1. This mapping has a latency equal to three periods. The

49

corner turn at the second stage allows the second function g to be implemented on single

nodes at the third stage, which is usually the most efficient processing approach. This corner-

turn stage implements the three stages shown in Figure 4.6. The question that we consider

next is: as the input parameter n is increased, can the mapping in Figure 6.1 be scaled to

maintain a fixed throughput and latency constraint?

mx n I
/ x mxn/4

I
1/4 columns 1/4 columns 1/4 columns 1/4 columns

Stage 1
apply f

to columns

Stage 2
corner

turn

Stage 3
apply g
to rows

111
I I I I

ct ct ct ct

11/4 rows 11/4 rows I 1/4 rows I 1/

9 9 g

Figure 6.1. Two-Dimensional Distributed Mapping of Generic Processing Chain

50

6.3 SCALABLE REAL-TIME MAPPING

To precisely describe the scalability problem for the generic processing chain, we need to

specify the parameterized family of mappings corresponding to increasing the input

parameter n. For simplicity we restrict ourselves to the case where n is increased to 2n, An,

Sn, etc., and limit our discussion to the corresponding mapping for In. The progression to

higher values of n will then be clear. We will refer to the mapping for the value In as the

doubled mapping.

The doubled mapping is obtained by doubling the number of nodes in each line of Figure 6.1.

The input to the doubled mapping is a matrix of dimension m x In. The input matrix is now

divided into eight parts and distributed among the stage-1 nodes in a similar manner as in

Figure 6.1 so that each stage-1 node still receives an m x nIA matrix. Thus the nodes at stage

1 of the doubled mapping perform precisely the same work as before: nIA applications of the

function/to the columns of size m. Thus the throughput into stage 1 can be maintained.

However, the stage-2 corner turn involves twice as many nodes, and the stage-3 nodes

process longer inputs (in particular the rows of an m/8 x In matrix). The performance of

these latter two stages must be examined to determine if the doubled mapping still meets the

real-time requirements.

Consider first the processing at stage 3. The amount of data involved in the doubled mapping

at this stage is the same—mnIA elements—so there will be no problem with memory. The

issue reduces to the relative times of computing ml A applications of the function g to an n-

point input versus ra/8 applications of g to a 2/t-point input. This obviously depends primarily

on the function g. For example, for an FFT with operation count given by equation 3-1, the

ratio of floating point operations required for the doubled (2n) mapping versus the single (n)

mapping at stage 3 is 1 + l/log2 n. This suggests for the FFT that the stage-3 nodes in the

doubled mapping will be able to complete their processing in time as long as there is only a

small amount of margin in stage 3 of the single mapping. A number of issues could affect the

ultimate performance, for example, the longer input length may not be accommodated in

cache. Periodic benchmarking would provide the definitive answer.

51

The situation for the corner turn at stage 2 is less clear. Again the amount of data involved at

each stage-2 node is the same in both the single and doubled mapping. But the number of

total messages increases quadratically, from 12 to 56 when n doubles from 4 to 8. But each

message is half the size, and the amount of data sent and received at each node increases only

slightly (from 3/4 to 7/8 of its data when n doubles from 4 to 8). Thus, the resulting period

that can be sustained by the corner-turning stage will depend on a number of factors,

including the amount of concurrency in the larger message-passing pattern (positive factor)

as well as the drop-off in efficiency as the message size decreases (negative factor).

The Programmable Message Passing Benchmark, introduced in Section 4, can be used to

determine the minimum period for corner turning as a function of line size. Again, to make

this precise, we need to describe the message-passing pattern to be used as the number of

nodes is doubled: n = 2, 4, 8,..., 2',.... We give a construction of a parameterized family of

corner-turning message-passing patterns based on two primitives called swap and quad.

Figure 6.2 shows the swap(/,./) and quad(/,/) primitives for nodes labeled i, i +\,j, and j + 1.

In each primitive there is a succession of stages with the property that at each stage every

node is sending or receiving exactly one message, i.e., there is no contention at the nodes.

When there are two nodes {0,1}, they swap messages: swap(0,1). The 4-node corner-

turning pattern shown in Figure 4.7 corresponds to a quad(0, 2) followed by a simultaneous

application of swap(0, 1) and swap(2, 3). An 8-node corner-turning pattern can be

constructed in three steps by:

1) simultaneous applications of quad(0, 4) and quad(2, 6); followed by

2) simultaneous applications of quad(0, 6) and quad(2, 4); and finally

3) simultaneous applications of the 4-node corner-turning pattern to each half:

{0,1,2, 3} and {4, 5, 6,7}.

These three steps are shown schematically in Figure 6.3.

52

stage 1 | |^_

stage 2 | |

stage 3 | |-^-

stage 4 | |—

swap(i, j)

stage 1 Q ►[|

stage 2 | f* Q]

quad(i, j)

1 + 1 J

D—»O

Q=D
D* »D

Figure 6.2. Swap and Quad Primitives

i + 1

a
Q«—D—JO

-O

Apply
quad(0, 4)
quad(2, 6)

0

Ü
1

D
2

■
3 I

■ >

Apply
quad(0, 6)
quad(2, 4)

■ B ■ ■ ■
Apply
4 node

pattern to
each half

ED m D ■ j

H ü

H D

Figure 6.3. Eight-Node Corner-Turning Pattern Schematic

53

We now give the formulas for the general case. Given n processors, n even, and a parameter

s, called the skip factor, we define a corner-turning step pattern, written step(n, s), as the

simultaneous application of

quad(0, nil + s mod nil)

quad(2, nil + (s + 2) mod nil)

quad(n/2 - 2, nil + (s + nil - 2) mod nil).

In this notation, the 8-node corner-turning pattern corresponds to step(8, 0), then step(8, 2),

and finally the corner-turning pattern for four nodes applied to the two halves. The 16-node

corner-turning pattern can be constructed as a sequence of steps: step(16, 0), step(16, 2),

step(16, 4), step(16, 6), and finally the corner-turning pattern for 8 nodes applied to the two

halves. When the number of processors n = lk, the corner-turning pattern consists of step(n,

0), step(n, 2),..., step(n, nil - 2), and finally the corner-turning pattern for nil nodes applied

to the two halves.

This construction has no contention at the nodes: each stage has nil disjoint send-receive

pairs. But there is contention on the links for n > 8, and this contention becomes

exponentially worse as n is increased to 16, 32, etc. This will lead to problems of uneven

communication rates due to the failure of fairness phenomenon that was previously illustrated

in the Many Pairs Benchmark of Section 3. This suggests a future problem of developing a

corner-turning construction that preserves the no-node contention property for the nil send-

receive pairs with a slower growing link contention problem. A counting argument for the

middle link, the worst case, reveals that contention for it must grow at least linearly

(proportional to n/8) as the number of nodes increases. This problem is particularly relevant

for the Paragon, because its 16 x n layout results in possibly large values of n. On the other

hand, size, weight, and power requirements of embedded applications would tend to limit the

size of n.

54

The recursive construction for corner-turning patterns was implemented by a small Scheme

program that generates pmp input code sequences. Scheme (IEEE, 1991) is a lexically scoped

dialect of Lisp and is good for manipulating programs as data. Figure 6.4 shows the resulting

input code sequences for n = 8 in an abbreviated form using the fact that all the messages

have the same size, i.e., S No Ni is written as SNo- We assume that 1/4 MB messages are

sent when n = 4, so that for n = 8 the messages have size 1/8 MB.

pmp program input
(messages size 1/8 MB)

0: R S7 R S6 R S5 R S4 R S3 R S2 SI R E
1: S6 R S7 R S4 R S5 R S2 R S3 R R SO E
2: R S5 R S4 R S7 R S6 R SI SO R S3 R E
3: S4 R S5 R S6 R S7 R SO R R SI R S2 E
4: R S3 S2 R R SI SO R R S7 R S6 S5 R E
5: S2 R R S3 SO R R SI S6 R S7 R R S4 E
6: R SI SO R R S3 S2 R R S5 S4 R S7 R E
7: SO R R SI S2 R R S3 S4 R R S5 R S6 E

Figure 6.4. Corner-Turning pmp Code Sequences: Eight Nodes

The benchmark was run using pmp, version 1.6 of 30 August 1994 under OSF/1, revision

1.2.4, with the message coprocessor enabled. The duration was set at 5 seconds. The results

for lines with 2, 4, 8, 16 nodes are given in Table 6.1. Note there is a slight degradation for

n = 4 (from 24.2 MB/s reported in Table 4.10 to 20.2 MB/s) because of the strong order

cache patch.

Table 6.1. Programmable Message Passing: «-Node Corner Turning

n Period (ms) Rate (MB/s) Message Size

2 19 27.6 1/2 MB

4 39 20.2 1/4 MB

8 46 19.9 1/8 MB

16 67 14.7 1/16 MB

55

Discussion: It is clear from these results that the corner-turning implementation is not a

scalable mapping. But what is also clear is that the rate of increase in the achievable real-time

period is not dramatic, i.e., even though the number of nodes doubles in each case, the period

does not. Thus, although the corner-turning stage would most likely ultimately limit the real-

time scalability of this three-stage mapping, the sublinear increase in the rate implies it

should be possible to meet the real-time requirements over a usefully large range of values

of n. The key issue of course would be how the corner-turning period, including the overhead

of the intranode memory corner turns, compared to the periods of applying the functions/or

g. At the granularity considered in this paper, the function periods leave significant room to

make the line considerably longer. Note that the intranode memory corner turns could be

shifted among the processing stages if that proved useful in terms of load balancing. Also,

stages of the corner turn could be split among a number of pipeline stages if need be to

maintain a fixed throughput at the cost of increased latency.

6.4 CONCLUSION

This discussion serves to sharply focus the benchmarks required to establish the scalability of

a particular instance of the generic processing chain. The granularity (block size) at the first

stage would be determined by the throughput requirement and the performance of the

function/. The mapping is designed so that the processing and communication load involving

this first stage is independent of problem size. The key issue at the corner-turn stage is

determining the available margin that will limit the increase of line size, and hence problem

size. The key assessment for the function g is the comparison of the performance of g on

varying size inputs. Functions whose implementation complexity doubles as the length of the

input doubles will result in scalable real-time behavior.

56

SECTION 7

CONCLUSION

This paper investigated the application of commercial massively parallel processors to real-

time sensor processing. The focus was on a benchmarking methodology that supports the

development of parallel software for real-time applications. This parallel software

development process will involve running benchmarks designed to assess the level of

performance the MPP, or more precisely its components, can deliver on processing and

communication kernels. These kernels will then be combined into a single implementation

using a variety of parallelization approaches so that the application's timing requirements are

satisfied. The process is expected to be iterative and will involve a series of benchmarks that

incorporate increasingly more of the application's requirements. The approach adopted here

is to make the initial benchmarking results highly predictive by including in the benchmarks

much of the infrastructure and overhead required in a real-time implementation.

This led to the construction of a test bench on the MPP whose purpose was to realistically

stimulate the processing or communication function under test. The benchmarking metric

was the minimum period that could be sustained for a selected processing and/or

communication kernel. This approach assesses the level of real-time performance provided

by the current hardware/software system and can be used to chart the impact of including a

real-time operating system in the future. To bound the real-time processing problem, the

scope of this effort was limited to the front-end signal processing found in such applications

as synthetic aperture radar (SAR) processing and space-time adaptive processing (STAP).

Real-time processing such as automatic target recognition or tracking that includes data-

dependencies will be considered in the future.

The benchmarks were applied to the Intel Paragon in anticipation of the availability of the

Embedded Touchstone. Our experiences showed that optimized library routines allowed

efficient processing at the nodes of the MPP. In the important case of FFT processing, the

library routines were most efficient at transform lengths commensurate with the size of on-

chip cache. There is a rather severe penalty paid for short length transforms (8, 16, and 32

57

points) due to modern pipeline microprocessor architectures. Unfortunately, the applications

we are interested in can involve these small transform lengths. To overcome this problem, we

developed an FFT library call that keeps the floating-point pipelines filled by completing

many short FFTs for each call. This resulted in a dramatic improvement in the processing

efficiency (from 18 to 78 MFLOPS for 8-point transforms).

Improving message-passing primitives for the Paragon allowed efficient communication on

the backplane. The message-passing rates we were able to sustain improved by a factor of

four over the span of the year (from roughly 20 to 80 MB/s). The message-passing rates

under SUNMOS were higher still (150 MB/s). At these high rates, however, problems with

messages interfering with each other become more significant. We demonstrated how the

communication performance of two distance nodes was affected by the behavior of

intermediate nodes, motivating the need for some type of communications scheduling to

obtain predictable performance in real-time applications (Games, et al., 1994b).

We showed that processing efficiencies could be maintained for pipeline processing in which

double buffering was used to largely hide the overhead of interprocessor communication. The

real-time scalability of parallel implementations was considered in which the key

consideration was the maintenance of the real-time requirements as the problem size is

increased. A scalable real-time mapping of a generic two-dimensional processing chain

applicable to SAR and STAP applications was developed and analyzed. The mapping

requires data redistribution along a line of processors to implement a "corner turn." A

message-passing pattern with sublinear growth was demonstrated for this step, which

increases the practicality of the proposed mapping.

We plan to apply these ideas in the future to actual real-time implementations, starting with

the Lincoln Laboratory Advanced Detection Technology Sensor (ADTS). The ADTS system

is a Ka-band SAR sensor that the ARPA RASSP program is using as a benchmark (Shaw,

1994). This system has a throughput requirement determined by a maximum pulse rate of

556 per second. The RASSP benchmark has a latency requirement of 3 seconds. This latency

requirement will motivate additional enhancements to our benchmarking methodology. In

this paper, all the results involved fairly coarse grain processing (e.g., 512 FFTs of size 512

58

points). However such coarse grain processing is incompatible with strict latency

requirements. A key consideration will be determining what level of granularity the MPP

reliably can support in a real-time application. The shorter periods involved in finer grain

processing amplify the problems associated with nonreal-time system software. It is

anticipated that such granularity studies will be a very effective way to measure the impact of

improving real-time system software.

59

LIST OF REFERENCES

Blitzer, F., 1993, "Militarized Touchstone Program," Proceedings of the 1993 IEEE National

Aerospace and Electronics Conference, Vol. 1, Dayton, OH, pp. 137-143.

Brigham, E. O., 1974, The Fast Fourier Transform, ISBN 0-13-307496-X, Prentice Hall,

Inc., Englewood Cliffs, NJ.

Dowd, K.,1993, High Performance Computing, O'Reilly & Associates, Inc., Sebastopol, CA,

ISBN 1-56592-032-5.

Games, R. A., J. D. Ramsdell, J. J. Rushanan, 1994a, "Real-Time Parallel Processing Using

Scalable Dataflow Graphs," preprint.

Games, R. A., A. Kanevsky, P. C. Krupp, L. G. Monk, 1994b, Real-Time Embedded High

Performance Computing: Communications Scheduling, MTR 94B146, The MITRE

Corporation, Bedford, MA.

Games, R. A., and D. S. Pyrik, 1994, Parallel Implementation of the Planar Subarray

Processing Algorithm, MTR 94B114, The MITRE Corporation, Bedford, MA.

Golub, G. H, and C. F. Van Loan, 1991, Matrix Computations, The Johns Hopkins

University Press, Baltimore, MD.

Gustafson, J. L., 1988, "Reevaluating Amdahl's Law," Communications of the ACM,

Vol. 31, No. 5, pp. 532-533.

IEEE Std 1178-1990, 1991, IEEE Standard for the {Scheme} Programming Language,

Institute of Electrical and Electronic Engineers, Inc., New York, NY.

Intel, 1990, i860 64-Bit Microprocessor Hardware Reference Manual, Intel Corporation,

Mt. Prospect, IL.

61

Intel, 1991, i860 XP Microprocessor Data Book, Intel Corporation, Mt. Prospect, EL.

Intel, 1992a, i860XP 64-Bit Microprocessor Hardware Reference Manual, Intel

Corporation, Mt. Prospect, IL.

Intel, 1992b, i860 Microprocessor Family Programmer's Reference Manual, Intel

Corporation, Mt. Prospect, IL.

Kamenoff, N. I., and N. H. Wiederman, 1991, Hartstone Distributed Benchmark:

Requirements and Definitions, Proceedings of the 1991 Real-Time Systems Symposium, San

Antonio, TX, 4-6 November 1991, 0-8186-2450-7/91, Institute of Electrical and Electronic

Engineers, Inc., New York, NY.

Kuck & Associates, 1993a, CLASSPACK Signal Processing Library/C User's Guide,

Document #9310009, Release 1.3, Kuck & Associates, Inc., Champaign, IL.

Kuck & Associates, 1993b, CLASSPACK Basic Math Library/C User's Guide, Document

#9311009, Release 1.3, Kuck & Associates, Inc., Champaign, IL.

Margulis, N., 1990, i860 Microprocessor Architecture, ISBN 0-07-881645-9, Osborne

McGraw-Hill, Berkeley, CA.

Perry, R. P., R. C. DiPietro, A. Kozma, J. J. Vaccaro, April 1994a, "SAR Image Formation

Processing Using Planar Subarrays," Proceedings of the SPIE OE/Aerospace Sensing,

Conference on Algorithms for Synthetic Aperture Radar Imagery, Orlando, FL.

Perry, R. P., R. C. DiPietro, A. Kozma, J. J. Vaccaro, September 1994b, SAR Image

Formation Processing Using Planar Subarrays, MTR 94B39, The MITRE Corporation,

Bedford, MA.

62

Shaw, G. A., 1994, "RASSP Benchmark Program Overview," Proceedings of the 1st Annual

RASSP Conference, ARPA, pp. 33^2.

SKY, August 1993, SKYvec Software, Release 3.5 for Sun4 Hosts and Targets, SKY

Computer, Inc., Chelmsford, MA.

Weiderman, N. H., and N. I. Kamenoff, 1992, "Hartstone Uniprocessor Benchmark:

Definitions and Experiments for Real-Time Systems," Journal of Real-Time Systems, Vol. 4,

pp. 353-382.

Wheat, S. R., R. Riesen, A. B. Maccabe, D. W. van Dresser, T. M. Stallcup, 1994, "PUMA:

An Operating System for Massively Parallel Systems," Proceedings of the Twenty-Seventh

Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press,

pp. 56-65.

Zima, H., and B. Chapman, 1990, Supercompilers for Parallel and Vector Computers, ACM

Press, New York, NY.

63

Rome Laboratory

Customer Satisfaction Survey

RL-TR-

Please complete this survey, and mail to RL/IMPS,
26 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and
feedback regarding this technical report will allow Rome Laboratory
to have a vehicle to continuously improve our methods of research,
publication, and customer satisfaction. Your assistance is greatly
appreciated.
Thank You

Organization Name: (Optional)

Organization POC: (Optional)

Address:

1. On a scale of 1 to 5 how would you rate the technology
developed under this research?

5-Extremely Useful 1-Not Useful/Wasteful

Rating

Please use the space below to comment on your rating. Please
suggest improvements. Use the back of this sheet if necessary.

2. Do any specific areas of the report stand out as exceptional?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

3. Do any specific areas of the report stand out as inferior?

Yes No

If yes, please identify the area(s) , and comment on what
aspects make them "stand out."

4. Please utilize the space below to comment on any other aspects
of the report. Comments on both technical content and reporting
format are desired.

«U.S. GOVERNMENT PRINTING OFFICE: 1995-710-126-20055

MISSION

OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportabilrty;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

