
RL-TR-95-143
Final Technical Report
August 1995

GENERIC TOOLS FOR
TRANSPORTATION PLANNING
AND SCHEDULING

Kestrel Institute

% jAN 2 4 19961 lj

* >.

Sponsored by
Advanced Research Projects Agency
ARPA Order No. 7730 19960122 065

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or
implied, of the Advanced Research Projects Agency or the U.S. Government.

ßii-D a •^v QüiLirrs? arepiascTEK) i

Rome Laboratory
Air Force Materiel Command

Griff iss Air Force Base, New York

(PA) aTndS
is

re^2a
ablee:: "I^tLnll tchnT iTf^ ^ "*"" °ffi"

RL-TR-95-143 has been reviewed and is approved for publication.

APPROVED: W- V ^4tyr^h
JOHN' F. LEMMER
Project Engineer

FOR THE COMMANDER:

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

mailing Ust or If th^HH " " ?°U "'^ C° ^ remOVed fr°m the Rome Laboratory
please notifC RT (^r***** " n° l0nger ^P1^** by your organization,
a' current mfLiig

(lis
C
t
3.CA) GrifflSS **» " 13441' ThiS Wil1 *Ssist - 1" maintaining

Accesion For

GENERIC TOOLS FOR TRANSPORTATION
PLANNING AND SCHEDULING

Douglas R. Smith
Eduardo Parra

Stephen J. Westfold

NTIS CRA&I
DTIC TAB
Unannounced
Justification

By
Distribution /

Availability Codes

Dist

B±

Avail and/or
Special

Contractor: Kestrel Institute
Contract Number: F30602-91-C-0043
Effective Date of Contract: 07 Mar 1991
Contract Expiration Date: 30 September 1994
Short Title of Work: Generic Tools for Transportation

Planning and Scheduling
Period of Work Covered: Mar 91 - Sep 94

Principal Investigator:
Phone:

Douglas R. Smith
(415) 493-6871

RL Project Engineer:
Phone:

John F. Lemmer
(315) 330-3655

Approved for public release; distribution unlimited.

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was
monitored by John F. Lemmer, RK (C3CA), 525 Brooks Rd,
Griffiss AFB NY 13441-4505.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Pubic rapormg burdan ft» th* eclao^ of rtcrmaDan ■ »«Urnatad to avaragal hour par moor»«, ridudnQ the a™ for wining nauuOiona, aaard-ing axaong data sou-cas.
gap^TTgaräiia»taia>jfr«>dat»r«»xaKl,ar*oaTT)aair^andr«vawi^
COHOCTI of HUMIMUUH rdudVig aiujaaUiai for raduono.tHa burdan, to W«r*ieJon Haadquartars Sarvteac, Dtactoratafor Hum lion Operation« and Reports, 1215 Jaffarson
D«v» HffMny, SutalZH Art-pun, VA 22202-4302, md to ttr Offloi of Managamart and Budgat. Paperwork RaoVxBon Prc|«oUri704-01 et^ WaariiTg^ DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
August 1995

a REPORT TYPE AND DATES COVERED
Final Mar 91 - Sep 94

4. TITLE AND SUBTITLE

GENERIC TOOLS FOR TRANSPORTATION PLANNING AND
SCHEDULING

& AUTHOR(S)

Douglas R. Smith, Eduardo A. Parra, and Stephen J. Westfold

5. FUNDING NUMBERS

C - F30602-91-C-0043
PE - 62301E
PR - G730
TA - 00
WU - 11

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)

Kestrel Institute
3260 Hillview Ave
Palo Alto CA 94304

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)
Advanced Research Projects Agency
3701 North Fairfax Drive Rome Laboratory (0CPC)
Arlington VA 22203-1714 25 Electronic Pky

Griffiss AFB NY 13441-4505

a PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-95-143

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: John F. Lemmer/C3CA/(315) 330-3655

12a. DISTRIBUnON/AVAILABlUTY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

1 a ABSTRACT(Manrrun 200 word«)

This report describes our research on transportation planning and scheduling supported
by the ARPA/Rome Lab Planning Initiative (ARPI). The main goal of this project was to
develop generic tools to support the construction of flexible, high-performance
planning and scheduling software. Our technical approach is based on program
transformation technology that allow the systematic machine-supported development of
software from requirement specifications. The development process can produce highly
efficient code along with a proof of the code's correctness.

We have used KIDS (Kestrel Interactive Development System) to derive extremely fast and
accurate transportation schedulers from formal specifications. As test data, we use
strategic transportation plans that are generated by US government planners. A typical
problem with 10,000 movement requirements takes the derived scheduler 1-3 minutes to
solve compared with 2.5 hours for a deployed feasibility estimator (JFAST) and 36 hours
for deployed schedulers (FLOGEN, ADANS). The computed schedules use relatively few
resources and satisfy all specified constraints. The speed of this scheduler is due to
the synthesis of strong constraint checking and constraint propagation code.

14. SUBJECT TERMS
Strategic transportation planning, Transportation scheduling,
Formal specification, Planning, Scheduling software

17. SECURrTY CLASSIFICATION
OF REPORT

UNCLASSIFIED
NSN 754&01-280-5600

1a SECURITY CLASSIFICATION
OF THIS PAGE

UNCT.ASSTFTFT)

19. SECURITY CLASSIFICATION
OF ABSTRACT

T1WP.T.ASSTFTF.T1

15. NUMBER OF PAGES

114
1 a PRICE CODE

20. LIMITATION OF ABSTRACT

ITT.
Standard Form 298 ifl« 2 991
Prascrbad by ANSI Sid Z39-i *
296-102

Contents

1 Executive Summary 1

2 Introduction 2

3 Summary of Results 4

4 KIDS model of program development 6

5 Specifying a Scheduler ^

5.1 What is Scheduling? 7

5.2 Strategic Transportation Scheduling 8

5.3 (Re-)Formulating Domain Theories for Transportation Scheduling 10

5.4 Formal Specification of a Scheduler 12

6 Synthesizing a Scheduler 13

6.1 Approach 13

6.1.1 Problem Theories 13

6.1.2 Algorithm Theories 14

6.2 Synthesizing a Scheduler 14

6.2.1 Global Search Theory 15

6.2.2 Pruning Mechanisms 1?

6.2.3 Cutting Constraints and Constraint Propagation 18

6.2.4 Constraint Relaxation 26

6.2.5 Using KIDS - • • - 26

6.3 KTS - Strategic Transportation Scheduling 27

6.4 ITAS - In-Theater Airlift Scheduler 28

7 Classification Approach to Algorithm Design 29

7.1 Technical Foundations - Theories . 29

7.2 Refinement Hierarchy and the Ladder Construction 29

7.3 Constructing Theory Morphisms 30

8 Concluding Remarks 34

References **o

A Coordinating Resource-Constrained Planning in Large Organizations A-l
i

List of Figures

1 Advanced Development Environment for Planning and Scheduling Software . 3

2 Reformulating a Scheduling Specification 11

3 Global Search Theory 16

4 Global Search Subspace and Cutting Constraints 19

5 Pruning and Constraint Propagation 20

6 Global Search Program Theory 22

7 KTS Scheduling Statistics 27

8 Refinement Hierarchy of Algorithms 31

9 Classification Approach to Design 32

ii

1 Executive Summary

This report describes our research, on transportation planning and scheduling supported by
the ARPA/Rome Lab Planning Initiative (ARPI). The main goal of this project was to
develop generic tools to support the construction of flexible, high-performance planning and
scheduling software. Our technical approach is based on program transformation technology
which allows the systematic machine-supported development of software from requirement
specifications. The development process can produce highly efficient code along with a proof
of the code's correctness.

Our approach to developing scheduling software involves several stages. The first step is to
develop a formal model of the transportation scheduling domain, called a domain theory.
Second, the constraints, objectives, and preferences of a particular scheduling problem are
stated within a domain theory as a problem specification. Finally, an executable scheduler
is produced semi-automatically by applying a sequence of transformations to the problem
specification. The transformations embody programming knowledge about algorithms, data
structures, program optimization techniques, etc. The result of the transformation process
is executable code that is consistent with the problem specification.

The U.S. Transportation Command and the component service commands use a relational
database scheme called a TPFDD (Time-Phased Force and Deployment Data) for specifying
the transportation requirements of an operation, such as Desert Storm or the Somalia relief
effort. We developed a domain theory of TPFDD scheduling defining the concepts of this
problem and developed laws for reasoning about them. A program transformation system
called KIDS (Kestrel Interactive Development System) was used to derive and optimize a
variety of global search scheduling algorithms that perform constraint propagation [37]. The
resulting code, generically called KTS (Kestrel Transportation Scheduler), has been run on a
variety of TPFDDs generated by planners at USTRANSCOM and other sites. With one such
TPFDD problem, KTS was able to schedule over 15,000 individual movement requirements
in about 5 minutes. The schedule used relatively few resources and satisfied all specified
constraints. KTS is orders of magnitude faster than any other TPFDD scheduler known to
us.

In 1994 we began to develop a scheduler to support PACAF (Pacific Air Force) at Hickham
AFB, Honolulu which is tasked with in-theater scheduling of a fleet of 26 C-130 cargo aircraft
in the Pacific region. Several variants of a theater scheduler (called ITAS for In-Theater
Airlift Scheduler) have been installed at PACAF, and more are planned. ITAS runs on an
Apple Powerbook laptop computer which makes it attractive both for field and command
center operations. ITAS can currently produce ATOs (Air Tasking Orders) based on the
schedules that it generates. The most recent version simultaneously schedules the following
classes of resources: (1) aircraft, (2) aircrews and their duty day cycles, (3) ground crews for
unloading, and (4) ramp space at ports.

2 Introduction

This report describes our research, on the transformational development of transportation
plans and schedules. Our approach to developing scheduling software involves several stages.
The first step is to develop a formal model of the transportation scheduling domain, called a
domain theory. Second, the constraints, objectives, and preferences of a particular schedul-
ing problem are stated within a domain theory as a problem specification. Finally, an exe-
cutable scheduler is produced semi-automatically by applying a sequence of transformations
to the problem specification. The transformations embody programming knowledge about
algorithms, data structures, program optimization techniques, etc. The result of the trans-
formation process is executable code that is consistent with the given problem specification.
Furthermore, the resulting code can be extremely efficient.

Transportation scheduling tools currently used by the U.S. government are based on models
of the transportation domain that few people understand [11]. Consequently, users often do
not trust that the scheduling results reflect the characteristics of the current situation. Our
approach tries to address this issue by making the domain model and scheduling problem
explicit and clear. If a scheduling situation arises which is not treated by existing scheduling
tools, the user can specify the problem and generate a situation-specific scheduler.

One of the benefits of a transformational approach to scheduling is the synthesis of specialized
constraint management code. Previous systems for performing scheduling in AI (e.g. [13,12,
48, 47]) and Operations Research [2, 24] use constraint representations and operations that
are geared for a broad class of problems, such as constraint satisfaction problems or linear
programs. In contrast, transformational techniques can derive specialized representations for
constraints and related data, and also derive efficient specialized code for constraint checking
and constraint propagation.

Figure 1 describes our vision of an advanced environment for producing planning/scheduling
software. Briefly, the idea is to rapidly develop a situation-specific domain model and
problem specification using a knowledge-elicitation system, and then to synthesize high-
performance planning and scheduling tools that are specialized to the current situation. The
majority of users' interaction would be codifying the domain theory and specification of the
current situation, to aid in synthesizing a customized planning/scheduling tool.

We now step through the process in more detail. Several classes of users axe involved in the
construction and use of a scheduling system.

One class of users, who include domain experts and specialists in model construction, interact
with a knowledge elicitation system to help classify the features of the situation and select,
compose, extend, and refine, (possibly abstract) models from a preexisting library of domain
models. The result is a model and problem specification tailored to the details of the current
situation (as closely as expertise and time permit).

Another class of users, who specialize in software design and formal modeling of programming
knowledge, interact with a planning/scheduling synthesis system to develop code from the
problem specification. The interaction involves composing components from a library of
reusable parts, or selecting and applying representations of abstract programming knowledge

Users/modes
of interaction

Tools Knowledge
Libraries

Domain expert/^,
model builder

Model
construction

system

domain model &
problem specification

Software
designer

Domain model
library

End
user

problem
data

Programming
Knowledge

Software Architectures
Algorithm Theories

(global search,
divide-and-conquer
constraint propagation,...)

Data Structure Refinements
Code Optimization Rules
Code Modules
Hardware Architectures

Solutions

Figure 1: Advanced Development Environment for Planning and Scheduling Software

about algorithms, data structures, code optimization techniques, planning and scheduling-
specific design strategies, and so on. Most of the design process is automated, with only a
few high-level design decisions made by the developer. Another interactive task for this user
is the evolution of the programming knowledge-base itself.

The output of the synthesis system is executable planning/scheduling code which can then
be embedded in a planning/scheduling system and executed by an end-user.

There is a feedback loop implicit in the figure. The end user/domain expert using the
synthesized code may detect missing constraints, or have preferences or other information
not accounted for in the code. This information is fed back to the model-building stage
and the process iterates. The fact that each synthesis step preserves consistency between
problem specification and generated code means that maintenance and evolution back up to
the specification/domain model level, not the code-level as in current practice.

We developed an approximation to this vision in the current project, based on the KIDS
system, and demonstrated its feasibility.

In Sections 3 through 5 we present KIDS and the process of developing domain theories,
specifications, and code for scheduling problems. Section 7 describes fundamental work un-
derlying our technical approach. The Appendix describes work performed under subcontract
to ADS that focused on issues in planning and resource allocation.

3 Summary of Results

• TPFDD Scheduling - The U.S. Transportation Command and the component service
commands use a relational database scheme called a TPFDD (Time-Phased Force and
Deployment Data) for specifying the transportation requirements of an operation, such
as Desert Storm or the Somalia relief effort. We developed a domain theory of TPFDD
scheduling defining the concepts of this problem and developed laws for reasoning about
them. KIDS (Kestrel Interactive Development System) was used to derive and optimize
a variety of global search scheduling algorithms that perform constraint propagation
[37]. The resulting code, generically called KTS (Kestrel Transportation Scheduler),
has been run on a variety of TPFDDs generated by planners at USTRANSCOM and
other sites.

We compared the performance of KTS with several other TPFDD scheduling systems:
JFAST, FLOGEN, DITOPS, and PFE. We do not have access to JFAST and FLOGEN,
but these are (or were) operational tools at AMC (Airlift Mobility Command, Scott
AFB). According to [11] and David Brown (retired military planner consulting with
the Planning Initiative), on a typical TPFDD of about 10,000 movement records,
JFAST takes several hours and FLOGEN about 36 hours. KTS on a TPFDD of this
size will produce a detailed schedule in one to three minutes. So KTS seems to be a
factor of about 25 times faster than JFAST and over 250 times faster than FLOGEN.
The currently operational ADANS system reportedly runs at about the same speed as
FLOGEN. KTS is orders of magnitude faster than any other TPFDD scheduler known
to us.

•

•

•

Comparison with PFE: On the MEDCOM-SITUATION from the CPE, KTS is about
5 times faster than PFE and produces a SEA schedule with only 14% of the delay
of the PFE schedule. KTS also produces a far more accurate estimate of the planes
needed to handle the AIR movements, since PFE is only estimating feasibility whereas
KTS produces a detailed schedule.

KTS system

The KTS code is embedded in a CLIM interface adapted from the PFE interface built
by BBN. It allows selecting a variety of different TPFDDs to schedule, real-time editing
of resource models and situation models, dynamic rescheduling, and graphical tools for
browsing and analyzing the resulting schedules (e.g. Unit and Resource Gantt charts,
closure graphs, statistics, etc.). This code has been available via ftp to ARPI projects
since 1993.

Contributions to the Planning Initiative

We integrated a standalone version of KTS into the CPE. KTS is an alternate deploy-
ment "simulator" to PFE and takes the same input data (geographical information,
deployment plan, and situation). The results of the scheduling process (feasibility anal-
ysis) are written back to the KS for use by the planning components in case replanning
is needed. Currently, this analysis object contains the same kind information as PFE
(e.g. FAD, SLD, etc.). Results may also be displayed on the screen using charts sim-
ilar to those available in the CDART system. Comparison between KTS and PFE is
detailed in Section 6.3.

Other Pl-related contributions include participation on the SWAT-B team and other
committees, contributions to the IEEE Expert special issue on the Planning Initiative,
presentations at workshops, and site visits to USTC, AMC, McGuire AFB, and PACAF
(Hickham AFB).

Theater Scheduling

In 1994 we began to develop a scheduler to support PACAF (Pacific Air Force) at
Hickham AFB, Honolulu which is tasked with in-theater scheduling of a fleet of 26
C-130 cargo aircraft in the Pacific region. We developed (and are continuing to evolve)
a theory of theater transportation scheduling. Several variants of a theater scheduler
(called ITAS for In-Theater Airlift Scheduler) have been developed to date, and more
are planned. The interface to ITAS and integration with a commercial database pack-
age have been developed by BBN. ITAS runs on an Apple Powerbook laptop computer.
The laptop platform makes it attractive both for field and command center operations.
ITAS can currently produce ATOs (Air Tasking Orders) based on the schedules that
it generates.

The ITAS schedulers have emphasized flexibility and rich constraint modeling. Versions
of ITAS were installed at PACAF in August 1994, September 1994, and February 1995.
The most recent version simultaneously schedules the following classes of resources: (1)
aircraft, (2) aircrews and their duty day cycles, (3) ground crews for unloading, and
(4) ramp space at ports.

One of the reasons for the interest of PACAF in this project, is to capture some of the
knowledge and experience of skilled personnel before they retire or are rotated.

• Synthesis of constraint propagation code

A key technical achievement of this project was discovering and implementing tech-
nology for generating efficient constraint propagation code. The speed of the KTS
schedulers derives from the extremely fast checking and propagation of constraint in-
formation at every node of the runtime search tree. Whereas some knowledge-based
approaches to scheduling will search a tree at the rate of several nodes per second, our
synthesized schedulers search several hundred thousand nodes per second.

Briefly, the idea is to derive necessary conditions on feasibility of a candidate sched-
ule. These conditions are called cutting constraints. The derived cutting constraints
for a particular scheduling problem are analyzed to produce code that iteratively fixes
violated constraints until the cutting constraints are satisfied. This iterative process
subsumes the well-known processes of constraint propagation in the AI literature and
the notion of cutting planes from the Operations Research literature [40, 46]. Con-
straint propagation is discussed in more detail in Section 6.2.3.

• Classification approach to design

We developed a new approach to the problem of how to construct refinements of spec-
ifications formally and incrementally. The idea is to use a taxonomy of abstract design
concepts, each represented by a design theory. An abstract design concept is applied by
constructing a specification morphismfrom its design theory to a requirement specifica-
tion. Procedures for computing colimits and for constructing specification morphisms
provide computational support for this approach. Although the classification approach
applies to the incremental application of any kind of knowledge formally represented
in a hierarchy of theories, our work mainly focused on a hierarchy of algorithm design
theories and its applications to logistical applications [39, 38]. This technique enable us
to integrate at a deep semantic level problem-solving methods from Computer Science
(e.g. divide-and-conquer, global search), Artificial Intelligence (e.g. heuristic search,
constraint propagation, neural nets), and Operations Research (e.g. Simplex, integer
programming, network algorithms). Classification is discussed in more detail in Section
7.

4 KIDS model of program development

KTDS is a program transformation system - one applies a sequence of consistency-preserving
transformations to an initial specification and achieves a correct and hopefully efficient pro-
gram [42]. The system emphasizes the application of complex high-level transformations that
perform significant and meaningful actions. Prom the user's point of view the system allows
the user to make high-level design decisions like, "design a divide-and-conquer algorithm for
that specification" or "simplify that expression in context". We hope that decisions at this
level will be both intuitive to the user and be high-level enough that useful programs can be
derived within a reasonable number of steps.

The user typically goes through the following steps in using KTDS for program development.

1. Develop a domain theory - An application domain is modeled by a domain theory (a
collection of types, operations, laws, and inference rules). The domain theory specifies
the concepts, operations, and relationships that characterize the application and sup-
ports reasoning about the domain via a deductive inference system. Our experience
has been that distributive and monotonicity laws provide most of the laws that are
needed to support design and optimization of code. KIDS has a theory development
component that supports the automated derivation of various kinds of laws.

2. Create a specification - The user enters a problem specification stated in terms of the
underlying domain theory.

3. Apply a design tactic - The user selects an algorithm design tactic from a menu and
applies it to a specification. Currently KTDS has tactics for simple problem reduc-
tion (reducing a specification to a library routine) [33], divide-and-conquer [33], global
search (binary search, backtrack, branch-and-bound) [34], problem reduction gener-
ators (dynamic programming, general branch-and-bound, and game-tree search algo-
rithms) [36], and local search (hillclimbing algorithms) [23].

4. Apply optimizations - The KTDS system allows the application of optimization tech-
niques such as expression simplification, partial evaluation, finite differencing, case
analysis, and other transformations [42]. The user selects an optimization method
from a menu and applies it by pointing at a program expression. Each of the opti-
mization methods are fully automatic and, with the exception of simplification (which
is arbitrarily hard), take only a few seconds.

5. Apply data type refinements - The user can select implementations for the high-level
data types in the program. Data type refinement rules carry out the details of con-
structing the implementation [5].

6. Compile - The resulting code is compiled to executable form. In a sense, KIDS can be
regarded as a front-end to a conventional compiler.

Actually, the user is free to apply any subset of the KIDS operations in any order - the above
sequence is typical of our experiments in algorithm design. A new system, called Specware,
is currently under construction at Kestrel as a successor to KTDS. Specware is based on
concepts of higher-order algebraic specifications, morphisms, and categorical constructions
[20, 38, 39, 50].

5 Specifying a Scheduler

5.1 What is Scheduling?

The essential notion of scheduling is that certain activities are assigned to resources over
certain time intervals. Various constraints on the assignments must be satisfied and certain
measures of the cost or "goodness" of the assignment are to be optimized.

A domain theory for scheduling defines the basic concepts of scheduling and the laws for
reasoning about the concepts. After a review of the relevant literature (e.g. [12]) we have
identified the following general components of a scheduling domain theory.

1. Activities - A model of the activities can include their internal structure and charac-
teristics, hierarchies of activity abstractions, and various operations on activities.

2. Resources - A model of the resources can include their internal structure and charac-
teristics, hierarchies of resource abstractions, and various operations on resources.

3. Time - A time model can include a calculus of time-points or time-intervals [1, 21].

4. Constraints - A constraint model includes the language for stating constraints and a
calculus for reasoning about them. Several classes of constraints commonly arise in
practice. The most common are ■precedence constraints (which state that one activity
must precede another) and capacity constraints (which state bounds on the capacities
of resources). A constraint calculus is used to analyze constraints and to propagate
the effects of new constraints through a given constraint set. Fox et al. also identify
physical constraints, organizational constraints, preferences, enablement constraints,
and availability constraints.

5. Objectives - Typically we seek to minimize the cost of a schedule. Cost can be measured
in terms of time to completion, work-in-progress, total cost of consumed resources, and
so on.

6. Scheduling problem - Using the above concepts we can formulate a variety of scheduling
problems. A reservation is a triple consisting of an activity, a resource, and a time
interval. Generally, a schedule is a set of reservations that satisfy a collection of
constraints and optimize (or produce a reasonably good value of) the objective.

{ {activity, resource, time interval) | constraints }.

Many scheduling problem intancess are overconstrained - there are too few resources to
schedule the activities and satisfy all constraints. Usually overconstrained problems are
dealt with by relaxing the constraints and trying to satisfy as many of the constraints as
possible. The usual method is to move constraints into the objective function. This entails
reformulating the constraint so that it yields a quantitative measure of how well it has been
satisfied. See further discussion in Section 6.2.4.

5.2 Strategic Transportation Scheduling

Transportation scheduling specializes the above general notion of scheduling: activities cor-
respond to movement requirements and resources correspond to transportation assets such
as planes, ships, and trucks.

A typical movement requirement has the following information:

move—type : movement—type *-* BULK—MOVEMENT
quantity : integer ~ 2 (STONS - Short TONS)
release-date : iime i-+ 0 (seconds from C-date)
due-date : time >-► 86400 (seconds from C-date)
poe : port *-* UHHZ
pod : port |-+ VRJT
distance : integer •-+ 5340 (nautical miles)
mode : symbol *-+ AIR

Here quantity for AIR movements is in short tons (STONs); the release and due dates are
in seconds starting from C-DATE; poe (port of embarkation) and pod (port of debarkation)
are »iven by code names; distance is in nautical miles, and the transportation mode is either
AIR or SEA. A collection of movement requirements is called a TPFDD (Time-Phased Force
Deployment Data).

Resources are characterized by their capacities (both passenger (PAX) and cargo capacities),
and travel rate in knots.

As an example, we used a small dataset extracted from a TUNISIA TPFDD created at
AFSC. This problem instance involves 480 movement requirements from 20 airports and 3
seaports to 8 airports and 2 seaports. Available air resources include KClOs, C-141s, C-5s
and sea resources include tankers (small, medium, and large), RO-ROs, LASHs, sea barges,
containerships, and breakbulks.

Eleven constraints characterize a feasible schedule for a simple TPFDD problem:

1. Consistent POE and POD - The POE and POD of each movement requirement on a
given trip of a resource must be the same.

2. Consistent Resource Class - Each resource can handle only some movement types. For
example, a C-141 can handle bulk and oversize movements, but not outsize movements.

3. Consistent PAX and Cargo Capacity - The capacity of each resource cannot be ex-
ceeded.

4. Consistent Release Time - The start time of a movement (its Available to Load Date
(ALD)) must not precede its release time.

5. Consistent Arrival time - The finish time of a trip must not precede the Earliest Arrival
Date (EAD) of any of the transported movement requirements.

6. Consistent Due time - The finish time of a movement (its Latest Arrival Date (LAD))
must not be later than its due time.

7. Consistent Trip Separation - Movements scheduled on the same resource must start
either simultaneously or with enough separation to allow for return trips. The inher-
ently disjunctive and relative nature of this constraint makes it more difficult to satisfy
than the others.

8. Consistent Resource Use - Only the given resources axe used.

9. Completeness - All movement requirements must be scheduled.

In the next section we discuss the fonnalization of the above concepts. This problem does
not consider certain aspects of transportation scheduling, such as aircrew scheduling, ground
crew scheduling, maintenance, resource utilization rates, load/unload rates, port character-
istics, etc. Each of these problem features have been handled in various more elaborate
specifications.

5.3 (Re-)Formulating Domain Theories for Transportation Schedul-
ing

In the most general view, scheduling is the construction of a set of reservations that satisfy
given feasibility constraints and achieve "good" values of an objective function. Formally,
the schedule is a relation, or even a simple relational database. A formal domain theory
based on this view is given in Appendix A in [41]. The theory provides precise definitions
for the concepts, constraints, objectives, and laws used to model this application domain.

This relational view however is not always the most efficient for particular problems. We
may be able to reformulate the problem, incorporating constraints and objectives, yielding
a problem statement that is more amenable to efficient problem-solving. La the following we
present a series of transformations that reformulate the domain theory.

In most transportation problems, each movement requirement corresponds to a unique reser-
vation - it is scheduled exactly once with a unique resource and start time. We can make this
functional dependence explicit by treating a schedule as a map from movement requirements
to resource/time tuples. In Figure 2 we show the effect of this reformulation on the schedule
datatype.

Next the trip separation constraint suggests that this map is many-to-one, since several move-
ments can take place simultaneously on the same resource. Inverting the map will induxe a
partition on movement requirements. In terms of the transportation domain, inverting the
map will make simultaneous movements explicit and thereby introducing the concept of a
trip and the manifest of a trip.

Next we notice that the domain of a schedule map is a product of two types and these types
have quite different properties (algebras): resources axe a discrete set and time is (effectively)
continuous and linear. The linear nature of time can be exploited by currying (to separate
the two domain datatypes) and transforming the submap (from time to manifest) to a
sequence, thereby making the linear structure of time explicit and introducing the concept
of an itinerary.

This series of reformulations has dramatic effect on the trip separation constraint. In the
initial formulation (in terms of reservations) this constraint involves 0(n2) binary constraints
between the n movements scheduled on a given resource. In the final formulation (in terms

10

{ {movement-record, resource, start-time > } a schedule represented as
a set of reservations

reify the functional dependence

{ movement-record | >■ < resource, start-time) }

invert the map

{ (resource, start-time > h ■^ { movement-record } } the notion of "trip" and
"manifest" introduced

Curry

{ resource I >■ { start-time | ^ { movement-record } } }

exploit linear order of time

{ resource \ >■ [< start-time, { movement-record } >] }

Figure 2: Reformulating a Scheduling Specification

11

of a linearized inverse map) this constraint is reduced to 0(n) binary constraints between
the start times of consecutive trips.

For example, on a transportation problem involving over 15,000 movement requirements ob-
tained from the U.S. Transportation Command, the scheduler produces a complete feasible
schedule in about five minutes. A straightforward constraint network formulation based on
this problem data would have over 31,000 variables and 120,125,000 constraints. Incorporat-
ing some of the structure of the problem, such as the linearity of time, allows reformulating
this to a system of about 108,700 constraints. However, this is still a such large formulation
that it seems an implicit representation is necessary to find feasible schedules efficiently.

The final reformulation is given in Appendix B in [41] and is the theory actually used to
derive a scheduler.

5.4 Formal Specification of a Scheduler

The informal specification above can be expressed as follows:

function TS
(mvrs : seq(movement-record),
assets : seq(resource-name))

returns (sched : map(resource-name, seq(trip)) |
Consistent-POE (sched)
A Consistent-POD(sched)
A Consistent-Release-Times (sched)
A Consistent-Arrival-Times(sched)
A Consistent-Due-Times (sched)
A Consistent-Trip-Separation(sched)
A Consistent-Pax-Resource-Capaäty(sched)
A Consistent-Cargo-Re30urce-Capaciiy(sched)
A Consistent-Movement-Type-and-Resource (sched)
A Avaüable-ResouTce8-Used(assets,sched)
A Schedukd-mvrs(sched) = seq-to-3et(mvrs))

This specifies a function called TS that takes two inputs, a sequence of movement records
called mvrs and a sequence of resources called assets. The function returns a schedule, which
has type map(resource-*iame, seq(trip)) and must satisfy the 11 conjoined constraints. Each
constraint is defined in the domain theory; for example:

function CONSISTENT-DUE-TIMES
(sched : schedule) : boolean
= V(rsrc : resource-name, trp : integer, mvr : movement-record)

(rsrc €• domain(sched)

12

A trp 6 [l..size{sched(rsrc))\
A mvr € sched(rsrc){trp).manifest

sched(rsrc)(trp). start-time
< (mvr.due-date - sched(rsrc)(trp).trip-duration)

This predicate expresses the constraint that every scheduled movement-record arrives before
its due date.

6 Synthesizing a Scheduler

6.1 Approach

6.1.1 Problem Theories

We briefly review some basic concepts from algebra and logic. A theory is a structure
(S, E, A) consisting of a set of sort symbols S, operations over those sorts 2, and axioms A
to constrain the meaning of the operations. A theory morphism [theory interpretation) maps
from the sorts and operations of one theory to the sorts and expressions over the operations
of another theory such that the image of each source theory axiom is valid in the target
theory. A parameterized theory has formal parameters that are themselves theories [lo].
The binding of actual values to formal parameters is accomplished by a theory morphism.
Theory T2 = (S2, 22, A2) extends (or is an extension of) theory Tx = (Si, Ei, Ax) if Sx C S2,
Si C E2, and Ax C A2.

Problem theories define a problem by specifying a domain of problem instances or inputs and
the notion of what constitutes a solution to a given problem instance. Formally, a problem
theory B has the following structure.

Sorts D,R
Operations I: D —*■ Boolean

0 : D x R-+ Boolean

The input condition I{x) constrains the input domain D. The output condition 0{x,z)
describes the conditions under which output domain value z € R is a. feasible solution with
respect to input x € D. Theories of booleans and sets axe implicitly imported. Problems of
finding optimal feasible solutions can be treated as extensions of problem theory by adding
a cost domain, cost function, and ordering on the cost domain.

13

For example, the problem of finding feasible schedules can be presented as a problem theory
via a theory interpretation into the domain theory of transportation schedtding:1

D H-+ seq(movement-^record) x seq(resource)
I !-► X(Mvrs, resources) true
R i-t- map(resource, seq(trip))
0 t-H- \(Mvrs, resources, sched)

Consistent—POE(sched)
A Consistent-POD(sched)
A Consistent—Release—Times(sched)
A Consistent—Arrival—Times(sched)
A Consistent—Due—Times(sched)
A Consistent—Trip-Separation(sched)
A Consistent—Pax—Resource-Capacity (sched)
A Consistent—Cargo—Resource—Capacity (sched)
A Consistent—Movement—Type—and—Resource(sched)
A Available-Resources-ZJsed(resources, sched)
A Scheduled-mvrs(sched) = seq—to-set(mvrs)

6.1.2 Algorithm Theories

An algorithm theory represents the essential structure of a certain class of algorithms A
[43]. Algorithm theory A extends problem theory B with any additional sorts, operators,
and axioms needed to support the correct construction of an A algorithm for B. A theory
morphismfrom the algorithm theory into some problem domain theory provides the problem-
specific concepts needed to construct an instance of an A algorithm.

For example, global search theory (presented below in Section 6.2.1) extends problem theory
with the basic concepts of backtracking: subspace descriptors, initial space, the splitting and
extraction operations, filters, and so on. A divide-and-conquer theory would extend problem
theory with concepts such as decomposition operators and composition operators [33, 36].

6.2 Synthesizing a Scheduler

There are two basic approaches to computing a schedule: local and global. Local methods
focus on individual schedules and similarity relationships between them. Once an initial
schedule is obtained, it is iteratively improved by moving to neighboring structurally similar
schedules. Repair strategies [53, 25, 4, 31], and fixpoint iteration [8], and linear programming
algorithms are examples of local methods.

Global methods focus on sets of schedules. A feasible or optimal schedule is found by
repeatedly splitting an initial set of schedules into subsets until a feasible or optimal schedule

1The domain theory includes definitions for the types of movement-record, resource, trip (a record com-
prised of start-time and manifest), and schedule (a map from resource to sequence of trip).

14

can be easüy extracted. Backtrack, heuristic search, and branch-and-bound methods are
all examples of global methods. We explore the application of global methods. In the
following subsections we formalize the notion of global search method and show how it can
be applied to synthesize a scheduler. Other projects taking a global approach include ISIS
[13], OPIS/DITOPS [47], and MicroBoss [28] (ail at CMU).

6.2.1 Global Search Theory

The basic idea of global search is to represent and manipulate sets of candidate solutions.
The principal operations are to extract candidate solutions from a set and to 3pht a set into
subsets. Derived operations include various ßters which are used to eliminate sets containing
no feasible or optimal solutions. Global search algorithms work as follows: starting from an
initial set that contains all solutions to the given problem instance, the algorithm repeatedly
extracts solutions, splits sets, and eliminates sets via filters until no sets remain to be split.
The process is often described as a tree (or DAG) search in which a node represents a set of
candidates and an arc represents the split relationship between set and subset. The filters
serve to prune off branches of the tree that cannot lead to solutions.

The sets of candidate solutions axe often infinite and even when finite they are rarely rep-
resented extensionaUy. Thus global search algorithms are based on an abstract data type
of intensional representations called space descriptors (denoted by hatted symbols). In ad-
dition to the extraction and splitting operations mentioned above, the type also includes
a predicate satisfies that determines when a candidate solution is in the set denoted by a
descriptor. Further, there is a refinement relation on spaces that corresponds to the subset
relation on the sets denoted by a pair of descriptors.

The various operations in the abstract data type of space descriptors together with problem
specification can be packaged together as a theory. Formally, abstract global search theory
(or simply gs-theory) Q is presented in Figure 3, where D is the input domain, R is the
output domain, I is the input condition, 0 is the output condition, R is the type of space
descriptors, / defines legal space descriptors, r and s vary over descriptors, top{x) is the
descriptor of the initial set of candidate solutions, Satiafits(z, r) means that z is in the set
denoted by descriptor r or that z satisfies the constraints that f represents, and Extract^ r)
means that z is directly extractable from r.

The relations Splü-Arg and Split-Constraint axe used to determine and perform splitting.
In particular, if Splü-Arg{x, r, c) then c is information that characterizes (or informs) one
branch of the split. Splü-Constramt{x,r,cJ) means that s results from incorporating
information c into the descriptor r (with respect to input x). Splü-Arg is used to control
the generation of children of a node in the search tree and Splü-Constramt is used to
specify one child. Split-Constraint can be thought of as a parameterized constraint whose
alternative arguments are supplied by Split—Arg.

The refinement relation fUs holds when I denotes a subset of the set denoted by r. Further,
R together with 3 forms a bounded semilattice. This structure will play a crucial role in
constraint propagation algorithms.

15

Spec Global-Search

Sorts D input domain
R output domain
R subspace descriptors
C splitting information

Operations
I: D —► boolean input condition
0 : D x R —► boolean input/output condition
I: D x A —► boolean subspace descriptors condition
Satisfies : Rx R-+ boolean denotation of descriptors
Split—Arg : D x C x R-+ boolean specifies arguments to split constraint
Split—Constraint :DxRxCxR-+ boolean parameterized splitting constraint
Extract :ÄxÄ-+ boolean extractor of solutions from spaces
$: D x R x R —► boolean cutting constraint
£ : D x R -+ boolean cutting constraint
3:DxRxR—* boolean refinement relation

top : D —► R initial space
bot: R inconsistent space

Axioms
GSO. All feasible solutions axe in the top space

I(x) A 0(x,z) ==>■ Satisfies(z,top(x))
GSl. All solutions in a space are finitely extractable

I{x) A /(x,r)
=> {Satisfies{z,r) «=>- 3(s) (Split'(x,rj) A Extract{z,s)))

GS2. Specification of Cutting Constraint
Satisfies^,?) A 0(x,z) ==► $(x,z,r)

GS3. Definition of Cutting Constraint on Spaces
£(r, r) <*=► V(z : R)(Sat{z, r) =►■ <S(x,z, r))

GS4. Definition of Refinement
r 3 i <=> V(z : R){Satisfies(zJ) =>• Satisfies(z,r))

GS5. (£, 3,n, *op, 6ot) is a bounded meet-semilattice with bat as universal lower bound.

end spec

Figure 3: Global Search. Theory

16

Note that all variables in the axioms are assumed to be universally quantified unless explicitly
specified otherwise. Axiom GSO asserts that the initial descriptor r0{x) is a legal descriptor.
Axiom GS1 asserts that legal descriptors split into legal descriptors and that Split induces
a well-founded ordering on spaces. Axiom GS2 constrains the denotation of the initial
descriptor — all feasible solutions are contained in the initial space. Axiom GS3 gives the
denotation of an arbitrary descriptor r — an output object z is in the set denoted by f if
and only if z can be extracted after finitely many applications of Split to f where

Splü'{x,rJ) *=> 3{k:Nat) Splitk{x,rJ)

and
Splü°{x,r,t) *=> r=t

and for all natural numbers Ar
Splük+l{x,r,t)

>—^ 3(| :R, i:C)(Split-Arg (x,r,i) A Split-Constraint(x,r,iJ) A Split* {xj,t)).

Axiom GS4 asserts that if f splits to I then r also refines to a; thus the refinement relation on
R is weaker than the split relation. We also need, the axioms that (Ä, 3, n) is a semilattice.
For simplicity, we write r 3 * rather than the correct 3 (*, r, 5); and similarly f n a.

For example, a simple global search theory of scheduling has the following form. Schedules
are represented as maps from resources to sequences of trips, where each trip includes earliest-
start-time, latest-start-time, port of embarkation, port of debarkation, and manifest (set of
movement records or ULNs + CINs + PINs from the TPFDD). The type of schedules has the
invariant (or subtype characteristic) that for each trip, the eaxliest-start-time is no later than
the latest-start-time. A partial schedule is a schedule over a subset of the given movement
records.

The initial (partial) schedule is just the empty schedule - a map from the available resources
to the empty sequence of trips. A partial schedule is extended by first selecting a movement
record mvr to schedule, then selecting a resource r, and then a trip t on r (either an existing
trip or a newly created one) - the triple (mvr, r, t) constitutes the information c of Spkt-Arg.
Splü-Constroint given (mur,r,<) creates an extended schedule that has mvr added to the
manifest of trip t on resource r. The alternative ways that a partial schedule can be extended
naturally gives rise to the branching structure underlying global search algorithms.

The formal version of this global search theory of scheduling can be inspected in the domain
theory in Appendix B in [41].

6.2.2 Pruning Mechanisms

When a partial schedule is extended it is possible that some problem constraints are violated
in such a way that further extension to a complete feasible schedule is impossible. In tree
search algorithms it is crucial to detect such violations as early as possible.

17

Pruning tests are derived in the following way. The test

3(z)(Satisfies(z,f) A 0{x,z)) (1)

decides whether there exist any feasible solutions that are in the space denoted by r. If
we could decide this at each node of our branching structure then we would have perfect
search - no deadend branches would ever be explored. In practice it would be impossible
or horribly complex to compute (1), so we rely instead on an inexpensive approximation to
it. In fact, if we approximate (1) by weakening it (deriving a necessary condition of it) we
obtain a sound pruning test. That is, suppose we can derive a test $(x, r) such that

3(sched) {Satisfies{z, r) A 0{x,z)) =► #(s,r)- (2)

By the contrapositive of (2), if ->$(x, f) then there are no feasible solutions in r, so we can
eliminate it from further processing. A global search algorithm will test $ at each node it
explores, pruning those nodes where the test fails.

More generally, necessary conditions on the existence of feasible (or optimal) solutions below
a node in a branching structure underlie pruning in backtracking and the bounding and
dominance tests of branch-and-bound algorithms [34].

It appears that the bottleneck analysis advocated in the constraint-directed search projects at
CMU [12, 28] leads to a semantic approximation to (1), but neither a necessary nor sufficient
condition. Such a heuristic evaluation of a node is inherently fallible, but if the approximation
is close enough it can provide good search control with relatively little backtracking.

To derive pruning tests for the strategic transportation scheduling problem, we instanti-
ate (1) with our definition of Satisfies and 0 and use an inference system to derive nec-
essary conditions. The resulting tests are fairly straightforward; of the 11 original fea-
sibility constraints, 7 yield pruning tests on partial schedules. For example, the partial
schedule must satisfy Consistent-POE, Consistent-POD, Consistent-Pax-Resource-Capacity,
Consistent-Cargo-Resource-Capacity, Consistent-Movement-Type-and-Resource, and Available-
Resources-Used. The reader may note that computing these tests on partial schedules is
rather expensive and mostly unnecessary - later program optimization steps will however
reduce these tests to fast and irredundant form. For example, the first test will reduce to
checking that when we place a movement record mvr on trip t, we check that the POE of
mvr and t are consistent.

For details of deriving pruning mechanisms for other problems see [34, 42, 43, 35].

6.2.3 Cutting Constraints and Constraint Propagation

Constraint propagation is a more general technique that is crucial for early detection of
infeasibility. We developed a general mechanism for deriving constraint propagation code
and applied it to scheduling.

Each node in a backtrack tree can be viewed as a data structure that denotes a set of
candidate solutions - in particular the solutions that occur in the subtree rooted at the node
(see Figure 4). Thus the root denotes the set of all candidate solutions found in the tree.

18

constraints

Figure 4: Global Search Subspace and Cutting Constraints

Pruning has the effect of removing a node (set of solutions) from further consideration. La
contrast, constraint propagation has the effect of changing the space descriptor so that it
denotes a smaller set of candidate solutions. The effect of constraint propagation is to spread
information through the subspace descriptor resulting in a tighter descriptor and possibly
exposing infeasibility. Pruning can be treated as a special case of propagation in which a
space is refined to descriptor that denotes the empty set of solutions.

Constraint propagation is based on the notion of cutting constraints which are necessary
conditions ^(x,z, r) that a candidate solution z satisfying r is feasible:

V(x:D,r:R,z: R)(Satisjies(z, f) A 0(x7z) => ¥(*,*, r)) (3)

See Figures 4 and 5. In order to get a test on spaces that decides whether $ has been
incorporated, we make one further definition:

«*, 0 V(z : R)(Satisfies{z, r) =» *(r,*,r)) (4)

The test £(ar, r) holds exactly when all candidate solutions in r satisfy \Er, and we say that f
satisfies £.

The key question at this point is: Given a descriptor r that doesn't satisfy <f, how can we
incorporate £ into r? The answer is to find the greatest refinement of r that satisfies £; we
say i incorporates £ into r if

i = max3{3 | r 3 3 A £(x, i)}. (5)

which asserts that i is maximal over the set of descriptors that refine s and satisfy £, with
respect to ordering 3- We want t to be a refinement of f so that all of the information in

19

prune off subspace
(contains no feasible
solutions)

feasible
solutions

/split \

© ®

Figure 5: Pruning and Constraint Propagation

f is preserved and we want i to be maximal so that no other information than r and £ is
incorporated into i.

The next question concerns the conditions under which Formula (5) is satisfiable. Assuming
that Ä is a semilattice, we can use variants of Tarski's fixpoint theorem (c.f. [8]):

Theorem If there is a function / such that

1. / is monotonic on R (i.e. s3t ==>■ f{x, S) 3 /(s, *))

2. / is deflationary (i.e. f3/(i,f))

3. / has fixed-points satisfying £ (i.e. f(x, r) = r <£=* £(z, r))

then (1) £ = ma:rg{£ | r 3 § A £(z,i)} exists
and (2) i is the greatest fixpoint of /; i.e. i can be computed by iteratively applying / to r
until a fixpoint is reached.

The challenge is to construct a monotonic, deflationary function whose fixed-points satisfy
£. A general construction in terms of global search theory can be sketched as follows. Let

20

The intent is to define / so that it has fixpoints exactly when t&x, r) holds. When £(x, r)
doesn't hold, then we know (by the definition of £ and the contrapositive of formula (3))
that

3(z : R)(Satisfies(z, f) A ->0{x,z))

i.e. there are some infeasible solutions in the space described by f. Ideally -^(x, r) is a
constructive assertion, so it provides information on which solutions are infeasible and how
to eliminate them. In place of the ellipsis above we require a new descriptor that refines
r (so / is decreasing on all inputs), allows / to be monotone, and eliminates some of the
infeasible solutions indicated by -^(x, r). In general it is difficult to see how to achieve this
end without assuming special structure to R and f.

We have identified some special cases for which an analytic procedure can produce the nec-
essary iteration function / from f. These special cases subsume our scheduliag applications
and many related Constraint Satisfaction Problems (CSP) problems. Suppose that the con-
straint f has the form

B(x,f)2r (6)

where B(x, r) is monotonic in r. We say that £ is a Horn-like constraint by generalization of
Horn clauses in logic. Notice that the occurrence of r on the right-hand side of the inequality
has positive polarity (i.e. it is monotonic in r), whereas the occurrence(s) of f on the left-
hand side have negative polarity (i.e. are antimonotonic). If the constraint were boolean
(with B and f being boolean values and 3 being implication), then this would be called a
definite Horn clause. When our constraints are Horn-like, then there is a simple definition
for the desired function /:

J{ ' ; \ B(x, r) n r if -B(x, r) 3 r

or equivalently
f{x, r) = B{x, f) n r.

It is easy to check that / is monotone in f, deflationary, and has fixed-points exactly when
f holds. Therefore, simple iteration of / will converge to the descriptor that incorporates
£ into r. However, if r is an aggregate structure such as a tuple or map, then the changes
made at each iteration may be relatively sparse, so the simple iteration approach may be
grossly inefficient. We found this feature to be characteristic of scheduling and other CSPs.
Our approach to solving this problem is to focus on single point changes and to exploit
dependence analysis. For each component of r we define a separate change propagation
procedure. The arguments to a propagation procedure specify a change to the component.
This change is performed and then the change procedures for all other components that
could be affected by the change are invoked. Static dependence analysis at design-time is
used to determine which constraints could be affected by a change to a given component.

A program scheme for global search with constraint propagation is presented in Figure 6.
The global search design tactic in KIDS first instantiates this scheme, then invokes a tactic
for synthesizing propagation code to satisfy the specification F—split-and—propagate.

21

Spec Global-Search-Program (T :: Global-Search)

Operations

F-initial-propagate (x : D | I{x))

returns (i: R\i =■ max? {s \ top(x) 3 s A I(x, S) A f (x, i)})

F-spfii-and-propa<7a£e
(x : D, f: R, c : C

\I{x) A I{x,f) A Splü-Arg(x,r,c) A £(r,r) A r ^ 6o*)

returns (t: R \ i = max? {$ \ r 3 * A /(i, i)
ASplü(x,r,cJ) A £(*,£)})

F-gs{x:D, r:R \ I(x) A /(s,r) A *(r,r))
returns (z : R\ 0{x,z) A Satisfies(z,f))

= if 3(z) {Exiract{z, r) A 0(x,z))
then 5ome(2) (Extract(z, r) A 0(x, z))

* J\ •*

else some(z) 3(c : C, t: R)
(Split—Arg(x, r, c)
A i = F-split-and-propagate(x, r,c) A £ ^ &ot

A z = F-0s(sr, £))

F(z:2>|I(*))
returns (z : R \ 0(x, z))

= some(z) 3(£) (4 = F-initial-propagate(x)

At^bot

Az = F-gs(x, i))

end spec

Figure 6: Global Search Program Theory

22

CSPs with Horn-like constraints

We now elaborate the previous exposition of propagation of Horn-like constraints arising in
CSPs. To keep matters simple, yet general, suppose that the output datatype R is map(VAR,
VALSET), where VAR is a type of variables, and V ALS ET is a type that denotes a set of
values (this implies that all the variables have the same type and refinement ordering), and
the 3 relation has the form:

f 3 $ iff /\ f(v) 3 s(v)-
V

Suppose further that £ is a conjunction of constraints giving bounds on the variables:

£{x,r) <*=> /\Bv(x,r)2r{v)

where Bv(x, f) is monotonic in r. Under these assumptions, -^(x, r) implies that the bound-
ing constraint on some variable v is violated; i.e.

-5„(x,r)3r(u).

To "fix" such a violation we can change the current valset of v to

£„(x,r)nr(u),

which simultaneously refines r(u), since

f(v) 3 Bv(x, r) n f(v)

and reestablishes the constraint on v, since

Bv(x, r) 3 Bv(x, r) n f(u).

Let
B(r, r) = {| u —► Bu(x, r) fl r(u) \ u € domain(r) |}

then, define / as:
/(x,r) = rn£(z,r)

Constraint propagation is treated here as iteration of / until a fixed-point is reached. Ef-
ficiency requires that we go farther, since only a sparse subset of the variables in r will
be updated at each iteration. If we implemented the iteration on a vector processor or
SIMD machine, the overall computation could be fast, but wasteful of processors. On a
sequential machine, it is advantageous to analyze the constraints in £ to infer dependence of
constraints on variables. That is, if (the valset of) variable v changes, which constraints in
f could become violated? This dependence analysis can be used to generate special-purpose
propagation code as follows.

For each variable u, let affects (v) be the set of variables whose constraints could be violated
by a change in v; more formally, let

affects(v) = {u | v occurs in Bu }.

We can then generate a set of procedures that carry out the propagation/iteration of /: For
each variable u, generate the following propagation procedure:

23

Propagate» (x : D, f : R, new-valset: VALSET
I I(x) A t(x, f)
A f(v) 3 new-^valset
A Bv(x, f) 3 netu-^ua/^et)

= let (s : R = map—shadow(r,v,new-jüalset))
if -,/(x, i) then 6ot
else
... for each, variable u in affects(v)...
... generate the following code block ...
if i = bot then bat
else (if ->(Bu(x, S) 3 s(u))

then 3 <— Propagateu(x,s, Bu(x,s) n s(u)));

end

where mapshadow{r, v, nevMJalset) returns the map r modified so that f(u) = nevnvalset.

To finish up, if Split(x, f, i, a) has the form

3(u) = C(x, r, t)

for some function C that yields a refined valset for variable u, then we can satisfy F-split—
and—propagate as follows:

F—split-and-propagate(x, r, i) = propagateu(r, C(x, r, i)).

The change to u induced in the call to propagate* will in turn trigger changes to other
variables, and so on.

We have described the generation of constraint propagation in a relatively simple setting.
One of the authors (Westfold) was largely responsible for the development and implemen-
tation of this work. The implementation treats a much, broader range of problem features
than has been described above. Further elaborations include

1. Heterogeneous variables (and semilattice/refinement structure)

2. Multiple constraints on each variable

3. Indexed variables

4. Conditional constraints

24

5. Dynamic set of variables

6. Ordering of constraints in propagation procedures

There are many ways to implement constraint propagation, this being just one. Our ap-
proach is useful when the affects relation is relatively sparse, so special control code to follow
dependences and fixing violations is efficient. An alternative approach is to reify affects via
explicit irnVs between variables, forming a constraint network. The synthesis of the propa-
gation control strategy is relatively simple, since we only need to follow dependence links.
Disadvantages of this approach include the size of the constraint network and the cost of
maintaining it. This is a common approach in the CSP literature.

Our model of constraint propagation generalizes the concepts of cutting planes in the Op-
erations Research literature [26] and the forms of propagation studied in the constraint
satisfaction literature (e.g. [18]). Our use of fixed-point iteration for constraint propagation
is similar to Paige's work on fixed-point iteration in RAPTS [8]. The main differences are
(1) RAPTS expects the user to supply the monotone function as part of the initial speci-
fication whereas we derive it from a more abstract statement of the problem; (2) RAPTS
instantiates a straightforward iteration scheme and then performs optimizations. Such an
approach would be too inefficient for scheduling applications, so we use dependence analysis
to generate code that is specific to the constraint system at hand.

Constraint Propagation for Transportation Scheduling

For transportation scheduling, each iteration of the Propagate operation has the following
form, where esti denotes the earliest-start-time for trip i and esif{ denotes the next value of
the earliest-start-time for trip i (analogously, Isti denotes latest-start-time), and roundtripi
is the roundtrip time for trip i on resource r. For each resource r and the ith trip on r,

esti
est'i = max I esti-i + roundtripi

max—release—time (manifest {)

' Isti
Ist'i = min < lsti+i — roundtripi

min—finish—time (manifest,)

Here max-release-time(manifesti) computes the max over all of the release times of move-
ment requirements in the manifest of trip i and min-finish-time (manifest <) computes the
rm-ni-mn-m of the finish times of movement requirements in the same manifest. Boundary
cases must be handled appropriately.

After adding a new movement record to some trip, the effect of Propagate will be to shrink
the

(ear liest—start—time, latest—start-4ime)

25

window of each trip on. the same resource. If the window becomes negative for any trip, then
the partial schedule is necessarily infeasible and it can be pruned.

The constraint propagation code generated for TS in Appendix C in [41], nearly as fast as
handwritten propagation code for the same problem (cf. Appendix C in [37]).

6.2.4 Constraint Relaxation

Many scheduling problems are overconstrained. Overconstrained problems are typically han-
dled by relaxing the constraints. The usual method, known as Lagrangian Relaxation [26],
is to move constraints into the objective function. This entails reformulating the constraint
so that it yields a quantitative measure of how well it has been satisfied.

Another approach is to relax the input data just enough that a feasible solution exists. To
test this approach, we hand-modified one version of KTS so it relaxes the LAD (Latest
Arrival Date) constraint. The relaxation takes place only when there is no feasible solution
to the problem data. KTS keeps track of a quantitative measure of each LAD violation (e.g.
the difference between the arrival date of a trip and the LAD of a movement requirement in
that trip). If there is no feasible reservation for the movement requirement being scheduled,
then KTS uses the recorded information to relax its the LAD. The relaxation is such as to
minimally delay the arrival of the requirement to its POD.

This technique, which we call data relaxation, can be described more generally. Suppose
that we specify a certain constraint to be relaxable. Whenver we detect that the input data
has no feasible solution, we attempt to relax the input data just enough to allow a feasible
solution. Of course, the problem-solving process and data relaxation are interleaved.

At each global search iteration we evaluate this objective function for all candidate solutions.
Using these values the algorithm takes a greedy decision of which branch of the global search
tree should be split next. The result is a heuristically-guided algorithm that finds good but
not necessarily optimal schedules.

It remains an open task to formalize the notion of data relaxation and to develop a tactic
for synthesizing relaxation code in the context of global search with constraint propagation.

6.2.5 Using KEDS

In developing a new scheduling application, most of the user's time is spent building a
theory of the domain. Our scheduling theories have evolved over months of effort into
50-70 pages of text. It currently takes about 90 minutes to transform our most complex
scheduling specification (for ITAS) into optimized and compiled CommonLisp code for Sun
workstations. Evolution of the scheduler is performed by evolving the domain theory and
specification, followed by regeneration of code.

Currently, the global search deisgn tactic in KIDS is used to design an algorithm for F
and F—gs in Figuregs-scheme. A specialized tactic for generating constraint propagation

26

Data
Sets

(Air only)

of input
TPFDD

records (ULNs)

#of
individual
movements

of scheduled
items after

splitting

Solution
time

Msec per
scheduled

item

CDART 296 330 0.5 sec 1.5

CSRT01 1,600 1,261 3,557 44 sec 12

096-KS 20,400 4,644 6,183 86 sec 14

9002T Borneo 28,900 10,623 15,119 290 sec 20

Figure 7: KTS Scheduling Statistics

code for Horn-like constraints is used to generate code for Fsplit-and-propagate. Once the
algorithm is designed, then, a series of simplification and common-subexpression-el im in ation
transformations are applied. A trace of the KIDS derivation is given in Appendix C in. [41].
See [42] for a detailed description of a session with KIDS.

6.3 KTS - Strategic Transportation Scheduling

The KTS schedulers synthesized using the KIDS program transformation system are ex-
tremely fast and accurate [44, 45]. The chart in Figure 7 lists 4 TPFDD problems, and
for each problem (1) the number of TPFDD lines (each requirement line contains up to
several hundred fields), (2) the number of individual movement requirements obtained from
the TPFDD line (each line can specify several individual movements requirements), (3) the
number of movement requirements obtained after splitting (some requirements are too large
to fit on a single aircraft or ship so they must be split), (4) the cpu time to generate a com-
plete schedule, and (5) time spent per scheduled movement. Similar results were obtained
for sea movements. The largest problem, Borneo NEO, is harder to solve, because of the
presence of 29 movement requirements that are inherently unschedulable: their due date
comes before their availability date. Such inconsistencies must be expected and handled by
a realistic system. KTS simply relaxes the due date the minimal amount necessary to obtain
a feasible schedule.

We compared the performance of KTS with several other TPFDD scheduling systems:
JFAST, FLOGEN, DITOPS, and PFE. We do not have access to JFAST and FLOGEN,
but these are (or were) operational tools at AMC (Airlift Mobility Command, Scott AFB).
According to [11] and David Brown (retired military planner consulting with the Planning
Initiative), on a typical TPFDD of about 10,000 movement records, JFAST takes several
hours and FLOGEN about 36 hours. KTS on a TPFDD of this size will produce a detailed

27

schedule in one to three minutes. So KTS seems to be a factor of about 25 times faster
than JFAST and over 250 times faster than FLOGEN. The currently operational ADANS
system reportedly runs at about the same speed as FLOGEN. When comparing schedulers
it is also important to compare the transportation models that they support. KTS has a
richer model than JFAST (i.e. handles more constraints and problem features), but less rich
than ADANS. The ITAS effort described in the next section reflects our efforts to synthesize
schedulers that have at least the richness of the ADANS model.

The DITOPS project at CMU also models scheduling as a constraint satisfaction problem.
However, DITOPS effectively interprets its problem constraints, whereas the transforma-
tional approach can produce highly optimized "compiled" constraint operations. DITOPS
emphasizes complex heuristics for guiding the search away from potential bottlenecks. In
contrast KTS uses simple depth-first search but emphasizes the use of strong and extremely
fast pruning and constraint propagation code. DITOPS requires minutes to solve the CD ART
data. KTS finds a complete feasible solution in 0.5 seconds.

Comparison with PFE (Prototype Feasibility Estimator, built by BBN based on the Trans-
portation Feasibility Estimator system): On the MEDCOM-SITUATION from the CPE
(Common Prototype Environment), KTS is about 5 times faster than PFE and produces a
SEA schedule with only 14% of the delay of the PFE schedule. KTS also produces a far
more accurate estimate of the planes needed to handle the AIR movements, since PFE is
only estimating feasibility whereas KTS produces a detailed schedule.

In our Strategic TPFDD scheduler KTS, we explored issues of speed and embedding KTS
into an easy-to-use GUI, complete with ability to edit the data model (TPFDD, resource
classes and instances, and port models), to schedule, apply various analysis tools, and to
dynamically reschedule. KTS is available from Kestrel via ftp to participants in the PL

6.4 ITAS - In-Theater Airlift Scheduler

In 1994 we began to develop a scheduler to support PACAF (Pacific Air Force) at Hickham
AFB, Honolulu which is tasked with in-theater scheduling of a fleet of 26 C-130 cargo aircraft
in the Pacific region. Several variants of a theater scheduler, called ITAS for La-Theater
Airlift Scheduler, have been developed to date, and more are planned. The system runs
on laptop computers (Apple Powerbook). The interface to ITAS and integration with a
commercial database package have been developed by BBN. Users enter information about
movement requirements, available resources, port features, etc. and ITAS automatically
generates a schedule, displayed in a gantt-like "rainbow" chart. The schedule can also be
printed in the form of ATO's (Air Tasking Orders).

The ITAS schedulers have emphasized flexibility and rich constraint modeling. The version
of ITAS installed at PACAF in February 1995 simultaneously schedules the following types
of resources:

1. aircraft

28

2. aircrews and their duty day cycles

3. ground crews for unloading

4. parking space at ports

each of which may have a variety of attendant constraints and problem features.

7 Classification Approach to Algorithm Design

In this section we introduce a new knowledge-based approach to algorithm design. We have
been developing it in order to support the incremental application of problem-solving meth-
ods to scheduling problems. Our techniques enable us to integrate at a deep semantic level
problem-solving methods from Computer Science (e.g. divide-and-conquer, global search),
Artificial Intelligence (e.g. heuristic search, constraint propagation, neural nets), and Op-
erations Research (e.g. Simplex, integer programming, network algorithms). Furthermore
these techniques have applications far wider than algorithm design, since they apply to the
incremental application of any kind of knowledge formally represented in a hierarchy.

7.1 Technical Foundations - Theories

A theory (i.e. first-order theory presentation) defines a language and constrains the possible
meanings of its symbols by axioms and inference rules. Theories can be used to express
many kinds of software-related artifacts, including domain models [49], formal requirements
[3, 10, 27, 29], programming languages [6, 15, 19], abstract data types and modules [10, 14,
17], and abstract algorithms [43]. There has been much work on operations for constructing
larger theories from smaller theories [3, 7, 30].

A theory morphism translates the language of one theory into the language of another theory
in a way that preserves theorems. Theory morphisms underlie several aspects of software
development, including specification refinement and datatype implementation [5r 27, 30, 51],
the binding of parameters in parameterized theories [9, 15], algorithm design [22, 43, 52],
and data structure design [32]. There has been work on techniques for composing implemen-
tations in a way that reflects the structure of the source specification [3, 30]; however these
composition techniques leave open the problem of constructing primitive morphisms.

Theories together with their morphisms define a category.

7.2 Refinement Hierarchy and the Ladder Construction

Abstract programming knowledge can be represented by theories. For example, we showed
how to represent divide-and-conquer [33], global search (binary search, backtrack, branch-

29

and-bound) [34], and local search (hillclimbing) [22] as theories. The same approach can be
applied to data structures [5], architectures [16], and graphical displays (e.g. Gantt charts).

A collection of problem-solving methods can be organized into a refinement hierarchy using
theory morphisms as the refinement arrow [43]. See Figure 7.2. The question emerges of how
to access and apply knowledge in such a hierarchy. The answer is illustrated in the "ladder
construction" diagram in Figure 9.

The left-hand side of the ladder is a path in the refinement hierarchy of algorithm theories
starting at the root (Problem Theory). Speco is a given specification theory of a problem.
The ladder is constructed a rung at a time from the top down. The initial arrow (theory mor-
phism) from problem theory to Speco is trivial. Subsequent rungs are constructed abstractly
as follows:

TO,-
Pi >Si

Ii

TO i+1
Pi+i > Pi+l © Si

where P,+i © S,- is the pushout theory (shared union) and 5t+i is an extension of 5,- deter-
mined by constructing the theory morphism m"+1. The morphism TO,+I is determined by
composition.

7.3 Constructing Theory Morphisms

Constructing the pushout theory is straightforward. The main issue arising from this ladder
construction is how to construct the theory morphism m"+1 from the pushout theory to 5,-+i
(an extension of Si). We formalized four basic methods for constructing theory morphisms
last year, by analyzing the algorithm design tactics in KIDS [39]. Two of the techniques are
well-known or obvious. However we identified two new general techniques for constructing
theory morphisms: unskolemization and connections between theories. Roughly put, un-
skolemizaiion works in the following way. A theory morphism from theory A to theory 3 is
based on a signature morphism which is a map from the symbols of A to the symbols of 3.
A theory morphism is signature morphism in which the axioms of A translate to theorems of
B. Suppose that during a design process we have somehow managed to construct a partial
signature morphism - only some of the symbols of A have a translation as symbols of B. The
question is how to derive a translation of the remaining symbols of A. The unskolemization
technique uses the axioms of A and deductive inference to solve for appropriate translations

30

■SMS?
mam ***• <^,

2 -a

, n a » a ^
S 1-5 | * *
o S *

o
so

o

cd

0)

g
«3

3

31

Problem m0
theory > Speco

Constraint mi
Satisfaction > Speci

Mathematical mi
Programming > Spzci

Linear m^
Programming > Specs

Transshipment V
Problem >?

Figure 9: Classification Approach to Design

32

of these symbols. As a simple example, suppose that function symbol / is untranslated and
that it is the only untranslated symbol in an axiom V(z)G[/(x)] of A. We unskolemize /
by replacing its occurrence(s) with a fresh existentially quantified variable: V{x)3(z)G[z].
This unskolemized axiom can now be translated and we can attempt to prove it in theory
B. A proof yields a witness for the existential that is a term that depends on x. This term
can serve as the translation of / knowing that such a translation preserves the theoremhood
of the considered axiom. We may need to verify other axioms involving / to assure the
appropriateness of the derived translation.

This technique underlies the problem reduction family of algorithms and tactics in KIDS.
For example, in constructing a divide-and-conquer algorithm we need to find translations
of decompose, solve, and compose operators. The tactic works by letting the user select
a standard decomposition operator from a library (or dually, selecting a standard compose
operator) and then using unskolemization on a "soundness axiom'' that relates decompose
and compose. The unskolemized soundness axiom can then be proved in the given problem
theory to yield a specification of the compose (resp. decompose) operator. To be more
specific, if we are deriving a divide-and-conquer algorithm for the sorting problem, then we
want to construct a theory morphism from divide-and-conquer theory into sorting theory.
We might choose a standard decompose operator for input sequences, say split-a-sequence-
in-half, and the unskolemization technique leads to a derivation of a specification for the
usual merge operation as the translation of compose. The result is a mergesort algorithm.
Other choices leads to quicksort, selection sorts, and insertion sorts [33].

Sometimes the axioms of a theory axe too complex to allow direct application of unskolem-
ization. This situation arises in the theory of global and local search algorithms. We have
discovered and developed recently the concept of connection between theories which underlies
and generalizes our correct but somewhat ad-hoc solution to this problem in the global and
local search design tactics. The general result regarding connections between theories is this:
Suppose that there is a theory T from which we want to construct a theory morphism into
a given application domain theory B. K there is a (preexisting) theory morphism from T to
a library theory A and we can construct a connection from A to B, then we immediately
have a theory morphism from T to B. So connections between theories axe a way to adapt
a library T-theory to a new, but related problem.

The concept of connection between theories relies on several ideas. The sorts of a theory
axe all interpreted as posets (including booleans) and furthermore the set of sorts itself is a
poset (under the subsort partial order). A collection of "polarity rales" are used to express
(anti-)monotonicity properties of the functions and predicates of a theory. For example,
size({x | -TP}) is monotonic in {x | ->P} but antimonotonic in P; so if Q => P then
size({x | -\P}) < size{{x | ^Q}). These polarity rules axe used to analyze the axioms of a
theory and then to set up various connection conditions between the corresponding operators
of theories A and B - these conditions directly generalize the conditions of a homomorphism.
Furthermore the polarity analysis is used to direct conversion maps between corresponding
sorts of A and B. Given these conditions and conversion maps it can in general be shown
that the axioms of A imply the corresponding axioms of B, thus establishing the theory
morphism.

We have prototyped this classification approach and have tested it on some simple problems.

33

Steve Westfold built a graphical interface to the refinement hierarchy that allows graphical
navigation of it and incremental application. Jim McDonald developed a simple Theory
Interpretation Construction Interface that supports the development of views (theory inter-
pretations or morphisms). It shows source and target theory presentations and the current
(possibly partial) view between them. Users have several tools to support the completion
of a view, including typing in translations for various source theory symbols and using aun-
skolemization" (one of the four basic methods mentioned above). We demonstrated the
use of this system to develop a view from divide-and-conquer theory into a simple problem
theory. A more complete implementation of these techniques is underway in the Specware
system at Kestrel [50].

8 Concluding Remarks

Our original conception of the scheduling effort has evolved in significant ways. Our 1991
demonstration system was based on use of a general-purpose object base manager and the
compilation of declarative constraints into object base demons. We also used a Simplex
code to check feasibility of start-times in a generated schedule. The results were somewhat
disappointing in that for the CDART problem we obtained from CMXJ, our first code couldn't
solve it running overnight, and our second code could only solve most of it using several
minutes time. The derived scheduler described in this paper finds a complete feasible solution
to the same problem in less than one second.

Since speed is of the essence during the scheduling process and the object base and Simplex
algorithm are problem-independent, it seemed wise to exploit our transformational tech-
niques to try to derive codes that are problem-specific and highly efficient. Rather than
compile constraints onto an active database, we now derive pruning mechanisms and con-
straint propagation code operating on problem-specific data structures. Rather than use a
Simplex algorithm for finding feasible start-times, the constraint propagation code maintains
feasible start-times throughout the scheduling process. The advantage of our approach is
the ability to expose problem structure and exploit it by transformationally deriving efficient
problem-specific code.

34

References

[1] ALLEN, J. F. Maintaining knowledge about temporal intervals. Communications of
the ACM 26, 11 (November 1983), 832-843.

[2] APPLEGATE, D., AND COOK, W. A computational study of the job-shop scheduling
problem. ORSA Journal on Computing 3, 2 (Spring 1991 1991), 149-156.

[3] ASTESIANO, E., AND WIRSING, M. An introduction to ASL. In Program Specification
and Transformation, L. Meertens, Ed. North-Holland, Amsterdam, 1987, pp. 343-365.

[4] BIEFELD, E., AND COOPER, L. Operations mission planner. Tech. Rep. JPL 90-16,
Jet Propulsion Laboratory, March 1990.

[5] BLAINE, L., AND GOLDBERG, A. DTRE - a semi-automatic transformation system. In
Constructing Programs from Specifications, B. Möller, Ed. North-Holland, Amsterdam,
1991, pp. 165-204.

[6] BROY, M., WIRSING, M., AND PEPPER, P. On the algebraic definition of pro-
gramming languages. ACM Transactions on Programming Languages and Systems 9, 1
(January 1987), 54-99.

[7] BURSTALL, R. M., AND GOGUEN, J. A. Putting theories together to make specifi-
cations. In Proceedings of the Fifth International Joint Conference on Artificial Intelli-
gence (Cambridge, MA, August 22-25, 1977), IJCAI, pp. 1045-1058.

[8] CAI, J., AND PAIGE, R. Program derivation by fixed point computation. Science of
Computer Programming 11 (1989), 197-261.

[9] EHRIG, H., KREOWSKI, H. J., THATCHER, J., WAGNER, E., AND WRIGHT, J.
Parameter passing in algebraic specification languages. In Proceedings, Workshop on
Program Specification (Aarhus, Denmark, Aug. 1981), vol. 134, pp. 322-369.

[10] EHRIG, H., AND MAHR, B. Fundamentals of Algebraic Specification, voi 2: Module
Specifications and Constraints. Springer-Verlag, Berlin, 1990.

[11] ET AL., J. S. A Review of Strategic Mobility Models and Analysis. Rand Corporation,
Santa Monica, CA, 1991.

[12] Fox, M. S., SADEH, N., AND BAYKAN, C. Constrained heuristic search. In Proceed-
ings of the Eleventh International Joint Conference on Artificial Intelligence (Detroit,
MI, August 20-25, 1989), pp. 309-315.

[13] Fox, M. S., AND SMrrH, S. F. ISIS -a knowledge-based system for factory scheduling.
Expert Systems 1, 1 (July 1984), 25-49.

[14] GOGUEN, J. A., THATCHER, J. W., AND WAGNER, E. G. An initial algebra approach
to the specification, correctness and implementation of abstract data types. In Current
Trends in Programming Methodology, Vol. 4: Data Structuring, R. Yeh, Ed. Prentice-
Hail, Englewood Cliffs, NJ, 1978.

35

[15] GOGUEN, J. A., AND WINKLER, T. Introducing 0BJ3. Tech. Rep. SRI-CSL-88-09,
SRI International, Menlo Park, California, 1988.

[16] GRAVES, H. Lockheed environment for automatic programming. Tech. rep., Lockheed
Palo Alto Research Center, Palo Alto, CA, 1990.

[17] GUTTAG, J. V., AND HORNING, J. J. The algebraic specification of abstract data
types. Ada Inf. 10 (1978), 27-52.

[18] HENTENRYCK, P. V. Constraint Satisfaction in Logic Programming. Massachusetts
Institute of Technology, Cambridge, MA, 1989.

[19] Ho ARE, C. Varieties of programming languages. Tech. rep., Programming Research
Group, University of Oxford, Oxford, UK, 1989.

[20] JÜLLIG, R., AND SRINIVAS, Y. V. Diagrams for software synthesis. Tech. Rep.
KES.U.93.2, Kestrel Institute, March 1993. To appear in: Proceedings of the 8th
Knowledge-Based Software Engineering Conference, Chicago, IL, September 20-23,
1993.

[21] LAD KIN, P. Specification of time dependencies and synthesis of concurrent processes.
In 9th International Conference on Soßware Engineering (Monterey, CA, March 30-
April 2, 1987), pp. 106-116. Technical Report KES.U.87.1, Kestrel Institute, March
1987.

[22] LOWRY, M. R. Algorithm synthesis through problem reformulation. In Proceedings of
the 1987 National Conference on Artificial Intelligence (Seattle, WA, July 13-17,1987).

[23] LOWRY, M. R. Automating the design of local search algorithms. In Automating
Software Design, M. Lowry and R. McCartney, Eds. AAAI/MIT Press, Menlo Park,
1991, pp. 515-546.

[24] LUENBERGERT D. G. Linear and Nonlinear Programming. Addison-Wesley Publishing
Company, Inc., Reading, MA, 1989.

[25] MINTON, S.r JOHNSON, M., PHILIPS, A. B., AND LAIRD, P. Solving large-scale
constraint satisfaction and scheduling problems using a heuristic repair method. La
Proceedings of the Eighth National Conferenceon Artificial Intelligence (1990), pp. 290-
295.

[26] NEMHAUSER, G. L., AND WOLSEY, L. A. Integer and Combinatorial Optimization.
John Wiley k Sons, Inc., New York, 1988.

[27] PARTSCH, H. Specification and Transformation of Programs: A Formal Approach to
Software Development Springer-Verlag, New York, 1990.

[28] SADEH, N. Look-ahead techniques for micro-opportunistic job shop scheduling. Tech.
Rep. CMU-CS-91-102, Carenegie-Mellon University, March 1991.

[29] SANNELLA, D., AND TARLECKI, A. Extended ML: An institution-independent frame-
work for formal program development. In Category Theory and Computer Programming,
LNCS 240 (1985), pp. 364-389.

36

[30] SANNELLA, D., AND TARLECKI, A. Toward formal development of programs from
algebraic specifications: Implementations revisited. Ada Informatica 25, 3 (1988), 233-
281.

[31] SELMAN, B., LEVESQUE, H-, AND MITCHELL, D. A new method for solving hard
satisfiability problems. In Proceedings of the Tenth National Conferenceon Artificial
Intelligence (1992), pp. 440-446.

[32] SMITH, D. R. Data structure design, in preparation.

[33] SMITH, D. R. Top-down synthesis of divide-and-conquer algorithms. Artificial Intelli-
gence 27, 1 (September 1985), 43-96. (Reprinted in Readings in Artificial Intelligence
and Soßware Engineering, C. Rich and R. Waters, Eds., Los Altos, CA, Morgan Kauf-
mann, 1986.).

[34] SMITH, D. R. Structure and design of global search algorithms. Tech. Rep.
KES.U.87.12, Kestrel Institute, November 1987.

[35] SMITH, D. R. KIDS: A knowledge-based software development system. In Automating
Software Design, M. Lowry and R. McCartney, Eds. MIT Press, Menlo Park, 1991,
pp. 483-514.

[36] SMITH, D. R. Structure and design of problem reduction generators. In Constructing
Programs from Specifications, B. Möller, Ed. North-Holland, Amsterdam, 1991, pp. 91-
124.

[37] SMITH, D. R. Transformational approach to scheduling. Tech. Rep. KES.U.92.2,
Kestrel Institute, November 1992.

[38] SMITH, D. R. Classification approach to design. Tech. Rep. KES.U.93.4, Kestrel
Institute, 1993.

[39] SMITH, D. R. Constructing specification morphisms. Journal of Symbolic Computation,
Special Issue on Automatic Programming 15, 5-6 (May-June 1993), 571-606.

[40] SMITH, D. R. Toward the synthesis of constraint propagation algorithms. In Logic
Program Synthesis and Transformation (LOPSTR '93), Y. DeVille, Ed. Springer-Verlag,
1993, pp. 1-9.

[41] SMITH, D. R. Synthesis of high-performance transportation schedulers. Tech. Rep.
KES.U.95.6, Kestrel Institute, March 1995.

[42] SMITH, D. R. KIDS - a semi-automatic program development system. IEEE Transac-
tions on Software Engineering Special Issue on Formal Methods in Software Engineering
16, 9 (September 1990), 1024-1043.

[43] SMITH, D. R., AND LOWEY, M. R. Algorithm theories and design tactics. Science of
Computer Programming U, 2-3 (October 1990), 305-321.

[44] SMITH, D. R., AND PAHHA, E. A. Transformational approach to transportation
scheduling. In Proceedings of the Eighth Knowledge-Based Software Engineering Con-
ference (Chicago, LL, September 1993), pp. 60-68.

37

[45] SMITH, D. R., AND PARRA, E. A. Transformational approach to transportation
scheduling. In ARPA/RL Knowledge-Based Planning and Scheduling Initiative: Work-
shop Proceedings (Tucson, AZ, February 1994), pp. 205-216.

[46] SMITH, D. R., AND WESTFOLD, S. J. Synthesis of constraint algorithms. In Principles
and Practice of Constraint Programming, V. Saraswat and P. V. Hentenryck, Eds. The
MIT Press, Cambridge, MA, 1995.

[47] SMITH, S. F. The OPIS framework for modeling manufacturing systems. Tech. Rep.
CMU-RI-TR-89-30, The Robotics Institute, Carenegie-Mellon University, December
1989.

[48] SMITH, S. F., Fox, M. S., AND OW, P. S. Constructing and maintaining de-
tailed production plans: Investigations into the development of knowledge-based factory
scheduling systems. AI Magazine 7, 4 (Fall 1986), 45-61.

[49] SRINIVAS, Y. V. Algebraic specification for domains. In Domain Analysis: Acquisition
of Reusable Information for Software Construction, R. Prieto-Diaz and G. Arango, Eds.
IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 90-124.

[50] SRINTVAS, Y. V., AND JÜLLIG, R. Specware:tm formal support for composing software.
Tech. Rep. KES.U.94.5, Kestrel Institute, December 1994. To appear in Proceedings of
the Conference on Mathematics of Program Construction, Kloster Irsee, Germany, July
1995.

[51] TURSKI, W. M., AND MAIBAUM, T. E. The Specification of Computer Programs.
Addison-Wesley, Wokingham, England, 1987.

[52] VELOSO, P. A. Problem solving by interpretation of theories. In Contemporary
Mathematics, vol. 69. American Mathematical Society, Providence, Rhode Island, 1988,
pp. 241-250.

[53] ZWEBEN, M., DEALE, M., AND GARGAN, R. Anytime rescheduling, hi Proceedings
of the Workshop on Innovative Approaches to Planning, Scheduling and Control (San
Diego, CA, November 5-8, 1990), DARPA, pp. 215-219.

38

A Coordinating Resource-Constrained Planning in Large
Organizations

Ted Linden
David Einav

linden@netcom.com
r@good.stanford

March 11,1994

einav@good.stanford.edu

Abstract

This report develops four interrelated techniques for interactive planning in a
large organization. It explores the use of market pricing mechanisms to help
multiple planning cells allocate resources, resolve conflicts, and exploit
synergies. The pricing mechanisms support distributed planning where
human/machine planning subsystems cooperate to achieve common goals and
there are many goals that may be contingent, uncertain, changing, and
imperfectly-perceived. Trade-offs between goals are formalized in utility
functions that are not not required to be additive but do have some additive
structure in the form Iu(t)*mod(t,...) where u(t) is a function of how and when a
single task is completed and mod(t,„.) captures the non-additive effects of
dependencies between tasks. This aexible structure makes it possible to represent
many large organizational planning problems and to evaluate alternative plans
as they evolve. The report explores the use of decision theoretic techniques to
estimate the market price of resources when given a non-additive utility
function. Problem solving with these non-additive utility functions focuses on
heuristic search with statistical look-ahead techniques used to merge evidence
from the utilities and constraints when making variable and value order
decisions during the search.

A-l

Table of Contents

Abstract A-l

Table of Contents A-2

1. Introduction A-4
1.1 Origins of Approach in Applications A-5
1.2 Technical Requirements A-6
1.3 Technical Background „ A-7
1.4 Exploiting Simplifying Features of Organizational Planning

Problems A~7

1.5 Key Technical Ideas A-8
1.6 Summary of Report A-1°

2. Military Crisis Action Planning A-ll
2.1 Crisis Action Planning is Interactive and Distributed A-ll
2.2 Crisis Action Planning is Mostly Resource Allocation A-12
2.3 Optimization Issues in Crisis Action Planning A-12
2.4 Uncertainty and Contengency Planning A-14
2.5 Crisis Action Planning Examples A-14

3. Overview of the Planning Techniques and their Interactions A-18
3.1 Dividing Problems into Semi-independent Subproblems A-18
3.2 Problem Solving Steps A-19

4. Pricing Mechanisms for Coordinating Planning Cells A-20
4.1 Resource Pricing Mechanisms A-20
4.2 Pricing Assumptions in Economics A-20
4.3 Economic Reality „ A-21
4.4 Organizational Planning and Assumptions for Price Convergence A~22 a

4.5 Summary on Microeconomic Theory A-22 a

5. Distributed Planning for Multiple, Contingent Goals A-23 /A-24
5.1 Components for Successful Decomposition A-23 /A-24
5.2 Optimal problem decomposition A-25
5.3 Optimal conditional plans _ A-25

5.4 Utility-based conditional planning A-26

6. Examples: Extending Pricing to Small Planning Problems A~30

6.1 Job Shop Scheduling Experiment A~30

6.2 Planning Problems without Equilibrium Prices A~30

6.3 Example: Contingency Planning in Blocks World A-31
6.3.1 Crisis Planning Analogue of Blocks Example A-31
6.3.2 Blocks Example with Contingent Goal A-32
6.3.3 Resource Pricing to Solve Blocks Example with Contingency

Plan .' A~34

6.3.4 Results and Lessons Learned

A-2

7. A Structure for Utility Functions A"36

7.1 Constraint Types and their Interaction with Utility A-36
7.2 Utility Functions in the Form Su(t)*mod(t,...) A-37
7.3 Evaluating Partial Solutions A-38

8. Heuristic Search with Non-Additive Utility A~39

8.1 Variable and Value Ordering Search Heuristics A 39

8.2 Past Research on Probabilistic Computations of Heuristics A~40

8.3 Overview of Approach A"
8.4 Net Incremental Utility A~41

8.5 Net Utility and the "Best?" Choice A~42

8.6 Computing Marginal Utility A~43

8.7 Propagating the Influence of Binary Constraints A-43
8.8 Rumor Control and Convergence A-44
8.9 Experimental results A~44

~ , • A"45

9. Conclusions
A-45

E. References

A-3

1. Introduction

Experience from real planning applications continues to push AI planning
technology in new directions. This research focuses on four interrelated
techniques for planning the actions of a large organization:

1. Market pricing mechanisms are explored as a way to handle the interactions
and dependencies among separate planning cells that are cooperating to
plan the organization's activities.

2. Distributed planning and planning for contingencies is a major feature of
organizational planning. Market pricing mechanisms deal with many
diverse goals that may be contingent, uncertain, changing, and imperfectly-
perceived.

3. Utility functions that capture user preferences and represent soft constraints
have some additive structure but are not fully additive. Utility functions in
the form Zu(t)*mod(t,...) allow natural representations of the users
preferences and support incremental, heuristic problem solving methods.

4. Statistical look-ahead techniques that project resource contention are useful
even with non-additive utility functions. The look-ahead is used to make
variable and value ordering decisions during heuristic search.

These planning techniques directly address fundamental issues arising in
practical applications like military crisis action planning. Movement toward
these techniques began ten years ago with research to eliminate assumptions that
had limited the applicability of classical AI planning technology. Research in the
late 1980's showed how to deal with uncertainty by building plans that are
reactive [Brooks 86], universal [Schoppers 87], contingent [Linden & Glicksman
87], and adaptive [Alderman 86,88]. This research extends previous research on
planning under uncertainty by addressing additional issues that arise when
planning the actions of a large organization. Specifically, this research addresses
requirements arising from the following common characteristics of
organizational planning problems:

• Interactive and distributed. Organizational planning is interactive with
human planners in control throughout the planning process. It is usually
not enough to involve humans only in problem setup and in solution
review. The human users are often geographically distributed.

• Resource allocation. Organizational planning emphasizes effective use of
available resources. Automated planning for these applications needs to
exploit the special characteristics of resource capacity constraints and deal
explicitly with the hard issues involved in allocating resources.

• Optimization. The automated planning must find a good plan, not just a
plan. The logical-satisficing approach of traditional AI planning needs to be

A-4

augmented so optimization is explicit within the automated process and is
not left entirely to the user.

These characteristics of organizational planning are leading to a shift away from
purely logical-satisficing, qualitative planning to planning techniques more
capable of dealing with uncertainty, resource allocation, scheduling,
optimization, and other issues that have quantitative as well as qualitative
characteristics.

1.1 Origins of Approach in Applications

Many of the planning techniques documented in this report generalize
techniques that were applied successfully in real applications. The initial version
of the non-additive utility functions combined with statistical look-ahead was
developed for use Rome Laboratory's Advanced Planning System (APS). APS is
now operational and is helping teams of Air Force personnel plan, coordinate,
and schedule up to 2000 daily missions. The planning component of APS has an
AI architecture, implements constraint propagation, and uses a non-additive
utility function to guide its search. It was the military's first operational high
level planning system to incorporate significant elements of AI planning
technology.

Military crisis action and transportation planning require further generalization
of these organizational planning techniques. Previous research on these
generalizations is documented in earlier reports [Linden 91, Linden & Vrotney
92]. The interrelated set of techniques that have evolved have also been
influenced by direct practical experience with other projects including projects to
manage containers for a shipping company, schedule training missions for
pilots, plan Army Corps-level maneuvers, support submarine commanders, and
plan missions and maintenance activities for NASA. Other organizational
planning problems that can use the same techniques include:

• Planning for manufacturing operations.

• Integrated planning in logistics, transportation, and distribution systems.

• Integrated planning for "just-in-time" operations.

• Complex project planning and scheduling for everything from construction
projects to personnel scheduling.

• Disaster relief planning.

• Sensor planning and allocation.

• Automation of agents acting in a simulation.

• Job shop scheduling when there is a complex, multivariate utility function.

A-5

1.2 Technical Requirements

Experience with planning applications shows that the formalisms needed to
represent and solve many problems require major extensions to those of classical
planning. While some problems fit the classical planning mold; organizational
planning problems typically have significant technical requirements in most if
not all of the following areas:

1. Uncertainty. The planning situation is dynamic with ongoing changes in
goals, preferences, and resources. Knowledge of current and projected states
is partial and uncertain.

2. Dynamic replanning. The plan evolves over time as today's plan is
executed and addition information enables further elaboration of plans for
the future.

3. Optimization and deciding what to do. There are many goals and
constraints (often hundreds or thousands) and not all of them can be
accomplished with the available resources. Deciding what to do is part of
the problem. With some difficulty, user preferences among the goals can be
approximated by a utility function.

4. Non-additive utility. Except at higher levels of abstraction, the utility
function is seldom completely additive. Some goals support or conflict with
other goals, and there are hard and soft constraints between task
assignments. Some sets of goals have a conjunctive all-or-none property,
and some goals are alternatives with decreasing additional value once M
out of N are accomplished.

5. Imperfect models. The formal problem model is imperfect and only
approximates the real planning problem. As an individual problem is being
solved, users discover instance-specific constraints that had not been
foreseen. Ongoing imperfections in the formal model cannot be completely
eliminated and are the fundamental reason why organizational planning
must be interactive.

6. Users in the planning loop. Users do not want a black box planner that only
allows them to control the problem setup and evaluate results. Domain
experts have trouble formulating general constraints and prefer to focus first
on finding a specific solution.

7. Distributed. Organizational planning draws on the experience of many
experts who may be distributed geographically.

A goal of the current research is to extend existing planning techniques so that
technical requirements in all these areas can be handled within a single planning
formalism. The four planning techniques developed during this research extend
the set of techniques available to the designers of practical applications.

A-6

1.3 Technical Background

There has been little or no domain-independent research that allows technical
requirements in all the above areas to be handled within a single formalism.
Much recent work on AI planning addresses technical requirements in the first
and second areas. Operations research handles large optimization problems with
the third requirement, but does not formalize methods for dealing with most of
the other six technical requirements. Optimal solutions for large problems with
non-additive utility functions are usually infeasible, and there has been
relatively little work on obtaining "good" plans when the utility function is non-
additive.

The fifth and sixth requirements are considerations for theoretical work because
some problem solving techniques are better than others at accommodating and
benefitting from user interaction. Planning methods that translate the problem
into a form that is not intelligible to human planners do not benefit from
human interaction during the problem solving. Relatively few organizational
planning problems are well enough defined for the organization to be willing to
turn the planning over to fully automated software.

To support technical requirements for distributed planning, it is important for
automated processes to do more than automate individual planning cells, they
must also help coordinate the activities of planning cells so locally generated
plans will assemble into effective global plans.

Some practical planning applications have addressed technical requirements in
all seven areas, but have not used a separable, domain-independent planning
engine. For example, Rome Laboratory's APS addresses technical requirements
in all of the areas listed above. (Requirements in the first and second area are
handled in a replanning extension of APS that is not yet operational but does
exist in prototype form.)

A decision theoretic approach to planning seems able to formalize all of the
technical requirements, but there are both theoretical and practical problems in
extending decision theory to handle not just one static decision but hundreds of
interrelated decisions that evolve over time.

This report describes research on four interrelated techniques that extend other
techniques already documented in the planning literature. Several of these
techniques generalize ideas originally developed for APS. The four new
techniques, when combined with existing planning techniques, address all the
technical requirements listed previously. They also exploit simplifying features
of organizational planning problems that are not exploited by classical planning.

1.4 Exploiting Simplifying Features of Organizational Planning Problems

Organizational planning often requires relatively little emphasis on dynamic
creation of task plans (how to accomplish a goal) and more emphasis on resource

A~7

allocation (what can be accomplished) and scheduling (when it can be accom-
plished). For example, in many manufacturing applications such as job shop
scheduling/ the possible process plans (the sequences of generic steps needed to
accomplish an individual job) are known at design time. The main problem is
to instantiate generic process plans with resource assignments. In unusual
circumstances, it may be useful to invent new process plans, but this is not the
focus of most practical applications.

It is important to exploit the role that resources play in organizational planning.
Many domain-independent planning systems have not exploited the following
common features of resources:

• Some resources are available in the initial state and are consumed by the
plan but are not produced within the time frame in which the plan will be
executed.

• There are multiple instances of many resources and the instances are
interchangeable.

When the problem can be formulated so many resources have either or both of
these attributes, market-based resource pricing mechanisms become effective. A
thesis explored in this report is that resource pricing mechanisms and statistical
look-ahead techniques make it practical to solve complex organizational
planning problems when many of the resources have these two properties.

Another common simplification in organizational planning problems is that the
resources and other parameters assigned to tasks are constrained by the resource
constraints and by a relatively small number of binary or other low order
constraints. Once the resource constraints are dealt with, each task is
independent of most other tasks—each task is involved in only a relatively
small number of binary or other low order constraints with other tasks.

The planning techniques proposed here are most useful for problems that fall
between those handled by traditional AI planning and those handled by
operations research techniques alone. The techniques are useful when there are
complex dependencies between tasks, many contingent tasks, and some dynamic
creation of tasks—features that cause an explosion in the number of variables
when formulated as an operations research problem. On the other hand, the
structure of organizational plans are often relatively stable and most planning
decisions involve allocating and scheduling resources for a relatively fixed set of
tasks. Classical AI techniques are needed occasionally to improvise new solution
structures, but much of the planning involves assigning a consistent and near
optimal set of values (resources and times) to a relatively stable set of variables.

1.3 Key Technical Ideas

We assume that plans are generated concurrently by separate planning cells that
their ~lanninor activities to achieve a good overall plan. A key goal is •-•-••-•i'-tüia

A-8

to find simple coordination techniques so the separate planning cells can share
resources, resolve conflicts, and exploit synergistic opportunities. Potential
conflicts and sharing opportunities can be modeled by an appropriate kind of
phantom resource, so interactions can all be modeled as resource consumptions
or resource productions.

Techniques for distributed situation assessment, goal selection, and
establishment of preferences between goals are outside the scope of this work.
We assume there is a common measure of cost/utility and all planning cells
know the utility of their goals and can communicate about utility in a common
language. (They do not have to agree about the utility of each others goals.)

Planning cells receive resources to execute their plan to the extent that they can
pay an appropriate price which is measured in terms of the utility they will
achieve by using the resource. A cell manages each resource and sets the price at
which it will be bought and sold. Each planning cell builds plans that maximize
the utility it achieves after accounting for the resources it buys or sells. The goal
is to let each planning cell generate local plans with confidence that its plan will
merge successfully with plans from other cells.

Resource pricing mechanisms are compatible with many characteristics of
organizational planning. Resource pricing is more effective for large scale
problems with many goals and many instances of each resource. To handle the
uncertainty involved of organizational planning, probabilities about the
situation, 'the goals, and the utilities can be propagated by the pricing
mechanisms. Contingency plans can be generated by local planning cells and
included in the overall plan. Dynamic creation of resources, goals, and tasks is
feasible.

Capturing the organization's preferences about goals and representing these
preferences in a utility function are important issues. This research addressed
only the representation side of these two issues. When representing utility, it is
useful to distinguish:

• Preferences about the importance of goals,

• Binary (or other low order) constraints about how two (or more) tasks are
accomplished, and

• Resource capacity constraints.

Many binary constraints are not absolute requirements but are preferences about
what makes a better plan. We represent these soft binary constraints as part of a
utility function. Since soft constraints merge into hard, absolute constraints, all
binary and low order constraints are represented by a utility function with the
form'lu(t)*mod(t,...) where u(t) is a function of how and when a single task is
completed and mod(t,...) captures the non-additive effects of dependencies
between tasks. The summation is over all the tasks to be performed. The

A-9

function u(t) captures the additive component of the utility of performing the
task. The mod(t,...) component captures the effects of binary or other low order
constraints about the relationship between t and other tasks. For example, if t is
to be completed before f, then mod(t,t') is 1 if the plan satisfies this constraint
and it is 0 if not. Soft constraints are represented by values between 0 and 1.

For resource pricing to be effective in practice, prices must converge rapidly
toward an equilibrium. To accomplish this, we explored the idea that planning
cells should bid for resources by giving a probability distribution about the price
they will be willing to pay or receive. When there is uncertainty about what
other resources will cost and about what the best local plan will be, the local
planning cell has only probabilistic information about the price it will want to
offer for this resource. A large amount of previous work on statistical look-
ahead techniques for AI scheduling has explored bidding for resources in terms
of subjective probabilities of use [Muscettola & Smith 87, APS 89, Sadeh & Fox
89, Sycara et al. 90, Sadeh 91, Sadeh and Fox 91, Johnston 92]. We propose bidding
in terms of both the price to be paid and the probability of use at that price.
Section 8 summarizes the current state of research on a theoretical framework
for this approach using concepts from decision theoretic planning.

1.6 Summary of Report

Section 2 is a review of military crisis action planning and an explanation of why
formulating and solving practical crisis action planning problems requires the
new planning techniques. It includes examples of crisis action planning
problems that motivate the techniques. Section 3 describes how the new
technique relate to each other and how they extend existing techniques to create
an overall approach for solving organization planning problems. Section 4, 5, 7,
and 8 cover the individual planning techniques while Section 6 gives examples
of planning problems that are and are not handled by simple market
mechanisms. Section 4 summarizes existing microeconomic theory on market
mechanisms, identifies the limitations of current theory when addressing
general planning problems, and defines necessary extensions. Section 5 contains
results showing how distributed planning using market mechanisms handles
contingent goals. Section 6 uses an extension of a traditional blocks world
problem to identify the limits of market mechanisms. Section 7 summarizes
work to develop utility functions that represent user preferences in a natural
way, are useful during heuristic search to evaluate partial solutions, and enable
effective variable and value ordering heuristics. Section 8 summarizes the
results on generalizing and formalizing the decision-theoretic approach to
heuristic search when using non-additive utilitv functions.

A-10

2. Military Crisis Action Planning

Military crisis action planning is one of the application domains that motivated
the combination of planning techniques proposed here. This section
summarizes the key features of this domain and justifies the claims made in the
introduction about the need for the proposed planning techniques.

2.1 Crisis Action Planning is Interactive and Distributed.

Crisis action planning needs to be interactive in a stronger sense that what is
implemented in most "interactive planners." Interviews with crisis action
planners indicate that they want to be in control so they can handle the unique
characteristics of this crisis. They do not want to work around a system that is
using methods inappropriate for the current situation. Too many interactive
planners put users in the role of helping the system rather than the system in the
role of helping users.

Most techniques from operations research allow user interaction only during
problem setup and plan evaluation. The planning algorithm is a black box.
When all the important aspects of the user's real problem are captured in the
formal model, optimization techniques solve the user's problem. However, in
crisis action planning, it is usually impossible to know in advance all the goals,
constraints, and preferences that will become important as a specific problem is
solved. Details that are normally irrelevant may become critical in specific
problem instances. Interpreters for an obscure language, overflight rights, and
backup power supplies can quickly become critical to plan success. During Desert
Storm, it became important to have turkeys to serve on Thanksgiving.
Experienced users are good at handling these details as they encounter them, but
they find it impossible to identify all the details that may be relevant to all
possible planning situations. User interaction needs to occur during plan
development whenever the formal problem model remains imperfect. It is very
inefficient for the user to wait until a plan is completed, notice that it violates an
unforeseen constraint, and then go back to the problem setup and try to change
the setup in a way that will produce an acceptable solution.

Automated planners for use in crisis action planning should be designed to
enhance an existing partial plan incrementally. They should take a partial plan
as input (along with goals, constraints, initial conditions, and utility functions)
and transform it into an enhanced partial plan as output. Such a planner can be
used in a fully interactive mode. Users can generate an initial partial plan and
let the automated planners extend the partial plan. Different automated/human
planners can work on different pieces of the plan—each focusing on their areas
of expertise. In general, automated planners will solve subproblems as they
become well defined. Fully automated planning is still feasible with this
transformational approach—starting from the goals, the automated planner can
be called recursively until a plan is complete; however, the important feature of
this approach is that users control the outcome of the planning process by

A-ll

building portions of the plan themselves rather than by manipulating setup
information.

This incremental, transformational approach also conforms with the distributed
nature of crisis action planning. Users at different locations each have their own
areas of expertise and are most effective when dealing with certain types of
subproblems. Automation should help users deal not only with their
subproblems, but also with the harder problem of making their subplans be
effective as part of the larger plan.

2J2 Crisis Action Planning is Mostly Resource Allocation.

Crisis action planning is heavily a resource allocation problem. If resources were
unlimited, feasible plans to resolve the crisis would usually be clear. The hard
problem is that resources are scarce and must be shared. Much of the
coordination between distributed planning cells is either a resource conflict or
can be modeled as one. For example, if an action planned by one cell has to occur
before an action planned by another cell, this constraint can be modeled by a
phantom resource that is produced by the first action and consumed by the
second action

In crisis action planning, airlift capacity is one of the scarce resources to be
allocated. Airlift capacity has the two simplifying properties of resources
mentioned in Section 1.4:

1. The planners have very limited control over the number of aircraft
available. New aircraft cannot be built during the time frame of the crisis.
Repair activities and leasing of commercial aircraft provide a limited set of
options for increasing the available aircraft.

2. Any of many suitable aircraft will do. (While outsize equipment can only
go in C5As, there are still many instances of C5As.) The planners only care
that they will get an appropriate quantity of airlift capacity at the appropriate
time. For many planning purposes, it is useful to allocate a quantity of
airlift capacity and relegate to lower level planning detail the question of
what cargo will go on which actual aircraft.

To the extent that distributed crisis action planning cells agree on the relative
importance of their goals, resource pricing is a relatively simple way for them to
communicate and coordinate their planning. Getting agreement about the
relative importance of goals is a problem as discussed in Section 2.3. In
organizations like the military with a strong hierarchical structure, setting
priorities for goals is one of the functions of the hierarchy.

2.3 Optimization Issues in Crisis Action Planning

Crisis action plans must be good in the sense that they accomplish as much as
possible with the available resources. There will always be more things to do

A-12

than resources to do them, part of the planning problem is deciding on a
coherent set of actions that are feasible with the available resources.

At the highest levels of abstraction, crisis action plans may involve only a few
key goals. For example, an abstract plan might be to defend a sector from a
frontal attack, protect both flanks, and then launch a counterattack from the
southern sector. At this level of abstraction, there are only a few goals, however,
there are hundreds of constraints that determine the quality and acceptability of
the plan. Constraints may deal with the suitability of the forces for the specific
mission and terrain; they may come from the readiness of the forces or from the
transportation needed to move them into place. Additional preferences for force
assignments may consider recent commitments of the forces and other
subjective considerations like the effectiveness of their commanders in working
together.

Automation that merely assigns resources to an abstract plan does not
accomplish much that users cannot do themselves. Automation is more helpful
at lower levels of abstraction. At lower levels of abstraction, there are likely to be
hundred or thousands of goals to be accomplished. A U.S. military
transportation plan currently starts out as an uninstantiated TPFDD with 10,000
to 200,000 items to be delivered. Each item to be delivered is a goal/task to be
accomplished. While the transportation plan should be built with a hierarchical
structure that collects related goals, effective automation of the planning has to
deal with very large numbers of goals.

Crisis action planning involves large numbers of constraints. It is useful to
distinguish resource capacity constraints from the constraints arising from
conflicts or dependencies between pairs of tasks. Resource capacity constraints
limit the assignments of a resource to be no more than the available instances of
the resource. Resource capacity constraints create a potential interaction
between all of the tasks that can use that resource. For example, an airport
capacity constraint means that every decision to send an item through that
airport has a potential impact on the ability to deliver every other item that
might pass through that airport. On the other hand, constraints that arise from
conflicts or dependencies between tasks are usually binary or low order
constraints. For example, a requirement that surgical facilities have to arrive
before the surgeons is a binary constraint between those two delivery
requirements.

Most constraints are not absolute prohibitions. For most constraints, domain
experts can think of a situation in which it would be appropriate to violate the
constraint. These constraints are actually preferences with a strong penalty
against overall utility if the constraint is violated. There is a fine line between
hard constraints and preferences.

A-13

2.4 Uncertainty and Contingency Planning

Crisis action planning is complicated by a large amount of uncertainty about both
the situation and about the goals. Many of the delivery requirements in a
TPFDD are needed only to handle contingencies, and some are far more
important that others. Crisis action planning deals with many contingencies.
"Are we prepared to deal with an attack from the north?" ""What if we are not
given permission to overfly the neighboring country?" "What if the monsoon
arrives early?" Crisis action plans deal with hundreds of these contingencies.
Each contingency typically leads to additional requirements. Many of the items
included in a TPFDD are there to handle contingent goals.

One way to reduce the airlift requirements when carrying out a crisis plan is to
plan more carefully for contingencies. Rather than taking redundant resources
into the theater of operations for different contingencies, it is often possible for a
single resource to handle any one of several possible contingencies. This
requires explicit planning for contingencies at a fairly low level of detail.
However, the payoff is significant in that it can greatly reduce the airlift capacity
needed to get the required forces into position. The proposed planning
techniques deal with large numbers of contingent goals and exploit the
opportunities to share resources among multiple contingent goals.

2.5 Crisis Action Planning Examples

Simple but realistic crisis action planning examples were developed as a way of
experimenting with the new planning techniques. Transportation plans that
instantiate TPFDDs were one source of examples. The Kestrel scheduler assigns
and schedules resources for the delivery requirements of a TPFDD. One
application of the new planning techniques will be a front end to the scheduler
that builds a list of delivery requirements hierarchically and explicitly represents
the constraints and dependencies between hierarchical delivery requirements.

Another set of examples focuses on planning for contingencies in ways that
exploit the opportunity to handle multiple contingencies with a single set of
resources. These examples deal with planning for operations in theater as well
as transportation planning.

The scenario is that a neighboring country is threatening to attack a friendly
country which has appealed for U.S./NATO assistance. This scenario is an
abstraction of a real training scenario. It is deliberately left abstract to avoid
making it sensitive in any way.

The U.S. has decided to send in forces sufficient to deter the threatened attack-
The situation is shown in Figure 2-1. In this simplified example, there are two
goals:

1. Defend against a threatened incursion in Sector 1. Enemy forces are already
massed to attack in Sector 1.

A-14

Intelligence is Be prepared to defend against a possible incursion in Sector 2
confident that they can give 5 days warning before enemy forces could be
repositioned to attack into Sector 2.

#*

Seaport
Sector

1

#* A^VYyvx
Sector

A3
7*

Threatening
Forces

Figure 2-1: Crisis action planning scenario

Separate planning cells are dealing with the defense of each sector. Both
planning cells develop a high level plan to send a force to secure the seaport and
the perimeter around a supporting airport, and then send in the main air and
ground forces to defend their sector. The interesting technical issue in this
scenario is to enable the two planning cells to coordinate their plans to avoid
conflicts and to exploit opportunities for synergy.

In this scenario, there is clearly synergy between the two plans in that they both
need to secure the seaport, and this needs to be done only once. There are two
other opportunities for synergy and three potential conflicts at this level of
abstraction. (There may be more opportunities for synergy or conflict at lower
levels of abstraction.) The opportunities for synergy are:

1. Since there will be 5 days warning before an attack in Sector 2, some forces
from Sector 1 can be shifted to reinforce Sector 2 before an attack there.
(Intelligence is confident that any threat in Sector 2 will significantly
weaken the threat in Sector 1.)

2. One airport may be able to support the forces in both areas.

The potential conflicts at this level of abstraction are:

1. The transportation resources to bring forces into the theater of operations
may not be able to support both plans simultaneously.

2. Simultaneous execution of both plans may cause congestion in the seaport
and connecting roadways.

3. An airport supporting action in both sectors may become congested.

A-15

The goal of this planning exercise is to allow each planning cell to plan the'
operations for its sector with as much independence as possible while still
identifying and exploiting the synergies and dealing with the conflicts between
the separate plans.

Software was implemented to experiment with a variety of planning problems
based on this overall scenario. This report focuses on how the problem solving
works when the two planning cells choose airports to support their separate
operations. Depending on the relative advantages of the different airports, the
best plans may be for each operation secure the airport that is best for its own
purposes; however, sometimes it is better to use a single airport and exploit the
concept of a common good. The key issue is how two relatively independent
planning operations can decide that they are each better off securing a single,
common airport.

To be more specific, assume the following facts about the situation. The cost of
securing each airport is the same. (The cost of securing an airport is measured in
terms of the quantity of forces that must be sent in to secure the airport, the time
required, and other intangible factors like the political implications of using the
airport.) Airport Al is slightly better for supporting operations in Sector 1, but
Airport A2 is a viable alternative. (The utility of using an airport considers
factors like the distance to the area of probable operations, the quality of the
facilities at the airport, and similar domain specific issues.) Airport A3 is slightly
better for supporting operations in Sector 2, but Airport A2 is also a viable
alternative. If the planning cells act independently, the first one will develop a
plan to secure the seaport and Airport Al and then send forces to defend Sector 1.
The second planning cell will develop a similar plan using Airport A3.

Both planning cells need to discover that securing the seaport is an operation
common to both plans. It needs to be done only once, but congestion in the
common seaport may also create conflicts between the two operations. This is
accomplished in the software by representing the seaport as a shared resource.

The more interesting question is how the two planning cells discover that they
are both better off using A2 because they can share the cost of securing A2. (By
transporting fewer forces to secure airports, the main forces to defend the sectors
will begin arriving sooner.) Each of the airports is treated as a shared resource,
and there is a cost of securing and using that resource.

Coordination between the planning cells requires:

1. Identifying resources that are potentially shared.

2. Having each planning cell bid for the shared resources.

In this example, each planning cell will bid a lower amount toward the cost of
securing A2; however, if the sum of the bids for A2 is higher than the individual
bids for the other airports, A2 becomes the airport preferred by both planning

A-16

cells. The independent planning cells exchange information about shared
resources in terms of quantitative utility measures. Each cell is trying to
maximize the quality of its own subplan. The pricing of shared resources allow
coordination between the planning cells so the individual plans developed in
each cell combine into a good overall plan. In this case, each planning cell
discovers that it needs to pay only part of the cost of securing A2, and thus A2
becomes its preferred airport. In slightly different circumstances where using A2
is distinctly inferior for one or both of the planning cells, if the sum of the bids
for A2 are lower than the cost of securing A2, the planning cells will choose to
secure both Al and A3. If congestion from sharing A2 reduces its usefulness to
one or both of the planning cells, the planning cells will reduce their bids for A2
which may cause A2 to become unattractive to each of the planning cells.

In this case, a market pricing mechanism leads independent planning cells to
plans that combine effectively into a good overall plan. By identifying and
pricing other potentially shared resources, the other synergies and conflicts in
this scenario can also be planned successfully. Some of the main forces sent into
the theater can be identified as potentially shared between the two sectors. (The
forces will reinforce in Sector 1 until intelligence reports that the enemy is
shifting forces toward Sector 2.) Pricing mechanisms allow the appropriate trade-
offs to be made. For example, in planning the defense of Sector 2, the value of
shared rescues would be greatly reduced if the intelligence warning is less timely
or less certain.

The market pricing mechanisms implemented for this example are intended to
scale up to larger problems where there are many planning cells and many
potentially shared resources. Indeed, pricing mechanism actually work better on
larger problems with many entities competing for a large pool of shared
resources. However, there are limits to the effectiveness of market pricing
mechanisms in the context of general planning problems, and this research
explored those limits.

A-17

3. Overview of the Planning Techniques and their Interactions

The overall approach pursued in this research assumes that plans are generated
by multiple, semi-independent planning cells. At one extreme, these planning
cells may be geographically distributed teams of human planners. At the other
extreme, the planning cells may be small software modules that make one
specific kind of elaboration, change, or transformation to a plan. Planning cells
may lie anywhere in the spectrum between these two extremes. They may use
dynamic programming or other algorithms from operations research, they may
be expert systems, they may be interactive planning cells, or they may be
individual human planning experts. The key problem is to End simple
coordination techniques so the separate human and automated planning cells
can coordinate their planning activities, share resources, resolve conflicts, and
exploit synergistic opportunities.

3.1 Dividing Problems into Semi-independent Subproblems

When a problem divides into completely independent subproblems, it is
relatively easy to solve each subproblem and build a complete solution from the
subproblems. Mathematical expression simplifiers and transformational
compilers for very high level languages are the most sophisticated examples of
exploiting this ability to decompose a problem into many independent
subproblems. These applications are implemented as a set of transformations
that pattern match on syntactic expressions of a formal language and then
transform the expression into a simpler or more executable expression. These
applications can be built so most transformations do not interact with other
transformations.

Practical planning problems divide into only semi-independent subproblems.
Resolving conflicts between plans that achieve conjunctive goals has been a
central theme of planning research. This research explores the extent to which
resource pricing mechanism allow semi-independent planning cells to
coordinate their activities. It models the interactions between planning cells as
resource conflicts or resource sharing opportunities and lets the planning cells
communicate by bidding for alternative resources. Communication of resource
price information may not be adequate to coordinate all distributed planning;
however, it is interesting to see how much coordination can be accomplished
with simple resource pricing mechanisms.

Organizational planning problems often divide into subproblems that are
independent except for access to shared resources. Typically, the organization is
already structured in a way that attempts to minimize interactions between
planning cells. Expensive resources that must be shared are the most common
cause of interactions. Pricing mechanisms using ideas from microeconomic
theory are an established way to allocate resources efficiently.. Section 4 explores
the extent to which these ideas apply in organizational planning problems like
military crisis action planning.

A-18

Dependencies between planned tasks that are not explicitly over resources can
still be modeled as resource dependencies. For example, if there is a constraint
that Task A has to be completed before Task B, this can be modeled by a phantom
resource that is produced by A and consumed by B. All dependencies between
subproblems can be modeled as resource constraints by inventing appropriate
phantom resources. Thus, it is plausible that communication between planning
cells can be limited to that which is needed to identify and price shared resources.

From a practical viewpoint, it is not necessarily a simplification to translate all
dependencies into resource constraints. Phantom resources increase the number
of resource types, and most phantom resources have only one instance that is
both produced and consumed by planned actions. Pricing mechanisms are less
likely to be effective for these resources. However, in many organizational
planning problems, most of the dependencies between planning cells arise over
access to a static set of resources that have multiple instances. Pricing
mechanism are effective for these resources, and it seems useful to extend the
pricing mechanisms to handle a small number of other kinds of dependencies all
within a single framework.

3.2 Problem Solving Steps

Organizational planning involves three steps. Sometimes they will be
sequential, but they may be interleaved:

1. The organizations goals are apportioned to local planning cells. High level
goals may be defined in the charter of the planning cell and detailed goals
may be apportioned dynamically. From a practical viewpoint, planning is
simplified to the extent that this apportionment minimizes the interactions
between the planning cells.

2. Identify the potential interactions between the plans of separate planning
cells. These interactions take the form of shared resources, conflicts, or
synergies. Potential conflicts and synergies can be modeled by phantom
resources. Many potential interactions (and their associated resources) are
known at design time, other interactions have to be identified dynamically.

3. Let each planning cell develop a plan to solve its local goals in a way that
will combine with other plans to become an effective plan for the entire
organization.

The pricing mechanisms covered in this report deal with the hard part of the
third step—the communications between planning cells so their separate plans
combine effectively. The pricing mechanisms assume that all planning cells
communicate about prices in a common language. Prices need not be in
monetary units, but each planning cell must have an estimate of the utility of its
goals—although the utility can be contingent, changing, and uncertain.

A-19

4. Pricing Mechanisms for Coordinating Planning Cells

This section introduces resource pricing mechanisms, reviews assumptions
behind the efficiency theorem from microeconomic theory, and discusses the
extent to which these assumptions are valid both in the economic world and
when applied to organizational planning problems.

4.1 Resource Pricing Mechanisms

Resources are allocated to planning cells that are willing to pay an appropriate
price which is measured in terms of the utility they will achieve by using the
resource. Some authority is responsible for managing the price of each resource.
This price control may be distributed with different authorities for separate
resources. The authority assigns an estimated price for the resource for each day
or other period of time. Planning cells then plan to accomplish their goals using
resources that maximize the difference between the utility they achieve and the
price of the resources. Each cell specifies the resources that it wants. When the
resource authority receives the request, it calculates whether available capacity is
over or under subscribed at the current prices, and it raises or lowers the price
accordingly. Logically, each planning ceE then recalculates its demands and the
process cycles—hopefully toward an equilibrium point that allocates all the
resources efficiently.

In large problems where demands for resources are reasonably independent and
individual demands have an insignificant effect on prices, prices remain
relatively stable unless affected by external factors. Price convergence for smaller
planning problems is more problematic—especially when there are many
conjunctive and disjunctive requirements for resources. For example, a task that
needs either of two different packages of resources may switch between the
resource packages when the price of one resource changes. If the problem is
small, the change may have a ripple effect on the price of other resource.

When there are humans in the planning loop, multiple iterations on the
resource prices are not feasible, and a key practical question is whether the initial
price estimates with only a few modifications are good enough. When the
planning is being done within an automated cycle, it is feasible to adjust the
prices repeatedly in an attempt to find an equilibrium where the resource
allocation is efficient.

4.2 Pricing Assumptions in Economics.

Microeconomic theory holds that the pricing mechanisms underlying the
modern western economies leads to an efficient allocation of resources. This
section fleshes out the assumptions behind the argument that these "free
markets" are good. What is meant by "efficient allocation"? What basic
conditions need be met to attain an ideal competitive market? What are the
areas that do not fit the requirements of perfect markets? And it examines how

A-20

closely organizational planning problems can be modeled as problems in
efficient resource allocation.

Formally, an efficient, or Pare to Optimal, allocation of resources is any allocation
that uses up all the available resources in such a way that it is not possible to
reallocate resources to make somebody better off without simultaneously
making somebody else worth off. The definition does not mention the just or
fair distribution, nor does it pay attention to general common goals. From the
microeconomics perspective an economy is merely a collection of individuals
each trying to maximize its profit. The multitude of individualistic actors leads,
under some fairly general assumptions, to a globally efficient resource allocation-

There are 5 central assumptions behind the optimality of pricing mechanisms.
They are:

• Isolated utility. Each participant in the global economy is basing his actions
only on his "basket of goods." He does not care about other participants nor
about the aggregate performance of the economy. For example, if somebody
buys a foreign car it is because he perceives it to be the best value. A person
cannot be expected to buy (or do) something only because it is good for
somebody else, nor abstain from an activity (like pollution) because it makes
others less well off.

• Insaturation of demand. Different participants may put different priorities
on different goods. However, regardless of personal tastes and preferences,
one thing is common to all. All participants feel they would be better off if
they had more. We all want more.

• Perfect information. All participants have perfect information about the
current market conditions.

• Diminishing return to scale. The return on investment in any production
activity is a convex function that diminishes with the size of investment.
For example, if we seed crops twice a year instead of once we will harvest
less than twice the crops.

• Insignificance of any individual player. It is assumed that any participant
cannot be significant enough compared to the market overall as to affect the
price of the goods in the market. Any producer or consumer may not like
the price they are getting or paying for the goods they sell or buy, but their
decisions to buy or not are not significant enough to affect the price.

4.3 Economic Reality

The "free economy" model is widely hailed as being the best even though many
of the assumptions above are unrealistic. Without going into a deep discussion
on "managed competition," it is instructive to understand where the model
brakes down in modern economic reality.

A-21

The first two assumption may be pretty close to reality. This is not to say that our
charitable activities are not important, but rather that the Mother Teresas of our
world, with all the great humanitarian work they do, have only marginal impact
on the economical lives of most people.

The perfect information requirement is unattainable. The market economy is so
vast and individual's resources are so minuscule in comparison that any attempt
to coEect all the information is doomed. However, one does not need all the
information, but only some small portion that is directly relevant to its day to
day decision making. On balance, one can realistically be expected to be
adequately acquainted with the market conditions in his immediate area of trade.

The requirement of diminishing returns to scale is probably the weakest one in
modern economy. It is clearly more efficient to construct large manufacturing
facilities for goods with a significant component of R&D costs. The
semiconductor and software industries are clear examples where the more one
produces the less are the marginal production costs (this phenomenon is known
as "learning by doing"). On the other hand, transportation and logistics problems
generally do meet assumption.

The last requirement of insignificance of each player breaks down most readily
when there is increasing return to scale but not only then. For example, recent
economic history knew attempts to corner the world silver market.

4.4 Organizational Planning and Assumptions for Price Convergence

Like real economic systems, organizational planning problems do not meet the
assumptions needed by microeconomic theory to guarantee that pricing
mechanism will lead to an optimal allocation of resources. The first three
assumptions—isolated utility, insaturation of demand, and perfect information
are probably more valid for distributed, organizational planning problems than
in the economy as a whole. However, the assumption that production is a
diminishing, convex function of investment size is not valid for planning
problems that involve discrete reasoning. More relevantly, resources seldom
exist in sufficient quantities for the actions of individual planners to have an
insignificant affect on prices. Certainly, when there is only one instance of a
resources—as is the case with phantom resources—each planning cell can
manipulate the price of the resource.

4.5 Summary on Microeconomic Theory

Economic reality is in many cases quite different from the assumptions required
for perfect competitive markets. Optimal allocation of resources, if at all
attainable, may have little to do with the norms of our society and the goal of
enhancing the'well being of all the members, and yet the free market model is
widely popular and promoted as being the only solution for sustained growth of
the modern economy. What is the indispensable feature that makes the free

A-22

market model so attractive, and makes countries that try to avoid it (like former
Soviet Union, Cuba and India) pay the price of delayed economic development.
The answer is in the works of the mechanism itself: it does not fail because it
does not have any single point of failure. The decision mechanism is distributed
and involves no single point of failure. The failure of any individual player has
no significant impact on the economy overall. In comparison with the central
command-type structure that existed in Soviet Union, the unattainable task of
collecting aÜ the information needed for successful decision making is avoided.
The role of central authority is reduced to priority setting and coordination,
while the bulk of detailed data is collected, evaluated and used for decision
making in a distributed, local, and timely manner. This explains why the
preceding discussion of economics has immediate and clear bearing on military
crisis action planning.

In the next section we outline the components of a distributed crisis action
planning architecture and suggest steps that might be taken to validate or
disprove this proposal in the domain of the military crisis action logistic
planning.

A-22a

5. Distributed Planning for Multiple, Contingent Goals

Dividing and distributing the organizational planning problem is very common
among successful large corporations. Distributed planning has similar
advantages for military crisis action planning:

1. Geography of large operations. Like international corporations, military
crisis planning spans continents.

2. Uncertainties in dynamic planning. Situations change at the pace that
makes a swift local response indispensable. There is not enough time for
central authority to deal with all the nuances and uncertainties involved in
the local situations.

3 Local specialization. No matter how many satellite links are established, the
local commander will have a better and deeper understanding of the local
situation.

If the crisis action planning has much common with planning in modern
competitive markets, the methods that have been successful in the later should
be tested in the former. The following takes for granted the need for some sort of
distributed decision making in crisis action situations. It focuses on a more
technical question: what is needed to make the distributed planning work for
crisis action planning.

5.1 Components for Successful Decomposition

In order to design a successful distributed management environment two
elements must be addressed:

1 Resource pricing. Resource pricing of transportation resources can handle
coordination between separate planning cells. The transportation task will
be priced in much the same way as in commercial transportation except
there will be more emphasis on the opportunity cost when using
transportation resources. During a crisis, opportunity costs are usually more
significant than operating costs.

2 Local planning to use resources. For a global distributed scheme to work,
each local planner must be able to construct a plan that maximizes its local
utility Under conditions of uncertainty, the optimal plan is conditional on
uncertain events, just as any corporate plan has various options dependmg
on the success of development, market penetration etc.

We have developed a conditional planning algorithm that copes with the
difficult task of conditional planning under uncertainty. This algorithm is
-eneral and mav in principle be used in a centralized environment, but the
computational complexity of conditional planning is very high, and it is
important to do conditional planning within a limited scope. In this way,

A-23/A-24

decomposition and conditional planning compliment each other: the
coordination scheme assures that each planning cell is facing only local and
relatively small problems and is capable of creating an conditional plan, while
the optimality of local plans enables global optimality through coordinated
distributed planning.

5.2 Optimal problem decomposition

There are a number of ways to divide a large resource allocation problem into a
set of smaller ones. Two principal ones are:

1. Price-directed decomposition.

2. Resource-directed decomposition.

In both cases the central authority functions as a market clearinghouse. The two
methods differ in the nature of communication between the clearinghouse and
local planners. In the first case the clearinghouse is responsible for setting a price
for each resource. The local planning cells plan in the environment defined by
these prices and tell the clearinghouse what and how many resources they want
to buy or sell given the current set of prices. If the market is not in equilibrium
(i.e. demand does not equal supply) the clearinghouse modifies the prices and
the process is repeated until an equilibrium is reached.

With the resource-directed decomposition, a central authority communicates the
resource allocation to each planning cell which is responsible to make an
optimal local plan given its resource allocation, and to tell the clearinghouse the
price it is willing to pay for an additional allocation of resource (or willing to
accept to receive fewer resources). The clearinghouse modifies the allocation of
resources and the process continues until the marginal prices for each resource
reach equilibrium.

Both methods lead to an optimal global solution, and the choice of one or the
other should depend on the implementation aspects of the problem. It involves
deep understanding of the human factors in crisis action planning and cannot be
made at the current stage of the project.

5.3 Optimal conditional plans

While local expertise and decision making are critical for in distributed
operations, local efforts can still be assisted and automated. Each planning cell
can use whatever planning algorithms are most suited to the local problem.
There is no requirement in our approach to distributed planning that all the
local planning cells use the same planning algorithms. Because the local
problems are generally smaller in scope, planning methods that do not scale well
may still be feasible. Conditional planning by stochastic dynamic programming
is a particular method we use in the following example.

A-25

5.4 Utility-based conditional planning

In the previous sections we presented an outline of the distributed planning
environment that is based on two elements: optimal resource coordination and
optimal local planning. This section presents an example of optimal local
conditional planning under uncertainty with resource constraints.

Our flexible planning methodology is based on the following assumptions:

• The goal of the planner is to maximize the plan's expected utility

• The utility of each proposed plan can be computed

• The solution space of the problem is known and represented by AND/OR
graph

• The (possibly uncertain) costs and resource consumption of all actions in
the graph are known

• All uncertainties pertinent to planning and execution actions are explicitly
represented by appropriate probability distributions

Since multiple decomposition structures can be merged by introducing a higher-
level OR-type node, the solution space of a problem is represented by a single
AND/OR graph.

We do not distinguish the actions from the links that represent them. The
semantics for the AND/OR graph are that all successors of an AND-type node
must be satisfied to achieve it, while it is enough to satisfy any successor of an
OR-type node.

Flexible planning minimizes the expected cost of the solution by finding an
optimal exploration sequence for a given AND/OR graph. At each step a link is
"explored" in the graph, that is to say, the action it represents is carried out. We
abstain from using the term "execution" in order not to imply that physical
execution is taking place; a link may represent either a planning action that does
not alter the physical environment, or some effector action, such as moving an
object or activating a sensor.

The planner creates a resource-bounded strategy. While in this report we focus
on time bounds, time is just one example of a finite resource. The results are
valid for any finite number of resources such as time, fuel, manpower, or
money, and if not otherwise stated, the reader can substitute "consumption of
limited resource' for "time duration'.

Our current flexible planning methodology does not permit asynchronous
interrupts. The basic model described here assumes that the actions cannot be
interrupted at all. Readers interested in the treatment of arbitrary synchronous
interrupts are referred to [Einav 91]. However, even the model we describe does

A-26

allow for one type of synchronous interrupt. As soon as an action violates a time
constraint, it is interrupted, and an alternative solution is executed. We
conservatively assume that the cost of the interrupted action is incurred up
front.

Links are sequentially invoked by a solution process. A link may be invoked
only once, and it may be selected only after one of its antecedents has been
invoked. For a given set of previously explored links h, the set of links that may
be invoked at the next step is called an active set and is denoted by act(h). The
state of the solution process is defined by h and the remaining time t. The
external time limit is denoted by T, and initially the history is empty. Obviously,
not all link subsets correspond to possible histories, and/only those need to be
considered when computing an optimal strategy.

A strategy is simply a rule assigning for each state a link to be explored at the next
step. Our problem is to find for a given AND/OR graph the best strategy to
compute and execute a solution within a given time.

An optimal strategy selects the next move using the potential value of the states
that may result from that move. Thus an optimal strategy is intricately
connected to the potential values in all possible states and is computed
simultaneously with the table of potential values. To carry out this
computation, we invoke the Bellman optimality principle [Bellman57] and
stochastic dynamic programming.

The potential value table and the optimal strategy are computed gradually,
starting with the potential values for one-move strategies, computing the two-
move values on the basis of one-move values and continuing the recursion
until the maximal-length optimal strategy is found. We will not present here
the recursive equations. Instead we will present an example that wül clarify the
types of problems that we solve.

Consider the problem represented by the AND /OR tree depicted in Figure 5-1.

Project (5 months)

1 month (.7)
6 months (.3)

1 month (.5) ! month ^
3 months (.5) 3 months (.4)

Figure 5-1: An AND/OR tree representing a simple project management
problem.

A-27

Suppose that an experienced programmer is considering ways to approach a
software development project that must be completed in five months. She
recognizes two alternatives: A and B.

Alternative A splits the project into two modules: A.l and A.2, while alternative
B utilizes a new object class that is still being developed. Based on her experience
with similar projects, the programmer estimates that it will take one or three
months, equally probably, to encode the module A.l; the estimate is one or three
months with probabilities 0.6 and 0.4 for module A.2. If alternative B is selected,
the estimated time is one or six months with probabilities 0.7 and 0.3.

The focus on the control and selection of an appropriate solution is important
when time bounds and uncertainty are present. In this situation we must ensure
the feasibility of a solution, and the time uncertainty requires us to retain some
degree of flexibility. Our problem is to find an optimal flexible strategy for the
project.

The complete solution is presented in (Einav, 91). Here we only mention that
although committing to one of the strategies leads to probabilities of 0.8 and 0.7
for timely completion of the project, the flexible optimal strategy has a probability
of 0.88 of success.

Based on the assumptions outlined in the beginning of the section we designed a
planner that can:

• Compute and execute an optimal meta-level control

• Manage optimally alternative decompositions

• Control optimally the uncertainty

• Plan optimally information gathering actions

• Interleave optimally planning and execution

• Find the resource-constrained conditional plan with the highest utility

The next step is to implement the flexible planner. The planner will be able to
ensure that a system will produce relevant output in appropriate time; will
represent explicitly and reason about temporal processes, including the problem
solving process itself; will interact with the environment; and will adapt the
reasoning process based on available resources.

The time-bounded optimal performance of the conditional planning
methodology is achieved by controlling the concurrent exploration of the
alternative decomposition structures.

A-28

Flexible control interleaves actions at different hierarchical levels. The optimal
meta-level control is efficiently computed using the Bellman optimality
principle within the framework of stochastic dynamic programming .

Flexible conditional planning aims to advance the state of the art in planning by
addressing three major aspects of real-life applications: time constraints,
uncertainty, and hierarchical structure of alternative decompositions and their
abstractions.

Time constraints are always present in some form, either explicit or implicit, in
real-life problems. We need to be able to react quickly while, time permitting
being able to utilize slower, but more precise methods. As in design, where the
duration and cost of the project are defined early in the life cycle, to control the
time of reasoning we must start at the very early stages, i.e., beginning with the
selection of the appropriate hierarchical decomposition structures, and as long as
we cannot predict exactly the performance of alternative decompositions and the
environment, we have to model uncertainty. Our work led to a planner that
differs in its basic assumptions from previous work in AI Planning.

A-29

6. Examples: Extending Pricing to Small Planning Problems

Most AI planning techniques work best on small problems and encounter
difficulties of scale in larger problems. Resource pricing works best on a very
large scale and encounters difficulties on smaller problems. This section gives
examples that explore resource pricing in small problems where the resource
requests of a single planning cell influences resource prices.

6.1 Job Shop Scheduling Experiment

One early experiment used the job shop allocation and scheduling problem
discussed in [Sadeh 91b]. In involves 10 tasks to accomplish 4 jobs using 4
resources over 15 units of time. The tasks require resources for varying lengths
of time. The solution requires careful use of critical resources with respect to the
variable length time requirements.

We tried to solve this problem using simple pricing mechanisms and were
surprisingly successful. We assumed a separate planning cell was planning each
of the four jobs. We started with uniform prices for each of the 4 resources over
the 15 time units. Each planning cell computed the cheapest way to accomplish
its tasks within the allotted time. The times at which it choose to use resources
created one unit of demand for the resources at those times. When a
resource/time was demanded by more than one job, its price was raised. When
it was not demanded by any job, the priced was lowered. Each planning cell then
recomputed its cheapest solution using the new prices. Equilibrium prices were
reached in 15-20 iterations. The union of the plans from each of the four
planning cells was then the solution.

For this particular problem, iteration on resource prices seemed simpler than the
statistical look-ahead technique used by Sadeh and Fox. The iteration was
actually carried out manually for this problem.

6.2 Planning Problems without Equilibrium Prices

For small planning problems, there is no guarantee that equilibrium prices exist.
The following is a simple example of a pathological case. There are four
resources, R1-R4. Tasks A and B both need to use either of two pairs of resources
as indicated in Figure 6-1. Task A will achieve 10 units of utility by using both Rl
and R2, or it will achieve 2 units of utility by using R3 and R4. Task B will
achieve 8 units of utility using either Rl and R3 or R2 and R4. There is no way
to satisfy the resource requirements of both tasks, so the best solution is to let
Task A achieve 10 units of utility. However, resource pricing mechanisms will
result in low prices for R3 and R4 with the result that Task B can bid up the price
for Rl and R2 to the point where Task A cannot afford both resources.

A-30

Figure 6-1: A planning problem without effective resource prices

6.3 Example: Contingency Planning in Blocks World

This section gives examples that show how market mechanisms apply to the
problems traditionally addressed by AI planning technology. The market
mechanisms deal with problems that cannot even be formulated in the
terminology of classical planning, but it is important to understand the extent to
which the new paradigm extends the older paradigms.

Blocks world problems can be formulated as resource allocation problems.
When this is done, blocks problems have neither of the simplifying features that
are exploited by resource pricing mechanisms (the resources are both produced
and consumed, and there are seldom multiple instances of resources), thus there
is little reason to expect pricing mechanisms to outperform old paradigms for
these problems; nonetheless, it is informative to understand how pricing
mechanisms apply to traditional problems.

63.1 Crisis Planning Analog of Blocks Example

Since a discussion of a blocks world problem has some danger of being viewed as
irrelevant, it seems best to begin with an equivalent crisis action planning
problem. A problem of moving forces into good defensive positions is
illustrated in Figure 6-2. An enemy attack is expected toward Area 1, but there is
a possibility that it will come toward Area 2 instead. Current defensive forces are
an army battalion and an air wing in Area 3. Fuel has just arrived in Area 2.
The goal is to get the battalion, the fuel, and the forces supporting the air wing to
Area 1. They must move into Area 1 in that order. The fuel that just arrived in
Area 2 is exposed if the attack comes into Area 2, so it should be moved out of
Area 2 as soon as possible. An alternative but less effective goal is to defend in
Area 3 and simply move the fuel to Area 3. The transportation resources are
limited so only one thing can be moved at a time.

A-31

Area 3

Anny Battalion
Air Wing

Threatening
Enemy Forces

Figure 6-2: Crisis action planning scenario equivalent to blocks problem

There are three promising solutions to this problem:

1. Move the fuel from Area 2 to Area 3, then move the battalion, fuel, and air
support forces to Area 1 in that order. This involves 4 movements and may
take too long.

2. Move the battalion to Area 1, then the fuel from Area 2 to Area 1, then the
air support forces. This involves only 3 movements but leaves the fuel
exposed to danger while the battalion is being moved.

3. Move the fuel to Area 2 and satisfy the alternative goal with only one
move.

The best choice depends on how soon the forces are needed in Area 1, whether
the fuel really has to be moved out of Area 2 immediately, and the relative merit
of the alternative goal of defending from Area 3

6.3.2 Blocks Example with Contingent Goal

This crisis action planning problem is equivalent to the following blocks world
extension of the Sussman anomaly. Figure 6-3 shows the initial configuration of
blocks. The three goals are to quickly stack A on B and B on C, and to put E on D
within one move after the burglar alarm goes off. In parallel with the crisis
action problem above, there are three promising solutions, and the best solution
depends on the relative utility of the goals:

1. Move B to table, move E to D if the burglar alarm goes off, otherwise: move
C to table, move B to C, move A to B. This requires 4 moves even when the
burglar alarm doesn't sound and violates the quickly requirement for A on
B and B on C.

2. Move C to table, move B to C, move E to D if the burglar alarm has gone off,
move A to B. This means that E cannot be moved to D within one move if
the burglar alarm goes off during the first step, but it satisfies all other goals.

A-32

Move B to C, move E to D if the burglar alarm goes off. This gives up the
goal of A on B, but achieves the other two goals very quickly.

Figure 6-3: Initial arrangement of blocks

To choose the right plan, one needs to formalize the relative utilities of the three
goals and do this as a function of the time the goal is accomplished. Knowledge
of the probability that the burglar alarm will sound is also required. Formulation
of utility functions for this problem is relatively straightforward. For example,
the utility of each of the three goals may be given by the entries in the following
table. Here A onB and B on C both have soft deadlines at the third turn, and E
on D has a hard deadline in that it must occur on the first turn after the alarm in
order to obtain any utility. The probability of the alarm sounding is .05 per turn.
The utility of a plan is the sum of the utilities of the goals accomplished. The
plan is to maximize the expected utility.

Number of moves before goal is accomplished

Goal 1 2 3 4

AonB 10 10 10 9

BonC 5 5 5 4

Number of moves after alarm before goal is accomplished

Goal 1 2 3 4

EonD 40 0 0 0

Table 6-1: Utility of each goal as a function of when it is accomplished

Changes in the utility of each goal and in the probability of the alarm sounding
can lead to different choices for the best plan. While the utility function seems to
make this problem more complex than traditional blocks world problems, in fact
the utility function can help guide a problem solver toward a good solution.

A-33

6.3.3 Resource Pricing to Solve Blocks Example with Contingency Plan

To use market pricing mechanism to solve this problem, one can formalize it as
a resource allocation problem with three agents competing for the resources.
One agent deals with each goal. First, each agent develops one or more plans to
accomplish its goal independently. In this case, these plans are quite simple (The
notation Move(C,?) means that the agent doesn't care where the block is moved
to):

Agent 1 plans to accomplish A on B by the two steps: Move(C, ?), Move(A, B).

Agent 2 plans to accomplish B on Cby: Move(B, C).

Agent 3 plans to accomplish E on D by the two steps: Move(B, ?), If alarm
sounds Move(E,D)

To accomplish these moves, each agent needs the resources of the robot arm at
one or more times. Treat the robot arm as a resource for each of four units of
time. The three independently generated plans involve potential conflicts and
synergy. The conflicts are:

Move(C,?) has to occur before Move(B,C) if A on B is to be achieved.

Move(B,C) has to occur before Move(A,B) if B on C is to be achieved..

The potential synergy is:

Move(B,C) accomplishes Move(B,?); however, moving B to the table
accomplishes only the latter and not the former.

To allow the separate planning cells to coordinate their plans so they obey these
constraints, one creates phantom resources that the cells can either supply or
consume. We achieved the best results be creating phantom resources associated
only with the time Move(B,C) occurs. All of the constraints happen to involve
this operation. A planning cell can either get credit for supplying the operation
Move(B,C) at a time desired by other planning cells, or it can offer to pay another
cell to accomplish Move(B,C) at a specific time. There are eight resources that
can be bought and sold by the three planning cells: the use of the robot arm at
each of four time intervals, the specific movement of B to C at each of 4 possible
time intervals. Note that one planning cell can choose to buy the robot arm to
move B to C and simultaneously sell to other planning cells the accomplishment
of Move(B,C).

6.3.4 Results and Lessons Learned

We discuss lessons learned from several experiments with this simple resource
pricing approach to blocks world planning. The research project was terminated
before general conclusions were reached.

A-34

We began with arbitrary starting prices (often a uniform price of 2 units for each
of eight resources) and had each planning cell choose to instantiate its plan in the
way that maximizes its utility. When there were more consumers than
suppliers of a resource, its price was raised (by .3 units in most experiments).
When there were more suppliers, the price was lowered by a similar amount.
This process iterated until prices stabilized or cycled.

With the eight resources described above, the planning cells arrived at the
optimal plan relatively quickly. By changing the utility matrix, the plans
converged to each of'the three different likely solutions—even when one
solution was only 1 unit better than another. Convergence took longer when
two plans were almost equally good or when starting prices were far away from
equilibrium prices.

In initial experiments, both Move(B,C) and Move(A,B) were treated as phantom
resources. This led to redundancy in the resource pricing and iterations tended
to cycle rather than converging. The choice of appropriate phantom resources to
represent constraints appears to be critical.

Resource pricing is most effective for large problems where there are many
instances of resources. There is little reason to expect it to do well on small
blocks world problems that are dominated by goal interactions. Nevertheless,
resource pricing does surprisingly well on these problems—giving considerable
hope that it will be effective for large organizational planning problems where
there are many instances of most resources and relatively few goal interactions
that require the pricing of single instances of phantom resources.

A-35

7. A Structure for Utility Functions

In the blocks world problems of the last section, there was a utility associated
with achieving each goal and there were a set of constraints that had to be
satisfied. In organizational planning problems, there are many soft constraints.
Soft constraints reduce the acceptability of a plan that violates the constraint but
do not make the plan invalid. Essentially, soft constraints involve a penalty
against utility for violating the constraint, but it may be preferable to violate the
constraint rather than lose the utility that comes with accomplishing an
additional goal.

Most organizational planning constraints are actually soft and there is a very fine
line between hard and soft constraints. Users will often describe hard constraints
on the problem solution, but when asked whether they would ever violate the
constraint, they will find situations in which the constraint can be violated. It is
really a soft constraint with a strong penalty for violating it. Problems should be
represented with a smooth transition between hard constraints that can't be
violated and soft constraints that carry a large penalty when violated.

This section summarizes and updates work to define a structure for utility
functions that allows the soft constraints of organizational planning problems to
be represented effectively. A utility function that is practical for planning and
scheduling problems should be a compromise between several conflicting goals:

• It should represent user preferences in a reasonably natural and direct way.

• It should be useful during heuristic search when evaluating partial
solutions.

• It should enable effective variable and value ordering decisions during
heuristic search.

7.1 Constraint Types and their Interaction with Utility

In approaching the utility function, it is useful to separate:

1. The utility of achieving a goal (performing a task).

2. Binary and low order constraints on the solution-both hard and soft
constraints.

3. Resource capacity constraints and other high order constraints on the
solution.

Resource constraints are common in practical applications and are not effectively
handled by general purpose constraint satisfaction techniques. Resource
constraints are complex, N-way constraints between many tasks. N is typically
large.

A-36

Viewed from the perspective of search strategies, resource constraints are nasty
in that they tend to prune a branch of the search tree only after it is almost fully
expanded. For example, if there are k instances of a resource, simple propagation
of this resource constraint does not have an impact until after the k* assignment
of that resource. Then it immediately has the dramatic effect of eliminating this
resource from the options available to all the remaining tasks.

While resource constraints are not handled effectively by generic constraint
satisfaction techniques, specialized heuristics are effective with resource
constraints. A heuristic approach, which is now widely practiced in AI
scheduling applications, projects resource contention using statistical look-ahead
techniques and uses these contention estimates in variable and value ordering
heuristics. Statistical look-ahead techniques have been used in work on Opis
[Muscettola & Smith 87], Cortes [Fox et al. 90, Sycara et al. 90] and Micro-Boss
[Sadeh 91] and in work on Rome Laboratory's Advanced Planning System (APS)
[APS 89].

72. Utility Functions in the Form Eu(t)*mod(t,...)

These and other considerations lead to utility functions that are structured in the
form 2u(t)*mod(t,...) where u(t) is a function of how and when a single task is
completed and mod(t,...) captures the effects of dependencies between tasks. The
mod(t,...) factor is a function of all the assignments made to t and to all tasks that
are involved in binary or other low order constraints with t. The value of
mod(t,...) should be 0 when the assignments made to t and related tasks violate a
hard constraint. A soft constraint is represented by a value between 0 and 1.
Values outside the range [0,1] can also be meaningful. This approach supports
continuity between hard and soft constraints while still recognizing a difference
between hard and soft constraints. For more details, see [Linden 91].

Typically, mod(t,...) is structured as a product where each factor in the product
captures the effect of one constraint between t and other tasks. A product is one
specific way of combining the effect of multiple soft constraint violations. Other
combining functions are possible. For more details on this approach, see [Linden
91]-

A utility function in the proposed form is a fairly natural way of representing
real problems. The u(t) factor combines the effects of multiple evaluation criteria
that depend only on the assignments made to the parameters of this single task
(e.g., resource costs, timeliness of task completion, appropriateness of the
resources for the task, etc.). The effect of dependencies between tasks (for
example, one task must be performed before another) are captured in the
mod(t,...) factor. Essentially, each hard or soft constraint between tasks becomes a
factor in the mod(t,...) component of each of the constrained tasks. The effects of
conjunctive and disjunctive goals can also be captured in the mod(t,...)
component to handle the cases where goals have a conjunctive all-or-none

A-37

property or where goals are alternatives with decreasing additional value once M
out of N are accomplished.

7.3 Evaluating Partial Solutions

The proposed structure for utility functions allows many equivalent
formulations, and often one formulation is more useful than others when
evaluating partial solutions. For example, consider the case of two tasks tl and t2
where tl establishes a precondition for t2. Assume that t2 achieves 10 units on
the utility scale, and tl has no independent utility except for its role in enabling
t2. The utility function for these two tasks would then be 0*mod(tl,t2) +
10*mod(t2,tl) where mod(tl,t2) and mod(t2,tl) are 1 if tl is accomplished before
t2 (and maintained) and 0 otherwise. When evaluating a partial solution, this
utility function gives no importance to tl; however, an equivalent utility
function is x*mod(tl,t2) + (10-x)*mod(t2,tl). By choosing appropriate values for
x, this form of the utility function can decompose the problem of choosing
parameter values for tl and t2 and support more effective least commitment
strategies.

A-38

8. Heuristic Search with Non-Additive Utility

For resource pricing to be effective in practice, prices must converge rapidly
toward an equilibrium. To the extent that individual planning cells have a
significant effect on prices, which is often the case when phantom resources
represent dependencies in the plan, it is useful to look for better ways to
communicate about prices and get them to converge. We explored the idea that
planning cells should bid for resources by giving a probability distribution about
the price they will be willing to pay or receive. When there is uncertainty about
what other resources will cost and about what the best local plan will be, the local
planning cell has only probabilistic information about the price it will want to
offer for this resource. A large amount of previous work on statistical look-
ahead techniques for AI scheduling has explored bidding for resources in terms
of subjective probabilities of use [Muscettola & Smith 87, APS 89, Sadeh & Fox
89, Sycara et al. 90, Sadeh 91, Sadeh and Fox 91, Johnston 92]. We propose bidding
in terms of both the price to be paid and the probability of use at that price. This
approach increases the communication bandwidth between distributed planning
cells, is more likely to converge when there are conjunctive and disjunctive
subgoals, and may lead to useful results even when convergence cannot be
guaranteed. This section summarizes the current state of research on a
theoretical framework for this approach using concepts from decision theoretic
planning.

This probabilistic approach to pricing will be used both to choose ways to extend a
partial plan (value ordering decisions) and choose which part of the plan to
extend next (variable ordering decisions.

8.1 Variable and Value Ordering Search Heuristics

Most variable and value ordering heuristics used in heuristic search are sensitive
to only one feature of the search state; for example, the minimum domain
variable ordering heuristic finds the variable with the smallest domain of
feasible values. But complex resource-bounded planning problems involve
optimization in the presence of constraints. A fixed heuristic that is sensitive
only to constraints and ignores utility considerations involves a discontinuity
between hard and soft constraints and will be effective only for problems where
hard constraints are the critical feature. Heuristics should depend on the utility
function as well as the constraints.

What is needed is a general way to merge all the evidence available when
making variable and value ordering decisions during search. This evidence
comes from the utility function, binary constraints, and resource constraints. A
decision theoretic viewpoint seems to provide justifiable semantics for
computations that combine this evidence. A utility function in the form
suggested above with separate components for the independent utility of the task
and for the effects of interactions between tasks supports this decision theoretic
approach.

A-39

The variable and value ordering decisions that need to be made repeatedly
during search can be viewed as problems in decision theory where evidence for
each decision comes from the problem's features and the current state of the
problem solving. While heuristics are frequently thought of as inexpensive
computations, any computation that is not exponential in problem size can be a
useful heuristic, and simpler heuristics can always be selected once a generic
approach is understood.

8.2 Past Research on Probabilistic Computations of Heuristics

Many domain-independent heuristics have been proposed to solve constraint
satisfaction problems (CSP). These include the variable with smallest feasible
domain, the most consfraining variable, the least constraining value, and the
value that participates in the most solutions to a relaxation of the problem.
Work by Hansson et al. [92] computes a combination of heuristics that is effective
for a specific CSP. Heuristics for constrained optimization problems should
extend these CSP heuristics.

When there is a utility function as well as constraints, a key question is how to
combine the evidence from the utility function and the constraints; for example,
how much extra utility is needed to compensate for consuming a highly
constrained resource. Sycara et al. [90] addressed this question by experimenting
first with the two extreme cases (picking the value that gives the most utility for
this task vs. picking the value that most reduces resource contention). A
compromise is probably better than either extreme. Rather than trying to find
the most appropriate compromise through experiments, theoretical results may
be able to predict the compromise that is most effective overall.

Utility Functio
Variabl

Resouro

Unary Constraints

Binary >*£.--** Unassigned
Constraints -*" Resources

Figure 8-1: Sources of Evidence for Variable and Value Ordering
Decisions.

Figure 8-1 is a simplified representation of the recent state of research on using
probabilities to combine evidence when making variable and value ordering
decisions during search. At any intermediate stage of the search process, one
considers the remaining tasks (variables) and the remaining resources (values)—
each shown as stacks of circles in the figure. Evidence for the variable and value

A-40

ordering decisions comes from the utility function, the unary constraints, binary
constraints, and from statistics about resource contention. The heavy arrows
show the flows of evidence involving the first variable and the first resource; the
dashed arrows indicate other flows of evidence to and from the other variables
and resources.

In Figure 8-1, for each variable there is a probability distribution (called Best?)
that captures the available evidence about which resource will turn out to be the
best choice for assigning to this variable. For each resource there is a probability
distribution (called Demand) that summarizes the demand for that resource
from all the variables. The double arrow between Best? and Demand
characterizes one of the problems that needs to be solved: the Best? distribution
is used to project statistics about resource demand, and the Demand for a
resource influences the probability that a resource is the best global choice for
assignment to a variable. Similarly, binary constraints involve evidence flowing
in both directions between two variables—probabilities about assignments to one
variable influence the probabilities about the best assignments to the other
variable.

8.3 Overview of Approach

Figure 8-2 elaborates Figure 8-1 with two additional concepts: the Net Utility of
each potential assignment of a value to a variable and the Marginal Utility of a
resource. The double arrow between Best? and Demand is eliminated, but there
are still cycles in the influences between the probability distributions shown in
Figure 8-2. The elimination of these cycles is discussed in Section 8.8 and depicted
in Figure 83.

Utility Function Variable:

Inary Constraints _J, """""Net Utility

Binary ^j
Constraints

-<^BeS^

Resource

Demand

Margin. Util.

Marginal
Utility

V Cumulative
Demand Curve

area=
available

. ~7
Unassigned
Resources

Figure 8-2: Evidence for Each Option is Accumulated in Probability Distributions about Net

Utility.

8.4 Net Incremental Utility

The first kev concept is net incremental utility—or more simply the net utility.
Intuitively, the net utility of a potential assignment of a value to a variable is the

A-41

Utility of that assignment less the opportunity loss for other variables caused by-
consumption of the resource and by constraints involving the assigned variable.

The net utility cannot be known exactly without a full search, but it can be
estimated. Uncertainty about the net utility is subjective. Net utility can be
calculated in exponential time, but with a computation that uses less than
exponential time, its value is uncertain. With each variable and each possible
value assignment to the variable, one associates a probability distribution that
captures the available evidence about the net utility that will result if this value
is chosen for this variable. The net utility that is being estimated is defined as
follows:

• The net incremental utility of assigning a value to a variable, when given
an existing partial problem solution, is the difference between the best
complete extension that includes that assignment and the best complete
extension that assigns no resource to that variable.

• More precisely, net incremental utility is relative to the search strategy that
is being used. When the search strategy being used is not guaranteed to find
the best solution, then net incremental utility is defined relative to the
expected values of the best solution that will be found by the given search
strategy. Thus, given a search strategy, the net incremental utility of
assigning a resource to an operation is the difference between the expected
value of the best complete solution that will be found by following that
search strategy after including that assignment less the expected value of the
best complete solution that will be found by following that search strategy
after assigning no resource to that operation.

8.5 Net Utility and the "Best?" Choice

The unary constraints and the u(t) component of the utility function provide a
local estimate of utility. This local estimate is the initial evidence for the
probable net incremental utility. When a utility function is additive, the local
utility comes directly from the utility function. Since a probability distribution
about the local utility is all that is needed, the additivity assumption is not
required. Most utility functions—as long as they have some partially additive
structure—yield a probability distribution about the utility that will be achieved
by assigning a value to a variable.

Binary constraints and resource constraints also influence estimates of the net
incremental utility. Before dealing with these constraints, we need to derive the
probability that an assignment is the best choice from distributions about net
incremental utility.

By reformulating the problem to focus on net incremental utility, the probability
that an assignment to a variable is the best choice becomes a derived concept
rather than an intuitive concept as in [Sadeh & Fox 89, 90, Sadeh 91].

A-42

Best? is a probability distribution over the possible resource assignments that is
computed as the probability that a random utility value selected from the
net utility distribution about the resource assignment is bigger than any
other such utility value.

The variances in the probability distributions about net utility control whether
one assignment is slightly or dramatically better than alternatives.

8.6 Computing Marginal Utility

The next issue is the interaction between assignments to variables and the
projection of resource contention statistics. Previous work has used the
probability that an assignment is the best choice to project demand for resources,
but demand also influences the probabilities about the best choice. A key insight
derives from Wellman's work on applying economic theory to transportation
scheduling [Wellman 92]. The marginal utility of a resource establishes a price
for the resource, and an agent evaluating the options for assignment to a variable
should favor using a resource to the extent that the local utility of using a
resource exceeds the globally determined price of the resource. Choosing the best
resource to assign to a variable is no longer based on the relative size of the local
utilities; rather it is based on the amount by which the local utility exceeds its
resource's price.

8.7 Propagating the Influence of Binary Constraints

Binary constraints between variables also influence the net utility computations.
Processing evidence from binary constraints can be thought of as an extension of
arc consistency concepts from CSP problems. The utility function makes the
constraint propagation more complex. The effect of constraints on probabilities
about the best choice has been studied by Muscettola & Smith [87] and Sadeh &
Fox [89, 90]. Net utility should include the utility lost when an assignment
constrains the utility achievable by a dependent variable. For each assignment
that a related variable may make, a variable estimates the utility it will lose and
communicates that estimated loss to the dependent variable.

In addition to estimating the utility lost by other variables, it may also be useful
to estimate the degree to which an assignment restricts the choices available for
other variables. Consideration is being given to using entropy concepts to
measure the distance between a partial solution and a complete solution or
between two consistent partial solutions. Computing the entropy of a partial
solution is often straightforward. The entropy involved in each Best?
distribution may capture the flexibility that is left to make assignments to that
variable. When a value assignment to one variable decreases the entropy of
another variable that it constrains, this may be taken as a measure of the
constraining effect of that proposed value assignment. These may be useful
measures that generalize the most constraining variable and least constraining
value heuristics.

A-43

Utility Function Variable:

Unary Constraints^Vg^j^ Marginal
Uli

1 Cumulative
Demand Curve

Binary
Constraints

Unassigned
Resources

Figure 8-3: Additional distributions are introduced to break cycles and avoid rumor
propagation.

8.8 Rumor Control and Convergence

Figure 8-2 showed a cycle in the evidence being passed from net utility to
resource demand to marginal utility and back to net utility. This cycle needs to
be broken by using the standard approach to rumor control from Bayesian nets.
Essentially, the net utility information that the variable's agent passes to the
resource agent must not include previous evidence received from the resource
agent. The same restriction applies to evidence passed to other variable agents
through the binary constraints. Figure 8-3 is a more detailed version of Figure 8-
2 showing that the local net utility and local best choice (which do not reflect
evidence received from the resource agents) is computed and passed to the
resource agents. While not shown in Figure 8-3, the information passed between
variable agents through the binary constraints must also be restricted so evidence
previously received from another agent is excluded from all evidence passed to
that agent.

There are still some longer cycles in the information flows. Intuition says they
are not significant; however, further research is needed to derive conditions
under which they can be proven to be insignificant.

8.9 Experimental results

Initial experiments to test the decision-theoretic computations for variable and
value ordering decisions are reported in [Linden & Vrotney 92]. The
experiments use a statistical look-ahead algorithm that starts from a utility
function, projects probable demand for each resource, computes a probable
marginal utility for each resource, and uses these probabilities to make variable
and value ordering choices during search. Initial experiments tested these
concepts on assignment problems and compared the solution found on the first
branch explored using these heuristics with the solution found by a simple

A-44

greedy algorithm. The statistical look-ahead algorithm found solutions that
average 4-7% higher utility. When an optimal solution was known, the
statistical look-ahead, almost always either found it on the first branch or was
within 0.5% of optimal The frequency of better results improved on larger
problems. The statistical look-ahead improved the result (relative to greedy on
85% of the small problems (16 tasks and 12 resources), on 95% of the medium
size problems (30 tasks and 24 resources) and on all runs of the larger problems
(56 tasks and 48 resources).

9. Conclusions

This report argues that resource pricing is a promising way to coordinate
planning by multiple planning cells. The techniques proposed are especially
relevant for large organizational planning problems like military crisis action
planning.

Resource pricing is an established way to allocate resources efficiently, and much
of what is needed is solve organizational planning problems is resource
allocation. However, this resource allocation occurs in the context of discrete
goals, constraints, and interactions of the kind addressed by traditional AI
planning technology. This research developed techniques to combine resource
pricing mechanisms with traditional AI planning technology.

The combination of techniques is especially useful when there are many goals
that may be contingent, uncertain, changing, and imperfectly perceived. Trade-
offs between goals are formalized in utility functions that are not required to be
additive but do have some additive structure. Concepts from decision theory
provide a foundation for the statistical look-ahead techniques used to make
variable and value ordering decisions during heuristic search. The theory will
extend current practice to handle resource-bounded planning problems with
complex, non-additive utility functions and both hard and soft constraints.

E. References

[Alterman 86] R. Alterman. An Adaptive Planner. Proc. Fifth National Conference on Artificial
Intelligence. Morgan Kaufman Publ., 1986, pp. 65-71.

[Alterman 881 R- Alterman. Adaptive Planning,. Cognitive Science. 12,1988 pp.393-421.

[APS 89] Software Design Document for the Advanced Planning System. Unisys Corporation,
Prepared for Rome Air Development Center, Griffiss Air Force Base, NY. CDRL B012,1989.

[Bellman 57! R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, N.J., 1957

[Brooks 87] R. Brooks. Planning is Just a Way of Avoiding Figuring Out What to Do Next." Tech
Rpt. Working Paper 303, MTT AI Laboratory, MTT 1987.

[Einav 91] D. Einav. Reasoning Automation under Resource Constraints. Ph.D. Thesis, Laboratory
for Intelligent Systems, Dept Engineering-Economic Systems, Stanford Univ., December, 1991.

A-45

[Fox et al. 89) Mark S. Fox, Norman Sadeh, & Can Baykan, "Constrained Heuristic Search," AAAl-
89, pp. 309-315.

[Hansson et al 92] Othar Hansson, Gerhard Holt, and Andrew Mayer, "Experiments with a
Decision-Theoretic Scheduler," 1992 AAAI Spring Symposium on Practical Approaches to
Scheduling and Planning, NASA Ames TR FIA-92-17, May 1992.

[Johnston 92] Mark D. Johnston, "Spike: AI Scheduling for Hubble Space Telescope after 18 Months
of Orbital Operations." AAAI Spring Symposium: Practical Approaches to Scheduling and
Planning, Working Notes, March 1992.

[Linden <fc Glicksman 87] Theodore A. Linden and Jay Glicksman , "Contingency Planning for an
Autonomous Land Vehicle," Proc IJCAI-87, Morgan Kaufman Publ., Vol. 10.

[Linden 89] Theodore A. Linden, "Planning by Transformational Synthesis," IEEE Expert, 4,2,
Summer, 1989.

[Linden 90] Theodore A. Linden, "Transformational Synthesis: An Approach to Large-Scale
Planning Applications," DARPA Workshop on Innovative Approaches to Planning, Scheduling,
and Control., Morgan Kaufman PubU San Mateo, CA, Nov. 1990

[Linden 91] Theodore A. Linden, "Preference-directed, Co-operative Resource Allocation and
Scheduling." Final Technical Report, DARPA Order No. 6685, Advanced Decision Systems
Report TR-1270-3, Sept 1991.

[Linden & Vrotney 921 Theodore A. Linden and William Vrotney, 'Transformational Planning for
Resource Constrained Problems," Annual Technical Report to DARPA, Advanced Decision
Systems Report TR-18246-1, November. 1992.

[Muscettola & Smith 87] Nicola Muscettola and Stephen F. Smith, "A Probabilistic Framework for
Resource-Constrained Multi-agent Planning." Proc. Tenth Inter. Joint Conf. on Artificial
Intelligence, Morgan Kaufman, Publ. 1987, pp. 1063-1066.

[Sadeh & Fox 89] Norman Sadeh and Mark S. Fox, Preference Propagation in Temporal/ Capacity
Constraint Graphs. The Robotics Institute, Carnegie Mellon Univ., CMU-RI-TR-89-2,1989.

[Sadeh & Fox 90] Norman Sadeh and Mark S. Fox, "Variable and Value Ordering Heuristics for
Activity-based Job-shop Scheduling." Proc. of the Fourth Inter. Conf. on Expert Systems in
Production and Operations Management, 1990, pp 134-144,.

[Sadeh 91] Norman Sadeh, "Look-ahead Techniques for Micro-opportunistic Job Shop Scheduling."
PhD Thesis, School of Computer Science, Carnegie Mellon University, 1991.

[Sadeh and Fox 91] Norman Sadeh & Mark S. Fox, "Variable and Value Ordering Heuristics for
Hard Constraint Satisfaction Problems: An Application to Job Shop Schedulilng." Technical
Report CMU-RI-TR-91-23, The Robotics Institute, Carnegie Mellon University, Nov. 1991.

[Schoppers 87] M. Schoppers, "Universal Plans for Reatcive Robots in Unpredictable
Environments," Proc IJCAI-87, Morgan Kaufman Publ., Vol. 10,1987, pp. 852-859.

[Sycara et al. 90] Katia P. Sycara, S. Roth, N. Sadeh, and M. Fox, "Managing Resource Allocation
in Multi-Agent Time-constrained Domains." DARPA Workshop on Innovative Approaches to
Planning, Scheduling, and Control., Morgan Kaufman Publ., San Mateo, CA, Nov. 1990, pp. 240-
250.

[Wellman 92] Michael P. Wellman, "A General-Equilibrium Approach to Distributed
Transporation Planning." AAAI-92, AAAI Press, 1992.

A-46

DISTRIBUTION LIST

addresses number
of copies

JOHN F. LEMMER
ROME LA80RATORY/C3CA
525 BROOKS ROAD
GRIFFISS AF8 NY 13441-4505

KESTREL INSTITUTE
3260 HILLVIEW AVENUE
PALO ALTO CA 94304

RL/SUL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
GRIFFISS AF3 NY 13441-4514

ADMINISTRATOR
DEFENSE TECHNICAL INFO CENTER
OTIC-FOAC
CAMERON STATION BUILDING 5
ALEXANDRIA VA 22304-6145

ADVANCED RESEARCH PROJECTS AGENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

NAVAL WARFARE ASSESSMENT CENTER
GIDEP OPERATIONS CENTER/CODE QA-50
ATTN: E RICHARDS
CORONA CA 91718-5000

WRIGHT LA30RAT0RY/AAAI-2
ATTN: MR FRANKLIN HUTSON
WRIGHT-PATTERSON AF3 OH 45433- 6543

AFIT/LDEE
2950 P STREET
WRIGHT-PATTERSON AF3 OH 45433-6577

DL-1

WRIGHT LA30RATQRY/MTEL
WRIGHT-PATTERSON AFB OH 45433

AAMRL/HE
WRIGHT-PATTERSON AFB OH 45433-6573

AUL/LSE
8LOG 1405
MAXWELL AF8 AL 36112-5564

US ARMY STRATEGIC D£F
CSSO-IM-PA
PO BOX 1500
HUNTSVILLE AL 35807-3801

COMMANDING OFFICER
NAVAL AVIONICS CENTER
LIBRARY 0/765
INDIANAPOLIS IN 46219-2199

COMMANDING OFFICER
NCCOSC ROTE DIVISION
CODE 02748, TECH LIBRARY
53560 HULL STREET
SAN DIEGO CA 92152-5001

CMDR
NAVAL WEAPONS CENTER
TECHNICAL LIBRARY/C3431
CHINA LAKE CA 93555-6001

SPACE £ NAVAL WARFARE SYSTEMS COMM
WASHINGTON OC 20363-5100

CDR, U.S. ARMY MISSILE COMMAND
REOSTONE SCIENTIFIC INFO CENTER
AMSMI-RO-CS-R/ILL DOCUMENTS
REDSTONE ARSENAL AL 35898-5241

DL-2

ADVISORY GROUP ON ELECTRON DEVICES
ATTN: DOCUMENTS
2011 CRYSTAL DRIVE,SUITE 307
ARLINGTON VA 22202

REPORT COLLECTION, RESEARCH LIBRARY
MS P364
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM 87545

AEDC LIBRARY
TECH FILES/MS-100
ARNOLD AF8 TN 37389

COMMANOER/USAISC
ATTN: ASOP-DO-TL
3L0G 61801
FT HUACHUCA AZ 85613-5000

AIR WEATHER SERVICE TECHNICAL LI8
FL 4414
SCOTT AF8 IL 62225-5458

AFIWC/MSO
102 HALL 3LVO STE 315
SAN ANTONIO TX 78243-7016

SOFTWARE ENGINEERING IN ST CSEI)
TECHNICAL LIBRARY
5000 FORBES AVE
PITTSBURGH PA 15213

DIRECTOR NSA/CSS
W15 7
9800 SAVAGE ROAD
FORT MEADE MD 21055-6000

NSA
ATTN: 0. ALLEY
OIV X911
9800 SAVAGE ROAD
FT MEAOE MO 20755-6000

0L-:

DOD
R31
9800 SAVAGE ROAD
FT. HEADS MO 20755-6000

DIRNSA
R509
9800 SAVAGE ROAD
FT MEAÖE MO 20775

ESC/IC
50 GRIFFISS
HANSCOM AF3

STREET
MA 01731-1619

FL 2807/RESEARCH LIBRARY
OL AA/SULL
HANSCOM AF3 MA 01731-5000

TECHNICAL REPORTS
MAIL DROP 0130
BURLINGTON ROAD
BEDFORD MA 01731

CENTER

DEFENSE TECHNOLOGY SEC ADMIN COTSA)
ATTN: STTO/PATRICK SULLIVAN
400 ARMY NAVY DRIVE
SUITE 300
ARLINGTON VA 22202

9ARPA/TT0
ATTN: DV
1400 WILSON SLVO
ARLINGTON VA 22203-2309

MS. KAREN ALGUIRE
RL/C3CA
525 BROOKS RD
GRIFFISS AF3 NY 13441-4505

JAM£S ALLEN
COMPUTER SCIENCE OEPT/BLDG RM
UNIV OF ROCHESTER
WILSON 8LVD
ROCHESTER NY 14627

732

OL-4

YIGAL ARENS
USC-ISI
4676 ADMIRALTY WAY
MARINA DEL RAY CA 90292

MR. RAY SAREISS
THE INST. FOR LEARNING SCIENCES
NORTHWESTERN UNIV
1890 MAPLE AVE
EVANSTON IL 60201

MR. JEFF BERLINER
S8N SYSTEMS £ TECHNOLOGIES
10 MOULTON STREET
CAM6RI0GE MA 02138

MARIE A. BIENKOWSKI
SRI INTERNATIONAL
333 RAVENSWOOD AVE/EK 337
MENLO PRK CA 94025

OR MARK S. 3000Y
HONEYWELL SYSTEMS & RSCH CENTER
3660 TECHNOLOGY ORIVE
MINNEAPOLIS MN 55418

PIERO P. 80NISS0NE
GE CORPORATE RESEARCH & DEVELOPMENT
3L0G Kl-RM 5C-32A
P. 0. 30X 3
SCHENECTAOY NY 12301

MR. DAVID BROWN
MITRE
EAGLE CENTER 3t SUITE 8
O'FALLON IL 62269

MS. MARK 3URSTEIN
B8N SYSTEMS & TECHNOLOGIES
10 MOULTON STREET
CAMBRIDGE MA 02138

MR. GREGG COLLINS
INST FOR LEARNING SCIENCES
1890 MAPLE AVE
EVANSTON IL 60201

OL-5

MR. RÄNDALL J. CALISTRI-YEH
ORA CORPORATION
301 DATES DRIVE
ITHACA NY 14850-1313

DR STEPHEN E. CROSS
SCHOOL OF COMPUTER SCIENCE
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213

MS. JUDITH DALT
ARPA/ASTO
3701 N. FAIRFAX DR., 7TH
ARLINGTON VA 22203-1714

FLOOR

THOMAS CHEATHAM
HARVARD UNIVERSITY
DIV OF APPLIED SCIENCE
AIKEN, RM 104
CAMBRIDGE MA 02133

MS. LAURA DAVIS
CODE 5510
NAVY CTR FOR APPLIED RES IN
NAVAL RESEARCH LABORATORY
HASH DC 20375-5337

AI

MS. GLADYS CHOW
COMPUTER SCIENCE DEPT.
UNIV OF CALIFORNIA
LOS ANGELES CA 90024

THOMAS L. DEAN
9R0WN UNIVERSITY
DEPT OF COMPUTER SCIENCE
p.o. aox i9io
PROVIDENCE RI 02912

WESLEY CHU
COMPUTER SCIENCE DEPT
UNIV OF CALIFORNIA
LOS ANGELES CA 90024

MR. ROBERTO DESIMONE
SRI INTERNATIONAL (EK335)
3 33 RAVENSWOOD AVE
MENLO PRK CA 94025

OL-6

PAUL R. COHEN
UNIV OF MASSACHUSETTS
COINS OEPT
LEDERLE GRC
AMHERST MA 01003

MS. MARIE DEJARDINS
SRI INTERNATIONAL
333 RAVENSWOOO AVENUE
MENLO PRK CA 94025

JON oorLE
LABORATORY FOR COMPUTER SCIENCE
MASS INSTITUTE OF TECHNOLOGY
545 TECHNOLOGY SQUARE
CAMBRIDGE MA 02139

OR. 3RIAN DRA33LE
AI APPLICATIONS INSTITUTE
UNIV OF EDIN8URGH/80 S. BRIDGE
EDINBURGH EH1 LHN
UNITED KINGDOM

MR. SCOTT FOUSE
ISX CORPORATION
4353 PARK TERRACE ORIVE
WESTLAKE VILLAGE CA 91361

MR, STU DRAPER
MITRE
EASLE CENTER 3, SUITE
O'FALLON IL 62269

MARK FOX
DEPT 0 INDUSTRIAL ENGRG
UNIV OF TORONTO
4 TAODLE CREAK ROAD
TORONTO, ONTARIO, CANADA

MR. GARY EDWARDS
4353 PARK TERRACE ORIVE
WESTLAKE VILLACA 91361

MS. MARTHA FARINACCI
MITRE
7525 COLSHIRE DRIVE
MCLEAN VA 22101

DL-7

MR. RUSS FREW
GENERAL ELECTRIC
MOORESTQWN CORPORATE CENTER
3LDG ATK 145-2
MOORESTOWN NJ 08057

MICHAEL FEHLING
STANFORD UNIVERSITY
ENGINEERING ECO SYSTEMS
STANFORD CA 94305

MR. RICH FRITZSON
CENTER OR ADVANCED INFO TECHNOLOGY
UNISYS
P.O. SOX 517
PAOLI PA 19301

MR KRISTIAN J. HAMMOND
UNIV OF CHICAGO
COMPUTER SCIENCE OEPT/RY155
1100 E. 58TH STREET
CHICAGO IL 60637

MR. R03ERT FROST
MITRE CORP
WASHINGTON C3 CENTER, MS 644
7525 COLSHIER ROAD
MCLEAN VA 22101-3481

RICK HVYES-ROTH
CIMFLEX-TEKNOWLEDGE
1310 EMBARCADERO RD
PALO ALTO CA 94303

RANDY GARRETT
INST FOR DEFENSE ANALYSES CIDA)
1801 N. 8EAUREGARD STREET
ALEXANDRA VA 22311-1772

MR. JIM HENDLER
UNIV QF MARYLAND
DEPT OF COMPUTER SCIENCE
COLLEGE PARK MD 20742

MS. YOLANDÄ GIL
USC/ISI
4676 ADMIRALTY WAY
MARINA DEL RAY CA 90292

DL-8

MR,MAX HERION
ROCKWELL INTERNATIONAL SCIENCE CTR
444 HIGH STREET
PALO ALTO CA 94301

MR. STEVE GOYA
DISA/JIEO/GS11
CODE TBD
11440 ISAAC NEWTON
RESTON VA 22090

SQ

MR. MORTON A. HIRSCH8ERG, DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN; AMSRL-CI-C3
ABERDEEN PROVING GROUND MD
21005-5066

MR. MARK A. HOFFMAN
ISX CORPORATION
1165 NORTHCHASE PARKWAY
MARIETTA GA 30067

MR. RON LARSEN
NAVAL CMO, CONTROL
RESEARCH, DEVELOP,
CODE 444
SAN DIEGO CA 92152-5000

£ OCEAN SUR CTR
TEST & EVAL 01V

DR. JAMES JUST
MITRE
DEPT. W032-M/S Z360
7525 CQLSHIER RO
MCLEAN VA 22101

MR. CRAIG KNOBLOCK
USC-ISI
4676 ADMIRALTY WAY
MARINA DEL RAY CA 90292

MR. RICHARD LOWE CAP-10)
SRA CORPORATION
2000 15TH STREET NORTH
ARLINGTON VA 22201

MR. TED C. KRAL
8BN SYSTEMS £, TECHNOLOGIES
4015 HANCOCK STREET, SUITES
SAN DIEGO CA 92110

101

DL-9

MR. JOHN LOWRENCE
SRI INTERNATIONAL
ARTIFICIAL INTELLIGENCE CENTER
333 RAVENSWOÜO AVE
MENLO PARK CA 94025

OR. ALAN MEYRQWITZ
NAVAL RESEARCH LA30RATORY/CODE 5510
4555 OVERLOOK AVE
WASH DC 20375

ALICE MULVEHILL
MITRE CORPORATION
BURLINGTON RD
M/S K-302
BEDFORD MA 01730

ROBERT MACGREGOR
USC/ISI
4676 ADMIRALTY WAY
MARINA OEL REY CA 90292

WILLIAM S. MARK, MGR AI CENTER
LOCKHEED MISSILES & SPACE CENTER
1801 PAGE MILL RD
PALO ALTO CA 94304-1211

RICHARD MARTIN
SOTWARE ENGINEERING INSTITUTE
CARNEGIE MELLON UNIV
PITTSBURGH PA 16213

DREW MCDERMOTT
YALE COMPUTER SCIENCE DEPT
P.O. BOX 2158, YALE STATION
51 PROPSPECT STREET
MEW HAVEN CT 06520

MS. CECILE PARIS
USC/ISI
4676 ADMIRALTY WAY
MARINA DEL RAY CA 90292

DOUGLAS SMITH
KESTREL INSTITUTE
3260 HILLVIEW AVE
PALO ALTO CA 94304

DL-10

OR. AUSTIN TÄTE
AI APPLICATIONS INSTITUTE
UNIV OF EDINBURGH
80 SOUTH BRIDGE
EDINBURGH EH1 IHN - SCOTLAND

EDWARD THOMPSON
ARPA/SISTO
3701 N. FAIRFAX DR., 7TH FL
ARLINGTON VA 22209-1714

MR. STEPHEN F. SMITH
ROBOTICS INSTITUTE/CMU
SCHENLEY PRK
PITTSBURGH PA 15213

DR. ABRAHAM WAKSMAN
AFOSR/NM
110 DUNCAN AVE., SUITE B115
80LLING AF3 DC 20331-0001

JONATHAN P.STXLLMAN
GENERAL ELECTRIC CRD
1 RIVER RD, RM K1-5C31A
P. 0. BOX 3
SCHENECTADY NY 12345

MR. EDWARD C. T. WALKER
8BN SYSTEMS t TECHNOLOGIES
10 MOULTON STREET
CAMBRIDGE MA 02138

MR. BILL SWARTOUT
USC/ISI
4676 ADMIRALTY WAY
MARINA DEL RAY CA 90292

GIQ WIEDERHOLD
STANFORD UNIVERSITY
DEPT OF COMPUTER SCIENCE
438 MARGARET JACKS HALL
STANFORD CA 94305-2140

KATIA SYCARA/THE ROBOTICS INST
SCHOOL OF COMPUTER SCIENCE
CARNEGIE MELLON UNIV
DOHERTY HALL RM 3325
PITTSBURGH PA 15213

DL-11

MR, DAVID E. tfILKINS
SRI INTERNATIONAL
ARTIFICIAL INTELLIGENCE
333 RAVENSWOOD AVE
MENLO PARK CA 94025

CENTER

DR. PATRICK WINSTON
MASS INSTITUTE OF TECHNOLOGY
RM NE43-817
545 TECHNOLOGY SQUARE
CAMBRIDGE MA 02139

HUA YANG
COMPUTER SCIENCE DEPT
UNIV OF CALIORNIA
LOS ANGELES CA 90024

LTCOL DAVE NEYLAND
ARPA/ISTO
3701 N. FAIRFAX DRIVE, 7TH
ARLINGTON VA 22209-1714

FLOOR

MR. RICK SCHANTZ
3BN SYSTEMS «. TECHNOLOGIES
10 MOULTON STREET
CAMBRIDGE MA 02138

LTC FRED M. RAWCLIFFE
U5TRANSCQMATCJ5-SC
3LDG 1900
SCOTT AF8 IL 62225-7001

ARPA/SISTQ
ATTN: MR JOHN P. SCHILL
3701 N FAIRFAX DRIVE
ARLINGTON VA 22203-1714

MR. DONALD F. ROBERTS
RL/C3CA
525 BROOKS ROAD
GRIFFISS AF8 NY 13441-4505

ALLEN SEARS
MITRE
7525 COLESHIRE DRIVE, STOP Z289
MCLEAN VA 22101

DL-12

STEVE ROTH
CENTER FOR INTEGRATED MANUFACTURING
THE ROBOTICS INSTITUTE
CARNEGIE MELLON UNIV
PITTSBURGH PA 15213-3890

JEFF ROTHENBERG
SENIOR COMPUTER SCIENTIST
THE RAND CORPORATION
1700 MAIN STREET
SANTA MONICA CA 90407-2133

YOAV SHOHAM
STANFORD UNIVERSITY
COMPUTER SCIENCE DEPT
STANFORD CA 94305

MR. OAVIO 3. SKALAK
UNIV OF MASSACHUSETTS
DEPT OF COMPUTER SCIENCE
RM 243, LGRC
AMHERST MA 01003

MR. MIKE ROUSE
AFSC
7800 HAMPTON RD
NORFOLK VA 23511-6097

MR. DAVID E. SMITH
ROCKWELL INTERNATIONAL
444 HIGH STREET
PALO ALTO CA 94301

JEFF ROTHENBERG
SENIOR COMPUTER SCIENTIST
THE RAND CORPORATION
1700 MIN STREET
SANTA MONICA CA 90407-2138

DR LARRY BIRNBAUM
NORTHWESTERN UNIVERSITY
ILS
1890 MAPLE AVE
EVANSTON IL 60201

MR RANDALL J. CALISTRI-YEH
ORA
301 DATES DR
ITHACA NY 14850-1313

DL-13

MR WESLEY CHU
COMPUTER SCIENCE OEPT
UNIVERSITY 0= CALIFORNIA
LOS ANGELES CA 9002

MR PAUL R COHEN
UNIVERSITY Q<= MASSACHUSETTS
COINS OEPT, LEDERLE GRC
AMHERST MA 01003

MR DON EDDINGTON
NAVAL COMMAND, CONTROL 6 OCEAN
SURV CENTER
ROT&E DIVISION, COOE 404
SAN DIEGO CA 92152-5000

MR. LEE ERMAN
CIMFLEX TECKNOWLEQGE
1810 EM3ARCAR0ER0 RD
PALO ALTO CA 94303

MR DICK ESTRADA
88N SYSTEMS £ TECHNOLOGIES
10 MOULTON ST
CAMBRIDGE MA 02138

MR HARRY FORSDICK
S8N SYSTEMS AND TECHNOLOGIES
10 MOULTON ST
CAMBRIDGE MA 02138

MR MATTHEW L. GINSBERG
CIRL, 1269
UNIVERSITY OF OREGON
EUGENE OR 97403

MR IRA GOLDSTEIN
OPEN SW FOUNDATION RESEARCH INST
ONE CAMBRIDGE CENTER
CAMBRIDGE MA 02142

MR MOISES GQLDSZMIDT
INFORMATION AND DECISION SCIENCES
ROCKWELL INTL SCIENCE CENTER
444 HIGH ST, SUITE 400
PALO ALTO CA 94301

DL-14

MR JEFF GROSSMAN» CO
NCCOSC ROTE DIV 44
5370 SILVERGATE AVE, ROOM 1405
SAN DIEGO CA 92152-5146

JAN GÜNTHER
ASCENT TECHNOLOGY, INC.
64 SIDNEY ST, SUITE 330
CAMBRIDGE MA 02139

OR LYNETTE HIRSCHMAN
MITRE CORPORATION
202 3URLINGTON RO
8EDFORD MA 01730

MS ADELE E. HOWE
COMPUTER SCIENCE OEPT
COLORADO STATE UNIVERSITY
FORT COLLINS CO 30523

OR LESLIE PACK KAEL3LING
COMPUTER SCIENCE OEPT
3R0WN UNIVERSITY
PROVIDENCE RI 02912

SU33ARA0 KAM3HAMPATI
DEPT OF COMPUTER SCIENCE
ARIZONA STATE UNIVERSITY
TEMPE AZ 85287-5406

MR THOMAS E. KAZMIERCZAK
SRA CORPORATION
331 SALEM PLACE, SUITE 200
FAIRVIEW HEIGHTS IL 62208

PRAOEEP K. KHOSLA
ARPA/SSTO
3701 N. FAIRFAX OR
ARLINGTON VA 22203

MR CRAIG KN08L0CK
USC-ISI
4676 ADMIRALTY WAY
MARINA DEL RAY CA 90292

DL-15

DR CARLA LUQLQW
ROHE LA30RAT0RY/C3CA
525 BROOKS RO
GRIFFISS AFd NY 13441-4505

OR MARK T. MAY8URY
ASSOCIATE DIRECTOR OF AI CENTER
ADVANCED INFO SYSTEMS TECH G041
MITRE CGRP, BURLINGTON RO, MS K-329
3E0F0RD MA 01730

MR DONALO °. MCKAY
PARAMAX/UNISYS
P 0 BOX 517
PAOLI i>A 19301

OR KAREN MYERS
AI CENTER
SRI INTERNTIONAL
333 RAVENSWQOO
MENLO PARK CA 94025

DR MARTHA E POLLACK
DEPT OF COMPUTER SCIENCE
UNIVERSITY OF PITTSBURGH
PITTSBURGH PA 15260

RAJ REDDY
SCHOOL OF COMPUTER SCIENCE
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213

EDWINA RISSLAND
DEPT OF COMPUTER & INFO SCIENCE
UNIVERSITY OF MASSACHUSETTS
AMHERST MA 01003

MR NORMAN SAOEH
CIMOS
THE ROBOTICS INSTITUTE
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213

MR ERIC TIFFANY
ASCENT TECHNOLOGY INC.
237 LONGVIEW TERRACE
WILLIAMSTOMN MA 01267

DL-16

MANUELA VELOSO
CARNEGIE MELLON UNIVERSITY
SCHOOL OF COMPUTER SCIENCE
PITTSBURGH PA 15213-3891

MR DAN WELD
DEPT OF COMPUTER SCIENCE £ ENG
MAIL STOP FR-35
UNIVERSITr OF WASHINGTON
SEATTLE WA 99195

MR CRAIG WIER
ARPA/SISTO
3701 N. FAIRFAX OR
ARLINGTON VA 22203

MR JOE ROBERTS
ISX CORPORATION
4301 N FAIRFAX DRIVE,
ARLINGTON VA 22203

SUITE 301

COL JOHN A. WARDEN III
ASC/CC
225 CHENNAULT CIRCLE
MAXWELL AF8 AL 36112-6426

DR TOM GARVEY
ARPA/SISTO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

MR JOHN N. ENTZMINGER, JR.
ARPA/DIRO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

LT COL ANTHONY WAISANEN, PHD
COMMAND ANALYSIS GROUP
HQ AIR MOBILITY COMMAND
402 SCOTT DRIVE, UNIT 3L3
SCOTT AF3 IL 62225-5307

DIRECTOR
ARPA/SISTO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DL-17

MS LESLIE WILLIAMS
DIGITAL SrSEMS RSCH INC
4301 NORTH FAIRFAX DRIVE
SUITE 725
ARLINGTON VA 22203

DECISIONS & DESIGNS INC.
ATTN: ANN MARTIN
8219 LEES3URG PIKE
SUITE 390
VIENNA VA 22182

MS LEAH WONG
NCCOSC ROTE DIV
53570 SILVERGATE AVE
SAN DIEGO CA 92152-5246

OFFICE OF THE CHIEF OF NAVAL RSCH
ATTN: MR PAUL QUINN
CODE 311
800 N. QUINCY STREET
ARLINGTON VA 22217

NCCOSC ROTE OIV 404
ATTN: MR DON EDDIN6T0N
53560 HULL STREET
SAN DIEGO CA 92152-5001

83N SYSTEMS AND TECHNOLOGY
ATTN: MR MAURICE MCNEIL
9655 GRANITE RIDGE DRIVE, SUITE 245
SAN DIEGO CA 92123

OL-18

Rome Laboratory

Customer Satisfaction Survey

RL-TR-

Please complete this survey, and mail to RL/IMPS,
26 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and
feedback regarding this technical report will allow Rome Laboratory
to have a vehicle to continuously improve our methods of research,
publication, and customer satisfaction. Your assistance is greatly
appreciated.
Thank You

Organization Name:___ . (Optional)

Organization POC: „(Optional)

Address: —

1. on a scale of 1 to 5 how would you rate the technology
developed under this research?

5-Extremely Useful 1-Not Useful/Wasteful

Rating

Please use the space below to comment on your rating. Please
suggest improvements. Use the back of this sheet if necessary.

2. Do any specific areas of the report stand out as exceptional?

Yes No

If yes, please identify the area(s) , and comment on what
aspects make them "stand out."

3. Do any specific areas of the report stand out as inferior?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

4; ^lease utilize the space below to comment on any other aspects
of the report. Comments on both technical content and reporting
format are desired. ^

•U.S. GOVERNMENT PR.NUNG OFFICE: 1995-710-126-20063

MISSION

OF

ROME LABORA TORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

