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1    Executive Summary 

This report describes our research, on transportation planning and scheduling supported by 
the ARPA/Rome Lab Planning Initiative (ARPI). The main goal of this project was to 
develop generic tools to support the construction of flexible, high-performance planning and 
scheduling software. Our technical approach is based on program transformation technology 
which allows the systematic machine-supported development of software from requirement 
specifications. The development process can produce highly efficient code along with a proof 
of the code's correctness. 

Our approach to developing scheduling software involves several stages. The first step is to 
develop a formal model of the transportation scheduling domain, called a domain theory. 
Second, the constraints, objectives, and preferences of a particular scheduling problem are 
stated within a domain theory as a problem specification. Finally, an executable scheduler 
is produced semi-automatically by applying a sequence of transformations to the problem 
specification. The transformations embody programming knowledge about algorithms, data 
structures, program optimization techniques, etc. The result of the transformation process 
is executable code that is consistent with the problem specification. 

The U.S. Transportation Command and the component service commands use a relational 
database scheme called a TPFDD (Time-Phased Force and Deployment Data) for specifying 
the transportation requirements of an operation, such as Desert Storm or the Somalia relief 
effort. We developed a domain theory of TPFDD scheduling defining the concepts of this 
problem and developed laws for reasoning about them. A program transformation system 
called KIDS (Kestrel Interactive Development System) was used to derive and optimize a 
variety of global search scheduling algorithms that perform constraint propagation [37]. The 
resulting code, generically called KTS (Kestrel Transportation Scheduler), has been run on a 
variety of TPFDDs generated by planners at USTRANSCOM and other sites. With one such 
TPFDD problem, KTS was able to schedule over 15,000 individual movement requirements 
in about 5 minutes. The schedule used relatively few resources and satisfied all specified 
constraints. KTS is orders of magnitude faster than any other TPFDD scheduler known to 
us. 

In 1994 we began to develop a scheduler to support PACAF (Pacific Air Force) at Hickham 
AFB, Honolulu which is tasked with in-theater scheduling of a fleet of 26 C-130 cargo aircraft 
in the Pacific region. Several variants of a theater scheduler (called ITAS for In-Theater 
Airlift Scheduler) have been installed at PACAF, and more are planned. ITAS runs on an 
Apple Powerbook laptop computer which makes it attractive both for field and command 
center operations. ITAS can currently produce ATOs (Air Tasking Orders) based on the 
schedules that it generates. The most recent version simultaneously schedules the following 
classes of resources: (1) aircraft, (2) aircrews and their duty day cycles, (3) ground crews for 
unloading, and (4) ramp space at ports. 



2    Introduction 

This report describes our research, on the transformational development of transportation 
plans and schedules. Our approach to developing scheduling software involves several stages. 
The first step is to develop a formal model of the transportation scheduling domain, called a 
domain theory. Second, the constraints, objectives, and preferences of a particular schedul- 
ing problem are stated within a domain theory as a problem specification. Finally, an exe- 
cutable scheduler is produced semi-automatically by applying a sequence of transformations 
to the problem specification. The transformations embody programming knowledge about 
algorithms, data structures, program optimization techniques, etc. The result of the trans- 
formation process is executable code that is consistent with the given problem specification. 
Furthermore, the resulting code can be extremely efficient. 

Transportation scheduling tools currently used by the U.S. government are based on models 
of the transportation domain that few people understand [11]. Consequently, users often do 
not trust that the scheduling results reflect the characteristics of the current situation. Our 
approach tries to address this issue by making the domain model and scheduling problem 
explicit and clear. If a scheduling situation arises which is not treated by existing scheduling 
tools, the user can specify the problem and generate a situation-specific scheduler. 

One of the benefits of a transformational approach to scheduling is the synthesis of specialized 
constraint management code. Previous systems for performing scheduling in AI (e.g. [13,12, 
48, 47]) and Operations Research [2, 24] use constraint representations and operations that 
are geared for a broad class of problems, such as constraint satisfaction problems or linear 
programs. In contrast, transformational techniques can derive specialized representations for 
constraints and related data, and also derive efficient specialized code for constraint checking 
and constraint propagation. 

Figure 1 describes our vision of an advanced environment for producing planning/scheduling 
software. Briefly, the idea is to rapidly develop a situation-specific domain model and 
problem specification using a knowledge-elicitation system, and then to synthesize high- 
performance planning and scheduling tools that are specialized to the current situation. The 
majority of users' interaction would be codifying the domain theory and specification of the 
current situation, to aid in synthesizing a customized planning/scheduling tool. 

We now step through the process in more detail. Several classes of users axe involved in the 
construction and use of a scheduling system. 

One class of users, who include domain experts and specialists in model construction, interact 
with a knowledge elicitation system to help classify the features of the situation and select, 
compose, extend, and refine, (possibly abstract) models from a preexisting library of domain 
models. The result is a model and problem specification tailored to the details of the current 
situation (as closely as expertise and time permit). 

Another class of users, who specialize in software design and formal modeling of programming 
knowledge, interact with a planning/scheduling synthesis system to develop code from the 
problem specification. The interaction involves composing components from a library of 
reusable parts, or selecting and applying representations of abstract programming knowledge 
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about algorithms, data structures, code optimization techniques, planning and scheduling- 
specific design strategies, and so on. Most of the design process is automated, with only a 
few high-level design decisions made by the developer. Another interactive task for this user 
is the evolution of the programming knowledge-base itself. 

The output of the synthesis system is executable planning/scheduling code which can then 
be embedded in a planning/scheduling system and executed by an end-user. 

There is a feedback loop implicit in the figure. The end user/domain expert using the 
synthesized code may detect missing constraints, or have preferences or other information 
not accounted for in the code. This information is fed back to the model-building stage 
and the process iterates. The fact that each synthesis step preserves consistency between 
problem specification and generated code means that maintenance and evolution back up to 
the specification/domain model level, not the code-level as in current practice. 

We developed an approximation to this vision in the current project, based on the KIDS 
system, and demonstrated its feasibility. 

In Sections 3 through 5 we present KIDS and the process of developing domain theories, 
specifications, and code for scheduling problems. Section 7 describes fundamental work un- 
derlying our technical approach. The Appendix describes work performed under subcontract 
to ADS that focused on issues in planning and resource allocation. 

3    Summary of Results 

• TPFDD Scheduling - The U.S. Transportation Command and the component service 
commands use a relational database scheme called a TPFDD (Time-Phased Force and 
Deployment Data) for specifying the transportation requirements of an operation, such 
as Desert Storm or the Somalia relief effort. We developed a domain theory of TPFDD 
scheduling defining the concepts of this problem and developed laws for reasoning about 
them. KIDS (Kestrel Interactive Development System) was used to derive and optimize 
a variety of global search scheduling algorithms that perform constraint propagation 
[37]. The resulting code, generically called KTS (Kestrel Transportation Scheduler), 
has been run on a variety of TPFDDs generated by planners at USTRANSCOM and 
other sites. 

We compared the performance of KTS with several other TPFDD scheduling systems: 
JFAST, FLOGEN, DITOPS, and PFE. We do not have access to JFAST and FLOGEN, 
but these are (or were) operational tools at AMC (Airlift Mobility Command, Scott 
AFB). According to [11] and David Brown (retired military planner consulting with 
the Planning Initiative), on a typical TPFDD of about 10,000 movement records, 
JFAST takes several hours and FLOGEN about 36 hours. KTS on a TPFDD of this 
size will produce a detailed schedule in one to three minutes. So KTS seems to be a 
factor of about 25 times faster than JFAST and over 250 times faster than FLOGEN. 
The currently operational ADANS system reportedly runs at about the same speed as 
FLOGEN. KTS is orders of magnitude faster than any other TPFDD scheduler known 
to us. 
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Comparison with PFE: On the MEDCOM-SITUATION from the CPE, KTS is about 
5 times faster than PFE and produces a SEA schedule with only 14% of the delay 
of the PFE schedule. KTS also produces a far more accurate estimate of the planes 
needed to handle the AIR movements, since PFE is only estimating feasibility whereas 
KTS produces a detailed schedule. 

KTS system 

The KTS code is embedded in a CLIM interface adapted from the PFE interface built 
by BBN. It allows selecting a variety of different TPFDDs to schedule, real-time editing 
of resource models and situation models, dynamic rescheduling, and graphical tools for 
browsing and analyzing the resulting schedules (e.g. Unit and Resource Gantt charts, 
closure graphs, statistics, etc.). This code has been available via ftp to ARPI projects 
since 1993. 

Contributions to the Planning Initiative 

We integrated a standalone version of KTS into the CPE. KTS is an alternate deploy- 
ment "simulator" to PFE and takes the same input data (geographical information, 
deployment plan, and situation). The results of the scheduling process (feasibility anal- 
ysis) are written back to the KS for use by the planning components in case replanning 
is needed. Currently, this analysis object contains the same kind information as PFE 
(e.g. FAD, SLD, etc.). Results may also be displayed on the screen using charts sim- 
ilar to those available in the CDART system. Comparison between KTS and PFE is 
detailed in Section 6.3. 

Other Pl-related contributions include participation on the SWAT-B team and other 
committees, contributions to the IEEE Expert special issue on the Planning Initiative, 
presentations at workshops, and site visits to USTC, AMC, McGuire AFB, and PACAF 
(Hickham AFB). 

Theater Scheduling 

In 1994 we began to develop a scheduler to support PACAF (Pacific Air Force) at 
Hickham AFB, Honolulu which is tasked with in-theater scheduling of a fleet of 26 
C-130 cargo aircraft in the Pacific region. We developed (and are continuing to evolve) 
a theory of theater transportation scheduling. Several variants of a theater scheduler 
(called ITAS for In-Theater Airlift Scheduler) have been developed to date, and more 
are planned. The interface to ITAS and integration with a commercial database pack- 
age have been developed by BBN. ITAS runs on an Apple Powerbook laptop computer. 
The laptop platform makes it attractive both for field and command center operations. 
ITAS can currently produce ATOs (Air Tasking Orders) based on the schedules that 
it generates. 

The ITAS schedulers have emphasized flexibility and rich constraint modeling. Versions 
of ITAS were installed at PACAF in August 1994, September 1994, and February 1995. 
The most recent version simultaneously schedules the following classes of resources: (1) 
aircraft, (2) aircrews and their duty day cycles, (3) ground crews for unloading, and 
(4) ramp space at ports. 

One of the reasons for the interest of PACAF in this project, is to capture some of the 
knowledge and experience of skilled personnel before they retire or are rotated. 



• Synthesis of constraint propagation code 

A key technical achievement of this project was discovering and implementing tech- 
nology for generating efficient constraint propagation code. The speed of the KTS 
schedulers derives from the extremely fast checking and propagation of constraint in- 
formation at every node of the runtime search tree. Whereas some knowledge-based 
approaches to scheduling will search a tree at the rate of several nodes per second, our 
synthesized schedulers search several hundred thousand nodes per second. 

Briefly, the idea is to derive necessary conditions on feasibility of a candidate sched- 
ule. These conditions are called cutting constraints. The derived cutting constraints 
for a particular scheduling problem are analyzed to produce code that iteratively fixes 
violated constraints until the cutting constraints are satisfied. This iterative process 
subsumes the well-known processes of constraint propagation in the AI literature and 
the notion of cutting planes from the Operations Research literature [40, 46]. Con- 
straint propagation is discussed in more detail in Section 6.2.3. 

• Classification approach to design 

We developed a new approach to the problem of how to construct refinements of spec- 
ifications formally and incrementally. The idea is to use a taxonomy of abstract design 
concepts, each represented by a design theory. An abstract design concept is applied by 
constructing a specification morphismfrom its design theory to a requirement specifica- 
tion. Procedures for computing colimits and for constructing specification morphisms 
provide computational support for this approach. Although the classification approach 
applies to the incremental application of any kind of knowledge formally represented 
in a hierarchy of theories, our work mainly focused on a hierarchy of algorithm design 
theories and its applications to logistical applications [39, 38]. This technique enable us 
to integrate at a deep semantic level problem-solving methods from Computer Science 
(e.g. divide-and-conquer, global search), Artificial Intelligence (e.g. heuristic search, 
constraint propagation, neural nets), and Operations Research (e.g. Simplex, integer 
programming, network algorithms). Classification is discussed in more detail in Section 
7. 

4    KIDS model of program development 

KTDS is a program transformation system - one applies a sequence of consistency-preserving 
transformations to an initial specification and achieves a correct and hopefully efficient pro- 
gram [42]. The system emphasizes the application of complex high-level transformations that 
perform significant and meaningful actions. Prom the user's point of view the system allows 
the user to make high-level design decisions like, "design a divide-and-conquer algorithm for 
that specification" or "simplify that expression in context". We hope that decisions at this 
level will be both intuitive to the user and be high-level enough that useful programs can be 
derived within a reasonable number of steps. 

The user typically goes through the following steps in using KTDS for program development. 



1. Develop a domain theory - An application domain is modeled by a domain theory (a 
collection of types, operations, laws, and inference rules). The domain theory specifies 
the concepts, operations, and relationships that characterize the application and sup- 
ports reasoning about the domain via a deductive inference system. Our experience 
has been that distributive and monotonicity laws provide most of the laws that are 
needed to support design and optimization of code. KIDS has a theory development 
component that supports the automated derivation of various kinds of laws. 

2. Create a specification - The user enters a problem specification stated in terms of the 
underlying domain theory. 

3. Apply a design tactic - The user selects an algorithm design tactic from a menu and 
applies it to a specification. Currently KTDS has tactics for simple problem reduc- 
tion (reducing a specification to a library routine) [33], divide-and-conquer [33], global 
search (binary search, backtrack, branch-and-bound) [34], problem reduction gener- 
ators (dynamic programming, general branch-and-bound, and game-tree search algo- 
rithms) [36], and local search (hillclimbing algorithms) [23]. 

4. Apply optimizations - The KTDS system allows the application of optimization tech- 
niques such as expression simplification, partial evaluation, finite differencing, case 
analysis, and other transformations [42]. The user selects an optimization method 
from a menu and applies it by pointing at a program expression. Each of the opti- 
mization methods are fully automatic and, with the exception of simplification (which 
is arbitrarily hard), take only a few seconds. 

5. Apply data type refinements - The user can select implementations for the high-level 
data types in the program. Data type refinement rules carry out the details of con- 
structing the implementation [5]. 

6. Compile - The resulting code is compiled to executable form. In a sense, KIDS can be 
regarded as a front-end to a conventional compiler. 

Actually, the user is free to apply any subset of the KIDS operations in any order - the above 
sequence is typical of our experiments in algorithm design. A new system, called Specware, 
is currently under construction at Kestrel as a successor to KTDS. Specware is based on 
concepts of higher-order algebraic specifications, morphisms, and categorical constructions 
[20, 38, 39, 50]. 

5    Specifying a Scheduler 

5.1    What is Scheduling? 

The essential notion of scheduling is that certain activities are assigned to resources over 
certain time intervals. Various constraints on the assignments must be satisfied and certain 
measures of the cost or "goodness" of the assignment are to be optimized. 



A domain theory for scheduling defines the basic concepts of scheduling and the laws for 
reasoning about the concepts. After a review of the relevant literature (e.g. [12]) we have 
identified the following general components of a scheduling domain theory. 

1. Activities - A model of the activities can include their internal structure and charac- 
teristics, hierarchies of activity abstractions, and various operations on activities. 

2. Resources - A model of the resources can include their internal structure and charac- 
teristics, hierarchies of resource abstractions, and various operations on resources. 

3. Time - A time model can include a calculus of time-points or time-intervals [1, 21]. 

4. Constraints - A constraint model includes the language for stating constraints and a 
calculus for reasoning about them. Several classes of constraints commonly arise in 
practice. The most common are ■precedence constraints (which state that one activity 
must precede another) and capacity constraints (which state bounds on the capacities 
of resources). A constraint calculus is used to analyze constraints and to propagate 
the effects of new constraints through a given constraint set. Fox et al. also identify 
physical constraints, organizational constraints, preferences, enablement constraints, 
and availability constraints. 

5. Objectives - Typically we seek to minimize the cost of a schedule. Cost can be measured 
in terms of time to completion, work-in-progress, total cost of consumed resources, and 
so on. 

6. Scheduling problem - Using the above concepts we can formulate a variety of scheduling 
problems. A reservation is a triple consisting of an activity, a resource, and a time 
interval. Generally, a schedule is a set of reservations that satisfy a collection of 
constraints and optimize (or produce a reasonably good value of) the objective. 

{ {activity, resource, time interval) | constraints }. 

Many scheduling problem intancess are overconstrained - there are too few resources to 
schedule the activities and satisfy all constraints. Usually overconstrained problems are 
dealt with by relaxing the constraints and trying to satisfy as many of the constraints as 
possible. The usual method is to move constraints into the objective function. This entails 
reformulating the constraint so that it yields a quantitative measure of how well it has been 
satisfied. See further discussion in Section 6.2.4. 

5.2     Strategic Transportation Scheduling 

Transportation scheduling specializes the above general notion of scheduling: activities cor- 
respond to movement requirements and resources correspond to transportation assets such 
as planes, ships, and trucks. 

A typical movement requirement has the following information: 



move—type : movement—type    *-* BULK—MOVEMENT 
quantity : integer ~ 2 (STONS - Short TONS) 
release-date : iime i-+ 0 (seconds from C-date) 
due-date : time >-► 86400 (seconds from C-date) 
poe : port *-* UHHZ 
pod : port |-+ VRJT 
distance : integer •-+ 5340 (nautical miles) 
mode : symbol *-+ AIR 

Here quantity for AIR movements is in short tons (STONs); the release and due dates are 
in seconds starting from C-DATE; poe (port of embarkation) and pod (port of debarkation) 
are »iven by code names; distance is in nautical miles, and the transportation mode is either 
AIR or SEA. A collection of movement requirements is called a TPFDD (Time-Phased Force 
Deployment Data). 

Resources are characterized by their capacities (both passenger (PAX) and cargo capacities), 
and travel rate in knots. 

As an example, we used a small dataset extracted from a TUNISIA TPFDD created at 
AFSC. This problem instance involves 480 movement requirements from 20 airports and 3 
seaports to 8 airports and 2 seaports. Available air resources include KClOs, C-141s, C-5s 
and sea resources include tankers (small, medium, and large), RO-ROs, LASHs, sea barges, 
containerships, and breakbulks. 

Eleven constraints characterize a feasible schedule for a simple TPFDD problem: 

1. Consistent POE and POD - The POE and POD of each movement requirement on a 
given trip of a resource must be the same. 

2. Consistent Resource Class - Each resource can handle only some movement types. For 
example, a C-141 can handle bulk and oversize movements, but not outsize movements. 

3. Consistent PAX and Cargo Capacity - The capacity of each resource cannot be ex- 
ceeded. 

4. Consistent Release Time - The start time of a movement (its Available to Load Date 
(ALD)) must not precede its release time. 

5. Consistent Arrival time - The finish time of a trip must not precede the Earliest Arrival 
Date (EAD) of any of the transported movement requirements. 

6. Consistent Due time - The finish time of a movement (its Latest Arrival Date (LAD)) 
must not be later than its due time. 

7. Consistent Trip Separation - Movements scheduled on the same resource must start 
either simultaneously or with enough separation to allow for return trips. The inher- 
ently disjunctive and relative nature of this constraint makes it more difficult to satisfy 
than the others. 



8. Consistent Resource Use - Only the given resources axe used. 

9. Completeness - All movement requirements must be scheduled. 

In the next section we discuss the fonnalization of the above concepts. This problem does 
not consider certain aspects of transportation scheduling, such as aircrew scheduling, ground 
crew scheduling, maintenance, resource utilization rates, load/unload rates, port character- 
istics, etc. Each of these problem features have been handled in various more elaborate 
specifications. 

5.3     (Re-)Formulating Domain Theories for Transportation Schedul- 
ing 

In the most general view, scheduling is the construction of a set of reservations that satisfy 
given feasibility constraints and achieve "good" values of an objective function. Formally, 
the schedule is a relation, or even a simple relational database. A formal domain theory 
based on this view is given in Appendix A in [41]. The theory provides precise definitions 
for the concepts, constraints, objectives, and laws used to model this application domain. 

This relational view however is not always the most efficient for particular problems. We 
may be able to reformulate the problem, incorporating constraints and objectives, yielding 
a problem statement that is more amenable to efficient problem-solving. La the following we 
present a series of transformations that reformulate the domain theory. 

In most transportation problems, each movement requirement corresponds to a unique reser- 
vation - it is scheduled exactly once with a unique resource and start time. We can make this 
functional dependence explicit by treating a schedule as a map from movement requirements 
to resource/time tuples. In Figure 2 we show the effect of this reformulation on the schedule 
datatype. 

Next the trip separation constraint suggests that this map is many-to-one, since several move- 
ments can take place simultaneously on the same resource. Inverting the map will induxe a 
partition on movement requirements. In terms of the transportation domain, inverting the 
map will make simultaneous movements explicit and thereby introducing the concept of a 
trip and the manifest of a trip. 

Next we notice that the domain of a schedule map is a product of two types and these types 
have quite different properties (algebras): resources axe a discrete set and time is (effectively) 
continuous and linear. The linear nature of time can be exploited by currying (to separate 
the two domain datatypes) and transforming the submap (from time to manifest) to a 
sequence, thereby making the linear structure of time explicit and introducing the concept 
of an itinerary. 

This series of reformulations has dramatic effect on the trip separation constraint. In the 
initial formulation (in terms of reservations) this constraint involves 0(n2) binary constraints 
between the n movements scheduled on a given resource. In the final formulation (in terms 
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{ {movement-record,  resource,  start-time > }    a schedule represented as 
a set of reservations 

reify the functional dependence 

{ movement-record   | >■ < resource,  start-time ) } 

invert the map 

{ ( resource, start-time > h ■^ { movement-record } }    the notion of "trip" and 
"manifest" introduced 

Curry 

{ resource   I >■ { start-time  | ^ { movement-record } } } 

exploit linear order of time 

{ resource   \ >■ [ < start-time, { movement-record } > ] } 

Figure 2: Reformulating a Scheduling Specification 
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of a linearized inverse map) this constraint is reduced to 0(n) binary constraints between 
the start times of consecutive trips. 

For example, on a transportation problem involving over 15,000 movement requirements ob- 
tained from the U.S. Transportation Command, the scheduler produces a complete feasible 
schedule in about five minutes. A straightforward constraint network formulation based on 
this problem data would have over 31,000 variables and 120,125,000 constraints. Incorporat- 
ing some of the structure of the problem, such as the linearity of time, allows reformulating 
this to a system of about 108,700 constraints. However, this is still a such large formulation 
that it seems an implicit representation is necessary to find feasible schedules efficiently. 

The final reformulation is given in Appendix B in [41] and is the theory actually used to 
derive a scheduler. 

5.4    Formal Specification of a Scheduler 

The informal specification above can be expressed as follows: 

function TS 
(mvrs : seq(movement-record), 
assets : seq(resource-name)) 

returns (sched : map(resource-name, seq(trip)) | 
Consistent-POE (sched) 
A Consistent-POD(sched) 
A Consistent-Release-Times (sched) 
A Consistent-Arrival-Times(sched) 
A Consistent-Due-Times (sched) 
A Consistent-Trip-Separation(sched) 
A Consistent-Pax-Resource-Capaäty(sched) 
A Consistent-Cargo-Re30urce-Capaciiy(sched) 
A Consistent-Movement-Type-and-Resource (sched) 
A Avaüable-ResouTce8-Used(assets,sched) 
A Schedukd-mvrs(sched) = seq-to-3et(mvrs)) 

This specifies a function called TS that takes two inputs, a sequence of movement records 
called mvrs and a sequence of resources called assets. The function returns a schedule, which 
has type map(resource-*iame, seq(trip)) and must satisfy the 11 conjoined constraints. Each 
constraint is defined in the domain theory; for example: 

function CONSISTENT-DUE-TIMES 
(sched : schedule) : boolean 
= V(rsrc : resource-name, trp : integer, mvr : movement-record) 

(rsrc €• domain(sched) 
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A trp 6 [l..size{sched(rsrc))\ 
A mvr € sched(rsrc){trp).manifest 

sched(rsrc)(trp). start-time 
< (mvr.due-date - sched(rsrc)(trp).trip-duration) 

This predicate expresses the constraint that every scheduled movement-record arrives before 
its due date. 

6    Synthesizing a Scheduler 

6.1    Approach 

6.1.1    Problem Theories 

We briefly review some basic concepts from algebra and logic. A theory is a structure 
(S, E, A) consisting of a set of sort symbols S, operations over those sorts 2, and axioms A 
to constrain the meaning of the operations. A theory morphism [theory interpretation) maps 
from the sorts and operations of one theory to the sorts and expressions over the operations 
of another theory such that the image of each source theory axiom is valid in the target 
theory. A parameterized theory has formal parameters that are themselves theories [lo]. 
The binding of actual values to formal parameters is accomplished by a theory morphism. 
Theory T2 = (S2, 22, A2) extends (or is an extension of) theory Tx = (Si, Ei, Ax) if Sx C S2, 
Si C E2, and Ax C A2. 

Problem theories define a problem by specifying a domain of problem instances or inputs and 
the notion of what constitutes a solution to a given problem instance. Formally, a problem 
theory B has the following structure. 

Sorts D,R 
Operations   I: D —*■ Boolean 

0 : D x R-+ Boolean 

The input condition I{x) constrains the input domain D. The output condition 0{x,z) 
describes the conditions under which output domain value z € R is a. feasible solution with 
respect to input x € D. Theories of booleans and sets axe implicitly imported. Problems of 
finding optimal feasible solutions can be treated as extensions of problem theory by adding 
a cost domain, cost function, and ordering on the cost domain. 
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For example, the problem of finding feasible schedules can be presented as a problem theory 
via a theory interpretation into the domain theory of transportation schedtding:1 

D     H-+     seq(movement-^record) x seq(resource) 
I      !-►     X(Mvrs, resources) true 
R     i-t-     map(resource, seq(trip)) 
0     t-H-     \(Mvrs, resources, sched) 

Consistent—POE(sched) 
A Consistent-POD(sched) 
A Consistent—Release—Times(sched) 
A Consistent—Arrival—Times(sched) 
A Consistent—Due—Times(sched) 
A Consistent—Trip-Separation(sched) 
A Consistent—Pax—Resource-Capacity (sched) 
A Consistent—Cargo—Resource—Capacity (sched) 
A Consistent—Movement—Type—and—Resource(sched) 
A Available-Resources-ZJsed(resources, sched) 
A Scheduled-mvrs(sched) = seq—to-set(mvrs) 

6.1.2    Algorithm Theories 

An algorithm theory represents the essential structure of a certain class of algorithms A 
[43]. Algorithm theory A extends problem theory B with any additional sorts, operators, 
and axioms needed to support the correct construction of an A algorithm for B. A theory 
morphismfrom the algorithm theory into some problem domain theory provides the problem- 
specific concepts needed to construct an instance of an A algorithm. 

For example, global search theory (presented below in Section 6.2.1) extends problem theory 
with the basic concepts of backtracking: subspace descriptors, initial space, the splitting and 
extraction operations, filters, and so on. A divide-and-conquer theory would extend problem 
theory with concepts such as decomposition operators and composition operators [33, 36]. 

6.2    Synthesizing a Scheduler 

There are two basic approaches to computing a schedule: local and global. Local methods 
focus on individual schedules and similarity relationships between them. Once an initial 
schedule is obtained, it is iteratively improved by moving to neighboring structurally similar 
schedules. Repair strategies [53, 25, 4, 31], and fixpoint iteration [8], and linear programming 
algorithms are examples of local methods. 

Global methods focus on sets of schedules. A feasible or optimal schedule is found by 
repeatedly splitting an initial set of schedules into subsets until a feasible or optimal schedule 

1The domain theory includes definitions for the types of movement-record, resource, trip (a record com- 
prised of start-time and manifest), and schedule (a map from resource to sequence of trip). 
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can be easüy extracted. Backtrack, heuristic search, and branch-and-bound methods are 
all examples of global methods. We explore the application of global methods. In the 
following subsections we formalize the notion of global search method and show how it can 
be applied to synthesize a scheduler. Other projects taking a global approach include ISIS 
[13], OPIS/DITOPS [47], and MicroBoss [28] (ail at CMU). 

6.2.1    Global Search Theory 

The basic idea of global search is to represent and manipulate sets of candidate solutions. 
The principal operations are to extract candidate solutions from a set and to 3pht a set into 
subsets. Derived operations include various ßters which are used to eliminate sets containing 
no feasible or optimal solutions. Global search algorithms work as follows: starting from an 
initial set that contains all solutions to the given problem instance, the algorithm repeatedly 
extracts solutions, splits sets, and eliminates sets via filters until no sets remain to be split. 
The process is often described as a tree (or DAG) search in which a node represents a set of 
candidates and an arc represents the split relationship between set and subset. The filters 
serve to prune off branches of the tree that cannot lead to solutions. 

The sets of candidate solutions axe often infinite and even when finite they are rarely rep- 
resented extensionaUy. Thus global search algorithms are based on an abstract data type 
of intensional representations called space descriptors (denoted by hatted symbols). In ad- 
dition to the extraction and splitting operations mentioned above, the type also includes 
a predicate satisfies that determines when a candidate solution is in the set denoted by a 
descriptor. Further, there is a refinement relation on spaces that corresponds to the subset 
relation on the sets denoted by a pair of descriptors. 

The various operations in the abstract data type of space descriptors together with problem 
specification can be packaged together as a theory. Formally, abstract global search theory 
(or simply gs-theory) Q is presented in Figure 3, where D is the input domain, R is the 
output domain, I is the input condition, 0 is the output condition, R is the type of space 
descriptors, / defines legal space descriptors, r and s vary over descriptors, top{x) is the 
descriptor of the initial set of candidate solutions, Satiafits(z, r) means that z is in the set 
denoted by descriptor r or that z satisfies the constraints that f represents, and Extract^ r) 
means that z is directly extractable from r. 

The relations Splü-Arg and Split-Constraint axe used to determine and perform splitting. 
In particular, if Splü-Arg{x, r, c) then c is information that characterizes (or informs) one 
branch of the split. Splü-Constramt{x,r,cJ) means that s results from incorporating 
information c into the descriptor r (with respect to input x). Splü-Arg is used to control 
the generation of children of a node in the search tree and Splü-Constramt is used to 
specify one child. Split-Constraint can be thought of as a parameterized constraint whose 
alternative arguments are supplied by Split—Arg. 

The refinement relation fUs holds when I denotes a subset of the set denoted by r. Further, 
R together with 3 forms a bounded semilattice. This structure will play a crucial role in 
constraint propagation algorithms. 
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Spec Global-Search 

Sorts D input domain 
R output domain 
R subspace descriptors 
C splitting information 

Operations 
I: D —► boolean input condition 
0 : D x R —► boolean input/output condition 
I: D x A —► boolean subspace descriptors condition 
Satisfies : Rx R-+ boolean denotation of descriptors 
Split—Arg : D x C x R-+ boolean specifies arguments to split constraint 
Split—Constraint :DxRxCxR-+ boolean        parameterized splitting constraint 
Extract :ÄxÄ-+ boolean extractor of solutions from spaces 
$ : D x R x R —► boolean cutting constraint 
£ : D x R -+ boolean cutting constraint 
3:DxRxR—* boolean refinement relation 

top : D —► R initial space 
bot: R inconsistent space 

Axioms 
GSO. All feasible solutions axe in the top space 

I(x) A 0(x,z) ==>■ Satisfies(z,top(x)) 
GSl. All solutions in a space are finitely extractable 

I{x) A /(x,r) 
=> {Satisfies{z,r) «=>- 3(s) (Split'(x,rj) A Extract{z,s))) 

GS2. Specification of Cutting Constraint 
Satisfies^,?) A 0(x,z) ==► $(x,z,r) 

GS3. Definition of Cutting Constraint on Spaces 
£(r, r) <*=► V(z : R)( Sat{z, r) =►■ <S(x,z, r)) 

GS4. Definition of Refinement 
r 3 i <=> V(z : R){Satisfies(zJ) =>• Satisfies(z,r)) 

GS5. (£, 3,n, *op, 6ot) is a bounded meet-semilattice with bat as universal lower bound. 

end spec 

Figure 3: Global Search. Theory 
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Note that all variables in the axioms are assumed to be universally quantified unless explicitly 
specified otherwise. Axiom GSO asserts that the initial descriptor r0{x) is a legal descriptor. 
Axiom GS1 asserts that legal descriptors split into legal descriptors and that Split induces 
a well-founded ordering on spaces. Axiom GS2 constrains the denotation of the initial 
descriptor — all feasible solutions are contained in the initial space. Axiom GS3 gives the 
denotation of an arbitrary descriptor r — an output object z is in the set denoted by f if 
and only if z can be extracted after finitely many applications of Split to f where 

Splü'{x,rJ) *=> 3{k:Nat) Splitk{x,rJ) 

and 
Splü°{x,r,t) *=> r=t 

and for all natural numbers Ar 
Splük+l{x,r,t) 

>—^ 3(| :R, i:C)( Split-Arg (x,r,i) A Split-Constraint(x,r,iJ) A Split* {xj,t)). 

Axiom GS4 asserts that if f splits to I then r also refines to a; thus the refinement relation on 
R is weaker than the split relation. We also need, the axioms that (Ä, 3, n) is a semilattice. 
For simplicity, we write r 3 * rather than the correct 3 (*, r, 5); and similarly f n a. 

For example, a simple global search theory of scheduling has the following form. Schedules 
are represented as maps from resources to sequences of trips, where each trip includes earliest- 
start-time, latest-start-time, port of embarkation, port of debarkation, and manifest (set of 
movement records or ULNs + CINs + PINs from the TPFDD). The type of schedules has the 
invariant (or subtype characteristic) that for each trip, the eaxliest-start-time is no later than 
the latest-start-time. A partial schedule is a schedule over a subset of the given movement 
records. 

The initial (partial) schedule is just the empty schedule - a map from the available resources 
to the empty sequence of trips. A partial schedule is extended by first selecting a movement 
record mvr to schedule, then selecting a resource r, and then a trip t on r (either an existing 
trip or a newly created one) - the triple (mvr, r, t) constitutes the information c of Spkt-Arg. 
Splü-Constroint given (mur,r,<) creates an extended schedule that has mvr added to the 
manifest of trip t on resource r. The alternative ways that a partial schedule can be extended 
naturally gives rise to the branching structure underlying global search algorithms. 

The formal version of this global search theory of scheduling can be inspected in the domain 
theory in Appendix B in [41]. 

6.2.2    Pruning Mechanisms 

When a partial schedule is extended it is possible that some problem constraints are violated 
in such a way that further extension to a complete feasible schedule is impossible. In tree 
search algorithms it is crucial to detect such violations as early as possible. 
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Pruning tests are derived in the following way. The test 

3(z)(Satisfies(z,f) A 0{x,z)) (1) 

decides whether there exist any feasible solutions that are in the space denoted by r. If 
we could decide this at each node of our branching structure then we would have perfect 
search - no deadend branches would ever be explored. In practice it would be impossible 
or horribly complex to compute (1), so we rely instead on an inexpensive approximation to 
it. In fact, if we approximate (1) by weakening it (deriving a necessary condition of it) we 
obtain a sound pruning test. That is, suppose we can derive a test $(x, r) such that 

3(sched) {Satisfies{z, r) A 0{x,z)) =► #(s,r)- (2) 

By the contrapositive of (2), if ->$(x, f) then there are no feasible solutions in r, so we can 
eliminate it from further processing. A global search algorithm will test $ at each node it 
explores, pruning those nodes where the test fails. 

More generally, necessary conditions on the existence of feasible (or optimal) solutions below 
a node in a branching structure underlie pruning in backtracking and the bounding and 
dominance tests of branch-and-bound algorithms [34]. 

It appears that the bottleneck analysis advocated in the constraint-directed search projects at 
CMU [12, 28] leads to a semantic approximation to (1), but neither a necessary nor sufficient 
condition. Such a heuristic evaluation of a node is inherently fallible, but if the approximation 
is close enough it can provide good search control with relatively little backtracking. 

To derive pruning tests for the strategic transportation scheduling problem, we instanti- 
ate (1) with our definition of Satisfies and 0 and use an inference system to derive nec- 
essary conditions. The resulting tests are fairly straightforward; of the 11 original fea- 
sibility constraints, 7 yield pruning tests on partial schedules. For example, the partial 
schedule must satisfy Consistent-POE, Consistent-POD, Consistent-Pax-Resource-Capacity, 
Consistent-Cargo-Resource-Capacity, Consistent-Movement-Type-and-Resource, and Available- 
Resources-Used. The reader may note that computing these tests on partial schedules is 
rather expensive and mostly unnecessary - later program optimization steps will however 
reduce these tests to fast and irredundant form. For example, the first test will reduce to 
checking that when we place a movement record mvr on trip t, we check that the POE of 
mvr and t are consistent. 

For details of deriving pruning mechanisms for other problems see [34, 42, 43, 35]. 

6.2.3    Cutting Constraints and Constraint Propagation 

Constraint propagation is a more general technique that is crucial for early detection of 
infeasibility. We developed a general mechanism for deriving constraint propagation code 
and applied it to scheduling. 

Each node in a backtrack tree can be viewed as a data structure that denotes a set of 
candidate solutions - in particular the solutions that occur in the subtree rooted at the node 
(see Figure 4). Thus the root denotes the set of all candidate solutions found in the tree. 

18 



constraints 

Figure 4: Global Search Subspace and Cutting Constraints 

Pruning has the effect of removing a node (set of solutions) from further consideration. La 
contrast, constraint propagation has the effect of changing the space descriptor so that it 
denotes a smaller set of candidate solutions. The effect of constraint propagation is to spread 
information through the subspace descriptor resulting in a tighter descriptor and possibly 
exposing infeasibility. Pruning can be treated as a special case of propagation in which a 
space is refined to descriptor that denotes the empty set of solutions. 

Constraint propagation is based on the notion of cutting constraints which are necessary 
conditions ^(x,z, r) that a candidate solution z satisfying r is feasible: 

V(x:D,r:R,z: R)(Satisjies(z, f) A 0(x7z) => ¥(*,*, r)) (3) 

See Figures 4 and 5.  In order to get a test on spaces that decides whether $ has been 
incorporated, we make one further definition: 

«*, 0 V(z : R)(Satisfies{z, r) =» *(r,*,r)) (4) 

The test £(ar, r) holds exactly when all candidate solutions in r satisfy \Er, and we say that f 
satisfies £. 

The key question at this point is: Given a descriptor r that doesn't satisfy <f, how can we 
incorporate £ into r? The answer is to find the greatest refinement of r that satisfies £; we 
say i incorporates £ into r if 

i = max3{3 | r 3 3 A £(x, i)}. (5) 

which asserts that i is maximal over the set of descriptors that refine s and satisfy £, with 
respect to ordering 3- We want t to be a refinement of f so that all of the information in 
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prune off subspace 
(contains no feasible 
solutions) 

feasible 
solutions 

/split \ 

©       ® 

Figure 5: Pruning and Constraint Propagation 

f is preserved and we want i to be maximal so that no other information than r and £ is 
incorporated into i. 

The next question concerns the conditions under which Formula (5) is satisfiable. Assuming 
that Ä is a semilattice, we can use variants of Tarski's fixpoint theorem (c.f. [8]): 

Theorem If there is a function / such that 

1. / is monotonic on R    (i.e. s3t ==>■ f{x, S) 3 /(s, *)) 

2. / is deflationary     (i.e. f3/(i,f)) 

3. / has fixed-points satisfying £ (i.e. f(x, r) = r   <£=*   £(z, r)) 

then (1) £ = ma:rg{£ | r 3 § A £(z,i)} exists 
and (2) i is the greatest fixpoint of /; i.e. i can be computed by iteratively applying / to r 
until a fixpoint is reached. 

The challenge is to construct a monotonic, deflationary function whose fixed-points satisfy 
£. A general construction in terms of global search theory can be sketched as follows. Let 
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The intent is to define / so that it has fixpoints exactly when t&x, r) holds. When £(x, r) 
doesn't hold, then we know (by the definition of £ and the contrapositive of formula (3)) 
that 

3(z : R)(Satisfies(z, f) A ->0{x,z)) 

i.e. there are some infeasible solutions in the space described by f. Ideally -^(x, r) is a 
constructive assertion, so it provides information on which solutions are infeasible and how 
to eliminate them. In place of the ellipsis above we require a new descriptor that refines 
r (so / is decreasing on all inputs), allows / to be monotone, and eliminates some of the 
infeasible solutions indicated by -^(x, r). In general it is difficult to see how to achieve this 
end without assuming special structure to R and f. 

We have identified some special cases for which an analytic procedure can produce the nec- 
essary iteration function / from f. These special cases subsume our scheduliag applications 
and many related Constraint Satisfaction Problems (CSP) problems. Suppose that the con- 
straint f has the form 

B(x,f)2r (6) 

where B(x, r) is monotonic in r. We say that £ is a Horn-like constraint by generalization of 
Horn clauses in logic. Notice that the occurrence of r on the right-hand side of the inequality 
has positive polarity (i.e. it is monotonic in r), whereas the occurrence(s) of f on the left- 
hand side have negative polarity (i.e. are antimonotonic). If the constraint were boolean 
(with B and f being boolean values and 3 being implication), then this would be called a 
definite Horn clause. When our constraints are Horn-like, then there is a simple definition 
for the desired function /: 

J{ '  ;     \ B(x, r) n r if -B(x, r) 3 r 

or equivalently 
f{x, r) = B{x, f) n r. 

It is easy to check that / is monotone in f, deflationary, and has fixed-points exactly when 
f holds. Therefore, simple iteration of / will converge to the descriptor that incorporates 
£ into r. However, if r is an aggregate structure such as a tuple or map, then the changes 
made at each iteration may be relatively sparse, so the simple iteration approach may be 
grossly inefficient. We found this feature to be characteristic of scheduling and other CSPs. 
Our approach to solving this problem is to focus on single point changes and to exploit 
dependence analysis. For each component of r we define a separate change propagation 
procedure. The arguments to a propagation procedure specify a change to the component. 
This change is performed and then the change procedures for all other components that 
could be affected by the change are invoked. Static dependence analysis at design-time is 
used to determine which constraints could be affected by a change to a given component. 

A program scheme for global search with constraint propagation is presented in Figure 6. 
The global search design tactic in KIDS first instantiates this scheme, then invokes a tactic 
for synthesizing propagation code to satisfy the specification F—split-and—propagate. 
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Spec Global-Search-Program (T :: Global-Search) 

Operations 

F-initial-propagate (x : D | I{x)) 

returns (i: R\i =■ max? {s \ top(x) 3 s A I(x, S) A f (x, i)}) 

F-spfii-and-propa<7a£e 
(x : D, f: R, c : C 

\I{x) A I{x,f) A Splü-Arg(x,r,c) A £(r,r) A r ^ 6o*) 

returns (t: R \ i = max? {$ \ r 3 * A /(i, i) 
ASplü(x,r,cJ) A £(*,£)}) 

F-gs{x:D, r:R \ I(x) A /(s,r) A *(r,r)) 
returns (z : R\ 0{x,z) A Satisfies(z,f)) 

= if 3(z) {Exiract{z, r) A 0(x,z)) 
then 5ome(2) (Extract(z, r) A 0(x, z)) 

*        J\        •* 

else some(z) 3(c : C, t: R) 
(Split—Arg(x, r, c) 
A i = F-split-and-propagate(x, r,c) A £ ^ &ot 

A z = F-0s(sr, £)) 

F(z:2>|I(*)) 
returns (z : R \ 0(x, z)) 

= some(z) 3(£) (4 = F-initial-propagate(x) 

At^bot 

Az = F-gs(x, i)) 

end spec 

Figure 6: Global Search Program Theory 
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CSPs with Horn-like constraints 

We now elaborate the previous exposition of propagation of Horn-like constraints arising in 
CSPs. To keep matters simple, yet general, suppose that the output datatype R is map(VAR, 
VALSET), where VAR is a type of variables, and V ALS ET is a type that denotes a set of 
values (this implies that all the variables have the same type and refinement ordering), and 
the 3 relation has the form: 

f 3 $ iff  /\ f(v) 3 s(v)- 
V 

Suppose further that £ is a conjunction of constraints giving bounds on the variables: 

£{x,r) <*=> /\Bv(x,r)2r{v) 

where Bv(x, f) is monotonic in r. Under these assumptions, -^(x, r) implies that the bound- 
ing constraint on some variable v is violated; i.e. 

-5„(x,r)3r(u). 

To "fix" such a violation we can change the current valset of v to 

£„(x,r)nr(u), 

which simultaneously refines r(u), since 

f(v) 3 Bv(x, r) n f(v) 

and reestablishes the constraint on v, since 

Bv(x, r) 3 Bv(x, r) n f(u). 

Let 
B(r, r) = {| u —► Bu(x, r) fl r(u) \ u € domain(r) |} 

then, define / as: 
/(x,r) = rn£(z,r) 

Constraint propagation is treated here as iteration of / until a fixed-point is reached. Ef- 
ficiency requires that we go farther, since only a sparse subset of the variables in r will 
be updated at each iteration. If we implemented the iteration on a vector processor or 
SIMD machine, the overall computation could be fast, but wasteful of processors. On a 
sequential machine, it is advantageous to analyze the constraints in £ to infer dependence of 
constraints on variables. That is, if (the valset of) variable v changes, which constraints in 
f could become violated? This dependence analysis can be used to generate special-purpose 
propagation code as follows. 

For each variable u, let affects (v) be the set of variables whose constraints could be violated 
by a change in v; more formally, let 

affects(v) = {u | v occurs in Bu }. 

We can then generate a set of procedures that carry out the propagation/iteration of /: For 
each variable u, generate the following propagation procedure: 
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Propagate» (x : D, f : R, new-valset: VALSET 
I I(x)   A  t(x, f) 
A f(v) 3 new-^valset 
A Bv(x, f) 3 netu-^ua/^et) 

= let (s : R = map—shadow(r,v,new-jüalset)) 
if -,/(x, i) then 6ot 
else 
... for each, variable u in affects(v)... 
... generate the following code block ... 
if i = bot then bat 
else (if ->(Bu(x, S) 3 s(u)) 

then 3 <— Propagateu(x,s, Bu(x,s) n s(u))); 

end 

where mapshadow{r, v, nevMJalset) returns the map r modified so that f(u) = nevnvalset. 

To finish up, if Split(x, f, i, a) has the form 

3(u) = C(x, r, t) 

for some function C that yields a refined valset for variable u, then we can satisfy F-split— 
and—propagate as follows: 

F—split-and-propagate(x, r, i) = propagateu(r, C(x, r, i)). 

The change to u induced in the call to propagate* will in turn trigger changes to other 
variables, and so on. 

We have described the generation of constraint propagation in a relatively simple setting. 
One of the authors (Westfold) was largely responsible for the development and implemen- 
tation of this work. The implementation treats a much, broader range of problem features 
than has been described above. Further elaborations include 

1. Heterogeneous variables (and semilattice/refinement structure) 

2. Multiple constraints on each variable 

3. Indexed variables 

4. Conditional constraints 
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5. Dynamic set of variables 

6. Ordering of constraints in propagation procedures 

There are many ways to implement constraint propagation, this being just one. Our ap- 
proach is useful when the affects relation is relatively sparse, so special control code to follow 
dependences and fixing violations is efficient. An alternative approach is to reify affects via 
explicit irnVs between variables, forming a constraint network. The synthesis of the propa- 
gation control strategy is relatively simple, since we only need to follow dependence links. 
Disadvantages of this approach include the size of the constraint network and the cost of 
maintaining it. This is a common approach in the CSP literature. 

Our model of constraint propagation generalizes the concepts of cutting planes in the Op- 
erations Research literature [26] and the forms of propagation studied in the constraint 
satisfaction literature (e.g. [18]). Our use of fixed-point iteration for constraint propagation 
is similar to Paige's work on fixed-point iteration in RAPTS [8]. The main differences are 
(1) RAPTS expects the user to supply the monotone function as part of the initial speci- 
fication whereas we derive it from a more abstract statement of the problem; (2) RAPTS 
instantiates a straightforward iteration scheme and then performs optimizations. Such an 
approach would be too inefficient for scheduling applications, so we use dependence analysis 
to generate code that is specific to the constraint system at hand. 

Constraint Propagation for Transportation Scheduling 

For transportation scheduling, each iteration of the Propagate operation has the following 
form, where esti denotes the earliest-start-time for trip i and esif{ denotes the next value of 
the earliest-start-time for trip i (analogously, Isti denotes latest-start-time), and roundtripi 
is the roundtrip time for trip i on resource r. For each resource r and the ith trip on r, 

esti 
est'i = max I esti-i + roundtripi 

max—release—time (manifest {) 

' Isti 
Ist'i = min <  lsti+i — roundtripi 

min—finish—time (manifest,) 

Here max-release-time(manifesti) computes the max over all of the release times of move- 
ment requirements in the manifest of trip i and min-finish-time (manifest <) computes the 
rm-ni-mn-m of the finish times of movement requirements in the same manifest. Boundary 
cases must be handled appropriately. 

After adding a new movement record to some trip, the effect of Propagate will be to shrink 
the 

(ear liest—start—time, latest—start-4ime) 
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window of each trip on. the same resource. If the window becomes negative for any trip, then 
the partial schedule is necessarily infeasible and it can be pruned. 

The constraint propagation code generated for TS in Appendix C in [41], nearly as fast as 
handwritten propagation code for the same problem (cf. Appendix C in [37]). 

6.2.4    Constraint Relaxation 

Many scheduling problems are overconstrained. Overconstrained problems are typically han- 
dled by relaxing the constraints. The usual method, known as Lagrangian Relaxation [26], 
is to move constraints into the objective function. This entails reformulating the constraint 
so that it yields a quantitative measure of how well it has been satisfied. 

Another approach is to relax the input data just enough that a feasible solution exists. To 
test this approach, we hand-modified one version of KTS so it relaxes the LAD (Latest 
Arrival Date) constraint. The relaxation takes place only when there is no feasible solution 
to the problem data. KTS keeps track of a quantitative measure of each LAD violation (e.g. 
the difference between the arrival date of a trip and the LAD of a movement requirement in 
that trip). If there is no feasible reservation for the movement requirement being scheduled, 
then KTS uses the recorded information to relax its the LAD. The relaxation is such as to 
minimally delay the arrival of the requirement to its POD. 

This technique, which we call data relaxation, can be described more generally. Suppose 
that we specify a certain constraint to be relaxable. Whenver we detect that the input data 
has no feasible solution, we attempt to relax the input data just enough to allow a feasible 
solution. Of course, the problem-solving process and data relaxation are interleaved. 

At each global search iteration we evaluate this objective function for all candidate solutions. 
Using these values the algorithm takes a greedy decision of which branch of the global search 
tree should be split next. The result is a heuristically-guided algorithm that finds good but 
not necessarily optimal schedules. 

It remains an open task to formalize the notion of data relaxation and to develop a tactic 
for synthesizing relaxation code in the context of global search with constraint propagation. 

6.2.5    Using KEDS 

In developing a new scheduling application, most of the user's time is spent building a 
theory of the domain. Our scheduling theories have evolved over months of effort into 
50-70 pages of text. It currently takes about 90 minutes to transform our most complex 
scheduling specification (for ITAS) into optimized and compiled CommonLisp code for Sun 
workstations. Evolution of the scheduler is performed by evolving the domain theory and 
specification, followed by regeneration of code. 

Currently, the global search deisgn tactic in KIDS is used to design an algorithm for F 
and F—gs in Figuregs-scheme.  A specialized tactic for generating constraint propagation 
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Data 
Sets 

(Air only) 

# of input 
TPFDD 

records (ULNs) 

#of 
individual 
movements 

# of scheduled 
items after 

splitting 

Solution 
time 

Msec per 
scheduled 

item 

CDART 296 330 0.5 sec 1.5 

CSRT01 1,600 1,261 3,557 44 sec 12 

096-KS 20,400 4,644 6,183 86 sec 14 

9002T Borneo 28,900 10,623 15,119 290 sec 20 

Figure 7: KTS Scheduling Statistics 

code for Horn-like constraints is used to generate code for Fsplit-and-propagate. Once the 
algorithm is designed, then, a series of simplification and common-subexpression-el im in ation 
transformations are applied. A trace of the KIDS derivation is given in Appendix C in. [41]. 
See [42] for a detailed description of a session with KIDS. 

6.3    KTS - Strategic Transportation Scheduling 

The KTS schedulers synthesized using the KIDS program transformation system are ex- 
tremely fast and accurate [44, 45]. The chart in Figure 7 lists 4 TPFDD problems, and 
for each problem (1) the number of TPFDD lines (each requirement line contains up to 
several hundred fields), (2) the number of individual movement requirements obtained from 
the TPFDD line (each line can specify several individual movements requirements), (3) the 
number of movement requirements obtained after splitting (some requirements are too large 
to fit on a single aircraft or ship so they must be split), (4) the cpu time to generate a com- 
plete schedule, and (5) time spent per scheduled movement. Similar results were obtained 
for sea movements. The largest problem, Borneo NEO, is harder to solve, because of the 
presence of 29 movement requirements that are inherently unschedulable: their due date 
comes before their availability date. Such inconsistencies must be expected and handled by 
a realistic system. KTS simply relaxes the due date the minimal amount necessary to obtain 
a feasible schedule. 

We compared the performance of KTS with several other TPFDD scheduling systems: 
JFAST, FLOGEN, DITOPS, and PFE. We do not have access to JFAST and FLOGEN, 
but these are (or were) operational tools at AMC (Airlift Mobility Command, Scott AFB). 
According to [11] and David Brown (retired military planner consulting with the Planning 
Initiative), on a typical TPFDD of about 10,000 movement records, JFAST takes several 
hours and FLOGEN about 36 hours. KTS on a TPFDD of this size will produce a detailed 
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schedule in one to three minutes. So KTS seems to be a factor of about 25 times faster 
than JFAST and over 250 times faster than FLOGEN. The currently operational ADANS 
system reportedly runs at about the same speed as FLOGEN. When comparing schedulers 
it is also important to compare the transportation models that they support. KTS has a 
richer model than JFAST (i.e. handles more constraints and problem features), but less rich 
than ADANS. The ITAS effort described in the next section reflects our efforts to synthesize 
schedulers that have at least the richness of the ADANS model. 

The DITOPS project at CMU also models scheduling as a constraint satisfaction problem. 
However, DITOPS effectively interprets its problem constraints, whereas the transforma- 
tional approach can produce highly optimized "compiled" constraint operations. DITOPS 
emphasizes complex heuristics for guiding the search away from potential bottlenecks. In 
contrast KTS uses simple depth-first search but emphasizes the use of strong and extremely 
fast pruning and constraint propagation code. DITOPS requires minutes to solve the CD ART 
data. KTS finds a complete feasible solution in 0.5 seconds. 

Comparison with PFE (Prototype Feasibility Estimator, built by BBN based on the Trans- 
portation Feasibility Estimator system): On the MEDCOM-SITUATION from the CPE 
(Common Prototype Environment), KTS is about 5 times faster than PFE and produces a 
SEA schedule with only 14% of the delay of the PFE schedule. KTS also produces a far 
more accurate estimate of the planes needed to handle the AIR movements, since PFE is 
only estimating feasibility whereas KTS produces a detailed schedule. 

In our Strategic TPFDD scheduler KTS, we explored issues of speed and embedding KTS 
into an easy-to-use GUI, complete with ability to edit the data model (TPFDD, resource 
classes and instances, and port models), to schedule, apply various analysis tools, and to 
dynamically reschedule. KTS is available from Kestrel via ftp to participants in the PL 

6.4    ITAS - In-Theater Airlift Scheduler 

In 1994 we began to develop a scheduler to support PACAF (Pacific Air Force) at Hickham 
AFB, Honolulu which is tasked with in-theater scheduling of a fleet of 26 C-130 cargo aircraft 
in the Pacific region. Several variants of a theater scheduler, called ITAS for La-Theater 
Airlift Scheduler, have been developed to date, and more are planned. The system runs 
on laptop computers (Apple Powerbook). The interface to ITAS and integration with a 
commercial database package have been developed by BBN. Users enter information about 
movement requirements, available resources, port features, etc. and ITAS automatically 
generates a schedule, displayed in a gantt-like "rainbow" chart. The schedule can also be 
printed in the form of ATO's (Air Tasking Orders). 

The ITAS schedulers have emphasized flexibility and rich constraint modeling. The version 
of ITAS installed at PACAF in February 1995 simultaneously schedules the following types 
of resources: 

1. aircraft 
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2. aircrews and their duty day cycles 

3. ground crews for unloading 

4. parking space at ports 

each of which may have a variety of attendant constraints and problem features. 

7    Classification Approach to Algorithm Design 

In this section we introduce a new knowledge-based approach to algorithm design. We have 
been developing it in order to support the incremental application of problem-solving meth- 
ods to scheduling problems. Our techniques enable us to integrate at a deep semantic level 
problem-solving methods from Computer Science (e.g. divide-and-conquer, global search), 
Artificial Intelligence (e.g. heuristic search, constraint propagation, neural nets), and Op- 
erations Research (e.g. Simplex, integer programming, network algorithms). Furthermore 
these techniques have applications far wider than algorithm design, since they apply to the 
incremental application of any kind of knowledge formally represented in a hierarchy. 

7.1    Technical Foundations - Theories 

A theory (i.e. first-order theory presentation) defines a language and constrains the possible 
meanings of its symbols by axioms and inference rules. Theories can be used to express 
many kinds of software-related artifacts, including domain models [49], formal requirements 
[3, 10, 27, 29], programming languages [6, 15, 19], abstract data types and modules [10, 14, 
17], and abstract algorithms [43]. There has been much work on operations for constructing 
larger theories from smaller theories [3, 7, 30]. 

A theory morphism translates the language of one theory into the language of another theory 
in a way that preserves theorems. Theory morphisms underlie several aspects of software 
development, including specification refinement and datatype implementation [5r 27, 30, 51], 
the binding of parameters in parameterized theories [9, 15], algorithm design [22, 43, 52], 
and data structure design [32]. There has been work on techniques for composing implemen- 
tations in a way that reflects the structure of the source specification [3, 30]; however these 
composition techniques leave open the problem of constructing primitive morphisms. 

Theories together with their morphisms define a category. 

7.2    Refinement Hierarchy and the Ladder Construction 

Abstract programming knowledge can be represented by theories. For example, we showed 
how to represent divide-and-conquer [33], global search (binary search, backtrack, branch- 
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and-bound) [34], and local search (hillclimbing) [22] as theories. The same approach can be 
applied to data structures [5], architectures [16], and graphical displays (e.g. Gantt charts). 

A collection of problem-solving methods can be organized into a refinement hierarchy using 
theory morphisms as the refinement arrow [43]. See Figure 7.2. The question emerges of how 
to access and apply knowledge in such a hierarchy. The answer is illustrated in the "ladder 
construction" diagram in Figure 9. 

The left-hand side of the ladder is a path in the refinement hierarchy of algorithm theories 
starting at the root (Problem Theory). Speco is a given specification theory of a problem. 
The ladder is constructed a rung at a time from the top down. The initial arrow (theory mor- 
phism) from problem theory to Speco is trivial. Subsequent rungs are constructed abstractly 
as follows: 

TO,- 
Pi >Si 

Ii 

TO i+1 
Pi+i > Pi+l © Si 

where P,+i © S,- is the pushout theory (shared union) and 5t+i is an extension of 5,- deter- 
mined by constructing the theory morphism m"+1. The morphism TO,+I is determined by 
composition. 

7.3    Constructing Theory Morphisms 

Constructing the pushout theory is straightforward. The main issue arising from this ladder 
construction is how to construct the theory morphism m"+1 from the pushout theory to 5,-+i 
(an extension of Si). We formalized four basic methods for constructing theory morphisms 
last year, by analyzing the algorithm design tactics in KIDS [39]. Two of the techniques are 
well-known or obvious. However we identified two new general techniques for constructing 
theory morphisms: unskolemization and connections between theories. Roughly put, un- 
skolemizaiion works in the following way. A theory morphism from theory A to theory 3 is 
based on a signature morphism which is a map from the symbols of A to the symbols of 3. 
A theory morphism is signature morphism in which the axioms of A translate to theorems of 
B. Suppose that during a design process we have somehow managed to construct a partial 
signature morphism - only some of the symbols of A have a translation as symbols of B. The 
question is how to derive a translation of the remaining symbols of A. The unskolemization 
technique uses the axioms of A and deductive inference to solve for appropriate translations 
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Figure 9: Classification Approach to Design 
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of these symbols. As a simple example, suppose that function symbol / is untranslated and 
that it is the only untranslated symbol in an axiom V(z)G[/(x)] of A. We unskolemize / 
by replacing its occurrence(s) with a fresh existentially quantified variable: V{x)3(z)G[z]. 
This unskolemized axiom can now be translated and we can attempt to prove it in theory 
B. A proof yields a witness for the existential that is a term that depends on x. This term 
can serve as the translation of / knowing that such a translation preserves the theoremhood 
of the considered axiom. We may need to verify other axioms involving / to assure the 
appropriateness of the derived translation. 

This technique underlies the problem reduction family of algorithms and tactics in KIDS. 
For example, in constructing a divide-and-conquer algorithm we need to find translations 
of decompose, solve, and compose operators. The tactic works by letting the user select 
a standard decomposition operator from a library (or dually, selecting a standard compose 
operator) and then using unskolemization on a "soundness axiom'' that relates decompose 
and compose. The unskolemized soundness axiom can then be proved in the given problem 
theory to yield a specification of the compose (resp. decompose) operator. To be more 
specific, if we are deriving a divide-and-conquer algorithm for the sorting problem, then we 
want to construct a theory morphism from divide-and-conquer theory into sorting theory. 
We might choose a standard decompose operator for input sequences, say split-a-sequence- 
in-half, and the unskolemization technique leads to a derivation of a specification for the 
usual merge operation as the translation of compose. The result is a mergesort algorithm. 
Other choices leads to quicksort, selection sorts, and insertion sorts [33]. 

Sometimes the axioms of a theory axe too complex to allow direct application of unskolem- 
ization. This situation arises in the theory of global and local search algorithms. We have 
discovered and developed recently the concept of connection between theories which underlies 
and generalizes our correct but somewhat ad-hoc solution to this problem in the global and 
local search design tactics. The general result regarding connections between theories is this: 
Suppose that there is a theory T from which we want to construct a theory morphism into 
a given application domain theory B. K there is a (preexisting) theory morphism from T to 
a library theory A and we can construct a connection from A to B, then we immediately 
have a theory morphism from T to B. So connections between theories axe a way to adapt 
a library T-theory to a new, but related problem. 

The concept of connection between theories relies on several ideas. The sorts of a theory 
axe all interpreted as posets (including booleans) and furthermore the set of sorts itself is a 
poset (under the subsort partial order). A collection of "polarity rales" are used to express 
(anti-)monotonicity properties of the functions and predicates of a theory. For example, 
size({x | -TP}) is monotonic in {x | ->P} but antimonotonic in P; so if Q => P then 
size({x | -\P}) < size{{x | ^Q}). These polarity rules axe used to analyze the axioms of a 
theory and then to set up various connection conditions between the corresponding operators 
of theories A and B - these conditions directly generalize the conditions of a homomorphism. 
Furthermore the polarity analysis is used to direct conversion maps between corresponding 
sorts of A and B. Given these conditions and conversion maps it can in general be shown 
that the axioms of A imply the corresponding axioms of B, thus establishing the theory 
morphism. 

We have prototyped this classification approach and have tested it on some simple problems. 
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Steve Westfold built a graphical interface to the refinement hierarchy that allows graphical 
navigation of it and incremental application. Jim McDonald developed a simple Theory 
Interpretation Construction Interface that supports the development of views (theory inter- 
pretations or morphisms). It shows source and target theory presentations and the current 
(possibly partial) view between them. Users have several tools to support the completion 
of a view, including typing in translations for various source theory symbols and using aun- 
skolemization" (one of the four basic methods mentioned above). We demonstrated the 
use of this system to develop a view from divide-and-conquer theory into a simple problem 
theory. A more complete implementation of these techniques is underway in the Specware 
system at Kestrel [50]. 

8    Concluding Remarks 

Our original conception of the scheduling effort has evolved in significant ways. Our 1991 
demonstration system was based on use of a general-purpose object base manager and the 
compilation of declarative constraints into object base demons. We also used a Simplex 
code to check feasibility of start-times in a generated schedule. The results were somewhat 
disappointing in that for the CDART problem we obtained from CMXJ, our first code couldn't 
solve it running overnight, and our second code could only solve most of it using several 
minutes time. The derived scheduler described in this paper finds a complete feasible solution 
to the same problem in less than one second. 

Since speed is of the essence during the scheduling process and the object base and Simplex 
algorithm are problem-independent, it seemed wise to exploit our transformational tech- 
niques to try to derive codes that are problem-specific and highly efficient. Rather than 
compile constraints onto an active database, we now derive pruning mechanisms and con- 
straint propagation code operating on problem-specific data structures. Rather than use a 
Simplex algorithm for finding feasible start-times, the constraint propagation code maintains 
feasible start-times throughout the scheduling process. The advantage of our approach is 
the ability to expose problem structure and exploit it by transformationally deriving efficient 
problem-specific code. 
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Abstract 

This report develops four interrelated techniques for interactive planning in a 
large organization. It explores the use of market pricing mechanisms to help 
multiple planning cells allocate resources, resolve conflicts, and exploit 
synergies. The pricing mechanisms support distributed planning where 
human/machine planning subsystems cooperate to achieve common goals and 
there are many goals that may be contingent, uncertain, changing, and 
imperfectly-perceived. Trade-offs between goals are formalized in utility 
functions that are not not required to be additive but do have some additive 
structure in the form Iu(t)*mod(t,...) where u(t) is a function of how and when a 
single task is completed and mod(t,„.) captures the non-additive effects of 
dependencies between tasks. This aexible structure makes it possible to represent 
many large organizational planning problems and to evaluate alternative plans 
as they evolve. The report explores the use of decision theoretic techniques to 
estimate the market price of resources when given a non-additive utility 
function. Problem solving with these non-additive utility functions focuses on 
heuristic search with statistical look-ahead techniques used to merge evidence 
from the utilities and constraints when making variable and value order 
decisions during the search. 
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1. Introduction 

Experience from real planning applications continues to push AI planning 
technology in new directions. This research focuses on four interrelated 
techniques for planning the actions of a large organization: 

1. Market pricing mechanisms are explored as a way to handle the interactions 
and dependencies among separate planning cells that are cooperating to 
plan the organization's activities. 

2. Distributed planning and planning for contingencies is a major feature of 
organizational planning. Market pricing mechanisms deal with many 
diverse goals that may be contingent, uncertain, changing, and imperfectly- 
perceived. 

3. Utility functions that capture user preferences and represent soft constraints 
have some additive structure but are not fully additive. Utility functions in 
the form Zu(t)*mod(t,...) allow natural representations of the users 
preferences and support incremental, heuristic problem solving methods. 

4. Statistical look-ahead techniques that project resource contention are useful 
even with non-additive utility functions. The look-ahead is used to make 
variable and value ordering decisions during heuristic search. 

These planning techniques directly address fundamental issues arising in 
practical applications like military crisis action planning. Movement toward 
these techniques began ten years ago with research to eliminate assumptions that 
had limited the applicability of classical AI planning technology. Research in the 
late 1980's showed how to deal with uncertainty by building plans that are 
reactive [Brooks 86], universal [Schoppers 87], contingent [Linden & Glicksman 
87], and adaptive [Alderman 86,88]. This research extends previous research on 
planning under uncertainty by addressing additional issues that arise when 
planning the actions of a large organization. Specifically, this research addresses 
requirements arising from the following common characteristics of 
organizational planning problems: 

• Interactive and distributed. Organizational planning is interactive with 
human planners in control throughout the planning process. It is usually 
not enough to involve humans only in problem setup and in solution 
review. The human users are often geographically distributed. 

• Resource allocation. Organizational planning emphasizes effective use of 
available resources. Automated planning for these applications needs to 
exploit the special characteristics of resource capacity constraints and deal 
explicitly with the hard issues involved in allocating resources. 

• Optimization. The automated planning must find a good plan, not just a 
plan. The logical-satisficing approach of traditional AI planning needs to be 
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augmented so optimization is explicit within the automated process and is 
not left entirely to the user. 

These characteristics of organizational planning are leading to a shift away from 
purely logical-satisficing, qualitative planning to planning techniques more 
capable of dealing with uncertainty, resource allocation, scheduling, 
optimization, and other issues that have quantitative as well as qualitative 
characteristics. 

1.1   Origins of Approach in Applications 

Many of the planning techniques documented in this report generalize 
techniques that were applied successfully in real applications. The initial version 
of the non-additive utility functions combined with statistical look-ahead was 
developed for use Rome Laboratory's Advanced Planning System (APS). APS is 
now operational and is helping teams of Air Force personnel plan, coordinate, 
and schedule up to 2000 daily missions. The planning component of APS has an 
AI architecture, implements constraint propagation, and uses a non-additive 
utility function to guide its search. It was the military's first operational high 
level planning system to incorporate significant elements of AI planning 
technology. 

Military crisis action and transportation planning require further generalization 
of these organizational planning techniques. Previous research on these 
generalizations is documented in earlier reports [Linden 91, Linden & Vrotney 
92]. The interrelated set of techniques that have evolved have also been 
influenced by direct practical experience with other projects including projects to 
manage containers for a shipping company, schedule training missions for 
pilots, plan Army Corps-level maneuvers, support submarine commanders, and 
plan missions and maintenance activities for NASA. Other organizational 
planning problems that can use the same techniques include: 

• Planning for manufacturing operations. 

• Integrated planning in logistics, transportation, and distribution systems. 

• Integrated planning for "just-in-time" operations. 

• Complex project planning and scheduling for everything from construction 
projects to personnel scheduling. 

• Disaster relief planning. 

• Sensor planning and allocation. 

• Automation of agents acting in a simulation. 

• Job shop scheduling when there is a complex, multivariate utility function. 
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1.2   Technical Requirements 

Experience with planning applications shows that the formalisms needed to 
represent and solve many problems require major extensions to those of classical 
planning. While some problems fit the classical planning mold; organizational 
planning problems typically have significant technical requirements in most if 
not all of the following areas: 

1. Uncertainty. The planning situation is dynamic with ongoing changes in 
goals, preferences, and resources. Knowledge of current and projected states 
is partial and uncertain. 

2. Dynamic replanning. The plan evolves over time as today's plan is 
executed and addition information enables further elaboration of plans for 
the future. 

3. Optimization and deciding what to do. There are many goals and 
constraints (often hundreds or thousands) and not all of them can be 
accomplished with the available resources. Deciding what to do is part of 
the problem. With some difficulty, user preferences among the goals can be 
approximated by a utility function. 

4. Non-additive utility. Except at higher levels of abstraction, the utility 
function is seldom completely additive. Some goals support or conflict with 
other goals, and there are hard and soft constraints between task 
assignments. Some sets of goals have a conjunctive all-or-none property, 
and some goals are alternatives with decreasing additional value once M 
out of N are accomplished. 

5. Imperfect models. The formal problem model is imperfect and only 
approximates the real planning problem. As an individual problem is being 
solved, users discover instance-specific constraints that had not been 
foreseen. Ongoing imperfections in the formal model cannot be completely 
eliminated and are the fundamental reason why organizational planning 
must be interactive. 

6. Users in the planning loop. Users do not want a black box planner that only 
allows them to control the problem setup and evaluate results. Domain 
experts have trouble formulating general constraints and prefer to focus first 
on finding a specific solution. 

7. Distributed. Organizational planning draws on the experience of many 
experts who may be distributed geographically. 

A goal of the current research is to extend existing planning techniques so that 
technical requirements in all these areas can be handled within a single planning 
formalism. The four planning techniques developed during this research extend 
the set of techniques available to the designers of practical applications. 
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1.3   Technical Background 

There has been little or no domain-independent research that allows technical 
requirements in all the above areas to be handled within a single formalism. 
Much recent work on AI planning addresses technical requirements in the first 
and second areas. Operations research handles large optimization problems with 
the third requirement, but does not formalize methods for dealing with most of 
the other six technical requirements. Optimal solutions for large problems with 
non-additive utility functions are usually infeasible, and there has been 
relatively little work on obtaining "good" plans when the utility function is non- 
additive. 

The fifth and sixth requirements are considerations for theoretical work because 
some problem solving techniques are better than others at accommodating and 
benefitting from user interaction. Planning methods that translate the problem 
into a form that is not intelligible to human planners do not benefit from 
human interaction during the problem solving. Relatively few organizational 
planning problems are well enough defined for the organization to be willing to 
turn the planning over to fully automated software. 

To support technical requirements for distributed planning, it is important for 
automated processes to do more than automate individual planning cells, they 
must also help coordinate the activities of planning cells so locally generated 
plans will assemble into effective global plans. 

Some practical planning applications have addressed technical requirements in 
all seven areas, but have not used a separable, domain-independent planning 
engine. For example, Rome Laboratory's APS addresses technical requirements 
in all of the areas listed above. (Requirements in the first and second area are 
handled in a replanning extension of APS that is not yet operational but does 
exist in prototype form.) 

A decision theoretic approach to planning seems able to formalize all of the 
technical requirements, but there are both theoretical and practical problems in 
extending decision theory to handle not just one static decision but hundreds of 
interrelated decisions that evolve over time. 

This report describes research on four interrelated techniques that extend other 
techniques already documented in the planning literature. Several of these 
techniques generalize ideas originally developed for APS. The four new 
techniques, when combined with existing planning techniques, address all the 
technical requirements listed previously. They also exploit simplifying features 
of organizational planning problems that are not exploited by classical planning. 

1.4   Exploiting Simplifying Features of Organizational Planning Problems 

Organizational planning often requires relatively little emphasis on dynamic 
creation of task plans (how to accomplish a goal) and more emphasis on resource 
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allocation (what can be accomplished) and scheduling (when it can be accom- 
plished). For example, in many manufacturing applications such as job shop 
scheduling/ the possible process plans (the sequences of generic steps needed to 
accomplish an individual job) are known at design time. The main problem is 
to instantiate generic process plans with resource assignments. In unusual 
circumstances, it may be useful to invent new process plans, but this is not the 
focus of most practical applications. 

It is important to exploit the role that resources play in organizational planning. 
Many domain-independent planning systems have not exploited the following 
common features of resources: 

• Some resources are available in the initial state and are consumed by the 
plan but are not produced within the time frame in which the plan will be 
executed. 

• There are multiple instances of many resources and the instances are 
interchangeable. 

When the problem can be formulated so many resources have either or both of 
these attributes, market-based resource pricing mechanisms become effective. A 
thesis explored in this report is that resource pricing mechanisms and statistical 
look-ahead techniques make it practical to solve complex organizational 
planning problems when many of the resources have these two properties. 

Another common simplification in organizational planning problems is that the 
resources and other parameters assigned to tasks are constrained by the resource 
constraints and by a relatively small number of binary or other low order 
constraints. Once the resource constraints are dealt with, each task is 
independent of most other tasks—each task is involved in only a relatively 
small number of binary or other low order constraints with other tasks. 

The planning techniques proposed here are most useful for problems that fall 
between those handled by traditional AI planning and those handled by 
operations research techniques alone. The techniques are useful when there are 
complex dependencies between tasks, many contingent tasks, and some dynamic 
creation of tasks—features that cause an explosion in the number of variables 
when formulated as an operations research problem. On the other hand, the 
structure of organizational plans are often relatively stable and most planning 
decisions involve allocating and scheduling resources for a relatively fixed set of 
tasks. Classical AI techniques are needed occasionally to improvise new solution 
structures, but much of the planning involves assigning a consistent and near 
optimal set of values (resources and times) to a relatively stable set of variables. 

1.3   Key Technical Ideas 

We assume that plans are generated concurrently by separate planning cells that 
their ~lanninor activities to achieve a good overall plan.  A key goal is •-•-••-•i'-tüia 
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to find simple coordination techniques so the separate planning cells can share 
resources, resolve conflicts, and exploit synergistic opportunities. Potential 
conflicts and sharing opportunities can be modeled by an appropriate kind of 
phantom resource, so interactions can all be modeled as resource consumptions 
or resource productions. 

Techniques for distributed situation assessment, goal selection, and 
establishment of preferences between goals are outside the scope of this work. 
We assume there is a common measure of cost/utility and all planning cells 
know the utility of their goals and can communicate about utility in a common 
language. (They do not have to agree about the utility of each others goals.) 

Planning cells receive resources to execute their plan to the extent that they can 
pay an appropriate price which is measured in terms of the utility they will 
achieve by using the resource. A cell manages each resource and sets the price at 
which it will be bought and sold. Each planning cell builds plans that maximize 
the utility it achieves after accounting for the resources it buys or sells. The goal 
is to let each planning cell generate local plans with confidence that its plan will 
merge successfully with plans from other cells. 

Resource pricing mechanisms are compatible with many characteristics of 
organizational planning. Resource pricing is more effective for large scale 
problems with many goals and many instances of each resource. To handle the 
uncertainty involved of organizational planning, probabilities about the 
situation, 'the goals, and the utilities can be propagated by the pricing 
mechanisms. Contingency plans can be generated by local planning cells and 
included in the overall plan. Dynamic creation of resources, goals, and tasks is 
feasible. 

Capturing the organization's preferences about goals and representing these 
preferences in a utility function are important issues. This research addressed 
only the representation side of these two issues. When representing utility, it is 
useful to distinguish: 

• Preferences about the importance of goals, 

• Binary (or other low order) constraints about how two (or more) tasks are 
accomplished, and 

• Resource capacity constraints. 

Many binary constraints are not absolute requirements but are preferences about 
what makes a better plan. We represent these soft binary constraints as part of a 
utility function. Since soft constraints merge into hard, absolute constraints, all 
binary and low order constraints are represented by a utility function with the 
form'lu(t)*mod(t,...) where u(t) is a function of how and when a single task is 
completed and mod(t,...) captures the non-additive effects of dependencies 
between tasks.   The summation is over all the tasks to be performed.    The 
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function u(t) captures the additive component of the utility of performing the 
task. The mod(t,...) component captures the effects of binary or other low order 
constraints about the relationship between t and other tasks. For example, if t is 
to be completed before f, then mod(t,t') is 1 if the plan satisfies this constraint 
and it is 0 if not. Soft constraints are represented by values between 0 and 1. 

For resource pricing to be effective in practice, prices must converge rapidly 
toward an equilibrium. To accomplish this, we explored the idea that planning 
cells should bid for resources by giving a probability distribution about the price 
they will be willing to pay or receive. When there is uncertainty about what 
other resources will cost and about what the best local plan will be, the local 
planning cell has only probabilistic information about the price it will want to 
offer for this resource. A large amount of previous work on statistical look- 
ahead techniques for AI scheduling has explored bidding for resources in terms 
of subjective probabilities of use [Muscettola & Smith 87, APS 89, Sadeh & Fox 
89, Sycara et al. 90, Sadeh 91, Sadeh and Fox 91, Johnston 92]. We propose bidding 
in terms of both the price to be paid and the probability of use at that price. 
Section 8 summarizes the current state of research on a theoretical framework 
for this approach using concepts from decision theoretic planning. 

1.6   Summary of Report 

Section 2 is a review of military crisis action planning and an explanation of why 
formulating and solving practical crisis action planning problems requires the 
new planning techniques. It includes examples of crisis action planning 
problems that motivate the techniques. Section 3 describes how the new 
technique relate to each other and how they extend existing techniques to create 
an overall approach for solving organization planning problems. Section 4, 5, 7, 
and 8 cover the individual planning techniques while Section 6 gives examples 
of planning problems that are and are not handled by simple market 
mechanisms. Section 4 summarizes existing microeconomic theory on market 
mechanisms, identifies the limitations of current theory when addressing 
general planning problems, and defines necessary extensions. Section 5 contains 
results showing how distributed planning using market mechanisms handles 
contingent goals. Section 6 uses an extension of a traditional blocks world 
problem to identify the limits of market mechanisms. Section 7 summarizes 
work to develop utility functions that represent user preferences in a natural 
way, are useful during heuristic search to evaluate partial solutions, and enable 
effective variable and value ordering heuristics. Section 8 summarizes the 
results on generalizing and formalizing the decision-theoretic approach to 
heuristic search when using non-additive utilitv functions. 
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2. Military Crisis Action Planning 

Military crisis action planning is one of the application domains that motivated 
the combination of planning techniques proposed here. This section 
summarizes the key features of this domain and justifies the claims made in the 
introduction about the need for the proposed planning techniques. 

2.1 Crisis Action Planning is Interactive and Distributed. 

Crisis action planning needs to be interactive in a stronger sense that what is 
implemented in most "interactive planners." Interviews with crisis action 
planners indicate that they want to be in control so they can handle the unique 
characteristics of this crisis. They do not want to work around a system that is 
using methods inappropriate for the current situation. Too many interactive 
planners put users in the role of helping the system rather than the system in the 
role of helping users. 

Most techniques from operations research allow user interaction only during 
problem setup and plan evaluation. The planning algorithm is a black box. 
When all the important aspects of the user's real problem are captured in the 
formal model, optimization techniques solve the user's problem. However, in 
crisis action planning, it is usually impossible to know in advance all the goals, 
constraints, and preferences that will become important as a specific problem is 
solved. Details that are normally irrelevant may become critical in specific 
problem instances. Interpreters for an obscure language, overflight rights, and 
backup power supplies can quickly become critical to plan success. During Desert 
Storm, it became important to have turkeys to serve on Thanksgiving. 
Experienced users are good at handling these details as they encounter them, but 
they find it impossible to identify all the details that may be relevant to all 
possible planning situations. User interaction needs to occur during plan 
development whenever the formal problem model remains imperfect. It is very 
inefficient for the user to wait until a plan is completed, notice that it violates an 
unforeseen constraint, and then go back to the problem setup and try to change 
the setup in a way that will produce an acceptable solution. 

Automated planners for use in crisis action planning should be designed to 
enhance an existing partial plan incrementally. They should take a partial plan 
as input (along with goals, constraints, initial conditions, and utility functions) 
and transform it into an enhanced partial plan as output. Such a planner can be 
used in a fully interactive mode. Users can generate an initial partial plan and 
let the automated planners extend the partial plan. Different automated/human 
planners can work on different pieces of the plan—each focusing on their areas 
of expertise. In general, automated planners will solve subproblems as they 
become well defined. Fully automated planning is still feasible with this 
transformational approach—starting from the goals, the automated planner can 
be called recursively until a plan is complete; however, the important feature of 
this approach is that users control the outcome of the planning process by 
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building portions of the plan themselves rather than by manipulating setup 
information. 

This incremental, transformational approach also conforms with the distributed 
nature of crisis action planning. Users at different locations each have their own 
areas of expertise and are most effective when dealing with certain types of 
subproblems. Automation should help users deal not only with their 
subproblems, but also with the harder problem of making their subplans be 
effective as part of the larger plan. 

2J2   Crisis Action Planning is Mostly Resource Allocation. 

Crisis action planning is heavily a resource allocation problem. If resources were 
unlimited, feasible plans to resolve the crisis would usually be clear. The hard 
problem is that resources are scarce and must be shared. Much of the 
coordination between distributed planning cells is either a resource conflict or 
can be modeled as one. For example, if an action planned by one cell has to occur 
before an action planned by another cell, this constraint can be modeled by a 
phantom resource that is produced by the first action and consumed by the 
second action 

In crisis action planning, airlift capacity is one of the scarce resources to be 
allocated. Airlift capacity has the two simplifying properties of resources 
mentioned in Section 1.4: 

1. The planners have very limited control over the number of aircraft 
available. New aircraft cannot be built during the time frame of the crisis. 
Repair activities and leasing of commercial aircraft provide a limited set of 
options for increasing the available aircraft. 

2. Any of many suitable aircraft will do. (While outsize equipment can only 
go in C5As, there are still many instances of C5As.) The planners only care 
that they will get an appropriate quantity of airlift capacity at the appropriate 
time. For many planning purposes, it is useful to allocate a quantity of 
airlift capacity and relegate to lower level planning detail the question of 
what cargo will go on which actual aircraft. 

To the extent that distributed crisis action planning cells agree on the relative 
importance of their goals, resource pricing is a relatively simple way for them to 
communicate and coordinate their planning. Getting agreement about the 
relative importance of goals is a problem as discussed in Section 2.3. In 
organizations like the military with a strong hierarchical structure, setting 
priorities for goals is one of the functions of the hierarchy. 

2.3    Optimization Issues in Crisis Action Planning 

Crisis action plans must be good in the sense that they accomplish as much as 
possible with the available resources.   There will always be more things to do 
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than resources to do them, part of the planning problem is deciding on a 
coherent set of actions that are feasible with the available resources. 

At the highest levels of abstraction, crisis action plans may involve only a few 
key goals. For example, an abstract plan might be to defend a sector from a 
frontal attack, protect both flanks, and then launch a counterattack from the 
southern sector. At this level of abstraction, there are only a few goals, however, 
there are hundreds of constraints that determine the quality and acceptability of 
the plan. Constraints may deal with the suitability of the forces for the specific 
mission and terrain; they may come from the readiness of the forces or from the 
transportation needed to move them into place. Additional preferences for force 
assignments may consider recent commitments of the forces and other 
subjective considerations like the effectiveness of their commanders in working 
together. 

Automation that merely assigns resources to an abstract plan does not 
accomplish much that users cannot do themselves. Automation is more helpful 
at lower levels of abstraction. At lower levels of abstraction, there are likely to be 
hundred or thousands of goals to be accomplished. A U.S. military 
transportation plan currently starts out as an uninstantiated TPFDD with 10,000 
to 200,000 items to be delivered. Each item to be delivered is a goal/task to be 
accomplished. While the transportation plan should be built with a hierarchical 
structure that collects related goals, effective automation of the planning has to 
deal with very large numbers of goals. 

Crisis action planning involves large numbers of constraints. It is useful to 
distinguish resource capacity constraints from the constraints arising from 
conflicts or dependencies between pairs of tasks. Resource capacity constraints 
limit the assignments of a resource to be no more than the available instances of 
the resource. Resource capacity constraints create a potential interaction 
between all of the tasks that can use that resource. For example, an airport 
capacity constraint means that every decision to send an item through that 
airport has a potential impact on the ability to deliver every other item that 
might pass through that airport. On the other hand, constraints that arise from 
conflicts or dependencies between tasks are usually binary or low order 
constraints. For example, a requirement that surgical facilities have to arrive 
before the surgeons is a binary constraint between those two delivery 
requirements. 

Most constraints are not absolute prohibitions. For most constraints, domain 
experts can think of a situation in which it would be appropriate to violate the 
constraint. These constraints are actually preferences with a strong penalty 
against overall utility if the constraint is violated. There is a fine line between 
hard constraints and preferences. 
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2.4 Uncertainty and Contingency Planning 

Crisis action planning is complicated by a large amount of uncertainty about both 
the situation and about the goals. Many of the delivery requirements in a 
TPFDD are needed only to handle contingencies, and some are far more 
important that others. Crisis action planning deals with many contingencies. 
"Are we prepared to deal with an attack from the north?" ""What if we are not 
given permission to overfly the neighboring country?" "What if the monsoon 
arrives early?" Crisis action plans deal with hundreds of these contingencies. 
Each contingency typically leads to additional requirements. Many of the items 
included in a TPFDD are there to handle contingent goals. 

One way to reduce the airlift requirements when carrying out a crisis plan is to 
plan more carefully for contingencies. Rather than taking redundant resources 
into the theater of operations for different contingencies, it is often possible for a 
single resource to handle any one of several possible contingencies. This 
requires explicit planning for contingencies at a fairly low level of detail. 
However, the payoff is significant in that it can greatly reduce the airlift capacity 
needed to get the required forces into position. The proposed planning 
techniques deal with large numbers of contingent goals and exploit the 
opportunities to share resources among multiple contingent goals. 

2.5 Crisis Action Planning Examples 

Simple but realistic crisis action planning examples were developed as a way of 
experimenting with the new planning techniques. Transportation plans that 
instantiate TPFDDs were one source of examples. The Kestrel scheduler assigns 
and schedules resources for the delivery requirements of a TPFDD. One 
application of the new planning techniques will be a front end to the scheduler 
that builds a list of delivery requirements hierarchically and explicitly represents 
the constraints and dependencies between hierarchical delivery requirements. 

Another set of examples focuses on planning for contingencies in ways that 
exploit the opportunity to handle multiple contingencies with a single set of 
resources. These examples deal with planning for operations in theater as well 
as transportation planning. 

The scenario is that a neighboring country is threatening to attack a friendly 
country which has appealed for U.S./NATO assistance. This scenario is an 
abstraction of a real training scenario. It is deliberately left abstract to avoid 
making it sensitive in any way. 

The U.S. has decided to send in forces sufficient to deter the threatened attack- 
The situation is shown in Figure 2-1. In this simplified example, there are two 
goals: 

1. Defend against a threatened incursion in Sector 1. Enemy forces are already 
massed to attack in Sector 1. 
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Intelligence is Be prepared to defend against a possible incursion in Sector 2 
confident that they can give 5 days warning before enemy forces could be 
repositioned to attack into Sector 2. 

#* 

Seaport 
Sector 

1 

#*   A^VYyvx 
Sector 

A3 
7* 

Threatening 
Forces 

Figure 2-1: Crisis action planning scenario 

Separate planning cells are dealing with the defense of each sector. Both 
planning cells develop a high level plan to send a force to secure the seaport and 
the perimeter around a supporting airport, and then send in the main air and 
ground forces to defend their sector. The interesting technical issue in this 
scenario is to enable the two planning cells to coordinate their plans to avoid 
conflicts and to exploit opportunities for synergy. 

In this scenario, there is clearly synergy between the two plans in that they both 
need to secure the seaport, and this needs to be done only once. There are two 
other opportunities for synergy and three potential conflicts at this level of 
abstraction. (There may be more opportunities for synergy or conflict at lower 
levels of abstraction.) The opportunities for synergy are: 

1. Since there will be 5 days warning before an attack in Sector 2, some forces 
from Sector 1 can be shifted to reinforce Sector 2 before an attack there. 
(Intelligence is confident that any threat in Sector 2 will significantly 
weaken the threat in Sector 1.) 

2. One airport may be able to support the forces in both areas. 

The potential conflicts at this level of abstraction are: 

1. The transportation resources to bring forces into the theater of operations 
may not be able to support both plans simultaneously. 

2. Simultaneous execution of both plans may cause congestion in the seaport 
and connecting roadways. 

3. An airport supporting action in both sectors may become congested. 
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The goal of this planning exercise is to allow each planning cell to plan the' 
operations for its sector with as much independence as possible while still 
identifying and exploiting the synergies and dealing with the conflicts between 
the separate plans. 

Software was implemented to experiment with a variety of planning problems 
based on this overall scenario. This report focuses on how the problem solving 
works when the two planning cells choose airports to support their separate 
operations. Depending on the relative advantages of the different airports, the 
best plans may be for each operation secure the airport that is best for its own 
purposes; however, sometimes it is better to use a single airport and exploit the 
concept of a common good. The key issue is how two relatively independent 
planning operations can decide that they are each better off securing a single, 
common airport. 

To be more specific, assume the following facts about the situation. The cost of 
securing each airport is the same. (The cost of securing an airport is measured in 
terms of the quantity of forces that must be sent in to secure the airport, the time 
required, and other intangible factors like the political implications of using the 
airport.) Airport Al is slightly better for supporting operations in Sector 1, but 
Airport A2 is a viable alternative. (The utility of using an airport considers 
factors like the distance to the area of probable operations, the quality of the 
facilities at the airport, and similar domain specific issues.) Airport A3 is slightly 
better for supporting operations in Sector 2, but Airport A2 is also a viable 
alternative. If the planning cells act independently, the first one will develop a 
plan to secure the seaport and Airport Al and then send forces to defend Sector 1. 
The second planning cell will develop a similar plan using Airport A3. 

Both planning cells need to discover that securing the seaport is an operation 
common to both plans. It needs to be done only once, but congestion in the 
common seaport may also create conflicts between the two operations. This is 
accomplished in the software by representing the seaport as a shared resource. 

The more interesting question is how the two planning cells discover that they 
are both better off using A2 because they can share the cost of securing A2. (By 
transporting fewer forces to secure airports, the main forces to defend the sectors 
will begin arriving sooner.) Each of the airports is treated as a shared resource, 
and there is a cost of securing and using that resource. 

Coordination between the planning cells requires: 

1. Identifying resources that are potentially shared. 

2. Having each planning cell bid for the shared resources. 

In this example, each planning cell will bid a lower amount toward the cost of 
securing A2; however, if the sum of the bids for A2 is higher than the individual 
bids for the other airports, A2 becomes the airport preferred by both planning 
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cells. The independent planning cells exchange information about shared 
resources in terms of quantitative utility measures. Each cell is trying to 
maximize the quality of its own subplan. The pricing of shared resources allow 
coordination between the planning cells so the individual plans developed in 
each cell combine into a good overall plan. In this case, each planning cell 
discovers that it needs to pay only part of the cost of securing A2, and thus A2 
becomes its preferred airport. In slightly different circumstances where using A2 
is distinctly inferior for one or both of the planning cells, if the sum of the bids 
for A2 are lower than the cost of securing A2, the planning cells will choose to 
secure both Al and A3. If congestion from sharing A2 reduces its usefulness to 
one or both of the planning cells, the planning cells will reduce their bids for A2 
which may cause A2 to become unattractive to each of the planning cells. 

In this case, a market pricing mechanism leads independent planning cells to 
plans that combine effectively into a good overall plan. By identifying and 
pricing other potentially shared resources, the other synergies and conflicts in 
this scenario can also be planned successfully. Some of the main forces sent into 
the theater can be identified as potentially shared between the two sectors. (The 
forces will reinforce in Sector 1 until intelligence reports that the enemy is 
shifting forces toward Sector 2.) Pricing mechanisms allow the appropriate trade- 
offs to be made. For example, in planning the defense of Sector 2, the value of 
shared rescues would be greatly reduced if the intelligence warning is less timely 
or less certain. 

The market pricing mechanisms implemented for this example are intended to 
scale up to larger problems where there are many planning cells and many 
potentially shared resources. Indeed, pricing mechanism actually work better on 
larger problems with many entities competing for a large pool of shared 
resources. However, there are limits to the effectiveness of market pricing 
mechanisms in the context of general planning problems, and this research 
explored those limits. 
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3. Overview of the Planning Techniques and their Interactions 

The overall approach pursued in this research assumes that plans are generated 
by multiple, semi-independent planning cells. At one extreme, these planning 
cells may be geographically distributed teams of human planners. At the other 
extreme, the planning cells may be small software modules that make one 
specific kind of elaboration, change, or transformation to a plan. Planning cells 
may lie anywhere in the spectrum between these two extremes. They may use 
dynamic programming or other algorithms from operations research, they may 
be expert systems, they may be interactive planning cells, or they may be 
individual human planning experts. The key problem is to End simple 
coordination techniques so the separate human and automated planning cells 
can coordinate their planning activities, share resources, resolve conflicts, and 
exploit synergistic opportunities. 

3.1   Dividing Problems into Semi-independent Subproblems 

When a problem divides into completely independent subproblems, it is 
relatively easy to solve each subproblem and build a complete solution from the 
subproblems. Mathematical expression simplifiers and transformational 
compilers for very high level languages are the most sophisticated examples of 
exploiting this ability to decompose a problem into many independent 
subproblems. These applications are implemented as a set of transformations 
that pattern match on syntactic expressions of a formal language and then 
transform the expression into a simpler or more executable expression. These 
applications can be built so most transformations do not interact with other 
transformations. 

Practical planning problems divide into only semi-independent subproblems. 
Resolving conflicts between plans that achieve conjunctive goals has been a 
central theme of planning research. This research explores the extent to which 
resource pricing mechanism allow semi-independent planning cells to 
coordinate their activities. It models the interactions between planning cells as 
resource conflicts or resource sharing opportunities and lets the planning cells 
communicate by bidding for alternative resources. Communication of resource 
price information may not be adequate to coordinate all distributed planning; 
however, it is interesting to see how much coordination can be accomplished 
with simple resource pricing mechanisms. 

Organizational planning problems often divide into subproblems that are 
independent except for access to shared resources. Typically, the organization is 
already structured in a way that attempts to minimize interactions between 
planning cells. Expensive resources that must be shared are the most common 
cause of interactions. Pricing mechanisms using ideas from microeconomic 
theory are an established way to allocate resources efficiently.. Section 4 explores 
the extent to which these ideas apply in organizational planning problems like 
military crisis action planning. 

A-18 



Dependencies between planned tasks that are not explicitly over resources can 
still be modeled as resource dependencies. For example, if there is a constraint 
that Task A has to be completed before Task B, this can be modeled by a phantom 
resource that is produced by A and consumed by B. All dependencies between 
subproblems can be modeled as resource constraints by inventing appropriate 
phantom resources. Thus, it is plausible that communication between planning 
cells can be limited to that which is needed to identify and price shared resources. 

From a practical viewpoint, it is not necessarily a simplification to translate all 
dependencies into resource constraints. Phantom resources increase the number 
of resource types, and most phantom resources have only one instance that is 
both produced and consumed by planned actions. Pricing mechanisms are less 
likely to be effective for these resources. However, in many organizational 
planning problems, most of the dependencies between planning cells arise over 
access to a static set of resources that have multiple instances. Pricing 
mechanism are effective for these resources, and it seems useful to extend the 
pricing mechanisms to handle a small number of other kinds of dependencies all 
within a single framework. 

3.2   Problem Solving Steps 

Organizational planning involves three steps. Sometimes they will be 
sequential, but they may be interleaved: 

1. The organizations goals are apportioned to local planning cells. High level 
goals may be defined in the charter of the planning cell and detailed goals 
may be apportioned dynamically. From a practical viewpoint, planning is 
simplified to the extent that this apportionment minimizes the interactions 
between the planning cells. 

2. Identify the potential interactions between the plans of separate planning 
cells. These interactions take the form of shared resources, conflicts, or 
synergies. Potential conflicts and synergies can be modeled by phantom 
resources. Many potential interactions (and their associated resources) are 
known at design time, other interactions have to be identified dynamically. 

3. Let each planning cell develop a plan to solve its local goals in a way that 
will combine with other plans to become an effective plan for the entire 
organization. 

The pricing mechanisms covered in this report deal with the hard part of the 
third step—the communications between planning cells so their separate plans 
combine effectively. The pricing mechanisms assume that all planning cells 
communicate about prices in a common language. Prices need not be in 
monetary units, but each planning cell must have an estimate of the utility of its 
goals—although the utility can be contingent, changing, and uncertain. 
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4. Pricing Mechanisms for Coordinating Planning Cells 

This section introduces resource pricing mechanisms, reviews assumptions 
behind the efficiency theorem from microeconomic theory, and discusses the 
extent to which these assumptions are valid both in the economic world and 
when applied to organizational planning problems. 

4.1 Resource Pricing Mechanisms 

Resources are allocated to planning cells that are willing to pay an appropriate 
price which is measured in terms of the utility they will achieve by using the 
resource. Some authority is responsible for managing the price of each resource. 
This price control may be distributed with different authorities for separate 
resources. The authority assigns an estimated price for the resource for each day 
or other period of time. Planning cells then plan to accomplish their goals using 
resources that maximize the difference between the utility they achieve and the 
price of the resources. Each cell specifies the resources that it wants. When the 
resource authority receives the request, it calculates whether available capacity is 
over or under subscribed at the current prices, and it raises or lowers the price 
accordingly. Logically, each planning ceE then recalculates its demands and the 
process cycles—hopefully toward an equilibrium point that allocates all the 
resources efficiently. 

In large problems where demands for resources are reasonably independent and 
individual demands have an insignificant effect on prices, prices remain 
relatively stable unless affected by external factors. Price convergence for smaller 
planning problems is more problematic—especially when there are many 
conjunctive and disjunctive requirements for resources. For example, a task that 
needs either of two different packages of resources may switch between the 
resource packages when the price of one resource changes. If the problem is 
small, the change may have a ripple effect on the price of other resource. 

When there are humans in the planning loop, multiple iterations on the 
resource prices are not feasible, and a key practical question is whether the initial 
price estimates with only a few modifications are good enough. When the 
planning is being done within an automated cycle, it is feasible to adjust the 
prices repeatedly in an attempt to find an equilibrium where the resource 
allocation is efficient. 

4.2 Pricing Assumptions in Economics. 

Microeconomic theory holds that the pricing mechanisms underlying the 
modern western economies leads to an efficient allocation of resources. This 
section fleshes out the assumptions behind the argument that these "free 
markets" are good. What is meant by "efficient allocation"? What basic 
conditions need be met to attain an ideal competitive market? What are the 
areas that do not fit the requirements of perfect markets? And it examines how 
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closely organizational planning problems can be modeled as problems in 
efficient resource allocation. 

Formally, an efficient, or Pare to Optimal, allocation of resources is any allocation 
that uses up all the available resources in such a way that it is not possible to 
reallocate resources to make somebody better off without simultaneously 
making somebody else worth off. The definition does not mention the just or 
fair distribution, nor does it pay attention to general common goals. From the 
microeconomics perspective an economy is merely a collection of individuals 
each trying to maximize its profit. The multitude of individualistic actors leads, 
under some fairly general assumptions, to a globally efficient resource allocation- 

There are 5 central assumptions behind the optimality of pricing mechanisms. 
They are: 

• Isolated utility. Each participant in the global economy is basing his actions 
only on his "basket of goods." He does not care about other participants nor 
about the aggregate performance of the economy. For example, if somebody 
buys a foreign car it is because he perceives it to be the best value. A person 
cannot be expected to buy (or do) something only because it is good for 
somebody else, nor abstain from an activity (like pollution) because it makes 
others less well off. 

• Insaturation of demand. Different participants may put different priorities 
on different goods. However, regardless of personal tastes and preferences, 
one thing is common to all. All participants feel they would be better off if 
they had more. We all want more. 

• Perfect information. All participants have perfect information about the 
current market conditions. 

• Diminishing return to scale. The return on investment in any production 
activity is a convex function that diminishes with the size of investment. 
For example, if we seed crops twice a year instead of once we will harvest 
less than twice the crops. 

• Insignificance of any individual player. It is assumed that any participant 
cannot be significant enough compared to the market overall as to affect the 
price of the goods in the market. Any producer or consumer may not like 
the price they are getting or paying for the goods they sell or buy, but their 
decisions to buy or not are not significant enough to affect the price. 

4.3    Economic Reality 

The "free economy" model is widely hailed as being the best even though many 
of the assumptions above are unrealistic. Without going into a deep discussion 
on "managed competition," it is instructive to understand where the model 
brakes down in modern economic reality. 
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The first two assumption may be pretty close to reality. This is not to say that our 
charitable activities are not important, but rather that the Mother Teresas of our 
world, with all the great humanitarian work they do, have only marginal impact 
on the economical lives of most people. 

The perfect information requirement is unattainable. The market economy is so 
vast and individual's resources are so minuscule in comparison that any attempt 
to coEect all the information is doomed. However, one does not need all the 
information, but only some small portion that is directly relevant to its day to 
day decision making. On balance, one can realistically be expected to be 
adequately acquainted with the market conditions in his immediate area of trade. 

The requirement of diminishing returns to scale is probably the weakest one in 
modern economy. It is clearly more efficient to construct large manufacturing 
facilities for goods with a significant component of R&D costs. The 
semiconductor and software industries are clear examples where the more one 
produces the less are the marginal production costs (this phenomenon is known 
as "learning by doing"). On the other hand, transportation and logistics problems 
generally do meet assumption. 

The last requirement of insignificance of each player breaks down most readily 
when there is increasing return to scale but not only then. For example, recent 
economic history knew attempts to corner the world silver market. 

4.4 Organizational Planning and Assumptions for Price Convergence 

Like real economic systems, organizational planning problems do not meet the 
assumptions needed by microeconomic theory to guarantee that pricing 
mechanism will lead to an optimal allocation of resources. The first three 
assumptions—isolated utility, insaturation of demand, and perfect information 
are probably more valid for distributed, organizational planning problems than 
in the economy as a whole. However, the assumption that production is a 
diminishing, convex function of investment size is not valid for planning 
problems that involve discrete reasoning. More relevantly, resources seldom 
exist in sufficient quantities for the actions of individual planners to have an 
insignificant affect on prices. Certainly, when there is only one instance of a 
resources—as is the case with phantom resources—each planning cell can 
manipulate the price of the resource. 

4.5 Summary on Microeconomic Theory 

Economic reality is in many cases quite different from the assumptions required 
for perfect competitive markets. Optimal allocation of resources, if at all 
attainable, may have little to do with the norms of our society and the goal of 
enhancing the'well being of all the members, and yet the free market model is 
widely popular and promoted as being the only solution for sustained growth of 
the modern economy. What is the indispensable feature that makes the free 
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market model so attractive, and makes countries that try to avoid it (like former 
Soviet Union, Cuba and India) pay the price of delayed economic development. 
The answer is in the works of the mechanism itself: it does not fail because it 
does not have any single point of failure. The decision mechanism is distributed 
and involves no single point of failure. The failure of any individual player has 
no significant impact on the economy overall. In comparison with the central 
command-type structure that existed in Soviet Union, the unattainable task of 
collecting aÜ the information needed for successful decision making is avoided. 
The role of central authority is reduced to priority setting and coordination, 
while the bulk of detailed data is collected, evaluated and used for decision 
making in a distributed, local, and timely manner. This explains why the 
preceding discussion of economics has immediate and clear bearing on military 
crisis action planning. 

In the next section we outline the components of a distributed crisis action 
planning architecture and suggest steps that might be taken to validate or 
disprove this proposal in the domain of the military crisis action logistic 
planning. 
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5. Distributed Planning for Multiple, Contingent Goals 

Dividing and distributing the organizational planning problem is very common 
among successful large corporations. Distributed planning has similar 
advantages for military crisis action planning: 

1. Geography of large operations. Like international corporations, military 
crisis planning spans continents. 

2. Uncertainties in dynamic planning. Situations change at the pace that 
makes a swift local response indispensable. There is not enough time for 
central authority to deal with all the nuances and uncertainties involved in 
the local situations. 

3 Local specialization. No matter how many satellite links are established, the 
local commander will have a better and deeper understanding of the local 
situation. 

If the crisis action planning has much common with planning in modern 
competitive markets, the methods that have been successful in the later should 
be tested in the former. The following takes for granted the need for some sort of 
distributed decision making in crisis action situations. It focuses on a more 
technical question: what is needed to make the distributed planning work for 
crisis action planning. 

5.1   Components for Successful Decomposition 

In order to design a successful distributed management environment two 
elements must be addressed: 

1 Resource pricing. Resource pricing of transportation resources can handle 
coordination between separate planning cells. The transportation task will 
be priced in much the same way as in commercial transportation except 
there will be more emphasis on the opportunity cost when using 
transportation resources. During a crisis, opportunity costs are usually more 
significant than operating costs. 

2 Local planning to use resources. For a global distributed scheme to work, 
each local planner must be able to construct a plan that maximizes its local 
utility Under conditions of uncertainty, the optimal plan is conditional on 
uncertain events, just as any corporate plan has various options dependmg 
on the success of development, market penetration etc. 

We have developed a conditional planning algorithm that copes with the 
difficult task of conditional planning under uncertainty. This algorithm is 
-eneral and mav in principle be used in a centralized environment, but the 
computational complexity of conditional planning is very high, and it is 
important to do conditional planning within a limited scope. In this way, 
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decomposition and conditional planning compliment each other: the 
coordination scheme assures that each planning cell is facing only local and 
relatively small problems and is capable of creating an conditional plan, while 
the optimality of local plans enables global optimality through coordinated 
distributed planning. 

5.2   Optimal problem decomposition 

There are a number of ways to divide a large resource allocation problem into a 
set of smaller ones. Two principal ones are: 

1. Price-directed decomposition. 

2. Resource-directed decomposition. 

In both cases the central authority functions as a market clearinghouse. The two 
methods differ in the nature of communication between the clearinghouse and 
local planners. In the first case the clearinghouse is responsible for setting a price 
for each resource. The local planning cells plan in the environment defined by 
these prices and tell the clearinghouse what and how many resources they want 
to buy or sell given the current set of prices. If the market is not in equilibrium 
(i.e. demand does not equal supply) the clearinghouse modifies the prices and 
the process is repeated until an equilibrium is reached. 

With the resource-directed decomposition, a central authority communicates the 
resource allocation to each planning cell which is responsible to make an 
optimal local plan given its resource allocation, and to tell the clearinghouse the 
price it is willing to pay for an additional allocation of resource (or willing to 
accept to receive fewer resources). The clearinghouse modifies the allocation of 
resources and the process continues until the marginal prices for each resource 
reach equilibrium. 

Both methods lead to an optimal global solution, and the choice of one or the 
other should depend on the implementation aspects of the problem. It involves 
deep understanding of the human factors in crisis action planning and cannot be 
made at the current stage of the project. 

5.3   Optimal conditional plans 

While local expertise and decision making are critical for in distributed 
operations, local efforts can still be assisted and automated. Each planning cell 
can use whatever planning algorithms are most suited to the local problem. 
There is no requirement in our approach to distributed planning that all the 
local planning cells use the same planning algorithms. Because the local 
problems are generally smaller in scope, planning methods that do not scale well 
may still be feasible. Conditional planning by stochastic dynamic programming 
is a particular method we use in the following example. 
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5.4   Utility-based conditional planning 

In the previous sections we presented an outline of the distributed planning 
environment that is based on two elements: optimal resource coordination and 
optimal local planning. This section presents an example of optimal local 
conditional planning under uncertainty with resource constraints. 

Our flexible planning methodology is based on the following assumptions: 

• The goal of the planner is to maximize the plan's expected utility 

• The utility of each proposed plan can be computed 

• The solution space of the problem is known and represented by AND/OR 
graph 

• The (possibly uncertain) costs and resource consumption of all actions in 
the graph are known 

• All uncertainties pertinent to planning and execution actions are explicitly 
represented by appropriate probability distributions 

Since multiple decomposition structures can be merged by introducing a higher- 
level OR-type node, the solution space of a problem is represented by a single 
AND/OR graph. 

We do not distinguish the actions from the links that represent them. The 
semantics for the AND/OR graph are that all successors of an AND-type node 
must be satisfied to achieve it, while it is enough to satisfy any successor of an 
OR-type node. 

Flexible planning minimizes the expected cost of the solution by finding an 
optimal exploration sequence for a given AND/OR graph. At each step a link is 
"explored" in the graph, that is to say, the action it represents is carried out. We 
abstain from using the term "execution" in order not to imply that physical 
execution is taking place; a link may represent either a planning action that does 
not alter the physical environment, or some effector action, such as moving an 
object or activating a sensor. 

The planner creates a resource-bounded strategy. While in this report we focus 
on time bounds, time is just one example of a finite resource. The results are 
valid for any finite number of resources such as time, fuel, manpower, or 
money, and if not otherwise stated, the reader can substitute "consumption of 
limited resource' for "time duration'. 

Our current flexible planning methodology does not permit asynchronous 
interrupts. The basic model described here assumes that the actions cannot be 
interrupted at all. Readers interested in the treatment of arbitrary synchronous 
interrupts are referred to [Einav 91].  However, even the model we describe does 
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allow for one type of synchronous interrupt. As soon as an action violates a time 
constraint, it is interrupted, and an alternative solution is executed. We 
conservatively assume that the cost of the interrupted action is incurred up 
front. 

Links are sequentially invoked by a solution process. A link may be invoked 
only once, and it may be selected only after one of its antecedents has been 
invoked. For a given set of previously explored links h, the set of links that may 
be invoked at the next step is called an active set and is denoted by act(h). The 
state of the solution process is defined by h and the remaining time t. The 
external time limit is denoted by T, and initially the history is empty. Obviously, 
not all link subsets correspond to possible histories, and/only those need to be 
considered when computing an optimal strategy. 

A strategy is simply a rule assigning for each state a link to be explored at the next 
step. Our problem is to find for a given AND/OR graph the best strategy to 
compute and execute a solution within a given time. 

An optimal strategy selects the next move using the potential value of the states 
that may result from that move. Thus an optimal strategy is intricately 
connected to the potential values in all possible states and is computed 
simultaneously with the table of potential values. To carry out this 
computation, we invoke the Bellman optimality principle [Bellman57] and 
stochastic dynamic programming. 

The potential value table and the optimal strategy are computed gradually, 
starting with the potential values for one-move strategies, computing the two- 
move values on the basis of one-move values and continuing the recursion 
until the maximal-length optimal strategy is found. We will not present here 
the recursive equations. Instead we will present an example that wül clarify the 
types of problems that we solve. 

Consider the problem represented by the AND /OR tree depicted in Figure 5-1. 

Project (5 months) 

1 month (.7) 
6 months (.3) 

1 month (.5) ! month ^ 
3 months (.5) 3 months (.4) 

Figure 5-1: An AND/OR tree representing a simple project management 
problem. 

A-27 



Suppose that an experienced programmer is considering ways to approach a 
software development project that must be completed in five months. She 
recognizes two alternatives: A and B. 

Alternative A splits the project into two modules: A.l and A.2, while alternative 
B utilizes a new object class that is still being developed. Based on her experience 
with similar projects, the programmer estimates that it will take one or three 
months, equally probably, to encode the module A.l; the estimate is one or three 
months with probabilities 0.6 and 0.4 for module A.2. If alternative B is selected, 
the estimated time is one or six months with probabilities 0.7 and 0.3. 

The focus on the control and selection of an appropriate solution is important 
when time bounds and uncertainty are present. In this situation we must ensure 
the feasibility of a solution, and the time uncertainty requires us to retain some 
degree of flexibility. Our problem is to find an optimal flexible strategy for the 
project. 

The complete solution is presented in (Einav, 91). Here we only mention that 
although committing to one of the strategies leads to probabilities of 0.8 and 0.7 
for timely completion of the project, the flexible optimal strategy has a probability 
of 0.88 of success. 

Based on the assumptions outlined in the beginning of the section we designed a 
planner that can: 

• Compute and execute an optimal meta-level control 

• Manage optimally alternative decompositions 

• Control optimally the uncertainty 

• Plan optimally information gathering actions 

• Interleave optimally planning and execution 

• Find the resource-constrained conditional plan with the highest utility 

The next step is to implement the flexible planner. The planner will be able to 
ensure that a system will produce relevant output in appropriate time; will 
represent explicitly and reason about temporal processes, including the problem 
solving process itself; will interact with the environment; and will adapt the 
reasoning process based on available resources. 

The time-bounded optimal performance of the conditional planning 
methodology is achieved by controlling the concurrent exploration of the 
alternative decomposition structures. 
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Flexible control interleaves actions at different hierarchical levels. The optimal 
meta-level control is efficiently computed using the Bellman optimality 
principle within the framework of stochastic dynamic programming . 

Flexible conditional planning aims to advance the state of the art in planning by 
addressing three major aspects of real-life applications: time constraints, 
uncertainty, and hierarchical structure of alternative decompositions and their 
abstractions. 

Time constraints are always present in some form, either explicit or implicit, in 
real-life problems. We need to be able to react quickly while, time permitting 
being able to utilize slower, but more precise methods. As in design, where the 
duration and cost of the project are defined early in the life cycle, to control the 
time of reasoning we must start at the very early stages, i.e., beginning with the 
selection of the appropriate hierarchical decomposition structures, and as long as 
we cannot predict exactly the performance of alternative decompositions and the 
environment, we have to model uncertainty. Our work led to a planner that 
differs in its basic assumptions from previous work in AI Planning. 
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6. Examples: Extending Pricing to Small Planning Problems 

Most AI planning techniques work best on small problems and encounter 
difficulties of scale in larger problems. Resource pricing works best on a very 
large scale and encounters difficulties on smaller problems. This section gives 
examples that explore resource pricing in small problems where the resource 
requests of a single planning cell influences resource prices. 

6.1 Job Shop Scheduling Experiment 

One early experiment used the job shop allocation and scheduling problem 
discussed in [Sadeh 91b]. In involves 10 tasks to accomplish 4 jobs using 4 
resources over 15 units of time. The tasks require resources for varying lengths 
of time. The solution requires careful use of critical resources with respect to the 
variable length time requirements. 

We tried to solve this problem using simple pricing mechanisms and were 
surprisingly successful. We assumed a separate planning cell was planning each 
of the four jobs. We started with uniform prices for each of the 4 resources over 
the 15 time units. Each planning cell computed the cheapest way to accomplish 
its tasks within the allotted time. The times at which it choose to use resources 
created one unit of demand for the resources at those times. When a 
resource/time was demanded by more than one job, its price was raised. When 
it was not demanded by any job, the priced was lowered. Each planning cell then 
recomputed its cheapest solution using the new prices. Equilibrium prices were 
reached in 15-20 iterations. The union of the plans from each of the four 
planning cells was then the solution. 

For this particular problem, iteration on resource prices seemed simpler than the 
statistical look-ahead technique used by Sadeh and Fox. The iteration was 
actually carried out manually for this problem. 

6.2 Planning Problems without Equilibrium Prices 

For small planning problems, there is no guarantee that equilibrium prices exist. 
The following is a simple example of a pathological case. There are four 
resources, R1-R4. Tasks A and B both need to use either of two pairs of resources 
as indicated in Figure 6-1. Task A will achieve 10 units of utility by using both Rl 
and R2, or it will achieve 2 units of utility by using R3 and R4. Task B will 
achieve 8 units of utility using either Rl and R3 or R2 and R4. There is no way 
to satisfy the resource requirements of both tasks, so the best solution is to let 
Task A achieve 10 units of utility. However, resource pricing mechanisms will 
result in low prices for R3 and R4 with the result that Task B can bid up the price 
for Rl and R2 to the point where Task A cannot afford both resources. 

A-30 



Figure 6-1: A planning problem without effective resource prices 

6.3   Example: Contingency Planning in Blocks World 

This section gives examples that show how market mechanisms apply to the 
problems traditionally addressed by AI planning technology. The market 
mechanisms deal with problems that cannot even be formulated in the 
terminology of classical planning, but it is important to understand the extent to 
which the new paradigm extends the older paradigms. 

Blocks world problems can be formulated as resource allocation problems. 
When this is done, blocks problems have neither of the simplifying features that 
are exploited by resource pricing mechanisms (the resources are both produced 
and consumed, and there are seldom multiple instances of resources), thus there 
is little reason to expect pricing mechanisms to outperform old paradigms for 
these problems; nonetheless, it is informative to understand how pricing 
mechanisms apply to traditional problems. 

63.1      Crisis Planning Analog of Blocks Example 

Since a discussion of a blocks world problem has some danger of being viewed as 
irrelevant, it seems best to begin with an equivalent crisis action planning 
problem. A problem of moving forces into good defensive positions is 
illustrated in Figure 6-2. An enemy attack is expected toward Area 1, but there is 
a possibility that it will come toward Area 2 instead. Current defensive forces are 
an army battalion and an air wing in Area 3. Fuel has just arrived in Area 2. 
The goal is to get the battalion, the fuel, and the forces supporting the air wing to 
Area 1. They must move into Area 1 in that order. The fuel that just arrived in 
Area 2 is exposed if the attack comes into Area 2, so it should be moved out of 
Area 2 as soon as possible. An alternative but less effective goal is to defend in 
Area 3 and simply move the fuel to Area 3. The transportation resources are 
limited so only one thing can be moved at a time. 
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Figure 6-2: Crisis action planning scenario equivalent to blocks problem 

There are three promising solutions to this problem: 

1. Move the fuel from Area 2 to Area 3, then move the battalion, fuel, and air 
support forces to Area 1 in that order. This involves 4 movements and may 
take too long. 

2. Move the battalion to Area 1, then the fuel from Area 2 to Area 1, then the 
air support forces. This involves only 3 movements but leaves the fuel 
exposed to danger while the battalion is being moved. 

3. Move the fuel to Area 2 and satisfy the alternative goal with only one 
move. 

The best choice depends on how soon the forces are needed in Area 1, whether 
the fuel really has to be moved out of Area 2 immediately, and the relative merit 
of the alternative goal of defending from Area 3 

6.3.2      Blocks Example with Contingent Goal 

This crisis action planning problem is equivalent to the following blocks world 
extension of the Sussman anomaly. Figure 6-3 shows the initial configuration of 
blocks. The three goals are to quickly stack A on B and B on C, and to put E on D 
within one move after the burglar alarm goes off. In parallel with the crisis 
action problem above, there are three promising solutions, and the best solution 
depends on the relative utility of the goals: 

1. Move B to table, move E to D if the burglar alarm goes off, otherwise: move 
C to table, move B to C, move A to B. This requires 4 moves even when the 
burglar alarm doesn't sound and violates the quickly requirement for A on 
B and B on C. 

2. Move C to table, move B to C, move E to D if the burglar alarm has gone off, 
move A to B. This means that E cannot be moved to D within one move if 
the burglar alarm goes off during the first step, but it satisfies all other goals. 
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Move B to C, move E to D if the burglar alarm goes off. This gives up the 
goal of A on B, but achieves the other two goals very quickly. 

Figure 6-3: Initial arrangement of blocks 

To choose the right plan, one needs to formalize the relative utilities of the three 
goals and do this as a function of the time the goal is accomplished. Knowledge 
of the probability that the burglar alarm will sound is also required. Formulation 
of utility functions for this problem is relatively straightforward. For example, 
the utility of each of the three goals may be given by the entries in the following 
table. Here A onB and B on C both have soft deadlines at the third turn, and E 
on D has a hard deadline in that it must occur on the first turn after the alarm in 
order to obtain any utility. The probability of the alarm sounding is .05 per turn. 
The utility of a plan is the sum of the utilities of the goals accomplished. The 
plan is to maximize the expected utility. 

Number of moves before goal is accomplished 

Goal 1 2 3 4 

AonB 10 10 10 9 

BonC 5 5 5 4 

Number of moves after alarm before goal is accomplished 

Goal 1 2 3 4 

EonD 40 0 0 0 

Table 6-1: Utility of each goal as a function of when it is accomplished 

Changes in the utility of each goal and in the probability of the alarm sounding 
can lead to different choices for the best plan. While the utility function seems to 
make this problem more complex than traditional blocks world problems, in fact 
the utility function can help guide a problem solver toward a good solution. 
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6.3.3 Resource Pricing to Solve Blocks Example with Contingency Plan 

To use market pricing mechanism to solve this problem, one can formalize it as 
a resource allocation problem with three agents competing for the resources. 
One agent deals with each goal. First, each agent develops one or more plans to 
accomplish its goal independently. In this case, these plans are quite simple (The 
notation Move(C,?) means that the agent doesn't care where the block is moved 
to): 

Agent 1 plans to accomplish A on B by the two steps: Move(C, ?), Move(A, B). 

Agent 2 plans to accomplish B on Cby: Move(B, C). 

Agent 3 plans to accomplish E on D by the two steps: Move(B, ?), If alarm 
sounds Move(E,D) 

To accomplish these moves, each agent needs the resources of the robot arm at 
one or more times. Treat the robot arm as a resource for each of four units of 
time. The three independently generated plans involve potential conflicts and 
synergy. The conflicts are: 

Move(C,?) has to occur before Move(B,C) if A on B is to be achieved. 

Move(B,C) has to occur before Move(A,B) if B on C is to be achieved.. 

The potential synergy is: 

Move(B,C) accomplishes Move(B,?);   however,   moving  B   to   the   table 
accomplishes only the latter and not the former. 

To allow the separate planning cells to coordinate their plans so they obey these 
constraints, one creates phantom resources that the cells can either supply or 
consume. We achieved the best results be creating phantom resources associated 
only with the time Move(B,C) occurs. All of the constraints happen to involve 
this operation. A planning cell can either get credit for supplying the operation 
Move(B,C) at a time desired by other planning cells, or it can offer to pay another 
cell to accomplish Move(B,C) at a specific time. There are eight resources that 
can be bought and sold by the three planning cells: the use of the robot arm at 
each of four time intervals, the specific movement of B to C at each of 4 possible 
time intervals. Note that one planning cell can choose to buy the robot arm to 
move B to C and simultaneously sell to other planning cells the accomplishment 
of Move(B,C). 

6.3.4 Results and Lessons Learned 

We discuss lessons learned from several experiments with this simple resource 
pricing approach to blocks world planning. The research project was terminated 
before general conclusions were reached. 
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We began with arbitrary starting prices (often a uniform price of 2 units for each 
of eight resources) and had each planning cell choose to instantiate its plan in the 
way that maximizes its utility. When there were more consumers than 
suppliers of a resource, its price was raised (by .3 units in most experiments). 
When there were more suppliers, the price was lowered by a similar amount. 
This process iterated until prices stabilized or cycled. 

With the eight resources described above, the planning cells arrived at the 
optimal plan relatively quickly. By changing the utility matrix, the plans 
converged to each of'the three different likely solutions—even when one 
solution was only 1 unit better than another. Convergence took longer when 
two plans were almost equally good or when starting prices were far away from 
equilibrium prices. 

In initial experiments, both Move(B,C) and Move(A,B) were treated as phantom 
resources. This led to redundancy in the resource pricing and iterations tended 
to cycle rather than converging. The choice of appropriate phantom resources to 
represent constraints appears to be critical. 

Resource pricing is most effective for large problems where there are many 
instances of resources. There is little reason to expect it to do well on small 
blocks world problems that are dominated by goal interactions. Nevertheless, 
resource pricing does surprisingly well on these problems—giving considerable 
hope that it will be effective for large organizational planning problems where 
there are many instances of most resources and relatively few goal interactions 
that require the pricing of single instances of phantom resources. 
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7. A Structure for Utility Functions 

In the blocks world problems of the last section, there was a utility associated 
with achieving each goal and there were a set of constraints that had to be 
satisfied. In organizational planning problems, there are many soft constraints. 
Soft constraints reduce the acceptability of a plan that violates the constraint but 
do not make the plan invalid. Essentially, soft constraints involve a penalty 
against utility for violating the constraint, but it may be preferable to violate the 
constraint rather than lose the utility that comes with accomplishing an 
additional goal. 

Most organizational planning constraints are actually soft and there is a very fine 
line between hard and soft constraints. Users will often describe hard constraints 
on the problem solution, but when asked whether they would ever violate the 
constraint, they will find situations in which the constraint can be violated. It is 
really a soft constraint with a strong penalty for violating it. Problems should be 
represented with a smooth transition between hard constraints that can't be 
violated and soft constraints that carry a large penalty when violated. 

This section summarizes and updates work to define a structure for utility 
functions that allows the soft constraints of organizational planning problems to 
be represented effectively. A utility function that is practical for planning and 
scheduling problems should be a compromise between several conflicting goals: 

• It should represent user preferences in a reasonably natural and direct way. 

• It should be useful during heuristic search when evaluating partial 
solutions. 

• It should enable effective variable and value ordering decisions during 
heuristic search. 

7.1   Constraint Types and their Interaction with Utility 

In approaching the utility function, it is useful to separate: 

1. The utility of achieving a goal (performing a task). 

2. Binary and low order constraints on the solution-both hard and soft 
constraints. 

3. Resource capacity constraints and other high order constraints on the 
solution. 

Resource constraints are common in practical applications and are not effectively 
handled by general purpose constraint satisfaction techniques. Resource 
constraints are complex, N-way constraints between many tasks. N is typically 
large. 
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Viewed from the perspective of search strategies, resource constraints are nasty 
in that they tend to prune a branch of the search tree only after it is almost fully 
expanded. For example, if there are k instances of a resource, simple propagation 
of this resource constraint does not have an impact until after the k* assignment 
of that resource. Then it immediately has the dramatic effect of eliminating this 
resource from the options available to all the remaining tasks. 

While resource constraints are not handled effectively by generic constraint 
satisfaction techniques, specialized heuristics are effective with resource 
constraints. A heuristic approach, which is now widely practiced in AI 
scheduling applications, projects resource contention using statistical look-ahead 
techniques and uses these contention estimates in variable and value ordering 
heuristics. Statistical look-ahead techniques have been used in work on Opis 
[Muscettola & Smith 87], Cortes [Fox et al. 90, Sycara et al. 90] and Micro-Boss 
[Sadeh 91] and in work on Rome Laboratory's Advanced Planning System (APS) 
[APS 89]. 

72.   Utility Functions in the Form Eu(t)*mod(t,...) 

These and other considerations lead to utility functions that are structured in the 
form 2u(t)*mod(t,...) where u(t) is a function of how and when a single task is 
completed and mod(t,...) captures the effects of dependencies between tasks. The 
mod(t,...) factor is a function of all the assignments made to t and to all tasks that 
are involved in binary or other low order constraints with t. The value of 
mod(t,...) should be 0 when the assignments made to t and related tasks violate a 
hard constraint. A soft constraint is represented by a value between 0 and 1. 
Values outside the range [0,1] can also be meaningful. This approach supports 
continuity between hard and soft constraints while still recognizing a difference 
between hard and soft constraints. For more details, see [Linden 91]. 

Typically, mod(t,...) is structured as a product where each factor in the product 
captures the effect of one constraint between t and other tasks. A product is one 
specific way of combining the effect of multiple soft constraint violations. Other 
combining functions are possible. For more details on this approach, see [Linden 
91]- 

A utility function in the proposed form is a fairly natural way of representing 
real problems. The u(t) factor combines the effects of multiple evaluation criteria 
that depend only on the assignments made to the parameters of this single task 
(e.g., resource costs, timeliness of task completion, appropriateness of the 
resources for the task, etc.). The effect of dependencies between tasks (for 
example, one task must be performed before another) are captured in the 
mod(t,...) factor. Essentially, each hard or soft constraint between tasks becomes a 
factor in the mod(t,...) component of each of the constrained tasks. The effects of 
conjunctive and disjunctive goals can also be captured in the mod(t,...) 
component to handle the cases where goals have a conjunctive all-or-none 

A-37 



property or where goals are alternatives with decreasing additional value once M 
out of N are accomplished. 

7.3   Evaluating Partial Solutions 

The proposed structure for utility functions allows many equivalent 
formulations, and often one formulation is more useful than others when 
evaluating partial solutions. For example, consider the case of two tasks tl and t2 
where tl establishes a precondition for t2. Assume that t2 achieves 10 units on 
the utility scale, and tl has no independent utility except for its role in enabling 
t2. The utility function for these two tasks would then be 0*mod(tl,t2) + 
10*mod(t2,tl) where mod(tl,t2) and mod(t2,tl) are 1 if tl is accomplished before 
t2 (and maintained) and 0 otherwise. When evaluating a partial solution, this 
utility function gives no importance to tl; however, an equivalent utility 
function is x*mod(tl,t2) + (10-x)*mod(t2,tl). By choosing appropriate values for 
x, this form of the utility function can decompose the problem of choosing 
parameter values for tl and t2 and support more effective least commitment 
strategies. 
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8. Heuristic Search with Non-Additive Utility 

For resource pricing to be effective in practice, prices must converge rapidly 
toward an equilibrium. To the extent that individual planning cells have a 
significant effect on prices, which is often the case when phantom resources 
represent dependencies in the plan, it is useful to look for better ways to 
communicate about prices and get them to converge. We explored the idea that 
planning cells should bid for resources by giving a probability distribution about 
the price they will be willing to pay or receive. When there is uncertainty about 
what other resources will cost and about what the best local plan will be, the local 
planning cell has only probabilistic information about the price it will want to 
offer for this resource. A large amount of previous work on statistical look- 
ahead techniques for AI scheduling has explored bidding for resources in terms 
of subjective probabilities of use [Muscettola & Smith 87, APS 89, Sadeh & Fox 
89, Sycara et al. 90, Sadeh 91, Sadeh and Fox 91, Johnston 92]. We propose bidding 
in terms of both the price to be paid and the probability of use at that price. This 
approach increases the communication bandwidth between distributed planning 
cells, is more likely to converge when there are conjunctive and disjunctive 
subgoals, and may lead to useful results even when convergence cannot be 
guaranteed. This section summarizes the current state of research on a 
theoretical framework for this approach using concepts from decision theoretic 
planning. 

This probabilistic approach to pricing will be used both to choose ways to extend a 
partial plan (value ordering decisions) and choose which part of the plan to 
extend next (variable ordering decisions. 

8.1   Variable and Value Ordering Search Heuristics 

Most variable and value ordering heuristics used in heuristic search are sensitive 
to only one feature of the search state; for example, the minimum domain 
variable ordering heuristic finds the variable with the smallest domain of 
feasible values. But complex resource-bounded planning problems involve 
optimization in the presence of constraints. A fixed heuristic that is sensitive 
only to constraints and ignores utility considerations involves a discontinuity 
between hard and soft constraints and will be effective only for problems where 
hard constraints are the critical feature. Heuristics should depend on the utility 
function as well as the constraints. 

What is needed is a general way to merge all the evidence available when 
making variable and value ordering decisions during search. This evidence 
comes from the utility function, binary constraints, and resource constraints. A 
decision theoretic viewpoint seems to provide justifiable semantics for 
computations that combine this evidence. A utility function in the form 
suggested above with separate components for the independent utility of the task 
and for the effects of interactions between tasks supports this decision theoretic 
approach. 
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The variable and value ordering decisions that need to be made repeatedly 
during search can be viewed as problems in decision theory where evidence for 
each decision comes from the problem's features and the current state of the 
problem solving. While heuristics are frequently thought of as inexpensive 
computations, any computation that is not exponential in problem size can be a 
useful heuristic, and simpler heuristics can always be selected once a generic 
approach is understood. 

8.2   Past Research on Probabilistic Computations of Heuristics 

Many domain-independent heuristics have been proposed to solve constraint 
satisfaction problems (CSP). These include the variable with smallest feasible 
domain, the most consfraining variable, the least constraining value, and the 
value that participates in the most solutions to a relaxation of the problem. 
Work by Hansson et al. [92] computes a combination of heuristics that is effective 
for a specific CSP. Heuristics for constrained optimization problems should 
extend these CSP heuristics. 

When there is a utility function as well as constraints, a key question is how to 
combine the evidence from the utility function and the constraints; for example, 
how much extra utility is needed to compensate for consuming a highly 
constrained resource. Sycara et al. [90] addressed this question by experimenting 
first with the two extreme cases (picking the value that gives the most utility for 
this task vs. picking the value that most reduces resource contention). A 
compromise is probably better than either extreme. Rather than trying to find 
the most appropriate compromise through experiments, theoretical results may 
be able to predict the compromise that is most effective overall. 

Utility Functio 
Variabl 

Resouro 

Unary Constraints 

Binary   >*£.--** Unassigned 
Constraints -*" Resources 

Figure 8-1:   Sources of Evidence for Variable and Value Ordering 
Decisions. 

Figure 8-1 is a simplified representation of the recent state of research on using 
probabilities to combine evidence when making variable and value ordering 
decisions during search. At any intermediate stage of the search process, one 
considers the remaining tasks (variables) and the remaining resources (values)— 
each shown as stacks of circles in the figure. Evidence for the variable and value 

A-40 



ordering decisions comes from the utility function, the unary constraints, binary 
constraints, and from statistics about resource contention. The heavy arrows 
show the flows of evidence involving the first variable and the first resource; the 
dashed arrows indicate other flows of evidence to and from the other variables 
and resources. 

In Figure 8-1, for each variable there is a probability distribution (called Best?) 
that captures the available evidence about which resource will turn out to be the 
best choice for assigning to this variable. For each resource there is a probability 
distribution (called Demand) that summarizes the demand for that resource 
from all the variables. The double arrow between Best? and Demand 
characterizes one of the problems that needs to be solved: the Best? distribution 
is used to project statistics about resource demand, and the Demand for a 
resource influences the probability that a resource is the best global choice for 
assignment to a variable. Similarly, binary constraints involve evidence flowing 
in both directions between two variables—probabilities about assignments to one 
variable influence the probabilities about the best assignments to the other 
variable. 

8.3    Overview of Approach 

Figure 8-2 elaborates Figure 8-1 with two additional concepts: the Net Utility of 
each potential assignment of a value to a variable and the Marginal Utility of a 
resource. The double arrow between Best? and Demand is eliminated, but there 
are still cycles in the influences between the probability distributions shown in 
Figure 8-2. The elimination of these cycles is discussed in Section 8.8 and depicted 
in Figure 83. 

Utility Function Variable: 
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.  ~7 
Unassigned 
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Figure 8-2:  Evidence for Each Option is Accumulated in Probability Distributions about Net 

Utility. 

8.4   Net Incremental Utility 

The first kev concept is net incremental utility—or more simply the net utility. 
Intuitively, the net utility of a potential assignment of a value to a variable is the 
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Utility of that assignment less the opportunity loss for other variables caused by- 
consumption of the resource and by constraints involving the assigned variable. 

The net utility cannot be known exactly without a full search, but it can be 
estimated. Uncertainty about the net utility is subjective. Net utility can be 
calculated in exponential time, but with a computation that uses less than 
exponential time, its value is uncertain. With each variable and each possible 
value assignment to the variable, one associates a probability distribution that 
captures the available evidence about the net utility that will result if this value 
is chosen for this variable. The net utility that is being estimated is defined as 
follows: 

• The net incremental utility of assigning a value to a variable, when given 
an existing partial problem solution, is the difference between the best 
complete extension that includes that assignment and the best complete 
extension that assigns no resource to that variable. 

• More precisely, net incremental utility is relative to the search strategy that 
is being used. When the search strategy being used is not guaranteed to find 
the best solution, then net incremental utility is defined relative to the 
expected values of the best solution that will be found by the given search 
strategy. Thus, given a search strategy, the net incremental utility of 
assigning a resource to an operation is the difference between the expected 
value of the best complete solution that will be found by following that 
search strategy after including that assignment less the expected value of the 
best complete solution that will be found by following that search strategy 
after assigning no resource to that operation. 

8.5   Net Utility and the "Best?" Choice 

The unary constraints and the u(t) component of the utility function provide a 
local estimate of utility. This local estimate is the initial evidence for the 
probable net incremental utility. When a utility function is additive, the local 
utility comes directly from the utility function. Since a probability distribution 
about the local utility is all that is needed, the additivity assumption is not 
required. Most utility functions—as long as they have some partially additive 
structure—yield a probability distribution about the utility that will be achieved 
by assigning a value to a variable. 

Binary constraints and resource constraints also influence estimates of the net 
incremental utility. Before dealing with these constraints, we need to derive the 
probability that an assignment is the best choice from distributions about net 
incremental utility. 

By reformulating the problem to focus on net incremental utility, the probability 
that an assignment to a variable is the best choice becomes a derived concept 
rather than an intuitive concept as in [Sadeh & Fox 89, 90, Sadeh 91]. 
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Best? is a probability distribution over the possible resource assignments that is 
computed as the probability that a random utility value selected from the 
net utility distribution about the resource assignment is bigger than any 
other such utility value. 

The variances in the probability distributions about net utility control whether 
one assignment is slightly or dramatically better than alternatives. 

8.6 Computing Marginal Utility 

The next issue is the interaction between assignments to variables and the 
projection of resource contention statistics. Previous work has used the 
probability that an assignment is the best choice to project demand for resources, 
but demand also influences the probabilities about the best choice. A key insight 
derives from Wellman's work on applying economic theory to transportation 
scheduling [Wellman 92]. The marginal utility of a resource establishes a price 
for the resource, and an agent evaluating the options for assignment to a variable 
should favor using a resource to the extent that the local utility of using a 
resource exceeds the globally determined price of the resource. Choosing the best 
resource to assign to a variable is no longer based on the relative size of the local 
utilities; rather it is based on the amount by which the local utility exceeds its 
resource's price. 

8.7 Propagating the Influence of Binary Constraints 

Binary constraints between variables also influence the net utility computations. 
Processing evidence from binary constraints can be thought of as an extension of 
arc consistency concepts from CSP problems. The utility function makes the 
constraint propagation more complex. The effect of constraints on probabilities 
about the best choice has been studied by Muscettola & Smith [87] and Sadeh & 
Fox [89, 90]. Net utility should include the utility lost when an assignment 
constrains the utility achievable by a dependent variable. For each assignment 
that a related variable may make, a variable estimates the utility it will lose and 
communicates that estimated loss to the dependent variable. 

In addition to estimating the utility lost by other variables, it may also be useful 
to estimate the degree to which an assignment restricts the choices available for 
other variables. Consideration is being given to using entropy concepts to 
measure the distance between a partial solution and a complete solution or 
between two consistent partial solutions. Computing the entropy of a partial 
solution is often straightforward. The entropy involved in each Best? 
distribution may capture the flexibility that is left to make assignments to that 
variable. When a value assignment to one variable decreases the entropy of 
another variable that it constrains, this may be taken as a measure of the 
constraining effect of that proposed value assignment. These may be useful 
measures that generalize the most constraining variable and least constraining 
value heuristics. 
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Figure 8-3: Additional distributions are introduced to break cycles and avoid rumor 
propagation. 

8.8 Rumor Control and Convergence 

Figure 8-2 showed a cycle in the evidence being passed from net utility to 
resource demand to marginal utility and back to net utility. This cycle needs to 
be broken by using the standard approach to rumor control from Bayesian nets. 
Essentially, the net utility information that the variable's agent passes to the 
resource agent must not include previous evidence received from the resource 
agent. The same restriction applies to evidence passed to other variable agents 
through the binary constraints. Figure 8-3 is a more detailed version of Figure 8- 
2 showing that the local net utility and local best choice (which do not reflect 
evidence received from the resource agents) is computed and passed to the 
resource agents. While not shown in Figure 8-3, the information passed between 
variable agents through the binary constraints must also be restricted so evidence 
previously received from another agent is excluded from all evidence passed to 
that agent. 

There are still some longer cycles in the information flows. Intuition says they 
are not significant; however, further research is needed to derive conditions 
under which they can be proven to be insignificant. 

8.9 Experimental results 

Initial experiments to test the decision-theoretic computations for variable and 
value ordering decisions are reported in [Linden & Vrotney 92]. The 
experiments use a statistical look-ahead algorithm that starts from a utility 
function, projects probable demand for each resource, computes a probable 
marginal utility for each resource, and uses these probabilities to make variable 
and value ordering choices during search. Initial experiments tested these 
concepts on assignment problems and compared the solution found on the first 
branch explored using these heuristics with the solution found by a simple 
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greedy algorithm. The statistical look-ahead algorithm found solutions that 
average 4-7% higher utility. When an optimal solution was known, the 
statistical look-ahead, almost always either found it on the first branch or was 
within 0.5% of optimal The frequency of better results improved on larger 
problems. The statistical look-ahead improved the result (relative to greedy on 
85% of the small problems (16 tasks and 12 resources), on 95% of the medium 
size problems (30 tasks and 24 resources) and on all runs of the larger problems 
(56 tasks and 48 resources). 

9. Conclusions 

This report argues that resource pricing is a promising way to coordinate 
planning by multiple planning cells. The techniques proposed are especially 
relevant for large organizational planning problems like military crisis action 
planning. 

Resource pricing is an established way to allocate resources efficiently, and much 
of what is needed is solve organizational planning problems is resource 
allocation. However, this resource allocation occurs in the context of discrete 
goals, constraints, and interactions of the kind addressed by traditional AI 
planning technology. This research developed techniques to combine resource 
pricing mechanisms with traditional AI planning technology. 

The combination of techniques is especially useful when there are many goals 
that may be contingent, uncertain, changing, and imperfectly perceived. Trade- 
offs between goals are formalized in utility functions that are not required to be 
additive but do have some additive structure. Concepts from decision theory 
provide a foundation for the statistical look-ahead techniques used to make 
variable and value ordering decisions during heuristic search. The theory will 
extend current practice to handle resource-bounded planning problems with 
complex, non-additive utility functions and both hard and soft constraints. 
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Rome Laboratory 

Customer Satisfaction Survey 

RL-TR- 

Please complete this survey, and mail to RL/IMPS, 
26 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and 
feedback regarding this technical report will allow Rome Laboratory 
to have a vehicle to continuously improve our methods of research, 
publication, and customer satisfaction. Your assistance is greatly 
appreciated. 
Thank You 

Organization Name:___ . (Optional) 

Organization POC:  „(Optional) 

Address:  — 

1.   on a scale of 1 to 5 how would you rate the technology 
developed under this research? 

5-Extremely Useful   1-Not Useful/Wasteful 

Rating  

Please use the space below to comment on your rating.  Please 
suggest improvements.  Use the back of this sheet if necessary. 

2.  Do any specific areas of the report stand out as exceptional? 

Yes  No  

If yes, please identify the area(s) , and comment on what 
aspects make them "stand out." 



3.  Do any specific areas of the report stand out as inferior? 

Yes  No  

If yes, please identify the area(s), and comment on what 
aspects make them "stand out." 
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format are desired. ^ 

•U.S. GOVERNMENT PR.NUNG OFFICE:    1995-710-126-20063 



MISSION 

OF 

ROME LABORA TORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Materiel 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, reliability 
science, electro-magnetic technology, photonics, signal processing, and 
computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


