
RL-TR-95-190
Final Technical Report
October 1995

A SOFTWARE DEVELOPMENT
METHODOLOGY FOR PARALLEL
PROCESSING SYSTEMS

University of Florida

Stephen S. Yau, Doc-Hwan Bae, Pranshu K. Gupta, Sun II Paek,
Thaddeus J. Thigpen, Jun Wane, and Michael A. Wells

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19960122 064
J«» QDfcU» INSPECTED 1

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations!

RL-TR-95- 190 has been reviewed and is approved for publicati on.

APPROVED: ' ' " '

JOSEPH P. CAVANO
Project Engineer

^mi^U^cu^
FOR THE COMMANDER: s.

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3CB) Griffiss AFB NY 13441. This will assist us in maintainine
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

Form Approved
OMB No. 0704-0188 REPORT DOCUMENTATION PAGE

PJsicrapait^bud^farlHioalKdandHarnrallcnknltTMKltoiinragil hOLr paraapcrm hdurJngtr»tfrmforra<»»^hanjafcxT«, w ett g adajrg da« «ouoa«,
gatat'ig«ndrraturnrngB»da«n—dad, «ndaTTTiat*TgaTdrrya»irTgtrT»ccl«ctonaf ifurnialut Sard UJIII a» uragaroVig »a rxroanaattrat« or any cdia ««pact of »at
colaalon of HuiratlLn ixJudhg aqgaalon« for radudng tH« btfdan, to WnNnoJon Haadquatart Sarvfeaa, DHctoraa lor Hurriatiun OparaJon« mdReport«, 121S Jarraraon
Pari« Highway, Sura 1204, Artigen VA 22202-4302, and to It» Offlca of Managamant «nd Budgat, Paparwcrk HaducMon Prcjaot (0704-0198), Ward-« s/u l DC 20503.

1. AGENCY USE ONLY (Leave Blank) Z REPORT DATE

October 1995

a REPORT TYPE AND DATES COVERED

final Fph q-3 - SPP QA
4. TITLE AND SUBTTTLE

A SOFTWARE DEVELOPMENT METHODOLOGY FOR PARALLEL
PROCESSING SYSTEMS

& AUTH0R(S)
Stephen S. Yau, Doc-Hwan Bae, Pranshu K. Gupta,
Sun II Paek, Thaddeus J. Thigpen, Jun Wane, and
Mir-hapl A. WPIIH

5. FUNDING NUMBERS

C - F30602-93-C-0054
PE - 62702F
PR - 5581
TA - 20
WU - PE

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)

University of Florida
Computer and Information Sciences Department
Gainesville FL 33611-2024

a PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)
Rome Laboratory/C3CB
525 Brooks Rd
Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-95-190

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Joseph P. Cavano/C3CB/(315) 330-4063

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

1 a ABSTRACT (M«mrn 200 words)

A software development framework for parallel processing systems based on the parallel
object-oriented functional computation model PROOF is evaluated. PR00F/L, a C++
based programming language with additional parallel constructs required by PROOF, is
extended to include array data type and input/output features to make PROOF/L easier
to use in developing software for parallel processing systems. The front-end
translator from PROOF/L to the intermediate form IF1, and the back-end translators
from IF1 to the C languages on two different MIMD parallel machines, nCube and KSR,
are developed. Our framework is evaluated by comparing it with existing software
development approaches for parallel processing systems. Our framework is suitable for
large-scale parallel software development because it supports the concepts of
hierarchical design and shared data, and frees the software developer from considering
explicit synchronization, communication, and parallelism. The software development
efforts using our framework can be greatly reduced due to implicit synchronization
and communication and the compactness of PROOF/L programs. The extension of PROOF/L
and the integration of PROOF/L with other programming languages to utilize existing
library functions written in languages such as C and FORTRAN are also discussed.

14. SUBJECT TERMS
Parallel software engineering, Parallel processing, Parallel
software development

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

ia SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

1S NUMBER OF PAGES

118 .
1ft PRICE CODE

20. UMITATION OF ABSTRACT

UL
NSN 7540-01 -280-5500 Starxferd Form 296 ■

Prescrbeo by ANS !
298-1 C2

. Z3S-'8

Accesion For

Contents

NTIS CRA&I
DTIC TAB
Unannounced
Justification __

D

1 Introduction

2 Background

2.1 Parallel Computers 3

2.1.1 SIMD Parallel Machines 3

2.1.2 MIMD Parallel Machines 3

2.2 Software Development Approaches 4

3 Our Approach 7

3.1 Overview of Our Approach 7

3.1.1 Object-Oriented Analysis 9

3.1.2 Object Design 11

3.1.3 Partitioning 12

3.1.4 Transformation 13

3.1.5 Allocation 13

3.2 An Example 14

3.2.1 Specifications of a Hypothetical Air Force Base Defense System 14

3.2.2 Object-Oriented Analysis 15

3.2.3 Object Design 19

4 Evaluation of Our Approach 26

4.1 Comparison of our approach with other parallel software development
approaches 26

4.1.1 Computation-Oriented Display Environment (CODE) 27

4.1.2 Proteus 27

4.1.3 Jagannathan's Coarse-Grain Dataflow based Methodology ... 28

4.1.4 Occamfiow 29

4.1.5 Pisa Parallel Processing Project(P4) 29

4.1.6 Others 30

4.2 Software Development Effort 31

4.2.1 Architecture Independence and Translator Development Effort . 32

4.2.2 Implicit Communication and Synchronization 32

4.3 Application Areas 33

4.4 Lines of Code Comparisons with Target Languages 35

5 PROOF/L Front-end Translation 37

5.1 IF1 37

5.2 Translating PROOF/L constructs to IF1 38

5.2.1 PROOF/L Types 38

5.2.2 The list Type 38

5.2.3 Class Declarations 38

5.2.4 Function Calls 39

5.3 New IF1 Nodes 40

5.3.1 Reception Pseudo-Function 40

5.3.2 List Construction 40

5.3.3 Retrieving the Value of an Object 40

5.3.4 Guards 41

5.4 Implementation of the PROOF/L Front-End Translator 42

5.4.1 Lexical Analyzer 42

5.4.2 Parser 44

5.4.3 Symbol Table Handling 45

6 PROOF/L Back-end Translation 46

6.1 Target Languages 46

6.1.1 The nCube C 46

6.1.2 KSR C 47

6.2 From IF1 to Target Languages 48

6.2.1 Parse IF1 Code 48

6.2.2 Structural Linking 49

6.2.3 Translation 50

6.2.4 Additional Implementation Schemes 53

7 Extension of PROOF/L 58

7.1 Input/Output in PROOF/L 58

7.2 Arrays in PROOF/L 60

7.2.1 Array Creation 60

7.2.2 Array Access 61

8 Integration With Existing Languages 63

8.1 C and FORTRAN on nCube and KSR Systems 63

8.2 Integration of PROOF/L with nCube and KSR C/FORTRAN 64

9 Comparison of IF1 and IPR 68

9.1 IF1 68

9.2 IPR 69

9.3 Comparison '0

9.3.1 Data Dependency Representation 70

9.3.2 Application Areas 70

9.3.3 Maturity 71

10 Conclusion and Future Research 72

Appendices 74

A PROOF/L Reference Manual 74

A.l Introduction 74

A.2 Structure of a PROOF/L Program 74

A.2.1 Preamble 75

A.2.2 Import Declarations 75

A.2.3 Class Declaration 75

A.2.4 Object Declaration 77

A.2.5 Body Declaration 77

A.2.6 The Initialization Method 78

A.3 Method Declarations 79

A.3.1 Applicative Methods 80

A.3.2 Modifier Methods 80

A.3.3 Global Method Declaration 80

A.3.4 Object Synchronization 81

A.4 Comments 82

A.5 Data Types 82

A.5.1 The boolean Type 82

A.5.2 The int Type 82

A.5.3 The real Type 82

A.5.4 The string Type 83

A.5.5 The list Type 83

A.5.6 User-defined Types 84

A.6 PROOF/L Special Forms 84

iv

A.6.1 List Construction °4

A.6.2 Alpha Function 85

A.6.3 Beta Function 86

A.6.4 Let Function 86

A.6.5 Sequence Function 8'

A.6.6 Lambda Function 87

A.6.7 Object Function 87

A.6.8 Apply Function 88

A.6.9 Loop 88

A.6.10 While Function 88

A.6.11 If Function 89

A.6.12 Reception Psuedo-Function 89

A.7 Built-in PROOF/L functions and identifiers 91

A.7.1 Integer Manipulation Functions 91

A.7.2 Real Manipulation Functions 91

A.7.3 Numeric Conversion Functions 91

A.7.4 List Manipulation Functions 91

A.7.5 self 94

A.7.6 super 95

A.8 Implementation Notes 95

B Syntax of PROOF/L 96

Bibliography

List of Figures

3.1 Our PROOF software development framework for parallel processing
systems 8

3.2 The object communication diagram for the set of decomposed objects
of the hypothetical air force base defense example 17

3.3 Transformation of object B, an instance of class Base, to a Petri net . 24

3.4 Transformation of object i?, an instance of class Radar, to a Petri net . 24

4.1 Comparison of parallel software development approaches 26

4.2 Speedup using various numbers of nodes of nCube to compute the -K in
PROOF/L 36

4.3 Comparison of the number of lines of code for programming in C di-
rectly and in C translated from PROOF/L 36

5.1 The IF1 node RECEPT 40

5.2 The IF1 node LBUILD 41

5.3 The IF1 node RGET 41

5.4 The IF1 node GUARD 42

5.5 The architecture of the PROOF/L front-end translator 42

5.6 The structure of the symbol table of the PROOF/L front-end translator. 45

6.1 The translation steps from IF1 to a target code 48

6.2 The data format of the translated target C code 51

6.3 The underlying PROOF/L communication scheme 55

7.1 Read and write between two objects 60

VI

7.2 The hierarchical structure of classes filelO, stdIO, object IG, and 10 60

8.1 The KSR translation environment 65

8.2 The translation environment for PROOF/L 66

A.l A PROOF/L program with modules 79

List of Tables

3.1 Object classification of the hypothetical air force base defense example. 18

4.1 The execution time of the hypothetical air force base defense example
programmed directly in nCube C using different numbers of nodes. . . 34

4.2 The execution time of the hypothetical air force base defense exam-
ple programmed in PROOF/L and then translated to nCube C using
different numbers of nodes 34

4.3 Comparison of the execution time (in micro seconds) of the programs
for computing n based on (3.2) which are generated by directly pro-
gramming in nCube C 34

4.4 Comparison of the execution time (in micro seconds) of the programs
for computing 7r based on (3.2) which are generated by programming
in PROOF/L and then translated to nCube C 35

vni

Chapter 1

Introduction

In spite of rapid advances in computer technology, sophisticated Air Force applica-
tions, such as in the areas of C3I (command, control, communications and intelli-
gence), avionics, logistics and engineering design, require great computing power to
compute the required tasks within specified time frame. Such computing power of-
ten is not available in existing sequential computers. Parallel processing appears to
be a promising solution to satisfy such needs. Currently, although there are various
cost effective parallel processing systems available, effective utilization of such systems
is still not achievable due to lack of effective methodologies to develop software for
such systems. To fulfill this need, we have developed a software development frame-
work [1, 2, 3] based on the computation model PROOF (PaRallel Object-Oriented
Functional) [4] in which the object-oriented paradigm is integrated with the functional
paradigm so that the software development framework has many useful features of
both object-oriented paradigm and functional paradigm, such as understandability,
reusability, extensibility, maintainability, expressiveness, and implicit parallelism. The
major features of PROOF include expressing various granularity levels of parallelism,
integrating referential transparency and history sensitivity, and supporting inheri-
tance and synchronization without interference. Our software development framework
is architecture-independent and thus can be used for developing software for various
types of parallel processing systems. This software development framework covers
from the requirements analysis and decomposition phase to the generation of target
codes. In this framework, parallel aspects of the software are treated as a prime issue
using object-oriented concepts by identifying parallel objects in the object decompo-
sition phase of the software development. The programming language used in this
framework is PROOF/L based on the PROOF computation model. PROOF/L is
based on C++ with additional parallel constructs required in PROOF.

In this project, we have completed the following tasks:

• Development of a front-end translator from PROOF/L to IF1 [5], which is inde-
pendent of the machine architecture. IF1 was chosen because it has been fully
developed and can be used by a tool PAWS [6] for estimating the performance
of the software to be developed.

• Development of two back-end translators from IF1 to the C languages run on
two different MIMD machines: nCube and KSR. These translations depend on
the machine architecture.

• Evaluation of the effectiveness of our software development framework for parallel
processing systems.

• Extension of PROOF/L with the input/output functions and array construct.

• Investigation on the integration of PROOF/L with existing programming lan-
guages, such as C and FORTRAN.

In this report, we will briefly summarize in Chapter 2 existing parallel processing
systems, and surveyed existing software development methods for parallel processing
systems. In Chapter 3, our software development framework for parallel processing
systems is summarized with an illustrative example. In Chapter 4, we will present
the evaluation results of our software development framework by comparing it with
other existing approaches, such as CODE(Computation-Oriented Display Environ-
ment) [7, 8], Proteus [9], Jagannathan's coarse-grain dataflow based methodology [10],
Occamflow [11] and Pisa Parallel Processing Projects(P4) [12]. In this chapter, we
will discuss the effectiveness of our framework in terms of software development effort,
application areas and the number of lines of code. In Chapters 5 and 6, the front-end
translation process from PROOF/L to IF1 and the back-end translation process from
IF1 to nCube C and from IF1 to KSR C will be presented. In Chapter 7, we will
discuss extension of PROOF/L to include input/output features and array constructs.
In Chapter 8, we will discuss our approach to integrating PROOF/L with existing
languages, such as C and FORTRAN. In Chapter 9, we will compare IF1 with the
Intermediate Program Representation IPR, which we used before [3], in terms of data
dependency representation, application areas and maturity. Finally, the conclusions
and future work will be given in Chapter 10. For the sake of completeness, we provide
PROOF/L User's Manual and the syntax of PROOF/L as appendices.

Chapter 2

Background

In this chapter, we will briefly summarize the architectures of current parallel pro-
cessing systems and software development methods available for these machines.

2.1 Parallel Computers

Flynn [13] classified computers into four categories based on the ways instructions and
data are processed: SISD (Single Instruction stream, Single Data stream), SIMD (Sin-
gle Instruction stream, Multiple Data stream), MISD (Multiple Instruction stream,
Single Data stream) and MIMD (Multiple Instruction stream, Multiple Data stream).
Among them, SISD computers are sequential computers which do not execute instruc-
tions or data in parallel, and commercial MISD machines do not exist. Thus, in this
section, we will discuss SIMD and MIMD parallel machines.

2.1.1 SIMD Parallel Machines

In a SIMD parallel machine, processing elements are connected through an intercon-
nection network, and are synchronously controlled by a central control unit. Each
processing element has access to its own data, and thus the same operation can be
performed simultaneously on many data items. Therefore, data parallelism is easily
exploited among the processing elements in a SIMD parallel machine. The parallel
machines belonging to this category include Connection Machine CM-2 [14], DAP
(Distributed Array Processors) [15], and MasPar Mp-1 [16].

2.1.2 MIMD Parallel Machines

In comparison to SIMD parallel machines, an MIMD parallel machine consists of
asynchronous parallel processors. Each processor has its own instruction and data set

to be processed. These processors communicate by passing messages among the pro-
cessors. These machines can be further divided into shared memory parallel machines
and distributed memory parallel machines [16].

An MIMD shared-memory parallel machine consists of a number of processors all hav-
ing access to a single shared memory. The processors communicate by read and write
operations, and are connected to the shared memory via one or more shared-buses or
interconnection networks. As the number of processors in the system increases, the
communication medium becomes a bottleneck in terms of performance as well as cost.
Thus, a linear speed-up with an increase in the number of processors is not achievable
or is limited to a certain number of processors. In MIMD shared-memory parallel
machines, the major software design problems include data access synchronization
and load balancing [16]. Shared-memory parallel machines include Cray X-MP and
Y-MP series [17], Alliant FX8 [18], Encore Multimax [17], IBM RP3 [19], Sequent
Balance [20], SGI PowerChallenge, and Convex Examplar.

An MIMD distributed parallel machine consists of a set of processors, each having a
non-shared local memory. Processors communicate by message passing via communi-
cation channels. In MIMD distributed memory parallel machines, the synchronization
is implicit through communication. The popular interconnection networks include hy-
percube, ring, tree and mesh. Unlike shared memory parallel machines, distributed
memory parallel machines are not affected by the memory contention problem and are
more easily expandable. One of the problems encountered by the distributed mem-
ory parallel computers is the message passing latency due to possible transferring of
data via intermediate processors. The major software design problems include data
placement, communication overhead and scheduling. The shared memory parallel ma-
chines can be considered as a special class of distributed memory parallel machines in
which all the processors are fully connected [16]. Our software development approach
based on PROOF [4] is targeted for MIMD distributed memory parallel machines.
Any approach for MIMD distributed memory parallel machines can be adopted to
MIMD shared memory parallel machines by modifying communication mechanism
from 'message passing' to 'shared variable'. MIMD distributed memory parallel ma-
chines include hypercube [21], nCube [22], BBN [23], Inmos Transputer network [24],
KSR [16], IBM SP-2, and DEC Alpha Server.

2.2 Software Development Approaches

Techniques for programming parallel processing systems can be classified in three
categories [3]:

• Parallelizing or vectorizing compilers

• Parallel language constructs

• Parallel programming languages

Parallelizing or vectorizing compilers [26, 27, 28, 29, 30, 31] are widely used in con-
junction with sequential programming languages, such as FORTRAN and C, usually
for scientific computation. This approach is useful in that existing sequential software
can be adapted to a parallel programming environment with minor modifications.
However, parallelizing or vectorizing compilers can only detect parallelism associated
with iterations over common data structures, such as arrays and matrices, and require
extensive dependency analysis. Thus, it is not appropriate for developing large-scale
software for parallel processing systems.

The parallel language constructs approach is to extend the existing sequential pro-
gramming languages with parallel constructs, such as input, output constructs in
CSP [32], task and rendezvous mechanisms in Ada [33], in, out, rd, eval constructs
in Linda [34], Mentat objects in Mentat [35], and collection, processors, distributions,
alignment mechanisms in pC++ [36, 37]. This approach requires programmers to
explicitly specify the communication and synchronization among parallel processes.
Thus, considering that many errors in parallel software stem from incorrect synchro-
nization and communication, this approach may increase the software development

effort.

Parallel programming languages are based on different paradigms. For examples,
SISAL [38] is based on a functional paradigm tailored for scientific computation,
PARLOG [39] is based on a logic paradigm, Act 1 [40] is based on an object-oriented
paradigm, and PROOF/L [4] is based on object-oriented and functional paradigms.
The underlying computation models of these programming languages are fundamen-
tally different from those for imperative programming languages in that parallelism
is mostly implicit and massive parallelism can be obtainable.

Our software development approach for parallel processing systems belongs to the par-
allel programming language category. It is based on the computation model PROOF
in which an object-oriented paradigm is integrated to a functional paradigm in order
to have the desirable properties of both paradigms. The object-oriented paradigm
naturally reveals existing parallelism in the application problem structure [41]. Be-
sides modifiability, maintainability and reusability, another advantage of PROOF is
that the concept of an object can be used at earlier stages of the software devel-
opment cycle than the implementation stage. Therefore, parallel processing aspects
such as parallelism and communication among parallel components can be naturally
handled at the earlier stages during software development. Consequently, it simplifies
the handling of parallelism and communication among parallel components. How-
ever, in the object-oriented paradigm, parallel execution among concurrent objects
is the only source of parallelism, and the amount of parallelism to be exploited may
not be sufficient for effective utilization of fine-grain processors. On the other hand,
the property of referential transparency obtained from functional languages based on
the functional paradigm reduces programmers' efforts for dealing with explicit race
conditions caused by multiple tasks. As a result, the functional paradigm has great
potential to exploit implicit parallelism by removing side-effects caused by assignment
statements. For this reason, functional paradigm has been studied as an alternative
to the imperative programming languages for parallel programming [42].

We have compared our approach with the following existing software development
approaches using parallel language constructs or parallel programming languages:

• CODE [7, 8]: a graph-based software development method for MIMD parallel
computer systems

• Proteus [9]: a prototyping system consisting of a prototyping language and a
transformation process to convert architecture-independent concurrent program
to low-level code for the targeted parallel computer system

• Jagannathan's coarse grain dataflow-based methodology [10]: a dataflow-based
methodology for coarse-grain multiprocessing on a network of workstations

• Occamflow [11]: a dataflow-based approach for programming multiprocessor sys-
tems on a network of transputers

• Pisa Parallel Processing Project(P4) [12]: a programming method for general
purpose distributed memory parallel processing systems.

These software development approaches for parallel processing systems focus on the
exploitation of parallelism in numeric computation algorithms, and do not address
large-scale software development issues, such as hierarchical structuring and data
sharing. Except our approach, so far we have not seen any software development
approaches for parallel processing systems which address such large-scale software
development issues. Those approaches listed above and relevant parallel programming
languages will be described and compared to our approach in Chapter 4.

Chapter 3

Our Approach

3.1 Overview of Our Approach

Our approach to software development for parallel processing systems is based on
the computation model PROOF which incorporates the functional paradigm into the
object-oriented paradigm.

Our framework, as shown in Figure 3.1, consists of the fallowing phases: object-
oriented analysis, object design, partitioning, PROOF/L coding, front-end transla-
tion from PROOF/L to IF1, grain size analysis, back-end translation from IF1 to a
target language of a parallel processing system, and allocation. In the object-oriented
analysis, the requirements are decomposed into a set of interacting objects. The con-
current/parallel aspects of the system behavior are analyzed and specified using the
object-communication diagrams. The objects identified in the object-oriented analy-
sis phase are then designed and verified in the object design phase. In the partitioning
phase, the objects in the software system are partitioned into a set of clusters to im-
prove the overall performance of the software system by minimizing communication
cost and exploiting parallelism among objects. The front-end translation, grain size
determination and back-end translation are grouped together by a dotted rectangle
in Figure 3.1, called transformation, where the architecture-independent PROOF/L
code is transformed into a target code to be allocated into the parallel machine. In
the front-end translation, the PROOF/L code is translated into an IF1 code. In the
back-end translation, the IF1 code is translated into the target code. The architec-
ture dependent issues need not to be considered until after the front-end translation.
In the grain-size analysis phase, the proper sizes of tasks are determined using the
architecture-dependent information, such as communication cost and execution time
in the target parallel machine. In this transformation, the partitioning and grain size
analysis results are incorporated to generate the target code which can be efficiently
executed on the target parallel machine. After the target code is generated, it is al-
located to a set of processors. In the following sections, each phase in our approach
will be summarized.

Requirement
Specification"

Object-Oriented

Analysis

A
\

Object Design

Coding in PROOF/L

Front-End Translation

Grain Size Analysis

Back-End Translation

Allocation

Executable Code

(Target Language)

Partitioning

Architecture
Independent

i

V

Architecture
Dependent

Transformation

Figure 3.1: Our PROOF software development framework for parallel processing systems.

3.1.1 Object-Oriented Analysis

Our object-oriented analysis is different from other object-oriented analyses, such
as Rumbaugh, et al's OMT(Object Modeling Technique) [43] and Coad k Yourdon's
Object-Oriented Analysis [44], in that our approach focuses on the concurrent/parallel
aspects of the system, but other approaches do not address concurrency explicitly. Our
approach starts from the given requirement statements. The requirement statements
often contain ambiguities. When ambiguities are found during the object-oriented
analysis, we will report them to the user or domain expert to clarify the requirement
statements. Thus, our object-oriented analysis is an iterative process which contin-
ues until all the functionalities are satisfactorily specified. When the requirement
statements are not complete, we may use the guidelines given in [45] to clarify them
although more research in this area is needed.

The object-oriented analysis phase consists of the following steps [1, 2, 3]:

1) Identify objects and classes.

2) Determine class interfaces.

3) Specify dependency and communication relationships among objects.

4) Identify active, passive and pseudo-active objects.

5) Identify the shared objects.

6) Specify the behavior of each of the objects.

7) Identify bottleneck objects, if any.

8) Check the completeness and consistency.

In Step 1), the software system is represented by a set of communicating objects.
Objects are identified by analyzing the semantic contents of the requirement specifi-
cations. All physical and logical entities are recognized. Each object corresponds to
a real-world entity, such as sensors, control devices, data and actions.

In Step 2), object class interfaces are determined. In PROOF, every object is consid-
ered as an instance of an object class. Instead of defining objects directly, the object
classes to which they belong must be defined. Class interfaces may consist of both lo-
cal methods and global methods. The local methods are class specfic methods; while
global methods can be accessible to any other global methods, any method of other
classes, or body of any object instance. The purpose of global methods is to provide a
flexible way to address general operations which do not belong to any specific classes.

In Step 3), the static relationship among objects are specified using the object com-
munication diagrams, in which the objects are represented as rectangles, the links
between the objects (which can be specfied as method invocations) indicate the com-
munication between objects, and the arrows on the links indicate the directions of
communications.

In Step 4), the objects are classified according to their invocation properties as active,
passive or pseudo-active. An active object can initiate activation of other objects by
invoking methods of other objects. The methods defined in an active object cannot be
invoked by other objects, but they can be invoked by other methods defined within the
active object itself. A passive object is activated only when its methods are invoked
by other objects. Pseudo-active objects can invoke the methods of other passive or
pseudo-active objects and also has methods which can be invoked by other active or
pseudo-active objects. All the threads of control in the application start from the
active objects. We can identify all the possible threads of control and then use this
information to check for the completeness and the consistency of the analysis.

In Step 5), once the static structure of the software system is determined, we identify
shared objects from them. A shared object has local data which can be accessed by
a number of objects. The shared objects can be further divided into read-only shared
objects and writable shared objects. The read-only object has local data which cannot
be modified by other objects. The writable object has local data which can be modified
by other objects. Read-only objects can be freely duplicated as many times as desired.
All the access to the data in the writable shared objects needs to be synchronized to
maintain the consistent status of the data.

In Step 6), the behavior of each object is specified using the following notations:
- SEQ(mi,m2,... ,mn): The methods mi, m2,...,mn are executed sequentially.
- CON(mi,m2, • ■ •,m„): The methods mllm2,.. ■,mn are executed concurrently.
- WAIT(ra,0): Object is waiting for the invocation of its method m by another
object 0 to proceed with its execution.
- SEL(mi,m2,..., mn): The object selects one of the methods for execution from
among the methods mi, m2,..., mn.
- ONE - 0¥{WAIT(mu Oj),..., WAIT(mn, 0k)): The object permits only one of
its methods mx,... ,m„, to be invoked by other objects. ONE-OF construct is used
in cases where other objects could try to invoke the methods defined in the object O
simultaneously, while the object O permits only one object to invoke its method at a
time.

In Step 7), bottleneck objects which may unnecessarily degrade the performance of the
software system are identified. Usually, a bottleneck object will be a shared writable
object. One can identify a shared writable object from the description of the object
behavior in Step 6). If such an object is found, then redo or refine the analysis to
reduce the bottleneck if possible.

In Step 8), the result of the analysis is verified with the user requirements. From the
given user requirements, the possible threads of controls are identified, and each of
them is examined using the behavior of the objects specified in Step 5).

For more detailed information on the object-oriented analysis in our approach, refer

to [3].

10

3.1.2 Object Design

Objects obtained from the analysis phase have to be designed. In our approach,
the object design is specified using the notation defined in PROOF/L [4]. The class
interface definitions and information about the object behavior are used to design the
objects. Our approach to object design involves the following four steps:

1) Establish the class hierarchy.

2) Design the class composition and the methods in each object.

3) Design the bodies of the active and pseudo-active objects.

4) Verify the object design.

In Step 1), since some common operations and/or attributes between the objects may
not be apparent in the analysis phase, different objects are reexamined to identify
the commonality between the classes in the design phase. A set of operations and/or
attributes that are common to more than one class can then be abstracted and imple-
mented in a common class called the superclass. The subclasses then have only the
specialized features.

In Step 2), the composition and the methods for each object class are designed. The
class definition consists of composition and methods. The composition defines the
internal data structure of the class. Various constructors, such as list and Cartesian
product, are provided. A typical functional style is adopted in the method definition.
A rich set of functional forms, i.e. high-order functions, as well as primitive functions
are predefined. In the method design, the internal state of the object to which the
method belongs is included as both the input and output parameters so that side-
effects are avoided. A method of an object consists of an optional guard and an
expression. The guard is a predicate specifying synchronization constraints and the
expression statement specifies the behavior of the method. The object which invokes
the method is suspended when the value of the attached guard is False, and it is
resumed when the guard becomes True. The guard attached to a method is defined
in a way that it only depends on the status of the local data, and does not depend on
the definition of any other methods. The global methods which are class-wide methods
should also be specified here for determining the properties of the operations.

In Step 3), a body is associated with each active and pseudo-active object. There is no
body associated with a passive object as it does not invoke any methods. The role of a
body is to invoke a method and to modify the state of the objects represented by their
local data. The body in each object is expressed in the form ei//e2// • • • //e^ where
each &{ is an expression representing method invocations and expressions separated
by // are evaluated simultaneously. // is a parallel construct indicating parallel
execution. The modification of an object is expressed by the reception construct
which has the form i?[|o|]e, where o, called a recipient object, is an object name and e
is an expression with applications of purely applicative functions only. The reception

11

construct can occur only in the bodies of active and pseudo-active objects. The
reception construct indicates that the object o will receive the value returned as a
result of evaluating the expression e. This construct modifies the states of the object.

In Step 4), the design of the objects done in the previous phase has to be verified and
analyzed. For this purpose, we transform our design into Petri nets [46], which have
been selected in our approach mainly because our design can be easily represented in
a Petri net model and because many techniques have been developed to analyze Petri-
net models. The transformation of our design to Petri nets consists of the following
three steps: 1) transformation of bodies to Petri nets, 2) composition of the nets, and
3) refinement of the nets.

For more detailed information on the object-oriented design steps in our approach,
refer to [3].

3.1.3 Partitioning

In the partitioning step, the objects in the software systems are partitioned into a set
of clusters in order to reduce communication cost among processors while maintain-
ing the parallelism among the objects. It is very difficult to achieve linear speedup
due to communication costs among processors, contention of shared resources and
inability to keep all the processors busy [47]. That is one of the reasons that there
is a large gap between the ideal peak performance and the real performance in most
parallel computers. The partitioning approaches for reducing communication cost are
divided into three categories: graph-theoretic [48, 49], integer programming [50, 51]
and heuristics [52]-[56]. One of the common assumptions in these approaches is that
the execution time for each module and the communication time among modules are
given as input. Our partitioning approach does not assume that exact execution time
and communication time are available. In addition, most of the existing partitioning
approaches cannot be used when the software is decomposed as a set of such objects
having shared data.

The objective of our partitioning approach is to improve the overall performance of
the software by reducing communication cost among processors while maintaining the
potential parallelism among objects. The input to our approach are (1) the behavior
of the objects in the software system, expressed using the constructs, such as SEQ,
CON, WAIT, SEL and ONE-OF, (2) communication information extracted from the
requirements analysis, and (3) the number of replications for each object as required
for fault tolerance. Using this information, we represent the software system as an
undirected weighted graph in which every node represents a cluster of objects and
every edge between two nodes has a weight representing the degree of contribution
for improving the overall performance of the software system by parallel execution of
the two clusters. The details of our partitioning approach with illustrative examples
has been presented in [57].

12

3.1.4 Transformation

The transformation of the PROOF/L code to a target code involves the follow-
ing steps: partitioning, front-end translation, grain-size determination and back-end

translation.

The PROOF/L code is first translated into an IF1 code and then the IF1 code is
translated to the target code. The former is called front-end translation which is a
semantics-oriented translation, and machine or architecture dependent issues are not
involved. The latter is called back-end translation.

In the grain size analysis step, we focus on finding proper grain sizes within each
object. Thus, we can consider each object as an independent program. We represent
the program as a directed graph in which each node corresponds to an IF1 construct,
and each edge represents a data dependency relation. In order to perform grain size
analysis, the execution time of the IF1 constructs is estimated statically, and the
communication time between them are estimated by examining the type information
of the data transmitted. The estimation can be done statically by analyzing the
assembly code for these constructs. We developed efficient heuristic algorithms of
three different types of parallelism - tree parallelism, graph parallelism and pipe-lined
parallelism. The details of these algorithms can be found in [3].

The back-end translation is performance-oriented, and machine or architecture de-
pendent parameters, such as communication types, number of links and number of
processors are used to perform various analyses. After partitioning and gram size
analysis information is incorporated to the intermediate form, the intermediate form
is translated into corresponding equivalent target code In this project, we have devel-
oped two back-end translators for two target parallel processing systems, KSR and
nCube. However, current implementation does not include partitioning and gram
size determination. The details of the front-end and back-end translations will be

discussed later.

3.1.5 Allocation

After the target code is generated, the target code is allocated to the parallel proces-
sors in such a way that the execution time of the target code can be minimized by

exploiting parallelism in the target code.

One of the problems that must be solved in order to achieve high performance of
software for parallel computers is the allocation of tasks among the processors. Some
of the factors that prevent the ideal linear speed-up in parallel processing are 1)
insufficient concurrency and 2) high communication overhead [58]. The task allocation
problem has been studied extensively [58]-[61]. In these approaches, efficient heuristic
task allocation algorithms were introduced. Factors to be considered in the allocation
phase include the number of processors, the number of processes to be allocated,
interprocessor communication pattern, and communication overhead.

13

3.2 An Example

In this section, we will use a hypothetical example to demonstrate our approach in-
volving both coarse grain and fine grain parallelism. We will use the same hypethetical
example described in our previous report [3]: An air force base defense system con-
sisting of three air force bases. In that example, communication and synchronization
aspects among air force bases were emphasized (coarse-grain parallelism). Here we
will focus on one of the bases and emphasize both communication and computation
aspects. The specfication, analysis, design, and coding processes of this example, the
same as in [3], are included here for the sake of completeness.

3.2.1 Specifications of a Hypothetical Air Force Base Defense System

Assume that there are three air force bases that are closely connected. For the sake of
simplicity, we assume that only one type of flighters, one type of bombers, one type
of surface-to-air missile batteries for defensive purposes against the attacking enemy.
Radars and C3 (Command, Control and Communication) facilities are available. Each
base may have many radars, but the base gets only one correlated radar value. Each
base will also have several missile batteries and sufficient missiles to be used for its
defense. Each base has either fighters or bombers for the defense. There would be
one central C3I unit which advices each base as to what it should do for its defense
purposes. In our application, we will associate the C3I advice for a base along with
the design of the base itself since this is a parallel processing system. This way, the
commander at the center can know what is going on at different bases simultaneously
and will also be able to give orders to the different bases simultaneously.

For the example shown below, we will characterize one of the bases and emphasize
more computation aspect on that base. The detail description is as follows:

An air force base consists of radar installations, equipment, and armed personnel. The
radar detects approaching hostile attacks on the base. It is assumed that the enemy
cluster consists of either bombers or missiles, but not a combination of the two. The
base, in turn, can use its fighters or its missiles, but not a combination of the two
simultaneously, to defend itself from these attacks. The defense strategy used by the
base depends on the configuration of the enemy cluster.

Upon detection of an enemy cluster, the radar tracks the cluster to determine its
composition. This enemy information, which is the number of bombers or missiles
of each enemy cluster, is stored in a queue. The air force base retrieves the enemy
information from the queue.

If the enemy cluster consists of x bombers, the base defends itself by launching either
its fighters [represented by the computation of the function F(x)] or its missiles [rep-
resented by the computation of the function G(x)]. On the other hand, if the enemy
cluster consists of y missiles, the base defends itself by launching its own missiles to
intercept the incoming missiles [represented by the computation of the function H(y)].

14

In our implementation, we use a random number generator to simulate various in-
coming threats. For simplicity purpose, we assume that

F(x) = JTi, id (3.1)
8 = 1

1 * 4.0 (i - 0.5)
G(x) = -K ~ - X) 717T—2' Xi

x fr{ 1.0 + Xi
id, (3.2) , »u,

H(y) = {zx, z2, Z3, • •■}, z;e{-Pnme m/ra6er.s}, 1 < z,- < y (3.3)

Each of the defense strategies [the computation of F(x), G{x) and H(y)], and the radar
will be executed in parallel on independent nodes to exploit coarse grain parallelism.
Threats are added to a FIFO queue. The air force base removes a threat from the
FIFO queue and computes either F(x), G(x) or H(y) depending on the type of the

threat.

Each of the defense strategies is executed on multiple processors to exploit fine grain
parallelism. It does so by breaking down its task into smaller tasks which can then
be executed in parallel on independent nodes. The results of these smaller tasks are
then gathered together to yield the final result.

3.2.2 Object-Oriented Analysis

Identifying Classes and Objects

We identify the following Classes from the requirements specification of the example:

• Base - for air force base

• Radar - for radar associated with Base.

• Queue - for FIFO queue.

From the requirements specification, we identify the following objects:

• B - corresponding to a single air force base.

• R - corresponding to the radar associated with the single air force base.

• Q - for recording enemy cluster information.

15

Defining Class Interfaces

Class interface of an object consists of the input and output parameters and their
types. Shown below are the class interfaces of the various objects identified in the
previous subsection. As an example, let us consider the class Queue. We show one
interface which is called method Insert. This method is invoked by the body of object
R. From the domain knowledge of the example, we can infer that the radar value
consists of the number of bombers or missiles attacking the base. The type of data is
obviously to be integer and is the same as below. Thus, in a similar fashion, the class
interfaces for the various classes can be determined. In order to illustrate the usage
of global methods, the class interfaces for the classes Base and Radar consists of
global methods, not class specific methods. The reason for using the global methods
is that the computation, such as random number generator, finding prime number, TT

approximation, factorial summation, are all general operations which do not belong
to any specific class. All class interfaces of this example are given below:

class Queue

method Q_init(s:int -> Queue)

method Insert (-> Queue)

method Assign (New:list -> Queue)

method Delete (-> Queue)

method GetElem(-> int)

end class

class Base

method IsPrime(number:int, factor:int -> int)
method Prime(number:int -> int)
method FindPrimes(low:int, upp:int, number:int -> int)

method IntegerSum(l:list -> int)
method FactSum(low:int, upp:int -> int)

method RealSum(l:list -> real)
method Pi(1:int, h:int, interval:int -> real)

end class

class Radar

16

Q.lnsert

Q.GetElem

Q.Delete

B
Q

R
FindPrimes*

*
Prime

*
IsPrime

FactSum*

IntegerSum*

Pi* *
RealSum

Q.Init

Q.Delete

Q.lnsert

Q.GetElem

Random*

A global function

GLOBAL FUNCTIONS:

Random FindPrimes Prime IsPrime

FactSum IntegerSum Pi RealSum

Figure 3.2: The object communication diagram for the set of decomposed objects of the hypothetical
air force base defense example.

method Random (low :int, upprint, number: irrt -> int)

end class

where Random,IsPrime, Prime, FindPrimes, IntegerSum, FactorialSum, RealSum, and Pi
are global methods and do not belong to any specific class.

Specifying Dependency and Communication Relationships Among Objects

Once the class interfaces are obtained for all the classes, we can establish the depen-
dency and communication relationships among the objects from the object-oriented
analysis phase. Figure 3.2 gives the dependency and communication relationships
among these objects. To illustrate the operation, let us consider the object R, which
puts a radar value into the object Q. Thus, there exists communication between R

and Q.

Identifying Active, Passive and Pseudo-Active Objects

From the requirements specification and from the object communication diagram
shown in Figure 3.2, we can see that the object R is not invoked by other objects,
but does invoke other objects such as Q. Thus, R is identified as an active object. To

17

Table 3.1: Object classification of the hypothetical air force base defense example.

Classification Objects

Active R, B
Passive Q

Pseudo-active None

illustrate the methods for identifying passive objects, let us consider the communica-
tion behavior of the object Q, which is invoked by other objects such as R and B,
but never invokes any other objects. Such objects are classified as passive objects. If
the communication behavior shows an object being invoked by other objects as well
as invoking other objects, it is identified as pseudo-active object. Figure 3.2 shows no
such object. Thus, we have no pseudo-active objects in this example. We can classify
the objects as shown in Table 3.1.

Identifying Shared Objects

From the object communication diagram as well as the object behavior, we identify
the object Q as & shared writable object. Shared writable objects are usually passive
objects.

Specifying the Behavior of Each Object

We are now in a position to describe the behavior of each object. For instance, let us
consider the object R. The object R adds threats to a FIFO queue endlessly. Thus,
we have the behavior of the object R. The behavior of each object is given below:

Behavior of object R:

while(TRUE,
(Q.Insert))

Behavior of object B:

while(TRUE,
let low = 1 in
let upp = 10001 in
let third = (/ (- upp low) 3) in
let target = (Q.GetElem) in

Q.Delete,
if ((null? target),
THEN do nothing because no threat to base

18

ELSE respond to threats
if ((<= target third),

THEN-clause
(FindPrimes, 1, target)
ELSE-clause
if ((and (> target third) (<= target (* 2 third))),

THEN-clause
(FactorialSum, 0, target),
ELSE-clause
(Pi, 1, target, (- target 1))

))))

Identifying Bottleneck Objects

We have identified the object Q as shared writable object. Since different methods of
this object are used by the objects R and B to access this object, the access to the
object Q does not have to be serialized. Hence, Q is not a bottleneck object. Thus,
we do not have any bottleneck objects in this example.

Checking for Completeness and Consistency of the Object-Oriented Analysis

Because of the similicity of the example, by tracing through the behavior of the objects
and looking at the class interfaces, we can see that the object-oriented analysis is
complete and consistent.

3.2.3 Object Design

Establishing Hierarchy

Since in this example we do not have two different types of objects with some common
behavior, we do not need to define a superclass. In other words, we do not have any
inheritance in this example.

Designing Class Composition and Methods

The class composition typically consists of local data present in the class. The type
of data present in the class is also identified. In this stage, we also provide the
methods present in each of the classes. As an example, consider the class composition
of the class Queue. The data in the object is a list of integers generated by the
global method Random and two integers. These constitute the class composition. In
addition to these, we define the methods. The methods required for the class Queue
are as follows:

19

1. Initialize the integers in the composition.

2. Add integers to the list TargetsQ in the composition.

3. Modify the list TargetsQ in the composition.

4. Delete integers from the list TargetsQ in the composition.

These are defined formally as follow:

Class Queue

composition

TargetsQ : list

seed : int
number : int

end composition

method Q_init(s:int -> Queue)

expression

object Queue (seed = s, number = 0)

method Insert (-> Queue)

expression

let low = 1 in

let upp = 10001 in

let item = (Random low upp seed) in
object Queue (TargetsQ = (append_right TargetsQ item), seed = item)

method Assign (New:list -> Queue)

expression

object Queue (TargetsQ = New)

method Delete (-> Queue)

#guard (> number 0)

expression
object Queue (TargetsQ = (tail TargetsQ), seed = seed)

method GetElem(-> int)

#guard (> number 0)

expression

(head TargetsQ)

20

end class

global

method Random (low:int, upp:int, number:int -> int)
expression

let factor = (- (/ (+ low upp) 2) 13) in
let x = (mod (* factor number) upp) in
if ((and (and (>= x low) (<= x upp)) (> x 0)),

(+ x 0),
(Random low upp x))

method IsPrime(number:int, factor:int -> int)
expression

if ((<= (* factor factor) number),
if ((= (mod number factor) 0),

0,
(IsPrime number (inc factor))),

1)

method Prime(number:int -> int)
expression

if ((or (= number 2) (= number 3)),

1,
if ((= (IsPrime number 2) 1),

1,
0))

method FindPrimes(low:int, number:int -> list)
expression

(head while (lambda (x) (> (head (tail x)) (head (tail (tail x)))),

lambda (x) (
let y = (head (tail x)) in
let z = (head (tail (tail x))) in
if ((= (Prime y) 1),

[(append_right (head x) y) (- y 1) z] ,
[(head x) (- y 1) z]))

) [[] number low])

method IntegerSum(l:list -> int)

21

expression
if ((null? 1),

0,
(+ (head 1) (IntegerSum (tail 1))))

method FactSum(low:int, upp : int -> int)
expression

(head while (lambda(x) (< (head (tail x)) (head (tail (tail x)))),
lambda(x)

let y = (head (tail (tail x))) in
[(+ (head x) y) (head (tail x)) (- y 1)]
) [0 low upp])

method RealSum(l:list -> real)
expression

if ((null? 1),
0,
(+ (head 1) (RealSum (tail 1))))

method Pi(l : int, h : int, interval : int -> real)
expression

(head while(lambda(x) (< (head (tail x)) (head (tail (tail x)))),
lambda(x)

let w = (/ 1.0 (head (tail (tail (tail x))))) in
let t = (* (- (head (tail x)) 0.5) w) in
let tmp = (/ 4.0 (+ 1.0 (* t t))) in
[(+ tmp (head x)) (+1 (head (tail x)))

(head (tail (tail x))) (head (tail (tail (tail x))))]
) [0 1 h interval])

end global

Designing the Body of the Objects

The body of an object describes the control thread within the body. A control thread
exists for only active and pseudo-active objects. Thus, the bodies exist for only active
and pseudo-active objects. In our example, the bodies exist for the objects R and B
since these objects have been identified previously as active objects. The behavior of
the active objects should describe the body of that object. For example, the object R
has a body which iteratively executes in accordance with its behavior specified before.
In the following, we give the body of each active object.

Body of object R:

22

while(TRUE,
;(

R[| q |] (Q.Insert),
(delay 1)
))

Body of object B:

while(TRUE,
;(

let low = 1 in
let upp = 10001 in
let third = (/ (- upp low) 3) in
let target = (q.GetElem) in

;(
R[| q I] (q.Delete),
if ((null? target),

do nothing because no threat to base
(delay 2),

;(
respond to threats
if ((<= target third),

;(R[| B |] object Base (result =
(delta (FindPrimes, 1, target)))),

if ((and (> target third) (<= target (* 2 third))),
;(R[| B I] object Base (result = [(IntegerSum

(delta (FactSum, 0, target)))])),
;(R[l B |] object Base (result = (/ (RealSum

(delta (Pi, 1, target, (- target 1)))) (- target 1))))
))

))
)))

Verification

In the first step, the bodies of the active and pseudo-active objects are transformed
into Petri nets. The transformation of the bodies of the objects in this application
are shown in Figures 3.3 and 3.4.

The second step is to examine these nets to reduce the number of independent Petri
nets. The nets are composed at the fusion point, also called the bottleneck place so
that shared modifiable objects are serialized for access among different objects. For
example, the object Q is a shared writable object that is modified by the objects R
and B. Thus all the transitions in Figures 3.3 and 3.4 corresponding to the methods
in Q are to be fused together at the bottleneck place. This process of fusing will bring

23

the different nets together.

Figure 3.3: Transformation of object B, an instance of class Base, to a Petri net

•0
_object Q

Ö

Figure 3.4: Transformation of object R, an instance of class Radar, to a Petri net

24

The last step is to refine the above nets to reflect the details of each method. This is
achieved by expanding each transition to show the guard andthe expression. This has
been illustrated earlier in our framework. Once the Petri nets are obtained, we can
then apply the available techniques to verify that the Petri nets satisfy the necessary
properties. The detail method for verification of object design is referred to [3].

25

Chapter 4

Evaluation of Our Approach

In this chapter, we will compare our approach with other existing approaches, and
evaluate the effectiveness of our approach in terms of software development effort.
We will present the lines of code comparison results between PROOF/L programs
and their equivalent nCube C and KSR C programs in the hypothetical air force base
defense system example described in Chapter 3. We will also present the speed-ups
obtained in the ■K approximation problem.

4.1 Comparison of our approach with other parallel soft-
ware development approaches

In this section, we will survey other existing parallel software development approaches,
such as CODE [7, 8], Proteus [9], Jagannathan's dataflow-based approach [10], Oc-
camflow [11] and Pisa Parallel Processing Project(P4) [12], and compare them with
our approach in terms of parallelism supported, underlying computation model, scope,
target machine and application areas as shown in Figure 4.1.

CODE Protues Jagannathan Occamflow 4
P PROOF

Parallelism
data

function

data

function
function function

data

function

data
function

Computation

Model

graph-based

object-oriented
functional

demand-

driven
data-flow conventional

object-oriented

funtional

Scope
Design

Implementation

Design

Implementation
design implemetation implementation

design

implementation

Target

Machine
general general

workstation

clusters
transputers general general

Figure 4.1: Comparison of parallel software development approaches

At the end of this section, we will briefly summarize the parallel programming lan-

26

guages relevant to PROOF/L.

4.1.1 Computation-Oriented Display Environment (CODE)

The Computation-Oriented Display Environment(CODE) is based on the premise
that parallel programming systems should be based on a well-defined, comprehensive
parallel computation model rather than merely a collection of implementation models
[7]. In CODE, a parallel program is represented by a set of computation-units and
dependency units. The software development method based on CODE consists of the

following steps:

1) Draw the program's dependency graph, in which each node represents a computation-
unit and an arrow between nodes represents a dependency relation.

2) Define the dependencies among the computation units by completing specifica-

tion forms.

3) Complete the definition of the computation units.

4) Specify the firing rules, which indicate the state of the computation unit to start

execution.

5) Create a standard, architecture-independent program specification.

6) Map the dependencies and firing rules into parallel-computation structures.

In [8], CODE has been extended with data partitioning functions and integrated
with an object-oriented paradigm. This approach is similar to our approach in that
an architecture-independent specification is designed and then it is mapped into the
architecture-dependent program. The goal of their work is to build a graph-based
development environment for software development for parallel processing systems.
However, the underlying computation model does not support the concepts of shared
data and exploiting parallelism in various granularity levels.

4.1.2 Proteus

The Proteus [9] is a prototyping system to develop software for parallel processing
systems. It consists of the following steps:

1) Specify architecture-independent concurrent program using Proteus language.

2) Evaluate using Proteus interpreter and measurement tools.

3) Refine expression of concurrency in Proteus program to target execution on par-

ticular parallel platform.

4) Transform Proteus program to low-level code for targeted parallel platform.

27

5) Execute program using native compilers and supporting libraries.

In the Proteus system, the data parallel operations are expressed using the mathe-
matical notations of set, sequence and map comprehension. The function parallelism
is expressed with a small set of process creation and synchronization primitives, and
communication is based on the shared variable. This approach is similar to our ap-
proach in that the architecture-independent high-level specification is transformed into
an architecture-dependent target code to be executed in parallel. It has an advantage
over our approach in that it can evaluate the design by prototyping with the Proteus
interpreter. However, this approach is not suitable for large-scale software develop-
ment for distributed or parallel processing systems due to lack of hierarchical design
concept. It does not explicitly supports abstraction mechanism or constructs to allow
expressing several layers of design hierarchically, which is enssential for developing
large-scale software.

4.1.3 Jagannathan's Coarse-Grain Dataflow based Methodology

Jagannathan, et al [10] developed a dataflow-based methodology for coarse-grain
multiprocessing on a network of workstations. In this approach, an application is
expressed as a data-dependency graph in which vertices are function modules and
whose edges represent data dependencies between function modules. Each function is
described in conventional code where the input parameters of the module correspond
to the incoming edges of the associated vertex and the output parameters of the mod-
ules correspond to the outgoing edges of the vertex. They also developed a language,
a directed graph language (DGL) to express coarse-grained parallelism in applica-
tions. DGL is similar to other directed-graph-based languages, but it differs in the
granularity of a basic operations. The granularity of a basic model in this approach
is coarse. The model supports a declarative paradigm based on dataflow among the
modules, and a procedural paradigm inside modules. The execution system embodies
the tagged demand-driven execution model, and provides the following functions:

• Process demand for a data value from a function module.

• Allocate the most suitable workstations to compute a demanded data value.

• Schedule execution of a vertex when appropriate data values are available.

• Communicate demand for a data value and the resulting data value between
workstations.

• Manage shared data value.

• Provide the programmer with an interface to run the application.

It implements each vertex of a program as a process and each edge as a communica-
tion channel on which messages can be exchanged using interprocess communication
mechanisms. This approach does not include the design steps, but supports only
graphical user interface for the programmers to specify the high-level design.

28

4.1.4 Occamflow

Gaudiot and Lee [11] developed a methodology for programming multiprocessor sys-
tems based on data-flow model of computation. Although the authors called Occam-
flow a methodology, this is a set of translation steps from a SISAL program to an
Occam program rather than a design methodology. The input to this methodology is
a SISAL program and the output of the methodology is an equivalent Occam program.
This approach consists of the following steps:

1) Translate the SISAL program into IF1.

2) Scan the IF1 and generates a graph which consists of two subgraphs: the Program
Structure Graph(PSG) and the Data-Flow Graph(DFG).

3) Generates a Partitioned Data-Flow Graph(PDFG), a channel table and a com-
munication cost matrix.

4) Optimize through repartitioning.

5) Generate the Occam program.

The translation steps from SISAL to Occam through IF1 are similar to our approach.
However, this method does not include design steps and support the shared data
concept. In addition, the parallelism can only be exploited through the Occam pro-

gramming environment.

4.1.5 Pisa Parallel Processing Project(P4)

In the Pisa Parallel Processing Project(P4) [12], an approach to program general pur-
pose distributed memory parallel processing systems is developed. The P4 approach
is based on two major components: a high-level programming language, the Pisa Par-
allel Processing Language (P3L), and an abstract Parallel Memory (P3M). The P3L
language allows the programmer to explicitly express parallelism in an application at
a high level. The P3L language includes the following parallel constructs to express

various types of parallelism:

• pipeline: models process pipelines acting on streams of input data, and sequential

execution of processes.

• farm: models different farms, having workers executing either the same function
on different data (function replication) or different functions (function partition-

ing)-

• tree: models computations having either a static tree or a dynamic tree structure
in a way similar to demand-driven or divide-and-conquer models of execution.

• loop: adds a feedback channel from the last to the first process of a particular
construct in a way which is similar to data-driven modeling of iterative programs.

29

The P3M is based on the idea that a general-purpose parallel machine must achieve
the balance between local and nonlocal communication. The P3M supports efficient
mapping to different physical parallel computers. In this approach, two issues, the
locality in process communication and dynamicity in the memory management and
process structure, are dealt with to implement high-performance applications on paral-
lel processing systems. When an application is mapped onto P3M, the programming
tools decide whether a process communication is to be implemented through local
communication or through nonlocal communication. Although the author claims this
approach is a design methodology, this approach is focused on how to map the ap-
plication program into physical processors with distributed memory rather than a
software design method for parallel processing systems.

4.1.6 Others

In this section, we will compare programming languages which were developed as
implementation languages for software development for parallel processing systems.

Linda [34] is a small set of operations that can be added to a base language to create
a parallel processing dialect. The concept of Linda is based on the tuple space of
parallel processing. Processes and data can be considered to be elements in tuple
space. Communication between processes occurs in the following way: the sender
creates data in tuple space, and the receiver gets the data in the tuple space, and thus
communication takes place. Linda provides the following four basic operations: in,
out, rd and eval. in removes the tuple which was read from the tuple space, rd reads
the tuple, but leaves the tuple to be read by other processes, out creates a new tuple
and places it in the tuple space, and eval creates a new tuple by generating a process.
A disadvantage of Linda is that the programmers have to write programs in terms of
communication with other processes. In addition, its implementation on distributed
memory parallel processors requires significant overhead to support communication
via shared memory. When we consider the fact that data or messages need not be
accessible to processes other than those processes which need them, Linda cannot
support an information hiding principle.

Goldberg [62] developed a method to programming parallel processors for functional
programs by introducing a logical construct called a serial combinator. A serial com-
binator is defined as a function with the following properties: 1) its body contains
no free variables; 2) its body is sequential and contains constructs for synchronizing
its execution with other tasks; 3) its body could not occur as a subexpression within
the body of another serial combinator. In this approach, the third property implies
that the programmers have to determine as few serial combinators as possible, since
they cannot be coalesced to form a bigger serial combinator. It also implies that the
program developed for one parallel computer may not be directly portable to another
due to possible performance degradation. In addition, the programmers must ensure
the correct synchronization and communication among tasks.

Foster [63] introduced Strand for parallel programming, which is based on logic com-

30

putation model. Strand can provide an interface to other languages as in [10]. He
does not consider the granularity of parallelism and assume that the programmers will
make choices on the grain size during the development of the application program.

Grimshaw [35] developed an object-oriented programming language Mentat for paral-
lel processing systems by extending C++ with parallel constructs. The Mentat pro-
grammer makes granularity and encapsulation decisions, and the compiler manages
communication and synchronization. The underlying computation model supports
parallelism among the objects, and is based on a medium-grain data driven model in
which programs are directed graphs. The vertices of the program graphs are computa-
tion elements, and the edges denotes the data dependencies between the vertices. This
approach can exploit task or function parallelism, but is not appropriate to exploit
massive data parallelism.

Gannon and Lee [36] also developed a parallel object-oriented programming language
for parallel processing systems by extending C++ with parallel constructs, such as
collection, processors, distributions and alignments. A collection can be an array, a
grid, a tree or any other partitionable data structure. Processors are objects that are
used to build distributions for collections each of which represents a set of threads
of control. Distribution and alignments are the mechanisms to assign distributed
elements onto the processors. These extensions allow the programmer to express
data parallelism easily, but are not suitable to express and exploit task or function

parallelism.

4.2 Software Development Effort

To demonstrate the effectiveness of our approach, we have compared the effort required
to develop software directly using the C of two MIMD machines, nCube and KSR,
with that required to develop the same software in PROOF/L using our approach.
We measured the time needed to complete the development of the software for the air
force base defense example described in Chapter 3.

For this example, when we used the nCube C language directly, we spent approxi-
mately 25 hours on coordinating the communication among different processors and
setting up communication channels and buffers, besides the computational portion.
The nCube C programs involve explicit communication and synchronization handling
and pointer manipulations. On the other hand, when we used PROOF/L, the same
example took us only 5 to 6 hours to complete. Although it may be too early to draw
a conclusion based on our experience in this particular example, we believe that the
advantage of implicit communication and synchronization in PROOF/L significantly
contributed to the reduction of software development effort.

31

4.2.1 Architecture Independence and Translator Development Effort

Usually parallel programs are not portable to different parallel machines. PROOF/L,
being an architecture-independent parallel programming language, shields all the un-
derlying machine-dependent details from programmers and can run on various paral-
lel machines as long as the machines have the PROOF/L back-end translators. The
back-end translators of PROOF/L have been implemented on the distributed memory
nCube and the shared memory KSR parallel machines. Machine-dependent details
are incorporated in the back-end translation process.

Our experience has shown that after we implemented the translator for one parallel
machine, it was much easier for us to implement the translator for other parallel
machines. Most of the code that involves common computation has close similarities,
except the parts involving communication and synchronization which highly depend
on the architectures of parallel machines. For instance, after we had implemented the
PROOF/L back-end translator for nCube C which took us approximately 150 hours,
we spent only about 40 hours to implement the PROOF/L back-end translator for
KSR C. We anticipate that if we implemented the PROOF/L back-end translator for
KSR C first, it should also take about 150 hours.

Besides parallel machines, we are also interested in implementing PROOF/L on dis-
tributed workstation cluster systems and extending it to various distributed comput-
ing systems, like autonomous decentralized systems [64, 65].

4.2.2 Implicit Communication and Synchronization

As mentioned before, one of the major reasons that the software development ef-
fort required using our approach is considerably less than that when we develop the
software directly using the target languages is that our approach supports implicit
communication and synchronization. PROOF/L objects are loosely coupled, and in-
teractions among objects are realized through method invocations of other objects,
which are similar to normal functional calls. Our current prototype does not incorpo-
rate global method invocations, which will be implemented in the near future. Guard
structures embedded in method bodies are for synchronization among objects. The
bodies of methods can only be executed when guards are true; otherwise methods
will be blocked until guards become true. Guards are evaluated based on the ob-
ject's local information and arguments passed to the methods. The following two
examples, which are extracted from the air force base defense example described in
Section 3.2, will show how we realize communication and synchronization through
guard statements and method invocations:

Example 1. Guard structure: The following code segment shows that the guard
statement in the method ensures that the queue object for storing enemy information,
which is the number of bombers or missiles of each enemy cluster, is not empty when
the base wants to extract such information from the queue.

32

class Queue

composition
number: int

method GetElem(-> int)
guard (> number 0)
expression

(head TargetsQ)

end class

Example 2. Method invocation: The following code segment shows that whenever the
radar object detects a threat, it will invoke the method insert of the queue object

for recording the enemy information.

Body of object R:
loop(

;(

(out 'Radar detects a threat'),
R[| Q |] (Q.Insert),

)
)

4.3 Application Areas

Our approach exploits coarse grain parallelism by deriving all the concurrent objects
from a problem and classifying them into different categories: active, pseudo active
or passive. Our approach can easily be applied to general communication-oriented
problems in which a number of objects need to be executed simultaneously, and these
objects interact with one another periodically. It has been applied to software devel-
opment for distributed computing systems [2]. The air force base defense example m

33

Chapter 3 is a communication-oriented and computation-oriented application. The
synchronization among different objects, such as the radars and the bases, has been
realized by using guard structures within object methods as illustrated in Section 4.2.
Method invocations fulfill communication among different objects.

Our approach also exploits fine grain parallelisms at the method level. Parallel
functions specify data or functional parallelisms in a method. It is suitable for
computation-oriented applications, such as the air force base defense example, where
we embed all the computations inside object methods and distribute these computa-
tions on different nodes. The comparison of the execution time and the speedup for
the air force base defense example and computing it using various numbers of nodes
of the nCube are shown in Tables 4.1 - 4.4 and Figure 4.2.

Table 4.1: The execution time of the hypothetical air force base defense example programmed directly
in nCube C using different numbers of nodes.

Num of Nodes Used Air Force base defense (sec)

4 639.89
8 417.47
16 254.26
32 150.67
64 115.05

Table 4.2: The execution time of the hypothetical air force base defense example programmed in
PROOF/L and then translated to nCube C using different numbers of nodes.

Num of Nodes Used Air Force base defense (sec)
4 1135.68
8 592.25
16 385.73
32 314.15
64 240.98

Tables 4.1 and 4.2 show the execution time for the air force base defense example in
100 iterations (the program itself goes infinitely) using nCube C directly and using
PROOF/L run on the nCube through the PROOF/L back-end translator. All the

Table 4.3: Comparison of the execution time (in micro seconds) of the programs for computing 7r
based on (3.2) which are generated by directly programming in nCube C.

Interval 1 2 4 8 16 32 64

104 5.53 *104 2.80 *104 1.45 * 104 0.82*10" 0.60 *104 0.68 * 104 1.14* 104

105 5.53 *105 2.77 *105 1.39* 105 7.04* 104 3.71 *104 2.23 *104 1.93* 104

10b 5.52 *10b 2.76 *10b 1.38* 10b 6.92 *10b 3.48* 10° 1.78 *10b 9.70 *104

34

Table 4.4: Comparison of the execution time (in micro seconds) of the programs for computing rr
based on (3.2) which are generated by programming in PROOF/L and then translated to nCube C

Interval 1 2 4 8 16 32 64

104 2.08*10" 1.39* 10ö 7.54 *104 4.39 *104 2.90 * 104 2.28 * 10" 2.07 *104

105 2.62 *10b 1.32* 100 6.63 *10b 3.38*10° 1.76 *10b 9.63* 104 5.89 *104

10b 8.70 *10b 8.90 *10b 6.55 *10b 3.28* 10b 1.65 *10b 8.33* 10s 4.23 *10b

time scale is in seconds. The speedup of more nodes used to execute the program
generated by directly programming in nCube C is about the same as that generated
by programming in PROOF/L. On the other hand, the execution time for executing
the program generated by directly programming in nCube C is always smaller than
that generated by programming in PROOF/L, but much more effort is needed for
direct programming in nCube C than that for programing in PROOF/L.

The execution time (in micro seconds) for the programs computing x generated by
direct programming in nCube C and generated by programming in PROOF/L is
presented in Tables 4.3 and 4.4. The formula for computing IT is given in (3.2).
The corresponding speed-up curves are shown in Figure 4.2, and they indicate better
speed-up and approach the ideal speed-up when the data interval is increasing.

Noted that the exection time for PROOF/L code shown in Table 4.4 is not as good as
that for nCube C shown in Table 4.3. We believe that some work, such as incorporat-
ing object-partitioning algorithms into the PROOF/L translation process [3], would
help improve the performance of the translated PROOF/L programs substantially.

4.4 Lines of Code Comparisons with Target Languages

In the Figure 4.3, we present line comparisons among several programs in PROOF/L,
native nCube and KSR C (direct programming), translated nCube and KSR C. These
programs are TT approximation, the air force base defense system example presented
in our previous report [3] (air force base defense example part I), and the air force
base defense example described in Chapter 3 (air force base defense example part II).

According to the results shown in Figure 4.3, PROOF/L code has the advantage
over direct coding in C and translated C code from PROOF/L in terms of the num-
ber of lines of code, except that the air force base defense example part I in which
there is considerable duplication of code because we have not fully implemented the
inheritance in PROOF/L.

35

PROOF/L -> nCUBE

70 -r

Figure 4.2: Speedup using various numbers of nodes of nCube to compute the ir in PROOF/L.

N. Language

Program ^^^
PROOF/L

Direct Programming
Translated from

PROOF/L

nCUBE C KSRC nCUBEC KSRC

71
Approximation 15 79 61 400 350

Air Force Base Defense
Example Part I

700 500 400 3000 2000

Air Force Base Defense
Example Part II

156 411 760 1651 1179

Figure 4.3: Comparison of the number of lines of code for programming in C directly and in C
translated from PROOF/L.

36

Chapter 5

PROOF/L Front-end Translation

As mentioned in Section 3.1.4, the translation of PROOF/L to a target code of a
parallel machine involves partitioning, front-end translation, grain-size determination,
and back-end translation. In this chapter, we will focus on the front-end translation,
which is independent of the architecture of the parallel machine used. The front-
end translator transforms PROOF/L code to a superset of IF1, which is a dataflow
language based on acyclic graphs. We will briefly discuss the IF1 language, and then
the translation process from PROOF/L to our superset of IF1. Special attention is
paid to the extensions and modifications we have made to IF1, which are necessary
to support PROOF/L. Finally, we will describe the architecture of the front-end
compiler, which uses the UNIX tools lex and yacc. The syntax and semantics of
PROOF/L are discussed in Appendix A PROOF/L Reference Manual.

5.1 IF1

IFl is a text representation of acyclic dataflow graphs. It was originally developed
as the intermediate language for SISAL, a high-level functional programming lan-
guage [38]. IFl was adopted for use with the PAWS project [6], a parallel systems
performance analysis tool which we had hoped to use with PROOF/L.

There are four types of entities in IFl: nodes, edges, types, graph boundaries. Nodes
represent operations, either logical or mathematical. A node can be either simple ox
compound. Simple nodes represent basic operations such as addition, absolute value
and equality operations (< = , > , etc.). Compound nodes contain subgraphs; these
subgraphs may contain other IFl nodes. Compound nodes are used for selection and
looping operations. A node has input and output ports. Edges are used to represent
the data flow of a program. Edges connect the output ports of nodes to the input
ports of nodes. Edges and node ports in IFl are associated with a type. There are
six basic types in IFl (boolean, character, double, integer, null and real). From these

37

types, complex types may be derived (such as records, streams and tuples).

An IF1 program may consist of many different graphs. These graphs are delineated
by graph boundaries. For more detailed information of IF1, the reader is referred to
[5].

5.2 Translating PROOF/L constructs to IF1

5.2.1 PROOF/L Types

The BOOLEAN, INT, REAL and CHAR types of PROOF/L all map to equivalent
types in IF1. The STRING type is only used with the out debugging function,
and uses the same IF1 type as CHAR. At present, arrays are not supported in this
implementation.

The composition of a PROOF/L class is represented using the record type of IF1.

5.2.2 The list Type

PROOF/L supports lists. A list is an ordered group of (possibly) heterogeneous
elements. There are six basic types provided by IF1: boolean, character, double,
integer, null, and real. From these types, more complex types may be created: records
consisting of a fixed number of fields of various types, an array of a particular type,
etc.

The PROOF/L list type, however, cannot be expressed using pure IF1. IF1 records
are of a fixed size; PROOF/L lists can be any size. IF1 arrays contain elements of a
single type; PROOF/L lists can contain elements of many types. Therefore, a new
basic type is introduced in our superset of IF1 - the list.

Lists are flexible, but support for heterogeneous lists requires significantly more time
and space overhead than other less flexible structures. Furthermore, compile time
error detection becomes more difficult when lists are introduced. The advantages of
a strongly typed language cannot be realized with non-strongly typed constructs like
lists.

5.2.3 Class Declarations

A class consists of a composition and a set of methods. The class composition is
treated as an IF1 record. An IF1 graph is produced for each method in the class.

38

IF1 does not have direct support for object-oriented languages. The class name is
added to the method name when defining IF1 graphs that correspond to PROOF/L
methods

5.2.4 Function Calls

A function call uses IFl's CALL node. The current implementation of PROOF/L
does not support polymorphism. For IF1 to support polymorphism, it is necessary
for the program at runtime to route function call requests to the appropriate method.

Example:

class A
method Test(->int)

expression
(+ GetValue GetValue)

method GetValue(->int)
expression 1

end class

class B of A
method GetValue(->int)

expression 2
end class

class C of A
method GetValue(->int)

expression 3
end class

In the above code fragment, classes B and C are subclasses of A. Classes B and C
inherit the Test method and override the GetValue of class A.

When a call is made to Test, the Test method must route the calls to GetValue
of the appropriate class. Therefore, a call to GetValue by instances of A, B and C
should return the values 2, 4 and 6, respectively. Currently, there is no method of
conveying this information in IF1.

39

Alpha and Beta Functions

The alpha and beta functions of PROOF/L are syntactic sugar - an alpha or beta
function may be rewritten as a series of function calls. Therefore, when the front-end
translates an alpha or beta function to IF1, it converts the function to the equivalent
form.

5.3 New IF1 Nodes

Some of the features of the PROOF/L language necessitate the addition of new nodes
to the superset of IF1. We have added the following new nodes: RECEPT, LBUILD,
RGET, and GUARD.

5.3.1 Reception Pseudo-Function

PROOF/L supports persistence with the Reception Pseudo-Function. RECEPT ac-
cepts two arguments - the name of the object to be modified and the new value of
the object and returns the new value of the object, as shown in Figure 5.1.

name of object new object value

RECEPT

new object value

Figure 5.1: The IF 1 node RECEPT.

5.3.2 List Construction

As mentioned above, the list type in PROOF/L is not directly supported by IF1.
Similarly, there is no IF1 node to create a list. Therefore, we added a new node to
IF1 to support list construction called LBUILD. LBuild accepts n inputs of any type
and returns a list, as shown in Figure 5.2.

5.3.3 Retrieving the Value of an Object

A PROOF/L method may refer to the composition of an object. Since the composition
of an object may be modified using the reception function, a special node was added

40

fl f2 f3 ... fn

1 J 1 1 1
LBUILD

■ •

list

Figure 5.2: The IF1 node LBUILD.

to IF1 to fetch the current value of an object called RGET. RGET accepts a single
string literal argument which corresponds to the name of the object, and returns a
record containing the object's composition, as shown in Figure 5.3.

Since there may be numerous instances of class objects, RGET accepts the special
keyword self, which refers to the instance of the object calling a class method.

name of object

RGET

record containing compositon of object

Figure 5.3: The IF1 node RGET.

5.3.4 Guards

Synchronization among objects is achieved by attaching an optional precondition, or
guard expression, to class methods. The object which invokes the method is suspended
when the attached guard expression becomes False, and resumed when the guard

becomes True.

Although a busy waiting implementation of the guard could be expressed in IF1
using the existing looping constructs, we decided to add a new compound node to
IF1. By using a special node for guard, we do not have to specify how the guard will
be implemented, and we maintain the property of architecture independence at this

stage. It is shown in Figure 5.4.

41

input 2 . „ input n
input 1 ,nPut3

output 1 output 3
output 2 output n

Figure 5.4: The IF1 node GUARD.

5.4 Implementation of the PROOF/L Front-End Translator

The front-end translator consists of three main modules: scanner, parser and symbol
table. The scanner and parser were created with the aid of the UNIX tools lex and
yacc, respectively, as shown in Figure 5.5. This is an extension of the implementation
reported in [3]. We expand IF1, as shown in Section 5.3, for accommdation of better
representations of PROOF/L structures.

PROOF/L
Scanner

Tokens

Symbol Table

Parser
IF1

lex yacc

Lexical Rules Syntax Rules
(grammar)

Figure 5.5: Architecture of the PROOF/L front-end translator.

5.4.1 Lexical Analyzer

The function of a lexical analyzer is to group the input character stream into a token
stream and as input of the latter parser phase. A token is a basic element of parsing.

In this part, we use the UNIX tool lex to generate the code of the lexical analyzer. We
specify the lexical rules in regular expressions in the lex language; lex compiles the

42

input file and generates a C program which simulates the corresponding finite state
machines needed for lexical analysis.

The input format of lex is divided into three parts:

< definitions>

%%

< rules>

%%

<programmer subroutines>

The first part <definitions> and third part <programmer subroutines> are optional.

In the first part definitions, we can specify some sets of the lexical rules in the next
part. For example,

letter [a-zA-Z]
digit [0-9]
letter_or_digit [a-zA-Z_.0-9]
sign [+-]

In the second part <rules>, we can use these defined sets to express the lexical rules.
For example, the lexical rules for integer numbers:

digit+ {
yylval.yjnt = atoi(yytext);
return token(INTEGER);

}

The left-hand side part is the regular expression of an integer and the right-hand
side part is the corresponding actions of an integer token: converts the text into the
number and return a token INTEGER.

The last part <programmer subroutines> consists of some C routines written by

users.

Another part of this module is the screener. The function of the screener is to distin-
guish key words from identifiers; because both are the same in structure, they cannot

43

be efficiently distinguished by regular expressions. The screener checks an identifier
against a sorted keyword table using binary search; if the identifier is found in the
keyword list, the appropriate token is returned. Otherwise, an identifier token is
returned.

5.4.2 Parser

The parser checks the correctness of input and generates IF1 code. The parser is was
produced using the UNIX tool yacc .

The input format of yacc is similar to that of lex. It also consists of the same three
parts (definitions, rules and programmer subroutines) and they are also separated by
two "%%". Only the second part is compulsory and the other two are optional.

The first part of the parser is the definitions. We need to give the definitions of tokens,
return types, priority between operators and start rule of the grammar. For example,

%token INTEGER

%type <yJnt> INTEGER

%start proof!

The second part of the parser is the most important part, including grammar rules
and corresponding actions. For example,

proof! : PROGRAM ID COLON classJist objiist bodyJist END

{
body();

}

This is the starting grammar rule of a PROOF/L program. It begins with the reserved
word program and the name of this program. After a ";", the rest of the program
is the class declarations and object declarations. Finally, it is the list of bodies of
active objects and ended with the reserved word end. Similar to lex, between a pair
of "{" and "}" is the corresponding action part of this rule. For the example above,
the action is calling the function body() to build the object body list.

In our implementation of the front-end translator, the parser generates the IF1 code
as it parses a PROOF/L program. The grammar rules for PROOF/L are given in
Appendex B.

44

M«thod_n

)

Active

Class_A

Passive

Class_B

Pseudo Active

Class_C

Object_l

Object_2

0bject_3

Object_m

Body_l

Body_2

Body_n

Mathod.l

Figure 5.6: The structure of the symbol table of the PROOF/L front-end translator.

5.4.3 Symbol Table Handling

The symbol table used by the parser stores information about classes, methods, ob-
jects and the composition of objects.

As class, method and object declarations are parsed, appropriate entries are made to
the symbol table. The information stored in the symbol table is used to verify the
validity of the PROOF/L program and to generate IF1 code.

The relations among the symbol tables are shown in Figure 5.6.

45

Chapter 6

PROOF/L Back-end Translation

In this Chapter, we will present the back-end translation which translates our superset
Intermediate Form 1 (IF1) to two parallel dialect C languages: nCube C and KSR C.
Various IF1 constructs for parallel functions, iterative WHILE loops, IF structures,
and common computational operations are identified and translated. The important
issues about designing inter-node communications and synchronizations are also dis-
cussed.

6.1 Target Languages

As mentioned before, there are two kinds of MIMD parallel architectures: shared-
memory and distributed-memory. In the shared-memory architecture, the processors
share single memory resource. In the distributed-memory architecture, each processor
has its own memory, cooperative work must be done through explicitly specified inter-
node communications and synchronizations.

We have developed two back-end translators: one for a distributed-memory parallel
machine nCube and the other for a shared-memory parallel machine KSR.

6.1.1 The nCube C

The nCube C version 3 [66] consists of a comprehensive set of ordinary C primitives
and build-in functions. Several basic primitives for the parallel execution and inter-
node communication are:

• rexec: launch an executable program on a subset of processors. It involves
allocation of a set of processors, setup of a process table for each processor within

46

the node set, and execution of the program on each processor.

• ntest: a non-blocking way to test existence of messages from other nodes.

• nread: waits for messages and reads them whenever they arrive and satisfy the
type format set by the nread. The nread operation is self-blocked. Inappropriate
nread operations could lead to deadlocks.

• nwrite: sends messages from one node across the nCube high-speed bus to
another one with a type format.

All these primitives have substantially large communication overheads.

There are several other functions used to check states of processors at the run time
on the nCube parallel machine:

• whoami: reports a node condition during the run time.

• npid: return current node ID.

• ncubesize: return the hypercube size, which is 2's power.

The nCube C itself does not provide any primitives to prevent deadlocks or to syn-
chronize physical nodes. Each node basically stands alone itself.

6.1.2 KSR C

KSR C version 1.0.3[67] not only fully supports ordinary C primitives and built-in
functions, but also supplies a comprehensive set of primitives for parallel execution,
barrier synchronization, mutual exclusion and monitor. The shared-memory archi-
tecture implement all the details about interactions among different processors. The

primitives used in the translation are:

• pthreacLcreate: create a thread which shares the single memory.

• pthreacLjoin: a master pthread waits for terminations of slave pthreads.

• pthreacLbarrier: master/slave type control to synchronize all the slaves to

start simultaneously.

The KSR kernel handles all the communications among different threads distributed

on physical nodes.

In general, ways to optimize communications among all the nodes involve partition,
allocation, and grain size determination, which currently have not been implemented

in the translator.

47

6.2 From IF1 to Target Languages

As mentioned in Chapter 5, IF1 (Intermediate Form 1) is used to have graphical
representations for PROOF/L programs.

The translation from IF1 to target languages consists of three steps: parse IF1 code,
structural linking and translation, as shown in Figure 6.1.

Class
Structures

Object Body
Structures

IF1 Code

Parse
Types, Edges,
Nodes, Graphs

Pointer Linking
among Types,
Edges, Nodes,
Graphs

Type Checking

Build
Structu
Classe

res of
i, Objects

J

Classes, Objects
Consistence
Checking

Functional Call
Pattern Checking

*

Translation to
Target Code

Target Code

Step.l Step.2 Step.3

Figure 6.1: Translation steps from IF1 to a target code.

6.2.1 Parse IF1 Code

IF1 code consists of types, edges, nodes, graphs, and numerical relations among them.
Because there are no explicit mechanisms to describe object-oriented concepts - classes
and objects - in the original IF1 syntax, extensions have been made for the IF1 code
to keep the class and object information for the back-end translation. All the class
and object information is stored in the IF1 type headers, graph headers, and object
headers. The following IF1 code describes these constructs.

1. The class's composition:

T <TypeJd>

2. The class's method header:

G <Typeid>

3. The object body part:

RECORD<next> %na =<class_name>

<Class_Name. Method _Name>

48

X 0 <Class_Name.Object_Name>

The comment fields are only used for reference and ignored during the translation.

The execution sequence within a graph is sorted by detecting the dependency among
the nodes, edges, and their numerical linkages in the graph. The algorithm below
demonstrates the sorting of execution sequence:

seq = 0;
mark all the nodes unsorted;
for (each node) {

for (each input edge) {
if (each input edge is literal I I

not an output edge from an unsorted node) {
continue;

} else {
break;

>
}
if (all the input edges are checked) {

set order of current node = seq;
seq++;

}
}
if (any unsorted nodes left) {

report error;
exit(-l) ;

}

After types, edges, nodes, and graphs of the entire IF1 code have been scanned, class
and object structures can be derived through implicit class and object information in
the new nodes of the IF1 code introduced in Section 5.3. The information includes
class compositions in types, method names in graphs and object names in graphs.

6.2.2 Structural Linking

After numerical relations among types, edges, nodes, and graphs have been identified
and built in the data structure during the first step, all these numerical relations are
converted to pointer linking between types and edges, edges and nodes, types and
graphs, and nodes and graphs. Method calls include four types:

• Built-in functional calls (denoted as imported functions in the IF1 code). They
include appendJLef t, append_right, tail, head, last, inc, dec, null?,

49

delay, while, etc.

• Global functions. The class GLOBAL is a class without any data structure but
methods. It is a collection for public methods, in which every method can be
used by any other classes or object bodies without any difference comparing to
using their own methods.

• Method calls within a class. Currently a class method only can call another
method within the scope of the same class, besides build-in and global functions.

• Method calls within an object body. Objects can call any methods available
within the entire scope.

In addition, GUARD structures within methods are detected for each class. It is
the only way for different objects in the PROOF/L code to synchronize one another.
These structures are represented as GUARD compound nodes introduced in Section
5.3. The text representation is shown as follows:

{
G 0 GUARD 1 (structure)
C The predicate needed to be realized in order to continue the execution

G 0 GUARD 2 (structure)
C The body to be executed after the guard predicate above becomes true.

} <node_id> GUARD 2 12

The number of input edges to computational nodes are verified, and edges for input
arguments to method CALL nodes are checked against method prototypes. Type con-
sistency checking is also applied to input and output data flows, which are represented
by edges, among all the simple nodes in the IF1 code.

PROOF/L parallel structures will be detected in two ways at the IF1 level:

• Detecting alpha (apply to all) and beta (distributed apply) parallel function
forms through data dependency among CALL and LBUILD nodes.

• find a built-in parallel function call named delta (data partition) in the IF1
code.

6.2.3 Translation

In order to realize the functional features in the PROOF/L language, only two kinds
of data formats have been used: ATOM and SEXP. They are shown in Figure 6.2.

50

ATOM:
Type

Cont

SEXP:
ATOM ATOM

Next Next

NIL

Next

Figure 6.2: The data format of the translated target C code

Concatenated structures for PROOF/L class compositions are represented by using
SEXPs. An initialization function for each class will be provided to initialize all
components within the correspondent class composition: 0 for the integer or float,
FALSE for the boolean, "(empty string) for the string, NIL for the list. So there are
no explicitly data definitions of classes at the C code level.

Our own PROOF/L library routines for supporting functional operations have been
provided. They include all the built-in functions (except parallel delat function),
copy routines, and garbage collections routines. Besides all these routines, packet
assembling and disassembling routines have been written for message-passing type
communications in the nCube C code, which will be described later.

In order to modularize the entire translated target C code, four basic files are generated
after the translation:

• class.h contains all the object declarations and all the necessary C "include"
files. All class method prototypes and class initialization function prototypes are
also listed here. This is the main header file for the entire translated C code.

• methods.c contains all the class methods, bounded by comment marks for each
class. It also contains class-method lookup tables for the purpose of communi-
cations among different objects, which will be further explained.

• objects.c contains bodies of all the objects.

• main.c provides the initialization of all the available physical nodes, and as-
sociate each object body with a single node in the nCube C (create a thread
for each object body in the KSR C), dispatch all the correspondent controls to
object bodies, synchronize all the objects to start execution simultaneously, and
finally do the cleanup when all the objects are terminated.

The broad translation for a class is described as follows:

IF1
C Class <name>

C Class Composition

nCube C
/* Class <name> begins */

/* Class composition */

C Class Methods /* Methods <Class_name.Method_name 1>

51

begins */
G <Type_id> <Class_name.Method_name 1> void <Class_name.Method_name 1>

«I/O Type» {

} /* End of method */

C Class Methods /* Method <Class_name.Method_name k>
beings */

G <Type_id> <Class_name.Method_name k> void <Class_name.Method_name k>
«I/O Type» {

} /* End of method */
end Class /* Class ends <name> */

C Extra procedures for every class /* class-method lookup table begins */
void <name>_func_dispatcher() {
/* Lookup Table */

}
/* class-method lookup table ends */

The broad translation for an object is described as follows:

IF1 nCube C
/* Declaration */

X 0 <Class_name.Object_name> SExp *<object_namename>;
C nodes(Simple or Compound), edges /* Object <Class_name.Object_name>

begins */

void <Class_name_Object_name>() {
... }

The main.c is given as follows:

initialize all the objects;
initialize all threads or nodes;

switch «Thread ID» {
case 1: <Objectl_func>();
break;
case 2: <0bject2_func>();
break;
case 3: <0bject3_func>();

52

break;
case 4: <0bject4_func>();
break;
case 5: <0bject5_func>();
break;

}
synchronize all threads to start at the same time;

wait for terminations of all threads.

All the classes and objects are translated based upon the structures shown above,
and correspondent portions of code are put into the header file or different c files to
modularize the problem. The entire set of .c and .h files will be put into a directory
according to what a programmer provides. Also a general makefile for the purpose of
translation of target C code is given.

6.2.4 Additional Implementation Schemes

Unique data type and iteration conversion

The main feature of the PROOF language is to combine the functional and object-
oriented domains together. In order to save the class and object information for
the back-end translation, we also extend the IF1 to let it carry the class and object
information across PROOF/L code to target C code. We apply the data structures,
ATOM and SEXP, to realize all the functional features. Furthermore, lists used in
the PROOF/L are a type of heterogeneous lists, which is similar to those in LISP.
A number of list manipulation functions have been given, such as List Constructs
[](square brackets), append_1 eft, head, tail, append_right, null?, etc.

All other data types in the PROOF/L - integer, float, boolean, and string - are im-
plemented with single type called ATOM with the unique type code embedded inside.
The binary, boolean, relational and unary operations are applied in the following way:

verify type of the first atom depending on the operation;
extract content of the first atom;
verify type of the second atom depending on the operation if applicable;
extract content of the second atom if applicable;
apply the operation to content(s) of the atom(s);
compose an new atom with result of the operation and appropriate type;

The underling unique interface for processing different data types gives considerable
flexibility to programmers, but sacrifices execution performance.

53

A functional language always involves recursion and PROOF/L is no exception. Re-
cursive function calls not only are resource-consuming, but also limit computational
capacity. Currently there is no implicit recursion removal during the translation. An
iterative functional structure, WHILE loop, has been used to avoid these explicit re-
cursive calls. Because of the specialty of WHILE loops, a library routine has been
written to realize iterations of WHILE loops.

PROOF/L format:
while(<predicate lambda exps>, <body lambda exps>) <an input to lambda>

Translated C format:
result = <an input to lambda>;
while (1) {
if (<predicate lambda exps> (result)) {

result = (<body lambda exps> (result);
} else {

break;
}
return result;

Commnumication and synchronization schemes

As mentioned in Section 6.1, distributed-memory parallel machines, like the nCube,
need to explicitly specify communications among different physically separated nodes.
On the other hand, shared-memory parallel machines, like the KSR, provide commu-
nications among different nodes at the kernel level, which releases this task from
programmers. Our translator for nCube emulates communications for the shared-
memory KSR machine in order to provide the unique structures to translate the IF1
code for two different target languages with as few variations as possible.

All the concurrent objects in PROOF/L that can be executed in parallel are dis-
patched to different threads or nodes. Each object is a computation unit of its
own. The guard statements in methods are used to handle synchronizations among
PROOF/L objects executed on different nodes or threads.

Periodic communications among different threads or nodes are made under these two
conditions:

• call methods of other objects.

• applications of the parallel functions: alpha, beta, and delta.

The first condition is for the purpose of method invocations between two different
objects. The reasons for one object to invoke another object's method are:

54

• Query for the state information of another object.

• Change the state of another object through the reception function (the only way
to modify the state of an object)

The scheme for this kind of communication is shown in Figure 6.3. A request object
sends the method id to indicate which method it wants to call to a responder object,
assembles all the arguments necessary to that method, except state information of
the responder object, into a stream packet, and then sends the packet through the
network. After the method id received, the responder object dispatches the stream
packet of arguments to the method that the request object requests. Arguments get
extracted from the stream packet and passed to the method associated with state
information of the responder object. The final outputs of the method are assembled
again into a stream packet and passed back to the request object which in turn will
disassemble the returned packet to get the results it expects. Overheads for assem-
bling and disassembling are necessary for providing an unique and simple interaction
between two different objects, and they are much less time-consuming than commu-
nication overheads across two different processors. Another reason for us to assemble
all the arguments together and send once across two nodes is that multiple commu-
nications with small packets are more time-consuming than a single communication
with a large packet.

— Ml

Request

Object

Method ID

Responder

Object

Packet of Args C

Packet of
Lookup Table

Outputs Mk

Figure 6.3: The underlying PROOF/L communication scheme

The code skeleton for a class-method lookup table is shown as the following:

/* message comes in */
switch (method_id) {
case 1:

method 1 set up;
Call method 1;
method 1 feedback;

/* receive argument packets and disassemble */

/* assemble final results */

break;

case 2:

>

55

Class-method lookup tables are required for the distributed-memory nCube machine.
On the other hand, an object on the shared-memory KSR machine do not need to
explicitly pass messages over to other objects; rather they can call another object's
method directly because all objects shared their state information with others, while
objects on the nCube machine own their state information themselves. But the se-
quence for calling methods is still the same, include assembling and disassembling

arguments to methods.

Deadlock is entirely avoided. Each object controls its own thread by executing its
body. The loose-coupled relations among objects are well maintained by all the
GUARD statements within methods of each object. Objects are ready to serve other
objects' requests when they enter unsatisfied GUARD statements.

Bottlenecks in the PROOF/L for a program normally are writable objects. When
enormous objects want to invoke methods of writable objects, the program's execution
pace slow down considerably.

The second condition is to execute a single function with multiple ranges of data
in parallel(alpha, apply to all or delta, data partition) or multiple functions with
their own data ranges in parallel(beta, distribute apply). The current translator can
execute all the built-in functions and all the global functions in parallel.

Same reasons as the first condition are applied here for our assembling arguments to
methods before calls and disassembling stream packets to extract results after methods

finish executions.

alpha function

PROOF/L format: alpha <method> ([args 1], [args 2], ...)
target C format: assemble args 1;

launch a process to call method;
assemble args 2;
launch a process to call method;

wait for return packet 1;
disassemble packet 1;
wait for return packet 2;
disassemble packet 2;

build all return results into a list

• beta function

PROOF/L format: beta (method 1, method 2, ...) ([args 1],
[args 2], ...)

target C format: assemble args 1;

56

launch a process to call method 1;
assemble args 2;
launch a process to call method 2;

wait for return packet 1;
disassemble packet 1;
wait for return packet 2;
disassemble packet 2;

build all return results into a list,

• delta function

PROOF/L format:

target C format:

delta <method> ([low_bound], [upp.bound],
<rest args> ...)

assemble all args: low.bound, upp_bound,
rest args ...;

launch a process to call method;
launch a process to call method;
/* Depending on physical conpacity,

launch processes as many as possible */

wait for return packet 1;
disassemble packet 1;
wait for return packet 2;
disassemble packet;

build all return results into a list.
/* Dimension undermined */

57

Chapter 7

Extension of PROOF/L

In order to make PROOF/L more easy to use, we plan to add more functionalities to
the original PROOF/L. In this chapter, we discuss how we are going to provide I/O
functionality and an alternative data construct array in the PROOF/L for better
utilizing the PROOF/L for developing parallel software in certain applications.

7.1 Input/Output in PROOF/L

As we mention in Chapter 1, PROOF/L is a C++ based language. In order to provide
I/O functionality to the PROOF/L, we are going to build C++like system I/O classes
to facility input/output for PROOF/L. The read and write operations should be
sufficent for performing most I/O operations in PROOF/L. Additional functions for
maintaining the files are needed, such as open, close, rewind and seek. We have
defined the following four classes for any I/O processing:

• f ilelO is an abstract data type which has the filename as a local variable, file
manipulation operation, and I/O operations, such as open, close, rewind, seek,
read, and write.

• stdIO is an abstract data type which has the standard I/O, STD, as a local vari-
able for representing the standard I/O devices, and two standard I/O operations:
read x and write x.

• objectIO is an abstract data type which has the object-name as a local variable,
and the I/O operations, such as read x and write z, in which a; is a variable
to read from or write to. The reason for us to provide the objectIO class is to
give users the capability to communicate among objects allocated over different
processors. We try to give a unique interface to access objects, which is similar
for access of standard I/O and files.

58

Each class has the following format:

class filelO

composition
filename : string;

end composition

method read x;
method write x;

method open;
method close;
method rewind pos dir;
method seek pos;

end class

class stdIO

composition
STD : built-in;

end composition

method read x;
method write x;

end class

class objectIO

composition
object_name : string;

end composition

method read x;
method write x;

end class

Figure 7.1 shows an example about how object A can access object B's data. For
example, an object A wants to read x from an object B. Object A will send a message
to object B to invoke read operation in object B. Then B will read x and send x to A.
If A wants to write x into B, then A will send a message to invoke write operation
in B. If write operation is invoked, then B will get x from A and write x to B.

As an alternative approach, we can design I/O features using a hierarchical structure
of classes, which is similar to system I/O class hierarchy provided by C++. This

59

Figure 7.1: Read and write between two objects

structure consists of a set named class descriptions: filelO, stdIO, and objectIO,
which are organized as a superclass, such as 10. Using this structure, we can identify
relations between classes and specify the inheritance, aggregation, and using relations
among the classes. The hierarchy of the classes is shown in Figure 7.2:

Figure 7.2: The hierarchical structure of classes filelO, stdIO, objectIO, and 10

7.2 Arrays in PROOF/L

In this section, we will discuss how array data type can be incorporated in PROOF/L.

An array structure is a contiguous block of storage. Like a list, an array consists
of elements of the same type. Unlike lists, an array is of a fixed, predetermined
size which cannot be changed, but supports random access. PROOF/L needs to
support the array data type to manipulate a group of elements to perform scientific
computations.

7.2.1 Array Creation

The following syntax creates a one-dimensional array in PROOF/L.

array_name (array index element-type)

The index argument should be non-negative integers that are to be the number of
elements of the array. The element-type is the name of the type of the elements of the
array. It will be integer, real, and boolean. An array's index starts at 0.

60

A two-dimensional array can be created by the following syntax:

array.name (array index (array index element-type))

Multi-dimensional arrays are created by using nested structures and then element-type
itself can also be an array.

7.2.2 Array Access

We have defined two functions: retrieve and store, which should be sufficient for
accessing an array. Each element is referenced by its position. The function retrieve
is normally used for accessing an element of an array. For example, we retrieve an
element from a one-dimensional array as follows:

(retrieve array_name index)

The function store is used for filling an array's slot. This is a function of two argu-
ments, where the first argument specifies a slot to be filled, and the second argument
specifies the value to be stored in that slot. For example, the following statement
stores an element into the one-dimensional array

(store array_name index element)

Let us consider the one-dimensional array

NAME_LIST array 100 int

(store NAME_LIST 20 (retrieve NAME_LIST 5))

In this example, NAME-LIST is an array of 100 integers, retrieve operation retrieves
an element from an array NAME-LIST and store operation stores the element into

the 21th slot.

For multi-dimensional arrays, we will use nested structures. For example, we can
retrieve and store an element from a two-dimensional array as follows:

(retrieve (retrieve array_name index) index)
(store (store array_name index element) index)

61

Let us consider the two-dimensional array

MATRIX (array 100 (array 100 int))

(store (store MATRIX 20
(retrieve (retrieve MATRIX 10) 15)

) 30)

In this example, MATRIX is an array of dimensions 100 by 100. ELEMENT is an
element in the 10th row and the 15th column of the array MATRIX. The element is
stored into the MATRIX with the 20th row and the 30th column.

62

Chapter 8

Integration With Existing
Languages

In order to utilize more mature FORTRAN/C built-in function libraries of parallel
machines, we need to integrate PROOF/L with existing languages, such as FORTRAN

and C.

8.1 C and FORTRAN on nCube and KSR Systems

The translation environment on KSR is shown in the Figure 8.1. cc, the KSR C
compiler, translates a program written in C into executable load modules, or into
a relocatable binary program that can subsequently be linked using Id. cc has the

following syntax:

• On KSR: cc [option] sourcefile.c [-1 lib]

option is a special action to be performed by cc. Multiple option parameters should
be space-separated. For detailed information, see the cc(l) man page. The sourcefile
is a source program to be compiler. Multiple sourcefile parameters should be space-
separated, cc accepts several types of source files, and determines the action to take

based on the filename's suffix:

• .c - a C source program to be compiled by the C compiler.

• .f/.F/.cmp - a FORTRAN source program to be compiled by the FORTRAN
compiler (.cmp is related to FORTRAN'S KSR KAP preprocessor).

63

The -1 lib is an object library with which the program should be linked using Id. Mul-
tiple -1 lib parameters should be space-separated. For more information on libraries,
see Section 1.2, "Libraries" [67]. For example, the following cc command compiles a
C program called mainprog.c. It specifies that the name of the executable file should
be mainprog and that the program should be linked with the math library:

$ cc -o mainprog mainprog.c -lm

ncc, the nCube C compiler, has the following syntax:

On nCube: ncc [options] sourcefile.c [-1 libraries]

For example, the text of the sample program used, hello.c, is as follows:

mainO {
printf ("Hello world!\n");

}

To compile the program hello.c, type the command line from a host shell:

$ ncc -d 2 hello.c

The -d option specifies that the program is to run on a 2-dimensional cube, that is,
a set of four processors. To run the sample program, invoke it by typing the default
name of the output file a.out. The output becomes:

$ a.out
Hello world!
Hello world!
Hello world!
Hello world!

The translation environment of both systems as shown in Figure 8.1 can call library
functions at the linker stage. The KSR C compiler translates programs written in
C into executable load modules. Phread libraries, Unix libraries, and Presto libraries
are linked at the LINKER stage. The libraries are defined in /usr/lib/.

8.2 Integration of PROOF/L with nCube and KSR C/FORTRAN

The purpose of the integrating PROOF/L with existing languages is to use the re-
sources of their existing software support. Any program, which is written in PROOF/L,

64

Source

V "

C Compiler
FORTRAN
Compiler

Figure 8.1: The KSR translation environment

can use the built-in functions written in FORTRAN and C. The type safe linkage
scheme presents a problem if we try to call functions from other languages. We can
specify the language type of a function, effectively turning off the name mangling.
We create the following syntax in the PROOF/L program to specify function calls
written in other languages:

extern language-type {
«include <stdlib.h>;
type func-name(arguments);

}

language-type is a language specification and func-name is a function name. For
example, when you try to call a C function from PROOF/L, the linker will never find
the function because the C function name is not mangled. You can declare a group of
functions by using double quotes to enclose them in a linkage specification as follows:

extern 'C { // here's a language specification
«include <stdlib.h>;
method func-name(args —> args);

}

65

Figure 8.2: The translation environment for PROOF/L

The corresponding IF1 with the above PROOF/L syntax will have the following forms:

I 40 func-name ,/,hf=stdlib.h
T 40 Function 41 42
C input argument
T 41

C output argument
T 42

0

func-name is a function name and hf means header files. The corresponding KSR C
or nCube C program has the following format:

#include <stdlib.h>

func-name(arguments);

66

The KSR C or nCube C program calls the function with arguments.

Figure 8.2 shows the translation environment for PROOF/L. Libraries are linked in
PROOF/L at the LINKER stage. We created two translation rules, from PROOF/L
to IF1 and from IF1 to nCube C or KSR C.

67

Chapter 9

Comparison of IF1 and IPR

In this chapter, we selected IF1 [5, 68] as the intermediate langauge for translating
PROOF/L to any target language. We previously used the Intermediate Program
Representation(IPR) [3], which was delevoped by ourselves, instead of IF1. The
reason for us to switch from IPR to IF1 is to utilize the parallel software accessment
tool - Parallel Accessment Window System (PAWS) [6] - for evaluating our approach
since PAWS only accept IF1 code as input. In this chapter, we discuss the advantages
and disadvantages of these two intermediate forms.

9.1 IF1

IF1 is one of several intermediate languages for functional language implementation,
along with P-TAC [69] and Lean [70]. It is a data-flow intermediate form language
based on acyclic graphs. IF1 was developed as an intermediate form for a high-
level applicative programming language SISAL(Streams and Iteration in a Single-
Assignment Language) [38]. IF1 is also a line-oriented language in that the line is the
unit of construction of the IF1 files. IF1 consists of the following four components:

• Nodes: A node represents a logical or mathematical operation such as addition,
multiplication, subtraction, division, and, or and not. There are two kinds of
nodes:

— Simple nodes: A simple node represents a basic operation such as addition.
A node starts execution only after all the data carried by the incoming edges
is available. Simple nodes do not contain subgraphs in them.

— compound nodes: A compound node contains one or more subgraphs, and
can be hierarchically defined.

A node is created with the "N" code, followed by two integers: a node label and
a node operation. Each node must be given a unique node identifier or label.

68

•

•

•

Edges: An edge represents a data flow in the program. Edges connect nodes
with each other. An edge is created with "E" code, followed by a five number
tuple representing the source node, the source port, the destination node, the
destination port and the literal type. A node may accept input from an edge
which originates from another node or from a constant value or literal. A literal is
created with the "L" code, followed by three numbers designating the destination
port, the destination node and the type of the literal, followed by the actual literal

value.

Graph boundaries: A graph boundary is a border of the graph and it surrounds
all the nodes and edges of the graph. Different graphs in an IF1 program are
separated by graph boundaries. A graph boundary starts with the "G" code,
followed by a type number.

Types: Types are associated with edges. Every edge has a type, such as integer,
boolean, array of integers, etc. There are six basic types in the IF1, and new
types can be constructed from these basic types. A new type is created with
the "T" code, followed by a unique identifying label, followed by a type entry
code, followed by a basic type code. Records are formed in the IF1 by creating
a record header (type entry 5) followed by a list of field entries (type entry 2).

9.2 IPR

IPR [3] language is designed to represent the parallelism in the PROOF/L program
and analyze it for efficient exploitation on various parallel machines. The IPR con-
sists of two different types of representation: one is a Petri-net and the other is a
set of function nodes and their relations which we will introduce in this section. The
semantics for the IPR is also given in two different levels: object level and method
level. The object level semantics gives meaning to the object bodies of the PROOF/L
program. The method level semantics gives meaning to the function nodes used to
represent the methods in the PROOF/L program. This two level semantics makes
it easy to understand the important issues in parallel programs, such as commu-
nication/synchronization aspects without considering the unnecessary details of the
program. This separation of the semantics also allows the verification of programs in
different levels, and thus the complexity of the understanding and the verification of
programs can be significantly reduced.

IPR has a directed graph representation, in which the nodes represent computation,
and edges represent data flow between nodes. Nodes can be divided into three types:
computation nodes, control nodes and list handling nodes.

• Computation nodes: A computation node represents a function receiving input
value(s) and generating output value(s). The computation nodes include basic
mathematical and boolean operators, constant, identity and copy nodes. Mathe-
matical and boolean operators includes operators such as+,-,*,/,=,<,>• The

69

constant node represents a constant generator. The identity node represents an
identity function which always returns the same value as its input value. The
copy node represents a duplicator, which produces copies having the same value
as its input value.

• Control construct nodes: Control construct nodes are used to specify the control
flow among functions. The control construct nodes include select, distribute and
merge. The select node represents a conditional construction function. It receives
input data t"i,2*2,... ,i — n and control data c and returns an input i{ as an output
according to the value of the control data c. The distributor node represents a
conditional construction function. It receives input data i and control data c, and
passes i to one of the output ports o1? o2,..., on according to the value of c. The
merge node represents a nondeterministic selector, which receives an arbitrary
number of input data sequentially and returns the one arriving first. If more
than one input arrives at the same time, one of them is chosen arbitrarily.

• List handling nodes: There are two kinds of list handling nodes: construct and
split nodes. The construct node receives one or more input values and make them
as a list, and the split node receives a list as input and break down that list into
values.

9.3 Comparison

In this section, we will compare IF1 and IPR in terms of data dependency represen-
tation, application areas, and maturity.

9.3.1 Data Dependency Representation

Both IF1 and IPR can explicitly represent the data dependencies among the nodes in
the graphs, where the edges represent the data flow. Thus, they can easily represent
explicit parallelism among the nodes. They can also be used to visualize the structure
of the parallel programs. However, since these two intermediate languages are designed
to be used for representing intermediate form of the program, it is not easy for compiler
writer to read them. In case of IF1, because the names of the nodes are presented by
integers, it is even more difficult for compiler writer to read IF1 than IPR.

9.3.2 Application Areas

IF1 is designed to be used as an intermediate representation for programs written in
an applicative programming language SISAL[38]. IPR is designed to be used as an in-
termediate representation for programs written in a parallel object-oriented program-

70

ming language PROOF/L. Neither of the two intermediate forms is general enough
to be used as a general intermediate representation language. However, considering
that PROOF/L is an object-oriented programming language supporting the concepts
such as object-orientation, persistent objects, it is more desirable to use an interme-
diate form which can represent such concepts supported in PROOF/L. IF1 does not
support any of these concepts, but IPR supports such concepts. Thus, IF1 requires
extensions to be used in the object-oriented program representation. Overall, since
SISAL and IF1 were designed for numerical computation in scientific applications,
its use for other application areas such as real-time systems and distributed systems
would be difficult. On the other hand, IPR was designed to exploit the parallelism
in PROOF/L programs for more general application areas, including scientific com-
putation and simulation of concurrent or distributed systems. Because IPR can be
used to represent synchronization and communication among the processes and shared
data concept, it can also be used in the representation of the programs for real-time
software systems and distributed systems. In addition, IPR can be used in the ver-
ification of the PROOF/L programs. Since the object-level relations among objects
are represented in IPR by a Petri net, it is possible to verify the PROOF/L program
in terms of synchronization and communication among the objects. Furthermore, the
concurrency in the problem can be explicitly represented in IPR. IPR can also be
used for the task allocation or scheduling analysis without augmentation.

9.3.3 Maturity

IF1 is more mature than IPR. IF1 has been studied and used as an intermediate form
for the applicative programming language SISAL since 1985. There is a performance
evaluation tool PAWS which only receives IF1 codes as input. On the other hand, IPR
was used as an intermediate form for translation of PROOF/1 to target codes. Both
IF1 and IPR represent the program in the ASCII format. IF1 is more mature than
IPR because IF1 has been fully implemented and used in the SISAL implementation.

71

Chapter 10

Conclusion and Future Research

In this project, we have completed the following tasks:

• Development of a front-end translator from PROOF/L to IF1

• Development of two back-end translators from IF1 to the C languages run on
two different MIMD machines: nCube and KSR

• Evaluation of the effectiveness of our software development framework for parallel
processing systems

• Comparison of IPR (Intermediate Program Representation) with IF1 (Interme-
diate Form 1)

• Extension of PROOF/L with input/output features and array construct

• Investigation on the integration of PROOF/L with existing programming lan-
guages, such as C and FORTRAN.

While existing approaches focus on developing software in the scientific computation
area, our approach is suitable for general large-scale software development for parallel
processing systems. Our approach is architecture-independent, and thus the program-
mers are free from explicitly specifying synchronization and communication. In addi-
tion, our approach is extensible for software development for distributed computing
systems and/or real-time systems. We have also found that PROOF/L programs are
generally shorter than their equivalent nCube C or KSR C programs. This indicates
that the software development effort can be reduced when we develop software using
our approach. We have used IF1 for the intermediate representation of PROOF/L.
Since PROOF/L has some features that are not directly supported by IF1, we have
added a number of constructs to IF1 to support PROOF/L's first-class functions, list-
constructs and persistence. By building the two back-end translators, one for nCube
which has a distributed memory architecture and one for KSR which has a shared
memory architecture, we demonstrated that our approach can be implemented on

72

parallel machines with different architectures. In addition, the amount of implemen-
tation effort required to complete the second back-end translator turned out to be a
small fraction of the effort required to complete the first back-end translator. Thus,
the overhead to develop the back-end translators for various parallel machines can
be kept small. Rather than translating PROOF/L to IF1 and then translating IF1
to the target code, we may have a single translator that translates PROOF/L to the
target code directly. The single translation method may have the advantage that the
front-end component and back-end component share common data structures, but has
the disadvantage of reducing the architecture-independent portion of the translator.

In order to make our approach more practical, we need to improve our approach in

the following aspects:

• Mapping: the partitioning and grain size determination approaches have been
developed, but are not incorporated in the back-end translation. By fully im-
plementing these approaches, we should significantly improve the overall perfor-
mance of the PROOF/L programs.

• Translator: current implementation is a prototype, and thus requires additional
optimizations to improve the efficiency of the generated target code. We need
to implement more back-end translators for other parallel machines so that this
approach can be used for various parallel machines.

• Extension to distributed computing systems: Currently, our approach is designed
for software development for parallel processing systems, but can be extended
for distributed computing systems.

• Development environment: By developing integrated CASE tools to support our
approach, the software development effort can be further significantly reduced.
Graphical user interface tool, display tool, and debugging tool are considered in
this development environment.

73

Appendix A

PROOF/L Reference Manual

In this appendix, we present the PROOF/L reference manual which includes the
syntax of PROOF/L and simple illustrative examples. Because PROOF/L is still
under development, some features in this manual are our intention to complete in the
near future, but not available in this release. Please refer to the last section of this
appendix for information about the features that are supported in this release.

A.l Introduction

PROOF/L (PaRallel Object-Oriented and Functional Language) is based on the
PROOF computation model [4]. It is a C+-hbased language with additional con-
structs required in PROOF. In this appendix, we define the PROOF/L language, its
syntax and semantics. At the end of this appendix is a section describing the current
implementation of PROOF/L.

A.2 Structure of a PROOF/L Program

A PROOF/L program consists of a main program and a set of imported modules.

There are six parts in a PROOF/L program or module: preamble, import declarations,
class declarations, object declarations, body declarations and initialization methods.
We will discuss these parts here.

74

A.2.1 Preamble

The preamble of a PROOF/L program is

program program-name :

The preamble of a PROOF/L module is :

module module-name :

It is suggested that PROOF/L implementations require that the program-name and
module name identifiers match the name of the file name of the respective program
and module files. Furthermore, it is suggested that PROOF/L programs end with the
PRF extension, and PROOF/L modules end with the .PMD extension.

A.2.2 Import Declarations

import import-file-1, import-fih-2, ... import-file-n

Only the names of modules may appear in the import declaration. The compiler
should report an error if the name of a program appears in the import declaration.
No two modules may import each other. For instance, if module A imports module
B then module B may not import module A. All of the classes and objects of an
imported module are available for use by the importing module. Mechanisms for data

hiding will be defined in a subsequent report.

A.2.3 Class Declaration

In PROOF/L, every object is an instance of a class. A class is a template for a set of
objects bearing similar behavior and is defined as a generic abstract data type.

A class in PROOF/L consists of a set of methods and a set of variable names repre-

senting the state of an object.

class Queue(itemtype)
composition

items : list(itemtype)
numberOfItems : int

end composition

75

method Init(-> Queue)
expression

object (items = [], numberOf Items = 0)

method Addltem(item : itemtype -> Queue)
expression

object (items = (append_right items item),
numberOfItems = (inc NumberOfItems))

method GetTop(-> itemType)
expression

(head items)

method RemoveTop(-> Queue)
expression

object Queue (items = (tail items),
numberOfItems = (dec NumberOfItems))

end class

Instance Variables

Sometimes it is useful to parameterize portions of the class specification. For instance,
we may wish to define a class that serves as a queue for various kinds of objects (e.g.:
integers, personnel records, banking transactions, restaurant orders). Rather than
creating a separate class for each type of object, we can create a parameterized class
using instance variables.

When an object is declared, the values of the instance variables must be defined, (see
Section A.2.4).

The instance variables of an object may not be altered after object instantiation.

When a subclass is declared, the instance variables of the subclass must include all
of the instance variables of its parent. The compiler should return an error if the
instance variables of a superclass do not appear in the subclass declaration.

Composition

Since objects are persistent in PROOF/L, a data structure defining the composition
of an object is declared in the composition section. The composition of an object
consists of a collection of variables of various types. The variable can be a member of

76

class BoundedQueue(itemtype:type, maxitems : int) of Queue

method Addltem(item : itemtype -> Queue)

guard
(< numberOfltems maxitems)

expression
object (items = (append_right items item),

numberOfltems = (inc NumberOfltems))

end class

the built-in types (See Section A.5) or an instance of a previously declared class.

Inheritance

Inheritence is used to define a subclass as a specialization of a superclass. In a subclass,
the composition and methods of the superclass are inherited. Additional composition
data and methods may be defined. Furthermore, inherited methods may be overriden
by defining a new definition of the method.

A.2.4 Object Declaration

Once a class has been declared, objects may be instantiated in the object declaration

section.

There are two types of objects in PROOF/L: active and passive. Active objects are
associated with an object body that is declared in the body declaration section. The
object body may be a non-terminating function. Passive objects are objects that are
not associated with an object body. The methods of passive objects are called by the

bodies of other objects.

passive object queuel : instance of queue(integer)
passive object queue2 : instance of queue(float)
passive object queue3 : instance of queue(order)

active object sorter : instance of sorter

A.2.5 Body Declaration

Typically, an active object will wait for messages from other objects. The compiler
should return a syntax error if an active object is instantiated without declaring a

77

body for the object.

body of serverl :

A.2.6 The Initialization Method

Before the methods for the bodies of active objects are evaluated, the program ini-
tialization method is invoked.

Although initialization of objects can occur in the bodies of the object, sometimes it
is necessary to initialize objects in this section. For example, refer to the following
code fragment:

body of object object 1 :

;(R[|objectl|](init), % reception function # 1
R[|object2|](do_something)) */, reception function # 2

body of object object2 :
R[|object2|] (init) '/. reception function # 3

Although one might expect that reception function #3 would be evaluated before
reception function #2 is called, this in fact is not guaranteed by the PROOF/L
language. If function #2 is called before function #3 has been evaluated, function
#2 will attempted to modified an uninitialized object.

To avoid this problem, the objects should be initialized in the program initialization
method:

begin
;(R[|objectl|](init),

R[|object2|](init))
end

A PROOF/L module may also have a program initialization method. The initial-
ization method of a module will be executed before the initialization method of the
program or module that imports the module.

Consider the program represented in Figure A.l. The main program imports modules
1, 2 and 3. Module 1 imports modules 4 and 5; module 2 imports modules 5 and 6;
module 3 imports modules 6 and 7.

78

Figure A.l: A PROOF/L program with modules

When the program in executed, the initialization methods for modules 4-7 would be
executed first; then the initialization methods for modules 1-3 would be executed.
Finally, the program initialzation method would be executed.

There may be cases where a program or module does not require an initialization
section.

An empty program or module initialization method is specified as follows:

begin

end

or

end

A.3 Method Declarations

Methods are declared within class declarations and global method blocks. There
are two types of methods: pure applicative methods and modifier methods. Only
applicative methods may occur within a global method block.

A method has the following syntax:

method name (method-io) guard-dcln expression func

79

A.3.1 Applicative Methods

Pure applicative methods are methods which do not change the state of an object.
Applicative methods may neither invoke the reception function, nor invoke another
method which invokes the reception function.

A.3.2 Modifier Methods

Modifier methods may invoke the reception function, applicative methods or other
modifier methods. The reception function attaches data to an object as defined in
the object's composition. Since modifier methods can change the state of an object,
thus applicative semantics do not apply to modifier methods. However, by limiting
the places where the reception function may be invoked, applicative semantics still
apply for well-defined portions of a PROOF/L program.

A.3.3 Global Method Declaration

Sometimes the programmer may wish to define methods that are not associated with a
particular class. For instance, it may be convenient to define routines such as IsPrime,
Double and Summation that are available to several disjoint classes. *

A global method may be called by any other method.

A global method call can occur in another global method, a class method, the body
of an object, or the program initialization method. Any global method calls must
occur after the definition of the global method. Currently, forward declaration is not
allowed in PROOF/L. Any number of methods may be declared in the global/end
global block as follows:

global
method double(number : int -> int)

expression
(+ number number)

end global

Global methods blocks may be interspersed with class declarations.
1 Our inclusion of global methods in PROOF/L is not meant to subvert the object-oriented programming paradigm.

By including global methods in our definition, we have in fact made it much easier to write non-object oriented
programs; we can only hope that the PROOF/L programmer will recognize the numerous advantages of an OO
approach. If everything in PROOF/L were represented as an object (for instance, in Smalltalk, even integers are
objects), global methods would be less important.

80

A.3.4 Object Synchronization

Synchronization among objects is achieved by attaching an optional precondition or
guard expression, to class methods. The object which invokes the method is suspended
when the attached guard expression evaluates to False, and resumed when the guard

becomes True.

The guard expression must comply with the following rules:

1. It must be an applicative function that returns either True or False.

2. It may not invoke the reception function.

3. It may only refer to the data in the composition of the method's class; it may
not refer to the data in the composition of other objects.

4. It may not invoke a class method. It may, however, invoke global methods.

A guard may only be attached to class methods and modifier methods. A guard may

not be attached to a global method.

A guard is attached to a method by placing a guard keyword and accompanying
applicative expression after the method's input-output declaration and before the

method's expression clause.

Example:

class GumballMachine
composition

numberOfGumballs : int

end composition

method DispenseGumball(-> Gumball)

guard
(> numberOfGumballs 0)

expression
object Gumball(size = 1)

method FillMachineC addGumballs : int -> GumballMachine)

expression
object GumballMachine(+ numberOfGumballs addGumballs)

end class

81

In the above example, when an object invokes the DispenseGumball method and
there are no gumballs in the machine, the calling object will suspend execution until
gumballs are added to the machine. To add gumballs to the machine, another object
must modify the composition of the object with the reception function.

Consider instance MyGumballMachine of class GumballMachine:

R[|MyGumballMachine|](MyGumballMachine.FillMachine 100)

A.4 Comments

When a # character is placed on a line, the parser will ignore the # and the remaining
characters after the # on the same line. The parser will also ignore blocks of text that
appear within /* and */.

A.5 Data Types

A.5.1 The boolean Type

The truth values are textually represented in a PROOF/L program as true and false.

A number of built-in functions and special forms return boolean values.

A.5.2 The int Type

An integer is a member of the set { ..., -2, -1, 0, 1 , 2, ... }.

Currently, the lower and upper bounds of integers are not defined by this document
and are implementation dependent.

A.5.3 The real Type

Refer to the formal syntax rules of PROOF/L for detailed information on how reals
are represented.

Examples:

82

1.34
l.lOE-01
3.14159

Currently, the lower and upper bounds of real numbers are not denned by this docu-
ment and are implementation dependent.

A.5.4 The string Type

Examples:

'this is a string'
'PRDOF/L'
'1234'

Currently, the upper limit of the length of strings is not defined by this document and
is implementation dependent.

A.5.5 The list Type

The list type of PROOF/L is similar to the list of functional languages such as LISP

and Scheme.

A list in PROOF/L is defined recursively as follows: A list is either empty or non-
empty. Non-empty lists are represented as a structure with two fields, head and tail.
The head of a list may refer to any PROOF/L object (including another list), whereas
the tail of a list must refer to another list.

PROOF/L provides a number of facilities for list creation and modification (see Sec-
tion A.7.4). The list-creation function creates a new list. A null list is textually
represented in PROOF/L as:

[]

Non-null lists are created using function.

83

[1]
[12 3]
[12 3 4 5]

The list-creation function may be nested.

[[12] [12] [34]]
[[[1]]]
[1 2 [3 4] [56]]

Improper lists are lists which the tail of the list does not point to another list structure
or NULL. Improper lists are not supported in PROOF/L.

A.5.6 User-defined Types

User-defined types are defined using the class construct (see below). When a class
is defined, there exists an opportunity to define methods that work with instances of
the class. Although some languages provide a separate mechanism to declare data
types without associated methods (e.g., the typedef construct of C/C++), there is
no such construct provided with PROOF/L.

A.6 PROOF/L Special Forms

The following section describes the PROOF/L special forms. Special forms are func-
tions with syntactical forms that differ from the syntactical form used by methods.

Built-in functions (such as inc and dec) use the same syntax as methods; if they were
not defined in PROOF/L, they could be defined as global methods.

A special form, however, has a syntax that differs from that of methods and subse-
quently cannot be declared by the user.

A.6.1 List Construction

A list can be constructed using the list construction operator.

Examples:

84

[12 3]
[[12] [34]]
[[123] [456]]

A.6.2 Alpha Function

The alpha function is syntactic sugar; the alpha expression:

alpha function-name [argi arg2 ■■■ argx~\

is equivalent to

[(function-name arg{) (function-name arg2) ■■■
(function-name argx)]

when the function has a single argument. When the function has n>l arguments,

beta[function-name] [[ßi,i aii2 • • • a,\,n] [«2,i ^2,2 • • • «2,« J

• • • [&x,\ ax,2 • • • ax,n]

is equivalent to

[(function-name a^i ai;2 . . . ai,n)
(function-name a2,\ a2,2 ■ ■ ■ «2,«)
(function-name ax<\ aXi2 • • • ax,n)]

If the function to be applied to the argument list accepts only one argument, the
argument-list should consist of a list of items of whatever type the function expects.

Example:

alpha[inc][12 3 4] =► [234]

If the function to be applied to the argument accepts more than one argument, the
argument-list should consist of a list of lists. Each list in the argument list should
contain an element for each of the function's arguments.

Example:

85

alpha +[[12] [34] [5 6]] =»[3 7 11]

Although parallelism needs not be expressed explicitly in PROOF/L, the alpha func-
tion may be thought of as an explicit parallel structure.

A.6.3 Beta Function

The beta function accepts a list of functions and a list of arguments:

bet&lfunctiori! function2 ... functionx] [argx arg2 ... argx~\

For each pair of functions and arguments j, if f unctionj accepts a single element, then
argj must be an item of the type that f unction j expects. If f unction j accepts n£l
arguments, argj must be a list of arguments [argjtl argj>2 arg^n J where for each z,
ar9(h z) is of the same type as parameter z of f unction j.

The beta function is syntactic sugar; an beta expression of the form above is equivalent
to

[(,functionx arg1)X arg1<2 ... arg1>ni)
(function2 arg2tl arg2<2 ... arg2m) . .
(functionx argXil argXt2 ... argx,nx)]

A.6.4 Let Function

let id = funci in func2

is equivalent to

apply lambda(id) (func2) to junc\

For instance,

let x = (+ 3 3) in (+ x x)

is equivalent to

apply lambda(x)(+ x x) to (+ 3 3)

86

A.6.5 Sequence Function

;((/unci ...), (/unc2 ...), ... (funcn ...))

Evaluates each function funa, func2, ..., /uncn. The result of the sequence operator
is the result returned by the final function in the function list. The results of the
functions other than the final function are discarded. If any of the the function can
cause side effects (namely, if the reception function is called), each function in the list
is evaluated sequentially. If none of the functions cause side effects, the functions may
be evaluated in parallel. The decision to evaluate the functions in parallel is made
by the PROOF/L implementation. Whether the functions are evaluated in parallel is

not explicitly stated in a PROOF/L program.

A.6.6 Lambda Function

lambda (id) func

The lambda function creates a function.

method test(a : int -> int)
expression

while(lambda(x)(< (head x) 10),
lambda(x)([(+ (head x) 1) (+ (head x) (tail x))]))

[1 0]

Implementation Note:

The current implementation of PROOF/L only uses lambda expressions
within the while function. Furthermore, the implementation only supports
single arguments to lamdba expressions.

A.6.7 Object Function

object id (inst-list)

The object special form creates a new composition of an object. It does not create a
new process associated with that object, nor does it modify the contents of an existing
object. Frequently, the result of an object special form is used by the reception

function to modify an object.

87

A.6.8 Apply Function

Apply is used to apply a function to its arguments. If the function accepts a single
argument, the apply argument should be an item of the same type that the function
expects. If the function accepts more than one argument, the apply argument should
consist of a list of length n, where n is the number of arguments the function accepts,
and each element in the list is of the same type of the corresponding argument of the
function.

Examples:

apply inc to 1

apply lambda(x y)(+ x y) to [1 2]

A.6.9 Loop

loop (func)

The loop special form repeatedly evaluates func. The evaluation of the loop special
form never terminates.

Example:

loop ((out "Hello world"))

The loop function is syntactic sugar; it is equivalent to

while (True, lambdaCz)/fmc) []

where z is an identifier not in func.

A.6.10 While Function

while (funcx , func2) func3

funcx and func2 must be lambda functions, func?, can be any valid expression.

The while special form is defined recursively as follows:

while (funci , func2) func3 =>
if (apply func1 to func3,
while(funci,func2) apply func2 to func3,
func3)

A.6.11 If Function

if (.funci , func2 , func3)

The if special form accepts three arguments. If func^ evaluates to be true, then if
returns the result of the evaluation of func2; otherwise, if returns the result of the

evaluation of func3.

Examples:

if (> a b, a, b) =>(the maximum of a, b)

if ((> ab),
if ((> a c),a,c),
if ((> b c),b,c))

=>• (the maximum of a, b c)

A.6.12 Reception Psuedo-Function

The Reception Psuedo-Function is used to modify the composition of an object. Unlike
other functions in PROOF/L, the Reception Psuedo-Function is not an applicative
function since it alters the state of an object.

The Reception Psuedo-Function may only appear:

• within the body of an object

• within a modifier method

within the program initialaztion method

The compiler should generate an error if the reception function appears anywhere

else.

89

Table 1: A multi-mode locking mechanism.

R-Lock W-Lock M-Lock
R-Lock compatible compatible incompatible
W-Lock compatible incompatible incompatible
M-Lock incompatible incompatible incompatible

The Reception Psuedo-Function has the following form:

R[| name |] func

where name is the name of the object to be modified (the recipient) and func is a valid
applicative PROOF/L function that returns a value of the recipient's class. The func
must not include a reference to a Reception Psuedo-Function or a modifier method.

Example:

R[|objectl|](objectl.Init)

The major difference between modification of objects with the Reception Pseudo-
Function and the traditional assignment statement are

• The evaluatation of the expression func can be in parallel since func contains
only applications of purely applicative functions.

• PROOF/L provides a mechanism that prevents the simultaneous modification of
objects.

PROOF/L prevents the simultaneous modification of objects with a three-mode lock-
ing mechanism. At any moment, an object involved in an expression is in one of the
following three categories:

• read-only : The expression only needs to read the value of the object.

• will-modifiy : The expression will modify the object, but the modification does
not occur at this moment.

• modifying : The expression is currently modifying the object.

The three types of locks, R-Lock, W-Lock, and M-Lock are associated with the three
statuses of an object, read-only, will-modify and modifying, respectively. A lock

90

is granted only when it is compatible with other locks granted for the same object,
according to the compatibility chart in Table 1.

Before the evaluation of func in the Reception Pseudo-Function, a W-Lock must
placed on the recipient, if possible. If a W-Lock cannot be placed on the recipient
immediately, the process waits until the lock can be placed. Once func is evaluated,
a M-Lock is placed on the object and the object is modified.

A.7 Built-in PROOF/L functions and identifiers

A.7.1 Integer Manipulation Functions

+,-5*A>mod

dec

A.7.2 Real Manipulation Functions

+,-,*A>mod

A.7.3 Numeric Conversion Functions

Function Name Inputs Outputs Description

floor real int floor

ceiling real int ceiling

trunc real int trunc

round real int round

A.7.4 List Manipulation Functions

The following functions work with the list data-type, defined in section A.5.5.

head

The head function accepts a single argument, a list, and returns the head of the list.

91

Examples:

(head [12 3]) =>1
(head [[12] [3 4]]) =>[1 2]
(head (head [[1 2] [3 4]])) =>1

tail

The tail function accepts a single argument, a list, and returns the tail of the list.

Examples:

(tail [1]) =»[]
(tail [1 2 3]) =»[2 3]
(tail [[12] [3 4]])=>[[3 4]]
(tail (tail [[12] [3 4]])) =►[]

last

The last function accepts a single argument, a list, and returns the last element in
the list.

Examples:

(last [12 3]) =>3
(last [[12] [34]])^[34]
(last (last [[12] [3 4]])) =*4

append_right

The append-right function accepts two parameters

(append_right argi arg2)

92

where ar9l is a list of size n and arg2 is a member of any type. It returns a list with
n+1 parameters, where elements 1-n correspond to elements 1 - n of argx and with

arg2 as element n + 1.

Examples:

(append-right [12]3)=»[123]
(appendjright [] 1) =»[1]
(append^right C [1 2]] [3 4]) =»[C 1 2] [3 4]]

The append right function requires that a deep-copy be made of the list passed in
argi; use of append-right can be very costly and should be avoided when possible.

appendJeft

The appendJeft function accepts two parameters

(append JLeft argi arg2)

where ar9l is a member of any type and arg2 is a list. It returns a list with ar9l as
the first element followed by each of the elements of arg2.

Examples:

(appendJLeft 4 [12 3]) =»[4 12 3]
(append-left [12 3] [4 5 6]) ==>[[1 2 3] 4 5 6]

listref

(listref list i)

The listref function returns the ith element of list. The first element of the list is

numbered 0.

Examples:

93

(listref [1 2 3] 0) =*1
(listref [[1 2] [3 4]] 1) =*[3 4]
(listref (listref [[1 2] [3 4]] 1) 1) =^3

Since the list is a linked structure, the worst case access time for a list of n elements
is 0(n). An array, although not as flexible as a list, provides 0(1) access time.

A.7.5 self

The self identifier is used with the methods of a class to access the composition of
the class. Use of self is infrequent; it is usually used to return the entire composition
of the class from a function.

Example:

class sample
composition

a : int
b : int

end composition
method ChangelfOne(number : int -> sample)

expression
if((= number 1),

object sample (a=a+10,b=b+20) ,
self)

end method
end class

self may also be used to access a member in the composition when a variable name
in the method declaration is the same as a variable name in the composition.

Example:

class sample
composition

a : int
b : int

end composition
method ChangelfOne(a : int -> int)

94

expression
(+ a self.a)

end method
end class

A.7.6 super

The super identifier is used within the methods of a subclass to access the superclass.
Usually it is used to access the overriden methods of superclass.

Example:

class superclass
method DoSomething(->int)

expression (+ 2 2)
end class

class subclass of superclass
method DoSomething(->int)

expression (+ 2 (super.DoSomething))

end class

In the above example, a call to DoSomething of subclass would result in the sum of 2
plus the result of calling the DoSomething method of superclass.

A.8 Implementation Notes

The current implementation of PROOF/L does not support a number of features

described in this chapter:

• Inheritance

• Modules

• Modifier methods

• Arrays

• Input-Output Functions

• Lambda functions outside of while functions.

95

Appendix B

Syntax of PROOF/L

The following is a formal syntax for PROOF/L in extended BNF. This is an expanded
version of the syntax presented in [3]. Terminals appear in bold. Non-terminals
appear in italics.

mam-program

module

import-list

more-imports

program name : import-list class-list obj-list body-list program-body

module name : import-list class-list obj-list body-list program-body

more-imports name

name , more-imports

class-list class-def class-list

class-def

class-ins

class name class-ins super-class compostion method-def end class
global method-def end global

(dcln-list)

program-body

body-list

begin func end
begin end
end

body-def body-list

body-def body of object name : func

obj-list obj-list obj-def

obj-def

ins-opt

active-opt object name-list : instance of name ins-opt

(name-list)

active-opt active
pseduo
passive

super-class

name-list

composition

of name

name , name-list
name

composition var-list end composition

var-list

method-def

var-list dein

method method-def

method

guard-dcln

method-io
input-list

output-list

dcln-list

method name (method-io) guard-dcln expression func
external string method-def (method-io) { include-list }

guard (bool-exp)

input-list -> output-list
dcln-list

dcln-list

the-dcln-list

the-dcln-list

dein

dein , the-dcln-list
dein

name : data-type
name : class-name
name : list-opt (data-type)

97

data-type

list-opt

name : list-opt (name)
name
data-type
list
list-opt (data-type)

int
boolean
real
array [integer] of data-type

list * list-opt
list

class-name

inst-list

name

inst , inst-list
inst

inst

June

name = func

alpha name [func-list]
beta [name-list][func-list]
delta (name func-list)
let name = func in func
;(func-list)
lambda (name) func
object name (inst-list)
apply func to func
loop (func)
while (func, func) func
if (func, func, func)
R[| name |] func
(func-list)
[func-list]
binop func func
boolop func func
not func
prefix name
integer
float
NIL
string
true
false
self

(Function Call)
(List construction)

98

prefix self
super
name

func-list

binop

boolop

func-list , func

+

*

/
mod

1 =

<
<=
>
> =
or
and

(Binary Operators)

(Boolean Operators)

letter

digit

underscore

name

sign

float

string

string-element

include-list

include-char

a | b | c | ... | z

1|2|3|4|5|6|7|8|9|0

letter (letter \ digit \ underscore)*

+ 1-
(number)+ . (number)*
(number)+ . (number)* E sign (digit)

' (string-element)* '

• <any character other than ' >

► (include-char)*

► <any character other than } >

+

99

Bibliography

[1] S. S. Yau, X. Jia, D-H. Bae, M. Chidambaram, and G. Oh, "An Object-Oriented
Approach to Software Development for Parallel Processing Systems," Proc. 15th
Int'l Computer Software & Applications Conf. (COMPSAC 91), September 1991,
pp. 453-458.

[2] S. S. Yau, D.-H. Bae and M. Chidambaram, "A Framework for Software Devel-
opment for Distributed Parallel Computing Systems, " Proc. Third Workshop on
Future Trends of Distributed Computing Systems, April 1992, pp. 240-246.

[3] S. S. Yau, D.-H. Bae, M. Chidambaram, G. Pour, V. R. Satish, W-K. Sung and
K. Yeom, "Software Engineering For Effective Utilization of Parallel Processing
Computing Systems," RL-TR-93-113, Final Technical Report, Rome Laboratory,
Air Force Material Command, Griffiss Air Force base, New York, June 1993.

[4] S. S. Yau, X. Jia, and D.-H. Bae. "PROOF: A Parallel Object-Oriented Func-
tional Computation Model," Journal of Parallel and Distributed Computing, Vol.
12, No. 3, July 1991, pp. 202-212

[5] Livermore National Laboratory, An Intermediate Form Language IF1, Reference
Manual 1985.

[6] D. J. Pease, "Parallel Computing Systems", Final Technical Report, Rome Lab-
oratory, Air Force Material Command, Grifhss Air Force base, New York, June
1992.

[7] J. C. Browne, M. Azam and S. Sobek, "CODE: A Unified Approach to Parallel
Programming," IEEE Software, Vol. 6. No. 4, July 1989, pp. 10-18.

[8] K. Zink and J. C. Browne, "Design Approach for High Performance Comput-
ing," PD-101, Final Technical Report, Rome Laboratory, Air Force Material
Command, Griffiss Air Force base, New York, March 1993.

[9] P. H. Mills, L. S. Nyland, J. F. Prins, and J. H. Reif, "Prototyping N-body
Simulation in Proteus," Proc. Sixth Int'l Parallel Processing Symposium, March
1992, pp. 476-482.

[10] R. Jagannathan, A. R. Downing, W. T. Zäumen, T., and R. K. S. Lee, "Dataflow-
based Methodology for Coarse-grain Multiprocessing on a Network of Worksta-
tions," Proc. Int'l Conf on Parallel Processing, Vol. II, 1989, pp. 209-219.

100

[11] J.-L. Gaudiot and L.-T. Lee, "Occamflow: A Methodology for Programming
Multiprocessor Systems," Journal of Parallel and Distributed Computing, Vol. 7,

1989, pp. 96-124.

[12] F. Baiardi, et al, "Pisa Parallel Processing Project on General-Purpose Highly-
Parallel Computers," Proc 15th Annual Int'l Computer Software & Applications

Conf. (COMPSAC91), 1991, pp. 536-542.

[13] M. J. Flynn, "Some Computer Organizations and Their Effectiveness," IEEE
Trans, on Computers, C-21, No. 9, September 1972, pp. 948-960.

[14] W. D. Hillis, The Connection Machine, MIT Press, Cambridge, Massachusetts,

1985.

[15] H. T. Kung. "Notes on VLSI Computation," in D. J. Evans, ed., Parallel Pro-
cessing Systems. Cambridge University Press, 1982, pp. 40-62.

[16] K. Hwang, Advance Computer Architectures, McGraw Hill, 1993.

[17] K. Hwang. "Advanced Parallel Processing with Supercomputer Architecture,"
Proc. IEEE, Vol. 75, No. 10, 1987, pp. 1348-1379.

[18] J. Test, M. Myszewski, and R. C. Swift. "The Alliant FX/Series: Automatic
Parallelism in a Multiprocessor Mini-Supercomputer," in W. J. Karplus, ed.,
Multiprocessors and Array processors, Simulation Councils Inc., 1987, pp. 35-44.

[19] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, K. P. McAuliffe, and
E. A. Melton. "The IBM Research Parallel Processor Prototype (rp3)," Proc.
Int'l Conf. on Parallel Processing, 1985, pp. 764-711.

[20] S. Thakkar, P. Gifford, and G. Fielland. "Balance: A Shared Memory Multipro-
cessor," Proc. Second Int'l Conf. on Supercomputing, 1987, pp. 23-30.

[21] J. Graham and J. Rattner. "Expert Computation on the iPSC Concurrent Com-
puter," in W. J. Karplus, ed., Multiprocessors and Array processors, Simulation

Councils Inc., 1987, pp. 167-176.

[22] J. F. Palmer. "The NCUBE Family of Parallel Supercomputers," in W. J.
Karplus, ed., Multiprocessors and Array processors, Simulation Councils Inc.,

1987.

[23] C. Y. Chin and K. Hwang. "Packet Switching Networks for Multiprocessors and
Dataflow Computers," IEEE Trans, on Computer, Vol. C-33, No. 9, 1984, pp.

991-1003.

[24] Inmos Ltd., The Transputer Databook, Inmos Ltd., Bristol, UK, 1989.

[25] Cray Research Inc., Fortran(CFT) Reference Manual, 1984.

[26] Ardent Computer Co., Programmer's Guide, 1989.

[27] C. Huson, T. Mache, J. Davies, M. Wolfe and B. Leasure, "The KAP-205: An
Advanced Source-to-Source Vectorizer for the Cyber 205 Supercomputer," Proc.
Int'l Conf. on Parallel Processing, 1986, pp. 827-832.

101

[28] P. R. Fenner, "The Flex/32 for Real-Time Multicomputer Simulation," in W.
J. Karplus, ed., Multiprocessors and Array Processors, Simulation Councils Inc.,
1987, pp. 127-136.

[29] F. Allen, M. Burke, P. Charles, R. Cytron and J. Ferrante, " An Overview of
the PTRAN Analysis System for Multiprocessing," Journal of Parallel and Dis-
tributed Computing, Vol. 5, No. 5, 1988, pp. 617-640.

[30] Z. Bozkus, et al, "Compiling Distribution Directives in a Fortran 90D Com-
piler," Technical Report SCCS-388, Northeastern Parallel Architecture Center,
July 1992.

[31] C. M. Chase, A. L. Cheung, A. P. Reeves and M. R. Smith, "Paragon: A Paral-
lel Programming Environment for Scientific Applications Using Communication
Structures," Journal of Parallel and Distributed Computing, Vol. 16, 1992, pp.
79-91.

[32] C.A.R. Hoare, "Communicating Sequential Processes," Comm. ACM, Vol. 21,
No. 8, August 1978, pp. 666-677.

[33] Department of Defense, Reference Manual for the Ada programming Language,
ANSI/MIL-STD-1815A-1983, 1983.

[34] N. Carriero and D. Gelernter, "Linda in Context," Comm. ACM, Vol. 32, No. 4,
1989, pp. 444-458.

[35] A. S. Grimshaw, "Easy-to-Use Object-Oriented Parallel Processing with Mentat,"
Computer, Vol 26, No. 5, 1993, pp. 39-51.

[36] D. Gannon and J. K. Lee, "Object-Oriented Parallel Programming Experiments
and Results," Proc. 1991 Supercomputing Conf, 1991.

[37] F. B. Irisa, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Malony and B. Mohr,
"Implementing a Parallel C+-1- Runtime System for Scalable Parallel System,"
Proc. 1993 Supercomputing Conf., 1993.

[38] J. McGraw, et al, SISAL: Streams and Iteration in a Single Assignment Language,
Language Reference Manual Version 1.2, 1985.

[39] K. L Clark and S. Gregory, "PARLOG: Parallel Programming Logic," ACM
Trans, on Programming Languages and Systems, Vol. 8, No. 1, 1986, pp. 1-49.

[40] H. Liberman, "Concurrent Object-Oriented Programming in Act 1," in Yonezawa
and M. Tokoro(eds.), Object-Oriented Concurrent Programming, MIT Press,
1987, pp. 9-36.

[41] S. S. Yau, X. Jia, and D.-H. Bae, "Trends in Software Design for Distributed
Computing Systems," Proc. Second Workshop on the Future Trends of Distributed
Computing Systems, October 1990, pp. 154-160.

[42] R. W. Sebesta, Concepts of Programming Lanuages, Benjamin/Cummings Pub-
lishing Company, 1992.

102

[43] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen, Object-
Oriented Modeling and Design, Prentice Hall, 1991.

[44] P. Coad and E. Yourdon, Object-Oriented Analysis, Yourdon Press, 1991.

[45] K. S. Rubin and A. Goldberg, "Object Behavior Analysis," Comm. ACM,
September 1992, Vol. 35, No. 9, pp. 48-62.

[46] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall,

Englewood Cliffs, New Jersey, 1981.

[47] D. E. Eager J. Zahorjan and E. D. Lazowska, "Speedup Versus Efficiency in
Parallel Systems," IEEE Trans, on Computers, Vol. 38, No. 3, 1989, pp. 408-

423.

[48] H. S. Stone, "Multiprocessor Scheduling with the Aid of Network Flow Algo-
rithms," IEEE Trans, on Software Engineering, Vol. SE-3, No. 1, 1977, pp. 85-

93.

[49] C. C. Shen and W. T. Tsai, " A Graph Matching Approach to Optimal Task As-
signment in Distributed Computing Systems Using a Minimax Criterion," IEEE
Trans, on Computers, Vol. 34, No. 3, 1985, pp. 197-203.

[50] W. W. Chu, L. J. Holloway, M.-T. Lan, and K. Efe, "Task Allocation in Dis-
tributed Data Processing," IEEE Computer, Vol. 13, No. 11, 1980, pp. 57-69.

[51] 0. I. El-Dessouki and W. H. Huan, "Distributed Enumeration on Network Com-
puters," IEEE Trans, on Computers, Vol. C-29, No. 9, 1980, pp. 818-825.

[52] K. Efe, "Heuristic Models of Task Assignment Scheduling in Distributed Sys-
tems," IEEE Computer, Vol. 15, No. 6, 1982, pp. 50-562.

[53] P. R. Ma and E. Y. S. Lee, "A Task Allocation Model for Distributed Computing
Systems," IEEE Trans, on Computers, Vol. C-31, No. 1, 1982, pp. 41-472.

[54] V. M. Lo, "Task Assignment to Minimize Completion Time," Proc. IEEE 5th
Int'l Con), on Distributed Operating Systems, 1985, pp. 329-336.

[55] S. M. Shatz, and S. S. Yau, " A Partitioning Algorithm for Distributed Software
Systems Design," Information Sciences, Vol. 38, No. 2, 1986, pp. 165-180.

[56] S. S. Yau and I. Wiharja, "An Approach to Module Distribution for the Design of
Embedded Distributed Software Systems," Information Sciences, Vol. 56, 1991,

pp. 1-22.

[57] S. S. Yau, D.-H. Bae, and Gilda Pour, "A Partitioning Approach for Object-
Oriented Software Development for Parallel Processing Systems," Proc. 16th
Annual Int'l Computer Software & Applications Conf. (COMPSAC92), October

1992, pp. 251-256.

[58] S. S. Yau and V. R. Satish, "A Task Allocation Algorithm for Distributed Com-
puting Systems," Proc. 17th Annual Int'l Computer Software & Applications

Conf. (COMPSAC93), November 1992, pp. 336-342.

103

[59] C. N. Nikolaou and A. Ghafoor, "On the Assignment Problem of Arbitrary Pro-
cess Systems to Heterogeneous Distributed Computer Systems," IEEE Trans, on
Computers, Vol. 41, No. 3, March 1992, pp. 257-273.

[60] D. Fernandez-Baca, "Allocating Modules to Processors in a Distributed Systems,"
IEEE Trans, on Software Engineering, Vol. 15, No. 11, November 1989, pp. 1427-
1436

[61] S. M. Shatz, J-P Wang and M. Goto, "Task Allocation for Maximizing Reliability
of Distributed Computer Systems," IEEE Trans, on Computers, Vol. 41, No. 9,
September 1992, pp. 1156-1168.

[62] G. Goldberg, "Multiprocessor Execution of Functional Program," Journal of Par-
allel Programming, Vol. 17, No. 5, 1988, pp. 425-473.

[63] I. Foster, New Concepts in Parallel Programming, Prentice Hall, Englewood
Cliffs, NJ, 1990.

[64] S. S. Yau and G. H. Oh, "An Object-Oriented Approach to Software Development
for Autonomous Decentralized Systems," Proc. Int'l Symposium on Autonomous
Decentralized Systems (ISADS 93), 1993, pp. 37-43.

[65] S. S. Yau, K. Yeom, Bing Gao, Ling Li and D-H. Bae, "An Object-Oriented Soft-
ware Development Framework for Autonomous Decentralized Systems," Proc.
Second Int'l Symposium on Autonomous Decentralized Systems (ISADS 95),
1995, pp. 405-411.

[66] nCUBE Inc., nCUBE 2 Programmer's Manual, 1992.

[67] Kendall Square Research, Inc., KSR C Programming, 1993.

[68] S.K.Skedzielewski and M. L. Welcome, "Data Flow Graph Optimization in IF1,"
Proc. Functional Programming Languages and Computer Architecture Conf.,

1985, pp. 17-34.

[69] Z. Ariola and Arvind, "P-TAC: A Parallel Intermediate Language," Proc. Func-
tional Programming Languages and Computer Architecture Conf., 1989, pp. 230-
242.

[70] H.P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, M. J. Plasmeijer, and
M. R. Sleep, "Towards an Intermediate Language based on Graph Rewriting,",
Proc. PARLE Conf, LNCS 259, 1987, pp. 159-175.

4U.S. GOVERNMENT PRINTING OFFICE: 1995-710-126-20061)

104

MISSION

OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

