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Chapter 1 

Introduction 

In spite of rapid advances in computer technology, sophisticated Air Force applica- 
tions, such as in the areas of C3I (command, control, communications and intelli- 
gence), avionics, logistics and engineering design, require great computing power to 
compute the required tasks within specified time frame. Such computing power of- 
ten is not available in existing sequential computers. Parallel processing appears to 
be a promising solution to satisfy such needs. Currently, although there are various 
cost effective parallel processing systems available, effective utilization of such systems 
is still not achievable due to lack of effective methodologies to develop software for 
such systems. To fulfill this need, we have developed a software development frame- 
work [1, 2, 3] based on the computation model PROOF (PaRallel Object-Oriented 
Functional) [4] in which the object-oriented paradigm is integrated with the functional 
paradigm so that the software development framework has many useful features of 
both object-oriented paradigm and functional paradigm, such as understandability, 
reusability, extensibility, maintainability, expressiveness, and implicit parallelism. The 
major features of PROOF include expressing various granularity levels of parallelism, 
integrating referential transparency and history sensitivity, and supporting inheri- 
tance and synchronization without interference. Our software development framework 
is architecture-independent and thus can be used for developing software for various 
types of parallel processing systems. This software development framework covers 
from the requirements analysis and decomposition phase to the generation of target 
codes. In this framework, parallel aspects of the software are treated as a prime issue 
using object-oriented concepts by identifying parallel objects in the object decompo- 
sition phase of the software development. The programming language used in this 
framework is PROOF/L based on the PROOF computation model. PROOF/L is 
based on C++ with additional parallel constructs required in PROOF. 

In this project, we have completed the following tasks: 

• Development of a front-end translator from PROOF/L to IF1 [5], which is inde- 
pendent of the machine architecture. IF1 was chosen because it has been fully 
developed and can be used by a tool PAWS [6] for estimating the performance 
of the software to be developed. 



• Development of two back-end translators from IF1 to the C languages run on 
two different MIMD machines: nCube and KSR. These translations depend on 
the machine architecture. 

• Evaluation of the effectiveness of our software development framework for parallel 
processing systems. 

• Extension of PROOF/L with the input/output functions and array construct. 

• Investigation on the integration of PROOF/L with existing programming lan- 
guages, such as C and FORTRAN. 

In this report, we will briefly summarize in Chapter 2 existing parallel processing 
systems, and surveyed existing software development methods for parallel processing 
systems. In Chapter 3, our software development framework for parallel processing 
systems is summarized with an illustrative example. In Chapter 4, we will present 
the evaluation results of our software development framework by comparing it with 
other existing approaches, such as CODE(Computation-Oriented Display Environ- 
ment) [7, 8], Proteus [9], Jagannathan's coarse-grain dataflow based methodology [10], 
Occamflow [11] and Pisa Parallel Processing Projects(P4) [12]. In this chapter, we 
will discuss the effectiveness of our framework in terms of software development effort, 
application areas and the number of lines of code. In Chapters 5 and 6, the front-end 
translation process from PROOF/L to IF1 and the back-end translation process from 
IF1 to nCube C and from IF1 to KSR C will be presented. In Chapter 7, we will 
discuss extension of PROOF/L to include input/output features and array constructs. 
In Chapter 8, we will discuss our approach to integrating PROOF/L with existing 
languages, such as C and FORTRAN. In Chapter 9, we will compare IF1 with the 
Intermediate Program Representation IPR, which we used before [3], in terms of data 
dependency representation, application areas and maturity. Finally, the conclusions 
and future work will be given in Chapter 10. For the sake of completeness, we provide 
PROOF/L User's Manual and the syntax of PROOF/L as appendices. 



Chapter 2 

Background 

In this chapter, we will briefly summarize the architectures of current parallel pro- 
cessing systems and software development methods available for these machines. 

2.1     Parallel Computers 

Flynn [13] classified computers into four categories based on the ways instructions and 
data are processed: SISD (Single Instruction stream, Single Data stream), SIMD (Sin- 
gle Instruction stream, Multiple Data stream), MISD (Multiple Instruction stream, 
Single Data stream) and MIMD (Multiple Instruction stream, Multiple Data stream). 
Among them, SISD computers are sequential computers which do not execute instruc- 
tions or data in parallel, and commercial MISD machines do not exist. Thus, in this 
section, we will discuss SIMD and MIMD parallel machines. 

2.1.1     SIMD Parallel Machines 

In a SIMD parallel machine, processing elements are connected through an intercon- 
nection network, and are synchronously controlled by a central control unit. Each 
processing element has access to its own data, and thus the same operation can be 
performed simultaneously on many data items. Therefore, data parallelism is easily 
exploited among the processing elements in a SIMD parallel machine. The parallel 
machines belonging to this category include Connection Machine CM-2 [14], DAP 
(Distributed Array Processors) [15], and MasPar Mp-1 [16]. 

2.1.2    MIMD Parallel Machines 

In comparison to SIMD parallel machines, an MIMD parallel machine consists of 
asynchronous parallel processors. Each processor has its own instruction and data set 



to be processed. These processors communicate by passing messages among the pro- 
cessors. These machines can be further divided into shared memory parallel machines 
and distributed memory parallel machines [16]. 

An MIMD shared-memory parallel machine consists of a number of processors all hav- 
ing access to a single shared memory. The processors communicate by read and write 
operations, and are connected to the shared memory via one or more shared-buses or 
interconnection networks. As the number of processors in the system increases, the 
communication medium becomes a bottleneck in terms of performance as well as cost. 
Thus, a linear speed-up with an increase in the number of processors is not achievable 
or is limited to a certain number of processors. In MIMD shared-memory parallel 
machines, the major software design problems include data access synchronization 
and load balancing [16]. Shared-memory parallel machines include Cray X-MP and 
Y-MP series [17], Alliant FX8 [18], Encore Multimax [17], IBM RP3 [19], Sequent 
Balance [20], SGI PowerChallenge, and Convex Examplar. 

An MIMD distributed parallel machine consists of a set of processors, each having a 
non-shared local memory. Processors communicate by message passing via communi- 
cation channels. In MIMD distributed memory parallel machines, the synchronization 
is implicit through communication. The popular interconnection networks include hy- 
percube, ring, tree and mesh. Unlike shared memory parallel machines, distributed 
memory parallel machines are not affected by the memory contention problem and are 
more easily expandable. One of the problems encountered by the distributed mem- 
ory parallel computers is the message passing latency due to possible transferring of 
data via intermediate processors. The major software design problems include data 
placement, communication overhead and scheduling. The shared memory parallel ma- 
chines can be considered as a special class of distributed memory parallel machines in 
which all the processors are fully connected [16]. Our software development approach 
based on PROOF [4] is targeted for MIMD distributed memory parallel machines. 
Any approach for MIMD distributed memory parallel machines can be adopted to 
MIMD shared memory parallel machines by modifying communication mechanism 
from 'message passing' to 'shared variable'. MIMD distributed memory parallel ma- 
chines include hypercube [21], nCube [22], BBN [23], Inmos Transputer network [24], 
KSR [16], IBM SP-2, and DEC Alpha Server. 

2.2     Software Development Approaches 

Techniques for programming parallel processing systems can be classified in three 
categories [3]: 

• Parallelizing or vectorizing compilers 

• Parallel language constructs 

• Parallel programming languages 



Parallelizing or vectorizing compilers [26, 27, 28, 29, 30, 31] are widely used in con- 
junction with sequential programming languages, such as FORTRAN and C, usually 
for scientific computation. This approach is useful in that existing sequential software 
can be adapted to a parallel programming environment with minor modifications. 
However, parallelizing or vectorizing compilers can only detect parallelism associated 
with iterations over common data structures, such as arrays and matrices, and require 
extensive dependency analysis. Thus, it is not appropriate for developing large-scale 
software for parallel processing systems. 

The parallel language constructs approach is to extend the existing sequential pro- 
gramming languages with parallel constructs, such as input, output constructs in 
CSP [32], task and rendezvous mechanisms in Ada [33], in, out, rd, eval constructs 
in Linda [34], Mentat objects in Mentat [35], and collection, processors, distributions, 
alignment mechanisms in pC++ [36, 37]. This approach requires programmers to 
explicitly specify the communication and synchronization among parallel processes. 
Thus, considering that many errors in parallel software stem from incorrect synchro- 
nization and communication, this approach may increase the software development 

effort. 

Parallel programming languages are based on different paradigms. For examples, 
SISAL [38] is based on a functional paradigm tailored for scientific computation, 
PARLOG [39] is based on a logic paradigm, Act 1 [40] is based on an object-oriented 
paradigm, and PROOF/L [4] is based on object-oriented and functional paradigms. 
The underlying computation models of these programming languages are fundamen- 
tally different from those for imperative programming languages in that parallelism 
is mostly implicit and massive parallelism can be obtainable. 

Our software development approach for parallel processing systems belongs to the par- 
allel programming language category. It is based on the computation model PROOF 
in which an object-oriented paradigm is integrated to a functional paradigm in order 
to have the desirable properties of both paradigms. The object-oriented paradigm 
naturally reveals existing parallelism in the application problem structure [41]. Be- 
sides modifiability, maintainability and reusability, another advantage of PROOF is 
that the concept of an object can be used at earlier stages of the software devel- 
opment cycle than the implementation stage. Therefore, parallel processing aspects 
such as parallelism and communication among parallel components can be naturally 
handled at the earlier stages during software development. Consequently, it simplifies 
the handling of parallelism and communication among parallel components. How- 
ever, in the object-oriented paradigm, parallel execution among concurrent objects 
is the only source of parallelism, and the amount of parallelism to be exploited may 
not be sufficient for effective utilization of fine-grain processors. On the other hand, 
the property of referential transparency obtained from functional languages based on 
the functional paradigm reduces programmers' efforts for dealing with explicit race 
conditions caused by multiple tasks. As a result, the functional paradigm has great 
potential to exploit implicit parallelism by removing side-effects caused by assignment 
statements. For this reason, functional paradigm has been studied as an alternative 
to the imperative programming languages for parallel programming   [42]. 



We have compared our approach with the following existing software development 
approaches using parallel language constructs or parallel programming languages: 

• CODE [7, 8]: a graph-based software development method for MIMD parallel 
computer systems 

• Proteus [9]: a prototyping system consisting of a prototyping language and a 
transformation process to convert architecture-independent concurrent program 
to low-level code for the targeted parallel computer system 

• Jagannathan's coarse grain dataflow-based methodology [10]: a dataflow-based 
methodology for coarse-grain multiprocessing on a network of workstations 

• Occamflow [11]: a dataflow-based approach for programming multiprocessor sys- 
tems on a network of transputers 

• Pisa Parallel Processing Project(P4) [12]: a programming method for general 
purpose distributed memory parallel processing systems. 

These software development approaches for parallel processing systems focus on the 
exploitation of parallelism in numeric computation algorithms, and do not address 
large-scale software development issues, such as hierarchical structuring and data 
sharing. Except our approach, so far we have not seen any software development 
approaches for parallel processing systems which address such large-scale software 
development issues. Those approaches listed above and relevant parallel programming 
languages will be described and compared to our approach in Chapter 4. 



Chapter 3 

Our Approach 

3.1     Overview of Our Approach 

Our approach to software development for parallel processing systems is based on 
the computation model PROOF which incorporates the functional paradigm into the 
object-oriented paradigm. 

Our framework, as shown in Figure 3.1, consists of the fallowing phases: object- 
oriented analysis, object design, partitioning, PROOF/L coding, front-end transla- 
tion from PROOF/L to IF1, grain size analysis, back-end translation from IF1 to a 
target language of a parallel processing system, and allocation. In the object-oriented 
analysis, the requirements are decomposed into a set of interacting objects. The con- 
current/parallel aspects of the system behavior are analyzed and specified using the 
object-communication diagrams. The objects identified in the object-oriented analy- 
sis phase are then designed and verified in the object design phase. In the partitioning 
phase, the objects in the software system are partitioned into a set of clusters to im- 
prove the overall performance of the software system by minimizing communication 
cost and exploiting parallelism among objects. The front-end translation, grain size 
determination and back-end translation are grouped together by a dotted rectangle 
in Figure 3.1, called transformation, where the architecture-independent PROOF/L 
code is transformed into a target code to be allocated into the parallel machine. In 
the front-end translation, the PROOF/L code is translated into an IF1 code. In the 
back-end translation, the IF1 code is translated into the target code. The architec- 
ture dependent issues need not to be considered until after the front-end translation. 
In the grain-size analysis phase, the proper sizes of tasks are determined using the 
architecture-dependent information, such as communication cost and execution time 
in the target parallel machine. In this transformation, the partitioning and grain size 
analysis results are incorporated to generate the target code which can be efficiently 
executed on the target parallel machine. After the target code is generated, it is al- 
located to a set of processors. In the following sections, each phase in our approach 
will be summarized. 
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Figure 3.1: Our PROOF software development framework for parallel processing systems. 



3.1.1     Object-Oriented Analysis 

Our object-oriented analysis is different from other object-oriented analyses, such 
as Rumbaugh, et al's OMT(Object Modeling Technique) [43] and Coad k Yourdon's 
Object-Oriented Analysis [44], in that our approach focuses on the concurrent/parallel 
aspects of the system, but other approaches do not address concurrency explicitly. Our 
approach starts from the given requirement statements. The requirement statements 
often contain ambiguities. When ambiguities are found during the object-oriented 
analysis, we will report them to the user or domain expert to clarify the requirement 
statements. Thus, our object-oriented analysis is an iterative process which contin- 
ues until all the functionalities are satisfactorily specified. When the requirement 
statements are not complete, we may use the guidelines given in [45] to clarify them 
although more research in this area is needed. 

The object-oriented analysis phase consists of the following steps [1, 2, 3]: 

1) Identify objects and classes. 

2) Determine class interfaces. 

3) Specify dependency and communication relationships among objects. 

4) Identify active, passive and pseudo-active objects. 

5) Identify the shared objects. 

6) Specify the behavior of each of the objects. 

7) Identify bottleneck objects, if any. 

8) Check the completeness and consistency. 

In Step 1), the software system is represented by a set of communicating objects. 
Objects are identified by analyzing the semantic contents of the requirement specifi- 
cations. All physical and logical entities are recognized. Each object corresponds to 
a real-world entity, such as sensors, control devices, data and actions. 

In Step 2), object class interfaces are determined. In PROOF, every object is consid- 
ered as an instance of an object class. Instead of defining objects directly, the object 
classes to which they belong must be defined. Class interfaces may consist of both lo- 
cal methods and global methods. The local methods are class specfic methods; while 
global methods can be accessible to any other global methods, any method of other 
classes, or body of any object instance. The purpose of global methods is to provide a 
flexible way to address general operations which do not belong to any specific classes. 

In Step 3), the static relationship among objects are specified using the object com- 
munication diagrams, in which the objects are represented as rectangles, the links 
between the objects (which can be specfied as method invocations) indicate the com- 
munication between objects, and the arrows on the links indicate the directions of 
communications. 



In Step 4), the objects are classified according to their invocation properties as active, 
passive or pseudo-active. An active object can initiate activation of other objects by 
invoking methods of other objects. The methods defined in an active object cannot be 
invoked by other objects, but they can be invoked by other methods defined within the 
active object itself. A passive object is activated only when its methods are invoked 
by other objects. Pseudo-active objects can invoke the methods of other passive or 
pseudo-active objects and also has methods which can be invoked by other active or 
pseudo-active objects. All the threads of control in the application start from the 
active objects. We can identify all the possible threads of control and then use this 
information to check for the completeness and the consistency of the analysis. 

In Step 5), once the static structure of the software system is determined, we identify 
shared objects from them. A shared object has local data which can be accessed by 
a number of objects. The shared objects can be further divided into read-only shared 
objects and writable shared objects. The read-only object has local data which cannot 
be modified by other objects. The writable object has local data which can be modified 
by other objects. Read-only objects can be freely duplicated as many times as desired. 
All the access to the data in the writable shared objects needs to be synchronized to 
maintain the consistent status of the data. 

In Step 6), the behavior of each object is specified using the following notations: 
- SEQ(mi,m2,... ,mn): The methods mi, m2,...,mn are executed sequentially. 
- CON(mi,m2, • ■ •,m„): The methods mllm2,.. ■,mn are executed concurrently. 
- WAIT(ra,0): Object is waiting for the invocation of its method m by another 
object 0 to proceed with its execution. 
- SEL(mi,m2,..., mn): The object selects one of the methods for execution from 
among the methods mi, m2,..., mn. 
- ONE - 0¥{WAIT(mu Oj),..., WAIT(mn, 0k)): The object permits only one of 
its methods mx,... ,m„, to be invoked by other objects. ONE-OF construct is used 
in cases where other objects could try to invoke the methods defined in the object O 
simultaneously, while the object O permits only one object to invoke its method at a 
time. 

In Step 7), bottleneck objects which may unnecessarily degrade the performance of the 
software system are identified. Usually, a bottleneck object will be a shared writable 
object. One can identify a shared writable object from the description of the object 
behavior in Step 6). If such an object is found, then redo or refine the analysis to 
reduce the bottleneck if possible. 

In Step 8), the result of the analysis is verified with the user requirements. From the 
given user requirements, the possible threads of controls are identified, and each of 
them is examined using the behavior of the objects specified in Step 5). 

For more detailed information on the object-oriented analysis in our approach, refer 

to [3]. 
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3.1.2     Object Design 

Objects obtained from the analysis phase have to be designed. In our approach, 
the object design is specified using the notation defined in PROOF/L [4]. The class 
interface definitions and information about the object behavior are used to design the 
objects. Our approach to object design involves the following four steps: 

1) Establish the class hierarchy. 

2) Design the class composition and the methods in each object. 

3) Design the bodies of the active and pseudo-active objects. 

4) Verify the object design. 

In Step 1), since some common operations and/or attributes between the objects may 
not be apparent in the analysis phase, different objects are reexamined to identify 
the commonality between the classes in the design phase. A set of operations and/or 
attributes that are common to more than one class can then be abstracted and imple- 
mented in a common class called the superclass. The subclasses then have only the 
specialized features. 

In Step 2), the composition and the methods for each object class are designed. The 
class definition consists of composition and methods. The composition defines the 
internal data structure of the class. Various constructors, such as list and Cartesian 
product, are provided. A typical functional style is adopted in the method definition. 
A rich set of functional forms, i.e. high-order functions, as well as primitive functions 
are predefined. In the method design, the internal state of the object to which the 
method belongs is included as both the input and output parameters so that side- 
effects are avoided. A method of an object consists of an optional guard and an 
expression. The guard is a predicate specifying synchronization constraints and the 
expression statement specifies the behavior of the method. The object which invokes 
the method is suspended when the value of the attached guard is False, and it is 
resumed when the guard becomes True. The guard attached to a method is defined 
in a way that it only depends on the status of the local data, and does not depend on 
the definition of any other methods. The global methods which are class-wide methods 
should also be specified here for determining the properties of the operations. 

In Step 3), a body is associated with each active and pseudo-active object. There is no 
body associated with a passive object as it does not invoke any methods. The role of a 
body is to invoke a method and to modify the state of the objects represented by their 
local data. The body in each object is expressed in the form ei//e2// • • • //e^ where 
each &{ is an expression representing method invocations and expressions separated 
by // are evaluated simultaneously. // is a parallel construct indicating parallel 
execution. The modification of an object is expressed by the reception construct 
which has the form i?[|o|]e, where o, called a recipient object, is an object name and e 
is an expression with applications of purely applicative functions only. The reception 
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construct can occur only in the bodies of active and pseudo-active objects. The 
reception construct indicates that the object o will receive the value returned as a 
result of evaluating the expression e. This construct modifies the states of the object. 

In Step 4), the design of the objects done in the previous phase has to be verified and 
analyzed. For this purpose, we transform our design into Petri nets [46], which have 
been selected in our approach mainly because our design can be easily represented in 
a Petri net model and because many techniques have been developed to analyze Petri- 
net models. The transformation of our design to Petri nets consists of the following 
three steps: 1) transformation of bodies to Petri nets, 2) composition of the nets, and 
3) refinement of the nets. 

For more detailed information on the object-oriented design steps in our approach, 
refer to [3]. 

3.1.3    Partitioning 

In the partitioning step, the objects in the software systems are partitioned into a set 
of clusters in order to reduce communication cost among processors while maintain- 
ing the parallelism among the objects. It is very difficult to achieve linear speedup 
due to communication costs among processors, contention of shared resources and 
inability to keep all the processors busy [47]. That is one of the reasons that there 
is a large gap between the ideal peak performance and the real performance in most 
parallel computers. The partitioning approaches for reducing communication cost are 
divided into three categories: graph-theoretic [48, 49], integer programming [50, 51] 
and heuristics [52]-[56]. One of the common assumptions in these approaches is that 
the execution time for each module and the communication time among modules are 
given as input. Our partitioning approach does not assume that exact execution time 
and communication time are available. In addition, most of the existing partitioning 
approaches cannot be used when the software is decomposed as a set of such objects 
having shared data. 

The objective of our partitioning approach is to improve the overall performance of 
the software by reducing communication cost among processors while maintaining the 
potential parallelism among objects. The input to our approach are (1) the behavior 
of the objects in the software system, expressed using the constructs, such as SEQ, 
CON, WAIT, SEL and ONE-OF, (2) communication information extracted from the 
requirements analysis, and (3) the number of replications for each object as required 
for fault tolerance. Using this information, we represent the software system as an 
undirected weighted graph in which every node represents a cluster of objects and 
every edge between two nodes has a weight representing the degree of contribution 
for improving the overall performance of the software system by parallel execution of 
the two clusters. The details of our partitioning approach with illustrative examples 
has been presented in [57]. 
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3.1.4    Transformation 

The transformation of the PROOF/L code to a target code involves the follow- 
ing steps: partitioning, front-end translation, grain-size determination and back-end 

translation. 

The PROOF/L code is first translated into an IF1 code and then the IF1 code is 
translated to the target code. The former is called front-end translation which is a 
semantics-oriented translation, and machine or architecture dependent issues are not 
involved. The latter is called back-end translation. 

In the grain size analysis step, we focus on finding proper grain sizes within each 
object. Thus, we can consider each object as an independent program. We represent 
the program as a directed graph in which each node corresponds to an IF1 construct, 
and each edge represents a data dependency relation. In order to perform grain size 
analysis, the execution time of the IF1 constructs is estimated statically, and the 
communication time between them are estimated by examining the type information 
of the data transmitted. The estimation can be done statically by analyzing the 
assembly code for these constructs. We developed efficient heuristic algorithms of 
three different types of parallelism - tree parallelism, graph parallelism and pipe-lined 
parallelism. The details of these algorithms can be found in [3]. 

The back-end translation is performance-oriented, and machine or architecture de- 
pendent parameters, such as communication types, number of links and number of 
processors are used to perform various analyses. After partitioning and gram size 
analysis information is incorporated to the intermediate form, the intermediate form 
is translated into corresponding equivalent target code In this project, we have devel- 
oped two back-end translators for two target parallel processing systems, KSR and 
nCube. However, current implementation does not include partitioning and gram 
size determination. The details of the front-end and back-end translations will be 

discussed later. 

3.1.5    Allocation 

After the target code is generated, the target code is allocated to the parallel proces- 
sors in such a way that the execution time of the target code can be minimized by 

exploiting parallelism in the target code. 

One of the problems that must be solved in order to achieve high performance of 
software for parallel computers is the allocation of tasks among the processors. Some 
of the factors that prevent the ideal linear speed-up in parallel processing are 1) 
insufficient concurrency and 2) high communication overhead [58]. The task allocation 
problem has been studied extensively [58]-[61]. In these approaches, efficient heuristic 
task allocation algorithms were introduced. Factors to be considered in the allocation 
phase include the number of processors, the number of processes to be allocated, 
interprocessor communication pattern, and communication overhead. 
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3.2    An Example 

In this section, we will use a hypothetical example to demonstrate our approach in- 
volving both coarse grain and fine grain parallelism. We will use the same hypethetical 
example described in our previous report [3]: An air force base defense system con- 
sisting of three air force bases. In that example, communication and synchronization 
aspects among air force bases were emphasized (coarse-grain parallelism). Here we 
will focus on one of the bases and emphasize both communication and computation 
aspects. The specfication, analysis, design, and coding processes of this example, the 
same as in [3], are included here for the sake of completeness. 

3.2.1     Specifications of a Hypothetical Air Force Base Defense System 

Assume that there are three air force bases that are closely connected. For the sake of 
simplicity, we assume that only one type of flighters, one type of bombers, one type 
of surface-to-air missile batteries for defensive purposes against the attacking enemy. 
Radars and C3 (Command, Control and Communication) facilities are available. Each 
base may have many radars, but the base gets only one correlated radar value. Each 
base will also have several missile batteries and sufficient missiles to be used for its 
defense. Each base has either fighters or bombers for the defense. There would be 
one central C3I unit which advices each base as to what it should do for its defense 
purposes. In our application, we will associate the C3I advice for a base along with 
the design of the base itself since this is a parallel processing system. This way, the 
commander at the center can know what is going on at different bases simultaneously 
and will also be able to give orders to the different bases simultaneously. 

For the example shown below, we will characterize one of the bases and emphasize 
more computation aspect on that base. The detail description is as follows: 

An air force base consists of radar installations, equipment, and armed personnel. The 
radar detects approaching hostile attacks on the base. It is assumed that the enemy 
cluster consists of either bombers or missiles, but not a combination of the two. The 
base, in turn, can use its fighters or its missiles, but not a combination of the two 
simultaneously, to defend itself from these attacks. The defense strategy used by the 
base depends on the configuration of the enemy cluster. 

Upon detection of an enemy cluster, the radar tracks the cluster to determine its 
composition. This enemy information, which is the number of bombers or missiles 
of each enemy cluster, is stored in a queue. The air force base retrieves the enemy 
information from the queue. 

If the enemy cluster consists of x bombers, the base defends itself by launching either 
its fighters [represented by the computation of the function F(x)] or its missiles [rep- 
resented by the computation of the function G(x)]. On the other hand, if the enemy 
cluster consists of y missiles, the base defends itself by launching its own missiles to 
intercept the incoming missiles [represented by the computation of the function H(y)]. 
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In our implementation, we use a random number generator to simulate various in- 
coming threats. For simplicity purpose, we assume that 

F(x) = JTi, id (3.1) 
8 = 1 

1   *       4.0 (i - 0.5) 
G(x) = -K ~ - X) 717T—2' Xi 

x fr{ 1.0 + Xi 
id, (3.2) , »u, 

H(y) = {zx, z2, Z3, • •■}, z;e{-Pnme m/ra6er.s}, 1 < z,- < y (3.3) 

Each of the defense strategies [the computation of F(x), G{x) and H(y)], and the radar 
will be executed in parallel on independent nodes to exploit coarse grain parallelism. 
Threats are added to a FIFO queue. The air force base removes a threat from the 
FIFO queue and computes either F(x), G(x) or H(y) depending on the type of the 

threat. 

Each of the defense strategies is executed on multiple processors to exploit fine grain 
parallelism. It does so by breaking down its task into smaller tasks which can then 
be executed in parallel on independent nodes. The results of these smaller tasks are 
then gathered together to yield the final result. 

3.2.2     Object-Oriented Analysis 

Identifying Classes and Objects 

We identify the following Classes from the requirements specification of the example: 

• Base - for air force base 

• Radar - for radar associated with Base. 

• Queue - for FIFO queue. 

From the requirements specification, we identify the following objects: 

• B - corresponding to a single air force base. 

• R - corresponding to the radar associated with the single air force base. 

• Q - for recording enemy cluster information. 
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Defining Class Interfaces 

Class interface of an object consists of the input and output parameters and their 
types. Shown below are the class interfaces of the various objects identified in the 
previous subsection. As an example, let us consider the class Queue. We show one 
interface which is called method Insert. This method is invoked by the body of object 
R. From the domain knowledge of the example, we can infer that the radar value 
consists of the number of bombers or missiles attacking the base. The type of data is 
obviously to be integer and is the same as below. Thus, in a similar fashion, the class 
interfaces for the various classes can be determined. In order to illustrate the usage 
of global methods, the class interfaces for the classes Base and Radar consists of 
global methods, not class specific methods. The reason for using the global methods 
is that the computation, such as random number generator, finding prime number, TT 

approximation, factorial summation, are all general operations which do not belong 
to any specific class. All class interfaces of this example are given below: 

class Queue 

method Q_init(s:int -> Queue) 

method Insert ( -> Queue) 

method Assign (New:list -> Queue) 

method Delete ( -> Queue) 

method GetElem( -> int) 

end class 

class Base 

method IsPrime(number:int, factor:int -> int) 
method Prime(number:int -> int) 
method FindPrimes(low:int, upp:int, number:int -> int) 

method IntegerSum(l:list -> int) 
method FactSum(low:int, upp:int -> int) 

method RealSum(l:list -> real) 
method Pi(1:int, h:int, interval:int -> real) 

end class 

class Radar 
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Q.lnsert 

Q.GetElem 

Q.Delete 

B 
Q 

R 
FindPrimes* 

* 
Prime 

* 
IsPrime 

FactSum* 

IntegerSum* 

Pi* * 
RealSum 

Q.Init 

Q.Delete 

Q.lnsert 

Q.GetElem 

Random* 

A global function 

GLOBAL FUNCTIONS: 

Random FindPrimes Prime IsPrime 

FactSum IntegerSum Pi RealSum 

Figure 3.2: The object communication diagram for the set of decomposed objects of the hypothetical 
air force base defense example. 

method Random (low :int, upprint, number: irrt ->  int) 

end class 

where Random,IsPrime, Prime, FindPrimes, IntegerSum, FactorialSum, RealSum, and Pi 
are global methods and do not belong to any specific class. 

Specifying Dependency and Communication Relationships Among Objects 

Once the class interfaces are obtained for all the classes, we can establish the depen- 
dency and communication relationships among the objects from the object-oriented 
analysis phase. Figure 3.2 gives the dependency and communication relationships 
among these objects. To illustrate the operation, let us consider the object R, which 
puts a radar value into the object Q. Thus, there exists communication between R 

and Q. 

Identifying Active, Passive and Pseudo-Active Objects 

From the requirements specification and from the object communication diagram 
shown in Figure 3.2, we can see that the object R is not invoked by other objects, 
but does invoke other objects such as Q. Thus, R is identified as an active object. To 
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Table 3.1: Object classification of the hypothetical air force base defense example. 

Classification Objects 

Active R, B 
Passive Q 

Pseudo-active None 

illustrate the methods for identifying passive objects, let us consider the communica- 
tion behavior of the object Q, which is invoked by other objects such as R and B, 
but never invokes any other objects. Such objects are classified as passive objects. If 
the communication behavior shows an object being invoked by other objects as well 
as invoking other objects, it is identified as pseudo-active object. Figure 3.2 shows no 
such object. Thus, we have no pseudo-active objects in this example. We can classify 
the objects as shown in Table 3.1. 

Identifying Shared Objects 

From the object communication diagram as well as the object behavior, we identify 
the object Q as & shared writable object. Shared writable objects are usually passive 
objects. 

Specifying the Behavior of Each Object 

We are now in a position to describe the behavior of each object. For instance, let us 
consider the object R. The object R adds threats to a FIFO queue endlessly. Thus, 
we have the behavior of the object R. The behavior of each object is given below: 

Behavior of object R: 

while(TRUE, 
(Q.Insert)) 

Behavior of object B: 

while(TRUE, 
let low = 1 in 
let upp = 10001 in 
let third = (/ (- upp low) 3) in 
let target = (Q.GetElem) in 

Q.Delete, 
if ( (null? target), 
# THEN do nothing because no threat to base 
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# ELSE respond to threats 
if ( (<= target third), 

# THEN-clause 
(FindPrimes, 1, target) 
# ELSE-clause 
if ( (and (> target third) (<= target (* 2 third)) ), 

# THEN-clause 
(FactorialSum, 0, target), 
# ELSE-clause 
(Pi,   1,  target,   (- target  1)) 

)))) 

Identifying Bottleneck Objects 

We have identified the object Q as shared writable object. Since different methods of 
this object are used by the objects R and B to access this object, the access to the 
object Q does not have to be serialized. Hence, Q is not a bottleneck object. Thus, 
we do not have any bottleneck objects in this example. 

Checking for Completeness and Consistency of the Object-Oriented Analysis 

Because of the similicity of the example, by tracing through the behavior of the objects 
and looking at the class interfaces, we can see that the object-oriented analysis is 
complete and consistent. 

3.2.3    Object Design 

Establishing Hierarchy 

Since in this example we do not have two different types of objects with some common 
behavior, we do not need to define a superclass. In other words, we do not have any 
inheritance in this example. 

Designing Class Composition and Methods 

The class composition typically consists of local data present in the class. The type 
of data present in the class is also identified. In this stage, we also provide the 
methods present in each of the classes. As an example, consider the class composition 
of the class Queue. The data in the object is a list of integers generated by the 
global method Random and two integers. These constitute the class composition. In 
addition to these, we define the methods. The methods required for the class Queue 
are as follows: 
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1. Initialize the integers in the composition. 

2. Add integers to the list TargetsQ in the composition. 

3. Modify the list TargetsQ in the composition. 

4. Delete integers from the list TargetsQ in the composition. 

These are defined formally as follow: 

Class Queue 

composition 

TargetsQ : list 

seed    : int 
number  : int 

end composition 

method Q_init(s:int -> Queue) 

expression 

object Queue (seed = s, number = 0) 

method Insert ( -> Queue) 

expression 

let low = 1 in 

let upp = 10001 in 

let item = (Random low upp seed) in 
object Queue ( TargetsQ = (append_right TargetsQ item), seed = item ) 

method Assign (New:list -> Queue) 

expression 

object Queue ( TargetsQ = New ) 

method Delete ( -> Queue) 

#guard (> number 0) 

expression 
object Queue ( TargetsQ = (tail TargetsQ), seed = seed ) 

method GetElem( -> int) 

#guard (> number 0) 

expression 

(head TargetsQ) 
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end class 

global 

method Random (low:int, upp:int, number:int -> int) 
expression 

let factor = (- (/ (+ low upp) 2) 13) in 
let x = (mod (* factor number) upp) in 
if ( (and (and (>= x low) (<= x upp)) (> x 0)), 

(+ x 0), 
(Random low upp x)) 

method IsPrime(number:int, factor:int -> int) 
expression 

if ( (<= (* factor factor) number), 
if ( (= (mod number factor) 0), 

0, 
(IsPrime number (inc factor)) ), 

1 ) 

method Prime(number:int -> int) 
expression 

if ( (or (= number 2) (= number 3)), 

1, 
if ( (= (IsPrime number 2) 1), 

1, 
0 )) 

method FindPrimes(low:int, number:int -> list) 
expression 

(head while (lambda (x) (> (head (tail x)) (head (tail (tail x))) ), 

lambda (x) ( 
let y = (head (tail x)) in 
let z = (head (tail (tail x))) in 
if ( (= (Prime y) 1), 

[  (append_right  (head x)  y)   (- y  1)  z ] , 
[  (head x)   (- y 1)  z ]   )) 

)   [   []   number low ]   ) 

method IntegerSum(l:list -> int) 
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expression 
if ( (null? 1), 

0, 
(+ (head 1) (IntegerSum (tail 1))) ) 

method FactSum(low:int, upp : int -> int) 
expression 

(head while (lambda(x) (< (head (tail x)) (head (tail (tail x)))), 
lambda(x) 

let y = (head (tail (tail x))) in 
[ (+ (head x) y) (head (tail x)) (- y 1) ] 
) [ 0 low upp ] ) 

method RealSum(l:list -> real) 
expression 

if ( (null? 1), 
0, 
(+ (head 1) (RealSum (tail 1))) ) 

method Pi(l : int, h : int, interval : int -> real) 
expression 

(head while(lambda(x) (< (head (tail x)) (head (tail (tail x)))), 
lambda(x) 

let w = (/ 1.0 (head (tail (tail (tail x))))) in 
let t = (* (- (head (tail x)) 0.5) w) in 
let tmp = (/ 4.0 (+ 1.0 (* t t))) in 
[ (+ tmp (head x)) (+1 (head (tail x))) 

(head (tail (tail x))) (head (tail (tail (tail x)))) ] 
) [ 0 1 h interval ] ) 

end global 

Designing the Body of the Objects 

The body of an object describes the control thread within the body. A control thread 
exists for only active and pseudo-active objects. Thus, the bodies exist for only active 
and pseudo-active objects. In our example, the bodies exist for the objects R and B 
since these objects have been identified previously as active objects. The behavior of 
the active objects should describe the body of that object. For example, the object R 
has a body which iteratively executes in accordance with its behavior specified before. 
In the following, we give the body of each active object. 

Body of object R: 
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while(TRUE, 
;( 

R[|   q   |]   (Q.Insert), 
(delay 1) 
)) 

Body of object B: 

while(TRUE, 
;( 

let low = 1  in 
let upp = 10001 in 
let third = (/ (- upp low) 3) in 
let target = (q.GetElem) in 

;( 
R[| q I] (q.Delete), 
if ( (null? target), 

# do nothing because no threat to base 
(delay 2), 

;( 
# respond to threats 
if   (   (<= target third), 

;( R[|   B   |]   object Base  (result = 
(delta (FindPrimes,   1,  target)))  ), 

if   (   (and  (> target third)   (<= target   (* 2 third))   ), 
;( R[|   B   I]   object Base  (result =   [(IntegerSum 

(delta (FactSum,  0,  target)))])  ), 
;( R[l   B   |]   object Base  (result =  (/   (RealSum 

(delta (Pi,   1,  target,   (- target  1)   )))   (- target  1)   ))   ) 
)) 

)) 
))) 

Verification 

In the first step, the bodies of the active and pseudo-active objects are transformed 
into Petri nets. The transformation of the bodies of the objects in this application 
are shown in Figures 3.3 and 3.4. 

The second step is to examine these nets to reduce the number of independent Petri 
nets. The nets are composed at the fusion point, also called the bottleneck place so 
that shared modifiable objects are serialized for access among different objects. For 
example, the object Q is a shared writable object that is modified by the objects R 
and B. Thus all the transitions in Figures 3.3 and 3.4 corresponding to the methods 
in Q are to be fused together at the bottleneck place. This process of fusing will bring 
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the different nets together. 

Figure 3.3: Transformation of object B, an instance of class Base, to a Petri net 

•0 
_object Q 

Ö 

Figure 3.4: Transformation of object R, an instance of class Radar, to a Petri net 
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The last step is to refine the above nets to reflect the details of each method. This is 
achieved by expanding each transition to show the guard andthe expression. This has 
been illustrated earlier in our framework. Once the Petri nets are obtained, we can 
then apply the available techniques to verify that the Petri nets satisfy the necessary 
properties. The detail method for verification of object design is referred to [3]. 
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Chapter 4 

Evaluation of Our Approach 

In this chapter, we will compare our approach with other existing approaches, and 
evaluate the effectiveness of our approach in terms of software development effort. 
We will present the lines of code comparison results between PROOF/L programs 
and their equivalent nCube C and KSR C programs in the hypothetical air force base 
defense system example described in Chapter 3. We will also present the speed-ups 
obtained in the ■K approximation problem. 

4.1     Comparison of our approach with other parallel soft- 
ware development approaches 

In this section, we will survey other existing parallel software development approaches, 
such as CODE [7, 8], Proteus [9], Jagannathan's dataflow-based approach [10], Oc- 
camflow [11] and Pisa Parallel Processing Project(P4) [12], and compare them with 
our approach in terms of parallelism supported, underlying computation model, scope, 
target machine and application areas as shown in Figure 4.1. 

CODE Protues Jagannathan Occamflow 4 
P PROOF 

Parallelism 
data 

function 

data 

function 
function function 

data 

function 

data 
function 

Computation 

Model 

graph-based 

object-oriented 
functional 

demand- 

driven 
data-flow conventional 

object-oriented 

funtional 

Scope 
Design 

Implementation 

Design 

Implementation 
design implemetation implementation 

design 

implementation 

Target 

Machine 
general general 

workstation 

clusters 
transputers general general 

Figure 4.1: Comparison of parallel software development approaches 

At the end of this section, we will briefly summarize the parallel programming lan- 
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guages relevant to PROOF/L. 

4.1.1     Computation-Oriented Display Environment (CODE) 

The Computation-Oriented Display Environment(CODE) is based on the premise 
that parallel programming systems should be based on a well-defined, comprehensive 
parallel computation model rather than merely a collection of implementation models 
[7]. In CODE, a parallel program is represented by a set of computation-units and 
dependency units. The software development method based on CODE consists of the 

following steps: 

1) Draw the program's dependency graph, in which each node represents a computation- 
unit and an arrow between nodes represents a dependency relation. 

2) Define the dependencies among the computation units by completing specifica- 

tion forms. 

3) Complete the definition of the computation units. 

4) Specify the firing rules, which indicate the state of the computation unit to start 

execution. 

5) Create a standard, architecture-independent program specification. 

6) Map the dependencies and firing rules into parallel-computation structures. 

In [8], CODE has been extended with data partitioning functions and integrated 
with an object-oriented paradigm. This approach is similar to our approach in that 
an architecture-independent specification is designed and then it is mapped into the 
architecture-dependent program. The goal of their work is to build a graph-based 
development environment for software development for parallel processing systems. 
However, the underlying computation model does not support the concepts of shared 
data and exploiting parallelism in various granularity levels. 

4.1.2    Proteus 

The Proteus [9] is a prototyping system to develop software for parallel processing 
systems. It consists of the following steps: 

1) Specify architecture-independent concurrent program using Proteus language. 

2) Evaluate using Proteus interpreter and measurement tools. 

3) Refine expression of concurrency in Proteus program to target execution on par- 

ticular parallel platform. 

4) Transform Proteus program to low-level code for targeted parallel platform. 
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5) Execute program using native compilers and supporting libraries. 

In the Proteus system, the data parallel operations are expressed using the mathe- 
matical notations of set, sequence and map comprehension. The function parallelism 
is expressed with a small set of process creation and synchronization primitives, and 
communication is based on the shared variable. This approach is similar to our ap- 
proach in that the architecture-independent high-level specification is transformed into 
an architecture-dependent target code to be executed in parallel. It has an advantage 
over our approach in that it can evaluate the design by prototyping with the Proteus 
interpreter. However, this approach is not suitable for large-scale software develop- 
ment for distributed or parallel processing systems due to lack of hierarchical design 
concept. It does not explicitly supports abstraction mechanism or constructs to allow 
expressing several layers of design hierarchically, which is enssential for developing 
large-scale software. 

4.1.3    Jagannathan's Coarse-Grain Dataflow based Methodology 

Jagannathan, et al [10] developed a dataflow-based methodology for coarse-grain 
multiprocessing on a network of workstations. In this approach, an application is 
expressed as a data-dependency graph in which vertices are function modules and 
whose edges represent data dependencies between function modules. Each function is 
described in conventional code where the input parameters of the module correspond 
to the incoming edges of the associated vertex and the output parameters of the mod- 
ules correspond to the outgoing edges of the vertex. They also developed a language, 
a directed graph language (DGL) to express coarse-grained parallelism in applica- 
tions. DGL is similar to other directed-graph-based languages, but it differs in the 
granularity of a basic operations. The granularity of a basic model in this approach 
is coarse. The model supports a declarative paradigm based on dataflow among the 
modules, and a procedural paradigm inside modules. The execution system embodies 
the tagged demand-driven execution model, and provides the following functions: 

• Process demand for a data value from a function module. 

• Allocate the most suitable workstations to compute a demanded data value. 

• Schedule execution of a vertex when appropriate data values are available. 

• Communicate demand for a data value and the resulting data value between 
workstations. 

• Manage shared data value. 

• Provide the programmer with an interface to run the application. 

It implements each vertex of a program as a process and each edge as a communica- 
tion channel on which messages can be exchanged using interprocess communication 
mechanisms. This approach does not include the design steps, but supports only 
graphical user interface for the programmers to specify the high-level design. 
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4.1.4    Occamflow 

Gaudiot and Lee [11] developed a methodology for programming multiprocessor sys- 
tems based on data-flow model of computation. Although the authors called Occam- 
flow a methodology, this is a set of translation steps from a SISAL program to an 
Occam program rather than a design methodology. The input to this methodology is 
a SISAL program and the output of the methodology is an equivalent Occam program. 
This approach consists of the following steps: 

1) Translate the SISAL program into IF1. 

2) Scan the IF1 and generates a graph which consists of two subgraphs: the Program 
Structure Graph(PSG) and the Data-Flow Graph(DFG). 

3) Generates a Partitioned Data-Flow Graph(PDFG), a channel table and a com- 
munication cost matrix. 

4) Optimize through repartitioning. 

5) Generate the Occam program. 

The translation steps from SISAL to Occam through IF1 are similar to our approach. 
However, this method does not include design steps and support the shared data 
concept. In addition, the parallelism can only be exploited through the Occam pro- 

gramming environment. 

4.1.5    Pisa Parallel Processing Project(P4) 

In the Pisa Parallel Processing Project(P4) [12], an approach to program general pur- 
pose distributed memory parallel processing systems is developed. The P4 approach 
is based on two major components: a high-level programming language, the Pisa Par- 
allel Processing Language (P3L), and an abstract Parallel Memory (P3M). The P3L 
language allows the programmer to explicitly express parallelism in an application at 
a high level. The P3L language includes the following parallel constructs to express 

various types of parallelism: 

• pipeline: models process pipelines acting on streams of input data, and sequential 

execution of processes. 

• farm: models different farms, having workers executing either the same function 
on different data (function replication) or different functions (function partition- 

ing)- 

• tree: models computations having either a static tree or a dynamic tree structure 
in a way similar to demand-driven or divide-and-conquer models of execution. 

• loop: adds a feedback channel from the last to the first process of a particular 
construct in a way which is similar to data-driven modeling of iterative programs. 
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The P3M is based on the idea that a general-purpose parallel machine must achieve 
the balance between local and nonlocal communication. The P3M supports efficient 
mapping to different physical parallel computers. In this approach, two issues, the 
locality in process communication and dynamicity in the memory management and 
process structure, are dealt with to implement high-performance applications on paral- 
lel processing systems. When an application is mapped onto P3M, the programming 
tools decide whether a process communication is to be implemented through local 
communication or through nonlocal communication. Although the author claims this 
approach is a design methodology, this approach is focused on how to map the ap- 
plication program into physical processors with distributed memory rather than a 
software design method for parallel processing systems. 

4.1.6    Others 

In this section, we will compare programming languages which were developed as 
implementation languages for software development for parallel processing systems. 

Linda [34] is a small set of operations that can be added to a base language to create 
a parallel processing dialect. The concept of Linda is based on the tuple space of 
parallel processing. Processes and data can be considered to be elements in tuple 
space. Communication between processes occurs in the following way: the sender 
creates data in tuple space, and the receiver gets the data in the tuple space, and thus 
communication takes place. Linda provides the following four basic operations: in, 
out, rd and eval. in removes the tuple which was read from the tuple space, rd reads 
the tuple, but leaves the tuple to be read by other processes, out creates a new tuple 
and places it in the tuple space, and eval creates a new tuple by generating a process. 
A disadvantage of Linda is that the programmers have to write programs in terms of 
communication with other processes. In addition, its implementation on distributed 
memory parallel processors requires significant overhead to support communication 
via shared memory. When we consider the fact that data or messages need not be 
accessible to processes other than those processes which need them, Linda cannot 
support an information hiding principle. 

Goldberg [62] developed a method to programming parallel processors for functional 
programs by introducing a logical construct called a serial combinator. A serial com- 
binator is defined as a function with the following properties: 1) its body contains 
no free variables; 2) its body is sequential and contains constructs for synchronizing 
its execution with other tasks; 3) its body could not occur as a subexpression within 
the body of another serial combinator. In this approach, the third property implies 
that the programmers have to determine as few serial combinators as possible, since 
they cannot be coalesced to form a bigger serial combinator. It also implies that the 
program developed for one parallel computer may not be directly portable to another 
due to possible performance degradation. In addition, the programmers must ensure 
the correct synchronization and communication among tasks. 

Foster [63] introduced Strand for parallel programming, which is based on logic com- 
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putation model. Strand can provide an interface to other languages as in [10]. He 
does not consider the granularity of parallelism and assume that the programmers will 
make choices on the grain size during the development of the application program. 

Grimshaw [35] developed an object-oriented programming language Mentat for paral- 
lel processing systems by extending C++ with parallel constructs. The Mentat pro- 
grammer makes granularity and encapsulation decisions, and the compiler manages 
communication and synchronization. The underlying computation model supports 
parallelism among the objects, and is based on a medium-grain data driven model in 
which programs are directed graphs. The vertices of the program graphs are computa- 
tion elements, and the edges denotes the data dependencies between the vertices. This 
approach can exploit task or function parallelism, but is not appropriate to exploit 
massive data parallelism. 

Gannon and Lee [36] also developed a parallel object-oriented programming language 
for parallel processing systems by extending C++ with parallel constructs, such as 
collection, processors, distributions and alignments. A collection can be an array, a 
grid, a tree or any other partitionable data structure. Processors are objects that are 
used to build distributions for collections each of which represents a set of threads 
of control. Distribution and alignments are the mechanisms to assign distributed 
elements onto the processors. These extensions allow the programmer to express 
data parallelism easily, but are not suitable to express and exploit task or function 

parallelism. 

4.2     Software Development Effort 

To demonstrate the effectiveness of our approach, we have compared the effort required 
to develop software directly using the C of two MIMD machines, nCube and KSR, 
with that required to develop the same software in PROOF/L using our approach. 
We measured the time needed to complete the development of the software for the air 
force base defense example described in Chapter 3. 

For this example, when we used the nCube C language directly, we spent approxi- 
mately 25 hours on coordinating the communication among different processors and 
setting up communication channels and buffers, besides the computational portion. 
The nCube C programs involve explicit communication and synchronization handling 
and pointer manipulations. On the other hand, when we used PROOF/L, the same 
example took us only 5 to 6 hours to complete. Although it may be too early to draw 
a conclusion based on our experience in this particular example, we believe that the 
advantage of implicit communication and synchronization in PROOF/L significantly 
contributed to the reduction of software development effort. 
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4.2.1 Architecture Independence and Translator Development Effort 

Usually parallel programs are not portable to different parallel machines. PROOF/L, 
being an architecture-independent parallel programming language, shields all the un- 
derlying machine-dependent details from programmers and can run on various paral- 
lel machines as long as the machines have the PROOF/L back-end translators. The 
back-end translators of PROOF/L have been implemented on the distributed memory 
nCube and the shared memory KSR parallel machines. Machine-dependent details 
are incorporated in the back-end translation process. 

Our experience has shown that after we implemented the translator for one parallel 
machine, it was much easier for us to implement the translator for other parallel 
machines. Most of the code that involves common computation has close similarities, 
except the parts involving communication and synchronization which highly depend 
on the architectures of parallel machines. For instance, after we had implemented the 
PROOF/L back-end translator for nCube C which took us approximately 150 hours, 
we spent only about 40 hours to implement the PROOF/L back-end translator for 
KSR C. We anticipate that if we implemented the PROOF/L back-end translator for 
KSR C first, it should also take about 150 hours. 

Besides parallel machines, we are also interested in implementing PROOF/L on dis- 
tributed workstation cluster systems and extending it to various distributed comput- 
ing systems, like autonomous decentralized systems [64, 65]. 

4.2.2 Implicit Communication and Synchronization 

As mentioned before, one of the major reasons that the software development ef- 
fort required using our approach is considerably less than that when we develop the 
software directly using the target languages is that our approach supports implicit 
communication and synchronization. PROOF/L objects are loosely coupled, and in- 
teractions among objects are realized through method invocations of other objects, 
which are similar to normal functional calls. Our current prototype does not incorpo- 
rate global method invocations, which will be implemented in the near future. Guard 
structures embedded in method bodies are for synchronization among objects. The 
bodies of methods can only be executed when guards are true; otherwise methods 
will be blocked until guards become true. Guards are evaluated based on the ob- 
ject's local information and arguments passed to the methods. The following two 
examples, which are extracted from the air force base defense example described in 
Section 3.2, will show how we realize communication and synchronization through 
guard statements and method invocations: 

Example 1. Guard structure: The following code segment shows that the guard 
statement in the method ensures that the queue object for storing enemy information, 
which is the number of bombers or missiles of each enemy cluster, is not empty when 
the base wants to extract such information from the queue. 
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class Queue 

composition 
number: int 

method GetElem( -> int) 
guard (> number 0) 
expression 

(head TargetsQ) 

end class 

Example 2. Method invocation: The following code segment shows that whenever the 
radar object detects a threat, it will invoke the method insert of the queue object 

for recording the enemy information. 

Body of object R: 
loop( 

;( 

(out   'Radar detects a threat'), 
R[|   Q   |]   (Q.Insert), 

) 
) 

4.3    Application Areas 

Our approach exploits coarse grain parallelism by deriving all the concurrent objects 
from a problem and classifying them into different categories: active, pseudo active 
or passive. Our approach can easily be applied to general communication-oriented 
problems in which a number of objects need to be executed simultaneously, and these 
objects interact with one another periodically. It has been applied to software devel- 
opment for distributed computing systems [2]. The air force base defense example m 
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Chapter 3 is a communication-oriented and computation-oriented application. The 
synchronization among different objects, such as the radars and the bases, has been 
realized by using guard structures within object methods as illustrated in Section 4.2. 
Method invocations fulfill communication among different objects. 

Our approach also exploits fine grain parallelisms at the method level. Parallel 
functions specify data or functional parallelisms in a method. It is suitable for 
computation-oriented applications, such as the air force base defense example, where 
we embed all the computations inside object methods and distribute these computa- 
tions on different nodes. The comparison of the execution time and the speedup for 
the air force base defense example and computing it using various numbers of nodes 
of the nCube are shown in Tables 4.1 - 4.4 and Figure 4.2. 

Table 4.1: The execution time of the hypothetical air force base defense example programmed directly 
in nCube C using different numbers of nodes. 

Num of Nodes Used Air Force base defense (sec) 

4 639.89 
8 417.47 
16 254.26 
32 150.67 
64 115.05 

Table 4.2: The execution time of the hypothetical air force base defense example programmed in 
PROOF/L and then translated to nCube C using different numbers of nodes. 

Num of Nodes Used Air Force base defense (sec) 
4 1135.68 
8 592.25 
16 385.73 
32 314.15 
64 240.98 

Tables 4.1 and 4.2 show the execution time for the air force base defense example in 
100 iterations (the program itself goes infinitely) using nCube C directly and using 
PROOF/L run on the nCube through the PROOF/L back-end translator.   All the 

Table 4.3: Comparison of the execution time (in micro seconds) of the programs for computing 7r 
based on (3.2) which are generated by directly programming in nCube C. 

Interval 1 2 4 8 16 32 64 

104 5.53 *104 2.80 *104 1.45 * 104 0.82*10" 0.60 *104 0.68 * 104 1.14* 104 

105 5.53 *105 2.77 *105 1.39* 105 7.04* 104 3.71 *104 2.23 *104 1.93* 104 

10b 5.52 *10b 2.76 *10b 1.38* 10b 6.92 *10b 3.48* 10° 1.78 *10b 9.70 *104 
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Table 4.4: Comparison of the execution time (in micro seconds) of the programs for computing rr 
based on (3.2) which are generated by programming in PROOF/L and then translated to nCube C 

Interval 1 2 4 8 16 32 64 

104 2.08*10" 1.39* 10ö 7.54 *104 4.39 *104 2.90 * 104 2.28 * 10" 2.07 *104 

105 2.62 *10b 1.32* 100 6.63 *10b 3.38*10° 1.76 *10b 9.63* 104 5.89 *104 

10b 8.70 *10b 8.90 *10b 6.55 *10b 3.28* 10b 1.65 *10b 8.33* 10s 4.23 *10b 

time scale is in seconds. The speedup of more nodes used to execute the program 
generated by directly programming in nCube C is about the same as that generated 
by programming in PROOF/L. On the other hand, the execution time for executing 
the program generated by directly programming in nCube C is always smaller than 
that generated by programming in PROOF/L, but much more effort is needed for 
direct programming in nCube C than that for programing in PROOF/L. 

The execution time (in micro seconds) for the programs computing x generated by 
direct programming in nCube C and generated by programming in PROOF/L is 
presented in Tables 4.3 and 4.4. The formula for computing IT is given in (3.2). 
The corresponding speed-up curves are shown in Figure 4.2, and they indicate better 
speed-up and approach the ideal speed-up when the data interval is increasing. 

Noted that the exection time for PROOF/L code shown in Table 4.4 is not as good as 
that for nCube C shown in Table 4.3. We believe that some work, such as incorporat- 
ing object-partitioning algorithms into the PROOF/L translation process [3], would 
help improve the performance of the translated PROOF/L programs substantially. 

4.4    Lines of Code Comparisons with Target Languages 

In the Figure 4.3, we present line comparisons among several programs in PROOF/L, 
native nCube and KSR C (direct programming), translated nCube and KSR C. These 
programs are TT approximation, the air force base defense system example presented 
in our previous report [3] (air force base defense example part I), and the air force 
base defense example described in Chapter 3 (air force base defense example part II). 

According to the results shown in Figure 4.3, PROOF/L code has the advantage 
over direct coding in C and translated C code from PROOF/L in terms of the num- 
ber of lines of code, except that the air force base defense example part I in which 
there is considerable duplication of code because we have not fully implemented the 
inheritance in PROOF/L. 
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PROOF/L -> nCUBE 

70   -r 

Figure 4.2: Speedup using various numbers of nodes of nCube to compute the ir in PROOF/L. 

N.        Language 

Program   ^^^ 
PROOF/L 

Direct Programming 
Translated from 

PROOF/L 

nCUBE C KSRC nCUBEC KSRC 

71 
Approximation 15 79 61 400 350 

Air Force Base Defense 
Example Part I 

700 500 400 3000 2000 

Air Force Base Defense 
Example Part II 

156 411 760 1651 1179 

Figure 4.3:   Comparison of the number of lines of code for programming in C directly and in C 
translated from PROOF/L. 
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Chapter 5 

PROOF/L Front-end Translation 

As mentioned in Section 3.1.4, the translation of PROOF/L to a target code of a 
parallel machine involves partitioning, front-end translation, grain-size determination, 
and back-end translation. In this chapter, we will focus on the front-end translation, 
which is independent of the architecture of the parallel machine used. The front- 
end translator transforms PROOF/L code to a superset of IF1, which is a dataflow 
language based on acyclic graphs. We will briefly discuss the IF1 language, and then 
the translation process from PROOF/L to our superset of IF1. Special attention is 
paid to the extensions and modifications we have made to IF1, which are necessary 
to support PROOF/L. Finally, we will describe the architecture of the front-end 
compiler, which uses the UNIX tools lex and yacc. The syntax and semantics of 
PROOF/L are discussed in Appendix A PROOF/L Reference Manual. 

5.1    IF1 

IFl is a text representation of acyclic dataflow graphs. It was originally developed 
as the intermediate language for SISAL, a high-level functional programming lan- 
guage [38]. IFl was adopted for use with the PAWS project [6], a parallel systems 
performance analysis tool which we had hoped to use with PROOF/L. 

There are four types of entities in IFl: nodes, edges, types, graph boundaries. Nodes 
represent operations, either logical or mathematical. A node can be either simple ox 
compound. Simple nodes represent basic operations such as addition, absolute value 
and equality operations (< = , > , etc.). Compound nodes contain subgraphs; these 
subgraphs may contain other IFl nodes. Compound nodes are used for selection and 
looping operations. A node has input and output ports. Edges are used to represent 
the data flow of a program. Edges connect the output ports of nodes to the input 
ports of nodes. Edges and node ports in IFl are associated with a type. There are 
six basic types in IFl (boolean, character, double, integer, null and real). From these 
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types, complex types may be derived (such as records, streams and tuples). 

An IF1 program may consist of many different graphs.  These graphs are delineated 
by graph boundaries. For more detailed information of IF1, the reader is referred to 
[5]. 

5.2    Translating PROOF/L constructs to IF1 

5.2.1 PROOF/L Types 

The BOOLEAN, INT, REAL and CHAR types of PROOF/L all map to equivalent 
types in IF1. The STRING type is only used with the out debugging function, 
and uses the same IF1 type as CHAR. At present, arrays are not supported in this 
implementation. 

The composition of a PROOF/L class is represented using the record type of IF1. 

5.2.2 The list Type 

PROOF/L supports lists. A list is an ordered group of (possibly) heterogeneous 
elements. There are six basic types provided by IF1: boolean, character, double, 
integer, null, and real. From these types, more complex types may be created: records 
consisting of a fixed number of fields of various types, an array of a particular type, 
etc. 

The PROOF/L list type, however, cannot be expressed using pure IF1. IF1 records 
are of a fixed size; PROOF/L lists can be any size. IF1 arrays contain elements of a 
single type; PROOF/L lists can contain elements of many types. Therefore, a new 
basic type is introduced in our superset of IF1 - the list. 

Lists are flexible, but support for heterogeneous lists requires significantly more time 
and space overhead than other less flexible structures. Furthermore, compile time 
error detection becomes more difficult when lists are introduced. The advantages of 
a strongly typed language cannot be realized with non-strongly typed constructs like 
lists. 

5.2.3    Class Declarations 

A class consists of a composition and a set of methods.   The class composition is 
treated as an IF1 record.   An IF1 graph is produced for each method in the class. 
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IF1 does not have direct support for object-oriented languages.   The class name is 
added to the method name when defining IF1 graphs that correspond to PROOF/L 
methods 

5.2.4    Function Calls 

A function call uses IFl's CALL node. The current implementation of PROOF/L 
does not support polymorphism. For IF1 to support polymorphism, it is necessary 
for the program at runtime to route function call requests to the appropriate method. 

Example: 

class A 
method Test(->int) 

expression 
(+ GetValue GetValue) 

method GetValue(->int) 
expression 1 

end class 

class B of A 
method GetValue(->int) 

expression 2 
end class 

class C of A 
method GetValue(->int) 

expression 3 
end class 

In the above code fragment, classes B and C are subclasses of A. Classes B and C 
inherit the Test method and override the GetValue of class A. 

When a call is made to Test, the Test method must route the calls to GetValue 
of the appropriate class. Therefore, a call to GetValue by instances of A, B and C 
should return the values 2, 4 and 6, respectively. Currently, there is no method of 
conveying this information in IF1. 

39 



Alpha and Beta Functions 

The alpha and beta functions of PROOF/L are syntactic sugar - an alpha or beta 
function may be rewritten as a series of function calls. Therefore, when the front-end 
translates an alpha or beta function to IF1, it converts the function to the equivalent 
form. 

5.3    New IF1 Nodes 

Some of the features of the PROOF/L language necessitate the addition of new nodes 
to the superset of IF1. We have added the following new nodes: RECEPT, LBUILD, 
RGET, and GUARD. 

5.3.1     Reception Pseudo-Function 

PROOF/L supports persistence with the Reception Pseudo-Function. RECEPT ac- 
cepts two arguments - the name of the object to be modified and the new value of 
the object and returns the new value of the object, as shown in Figure 5.1. 

name of object       new object value 

RECEPT 

new object value 

Figure 5.1: The IF 1 node RECEPT. 

5.3.2    List Construction 

As mentioned above, the list type in PROOF/L is not directly supported by IF1. 
Similarly, there is no IF1 node to create a list. Therefore, we added a new node to 
IF1 to support list construction called LBUILD. LBuild accepts n inputs of any type 
and returns a list, as shown in Figure 5.2. 

5.3.3    Retrieving the Value of an Object 

A PROOF/L method may refer to the composition of an object. Since the composition 
of an object may be modified using the reception function, a special node was added 
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fl f2 f3 ... fn 

1 J    1 1    1 
LBUILD 

■ • 

list 

Figure 5.2: The IF1 node LBUILD. 

to IF1 to fetch the current value of an object called RGET. RGET accepts a single 
string literal argument which corresponds to the name of the object, and returns a 
record containing the object's composition, as shown in Figure 5.3. 

Since there may be numerous instances of class objects, RGET accepts the special 
keyword self, which refers to the instance of the object calling a class method. 

name of object 

RGET 

record containing compositon of object 

Figure 5.3: The IF1 node RGET. 

5.3.4    Guards 

Synchronization among objects is achieved by attaching an optional precondition, or 
guard expression, to class methods. The object which invokes the method is suspended 
when the attached guard expression becomes False, and resumed when the guard 

becomes True. 

Although a busy waiting implementation of the guard could be expressed in IF1 
using the existing looping constructs, we decided to add a new compound node to 
IF1. By using a special node for guard, we do not have to specify how the guard will 
be implemented, and we maintain the property of architecture independence at this 

stage. It is shown in Figure 5.4. 
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input 2 .        „ input n 
input 1 ,nPut3 

output 1 output 3 
output 2 output n 

Figure 5.4: The IF1 node GUARD. 

5.4    Implementation of the PROOF/L Front-End Translator 

The front-end translator consists of three main modules: scanner, parser and symbol 
table. The scanner and parser were created with the aid of the UNIX tools lex and 
yacc, respectively, as shown in Figure 5.5. This is an extension of the implementation 
reported in [3]. We expand IF1, as shown in Section 5.3, for accommdation of better 
representations of PROOF/L structures. 

PROOF/L 
Scanner 

Tokens 

Symbol Table 

Parser 
IF1 

lex yacc 

Lexical Rules Syntax Rules 
(grammar) 

Figure 5.5: Architecture of the PROOF/L front-end translator. 

5.4.1     Lexical Analyzer 

The function of a lexical analyzer is to group the input character stream into a token 
stream and as input of the latter parser phase. A token is a basic element of parsing. 

In this part, we use the UNIX tool lex to generate the code of the lexical analyzer. We 
specify the lexical rules in regular expressions in the lex language; lex compiles the 
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input file and generates a C program which simulates the corresponding finite state 
machines needed for lexical analysis. 

The input format of lex is divided into three parts: 

< definitions> 

%% 

< rules> 

%% 

<programmer subroutines> 

The first part <definitions> and third part <programmer subroutines> are optional. 

In the first part definitions, we can specify some sets of the lexical rules in the next 
part. For example, 

letter [a-zA-Z] 
digit [0-9] 
letter_or_digit [a-zA-Z_.0-9] 
sign [+-] 

In the second part <rules>, we can use these defined sets to express the lexical rules. 
For example, the lexical rules for integer numbers: 

digit+    { 
yylval.yjnt = atoi(yytext); 
return token(INTEGER); 

} 

The left-hand side part is the regular expression of an integer and the right-hand 
side part is the corresponding actions of an integer token: converts the text into the 
number and return a token INTEGER. 

The last part <programmer subroutines> consists of some C routines written by 

users. 

Another part of this module is the screener. The function of the screener is to distin- 
guish key words from identifiers; because both are the same in structure, they cannot 
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be efficiently distinguished by regular expressions. The screener checks an identifier 
against a sorted keyword table using binary search; if the identifier is found in the 
keyword list, the appropriate token is returned. Otherwise, an identifier token is 
returned. 

5.4.2    Parser 

The parser checks the correctness of input and generates IF1 code. The parser is was 
produced using the UNIX tool yacc . 

The input format of yacc is similar to that of lex. It also consists of the same three 
parts (definitions, rules and programmer subroutines) and they are also separated by 
two "%%". Only the second part is compulsory and the other two are optional. 

The first part of the parser is the definitions. We need to give the definitions of tokens, 
return types, priority between operators and start rule of the grammar. For example, 

%token INTEGER 

%type      <yJnt>    INTEGER 

%start     proof! 

The second part of the parser is the most important part, including grammar rules 
and corresponding actions. For example, 

proof!    :    PROGRAM ID COLON classJist objiist bodyJist END 

{ 
body(); 

} 

This is the starting grammar rule of a PROOF/L program. It begins with the reserved 
word program and the name of this program. After a ";", the rest of the program 
is the class declarations and object declarations. Finally, it is the list of bodies of 
active objects and ended with the reserved word end. Similar to lex, between a pair 
of "{" and "}" is the corresponding action part of this rule. For the example above, 
the action is calling the function body() to build the object body list. 

In our implementation of the front-end translator, the parser generates the IF1 code 
as it parses a PROOF/L program. The grammar rules for PROOF/L are given in 
Appendex B. 
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Figure 5.6: The structure of the symbol table of the PROOF/L front-end translator. 

5.4.3    Symbol Table Handling 

The symbol table used by the parser stores information about classes, methods, ob- 
jects and the composition of objects. 

As class, method and object declarations are parsed, appropriate entries are made to 
the symbol table. The information stored in the symbol table is used to verify the 
validity of the PROOF/L program and to generate IF1 code. 

The relations among the symbol tables are shown in Figure 5.6. 
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Chapter 6 

PROOF/L Back-end Translation 

In this Chapter, we will present the back-end translation which translates our superset 
Intermediate Form 1 (IF1) to two parallel dialect C languages: nCube C and KSR C. 
Various IF1 constructs for parallel functions, iterative WHILE loops, IF structures, 
and common computational operations are identified and translated. The important 
issues about designing inter-node communications and synchronizations are also dis- 
cussed. 

6.1     Target Languages 

As mentioned before, there are two kinds of MIMD parallel architectures: shared- 
memory and distributed-memory. In the shared-memory architecture, the processors 
share single memory resource. In the distributed-memory architecture, each processor 
has its own memory, cooperative work must be done through explicitly specified inter- 
node communications and synchronizations. 

We have developed two back-end translators: one for a distributed-memory parallel 
machine nCube and the other for a shared-memory parallel machine KSR. 

6.1.1    The nCube C 

The nCube C version 3 [66] consists of a comprehensive set of ordinary C primitives 
and build-in functions. Several basic primitives for the parallel execution and inter- 
node communication are: 

• rexec:   launch an executable program on a subset of processors.    It involves 
allocation of a set of processors, setup of a process table for each processor within 
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the node set, and execution of the program on each processor. 

• ntest: a non-blocking way to test existence of messages from other nodes. 

• nread: waits for messages and reads them whenever they arrive and satisfy the 
type format set by the nread. The nread operation is self-blocked. Inappropriate 
nread operations could lead to deadlocks. 

• nwrite: sends messages from one node across the nCube high-speed bus to 
another one with a type format. 

All these primitives have substantially large communication overheads. 

There are several other functions used to check states of processors at the run time 
on the nCube parallel machine: 

• whoami: reports a node condition during the run time. 

• npid: return current node ID. 

• ncubesize: return the hypercube size, which is 2's power. 

The nCube C itself does not provide any primitives to prevent deadlocks or to syn- 
chronize physical nodes. Each node basically stands alone itself. 

6.1.2    KSR C 

KSR C version 1.0.3[67] not only fully supports ordinary C primitives and built-in 
functions, but also supplies a comprehensive set of primitives for parallel execution, 
barrier synchronization, mutual exclusion and monitor. The shared-memory archi- 
tecture implement all the details about interactions among different processors. The 

primitives used in the translation are: 

• pthreacLcreate: create a thread which shares the single memory. 

• pthreacLjoin: a master pthread waits for terminations of slave pthreads. 

• pthreacLbarrier:   master/slave type control to synchronize all the slaves to 

start simultaneously. 

The KSR kernel handles all the communications among different threads distributed 

on physical nodes. 

In general, ways to optimize communications among all the nodes involve partition, 
allocation, and grain size determination, which currently have not been implemented 

in the translator. 
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6.2    From IF1 to Target Languages 

As mentioned in Chapter 5, IF1 (Intermediate Form 1) is used to have graphical 
representations for PROOF/L programs. 

The translation from IF1 to target languages consists of three steps: parse IF1 code, 
structural linking and translation, as shown in Figure 6.1. 

Class 
Structures 

Object Body 
Structures 

IF1 Code 

Parse 
Types, Edges, 
Nodes, Graphs 

Pointer Linking 
among Types, 
Edges, Nodes, 
Graphs 

Type Checking 

Build 
Structu 
Classe 

res of 
i, Objects 

J 

Classes, Objects 
Consistence 
Checking 

Functional Call 
Pattern Checking 

* 

Translation to 
Target Code 

Target Code 

Step.l Step.2 Step.3 

Figure 6.1: Translation steps from IF1 to a target code. 

6.2.1     Parse IF1 Code 

IF1 code consists of types, edges, nodes, graphs, and numerical relations among them. 
Because there are no explicit mechanisms to describe object-oriented concepts - classes 
and objects - in the original IF1 syntax, extensions have been made for the IF1 code 
to keep the class and object information for the back-end translation. All the class 
and object information is stored in the IF1 type headers, graph headers, and object 
headers. The following IF1 code describes these constructs. 

1. The class's composition: 

T <TypeJd> 

2. The class's method header: 

G <Typeid> 

3. The object body part: 

RECORD<next>     %na =<class_name> 

<Class_Name. Method _Name> 
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X 0 <Class_Name.Object_Name> 

The comment fields are only used for reference and ignored during the translation. 

The execution sequence within a graph is sorted by detecting the dependency among 
the nodes, edges, and their numerical linkages in the graph. The algorithm below 
demonstrates the sorting of execution sequence: 

seq = 0; 
mark all the nodes unsorted; 
for (each node) { 

for  (each input edge)   { 
if   (each input edge is literal   I I 

not an output edge from an unsorted    node)  { 
continue; 

} else { 
break; 

> 
} 
if   (all the input edges are checked)  { 

set order of current node = seq; 
seq++; 

} 
} 
if   (any unsorted nodes left)  { 

report error; 
exit(-l) ; 

} 

After types, edges, nodes, and graphs of the entire IF1 code have been scanned, class 
and object structures can be derived through implicit class and object information in 
the new nodes of the IF1 code introduced in Section 5.3. The information includes 
class compositions in types, method names in graphs and object names in graphs. 

6.2.2    Structural Linking 

After numerical relations among types, edges, nodes, and graphs have been identified 
and built in the data structure during the first step, all these numerical relations are 
converted to pointer linking between types and edges, edges and nodes, types and 
graphs, and nodes and graphs. Method calls include four types: 

• Built-in functional calls (denoted as imported functions in the IF1 code). They 
include appendJLef t,   append_right, tail,  head,  last,  inc,  dec,  null?, 
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delay, while, etc. 

• Global functions. The class GLOBAL is a class without any data structure but 
methods. It is a collection for public methods, in which every method can be 
used by any other classes or object bodies without any difference comparing to 
using their own methods. 

• Method calls within a class. Currently a class method only can call another 
method within the scope of the same class, besides build-in and global functions. 

• Method calls within an object body. Objects can call any methods available 
within the entire scope. 

In addition, GUARD structures within methods are detected for each class. It is 
the only way for different objects in the PROOF/L code to synchronize one another. 
These structures are represented as GUARD compound nodes introduced in Section 
5.3. The text representation is shown as follows: 

{ 
G      0      GUARD 1 (structure) 
C The predicate needed to be realized in order to continue the execution 

G      0      GUARD 2 (structure) 
C The body to be executed after the guard predicate above becomes true. 

} <node_id>    GUARD   2   12 

The number of input edges to computational nodes are verified, and edges for input 
arguments to method CALL nodes are checked against method prototypes. Type con- 
sistency checking is also applied to input and output data flows, which are represented 
by edges, among all the simple nodes in the IF1 code. 

PROOF/L parallel structures will be detected in two ways at the IF1 level: 

• Detecting alpha (apply to all) and beta (distributed apply) parallel function 
forms through data dependency among CALL and LBUILD nodes. 

• find a built-in parallel function call named delta (data partition) in the IF1 
code. 

6.2.3    Translation 

In order to realize the functional features in the PROOF/L language, only two kinds 
of data formats have been used: ATOM and SEXP. They are shown in Figure 6.2. 
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ATOM: 
Type 

Cont 

SEXP: 
ATOM ATOM 

Next Next 

NIL 

Next 

Figure 6.2: The data format of the translated target C code 

Concatenated structures for PROOF/L class compositions are represented by using 
SEXPs. An initialization function for each class will be provided to initialize all 
components within the correspondent class composition: 0 for the integer or float, 
FALSE for the boolean, "(empty string) for the string, NIL for the list. So there are 
no explicitly data definitions of classes at the C code level. 

Our own PROOF/L library routines for supporting functional operations have been 
provided. They include all the built-in functions (except parallel delat function), 
copy routines, and garbage collections routines. Besides all these routines, packet 
assembling and disassembling routines have been written for message-passing type 
communications in the nCube C code, which will be described later. 

In order to modularize the entire translated target C code, four basic files are generated 
after the translation: 

• class.h contains all the object declarations and all the necessary C "include" 
files. All class method prototypes and class initialization function prototypes are 
also listed here. This is the main header file for the entire translated C code. 

• methods.c contains all the class methods, bounded by comment marks for each 
class. It also contains class-method lookup tables for the purpose of communi- 
cations among different objects, which will be further explained. 

• objects.c contains bodies of all the objects. 

• main.c provides the initialization of all the available physical nodes, and as- 
sociate each object body with a single node in the nCube C (create a thread 
for each object body in the KSR C), dispatch all the correspondent controls to 
object bodies, synchronize all the objects to start execution simultaneously, and 
finally do the cleanup when all the objects are terminated. 

The broad translation for a class is described as follows: 

IF1 
C Class <name> 

C Class Composition 

nCube C 
/* Class <name> begins */ 

/* Class composition */ 

C Class Methods /* Methods <Class_name.Method_name 1> 

51 



begins */ 
G <Type_id> <Class_name.Method_name 1> void <Class_name.Method_name 1> 

«I/O Type» { 

} /* End of method */ 

C Class Methods /* Method <Class_name.Method_name k> 
beings */ 

G <Type_id> <Class_name.Method_name k> void <Class_name.Method_name k> 
«I/O Type» { 

} /* End of method */ 
end Class /* Class ends <name> */ 

C Extra procedures for every class     /* class-method lookup table begins */ 
void <name>_func_dispatcher() { 
/* Lookup Table */ 

} 
/* class-method lookup table ends */ 

The broad translation for an object is described as follows: 

IF1 nCube C 
/* Declaration */ 

X 0 <Class_name.Object_name>        SExp *<object_namename>; 
C nodes(Simple or Compound), edges     /* Object <Class_name.Object_name> 

begins */ 

void <Class_name_Object_name>()  { 
...   } 

The main.c is given as follows: 

initialize all the objects; 
initialize all threads or nodes; 

switch «Thread ID»   { 
case 1:   <Objectl_func>(); 
break; 
case 2:   <0bject2_func>(); 
break; 
case 3:   <0bject3_func>(); 
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break; 
case 4: <0bject4_func>(); 
break; 
case 5:   <0bject5_func>(); 
break; 

} 
synchronize all threads to start at the same time; 

wait for terminations of all threads. 

All the classes and objects are translated based upon the structures shown above, 
and correspondent portions of code are put into the header file or different c files to 
modularize the problem. The entire set of .c and .h files will be put into a directory 
according to what a programmer provides. Also a general makefile for the purpose of 
translation of target C code is given. 

6.2.4    Additional Implementation Schemes 

Unique data type and iteration conversion 

The main feature of the PROOF language is to combine the functional and object- 
oriented domains together. In order to save the class and object information for 
the back-end translation, we also extend the IF1 to let it carry the class and object 
information across PROOF/L code to target C code. We apply the data structures, 
ATOM and SEXP, to realize all the functional features. Furthermore, lists used in 
the PROOF/L are a type of heterogeneous lists, which is similar to those in LISP. 
A number of list manipulation functions have been given, such as List Constructs 
[](square brackets), append_1 eft,  head,  tail,  append_right, null?, etc. 

All other data types in the PROOF/L - integer, float, boolean, and string - are im- 
plemented with single type called ATOM with the unique type code embedded inside. 
The binary, boolean, relational and unary operations are applied in the following way: 

verify type of the first atom depending on the operation; 
extract content of the first atom; 
verify type of the second atom depending on the operation if applicable; 
extract content of the second atom if applicable; 
apply the operation to content(s)  of the atom(s); 
compose an new atom with result of the operation and appropriate type; 

The underling unique interface for processing different data types gives considerable 
flexibility to programmers, but sacrifices execution performance. 
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A functional language always involves recursion and PROOF/L is no exception. Re- 
cursive function calls not only are resource-consuming, but also limit computational 
capacity. Currently there is no implicit recursion removal during the translation. An 
iterative functional structure, WHILE loop, has been used to avoid these explicit re- 
cursive calls. Because of the specialty of WHILE loops, a library routine has been 
written to realize iterations of WHILE loops. 

PROOF/L format: 
while(<predicate lambda exps>,   <body lambda exps>)  <an input to lambda> 

Translated C format: 
result = <an input to lambda>; 
while  (1)  { 
if   (  <predicate lambda exps>  ( result )   )   { 

result =   ( <body lambda exps>  ( result ); 
} else { 

break; 
} 
return result; 

Commnumication and synchronization schemes 

As mentioned in Section 6.1, distributed-memory parallel machines, like the nCube, 
need to explicitly specify communications among different physically separated nodes. 
On the other hand, shared-memory parallel machines, like the KSR, provide commu- 
nications among different nodes at the kernel level, which releases this task from 
programmers. Our translator for nCube emulates communications for the shared- 
memory KSR machine in order to provide the unique structures to translate the IF1 
code for two different target languages with as few variations as possible. 

All the concurrent objects in PROOF/L that can be executed in parallel are dis- 
patched to different threads or nodes. Each object is a computation unit of its 
own. The guard statements in methods are used to handle synchronizations among 
PROOF/L objects executed on different nodes or threads. 

Periodic communications among different threads or nodes are made under these two 
conditions: 

• call methods of other objects. 

• applications of the parallel functions: alpha,  beta, and delta. 

The first condition is for the purpose of method invocations between two different 
objects. The reasons for one object to invoke another object's method are: 
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• Query for the state information of another object. 

• Change the state of another object through the reception function (the only way 
to modify the state of an object) 

The scheme for this kind of communication is shown in Figure 6.3. A request object 
sends the method id to indicate which method it wants to call to a responder object, 
assembles all the arguments necessary to that method, except state information of 
the responder object, into a stream packet, and then sends the packet through the 
network. After the method id received, the responder object dispatches the stream 
packet of arguments to the method that the request object requests. Arguments get 
extracted from the stream packet and passed to the method associated with state 
information of the responder object. The final outputs of the method are assembled 
again into a stream packet and passed back to the request object which in turn will 
disassemble the returned packet to get the results it expects. Overheads for assem- 
bling and disassembling are necessary for providing an unique and simple interaction 
between two different objects, and they are much less time-consuming than commu- 
nication overheads across two different processors. Another reason for us to assemble 
all the arguments together and send once across two nodes is that multiple commu- 
nications with small packets are more time-consuming than a single communication 
with a large packet. 

— Ml 

Request 

Object 

Method ID 

Responder 

Object 

Packet of Args C 

Packet of 
Lookup Table 

Outputs Mk 

Figure 6.3: The underlying PROOF/L communication scheme 

The code skeleton for a class-method lookup table is shown as the following: 

/* message comes in */ 
switch  (method_id)  { 
case 1: 

method 1  set up; 
Call method 1; 
method 1 feedback; 

/* receive argument packets and disassemble */ 

/* assemble final results */ 

break; 

case 2: 

> 
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Class-method lookup tables are required for the distributed-memory nCube machine. 
On the other hand, an object on the shared-memory KSR machine do not need to 
explicitly pass messages over to other objects; rather they can call another object's 
method directly because all objects shared their state information with others, while 
objects on the nCube machine own their state information themselves. But the se- 
quence for calling methods is still the same, include assembling and disassembling 

arguments to methods. 

Deadlock is entirely avoided. Each object controls its own thread by executing its 
body. The loose-coupled relations among objects are well maintained by all the 
GUARD statements within methods of each object. Objects are ready to serve other 
objects' requests when they enter unsatisfied GUARD statements. 

Bottlenecks in the PROOF/L for a program normally are writable objects. When 
enormous objects want to invoke methods of writable objects, the program's execution 
pace slow down considerably. 

The second condition is to execute a single function with multiple ranges of data 
in parallel(alpha, apply to all or delta, data partition) or multiple functions with 
their own data ranges in parallel(beta, distribute apply). The current translator can 
execute all the built-in functions and all the global functions in parallel. 

Same reasons as the first condition are applied here for our assembling arguments to 
methods before calls and disassembling stream packets to extract results after methods 

finish executions. 

alpha function 

PROOF/L format:   alpha <method>  ([args 1],   [args 2],   ...) 
target C format: assemble args 1; 

launch a process to call method; 
assemble args 2; 
launch a process to call method; 

wait for return packet 1; 
disassemble packet  1; 
wait for return packet 2; 
disassemble packet 2; 

build all return results into a list 

• beta function 

PROOF/L format:       beta (method 1, method 2, ...) ([args 1], 
[args 2],   ...) 

target C format: assemble args 1; 
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launch a process to call method 1; 
assemble args 2; 
launch a process to call method 2; 

wait for return packet 1; 
disassemble packet 1; 
wait for return packet 2; 
disassemble packet 2; 

build all return results into a list, 

• delta function 

PROOF/L format: 

target C format: 

delta <method> ([low_bound], [upp.bound], 
<rest args> ...) 

assemble all args: low.bound, upp_bound, 
rest args ...; 

launch a process to call method; 
launch a process to call method; 
/* Depending on physical conpacity, 

launch processes as many as possible */ 

wait for return packet 1; 
disassemble packet 1; 
wait for return packet 2; 
disassemble packet; 

build all return results into a list. 
/* Dimension undermined */ 

57 



Chapter 7 

Extension of PROOF/L 

In order to make PROOF/L more easy to use, we plan to add more functionalities to 
the original PROOF/L. In this chapter, we discuss how we are going to provide I/O 
functionality and an alternative data construct array in the PROOF/L for better 
utilizing the PROOF/L for developing parallel software in certain applications. 

7.1    Input/Output in PROOF/L 

As we mention in Chapter 1, PROOF/L is a C++ based language. In order to provide 
I/O functionality to the PROOF/L, we are going to build C++like system I/O classes 
to facility input/output for PROOF/L. The read and write operations should be 
sufficent for performing most I/O operations in PROOF/L. Additional functions for 
maintaining the files are needed, such as open, close, rewind and seek. We have 
defined the following four classes for any I/O processing: 

• f ilelO is an abstract data type which has the filename as a local variable, file 
manipulation operation, and I/O operations, such as open, close, rewind, seek, 
read, and write. 

• stdIO is an abstract data type which has the standard I/O, STD, as a local vari- 
able for representing the standard I/O devices, and two standard I/O operations: 
read x and write x. 

• objectIO is an abstract data type which has the object-name as a local variable, 
and the I/O operations, such as read x and write z, in which a; is a variable 
to read from or write to. The reason for us to provide the objectIO class is to 
give users the capability to communicate among objects allocated over different 
processors. We try to give a unique interface to access objects, which is similar 
for access of standard I/O and files. 
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Each class has the following format: 

class filelO 

composition 
filename : string; 

end composition 

method read x; 
method write x; 

method open; 
method close; 
method rewind pos dir; 
method seek pos; 

end class 

class stdIO 

composition 
STD   :   built-in; 

end composition 

method    read x; 
method    write x; 

end class 

class objectIO 

composition 
object_name  :   string; 

end composition 

method read    x; 
method write x; 

end class 

Figure 7.1 shows an example about how object A can access object B's data. For 
example, an object A wants to read x from an object B. Object A will send a message 
to object B to invoke read operation in object B. Then B will read x and send x to A. 
If A wants to write x into B, then A will send a message to invoke write operation 
in B. If write operation is invoked, then B will get x from A and write x to B. 

As an alternative approach, we can design I/O features using a hierarchical structure 
of classes, which is similar to system I/O class hierarchy provided by C++.   This 
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Figure 7.1: Read and write between two objects 

structure consists of a set named class descriptions: filelO, stdIO, and objectIO, 
which are organized as a superclass, such as 10. Using this structure, we can identify 
relations between classes and specify the inheritance, aggregation, and using relations 
among the classes. The hierarchy of the classes is shown in Figure 7.2: 

Figure 7.2: The hierarchical structure of classes filelO,  stdIO,  objectIO, and 10 

7.2    Arrays in PROOF/L 

In this section, we will discuss how array data type can be incorporated in PROOF/L. 

An array structure is a contiguous block of storage. Like a list, an array consists 
of elements of the same type. Unlike lists, an array is of a fixed, predetermined 
size which cannot be changed, but supports random access. PROOF/L needs to 
support the array data type to manipulate a group of elements to perform scientific 
computations. 

7.2.1     Array Creation 

The following syntax creates a one-dimensional array in PROOF/L. 

array_name (array index element-type) 

The index argument should be non-negative integers that are to be the number of 
elements of the array. The element-type is the name of the type of the elements of the 
array. It will be integer, real, and boolean. An array's index starts at 0. 
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A two-dimensional array can be created by the following syntax: 

array.name (array index  (array index element-type)) 

Multi-dimensional arrays are created by using nested structures and then element-type 
itself can also be an array. 

7.2.2    Array Access 

We have defined two functions: retrieve and store, which should be sufficient for 
accessing an array. Each element is referenced by its position. The function retrieve 
is normally used for accessing an element of an array. For example, we retrieve an 
element from a one-dimensional array as follows: 

(retrieve array_name index) 

The function store is used for filling an array's slot. This is a function of two argu- 
ments, where the first argument specifies a slot to be filled, and the second argument 
specifies the value to be stored in that slot. For example, the following statement 
stores an element into the one-dimensional array 

(store array_name index element) 

Let us consider the one-dimensional array 

NAME_LIST array 100  int 

(store NAME_LIST 20   (retrieve NAME_LIST 5)) 

In this example, NAME-LIST is an array of 100 integers, retrieve operation retrieves 
an element from an array NAME-LIST and store operation stores the element into 

the 21th slot. 

For multi-dimensional arrays, we will use nested structures. For example, we can 
retrieve and store an element from a two-dimensional array as follows: 

(retrieve (retrieve array_name index)  index) 
(store  (store array_name index element)  index) 
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Let us consider the two-dimensional array 

MATRIX  (array 100  (array 100 int)) 

(store  (store MATRIX 20 
(retrieve  (retrieve MATRIX 10)   15) 

)  30) 

In this example, MATRIX is an array of dimensions 100 by 100. ELEMENT is an 
element in the 10th row and the 15th column of the array MATRIX. The element is 
stored into the MATRIX with the 20th row and the 30th column. 
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Chapter 8 

Integration With Existing 
Languages 

In order to utilize more mature FORTRAN/C built-in function libraries of parallel 
machines, we need to integrate PROOF/L with existing languages, such as FORTRAN 

and C. 

8.1     C and FORTRAN on nCube and KSR Systems 

The translation environment on KSR is shown in the Figure 8.1. cc, the KSR C 
compiler, translates a program written in C into executable load modules, or into 
a relocatable binary program that can subsequently be linked using Id. cc has the 

following syntax: 

• On KSR: cc [option] sourcefile.c [-1 lib] 

option is a special action to be performed by cc. Multiple option parameters should 
be space-separated. For detailed information, see the cc(l) man page. The sourcefile 
is a source program to be compiler. Multiple sourcefile parameters should be space- 
separated, cc accepts several types of source files, and determines the action to take 

based on the filename's suffix: 

• .c - a C source program to be compiled by the C compiler. 

• .f/.F/.cmp - a FORTRAN source program to be compiled by the FORTRAN 
compiler (.cmp is related to FORTRAN'S KSR KAP preprocessor). 
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The -1 lib is an object library with which the program should be linked using Id. Mul- 
tiple -1 lib parameters should be space-separated. For more information on libraries, 
see Section 1.2, "Libraries" [67]. For example, the following cc command compiles a 
C program called mainprog.c. It specifies that the name of the executable file should 
be mainprog and that the program should be linked with the math library: 

$ cc -o mainprog mainprog.c -lm 

ncc, the nCube C compiler, has the following syntax: 

On nCube: ncc [options] sourcefile.c [-1 libraries] 

For example, the text of the sample program used, hello.c, is as follows: 

mainO  { 
printf  ("Hello world!\n"); 

} 

To compile the program hello.c, type the command line from a host shell: 

$ ncc -d 2 hello.c 

The -d option specifies that the program is to run on a 2-dimensional cube, that is, 
a set of four processors. To run the sample program, invoke it by typing the default 
name of the output file a.out. The output becomes: 

$ a.out 
Hello world! 
Hello world! 
Hello world! 
Hello world! 

The translation environment of both systems as shown in Figure 8.1 can call library 
functions at the linker stage. The KSR C compiler translates programs written in 
C into executable load modules. Phread libraries, Unix libraries, and Presto libraries 
are linked at the LINKER stage. The libraries are defined in /usr/lib/. 

8.2    Integration of PROOF/L with nCube and KSR C/FORTRAN 

The purpose of the integrating PROOF/L with existing languages is to use the re- 
sources of their existing software support. Any program, which is written in PROOF/L, 
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Source 

V " 

C Compiler 
FORTRAN 
Compiler 

Figure 8.1: The KSR translation environment 

can use the built-in functions written in FORTRAN and C. The type safe linkage 
scheme presents a problem if we try to call functions from other languages. We can 
specify the language type of a function, effectively turning off the name mangling. 
We create the following syntax in the PROOF/L program to specify function calls 
written in other languages: 

extern language-type { 
«include <stdlib.h>; 
type func-name(arguments); 

} 

language-type is a language specification and func-name is a function name. For 
example, when you try to call a C function from PROOF/L, the linker will never find 
the function because the C function name is not mangled. You can declare a group of 
functions by using double quotes to enclose them in a linkage specification as follows: 

extern  'C   { // here's a language specification 
«include <stdlib.h>; 
method func-name(args —> args); 

} 
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Figure 8.2: The translation environment for PROOF/L 

The corresponding IF1 with the above PROOF/L syntax will have the following forms: 

I 40    func-name    ,/,hf=stdlib.h 
T 40    Function    41    42 
C input argument 
T 41  

C    output argument 
T    42  

0 

func-name is a function name and hf means header files. The corresponding KSR C 
or nCube C program has the following format: 

#include <stdlib.h> 

func-name(arguments); 
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The KSR C or nCube C program calls the function with arguments. 

Figure 8.2 shows the translation environment for PROOF/L. Libraries are linked in 
PROOF/L at the LINKER stage. We created two translation rules, from PROOF/L 
to IF1 and from IF1 to nCube C or KSR C. 
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Chapter 9 

Comparison of IF1 and IPR 

In this chapter, we selected IF1 [5, 68] as the intermediate langauge for translating 
PROOF/L to any target language. We previously used the Intermediate Program 
Representation(IPR) [3], which was delevoped by ourselves, instead of IF1. The 
reason for us to switch from IPR to IF1 is to utilize the parallel software accessment 
tool - Parallel Accessment Window System (PAWS) [6] - for evaluating our approach 
since PAWS only accept IF1 code as input. In this chapter, we discuss the advantages 
and disadvantages of these two intermediate forms. 

9.1     IF1 

IF1 is one of several intermediate languages for functional language implementation, 
along with P-TAC [69] and Lean [70]. It is a data-flow intermediate form language 
based on acyclic graphs. IF1 was developed as an intermediate form for a high- 
level applicative programming language SISAL(Streams and Iteration in a Single- 
Assignment Language) [38]. IF1 is also a line-oriented language in that the line is the 
unit of construction of the IF1 files. IF1 consists of the following four components: 

• Nodes: A node represents a logical or mathematical operation such as addition, 
multiplication, subtraction, division, and, or and not. There are two kinds of 
nodes: 

— Simple nodes: A simple node represents a basic operation such as addition. 
A node starts execution only after all the data carried by the incoming edges 
is available. Simple nodes do not contain subgraphs in them. 

— compound nodes: A compound node contains one or more subgraphs, and 
can be hierarchically defined. 

A node is created with the "N" code, followed by two integers: a node label and 
a node operation. Each node must be given a unique node identifier or label. 
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• 

• 

• 

Edges: An edge represents a data flow in the program. Edges connect nodes 
with each other. An edge is created with "E" code, followed by a five number 
tuple representing the source node, the source port, the destination node, the 
destination port and the literal type. A node may accept input from an edge 
which originates from another node or from a constant value or literal. A literal is 
created with the "L" code, followed by three numbers designating the destination 
port, the destination node and the type of the literal, followed by the actual literal 

value. 

Graph boundaries: A graph boundary is a border of the graph and it surrounds 
all the nodes and edges of the graph. Different graphs in an IF1 program are 
separated by graph boundaries. A graph boundary starts with the "G" code, 
followed by a type number. 

Types: Types are associated with edges. Every edge has a type, such as integer, 
boolean, array of integers, etc. There are six basic types in the IF1, and new 
types can be constructed from these basic types. A new type is created with 
the "T" code, followed by a unique identifying label, followed by a type entry 
code, followed by a basic type code. Records are formed in the IF1 by creating 
a record header (type entry 5) followed by a list of field entries (type entry 2). 

9.2    IPR 

IPR [3] language is designed to represent the parallelism in the PROOF/L program 
and analyze it for efficient exploitation on various parallel machines. The IPR con- 
sists of two different types of representation: one is a Petri-net and the other is a 
set of function nodes and their relations which we will introduce in this section. The 
semantics for the IPR is also given in two different levels: object level and method 
level. The object level semantics gives meaning to the object bodies of the PROOF/L 
program. The method level semantics gives meaning to the function nodes used to 
represent the methods in the PROOF/L program. This two level semantics makes 
it easy to understand the important issues in parallel programs, such as commu- 
nication/synchronization aspects without considering the unnecessary details of the 
program. This separation of the semantics also allows the verification of programs in 
different levels, and thus the complexity of the understanding and the verification of 
programs can be significantly reduced. 

IPR has a directed graph representation, in which the nodes represent computation, 
and edges represent data flow between nodes. Nodes can be divided into three types: 
computation nodes, control nodes and list handling nodes. 

• Computation nodes: A computation node represents a function receiving input 
value(s) and generating output value(s). The computation nodes include basic 
mathematical and boolean operators, constant, identity and copy nodes. Mathe- 
matical and boolean operators includes operators such as+,-,*,/,=,<,>• The 
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constant node represents a constant generator. The identity node represents an 
identity function which always returns the same value as its input value. The 
copy node represents a duplicator, which produces copies having the same value 
as its input value. 

• Control construct nodes: Control construct nodes are used to specify the control 
flow among functions. The control construct nodes include select, distribute and 
merge. The select node represents a conditional construction function. It receives 
input data t"i,2*2,... ,i — n and control data c and returns an input i{ as an output 
according to the value of the control data c. The distributor node represents a 
conditional construction function. It receives input data i and control data c, and 
passes i to one of the output ports o1? o2,..., on according to the value of c. The 
merge node represents a nondeterministic selector, which receives an arbitrary 
number of input data sequentially and returns the one arriving first. If more 
than one input arrives at the same time, one of them is chosen arbitrarily. 

• List handling nodes: There are two kinds of list handling nodes: construct and 
split nodes. The construct node receives one or more input values and make them 
as a list, and the split node receives a list as input and break down that list into 
values. 

9.3     Comparison 

In this section, we will compare IF1 and IPR in terms of data dependency represen- 
tation, application areas, and maturity. 

9.3.1    Data Dependency Representation 

Both IF1 and IPR can explicitly represent the data dependencies among the nodes in 
the graphs, where the edges represent the data flow. Thus, they can easily represent 
explicit parallelism among the nodes. They can also be used to visualize the structure 
of the parallel programs. However, since these two intermediate languages are designed 
to be used for representing intermediate form of the program, it is not easy for compiler 
writer to read them. In case of IF1, because the names of the nodes are presented by 
integers, it is even more difficult for compiler writer to read IF1 than IPR. 

9.3.2    Application Areas 

IF1 is designed to be used as an intermediate representation for programs written in 
an applicative programming language SISAL[38]. IPR is designed to be used as an in- 
termediate representation for programs written in a parallel object-oriented program- 
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ming language PROOF/L. Neither of the two intermediate forms is general enough 
to be used as a general intermediate representation language. However, considering 
that PROOF/L is an object-oriented programming language supporting the concepts 
such as object-orientation, persistent objects, it is more desirable to use an interme- 
diate form which can represent such concepts supported in PROOF/L. IF1 does not 
support any of these concepts, but IPR supports such concepts. Thus, IF1 requires 
extensions to be used in the object-oriented program representation. Overall, since 
SISAL and IF1 were designed for numerical computation in scientific applications, 
its use for other application areas such as real-time systems and distributed systems 
would be difficult. On the other hand, IPR was designed to exploit the parallelism 
in PROOF/L programs for more general application areas, including scientific com- 
putation and simulation of concurrent or distributed systems. Because IPR can be 
used to represent synchronization and communication among the processes and shared 
data concept, it can also be used in the representation of the programs for real-time 
software systems and distributed systems. In addition, IPR can be used in the ver- 
ification of the PROOF/L programs. Since the object-level relations among objects 
are represented in IPR by a Petri net, it is possible to verify the PROOF/L program 
in terms of synchronization and communication among the objects. Furthermore, the 
concurrency in the problem can be explicitly represented in IPR. IPR can also be 
used for the task allocation or scheduling analysis without augmentation. 

9.3.3    Maturity 

IF1 is more mature than IPR. IF1 has been studied and used as an intermediate form 
for the applicative programming language SISAL since 1985. There is a performance 
evaluation tool PAWS which only receives IF1 codes as input. On the other hand, IPR 
was used as an intermediate form for translation of PROOF/1 to target codes. Both 
IF1 and IPR represent the program in the ASCII format. IF1 is more mature than 
IPR because IF1 has been fully implemented and used in the SISAL implementation. 
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Chapter 10 

Conclusion and Future Research 

In this project, we have completed the following tasks: 

• Development of a front-end translator from PROOF/L to IF1 

• Development of two back-end translators from IF1 to the C languages run on 
two different MIMD machines: nCube and KSR 

• Evaluation of the effectiveness of our software development framework for parallel 
processing systems 

• Comparison of IPR (Intermediate Program Representation) with IF1 (Interme- 
diate Form 1) 

• Extension of PROOF/L with input/output features and array construct 

• Investigation on the integration of PROOF/L with existing programming lan- 
guages, such as C and FORTRAN. 

While existing approaches focus on developing software in the scientific computation 
area, our approach is suitable for general large-scale software development for parallel 
processing systems. Our approach is architecture-independent, and thus the program- 
mers are free from explicitly specifying synchronization and communication. In addi- 
tion, our approach is extensible for software development for distributed computing 
systems and/or real-time systems. We have also found that PROOF/L programs are 
generally shorter than their equivalent nCube C or KSR C programs. This indicates 
that the software development effort can be reduced when we develop software using 
our approach. We have used IF1 for the intermediate representation of PROOF/L. 
Since PROOF/L has some features that are not directly supported by IF1, we have 
added a number of constructs to IF1 to support PROOF/L's first-class functions, list- 
constructs and persistence. By building the two back-end translators, one for nCube 
which has a distributed memory architecture and one for KSR which has a shared 
memory architecture, we demonstrated that our approach can be implemented on 
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parallel machines with different architectures. In addition, the amount of implemen- 
tation effort required to complete the second back-end translator turned out to be a 
small fraction of the effort required to complete the first back-end translator. Thus, 
the overhead to develop the back-end translators for various parallel machines can 
be kept small. Rather than translating PROOF/L to IF1 and then translating IF1 
to the target code, we may have a single translator that translates PROOF/L to the 
target code directly. The single translation method may have the advantage that the 
front-end component and back-end component share common data structures, but has 
the disadvantage of reducing the architecture-independent portion of the translator. 

In order to make our approach more practical, we need to improve our approach in 

the following aspects: 

• Mapping: the partitioning and grain size determination approaches have been 
developed, but are not incorporated in the back-end translation. By fully im- 
plementing these approaches, we should significantly improve the overall perfor- 
mance of the PROOF/L programs. 

• Translator: current implementation is a prototype, and thus requires additional 
optimizations to improve the efficiency of the generated target code. We need 
to implement more back-end translators for other parallel machines so that this 
approach can be used for various parallel machines. 

• Extension to distributed computing systems: Currently, our approach is designed 
for software development for parallel processing systems, but can be extended 
for distributed computing systems. 

• Development environment: By developing integrated CASE tools to support our 
approach, the software development effort can be further significantly reduced. 
Graphical user interface tool, display tool, and debugging tool are considered in 
this development environment. 
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Appendix A 

PROOF/L Reference Manual 

In this appendix, we present the PROOF/L reference manual which includes the 
syntax of PROOF/L and simple illustrative examples. Because PROOF/L is still 
under development, some features in this manual are our intention to complete in the 
near future, but not available in this release. Please refer to the last section of this 
appendix for information about the features that are supported in this release. 

A.l    Introduction 

PROOF/L (PaRallel Object-Oriented and Functional Language) is based on the 
PROOF computation model [4]. It is a C+-hbased language with additional con- 
structs required in PROOF. In this appendix, we define the PROOF/L language, its 
syntax and semantics. At the end of this appendix is a section describing the current 
implementation of PROOF/L. 

A.2    Structure of a PROOF/L Program 

A PROOF/L program consists of a main program and a set of imported modules. 

There are six parts in a PROOF/L program or module: preamble, import declarations, 
class declarations, object declarations, body declarations and initialization methods. 
We will discuss these parts here. 
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A.2.1    Preamble 

The preamble of a PROOF/L program is 

program program-name  : 

The preamble of a PROOF/L module is : 

module module-name  : 

It is suggested that PROOF/L implementations require that the program-name and 
module name identifiers match the name of the file name of the respective program 
and module files. Furthermore, it is suggested that PROOF/L programs end with the 
PRF extension, and PROOF/L modules end with the .PMD extension. 

A.2.2    Import Declarations 

import import-file-1,  import-fih-2,   ...     import-file-n 

Only the names of modules may appear in the import declaration. The compiler 
should report an error if the name of a program appears in the import declaration. 
No two modules may import each other. For instance, if module A imports module 
B then module B may not import module A. All of the classes and objects of an 
imported module are available for use by the importing module. Mechanisms for data 

hiding will be defined in a subsequent report. 

A.2.3    Class Declaration 

In PROOF/L, every object is an instance of a class. A class is a template for a set of 
objects bearing similar behavior and is defined as a generic abstract data type. 

A class in PROOF/L consists of a set of methods and a set of variable names repre- 

senting the state of an object. 

class Queue(itemtype) 
composition 

items   :   list(itemtype) 
numberOfItems  :   int 

end composition 
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method Init(-> Queue) 
expression 

object (items = [], numberOf Items = 0) 

method Addltem(item : itemtype -> Queue) 
expression 

object (items = (append_right items item), 
numberOfItems = (inc NumberOfItems)) 

method GetTop(-> itemType) 
expression 

(head items) 

method RemoveTop(-> Queue) 
expression 

object Queue (items = (tail items), 
numberOfItems = (dec NumberOfItems)) 

end class 

Instance Variables 

Sometimes it is useful to parameterize portions of the class specification. For instance, 
we may wish to define a class that serves as a queue for various kinds of objects (e.g.: 
integers, personnel records, banking transactions, restaurant orders). Rather than 
creating a separate class for each type of object, we can create a parameterized class 
using instance variables. 

When an object is declared, the values of the instance variables must be defined, (see 
Section A.2.4). 

The instance variables of an object may not be altered after object instantiation. 

When a subclass is declared, the instance variables of the subclass must include all 
of the instance variables of its parent. The compiler should return an error if the 
instance variables of a superclass do not appear in the subclass declaration. 

Composition 

Since objects are persistent in PROOF/L, a data structure defining the composition 
of an object is declared in the composition section. The composition of an object 
consists of a collection of variables of various types. The variable can be a member of 
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class BoundedQueue(itemtype:type, maxitems : int) of Queue 

method Addltem(item : itemtype -> Queue) 

guard 
(< numberOfltems maxitems) 

expression 
object (items = (append_right items item), 

numberOfltems = (inc NumberOfltems)) 

end class 

the built-in types (See Section A.5) or an instance of a previously declared class. 

Inheritance 

Inheritence is used to define a subclass as a specialization of a superclass. In a subclass, 
the composition and methods of the superclass are inherited. Additional composition 
data and methods may be defined. Furthermore, inherited methods may be overriden 
by defining a new definition of the method. 

A.2.4    Object Declaration 

Once a class has been declared, objects may be instantiated in the object declaration 

section. 

There are two types of objects in PROOF/L: active and passive. Active objects are 
associated with an object body that is declared in the body declaration section. The 
object body may be a non-terminating function. Passive objects are objects that are 
not associated with an object body. The methods of passive objects are called by the 

bodies of other objects. 

passive object queuel   :   instance of queue(integer) 
passive object queue2   :   instance of queue(float) 
passive object queue3  :   instance of queue(order) 

active object  sorter  :   instance of  sorter 

A.2.5    Body Declaration 

Typically, an active object will wait for messages from other objects.  The compiler 
should return a syntax error if an active object is instantiated without declaring a 
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body for the object. 

body of serverl : 

A.2.6    The Initialization Method 

Before the methods for the bodies of active objects are evaluated, the program ini- 
tialization method is invoked. 

Although initialization of objects can occur in the bodies of the object, sometimes it 
is necessary to initialize objects in this section. For example, refer to the following 
code fragment: 

body of object object 1   : 

;(R[|objectl|](init), % reception function # 1 
R[|object2|](do_something))    */, reception function # 2 

body of object object2   : 
R[|object2|] (init)    '/. reception function # 3 

Although one might expect that reception function #3 would be evaluated before 
reception function #2 is called, this in fact is not guaranteed by the PROOF/L 
language. If function #2 is called before function #3 has been evaluated, function 
#2 will attempted to modified an uninitialized object. 

To avoid this problem, the objects should be initialized in the program initialization 
method: 

begin 
;( R[|objectl|](init), 

R[|object2|](init)) 
end 

A PROOF/L module may also have a program initialization method. The initial- 
ization method of a module will be executed before the initialization method of the 
program or module that imports the module. 

Consider the program represented in Figure A.l. The main program imports modules 
1, 2 and 3. Module 1 imports modules 4 and 5; module 2 imports modules 5 and 6; 
module 3 imports modules 6 and 7. 
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Figure A.l: A PROOF/L program with modules 

When the program in executed, the initialization methods for modules 4-7 would be 
executed first; then the initialization methods for modules 1-3 would be executed. 
Finally, the program initialzation method would be executed. 

There may be cases where a program or module does not require an initialization 
section. 

An empty program or module initialization method is specified as follows: 

begin 

end 

or 

end 

A.3     Method Declarations 

Methods are declared within class declarations and global method blocks. There 
are two types of methods: pure applicative methods and modifier methods. Only 
applicative methods may occur within a global method block. 

A method has the following syntax: 

method name ( method-io ) guard-dcln expression func 
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A.3.1    Applicative Methods 

Pure applicative methods are methods which do not change the state of an object. 
Applicative methods may neither invoke the reception function, nor invoke another 
method which invokes the reception function. 

A.3.2    Modifier Methods 

Modifier methods may invoke the reception function, applicative methods or other 
modifier methods. The reception function attaches data to an object as defined in 
the object's composition. Since modifier methods can change the state of an object, 
thus applicative semantics do not apply to modifier methods. However, by limiting 
the places where the reception function may be invoked, applicative semantics still 
apply for well-defined portions of a PROOF/L program. 

A.3.3    Global Method Declaration 

Sometimes the programmer may wish to define methods that are not associated with a 
particular class. For instance, it may be convenient to define routines such as IsPrime, 
Double and Summation that are available to several disjoint classes. * 

A global method may be called by any other method. 

A global method call can occur in another global method, a class method, the body 
of an object, or the program initialization method. Any global method calls must 
occur after the definition of the global method. Currently, forward declaration is not 
allowed in PROOF/L. Any number of methods may be declared in the global/end 
global block as follows: 

global 
method double(number  :   int ->  int) 

expression 
(+ number number) 

end global 

Global methods blocks may be interspersed with class declarations. 
1 Our inclusion of global methods in PROOF/L is not meant to subvert the object-oriented programming paradigm. 

By including global methods in our definition, we have in fact made it much easier to write non-object oriented 
programs; we can only hope that the PROOF/L programmer will recognize the numerous advantages of an OO 
approach. If everything in PROOF/L were represented as an object (for instance, in Smalltalk, even integers are 
objects), global methods would be less important. 
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A.3.4    Object Synchronization 

Synchronization among objects is achieved by attaching an optional precondition or 
guard expression, to class methods. The object which invokes the method is suspended 
when the attached guard expression evaluates to False, and resumed when the guard 

becomes True. 

The guard expression must comply with the following rules: 

1. It must be an applicative function that returns either True or False. 

2. It may not invoke the reception function. 

3. It may only refer to the data in the composition of the method's class; it may 
not refer to the data in the composition of other objects. 

4. It may not invoke a class method. It may, however, invoke global methods. 

A guard may only be attached to class methods and modifier methods. A guard may 

not be attached to a global method. 

A guard is attached to a method by placing a guard keyword and accompanying 
applicative expression after the method's input-output declaration and before the 

method's expression clause. 

Example: 

class GumballMachine 
composition 

numberOfGumballs : int 

end composition 

method DispenseGumball( -> Gumball) 

guard 
(> numberOfGumballs 0) 

expression 
object Gumball(size = 1) 

method FillMachineC addGumballs : int -> GumballMachine ) 

expression 
object GumballMachine(+ numberOfGumballs addGumballs) 

end class 
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In the above example, when an object invokes the DispenseGumball method and 
there are no gumballs in the machine, the calling object will suspend execution until 
gumballs are added to the machine. To add gumballs to the machine, another object 
must modify the composition of the object with the reception function. 

Consider instance MyGumballMachine of class GumballMachine: 

R[|MyGumballMachine|](MyGumballMachine.FillMachine 100) 

A.4    Comments 

When a # character is placed on a line, the parser will ignore the # and the remaining 
characters after the # on the same line. The parser will also ignore blocks of text that 
appear within /* and */. 

A.5    Data Types 

A.5.1    The boolean Type 

The truth values are textually represented in a PROOF/L program as true and false. 

A number of built-in functions and special forms return boolean values. 

A.5.2    The int Type 

An integer is a member of the set { ..., -2, -1, 0, 1 , 2, ... }. 

Currently, the lower and upper bounds of integers are not defined by this document 
and are implementation dependent. 

A.5.3    The real Type 

Refer to the formal syntax rules of PROOF/L for detailed information on how reals 
are represented. 

Examples: 
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1.34 
l.lOE-01 
3.14159 

Currently, the lower and upper bounds of real numbers are not denned by this docu- 
ment and are implementation dependent. 

A.5.4    The string Type 

Examples: 

'this is a string' 
'PRDOF/L' 
'1234' 

Currently, the upper limit of the length of strings is not defined by this document and 
is implementation dependent. 

A.5.5    The list Type 

The list type of PROOF/L is similar to the list of functional languages such as LISP 

and Scheme. 

A list in PROOF/L is defined recursively as follows: A list is either empty or non- 
empty. Non-empty lists are represented as a structure with two fields, head and tail. 
The head of a list may refer to any PROOF/L object (including another list), whereas 
the tail of a list must refer to another list. 

PROOF/L provides a number of facilities for list creation and modification (see Sec- 
tion A.7.4). The list-creation function creates a new list. A null list is textually 
represented in PROOF/L as: 

[ ] 

Non-null lists are created using function. 
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[ 1 ] 
[12 3] 
[12 3 4 5] 

The list-creation function may be nested. 

[[12] [12] [34]] 
[ [ [ 1 ] ] ] 
[ 1 2 [ 3 4 ] [56]] 

Improper lists are lists which the tail of the list does not point to another list structure 
or NULL. Improper lists are not supported in PROOF/L. 

A.5.6    User-defined Types 

User-defined types are defined using the class construct (see below). When a class 
is defined, there exists an opportunity to define methods that work with instances of 
the class. Although some languages provide a separate mechanism to declare data 
types without associated methods (e.g., the typedef construct of C/C++), there is 
no such construct provided with PROOF/L. 

A.6    PROOF/L Special Forms 

The following section describes the PROOF/L special forms. Special forms are func- 
tions with syntactical forms that differ from the syntactical form used by methods. 

Built-in functions (such as inc and dec) use the same syntax as methods; if they were 
not defined in PROOF/L, they could be defined as global methods. 

A special form, however, has a syntax that differs from that of methods and subse- 
quently cannot be declared by the user. 

A.6.1     List Construction 

A list can be constructed using the list construction operator. 

Examples: 
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[12 3] 
[[12] [34]] 
[[123] [456]] 

A.6.2    Alpha Function 

The alpha function is syntactic sugar; the alpha expression: 

alpha function-name   [ argi arg2 ■■■ argx~\ 

is equivalent to 

[  (function-name arg{)   (function-name arg2)   ■■■ 
(function-name argx)  ] 

when the function has a single argument. When the function has n>l arguments, 

beta[ function-name ]   [   [ ßi,i  aii2   • • •     a,\,n ]   [ «2,i ^2,2   • • •     «2,« J 

• • •        [   &x,\   ax,2    • • •       ax,n   ] 

is equivalent to 

[ (function-name a^i ai;2 . . . ai,n) 
(function-name a2,\ a2,2 ■ ■ ■ «2,«) 
(function-name ax<\ aXi2   • • •    ax,n)  ] 

If the function to be applied to the argument list accepts only one argument, the 
argument-list should consist of a list of items of whatever type the function expects. 

Example: 

alpha[inc][12 3 4]   =►   [234] 

If the function to be applied to the argument accepts more than one argument, the 
argument-list should consist of a list of lists. Each list in the argument list should 
contain an element for each of the function's arguments. 

Example: 
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alpha +[[12]   [34]   [ 5 6 ]   ]   =»[ 3 7 11 ] 

Although parallelism needs not be expressed explicitly in PROOF/L, the alpha func- 
tion may be thought of as an explicit parallel structure. 

A.6.3    Beta Function 

The beta function accepts a list of functions and a list of arguments: 

bet&lfunctiori! function2 ... functionx ]   [ argx arg2 ... argx~\ 

For each pair of functions and arguments j, if f unctionj accepts a single element, then 
argj must be an item of the type that f unction j expects. If f unction j accepts n£l 
arguments, argj must be a list of arguments [ argjtl argj>2 arg^n J where for each z, 
ar9(h z) is of the same type as parameter z of f unction j. 

The beta function is syntactic sugar; an beta expression of the form above is equivalent 
to 

[  (,functionx arg1)X arg1<2 ... arg1>ni ) 
(function2 arg2tl arg2<2 ... arg2m )   . . 
(functionx argXil argXt2 ... argx,nx )  ] 

A.6.4    Let Function 

let id = funci   in func2 

is equivalent to 

apply lambda(id) (func2)  to junc\ 

For instance, 

let x =   (+ 3 3)   in  (+ x x) 

is equivalent to 

apply lambda(x)(+ x x)  to   (+ 3 3) 
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A.6.5     Sequence Function 

;(   (/unci ...),   (/unc2 ...),   ...     (funcn ...)) 

Evaluates each function funa, func2, ..., /uncn. The result of the sequence operator 
is the result returned by the final function in the function list. The results of the 
functions other than the final function are discarded. If any of the the function can 
cause side effects (namely, if the reception function is called), each function in the list 
is evaluated sequentially. If none of the functions cause side effects, the functions may 
be evaluated in parallel. The decision to evaluate the functions in parallel is made 
by the PROOF/L implementation. Whether the functions are evaluated in parallel is 

not explicitly stated in a PROOF/L program. 

A.6.6    Lambda Function 

lambda (id) func 

The lambda function creates a function. 

method test(a  :   int -> int) 
expression 

while( lambda(x)(< (head x) 10), 
lambda(x)([ (+ (head x) 1) (+ (head x) (tail x))]) ) 

[1 0] 

Implementation Note: 

The current implementation of PROOF/L only uses lambda expressions 
within the while function. Furthermore, the implementation only supports 
single arguments to lamdba expressions. 

A.6.7    Object Function 

object id  (  inst-list ) 

The object special form creates a new composition of an object. It does not create a 
new process associated with that object, nor does it modify the contents of an existing 
object. Frequently, the result of an object special form is used by the reception 

function to modify an object. 
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A.6.8    Apply Function 

Apply is used to apply a function to its arguments. If the function accepts a single 
argument, the apply argument should be an item of the same type that the function 
expects. If the function accepts more than one argument, the apply argument should 
consist of a list of length n, where n is the number of arguments the function accepts, 
and each element in the list is of the same type of the corresponding argument of the 
function. 

Examples: 

apply inc to 1 

apply lambda(x y)(+ x y)  to   [1 2] 

A.6.9    Loop 

loop  ( func ) 

The loop special form repeatedly evaluates func. The evaluation of the loop special 
form never terminates. 

Example: 

loop  (   (out   "Hello world")) 

The loop function is syntactic sugar; it is equivalent to 

while  ( True,  lambdaCz)/fmc )   [] 

where z is an identifier not in func. 

A.6.10    While Function 

while ( funcx   ,  func2 )  func3 

funcx and func2 must be lambda functions, func?, can be any valid expression. 



The while special form is defined recursively as follows: 

while  (  funci   ,  func2  )  func3 => 
if   (apply func1 to func3, 
while(funci,func2)  apply func2 to func3, 
func3) 

A.6.11    If Function 

if   (.funci   ,  func2   ,  func3 ) 

The if special form accepts three arguments. If func^ evaluates to be true, then if 
returns the result of the evaluation of func2; otherwise, if returns the result of the 

evaluation of func3. 

Examples: 

if   (> a b,   a,  b)  =>(the maximum of a, b) 

if   ((> ab), 
if   ((>  a c),a,c), 
if   ((> b c),b,c)) 

=>• (the maximum of a, b c) 

A.6.12    Reception Psuedo-Function 

The Reception Psuedo-Function is used to modify the composition of an object. Unlike 
other functions in PROOF/L, the Reception Psuedo-Function is not an applicative 
function since it alters the state of an object. 

The Reception Psuedo-Function may only appear: 

• within the body of an object 

• within a modifier method 

within the program initialaztion method 

The compiler should generate an error if the reception function appears anywhere 

else. 
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Table 1: A multi-mode locking mechanism. 

R-Lock W-Lock M-Lock 
R-Lock compatible compatible incompatible 
W-Lock compatible incompatible incompatible 
M-Lock incompatible incompatible incompatible 

The Reception Psuedo-Function has the following form: 

R[|  name   |]   func 

where name is the name of the object to be modified (the recipient) and func is a valid 
applicative PROOF/L function that returns a value of the recipient's class. The func 
must not include a reference to a Reception Psuedo-Function or a modifier method. 

Example: 

R[|objectl|](objectl.Init) 

The major difference between modification of objects with the Reception Pseudo- 
Function and the traditional assignment statement are 

• The evaluatation of the expression func can be in parallel since func contains 
only applications of purely applicative functions. 

• PROOF/L provides a mechanism that prevents the simultaneous modification of 
objects. 

PROOF/L prevents the simultaneous modification of objects with a three-mode lock- 
ing mechanism. At any moment, an object involved in an expression is in one of the 
following three categories: 

• read-only : The expression only needs to read the value of the object. 

• will-modifiy : The expression will modify the object, but the modification does 
not occur at this moment. 

• modifying : The expression is currently modifying the object. 

The three types of locks, R-Lock, W-Lock, and M-Lock are associated with the three 
statuses of an object, read-only, will-modify and modifying, respectively. A lock 
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is granted only when it is compatible with other locks granted for the same object, 
according to the compatibility chart in Table 1. 

Before the evaluation of func in the Reception Pseudo-Function, a W-Lock must 
placed on the recipient, if possible. If a W-Lock cannot be placed on the recipient 
immediately, the process waits until the lock can be placed. Once func is evaluated, 
a M-Lock is placed on the object and the object is modified. 

A.7    Built-in PROOF/L functions and identifiers 

A.7.1    Integer Manipulation Functions 

+,-5*A>mod 

dec 

A.7.2    Real Manipulation Functions 

+,-,*A>mod 

A.7.3    Numeric Conversion Functions 

Function Name Inputs Outputs Description 

floor real int floor 

ceiling real int ceiling 

trunc real int trunc 

round real int round 

A.7.4    List Manipulation Functions 

The following functions work with the list data-type, defined in section A.5.5. 

head 

The head function accepts a single argument, a list, and returns the head of the list. 
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Examples: 

(head  [12 3]   )   =>1 
(head  [[12]   [ 3 4]   ]   )   =>[  1  2 ] 
(head  (head  [   [  1  2 ]   [ 3 4 ]   ]   ))   =>1 

tail 

The tail function accepts a single argument, a list, and returns the tail of the list. 

Examples: 

(tail [1])  =»[] 
(tail [1 2 3]   )  =»[ 2 3 ] 
(tail [[12]   [ 3 4]   ])=>[[ 3 4 ]   ] 
(tail (tail   [[12]   [ 3 4 ]   ]   ))   =►[] 

last 

The last function accepts a single argument, a list, and returns the last element in 
the list. 

Examples: 

(last   [12  3])   =>3 
(last   [[12]   [34]])^[34] 
(last  (last   [[12]   [ 3 4]   ]   )   )   =*4 

append_right 

The append-right function accepts two parameters 

(append_right argi arg2) 
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where ar9l is a list of size n and arg2 is a member of any type. It returns a list with 
n+1 parameters, where elements 1-n correspond to elements 1 - n of argx and with 

arg2 as element n + 1. 

Examples: 

(append-right   [12]3)=»[123] 
(appendjright   [ ]   1  )   =»[ 1 ] 
(append^right   C   [ 1 2 ]   ]   [ 3 4 ]   )   =»[   C  1 2 ]   [ 3 4 ]] 

The append right function requires that a deep-copy be made of the list passed in 
argi; use of append-right can be very costly and should be avoided when possible. 

appendJeft 

The appendJeft function accepts two parameters 

( append JLeft argi arg2) 

where ar9l is a member of any type and arg2 is a list. It returns a list with ar9l as 
the first element followed by each of the elements of arg2. 

Examples: 

(appendJLeft 4   [12 3])   =»[4 12 3] 
(append-left   [12 3]   [4 5 6])  ==>[   [  1 2 3]   4 5 6 ] 

listref 

(listref list i) 

The listref function returns the ith element of list.   The first element of the list is 

numbered 0. 

Examples: 
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(listref  [1 2 3]   0)   =*1 
(listref  [[1  2]   [3 4]]   1)   =*[3 4] 
(listref  (listref  [[1 2]   [3 4]]   1)   1)   =^3 

Since the list is a linked structure, the worst case access time for a list of n elements 
is 0(n). An array, although not as flexible as a list, provides 0(1) access time. 

A.7.5     self 

The self identifier is used with the methods of a class to access the composition of 
the class. Use of self is infrequent; it is usually used to return the entire composition 
of the class from a function. 

Example: 

class sample 
composition 

a : int 
b : int 

end composition 
method ChangelfOne(number : int -> sample) 

expression 
if( (= number 1), 

object sample  (a=a+10,b=b+20)   , 
self  ) 

end method 
end class 

self may also be used to access a member in the composition when a variable name 
in the method declaration is the same as a variable name in the composition. 

Example: 

class sample 
composition 

a : int 
b : int 

end composition 
method ChangelfOne(a : int -> int) 
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expression 
(+ a self.a) 

end method 
end class 

A.7.6 super 

The super identifier is used within the methods of a subclass to access the superclass. 
Usually it is used to access the overriden methods of superclass. 

Example: 

class superclass 
method DoSomething(->int) 

expression (+ 2 2) 
end class 

class subclass of  superclass 
method DoSomething(->int) 

expression (+ 2   (super.DoSomething)) 

end class 

In the above example, a call to DoSomething of subclass would result in the sum of 2 
plus the result of calling the DoSomething method of superclass. 

A.8    Implementation Notes 

The current implementation of PROOF/L does not support a number of features 

described in this chapter: 

• Inheritance 

• Modules 

• Modifier methods 

• Arrays 

• Input-Output Functions 

• Lambda functions outside of while functions. 
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Appendix B 

Syntax of PROOF/L 

The following is a formal syntax for PROOF/L in extended BNF. This is an expanded 
version of the syntax presented in [3]. Terminals appear in bold. Non-terminals 
appear in italics. 

mam-program 

module 

import-list 

more-imports 

program name : import-list class-list obj-list body-list program-body 

module name :    import-list class-list obj-list body-list program-body 

more-imports name 

name , more-imports 

class-list class-def class-list 

class-def 

class-ins 

class name class-ins super-class compostion method-def end class 
global method-def end global 

( dcln-list ) 

program-body 

body-list 

begin func end 
begin end 
end 

body-def body-list 

body-def body of object name : func 



obj-list obj-list obj-def 

obj-def 

ins-opt 

active-opt object name-list : instance of name ins-opt 

( name-list ) 

active-opt active 
pseduo 
passive 

super-class 

name-list 

composition 

of name 

name , name-list 
name 

composition var-list end composition 

var-list 

method-def 

var-list dein 

method method-def 

method 

guard-dcln 

method-io 
input-list 

output-list 

dcln-list 

method name ( method-io ) guard-dcln expression func 
external string method-def ( method-io ) { include-list } 

guard ( bool-exp ) 

input-list -> output-list 
dcln-list 

dcln-list 

the-dcln-list 

the-dcln-list 

dein 

dein , the-dcln-list 
dein 

name : data-type 
name :    class-name 
name : list-opt (   data-type ) 
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data-type 

list-opt 

name : list-opt ( name ) 
name 
data-type 
list 
list-opt ( data-type ) 

int 
boolean 
real 
array [ integer ] of  data-type 

list * list-opt 
list 

class-name 

inst-list 

name 

inst , inst-list 
inst 

inst 

June 

name = func 

alpha name [  func-list ] 
beta [ name-list ][ func-list ] 
delta ( name func-list ) 
let name =   func in func 
;(   func-list ) 
lambda (   name )   func 
object   name (   inst-list ) 
apply func to func 
loop ( func ) 
while ( func, func ) func 
if ( func, func, func ) 
R[| name |] func 
( func-list ) 
[ func-list ] 
binop func func 
boolop func func 
not func 
prefix name 
integer 
float 
NIL 
string 
true 
false 
self 

(Function Call) 
(List construction) 
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prefix self 
super 
name 

func-list 

binop 

boolop 

func-list , func 

+ 

* 

/ 
mod 

1 = 

< 
<= 
> 
> = 
or 
and 

(Binary Operators) 

(Boolean Operators) 

letter 

digit 

underscore 

name 

sign 

float 

string 

string-element 

include-list 

include-char 

a | b | c | ... | z 

1|2|3|4|5|6|7|8|9|0 

letter ( letter \ digit \ underscore )* 

+ 1- 
( number )+ .  (   number )* 
( number )+ .  (   number )* E   sign ( digit ) 

' ( string-element )* ' 

• <any character other than ' > 

► ( include-char )* 

► <any character other than } > 

+ 
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technologies of command, control, communications and intelligence and to 
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