RL-TR-95-209, Vol Il (of two)
Final Technical Report
October 1995

PARALLEL SOFTWARE ENGINEERING
TECHNOLOGY FORECAST, Assessment,
Trends, Vision, and Strategy

RCI, Ltd.

Carl Murphy

APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED.

19960122 062 SEN—

Rome Laboratory
Air Force Materiel Command
Rome, New York




This report has been reviewed by the Rome Laboratory Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will be releasable
to the general public, including foreign nations.

RL-TR-95- 209, Vol II (of two), has been reviewed and is approved for
publication.

APPROVED: /rﬁ/ /O ey

JOSEPH P. CAVANO
Project Engineer

FOR THE COMMANDER: WPM

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory mailing list,
or if the addressee is no longer employed by your organization, please notify Rome Laboratory/
( c3cB ), Rome NY 13441. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.




REPORT DOCUMENTATION PAGE | SR ioeed -

Publc reporting burcen for this collsction of infonmation s estimuted to Sverage 1 hoLr per respones, Ncuding the tme for reviewing NEUUCHIoNS, searching ecsng Gats sousces,

gathering and martarg the cata Needed, and coTpisting and reviewing the colection of ifonmation. Send commernts regarding this burden ssumets or any aener aspect of this
colection of Ffomeion nducdng sugoestions for reducing this burden, to Waeshington Heedguerters Services, Dirsctorare for inforrration Operatione s Reports, 1215 Jefferson
Davis Highway, Suts 1204, Adngton, VA 22202-4302, arxd to the Offics of Maregement s Budget, Paperwornk Reduction Project (0704-0186), Washingeon, DC 20503

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
October 1995 Final Jul 94 - Jun 95
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
PARALLEL SOFTWARE ENGINEERING TECHNOLOGY FORECAST, C - F30602-94-C-0108
_Assessment, Trends, Vision, and Strategy PE - 62702F
PR ~ 5581
6. AUTHOR(S) TA - 20
Carl Murphy WU - PH
7. PERFORMING ORGANIZATION NAME (S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
RCI, Ltd. REPORT NUMBER
1301 East 79th Street, Suite 200
Minneapolis MN 55425 N/A
9. SPONSORING/MONITORING AGENCY NAME (S) AND ADDRESS (ES) 10. SPONSORING/MONITORING
Rome Laboratory/C3CB AGENCY REPORT NUMBER
525 Brooks Rd
Rome NY 13441-4505 RL—TR—95 -209, Vol II (of
two)

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Joseph P. Cavano/C3CB/(315) 330-4063

12a. DISTRIBUTION/AVALLABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Madmum 200 worde)

Rome Laboratory developed a "Parallel Software Technology Forecast™ to identify the
parallel software engineering technology that will be required to meet Air Force
needs for mission-critical software in a High Performance Computing environment for
the next decade. It concentrated on the quality and cost issues of software
development for Command, Control, and Communications (C3I) applications and addressed
the following goals: (1) anticipate technology directions of the parallel computer
industry and forecast parallel software technology capabilities; (2) identify key

C3I factors in the Air Force and show what the implications of HPC might be on the
Air Force's ability to develop productive and efficient C3I applications software; and
(3) compare and contrast Air Force needs for parallel software technology to that

in the commercial sector.

Rome Laboratory assembled a distinguished Blue Ribbon Panel consisting of seven
technical experts, and solicited position papers from a broader range of position
makers from academia, government, and industry.

14. SUBJECT TERMS ’ 15 NUMBER OF PAGES
Parallel software engineering, Parallel processing, 134
18 PRICE CODE

Parallel software development .

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION [20. UMITATION OF ABS "#ia -
REPORT OF THIS PAGE OF ABSTRACT :

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 ‘ t T




TABLE OF CONTENTS

L.PREFACE .....cviteeeerteeteies it eer st eeeeesaessesstesee et s ss sane s esstsstsbbsbas st se st s eassbbeas s nssasesasaaabaassssbaseaneas 1
2. EXECUTIVE SUMMARY ......cooviiiiriicertinientieenieeeniesstsssessesssssssssesssssssssssessassssssssasssesssssassassans 2
2.1 C?I Parallel Software ENgiNeering StrAtEY.........o.everurrerrssssrssssessssssssssssssssssssessessessces 2
2.2 POSIHONS....cccueeeeeieieeitersieeetesseesseeserteesse st ceneetesssssouessaessbesssesssssssessssssassnnsnsesssnssssssassnesnes 3
2.2.1 C’I Parallel SOftWare eNZINEETINE. .........coevvereeremsereesesensssssessssessssansasssssssrsses 3
2.2.2 An overview of parallel software engineering research...........ccooeevevveieneeeninnnens 3
2.3 ASSESSIMENL. ... ccecveeeureeeereneeeeessiesistsssiassessstssstsssaessssessesssesssessnsssasessssssssssessssssesssesssassesenens 3
24 TICIAS ..covverveereeeereeerteeersr st s e e et s b e s be et s bbb s s b s b e b e s s s e s e b et e b e st e s snasnsanese s 3
2.5 VISION.....ciiiirieirecrt e seaeeeeee e s st seat et e s s e ra s et s ebb e e e s b e s b e b e b e st e s a b e s s e et e e s e aesebanas 4
2.6 SITALEEY veeuverveerrererssessressesstesstsstesseseestesssssaesssssesbesss st ssassbasassbsestessaastsssssbessesbasanssasssasneness 4
3. STRATEGY -- Parallel Software ENgineering..........ccceevcercreerinisisccsssmmnisisneinesiseisesmssesieenssenns 6
3.1 Strategic directions for CI parallel SOftware eNgiNEETiNg.............evereerreerersereessseressesesecens 6
3.1.1 Discussion MEChANISINS.......cccoceeeceiriceerirnmiiieriirieieisieiseosnsissressinessssessessnsens 6
3.1.2 ArchiteCtural taTZel.......cceereerererrececriitisisiinsenessstessseissstnissssssseesensrsnssnasesssassnasns 7
3.1.3 Parallel software engineering process g0alS.......occevviiriniinnininneeviieininiennnnn. 7
3.2 Planned research fOCUS areas.........ccoovvruieviiiiiiiiiiiiiniiniiiecsieniestes s ssae s 8
3.2.1 Support for dynamic adaptation...........ccocevvviiniiniineiniinieneiienieseneeee e 8
3.2.2 Architecture independent software repreSentations..........ovevveeveviesreesensieseessnsnenes 8
3.2.3 Parallel software engineering tools for the ClLSYSIEM.....o.voevererrecrecrecreeessensensens 9
3.2.4 Tools to evaluate and apply COTS hardware, software and tools to 1
APPLCALIONS .....veeeeeeieterreesieiitisteet et estesst st ssae s bresassasssbesbassnssanansssnns 10
3.2.5 Combine tough character application, high-time-value and high integrity
L 21 L1 U OO PO UOPIPPOORRPt 10
3.2.6 Integration to establish C'I mission requirements for parallel components.......... 10
3.3 Analysis Of NEW CL AITECHOMS. ........cv.rveveereernrrsssersesseseessssssssssssssssssssssesssssnssesssssesasaesans 11
3.3.1 Potential for COTS USE i CoL.......vuueeumeeeeerimenianeessnessmseeseessesesssasssssssssssssssees 11
4. BACKGROUND ......cooiitiiieriteniestesrnstssre st siesstessssstesseeseesessnesstesssssassssassssssassssanssessssssessessensanes 13
4.1 Overview of Blue Ribbon Panel.........c.cccceevimrireeciencnirniiiiiiinineisiesniennenisisneanne 13
4.2 OVerview Of PATTICIPANLS ....c..veiereererrereeereeresetecietessinssstsseresssanssssnessssesssnessansssensssnsssaessns 13
4.3 GOAals aNA LIMNLS......c.eerirereiereienierrneeeteeeeneeseeereeese st eae st e sacentessnesanessnossessbsassessssssesnnese 13
4.4 Scope, definition & aSSUMPLIONIS......ccovviiiiiiiiiniiinieeite it estesesesnessresenssssesssasses 14
4.4.1 CI DOUNGAIIES. ... vevveoeseeresessneeesseesseesensseessessssesssesssesssesssssssensassassssssssssssssnnss 14
4.4.2 Commercial-off-the-shelf boundaries..........cc.oocevcinnnninnnincnn., 14
4.4.3 Parallel software engineering boundaries...........cccccmivniiinnicninnnennoe. 15
5. TRENDS -- C’I Mission and commercial-off-the-shelf teChNOLOZY. ..........cceverrereererrrreesserrssnerenennes 17
5.1 C’I demands on parallel software engineering teChNOIOZY...........c.evrreresresesersscsssseceneeseans 17
5.1.1 Summary of CI trend POSION INPULS.........v.eveererrrssessenssesssrsssssesssnesessesesssssceens 17
5.1.2 Panel’s assessment of CI requirements and demands...............oeeeveevenrnsssensnees 18
5.1.3 Support for panel’s CI requirement CONCIUSIONS............ocveververresuersensnsssnesnssns 21
5.1.4 DOD directions and initiatives..........coeeevruerererernerereresssnenens eterererassssssnasaeretes 21
5.1.5 C?I CQUISIHON ISSUES.........cveversesereesreesersaesesessesssesessassesssssssssssesssssssssesnsessrnsnens 22
5.1.6 DOD PrOCUTEINENE PIACHCES. ... ucvoververserersereessrsesessesassessesassssssassssssssssssses -
5.2 TRENDS -- Commercial off the shelf technology.......c...ccoevivvveeiniviniiiiininneieiieineieineennes 24
5.2.1 COTS trend pOSition SUMIMATIES .......ccccceerrerieecreessrecieresinemmisessimsnisessssseessenses 24
5.2.2 Blue Ribbon Panel’s conclusions on COTS industry trends.........c.coovevieeenninnenne. 26

I




5.2.3 Technology trend analysiS........ccoeereeeceeririenniinenieecet e 28

5.2.4 Market and technology trend COUPLNG.........ccoveeeieereerreersrerreenierssecesnsrecsssesieesnens 29
6. VISION -- Parallel SOftware ENGINEEIING.......c.cevurvueririrereesieresnteiresieeeseestsssessrssesssossssssssessessnssnes 38
6.1 Positions on parallel SOftware engineering........coccuevvevreereeiinieisieinnieniineiieeeenns 38
6.1.1 System 1evVel POSILONS......cocvirreeertirreircrreerentn et seesas s eaene 38
6.1.2 Programming model POSIHONS.....c.cecoververiiiiiiiiiciniiinienecesteeissssesssesinssseens 38
6.1.3 Programming tOO]l POSILIONS........everveeereerereerieenenisiecscseressinssstessesssssressressseses 39
6.1.4 System effectiveness t0Ol POSItONS........ccccuervurevueiininniiiiinriiiee s 40
6.2 C°I system development MEthOGS.............ocurvereereerreriesesseseeseesessssesssssssessssssssssssssssssssenns 40
6.3 Status of parallel technology and software engineering........c.cccecvcersreercvsinniensseisecssnennnnes 41
6.3.1 C°I software engineering.............oceeveveereceesrrsnen. erersrs s bbb aenaes 41
6.4 Analysis of COTS trends in parallel software engineering..........cccovvueeeeereenecinirsinseisnens 43
6.4.1 Object-oriented tEChNOLOZY....c.cuveeereerenriereeeerieeereterereerrreesnesssseesssisssssssssessssesss 43
LIST OF FIGURES
FIGURE 3-1. C3I APPLICATION CHARACTER ......cocvereeueeetrinneaetsesesaesmescessstesesssssssssassssssssessssssssssssssessossseossatoses 6
FIGURE 3-2. THE PARALLEL SOFTWARE ENGINEERING CHALLENGE ......coonieutrniminirccencesmissensssiisessssssssmosesssssessense 9
FIGURE 4-1 LIMITS OF C*I SYSTEM ACTIVITIES FOR EVALUATION OF PARALLEL SOFTWARE ENGINEERING .......... 15
LIST OF TABLES
INSERT A -- FUNCTIUN, INTEGRITY, PERFORMANCE AND ENGINEERING ......cccovetsrerereussenseronessesssnsasasssnesssessnssonenss 2
TABLE 3-A BENEFIT SHORTFALL ....cccccosmmsisniisenssnsesseessessassessesssessessisssmssessssssssssssssssssessessissessestassessasessessassessosses 12
TABLE 5-A COMPARISON OF SOFTWARE DEVELOPMENT PROCESS PARADIGMS ........cceeerrsenmeesersmsesssesesesesesescsenssssens 24
TABLE 5-B CAPACITY GROWTH.......cecvemeerersersacecesneissssosesesssisscsssossesssssssssssessssssossessossessssnssssssssssssessessessssnnssasserses 281
TABLE 5-C FUTURE INFLUENCE ON C°I SYSTEMS (AND VICE VERSA)..........oevereerersersessessassassssasssesassasssesssssssssssssinns 33
TABLE 5-D 1994 COMPUTING MARKET -~ $112 BILLION .....ccreerersursesserseccoseressessmsssessssesssessnssssssssessssssssesnesssssosnennes 33
TABLE 5-E DATABASE APPROACH SERVER PLANS -~ OPERATING SYSTEMS ......ceevueuererserersesenersssencssesensacsessssesessrenes 34
TABLE 5-F YEAR 2000 COMPUTING MARKET -= $250 BILLION .....ccecverruererermensresrensarsessesenssssssssassssssssensasssssmscanonss 36
TABLE 5-G MARKET FORECAST FOR OBJECT-ORIENTED PLATFORMS ......euvocetemrmeemracecesestsensenssessencasssessenessmnrsnessisses 37
TABLE 6-A PRODUCTVITY IMPROVEMENT WITH SMALLTALK OBJECT PROGRAMMING.........ecveersrenessesensscassnsnsnsessencs 43
LIST OF ANNEXES
ANNEX A: PARALLEL SOFTWARE ENGINEERING ASSESSMENT ......cccocverrrrormssrssscccrsasssessossesesssssasssssassnes ANNEX A -1
ANNEX B. ROME LABORATORY BLUE RIBBON FORECAST PANEL ON C3I PARALLEL SOFTWARE ENGINEERING
WORKING SESSION AND POSITION SUMMARIES .......ccoereerieseoseeceseetesesssssescesenessesssensstssesessseseonsasssssins ANNEXB -1
Accesion For
NTIS CRA&I X
DTIC TAB d
Unannounced i
Justification
By
Distribution/
Availability Codes
Avail and/or

Dist Special




1. PREFACE

Rome Laboratory developed this technology forecast to identify the parallel software engineering
technology required to meet Air Force mission-critical needs in High Performance Computing (HPC)
environments over the next decade. The forecast concentrates on the quality and cost issues of the software
development process for Command, Control and Communications applications (C?I) as well as
performance. The “Parallel Software Technology Forecast” addresses three goals:

1) Anticipate technology directions of the parallel computer industry and forecast parallel software
technology capabilities, ie, current trends in software technology related to emerging trends in HPC.

2) Identify key C?I factors in the Air Force mission and show what the implications of HPC are for the
ability of the Air Force to develop C’I application software productively and efficiently.

3) Compare and contrast Air Force needs for parallel software technology in the commercial sector and
identify opportunities for effective bi-directional technology transfer.

The technology forecast involved five stages:

1) Rome Laboratory produced a condensed Parallel Software Engineering Technology Assessment (RL
TR).

2) Rome Laboratory assembled a distinguished Blue Ribbon Panel consisting of technical experts from
industry and academia. The Panel included:

Dr. Walter Beam (noted author on C’I and system engineering)

Mr. C. Gordon Bell, (Chairman, University Video Communications)

Prof. Tom Cheatham (Harvard University)

Dr. George Lindamood (Director of Information Services for the State of Washington)
Dr. Jeffrey Mohr (Chief Scientist, Information Technology Solutions)

3) Rome Laboratory announced a Technology Forecast Forum to solicit position papers. A broad range of
position makers from academia, government and industry responded. Twenty positions were selected for
review by the Blue Ribbon Panel as representative of the state of the art.

4) Rome Laboratory sponsored an invitation-only, Blue Ribbon Technology Forecast meeting at the
Orlando Hyatt on January 23-26, 1995. Panel members and position makers interacted to produce the
technology forecast. Presentations of each participant's view were followed by separate sessions on ,
commercial off-the-shelf, and parallel technology impacts. The group then collaborated on notes that
represent the combined trends, vision and strategy for C’I parallel software engineering.

5) After the interaction, this author set down the conclusions of the panel and distributed it for confirmation
by the Panel Members. The reports are:

“Volume I: C*I Parallel Software Engineering Technology Forecast -- Conclusions (draft RL TR)”

“Volume II: C°I Parallel Software Engineering Technology Forecast -- Assessment, Trends, Vision and
Strategy”(draft RL TR)

Volume II incorporates all material from Volume I. It also provides an assessment, analysis and
confirmation of the Blue Ribbon Panel's Conclusions.




2. EXECUTIVE SUMMARY

2.1 C°l Parallel Software
Engineering Strategy

The panel established clear directions for parallel
software engineering processes and infrastructure.
The discussion mechanisms of high-time-value,
tough character applications and C’I mission
integrity factors express the challenges of parallel
software engineering. (See Insert A.) C’1 software
must deliver all these elements at once, along with
performance prediction at system definition,
design and implementation layers. This is a
daunting task for a higgledy-piggledy market
mixture of architectures. (Higgledy-piggledy
expresses the drastic performance differences
found for general applications on massively
parallel architectures.) However, the panel set the
architectural target as a mix of high bandwidth
capability distributed nodes and low latency
multiprocessors. This means that parallel
software engineers can separately address
message passing applications and low-latency
applications. They need tools to interface and
control the interaction between them. With
simplified architectures the present day’s mapping
issues can become more standardized. Now they
can turn their attention toward performance
prediction and effectiveness, by using parallel
software engineering to achieve C>I mission
integrity factors. Their tools and mechanisms
must address combinations of high bandwidth
capacity networks-of-nodes and low latency
multiprocessors.

The panel also established criteria to govern

Throughout this report the following C’I
Parallel Software Engineering terms apply:

Mission Function or Tough Character
Applications -- these combine a mix of high
complexity, unstructured (state and data
dependent) paths, high dynamic resource
fluctuation and frequent synchronization
characteristics found in C’I environments.

Mission Integrity Factors or High-Integrity-
Value -- these are fault tolerance, availability,
graceful degradation, security, reliability,
survivability, repairability, usability, twenty-four-
hour, seven-day operation time frame and
other factors that are required for the mission
in combative environments.

Mission Performance and High-Time-Value --
C’I applications operate where time responses
are critical to mission success. Time is the
essence of C’I systems.

Parallel Software Engineering -- C°I systems
must be engineered and are typically built by
large groups. C’I parallel software engineering
is the collection of processes and methods
used to achieve predictable performance,
programmability, portability, maintainability,
adaptability and low life cycle costs.

Insert A -- Function, Integrity, Performance and
Engineering

engineering of C’I systems. The software engineer must empirically investigate and understand the
justification-decision boundary between choices of commodity-priced COTS, modular board level COTS,
and military-unique components. They must devise the interfaces between these diverse technologies. They
need incremental building methods for evolutionary build and test methods. Also necessary are probes and
information gathering methods to take advantage of the “daily” exercised and evaluated C’I system
necessary to “make the warfighter the informed customer.” Refinement layers that simplify change for new
mission needs are another necessity. These must be in concert with rapid application development methods.

In summary, to meet these goals, parallel software engineering researchers must define new relationships
with COTS computer vendors and integrators to figure out the boundary of COTS suitability. We must
build relationships with COTS system vendors to establish testbed demonstrations of interfaces. Also, we




must build different relationships with operating C*I organizations to gather opinions on operations, testing
and effectiveness on a shorter time scale.

2.2 Positions

2.2.1 CI Parallel software engineering

The positions of the Blue Ribbon panel members and position makers provided a vertical parallel software
engineering structure. (See the Preface.) The positions gave an overview of the complex and dynamic needs
of C*I systems. They pointed out the relentless factor-of-four for every third-year growth in
microprocessor-based computer and network technologies. The panel suggested that the highest
performance COTS machinery would meet many needs of future C°I missions. One position suggested was
that there be a match between C’I decision making needs and large scale business ones. They believed that
parallel methods of collaborative interaction were another future C’I software application. They recognized
" the need for globally or capability scalable architectures and noted the weak support for C*I by parallel
scientific methods.

2.2.2 An overview of parallel software engineering research

The positions described research on multi-level refinement techniques, virtual machine methods,
components, compilers, debugging tools and run-time methods of parallel software engineering. The panel
noted acceptance of virtual shared object models, debugging tools, large message passing virtual machines
and the Bulk Synchronous Parallel (BSP) super-step synchronization model. However, the panelists also
said that engineers have not accepted parallel methods into their processes. They found that there are too
few independent software vendors using these techniques. The only widely accepted parallel application is
the database management system. They thought that research described by the positions is primarily
directed toward scientific research. It is not adequate for solving the high-time-value, tough application
character and mission integrity factors necessary in C’I systems.

2.3 Assessment

Time is the essence of C’1 systems, but the mission integrity factors let the C’1 system provide decision
making information to the warfighter during combat.

The panel found that combative missions generate C’I system’s tough character applications, and require
C’I mission integrity factors. It found that today’s government-funded scientific research parallel
technology falls short of meeting C*I mission needs. Instead, C’I systems need a more general parallel
capability to meet all C3I character types and mission factors. In addition, the limited suitability of these
machines makes system building and life-cycle support expensive and risky. Program managers expect that
parallel software engineers will deliver systems and components with predictable time response and meet
C3I mission factors in a well-planned organized design and development process. Parallel software
engineers need research directed specifically toward future C’I systems if they are to meet C?I expectations.

2.4 Trends

The panel concluded that C*I systems would increase demands for high-time-value, tough application
character and C*I mission integrity factors. Parallel techniques could provide mechanisms to build C’1
mission factors like reliability, availability, security, fault tolerance and graceful reaction or degradation
during harsh combative conditions. C*I's tough application character renders large message passing
techniques of scientific research ineffective. Data flow methods may be necessary to meet high-time-value
C’1 application needs. The panel believed that C’1 applications with shorter time scales, dynamic




reconfiguration, complex data interaction, visualization demands, and collaborative interaction would
grow in importance. The panel also believed that interfaces and information interchange would become a
critical technology for success of parallel computers in C°I systems.

The panel projected a five-year trend for commercial parallel computing systems. Its commercial model is a
network of nodes, servers and high bandwidth capacity interconnection. The architecture includes the
following: nodes with a future Pentium microprocessor, Windows NT operating system, and ATM-based
distributed network. Client programmers would reach all data and multimedia by SQL. This distributed
system would have no shared memory. It includes only commodity hardware, data base and operating
system software. The client process would view the network as a massive server, thus precluding the need
for any large servers. The largest servers would have four processors. The panel justified its projection
based on technical capability increases for single microprocessors (to 1 GMIPS), memory (to 256 MB),
disk units (to 20 GB) and network bandwidth capacity (to 622 mbps).

The high bandwidth capacity of the network makes it effective for almost all of today’s successful parallel
throughput applications. These are transaction, decision support, replicated engineering and message
passing scientific research. However, the panel believed that “pockets” of high-time-value, tightly coupled
computing would retain a viable market. This gives an architectural separation between a distributed
COTS, high-bandwidth-capacity fabric and a low-latency, high-time-value multiprocessor. This
dichotomy separates bandwidth-only from low-latency demanding applications. Interfaces to legacy data
systems would also influence these designs. In addition, the panel believed that commercial system builders
might adopt object-oriented technology instead of the model's SQL as its lowest common data access
denominator. (One potential solution, SQL3 combines the two.) Strategic decision making and concurrent
engineering are reasons for the need for pockets of high-time-value and object-oriented methods.

2.5 Vision

The panel believed that the upgraded COTS fabric might not meet all C’I demands. Possible shortfalls
might be:

e ineffectiveness of SQL for diverse accessed and complex data type C’I data

e over specialization of commercial network and supporting protocol designs for multimedia -- leaving
the optimization of ATM bandwidth capacity for data transfer in a less than optimum state

¢ short fall of object-oriented methods in delivering on promises of design efficiency, performance and
code reuse on large projects

To supplement these shortfalls, C*1 systems would also need pockets of tightly coupled parallel
computers. These needs are the following: high-time-value, diversity of applications with distributed
data repositories, multiple access mechanisms, dynamic resource allocation, quick visual and imagery
processing, necessity to meet C°1 integrity factors with predictable performance, and tough application
character. The reasonable expectation was that a COTS fabric, like the commercial one but built of the
highest capability nodes instead of commodity ones, would serve many C’I application needs. The panel
suggested that the alternative of a single, general-purpose, parallel architecture that met all C’I needs was
out of reach in the present computer research and development environment.

2.6 Stratlegy

There will be no “silver bullet” that solves these challenges to C°1 parallel software engineering.
However, the panel outlined a path toward gaining the necessary foundation and knowledge to do timely

and responsive CI engineering.




Future parallel software engineers must meet mission constraints using commercial off-the-shelf (COTS)
hardware and software wherever possible. A parallel solution is often necessary to the engineering
problems created by the complexity of “high-time-value,” C°I mission factors and “tough” application
character. The lack of any of these elements may limit the combative (competitive) capability of 1
systems of the future. One threat is that COTS distributed technology might allow third-world countries to
inexpensively assemble a C’I data fusion and decision capability. Parallel software engineering methods
are one way to maintain the Nation's command advantage.

The system designer should base designs on an architecture similar to the COTS fabric and must justify
any parallel supplement. The panel set the following goals for parallel software engineering research:

e generate C’I system design tools that give the following: 1) reconcile the COTS fabric and pockets of
parallelism dichotomy, 2) predict performance, 3) establish system engineering metrics and 4) define
the justification line between use of parallel and the COTS distributed fabric

e develop interface mechanisms to: 1) connect parallel plus COTS fabric architecture into C’I systems,
2) achieve C°I mission factor capability and 3) test and monitor C’[ exercises to capture mission factor
and time value information

¢ find methods to 1) achieve dynamic reallocation of resources for meeting mission needs, 2) respond to
collaborative interaction, 3) insert test or monitor probes for software engineering and recursion testing
and 4) predict the scalability of applications in the C’I environment

e reduce the cost and effort for development and life cycle support by 1) developing “architectural
independent” design and programming models, 2) insisting on refinement and performance prediction at
each level (system, design and programming) and 3) defining architectural independence as
“generational portability” of today's solution to tomorrow's computer (generational portability refers to
portability to architectures that are not yet built)

o interface and cooperate with COTS industry to define and continuously improve the COTS foundation
fabric for CI use; experiment with COTS technology to enable continuous tracking of key commercial
technologies, such as the following: operating systems, languages, SQL, object-based data and design
techniques, visual programming, and high performance information transfer

e develop a demonstration testbed for emulating COTS architectures and add in the necessary
coordination languages, effective protocols, and hardware interface drivers to show system functions,




3. STRATEGY -- Parallel Software Engineering

This section gives the strategy recommendations of the Blue Ribbon Panel. The assessment, trends, and
vision of the panel along with confirming analysis and discussion are provided in the chapters that follow.

3.1 Strategic directions for C’l parallel software engineering

The panel gave clear direction toward improving parallel software engineering processes and infrastructure.
These directions are well supported by DOD sources, independent technology forecasts, and recent
commercial publications.

3.1.1 Discussion mechanisms

The panel established the links between C’I parallel software engineering and the C’I mission requirements
by stressing the terms time response (high-time-value), C’I mission integrity factors (high integrity value)
and C’I application difficulty (tough character application). High time value is a label for applications
requiring low-latency interaction. This is contrasted with large message passing where the importance is
placed on high bandwidth capacity. These labels distinguish the value of time to the application and relate it
to the architecture. Tough character application means complex, dynamic, frequent synchronization or
communication and human and data dependent control paths. (See Figure 3-1.) This distinguishes the I
application from parallel scientific research computing and from the constant stream signal and image data
collection flow applications. The C°I mission factors examples are reliability, availability, graceful reaction
or degradation, security, and physical constraints in equipment size, volume, power consumption, and
electromagnetic radiation. These have a high integrity value in C’I systems.

Figure 3-1. C3I Application Character

resource
ayn. | slatic
infrequent
symbolic
freq.
message
interaction synchrony
exten.
intensive
complexity




3.1.2 Architectural target

The COTS network-of-nodes architecture (built from high-end components) with added pockets of low-
latency multiprocessor computing establishes a target architecture in which the needs of parallel software
engineering can be met. Since it will evolve to match the latest commercial best practice its configuration is
general and multipurpose. Yet it defines the environment that parallel software tools must target. The
dichotomy of high bandwidth capacity and low latency existent in the same system gives just two target
architectures for the tools and applications. Design refinement methods can now be targeted to just two
architectural models. The same two targets can be used for compilers. Once placed in the category of low-
time value, components need to target only a single architecture, the SNAP-like COTS one. Components
with high-time-value are targeted only to low latency, globally scalable multiprocessor architecture. High
integrity value applications must be evaluated to determine if the extra resources required, or the dynamic
reaction scheme requires high-time-value or low time value.

Parallel software engineering tools can separately address applications suitable for message passing,
applications requiring low latency, and the tools needed to interface and control the interaction between
them. With these simplified architecture models the present day’s mapping issues can become more '
standardized. Now the attention can turn toward performance prediction and effectiveness, use of parallel
software engineering as a tool to achieve CI mission factors and on tools and mechanisms that work for
one or the other of high bandwidth capacity networks of nodes and on low latency multiprocessors. The
parallelism of both architectures can be used to provide some C°I mission factors, eg, automatic generation
of multiple tasks for the same task, with use of common voting or other techniques to obtain fault tolerance.
Distributed methods as well as low latency ones would be developed depending upon the value of time in
the application. Other C1 factors could be achieved through parallel innovations in security, graceful
reaction to unexpected events, and planned reaction to expected ones.

3.1.3 Parallel software engineering process goals
3.1.3.1 Simplification of parallel coding

With only two architectural types to target, a common machine model could be provided. The use of
superstep barriers, as found in the Bulk Synchronous Parallel model, has been found to allow correctness
proofs and predict performance. It also simplifies coding of complex applications. Restriction to complete
all operations on a regular time frame is a common tool for meeting real time constraints in C’I systems.
BSP gives a logical time frame for programming of complex and dynamic applications.

3.1.3.2 COTS and military-unique decision surface

The panel also laid out some parallel software engineering goals that affect the way C?I systems would be
engineered. The justification decision boundary between choices of commodity-priced COTS, modular
board level COTS, and military-unique approaches are to be investigated and understood. Interfaces
between these diverse technologies are required to be engineered and converge. Incremental building
methods are required to meet the evolutionary build and test methods. Probes and information gathering
methods are indicated to take advantage of the “daily” exercised and evaluated C’I system necessary to
“make the warfighter the informed customer.” Engineering refinement layers are needed to facilitate change
and to meet new mission needs. These must be in concert with rapid application development methods.

3.1.3.3 Interfaces

In summary, to meet these goals parallel software engineering researchers will have to define new
relationships with COTS computer vendors and integrators to determine the boundary of COTS suitability.
They must build relationships with COTS system vendors 1o establish testbed demonstrations of interfaces.




They also need bi-directional relationships with operating C’1 organizations to gather feedback on
operations, testing and effectiveness on a shorter time scale.

3.1.3.4 Incremental development, frequent interaction and collection of information

The best commercial practice is to have many incremental deliveries on the way to reaching a stable
system. This method ensures that the information infrastructure of the organization is prepared to operate
and maintain a system. C’I methods recommended by the panel suggest a similar approach to meet the
short development time frames and constant interaction with operational and warfighting elements.

3.2 Planned research focus areas

The panel believed that the goal of parallel software engineering was to meet both high-time-value goals
and CI mission factors within the parallel environment. Applications of any character should be feasible
with performance, programmability, and portability. In order to accomplish this daunting task, the panel
also believed that parallel software engineering must concentrate on the most difficult character (extensive
complexity, dynamic resource demands, symbolic interaction and frequent synchrony), ie, the toughest
problem types. (See position 2,2 in Figure 1.) However, parallel software engineering must recognize the
need to integrate those results with existing C’I systems and the vision of commodity SNAP-like

architectures.

The vision of the forecast panel for parallel software engineering concentrates on how to make parallel
computing effective for C’I systems development. The panel expressed this concept in several ways during

the course of the working session.

3.2.1 Support for dynamic adaptation

The panel stated that a critical capability was one that let the system rapidly and effectively change the
direction of processing. The system makes these rapid changes to respond to human interaction, mission
change, and new phases of operation. The system can change mission activity to respond to better
information. This may be one of the valuable assets of parallel computing when resources switch to meet
the newly demanded processing. Dynamic adaptation based on decisions made by the C’I system would
require parallel computing for artificial intelligence and knowledge-based decision making. In addition,
parallelism and dynamic adaptation allow the system to provide fault tolerance and resiliency by
determining its state and responding with a reconfiguration that meets mission needs to the best of its
capability. Parallel software engineering researchers should generate an application framework for creating

dynamic resource changes in parallel systems.
3.2.2 Architecture independent software representations

The industry needs an architecture independent programming model. Defining such a model has many
difficulties because of the diversity of application character and architectural capability. The panel and
position makers described several approaches that built a hierarchy of layers of design, architectural
selection and then machine selection. In addition, automatic parallel program generators for these layers are
the subject of research of several position makers. However, none had applied these methods to the tough
application character type problems that are similar to C*I ones. A problem seems to be that the
architectural targets have been parallel computers and tools built primarily for scientific research. The
panelists believed that, due to the significant difference in character and requirements, that a simple transfer
of this technology from scientific research might not be effective. This does not lessen the need for the
hierarchical tools. However, it does mean that their target should be the simple dichotomy of message
passing or low latency multiprocessor. Researchers should provide architectural independence so that (04|
can apply the latest processor and architecture capabilities without the need to continually port to new




architectures. This.generational portability is critical to maintaining military advantage. In addition,
researchers should define their refinement hierarchy and capability to allow the removal of the uncertain
availability of specific processor architectures.

3.2.3 Parallel software engineering tools for the C’I system

The panel believed that C’I engineers need tools at a system level scope to deal with engineering of parallel
software in C°I systems. Engineers need processes and tools for design modeling of parallel computer
hardware and software in a hierarchically staged process. The tools should be focused on the tough
applications that C’I systems require. Researchers should develop a hierarchy of executable specification
tools for high-time-value design and development layering.

Engineers also need performance prediction tools. These tools should be in a hierarchy of design stages. At
each stage an engineer should be able to predict performance and cost and evaluate suitability of
programming models for parallel architectures. These tools must resolve the time uncertainty problems of
parallel computers. Such tools should give design visibility at each level and provide reverse engineering
capability for better understanding of the allocation of components to time response, C°I mission factors
and C’I requirements.

Figure 3-2. The Paralle! Software Engineering Challenge

Mission Requirements

rity Factors




3.2.4 Tools to evaluate and apply COTS hardware, software and tools to C’I applications

Researchers should track commercial advances in distributed, coordination, operating system, data or
object base and language software. They should adopt these into the C’I system model where there is a
benefit. This is reasonably expected to be the least expensive manner to fulfill a majority of the mission

needs.

To facilitate this research, they need to interface and cooperate with industry to achieve an inexpensive but
effective SNAP-like architecture as a common fabric for C’I systems. Knowing that the common fabric will
work requires that engineers do an advanced emulation of the target architectures. The test cases should be
tough character CI applications and include mechanisms for obtaining C*I mission integrity factors like
reliability, fault tolerance, security, graceful degradation, and dynamic resource change.

The CI development tools should be integrated with COTS SNAP-like architectures. These system
engineering tools provide the component allocations to SNAP-like COTS systems combined with
multiprocessors. The activity of integration should be supported by processes for designing and
implementing effective interfaces from parallel to other C’I system components. Concentration should be
placed on clusters of nodes that represent the SNAP-like COTS architectures. Researchers also need to
create system supervisor/ control mechanisms and the necessary additions to commodity COTS for control
of the SNAP-like architecture and interfaces to high-time-value nodes.

Because the panel anticipated certain areas of potential COTS shortfall, the integration research needs to
pay attention to the capabilities of COTS workstations, local area networks, wide area networks and
telephone switches using high bandwidth ATM switches. In addition, they should determine a suitable
organization of C’I data that best uses either SQL relational organization or object database organizations.
Finally, the promise of object oriented programming methods must be tracked to see if their promise
extends beyond the initial successes of graphical user interfaces in client-only programming.

3.2.5 Combine tough character application, high-time-value and high integrity value

The parallel research community needs to find methods of achieving high-time-value performance and
gaining C°I factors in a tough character application. (See Figure 3-2.) The community needs to develop
tools that predict performance and factors on any mission character application. This needs to be
accomplished while providing rapid software development, easy maintenance or enhancements, scalability
across a wide range of mission scope, and portability from architectural generation to generation. Tools
that reduce the risk of achieving these results on C’I applications are extremely valuable. Tools that do not
consider such complexity are of little value. Another approach suggested by the panel is to evaluate
operating system, interconnect access protocols, and network protocols that limit parallel performance,
restrict C°I mission factors, reduce portability, prevent reuse and preclude performance prediction.

3.2.6 Integration to establish C°I mission requirements for parallel components

The panel believed that parallel software engineering would be most valuable if more closely associated
with exercises and demonstrations of C’I systems. A constant improvement of the C’I process could be
facilitated if the software could be continuously improved. The recommendations were to attain tools and
processes for the non-intrusive entry and coordination with C’I systems to solve any refinement needs.
Researchers should build tools that collect information to be used to create better designs and to refine the
use of parallel computing in C’I systems.

A needed tool is one for on-line monitoring of the C°I environment that captures C®I mission factors and
time response values. Researchers need to create on-line monitoring and testing tools to reduce uncertainty

10




of correctness, performance, and mission factors in the C’I environment. These tools are also needed for
determining capabilities and resources required to meet the mission time response and factor goals.

3.3 Analysis of new C’l directions

A key result of a COTS strategy is that hardware is not preselected, but is put in action in a just-in-time
manner. This is consistent with the Defense Studies Board (DSB) recommendation to align life cycle and
adapt commercial practices [EE Times, Nov. 24, 1995]. The Blue Ribbon Forecast Panel did not discuss
this impact on parallel software engineering in its recommendations. However, its recommended technology
focus areas lead directly to supporting this feature when the system technology is COTS. It does mean that
the architecture-independence goal is of critical importance for the new software procurement paradigm.
The just-in-time hardware selection also gives more meaning to the need for understanding the interface and
discriminators between C°I military-unique and COTS components, understanding and performing a
system design that is inclusive of parallel components that meet high-time-value requirements. This
important need increases the need for tools and refinement process parallel software tools for adding
parallel computers and software to the COTS SNAP fabric for high-time-value needs.

3.3.1 Potential for COTS use in C’I

Using the Warfighter and DOD directions as a guide leads to a C’I system of the future that consists largely
of COTS components and software, whose software was developed ahead of or concurrently with its
hardware. However, commercial practices and tools are one way to accomplish this strategy. Some
problems can be anticipated.

e First, C°I systems require significantly shorter response time frames than commercial information
systems, have much higher complexity of data types and interactions, and have need for significantly
stronger performance in graceful degradation, fault tolerance, security, reliability, and time guarantees.
These C’I mission integrity factors are more stringent than in commercial information decision systems.
The C’I character is also tougher than that of commercial information systems. However, they do have
a degree of similarity because commercial information systems have requirements in each of these I
mission factors. Some transaction processing systems have a very high fault tolerance need compared
to scientific research software where the effect of an occasional failure may only be an inconvenience
that might be overlooked. However, the degree of these requirement is higher in C?I systems.

A second practice is that commercial firms do little application software development beyond
integration of purchased independent software packages. For example, in the presently popular

client/server architectures the applications are confined to client desktop graphical user
interface programs that operate within a single workstation. Business logic, data base access,
network management, replication transfer from legacy mainframes, and any other operations
are expected to be built upon purchased packages. Unfortunately there are many products with
confusing capabilities making it difficult to assemble a good system. Very few applications run
across all these combinations [ComputerWorld, p 4, February 20, 1995]. In addition, key
components are often missing and large teams must be assembled to fill in the missing
components. System design tools are immature, leading to risky projects. This commercial
process often leads to highly inefficient and chaotic commercial information systems that
remain tied to expensive mainframes. Table 3-A shows that early adopters were mesmerized by
hardware cost savings and over-optimistic estimates of cost savings.

11




TABLE 3-A Benefit shortfall (based on 305 IS managers; BRG Newton, MA)

Benefit area Expected  Achieved
More flexibility 71% 51%
Increased productivity 66% 53%
Improved customer service 58% 39%
Decreased overhead 50% 31%
Less maintenance 46% 28%
Work force reduction 28% 16%
Increased market share 19% 10%

In reality, the commercial client/server marketplace has unfulfilled requirements similar to those
of parallel software engineering in C3I systems. COTS technology does not automatically
overcome the barriers to getting to straightforward system design, design visibility, ease of
interaction and collaboration, standard interfaces, and necessity to become intimate with C3I
applications, This result indicates that a software engineering capability needs to be built for
software system design, interfaces, and application evaluation. The capability is required in both
military and commercial development.

12




4. BACKGROUND

4.1 Overview of Blue Ribbon Panel

The parallel software engineering forecast is based on a parallel computing technology assessment,
recommendations of the blue ribbon panel working session and supporting analysis. Panelists were
provided a condensed version of the Rome Laboratory Parallel Software Engineering Technology
Assessment (draft RL TR). A condensed version is provided as Annex A. Positions were solicited from a
broad spectrum of academe and industry. Summaries of those positions are given in Annex B.

4.2 Overview of participants

The Forecast Panel for Parallel Software Engineering convened to seek out the expert opinions and forecast
of leaders in C’I related parallel technology. The panel included C’I advisors, commercial, government, and
academic members. The panel organizers selected them due to their cognizance of architectures and
applications, components and markets for parallel systems. In order to provide the panel with a diverse set
of ideas on parallel software engineering, the organizers assembled position makers 10 obtain their ideas
and projection of the future of parallel software engineering. Position makers represented a wide range of
activities, among which were the following:

¢ industry level -- machine cost models, research center activities, industry health status and future
industry viewpoints

e system level -- system engineering, engineering applications, C*1 systems, and dynamic control

e programming models -- virtual machines and automated parallel programming

e programming tools -- visual, components, libraries, and debugging

o system effectiveness -- domain specific objects, libraries, and hardware architecture target development
tools

The forecast experts focused their attention on C’I system requirements for the following:
e high-time-value applications in C’I systems
e  CI mission factors (fault tolerance, security, graceful degradation, physical constraints, etc.)

e difficult or “tough” application character (dynamic resource demand, symbolic interaction, frequent
synchronization, and extensive complexity)

e software engineering issues necessary for C’I-like projects: programmability, rapid development, and
maintenance, along with effective performance and portability with predictable design and development
performance allocation

4.3 Goals and limits

This document’s purpose is 10 assess parallel software engineering technology, define trends, describe the
Blue Ribbon Panel's vision, and define a strategy for improving parallel software engineering. This
document reports the full assessment, results of the panel working session, following concurrence,
analysis, and confirming references. It concludes with a rationale for technology status, trends, and vision.
It also provides Annex B -- “Blue Ribbon Forecast Panel Working Session and Position Summary,” which
summarizes position makers inputs. An executive level document ‘“Parallel Software Engineering

13




Technology Forecast - Conclusion” (Rome Laboratory TR) gives the conclusions of the working session.
The executive level document is incorporated in various sections of this document.

4.4 Scope, definition & assumptions

The panel set boundaries on the technology and forecast elements that it was to consider. The panel
believed that the opportunities of parallel computing should derive from the mission needs, not from
zealous enthusiasm over a particular technology. However, imposing this discipline should not inhibit the
invention of new (or improvement of old) C°I applications and capability. The panel stressed the
importance of the potential of parallel technology to meet high-time-value C*I component needs.

4.4.1 CI boundaries

To concentrate on the right issues, thé panel defined the boundaries of C’I systems as the following
functions necessary to conduct Air Force warfare:

e data and information fusion
e information generation, display and visualization
s  decision making

e human interaction with the process of command, control and intelligence

e action and reaction control

e  warfare planning, direction, evaluation, and awareness

e  managing the wide range of information that converges on command centers

Therefore, C*I systems are planning, information and decision making elements of Air Force Warfare. The
panel excluded certain subsystems, eg, sensor and image data sources for the (o4 system and the external
weapons and delivery systems that take commands to respond to a threat or meet mission goals. (These are
defined as effectors.) Figure 4-1 provides a simple view of this boundary, where sensors and effectors are

integrated by the C’I system.
4.4.2 Commercial-off-the-shelf boundaries

The panel considered that one of its important roles was to determine the directions and condition of the
commercial-off-the-shelf (COTS) parallel industry. The forces of change in commercial technology are the
driving forces in computing. Also the economics of building military systems require maximizing use of
commercial technology to reduce acquisition, development, and life time support costs. The panel indicated
that the reasonably expected state of commercial enterprise will support some C’I computing needs.
However, its use will require aggressive study of the boundary between COTS, parallel machines, and

existing C’I systems.

14




Visualization
/Human
S lmage TN Interaction
\//%‘ fosion A |l External
Sensor | | ,),\ ;’f A Comrunications
i N e
\ N
71 \\ Data e m\.
/ Fusion \Cw) Effectors
Sensor {i/
& Image o]
Information 1
Generation & Fusion i : .. External
. Inferfaces
Persistent Information : : . .
Storage & Delivery ... Decision Making &

Control

Figure 4-1 Limits of C°l system activities for evaluation of parallel software engineering

4.4.2.1 Rising expectations from COTS technology

The performance and wide spread availability of COTS workstations, networks, operating systems, data
and object bases, languages, visualization, virtual reality, voice and pen interaction, and CD-ROM storage
are reasonably expected to raise expectations for C’I systems. The panel expects that parallel computing
for business, engineering, and other government processes will include many clusters consisting of
networked computing nodes with a few four-processor servers. The panel believes that larger tightly
coupled multiprocessors will have a market viable only for high-time-value applications.

4.4.2.2 Potential threat from COTS technology

One factor brought out by the panel is that there is the potential for third world countries to use COTS
equipment to significantly increase their own command and control capability. Such a threat requires that
our C’I builders understand the capabilities of COTS equipment and its potential for command and control
applications. Our challenge is to remain far ahead of the COTS capability through innovation and skiliful
application of parallel computers within a COTS-based C?I fabric.

4.4.3 Parallel software engineering boundaries

The directions of parallel software engineering are not set in a vacuum. Other research technology
developments may provide different supporting contributions for C’I systems. Therefore, the panel
attempted to observe duplications of parallel software engineering to avoid overlap with other research

15




programs. These boundaries are difficult to establish. Other government programs are in process for
research and development areas such as the following: operating systems, object design, scheduling,
application programming interfaces, heterogeneous programming, application scheduling, scientific
collaboration, distributed system application, etc. Likewise commercial development continues for
distributed objects, new operating systems, visualization, multimedia, virtual reality, data base access,
protocols for Asynchronous Transfer Mode (ATM), and languages for more effective development of data
and object manipulation. The panel believes that its plan should avoid duplication of these efforts.

However, parallel software engineering researchers must establish a relationship with other programs and
C’I providers. Historically, other programs have concentrated on highly structured scientific research and
transaction applications that are not effective as a C’I parallel software engineering technology. An
interface to expose the C’I software engineering needs to other major research efforts is, therefore,
necessary. The panel recommended that information on C’I system needs be communicated to those

research communities.

16




5. TRENDS -- C3l Mission and commercial-off-the-shelf technology

This section has two major trend discussion sections:
e  C’I demands, technology and mission changes

e commercial off the shelf (COTS) technology

Each of these sections consists of summaries of the position maker’s ideas, the panel's conclusions, and an
analysis that gives supporting information on the panel's conclusions. (See Annex B for a more detailed
summary of the positions.)

5.1 C’I demands on parallel software engineering technology
5.1.1 Summary of C’I trend position inputs

5.1.1.1 Future of C°I Systems

Walter Beam reviewed C°I and its constituent subsystems. These include the following:
e tactical communications /covert operations

e surveillance/radar/side-looking radar/intelligence activities

e target location and identification, radio location

e identification friend, foe or neutral (IFFN)

e force control and assessment

e tactical intelligence and analysis

e clectronic warfare and countermeasures

e command, control, communications countermeasures and counter-countermeasures
e clectronic and communication intelligence and analysis

Air Force locations vary significantly in global, aircraft type, positioning, and mobility. The many changes
caused by the end of the Soviet Union demonstrate the need for highly flexible systems. The current factors
influencing C’I systems are: downsizing, local conflicts, terrorists, interoperability, wide variety in enemy
systems (including US made), grossly altered strategic situation, limitations of technical intelligence,
national priorities and overseas basing. The critical military issues that are important to parallel computers
in C’I applications are:

e  availability and use of timely high resolution imagery

e  rapid, accurate identification of IFFN air, sea and land combatants

e shortening cycle for target detection, identification, attack, damage assessment and recovery
e  cooperative operations with Allies and other US Forces

o netting and fusion of target data from a variety of sources and broad-scale intelligence data

17




5.1.1.2 C°I changing roles and solutions

According to panel members Beam and Wasilausky, future C*I demands for new processing capability will
be driven by processing, storage, and retrieval information, data and imagery, advanced multifunction
displays and speech processing for human interaction with the system, tactical intelligence imagery,
automatic information netting, detection, fusion, data mining, and information warfare protection and
disruption of enemy’s information. Digital information histories and libraries, multifunction displays and
speech narratives will drive human interaction. Both point out that C’I systems depend upon timely
information and that future modes of use will be more unpredictable than in prior C*I systems. High time
value in dynamic and changing roles are one of the architectural challenges in parallel software
engineering. In addition, DOD procurement directions will enforce maximum use of COTS technology in
C’I systems. Their vision leads toward use of rapid application development techniques from industry that
are coupled with continuous exercise of a C*I system. Building system capability through constant
interaction leads to evolutionary and adaptive development, allowing the US to maintain its lead in spite of
the possibility of the same COTS use by enemy organizations for information warfare.

5.1.2 Panel’s assessment of C’I requirements and demands

C’I systems need to use parallel processing to meet response time, physical constraints, and new mission
functions. Because parallel computing improves response time, new mission capabilities are feasible.
Designers use this approach to radically change mission requirements. They can radically improve a 1
system’s war fighting capability by application of parallel technology.

5.1.2.1 Global interfaces and information interchange

The panel expressed the need for a more closely coupled parallel tool set with actual C’I system operations.
Understanding the application character, the costs and methods of delivering C’I mission factors, and the
necessity for time guarantees requires information collection and knowledge building that many research
parallel tool developers presently lack. The parallel software engineering program needs ways of
transferring information on fundamentals about the character, factors and high-time-value of C’I systems.
Software engineering for parallel systems needs to be in-the-loop to enable its progress to bring the full
value to C°I systems. These demands on C*1 systems change the importance of interfaces to other systems,

typically causing an increased input/output rate.

Parallel computers play an important role as information and data storage and buffering mechanisms for
input and output and for transfer of information between C’I system components. Additionally, the parallel
computer may transform the organization of data so that each C?I component capability can be maximized
toward meeting its time goals. Parallel computers make it feasible for software researchers to create the
capability to meet C?I factors, or for the timely execution of applications with a tough C°I mission
character. Advanced methods of decision making incorporate intelligent and adaptive methods. They must
constantly improve themselves by rule changes or by training. To accomplish this improvement it is
necessary that the system have feedback or information gathering capability to achieve its full potential.
In-the-loop system probes and data collection are important components for the development of future c

systems.

The panel projected that an information-gathering probe would be a valuable tool, especially if it were a
part of the development process during architectural concept, design, testing, exercises, and life cycle
support. Much of the value is the feedback of information on the adaptation and evolution of the system to
achieve improved results over time. C1 systems operate within an environment where existing equipment
already operates, and where external system interfaces play an important role. Just as business systems
have the necessity to deal with legacy systems, so do C’I system components. Due to the long lifetime of

18




C’I systems, designers must consider that each parallel component will become a legacy of its own. The
model is that parallel systems go into the fabric of existing and future C*I systems only where necessary.
The panel reasonably expects this for high-time-value and tough application character needs. Therefore, the
panel expects that an important component will be the interface mechanisms between parallel and COTS
systems. System interfaces need a balance of bandwidth capacity and low latency to match the interfaces
for high-time-value cases. Scientific research center methods will not be significant aids in solving this
issue because they are generally throughput rather than high-time-value oriented.

5.1.2.2 Complex data manipulation

The panel expects that present data fusion techniques will increase in complexity. Additional data sources,
higher precision, and lower false detection rates are anticipated. In addition, future systems require
information fusion. This combines data fusion results into multiple information sets for use in different
applications.

These future uses may require complicated data manipulation to such a degree that systems will require
parallel computers to meet time goals. Single workstation technology advances alone are not adequate to
meet these needs. Such processing requirements are, however, of the toughest C’I character and not
generally found in COTS parallel computers. The multiple sets of applications that comprise a command
and control system take widely divergent forms. Each form may have widely varying optimum data
organizations. Relational data base managers are most prevalent in commercial systems. Their use in
accessing multiple data arrangements has not been found to be effective and is difficult to apply for highly
diverse component access methods. An inefficiency in both access time and storage volume results. The CI
system has highly divergent applications with distributed data repositories that do not match a single
relational model.

5.1.2.3 Shorter command time scales

The panel agreed that parallel computers most reasonably fit into high-time-value C*I components. One
example is the reduction in time for generation of the command and planning for air battle. The
contribution of parallel performance could enable on-line plan changes based on intelligence that arrives
during the day. Such an application would require collaborative action in setting up the daily plan and an
intelligent systems for safely changing parts of the daily mission. Designers must base the changes on real-
time data and information gained during the day’s operations.

Time is the essence of C’I systems. Predictable time response is the essence of C*I system design. The
surrounding sensor signal and image processing must deliver its information without losing information.
Buffers provide the means to maintain a constant rate of operation. The result is a steady stream of data
pouring into the C’I interface. This interface must convert the steady stream into detected events. The time
to process each suspected event may also vary widely. The event detection component of the C’I system is
highly parallel because each data input stream is a separate channel.

Parallel computing is one method where the C’I systems can receive the steady stream of input, process
event detections, make command and control decisions and meet a time response goal. The decision support
actions take several streams of events from different sensor streams. It “fuses” them into a higher level set
of event information and associates that set with other information sources. A higher level of fusion might
combine these with information based on other data types, such as observations, satellite imagery or human
input. The system evaluates these information events, often using empirical methods, to identify objects or
activity, determine their value or threat and decide upon the proper response or attack. Detection of possible
events and determination of a target must have high signal to noise and low false detection performance. In
many cases, the system must perform this processing within a very short time frame, otherwise it is useless.

19




Therefore, the panel found that time response guarantees for high-time-value applications are necessary for
the success of the C°I mission.

5.1.2.4 Dynamic reconfiguration

The panel predicted that parallel computers in C’I systems will be required to have the capability for
dynamic reconfiguration. In this case, the components that are required in different time domains use
common resources. For example, a detected threat or mission change command could redirect processing.
In dynamic reconfiguration, the system determines which of the components to run at any given time. By
using the resources to best advantage, designers can have the maximum capability for the minimum
hardware costs. Often computer resource demands come from new events or from computed information.
This requires that the system respond and use its machinery differently. This dynamic change capability is
not typical in today’s common parallel architectures. Often an event identification perturbs processing
control. Also humans can interact unexpectedly, basing their decisions on displays and visual processing.
When this happens, the mission may change. The system must switch all its resources to the highest
priority and may require that the computation change significantly to perform a new function.

Parallel computation to accomplish these fixed-time response computations must have the same capability.
Dynamic resource allocation is a necessity for meeting C’I mission needs. Of growing importance in
university computing is the capability for multiple researchers to interact with a computation as it
progresses to reach a better conclusion in shorter time. Collaborative methods will eventually contribute to
concurrent engineering or other industrial design and information decision making. This technology might
impact a designer’s expectations of a C?I system. Collaborative interaction will be an important factor in
increasing the demands for more rapid refinement of decisions through multiple scenarios. Parallel
computers will be required for high-time-value application processing and information generation and
distribution in collaborative processes.

5.1.2.5 Visual and imagery impact

The panel expects that the C’I system of the future will move away from simple displays of mixed
alphanumerics and plots. C’I system requirements will follow commercial systems and provide significantly
higher information content screens. These include scene images, high resolution vectors, symbolic icons,
tables, charts, etc. Providing this extra information may reasonably require video storage, added bandwidth
communication, and selection mechanisms for human interaction. In addition, designers will include new
forms of image analysis and comparison, possibly directed by human controls. This added capability
demonstrates significantly increased expectations of access to information and requires high performance
processing. There will be a higher demand on the underlying infrastructure for faster computing results.
For example, protocol processing rates may be higher than the workstation processor itself can perform.
This is especially true if multiple data streams service the visual processing necessary to meet expectations
generated by the capability of the human to ask for more processing and access to data. Visual displays,
with much higher information and data content, will drive designer’s expectations in future C’I systems.
This may change the organization of processing, transfer and storage of symbolic and real imagery
significantly. Both parallel computers and high performance networks may be necessary to perform scene
analysis, compression, storage, transmission, etc. Three-dimensional scenes, those possibly provided in new
displays like virtual reality, require ray tracing. C’I applications will have similar imagery for radar scenes,
human observations, events, and tracking. The system designer will have to provide image processing and
symbolic decision processing in collaboration with information fusion and human interaction. This is a type
of image processing that falls within the C’I system, for information generation and intelligent use for
decision making involvement with the user.

20




5.1.3 Support for panel’s C’I requirement conclusions

The panel’s conclusions present a new role for the C’I software engineer. It demands a higher degree of
importance of information dispersion and decision making, increased interaction with C’I systems, beter
interoperability, and increased use of COTS tools. The following analysis uses other sources that confirm
the panel’s conclusions.

5.1.3.1 The warfighter is the informed customer

The C’I system is undergoing fundamental changes from its present orientation of Joint-Chief’s centralized,
large scale, response to the Soviet threat into a commander-in-chief (CINC) one. The new goal is to a
higher degree of interoperability with the four services operating as a team. The term global infrasphere
has been coined to represent the capability provided to the CINC for

".. fused, real-time, true picture of the battlespace ... [to allow CINC to] order, respond and
coordinate vertically and horizontally to the degree necessary to prosecute the mission ... and be
safe from denial, deception, and destruction...” [Edwards]

The Global Command and Control System (GCCS) is an example of a future C’I requirement. It has the
following core functions:

e  crisis planning

e force deployment

¢ force status

e logistics

e  air operations

o fire support

e intelligence

e  personnel

e  position

e narrative (command collaboration)

[Based on presentation by Lt. General Albert J. Edwards, USAF, Director DISA, “Delivery of the Power
of Information Technology to the Warfighter,” Defense Studies Board, Summer, 1994]

5.1.4 DOD directions and initiatives

Mr. Anthony M. Valletta has reported [Future Directions and Initiatives in DOD Software Acquisition]
that the warfighter should be considered as the informed customer by system developers. The direction of
the DOD C’I software procurement is to recognize that information is critical to the warfighter and will
have an expanded role in the future.

"[Software] ... needs to be rapidly transitioned to [an] engineering discipline [ by] adopting
commercial best practice ... [this will] dramatically improve [DOD’s] management and software
acquisition process ...”

21




A major change in software acquisition is that systems are to undergo extensive operational use through use
of synthetic environments for training, testing and system assessment against computer generated foes. This
combined training and testing is to be made a continuous and daily operation.

5.1.5 C’I acquisition issues

The Defense Sciences Board, Summer Study 1994, (DSB) expanded on some of these issues. Their view of

what the tactical commander requires to be an informed customer by an information system is summarized

in the following:

e provide timely information to achieve decisive advantage with total awareness of friendly and enemy
situations to gain dominance of all levels of battlespace

e give rapid and reliable movement of information-related active combat needs

e deliver to decision maker and weapon holder with response to CINC/JTF commander and below and
tailored to warrior at each level

e create effective but not restrictive security with confidence of protection and graceful degradation

make information a major discriminator and force multiple through information warfare to deny or
disrupt the enemy’s information and to accelerate conflict resolution in one's favor

They believed that an expanded role of information capability is to provide the following:
e connectivity of CINC, Joint Task Force, and component commanders

e connectivity among mobile tactical units

¢ network management and control

e collaborative planning

e interactive video

e distributed database information transfer

The DSB had the same use of COTS technology premise as the panel for software acquisition. That
premise is that the government should focus on the military-unique components of C’I systems and use
COTS for information tasks for which it is suited. The need to include information warfare was stressed
because information systems are highly vulnerable. They recognize the threat of enemy use of commercially
available technology and recommend that software must have incremental upgrade (the forecast panel
called this generation scaling) to stay ahead of COTS use in other's hands. They also recognized the need
for dynamic reconfiguration to accommodate options in the battlefield for changing mission and responding

to threats.

Their results indicated that integrated situation awareness, support to the shooter and continuous analysis
and training were to play a critical role in future success of C’I systems. By integrated situation awareness
they declare the need for expanded battlespace picture, imagery, intelligence (SIGINT, HUMINT, and
MASINT), timely weather information, digital terrain maps, and other support information. They stress
that the information must be delivered to meet specific system needs of the shooter and that real-time is
essential to their demands. Planning, training and constant rehearsal were stressed as important to refine the
software for these purposes. The problems of information distribution to meet the global infrasphere are the
drivers of the need for daily operations and evaluation. They foresaw virtual combat every day as being
necessary for meeting the following needs:

22




¢ readiness

e  acquisition

s  debugging
e interoperability verification

e  training

e rehearsal

e confidence building

e  mission planning

e refining battle damage assessment methods

The DSB recommendation for adopting rapid commercial information technology evolution matches those
of the forecast panel. Their software research and development strategy is based on their belief that
technology is not the major impediment to information dominance on the battlefield. They believe that the
commercial industry leads in information technology and research and that it is globally available. They
recommend that the DOD should invest only in research and development of military-unique information
technology and use best commercial technology in other cases. This use means more than buying
commercial products and services -- it means adopting their practices. Important recommendations are to
insist on generation scaling and to reform and align software processes with the life cycle.

5.1.6 DOD procurement practices

The Electronic Engineering Times, Nov. 28, 1994, reported that the DOD has a new strategy for
acquisition of weapon-systems. In its article, “The Pentagon begins to shop smart,” it gives the following
new approach:
"[The DOD)] ... rests its strategy on ... acquisition reform, streamlining weapon-system
purchases, technology investment, and dual-use technologies. ... Federal mandates [are] in
place to use commercial off-the-shelf (COTS) integrated circuits and components, the defense
industry is scrambling to adapt existing civilian products to military applications.” [EE Times]

The panel, and the recommendations of the Defense Science Board, believes that software should be given
the same treatment. Defense contractors are looking at software productivity through the Electronic
Industry Association software panel. For example, Motorola's Government and Systems Technology
Group's Rose Gibson...chief software engineer and chairwoman of the EIA software panel said:

" .. [The EIA is] looking for ways to streamline software development by keeping the
value-added activities and eliminating the non-value-added,” [EE Times]

The EE Times report goes on with:

"... EIA panel ... [to] make greater use of standard architecture while exploiting commercial
technologies and other common support and applications tools.”

EE Times also reported that the Defense Science Board has:

" .. recommended consolidating widely scattered and often redundant software programs ... adopt
more commercial practices to control soaring software development costs. ..... product-line
development and domain-specific software reuse for leading-edge programs ..."

23




Another related statement was given by John Foreman of ARPA who recommended

" .. adopting a life-cycle approach [to software development] which focuses on the commonality
and variability inherent in a family of similar systems. ... command, control, communications and
intelligence ... . Arpa has awarded Andersen Consulting, I-Kinetics, and Template Software ...
TRP awards for reusable software components [to improve productivity].” [EE Times]

According to Anita Jones, the Pentagon’s strategy is to use:
" .. Advanced Concept Technology Demonstrations... [t0] ... test the Pentagon s ability to
integrate defense requirements with commercial production.” [EE Times]

Defense Secretary Perry has:

v directed that performance-based specifications ... be used with the result that ... If a
commercial specification is available ... the onus is back on the DOD program manager [to

justify non-commercial use].” [EE Times]

However, some industry representatives recognize that too much enthusiasm for new ideas can lead to
unanticipated problems; for example, Gerry Barksdale of Hughes Aircraft was reported as warning:

v that commercial technology wouldn’t help except in areas of user interface tools and Ada
run-time systems.” [EE Times]

The new desirable software approach is demonstrated in Table 5-A.
TABLE 5-A - Comparison of software development process paradigms

Traditional C®l projects New-paradigm C®l projects
¢ Software development process e Software development process
o 40% Auto-generated Ada Code
100% Handcoded Ada development 50% Reusable components
10% Handcoded Ada

» COTS software and hardware e COTS software and hardware

Select hardware first Just-in-time hardware selection

[From US Air Force Space Command & ARPA, as reported in EE Times]

The result of this analysis is that the directions advocated by the panel are well founded on directions
voiced at the top level of DOD and industry.

5.2 TRENDS -- Commercial off the shelf technology

The second major trend that has significant impact on parallel software engineering is the rapid changes in
commercial off the shelf technology. This section discusses some of these impacts and gives a summary of

related position maker statements.
5.2.1 COTS trend position summaries

These positions are related to the industry concept level.

24




Jon Webb provided the term “high-time-value” as a way of describing the difference between
applications that must complete within a given time and those that are to demonstrate speedup. He
related high-time-value to closely coupled multiprocessors that are designed to minimize latency. When
time does not have high value the concern is the bandwidth necessary to move messages.

Present industry directions (as well as those latent in announced but not yet outside beta site testing)
allow Gordon Bell to posit a future dominant system for commercial information systems. That
dominance would drive C’I systems to maximize use of the same technology for economic reasons. The
future system, called Scalar Network & Platform (SNAP), would have a standard desktop client node
connected to servers that were at most four processor multiprocessors. The relational database
language, Structured Query Language (SQL), would be used to access data from the network. By
projecting technology (each critical capacity has been growing by a factor of four every third year).
Gordon Bell predicted that by the year 2000, the node processor, memory size, disk capacity, and wide
area network bandwidth would all increase in capacity by a factor of ten. Local area network
bandwidth capacity would increase, perhaps by only a factor of four. (Wide area and local area
bandwidth capacity would converge to the same value.) Both data and multimedia would move across
the network, effectively making a large high performance computer from commodity parts.

In the pure client/server viewpoint projected by Bell there are no parallel programming issues since all
analysis is confined to the client. The database manager is the only parallel program and it is used only
for data access. A third party vendor would supply it.

A review of this position finds that it is identical to some major software tool vendors, eg, Microsoft, where
visual programming is used in this manner for client computing [Source: Microsoft Developer Network
CD-ROM]. However, commercial publications are already pointing out the necessity for complex and
multidimensional data formulations and the need for high-time-value computation. Although seen as simple
and straightforward, these expectations are falling short in simple client/server designs [Client/Server
World and ComputerWorld, January 1995]. While many agree with Bell because the largest software
vendors are heading toward the SNAPS software version, the publications are identifying a significant need
for additional software and hardware capability in application servers.

Data mining application appears to be one of high importance. George Lindamood pointed out that
widespread information access will lead to advanced methods of human interaction to retrieve
information. Those methods would likely spin into C®I applications, increasing the value to the
command but also increasing demands on processing capability. Peter Seigel pointed out that globally
scalable architectures are necessary for applications scalability for high-time-value applications. These
architectures are ideal for data mining (and all high throughput applications) and for high-time-value
applications. He believes that algorithms should scale across wide ranging processor counts. Seigel
recommends research on lightweight protocols, globally scalable resource managers, object oriented
models and high level compilers that link to specialized application needs.

Kim Gibson pointed out that military systems will require mobile communications services that allow
computing resources to be dispersed and flexible. Mobile communications also lends itself to high
connectivity. Agile military systems should consider mobile communications as a part of their
exercising of C’I systems and the flexibility required for joint task force operations.

The competitive forces in the parallel information industry are multi-vendor. The historically massively
parallel research vendors may be at a disadvantage because commercial parallel, mainframe and
workstation vendors are placing products in the market. Jeff Mohr pointed out that the capability to
bring applications from small to large in a smooth transition is important, eg, IBM has an advantage

25




because they can provide MVS and CICS transition from their mainframes. Mohr pointed out that
independent software vendors are finding it difficult to move even to small shared memory

multiprocessors.
5.2.2 Blue Ribbon Panel’s conclusions on COTS industry trends

The panel found that parallel technology will adopt commodity level COTS technology to a greater extent
than presently found. The panel believed that the general directions of the SNAP or Network of Nodes was

reasonable, but that diversity within that model would require pockets of tightly coupled parallel computers
in high-time-value applications

5.2.2.1 Network of high performance personal-computer nodes

The panel's broad vision of the COTS parallel industry of the future agreed with Bell’s vision. He calls it
the “Scalable Networks and Platforms” (SNAP) architecture. He expects capability to continue to increase
by a factor of four every three years. The panel agreed with this version of COTS capability growth and
its impact on commercial information systems. SNAP has the following components:

e nodes based on the highest performance but largest volume microprocessor (by the year 2000 this is
likely to be an Intel-based computer with 1 GMIPS, 128 MB memory and 20 GB disk drive capacities)

e a four-processor, symmetric multiprocessor would be found at some nodes (the Compaq ProLiant is a
present day example, but in the future it will be priced at commodity levels.)

e asingle, standard, commodity-priced operating system with network and multi-user capability
(Windows NT is the contender --Unix would become outmoded due to high support costs of its many

variants)
e Asynchronous Transfer Mode (ATM) would be the local, wide area, and global network connection

e all data access would be by SQL queries into the network or disk unit

¢ multiple applications could operate at each node

e computing would be peer-to-peer instead of client/server (the fabric of nodes and ATM switches would
be a virtual peer-to-peer server)

e no shared memory is provided by this model -- to give scalability of the nodes and network

e metrics of the SNAP network are message delay (latency and overhead) and bandwidth capacity Limit
delay (gap)

Economy of scale and better learning curves are the primary economic driving factors -- commodity pricing
lets almost all applications use the ubiquitous SNAP network of nodes.

The SNAP architectural model did not include “coordination languages” to run concurrent systems over the
network, all applications were to be single client-based. Coordination languages let designers set up
pipelines or concurrent replicas in a SNAP-like network. Such “middleware” is anticipated by the panel.
The panel also reasonably expects that today’s message passing, bandwidth capacity dependent
applications could fit well on the SNAP architecture.

5.2.2.2 Pockets of tightly coupled nodes

The panel agreed that the general market trend would be toward a commodity market represented by the
SNAP network. However, it believes that there remains a commercial market for a range of decision
support machines for high-time-value applications. In addition, there will be a growing number of

26




applications that require higher performance on large complex applications. This means that the SNAP
network would provide the fabric for future systems but that pockets of specialization would be necessary.
The reason for this continued viability is that cost does not drive all computer decisions -- most often the
return on investment value does. Organizations often find significant competitive advantage in the high-
time-value operations. Many organizations will continue to seek solutions that give them competitive
advantage. Also, hardware vendors, with a base of commodity sales to the SNAP-like COTS requirements,
would find their highest profit from these pockets of high-time-value. The reasonable expectation is also
that the architectural obsolescence in specialized throughput-oriented parallel computers will continue,
while the fabric of the C’I systems structured functions would converge to a stable architecture.

5.2.2.3 COTS network of nodes -- a fabric for C°I systems?

The reasonably expected vision of a C’I system incorporates the maximum amount of COTS elements.
However, they must also build additions for meeting the high-time-value cases, C®I mission factors, and CI
application character. The future challenge is to accomplish advances on the toughest of applications
needed in C°I systems. Designers would use pockets of tightly coupled parallel computers for meeting high-
time-value, C’I factors, and tough application character missions. The panel stressed that a constant
exposure at the interface between the projected SNAP fabric and multiprocessors is necessary to
understand their boundary. This mixed COTS fabric with pockets of high-time-value machines is the
reasonably anticipated network design. It should be the starting point for military and CI applications.

5.2.2.4 Anticipated shortfall of COTS capabilities for c’1

At some point the goals and requirements of the COTS-SNAP architecture and those for C’I systems
diverge. Present examples of COTS parallel computers are too specialized for their specific markets:
scientific research, multi-user replicated engineering, fault-tolerant transaction processing, and batch
decision query applications. Projected designs for multimedia, communications switches, and replicated
engineering also are specialized for particular markets. C’I applications require very general purpose
parallel computing because of unexpected results of data fusion, information fusion, decision making,
control, planning -- all in a high-time-value constraint. Most COTS examples are optimized for multi-user
throughput. In addition, there is a difference in the depth of concern for integrity factors between military

- and commercial needs. Some of these integrity factors are the following:

e reliability and fault tolerance

e rapid software development with easy maintenance and enhancements
e security

e  graceful degradation

s  dynamic reallocation

e physical constraints

e data and network access

A C’I system must organize and communicate C’I mission data and information for rapid access by
multiple applications. In addition, the time allowed to access information is much shorter than in
commercial systems.

27




5.2.3 Technology trend analysis

Rapid technology advances in computing capability are another trend that impacts C’I parallel system
engineering. The analysis below confirms the pace presented to the panel. The panel used these
assumptions while making its strategic plans recommendations. '

5.2.3.1 Computer capability trends
5.2.3.1.1 Processor trends

A continual industry rejuvenation is driven by competitive forces and market sizes. These forces require
that hardware component vendors stay on a constant path of improvement. This improvement has
historically followed a quadrupling every third year progression. Memory sizes available have matched this
pace, while memory prices per package remain constant. For example, a single package with 64 KB in
1986-1988 would have over 1 MB today at about the same cost ($50). Microprocessor speed has kept pace
with memory size, quadrupling every third year. Secondary storage has also improved its density at this
rate of 55 10 60% each year. An additional effect is that the high volume of PC machines has led to quality
improvement in manufacturing costs of microprocessors, memory, disks, components and the computers
themselves. The instructions-per-second-per-$ delivered by PC technology has almost equaled the pace,
improving from about 100 I/s/$ in 1985 to about 1600 I/s/$ in 1992. The most important result is that the
cost of software applications has been driven lower due to the large market volume.

5.2.3.1.2 Network trends

Network technology has also seen gains due to open systems and standards. Local area networks (LANSs)
have increased in performance from 1000 to 100,000 kilo-bits-per-second (kbps) between 1980 and 1992.
The latest wide area networks are nearing the same rates, growing from 50 to 50,000 kbps in the same
period. Asynchronous Transfer Mode (ATM) networks being demonstrated provide wide area rates at
155,000 kbps, above the 100,000 kbps rates of LANs. The ATM standard has the capability to deliver
voice and video at rates and quality necessary for multimedia transmission.

5.2.3.1.3 Professional development workstation trends
If the technology growth curve were followed, today’s (1995) typical professional workstation would grow

by the steps given in Table 5-B by the year 2000:

TABLE 5-B Capacity Growth

Capability Size 1995 Size 2000

Memory 16 to 256 MB

Speed 100 to 400 to 1000 MIPS

Removable. storage CD 600 to 2,000 Mbits

Disks 2GB to 20 GB

POTs 28.8 to 144 kbps Y4

LAN switch 100 to 1554622 (ATM) maps
Operating system Unix to Windows NT

Languages C++ to objects

User Interface Windows to voice/audio/stylus

Paradigm Client/server  to agents/mobile (peer-to-peer)
Capabilities Mail to multimedia (virtual reality)

Data server 2-4 to 4-16 symmetric multiprocessors
Server language SQL to distributed object broker or SQL3

(SQL3 incorporates some Object based methods)

28




5.2.3.1.4 Semiconductor technology trend

The microprocessor industry is a remarkable one. The pace of change means that limitations of today are
soon overcome by time. The prime drivers, microprocessors and memory chips, are driven by
semiconductor process technology. The pace is a hundred-fold in a decade. Other key peripherals are doing
well at keeping pace -- a 1 GB drive costs less than a 10 MB drive of a decade ago [Slater, Microprocessor
Report, p 3, 1/23/95]. New applications are anticipated:

“Modems have increased only from 1200 bits per second to 28,800 ... a mere factor of
24. When true digital communications become common, ... [they] will increase at an
even more rapid pace than CPU power, enabling a vast range of new applications.”
[Slater]

“Today’s personal computers ... represent a very early stage in the development of
computing. It would be folly to think that the desktop form factor, or the keyboard
interface, or any of dozens of other characteristics will continue to dominate.” [Slater]

The Pentium is anticipated to grow to dominate PC systems in 1996 (30 million out of 65 million units)
and the “P6” and Pentium to combine at over 80 million units in 1998 [Computer Intelligence Infocorp].
The integer performance of x86 processors has grown by a factor of 200 times in 15 years and is
improving at a rate of 50% per year. Compiler enhancements have provided the remaining 5-10% each year
to enable the overall 60% growth. RISC processor speed has grown at a rate of 55% per year. The x86 to
highest speed RISC gap is a factor of 2 and is increasing slowly. Projections for the year 2000 are for
leading RISC processors to deliver 3,000 SPECint92 and for 1,200 in the leading x86 chip. Most of the
gains (40% per year) are expected from semiconductor technology, but architectural innovations are
necessary to reach the 50-55% growth necessary to reach those figures. [Gwennap -- Microprocessor
Report]:

“If those techniques do not pan out, radical approaches that break binary compatibility
... may be needed to maintain (or surpass) the 50-55% growth rate.”

5.2.4 Market and technology trend coupling

The impact on parallel software engineering technology is amplified by the coupling of market and
technology trends. This section reviews the synergism between the two.

5.2.4.1 Acceptance of parallel processing in the marketplace

Parallel computing also requires broad acceptance of both processor usage and parallel architecture. Some
successful forms are emerging in the marketplace. C’I parallel systems must leverage off those successes
and extend them for their military use.

5.2.4.1.1 Industrial parallel software engineering

Success of a common programming model and commercially successful architectures that execute it would
serve the C’I builder well. The trend in production technical computing is toward object-oriented storage
for design and analysis information. That trend turns the computing attention center away from pure
Fortran applications, and toward use of application packages and system integration languages like C and
C++. Most commercial research and engineering production already use applications from independent
software vendors. The software that is written is for integration of the packages to make the engineer’s job
easier. Industrial production centers use that same approach, mirroring the purchase of software vendor and
integrator packages.

29




5.2.4.1.2 Dynamic computer market changes

Today’s dynamic changes in the computer market result from the displacement of Emitter Coupled Logic
(ECL) processors by Complementary Metal Oxide Semiconductor (CMOS) Logic microprocessors. The
result is a rapid advancement in speed of the single microprocessor chips. Low cost and open systems
standards make this technology useful as a high throughput (many independent operations per second)
computer for workstations and parallel computers. For structured applications with fixed data locations
few processors (10 to 30) reach a single processor’s (ECL) operational speeds with lower hardware cost.
Advocates think that cost-scalable multicomputers built from very high performance parallel CMOS
computers will far exceed the capabilities of today’s highest performance ECL computers. They also hope
that they will be available at a reduced cost per unit of performance.

Large volume production of microprocessors is necessary to recover development and foundry costs and to
allow a margin for continued development. The most popular models will rapidly evolve and improve while
the less popular ones become obsolete and disappear from the market. The Intel i860 is an example of
volume inadequacy and architectural performance limits, causing obsolescence. While the Intel 80x86 /
Pentium series is a successful volume case. A processor applications base and choices of operating systems
are critical factors for market success in personal computers and workstations that use microprocessors.

In parallel systems the microprocessor cost is not the critical issue -- many highest performance
microprocessors are available for $500 per package, while multicomputer nodes are priced at 100 times
that cost. Even the design and foundry costs of a specialized microprocessor are not overwhelming if
foundries are available. The critical factors are the development cost of a robust system, compiler software,
operating systems and the existence of an application’s base. Achieving that base requires the investment of
many independent software application developers. Broad market acceptance of a microprocessor is
necessary for attracting the investment in operating system, languages and applications. For example, IBM,
Motorola, and Apple combined forces for ensuring a broader market, adequate volume and applications
base for the PowerPC microprocessor. HP and Intel jointly announced an advanced processor to replace

the Pentium series.

These changes offer new opportunities for enhancing command, control, communications and intelligence
systems. Market-coupled, commercial-off-the-shelf (COTS) solutions allow C’I builders to meet their
budgets. Application specific parallel processors necessary for meeting tight physical constraints could
build hardware to execute the same common model, gaining efficiencies in software development.

Because of the recognition of their effectiveness, commercial information systems routinely use high
performance parallel computing for on-line transaction processing and decision query servers over a range
of sizes and architectures. Database and transaction applications for parallel computers have been ported
and are available from several independent software vendors. These products span both symmetric
multiprocessor and local memory based multiprocessor architectures. An example is Sybase DBMS on the
AT&T Global Information System product line with both SMP and distributed memory architectures. The
success in this field show that if parallel machines are adequate and useful for an application, independent
software vendors will respond. CI systems could use this type of processor for applications that match
them. (See Table 5-C.) The suitable applications are multi-user transactions, database storage, and
replicated copies of programs, one copy per user. AT&T's robust interconnect structure in its model 3600
has proven reliability. More important, the operating systems for the commercial system are robust and

reliable.

The server might be a four-processor one that provides files for several users. Much of this parallel
processing is now limited to replicated applications for different parameter sets. Unfortunately, a single

30




large application, such as simulation or detailed operations of an engineering process, gets little speedup
gain from the present server technology. Often engineers wait overnight for critical runs because the
necessary processing performance is not available. If the four processor servers delivered speed on a
variety of engineering processes a sixteen-processor system would be justifiable in these environments.

Symmetric multiprocessors provide a few primitive mechanisms (e.g., threads coordinating via locks) to
allow the programmer to deal with concurrency. The thread programming model is often not portable with
other vendor’s hardware and is not portable to local-memory-based multiprocessors. Sales of these
machines, database and transaction processing software, and a full spectrum of business process
applications is now available on those machines. The popular client (a workstation) and server (a parallel
processor) operation allows many corporations to spread their operations across the nation on wide area
networks. The commercial software package industry has built a significant inventory of software, making
skilled and trained personnel with experience available. C’I systems often require the similar transaction,
data base, and reporting applications. C’I system designers should understand and capitalize upon these
capabilities. Due to the small processor count, these processors cannot solve some of the large-scale
problems of C’I systems. However, they can contribute a significant level to selected matching application
types.

These systems are also finding applications in industry for support of decision support systems. All of the
well-known examples communicate with an operating legacy system. The systems extract data and feed it
into the parallel computers for processing. They work on large and complex queries and analysis
applications. They often cut completion time down from weeks to days. However, there is a demand for
even quicker results. The primary disadvantage is that each example is ad hoc and requires a significant
staff for development and operational support.

Large-scale commercial applications have expectations of mainframe-like operations (general applicability)
but at much higher performance. Multitasking (switching between multiple users to overlap and hide
delays) makes interconnect latency less important to getting high throughput for transaction and database
applications. However, a single user with a large decision support application with complex queries
requires multiple processors. AT&T provides software that breaks complex queries into independent
parallel transactions for execution on either SMP or capacity-scalable systems. This allows use of local
memory based multiprocessors for complex queries. However, large scale parallel systems still do not have
the general applicability of mainframes. The vendors of large scale parallel systems have “skimmed the
cream” of transactions and data access. (See Table 5-C.) Their products do not provide the versatility of
programming and effective operation provided by the supercomputer or mainframe on complex and
dynamic applications.

Early examples of commercial systems that have embraced parallel methods show that the present
successful parallel offerings cannot replace entire systems. Large information systems have additional
capability or function instead of simple replacement of “legacy” or “heritage” or “dusty deck” operational
systems. Industry now uses parallel computing to accelerate processing of new throughput-oriented
applications. However, the mainframe or supercomputer remains the operational, day-to-day production
system for heritage or legacy applications. Often the prior software investment is too large for a parallel
system to displace an operational system. The proprietary file systems upon which these systems have been
based compound this problem. The investment to shift to a parallel system is significant and requires the
following:

. extract data from the legacy system

. insert it into the new parallel system

31




. do the decision processing

. post analysis

] put some results back into the legacy system (possibly)

Often this effort requires tens and sometimes hundreds of people. Over the next five years both commercial

and C’I systems will likely consist of mixed legacy and advanced technologies. Software engineering
progress is necessary to build this mixed operational capability to allow incremental insertion of parallel
technology.

One would not expect high effectiveness on clusters due to high protocol latency in protocol-based parallel
systems. Possibilities include carrying out a small-packet, message-passing mechanism in software for both
symmetric multiprocessors and for the buffer exchange hardware for capacity-scalable designs.
Synchronization latency would be similar in both cases: highly portable code results. With a similar
latency and common programming model, applications are portable across a range of sizes and
architectures.

The parallel computer industry is experiencing significant competition at all levels of systems. In the Intel
486/Pentium marketplace AT&T, Pyramid, Sequent, TriCord, Compag, and Encore plus many other
smaller vendors are already present. Compaq has already sold several hundred thousand multiprocessor
systems. Intel recently included key parts of the shared memory consistency control within the Pentium
microprocessor chip. In addition, Intel has announced a standard for Pentium systems that will allow the
commodity “clone builders” to join the symmetric multiprocessing hardware market. Cyrix has announced
a competing open standard to prevent Intel patents from cornering the market.

5.2.4.2 Information system impact

The following technologies could play an important role in different parts of the C’I system:

e Information systems -- desktops, servers, decision support, data access -- business

e  Engineering -- simulation, design, software development -- product development

e Embedded -- sensor, imaging , physically constrained missions -- medical, process control

¢  High performance -- scientific research, grand challenges -- weather, large scale aerospace, safety and
environmental simulation

Table 5-C identifies computer technology sectors that impact C’I parallel software engineering.

32




TABLE 5-C -- Future Influence on C®l System (and vice versa)

Tech- Fraction of Potential for Change by C®I
Impact Cll Software Engineers
Information system Large > 50% Little -- has own agenda
High performance -- Yes Selected  Significant: information
decision support points fusion and decision
Engineering Some > 10% Some -- Environments and
System Design Tools
Embedded Some Selected Interface & Simulation; use
points as high performance
decision computing
High performance -- Small very small  None from scientific
Scientific research research;

Information systems (combining PC and commercial) now have the largest potential impact on computer
technology due to their massive market size. Table 5-D shows the fraction of the $112 billion commercial
market (1994) that goes to desktops, commercial and technical computers. Some workstation and
mid-level computer vendors now target the business application as their market of choice, leaving
engineering as a second market. The combined information system market is soon to be driven by
PC/workstation, network and server technology, standards and economics [Microsoft].

For the larger portion of its computational resources C’I system technology can adopt and ride the
information technology curve [Wasilausky]. The demand for parallel computers beyond that required in
information system technology is a question that depends upon the justification line between military-
unique, board-level COTS and COTS system units in an Air Force war fighting information capability.
The panel defined as external to C?I the sensor/ image processing input and response “effectors” that
perform actual weapons delivery. Parallel computers for those external systems are now engineered to fit
into physically constrained situations.

TABLE 5-D 1994 Computing Market — $112 billion [Williams]

Market Segment Fraction Component Comment

PC 50% <10% technical 90% commercial

Commercial 35% ~75% transaction  small, but growing UNIX
transaction processing

Technical 14% ~50% workstation  mid and mainframe is greater

than supercomputer and parallel

Board-level COTS technology also plays a major role in building sensor and image systems [Lund].
Historically, those systems have used signal processing instead of commodity microprocessors and real-
time instead of UNIX workstation operating systems. High performance computing technology, as defined
by the scientific research and grand challenge machines, was seen as having little impact on the choice of
technology curve for the bulk of C*I computing. However, high performance parallel machines for

33




information fusion and decision support that are matched to C*I needs were believed to be possible areas of
importance.

5.24.3 COTS business system trends

Business information systems are undergoing a radical change in organization as a result of reorganization
and flattening of management, a process often called process reengineering. The change is closely coupled
with creating distributed processing operations called “client/server.” In the client/server organization a
client (desktop workstation) uses a network to access data located on a server. The most cost-effective form
is for the server to be a Unix-based, highly robust symmetric multiprocessor which is dedicated to the data
base operation. These servers now cost significantly more than home computers of equivalent processor
speed and memory due to their robustness, fault tolerance and interface to the Unix operating system. They
cost significantly less than mainframes often used for the same purposes.

The interface to the operating system has created a barrier to commodity pricing of up to four processor
units. Standard interfaces to the operating system have been proposed by Intel and a consortium of its
competitors. That standard will allow commodity builders to enter the market. Thus, a standard data access
language has emerged from the commercial marketplace (SQL) that allows client tasks to obtain data safely
in a distributed network. Software tools for building user interfaces based on access to SQL databases are
now readily available, eg, PowerBuilder or Gupta. Emerging are also object storage systems and mixed
SQL and object systems, eg, UniSQL, Ilustra and Object Design. Object systems based on the common
object request broker and other distributed object mechanisms are also on the market.

Operating systems are also in flux. (See table 5-E.) The need is for a standard Applications Programmer
Interface (API) that allows applications on one workstation to be ported by recompiling to run on others.
The Unix market is suffering from vendor inability to define and support a single standard that
accomplishes a common API [Bell]. Although the common open systems environment (COSE) builds an
aggregation of function calls (1170 of them) from past dialects, the fragmentation of the operating system
leaves each platform vendor with increased support costs. Those support costs are a burden to workstation
vendors that are reflected in increased costs and loss of competitiveness. The largest vendors keep
extensions and unique file systems that lock in their customers, creating the potential for dramatic
switching to new applications. A new common standard is likely to appear from the commercial PC-based
market, Windows NT. (Windows NT will run on all major platforms.) This allows server platforms for
applications that are not tied to particular variants of UNIX,, but to a high volume industry standard [Bell].
Cross system environments provide this function (Galaxy, Powersoft, NextStep, and Taligent’s planned
product). Any standard must also avoid proprietary SQL calls.

TABLE 5-E Database Application Server Plans -- Operating System
[ComputerWorld - 1/23/95]

1994 1996 (plan) 1996 (potential)
Unix 46% 46% 16%
Windows NT  10% 20% 34%
Netware or 10% 6% 6%
0S/2
Unsure 34% 28% 44%

34




This result (based on interviews of 50 IS managers by Forrester Research) shows that there is a high
chance of drastic change in the database application server operating system of choice.

5.2.4.4 System technology trends

The technology trends allow a designer to devise a system that consists of computers with professional
workstation capabilities, connected via ATM-based switches. These would use the most common standards
as the basis for client applications. This organization can match the throughput of large parallel computers
by the same methods used to specialize the present parallel computers -- having multiple users on each node
1o hide latency, using multiple paths to access data by distributing storage in redundant disks in the
network. Parallelism would be limited to data-base operations. Clients applications would use transactions
to access data and perform processing. Scalable data-bases would provide implicit parallelism. Scalability
is assured because no shared memory coherency mechanisms are used.

Evolvability (higher performance commodity technology can be inserted as it arrives) allows the design to
constantly ride the commodity technology curve. One ingredient is the constancy of the SQL access. Some
small symmetric multiprocessors would be used because they, too, meet the common multi-user operating
system and SQL-based operations. Almost all programming would be client programming since the SQL
servers would use purchased standard systems [Bell].

There are two compelling reasons for the emergence of this information system vision of the future:
e  massive standardization gives massive use
e  economic forces are enormous.
Both are a result of the driving force in information systems:
“...the user investment is in programs, data and training...” [Bell]
5.2.4.4.1 Scalable network and platform architecture

The model of multiple PC nodes, ATM network, and SQL data access was called Scalable Network and
Platform (SNAP). The term SNAP-like is used here as a generic name, representing several similar
organizations with a range of capability. The working session of the panel believed that, in general, the bulk
of commercial information systems would head in the direction of SNAP. This assumes that several
barriers are overcome, eg, legacy interfaces, limitation of servers to be commodity multiprocessors, latency
(~12 microseconds) of over 10,000 instructions for ATM access, limitations of SQL for high-time-value
applications, lost speed limitations of ATM for data transfer (the network may be tuned to make voice and
video guarantees instead of data reliability guarantees). All these concerns, excepting the legacy interface
are due to a need for high-time-value, mixed character, and getting mission-like factors, which are
sometimes required in commercial systems.

The resulting marketplace projection if this vision is fulfilled is that PC and Network machines would
totally dominate, leaving only some very high cost applications that justify workstation or mainframe
legacy needs. (See Table 5-F.) The pure SNAP vision leaves out high-time-value applications in the
commercial world that cannot fit on a single PC (projected to be a 1,000+ MIPS machine) that gets its data
by SQL (and multimedia) calls at 155 to 622 mbps.

35




TABLE 5-F Year 2000 Computing Market -- $250B (The SNAP Vision)

Market Fraction Component Comment

Segment

Set top - Included as part of SNAP

Single PC 5% Standalone use Single, non-interfaced PCs

PC -- SNAP 85% Transactions - all All Commercial and Multimedia
Connected types Systems; SQL and Multimedia
Other 5% ~0% transaction ~ mainframe legacy market only
Technical 5% ~100% workstation ~ no supercomputer and parallel

5.2.4.4.2 Trend to recognize need for business logic processing

On-line analytical processing (OLAP) is a new phenomenon in client/server computing. Its need has arisen
because the form of computing being practiced is that of using a single workstation desktop as a client
(requester) to data servers (replicaters and responders). The single client does the graphical user interface
to interact with the user to generate requests for data. In this “Visual-to-SQL programming model, all
business logic analytical processing is performed by the desktop and all data are obtained via SQL calls to
servers. The SQL access has been found to lack the capability to effectively access complex and
multidimensional structures found necessary in some applications. Relational databases are fine-tuned to
volume “throughput” processing, making them hard to access outside the defined relational structure. They
also have poor performance on complex data access operations. According to one decision support user:

“You can’t easily build in intelligence or dynamic analysis [into the relational structure].”
[ComputerWorld)

OLAP technologies allow the user a “spreadsheet” metaphor to access data more easily. They use different
storage methods to allow faster access. However, they maintain the model that all servers provide data and
the client does the processing on it -- leaving no capability to go beyond the capability of the single
workstation. (Multiprocessor workstations would overcome this limitation.) The tools to easily move a user
from single desktop to multiprocessor desktop may come later when the limits become more apparent

[ComputerWorld, p12, February 20, 1995].
5.2.4.4.3 Specialized Processors for On-time and Integrity Factor Processing

The panel anticipates a need for high-time-value application servers and for meeting C*I mission factors. It
expects that similar high-time-value application needs will arise from corporate competition sources.
Therefore, the panel expects that an alternative design will emerge to fulfill those needs.

The panel’s trend projection is a SNAP-like one with differences necessary to provide high-time-value
resources where they are needed. It also would have tools for system engineering and programmability that
let designers contemplate a design that is client only. Therefore, the forecast panel believes that implicit
object oriented methods would be provided to client programmers to allow ease of programming any high-
time-value applications on suitable machines. Market forecasters apparently believe in the value of object-
oriented methods, eg, see Table 5-G. In addition, the architecture would provide interfaces to legacy
systems. This new architecture seems a reasonable projection since an object-oriented standard could arise

36




to compete with SQL, because of its reusable code advantage. Also, a legacy interface problem solution is
necessary for acceptance into the business community. Capital budgets are not adequate to replace legacy
systems in a single step. In addition, some expect that there will arise more concern for high-time-value
applications when the commoditization process brings many firms into the same level of system capability.
Firms that experiment with faster decision processes will find that their complexity increases the demand
for high-time-value processing significantly.

TABLE 5-G Market forecast for object-
oriented platforms [ComputerWorld, 63 -

1/30/95]
Platform 1994 1998
Visual Development Tools $777M $3.458
Object database management $233M $1.39B
Object-oriented operating environments $40M $1.22B

37




6. VISION -- Parallel Software Engineering

6.1 Positions on parallel software engineering

This section reviews the positions on software engineering presented to the panel. They form a sense of the
state of the art and vision of research leaders in the field. (Some positions are based only on the paper

provided.)
6.1.1 System level positions

The report by Masimi Uemoto described the viewpoint of engineers that are seeking tools to do
distributed or parallel engineering. Uemoto sought solutions that fit into the normal engineering
network environment, but she found no effective solutions in spite of reviewing a number of reported
demonstrations of parallel engineering tools. Parallel and distributed tools are not effectively entering
the engineering process although the necessary technology has been demonstrated for a decade.

Yalamanchili described a demonstration of collaboration and interactive execution for real time and
scientific applications that are needed for complex data sets whose path cannot be foreseen. Their
approach fits into the projected needs of C’I systems to respond to mission changes.

J.C. Browne added that there is a growth in complexity of systems that will prevent software
implementation that is efficient and portable. He advocates integrating parallel structuring with
traditional function and modularity, executable abstract specification, and similar engineering
(simulation and verification at each abstraction layer) as done in hardware systems.

Armand ten Dam advocated a support environment for structured design tools targeted to real-time
applications.

Jay Eckard provided the view that large data sets are controllable using commercial database tools and
that new technologies, eg, solid state disks, can change data access performance dramatically.

Carl Murphy proposed that C’I factors and tough application types are those places where parallel
technology is needed. He believes that object-oriented methods can be used to solve the C*I factors and
that tough applications require hardware and operating system kernel changes. Murphy also pointed
out that evaluation of parallel computers on cost of peak performance instead of cost of life cycle has
led to specialized parallel machines that exacerbate the software engineering problem. He is a believer
that there are solutions to building general purpose parallel machines for the tough decision problems in
C’I systems and that they would be successful on the commercial market.

Murphy, Seigel and Wasilausky all believed that dealing with specialized needs, such as C’I factors and
tough applications, requires object oriented methods that operate at the same level as the operating
system kernel.

6.1.2 Programming model positions
These positions cover virtual machines and automated parallel programming.

C’I system and application engineering need architecture-independent software because of long life
cycles and mission change. Refinement layers representing design-through-code are current research
solutions. Douglas Smith and Jan Prins described refinement approaches that start with an executable
specification and refinement layers for portability. In this scheme mission changes would be identified
again at the specification level and trickle down to the hardware code level. Hardware obsolescence

38




would only effect the branch of the refinement tree for the architecture type. In this manner automated
program generation support is provided and changes are made within the tree only for the effected
components. Prins provides performance assessment and Smith adds automated program generation to
the method.

Stephen Yau described a layered design approach based on objects. His tools get portability by
targeting a common intermediate layer for code generation on different machines. He claims advantages
in conceptual parallelism identification, ease of modification, and reduced life cycle costs and effort.

Tom Cheatham described the Bulk Synchronous Parallel (BSP) model that represents the same concept
level for parallel machines as does the von Neumann model for sequential. In this model programmers
can estimate the performance of an algorithm without coding and trying it. BSP requires a super step
barrier at which time all communication and synchronization of the step must be complete before the
next step is started. Cheatham described the compiler, library, optimization and correctness proofs and
other refinements for general purpose programs. BSP has potential impact on C’I systems because its
model can be matched to fixed time frame methods used in real time coding. A theory that combined
monotonic rate analysis and BSP would be the foundation for a useful tool in parallel high-time-value
applications. The BSP model of superstep barriers also is well suited for distributed processing
applications that are projected for the COTS-SNAP distributed system.

Rajive Bagrodia described the requirements for a C’I Virtual Machine (CVM) as a design process and
programming model. CVM incorporates multiple computational paradigms (task, data, vector),
heterogeneity, real time and reliability issues. Performance estimation would be included at the design
level.

6.1.3 Programming tool positions

These positions covered approaches to programming tools.

Andrew Sherman described the virtual shared object model (VSOM) to improve on shared memory and
message passing. Their concept is based on a content-addressable memory with which each process
sends self-synchronizing messages. This allows each process to get information by name, not location.
VSOM allows dynamic and complex system integration. Commercial tool examples are Linda/Paradise
and database management products.

Craig Lund provided information on the lack of suitability of scientific parallel computers for I
systems. His comment was --

“Scientific programmers usually think of their problems in “control flow” terms ... In
contrast, real-time signal and image processing applications constantly receive new data.
Therefore, programmers of such systems usually think of their problems in ‘dataflow’ terms

Lund described a component programming proposal for signal, image, and other sensor processing
needs. He also noted a culture difference between defense vendors and academic institutions and
commercial firms. The challenge of product fund raising requires product firms to understand how
their products fit into common business or engineering processes and the market. Researchers have
no need to follow through to the marketplace.

David Rich stressed that C°I systems will consist of some of the largest and most complex systems to
be built and that COTS parallel development tools may not be adequate for such applications.
Commercial language and tool vendors are targeted toward smaller projects. This is confirmed by the

39




observation that the present COTS industry direction is confining user interfaces to single client station
programs done with corresponding “visual” tools. Systems are assemblies of open system parts
including the database application. His debugging tool product experience indicates that a programmer
needs to be able to debug within a single development context, requiring that the debugger operate on
all components in the system.

6.1.4 System effectiveness tool positions

These positions covered the means of increasing effectiveness (speed related to processor capability) of
parallel programs. -

e Martin Davis described a method of creating a hardware architecture after the application is designed.

“No matter how hard one tries to isolate the application programmer and user from the
hardware, the hardware is the ultimate determinant in the performance of a program.”

e This work has a role in C°I systems that must be physically constrained or meet special environmental
factors.

e Min-You Wu provided the following comment:

“While regular applications can be solved efficiently, only a small fraction of applications

are regular. ... the current technique cannot solve applications with irregular ... structures
”»

e Wu described run-time systems for implementing complex applications.

e Sanjay Bhansali and CS Raghavendra believe that problems of increasing scale and complexity are the
problems of importance. They point to the need for effective distributed applications in future high
performance networks. They believe that domain-specific components will be the important path for
software engineering. They have sequential code reverse engineering tools that allow automatic
mapping to parallel computers.

e Robert Rabb gave a specification and design language for large grain applications that is intended to
give portability, design correctness and reliability. Run-time communication and synchronization are

defined at design time to obtain these results.

e Matt Rosing described flexible and efficient abstractions for parallel programs based on compile time
language constructs.

6.2 C°l system development methods

The necessity to use system and software engineering methods to build C’I systems is due to their size,
high-time-value, application character and mission factors. Since C®I design and development requires

“many people, the visibility of the design and its implementation are very important. Parallel computers
exacerbate the situation because their performance (time guarantee) varies widely when the design
mismatches the architecture. Designers allocate function and performance to components when designing a
C’I system. This is difficult even when the underlying capabilities of the computing resources are consistent
and steady providers of computing capacity. Without the capability to predict the behavior of a parallel
element in the system the design risk becomes excessive. The panel believes that designers should not use
parallel computers unless they identify clear advantages, ie, they should not use technology for its own
sake. However, it also believes that the system designer should aggressively design for applications that
require performance levels only obtainable through parallel computers.

40




To conceptualize and develop an architecture and a design that delivers high-time-value guarantees requires
knowledge of dependable and predictable completion times for each component. In addition, the extra
computation required to deliver all required C*I mission factors must be predictable at design time, prior to
detailed mapping steps to an architecture. The panel found that delivering reliable time of completion
predictions on diverse application character is a necessary design tool. Designers also need tools to help in
delivering C°I mission factors and predicting the associated performance penalty. Tools that provide
information about the application character are also necessary. It is also necessary to develop methods to
incorporate C°1 factors such as time guarantees, resiliency and integrity, and physical constraints imposed
by operating in aircraft.

6.3 Status of parallel technology and software engineering

The assessment of the panel is that present COTS parallel computers have not provided an effective
capability for delivering C*I mission factors such as reliability, availability, security, fault tolerance, and
graceful degradation. The panel expects that C*I mission factors will continue to be important differences
between C’I and COTS parallel systems. However, software engineering tools that accomplish C?I factors
within COTS-based systems would have high value in commercial systems.

The application characters of C’I systems are very different from scientific research, business transaction
processing and other well-known parallel applications. Those character differences are a combination of
complexity, interaction, synchrony rate, and resource demand. Extensive (unstructured), symbolic (logical
and decision) interaction, frequent synchrony, and dynamic resource demands are the most demanding
characteristics. The panel referred to these as the “tough” applications.

In contrast, “standard” applications typically have a structured, (large) message passing, infrequent
synchrony and static resource character. The greatest challenge to applying parallel computers to I
systems is in dealing with tough applications for high-time-value applications. The panel viewpoint taken
is that C’I systems should have hardware components of commodity COTS, specialized (possibly parallel)
COTS, and militarized components. These components would be workstations, networks, specialized
processors, operating systems and run-time software for implementing C?I factors and meeting tough
character applications.

A future view of C?I systems is one based on a high level of available COTS computing machinery and
software. The panel raised some concerns about over-enthusiastic COTS adoption and the possibility of a
lack of consideration for long-range disadvantages of COTS. One example given was market obsolescence.
The panel reasonably expects that significant cost advantages will result. The panel recommends setting
the goals of parallel software engineering by reflecting on the future of COTS components.

The panel recommended a strategy to maximize the use of COTS, but use parallel computers to meet high-
time-value goals, C’I mission factors and application character. This is to be accomplished with total cost
conscientiousness, not hardware cost alone. This strategy requires programmability combined with
performance and portability. It also requires that the underlying system concept have a close relationship to
COTS where it applies. An important requirement is to know how to determine the relationship between
COTS-SNAP and parallel computers. That interface is expected to be one of the challenges of a parallel
software engineering research program.

6.3.1 C’I software engineering

An important tool that is necessary to design the interfaces in C*I systems is a suitable computer aided
system design tool. These tools are necessary to allocate function and performance to components, to
predict their performance and to estimate C>I mission factor capability. A designer typically iterates their

41




design until they meet all mission needs. One result of the panel’s vision is the identification of a tool to
determine the interface between the SNAP-like architecture COTS and the parallel machine part of the
system. As the designer attempts to allocate functions the design tool would predict performance on the
SNAP-like COTS architecture. When the designer cannot meet high value time limits, the tools should
recommend a series of sizes of parallel architectures to meet the high-time-value goal. Thus, the tool lets
the designer find the edge between the SNAP-like COTS fabric and parallel or specialized components.

The system design tool provides for an overall system allocation of components. In addition, programmers
need application development tools for design and programming of applications. The position makers
described several methods of application engineering that included performance prediction and specification
execution. Position makers presented refinement methods, object-oriented methods, specialized components
and virtual computing models to the panel. The panel believed that the goals of these methods were
appropriate. The panel recommended that a mechanism be set up to put these methods more intimately in
the loop of C*1 exercises, testbeds, and applications.

The panel found that discussion of architectures and applications were facilitated by reference to the Bulk
Synchronous Parallel (BSP) model of barriers with defined terms for communication-to-computation ratio

and barrier delay costs.

The panel thinks that tools are useful that let C’I system engineers emulate SNAP-like architectures on
present-day parallel computers. Developers would have to normalize for projected bandwidth capacities,
processing, and storage capability. The BSP model could be useful in that normalization. If engineering
tools could match the architecture to a latency cost model, it could be easier to develop virtual machines as
targets for programming tools. Experiments in emulation of predicted COTS systems provide a test bed to
allow quantitative performance engineering that attains C*I mission factors. In addition, designers could
explore techniques for testing of tough character applications.

.6.3.1.1 Object-oriented design, development, and programming

The panel reported that object-oriented design and development methods have made a significant impact on
display screen programming, data exchange between independent applications, and organization of access
to data objects. Commercial system and application programmers have accepted these methods. Small
programming groups are making significant productivity gains through object reuse, easier software
maintenance and efficient enhancements. Panelists raised questions about how to overcome performance
loss in C++ when compared to compiler optimized C, how to best use C++ in large projects, and how to
provide better design visibility.

Object-oriented methods are playing an increasing role in commercial systems. This technology plays a key
role in creation of displays and has reduced the screen building and human interaction programming task
significantly. Likewise the languages used by commercial support staff is also becoming object-oriented.
System design techniques are also following this path.

Some of the panel members believed that SQL was not adequate for the commercial systems of the future.
They found that programmers would most likely program using a combination of visual object-oriented
languages, such as Smalltalk, and business logic languages like C++. As a result, the Blue Ribbon panel’s
concerns over the effectiveness of SQL for complex and diverse type C’I applications are confirmed by
current reviews from the commercial industry.

42




6.4 Analysis of COTS trends in parallel software engineering

6.4.1 Object-oriented technology
Cheryl Ball reported in Client/Server Today, February 1995:

“[the] first wave of object-based tools ... enabled the first generation of client/server database
access applications ... [they] revolutionized information access in many corporations. But the
next wave ... will allow rapid development and deployment of flexible enterprise-wide business
processing applications.”

Sixty-eight percent of companies surveyed and reported in Balls report say that object-based tools are
important to their redesign efforts.

That object-oriented methods have solved many graphical user interface (GUI) development needs was
demonstrated at the Database and Client/server World Conference and reported in Client/Server Today,
February 1995. The example given is MCI’s Friends&Family marketing system. The system was put
together in three months using NeXT’s object technology. This rapid development for meeting agile
marketing needs is expected to increase in the future. That meeting confirmed the idea that SQL may not be
adequate for complex and diverse data source C’I systems. One reviewer gave the following analysis of
database management systems based on object-oriented and SQL methods:

“Object Oriented methods have good support for the following: complex and user defined data
types, error recognition and correct handling by DBMS and mapping of object class to domain
data type. On the other hand, SQL is excellent for simple transactions but is not a good or true
implementation of relational technology, has no concept of domains or data types, and does not
work well as a repository for objects because the object class to relations is not as effective as
direct object implementation.”

6.4.1.1 Object-oriented effectiveness

Object-oriented programming effectiveness was discussed in ComputerWorld, p 114, January 30, 1995
where a Smalltalk object programming example was reported. Table 6-A gives the results.

TABLE 6-A Productivity improvement with Smalitalk object programming

Original task with Smalltalk
Development time 19 months 3.5 months
Labor (months) 152 person months 10.4
Lines of code 265,000 lines of PL/ 22,000 lines of Smalltalk

(Original source: International Data Corp. Framingham, MA)

ComputerWorId went on to say that object databases are typically used in technical databases. However,
their use is recognized as meritorious when there are the following requirements:

e the application has complex data structures
e there are many relationships between data structures
e the relationship is as important as the data

e  high performance is required for data manipulation

43




e  behavior modeling is as important as data modeling

The conclusion from these inputs is that object-oriented programming is confirmed for small projects. The
client application programming, however, can be used in large projects where a few top level programmers
build the system interfaces and connection and other programmers must have only a client program to
develop. Their effort is to be blind to the architecture of the system. This model (and the low relative cost of
Unix servers compared to mainframes) has led to the recent success of the “client/server” approach.
Parallel software engineers need to adopt the same model, where almost all programmers on the team do
architecture-independent programming. A few programmers would do the system programming to
distribute the applications into the distributed system and a few others would write any high-time-value
programs that execute on the low latency multiprocessors in the system. Adopting this commercial model

as a goal of its research could benefit the C’I parallel software engineering process.




Annex A

Parallel Software Engineering Assessment
Annex Summary

Viewpoint and Issues

This assessment looks at parallel applications and architectures from the viewpoint of a C®1 system builder.
There are many purposes for parallel computers in CI systems. Therefore, understanding applications is the
starting issue. CI systems have physical and integrity constraints beyond the design intent of commercially
available machines and operating software. Therefore, architectures will continue to be a critical issue. The
power and dynamism of the computer technology marketplace significantly influence both applications and
architectures. The market is a third critical issue. Software engineering is to provide the processes, tools, and
metrics that allow engineers to design and build complex C’I systems. These processes and tools must deliver
the fast development cycles, limited budgets and low life cycle costs now expected of peace-time military
development.

Applications
The contribution of parallel computing is in reducing the time required to complete an execution, thus
advancing the capability of C’I system applications.

C’1 applications have fundamentally different time response goals. A discourse about applications without an
understanding of their time response goal leads to a cacophony of different interests. This assessment stresses
that the time response goal is the critical factor in discussing the lines of tension between applications,
architectures, market forces and software engineers. These lines of tension are:

* Design-Time Matching of Application Needs and Constraints to Architectural Capability
¢ Tools and Metrics Applied to Applications and Machine Performance
¢ Programmability and Machine Portability Models

Our assessment includes an architecturally independent rating of C’I parallel applications by time-response
type and by characteristic criteria. Together these are a characteristic pattern of execution. A comparison of
the pattern of today’s parallel application successes to C’I patterns shows that the architectures are ineffective
for many C°I needs. We find that we must make a new focus to broaden the understanding of C® applications
and the ways that parallel architectures can solve them.

Architectures
Scientific-research parallel computing is not general enough to provide a complete model for C’l system
applications. Client-server data base and on-line transaction processing, a successful example of
throughput-oriented parallel computing, are limited to serving many independent users. These present
parallel successes fail to solve mission critical applications, those in which an execution has a specific
period to complete its execution.

Annex A-1




Alas, these successes have a significant penalty. Builders experience the inability to design with assurance
that the system can execute in a predictable time on a chosen architecture. They experience the penalty when
the effort to fit the application into the architecture grows beyond original budget estimates. In addition, they
have no structured way of engineering for rapid response computing, real time predictability, system
availability, fault tolerance, and security. The C®I industry needs a robust hardware parallel architecture and
software engineering processes that lead to significant performance leverage, while maintaining
programmability, portability and maintainability. We conclude that today’s parallel computers fail to
deliver their promised performance in complex Air Force C°I systems because their specialization
prevents adequately general software.

Market Force Strategy
The Commercial-off-the-shelf (COTS) strategy is one in which commercial competition provides advances in
capabilities needed for military systems with only marginal investment by the government. Often overlooked
is that the savings in software costs due to mainstream market acceptance is the most important factor in
COTS strategies. When designers overspecialize parallel architectures to reduce hardware costs, they
often lose the benefits of COTS provided software. Operating systems, programming tools and languages,
and data base systems are fall-outs of COTS successes. However, if these cannot meet the application
demands of CI systems, then the COTS strategy fails. The gains of a COTS strategy are an illusion if the
result is not adequate for general acceptance.

Software Engineering Issues
Software engineering is a discipline that deals with the large, complex, dynamic, mixed hardware of C°’I and
large scale systems over a long life. Parallel processing technology now exacerbates the development process
by reducing portability, increasing software costs and creating performance uncertainties. Advocates of
machines specialized for scientific research often recommend them for applications for which they are
inherently unsuitable. The necessary changes in hardware, operating system and support tools make the
conversion unrealistic and risky. The result is an industry state often described as "lack of software.” Parallel
computer technology must adapt to attain the performance benefits without process uncertainty.

The software engineer needs a set of tools that measure the capability and generality of parallel computers.
The development process should be based on an architecturally independent model and architectures
evaluated on how well they execute that model. Once the engineer knows the characteristics of the
application’s execution and its patterns of operation, they can predict a machine’s performance for the
application. Such separation of hardware and software development is important to the engineering of parallel
hardware and parallel software. Without this capability, each effort by hardware vendors and software
developers is ad hoc. The result of a successful parallel software engineering activity is a wider knowledge of
C®1 needs and demands. In addition, the recognition that business mission critical, decision and process
control systems need similar capabilities would allow vendors to build more general parallel solutions to

serve this wide application range.

Annex A-2




Annex A: Parallel Software Engineering Assessment
1 Overview

1.1 Scope
This assessment looks at parallel
applications and architectures from the TECHNOLOGY AND ISSUES OF
viewpoint of a C*I system builder. PARALLEL SOFTWARE ENGINEERING

Figure 1 - 1 shows these issues. There
are many purposes for parallel
computers in C’[ systems. Therefore,
understanding applications is the
starting issue. Budgetary limits point
toward use of commercially available Frogrammabilty &
parallel computers, yet C°’I systems
have physical and integrity constraints Appiication Metrics Performance Delivery
beyond the design intent of
commercially available machines and
operating software. Therefore,
architectures will continue to be a
critical issue. The power and
dynamism of the computer technology
marketplace significantly influence
both applications and architectures. - . : :

The market is a third critical issue. Figure 1 - 1. Parallel Software Engineering
Finally, we must bring all these

together coherently. Software

engineering is to provide the processes, tools, and metrics that allow engineers to design and
build complex C°I systems. These processes and tools must deliver the fast development cycles,
limited budgets and low life cycle costs now expected of peace-time military development.

SOFTWARE ENGINEERING
Process & Design Meftrics

HITECTURES

1.2 Applications

The contribution of parallel computing is in improving the time response or thoroughness of the result,
thus advancing the capability of CI system applications.

C°l applications need parallel compute capabilities. Present systems could better fit their physical
constraints (size, weight, volume, power, etc.) with effective parallel computing. Parallel
processing at the source of data reduces communication while maintaining the required data
rates. Parallel event and information fusion create the knowledge needed to make decisions faster
and more thoroughly. Designers can bring global information to bare on local command decisions
and vice versa. Performing multiple simulations and iterations improves battle plans and

Annex A-3




scenarios. Large simulations can provide models for response to global or environmental changes.
A reduction in execution time makes each opportunity possible.

Designers and builders of CI systems generally have a specific mission problem with specific
physical constraints. To create a design the mission is typically broken into component
subsystems. Each component has a period during which its execution must complete to act in
concert with the other components. Parallel computing offers both a reduced response time and
improved capabilities because more computation can complete within the system’s time

constraints.

However, each of these opportunities has a fundamentally different time response goal for its
acceleration. A discourse about applications without an understanding of their time response goal
leads to a cacophony of different interests. This assessment stresses that the time response goal of
an application is the critical factor in understanding or discussing the lines of tension shown in
Figure 1-1. These lines of tension are the problems facing parallel software engineering. They are
the following;:

¢ Design-Time Matching of Application Needs and Constraints to Architectural Capability
¢ Tools and Metrics Applied to Applications and Machine Performance
¢ Programmability and Application Portability with Effectiveness

Our assessment includes a rating of C’I and parallel applications by criteria that are independent
of the particular parallel architecture. Together these criteria form a character or pattern of
execution. By observing successful parallel applications with a similar character or pattern, one
might identify architectures that are suitable. A comparison of the characteristic criteria of parallel
application successes to CI characteristics shows that today’s parallel machines are ineffective for
many C3I needs. We find that we must make a new focus to broaden the understanding of C’I
applications and the opportunities that parallel architectures can provide in solving them.

Command, Control, Communications and Intelligence (C?) systems must respond to
multifaceted threats and scenarios. These systems contain a variety of computing types and
subsystems. Parallel processing is necessary to improve both throughput and response time
demands. Parallel processing needs improvement in availability, real time response, security,
fault recovery, and physical parameters. The system software needs of parallel processing
includes operating systems, languages, debugging tools and controls consistent with parallel
machines. It needs reliable, portable and reusable software. Present programming processes are
too costly and difficult. Air Force C°I application complexity makes it difficult to use the present
generation of high performance parallel hardware, system software and applications. A key
ingredient in the difficult is the design of predictable rapid response components for complex,
unstructured elements of applications.

CI systems have some characteristics similar to business and scientific research ones. However,
they have a broader set of characteristics than the more narrowly focused applications supported

Annex A-4




by commercially available parallel computers. This essay proposes a classification scheme. The
first typing is by the length and degree of time guarantees for completing an application. The
time-of-execution types we propose are the following:

Continuous Data Rate (maintaining a constant level of data throughput)

Hard Real Time (guaranteed maximum response time)

Rapid Response Time (generally statistically meets quick time goal; graceful operation
during occasional failure to meet goal )

Interactive Single Job (visual display of results and rapid response to single user)
Interactive Multiuser (meets combined delay and throughput benchmark)

Capacity Constrained (delays of several minutes are allowed to respond to user)
Capability Constrained (results are not needed for immediate use; delays of hours or days
allowed; used to improve quality of system operation)

> > @

> S o0

The last three in the time response classifier list follows Furtney and Taylor’s classification for
workstations and servers [Furtney and Taylor 94]. This typing shows that a parallel architecture
must provide very general speed improvements to have a broad market. Therefore, the C°1
research investment should concentrate on achieving dependable, across-the-board, response-
time improvement. It should support only those multiprocessors that can respond rapidly for a
wide range of general applications.

Typical C’I systems consist of many components, each with a response time goal or hard limit.
Predictable response time is critical to our interests. Therefore, our focus is on response time
reduction for very general, concurrent applications. These span all the time response types.
Unfortunately, scientific processing application characterizations apply to the parallel computers
that are specialized for structured scientific applications. These are typically limited to Capability
Constrained time response types. A business oriented characterization would be limited to
Interactive Multiuser (for on line transaction processing) and Single User (for decision support
data base access) time response types.

The C?I classification extends the one proposed by Worlton for scientific computing. Worlton’s
classification splits each of four criteria into halves and rates applications on their fit to the
resulting sixteen criteria. His four criteria for scientific computations are:

¢ Degree of Parallelism (High or Low Concurrency)

+ Parallelism Uniformity (High or Low Uniformity)

¢ Communication Distance (Local or Distant Messages)

¢ Grain of Synchronism (High or Low Communication Grain)

Worlton'’s criteria is too simple for consideration in rating C*l applications. We propose that the
following new set of four:

¢ Interaction Mechanism (Symbolic or Message Interaction)

Annex A-5




¢ Resource Demand Fluctuation (Static or Dynamic Resource Demand)
¢ Complexity (Intensive or Extensive Complexity )
¢ Synchrony Grain (Frequent or Infrequent Synchrony)

1.3 Architectures

Scientific-research parallel computing is not general enough to provide a complete model for C%
system applications. Client-server data base and on-line transaction processing, a successful
example of throughput-oriented parallel computing, are limited to transaction applications tuned
to serve many independent users. These present parallel successes fail to solve mission critical
applications, those in which an execution has a specific period to complete its execution. Other failure cases
are where a few users need effective use of the entire capability of the parallel computer for solving a
complex or dynamic application.

Gains in throughput processing via parallel processing have, so far, have a significant penalty.
Builders experience the inability to design with assurance that the system can execute in a
predictable time on a chosen architecture. They experience the penalty when the effort to fit the
application into the architecture grows beyond original estimates. The extra effort often
compromises the schedule and cost budget. In addition, they have no structured way of
engineering for rapid response computing, real time predictability, system availability, fault
tolerance, and security. We conclude that today’s parallel computers fail to deliver their promised
performance in complex Air Force C°I systems.

The C°’l industry needs a mixture of a robust hardware parallel architecture and software
engineering processes that will lead to significant performance leverage, while maintaining
programmability, portability and maintainability. The system designer must also include physical
constraints, time response predictability, fault tolerance and security. Designers have few
research results about these topics on today’s machines due to the concentration by academe and

industry on scientific research.

Due to their more tightly-coupled structure, multiprocessors have the potential to reduce the
execution time of concurrent applications. Our classification stresses communications content and
latency that match the parallel system to its potential for a dependable reduction in an
application’s response time. These are:

¢ networks-of-computers - for selected applications with restricted communications and
loose time constraints (Suitable for Capacity and Capability constrainted applications)

¢ multicomputers (cost-scalable) - for selected applications with limited communication and
time goals over a narrow size, structure, and dynamic range

¢ multiprocessors (capability-scalable) - for more general applications with some

communications and time limits, capable over a wider range of application structure,

dynamic operation and sizes
¢ symmetric multiprocessors (count-limited) - for servers in distributed systems with

Annex A-6




relaxed time limits and for applications with time constraints that can be met with small
processor counts

There are many competing parallel technologies. Client-server systems, clusters and
heterogeneous computing methods provide choices for meeting computing needs. The parallel
system software engineer must address the allocation of requirements between parallel
processors, clusters, networked computers and heterogeneous systems. These choices forma
hierarchy of applications that must match the computer architecture’s interconnect capacity.
Understanding how a language or tool fits into the hierarchy is critical to evaluation of its value.

Industry understands the software research needs of throughput computing. Applications are
On-Line-Transaction-Processing (OLTP), Data-Base-Management-Systems (DBMS), and
replicated applications. Clusters and networks of computers are effective for high-throughput
processing of independent tasks and replicated processes. Heterogeneous computing mixes
network and tightly coupled computing. One form even breaks an application into specialized
parts to match specialized processors.

Architectural trends are toward a dynamic and multifaceted industry that is on the verge of
establishing itself as a major market. Competing forces arise from multiple vendor sources:
"scalable” parallel systems, symmetric multiprocessors, commercial on-line-transaction
processing, data-base-management-systems, and mainframe vendors. Trends are toward the
following:

a smaller maximum processor count

higher bandwidth capacity interconnects

hardware supported programming enhancement mechanisms
increased capability for input/output, memory, and disk access
increased availability

* & & & O

The trend is also toward improving programmability. Costs per processor node are tending
upward as vendors target an engineering production instead of a research laboratory market.

1.4 Market Force Strategy

There is a constant, cost-driven pressure to move to less costly semiconductor technology. That trend
results in reduced demand for large mainframes and supercomputers and an increased one for
microprocessor based parallel computers.

The Commercial-off-the-shelf (COTS) strategy is one in which commercial competition provides
advances in capabilities needed for military systems with only marginal investment by the
government. COTS components have the promise to provide an affordable technology for
building high performance C°I systems. Often overlooked is that the savings in software costs due
to mainstream market acceptance is the most important factor in COTS strategies. When designers

Annex A-7




overspecialize parallel architectures to reduce hardware costs, they often lose the benefits of COTS provided
software. Operating systems, programming tools and languages, and data base systems are fall-
outs of COTS successes. However, if these cannot meet the application demands of the C’I
system, then the COTS strategy fails. For example, turning scientific-research-oriented parallel
computers into real-time, signal-processing systems may require new operating systems to meet
military reliability, availability, security and real time response guarantees. If vendors over-
specialize to meet scientific research market needs then the system builder may have to
reengineer many architectural capabilities to meet the new demands, eg, delivering constant
input/output bandwidth rates. The gains of a COTS strategy are an illusion if COTS systems are
not adequately general for myriad application types and characteristics.

The economy of scale of commercial hardware and software leads to wide spread use of COTS
workstations. As a result operating systems, data base systems and high level languages are
readily available for scientific and commercial uses of workstations and personal computers. The
success of workstations and their ever increasing performance and programmability leads to the
same high expectations for parallel processing. Commercial parallel processing industry success
is important to the use of parallel processing in C°I systems. C°I system developers need
economy-of-scale hardware and software for parallel system, applications, tools, and
development processes. Presently parallel processing attracts too few independent software

vendors.

Highly competitive markets drive the technology of computing. As a result, technology
significantly affects the application of parallel computing. The parallel machine OLTP and DBMS
industry shows the success of large processor count parallel computers in multiuser applications.
Business information system builders now embrace small-processor-count symmetric
multiprocessors for those applications. (Both Compaq and Sun sell over 10,000 units per month as
file and query servers.) Workstation, symmetric multiprocessor and scalable parallel vendors now
compete in the same market. This convergence shows that parallel computers have market
viability. However, few independent software vendors are aggressively porting functional
applications to parallel computers. Until they do, the market may remain viable but constrained.

1.5 Software Engineering Issues

In sequential computing there is a quantitative measurement capability based on instruction timing and
the mix of instructions in a typical application. In parallel computers, performance benchmarks and

application suites are not adequate.

Software engineering is a discipline that deals with the large, complex, dynamic, mixed hardware
of C’l and large scale systems over a long life. Parallel processing technology now exacerbates the
development process by reducing portability, increasing software costs and creating performance
uncertainties. Advocates of machines specialized for scientific research often recommend them
for applications for which they are inherently unsuitable. The necessary changes in hardware,
operating system and support tools make the conversion unrealistic and risky. The result is an

Annex A-8




industry state often described as "lack of software.” Parallel computer technology must adapt to
attain the performance benefits without the process uncertainty of parallel processing. Engineers
need methods and processes that lead to an accurate representation of both applications and
architectures.

The software engineer needs a set of tools that measure the capability and generality of parallel
computers. The development process should be based on an architecturally independent model
and architectures evaluated on how well they execute that model. Once the engineer knows the
characteristics of the application’s execution and its patterns of operation, they can predicta
machine’s performance for the application. Separation of hardware and software development is
important to the engineering of parallel hardware and parallel software. Without this capability,
each effort by hardware vendors and software developers is ad hoc. This approach has little
potential for reaching the large markets necessary for commercial advantage. The result of a
successful parallel software engineering activity is a wider knowledge of C°I needs and demands.
In addition, the recognition that business mission critical, decision and process control systems
need similar capabilities would allow vendors to build more general parallel solutions to serve
this wide application range.

Workstation designers use application benchmarks and quantitative measures (SPECmarks) to
guide development of microprocessors and workstations. Parallel computer designers have no
similar quantitative foundation to allow performance estimates for different machines. Parallel
computers have no accepted set of commonly accepted instructions upon which to base the
measures. Researchers continue to devise nonportable mapping schemes that apply only to a
restricted type of applications. Amdahl’s law continues to apply in spite of anecdotal results of
restricting application types to defeat it. As a result, parallel computers have not escaped the trap
of low efficiency and unfulfilled promises of peak speeds.

The software engineering process needs a programming model that is architecturally independent and
quantitative. For these reasons, the software engineering process lacks an integrated set of parallel tools .

Software engineering for parallel systems suffers significantly from a too rapid obsolescence of
hardware, a lack of common programming models, and the requirement to map to obtain
reasonable performance. The general process of software engineering has evolved as a basis for
managing the building of long-lived, complex C’I systems. Software engineering processes for
conventional sequential computing systems have a built-in factor-of-safety from the progress of
technology. The obsolescence of parallel computers, the long procurement cycle, and the lack of
an adequate quantitative model for performance assessment of parallel computers negatively
affects the software engineering process.

Annex A-9




Parallel Software Engineering Assessment
2. Applications Characterization and Classification

2.1 C*l System Applications

C systems need to use parallel processing to meet response time, physical constraints, and new
mission functions. Because parallel computing can improve the response time, new mission
requirements become feasible. Designers use this approach to radically change mission
requirements and can drastically improve the system’s war fighting capability.

Command, Control, Communications and Intelligence (C’) systems are large systems that must
respond to multifaceted threats and scenarios. C°I systems typically deal with complex warfare
situations and dynamic scenarios. They respond to multiple forces, to dispersed geographies and
unexpected threats across a spectrum of weapon technologies. C’I functions are both highly
complex and highly concurrent. Their components include: transformation of multisource data
into information, fusion of information into intelligence, automated and human controlled
decision making, simulated scenarios, force and weapon’s system responses, communications to
higher or lower command levels, etc. Burdens of responsiveness, availability, fault tolerance and
recovery, security, and reliability, are severe in C’I systems. As a result C’I System components
include a variety of subsystems and interactions, some of which are the following:

Real time - sensor data conditioning, acceptance, and preprocessing
Data Communications

Information Base Access

Information Fusion & Evaluation

Event Detection Decision

Scenario Based and Real Time Simulation

Action Path Decision

Response System Control

LK 2K 2K K 2B 3 ¢ 2

2.2 Assessment of Parallel Applications

2.2.1 Parallel Processing Application Typing and Characterization

The assessment approach is to define a time response goal and a set of application criteria. These
define an application’s character profile. Determination of an application’s character could allow a
designer to estimate the effectiveness and feasibility of applying parallel computers to C’I system
components. These components have a widely varying requirement for execution completion
time. This varies in length and guarantee of repeatability. In this section, we give a set of
response time goals and application characters. We use a response time goal, frequency of
synchronization, complexity, resource demand (or path) stability, and interaction mechanism as
our criteria. The capability of today’s parallel industry for C’I applications is limited to a narrow
range of capabilities. Instead a general parallel capability to meet all C’I character types. C’l
systems are too complex, too dynamic, too real-time constrained and too reliable to make good
use of scientific research computers for all their needs.

Annex A-10




2.2.2 Response Time Application Typing
C’I systems include many subsystems. This means that the constituent parts often have a different
response-time type. Table 2 - 1 shows a proposed C’I oriented typing.

Table 2 - 1 Application Types
e —  ———————————— |

Application Types by Response Time Characteristic

Capability Constrained - Hours Frame Long turnaround time allowed, could use the

(Uses capability of largest parallel maximum capability of parallel computing available

machines)

Capacity Constrained - Minutes Frame | A delay of several minutes or tens of minutes allowed

(Full Capacity required for up to an for the computation (need several iterations per day)
hour)

Interactive Multiuser * multiple users operate on each processor, sharing the

processor resource gives a high transaction rate

Single User Interactive™ yet a goal is set for interaction with users
Single Job Interactive * fast interaction with a single
user is necessary

Response Time * Response Time Goal - Graceful response- to-failure to
meet time

Hard Real time * Guaranteed maximum response time

Continuous Data Rate * Perform a continuous process at a minimum input

data rate; reduce the input rate to a lower output
rate; (buffers typically provide continuous rate to
allow for catching up when a rigid time goal is
missed)

Table 2 - 2 rates various applications.

“ Table 2 - 2 Some Parallel Applications by Response Time Type "

General Category | Examples Usual Response Time Type
SCIENTIFIC
Large Scale Scientific Weather Modeling Hours to Day Frame (Capability)
Research Codes - Grand | Climate Prediction
Challenges
TECHNICAL
Engineering Applications | Semiconductor modeling, Electronic Design, Wanted to be Minutes (Capacity)
Mechanical Design but most often Hours (Capability)
Chemical and Molecular Modeling,
Fluid Dynamics, Combustion,
Biomedical, Composite, Manufacturing Design,
Materials

Annex A-11




General Category

Examples

Usual Response Time Type

BUSINESS

Client Interaction
Applications

Customer Interaction
OLTP
Data Base Management System

Multiuser Interactive
Multiuser Interactive
Multiuser Interactive

Business Reaction

Knowledge Based and Neural Network
Decision Automation
Data Base Management System

Single Job interactive

Response Time Godl

Business Decision Support

Strategic Decision Query
Data Mining

Hours to Days Time Frames (Capability)

Communications

Voice Response

Constant Data Rate (for Voice)

Applications Switches Response Time Goal (Telephone)
Multimedia Multiuser Interactive

COMMAND, CONTROL,

COMMUNICATIONS &

INTELLIGENCE

Image Processing & LIDAR Constant Data Flow (Processing)

Understanding Response Time Goal (Understanding)

Command Decision
Support

Single Job Interactive /
Response Time Godl

Information Base Access

Shared Situation Data Base

Multiuser Interactive

Data Fusion

Target Tracking

Response Time Godl

information Fusion &
Evaluation

External Events combined with Target Events

Single Job Interactive

Event Detection Decision

Event Matching

Automatic - Guaranteed Response Time
Manual - Response Time Goal

Action Path Decision

Command Scenario Matching

Response Time Godl

Planning and Scenario
Simulation

Battle Plan Preparation

Single Scenario - Hours Frame (Capability)
Multiple Scenario - Minutes Frame
(Copacity)

Real Time Simulation

Event Projection & Prediction

Response Time Godl

Process Control

Weapon System Control

Guaranteed Response Time

preprocessing

Aim & Fire Missile System (Reaql Time)

Visualization Battle Situation Display Interactive

Real time - Data Communications & Distributed Guaranteed Response Time (Real Time)
Identification Data Delivery

Real Time - sensor data conditioning, acceptance, and Guaranteed Response Time

2.2.3 Application Character
Worlton and Associates have published a classification of scientific computations based on scale
of parallelism, uniformity of communication, distance of communication, and granularity of
synchronization. C?l applications need a more robust character set due to their wide range of

Annex A-12




mission needs. Figure 2 - 1 gives a sixteen-way division for four criter