
RL-TR-95-209, Vol II (of two)
Final Technical Report
October 1995

PARALLEL SOFTWARE ENGINEERING
TECHNOLOGY FORECAST, Assessment,
Trends, Vision, and Strategy

RCI, Ltd.

Carl Murphy

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19960122 062 1QÜÄ2T WHBEGEm %

Rome Laboratory
Air Force Materiel Command

Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will be releasable
to the general public, including foreign nations.

RL-TR-95-209j Vol II (of two), has been reviewed and is approved for
publication.

APPROVED: I ((fltfi
JOSEPH P. CAVANO 5EPH
Project Engineer

ßA*V

FOR THE COMMANDER:

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory mailing list,
or if the addressee is no longer employed by your organization, please notify Rome Laboratory/
(C3CB), Rome NY 13441. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

PtiSfcrtpcrtJngtxrdntartf* ujtiLuiof HoirarJma MmUIOMngi 1 houoar mgu'W rckjotigUnati-natar ravawingraouctionc. müig aoargdata SOLTCO,

Davaj Hlc/wny. Sei» 1204. Artnr£on, VA 22202-4302. and to tna OHtea of Managarrwt and Budgat. Paparwork ntducrjon Pro|aa (0704-0188). Waahrgon DC 2OS03.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

October 1995
a REPORT TYPE AND DATES COVERED

Final Jul 94 - Jun 95
4. TITLE AND SUBTITLE

PARALLEL SOFTWARE ENGINEERING TECHNOLOGY FORECAST,
Assessment, Trends, Vision, and Strategy

& FUNDING NUMBERS
C - F30602-94-C-0108
PE - 62702F
PR - 5581
TA - 20
WU - PH

& AUTHOR(S)

Carl Murphy

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)
RCI, Ltd.
1301 East 79th Street, Suite 200
Minneapolis MN 55425

a PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSOFUNG/MONfTORING AGENCY NAME(S) AND ADDRESSES)
Rome Laboratory/C3CB
525 Brooks Rd
Rome NY 13441-4505

10. SPONSORING/MONrTORING
AGENCY REPORT NUMBER

RL-TR-95-209, Vol II (of
two)

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Joseph P. Cavano/C3CB/(315) 330-4063

12a DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

1 a ABSTRACT<M«mm 200 word.)

Rome Laboratory developed a "Parallel Software Technology Forecast" to identify the
parallel software engineering technology that will be required to meet Air Force
needs for mission-critical software in a High Performance Computing environment for
the next decade. It concentrated on the quality and cost issues of software
development for Command, Control, and Communications (C3I) applications and addressed
the following goals: (1) anticipate technology directions of the parallel computer
industry and forecast parallel software technology capabilities; (2) identify key
C3I factors in the Air Force and show what the implications of HPC might be on the
Air Force's ability to develop productive and efficient C3I applications software; and
(3) compare and contrast Air Force needs for parallel software technology to that
in the commercial sector.

Rome Laboratory assembled a distinguished Blue Ribbon Panel consisting of seven
technical experts, and solicited position papers from a broader range of position
makers from academia, government, and industry.

14. SUBJECT TERMS
Parallel software engineering, Parallel processing,
Parallel software development

14 NUMBER OF PAGES

"134
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

1a SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

2tt LIMITATION OF AßS "U . •

UL
NSN7S4&01-2B04SD Standard For- ,"*

Presertud By ANS
298-102

TABLE OF CONTENTS
1. PREFACE 1
2. EXECUTIVE SUMMARY 2

2.1 C3I Parallel Software Engineering Strategy 2
2.2 Positions 3

2.2.1 C3I Parallel software engineering. 3
2.2.2 An overview of parallel software engineering research 3

2.3 Assessment 3
2.4 Trends 3
2.5 Vision 4
2.6 Strategy 4

3. STRATEGY -- Parallel Software Engineering 6
3.1 Strategic directions for C?I parallel software engineering 6

3.1.1 Discussion mechanisms 6
3.1.2 Architectural target 7
3.1.3 Parallel software engineering process goals. 7

3.2 Planned research focus areas 8
3.2.1 Support for dynamic adaptation 8
3.2.2 Architecture independent software representations 8
3.2.3 Parallel software engineering tools for the ÖI system 9
3.2.4 Tools to evaluate and apply COTS hardware, software and tools to C?I

applications 10
3.2.5 Combine tough character application, high-time-value and high integrity

value 10
3.2.6 Integration to establish Cfl mission requirements for parallel components 10

3.3 Analysis of new C?I directions 11
3.3.1 Potential for COTS use in CT 11

4. BACKGROUND 13
4.1 Overview of Blue Ribbon Panel 13
4.2 Overview of participants 13
4.3 Goals and limits 13
4.4 Scope, definition & assumptions 14

4.4.1 C3I boundaries 14
4.4.2 Commercial-off-the-shelf boundaries 14
4.4.3 Parallel software engineering boundaries 15

5. TRENDS -- C3I Mission and commercial-off-the-shelf technology. 17
5.1 C3I demands on parallel software engineering technology 17

5.1.1 Summary of C^I trend position inputs. 17
5.1.2 Panel's assessment of Öl requirements and demands 18
5.1.3 Support for panel's C?I requirement conclusions 21
5.1.4 DOD directions and initiatives 21
5.1.5 C3I acquisition issues 22
5.1.6 DOD procurement practices. 23

5.2 TRENDS -- Commercial off the shelf technology. 24
5.2.1 COTS trend position summaries 24
5.2.2 Blue Ribbon Panel's conclusions on COTS industry trends. 26

5.2.3 Technology trend analysis 28
5.2.4 Market and technology trend coupling 29

6. VISION -- Parallel Software Engineering 38
6.1 Positions on parallel software engineering. 38

6.1.1 System level positions 38
6.1.2 Programming model positions 38
6.1.3 Programming tool positions 39
6.1.4 System effectiveness tool positions 40

6.2 C3I system development methods 40
6.3 Status of parallel technology and software engineering 41

6.3.1 C3I software engineering 41
6.4 Analysis of COTS trends in parallel software engineering 43

6.4.1 Object-oriented technology 43

LIST OF FIGURES
FIGURE 3-1. C3I APPLICATION CHARACTER 6
FIGURE 3-2. THE PARALLEL SOFTWARE ENGINEERING CHALLENGE 9
FIGURE 4-1 LIMITS OF C3I SYSTEM ACTIVITIES FOR EVALUATION OF PARALLEL SOFTWARE ENGINEERING 15

LIST OF TABLES
INSERT A -- FUNCTIUN, INTEGRITY, PERFORMANCE AND ENGINEERING 2
TABLE 3-A BENEFIT SHORTFALL 12

TABLE 5-A COMPARISON OF SOFTWARE DEVELOPMENT PROCESS PARADIGMS 24
TABLE 5-B CAPACITY GROWTH 281
TABLE 5-C FUTURE INFLUENCE ON C

3
I SYSTEMS (AND VICE VERSA) 33

TABLE 5-D 1994 COMPUTING MARKET - $112 BILLION 33
TABLE 5-E DATABASE APPROACH SERVER PLANS - OPERATING SYSTEMS 34
TABLE 5-F YEAR 2000 COMPUTING MARKET -- $250 BILLION 36
TABLE 5-G MARKET FORECAST FOR OBJECT-ORIENTED PLATFORMS 37

TABLE 6-APRODUCTVITY IMPROVEMENT WITH SMALLTALK OBJECT PROGRAMMING 43

LIST OF ANNEXES
ANNEX A: PARALLEL SOFTWARE ENGINEERING ASSESSMENT ANNEX A-1
ANNEX B. ROME LABORATORY BLUE RIBBON FORECAST PANEL ON C3I PARALLEL SOFTWARE ENGINEERING
WORKING SESSION AND POSITION; SUMMABTF.«« ANNEXB-1
Accesion For

NTIS CRA&I
DTiC TAB
Unannounced
Justification

D
D

By __
Distribution /

Availability Codes

Dist

Vf-l

Avail and/or
Special

n

1. PREFACE
Rome Laboratory developed this technology forecast to identify the parallel software engineering
technology required to meet Air Force mission-critical needs in High Performance Computing (HPC)
environments over the next decade. The forecast concentrates on the quality and cost issues of the software
development process for Command, Control and Communications applications (C3I) as well as
performance. The "Parallel Software Technology Forecast" addresses three goals:

1) Anticipate technology directions of the parallel computer industry and forecast parallel software
technology capabilities, ie, current trends in software technology related to emerging trends in HPC.

2) Identify key C3I factors in the Air Force mission and show what the implications of HPC are for the
ability of the Air Force to develop C3I application software productively and efficiently.

3) Compare and contrast Air Force needs for parallel software technology in the commercial sector and
identify opportunities for effective bi-directional technology transfer.

The technology forecast involved five stages:

1) Rome Laboratory produced a condensed Parallel Software Engineering Technology Assessment (RL
TR).

2) Rome Laboratory assembled a distinguished Blue Ribbon Panel consisting of technical experts from
industry and academia. The Panel included:

Dr. Walter Beam (noted author on C3I and system engineering)
Mr. C. Gordon Bell, (Chairman, University Video Communications)
Prof. Tom Cheatham (Harvard University)
Dr. George Lindamood (Director of Information Services for the State of Washington)
Dr. Jeffrey Mohr (Chief Scientist, Information Technology Solutions)

3) Rome Laboratory announced a Technology Forecast Forum to solicit position papers. A broad range of
position makers from academia, government and industry responded. Twenty positions were selected for
review by the Blue Ribbon Panel as representative of the state of the art.

4) Rome Laboratory sponsored an invitation-only, Blue Ribbon Technology Forecast meeting at the
Orlando Hyatt on January 23-26, 1995. Panel members and position makers interacted to produce the
technology forecast. Presentations of each participant's view were followed by separate sessions on C3I,
commercial off-the-shelf, and parallel technology impacts. The group then collaborated on notes that
represent the combined trends, vision and strategy for C3I parallel software engineering.

5) After the interaction, this author set down the conclusions of the panel and distributed it for confirmation
by the Panel Members. The reports are:

"Volume I: C3I Parallel Software Engineering Technology Forecast - Conclusions (draft RL TR)"

"Volume II: C3I Parallel Software Engineering Technology Forecast - Assessment, Trends, Vision and
Strategy"(draft RL TR)

Volume II incorporates all material from Volume I. It also provides an assessment, analysis and
confirmation of the Blue Ribbon Panel's Conclusions.

2. EXECUTIVE SUMMARY

2.1 C31 Parallel Software
Engineering Strategy
The panel established clear directions for parallel
software engineering processes and infrastructure.
The discussion mechanisms of high-time-value,
tough character applications and C3I mission
integrity factors express the challenges of parallel
software engineering. (See Insert A.) C3I software
must deliver all these elements at once, along with
performance prediction at system definition,
design and implementation layers. This is a
daunting task for a higgledy-piggledy market
mixture of architectures. (Higgledy-piggledy
expresses the drastic performance differences
found for general applications on massively
parallel architectures.) However, the panel set the
architectural target as a mix of high bandwidth
capability distributed nodes and low latency
multiprocessors. This means that parallel
software engineers can separately address
message passing applications and low-latency
applications. They need tools to interface and
control the interaction between them. With
simplified architectures the present day's mapping
issues can become more standardized. Now they
can turn their attention toward performance
prediction and effectiveness, by using parallel
software engineering to achieve C3I mission
integrity factors. Their tools and mechanisms
must address combinations of high bandwidth
capacity networks-of-nodes and low latency
multiprocessors.

The panel also established criteria to govern
engineering of C3I systems. The software engineer must empirically investigate and understand the
justification-decision boundary between choices of commodity-priced COTS, modular board level COTS,
and military-unique components. They must devise the interfaces between these diverse technologies. They
need incremental building methods for evolutionary build and test methods. Also necessary are probes and
information gathering methods to take advantage of the "daily" exercised and evaluated C3I system
necessary to "make the warfighter the informed customer." Refinement layers that simplify change for new
mission needs are another necessity. These must be in concert with rapid application development methods.

In summary, to meet these goals, parallel software engineering researchers must define new relationships
with COTS computer vendors and integrators to figure out the boundary of COTS suitability. We must
build relationships with COTS system vendors to establish testbed demonstrations of interfaces. Also, we

Throughout this report the following C I
Parallel Software Engineering terms apply:

Mission Function or Tough Character
Applications - these combine a mix of high
complexity, unstructured (state and data
dependent) paths, high dynamic resource
fluctuation and frequent synchronization
characteristics found in C3I environments.

Mission Integrity Factors or High-Integrity-
Value - these are fault tolerance, availability,
graceful degradation, security, reliability,
survivability, repairability, usability, twenty-four-
hour, seven-day operation time frame and
other factors that are required for the mission
in combative environments.

Mission Performance and High-Time-Value -
C3I applications operate where time responses
are critical to mission success. Time is the
essence of C3I systems.

Parallel Software Engineering ~ C3I systems
must be engineered and are typically built by
large groups. C3I parallel software engineering
is the collection of processes and methods
used to achieve predictable performance,
programmability, portability, maintainability,
adaptability and low life cycle costs.

Insert A - Function, Integrity, Performance and
Engineering

must buüd different relationships with operating C3I organizations to gather opinions on operations, testing
and effectiveness on a shorter time scale.

2.2 Positions
2.2.1 C3I Parallel software engineering

The positions of the Blue Ribbon panel members and position makers provided a vertical parallel software
engineering structure. (See the Preface.) The positions gave an overview of the complex and dynamic needs
of C3I systems. They pointed out the relentless factor-of-four for every third-year growth in
microprocessor-based computer and network technologies. The panel suggested that the highest
performance COTS machinery would meet many needs of future C3I missions. One position suggested was
that there be a match between C3I decision making needs and large scale business ones. They believed that
parallel methods of collaborative interaction were another future C3I software application. They recognized
the need for globally or capability scalable architectures and noted the weak support for C3I by parallel
scientific methods.

2.2.2 An overview of parallel software engineering research

The positions described research on multi-level refinement techniques, virtual machine methods,
components, compilers, debugging tools and run-time methods of parallel software engineering. The panel
noted acceptance of virtual shared object models, debugging tools, large message passing virtual machines
and the Bulk Synchronous Parallel (BSP) super-step synchronization model. However, the panelists also
said that engineers have not accepted parallel methods into their processes. They found that there are too
few independent software vendors using these techniques. The only widely accepted parallel application is
the database management system. They thought that research described by the positions is primarily
directed toward scientific research. It is not adequate for solving the high-time-value, tough application
character and mission integrity factors necessary in C3I systems.

2.3 Assessment
Time is the essence of C3I systems, but the mission integrity factors let the C3I system provide decision
making information to the warflghter during combat.

The panel found that combative missions generate C3I system's tough character applications, and require
C3I mission integrity factors. It found that today's government-funded scientific research parallel
technology falls short of meeting C3I mission needs. Instead, C3I systems need a more general parallel
capability to meet all C3I character types and mission factors. In addition, the limited suitability of these
machines makes system building and life-cycle support expensive and risky. Program managers expect that
parallel software engineers will deliver systems and components with predictable time response and meet
C3I mission factors in a well-planned organized design and development process. Parallel software
engineers need research directed specifically toward future C3I systems if they are to meet C3I expectations.

2.4 Trends
The panel concluded that C3I systems would increase demands for high-time-value, tough application
character and C3I mission integrity factors. Parallel techniques could provide mechanisms to build C I
mission factors like reliability, availability, security, fault tolerance and graceful reaction or degradation
during harsh combative conditions. C3I's tough application character renders large message passing
techniques of scientific research ineffective. Data flow methods may be necessary to meet high-time-value
C3I application needs. The panel believed that C3I applications with shorter time scales, dynamic

reconfiguration, complex data interaction, visualization demands, and collaborative interaction would
grow in importance. The panel also believed that interfaces and information interchange would become a
critical technology for success of parallel computers in C3I systems.

The panel projected a five-year trend for commercial parallel computing systems. Its commercial model is a
network of nodes, servers and high bandwidth capacity interconnection. The architecture includes the
following: nodes with a future Pentium microprocessor, Windows NT operating system, and ATM-based
distributed network. Client programmers would reach all data and multimedia by SQL. This distributed
system would have no shared memory. It includes only commodity hardware, data base and operating
system software. The client process would view the network as a massive server, thus precluding the need
for any large servers. The largest servers would have four processors. The panel justified its projection
based on technical capability increases for single microprocessors (to 1 GMBPS), memory (to 256 MB),
disk units (to 20 GB) and network bandwidth capacity (to 622 mbps).

The high bandwidth capacity of the network makes it effective for almost all of today's successful parallel
throughput applications. These are transaction, decision support, replicated engineering and message
passing scientific research. However, the panel believed that "pockets" of high-time-value, tightly coupled
computing would retain a viable market. This gives an architectural separation between a distributed
COTS, high-bandwidth-capacity fabric and a low-latency, high-time-value multiprocessor. This
dichotomy separates bandwidth-only from low-latency demanding applications. Interfaces to legacy data
systems would also influence these designs. In addition, the panel believed that commercial system builders
might adopt object-oriented technology instead of the model's SQL as its lowest common data access
denominator. (One potential solution, SQL3 combines the two.) Strategic decision making and concurrent
engineering are reasons for the need for pockets of high-time-value and object-oriented methods.

2.5 Vision
The panel believed that the upgraded COTS fabric might not meet all C3I demands. Possible shortfalls
might be:

• ineffectiveness of SQL for diverse accessed and complex data type C3I data

• over specialization of commercial network and supporting protocol designs for multimedia ~ leaving
the optimization of ATM bandwidth capacity for data transfer in a less than optimum state

• short fall of object-oriented methods in delivering on promises of design efficiency, performance and
code reuse on large projects

To supplement these shortfalls, C3I systems would also need pockets of tightly coupled parallel
computers. These needs are the following: high-time-value, diversity of applications with distributed
data repositories, multiple access mechanisms, dynamic resource allocation, quick visual and imagery
processing, necessity to meet C3I integrity factors with predictable performance, and tough application
character. The reasonable expectation was that a COTS fabric, like the commercial one but built of the
highest capability nodes instead of commodity ones, would serve many C3I application needs. The panel
suggested that the alternative of a single, general-purpose, parallel architecture that met all C3I needs was
out of reach in the present computer research and development environment.

2.6 Strategy
There will be no "silver bullet" that solves these challenges to C3I parallel software engineering.
However, the panel outlined a path toward gaining the necessary foundation and knowledge to do timely
and responsive C3I engineering.

Future parallel software engineers must meet mission constraints using commercial off-the-shelf (COTS)
hardware and software wherever possible. A parallel solution is often necessary to the engineering
problems created by the complexity of "high-time-value," C3I mission factors and "tough" application
character. The lack of any of these elements may limit the combative (competitive) capability of C3I
systems of the future. One threat is that COTS distributed technology might allow third-world countries to
inexpensively assemble a C3I data fusion and decision capability. Parallel software engineering methods
are one way to maintain the Nation's command advantage.

The system designer should base designs on an architecture similar to the COTS fabric and must justify
any parallel supplement. The panel set the following goals for parallel software engineering research:

• generate C3I system design tools that give the following: 1) reconcile the COTS fabric and pockets of
parallelism dichotomy, 2) predict performance, 3) establish system engineering metrics and 4) define
the justification line between use of parallel and the COTS distributed fabric

• develop interface mechanisms to: 1) connect parallel plus COTS fabric architecture into C3I systems,
2) achieve C3I mission factor capability and 3) test and monitor C3I exercises to capture mission factor
and time value information

• find methods to 1) achieve dynamic reallocation of resources for meeting mission needs, 2) respond to
collaborative interaction, 3) insert test or monitor probes for software engineering and recursion testing
and 4) predict the scalability of applications in the C3I environment

• reduce the cost and effort for development and life cycle support by 1) developing "architectural
independent" design and programming models, 2) insisting on refinement and performance prediction at
each level (system, design and programming) and 3) defining architectural independence as
"generational portability" of today's solution to tomorrow's computer (generational portability refers to
portability to architectures that are not yet built)

• interface and cooperate with COTS industry to define and continuously improve the COTS foundation
fabric for C3I use; experiment with COTS technology to enable continuous tracking of key commercial
technologies, such as the following: operating systems, languages, SQL, object-based data and design
techniques, visual programming, and high performance information transfer

• develop a demonstration testbed for emulating COTS architectures and add in the necessary
coordination languages, effective protocols, and hardware interface drivers to show system functions.

3. STRATEGY -- Parallel Software Engineering
This section gives the strategy recommendations of the Blue Ribbon Panel. The assessment, trends, and
vision of the panel along with confirming analysis and discussion are provided in the chapters that follow.

3.1 Strategic directions for Cfl parallel software engineering
The panel gave clear direction toward improving parallel software engineering processes and infrastructure.
These directions are well supported by DOD sources, independent technology forecasts, and recent
commercial publications.

3.1.1 Discussion mechanisms

The panel established the links between C3I parallel software engineering and the C3I mission requirements
by stressing the terms time response (high-time-value), C3I mission integrity factors (high integrity value)
and C3I application difficulty (tough character application). High time value is a label for applications
requiring low-latency interaction. This is contrasted with large message passing where the importance is
placed on high bandwidth capacity. These labels distinguish the value of time to the application and relate it
to the architecture. Tough character application means complex, dynamic, frequent synchronization or
communication and human and data dependent control paths. (See Figure 3-1.) This distinguishes the C3I
application from parallel scientific research computing and from the constant stream signal and image data
collection flow applications. The C3I mission factors examples are reliability, availability, graceful reaction
or degradation, security, and physical constraints in equipment size, volume, power consumption, and
electromagnetic radiation. These have a high integrity value in C3I systems.

Figure 3-1. C3I Application Character

resoi

dyn.

tree

static

symbolic
infrequent

freq.

message

interaction
exten.

synchrony

int

cc

ensive

implex. Ity

3.1.2 Architectural target

The COTS network-of-nodes architecture (built from high-end components) with added pockets of low-
latency multiprocessor computing establishes a target architecture in which the needs of parallel software
engineering can be met. Since it will evolve to match the latest commercial best practice its configuration is
general and multipurpose. Yet it defines the environment that parallel software tools must target. The
dichotomy of high bandwidth capacity and low latency existent in the same system gives just two target
architectures for the tools and applications. Design refinement methods can now be targeted to just two
architectural models. The same two targets can be used for compilers. Once placed in the category of low-
time value, components need to target only a single architecture, the SNAP-like COTS one. Components
with high-time-value are targeted only to low latency, globally scalable multiprocessor architecture. High
integrity value applications must be evaluated to determine if the extra resources required, or the dynamic
reaction scheme requires high-time-value or low time value.

Parallel software engineering tools can separately address applications suitable for message passing,
applications requiring low latency, and the tools needed to interface and control the interaction between
them. With these simplified architecture models the present day's mapping issues can become more
standardized. Now the attention can turn toward performance prediction and effectiveness, use of parallel
software engineering as a tool to achieve C3I mission factors and on tools and mechanisms that work for
one or the other of high bandwidth capacity networks of nodes and on low latency multiprocessors. The
parallelism of both architectures can be used to provide some C3I mission factors, eg, automatic generation
of multiple tasks for the same task, with use of common voting or other techniques to obtain fault tolerance.
Distributed methods as well as low latency ones would be developed depending upon the value of time in
the application. Other C3I factors could be achieved through parallel innovations in security, graceful
reaction to unexpected events, and planned reaction to expected ones.

3.1.3 Parallel software engineering process goals

3.1.3.1 Simplification of parallel coding

With only two architectural types to target, a common machine model could be provided. The use of
superstep barriers, as found in the Bulk Synchronous Parallel model, has been found to allow correctness
proofs and predict performance. It also simplifies coding of complex applications. Restriction to complete
all operations on a regular time frame is a common tool for meeting real time constraints in C3I systems.
BSP gives a logical time frame for programming of complex and dynamic applications.

3.1.3.2 COTS and military-unique decision surface

The panel also laid out some parallel software engineering goals that affect the way C3I systems would be
engineered. The justification decision boundary between choices of commodity-priced COTS, modular
board level COTS, and military-unique approaches are to be investigated and understood. Interfaces
between these diverse technologies are required to be engineered and converge. Incremental building
methods are required to meet the evolutionary build and test methods. Probes and information gathering
methods are indicated to take advantage of the "daily" exercised and evaluated C3I system necessary to
"make the warfighter the informed customer." Engineering refinement layers are needed to facilitate change
and to meet new mission needs. These must be in conceit with rapid application development methods.

3.1.3.3 Interfaces

In summary, to meet these goals parallel software engineering researchers will have to define new
relationships with COTS computer vendors and integrators to determine the boundary of COTS suitability.
They must build relationships with COTS system vendors to establish testbed demonstrations of interfaces.

They also need bi-directional relationships with operating C3I organizations to gather feedback on
operations, testing and effectiveness on a shorter time scale.

3.1.3.4 Incremental development, frequent interaction and collection of information

The best commercial practice is to have many incremental deliveries on the way to reaching a stable
system. This method ensures that the information infrastructure of the organization is prepared to operate
and maintain a system. C3I methods recommended by the panel suggest a similar approach to meet the
short development time frames and constant interaction with operational and warfighting elements.

3.2 Planned research focus areas
The panel believed that the goal of parallel software engineering was to meet both high-time-value goals
and C3I mission factors within the parallel environment. Applications of any character should be feasible
with performance, programmability, and portability. In order to accomplish this daunting task, the panel
also believed that parallel software engineering must concentrate on the most difficult character (extensive
complexity, dynamic resource demands, symbolic interaction and frequent synchrony), ie, the toughest
problem types. (See position 2,2 in Figure 1.) However, parallel software engineering must recognize the
need to integrate those results with existing C3I systems and the vision of commodity SNAP-like
architectures.

The vision of the forecast panel for parallel software engineering concentrates on how to make parallel
computing effective for C3I systems development. The panel expressed this concept in several ways during
the course of the working session.

3.2.1 Support for dynamic adaptation

The panel stated that a critical capability was one that let the system rapidly and effectively change the
direction of processing. The system makes these rapid changes to respond to human interaction, mission
change, and new phases of operation. The system can change mission activity to respond to better
information. This may be one of the valuable assets of parallel computing when resources switch to meet
the newly demanded processing. Dynamic adaptation based on decisions made by the C3I system would
require parallel computing for artificial intelligence and knowledge-based decision making. In addition,
parallelism and dynamic adaptation allow the system to provide fault tolerance and resiliency by
determining its state and responding with a reconfiguration that meets mission needs to the best of its
capability. Parallel software engineering researchers should generate an application framework for creating
dynamic resource changes in parallel systems.

3.2.2 Architecture independent software representations

The industry needs an architecture independent programming model. Defining such a model has many
difficulties because of the diversity of application character and architectural capability. The panel and
position makers described several approaches that built a hierarchy of layers of design, architectural
selection and then machine selection. In addition, automatic parallel program generators for these layers are
the subject of research of several position makers. However, none had applied these methods to the tough
application character type problems that are similar to C3I ones. A problem seems to be that the
architectural targets have been parallel computers and tools built primarily for scientific research. The
panelists believed that, due to the significant difference in character and requirements, that a simple transfer
of this technology from scientific research might not be effective. This does not lessen the need for the
hierarchical tools. However, it does mean that their target should be the simple dichotomy of message
passing or low latency multiprocessor. Researchers should provide architectural independence so that C I
can apply the latest processor and architecture capabilities without the need to continually port to new

architectures. This.generational portability is critical to maintaining military advantage. In addition,
researchers should define their refinement hierarchy and capability to allow the removal of the uncertain
availability of specific processor architectures.

3.2.3 Parallel software engineering tools for the C3I system

The panel believed that C3I engineers need tools at a system level scope to deal with engineering of parallel
software in C3I systems. Engineers need processes and tools for design modeling of parallel computer
hardware and software in a hierarchically staged process. The tools should be focused on the tough
applications that C3I systems require. Researchers should develop a hierarchy of executable specification
tools for high-time-value design and development layering.

Engineers also need performance prediction tools. These tools should be in a hierarchy of design stages. At
each stage an engineer should be able to predict performance and cost and evaluate suitability of
programming models for parallel architectures. These tools must resolve the time uncertainty problems of
parallel computers. Such tools should give design visibility at each level and provide reverse engineering
capability for better understanding of the allocation of components to time response, C3I mission factors
and C3I requirements.

Figure 3-2. The Parallel Software Engineering Challenge

Mission Requirements

Tough Character

Predictable Performance,
Portability, and Efficient

High Um Vaiu* *%li Integrity Value

Time Response Goal Mission Integrity Factors

3.2.4 Tools to evaluate and apply COTS hardware, software and tools to C3I applications

Researchers should track commercial advances in distributed, coordination, operating system, data or
object base and language software. They should adopt these into the C3I system model where there is a
benefit. This is reasonably expected to be the least expensive manner to fulfill a majority of the mission
needs.

To facilitate this research, they need to interface and cooperate with industry to achieve an inexpensive but
effective SNAP-like architecture as a common fabric for C3I systems. Knowing that the common fabric will
work requires that engineers do an advanced emulation of the target architectures. The test cases should be
tough character C3I applications and include mechanisms for obtaining C3I mission integrity factors like
reliability, fault tolerance, security, graceful degradation, and dynamic resource change.

The C3I development tools should be integrated with COTS SNAP-like architectures. These system
engineering tools provide the component allocations to SNAP-like COTS systems combined with
multiprocessors. The activity of integration should be supported by processes for designing and
implementing effective interfaces from parallel to other C3I system components. Concentration should be
placed on clusters of nodes that represent the SNAP-like COTS architectures. Researchers also need to
create system supervisor/ control mechanisms and the necessary additions to commodity COTS for control
of the SNAP-like architecture and interfaces to high-time-value nodes.

Because the panel anticipated certain areas of potential COTS shortfall, the integration research needs to
pay attention to the capabilities of COTS workstations, local area networks, wide area networks and
telephone switches using high bandwidth ATM switches. In addition, they should determine a suitable
organization of C3I data that best uses either SQL relational organization or object database organizations.
Finally, the promise of object oriented programming methods must be tracked to see if their promise
extends beyond the initial successes of graphical user interfaces in client-only programming.

3.2.5 Combine tough character application, high-time-value and high integrity value

The parallel research community needs to find methods of achieving high-time-value performance and
gaining C3I factors in a tough character application. (See Figure 3-2.) The community needs to develop
tools that predict performance and factors on any mission character application. This needs to be
accomplished while providing rapid software development, easy maintenance or enhancements, scalability
across a wide range of mission scope, and portability from architectural generation to generation. Tools
that reduce the risk of achieving these results on C3I applications are extremely valuable. Tools that do not
consider such complexity are of little value. Another approach suggested by the panel is to evaluate
operating system, interconnect access protocols, and network protocols that limit parallel performance,
restrict C3I mission factors, reduce portability, prevent reuse and preclude performance prediction.

3.2.6 Integration to establish C3I mission requirements for parallel components

The panel believed that parallel software engineering would be most valuable if more closely associated
with exercises and demonstrations of C3I systems. A constant improvement of the C3I process could be
facilitated if the software could be continuously improved. The recommendations were to attain tools and
processes for the non-intrusive entry and coordination with C3I systems to solve any refinement needs.
Researchers should build tools that collect information to be used to create better designs and to refine the
use of parallel computing in C3I systems.

A needed tool is one for on-line monitoring of the C3I environment that captures C3I mission factors and
time response values. Researchers need to create on-line monitoring and testing tools to reduce uncertainty

10

of correctness, performance, and mission factors in the C3I environment. These tools are also needed for
determining capabilities and resources required to meet the mission time response and factor goals.

3.3 Analysis of new C?l directions
A key result of a COTS strategy is that hardware is not preselected, but is put in action in a just-in-time
manner. This is consistent with the Defense Studies Board (DSB) recommendation to align life cycle and
adapt commercial practices [EE Times, Nov. 24, 1995]. The Blue Ribbon Forecast Panel did not discuss
this impact on parallel software engineering in its recommendations. However, its recommended technology
focus areas lead directly to supporting this feature when the system technology is COTS. It does mean that
the architecture-independence goal is of critical importance for the new software procurement paradigm.
The just-in-time hardware selection also gives more meaning to the need for understanding the interface and
discriminators between C3I military-unique and COTS components, understanding and performing a
system design that is inclusive of parallel components that meet high-time-value requirements. This
important need increases the need for tools and refinement process parallel software tools for adding
parallel computers and software to the COTS SNAP fabric for high-time-value needs.

3.3.1 Potential for COTS use in C3I

Using the Warfighter and DOD directions as a guide leads to a C3I system of the future that consists largely
of COTS components and software, whose software was developed ahead of or concurrently with its
hardware. However, commercial practices and tools are one way to accomplish this strategy. Some
problems can be anticipated.

• First, C3I systems require significantly shorter response time frames than commercial information
systems, have much higher complexity of data types and interactions, and have need for significantly
stronger performance in graceful degradation, fault tolerance, security, reliability, and time guarantees.
These C3I mission integrity factors are more stringent than in commercial information decision systems.
The C3I character is also tougher than that of commercial information systems. However, they do have
a degree of similarity because commercial information systems have requirements in each of these C3I
mission factors. Some transaction processing systems have a very high fault tolerance need compared
to scientific research software where the effect of an occasional failure may only be an inconvenience
that might be overlooked. However, the degree of these requirement is higher in C3I systems.

A second practice is that commercial firms do little application software development beyond
integration of purchased independent software packages. For example, in the presently popular
client/server architectures the applications are confined to client desktop graphical user

interface programs that operate within a single workstation. Business logic, data base access,
network management, replication transfer from legacy mainframes, and any other operations
are expected to be built upon purchased packages. Unfortunately there are many products with
confusing capabilities making it difficult to assemble a good system. Very few applications run
across all these combinations [ComputerWorld, p 4, February 20, 1995]. In addition, key
components are often missing and large teams must be assembled to fill in the missing
components. System design tools are immature, leading to risky projects. This commercial
process often leads to highly inefficient and chaotic commercial information systems that
remain tied to expensive mainframes. Table 3-A shows that early adopters were mesmerized by
hardware cost savings and over-optimistic estimates of cost savings.

11

TABLE 3-A Benefit shortfall (based on 305 IS managers; BRG Newton, MA)

Benefit area Expected Achieved

More flexibility 71% 51%
Increased productivity 66% 53%
Improved customer service 58% 39%
Decreased overhead 50% 31%
Less maintenance 46% 28%
Work force reduction 28% 16%
Increased market share 19% 10%

In reality, the commercial client/server marketplace has unfulfilled requirements similar to those
of parallel software engineering in C3I systems. COTS technology does not automatically
overcome the barriers to getting to straightforward system design, design visibility, ease of
interaction and collaboration, standard interfaces, and necessity to become intimate with C3I
applications, This result indicates that a software engineering capability needs to be built for
software system design, interfaces, and application evaluation. The capability is required in both
military and commercial development.

12

4. BACKGROUND

4.1 Overview of Blue Ribbon Panel
The parallel software engineering forecast is based on a parallel computing technology assessment,
recommendations of the blue ribbon panel working session and supporting analysis. Panelists were
provided a condensed version of the Rome Laboratory Parallel Software Engineering Technology
Assessment (draft RL TR). A condensed version is provided as Annex A. Positions were solicited from a
broad spectrum of academe and industry. Summaries of those positions are given in Annex B.

4.2 Overview of participants
The Forecast Panel for Parallel Software Engineering convened to seek out the expert opinions and forecast
of leaders in C3I related parallel technology. The panel included C3I advisors, commercial, government, and
academic members. The panel organizers selected them due to their cognizance of architectures and
applications, components and markets for parallel systems. In order to provide the panel with a diverse set
of ideas on parallel software engineering, the organizers assembled position makers to obtain their ideas
and projection of the future of parallel software engineering. Position makers represented a wide range of
activities, among which were the following:

• industry level ~ machine cost models, research center activities, industry health status and future
industry viewpoints

• system level - system engineering, engineering applications, C3I systems, and dynamic control

• programming models - virtual machines and automated parallel programming

• programming tools -- visual, components, libraries, and debugging

• system effectiveness -- domain specific objects, libraries, and hardware architecture target development
tools

The forecast experts focused their attention on C3I system requirements for the following:

• high-time-value applications in C3I systems

• C3I mission factors (fault tolerance, security, graceful degradation, physical constraints, etc.)

• difficult or "tough" application character (dynamic resource demand, symbolic interaction, frequent
synchronization, and extensive complexity)

• software engineering issues necessary for C3I-like projects: programmability, rapid development, and
maintenance, along with effective performance and portability with predictable design and development
performance allocation

4.3 Goals and limits
This document's purpose is to assess parallel software engineering technology, define trends, describe the
Blue Ribbon Panel's vision, and define a strategy for improving parallel software engineering. This
document reports the full assessment, results of the panel working session, following concurrence,
analysis, and confirming references. It concludes with a rationale for technology status, trends, and vision.
It also provides Annex B - "Blue Ribbon Forecast Panel Working Session and Position Summary," which
summarizes position makers inputs. An executive level document "Parallel Software Engineering

13

Technology Forecast - Conclusion" (Rome Laboratory TR) gives the conclusions of the working session.
The executive level document is incorporated in various sections of this document.

4.4 Scope, definition & assumptions
The panel set boundaries on the technology and forecast elements that it was to consider. The panel
believed that the opportunities of parallel computing should derive from the mission needs, not from
zealous enthusiasm over a particular technology. However, imposing this discipline should not inhibit the
invention of new (or improvement of old) C3I applications and capability. The panel stressed the
importance of the potential of parallel technology to meet high-time-value C3I component needs.

4.4.1 C3I boundaries

To concentrate on the right issues, the panel defined the boundaries of C3I systems as the following
functions necessary to conduct Air Force warfare:

• data and information fusion

• information generation, display and visualization

• decision making

• human interaction with the process of command, control and intelligence

• action and reaction control

• warfare planning, direction, evaluation, and awareness

• managing the wide range of information that converges on command centers

Therefore, C3I systems are planning, information and decision making elements of Air Force Warfare. The
panel excluded certain subsystems, eg, sensor and image data sources for the C3I system and the external
weapons and delivery systems that take commands to respond to a threat or meet mission goals. (These are
defined as effectors.) Figure 4-1 provides a simple view of this boundary, where sensors and effectors are
integrated by the C3I system.

4.4.2 Commercial-off-the-shelf boundaries

The panel considered that one of its important roles was to determine the directions and condition of the
commercial-off-the-shelf (COTS) parallel industry. The forces of change in commercial technology are the
driving forces in computing. Also the economics of building military systems require maximizing use of
commercial technology to reduce acquisition, development, and life time support costs. The panel indicated
that the reasonably expected state of commercial enterprise will support some C3I computing needs.
However, its use will require aggressive study of the boundary between COTS, parallel machines, and
existing C3I systems.

14

Display &
"Visualization
/Human
Interaction

External
Communications

N^V... ''Effectors

Information /
Generation & Fusion

Persistent Information
Storage & Delivery

External

Interfaces

Decision Making &
Control

Figure 4-1 Limits of C3I system activities for evaluation of parallel software engineering

4.4.2.1 Rising expectations from COTS technology

The performance and wide spread availability of COTS workstations, networks, operating systems, data
and object bases, languages, visualization, virtual reality, voice and pen interaction, and CD-ROM storage
are reasonably expected to raise expectations for C3I systems. The panel expects that parallel computing
for business, engineering, and other government processes will include many clusters consisting of
networked computing nodes with a few four-processor servers. The panel believes that larger tightly
coupled multiprocessors will have a market viable only for high-time-value applications.

4.4.2.2 Potential threat from COTS technology

One factor brought out by the panel is that there is the potential for third world countries to use COTS
equipment to significantly increase their own command and control capability. Such a threat requires that
our C3I builders understand the capabilities of COTS equipment and its potential for command and control
applications. Our challenge is to remain far ahead of the COTS capability through innovation and skillful
application of parallel computers within a COTS-based C3I fabric.

4.4.3 Parallel software engineering boundaries

The directions of parallel software engineering are not set in a vacuum. Other research technology
developments may provide different supporting contributions for C3I systems. Therefore, the panel
attempted to observe duplications of parallel software engineering to avoid overlap with other research

15

programs. These boundaries are difficult to establish. Other government programs are in process for
research and development areas such as the following: operating systems, object design, scheduling,
application programming interfaces, heterogeneous programming, application scheduling, scientific
collaboration, distributed system application, etc. Likewise commercial development continues for
distributed objects, new operating systems, visualization, multimedia, virtual reality, data base access,
protocols for Asynchronous Transfer Mode (ATM), and languages for more effective development of data
and object manipulation. The panel believes that its plan should avoid duplication of these efforts.

However, parallel software engineering researchers must establish a relationship with other programs and
C3I providers. Historically, other programs have concentrated on highly structured scientific research and
transaction applications that are not effective as a C3I parallel software engineering technology. An
interface to expose the C3I software engineering needs to other major research efforts is, therefore,
necessary. The panel recommended that information on C3I system needs be communicated to those
research communities.

16

5. TRENDS - C3I Mission and commercial-off-the-shelf technology
This section has two major trend discussion sections:

• C3I demands, technology and mission changes

• commercial off the shelf (COTS) technology

Each of these sections consists of summaries of the position maker's ideas, the panel's conclusions, and an
analysis that gives supporting information on the panel's conclusions. (See Annex B for a more detailed
summary of the positions.)

5.1 (fl demands on parallel software engineering technology
5.1.1 Summary of C3I trend position inputs

5.1.1.1 Future of C31 Systems

Walter Beam reviewed C3I and its constituent subsystems. These include the following:

tactical communications /covert operations

surveillance/radar/side-looking radar/intelligence activities

target location and identification, radio location

identification friend, foe or neutral (IFFN)

force control and assessment

tactical intelligence and analysis

electronic warfare and countermeasures

command, control, communications countermeasures and counter-countermeasures

electronic and communication intelligence and analysis

Air Force locations vary significantly in global, aircraft type, positioning, and mobility. The many changes
caused by the end of the Soviet Union demonstrate the need for highly flexible systems. The current factors
influencing C3I systems are: downsizing, local conflicts, terrorists, interoperability, wide variety in enemy
systems (including US made), grossly altered strategic situation, limitations of technical intelligence,
national priorities and overseas basing. The critical military issues that are important to parallel computers
in C3I applications are:

• availability and use of timely high resolution imagery

• rapid, accurate identification of IFFN air, sea and land combatants

• shortening cycle for target detection, identification, attack, damage assessment and recovery

• cooperative operations with Allies and other US Forces

• netting and fusion of target data from a variety of sources and broad-scale intelligence data

17

5.1.1.2 C3! changing roles and solutions

According to panel members Beam and Wasilausky, future C3I demands for new processing capability will
be driven by processing, storage, and retrieval information, data and imagery, advanced multifunction
displays and speech processing for human interaction with the system, tactical intelligence imagery,
automatic information netting, detection, fusion, data mining, and information warfare protection and
disruption of enemy's information. Digital information histories and libraries, multifunction displays and
speech narratives will drive human interaction. Both point out that C3I systems depend upon timely
information and that future modes of use will be more unpredictable than in prior C3I systems. High time
value in dynamic and changing roles are one of the architectural challenges in parallel software
engineering. In addition, DOD procurement directions will enforce maximum use of COTS technology in
C3I systems. Their vision leads toward use of rapid application development techniques from industry that
are coupled with continuous exercise of a C3I system. Building system capability through constant
interaction leads to evolutionary and adaptive development, allowing the US to maintain its lead in spite of
the possibility of the same COTS use by enemy organizations for information warfare.

5.1.2 Panel's assessment of C3I requirements and demands

C3I systems need to use parallel processing to meet response time, physical constraints, and new mission
functions. Because parallel computing improves response time, new mission capabilities are feasible.
Designers use this approach to radically change mission requirements. They can radically improve a C I
system's war fighting capability by application of parallel technology.

5.1.2.1 Global interfaces and information interchange

The panel expressed the need for a more closely coupled parallel tool set with actual C3I system operations.
Understanding the application character, the costs and methods of delivering C3I mission factors, and the
necessity for time guarantees requires information collection and knowledge building that many research
parallel tool developers presently lack. The parallel software engineering program needs ways of
transferring information on fundamentals about the character, factors and high-time-value of C3I systems.
Software engineering for parallel systems needs to be in-the-loop to enable its progress to bring the full
value to C3I systems. These demands on C3I systems change the importance of interfaces to other systems,
typically causing an increased input/output rate.

Parallel computers play an important role as information and data storage and buffering mechanisms for
input and output and for transfer of information between C3I system components. Additionally, the parallel
computer may transform the organization of data so that each C3I component capability can be maximized
toward meeting its time goals. Parallel computers make it feasible for software researchers to create the
capability to meet C3I factors, or for the timely execution of applications with a tough C3I mission
character. Advanced methods of decision making incorporate intelligent and adaptive methods. They must
constantly improve themselves by rule changes or by training. To accomplish this improvement it is
necessary that the system have feedback or information gathering capability to achieve its full potential.
In-the-loop system probes and data collection are important components for the development of future C I
systems.

The panel projected that an information-gathering probe would be a valuable tool, especially if it were a
part of the development process during architectural concept, design, testing, exercises, and life cycle
support. Much of the value is the feedback of information on the adaptation and evolution of the system to
achieve improved results over time. C3I systems operate within an environment where existing equipment
already operates, and where external system interfaces play an important role. Just as business systems
have the necessity to deal with legacy systems, so do C3I system components. Due to the long lifetime of

18

C3I systems, designers must consider that each parallel component will become a legacy of its own. The
model is that parallel systems go into the fabric of existing and future C3I systems only where necessary.
The panel reasonably expects this for high-time-value and tough application character needs. Therefore, the
panel expects that an important component will be the interface mechanisms between parallel and COTS
systems. System interfaces need a balance of bandwidth capacity and low latency to match the interfaces
for high-time-value cases. Scientific research center methods will not be significant aids in solving this
issue because they are generally throughput rather than high-time-value oriented.

5.1.2.2 Complex data manipulation

The panel expects that present data fusion techniques will increase in complexity. Additional data sources,
higher precision, and lower false detection rates are anticipated. In addition, future systems require
information fusion. This combines data fusion results into multiple information sets for use in different
applications.

These future uses may require complicated data manipulation to such a degree that systems will require
parallel computers to meet time goals. Single workstation technology advances alone are not adequate to
meet these needs. Such processing requirements are, however, of the toughest C3I character and not
generally found in COTS parallel computers. The multiple sets of applications that comprise a command
and control system take widely divergent forms. Each form may have widely varying optimum data
organizations. Relational data base managers are most prevalent in commercial systems. Their use in
accessing multiple data arrangements has not been found to be effective and is difficult to apply for highly
diverse component access methods. An inefficiency in both access time and storage volume results. The C I
system has highly divergent applications with distributed data repositories that do not match a single
relational model.

5.1.2.3 Shorter command time scales

The panel agreed that parallel computers most reasonably fit into high-time-value C3I components. One
example is the reduction in time for generation of the command and planning for air battle. The
contribution of parallel performance could enable on-line plan changes based on intelligence that arrives
during the day. Such an application would require collaborative action in setting up the daily plan and an
intelligent systems for safely changing parts of the daily mission. Designers must base the changes on real-
time data and information gained during the day's operations.

Time is the essence of C3I systems. Predictable time response is the essence of C3I system design. The
surrounding sensor signal and image processing must deliver its information without losing information.
Buffers provide the means to maintain a constant rate of operation. The result is a steady stream of data
pouring into the C3I interface. This interface must convert the steady stream into detected events. The time
to process each suspected event may also vary widely. The event detection component of the C3I system is
highly parallel because each data input stream is a separate channel.

Parallel computing is one method where the C3I systems can receive the steady stream of input, process
event detections, make command and control decisions and meet a time response goal. The decision support
actions take several streams of events from different sensor streams. It "fuses" them into a higher level set
of event information and associates that set with other information sources. A higher level of fusion might
combine these with information based on other data types, such as observations, satellite imagery or human
input. The system evaluates these information events, often using empirical methods, to identify objects or
activity, determine their value or threat and decide upon the proper response or attack. Detection of possible
events and determination of a target must have high signal to noise and low false detection performance. In
many cases, the system must perform this processing within a very short time frame, otherwise it is useless.

19

Therefore, the panel found that time response guarantees for high-time-value applications are necessary for
the success of the C3I mission.

5.1.2.4 Dynamic reconfiguration

The panel predicted that parallel computers in C3I systems will be required to have the capability for
dynamic reconfiguration. In this case, the components that are required in different time domains use
common resources. For example, a detected threat or mission change command could redirect processing.
In dynamic reconfiguration, the system determines which of the components to run at any given time. By
using the resources to best advantage, designers can have the maximum capability for the minimum
hardware costs. Often computer resource demands come from new events or from computed information.
This requires that the system respond and use its machinery differently. This dynamic change capability is
not typical in today's common parallel architectures. Often an event identification perturbs processing
control. Also humans can interact unexpectedly, basing their decisions on displays and visual processing.
When this happens, the mission may change. The system must switch all its resources to the highest
priority and may require that the computation change significantly to perform a new function.

Parallel computation to accomplish these fixed-time response computations must have the same capability.
Dynamic resource allocation is a necessity for meeting C3I mission needs. Of growing importance in
university computing is the capability for multiple researchers to interact with a computation as it
progresses to reach a better conclusion in shorter time. Collaborative methods will eventually contribute to
concurrent engineering or other industrial design and information decision making. This technology might
impact a designer's expectations of a C3I system. Collaborative interaction will be an important factor in
increasing the demands for more rapid refinement of decisions through multiple scenarios. Parallel
computers will be required for high-time-value application processing and information generation and
distribution in collaborative processes.

5.1.2.5 Visual and imagery impact

The panel expects that the C3I system of the future will move away from simple displays of mixed
alphanumerics and plots. C3I system requirements will follow commercial systems and provide significantly
higher information content screens. These include scene images, high resolution vectors, symbolic icons,
tables, charts, etc. Providing this extra information may reasonably require video storage, added bandwidth
communication, and selection mechanisms for human interaction. In addition, designers will include new
forms of image analysis and comparison, possibly directed by human controls. This added capability
demonstrates significantly increased expectations of access to information and requires high performance
processing. There will be a higher demand on the underlying infrastructure for faster computing results.
For example, protocol processing rates may be higher than the workstation processor itself can perform.
This is especially true if multiple data streams service the visual processing necessary to meet expectations
generated by the capability of the human to ask for more processing and access to data. Visual displays,
with much higher information and data content, will drive designer's expectations in future C3I systems.
This may change the organization of processing, transfer and storage of symbolic and real imagery
significantly. Both parallel computers and high performance networks may be necessary to perform scene
analysis, compression, storage, transmission, etc. Three-dimensional scenes, those possibly provided in new
displays like virtual reality, require ray tracing. C3I applications will have similar imagery for radar scenes,
human observations, events, and tracking. The system designer will have to provide image processing and
symbolic decision processing in collaboration with information fusion and human interaction. This is a type
of image processing that falls within the C3I system, for information generation and intelligent use for
decision making involvement with the user.

20

5.1.3 Support for panel's C3I requirement conclusions

The panel's conclusions present a new role for the C3I software engineer. It demands a higher degree of
importance of information dispersion and decision making, increased interaction with C3I systems, better
interoperability, and increased use of COTS tools. The following analysis uses other sources that confirm
the panel's conclusions.

5.1.3.1 The warfighter is the informed customer

The C3I system is undergoing fundamental changes from its present orientation of Joint-Chief's centralized,
large scale, response to the Soviet threat into a commander-in-chief (CINC) one. The new goal is to a
higher degree of interoperability with the four services operating as a team. The term global infrasphere
has been coined to represent the capability provided to the CINC for

"...fused, real-time, true picture of the battlespace ...[to allow CINC to] order, respond and
coordinate vertically and horizontally to the degree necessary to prosecute the mission ... and be
safe from denial, deception, and destruction..." [Edwards]

The Global Command and Control System (GCCS) is an example of a future C3I requirement. It has the
following core functions:

crisis planning

force deployment

force status

logistics

air operations

fire support

intelligence

personnel

position

narrative (command collaboration)

[Based on presentation by Lt. General Albert J. Edwards, USAF, Director DISA, "Delivery of the Power
of Information Technology to the Warfighter," Defense Studies Board, Summer, 1994]

5.1.4 DOD directions and initiatives

Mr. Anthony M. Valletta has reported [Future Directions and Initiatives in DOD Software Acquisition]
that the warfighter should be considered as the informed customer by system developers. The direction of
the DOD C3I software procurement is to recognize that information is critical to the warfighter and will
have an expanded role in the future.

"[Software] ... needs to be rapidly transitioned to [an] engineering discipline [by] adopting
commercial best practice ... [this will] dramatically improve [DOD's] management and software
acquisition process..."

21

A major change in software acquisition is that systems are to undergo extensive operational use through use
of synthetic environments for training, testing and system assessment against computer generated foes. This
combined training and testing is to be made a continuous and daily operation.

5.1.5 C3I acquisition issues

The Defense Sciences Board, Summer Study 1994, (DSB) expanded on some of these issues. Their view of
what the tactical commander requires to be an informed customer by an information system is summarized
in the following:

• provide timely information to achieve decisive advantage with total awareness of friendly and enemy
situations to gain dominance of all levels of battlespace

• give rapid and reliable movement of information-related active combat needs

• deliver to decision maker and weapon holder with response to CENC/JTF commander and below and
tailored to warrior at each level

• create effective but not restrictive security with confidence of protection and graceful degradation

make information a major discriminator and force multiple through information warfare to deny or
disrupt the enemy's information and to accelerate conflict resolution in one's favor

They believed that an expanded role of information capability is to provide the following:

• connectivity of CINC, Joint Task Force, and component commanders

• connectivity among mobile tactical units

• network management and control

• collaborative planning

• interactive video

• distributed database information transfer

The DSB had the same use of COTS technology premise as the panel for software acquisition. That
premise is that the government should focus on the military-unique components of C3I systems and use
COTS for information tasks for which it is suited. The need to include information warfare was stressed
because information systems are highly vulnerable. They recognize the threat of enemy use of commercially
available technology and recommend that software must have incremental upgrade (the forecast panel
called this generation scaling) to stay ahead of COTS use in other's hands. They also recognized the need
for dynamic reconfiguration to accommodate options in the battlefield for changing mission and responding
to threats.

Their results indicated that integrated situation awareness, support to the shooter and continuous analysis
and training were to play a critical role in future success of C3I systems. By integrated situation awareness
they declare the need for expanded battlespace picture, imagery, intelligence (SIGINT, HUMESfT, and
MASINT), timely weather information, digital terrain maps, and other support information. They stress
that the information must be delivered to meet specific system needs of the shooter and that real-time is
essential to their demands. Planning, training and constant rehearsal were stressed as important to refine the
software for these purposes. The problems of information distribution to meet the global infrasphere are the
drivers of the need for daily operations and evaluation. They foresaw virtual combat every day as being
necessary for meeting the following needs:

22

readiness

acquisition

debugging

interoperability verification

training

rehearsal

confidence building

mission planning

refining battle damage assessment methods

The DSB recommendation for adopting rapid commercial information technology evolution matches those
of the forecast panel. Their software research and development strategy is based on their belief that
technology is not the major impediment to information dominance on the battlefield. They believe that the
commercial industry leads in information technology and research and that it is globally available. They
recommend that the DOD should invest only in research and development of military-unique information
technology and use best commercial technology in other cases. This use means more than buying
commercial products and services -- it means adopting their practices. Important recommendations are to
insist on generation scaling and to reform and align software processes with the life cycle.

5.1.6 DOD procurement practices

The Electronic Engineering Times, Nov. 28, 1994, reported that the DOD has a new strategy for
acquisition of weapon-systems. In its article, "The Pentagon begins to shop smart," it gives the following
new approach:

"[The DOD] ... rests its strategy on ... acquisition reform, streamlining weapon-system
purchases, technology investment, and dual-use technologies. ... Federal mandates [are] in
place to use commercial off-the-shelf (COTS) integrated circuits and components, the defense
industry is scrambling to adapt existing civilian products to military applications." [EE Times]

The panel, and the recommendations of the Defense Science Board, believes that software should be given
the same treatment. Defense contractors are looking at software productivity through the Electronic
Industry Association software panel. For example, Motorola's Government and Systems Technology
Group's Rose Gibson...chief software engineer and chairwoman of the EIA software panel said:

"... [The EIA is] looking for ways to streamline software development by keeping the
value-added activities and eliminating the non-value-added," [EE Times]

The EE Times report goes on with:

"... EIA panel... [to] make greater use of standard architecture while exploiting commercial
technologies and other common support and applications tools."

EE Times also reported that the Defense Science Board has:

"... recommended consolidating widely scattered and often redundant software programs ... adopt
more commercial practices to control soaring software development costs product-line
development and domain-specific software reuse for leading-edge programs ..."

23

Another related statement was given by John Foreman of ARPA who recommended

"... adopting a life-cycle approach [to software development] which focuses on the commonality
and variability inherent in a family of similar systems.... command, control, communications and
intelligence Arpa has awarded Andersen Consulting, I-Kinetics, and Template Software ...
TRP awards for reusable software components [to improve productivity]." [EE Times]

According to Anita Jones, the Pentagon's strategy is to use:

"... Advanced Concept Technology Demonstrations... [to] ... test the Pentagon s ability to
integrate defense requirements with commercial production." [EE Times]

Defense Secretary Perry has:

"... directed that performance-based specifications ...be used with the result that ...If a
commercial specification is available ...the onus is back on the DOD program manager [to
justify non-commercial use]." [EE Times]

However, some industry representatives recognize that too much enthusiasm for new ideas can lead to
unanticipated problems; for example, Gerry Barksdale of Hughes Aircraft was reported as warning:

"... that commercial technology wouldn't help except in areas of user interface tools and Ada
run-time systems." [EE Times]

The new desirable software approach is demonstrated in Table 5-A.

TABLE 5-A - Comparison of software development process paradigms

Traditional C3I projects New-paradigm C3Lpigjects_

• Software development process • Software development process
40% Auto-generated Ada Code

100% Handcoded Ada development 50o/o Reusab|e components
10% Handcoded Ada

• COTS software and hardware # COTS software and hardware

Select hardware first Just-in-time hardware selection

[From US Air Force Space Command & ARPA, as reported in EE Times]

The result of this analysis is that the directions advocated by the panel are well founded on directions
voiced at the top level of DOD and industry.

5.2 TRENDS - Commercial off the shelf technology
The second major trend that has significant impact on parallel software engineering is the rapid changes in
commercial off the shelf technology. This section discusses some of these impacts and gives a summary of
related position maker statements.

5.2.1 COTS trend position summaries

These positions are related to the industry concept level.

24

• Jon Webb provided the term "high-time-value" as a way of describing the difference between
applications that must complete within a given time and those that are to demonstrate speedup. He
related high-time-value to closely coupled multiprocessors that are designed to minimize latency. When
time does not have high value the concern is the bandwidth necessary to move messages.

• Present industry directions (as well as those latent in announced but not yet outside beta site testing)
allow Gordon Bell to posit a future dominant system for commercial information systems. That
dominance would drive C3I systems to maximize use of the same technology for economic reasons. The
future system, called Scalar Network & Platform (SNAP), would have a standard desktop client node
connected to servers that were at most four processor multiprocessors. The relational database
language, Structured Query Language (SQL), would be used to access data from the network. By
projecting technology (each critical capacity has been growing by a factor of four every third year).
Gordon Bell predicted that by the year 2000, the node processor, memory size, disk capacity, and wide
area network bandwidth would all increase in capacity by a factor often. Local area network
bandwidth capacity would increase, perhaps by only a factor of four. (Wide area and local area
bandwidth capacity would converge to the same value.) Both data and multimedia would move across
the network, effectively making a large high performance computer from commodity parts.

• In the pure client/server viewpoint projected by Bell there are no parallel programming issues since all
analysis is confined to the client. The database manager is the only parallel program and it is used only
for data access. A third party vendor would supply it.

A review of this position finds that it is identical to some major software tool vendors, eg, Microsoft, where
visual programming is used in this manner for client computing [Source: Microsoft Developer Network
CD-ROM]. However, commercial publications are already pointing out the necessity for complex and
multidimensional data formulations and the need for high-time-value computation. Although seen as simple
and straightforward, these expectations are falling short in simple client/server designs [Client/Server
World and ComputerWorld, January 1995]. While many agree with Bell because the largest software
vendors are heading toward the SNAPS software version, the publications are identifying a significant need
for additional software and hardware capability in application servers.

• Data mining application appears to be one of high importance. George Lindamood pointed out that
widespread information access will lead to advanced methods of human interaction to retrieve
information. Those methods would likely spin into C3I applications, increasing the value to the
command but also increasing demands on processing capability. Peter Seigel pointed out that globally
scalable architectures are necessary for applications scalability for high-time-value applications. These
architectures are ideal for data mining (and all high throughput applications) and for high-time-value
applications. He believes that algorithms should scale across wide ranging processor counts. Seigel
recommends research on lightweight protocols, globally scalable resource managers, object oriented
models and high level compilers that link to specialized application needs.

• Kim Gibson pointed out that military systems will require mobile communications services that allow
computing resources to be dispersed and flexible. Mobile communications also lends itself to high
connectivity. Agile military systems should consider mobile communications as a part of their
exercising of C3I systems and the flexibility required for joint task force operations.

• The competitive forces in the parallel information industry are multi-vendor. The historically massively
parallel research vendors may be at a disadvantage because commercial parallel, mainframe and
workstation vendors are placing products in the market. Jeff Mohr pointed out that the capability to
bring applications from small to large in a smooth transition is important, eg, IBM has an advantage

25

because they can provide MVS and CICS transition from their mainframes. Mohr pointed out that
independent software vendors are finding it difficult to move even to small shared memory
multiprocessors.

5.2.2 Blue Ribbon Panel's conclusions on COTS industry trends

The panel found that parallel technology will adopt commodity level COTS technology to a greater extent
than presently found. The panel believed that the general directions of the SNAP or Network of Nodes was
reasonable, but that diversity within that model would require pockets of tightly coupled parallel computers
in high-time-value applications

5.2.2.1 Network of high performance personal-computer nodes

The panel's broad vision of the COTS parallel industry of the future agreed with Bell's vision. He calls it
the "Scalable Networks and Platforms" (SNAP) architecture. He expects capability to continue to increase
by a factor of four every three years. The panel agreed with this version of COTS capability growth and
its impact on commercial information systems. SNAP has the following components:

• nodes based on the highest performance but largest volume microprocessor (by the year 2000 this is
likely to be an Intel-based computer with 1 GMIPS, 128 MB memory and 20 GB disk drive capacities)

• a four-processor, symmetric multiprocessor would be found at some nodes (the Compaq ProLiant is a
present day example, but in the future it will be priced at commodity levels.)

• a single, standard, commodity-priced operating system with network and multi-user capability
(Windows NT is the contender -Unix would become outmoded due to high support costs of its many
variants)

• Asynchronous Transfer Mode (ATM) would be the local, wide area, and global network connection

• all data access would be by SQL queries into the network or disk unit

• multiple applications could operate at each node

• computing would be peer-to-peer instead of client/server (the fabric of nodes and ATM switches would
be a virtual peer-to-peer server)

• no shared memory is provided by this model - to give scalability of the nodes and network

• metrics of the SNAP network are message delay (latency and overhead) and bandwidth capacity limit
delay (gap)

Economy of scale and better learning curves are the primary economic driving factors ~ commodity pricing
lets almost all applications use the ubiquitous SNAP network of nodes.

The SNAP architectural model did not include "coordination languages" to run concurrent systems over the
network, all applications were to be single client-based. Coordination languages let designers set up
pipelines or concurrent replicas in a SNAP-like network. Such "middleware" is anticipated by the panel.
The panel also reasonably expects that today's message passing, bandwidth capacity dependent
applications could fit well on the SNAP architecture.

5.2.2.2 Pockets of tightly coupled nodes

The panel agreed that the general market trend would be toward a commodity market represented by the
SNAP network. However, it believes that there remains a commercial market for a range of decision
support machines for high-time-value applications. In addition, there will be a growing number of

26

applications that require higher performance on large complex applications. This means that the SNAP
network would provide the fabric for future systems but that pockets of specialization would be necessary.
The reason for this continued viability is that cost does not drive all computer decisions - most often the
return on investment value does. Organizations often find significant competitive advantage in the high-
time-value operations. Many organizations will continue to seek solutions that give them competitive
advantage. Also, hardware vendors, with a base of commodity sales to the SNAP-like COTS requirements,
would find their highest profit from these pockets of high-time-value. The reasonable expectation is also
that the architectural obsolescence in specialized throughput-oriented parallel computers will continue,
while the fabric of the C3I systems structured functions would converge to a stable architecture.

5.2.2.3 COTS network of nodes - a fabric for Cfl systems?

The reasonably expected vision of a C3I system incorporates the maximum amount of COTS elements.
However, they must also build additions for meeting the high-time-value cases, C3I mission factors, and C3I
application character. The future challenge is to accomplish advances on the toughest of applications
needed in C3I systems. Designers would use pockets of tightly coupled parallel computers for meeting high-
time-value, C3I factors, and tough application character missions. The panel stressed that a constant
exposure at the interface between the projected SNAP fabric and multiprocessors is necessary to
understand their boundary. This mixed COTS fabric with pockets of high-time-value machines is the
reasonably anticipated network design. It should be the starting point for military and C3I applications.

5.2.2.4 Anticipated shortfall of COTS capabilities for C3!

At some point the goals and requirements of the COTS-SNAP architecture and those for C3I systems
diverge. Present examples of COTS parallel computers are too specialized for their specific markets:
scientific research, multi-user replicated engineering, fault-tolerant transaction processing, and batch
decision query applications. Projected designs for multimedia, communications switches, and replicated
engineering also are specialized for particular markets. C3I applications require very general purpose
parallel computing because of unexpected results of data fusion, information fusion, decision making,
control, planning - all in a high-time-value constraint. Most COTS examples are optimized for multi-user
throughput. In addition, there is a difference in the depth of concern for integrity factors between military
and commercial needs. Some of these integrity factors are the following:

reliability and fault tolerance

rapid software development with easy maintenance and enhancements

security

graceful degradation

dynamic reallocation

physical constraints

data and network access

A C3I system must organize and communicate C3I mission data and information for rapid access by
multiple applications. In addition, the time allowed to access information is much shorter than in
commercial systems.

27

5.2.3 Technology trend analysis

Rapid technology advances in computing capability are another trend that impacts C3I parallel system
engineering. The analysis below confirms the pace presented to the panel. The panel used these
assumptions while making its strategic plans recommendations.

5.2.3.1 Computer capability trends

5.2.3.1.1 Processor trends

A continual industry rejuvenation is driven by competitive forces and market sizes. These forces require
that hardware component vendors stay on a constant path of improvement. This improvement has
historically followed a quadrupling every third year progression. Memory sizes available have matched this
pace, while memory prices per package remain constant. For example, a single package with 64 KB in
1986-1988 would have over 1 MB today at about the same cost ($50). Microprocessor speed has kept pace
with memory size, quadrupling every third year. Secondary storage has also improved its density at this
rate of 55 to 60% each year. An additional effect is that the high volume of PC machines has led to quality
improvement in manufacturing costs of microprocessors, memory, disks, components and the computers
themselves. The instructions-per-second-per-$ delivered by PC technology has almost equaled the pace,
improving from about 100 l/s/$ in 1985 to about 1600 I/s/$ in 1992. The most important result is that the
cost of software applications has been driven lower due to the large market volume.

5.2.3.1.2 Network trends

Network technology has also seen gains due to open systems and standards. Local area networks (LANs)
have increased in performance from 1000 to 100,000 küo-bits-per-second (kbps) between 1980 and 1992.
The latest wide area networks are nearing the same rates, growing from 50 to 50,000 kbps in the same
period. Asynchronous Transfer Mode (ATM) networks being demonstrated provide wide area rates at
155,000 kbps, above the 100,000 kbps rates of LANs. The ATM standard has the capability to deliver
voice and video at rates and quality necessary for multimedia transmission.

5.2.3.1.3 Professional development workstation trends

If the technology growth curve were followed, today's (1995) typical professional workstation would grow
by the steps given in Table 5-B by the year 2000:

TABLE 5-B Capacity Growth

Capability Size 1995 Size 2000

Memory
Speed
Removable, storage CD
Disks
POTs
LAN switch
Operating system
Languages

User Interface
Paradigm
Capabilities
Data server
Server language

16 to 256 MB
100 to 400 to 1000 MIPS
600 to 2,000 Mbits
2 GB to 20 GB
28.8 to 144 kbps1/4
100 to 155V4622 (ATM) maps
Unix to Windows NT
C++ to objects

Windows to voice/audio/stylus
Client/server to agents/mobile (peer-to-peer)
Mail to multimedia (virtual reality)
2-4 to 4-16 symmetric multiprocessors
SQL to distributed object broker or SQL3

(SQL3 incorporates some Object based methods)

28

5.2.3.1.4 Semiconductor technology trend

The microprocessor industry is a remarkable one. The pace of change means that limitations of today are
soon overcome by time. The prime drivers, microprocessors and memory chips, are driven by
semiconductor process technology. The pace is a hundred-fold in a decade. Other key peripherals are doing
well at keeping pace -- a 1 GB drive costs less than a 10 MB drive of a decade ago [Slater, Microprocessor
Report, p 3, 1/23/95]. New applications are anticipated:

"Modems have increased only from 1200 bits per second to 28,800 ... a mere factor of
24. When true digital communications become common, ... [they] will increase at an
even more rapid pace than CPU power, enabling a vast range of new applications."
[Slater]

"Today's personal computers ... represent a very early stage in the development of
computing. It would be folly to think that the desktop form factor, or the keyboard
interface, or any of dozens of other characteristics will continue to dominate." [Slater]

The Pentium is anticipated to grow to dominate PC systems in 1996 (30 million out of 65 million units)
and the "P6" and Pentium to combine at over 80 million units in 1998 [Computer Intelligence Infocorp].
The integer performance of x86 processors has grown by a factor of 200 times in 15 years and is
improving at a rate of 50% per year. Compiler enhancements have provided the remaining 5-10% each year
to enable the overall 60% growth. RISC processor speed has grown at a rate of 55% per year. The x86 to
highest speed RISC gap is a factor of 2 and is increasing slowly. Projections for the year 2000 are for
leading RISC processors to deliver 3,000 SPECint92 and for 1,200 in the leading x86 chip. Most of the
gains (40% per year) are expected from semiconductor technology, but architectural innovations are
necessary to reach the 50-55% growth necessary to reach those figures. [Gwennap - Microprocessor
Report]:

"If those techniques do not pan out, radical approaches that break binary compatibility
... may be needed to maintain (or surpass) the 50-55% growth rate."

5.2.4 Market and technology trend coupling

The impact on parallel software engineering technology is amplified by the coupling of market and
technology trends. This section reviews the synergism between the two.

5.2.4.1 Acceptance of parallel processing in the marketplace

Parallel computing also requires broad acceptance of both processor usage and parallel architecture. Some
successful forms are emerging in the marketplace. C3I parallel systems must leverage off those successes
and extend them for their military use.

5.2.4.1.1 Industrial parallel software engineering

Success of a common programming model and commercially successful architectures that execute it would
serve the C3I builder well. The trend in production technical computing is toward object-oriented storage
for design and analysis information. That trend turns the computing attention center away from pure
Fortran applications, and toward use of application packages and system integration languages like C and
C++. Most commercial research and engineering production already use applications from independent
software vendors. The software that is written is for integration of the packages to make the engineer's job
easier. Industrial production centers use that same approach, mirroring the purchase of software vendor and
integrator packages.

29

5.2.4.1.2 Dynamic computer market changes

Today's dynamic changes in the computer market result from the displacement of Emitter Coupled Logic
(ECL) processors by Complementary Metal Oxide Semiconductor (CMOS) Logic microprocessors. The
result is a rapid advancement in speed of the single microprocessor chips. Low cost and open systems
standards make this technology useful as a high throughput (many independent operations per second)
computer for workstations and parallel computers. For structured applications with fixed data locations
few processors (10 to 30) reach a single processor's (ECL) operational speeds with lower hardware cost.
Advocates think that cost-scalable multicomputers built from very high performance parallel CMOS
computers will far exceed the capabilities of today's highest performance ECL computers. They also hope
that they will be available at a reduced cost per unit of performance.

Large volume production of microprocessors is necessary to recover development and foundry costs and to
allow a margin for continued development. The most popular models will rapidly evolve and improve while
the less popular ones become obsolete and disappear from the market. The Intel i860 is an example of
volume inadequacy and architectural performance limits, causing obsolescence. While the Intel 80x86 /
Pentium series is a successful volume case. A processor applications base and choices of operating systems
are critical factors for market success in personal computers and workstations that use microprocessors.

In parallel systems the microprocessor cost is not the critical issue - many highest performance
microprocessors are available for $500 per package, while multicomputer nodes are priced at 100 times
that cost. Even the design and foundry costs of a specialized microprocessor are not overwhelming if
foundries are available. The critical factors are the development cost of a robust system, compiler software,
operating systems and the existence of an application's base. Achieving that base requires the investment of
many independent software application developers. Broad market acceptance of a microprocessor is
necessary for attracting the investment in operating system, languages and applications. For example, IBM,
Motorola, and Apple combined forces for ensuring a broader market, adequate volume and applications
base for the PowerPC microprocessor. HP and Intel jointly announced an advanced processor to replace
the Pentium series.

These changes offer new opportunities for enhancing command, control, communications and intelligence
systems. Market-coupled, commercial-off-the-shelf (COTS) solutions allow C3I builders to meet their
budgets. Application specific parallel processors necessary for meeting tight physical constraints could
build hardware to execute the same common model, gaining efficiencies in software development.

Because of the recognition of their effectiveness, commercial information systems routinely use high
performance parallel computing for on-line transaction processing and decision query servers over a range
of sizes and architectures. Database and transaction applications for parallel computers have been ported
and are available from several independent software vendors. These products span both symmetric
multiprocessor and local memory based multiprocessor architectures. An example is Sybase DBMS on the
AT&T Global Information System product line with both SMP and distributed memory architectures. The
success in this field show that if parallel machines are adequate and useful for an application, independent
software vendors will respond. C3I systems could use this type of processor for applications that match
them. (See Table 5-C.) The suitable applications are multi-user transactions, database storage, and
replicated copies of programs, one copy per user. AT&T's robust interconnect structure in its model 3600
has proven reliability. More important, the operating systems for the commercial system are robust and
reliable.

The server might be a four-processor one that provides files for several users. Much of this parallel
processing is now limited to replicated applications for different parameter sets. Unfortunately, a single

30

large application, such as simulation or detailed operations of an engineering process, gets little speedup
gain from the present server technology. Often engineers wait overnight for critical runs because the
necessary processing performance is not available. If the four processor servers delivered speed on a
variety of engineering processes a sixteen-processor system would be justifiable in these environments.

Symmetric multiprocessors provide a few primitive mechanisms (e.g., threads coordinating via locks) to
allow the programmer to deal with concurrency. The thread programming model is often not portable with
other vendor's hardware and is not portable to local-memory-based multiprocessors. Sales of these
machines, database and transaction processing software, and a full spectrum of business process
applications is now available on those machines. The popular client (a workstation) and server (a parallel
processor) operation allows many corporations to spread their operations across the nation on wide area
networks. The commercial software package industry has built a significant inventory of software, making
skilled and trained personnel with experience available. C3I systems often require the similar transaction,
data base, and reporting applications. C3I system designers should understand and capitalize upon these
capabilities. Due to the small processor count, these processors cannot solve some of the large-scale
problems of C3I systems. However, they can contribute a significant level to selected matching application
types.

These systems are also finding applications in industry for support of decision support systems. All of the
well-known examples communicate with an operating legacy system. The systems extract data and feed it
into the parallel computers for processing. They work on large and complex queries and analysis
applications. They often cut completion time down from weeks to days. However, there is a demand for
even quicker results. The primary disadvantage is that each example is ad hoc and requires a significant
staff for development and operational support.

Large-scale commercial applications have expectations of mainframe-like operations (general applicability)
but at much higher performance. Multitasking (switching between multiple users to overlap and hide
delays) makes interconnect latency less important to getting high throughput for transaction and database
applications. However, a single user with a large decision support application with complex queries
requires multiple processors. AT&T provides software that breaks complex queries into independent
parallel transactions for execution on either SMP or capacity-scalable systems. This allows use of local
memory based multiprocessors for complex queries. However, large scale parallel systems still do not have
the general applicability of mainframes. The vendors of large scale parallel systems have "skimmed the
cream" of transactions and data access. (See Table 5-C.) Their products do not provide the versatility of
programming and effective operation provided by the supercomputer or mainframe on complex and
dynamic applications.

Early examples of commercial systems that have embraced parallel methods show that the present
successful parallel offerings cannot replace entire systems. Large information systems have additional
capability or function instead of simple replacement of "legacy" or "heritage" or "dusty deck" operational
systems. Industry now uses parallel computing to accelerate processing of new throughput-oriented
applications. However, the mainframe or supercomputer remains the operational, day-to-day production
system for heritage or legacy applications. Often the prior software investment is too large for a parallel
system to displace an operational system. The proprietary file systems upon which these systems have been
based compound this problem. The investment to shift to a parallel system is significant and requires the
following:

• extract data from the legacy system

• insert it into the new parallel system

31

• do the decision processing

• post analysis

• put some results back into the legacy system (possibly)

Often this effort requires tens and sometimes hundreds of people. Over the next five years both commercial
and C3I systems will likely consist of mixed legacy and advanced technologies. Software engineering
progress is necessary to build this mixed operational capability to allow incremental insertion of parallel

technology.

One would not expect high effectiveness on clusters due to high protocol latency in protocol-based parallel
systems. Possibilities include carrying out a small-packet, message-passing mechanism in software for both
symmetric multiprocessors and for the buffer exchange hardware for capacity-scalable designs.
Synchronization latency would be similar in both cases: highly portable code results. With a similar
latency and common programming model, applications are portable across a range of sizes and
architectures.

The parallel computer industry is experiencing significant competition at all levels of systems. In the Intel
486/Pentium marketplace AT&T, Pyramid, Sequent, TriCord, Compaq, and Encore plus many other
smaller vendors are already present. Compaq has already sold several hundred thousand multiprocessor
systems. Intel recently included key parts of the shared memory consistency control within the Pentium
microprocessor chip. In addition, Intel has announced a standard for Pentium systems that will allow the
commodity "clone builders" to join the symmetric multiprocessing hardware market. Cyrix has announced
a competing open standard to prevent Intel patents from cornering the market.

5.2.4.2 Information system impact

The following technologies could play an important role in different parts of the C3I system:

• Information systems - desktops, servers, decision support, data access ~ business

• Engineering - simulation, design, software development - product development

• Embedded - sensor, imaging, physically constrained missions - medical, process control

• High performance - scientific research, grand challenges - weather, large scale aerospace, safety and
environmental simulation

Table 5-C identifies computer technology sectors that impact C3I parallel software engineering.

32

TABLE 5-C

Information system

High performance -
decision support

Engineering

Embedded

High performance -
Scientific research

Future Influence on C3I System (and vice versa)

Fraction of Potential for Change by C3

Software Engineers

has own agenda

Tech-
Impact

Large

Yes

C3I

> 50% Little

Selected Significant: information
points fusion and decision

Some >10% Some--Environments and
System Design Tools

Some Selected Interface & Simulation; use
points as high performance

decision computing

Small very small None from scientific
research;

Information systems (combining PC and commercial) now have the largest potential impact on computer
technology due to their massive market size. Table 5-D shows the fraction of the $112 billion commercial
market (1994) that goes to desktops, commercial and technical computers. Some workstation and
mid-level computer vendors now target the business application as their market of choice, leaving
engineering as a second market. The combined information system market is soon to be driven by
PC/workstation, network and server technology, standards and economics [Microsoft].

For the larger portion of its computational resources C3I system technology can adopt and ride the
information technology curve [Wasilausky]. The demand for parallel computers beyond that required in
information system technology is a question that depends upon the justification line between military-
unique, board-level COTS and COTS system units in an Air Force war fighting information capability.
The panel defined as external to C3I the sensor/ image processing input and response "effectors" that
perform actual weapons delivery. Parallel computers for those external systems are now engineered to fit
into physically constrained situations.

TABLE 5-D 1994 Computing Market - $112 billion [Williams]

Market Segment Fraction Component

PC 50% <10% technical

Commercial 35% -75% transaction

Technical 14% -50% workstation

Comment

90% commercial

small, but growing UNIX
transaction processing

mid and mainframe is greater
than supercomputer and parallel

Board-level COTS technology also plays a major role in building sensor and image systems [Lund].
Historically, those systems have used signal processing instead of commodity microprocessors and real-
time instead of UNIX workstation operating systems. High performance computing technology, as defined
by the scientific research and grand challenge machines, was seen as having little impact on the choice of
technology curve for the bulk of C3I computing. However, high performance parallel machines for

33

information fusion and decision support that are matched to C3I needs were believed to be possible areas of
importance.

5.2.4.3 COTS business system trends

Business information systems are undergoing a radical change in organization as a result of reorganization
and flattening of management, a process often called process reengineering. The change is closely coupled
with creating distributed processing operations called "client/server." In the client/server organization a
client (desktop workstation) uses a network to access data located on a server. The most cost-effective form
is for the server to be a Unix-based, highly robust symmetric multiprocessor which is dedicated to the data
base operation. These servers now cost significantly more than home computers of equivalent processor
speed and memory due to their robustness, fault tolerance and interface to the Unix operating system. They
cost significantly less than mainframes often used for the same purposes.

The interface to the operating system has created a barrier to commodity pricing of up to four processor
units. Standard interfaces to the operating system have been proposed by Intel and a consortium of its
competitors. That standard will allow commodity builders to enter the market. Thus, a standard data access
language has emerged from the commercial marketplace (SQL) that allows client tasks to obtain data safely
in a distributed network. Software tools for building user interfaces based on access to SQL databases are
now readily available, eg, PowerBuilder or Gupta. Emerging are also object storage systems and mixed
SQL and object systems, eg, UniSQL, Hlustra and Object Design. Object systems based on the common
object request broker and other distributed object mechanisms are also on the market.

Operating systems are also in flux. (See table 5-E.) The need is for a standard Applications Programmer
Interface (API) that allows applications on one workstation to be ported by recompiling to run on others.
The Unix market is suffering from vendor inability to define and support a single standard that
accomplishes a common API [Bell]. Although the common open systems environment (COSE) builds an
aggregation of function calls (1170 of them) from past dialects, the fragmentation of the operating system
leaves each platform vendor with increased support costs. Those support costs are a burden to workstation
vendors that are reflected in increased costs and loss of competitiveness. The largest vendors keep
extensions and unique file systems that lock in their customers, creating the potential for dramatic
switching to new applications. A new common standard is likely to appear from the commercial PC-based
market, Windows NT. (Windows NT will run on all major platforms.) This allows server platforms for
applications that are not tied to particular variants of UNIX, but to a high volume industry standard [Bell].
Cross system environments provide this function (Galaxy, Powersoft, NextStep, and Taligent's planned
product). Any standard must also avoid proprietary SQL calls.

TABLE 5-E Database Application Server Plans - Operating System

[ComputerWorld -1/23/95]

1996 (plan) 1996 (potential) 1994

Unix 46%

Windows NT 10%

Netware or 10%
OS/2

Unsure 34%

46%

20%

6%

28%

16%

34%

6%

44%

34

This result (based on interviews of 50 IS managers by Forrester Research) shows that there is a high
chance of drastic change in the database application server operating system of choice.

5.2.4.4 System technology trends

The technology trends allow a designer to devise a system that consists of computers with professional
workstation capabilities, connected via ATM-based switches. These would use the most common standards
as the basis for client applications. This organization can match the throughput of large parallel computers
by the same methods used to specialize the present parallel computers -- having multiple users on each node
to hide latency, using multiple paths to access data by distributing storage in redundant disks in the
network. Parallelism would be limited to data-base operations. Clients applications would use transactions
to access data and perform processing. Scalable data-bases would provide implicit parallelism. Scalability
is assured because no shared memory coherency mechanisms are used.

Evolvability (higher performance commodity technology can be inserted as it arrives) allows the design to
constantly ride the commodity technology curve. One ingredient is the constancy of the SQL access. Some
small symmetric multiprocessors would be used because they, too, meet the common multi-user operating
system and SQL-based operations. Almost all programming would be client programming since the SQL
servers would use purchased standard systems [Bell].

There are two compelling reasons for the emergence of this information system vision of the future:

• massive standardization gives massive use

• economic forces are enormous.

Both are a result of the driving force in information systems:

"...the user investment is in programs, data and training..." [Bell]

5.2.4.4.1 Scalable network and platform architecture

The model of multiple PC nodes, ATM network, and SQL data access was called Scalable Network and
Platform (SNAP). The term SNAP-like is used here as a generic name, representing several similar
organizations with a range of capability. The working session of the panel believed that, in general, the bulk
of commercial information systems would head in the direction of SNAP. This assumes that several
barriers are overcome, eg, legacy interfaces, limitation of servers to be commodity multiprocessors, latency
(-12 microseconds) of over 10,000 instructions for ATM access, limitations of SQL for high-time-value
applications, lost speed limitations of ATM for data transfer (the network may be tuned to make voice and
video guarantees instead of data reliability guarantees). All these concerns, excepting the legacy interface
are due to a need for high-time-value, mixed character, and getting mission-like factors, which are
sometimes required in commercial systems.

The resulting marketplace projection if this vision is fulfilled is that PC and Network machines would
totally dominate, leaving only some very high cost applications that justify workstation or mainframe
legacy needs. (See Table 5-F.) The pure SNAP vision leaves out high-time-value applications in the
commercial world that cannot fit on a single PC (projected to be a 1,000+ MIPS machine) that gets its data
by SQL (and multimedia) calls at 155 to 622 mbps.

35

TABLE 5-F Year 2000 Computing Market - $250B (The SNAP Vision)

Market Fraction Component
Seqment

Set top ~

Single PC 5% Standalone use

PC -- SNAP 85% Transactions - all
Connected types

Other 5% ~0% transaction

Technical 5% ~ 100% workstation

Comment

Included as part of SNAP

Single, non-interfaced PCs

All Commercial and Multimedia
Systems; SQL and Multimedia

~ mainframe legacy market only

~ no supercomputer and parallel

5.2.4.4.2 Trend to recognize need for business logic processing

On-line analytical processing (OLAP) is a new phenomenon in client/server computing. Its need has arisen
because the form of computing being practiced is that of using a single workstation desktop as a client
(requester) to data servers (replicaters and responders). The single client does the graphical user interface
to interact with the user to generate requests for data. In this "Visual-to-SQL programming model, all
business logic analytical processing is performed by the desktop and all data are obtained via SQL calls to
servers. The SQL access has been found to lack the capability to effectively access complex and
multidimensional structures found necessary in some applications. Relational databases are fine-tuned to
volume "throughput" processing, making them hard to access outside the defined relational structure. They
also have poor performance on complex data access operations. According to one decision support user:

"You can't easily build in intelligence or dynamic analysis [into the relational structure]."
[ComputerWorld]

OLAP technologies allow the user a "spreadsheet" metaphor to access data more easily. They use different
storage methods to allow faster access. However, they maintain the model that all servers provide data and
the client does the processing on it ~ leaving no capability to go beyond the capability of the single
workstation. (Multiprocessor workstations would overcome this limitation.) The tools to easily move a user
from single desktop to multiprocessor desktop may come later when the limits become more apparent
[ComputerWorld, pi2, February 20, 1995].

5.2.4.4.3 Specialized Processors for On-time and Integrity Factor Processing

The panel anticipates a need for high-time-value application servers and for meeting C3I mission factors. It
expects that similar high-time-value application needs will arise from corporate competition sources.
Therefore, the panel expects that an alternative design will emerge to fulfill those needs.

The panel's trend projection is a SNAP-like one with differences necessary to provide high-time-value
resources where they are needed. It also would have tools for system engineering and programmability that
let designers contemplate a design that is client only. Therefore, the forecast panel believes that implicit
object oriented methods would be provided to client programmers to allow ease of programming any high-
time-value applications on suitable machines. Market forecasters apparently believe in the value of object-
oriented methods, eg, see Table 5-G. In addition, the architecture would provide interfaces to legacy
systems. This new architecture seems a reasonable projection since an object-oriented standard could arise

36

to compete with SQL, because of its reusable code advantage. Also, a legacy interface problem solution is
necessary for acceptance into the business community. Capital budgets are not adequate to replace legacy
systems in a single step. In addition, some expect that there will arise more concern for high-time-value
applications when the commoditization process brings many firms into the same level of system capability.
Firms that experiment with faster decision processes will find that their complexity increases the demand
for high-time-value processing significantly.

TABLE 5-G Market forecast for object-
oriented platforms [ComputerWorld, 63 -
1/30/95]

Platform 1994 1998

Visual Development Tools

Object database management

Object-oriented operating environments

$777M $3.45B

$233M $1.39B

$40M $1.22B

37

6. VISION - Parallel Software Engineering

6.1 Positions on parallel software engineering
This section reviews the positions on software engineering presented to the panel. They form a sense of the
state of the art and vision of research leaders in the field. (Some positions are based only on the paper
provided.)

6.1.1 System level positions

• The report by Masimi Uemoto described the viewpoint of engineers that are seeking tools to do
distributed or parallel engineering. Uemoto sought solutions that fit into the normal engineering
network environment, but she found no effective solutions in spite of reviewing a number of reported
demonstrations of parallel engineering tools. Parallel and distributed tools are not effectively entering
the engineering process although the necessary technology has been demonstrated for a decade.

• Yalamanchili described a demonstration of collaboration and interactive execution for real time and
scientific applications that are needed for complex data sets whose path cannot be foreseen. Then-
approach fits into the projected needs of C3I systems to respond to mission changes.

• J.C. Browne added that there is a growth in complexity of systems that will prevent software
implementation that is efficient and portable. He advocates integrating parallel structuring with
traditional function and modularity, executable abstract specification, and similar engineering
(simulation and verification at each abstraction layer) as done in hardware systems.

• Armand ten Dam advocated a support environment for structured design tools targeted to real-time
applications.

• Jay Eckard provided the view that large data sets are controllable using commercial database tools and
that new technologies, eg, solid state disks, can change data access performance dramatically.

• Carl Murphy proposed that C3I factors and tough application types are those places where parallel
technology is needed. He believes that object-oriented methods can be used to solve the C3I factors and
that tough applications require hardware and operating system kernel changes. Murphy also pointed
out that evaluation of parallel computers on cost of peak performance instead of cost of life cycle has
led to specialized parallel machines that exacerbate the software engineering problem. He is a believer
that there are solutions to building general purpose parallel machines for the tough decision problems in
C3I systems and that they would be successful on the commercial market.

• Murphy, Seigel and Wasilausky all believed that dealing with specialized needs, such as C3I factors and
tough applications, requires object oriented methods that operate at the same level as the operating
system kernel.

6.1.2 Programming model positions

These positions cover virtual machines and automated parallel programming.

• C3I system and application engineering need architecture-independent software because of long life
cycles and mission change. Refinement layers representing design-through-code are current research
solutions. Douglas Smith and Jan Prins described refinement approaches that start with an executable
specification and refinement layers for portability. In this scheme mission changes would be identified
again at the specification level and trickle down to the hardware code level. Hardware obsolescence

38

would only effect the branch of the refinement tree for the architecture type. In this manner automated
program generation support is provided and changes are made within the tree only for the effected
components. Prins provides performance assessment and Smith adds automated program generation to
the method.

• Stephen Yau described a layered design approach based on objects. His tools get portability by
targeting a common intermediate layer for code generation on different machines. He claims advantages
in conceptual parallelism identification, ease of modification, and reduced life cycle costs and effort.

• Tom Cheatham described the Bulk Synchronous Parallel (BSP) model that represents the same concept
level for parallel machines as does the von Neumann model for sequential. In this model programmers
can estimate the performance of an algorithm without coding and trying it. BSP requires a super step
barrier at which time all communication and synchronization of the step must be complete before the
next step is started. Cheatham described the compiler, library, optimization and correctness proofs and
other refinements for general purpose programs. BSP has potential impact on C3I systems because its
model can be matched to fixed time frame methods used in real time coding. A theory that combined
monotonic rate analysis and BSP would be the foundation for a useful tool in parallel high-time-value
applications. The BSP model of superstep barriers also is well suited for distributed processing
applications that are projected for the COTS-SNAP distributed system.

• Rajive Bagrodia described the requirements for a C3I Virtual Machine (CVM) as a design process and
programming model. CVM incorporates multiple computational paradigms (task, data, vector),
heterogeneity, real time and reliability issues. Performance estimation would be included at the design
level.

6.1.3 Programming tool positions

These positions covered approaches to programming tools.

• Andrew Sherman described the virtual shared object model (VSOM) to improve on shared memory and
message passing. Their concept is based on a content-addressable memory with which each process
sends self-synchronizing messages. This allows each process to get information by name, not location.
VSOM allows dynamic and complex system integration. Commercial tool examples are Linda/Paradise
and database management products.

• Craig Lund provided information on the lack of suitability of scientific parallel computers for C3I
systems. His comment was ~

"Scientific programmers usually think of their problems in "control flow" terms ...In
contrast, real-time signal and image processing applications constantly receive new data.
Therefore, programmers of such systems usually think of their problems in 'dataflow' terms

• Lund described a component programming proposal for signal, image, and other sensor processing
needs. He also noted a culture difference between defense vendors and academic institutions and
commercial firms. The challenge of product fund raising requires product firms to understand how
their products fit into common business or engineering processes and the market. Researchers have
no need to follow through to the marketplace.

• David Rich stressed that C3I systems will consist of some of the largest and most complex systems to
be built and that COTS parallel development tools may not be adequate for such applications.
Commercial language and tool vendors are targeted toward smaller projects. This is confirmed by the

39

observation that the present COTS industry direction is confining user interfaces to single client station
programs done with corresponding "visual" tools. Systems are assemblies of open system parts
including the database application. His debugging tool product experience indicates that a programmer
needs to be able to debug within a single development context, requiring that the debugger operate on
all components in the system.

6.1.4 System effectiveness tool positions

These positions covered the means of increasing effectiveness (speed related to processor capability) of
parallel programs.

• Martin Davis described a method of creating a hardware architecture after the application is designed.

"No matter how hard one tries to isolate the application programmer and user from the
hardware, the hardware is the ultimate determinant in the performance of a program."

• This work has a role in C3I systems that must be physically constrained or meet special environmental
factors.

• Min-You Wu provided the following comment:

"While regular applications can be solved efficiently, only a small fraction of applications
are regular.... the current technique cannot solve applications with irregular... structures

• Wu described run-time systems for implementing complex applications.

• Sanjay Bhansali and CS Raghavendra believe that problems of increasing scale and complexity are the
problems of importance. They point to the need for effective distributed applications in future high
performance networks. They believe that domain-specific components will be the important path for
software engineering. They have sequential code reverse engineering tools that allow automatic
mapping to parallel computers.

• Robert Rabb gave a specification and design language for large grain applications that is intended to
give portability, design correctness and reliability Run-time communication and synchronization are
defined at design time to obtain these results.

• Matt Rosing described flexible and efficient abstractions for parallel programs based on compile time
language constructs.

6.2 Cfl system development methods
The necessity to use system and software engineering methods to build C3I systems is due to their size,
high-time-value, application character and mission factors. Since C3I design and development requires
many people, the visibility of the design and its implementation are very important. Parallel computers
exacerbate the situation because their performance (time guarantee) varies widely when the design
mismatches the architecture. Designers allocate function and performance to components when designing a
C3I system. This is difficult even when the underlying capabilities of the computing resources are consistent
and steady providers of computing capacity. Without the capability to predict the behavior of a parallel
element in the system the design risk becomes excessive. The panel believes that designers should not use
parallel computers unless they identify clear advantages, ie, they should not use technology for its own
sake. However, it also believes that the system designer should aggressively design for applications that
require performance levels only obtainable through parallel computers.

40

To conceptualize and develop an architecture and a design that delivers high-time-value guarantees requires
knowledge of dependable and predictable completion times for each component. In addition, the extra
computation required to deliver all required C3I mission factors must be predictable at design time, prior to
detailed mapping steps to an architecture. The panel found that delivering reliable time of completion
predictions on diverse application character is a necessary design tool. Designers also need tools to help in
delivering C3I mission factors and predicting the associated performance penalty. Tools that provide
information about the application character are also necessary. It is also necessary to develop methods to
incorporate C3I factors such as time guarantees, resiliency and integrity, and physical constraints imposed
by operating in aircraft.

6.3 Status of parallel technology and software engineering
The assessment of the panel is that present COTS parallel computers have not provided an effective
capability for delivering C3I mission factors such as reliability, availability, security, fault tolerance, and
graceful degradation. The panel expects that C3I mission factors will continue to be important differences
between C3I and COTS parallel systems. However, software engineering tools that accomplish C3I factors
within COTS-based systems would have high value in commercial systems.

The application characters of C3I systems are very different from scientific research, business transaction
processing and other well-known parallel applications. Those character differences are a combination of
complexity, interaction, synchrony rate, and resource demand. Extensive (unstructured), symbolic (logical
and decision) interaction, frequent synchrony, and dynamic resource demands are the most demanding
characteristics. The panel referred to these as the "tough" applications.

In contrast, "standard" applications typically have a structured, (large) message passing, infrequent
synchrony and static resource character. The greatest challenge to applying parallel computers to C3I
systems is in dealing with tough applications for high-time-value applications. The panel viewpoint taken
is that C3I systems should have hardware components of commodity COTS, specialized (possibly parallel)
COTS, and militarized components. These components would be workstations, networks, specialized
processors, operating systems and run-time software for implementing C3I factors and meeting tough
character applications.

A future view of C3I systems is one based on a high level of available COTS computing machinery and
software. The panel raised some concerns about over-enthusiastic COTS adoption and the possibility of a
lack of consideration for long-range disadvantages of COTS. One example given was market obsolescence.
The panel reasonably expects that significant cost advantages will result. The panel recommends setting
the goals of parallel software engineering by reflecting on the future of COTS components.

The panel recommended a strategy to maximize the use of COTS, but use parallel computers to meet high-
time-value goals, C3I mission factors and application character. This is to be accomplished with total cost
conscientiousness, not hardware cost alone. This strategy requires programmability combined with
performance and portability. It also requires that the underlying system concept have a close relationship to
COTS where it applies. An important requirement is to know how to determine the relationship between
COTS-SNAP and parallel computers. That interface is expected to be one of the challenges of a parallel
software engineering research program.

6.3.1 C3I software engineering

An important tool that is necessary to design the interfaces in C3I systems is a suitable computer aided
system design tool. These tools are necessary to allocate function and performance to components, to
predict their performance and to estimate C3I mission factor capability. A designer typically iterates their

41

design until they meet all mission needs. One result of the panel's vision is the identification of a tool to
determine the interface between the SNAP-like architecture COTS and the parallel machine part of the
system. As the designer attempts to allocate functions the design tool would predict performance on the
SNAP-like COTS architecture. When the designer cannot meet high value time limits, the tools should
recommend a series of sizes of parallel architectures to meet the high-time-value goal. Thus, the tool lets
the designer find the edge between the SNAP-like COTS fabric and parallel or specialized components.

The system design tool provides for an overall system allocation of components. In addition, programmers
need application development tools for design and programming of applications. The position makers
described several methods of application engineering that included performance prediction and specification
execution. Position makers presented refinement methods, object-oriented methods, specialized components
and virtual computing models to the panel. The panel believed that the goals of these methods were
appropriate. The panel recommended that a mechanism be set up to put these methods more intimately in
the loop o/C3I exercises, testbeds, and applications.

The panel found that discussion of architectures and applications were facilitated by reference to the Bulk
Synchronous Parallel (BSP) model of barriers with defined terms for communication-to-computation ratio
and barrier delay costs.

The panel thinks that tools are useful that let C3I system engineers emulate SNAP-like architectures on
present-day parallel computers. Developers would have to normalize for projected bandwidth capacities,
processing, and storage capability. The BSP model could be useful in that normalization. If engineering
tools could match the architecture to a latency cost model, it could be easier to develop virtual machines as
targets for programming tools. Experiments in emulation of predicted COTS systems provide a test bed to
allow quantitative performance engineering that attains C3I mission factors. In addition, designers could
explore techniques for testing of tough character applications.

6.3.1.1 Object-oriented design, development, and programming

The panel reported that object-oriented design and development methods have made a significant impact on
display screen programming, data exchange between independent applications, and organization of access
to data objects. Commercial system and application programmers have accepted these methods. Small
programming groups are making significant productivity gains through object reuse, easier software
maintenance and efficient enhancements. Panelists raised questions about how to overcome performance
loss in C++ when compared to compiler optimized C, how to best use C++ in large projects, and how to
provide better design visibility.

Object-oriented methods are playing an increasing role in commercial systems. This technology plays a key
role in creation of displays and has reduced the screen building and human interaction programming task
significantly. Likewise the languages used by commercial support staff is also becoming object-oriented.
System design techniques are also following this path.

Some of the panel members believed that SQL was not adequate for the commercial systems of the future.
They found that programmers would most likely program using a combination of visual object-oriented
languages, such as Smalltalk, and business logic languages like C++. As a result, the Blue Ribbon panel's
concerns over the effectiveness of SQL for complex and diverse type C3I applications are confirmed by
current reviews from the commercial industry.

42

6.4 Analysis of COTS trends in parallel software engineering

6.4.1 Object-oriented technology

Cheryl Ball reported in Client/Server Today, February 1995:

"[the] first wave of object-based tools ... enabled the first generation of client/server database
access applications ... [they] revolutionized information access in many corporations. But the
next wave ... will allow rapid development and deployment of flexible enterprise-wide business
processing applications."

Sixty-eight percent of companies surveyed and reported in Balls report say that object-based tools are
important to their redesign efforts.

That object-oriented methods have solved many graphical user interface (GUI) development needs was
demonstrated at the Database and Client/server World Conference and reported in Client/Server Today,
February 1995. The example given is MCI's Friends&Family marketing system. The system was put
together in three months using NeXT's object technology. This rapid development for meeting agile
marketing needs is expected to increase in the future. That meeting confirmed the idea that SQL may not be
adequate for complex and diverse data source C3I systems. One reviewer gave the following analysis of
database management systems based on object-oriented and SQL methods:

"Object Oriented methods have good support for the following: complex and user defined data
types, error recognition and correct handling by DBMS and mapping of object class to domain
data type. On the other hand, SQL is excellent for simple transactions but is not a good or true
implementation of relational technology, has no concept of domains or data types, and does not
work well as a repository for objects because the object class to relations is not as effective as
direct object implementation."

6.4.1.1 Object-oriented effectiveness

Object-oriented programming effectiveness was discussed in ComputerWorld, p 114, January 30,1995
where a Smalltalk object programming example was reported. Table 6-A gives the results.

TABLE 6-A Productivity improvement with Smalltalk object programming

Original task with Smalltalk

Development time 19 months 3.5 months

Labor (months) 152 person months 10.4

Lines of code 265,000 lines of PL/1 22,000 lines of Smalltalk

(Original source: International Data Corp. Framingham, MA)

ComputerWorld went on to say that object databases are typically used in technical databases. However,
their use is recognized as meritorious when there are the following requirements:

• the application has complex data structures

• there are many relationships between data structures

• the relationship is as important as the data

• high performance is required for data manipulation

43

• behavior modeling is as important as data modeling

The conclusion from these inputs is that object-oriented programming is confirmed for small projects. The
client application programming, however, can be used in large projects where a few top level programmers
build the system interfaces and connection and other programmers must have only a client program to
develop. Their effort is to be blind to the architecture of the system. This model (and the low relative cost of
Unix servers compared to mainframes) has led to the recent success of the "client/server" approach.
Parallel software engineers need to adopt the same model, where almost all programmers on the team do
architecture-independent programming. A few programmers would do the system programming to
distribute the applications into the distributed system and a few others would write any high-time-value
programs that execute on the low latency multiprocessors in the system. Adopting this commercial model
as a goal of its research could benefit the C3I parallel software engineering process.

44

Annex A
 Parallel Software Engineering Assessment

Annex Summary

Viewpoint and Issues
This assessment looks at parallel applications and architectures from the viewpoint of a C3I system builder.
There are many purposes for parallel computers in C3I systems. Therefore, understanding applications is the
starting issue. C3I systems have physical and integrity constraints beyond the design intent of commercially
available machines and operating software. Therefore, architectures will continue to be a critical issue. The
power and dynamism of the computer technology marketplace significantly influence both applications and
architectures. The market is a third critical issue. Software engineering is to provide the processes, tools, and
metrics that allow engineers to design and build complex C3I systems. These processes and tools must deliver
the fast development cycles, limited budgets and low life cycle costs now expected of peace-time military
development.

Applications
The contribution of parallel computing is in reducing the time required to complete an execution, thus
advancing the capability of C3I system applications.

C3I applications have fundamentally different time response goals. A discourse about applications without an
understanding of their time response goal leads to a cacophony of different interests. This assessment stresses
that the time response goal is the critical factor in discussing the lines of tension between applications,
architectures, market forces and software engineers. These lines of tension are:

♦ Design-Time Matching of Application Needs and Constraints to Architectural Capability
♦ Tools and Metrics Applied to Applications and Machine Performance
♦ Programmability and Machine Portability Models

Our assessment includes an architecturally independent rating of C3I parallel applications by time-response
type and by characteristic criteria. Together these are a characteristic pattern of execution. A comparison of
the pattern of today's parallel application successes to C3I patterns shows that the architectures are ineffective
for many C3I needs. We find that we must make a new focus to broaden the understanding of C3I applications
and the ways that parallel architectures can solve them.

Architectures
Scientific-research parallel computing is not general enough to provide a complete model for C3I system
applications. Client-server data base and on-line transaction processing, a successful example of
throughput-oriented parallel computing, are limited to serving many independent users. These present
parallel successes fail to solve mission critical applications, those in which an execution has a specific
period to complete its execution.

Annex A -1

Alas, these successes have a significant penalty. Builders experience the inability to design with assurance
that the system can execute in a predictable time on a chosen architecture. They experience the penalty when
the effort to fit the application into the architecture grows beyond original budget estimates. In addition, they
have no structured way of engineering for rapid response computing, real time predictability, system
availability, fault tolerance, and security. The C3I industry needs a robust hardware parallel architecture and
software engineering processes that lead to significant performance leverage, while maintaining
programmability, portability and maintainability. We conclude that today's parallel computers fail to
deliver their promised performance in complex Air Force C3I systems because their specialization
prevents adequately general software.

Market Force Strategy
The Commercial-off-the-shelf (COTS) strategy is one in which commercial competition provides advances in
capabilities needed for military systems with only marginal investment by the government. Often overlooked
is that the savings in software costs due to mainstream market acceptance is the most important factor in
COTS strategies. When designers overspecialize parallel architectures to reduce hardware costs, they
often lose the benefits of COTS provided software. Operating systems, programming tools and languages,
and data base systems are fall-outs of COTS successes. However, if these cannot meet the application
demands of C3I systems, then the COTS strategy fails. The gains of a COTS strategy are an illusion if the
result is not adequate for general acceptance.

Software Engineering Issues
Software engineering is a discipline that deals with the large, complex, dynamic, mixed hardware of C3I and
large scale systems over a long life. Parallel processing technology now exacerbates the development process
by reducing portability, increasing software costs and creating performance uncertainties. Advocates of
machines specialized for scientific research often recommend them for applications for which they are
inherently unsuitable. The necessary changes in hardware, operating system and support tools make the
conversion unrealistic and risky. The result is an industry state often described as "lack of software." Parallel
computer technology must adapt to attain the performance benefits without process uncertainty.

The software engineer needs a set of tools that measure the capability and generality of parallel computers.
The development process should be based on an architecturally independent model and architectures
evaluated on how well they execute that model. Once the engineer knows the characteristics of the
application's execution and its patterns of operation, they can predict a machine's performance for the
application. Such separation of hardware and software development is important to the engineering of parallel
hardware and parallel software. Without this capability, each effort by hardware vendors and software
developers is ad hoc. The result of a successful parallel software engineering activity is a wider knowledge of
C3I needs and demands. In addition, the recognition that business mission critical, decision and process
control systems need similar capabilities would allow vendors to build more general parallel solutions to
serve this wide application range.

Annex A - 2

Annex A: Parallel Software Engineering Assessment
1 Overview

TECHNOLOGY AND ISSUES OF
PARALLEL SOFTWARE ENGINEERING

SOFTWARE ENGINEERING
Process & Design Metrics

Prog ram mobility &
PorfabT imty

Application Metrics

APPUCAi

Parallel Model
& Timing

Performance Delivery
& Metrics

Mafcttte Needs & Capcbttty

< ►AR IITECTURES

of Maw

1.1 Scope

This assessment looks at parallel
applications and architectures from the
viewpoint of a C3I system builder.
Figure 1-1 shows these issues. There
are many purposes for parallel
computers in C3I systems. Therefore,
understanding applications is the
starting issue. Budgetary limits point
toward use of commercially available
parallel computers, yet C3I systems
have physical and integrity constraints
beyond the design intent of
commercially available machines and
operating software. Therefore,
architectures will continue to be a
critical issue. The power and
dynamism of the computer technology
marketplace significantly influence
both applications and architectures.
The market is a third critical issue.
Finally, we must bring all these
together coherently. Software
engineering is to provide the processes, tools, and metrics that allow engineers to design and
build complex C3I systems. These processes and tools must deliver the fast development cycles,
limited budgets and low life cycle costs now expected of peace-time military development.

1.2 Applications

The contribution of parallel computing is in improving the time response or thoroughness of the result,
thus advancing the capability of C?I system applications.

C3I applications need parallel compute capabilities. Present systems could better fit their physical
constraints (size, weight, volume, power, etc.) with effective parallel computing. Parallel
processing at the source of data reduces communication while maintaining the required data
rates. Parallel event and information fusion create the knowledge needed to make decisions faster
and more thoroughly. Designers can bring global information to bare on local command decisions
and vice versa. Performing multiple simulations and iterations improves battle plans and

Figure 1-1. Parallel Software Engineering

Annex A - 3

scenarios. Large simulations can provide models for response to global or environmental changes.
A reduction in execution time makes each opportunity possible.

Designers and builders of C3I systems generally have a specific mission problem with specific
physical constraints. To create a design the mission is typically broken into component
subsystems. Each component has a period during which its execution must complete to act in
concert with the other components. Parallel computing offers both a reduced response time and
improved capabilities because more computation can complete within the system's time
constraints.

However, each of these opportunities has a fundamentally different time response goal for its
acceleration. A discourse about applications without an understanding of their time response goal
leads to a cacophony of different interests. This assessment stresses that the time response goal of
an application is the critical factor in understanding or discussing the lines of tension shown in
Figure 1-1. These lines of tension are the problems facing parallel software engineering. They are
the following:

♦ Design-Time Matching of Application Needs and Constraints to Architectural Capability
♦ Tools and Metrics Applied to Applications and Machine Performance
♦ Programmability and Application Portability with Effectiveness

Our assessment includes a rating of C3I and parallel applications by criteria that are independent
of the particular parallel architecture. Together these criteria form a character or pattern of
execution. By observing successful parallel applications with a similar character or pattern, one
might identify architectures that are suitable. A comparison of the characteristic criteria of parallel
application successes to C3I characteristics shows that today's parallel machines are ineffective for
many C3I needs. We find that we must make a new focus to broaden the understanding of C3!
applications and the opportunities that parallel architectures can provide in solving them.

Command, Control, Communications and Intelligence (C3I) systems must respond to
multifaceted threats and scenarios. These systems contain a variety of computing types and
subsystems. Parallel processing is necessary to improve both throughput and response time
demands. Parallel processing needs improvement in availability, real time response, security,
fault recovery, and physical parameters. The system software needs of parallel processing
includes operating systems, languages, debugging tools and controls consistent with parallel
machines. It needs reliable, portable and reusable software. Present programming processes are
too costly and difficult. Air Force C3I application complexity makes it difficult to use the present
generation of high performance parallel hardware, system software and applications. A key
ingredient in the difficult is the design of predictable rapid response components for complex,
unstructured elements of applications.

C3I systems have some characteristics similar to business and scientific research ones. However,
they have a broader set of characteristics than the more narrowly focused applications supported

Annex A - 4

by commercially available parallel computers. This essay proposes a classification scheme. The
first typing is by the length and degree of time guarantees for completing an application. The
time-of-execution types we propose are the following:

♦ Continuous Data Rate (maintaining a constant level of data throughput)
♦ Hard Real Time (guaranteed maximum response time)
♦ Rapid Response Time (generally statistically meets quick time goal; graceful operation

during occasional failure to meet goal)
♦ Interactive Single Job (visual display of results and rapid response to single user)
♦ Interactive Multiuser (meets combined delay and throughput benchmark)
♦ Capacity Constrained (delays of several minutes are allowed to respond to user)
♦ Capability Constrained (results are not needed for immediate use; delays of hours or days

allowed; used to improve quality of system operation)

The last three in the time response classifier list follows Furtney and Taylor's classification for
workstations and servers [Furtney and Taylor 94]. This typing shows that a parallel architecture
must provide very general speed improvements to have a broad market. Therefore, the C3I
research investment should concentrate on achieving dependable, across-the-board, response-
time improvement. It should support only those multiprocessors that can respond rapidly for a
wide range of general applications.

Typical C3I systems consist of many components, each with a response time goal or hard limit.
Predictable response time is critical to our interests. Therefore, our focus is on response time
reduction for very general, concurrent applications. These span all the time response types.
Unfortunately, scientific processing application characterizations apply to the parallel computers
that are specialized for structured scientific applications. These are typically limited to Capability
Constrained time response types. A business oriented characterization would be limited to
Interactive Multiuser (for on line transaction processing) and Single User (for decision support
data base access) time response types.

The C3I classification extends the one proposed by Worlton for scientific computing. Worlton's
classification splits each of four criteria into halves and rates applications on their fit to the
resulting sixteen criteria. His four criteria for scientific computations are:

♦ Degree of Parallelism (High or Low Concurrency)
♦ Parallelism Uniformity (High or Low Uniformity)
♦ Communication Distance (Local or Distant Messages)
♦ Grain of Synchronism (High or Low Communication Grain)

Worlton's criteria is too simple for consideration in rating C3I applications. We propose that the
following new set of four:

♦ Interaction Mechanism (Symbolic or Message Interaction)

Annex A - 5

♦ Resource Demand Fluctuation (Static or Dynamic Resource Demand)
♦ Complexity (Intensive or Extensive Complexity)
♦ Synchrony Grain (Frequent or Infrequent Synchrony)

1.3 Architectures

Scientific-research parallel computing is not general enough to provide a complete model for C3I
system applications. Client-server data base and on-line transaction processing, a successful
example of throughput-oriented parallel computing, are limited to transaction applications tuned
to serve many independent users. These present parallel successes fail to solve mission critical
applications, those in which an execution has a specific period to complete its execution. Other failure cases
are where a few users need effective use of the entire capability of the parallel computer for solving a
complex or dynamic application.

Gains in throughput processing via parallel processing have, so far, have a significant penalty.
Builders experience the inability to design with assurance that the system can execute in a
predictable time on a chosen architecture. They experience the penalty when the effort to fit the
application into the architecture grows beyond original estimates. The extra effort often
compromises the schedule and cost budget. In addition, they have no structured way of
engineering for rapid response computing, real time predictability, system availability, fault
tolerance, and security. We conclude that today's parallel computers fail to deliver their promised
performance in complex Air Force C3I systems.

The C3I industry needs a mixture of a robust hardware parallel architecture and software
engineering processes that will lead to significant performance leverage, while maintaining
programmability, portability and maintainability. The system designer must also include physical
constraints, time response predictability, fault tolerance and security. Designers have few
research results about these topics on today's machines due to the concentration by academe and
industry on scientific research.

Due to their more tightly-coupled structure, multiprocessors have the potential to reduce the
execution time of concurrent applications. Our classification stresses communications content and
latency that match the parallel system to its potential for a dependable reduction in an
application's response time. These are:

♦ networks-of-computers - for selected applications with restricted communications and
loose time constraints (Suitable for Capacity and Capability constrainted applications)

♦ multicomputer (cost-scalable) - for selected applications with limited communication and
time goals over a narrow size, structure, and dynamic range

♦ multiprocessors (capability-scalable) - for more general applications with some
communications and time limits, capable over a wider range of application structure,
dynamic operation and sizes

♦ symmetric multiprocessors (count-limited) - for servers in distributed systems with

Annex A - 6

relaxed time limits and for applications with time constraints that can be met with small
processor counts

There are many competing parallel technologies. Client-server systems, clusters and
heterogeneous computing methods provide choices for meeting computing needs. The parallel
system software engineer must address the allocation of requirements between parallel
processors, clusters, networked computers and heterogeneous systems. These choices form a
hierarchy of applications that must match the computer architecture's interconnect capacity.
Understanding how a language or tool fits into the hierarchy is critical to evaluation of its value.

Industry understands the software research needs of throughput computing. Applications are
On-Line-Transaction-Processing (OLTP), Data-Base-Management-Systems (DBMS), and
replicated applications. Clusters and networks of computers are effective for high-throughput
processing of independent tasks and replicated processes. Heterogeneous computing mixes
network and tightly coupled computing. One form even breaks an application into specialized
parts to match specialized processors.

Architectural trends are toward a dynamic and multifaceted industry that is on the verge of
establishing itself as a major market. Competing forces arise from multiple vendor sources:
"scalable" parallel systems, symmetric multiprocessors, commercial on-line-transaction
processing, data-base-management-systems, and mainframe vendors. Trends are toward the
following:

a smaller maximum processor count
higher bandwidth capacity interconnects
hardware supported programming enhancement mechanisms
increased capability for input/output, memory, and disk access
increased availability

The trend is also toward improving programmabüity. Costs per processor node are tending
upward as vendors target an engineering production instead of a research laboratory market.

1.4 Market Force Strategy

There is a constant, cost-driven pressure to move to less costly semiconductor technology. That trend
results in reduced demand for large mainframes and supercomputers and an increased one for
microprocessor based parallel computers.

The Commercial-off-the-shelf (COTS) strategy is one in which commercial competition provides
advances in capabilities needed for military systems with only marginal investment by the
government. COTS components have the promise to provide an affordable technology for
building high performance C3I systems. Often overlooked is that the savings in software costs due
to mainstream market acceptance is the most important factor in COTS strategies. When designers

Annex A - 7

overspecialize parallel architectures to reduce hardware costs, they often lose the benefits of COTS provided
software. Operating systems, programming tools and languages, and data base systems are fall-
outs of COTS successes. However, if these cannot meet the application demands of the C3I
system, then the COTS strategy fails. For example, turning scientific-research-oriented parallel
computers into real-time, signal-processing systems may require new operating systems to meet
military reliability, availability, security and real time response guarantees. If vendors over-
specialize to meet scientific research market needs then the system builder may have to
reengineer many architectural capabilities to meet the new demands, eg, delivering constant
input/output bandwidth rates. The gains of a COTS strategy are an illusion if COTS systems are
not adequately general for myriad application types and characteristics.

The economy of scale of commercial hardware and software leads to wide spread use of COTS
workstations. As a result operating systems, data base systems and high level languages are
readily available for scientific and commercial uses of workstations and personal computers. The
success of workstations and their ever increasing performance and programmability leads to the
same high expectations for parallel processing. Commercial parallel processing industry success
is important to the use of parallel processing in C3I systems. C3I system developers need
economy-of-scale hardware and software for parallel system, applications, tools, and
development processes. Presently parallel processing attracts too few independent software
vendors.

Highly competitive markets drive the technology of computing. As a result, technology
significantly affects the application of parallel computing. The parallel machine OLTP and DBMS
industry shows the success of large processor count parallel computers in multiuser applications.
Business information system builders now embrace small-processor-count symmetric
multiprocessors for those applications. (Both Compaq and Sun sell over 10,000 units per month as
file and query servers.) Workstation, symmetric multiprocessor and scalable parallel vendors now
compete in the same market. This convergence shows that parallel computers have market
viability. However, few independent software vendors are aggressively porting functional
applications to parallel computers. Until they do, the market may remain viable but constrained.

1.5 Software Engineering Issues

In sequential computing there is a quantitative measurement capability based on instruction timing and
the mix of instructions in a typical application. In parallel computers, performance benchmarks and
application suites are not adequate.

Software engineering is a discipline that deals with the large, complex, dynamic, mixed hardware
of C3I and large scale systems over a long life. Parallel processing technology now exacerbates the
development process by reducing portability, increasing software costs and creating performance
uncertainties. Advocates of machines specialized for scientific research often recommend them
for applications for which they are inherently unsuitable. The necessary changes in hardware,
operating system and support tools make the conversion unrealistic and risky. The result is an

Annex A - 8

industry state often described as "lack of software." Parallel computer technology must adapt to
attain the performance benefits without the process uncertainty of parallel processing. Engineers
need methods and processes that lead to an accurate representation of both applications and
architectures.

The software engineer needs a set of tools that measure the capability and generality of parallel
computers. The development process should be based on an architecturally independent model
and architectures evaluated on how well they execute that model. Once the engineer knows the
characteristics of the application's execution and its patterns of operation, they can predict a
machine's performance for the application. Separation of hardware and software development is
important to the engineering of parallel hardware and parallel software. Without this capability,
each effort by hardware vendors and software developers is ad hoc. This approach has little
potential for reaching the large markets necessary for commercial advantage. The result of a
successful parallel software engineering activity is a wider knowledge of C3I needs and demands.
In addition, the recognition that business mission critical, decision and process control systems
need similar capabilities would allow vendors to build more general parallel solutions to serve
this wide application range.

Workstation designers use application benchmarks and quantitative measures (SPECmarks) to
guide development of microprocessors and workstations. Parallel computer designers have no
similar quantitative foundation to allow performance estimates for different machines. Parallel
computers have no accepted set of commonly accepted instructions upon which to base the
measures. Researchers continue to devise nonportable mapping schemes that apply only to a
restricted type of applications. Amdahl's law continues to apply in spite of anecdotal results of
restricting application types to defeat it. As a result, parallel computers have not escaped the trap
of low efficiency and unfulfilled promises of peak speeds.

The software engineering process needs a programming model that is architecturally independent and
quantitative. For these reasons, the software engineering process lacks an integrated set of parallel tools .

Software engineering for parallel systems suffers significantly from a too rapid obsolescence of
hardware, a lack of common programming models, and the requirement to map to obtain
reasonable performance. The general process of software engineering has evolved as a basis for
managing the building of long-lived, complex Cl systems. Software engineering processes for
conventional sequential computing systems have a built-in factor-of-safety from the progress of
technology. The obsolescence of parallel computers, the long procurement cycle, and the lack of
an adequate quantitative model for performance assessment of parallel computers negatively
affects the software engineering process.

Annex A - 9

 Parallel Software Engineering Assessment
2. Applications Characterization and Classification

2.1 C3! System Applications
C3I systems need to use parallel processing to meet response time, physical constraints, and new
mission functions. Because parallel computing can improve the response time, new mission
requirements become feasible. Designers use this approach to radically change mission
requirements and can drastically improve the system's war fighting capability.

Command, Control, Communications and Intelligence (C3I) systems are large systems that must
respond to multifaceted threats and scenarios. C3I systems typically deal with complex warfare
situations and dynamic scenarios. They respond to multiple forces, to dispersed geographies and
unexpected threats across a spectrum of weapon technologies. C3I functions are both highly
complex and highly concurrent. Their components include: transformation of multisource data
into information, fusion of information into intelligence, automated and human controlled
decision making, simulated scenarios, force and weapon's system responses, communications to
higher or lower command levels, etc. Burdens of responsiveness, availability, fault tolerance and
recovery, security, and reliability, are severe in C3I systems. As a result C3I System components
include a variety of subsystems and interactions, some of which are the following:

Real time - sensor data conditioning, acceptance, and preprocessing
Data Communications
Information Base Access
Information Fusion & Evaluation
Event Detection Decision
Scenario Based and Real Time Simulation
Action Path Decision
Response System Control

2.2 Assessment of Parallel Applications

2.2.1 Parallel Processing Application Typing and Characterization
The assessment approach is to define a time response goal and a set of application criteria. These
define an application's character profile. Determination of an application's character could allow a
designer to estimate the effectiveness and feasibility of applying parallel computers to C3I system
components. These components have a widely varying requirement for execution completion
time. This varies in length and guarantee of repeatability. In this section, we give a set of
response time goals and application characters. We use a response time goal, frequency of
synchronization, complexity, resource demand (or path) stability, and interaction mechanism as
our criteria. The capability of today's parallel industry for C3I applications is limited to a narrow
range of capabilities. Instead a general parallel capability to meet all C3I character types. C3I
systems are too complex, too dynamic, too real-time constrained and too reliable to make good
use of scientific research computers for all their needs.

Annex A -10

2.2.2 Response Time Application Typing
C3I systems include many subsystems. This means that the constituent parts often have a different
response-time type. Table 2-1 shows a proposed C3I oriented typing.

Table 2 -1 Application Types

Application Types by Response Time Characteristic

Capability Constrained - Hours Frame
(Uses capability of largest parallel
machines)

Long turnaround time allowed, could use the
maximum capability of parallel computing available

Capacity Constrained - Minutes Frame
(Full Capacity required for up to an
hour)

A delay of several minutes or tens of minutes allowed
for the computation (need several iterations per day)

Interactive Multiuser * multiple users operate on each processor, sharing the
processor resource gives a high transaction rate

Single User Interactive* yet a goal is set for interaction with users
Single Job Interactive * fast interaction with a single
user is necessary

Response Time * Response Time Goal - Graceful response- to-failure to
meet time

Hard Real time * Guaranteed maximum response time

Continuous Data Rate * Perform a continuous process at a minimum input
data rate; reduce the input rate to a lower output
rate; (buffers typically provide continuous rate to
allow for catching up when a rigid time goal is
missed)

Table 2-2 rates various applications.

Table 2 - 2 Some Parallel Applications by Response Urne Type

General Category Examples Usual Response Time Type

SCIENTIFIC
Large Scale Scientific
Research Codes - Grand
Challenges

Weather Modeling
Climate Prediction

Hours to Day Frame (Capability)

TECHNICAL
Engineering Applications Semiconductor modeling, Electronic Design,

Mechanical Design
Chemical and Molecular Modeling,
Fluid Dynamics, Combustion,
Biomedical, Composite, Manufacturing Design,
Materials

Wanted to be Minutes (Capacity)
but most often Hours (Capability)

Annex A-11

General Category Examples Usual Response Time Type

BUSINESS
Client Interaction
Applications

Customer Interaction
OLTP
Data Base Management System

Multiuser Interactive
Multiuser Interactive
Multiuser Interactive

Business Reaction Knowledge Based and Neural Network
Decision Automation
Data Base Management System

Single Job Interactive

Response Time Goal

Business Decision Support Strategic Decision Query
Data Mining

Hours to Days Time Frames (Capability)

Communications
Applications

Voice Response
Switches
Multimedia

Constant Data Rate (for Voice)
Response Time Goal (Telephone)
Multiuser Interactive

COMMAND, CONTROL,
COMMUNICATIONS &
INTELLIGENCE

Image Processing &
Understanding

LIDAR Constant Data Flow (Processing)
Response Time Goal (Understanding)

Command Decision
Support

Single Job Interactive /
Response Time Goal

Information Base Access Shared Situation Data Base Multiuser Interactive

Data Fusion Target Tracking Response Time Goal

Information Fusion &
Evaluation

External Events combined with Target Events Single Job Interactive

Event Detection Decision Event Matching Automatic - Guaranteed Response Time
Manual - Response Time Goal

Action Path Decision Command Scenario Matching Response Time Goal

Planning and Scenario
Simulation

Battle Plan Preparation Single Scenario - Hours Frame (Capability)
Multiple Scenario - Minutes Frame
(Capacity)

Real Time Simulation Event Projection & Prediction Response Time Goal

Process Control Weapon System Control
Am & Fire Missile System

Guaranteed Response Time
(Real Time)

Visualization Battle Situation Display Interactive

Real time - Data Communications & Distributed
Identification Data Delivery

Guaranteed Response Time (Real Time)

Real Time -sensor data conditioning, acceptance, and
preprocessing

Guaranteed Response Time

2.2.3 Application Character
Worlton and Associates have published a classification of scientific computations based on scale
of parallelism, uniformity of communication, distance of communication, and granularity of
synchronization. C3I applications need a more robust character set due to their wide range of

Annex A -12

mission needs. Figure 2-1 gives a sixteen-way division for four criteria that are more suitable to
C3I applications.

Resource
Demand
Stability

Inter-
action
Mech-
anism Dynamic Static

Synch-
rony
Grain

Symbolic

Infre-
quent

o
 o

Frequent

Message Least
Difficult

Extensive (unstruc-
tured)

Intensive (struc-
tured)

Complexity

Figure 2-1. Characterization of C3I Applications

Complexity is extensive if one cannot analyze and understand its paths ahead of
execution. One can predict the paths of intensive applications because of a defined
structure.

Annex A -13

■ Interaction is by message passing if all communications consist of movement of data,
symbolic if control synchronization is present.

■ Path Stability is dynamic if resource demands can change based on the decisions during
processing, static if resources are rigidly assigned.

■ Synchrony Grain represents the ratio of parallelism operations to ordinary instructions.
Frequent implies a higher fraction of parallelism synchronizing operations when
compared to ordinary instructions. Infrequent implies a small fraction number.

According to this scheme the most trivial parallel application character is intensive,
communicates via large messages, has static resource demands, and infrequent synchrony.
Replicated programs operating on fixed, resident data are of this type. The most difficult
character is extensive, interacts symbolically, changes resource use unpredictably, and has
frequent synchrony. Parallel operating system kernels might be an example of the most difficult
type.

2.3 Parallel Application Review
Our character rating should allow an evaluation of successful parallel applications. This should
show how well the computers upon which the successes were based might support C3I
applications.

2.3.1 Scientific Research Applications
Baskett and Hennessy [Baskett93] describe some parallel techniques used in scientific
applications. They give the following problem types and the techniques for obtaining high
performance:

♦ multipole - treat clusters of particles
♦ direct matrix - do blocking and tiling
♦ iterative - combine grids from discrete grids (multigrid)
♦ spectral - tile

Tiling means grouping of clusters of frequently communicating tasks to reduce communication
between processors. These methods are necessary to obtain effective operation on today's parallel
computers. Note that applications are often selected to match the machine as a research project.
They are not, as is necessary in C3I applications, constrained according to C3I mission
requirements.

These applications are Capability Constrained time response types. Vendors tune the operating
systems, user tools, prograinming languages, and infrastructure to this response type. The
character of scientific and engineering research applications tends toward intensive, message
interacting, infrequent synchrony and static resource demanding. Spectral methods may interact
symbolically, that is operate in a data presence driven mode. Similar application character are

Annex A -14

often found in the white zone on the bottom and right side of Figure 2-2 where the character
visualizer is filled in for several applications.

2.3.2 On-Line-Transaction and Decision Support Queries
Data base queries for on-line-transaction-processing and decision support systems are another
successful application of parallel computing. These are the multiuser interaction
time-response-type. Their unit of interaction is a transaction. These systems have the character of
intensive, frequent synchrony, static resource demanding and message passing. However, some
OLTP systems do have extensive portions hosted on each node. The complex interaction is
necessary to keep five or more users active on each node and to overlap disk accesses. For
example, a sequential program converts complex queries into multiple transactions and parses
them out as transactions. Decision support queries may have extensive portions to parcel out
transactions to perform queries in parallel.

An analysis of the interconnect structure of large parallel data base machines shows a highly
capable interconnect structure. This was necessary for supporting both frequent synchrony
messages in the system and the message passing demand. Symmetric multiprocessor machines
maintain balance by keeping the processor count low.

2.3.3 Communication and Multimedia Switches
Communication switches are another successful example, although most of those presently in use
are special purpose PBXs and not general-purpose parallel machines. They typically do
telephonic switching, but vendors plan multimedia applications. These are constant bandwidth
time-response-type applications. They are intensive, message passing, with infrequent synchrony.
(Synchrony activity is only used for the selection of the switch route.) The switch application
resource is static design.

Forecasters predict that the delivery of multimedia services is a future large market application.
This new application may reverse the trend toward lower connectivity because when the
computer acts as a specialized switching unit, matching channel input to output under infrequent
interactive commands, the higher connectivity is necessary. Multimedia switching is a
constant-bandwidth time-response-goal application. Its character is infrequent synchrony
(subscriber requests), message interacting (long multimedia data streams), static resource demand
(always at full capacity) and intensive complexity. It has a high availability and a high
input-output requirement.

2.3.4 Signal and Image Processing
Signal and image processing are examples of special purpose parallel machine successes. They are
constant-bandwidth time-response-type, although the systems they are found in may have other
time response types. One characteristic of these applications is the lack of storage. The system
brings in signals, converts, and combines them into events to transmit to the rest of the system.
These applications are intensive, message passing, with frequent synchrony with static resource
demands. Frequent synchrony results if interaction between fast fourier transform butterfly
nodes are distributed. Parallel signal processors of this type are found in many C3I systems. A

Annex A -15

variety of real time operating systems and libraries are available. These applications may also
used in process control systems but not as the controlling processor. Other application successes
are those that can be placed in attached processors. These have a character of intensive, message
passing (large blocks), infrequent synchrony, and static resource demand with respect to the host
processor.

2.3.5 Replicated and Multiple User Engineering and Business Applications
Many common parallel engineering applications are code and design replications on several
processors with one parameter set per processor (Single-program, Multiple-data). These
applications are most often Capacity Constrained or Capability Constrained. They are the
simplest example of intensive, message passing, static resource demand and infrequent
synchrony character. In many cases the parallelism can be created interactively by the engineer
using network commands. Interaction is via message passing. The resource demands are static
and the synchrony is infrequent. It appears that many applications with this character are
suitable for operation on clusters as well as on multicomputers and multiprocessors. Other
commonly known applications tend to contain a significant fraction of extensive code combined
with a core of intensive solver code. Evaluators often cite NASTRAN as an example As presently
formulated, it is not effective in a single-program, multiple-data mode unless different processors
perform a copy of NASTRAN on different parameter sets.

2.4 Character Rating of Selected Applications
Figure 2-2 gives the approximate character of application types discussed above. Note that no
general application can be specifically placed in a character square - only a specific one. This
display shows the place that these applications would tend to be found. That is, along the
message passing, infrequent synchrony row or the intensive, static resource demand column.

Annex A -16

RESOURCE DEMAND

dynamic static

si
LJjLJ
I—LU

o
.a
E
> to

0
a>
o
</>
to
©
E

multiuser
OOP

decision
support

decision
support

replicated code

signal
processing
image
processing
spectral

direct matrix

multipole
iterative
OOP
multimedia
replicated code
communications

c
0
D
O"
0

c
0
D a
0

> z
O

&0

extensive

intensive

COMPLEXITY

Figure 2 - 2. Character of Selected Applications

Annex A -17

 Parallel Software Engineering Assessment
3 C*l System Focus

3.1 The C3! Requirement
Like many process control and alarm systems, the components of C3I systems detect, track, identify targets,
decide upon action, and take action. However, the C3I system goes further. Commanders find that these
systems give significant advantage when they distribute them across a wide or global area. It also includes
components with forethought and planning processes. The system includes abstraction of enemy actions and
responses. Its builders must include the following: Satellite sensors, flying radar platforms, radio signal
senders and receivers, and a vast array of sensor platforms. These collect data and combine it into data bases
to create a vast amount of information. Other parts keep a data base of conditions and state of readiness of
weapons, sensors, personnel and supplies.

Projections into the probable future is a further feature. Commanders create battle plans from the C3I system's
intelligence data base. Those data bases reflect the present state of battle, projected supplies, personnel, and
battle scenarios. Often the history of similar actions or battles is on line. Note that the time responses of the
components vary significantly. Some require hard real time, where the system absolutely guarantees response
time. Some require only very soft and casual timing. Often the extra iterations would improve plan quality by
running more scenarios or iterations each day. These improvements will become common place when the
capability is available.

Human interaction is common within the system, due to the complexity and uncertainty of decision making.
Humans also make some decisions using only imprecise data and information. Errors due to unavailable,
incomplete or imprecise information can lead to serious trouble. Errors often occur due to lack of information
being brought to the human attention or to right location. As a result, humans make their decisions using
information that is inaccurate or incomplete. This aspect of interaction with the system is one of the causes of
complexity and dynamism of C3I systems. Resolving this difficiency is is one of the opportunities afforded by
general parallel systems that provide symbolic processing of the most difficult character.

Failures can make C3I systems famous. Examples of this are: the destruction of an Iraq passenger airliner
during the Gulf crisis or, the more recent example, when friendly helicopters were shot down when mistook
for a Russian model. In both examples all the information was available somewhere in the system to make the
correct no-fire decisions. However, the decision maker did not have it or could not use it. The individuals
responsible typically defend their actions by citing their adherence to protocols, standards, procedures and
training. All are parts of the "system" that software engineers must consider when they design and build.

Future C3I systems are likely to add a significantly higher level of learning and adaptive methods to provide
the information needed to avoid false detections. The delivery of information to the proper location or the
removal of false information causes the parallel complexity challenge. The truthful and complete situation
awareness capability will require parallel symbolic computational loads quite different from today's more
structured numerical parallel applications. Thus, C3I system builders face significant challenges for
improving the capability of their systems. Parallel software engineering methods and improvement in the
parallel industry infrastructure are needed to help in meeting this challenge.

Annex A -18

3.2 C3! System Overview
Therefore, a C3I system is a large, dispersed, rapid response decision support system. The system includes
global components that provide information for decision making by a hierarchy of commanders, leaders, and
followers. Its information base changes frequently and contains incomplete and imprecise information. When
active a C3I system has a planning horizon is at most daily, and often hourly. It includes real time process
control that recognizes, evaluates, notifies, and responds to external events. Once the system makes the
decision to respond, the C3I system can bring lethal force on any identified targets. As a result, its operating
systems and application software must be extremely available, fault tolerant, reliable, and secure.

A C3I system component works in a myriad of physical situations: in fighter aircraft, in large aircraft, in
satellites, etc. Therefore, these components must provide their capabilities within rigid physical constraints of
power consumed, heat produced, area and volume taken and electromagnetic emissions. Similarly
environmental constraints have wide range of shock, temperature, humidity, and pressure. Since the C3I
system is subject to enemy attack, it must survive loss of parts with graceful loss of capability. Fault
tolerance and rapid repair are necessary. The C3I system is very complex, and is most likely built over many
years. It is also likely to have an expected useful life measured in decades. It must be flexible to allow staff to
modify it to meet new threats or unexpected applications. Developers also must consider that they might use
the components in multiple higher level systems.

3.3 Parallel Computing and C3! Systems
Due to the distributed and global nature of C3I systems, designers place the capability for response into
individual components or subsystems. Our focus is on how to carry out each component with parallel
processors to reduce its computation time. The reduced time allows builders to significantly improve the C3I
system, by adding more decision making and information dispersion capability.

The budgets for C3I systems require more commercial-off-the-shelf and high level coding content than used in
the past. Faced with these burdens the builders of C3I systems need both parallel computers and parallel
software engineering processes and tools. The combination must give reasonable development and life cycle
costs while delivering expected performance levels.

3.3.1 Effect of Technology on C3I Systems
Ever increasing demands for higher performance is a common characteristic of large systems, both military
and commercial. New missions and threats require continued performance increases and functional
improvements within existing physical constraints. Excellent progress in workstation performance and
human interfaces and standards (e.g., Common Operating System Environment or COSE) has led to higher
expectations from the user. Now one can create complex requests and demand increased system capacity
without realization of the demand's scope.

The potential leverage provided by parallel computing is significant for improving the performance of a C3I
system component. However, C3I components often have complex and dynamic internal interactions. They
may have the need to synchronize or communicate frequently and some have little recognizable structure.
However, C3I systems are also highly concurrent. The potential amount of parallel processing feasible within
a given period is very high, in spite of its unpredictable nature. C3I systems gain an advantage only if the

Annex A -19

parallel computers are capable and software is available for processing dynamic and complex parallelism.
Note that numerical signal processing inputs are structured and regular. C3I designers understand this type of
intensive computation well. They have a less firm grasp of the symbolic parallel processing necessary to
make complex and dynamic decisions.

3.4 C*l System Limitations
The government makes significant investments toward the development of hardware systems, software
applications and software tools for building and programming high performance parallel computers. So far
these investments fail to address all the requirements of Air Force C3I systems. Specifically they lack
availability, real time response, security, fault recovery, reliable software, portability and reusability, etc. In
addition, programming processes remain costly, difficult and non portable among different parallel
computers. Users often find that high level programming only works for selected applications that consist of
replicated copies and multiple independent tasks. They find reasonable performance efficiencies difficult to
attain. System builders usually find a mismatch between the Air Force's dynamic and unstructured C3I
applications and the capabilities of today's high performance parallel systems. Commercial system builders
find that their distributed servers are good matches only for multiuser "throughput" processing, where
multiple transactions and multiple users run simultaneously. Their success has not yet been consistently
replicated in complex business decision support systems with applications more closely attuned to C3I
systems.

Potentially, parallel processing offers significant operational speed and cost advantages for building C3I
systems. However, the present limitations of commercially available parallel computers restrict their use to
static and well structured C3I system components. These limitations also lead to expensive development costs
and inefficient use of processing capability. In addition, the budgets for C3I systems require more
commercial-off-the-shelf and high level coding content than used in the past. Faced with these burdens the
builders of C3I systems need both more capable parallel computers and parallel software engineering
processes and tools. The combination of parallel systems and software engineering processes and tools must
yield reasonable development and life cycle costs and deliver expected performance levels.

3.4.1 C3I System Profiles
The goals of C3I systems are the following:

♦ Reduced Planning and Execution Cycle - Move Capability to Capacity - more iterations per day
♦ Decentralize Execution Control - Automatic and Human Local Situation Response
♦ Improve Joint Interoperablity/Joint/Common Evaluations - Global Views for Decision Making
♦ Distributed Command & Control - Communications of Plans, Situation Evaluations, and Actions

The computing technologies necessary for building Command and Control systems are:

Decision support systems
Systems engineering and integration
Distributed computing environments
Distributed data base management
Human computer interaction

Annex A - 20

♦ Communications networks
♦ Intelligence exploitation
♦ Surveillance

The range of processing character in C3I systems is large. An Air Campaign Plan guides the operations. The
plan includes air battle planning, projected intelligence, battle plan execution, and enemy situation
correlation. Those plans require simulations, historic data bases, and integration communications across the
command structure. At each level, the users monitor, replan, direct and act upon the battle situation. Some
plan elements change interactively, others hourly, others daily.

During execution, some components of the C3I system operate automatically and respond to threats in real
time. Others operate on the time frame of human interaction. They display information and interact with
humans for decision processing. Surveillance systems collect and process data collected by many mechanisms
across a wide spectrum. Multiple types of radar, radio interceptions, identification signals, optical detection,
and human visual information are necessary. These signals are processed and integrated with intelligence
information to provide a decision information base.

Some components communicate with other C3I systems to obtain a global situation overview to guide
subsequent battle decision making. Some actions follow battle plans made on a daily cycle. Often planners
must adapt these plans and decision guidance on a short cycle. Ideally, a planner has multiple simulations of
the proposed scenarios resulting from a plan. Data bases of assets and personnel are updated and used for
planning. They are the basis for making resource requests and reports to higher level commands.

3.5 Application Character in C3I Systems

3.5.1 Application Character for Components
Table 3 -1 gives some processing types that match C3I system computations. (Character criteria are defined
in the Applications Section 2.) Figure 3 -1 locates the character tendency of each application.

Table 3 -1 Cl Activity and Computational Components

Csl Component Mission Description Application Characteristic
(RTT = Response Time Type)

Signal Processing & Data
collection - filtering and
preparation

spectral, direct matrix, signal feature
extraction, communication

RTT: Continuous Data Rate
Concurrency High; Resource
Stability Static-
Synchrony Grain Frequent;
Interaction Symbolic (Data Driven);
ComDlex'rtv Intensive

Annex A - 21

C3I Component Mission Description Application Characteristic
(RTT = Response Time Type)

Surveillance, target symbolic feature extraction and RTT: Response Time Goal
identification, friendly interpretation, feature generation - Concurency Low;
identification hypothesis learning, feature extraction Resource Stability Dynamic;

signal recognition, false signal removal. Synchrony Grain Frequent;
identification & false alarm detection Interaction Symbolic;

Complexity Extensive

Air Battle Planing: Weapon planning and scenario evaluation, Al, RTT: Capacity Constrained
resource allocation, air battle data base, system decision making Concurency High;
simulations, scenarios. improvement (Al) Resource Stability Dynamic;
projection of events, battle Synchrony Grain Frequent;
planning/history Interaction Symbolic;

Complexity Extensive;

Battle Execution: command real time, dynamic capability and fault RTT - Hard Real Time
response (rapidly varying tolerance system fault correction and Concurency High;
demands on system). recovery (system coordination with other Resource Stability Dynamic;
automatic response execution components) Synchrony Grain Frequent;

Interaction Symbolic;
Complexity Extensive;

Human interaction decision control, displays, alarm RTT Interactive Multiuser
information presentation. Concurency Dynamic;
human interaction (GUIs, transaction Resource Stability Dynamic;
processing) Synchrony Grain Infrequent;

Interaction Message;
Complexity Extensive;

Information Display graphics, rendering RTT - Response Time Goal
virtual reality (scene projection & Concurency High;
computation) Resource Stability Dynamic;
sound and voice Synchrony Grain Infrequent;

Interaction Message;
Complexity Intensive;

Battle actions potential event recognition RTT: Response Time Goal
(multidimensional correlation. Concurency High;
blackboard), event determination Resource Stability Dynamic;
(numerical, multipole, symbolic), decision Synchrony Grain Frequent;
surface computation (neural networks, Al), Interaction Symbolic;
multiple event association and data fusion Complexity Extensive;
(fuzzy logic)

Battle Commands weapon system command, human RTT: Interactive Single Job
overview, command overview Concurency Low;

Resource Stability Dynamic;
Synchrony Grain Infrequent;
Interaction Message;
Complexity Extensive;

Battle replanning: battle linear algebra, resource modeling, data RTT: Capacity Constrained
resource limits, constraints and base access Concurrency Low:
projections Resource Stability Static;

Synchrony Grain Infrequent;
Interaction Symbolic;
ComDlexitv Extensive

Annex A - 22

C'l Component

Situation Evaluation, position
and geometry correction

Communications, external
information exchange, joint
operations and multiple users

Mission Description

Alters, transforms, spectral, real time
decision processing, data base

communication switches, decision making,
transaction processing, data base,
external oversight, signals via IFFN system

Application Characteristic
(RTT = Response Time Type)

RTT: Interactive Single Job
Concurrency High:
Resource Stability Dynamic;
Synchrony Grain Infrequent;
interaction Symbolic;
Complexity Extensive

RTT: Response Time
Concurrency High:
Resource Stability Dynamic;
Synchrony Grain Infrequent;
Interaction Message;
Complexity Extensive

Annex A - 23

RESOURCE

dynamic

E DEMAND

static

IN
TE

R
A

C
TI

O
N

M

E
C

H
A

N
IS

M

i

ü
o

JQ
£
>
CO

bottle replaning

situation
oujareness

c
0
D
Ö"
0

»4— c
S

Y
N

C
H

R
O

N
Y

G

R
A

IN

surveillance

air bottle plan

battle executior
battle actions

signal
processing

image
processing

c
0
D
O"
0
v_

0
a>
ö
</>
CO
a)
£

bottle commanc

information
display

human
interaction

communication!

extensive

c
intensive

COMPLEXITY

Figure 3-1. Character of Various C3I Applications

Annex A - 24

Parallel Software Engineering Assessment
4 Parallel Architecture Assessment

4.1 Parallel System Types
C3I systems include application components of various time response types and physical constraints. The
optimum system design might include different parallel architectures of many organizations and types to best
fulfill mission needs. The following parallel system types may be necessary in C3I systems:

♦ Capacity-scalable Multiprocessors (constant bandwidth capacity between any two processors for any
processor count)
Cost-scalable Multicomputers (constant bandwidth capacity added per node)
Symmetric multiprocessors (bus limited with shared memory)
Networks of computers (clusters)
Multiserver systems
Heterogeneous computing

Appendix A. gives the definitions of these systems as they relate to C3I systems.

4.2 General Assessment of Parallel Computing

4.2.1 General High Performance Architectural Trends
Shared memory vector supercomputers still set the standard for production supercomputing. They provide
extremely high individual processor performance and a processor count of sixteen. Most often, they deliver a
higher fraction of their maximum performance than other parallel architectures. The large-parallel vendors are
attempting to move toward production systems by lowing their maximum processor count and paying more
attention to provisions for input/output and multiuser access. As a result, they now use the label "scalable-
parallel "instead of the "massively-parallel" label. Vendors of scalable parallel system now place greater
importance on system robustness to make their move to production computing. Shared memory symmetric
multiprocessors with low processor counts are very successful commercially as throughput servers. Clusters
are now available for replicated and multiuser throughput applications.

4.2.2 Microprocessor Trend
Vendors of most parallel machines most often use the same microprocessors as found in workstations. Using
those microprocessors as the processor in parallel systems is believed to keep a vendor on the latest
technology curve at a low cost. Those who wish to cover large-scale multiprocessor, cluster, and symmetric
multiprocessor markets gain a standardization advantage. Vendors also may not have to develop all of the
individual node operational software. Application vendors are also more attracted a familiar processor when
porting. In addition, microprocessor vendors are taking a more active role in symmetric multiprocessor
designs and clusters. Table 4 -1 gives microprocessors that are used in selected parallel systems. The trend is
not universal. nCUBE maintains that a special purpose processor with integrated interconnect paths is a
better path to high availability and robustness.

Annex A - 25

Table 4 -1 Microprocessor Application to Parallel Computers

Micro-
processor

Parallel
Computer

Type Interconnect
Structure

Comment

MIPS SGI

PowerChallenqe

Multiprocessor Bus based Symmetric
shared memory

(18 most powerful nodes
or 36 with less powerful)

PowerPC IBM
SP-2

Multiprocessor Cross Bar Large processor counts

Alpha Cray Research T3D Multicomputer (3-D mesh) Tightly Coupled to Vector
Super Computer

Alpha Digital Equipment
Corp.

Multiprocessor Bus based Symmetric
shared memory

Precision Convex Computer
(Exemplar)

Multiprocessor Both Bus Based Symmetric
and SCI directory based
shared memory

SPARC Sun Microsystems
and Cray Research

Multiprocessor Bus and Multi-Bus Based
Symmetric shared memory

(Sun 20 and Cray 64
maximum nodes)

SPARC Thinking Machines Multiprocessor (a limited fat tree) SPMD and SIMD operation

Pentium AT&T (NCR) Multiprocessors
(2 types)

Symmetric shared memory
to 32 nodes. Crossbar
based above

Software tools across both
architecture types (OLTP
and DBMS)

i860 Intel Multicomputer 2-D mesh Large maximum count
(not a workstation
microprocessor)

Pentium Compaq, Encore,
Gateway, Dell, IBM,
AST Research,
Hewlett-Packard,
etc.

Multiprocessor Small Processor Count
Symmetric shared memory
for Network Servers

UNIX and Windows NT
Bus Chip sets: Corollary, LSI
Logic, Pequr and Wyse

in-house nCUBE Multicomputer (hypercube) Large maximum processor
counts

4.2.3 Processor Count Trend

4.2.3.1 Large System Maximum
Scaling of an architecture to Teraops (1012 operations per second) peak performance is a feature
necessary for only a few systems in very few locations. Focusing the design of cost-scalable
multicomputers to meet those needs often compromised performance at a lower processor count.
This sacrifices volume sales in a larger potential market. Application scalability over a range of
ten to a few hundred processors is more important than providing thousands of processors.
Without an effective and economic low processor count capability, market volume lacks the gross
margin necessary for building operating system and other system software. Sales volumes

Annex A - 26

necessary to achieve critical economic mass, require volume at lower processor counts and
demonstration of high processor count capability. The latest large-scale architectures now trend
toward better performance at reduced maximum processor counts - tens to hundreds not
thousands.

4.2.3.2 Symmetric Multiprocessor Processor Trend
A second trend that has significantly more economic power behind it is following this sequence:

♦ Start at a very low count, as low as two to four
♦ Convince users of its value
♦ Incremental build software capability
♦ Increase processor count as hardware interconnect technology allows

The vendors of workstations and personal computers have taken that approach. Competitive
designs are coming from symmetric multiprocessor vendors using high performance bus
systems. Once limited to four to eight processors, symmetric multiprocessors now go to
sixty-four processors (Cray Research SuperServer) using four complete cache coherence busses.
AT&T Global Information Systems sells server systems with data base and OLTP applications.
Their models scale across symmetric and tightly coupled distributed multiprocessor architectures
over the range of two to 512 processors.

4.2.4 Interconnect Latency and Bandwidth Trend
The cost-scalable multicomputer vendors trend to the optimum point on the connectivity (the
number of network routing paths from a given point) and bandwidth curve. Now under the
name of "scalable" parallel processing, this trend is changing. A generation back, researchers
favored the hypercube and other high connectivity networks. Then designers began to reduce the
connectivity and increase the bandwidth of individual links. Their reason was that the
communication mechanism - message passing using large messages - fits well with low
connectivity interconnects. Delays in the protocols for creating and transferring messages
dominated the latency. Engineers are reversing the trend by reducing protocol delays. Examples
of the trend reversal are IBM with eight way cross bars, and Cray Research with a 3-D mesh.
These changes stress low latency for small packet transfers. nCUBE'suse of an eighteen-way path
is useful in the multimedia server application, another indication of a reversal in this trend.

4.2.5 Network Bandwidth Trend
The addition of fiber channel standards for local area networks and high performance National
Infrastructure optical fiber networks will introduce a new factor into the trends for
multicomputers. The expected result is that there will be a well defined split in the systems used
to support applications of different character. This trend will also change the designs of C3I
systems. Designers will likely identify components differently if this bandwidth capability is
available. In addition, the higher network bandwidth capability creates a problem for workstation
that must match the network's capability to deliver data.

Annex A - 27

Such high bandwidth capability provides the capability necessary for intensive, large-message
interacting, infrequent synchrony, and static resource applications. Many applications with that
character may transition directly from multicomputers into very high performance clusters. These
applications internally use large messages to cover protocol latency. Many will advocate that this
changes the balance toward use of multiple workstation clusters and away from multicomputers
for capacity constrained and multiuser interaction applications. The present successful
application character types on multicomputers will turn to the cluster as a more cost-effective
means of computation.

However, the impact on more dependable time-response-goal applications will be small. There
will be little impact on applications with dynamic resource demand, frequent synchrony,
symbolic interaction, and extensive complexity character. These require a close coupling and
latency hiding not feasible on the workstation cluster or multicomputer.

4.2.6 Capability Trend
Vendors have made significant increases in input/output capability and disk support to make
their machines more practical for continuous production operation. A glowing success of parallel
systems is the capability to provide high throughput for transaction processing systems. Pyramid,
Tandem, AT&T, Sequent, and Encore are companies that do business in this important
application area. However, their systems face a barrier to performance on complex query
solutions because they have limited capability for path changes during execution. (Sequential
based tools now statically aid complex queries.) A parallel intelligent decision system approach,
one that dynamically issues new query paths, requires an advancement of machine capability
beyond today's throughput processing.

4.2.7 Cost Trend
Cost per peak speed trends are up for multiprocessors. However, performance delivery is
improving in some models and cost per delivered performance may be down. To meet quality
necessary for production environments, there is a necessity to increase interconnect performance,
provide fault tolerance, develop robust operating systems, and provide the input/output balance.
Paying for this requires added costs. However, good designs should deliver more effective
performance with the added capability.

The foundry cost differential between using a specialized processor instead of a standard
workstation microprocessor is not the significant cost benefit factor once believed. Interconnect
costs are necessarily high when vendors serve a broad application spectrum. System software
costs have been significant. Reliability and instability problems have plagued some scalable
architectures. The conclusion is that good computers are expensive to build. Vendors still target
designs of today's machines to particular markets. This lack of support for a broad application set
has several disadvantages. It leads to a limited market and does not allow for amortization of
either system or application development costs across several machines.

Annex A - 28

4.3 Related C3I Factor Trends

4.3.1 Programming Model Support Trend
Features have been added to the interconnect/backplane to support either shared memory or
scalable parallel message passing communications between processors. The shared memory
programming models have cache coherence components that allow cache updates when any
processor writes a location. Dedicated hardware that transfers buffers between processor
memory (e.g., IBM SP2) also directly supports message passing. Meiko supports the Computing
Surface model in a VLSI interface circuit at each processor interface to the interconnect. AT&T
provides its commercial software tools for decision support DBMS access on small symmetric
multiprocessors and on its large-scale parallel machines. The largest of these machines emulate
shared memory to ease programming effort.

Meiko, IBM, Cray and Convex have recently introduced machines with global virtual memory,
more robust and reliable interconnect designs and more balanced input/output capability. IBM,
Cray, and Convex have made heavy investments in complete solutions, including commercial
business and production technical design and engineering applications from independent
software vendors. The Scalable Coherent Interface (SCI) bus used by Convex also has a large
processor-count and a directory-based-cache-coherence mechanism. They, by necessity, have
concentrated on higher reliability and programmability than the early research machines. If they
succeed in meeting commercial availability and programmability standards, they have the
potential for widening the acceptance of parallel computers. This could convince large numbers
of independent software vendors to begin to invent and provide new parallel applications.

If this trend continues, the small message latency in multiprocessor machines of equal size will
reach a few hundred ordinary instructions. This will make the distinction between small message
passing and shared memory operations less visible. Both require a formal protocol for sharing
objects. Designers can improve both by increasing local store for application context and by
providing fast hardware multithreading between accesses and memory. Features from research
computers such as the MIT and Motorola T and the Horizon Tera will be added to make a more
suitable general purpose multiprocessor.

4.3.2 Obsolescence Trend
There is a flux in performance and architectural designs on the market. Because of vendors'
concentration on research markets, yesterday's machines emphasized peak performance instead
of reliability and programmability that is necessary in the commercial marketplace. As a result,
significant government direct and indirect funding is necessary for their existence. The risk to the
government is that many programs committed to those machines cannot take advantage of
software from a broad base of suppliers. This cancels the anticipated COTS advantage. As a result,
C3I systems builders cannot take advantage of a broadly accepted programming model and tool
sets that meet all their need.

Annex A - 29

4.3.3 Availability Trend
The latest trend is to add hardware and operating system features for increased availability.
AT&T 3600, with folded Banyan interconnect, has built in redundancy control for fault tolerance.
The folding provides lower latency when fully functional. One failing of research oriented
parallel computers is that both hardware and operating system reliability have fallen short of that
required in both engineering and commercial processes. Since the most common use is outside a
mission critical application this deficiency survives. Industry's trend is to correct this shortfall.
Adaptation outside the research computing environment requires high availability.

4.3.4 Real Time, Security and Physical Constraint Trends
The capability to execute acceptably within hard real time systems is not one that scalable parallel
computers have reached. This area remains a specialized parallel processor field with
corresponding high life cycle costs and long term support issues. Some developers are building
hardened and repackaged versions of parallel research multicomputers. These developers are
now discovering that they require a special operating system kernel to meet real time goals. A
guarantee of time response requires capabilities far from those in a computer designed solely for
capability-constrained and multiuser-interactive applications. The real time result has little
resemblance to any software from the scientific research community. Therefore, there is too little
technology spin-in from the commercial environment for the government's benefit. Turning a
scientific research machine into a real time one may be more difficult than building a real time
capable one from first principles.

4.4 Architectural Trend Conclusion
The shift toward production from research is leading to the following technical trends in parallel
computers:

Use of workstation-compatible microprocessors
Convergence of processor count
Increased interprocessor bandwidth/ decreased latency
Programmability enhancing mechanisms
Better balanced input/output, disk, and memory subsystems
Improved fault tolerance, reliability, and decreased repair effort and time

The latest market introductions have punctured the idea that cost-scalable computing is generally
useful. High performance clusters are threatening those architectures for large-message passing
applications. Capability-scalable machines deliver a better cost- to-effective-performance ratio
than cost-scalable ones. The extra investment in interconnect structure offsets lower software
costs and wider applications set and market. The extra hardware and system software for fault
tolerance are necessary for the commercial market. Vendors should find that satisfied clients
return these costs by purchasing more goods.

Machines are now more capable but with fewer processors and lower peak speeds. Higher and
more stable communication bandwidth capacity between processors is the result. Vendors are

Annex A - 30

putting hardware support parallel commands and programming models into practice.
Availability increases because fault tolerance features must meet commercial user needs. Some
data base and transaction type applications have been ported across a range of symmetric
multiprocessors and distributed multiprocessors. The mix of architectures is still too diverse.
However, the trend to increase interconnect capability reduces the wide differences between
architectures. These differences become less a disadvantage to software engineering processes for
parallel systems. This is because adequate capability gives faster parallel instructions over a wider
range of applications. Thus, parallel interaction timings are ratings of the suitability of a machine
for an application. Then, the architecture's structure can be hidden and a quantitative evaluation
of cost-to-performance benefit comes from the parallelism content of the application.

Providing compatible software tools over a wide range of processor count and architecture pays
off, as shown by the sales success of AT&T for its OLTP and DBMS machines. As capability-
scalable machines grow in the commercial market the benefits of large scale markets will provide
better tools and broader understanding. This doesn't mean that these trends will solve all the
problems of parallel programming because today's parallel computers remain overspecialized. It
only means that it now may be feasible to accomplish some ideas and tools necessary for
portability and low-risk design.

Annex A - 31

Parallel Software EngineeringAssessment
5 Market Forces and Issues

5.1 Market Overview

5.1.1 Active Market Components
Parallel computing has achieved several high returns on investment successes. Business firms have reported
excellent results with parallel on-line-transaction-processing (OLTP) and decision support system (DSS)
applications. (See the CAPPS 94 Conference, October 17-19,1994, Austin, Texas.) They have reported high
retura-on-investment for these data-base-management-system (DBMS) applications. Commercial
information system builders like the "no brick wall" effect provided by modular growth and large processor
counts given by parallel computers. Others have found improved quality and engineering productivity by
spreading parameter sets among many program copies. Industry's use of "replicated" parallel computing
allows evaluation of design choices under simulated environments. The government's Grand Challenges have
shown that scientists can expand their problems and speed up their solutions if they find suitable algorithms.
Parallel computers work for research scientests. Some scientific applications, once thought to be unsolvable,
are now within reach of researchers.

5.1.2 industry State
However, these successes have not yet engendered a robust industry. Today's parallel systems fail to meet
many needs. The parallel successes are only for data intensive, structured, statically allocated applications.
These include the following: OLTP, a segment of DSS, replicated engineering, and Grand Challenges. They
fail to meet the complete needs of command and control systems, real time control systems, symbolic decision
making, and other time response critical applications. In addition, the limited suitability of large versions of
these machines makes system building and life cycle support expensive and difficult. There are few systems
or software engineering mechanisms that let designers design-to-deadline, predict reliable project budgets,
schedule and estimate performance.

5.1.3 Cost Model
One reason for this is that the industry has fallen into an oversimplified cost model. Too often, academic and
government researchers base their purchase on a cost evaluation, which declares that integration, software
and support are essentially free. This leads vendors into a peak-performance-at-lowest-cost strategy. Too
often, other users follow this lead and evaluate hardware in terms of peak performance per unit cost. Some
business purchasers have a better model. They buy a specialized machine based on transaction or database
access rates in an established benchmark. However, both market groups frequently fail to consider
programming, integration and life-cycle advantages. If considered a more general purpose parallel machine
would rate higher. They chose, instead, one that can execute a very limited function. This requires integrators
to build complex structures around the computer whenever it is ineffective on an operational requirement.
Therefore, they expect vendors to provide rock-bottom hardware prices and accordingly reduce interconnect
and executive software systems to their minimum. Then they pay the price in integration and services to
implement a reasonably effective solution to their application.
These peak-per unit-cost performance numbers drive the competition. Therefore, evaluators fail to make the
costs of applications programming, integration within a business or supercomputer facility, and life cycle

Annex A - 32

maintenance of applications a significant factor. Purchasers have given little incentive to vendors to create an
easily programmable computer if that computer has added hardware costs. There has been an infrastructure
development failure due to incorrect economic models of parallel computers. The lack of knowledge about the
best way to evaluate the economics of parallel computers comes from poor leadership in high performance
computing circles. A commercial off the shelf strategy for parallel computers cannot succeed until this
problem is corrected.

5.2 Market Driven Technology Forces
A successful strategy for C3I system and software engineering must be consistent with, and take advantage of,
the market power of commercial information and technical engineering systems. The strategy must consider
dynamic changes in computing paradigms. In this time of rapid change C3I system builders need to find a
strategy to gain advances in parallel computing through market shifts. Real time, fault tolerance, security, and
large scale symbolic decision applications are also important to business and technical computing. If C3I
system builders can show the way, parallel computers may provide significant capability advantage and avoid
today's high development and life cycle costs.

5.2.1 Opportunity and Challenge
The challenge to the C3I system builder is to encourage a market for parallel COTS products. To attain a
market size suitable for attracting the independent software vendors the hardware products must be adequate
for a wide range of applications. The software must be portable and effective across a wide range of
architectures and machine sizes. This may result in increased hardware costs because the vendor must beef up
the interconnect and improve fault tolerance and recovery capability. Robust interconnect performance and
machine availability is necessary.

Today's research parallel systems do not meet all the requirements of the production center for technical or
commercial computing. The available programming models yield neither portable nor scalable applications.5"1

Aggressive effort for commercial decision support systems often requires development teams of tens to
hundreds of people, (hi spite of these high costs, advocates still report a high return-on-investment.) A lack of
software engineering processes to deal with system and parallel computers often leads to inefficient and
ineffective projects. Much of the present parallel computer research community considers cost-scalability of
hardware above the need for application scalable software.

5.3 Dynamic Market Conditions

5.3.1 Expectation Expansion and Advances
The human interface is changing rapidly. Object oriented screen building has reduced the cost of conventional
interface construction and human interaction. Voice commands, pen control, written text to ASCII character
transformation, and wireless and remote, self-contained information collection capabilities are now available.
Network control and communication's software for building homogeneous clusters of computers is now
feasible for Capability and Capacity Constrained time-response-goal applications. Technology advances in

5-1 Portability in parallel computing requires both effective execution and consistent operation.

Annex A - 33

field programmable devices, magnetic storage media, and virtual reality add to the opportunity for computer
technology's capability to contribute to C3I system capabilities.

5.3.2 Demand for Commercial Parallel Systems
The 1993 New York Times best seller, "Reengineering the Corporation," by Hammer and Champy, describes
a revolution occurring in corporate organization. Corporations are rethinking fundamentals and making
radical changes to achieve dramatic results. The key to that revolution is the identification of "value added
processes." Hammer and Champy emphatically make the case that all large United States corporations must
undergo "reengineering" if they are to remain in the worldwide, competitive marketplace. Many major US
corporations are now committed to reengineering. The key to success is to use information, simulation,
communication, computer information technology to build the new process capability. The level and direction
of the "Reengineering" depend upon available and projected information technology. A significant market is
emerging for parallel computers to support the needs of corporate reengineering.

Workstation vendors play a major role in the market for parallel servers. This commercial trend reveals that
hardware vendors are expecting rapid expansion in the use of symmetric multiprocessors. These computers
operate well in a throughput mode where several users share a processor. Symmetric multiprocessors are not
subject to message-passing mapping effort. However, they require threads programming, using locks and
semaphores. A suitable technique in small projects. However, in large projects this technique requires formal
protocols and very careful prograrnming to avoid concurrency conflicts. Independent software vendors are not
enthusiastic over use of proprietary threads. They question the portability with effective performance promise
of POSIX standards since vendors still tout their proprietary organization of threads, yet claim POSIX
compatibility.

5.3.3 Large Scale Commercial Parallel Systems
These dynamic and fast-moving trends should create a market for new multiprocessor software products.
These new products create the conditions for additional hardware and software products. Synergism like this
creates a paradigm shift. If this paradigm shift is to include the larger capability-scalable multiprocessor
systems, they require a programming model that allows them to effectively execute the same source-level
code. The steps for consistent operation and effective operation on a different problem size and different
machine should be similar to workstation technology portability. Consistent and effective execution of
scaled-up symmetric multiprocessor applications on a capability-scalable multiprocessor server is the desired
capability. This capability allows development on a small scale and production on a large scale.

5.3.4 Limited Commercial Applications Successes
The reason that multicomputers are not ready for large scale decision systems in commerce is that they are
too limited in application type. [Richmond: July 1993] The introduction of large processor count
multicomputers and multiprocessors into commercial uses is inhibited by the following reasons.

♦ performance is uncertain
♦ difficulty of carrying out the project
♦ interaction with heritage systems and interface is difficult
♦ software tools are not in place

Annex A - 34

obsolescence leads to tactical applications instead of strategic
high implementation complexity leads to high life cycle costs
cost of project raises visibility to high-level management
economics allows only incremental changes, not radical ones
innovation and dramatic gains are too difficult to create

Uses of today's OLTP and DSS computers are limited to applications that are not of the most demanding
character (extensive, dynamic resource demand, frequent synchrony and symbolic interaction). Humans must
intervene and guide the interactive cycle of queries and decision interaction now demanded by large decision
support applications. Adaptive intelligence methods could do the intervening human interaction if the
computers could effectively serve these difficult application types. System builders are expecting software to
break this barrier. However, without the underlying machine and operating system capability for the most
demanding applications, we cannot expect significant market impacting progress.

5.3.5 Technical Computing Marketplace
Computer science research has failed to develop in a direction that fits it into the production engineering
process. A concentration of grand challenges has lead the field away from the industrial processes and
operations necessary for market acceptance. Typical engineering projects are performed using workstations
and low processor count servers reached via a network in a client-server mode. Their present application
acceleration direction will be to add small symmetric multiprocessors into their network. Instead of
concentrating on creating an integrated industry, parallel programming research has abandoned many
practical engineering process applications and concentrated on those requiring Teraops level processing
speeds. The result is the absence of an infrastructure that understands the transition of parallel applications

into the engineering process.

5.4 Commercial-off-the-shelf (COTS) Parallel Computers

5.4.1 Strategy for Future Cost Effectiveness
Commercial-off-the-shelf (COTS) components are important and provide an available technology for
building high performance C3I systems. The economy of scale of having commercially available hardware and
software leads to widespread use of COTS workstations and associated technology. Workstation operating
systems, data base systems and high level languages are readily available for scientific and commercial uses
of workstations and personal computers. The success of workstations and their ever increasing performance
and programmability leads to the same high expectations for parallel systems. These strategies are valid for
workstations and personal computers. However, the COTS strategy has not worked for parallel computers.

Before a COTS strategy, C3I system designers often developed special purpose parallel computers to meet
specific mission needs. Each had its applications carefully mapped to achieve high performance. Designers
isolated these specific capabilities. They placed them only where needed and where structure matched needs.
These special-purpose, parallel computers had specific, well-engineered capabilities. The development and
life cycle costs were high but they usually met stated performance and physical constraint goals. A successful
COTS strategy would significantly reduce these development and life-cycle costs. However, designers find
that vendors have tuned today's machines for specialized operations that do not match all C3I system needs.

Annex A - 35

More important, because there are no general parallel machines, designers have not created a mission vision
that significantly advances C3I systems capability as far as they could have. What one does not attempt is the
greatest loss. There are important parallel C3I system applications that designers have not attempted because
their feasibility is uncertain on today's parallel architectures. The same is true of business and engineering
processes. Computers that allow only well structured applications severely limit the vision of computing.
They reduce innovation. The parallel computer industry needs to eliminate the burden of feasibility
uncertainty for applications that do not match the specially tuned product.

5.4.2 Generality Failure Impact
A successful parallel COTS approach offers the advantages of common and widely used tools, software,
computers, and peripherals. However, attempts at a common programming model have been limited to
well-structured applications, not general ones. One reason the strategy has not worked is that advocates must
treat today's scientific-research parallel systems as specialized processors and not as general computing
products. Their applications are typically carefully selected to match the limitations of the parallel computer.
As a result, research departments use them, not the engineering production department. This limits sales
volume and product acceptance. A market that is limited to a few hundreds of units does not engender a good
strategy for attracting and building a COTS industry.

The failure at generality forces mapping and specific interaction between hardware and software. That leads
to non portable codes. A key feature of the success of workstation software is that applications could be
easily ported between vendors without detailed regard for specific hardware machine details. Hardware
vendor engineers do not need knowledge of the software vendor's applications in any specific way and vice
versa. Each goes on with assurance that they can attain a reasonable performance level without tying
themselves to a specific matching technology. Without independence of hardware and software developer
there cannot be a successful COTS strategy for parallel computing.

Since there is no general programming model, each parallel industry participant faces an added development
and economic burden.5"2 Independent software vendors find less than a critical mass. They cannot amortize
software development costs over thousands of sales. Hardware vendors fail to achieve their promises of
hardware cost saving. Hardware is often obsolete when operating systems mature. Vendors and their clients
have trouble in attaining desired performance and functionality. Clients must risk high development and
integration costs and long term development. Finally, the products do not meet the demanding application's
mix and integrity expected by consumers.

5.5 Strategy for Embracing the Commercial Successes
The opportunity for the Air Force is to recognize the shortfall in proprietary threads and large-message
passing models. Then define a standard programming model that will work on both symmetric
multiprocessors and low latency capacity-scalable architectures. Capacity-scalable parallel processing

s"2This statement implies that PVM and the MPI are not general programming models. They are message passing
models which gain effective portability only for selected, mappable applications . Since their programming model
cannot effectively model applications with symbolic interaction, extensive complexity, and dynamic resource demand
character, it does not meet general application needs.

Annex A - 36

applications and symmetric multiprocessing should be in the same software applications and tools market.
Independent software vendors would then find the opportunity for profit from parallel computing. This
produces a larger base for the creation of software engineering tools and processes. The Air Force goal should
be to create a compatible tool and model standard that applies to the large capacity-scalable multiprocessors
required for dynamic, complex C3I systems. The result would be programmable scalable parallel software
applications that span architecture types and sizes.

Annex A - 37

Parallel Software Engineering Assessment
6 Parallel System Software Status

6.1 Parallel Software Engineering Goals
The goals of parallel software engineering are the following:

♦ Reduction in development risks and costs
♦ Reduction in life cycle costs
♦ Separation of hardware and software development
♦ Portability combined with effective performance
♦ Elimination of application suitability uncertainty
♦ Predictability of design and performance
♦ Robust interaction mechanisms with heritage systems
♦ Increased capability to make innovation and dramatic gain
♦ Mechanisms that allow capability for real-time, secure, fault tolerance, reliability, etc.

Parallel software engineers cannot meet these goals without a suitable machine foundation with effective
execution capability for all application character and time-response-goal types.

6.1.1 Need for C3I System Software Engineering
The parallel industry lacks a foundation for engineering C3I components. That deficiency results in less
innovation and aggressive design, leading to weaker C3I systems.

Software engineering deals with large, complex, dynamic, mixed hardware systems that have a long useful
life. Parallel research technology now exacerbates the software engineering process. Performance and
programmability on large-scale, complex, concurrently operating components are issues important to C3I
systems. Developers of such systems require multiple organizations, large programming teams and a
hierarchy of skills and knowledge. C3I systems operate and change over a long period - the life cycle. The
systems are often multiserver and contain a mix of computer types ranging between special developed
processors and commonly available commercial workstations. The systems often operate over a wide
geographic range within widely varying environments and physical constraints. Their components may be
space, airborne or at fixed locations spread across a wide area. Annex A - Appendix B looks at Software.

Designers select the capability and a time-response-goal for each component in the C3I design. They must
design to guarantee that some of these components complete within each execution frame. The components
also vary in character. Components may be the least difficult: intensive complexity, infrequent synchrony,
large message passing interaction and static resource demand. Or they might include the most difficult:
extensive complexity, frequent synchrony, symbolic interaction, and dynamic resource demands. Designers
also assign each component its mission related C3I factors. These include availability, fault tolerance,
security, safety, physical constraints, etc. Software engineering processes provide a rational means of dealing
with these difficult systems. For parallel computer components, there is a lack of a robust parallel foundation
and supporting engineering processes and tools. This deficiency intensifies these conditions to the point that
C3I designs are less aggressive and inventive. C3I engineers may only attempt applications with the least
difficult parallel application characters.

Annex A - 38

6.1.2 Rational Engineering Process
The tools and capability for a rational engineering process for parallel software engineering are not
available. The result is higher development risks, costs and time.

A rational engineering process requires quantitative prediction about both product quality and process. A
product quality measure matches functionality, integrity and performance to requirements. The process
measures are effort, skills, cost and schedule. However, system designers often state requirements and
environmental factors uncertainly. In addition, requirements can change after delivery because buyers
recognize new mission opportunities. In addition, unless incremental progress is demonstrated early m the
program, management support and enthusiasm can change. Therefore, developers need a fast development
cycle In a rational engineering process, designers use a progression of iterating stages within incremental
builds to get a better product. Each stage and build can be more accurately forecast and engineered because
smaller steps reduce risks. Separation of process engineering from technology adoption and change is
necessary for rational engineering [Murphy 94].

6.1.3 Demand for Quick Results from Complex Applications
Higher expectations due to acceptance of interactive human interfaces are leading to higher performance
expectations. Parallel systems are a potential solution to this demand.

Ever increasing demands for higher performance is a common characteristic of large military and commercial
systems. New missions and threats often require continued performance expansion. Recent progress in
workstation performance and human interfaces have lead to higher expectations from the user. Now she can
easily create complex requests and expect the same rapid response as prior simple screen constrained
requests This higher expectation leads to demands for higher performance and new operational actions and
responses. The 35% growth in processor speed each year of workstations and microprocessors provides one
performance deficit solution. However, many systems now have performance gain assumptions already built
into the system design. Parallel computers are one solution to these performance demands.

6.2 Parallel Process and Design Metrics
One major weakness in parallel software engineering is the lack of a staged design process for assuring
performance expectations of parallel computer-based components.

Ideally, the tools to support performance delivery and program goals would be based solely on a set of
application characters, time-response-goals, and C3I mission factors. Engineers should have tools that, based
on the application character and time-response-goal, can provide performance simulation and evaluation.
Once the designer gets performance risk estimates, there should be tools and metrics to estimate the required
schedule, skills, cost and labor. There are now no widely accepted process or metrics that provide quantitative
performance and program assurance of this form.

6-1 Rome Laboratory's PAWS is an example of an application character to architecture tool. However, it
presently is little known outside a narrow group of Syracuse University (the developer) and Rome
Laboratory user.

Annex A - 39

6.2.1 Quantitative Performance Assurance
The industry lacks a method of staged performance evaluation. Performance on a C31 mission means
effective delivery of character functions, time-response, integrity, and physical constraints.

Designers measure performance against the functional, performance, integrity, and physical constraint
requirements of the C3I mission. System designers include factors such as the following: availability,
physical constraints, real time response types as parameters in performance requirements. Ideally, software
engineers can define the characteristics of an application based on the observed characteristics of similar
systems. After defining those characteristics it should be possible to use a set of standard parallel instructions
to predict the performance of the application on different parallel architectures. A software engineer needs a
measurement scheme for testing and responses of how well architectures deliver operational speed and
matches the C3I mission factors according to prediction.

6.2.2 Quantitative Program Assurance
Designing the development process before starting is as important as designing the product before
building it. The industry lacks the rudimentary information necessary to rapidly develop parallel systems
on fixed resources, physical constraints, skill, cost and time budgets.

Development program goals are measurements of skills, schedule and cost budgets. A tool should give
developers a metric for difficulty of development based on the application and on a selected machine. This
tool would provide the ability to make choices about the allocation of costs to hardware or software
development. An output should be a cost, labor and schedule estimated based on skill levels of the
development team and Software Engineering Institute rating of the project's management process.

6.2.3 Development and Life Cycle Metrics
Cost per peak performance models are inaccurate because they fail to include application software
development and life cycle costs.

An ideal measurement of a parallel computer is to evaluate its impact on the system's development and life
cycle costs. Parallel computers potentially eliminate many other computers in the system. Their high
execution rates can make a system feasible and cost effective. However, if the cost of software development
increases to eliminate hardware cost savings, then the parallel computer loses its cost effectiveness.
Comparisons of parallel computers by evaluation of mission life cycle costs could be telling factors in an
evaluation. In general, those systems that are the most quantitatively predictable and programmable have the
lowest support impacts from assumed mission changes. Evaluators set criteria from mission need statements.
They need a process for relating mission need and life cycle costs for alternative parallel solutions.

6.3 C3! Factor Evaluation Metrics
The industry lacks a set of parallel rating criteria with respect to the following: capability for supporting
a range of time-response-goals, effective performance for mixed application characters, and C3I integrity
and constraint factors.

Engineers use more than speed as performance criteria to judge a system. Consequently benchmarks include
measures other than speed measures. The suitability of a parallel computer for a particular system depends

Annex A - 40

upon many criteria. Commercial organizations insist upon proven availability and portability before even
considering speed performance factors. The following are evaluation characteristics for parallel computers:

Availability includes stability, reliability and fault tolerance of both the hardware and operating system
Programmability includes the following: portability, reusability, relative development ease, consistency
with normal programming methods, and performance prediction based on software measurements
Physical Constraints includes power, weight, volume, sizes, electromagnetic noise, etc. as deemed
necessary for meeting mission goals
Life Cycle Costs include hardware, application development, long term support over the entire life
cycle
Delivered Performance includes the following measures: nominal delivered throughput rate for
independent transactions, computation-rate on a single application, responsiveness to dynamic
overloads, and real time response
Quantitative Performance and Risk Assessment - include accuracy and sensitivity of quantitative
measures that portray delivered performance, schedule and cost estimates
Application Access - includes common applications, tools, languages, operating systems, standard
open system interfaces

Users of computers want computers that solve their applications reliably and swiftly. Users do not care about
the type of computer. They are concerned only that the system meets its criteria as derived from their mission
statement. Benchmarks for parallel machines must include measures of integrity and delivered performance
on similar applications.

6.3.1 Physical Constraints
Tools are lacking that measure the resource consumption of various choices as well as their performance
potential, programmability and program suitability.

Additional factors arise in C3I systems that complicate the analysis of the potential use of parallel computers.
These include limitations on size, weight, volume, and power consumption. These constraints make it difficult
to analyze the application, the system and the computation expansion characteristics of the application. The
typical use of many parallel computers as compute engines for single large applications lends itself to being
matched to C3I system requirements. Embedded parallel processors are also traditional for some portions of
a C3I application. For example, processing data at its collection point to reduce very high data collection rates
down to reasonable internal system communication rates.

6.3.2 Availability
Many of today's parallel hardware and operating systems are not suitable for high availability
applications. C3I tests of availability are based upon mission criteria that may be complex and difficult to
create and evaluate on parallel computers.

Availability is a test that requires long test periods while running complex applications. These tests stress all
the features of the system. In commercial application's users expect parallel processors to match their positive
experiences on workstations, servers, supercomputers or mainframes. They expect hardware to be reliable
and fault-tolerant. Their high availability expectations require that parallel systems allow replacement of

Annex A - 41

failed modules without full operational loss. Similarly, they expect operating system and application software
to be reliable and repeatable. C3I systems have more extensive requirements for fault tolerance and recovery
since human life and mission success may depend upon the availability of the processor. The present status is
that most "massively" parallel machines meet research environment expectations, not commercial ones.

6.3.3 Delivered Performance
Performance disappointments continue. They are a result of failure of parallel architectures to provide
effective execution on the full mix of application character types.

General performance delivered by a parallel machine depends upon several detail level factors. The way those
factors change with changes in the number of processors, p(n) is a primary consideration. The factors and the
primary influencing design issues are:

♦ The effective execution rate of the node computer on sequential code operating as a stand alone
processor, cache memory, local memory, access to input/output at the node

♦ The effective node execution rate within the parallel system with no application intertask
communications, i.e., the processor effectiveness during interconnect latency (for both multitasking and
multithreading), the link bandwidth from the processor to the system, uniformity of access to
input/output and operating system overheads

♦ Performance of the interconnect structure - capacity-scaling, small latencies (application intertask
communications timing)

6.3.4 Programmability & Portability
Performance remains too brittle. Component character and architecture to time-response-goal mismatch
often causes significant effectiveness reduction.

The von Neumann model gets acceptable performance for applications programmed with functional goals and
no great concern for performance. This initial performance can often be improved using a mix of non portable
methods. Some programmers take the extra effort and accept the long term maintenance disadvantages of non
portability. They typically get a performance improvement of a small constant factor. Parallel computer
programming should be no different. Programmers should obtain acceptable performance with good
portability with a moderate first level of effort. They should expect that additional performance obtained
though mapping would be non portable.

Portability is one measure of programmability. The industry problem of attracting the independent vendor
into massively parallel computing is one symptom showing that programmability is below acceptable
standards. Some programming models (e.g., PVM, Linda, etc.) attempt to execute on both
networks-of-computers and on tightly-coupled computers. Such a broad attempt yields a program that cannot
provide acceptable performance on either target machine class across a wide range of applications. An
application design, which serves widely different machine types, compromises the programmer and requires
extra effort to map to very large latencies for the network machine. This mapping reduces the concurrency
that could have been expressed and executed in the tightly-coupled, low-latency machine. This reduced
concurrency limits the performance potential on the low latency machine. Therefore, dealing with a wide
range of latency for different parallel computer types is not a realistic goal. Advocates of portability

Annex A - 42

techniques do not clearly define the domain of portability for their products. They should distinguish their
product's suitability for both networks of computers and types of parallel computers.

Automatic compiler success is another measure of programmability of parallel computer architectures. An
automatic parallel program generator that gives effective performance would be an important advance.
However, recent experience shows that efficiencies are too low on many parallel machines for automatic
program analysis. Present data decomposition, necessary to use high performance compilers, has lead to
disappointing results unless the applications were limited to highly structured ones.

Evaluators of parallel software systems say that porting effort is inversely proportional to the latency of a
parallel processor. Decreasing latency impact by scaling the application to larger size is often a solution for
only part of the application. Engineers make careful designs of interconnection systems. They seek to reduce
the time spent for message transfer into and passage though the interconnect. Their efforts are in vain if
delays for communications protocols dominate the total delay. High latency causes the programmer to build
applications with higher computation content than communications. This effort reduces the opportunity for
parallelism and limits the application's potential for higher speed through parallel computing. The use of
coprocessors to overlap the protocol latency with computational use of microprocessor has not been as
successful as one would expect. This is most likely a reflection of a concentration on large-message passing
as a model instead of packet-size message passing.

6.4 Relation of Needs to Capabilities
Successes on narrow application types have induced vendors of today's parallel computers to finely tune
their products to a specific application's execution. When application character and time-response-goal
go outside the narrow case, then the machine loses its effectiveness. Software engineers need an adequate
foundation to resolve this dilemma.

Like military C3I systems projects, large-scale, mission-critical decision support applications require
excessive labor, maintenance and performance risk. A software engineering goal is to find a solution for this
daunting problem. Solving complex decision applications by delivering quick results is the area that the
industry can make the most gain. The commanders that make these decisions are willing to pay for solutions
in their decision making process. They care not for the technology used, but are unwilling to change their
needs to match the computer's shortcomings. A significant payoff would result from use of robust capability-
scalable parallel computers. Interfaces to legacy systems are necessary. Such systems require a robust balance
of I/O and computational capability. Software engineering practices are feasible for computers that deliver
promised performance on portable programs with high complexity and dynamic action. Software engineering
practices cannot solve their applications if their computers lack the capability to provide adequate support for
mission critical applications.

6.4.1 Application Suitability Uncertainty
Another major issue in use of parallel computing is the uncertainty of application suitability and parallel
performance benefits in the face of the complicated architectures and unknown application characteristics.
Deciding when a complex application matches a parallel computer may be difficult. Today's machines have
resulted from tuning to a different set of goals than that of most C3I system builders.

Annex A - 43

6.4.2 Demand for the Most Difficult Application Character
Novel human computer interaction mechanisms are providing new opportunities for building systems that are
dispersed in unique and different locations. Wireless terminals, power pens, voice interaction,
point-of-operation terminals, etc. may provide significant opportunities for systems building that were not
previously available. The interaction of humans with a parallel execution should be a goal since human
guidance could lead to a more effective solution in both quality and time of execution. Interactive control
requires an extreme of dynamic resource and computational scheduling. It also requires that input/output in
multimedia forms are required to be integral parts of the computation.

6.4.3 Infrastructure Weakness
Some still expect that software solutions can be found to solving problems of inadequate bandwidth capacity
growth in cost-scalable multicomputers. As long as mapping is required, extensive applications cannot be
ported with dependable performance expectations. General source compatibility of software for general and
arbitrary applications across different cost-scalable multicomputers is not feasible unless a common
denominator is found. That usually will compromise the performance potential for all the multicomputers.
The structure, latency and bandwidth capacities of multicomputers differ too drastically and are often
inadequate for any but their selected application sets. Some cost-scalable multicomputers are simply
inadequate for portability of applications, each one must be mapped carefully to obtain reasonable
performance. Also, the research community often judges software tools by how well they meet the widely
varying demands of a wide range of available machine architectures and sizes. Yet these multicomputers are
not suitable for applications beyond their suitable applications. Such an expectation is unrealistic.

Both software tools and parallel hardware have become specialized for a set of applications that fail to
represent the complex and dynamic executions characteristic of C3I systems. The parallel industry has
selected application types and as a result the process of evaluation of both tools and parallel computers has
been distorted. Computers must be judged based on a broadly representative application set because the
builders cannot anticipate the applications to which they will be put. By concentrating on an applications set
that can be mapped to cost-scalable architectures, researchers have created non-representative methods, tools,
and evaluation criteria for parallel computers. The result is an inverted rating scheme where software tools are
expected to fill the missing capacity of multicomputers that are suited only a structured and stable
applications set. Application selection cannot drive the hardware if the hardware is expected to fulfill a wider
role than its design criteria. Annex A - Appendix C gives a brief overview of distributed computing software.

A key measure of a parallel system is the number and diversity of independent software vendor tools and
applications. Only one vendor type has accepted parallel computers enthusiastically ~ the data-base-manager
application. The most common data-base-management systems are ported to a several types of parallel
computer. This is due to the use of these machines as servers, performing the single parallel data base
application for many clients on a network. Other applications remain on the workstation being fed their data
from the servers. However, acceptance among other independent software vendors has been weak. They have
a hard decision to make on today's parallel machines. The diverse number of architectures requires that a
standard model be used for all before designers and programmers fine tune for machine dependencies.

Annex A - 44

6.4.4 Need for a Parallel Programming Model
We need a programming model for shared memory programming that allows symmetric multiprocessing
code to be source-compatible with local memory based multiprocessor code. A common set of agreed upon
standards that bridge between cost-scalable multicomputers and shared memory multiprocessors is necessary.
A low latency version of the Nexus specification (Aerospace Corporation) is possibly an example of such a
message passing system. If used with only small packets it may be suitable for both symmetric
multiprocessor and local memory based multiprocessor standard for communications.

6.5 Expressing Parallelism

6.5.1 Parallel Machine Models
Programming models that apply only to the least difficult or restricted application characters are not adequate
as a foundation for portability combined with effective performance. An acceptable software engineering
programming model should allow programmers to create mechanisms for meeting the C3I factors. Tools
should be available that allow the designer to select suitable machines to use any application character and to
match a time-response-goal.6"2 A tool is needed to predict performance by evaluation of architectures against
different application character mixed. The character step requires a model of computation that quantifies the
characteristics. The application's character and time-response-goal are a necessary part of the evaluation. An
engineer's evacuation of the suitability of and architecture requires a virtual model of parallel computers and a
instruction set. The model and instruction set must be complete and sufficient to model both shared memory
and capability-scalable computers. The performance prediction requires a level of robustness in the
computers to avoid non-linear bandwidth effects. To complete the system feedback input is needed from
several different system implementations.

Defining a set of application types that match the needs of C3I subsystems is a useful exercise. The set is a
qualifier for a parallel computer. The performance of those application types on the processor provides a
measure of how the parallel computer might do on a future C3I system. Such matching would require a wide
range of application types to include the diverse needs of C3I systems. The selection could include process
control, transaction processing, data base, engineering simulation, economic modeling, etc. An important tool
would be one that measures the concurrency, grain, complexity and parameters of these applications to allow
comparison to the content of C3I systems.

In order to make any quantitative approach to parallel software engineering the application character must be
identified and related to known performance impacts at each stage of development. Measurement tools for all
aspects of characterization would have to allow estimates of character, models of characters, benchmarks and
measurements, and actual code of varying character as inputs. The effort is equivalent to rebuilding an
electronic automated design tools set, the associated libraries of behavioral models, benchmarks, and timing
estimation tools for parallel computers.

"Note the proposal of a split of responsibility. The machine architecture is responsibility for a foundation for
creation of means of achieving C3I factors and a time response type. The software engineering industry would be
responsible for a programming model that was suitable for all application character types.

Annex A - 45

6.5.2 Parallel Exacerbation of Software Engineering
For conventional computing, software engineering processes have a factor-of-safety due to resource capacity
and performance growth provided by the rapid progress of technology. However, parallel systems violate
assumptions of conventional software engineering processes. Rapid obsolescence of parallel computers, long
procurement cycles, the lack of a quantitative model for performance assessment effects these processes.
Integrating quantitative methods into the parallel software development process is necessary for an ideal
environment where each phase accurately reflects the expected performance of the system being built.
Enhancing the spiral method for performance modeling at each phase of development for parallel computers
is one approach. To accomplish this goal there is a need for an architecturally independent programming
model that couples to quantitative performance models. Such a programming model either requires
capacity-scalable interconnects for every target parallel machine or requires development of analysis
techniques allowing compilers to deal with the nonlinear response of interconnects.

6.5.3 Conflicting Measures
The purpose of parallel computers is usually to provide higher speed. Speed can mean a higher throughput for
independent transactions or it can measure the rate at which a large single application can be completed.
Speed can mean response time to an external interrupt during execution of the single large application.
Engineers use other measures of speed that match specific C3I system needs.

An application with fine synchronization grain and high parallelism uniformity is one for which parallel
instruction communication delays become insignificant. (Terms are defined in the characterization method in
the application essay.) However, the process of creating applications with large grain is difficult. It requires
selection of algorithms, mapping and often unresolvable decisions about dynamic portions of the application.
Most often the degree of parallelism is reduced as the synchronization grain is increased. The uniformity of
parallelism is aided by having many small grain tasks.

Note the conflict between the efficiency attained by large grain creation and scheduling improvement gained
by high and uniform parallelism. With more tasks the parallelism is high. When programmers combine tasks
to create large grain modules, they reduce the number of tasks available for easing scheduling inefficiency.
The solution: increase the computation-to-communication ratio without decreasing the task number or
affecting their size differences. The result is that many parallel processors are capable for selected
applications where each task is identical at each node. Data is mapped to the nodes to keep communications
low. This type of processing is called single-program, multiple-data (SPMD) and is typically the mode in
which a cost-scalable multicomputer is used).

6.5.4 Assumptions About Programming Models
It is commonly believed that shared memory and distributed memory systems require locks/monitors and
message passing respectively as programming models. This is not necessarily the case. The programming
styles of shared memory systems with implied freedom from mapping and distributed memory message
passing both have advantages. Shared memory systems provide a common name space but require concurrent
access control by locks and monitors found by many to be difficult to program correctly. Many reliability
problems result from the difficulty in correct and provable codes for shared memory systems. Message
passing automatically provides protection and need no locks and monitors on the user's part for concurrency

Annex A - 46

correctness. Message passing is conceptually less difficult to program safely. However, message passing s
blamed for the mapping required to achieve good performance when there is a very high overhead for creating
and delivering a message. Then, the programmer must create large messages from an application that
naturally has many small ones. If messages were about as efficient as a shared memory access then the user
related problems of message passing disappear. The system vendor would provide object naming and
protection between each execution unit. This point of view points out that weak parallel systems capabilities
(high latency and low bandwidth capability) have led to the wrong view of message passing.

6.5.5 Feasibility of Programming Models
Shared memory multiprocessing would be more widely used if vendors overcome reliability cost of locks and
mutual exclusion operations. Similarly, with adequate bandwidth and low latency for delivery of small
messages, vendors could create distributed memory systems that are effective without mapping. Distributed
memory systems with hardware support for interface to the interconnect system can mimic shared memory.
Both are viable and a common programming model is feasible on either if adequate hardware, compiler and
operating system performance and features are present. The result is message passing protection between
execution units within a common object name space.

6.5.6 Ideal Programming Model
The ideal programming model is a message-passing interface which hides the architecture's details. It must
also provide its user with private memory safety of locally protected memory for each process. The hardware
and operating system could be shared memory or distributed memory. A criteria for existence in the
marketplace will be that the specific architecture would be invisible, in fact might change over a single
manufacturers line. For example, AT&T's symmetric multiprocessors go up to 32 processors. Their
distributed architecture goes up to hundreds with the same programming model. This interface should allow
programmers to create and transmit both small synchronizing messages and large data transfer messages.
Shared memory machines would provide the same small message, safe programming. Large scale systems
should have to provide low latency interconnects for similar message sizes. On larger machines
multithreading (switching in another task) would hide interconnect latency. Without hardware and support
software that meets this model a common programming model is difficult.

6.5.7 Future Goals
One hopes that a parallel compute model will emerge and that systems vendors will then use the timings of its
individual operations as the test of performance. Vendors could add the extra hardware necessary for some
markets and leave it out for others, but engineers will make the addition and subtraction quantitatively. Thus,
architecture and programming design will be separated.

Annex A - 47

Parallel Software Engineering Assessment
Annex A - References

Parallel Algorithms for VLSI Computer-Aided Design, P. Banerjee, PTR Prentice Hall, Englewood NJ 07632

Computer Design, Special Report: CASE Tools for embedded and realtime applications, Tom Williams,
Editor, April 1994 pg. 65-78.

Henry J. Bush, Presentation, Thrust 3 Program Overview, 21 June 1994

RADC-TR-89-337, Final Technical Report, January 1990, Rome Air Development Center, Griffiss AFB, NY,
Software Techniques for non-Von Neumann Architecures, C. Lightfoot, et al., Computer Sciences
Corporation

Electronic Engineering Times, August 1,1994, Executive Viewpoint: The process is changing, P. Yeatman,
Radstone Technology, Montvale, NJ.

IEEE Spectrum, May 1993, Focus Report: Workstations and PCs, M. Furtney and G. Taylor, Of workstations
and supercomputers, pp 64-68.

F. Baskett and J. Hennessy, Microprocessors: From Desktops to Supercomputers, SCIENCE, vol 261,13
August 1993, pp 864-871.

Computational Applications in Manufacturing, A. Formica, RCI Management White Paper, 1994.

Clustered Workstations: The Dominant Parallel Architecture?, J. Mohr, RCI Management White Paper,
1994.

Fundamentals and Practicalities of MPP, G. Astfalk, The Leading Edge, Part 1, August (p 839), Part 2,
September (p 907), and Part 30ctober (p. 992) 1993.

A Spiral Model of Software Development and Enhancement, B. Bohem, Computer May, 1988.

A Model for Information Technology Adoption, C. Murphy, Accord Solutions, Inc. Tech Note 94-001-CM,
1994.

HPC Research Note, October 27,1993 Gartner Group, H. Richmond, MPP Systems: A Strategic Weapon for
Industry

High Performance Computing: The Potential Contribution to General Purpose Computing in the 1990s.,
Gartner Group, H. Richmond, 1993.

H. Richmond, "Commercial Applications of Parallel Processors," Austin, TX, July 1993.

"Software Engineering of Parallel Systems," Carl Murphy, Encyclopedia of Software Engineering,
JWiley&Sons, 1994.

"Future Directions in Supercomputing," D. Robb, Supercomputing '93.

Annex A - 48

 Annex A -- Parallel Software Engineering Assessment
Appendix A: Definitions & Relation to C3! Systems

1. Networks of Computers
Networks of computers are multiple workstations organized in a loosely coupled local area or wide area
network. The protocols used for information transfer between nodes are often based on telephonic
requirements. Those protocols are efficient for large-size message passing. A dedicated network of
homogeneous multiple microcomputer nodes is a Cluster or Farm.

Workstation clusters are standard workstation processors that connect to each other via a network, not an
interconnect backplane. Two forms are available: those built from dedicated, rack-mounted workstation
processors (without a display unit for each processor) and those that are networks of desktop workstations.
We will refer to the first type as clusters and the second as "farms." Clusters and Farms operate effectively on
replicated copies of applications executing the same code on different parameter sets. Clusters also can be
dedicated systems that operate as throughput engines supporting multiple engineers, each running a separate
copy of an application. Many engineering problems require repeated computation over different parameter
sets. System administrators can set up farms to run overnight, also for replicated copies of applications
applied to different parameter sets. The Farm approach has appeal to overnight use of "idle" workstations,
thus optimizing an organization's use of compute resources.

2. MultiComputers
Distributed multicomputers are computers that theoretically "cost-scale." Adding a new module costs the
same, irrespective of the number of modules already there. Cost-scaling computers have reduced bandwidth
capacity as machine size grows. Each module adds a fixed bandwidth capacity so the capacity per processor
decreases as the number of processors goes up. We call these architectures, "cost-scalable," because the
addition of a module adds a fixed amount of bandwidth capacity to the system, theoretically at a fixed cost
per module. Therefore, cost is directly proportional to the number of processors. In theory, by doubling the
size, one doubles the price.

There are specialized applications where the multicomputer hardware is more cost effective because the
application matches the processor. Increasing the size of an application typically increases its communication
demands proportionally. An application can only scale in size on these machines if its portion of
communication per size goes down as the application's size increases. Some algorithms achieve this and are
useful in research. However, the engineering process requires a complete solution for an entire application
and such algorithms are elusive. In addition, the "hardware-only" cost evaluation model is inaccurate if
software and integration development is necessary to map production applications to the hardware.
Evaluations should include the following: expected costs of the operating control software and application
software, the expected effective performance on the projected application, and the potential for obsolescence
of mapped applications.

3. Multiprocessors
Multiprocessors have increased bandwidth capacity per processor module added. This gives approximately
constant bandwidth capacity between any arbitrary processor for any size machine. They have an
interconnection that provides increased bandwidth capacity per processor module. This increase is that
necessary for approximately constant bandwidth capacity between any arbitrary processor pair for any size

Annex A - 49

machine. Increasing the count requires paying the costs of extra bandwidth necessary for maintaining the
fixed bandwidth between arbitrary pairs. In theory, multiprocessors should be capacity-scalable.
Multiprocessors include either a local-memory based or a directory-based shared memory based
multiprocessors.

With local memory multiprocessors that are capacity-scalable, applications may increase in size and
communications as the processor size increases. This allows a single algorithm for any size application or
machine. However, those machines grow in cost since added bandwidth capacity per processor maintains the
balance between application demand and processor size. The tradeoff of hardware cost against system
software development and software maintenance over a long life is, however, seldom applied. Considering the
cost of development of operating systems and tools, they compare more favorably with the costs of
multicomputers. Including the costs of software for system integration, application development, and
maintenance the multiprocessor often is more cost effective than a multicomputer.

4. Symmetric Multiprocessors
Symmetric multiprocessors (SMP), are multiprocessors that share a common memory. They typically have an
upper limit based on the common bus used to reach the shared memory. The programming model assumes
consistent shared access to memory from any processor. Obtaining good performance on these machines
requires good locality-of-reference. Cache consistency mechanisms control the bus access hardware to keep
cached shared values consistent. This small processor count type is important in the marketplace. It offers a
smooth path up from the workstation. The symmetric multiprocessor is now popular in commercial client-
server environments. It is displacing mainframes in some important multiuser information and technical
applications.

Symmetric multiprocessors typically use a fixed resource bus and are not capacity scalable multiprocessors.
Therefore, changing the number of processors changes each node's share of the fixed bandwidth capacity and
increases the latency to reach memory due to bus contention. However, within those limits, the operation is
less brittle than on distributed multicomputers. Programming is very portable since there is no mapping
necessary. However, shared memory programming uses semaphore and mutual exclusion operations to
coordinate memory access. Those approaches are error prone and difficult to program.

5. Multiserver Systems
Workstations and their graphical user interfaces have brought the user closer to the computation. Putting the
user at the display has significant advantages. The entire process of application set up, computing, and results
analysis works directly with the user's immediate environment. However, if the computational period of the
engineering process is too long, the close coupling of the user to the application is lost. Keeping this coupling
requires a link to an external computational engine that can deliver quick results. Often the files and
applications are common to several users. The user uses them from external files or data bases. Multiple
users require access at high transfer rates to use and execute as a team. High performance local networks now
provide this capability, providing data, graphical display and computational, and data base capabilities. The
introduction of very high performance fiber channels to this mix will allow more rapid client-to-server
transmission.

A C3I system is typically a multiserver one. Each component may have a different time response and
application character as necessary to meet their mission. Often different developers build different
components. Parallel processors often serve in these multiserver networks. Architects tune them to meet their

Annex A - 50

individual component's mission. This assessment focuses on closely coupled parallel computers because of
the need to control the response time of the application being executed on the parallel computer.

6. Heterogeneous Systems
We define heterogeneous computation as breaking a computational intensive component apart and
performing each part on different computers.1 The goal of heterogeneous computing is to separate out a
communication constant part of an execution-bound component. As the application size changes, the new
part's communication remains constant while the remaining part's communication expands. If the surface
between the parts has constant communication intensity with application expansion, then the communication
constant portion can scale on cost-scalable computers. The remaining part requires another specialized or
capability-scalable computer.

Note that the introduction of heterogeneous solution to a component reflects back to the general system
design. It may mean that the general system design could have recognized the interface(s) created by the
heterogeneous split of the component. The chances of success of the heterogeneous computing approach
depend upon the application. Extremely high communication rates between mixed processor types are
necessary for execution-bound computations. On each iteration, the system must reformat and pass all
surface-related information. In addition, this method may lose the advantages of data-locality-of-reference in
caches or local memories. The integration, development, programming and life cycle expense for multiple
parallel computer types must be weighted against the extra expense of building a more general purpose
parallel computer.

1A C3I system design allocation breaks a system into different components, each with its own
mission. These likely have different time resource goals. The transfer of information between the
components is part of a system-interconnect-componenf stime and cost budget. From this viewpoint, a C3I
system is a multiserver system. Within each component there are often parts that are execution bound. We
call any splitting of an execution bound part into additional mixed server communicating parts,
"heterogeneous." Any additional storage or communication delays or resource use are added costs of the
time and resource budget of the split component and not the interconnect component.

Annex A - 51

 Annex A -- Parallel Software Engineering Assessment
Appendix B: Status of Softare Engineering

1 Workstation Capability
Workstation based system design and development processes and tools are now maturing. Applying them
carefully provides a project team with a well-managed path to system development. The process of software
engineering has evolved to provide a basis for tools and for managing the building of long-lived, complex C3I
systems. Steady improvement by tool builders has provided a steadily improving progression of process
environment tools for system development. The results are Computer-aided-software-engineering (CASE)
environments, built-in configuration management (SCCS), and reusable language features (from Ada and
Object Oriented languages). Personal computer programming systems now feature some encapsulation and
code reuse aspects of modularity and libraries. For example, Microsoft provides VisualBasic data and code
encapsulation "objects." Their Dynamically Linked Libraries aid programmer productivity and
maintainability. Workstation vendors provide similar capabilitese for UNIX systems.

2 GUI Created Demand
The successes of graphical user interfaces let the user request more complex and resource demanding
applications. These, in turn, create a new demand for higher performance and capability. A paradigm of close
user interaction results. The resulting cycle is setup, computation, and analysis with each step involving
intimate user control. Users want complete control over the execution without the interference of detailed
coding. Often the developer's dilemma is that user expectations grow faster than performance. The productive
cycle of interaction breaks down if one part of the interaction takes too long. Thus the need and requirement
for acceleration of the slowest component.

3 Holistic Interactive Operation
Technology influences those processes. This rapid change gives the user increased expectations during
system development. Since new features become feasible as technology advances users expectations grow.
Command capability provided by Graphical User Interfaces(GUI), specially the object oriented ones, let the
user increase demands for features and performance. The computer industry has reached a state that users
expect a holistic problem solution environment. This is where users interact with the system in short
turnaround times for an entire solution process of preparation, computation, and analysis. (For example,
VisiCalc and its modern descendent spreadsheets provide this create, compute, observe, and repeat.)

A "holistic" approach by human interaction to reach "non-canned" solutions is a leading example of growing
expectations of processing responsiveness. Corporate reengineering projects show that information systems
give a "case worker" the capability to do an entire process. This approach is far more efficient than using
several specialized workers. Instead this new model of processing is that the user gets results in adequate
time to iterate the solution several times in a day. Thus, demand grows due to increased human interaction
with the computer system. This demand exists in many professional projects: business decision making,
software development, mission planning, computer-aided-engineering, and control systems.

Annex A - 52

4 Computer-Aided-Software-Engineering (CASE)
For sequential computing, CASE tool vendors define the phases and processes in the software engineering
process in their tools. Figure 6 -1 gives one vendor's view of standard components. When used to complete
each cycle of the Spiral Method, a CASE system is a useful tool for management of the development process.
The CASE process shown has a critical assumption: that the hardware and software of the system can be
separated by interface constraints. The CASE process assumes that the hardware will be available for
execution of the software when the testing phase begins. System design analysis is supposed to establish that
the hardware system meets performance requirements. The complexity of interconnect structures makes this a
formidable task. Lightly stressed interconnect structures require less demanding analysis. Otherwise, the
latency and demand constraints are nonlinear. Physical constraints in C3I systems sometimes limit the
designer to reducing the interconnect capability until interconnects are well used. Standard processes and
CASE tools do not provide the necessary interaction mechanisms between system hardware and software
design to accomplish this task. C3I applications are too complex and dynamic for tools that require one to
build large grain modules. In von Neumann architectures, the rapid advances in performance and capacity are
powerful compensators for these errors. CASE developed systems often succeed due to the factor-of-safety
provided by technology advances. One reason for the spiral method's success is that hardware design and
software designs merge along with the user and developer's perceptions of the system.

The insertion of parallel technology negatively affects the validity of the CASE process and its assumptions.
The interaction of interconnects within a parallel system is not suitable for closed form analysis for
applications of the complexity that require CASE tools. Software developers must consider the details of the
hardware organization and bandwidth capacity along with the software effort. Setting constraints (or goals)
for software modules is no longer a suitable method of separating software and hardware. To correct this
assumption, CASE systems need to allow a similar process to integrated circuit development tools. The
electronic design automation process offers a model for these changes. Tools for electronic design
automation provide a paradigm useful for the software engineering process for parallel systems. Figure 6 - 2
shows that process.

5 Comparison of CASE and EDA
Electronic-automated-design (EDA) process tools use system interaction models as an integral part of each
design phase. Languages that support the EDA process allow design expression at all levels: behavioral,
register-transfer, standard cell, gate, and transistor level design expression. At each stage simulators execute
the design and provide functional tests and quantitative timing and resource responses. At each stage, the
designer defines the organization, placement and interconnection of the components. Mapping to a specific
foundry occurs at the gate-to-transistor interface, allowing portability of the design to various sources.
Foundry-rule libraries are the analog of the software developer's use of extensions to standards. Thus
gate-to-transistor mapping is based on a standard set of gate constructs that are the EDA user's equivalent of
a virtual machine. Engineers use automatic and hand guided tools in the last stage to match foundry design
rules. Object oriented methods are commonly used throughout the process by vendors of EDA tools. During
each transition between phases, engineers generate a set of tests and test vectors. Those tests provide a
decision basis for passing to the next phase. Simulators of the actual operating environment are often used to
place the design under expected stress. Test vectors for a computer chip come from running code of the type
expected. For example, RISC computer designers use SPECmarks as the test generator. SPECmarks are
performance indicators but are also used as test vector generators. Millions of lines of code run through the
simulator to ensure that a processor chip is adequate for foundry insertion. Foundries guarantee that the chip
produced will work (function, timing, and power) according to the test vectors used to accept the chip for

Annex A - 53

production. In both EDA and SpirallCASE, the process advantage is the early resolution of the imprecision
of initial specification. The EDA system has the advantage that the target instruction set(gates) is
significantly more restricted and well defined than that of the CASE system. EDA tool vendors are now in the
process of reengineering their tools because the wire delay time can be ignored in feature sizes above 1
micron. Now that gate delays are not the dominant delay the accuracy of predicting timing delays across a
circuit becomes less precise. The separation of gate delay from layout delay provided a hidden layer in prior
versions. Their debate is whether the logic designer should learn layout methods and penetrate the layer in
their next versions to get more repeatable timing delay predictions. The problem appears to be similar to that
of "mapping" to architectures. Separation of hardware and software development is important to the
engineering of parallel hardware and parallel software. Without this capability each effort by hardware
vendors and software developers is ad hoc and has little potential for large markets necessary for commercial
advantage.

Annex A - 54

Common User Interface

Analysis Design Code Testing Simulation Reverse

Engineering

Requirements Tracing

Configuration Management

Project/Process Management

Documentation

Shared Repository - Data and Object Integration

Virtual Operating Environment - Platform Integration

Host Hardware

Figure B - 1 Computer Aided Software Engineering

Annex A - 55

PHASES OF VLSI DESIGN

Synthesis:
High level

Synthesis:
Logic

Synthesis:
Cell generators

Synthesis:
Floorplanning
Placement
Routing

Behavioral Requirements

A
Functional Design

T
Behavioral Representation
Boolean Equations and
Resistor Transfer Level

A
Logic Design

I
Structural Representation
Logic Gates, connections

A
Circuit Design

T
Structural representation
Transistors and connections

A
Physical Design

Physical representation
Mask Layout rectangles

Verification
Behavioral Simulation

Verification
Logic verification
Logic simulation
Testing

Verification:
Circuit Simulation
Circuit Analysis

Design-Rule Checking
Circuit Extraction

Source: Parallel Algorithms for VLSI Computer-Aided Design,
P. Banerjee, PTR Prentice Hall, Englewood, NJ 07632

Figure B - 2 VLSI CAD Process - Quantitative Results at Each Stage

Annex A - 56

^_^ Annex A -- Parallel Software Engineering Assessment
Appendix C: Distributed Programming

1 Cluster Programming Methods
Message passing is necessary in clusters and farms. The protocol latency in clusters and farms requires
application selection or mapping to get a high grain. This mapping process gives message passing a poor and
undeserved reputation for difficulty and poor performance results. However, the difficulty in programming is
due to the necessity for masking high protocol processing and not to the message passing paradigm itself.
Languages for clusters and farms provide a message-passing interface but leave the mapping to the user
programmer. Parallel computer vendors now commonly provide Parallel Virtual Machine (PVM) as a
message-passing interface for clusters. PVM is likely the most widely used. PVM is widely ported and now
operates on the following:

capability-scalable multiprocessors(e.g., IBM's SP2)
cost-scalable based multicompters (e.g., Intel's Paragon)
shared memory multiprocessors (e.g., Sun Microsystems servers)
clusters
networks of computers

This does not mean that applications that run well on one type will run well on another. Consequently, PVM
ports provide functionality moves between architectures but not performance effective ones. For example, the
mapping necessary to get good performance on a network of computers may reduce the processor count and
speedup on the more tightly coupled multiprocessors. Similarly applications running on a large processor
count IBM SP2 or Cray Research T3D would take advantage of the low latency. These applications would
run poorly on any of the loosely coupled parallel machine types. Applications that do not maintain the level
of grain (latency-ratio) expected at the network of computers mode cannot move across architectures and
obtain good performance.

2 Parallel High Level Language
Researchers in high level languages for clusters and networks now concentrate on accomplishing general
usefulness for arbitrary and multigrain applications without user programmer mapping. So far this is not a
reachable goal. Products from Scientific Computing Associate's (Piranha), Parasoft (Express), and Meiko
(Computing Surface) provide programming tools for replicated applications. There are also wide area
programming tools, such as, ISIS, TaskBroker and Cronus. Oak Ridge National Laboratory distributes and
supports the Parallel Virtual Machine (PVM) tool. NQS (EXEC) is a tool for prograrnming of high
throughput applications. A drawback of the cluster is the significant cost of software for replicated
applications since each station requires a license.

3 Multiserver Programming Tools
Tools and mechanisms are also available for clusters of workstations and super large grain multiserver
computing. These methods, protocols, networks, etc. apply directly to C3I systems. For conservative uses,
there is an established software engineering technology for dealing with clusters and large grain-size,
multiserver systems. Products such as ISIS, Cronus, Linda, PVM, etc. can provide the necessary mechanisms
for spreading multiple copies of applications across and managing the resources and processing among
clusters.

Annex A - 57

4 Distributed MultiComputers
Distributed cost-scalable multicomputers are more closely connected than the network computers and less so
than the capacity-scalable multiprocessor. Their vendors call cost-scalable ones "scalable parallel processors
(SPP)." Their rational is that the addition of a module of processing power costs the same no manner the size
of the machine. This essay calls that form of scaling cost-scalable. However, since bandwidth capacity does
not grow with processor count, an application that runs on one size machine does not necessarily run well on
another. To run effectively on any size the computer must have a property of reduced bandwidth demand per
computation as the application size grows. Applications that fit this model are "data parallel" since data
partitioning reduces communications significantly. There are several components of applications that have
been found that fit this model. To make applications feasible on these machines they must be data partitioned
(mapped) to minimize use of bandwidth capacity. Technology influences this approach by allowing the
bandwidth capacity to grow in proportion to the computational demand. However, this growth must be faster
than the speed growth of the microprocessors. Each of these changes affects the mapping of an application to
the processor. Code portability is assured for only pure data-parallel applications. When communications are
present, the nodes share the system's bandwidth capacity. Performance often falls off rapidly and differently
on different size machines.

Software programming tools for cost-scalable multicomputers are Express, PARMACS, Linda, and PVM.
This same tool set is also used on networks-of-computers, which have very high protocol latencies.
Applications that perform well on networks-of-computers would be expected to do well on multicomputers
due to a reduction in latency. Since only independent and very large grain (infrequent communicating) tasks
can be programmed on networks-of-computers these are portable only in the direction from clusters to
cost-scalable multicomputers and not in the other direction. However, expectations can vary. A cost-scalable
multicomputer is often expected to provide a more dependable execution time since the interconnect structure
is in a dedicated backplane. The network-of-computers expectation may well be only to keep idle
workstations busy on an application during evening hours. In one case wall clock time is important, someone
is waiting for the result, in the other only for completion by morning.

Annex A - 58

Annex A -- Parallel Software Engineering Assessement
Appendix D: Models for Expressing Parallelism

1. Parallel Software Processes and Methods
1.1 Incremental Delivery Development Process
The staged development process is needed. This is a process similar to the VLSI design process
(See Appendix B.) where each synthesis stage is verified and tested for functionality and timing
before the next stage is synthesized. A component based system design would have the execution
characteristics of each component defined and matched to the chosen parallel processor. At the
next stage a detailed module program using only the generic machine instruction set would be
used to write the module. Simulation and analysis would again verify performance goals. The last
stage is the one in which the target machine knowledge is used to increase performance. (This
matches the VLSI design rule stage where foundry information is first imposed.) This approach
would be criticized by parallel advocates of many of today's machines because the effort of the
last stage is significant. The value in the approach is that machines whose instruction set closely
matched the output of the third stage would be more easily programmed. Those machines could
be expected to cost more since additional hardware capability is required to allow them to
perform that instruction set weU. However, the experience to data has shown that the investment
in operating system software and the attraction of independent software vendors favor the
economics of parallel machines that provide availability and robust interconnect structure
capability.
1.2 Rational Engineering
A rational engineering process is to develop the system in a series of incremental builds, each on a
fast development cycle. Within each build, development managers iterate the design in stages to
precisely define requirements, environment, and performance. After each build installation,
testers evaluate the product to ensure that, as fielded, it matches actual requirements. The Spiral
Method is one example [Boehm]. The result more accurately meets users' needs than a one-shot,
large scale development. Tools for providing performance estimates for system designs (e.g., SES
Objectbench and SES Workbench) are now available. These tools let the designer apply them for
both hardware and software at very detailed levels. Combining the rational engineering process
with these performance prediction tools significantly reduces risk. Developers need the same
rational engineering capability for parallel components within the system.

2. Graphical Programming
The requirement for graphical programming is critical to the wide spread acceptance of parallel systems.
Graphical system users can be relieved of detailed knowledge of both the parallel architecture and
programming language details. Such users are necessarily high-level users that are building application by
integrating lower level constructs. Programming using graphical methods are template and button bar
approaches, where the parallel language commands and structures are available for integration into a working
application by the user. The system requests the user for the logic for cases, loops, by entering it into a
window which guides them through any language specific logic expression details. The system can enforce
good programming practices by querying the user for the action to be taken for exceptions, etc.

Annex A - 59

The goal of programming should be to provide a very high degree of reusable modules. For a project the
engineering of the detailed modules would be left to a small set of the most power fulprogrammers. Others
integrate the detailed objects into the specific application. However, graphical programming must express the
"problem architecture." Graphical mapping tools intended to match an application to a particular parallel
processor defeat the portability virtue that should be available. They are often applied at the wrong level.
Only power users should be doing the detailed mapping required to map the common button bar commands
to a particular processor. Those commands are a virtual machine programming model. The system displays
template and button bar calls on the graphical screen. Only in this fashion can users and vendors gain the
benefits of porting a small command set.

3. Debugging and Performance Tuning
A separate element is the need to provide correctness debugging and performance tuning. These tools provide
instrumentation and constraint probes of the parallel application to control the operation to verify correctness
and to eliminate performance bottlenecks. Debugging and performance tools should have a proven interface
to selected operating system(s). They should also have an interface to the parallel system's "run time
executive" that executes the application'sparallel operations and parallel intertask commands. Measures
should be the following:

individual time delays for each of the parallel commands provided as experienced in the application
time delays for the average mixture of parallel commands of the application
concurrency - count of the average number of ready tasks
instantaneous concurrency - count of ready tasks during a step
slackness - the concurrency minus the number of processors
granularity - the ratio of normal instructions to parallel instructions
potentiality - count of waiting instructions (total and by value)
kernel accesses - count of access to kernel interface
external accesses - count of accesses to operating system
context switch count - the number of processor swaps (by application, kernel, or operating system)

3.1 Performance Tools
Performance tools should provide a postmortem or analysis after completion of application. They should
provide the information necessary for performance prediction - efficiency and speedup equations - based on
the measured timings of the parallel instructions and their mixture within the application. The tools should
make a recommendation for processor count based on concurrency and provide a processor architecture
timing data base.

3.2 Correctness Tools
Correctness tools should interface to a commercial debugger that is commonly used in normal workstation
programming. There should be history files created during debugging and constraints on execution that allow
repeatable (deterministic) operations when active. This control requires control of repeated program
execution between set break points, or between barriers, or between identified steps in the execution. A
history of communication events is a necessary element of the data base that controls these operations.

3.3 Information Visualization Tools

Annex A - 60

Parallel programmers must manage enormous quantities of information and complex program behavior. To
understand these operations visual aids are one solution. To be effective, they must provide a proven
connection from graphics programming to object-oriented languages. Communication displays should allow
programmers to evaluate correctness. The language should allow programmers'expression of complex
interactions built up from primitive ones. The graphical system shoulddisplay execution graphs between
pairs of barriers created to investigate a correctness error or a performance bottleneck. Tools should allow
easy and structured building of a concurrent application from a small set of objects defined to execute the
application.

4. Object Oriented Languages and Methods
On production environments in industry, most programmers create their applications by tying together
shrink-wrapped applications bought from independent software vendors. They develop few applications from
scratch. Independent software vendors consider portability, effective performance and reusability as
important features. Object- oriented software engineering methods and languages are critical to their success.
In addition, the applications are likely to be more complex and dynamic than present MPP methods allow.
Therefore, parallel technology should provide high performance on applications expressed in C++ or other
object oriented languages. Systems may store objects in object-oriented data bases.

Programmers need power languages to express complex operations that are difficult to express in standard
languages or graphical programming. They require expressiveness for data partitioning and process
interaction structures. Such languages must provide execution of the power expression and provide a
performance prediction of the expression on a chosen machine. A good example, is Proteus, from the
University of North Carolina. Many commercial firms require even simpler languages that are more easily
learned. The corporation's information infrastructure may only have COBOL and Fortran experience.
Smalltalk and other visual object level programming are important language choice.

Annex A - 61

ANNEX B

Rome Laboratory Blue Ribbon Forecast Panel

on C3/ Parallel Software Engineering

Working Session and Position Summaries

1. Introduction

RCI, Ltd prepared and distributed an announcement and call for papers to obtain diverse input for the
forecast panel to consider. Position makers were then selected to present their papers at the Forecast
Panel's working session and to participate in the initial discussion of the issues of Parallel Software
Engineering for C?I systems. Panel members also stated their positions through papers and presentations.
This Annex provides a short overview of the position papers and presentations. They are organized in the
following hierarchy:

1.1 Introduction - methods and goals of the working session and the forecast
panel

• Joe Cavano, Rome Laboratory, "The Forecast Process"
Carl Murphy, for RCI, Ltd, "Trends, Vision, Strategy and Forecast"

1.2 (fl - specific positions on C3I system engineering

• Walter Beam, Independent, "Future of 01 systems"
Walter Beam, Independent, "CI data server workhorses"
Robert Wasilausky, NRaD, "Parallelism through evolution not revolution"

1.3 Industry Level - broad industry directions or viewpoints

• Gordon Bell and Jim Gray, Independent, "Scalable Computing 2000: Network & Nodes"
George Lindamood, Washington State, "Parallel Technology for Everyman"
Peter Seigel, Cornell Theory Center, "Globally Scalable Architectures"
Jeffery Mohr, Information Technology Solutions, "Parallel Processing for Commercial
Applications"
Jon Webb, CMU, "The future of parallel software engineering in an economic context"
Kim Gibson, Motorola, "Mobile Network Requirements"

1.4 System Engineering - software engineering of systems with parallel systems

• J.C. Browne, Scientific and Engineering Software, "Systems Engineering of High Performance
Parallel Computing Software Systems"
Armand ten Dam, TNO Institute of Applied Physics, "Developing parallel applications: the Hamlet
approach"

Annex B - Page 1

• Masami Uemoto, Concurrent Technologies Corp, "Future Manufacturing Engineering
Environments"
Karsten Schwan, and S. Yalamanchili, Georgia Institute of Technology, "Software Tools for
Dynamic, Parallel/Distributed Real-Time Applications"
Carl Murphy, Accord Solutions Ine, "A Parallel Strategie Symbolic Decision Capability"
Jay Eckard, Oracle, "Enabling Technologies"

1.5 Programming Models - design level engineering of applications

• Douglas Smith, Kestrel Institute, "Knowledge-based support for parallel software engineering"
Jan Prins, University of North Carolina, "A refinement-based approach to parallel software
development and maintenance"
Stephen Yau, Arizona State University and Doo-Hwan Bae, University of Florida, "Architecture-
Independent Object Oriented Software Development for Parallel Software Systems"
Thomas Cheatham, Harvard University, "Bulk Synchronous Parallel Computing ~ A Paradigm for
Transportable Software"
Rajive Bagrodia, UCLA and Mani Chandy, CalTech, "Definition of a Virtual Machine for ä
Applications"

1.6 Programming Tools -- implementation level engineering of applications

• Andrew Sherman and Beverly Thalberg, Scientific Computing Associates, Inc, "Virtual Shared
Object Memories: A shared data foundation for parallel software engineering"
Craig Lund, Mercury Computer Systems, Inc, "Component programming and standards"
David Rich, BBN Systems and Technologies, "Parallel software development: future of parallel
and distributed software development tools"

1.7 System Effectiveness - application or machine-specific supporting tools and
infrastructure

• Min-You Wu, State University of New York at Buffalo, "Parallel software must support efficient
execution of general applications"
Martin Davis, Systran Corp, "ADAM: Application Driven Architecture Methodology"
Sanjay Bhansali, and C.S. Raghavendra, Washington State University, "Tools for Parallel
Software Technology"
Matt Rosing, Pacific Northwest Laboratory, "Flexible and efficient abstractions for parallel
programs"
Robert Rabb and Lee Higbie, Seki Systems Company, "Issues in the Specification and Design of
Parallel Programs"

Annex B - Page 2

2. Overview of the Position Process

2.1 The Forecast Process
Joe Cavano, Rome Laboratory, presented the forecast process. This is depicted by the flow diagram given

in Figure B-l.

Parallel SW
Engineering
Assessment

Rome Lab
Technical
Report

\
Ideas for
Forecast
Session

r
I

White
Paper
Positions

Presentations

Questions
for
Subpanels

Subpanel on
C3I

Subpanel on
Technology

\

Subpanel on
Market Forces

General
Consolication
Session ~
Vision of C3I
and Parallel
Software
Engineering

Forecast
Report ~
Voll

Forecast

Report --
Voin

Figure B-l. The Blue Ribbon Panel Process

Cavano explained that the diversity of ideas from the position papers would create a rich set of concepts for
the forecast panel to include in their vision of parallel software engineering for parallel systems. The
forecast report Volume I was to be prepared by RCI, Ltd and returned shortly after the completion of the
meeting. Volume II was to report in more detail and include this Annex summarizing the posiüon papers

and presentations.

2.2 Overview of the Parallel Software Engineering Assessment

Carl Murphy gave the following paragraph to summarize the assessment:

Annex B-Page 3

The assessment's approach is to define Ö via a time-response goal and application criteria. These define
an application's character profile. We used a time-response goal, frequency of synchronization, complexity,
resource demand (or path) stability, and interaction mechanism to define the character of a Ö application.
Determination of an application's character might allow a designer to estimate the effectiveness and
feasibility of applying parallel computers to (?I system components. (Assuming similar character
applications had been found to operate effectively there.) Ö components have a widely varying
requirement for execution completion time. This varies in length and guarantee of repeatability. Based on
that character scheme, we look at the present successful applications areas and evaluate how well they
serve the mix of characters expected in (?I systems. We find that C?I systems are too complex, too
dynamic, too real-time constrained and need to be too reliable to make good use of scientific research
computers for all their needs. Today's parallel systems also fail to meet many needs of command and
control systems, real-time control systems, symbolic decision making, and other time-response critical
applications. The capability of today's parallel industry for ä applications appears to be limited to a
narrow range. Instead, a general parallel capability is needed to meet all Ö character types. In addition,
the limited C?I suitability of large versions of these machines makes system building and life-cycle support
expensive and difficult. There are too few systems or software engineering mechanisms that let designers
design-to-deadline, predict reliable project budgets, schedule and estimate performance. Figure B-2 shows
the Application Character chart used to describe (?I parallel system software. C?I applications tend to be in
or nearby Position [2,2].

reso

dyn .

urce

stati

symbolic
infrequent

frequent

message

Interaction exten synchrony

ii itensi ve

complexity

Figure B-2. C3I Application Character Chart

AnnexB -Page4

3. C3I System Engineering Viewpoints

3.1 Future of Cf\ Systems
Walter Beam reviewed the (?I components given below:

tactical communications/covert operations

surveillance/radar/side-looking radar/intelligence

target location and identification

identification friend, foe or neutral (IFFN)

force control

force assessment

tactical intelligence and analysis

electronic warfare and countermeasures

command, control, communications countermeasures and counter-countermeasures

radio location

electronic intelligence and analysis

communication intelligence and analysis

The current factors given by Beam are critical to the panel's consideration in reaching a vision. Although
recognized as a force multiplier the service leaders prefer weapons. Air Force locations vary significantly in
global, aircraft type, positioning, and mobility. The many changes caused by the end of the Soviet Union
demonstrate the need for highly flexible systems. The current factors are:

downsizing

local conflicts

terrorists

interoperability

wide variety in enemy systems - including US made

grossly altered strategic situation

limitations of technical intelligence

national priorities

overseas basing

The critical military issues that are important to parallel computers in (?I applications are:

availability and use of timely high resolution imagery

rapid, accurate identification of IFFN air, sea and land combatants

shortening cycle for target detection, identification, attack, damage assessment and recovery

Annex B - Page 5

cooperative operations with Allies and other US Forces

netting and fusion of target data from a variety of sources and broad-scale intelligence data

Beam identified the following process intensive Ö applications:

processing, storage, and retrieval of tactical intelligence data and imagery

advanced multifunction displays

speech processing

sensor signal transforms (radar signal processing is the only extensive use of parallel to date)

information analysis (netting, change detection, and fusion)

future modes of use are not predictable

exercise support by C?I systems must expand

3.2 Cfl data server workhorses
Walter Beam pointed out that shared memory multiprocessors are penetrating microprocessor practice in
much the same manner as they did in mainframe practice 20 years ago. Massively parallel processors are
essential for only a few types of dedicated systems. These appear to have little future. The government will
continue to have interest for image data transformation and analysis. He indicates that based on today's
highly parallel machines the more important emerging areas are situation determination, display and
simulation.

Tools for debugging and verification ensure that the results are independent of the machine state at entry.
Personal computers, workstations and data servers can perform most 6l activity. The common
programming mode will be Visual Basic for graphical user interfaces. Executive controls multitask parallel
tasks at run-time. The compiler sets them up in advance as separate tasks.

3.3 Parallelism through evolution, not revolution

Robert Wasilausky, from the Naval Command Control and Ocean Surveillance Center, discussed the
efocus of the role of DOD computer research for defense specific purposes. Wasilausky identified the

following areas of increased importance:

human computer interaction

automatic searching and information organization and presentation

changing data to timely information

automatic image recognition and access to large volumes of image and map data

information warfare ~ protection of our own and disruption of other's information systems

digital library for command and control

Wasilausky pointed out that Navy Command and Control depends totally on commercial workstation
microprocessor and network technology except in those special situations of size, weight, power, real time
and computational speed demand. They use application programming interface standards and large buys to
create economy and protection from obsolescence. He expects inexpensive commercial technology to be
available for the following within the next five years:

Annex B - Page 6

kernel-based operating system for operating system portability

object-based operating systems for distributed, parallel processing

PC operating system with Unix-like capabilities will dominate all platforms

applications will become modular and independent of specific vendor technology

multiprocessor workstations will become the norm

clustered multiprocessor workstations connected via ATM will replace mainframe processors

Real-Time system requirements will be partitioned into specialized processors that are integrated
with general computing

visual programming environments will have component widgets for general functions

large grain parallelism will attract more attention than fine grain parallelism

parallel compilers will become available for shared memory multiprocessor workstations

4. Wasilausky believed that security would not be adequately handled by
commercial progress but that object mechanisms would provide the
capability required within the DOD.

AnnexB -Page7

Industry Viewpoints

4.1 Scalable Computing 2000: Network & Nodes

Gordon Bell recommended that the CI architect over the next twenty years should do the following:

define requirements and how they might evolve

posit a framework -- stress evolvability and client programming

minimize use of explicit parallelism - limit to data bases, client transactions, make data bases
scalable

use the Scalable Network and Platform (SNAP) as the model (discussed below)

use model of standards and design presented by Wasilausky for procurement

Bell described his SNAP concept of computing by 2000. (Note: the SNAP model serves as the standard
expected "commercial best practice" from which the panel members made statements of their concurrence
(or non-concurrence) about its suitability for (?I systems.)

SNAP is a system that uses asynchronous transfer mode (ATM) as the underlying network with
PC/Windows NT desktops as the nodes. Occasionally small multiprocessors (up to four) could be used.
Desktop programming would be client-based using SQL calls to obtain data in a scalable, transparent and
redundant manner. The result is that SNAP is a highly standard system and generationally scalable. A very
large applications industry would provide numerous applications. All data, document, telephony and video
applications could be served by SNAP. The driving force described by Bell is the continual industry
rejuvenation called Moore's law. The table below summarized his plots demonstrating Moore's law for
critical computing components.

TABLE A-1 Demonstrations of Moore's Law from charts presented

Technology Factor Growth

memory size size in MB x 4 every 3 years

microprocessor speed MIPS x 4 every 3 years (since
1990)

disk unit capacity MB capability of 3.5" disk x 4 every 3 years

network bandwidth mbps of wide area network x 1,000 within this decade

Bell's expected result is an inexpensive, 1 GMIPS PC desktop with 256 to 512 MB memory, 20 GB disks
and 155 to 655 Mbps network access ports. Because of the large cost of maintenance of multiple versions
of Unix a single operating system standard from a single company takes over the marketplace. Bell's choice
is Windows NT. Likewise the surviving distributed virtual model is SQL. Economics of packaged
software, portability, compatibility, and openness drives the market so there is a single source file, single
user manual and training course, a single format for all media and arbitrary client-server operations become
peer-to-peer.

Annex B - Page 8

4.2 Parallel Technology for Everyman
George Lindamood presented a concept on how broad access to information would allow citizens to more
effectively interact with government. Access, awareness and understanding flowing from this access would
expand the market size and improve the economics of computing. Methods for decision making using data
mining and modeling and improved user interfaces and virtual reality could transfer (spin-in) to ft system
needs. Large scale use would also provide the ideal testbed for establishing robustness and portability of
models. The ubiquitous application would create opportunity for entrepreneurs and individuals could
become better trained.

4.3 Globally Scalable Architectures
Peter Seigel presented the concept of globally scalable parallel computers. That is near linear scalability in
all the capabilities needed to attack a problem - network, data storage, and data access rates. Examples are
IBM's SP2, and Convex's Exemplar. They are currently message passing but shared memory is projected.
GS architectures are the basis for scalable operating environments, and applications. They are ideally
suited for data mining. Applications of concern at Cornell Theory Center are data mining, visual data
manipulation, data fusion, and collaboration technologies. Seigel recommended research on lightweight,
high performance communication protocols, globally scalable resource managers, object-oriented models,
high-level problem solving environments linked to specialized knowledgeable compilers, and algorithms
that scale from many processors down to one.

4.4 Parallel Processing for Commercial Applications
Jeffery Mohr presented a review of the weaknesses and difficulties of MPP vendors. He pointed out that
vendors have not financially succeeded in scientific and technical markets because they cannot support real
science or stimulate the parallelization of major commercial engineering codes. Their competition in the
business market is made up of well established players with large secure niches. Mohr pointed out the
emerging competition between vendors of scientific MPPs, commercial MPPs and CMOS MVS mainframe
technology. The CMOS 390 has the advantage of large legacy code already under MVS control. MVS
tools on IBM's SP2 may give it an advantage. Mohr's paper pointed out that although shared memory
machines - up to 32 processors - are now more common, independent software vendors still have trouble
parallelizing their codes.

4.5 The future of parallel software engineering in an economic context
Jon Webb's paper provided a dichotomy to describe the economic differences between tightly coupled and
distributed parallel architectures. Tightly coupled machines trade value for latency ~ a computation can be
completed in less time. Distributed ones trade value for bandwidth - more instances of a given computation
can be performed at the same time. Tightly coupled machines will retain importance in application areas
where speed of computation is directly related to its value: weather modeling, financial analysis, program
trading, and direct interaction with the real world. Networks of workstations will dominate the applications
where there is no direct time value tradeoff: scientific modeling and design, graphic development, etc. Jon's
concept of high time value gave the panel a cutting edge to allow it to separate Ö applications from
scientific ones.

4.6 Mobile Network Vision
Kim Gibson provides some insight on the extension of dynamic reconfiguration to the network. Her
position is that the future in parallel computing is in geographically dispersed multiprocessors and
workstations. If imagery and data could be accessed at most of the terminals, with the proper authority, the

AnnexB -Page9

information could be available to the necessary people more quickly. By networking these geographically
dispersed computing resources, Real-Time communications of imagery and data are facilitated. Because
the network nodes can be anywhere, wireless communication is necessary. Forces in the most remote areas
with wireless communications can receive vital intelligence and send their newest information directly
without returning to a physically connected workstation.

The network will be flexible, its designers never knowing its exact configuration before deployment, so
dynamic resource allocation is also a requirement. At any time during network operation, a resource may
be added or deleted. The system must recognize this change and reallocate the computing resources to most
efficiently perform the task. As other tasks are requested, resources must be effectively allocated to ensure
efficient completion of all tasks.

In a future where communications and connectivity are highly valued, efforts must be focused on enhancing
our abilities and stretching beyond the current boundaries. Networks composed of wireless, geographically
dispersed computing resources with dynamic resource allocation capabilities address many of these
boundaries. By connecting these resources, vital information is more available and fewer resources are
necessary because of the efficient use of every node.

Annex B - Page 10

5. System Engineering Viewpoint

5.1 Systems Engineering of High Performance Parallel Computing Software
Systems
J.C. Browne's paper described the significant future applications of High Performance Parallel Computing
(HPPC) as large, complex and long-lived systems which span multiple generations of HPPC parallel
architectures. This emerging generation of HPPC-based applications will be based on dynamically adaptive
algorithms which are more efficient but more complex than their static predecessors. This factor alone will
make the new application systems more complex than their predecessors even if they are formulated for
sequential execution environments. Combining parallel structuring and complex adaptive algorithms will
multiply the difficulty of developing efficient and portable HPPC application programs. Attainment of
application systems that are both efficient and portable by the development processes in use for the current
generation of application systems will be difficult if not intractable. Issues of systems engineering include:

• Development methods which integrate design to performance through parallel structuring with
more traditional concerns for functionality and modularity

• Development methods which integrate abstract specification of HPPC execution environments

• Development methods which focus on design from components in the same mode as is done in
development of hardware systems

The current HPPC software program focuses on programming languages, libraries of components, run-
time systems and measurement of implemented applications but is not, as far as we know, addressing the
issues cited above to any significant extent. The thesis of this informal white paper is that programming
languages, libraries and run-time systems are necessary but not sufficient for the long term success of the
important applications of HPPC. The systems engineering required is often discussed in three phases.

• Analysis - creates a specification (hopefully executable) of the application in application terms.

• Design - specifies the entities of the execution environment and maps the entities of the analysis
phase to the entities of the execution environment to create codable entities.

• Implementation - generates the codable units defined during design.

The systems engineering needs of HPPC applications to fit in this paradigm are:

• Development methods which integrate design to performance through parallel structuring,

• Development methods which specify HPPC execution environments at design time.

• Development methods which focus on design from components in the same mode as is done for
hardware design.

• Tools which implement and support the methods mentioned above.

5.2 Developing parallel applications: the Hamlet approach
Armand ten Dam's paper stated that the motivation for developing parallel applications is always to meet
specific performance requirements. The means to achieve this are by developing applications very much
dependent on the target hardware and by using highly machine dependent code. This results in efficient
programs, but how this efficiency is achieved is another matter. Problems are to be expected when it comes
to maintaining these programs or porting them to new platforms, in which case a complete rewrite of the

Annex B-Page 11

code is not unthinkable. What is needed here is to lift the level of abstraction in program development. With
respect to this we find it very important to make a clear distinction between, on one hand, designing the
solution to a problem and, on the other, translating this design into an efficient and portable
implementation. This idea is also shared by the partners in the Esprit project Hamlet (project 6290)*.
Hamlet's main effort is put into producing a support environment for the structured design of real-time
parallel applications. The applications are industrial embedded applications and are to run on transputer-
based hardware. The Hamlet application development system consists of a collection of tools that can be
divided into two groups: the host- based components (design tools, simulator, trace analysis tool) and the
target tools (compiler/linker/loader, debugger, monitor).

5.3 Future Manufacturing Engineering Environments

Masami Uemoto reported the results of searching for appropriate engineering software tools. Her goal is
the simultaneous use of heterogeneous computers in simulating manufacturing processes. The requirements
were for fast and reliable communications, network transparency, heterogeneous processing, fault
tolerance, data integrity, scalable processing, and portability. She found the following current limitations in
parallel software tools for engineering applications:

• Developing parallel, object-oriented (00) applications is extremely difficult. Neither adequate 00
CASE tools nor 00 development methodologies are currently available for parallel programming.

• Integrating parallel applications with sequential applications is not easy.

• It is difficult to develop independent parallel software modules (or objects) which can be used in a
plug-and-play fashion and which can replace sequential application counterparts.

• It is difficult to debug and monitor parallel applications.

• There are no standards for parallel programming systems and software tools. Emerging distributed
computing technologies and standards, such as Common Object Request Broker Architecture
(CORBA), do not address parallel processing issues.

• It is crucial for long running applications to be fault tolerant against both hardware and software
faults, including system crashes, network disconnect, and other abnormal situations.

• Tools are lacking in heterogeneous processing support.

5.4 Software Tools for Dynamic, Parallel/Distributed Real-Time Applications

S. Yalamanchili and Karsten Schwann are developing high performance distributed and parallel
applications that simultaneously run on a variety of parallel machines linked with high performance
networks. The primary purpose of their research is to exploit these machines' capabilities with highly
dynamic parallel and distributed codes. Two classes of such codes are being studied: (1) real-time
applications and (2) scientific codes. For Real-Time applications, dynamic behavior arises due to code
complexity or, more typically, dynamic behavior in the applications' environments. For scientific
applications, complex datasets often make programmers unable to anticipate program behavior.

Their group is exploring the scientific applications that offer human-interactive interfaces that can execute
simultaneously with the application programs' input, computational, storage, and display tasks. For
scientific applications, we envision multiple researchers or engineers working in distributed, virtual
laboratories, using single or multiple coupled applications running on high performance machines and
across networks. Real-time applications are used, where large-scale, complex systems executing on
networks of machines are operated and controlled by multiple end users. The research agenda defined by

Annex B - Page 12

our work is the development of tools, operating system mechanisms, and algorithms for the on-line
monitoring, configuration, and control or steering of such high performance applications. For real-time
systems, application adaptations address performance, timing, and reliability guarantees.

5.5 Parallel Strategic Symbolic Decision Capability
Carl Murphy's position was that parallel computing has great promise but is now based on specialized
hardware designed to give high performance per unit cost only in a narrow applications range. This narrow
applicability range increases the risk and cost of development and integration. Parallel computers
exacerbate cost overruns, schedule slips, development skill base stresses, and risks of poor effectiveness.
They also increase life-cycle costs if not carefully planned.

Murphy proposes that by enhancing the foundation of hardware and operating system capability that the
overall cost of building applications of many types can be significantly reduced. Cost per peak performance
rating may be increased, but effective in-system performance per unit cost would be significantly better.
With that accomplished, the power of parallel processing will create the goal of "Strategic Symbolic
Decision Computers." Meanwhile executive expectations are growing rapidly. Some of the many
applications feasible with the SSDC are:

intelligent, strategic data mining

visualization of data base contents

multiple DBMS sources and locations

interactive access to raw data, information, intelligence, knowledge

intuitive views of data

self-adaptive pattern recognition capable data

interactive preparation, compute, analyze cycle (a decision spreadsheet)

powerful analytical capability for scenarios, simulation, and plan coupling and prediction

As a result of these applications, Murphy reported that industry forecasters project the need for data-
intensive applications requiring a capability growth significantly higher than the uniprocessor factor of four
growth in capability every three years.

This position is that the barriers to parallel computing are real and not the fault of just "software." It
stresses that the problem is the lack of an adequate foundation encompassing the architecture, hardware,
and operating software and a knowledgeable and supportive infrastructure. To succeed, this foundation
must provide effective parallel computing for any large concurrent application, irrespective of complexity
and dynamism. However, developing a knowledgeable infrastructure that can build these new applications
is just as important. Technology only becomes a competitive tool when an infrastructure is able to adopt
and apply them.

5.6 Enabling Technologies
Jay Eckard presented a point of view that information management is the key vision for ft Key features
are emerging architectures, large data sets, and survivability/availabihty. Information is the essence of Ö,
not data. Sources constantly increase in number and volume. Eckard pointed out the clash among emerging
symmetric multiprocessor architectures, clustered and massively parallel, but added that solid state disks,
large in-memory, radio/cellular and client/server architectures are also emerging.

Annex B - Page 13

6. Programming Model Viewpoints

6.1 Knowledge-based support for parallel software engineering

Douglas Smith advocated a refinement approach to software development in general, and to the engineering
of parallel software systems in particular. He believes that only by starting the software development
process at the requirement specification level, and refining towards various target architectures, can a truly
machine-independent style of parallel programming come about. Machine-supported refinements allow
engineers to factor information about software architecture, algorithms, data structures, the target
architecture, particular machine, and other relevant kinds of programming knowledge into the design
process. They can then achieve correct and efficient implementations. Ö-issues, such as predictable
performance, fault tolerance, security, etc., are treated as requirements in the initial specification, and must
be preserved during the refinement process. Software evolution takes place at the requirement specification
level, not the code level. He gave Figure B-3 to describe software refinement.

Domain Theory Formal Model of
application domain

SPEC(domain specific terms) n refinements

- refined SPEC

• •• Ml

• ••

hypercube

architecture-
specific
compatible
code

••• L

mesh shared memory

Figure B-3. Software refinement

A refinement-based approach to parallel software development and maintenance

Jan Prins identified the key problems faced by HPC software as: (1) the large gap between HPC design and
implementation models, (2) achieving high performance for a single application on different HPC
platforms, and (3) accommodating constant changes in both problem specification and target architecture
as computational methods and architectures evolve.

He suggested an application development method in which high-level specifications are elaborated and
refined though an iterative process. The process introduces architectural detail into a form that can be
translated into efficient low-level architecture-specific programming notations. A tree-structured

Annex B - Page 14

development process permits targeting of multiple architectures with their own flavor of implementation
strategy (See Figure B-4.) It also provides a systematic means to accommodate changes in specifications
and target architectures. Prins described the Proteus system that implements these concepts plus techniques
for performance assessment.

Specification

Architecture Independent
design

Architecture Dependent
design

Implementation

Figure B-4. Program development tree

6.2 Architecture-Independent Object-Oriented Sottware Development for Parallel
Processing Systems
Stephen S Yau and Doo-Hwan Bae gave an approach to identify and express parallelism in software
development for parallel processing systems. They use an object-oriented paradigm which naturally reveals
existing parallelism in the problem space. In addition to modifiability, maintainability and reusability, this
paradigm is better than others in that the concept of an object can be used at earlier stages of the software
development cycle than the implementation stage. It implies that parallel processing aspects such as
parallelism and communication among parallel components can be naturally handled at the earlier stage of
the software development. Consequently, it is easy for the programmers to handle parallelism and
communication among parallel components. We have developed the computation model PROOF (PaRaUel
Object-Oriented Functional) in which the object-oriented paradigm is integrated with the functional
paradigm to take advantage of the many useful features of the two paradigms.

6.3 Bulk Synchronous Parallel Computing - A paradigm for transportable
software
Thomas Cheatham presented the bulk synchronous parallel (BSP) model as a means of enabling
transportable and scalable software for a wide variety of applications. In the BSP model a programmer
breaks the application into a number of supersteps, each having a number of computational threads that
synchronize at the end of the superstep. The model introduces the parameter^ and L to deal with the costs
of communication and synchronization. The parameters represents the ratio of communication content to
computational content.L represents the synchronization period to perform the completion of the superstep.
Given these two parameters, the problem size and the number of processors, performance can be estimated.
Cheatham and his colleagues at Harvard have developed the BSP-L programming language and compiler.
It includes language constructs for BSP style, compiler, and program optimizers that include merging
supersteps, efficient broadcasts, data prefetching, early put optimization and moving supersteps to earlier
than specified. They have identified libraries developed by Oxford Parallel that are available on all
commercial HPCs. He expects a collection of language constructs to be proposed as additions to
HPFortran and HPC++, optimization technology, proofs of correctness and refinements for general purpose

Annex B - Page 15

algorithms, a collection of provable optimal codes for a variety of target architectures and a handbook of
guidelines for further use of BSP.

6.4 Definition of a Virtual Machine for C3I Applications

Rajive Bagrodia and Mani Chandy discussed an approach of designing Ö applications for a parallel
virtual machine that is mapped to different target architectures. In this manner, the investment in ft
software is preserved to the extent that the virtual machine hides changes between architectures and that
mappings from the virtual machine to target architectures is efficient. We refer to a virtual machine for Ö
applications as a CVM.

A viable approach to the definition of a CVM is to integrate performance, real-time and fault-tolerance
issues into the design process. The following must be considered:

• Computation paradigms. The CVM must be able to handle a variety of computation paradigms
that are used to describe different phases of a C?I application. The important paradigms include
task parallelism, data parallelism, and vector computation. For each paradigm, the CVM must
provide a set of facilities at some level of abstraction that matches the overall goal of providing a
retargetable virtual machine.

• Heterogeneity. This requirement must be addressed in terms of both computing platforms and
programming systems. In particular, it must support composition of multi-language and multi-
paradigm programs and be targetable on the identified family of hardware platforms.

• Real-Time. To incorporate timing and resource constraints of subsystems of a Ö application, the
requirements of soft, hard, and adaptive constraints must be addressed in conjunction with the use
of a variety of schedulers including priority and deadline-based, among others.

• Reliability. The level of reliability or fault-tolerance required by an application can vary
significantly. The facilities provided in the CVM may range from providing eventual delivery of
every message to more abstract facilities like atomic broadcasts. The cost of providing various
levels of reliability must be investigated for different architectures before making a specific
recommendation.

• Performance estimation. This requirement refers to the ability of a CVM to predict the
performance of a specific design on a given architecture. This requirement entails a classic trade-
off between precision and generality; iterative methods to support predictability on different
architectures will be addressed.

Annex B - Page 16

7. Programming Tool Viewpoints

7.1 Virtual Shared Object Memories: A shared data foundation for parallel
software engineering
Andrew Sherman and Beverly Thalberg gave their solution to producing effective responses to rapidly
evolving information in a distributed, dynamic system. Their position is that this requires a data-centric,
parallel and adaptive approach. The intersection of C?I and commercial software is that it must produce
robustness and reliability with long-term support and viability. They discussed the alternatives of pure
shared memory and message passing. Their proposed that a content-based memory that provided virtual
shared object memory had significant advantages. Their examples were data-base management systems and
their own Linda and Paradise products. Their arguments are that information should be retrieved by
description, not by location, that synchronization should be by information availability and that capability
should scale transparently with the size and structure of the computational environment. VSOM enables
many of the characteristics needed in dynamic and complex system implementation.

7.2 Component programming and standards
Mercury Computer Systems' Craig Lund described significant differences between signal processing and
other C^I applications. He explained "component programming" and outlined why it is the appropriate
paradigm for signal and image processing. Mr. Lund's comments were a factor in the group's later decision
to exclude signal and image processing from its deliberations.

Mr. Lund also discussed the investment "culture clash" that has developed between the COTS community
and traditional defense vendors. The COTS community invests its own funds in speculative product
development. In contrast, defense vendors often look to the government for help. Danger lies in
unintentionally encouraging COTS vendors to emulate their defense cousins.

7.3 Parallel software development: future of parallel and distributed software
development tools
David Rich provided this input. Much of the discussion argued that & hardware needs will be met by
networks of COTS resources. There was a suggestion that COTS software tools will also be able to meet
the needs of ÖL In general, I agree with these ideas, however I think it is important to note that the ft
community will likely wish to field some of the largest applications to be implemented on these COTS
solutions. This is a non-trivial point as many systems may not function correctly when pushed to the limit.

Tools to simulate, monitor, tune and maintain large software systems may have to be bufit as they may not
be provided by commercial vendors who are primarily interested in smaller systems. We believe that in the
future an "application" will not reside on a single processor. In fact, our definition of the future application
platform includes much more than a given parallel processor. Our picture of the platform of the future is a
network of computing resources which might include the following types of machines; clients (Unix
workstations or PCs), servers (parallel processors with Unix or perhaps Windows NT) and special-purpose
devices including embedded systems, compute engines, I/O processors, network devices or application
monitoring equipment.

They believe the programmer needs a way to debug his whole application from within one development
context. Given that the "platform" is a collection of networked devices (including parallel machines), this
implies that the developer's tools must function on all architectures. In addition, the tools must be able to
address all architectures simultaneously.

Annex B - Page 17

8. System Effectiveness

8.1 Parallel software must support efficient execution of general applications

Min-You Wu provided the following:

"While regular applications can be solved efficiently, only a small fraction of applications are regular.
One of the major problems in parallel computing is that the current technique cannot solve applications
with irregular computation and communication structures successfully. Irregular applications account
for a large portion of real problems. Many applications in C3I systems fall into this category."

An irregular problem is difficult to solve on parallel machines because of its irregular data domain and
irregular computation structure. Only with a run-time support system can an irregular application be solved
efficiently. A real-time, run-time system is crucial for Ö. applications.

8.2 ADAM: Application Driven Architecture Methodology

Martin Davis provided a summary of his position.

"Much is made about creating 'architecture- independent' tools and 'architectural independent'
software representations. Such tools and representations are necessary for the portability and ease of
creation of software. However, when it comes to predicting the performance of a particular application
on a particular architecture and its specific platform (i.e., the hardware and systems software
instantiation), one cannot ignore the architecture nor the specific instantiation. Thus, it is important to
understand how to map the architecture-independent tools and representations to specific architectures
and platforms in order to understand whether the performance is sufficient for the real-time C3I
requirements."

8.3 Tools for Parallel Software Technology

Sanjay Bhansali and C. S. Raghavendra believed that the need for parallel computing is, and will continue,
growing in the future, as we solve problems of ever-increasing scale and complexity. Instead of expensive
parallel computers, users will buy clusters of workstations and personal computers for a fraction of the
price. The problems of data distribution, synchronization, etc. will still have to be solved for running
distributed applications in these environments. But there will be a stronger need than ever for writing
effective distributed applications efficiently. Our position is that we need to create domain-specific tools
that will help users create parallel programs in specific application areas. These tools will sacrifice
generality in order to provide more powerful help in well-defined application domains. They reported that
they use a powerful algorithm level analysis of sequential programs followed by a semantic-preserving
transformation of sequential code into parallel code. These reverse engineering methods have already shown
promise in maintaining legacy code. By extracting parallelism at a higher level of abstraction, they expect
two benefits:

• a deeper understanding of the sequential program to help identify parts of the program to be
parallelized, as well as parts that should not be parallelized;

• ability to replace blocks of sequential code with highly optimized parallel code, possibly from a
code library developed for a target machine, to yield significant speedups.

8.4 Flexible and Efficient Abstractions for Parallel Programs

Matt Rosing's position paper advocated new abstraction mechanisms based on compile time language
constructs specialized to a fairly narrow domain. He compared his approach to with object-oriented and

Annex B -Page 18

library approaches. He believed that oriented technology is very flexible but has severe tradeoff difficulties
between efficiency and flexibility. He believed that libraries are context insensitive. Rosing advocated the
domain-specific compiler abstraction because a compiler can examine the entire context of how a construct
is used in order to generate efficient code from user-defined, compile-time abstractions. He has
implemented distributed arrays as an object whose characteristics are defined by a "mapping function." A
mapping function is essentially a type that consists of a set of user provided code segments. It has proven
most useful for low level abstractions in scientific computations that will be executed a large number of
times at run time and take little time per instantiation. An example is index calculations. Rosing expects
that commercial and C?I applications will have large distributed data structures but probably not arrays.
There will be added complexity with embedded and heterogeneous systems. Parallel I/O will also benefit
from this technology.

8.5 Issues in the Specification and Design of Parallel Programs
Robert Rabb's paper presented an overview of the main specification and design issues for parallel systems
of programs from a software engineering perspective. The main issues considered are portability,
(hierarchical) design correctness, and reliability of implementations. A parallel system design approach
based on the Large-Grain Data FlowJ2 (LGDF2) computation model is outlined. LGDF2 extends the safety
of functional-style programming to include networks of processes whose run-time communication and
synchronization patterns can be constrained at "design-time" to yield the desired safety, reliability and
programmability for parallel programs at run-time.. An assessment of LGDF2 as the basis for unified
specification, design, and implementation of parallel programs is given, along with a brief assessment of its
potential impact on parallel software development and software project management. The approach lends
itself to better visibility into the current state of evolving system designs, and can speed development of
large, complex, yet reliable parallel systems via graceful evolution of rapid parallel system prototypes.

With appropriate tool support, we see this technology as having potentially as large an impact on parallel
software engineering for commercial and government applications as WYSIWYG editors and PostScript
printers have had on document production. The key similarity is that novice users can be productive
without having to understand the details of what makes either technology "work."

U.S. GOVERNMENT PRINTING OFFICE: 1995-710-126-2006

Annex B - Page 19

MISSION

OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

