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Preface 

This study was started with the goal of examining the important issues of 

simulation validation that face military analysts. Because computer simulation use is 

becoming more prevalent in analysis in today's Air Force, proper validation of those 

models is important. There are many issues that military simulation analysts have to deal 

with, so this research is intended to sort through those issues and try to focus the effort of 

validation. 

I would like to thank Lt Col Auclair and Dr. Mykitka for their support, patience, 

and direction as my co-advisors. I would like to send my sincerest gratitude to my parents 

Otto and Marie Elmer. For all the times they were there when I needed support, and all 

the years that they spent instilling in me the values and qualities that I have relied on to get 

me to this point, I thank you. 

Michael Elmer 
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Abstract 

The purpose of this thesis is to address the challenges of validating simulation 

models, especially those challenges facing military simulation analysts. Three distinct 

issues are of concern to the military simulation analyst: 1) What type of validation effort 

do the academic experts recommend? 2) What does the military policy say is necessary 

for a proper validation effort? 3) What can a simulation practitioner realistically 

accomplish given time and resource constraints? 

Four methodologies were chosen to represent the academic perspective on 

validation. A model of validation methods is integrated from the methodologies of these 

four simulation validation references. 

The validation policies of the Army, Navy, and Air Force are examined and 

analyzed for their methodologies to be applied to simulations. The integrated model is 

compared to these policies that are being formed within the DoD to determine the 

relationship between the academic experts and the military policies. 

Case studies of validation efforts are examined and analyzed for the methodologies 

used by simulation practitioners. The integrated model is compared to the case studies to 

examine the relationship between the academic experts and the actual practitioners. 

Finally, conclusions and observations are drawn from all of these comparisons. 

IX 



Focusing the Issues and Challenges of Military Simulation Validation 

1. INTRODUCTION 

The validation of simulation models has been an elusive art since the advent of 

simulation modeling. Many papers have been written on validation, but there are few 

actual case studies on the subject. (Kleijnen, 1995) 

The classical definition of validation is the determination of whether or not the 

conceptual model used in a simulation is an accurate representation of the system under 

study. (Law and Kelton, 1991) This definition can be open to interpretation. What is 

meant by "an accurate representation"? A simulation model is an abstraction of a real 

world system, therefore it can never represent the real system exactly. Details of the real 

system that are not pertinent to the problem can be excluded. For example, consider the 

factors that affect the flight of an F-16.  The moon exerts gravitational forces on the F-16, 

but they are negligible compared to those of the Earth and can be left out of a simulation. 

In contrast, a model of a satellite orbiting the Earth in a geosynchronous orbit should 

include the gravitational forces from the moon.  Ignoring these forces could lead to a 

grossly inaccurate model and misleading results, which in turn could have a major impact 

on the decisions based on the simulation study. 

A better definition of validation, proposed by Kleijnen, might be that validation is 

the process of determining if the conceptual model is 'good enough' for use, which 

depends on the goals of the simulation. (Kleijnen, 1995) The effectiveness of the 



Simulation validation process is related as a degree of confidence that the validating 

analyst has in the conceptual model being 'good enough'for use to achieve the goals of 

the simulation. (Balci, 1994) However, the word 'degree' implies that there a specific 

quantitative measure that can be applied to the model. None of the references examined in 

this thesis suggested a method of applying such a measure. To be clear on the 

terminology used, the definition of validation will be stated as follows; validation is the 

process of determining if a conceptual model is suitable for use to achieve the goals of the 

particular simulation. 

The Air Force document addressing verification, validation, and accreditation 

(W&A) of simulation models, Air Force Instruction 16-1001, which is in draft form at 

this writing, states that "validation is the rigorous and structured process of determining 

the extent to which models and simulations (M&S) accurately represent the real-world 

phenomenon from the prospective M&S use." The AF policy emphasizes that the 

validation effort includes examination of all algorithms, assumptions, and structure, in the 

context of the model's intended use. 

Air Force Instruction 16-1001 requires that a documented validation effort is made 

on models that fit any of the following criteria: 

1. Engagement, mission, or any campaign level models that will be briefed to 
senior ranking officials outside of the Air Force; 

2. Models used significantly in a cost and operational effectiveness analysis; 

3. Models used for force structure, resources, warfare requirements, and 
assessment analysis; 

4. Models used in acquisition projects involving over $115 million in research, 
test, design, and evaluation or $540 million in procurement; 



5. Models used for 'real time' control and movement of troops; 

6. Models with aspects dealing with human safety; 

7. Models made available to agencies outside the Air Force that Air Force 
Directorate of Modeling, Simulation, and Analysis (AF/XOM) has determined 
warrants the attention. 

These criteria apply to many projects, but not all. For smaller simulation projects, 

the Instruction does not mandate validation, but rather leaves it to the decision of the 

major command that the project falls under. For projects that these criteria do apply to, 

the Instruction only suggests possible validation techniques. Here lies the main problem 

there is no clear guidance on the type of validation effort that is required. A 4-star summit 

on modeling and simulation recently cited "no implemented verification, validation and 

accreditation process" as a quality deficiency Air Force wide.l   A DoD Inspector 

General audit reported that 95% of all DoD models and simulations that had been 

inspected had not been validated in a structured manner. (Piplani, 1994, pg 6-3) One of 

the recommendations from the report was development of policy for standards for 

validation. 

Verification is defined as the determination that a simulation performs as intended. 

(Law and Kelton, 1991) Verification is presented here because this effort is often times 

performed concurrently with validation, but it is distinctly different. Where validation is 

determining the aptness of the conceptual model for use, verification is the process of 

determining whether or not the conceptual model has been accurately implemented as a 

computer or mathematical model. (Law and Kelton, 1991) Verification of models will not 

be discussed in this thesis. 

U.S. Air Force 4-Star Modeling and Simulation Summit, 9 June 1995, Andrews AFB, MD. 



When investigating validation, there are at least three clearly defined perspectives 

that the military analyst should consider. The first view is the 'idealized' world of 

academia. What kind of effort do academic experts say is needed? With no real 

constraints, experts in the academic world can develop virtually unlimited lists of 

procedures to follow. The second view is military policy. As already stated, the policy is 

currently being created. The final view is that of the practitioner. What can a simulation 

practitioner really do with the resources available and the time allotted? What are other 

analysts doing, if anything, to validate simulation models? A growing number of managers 

are interested in using simulation as an integral part of their decision processes. 

Significant decisions based on results from simulation models require verified and 

validated models. The challenge to the simulation developer and customer is to balance 

validation requirements against time, funds, and manpower constraints. 

The purpose of this thesis is to address the challenges of validating simulation 

models, especially those challenges facing military simulation analysts. This thesis 

presents a model of validation steps that is an integration of views of simulation experts in 

the academic world. This integrated model is compared to the policies that are being 

formed within the DoD, and with validation efforts that were actually performed and 

published as case studies. 

This thesis will progress in the following manner. Chapter 2 is a review and 

comparison of academic work on validation, resulting in the construction of an integrated, 

validation methodology model. Chapter 3 is a review of military policy and how it 

compares with the integrated academic model. Chapter 4 is an evaluation of case studies 



of validation efforts and comparisons of the methodologies used in the case studies with 

the integrated model. Finally, Chapter 5 is a presentation of conclusions developed from 

this effort. 



2. BACKGROUND 

2.1 Introduction 

Validation is a complex subject that requires the simulation analyst not only to 

have specific knowledge of validation, but also challenges the analyst to use insight and 

creativity. (Balci, 1994) In this chapter, four academic works in simulation validation are 

reviewed, and a validation methodology model is created that integrates the 

methodologies from the four academic works. This integrated model is used in following 

chapters in a comparison with military policy methodology and then with published case 

studies of validation efforts. From these comparisons, conclusions will be formed of what 

methodology steps are actually being used and what kinds of results are obtained from the 

application of these techniques. 

There are many references that propose methodologies. (Arquilla and Davis, 1994; 

Bacsi and Zemankovics, 1995; Balci, 1994; Davis, 1992; Gass et al., 1991; Hodges and 

Dewar, 1992; Kleijnen, 1995; Law and Kelton, 1991; Landry and Oral, 1993; Naylor and 

Finger, 1967; Sargent, 1994; Schlesinger et al., 1974; Shannon, 1975; Susceptibility 

Model Assessment and Range Test Project (SMART), 1995; Zykov, 1987) In order to 

cover the full spectrum of methodologies, but still keep the analysis to a readable size, four 

references were used as the basis of this analysis. Works by Balci (1994), Law and Kelton 

(1991), Sargent (1994), and Davis (1992) are used as the primary basis of the analysis 

because they appear to cover the full breadth of validation methodologies that have been 

espoused to date. 



2.2 Validation Methodologies 

The following is a description of the validation methodologies presented by Balci, 

Law and Kelton, Sargent, and finally Davis. 

2.2.1 Osman Balci (1994) 

The title of Balci's work, Validation, Verification, and Testing Techniques 

Throughout the Life Cycle of a Simulation Study (1994), implies that validation is not just 

a procedure to accomplish after a model has been constructed, but rather validation is a 

process that should be implemented throughout the entire life of the simulation. This 

concept of validation throughout the entire lifecycle of a simulation is an idealistic 

principle that is discussed in more detail later. 

Balci's methodology is based upon six principles. The principles are: 

1) Validation is not a 'yes or no' question. 

2) Model validation should be conducted throughout the lifecycle of the model. 

3) Validation requires independent analysis to prevent any biases of the model developer 
from entering the analysis. 

4) Validation requires creativity and insight into the problem facing the analyst. 

5) Complete testing of a model is not possible. 

6) Validation must be planned and documented. 

Balci, like most authors of simulation methodology, considers validation, and 

simulation work in general, to be an iterative process. Figure 2-1 shows Balci's 

representation of the entire lifecycle of a simulation study. The iterative property of the 

validation cycle means that the process is not strictly a sequential set of steps to perform. 



Balci states that it is expected that the analyst may have to revisit a previous step should 

an error be discovered. Note that in Figure 2-1, validation is included in each reference to 

W&T (Verification, Validation and Testing). 

Design of Experiments 

Figure 2-1: Balci Modeling Lifecycle 



The areas of validation shown in Figure 2-1, referred to by W&T, define Bald's 

methodology for validation. Explanation of those areas are as follows: 

1) Formulated Problem W&T. Formulated Problem W&T is Bald's first phase 

of validation process. In this phase, the model has not yet been created. Formulated 

problem validation is the process of determining if the problem formulation is identical to 

the actual problem. If the formulated problem does not contain the actual problem, the 

analyst has committed a type in error, solving the wrong problem. (Bald, 1994) At this 

stage of the analysis, simulation has not been chosen to solve the problem. During the 

investigation of solution techniques, the analyst chooses the proper technique to solve the 

formulated problem. If simulation is chosen, the analyst continues along the lifecycle 

chart. 

2) System and Objectives W&T. System and Objectives Definition W&T is the 

determination of the system characteristics for inclusion in complex system definition and 

modeling. This process is used to validate six major system characteristics that tend to 

cause many failures (Shannon, 1975): 

1) System changes. The state of the system is an integrated result of past 

state changes and the basis for future states. 

2) System Environment. All systems have their own environment and are 

part of a broader environment. 

3) Counterintuitive behavior. Obvious solutions to discovered problems 

will often be ineffective in complex systems, because the cause and effect 

relationship of the problem might not be closely related in time or space. 



4) Drift to low performance. Complex systems tend towards conditions of 

reduced performance over time. 

5) Interdependencies. Complex systems have events that are influenced by 

their predecessor and affect their successors. 

6) System organization. Complex systems usually exist in some type of 

organized state. 

3) Model Qualification. Model qualification is the process of justifying the 

appropriateness of the conceptual model. Balci defines the conceptual model as the model 

formulated in the mind of the analyst. Model qualification is the process of justifying the 

assumptions that the analyst has postulated for the model. 

4) Communicative Model W&T. The communicative model is the model 

representation that can be communicated to other people.  The communicative model can 

be judged against the real-world system, the study objectives, and the study constraints. 

Communicative model validation is the process of validating this version of the model as a 

proper form of the conceptual model. 

5) Programmed Model W&T. The programmed model is the computer 

executable code. This section could also be more appropriately called programmed model 

verification. This area does not include validation as defined in this work. 

6) Experiment Design W&T. Experimental design is the process of creating the 

experiments, or scenarios, with which the model will be exercised. Validating the 

experimental design is to evaluate the appropriateness of the scenarios for use to achieve 

the goals of the simulation analysis. 

10 



7) Data W&T. Data validation is the process of checking that the input data is 

accurate, complete, unbiased, and used in the proper context for the model. 

8) Model W&T. Model validation is the process of checking that the 

experimental model is appropriately accurate to fulfill the study's objectives. The 

experimental model is the programmed conceptual model coupled with the designed 

experiments and the valid data. 

9) Presentation W&T. Presentation validation is the process of justifying that 

the output results are interpreted, documented and communicated with appropriate 

accuracy. Documentation is an extremely important factor in presentation validation. 

As noted earlier in Balci's flow chart, simulation development, and specifically the 

validation effort, is an iterative process. The analyst continues to perform iterations of the 

steps of the validation process until the study objectives are met, or until the objectives are 

determined unattainable. 

2.2.2 Law and Kelton (1991) 

Law and Kelton suggest a three step approach to validation. As a preface to the 

statement of their methodology, Law and Kelton describe several general, but important, 

guidelines for validation that are not explicitly defined in their methodology. 

1) Careful inspection and definition of the problem are required. 

2) Expert analysis and sensitivity analysis should be used to determine the level of 
detail that the model requires. 

3) Time and money constraints may be important and need to be investigated. 

4) Real world systems that have a large number of factors require the use of a 
'coarse' simulation or an analytic model to determine which factors are 

11 



important before a full-scale simulation model is developed. 

5) Documenting model assumptions in a log is important to complete during 
creation of the model. Many assumptions may be forgotten by the end of the 
project. 

The first step of the methodology is to develop a model with high face validity, 

meaning, the model looks reasonable to system experts. (Law and Kelton, 1991) The 

second step of the methodology is to test the assumptions of the model empirically. The 

third step of the methodology is to determine how representative is the output data from 

the simulation in relation to the real system. 

In order to achieve high face validity, Law and Kelton suggest the following 

activities: 

1) Conduct in-depth conversations with system experts. The process of collecting 

all of the information from the different experts can be valuable in its own right, regardless 

of the simulation study performed. It is rare that one person is extremely familiar with the 

entire system. Bringing together all the relevant information can be a beneficial excersize. 

(Law and Kelton, 1991) 

2) Collect any data, historical or otherwise, that is from a system similar to the 

one in question. A system that is similar to the one in question can be used for data 

collection to help build the model. The analyst must be very careful to make certain that 

the data is representative and correct. 

3) Use established, relevant theories. Well known, documented theories can be 

used to ease the modeling process. For example, the interarrival rate of customers to a 

12 



service system, such as a bank, is likely to be an independent, identically distributed (HD) 

exponential random variable. 

4) Use relevant results from similar simulation models. Results from studies that 

contain some of the same characteristics or scenarios can be used. 

5) Use experience and intuition. Using experience and intuition seems fairly 

obvious, but it is sometimes necessary to make assumptions for models that are based on 

experiences and intuition. Analysts can sometimes use knowledge gained from unrelated 

models. 

6) Keep continuous interaction with the customer/client throughout the study. 

Interacting with the customer/client can clarify the problem. Interacting also keeps the 

client interested and involved in the process. This interaction can increase the validity of 

the model, since the client is generally the person who knows the most about the system. 

The client will understand the results better as well as be more confident in the study if he 

or she is involved throughout the developement of the model. 

7) Perform a walk-through of the conceptual model to all key people. Before 

coding begins, a walk-through of the conceptual model will help validate the analyst's 

conceptual model and assumptions. 

For the second step, Law and Kelton suggest empirically testing the model 

assumptions. Many techniques exist that can be used to test the model assumptions. (See 

Appendix A of this thesis for detail concerning techniques.) Law and Kelton suggest: 1) 

testing the probability distributions used, and 2) sensitivity analysis on output data. 

13 



The third step, and most important according to Law and Kelton, is the 

determination of how closely the model output data resembles the expected (real-world) 

output data. Many techniques are available that can be applied for testing output, 

depending on the situation. These techniques include, but are not limited to, Turing Test, 

Animation, and Time-series analysis and other statistical analysis techniques, etc. (See 

Appendix A of this thesis for detail concerning techniques.) 

A specific point to which Law and Kelton call attention, that is not in the other 

references, is the use of a calibration factor. When model outputs do not agree exactly 

with real system output data, often times a calibration factor is either added or multiplied 

to possibly achieve the correct absolute output. Law and Kelton stress that caution must 

be taken when using a calibration factor. A calibration factor may achieve proper results 

for one set of input data, but the model might not be valid over the entire range of inputs. 

A possible solution to this problem, presented by Law and Kelton, is to use one set of data 

to create the calibration factor and an independent set of data to validate the use of the 

factor. 

Law and Kelton's three step approach to validation is a mix of empirical tests, 

subjective tests, and common sense. Law and Kelton stress that empirical tests of output 

data are the most definitive tests for validation. This three step approach is based on the 

process outlined by Naylor and Finger (1967) in Verification of Computer Simulation 

Models. Naylor and Finger's work is recognized as one of the original important 

achievements in simulation validation. (Law and Kelton, 1991) 

14 



2.2.3 Sargent (1994) 

Sargent proposes three approaches to validating a simulation model. The first 

approach, and most commonly used, is for the model development team to test the 

conceptual model themselves, and decide if the model is valid. 

The second approach employs an independent validation team (or third party 

validation) to validate the model. This approach eliminates biases that may be inherent in 

the model developer, because someone removed from the original model development 

conducts the process of validation. The model developer would still be needed to guide 

the validation team through the model, but the developer is obliged to convince other 

simulation experts that his model is correct for the problem. A drawback of this effort is 

increased expenditure of time and money, since independent validation generally takes 

longer to complete than a similar effort by the model developer. A variation of 

independent validation is to have an independent team review the validation effort made by 

the developer. Review by the independent team would ensure a proper effort was made, 

but would not take the length of time required for the team to become completely 

knowledgeable in the model. 

In order for an independent validation team to carry out the validation effort, 

extremely detailed documentation of the modeling effort must be available. 

Documentation of the entire modeling effort, especially the validation portion, is an 

important aspect of the validation process. Documentation should be a common sense 

procedure. (Shannon, 1975) However, under time constraints, documentation is one of 

the first things in an analysis study that is dropped. (Davis, 1992) Lack of proper 

15 



documentation is apparent when inspecting DoD combat models. Many such models are 

inadequately documented. (Davis, 1992) The Defense Modeling and Simulation Office 

(DMSO) has acknowledged the need for proper documentation and has created guidelines 

stressing the importance of good documentation. These guidelines are listed in 

Davis (1992). 

The third approach uses a scoring model. The validating analyst assigns a score to 

each validation test performed to measure the effectiveness ofthat test. Scores are 

determined subjectively by the analyst when conducting the various techniques in the 

validation process. The scores are weighted and combined to form an overall score. The 

model is declared valid if the overall score surpasses a minimum passing score. A scoring 

model sounds like a good tool, but actually has several negative features. The 

subjectiveness of the scoring process can become hidden behind a seemingly objective 

score. The score can also cause overconfidence in the model. A model could possibly 

pass and still have a large deficiency in one or two areas. Lastly, who is to determine what 

score is passing or failing? The choice of the passing score adds more subjectivity to the 

analysis. The use of scoring models in validation is not used in practice very often. 

(Sargent, 1994) 

Figure 2-2 is a visualization of Sargent's modeling process, including validation. 

As seen in Figure 2-2, Sargent presents his validation effort as an iterative process 

combining data validation, operational validation, and conceptual model validation. The 

validation elements of Sargent's modeling process are as follows: 

16 
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Figure 2-2: Sargent's Modeling Process 

1) Data Validation. Although Sargent asserts the need for data validation, he 

declares that there is not a lot that can be done to ensure valid data. The best that an 

analyst can hope to do is develop good practices for collecting data and test the data for 

outliers and consistency. (Sargent, 1994) 

2) Conceptual Model Validation. Conceptual model validation is the process of 

examining and justifying the theories and assumptions used in a model. 

3) Operational validation. Operational validity is concerned with determining 

whether or not the model is appropriate for its intended purpose. This area is where the 

majority of Sargent's validation occurs. Three basic techniques are the most commonly 

17 



used for comparison between model and system data: 1. Graphs, 2. Confidence intervals, 

3. Hypothesis testing. 

As a culmination of his validation discussion, Sargent proposes a methodology to 

use as a minimum set of procedures for a validation effort. 

1) The analyst and customer should agree before the study begins on the basic 
validation approach. 

2) The assumptions and underlying theories of the model should be tested. 

3) Face validation of the model should be checked on the conceptual model with 
each model iteration. 

4) The model's behavior should be checked with the computerized model on each 
iteration. 

5) The analyst should compare the model and system behavior for at least two sets 
of experimental conditions. 

6) The analyst should fully document the validation process. 

7) Schedule periodic reviews of the validation, if the model will be used over time. 

2.2.4 Davis (1992) 

Davis classifies the validation process into three general categories of validation 

techniques: Empirical Evaluation, Theoretical Evaluation, and Evaluation by Comparison. 

The three categories of techniques are used to achieve three types of validity: descriptive, 

structural, and predictive. 

Descriptive validity refers to the model's ability to explain phenomena. Descriptive 

validity is an explanation of the model's capability to describe why an event occurs, and 

what events transpired beforehand to cause this event occurrence. Structural validity 
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means that the simulation has the appropriate objects, variables and processes modeled 

correctly for the simulation's needed use. Predictive validity means that the model can 

effectively predict the desired response of the system, at least within the domain of the 

specific initial conditions. 

Davis suggests a potential list of techniques to use for validation. These 

techniques are described in detail in Appendix A. Davis' methodology is very heavily 

weighted on the use of face validation. He states that most serious errors in models are 

detectable through proper face validation. He does include a caveat by warning that the 

dangers of depending only on face validity are 'obvious', in other words, validation based 

solely on face validation is a bad idea. The dangers can be minimized if the validation 

effort includes a very broad face validation and in-depth spot checks using empirical tests. 

These checks are carried out via the empirical methods listed in Appendix A of this paper. 

As a large portion of Davis's methodology, proper face validation requires several 

prerequisites: 

1) The model is well documented 

2) The model reviewers are familiar with a good set of standard scenarios. 

3) The model has output that is sufficiently aggregated to permit comparison with 
a familiar set of metrics. 

4) The model should have easy access for spot check requests. 
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The following list is a summary of Davis' methodology: 

1) Apply the definitions and concepts to communicate the important issues of 
W&A. 

2) Use empirical and subjective tests throughout the entire model. 

3) Consider the costs of fulfilling validation requirements. 

4) Data validation. 

5) Explain the process to the customer. 

Successful completion of this methodology results in declaring a model 

descriptively, structurally, and predictively valid. Partial successful completion can result 

in declaring only one or two of the three types of validity. 

2.3 Comparison of Methodologies 

The following section will compare and contrast the four validation methodologies 

just presented. The evaluation is intended to compare the methodologies at a broad level 

of detail. The aim of this comparison is to firmly delineate the general differences between 

the methodologies. 

Balci's paper is the most comprehensive and detailed material of the four works. 

Balci separates the validation effort into eight specific types of validation defined at 

different times of the lifecycle. Law and Kelton present a methodology for validation that 

is more general in nature than Balci's, however, Law and Kelton's methodology is similar 

to Balci's in that they both stress empirical testing as the primary means of achieving 

validation. The two works include subjective techniques, primarily face validation, as an 

important, but secondary tool. The general aspects of Sargent's methodology are similar 
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to Balci's and Law and Kelton's work in that Sargent also stresses empirical tests as the 

most important. 

Sargent's seven step procedure is more specific than Law and Kelton's three step 

procedure, but it is less detailed than Balci's methodology.  Sargent's recommended 

methodology has several specific tasks, and several common sense procedures to perform 

in order to achieve model validity. This general approach is similar to the intent of Law 

and Kelton. Balci does not recommend specific tasks, rather Balci recommends many 

techniques to use to achieve positive validation in the particular validation classifications. 

Davis' methodology shows a stark contrast to the other methodologies by 

emphasizing the use of face validation as a broad validation check and empirical spot 

checks of important factors. Davis states that rigorous empirical testing of the entire 

conceptual model is usually not possible, because of time and resource constraints. 

All four authors accentuate the necessity of performing the validation process 

throughout the entire lifecycle of the model. This concept is fine in an ideal setting, but 

there are many finished models, especially military combat models, that do not have any 

documented validation completed. (Davis, 1992) None of the four authors explicitly 

address the issue of validating a model that has already been completed. Davis implies 

that the methodology could be adapted to use on a completed model, but that is all. One 

could surmise the effort required to validate an existing model specifically, but there was 

no formal documentation concerning this area in any of the references. 
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Davis uses Sargent's lifecycle flow chart (Figure 2-2) as an example of an 

idealized, not realistic, modeling process. Davis claims that in practice this process breaks 

down for several reasons. 

1) Most organizations do not have the discipline to have serious design before 

letting the programmers go to work writing code. Davis states that this attitude results in 

unintelligible models. Programming before validation of the conceptual model goes 

against every author's views presented in this thesis. If an organization lets programmers 

start coding a model or sub-model before the conceptual model (or conceptual sub-model) 

is formally created and validated, no confidence can be placed on that model. The idea of 

creating a solution before proper problem definition is completed is wide spread in 

American engineering society. (Wedberg, 1990) Unsuitable model synthesis is often 

caused by the fact that projects are too dedicated to a timeline instead of quality work. 

Managers get too worried in producing results that make the project look good at the time 

without concern for future problems. (Nicholas, 1990) 

2) The ideal structure breaks down due to the increase in technology. Simulation 

programs are becoming more advanced and much easier to use so that analysts can create 

the conceptual model with the software's user interface. Davis implies that an analyst can 

create a programmed model without first creating a conceptual model. It should be 

obvious to experienced simulation analysts that this idea is not possible in a good analysis. 

The conceptual model may not be documented on paper, but it exists in the analyst's mind. 

The conceptual model is then created on the computer. This conceptual model must still 

be validated as any model on paper must be validated. 
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3) Analysts' conceptual models are often vague and programmers have to fill in 

details, thereby defining the model. Once again, this should be obvious to experienced 

analysts that this reason is just the result of a poor analysis. All four of the authors 

recommend reviewing the conceptual model with the owners/users of the real system 

before programming begins in order to subjectively validate that the model is a good 

representation of the real system. This type of review would help ensure that the 

conceptual model contains enough detail of the real system. 

Table 2-1 is designed to be an easy reference to the different authors' 

methodologies. The table will be used as a guide for synthesizing the authors' works into 

one methodology. The synthesized methodology will be used in the following chapters for 

comparison to military policy and case study methodologies. 

Table 2-1 

Bald Law and Kelton 
1. Formulated Problem Validation. 
2. System and Objectives Validation. 
3. Model Qualification.  

1. Model with high face validity. 
2. Test assumptions.  
3. Test output empirically. 

4. Communicative Model Validation. 
5. Experiment Design Validation. 
6. Data Validation.   
7. Model Validation. 

Sargent Davis 
1. Specify effort with customer. 1. Apply definitions & concepts of W&A. 

2. Test assumptions. 2. Use empirical & subjective tests.  

3. Examine face validity each iteration. 
4. Explore model behavior. 

3. Consider costs of validation requirements. 
4. Data validation 

5. Compare model & system output (2 sets). 5. Explain the process to the customer. 
6. Document. - 
7. Schedule periodic reviews. 
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2.4 Validation Techniques 

The methodology used in the validation effort is the important aspect of how to 

perform a validation effort. There are many techniques that can be used in each area of 

validation. This section presents a brief discussion of the techniques suggested in the 

different references. 

Table 2-2 shows a compilation of techniques documented for use in the validation 

methodologies by Balci, Law and Kelton, Sargent, and Davis. The techniques are sorted 

under two categories, Subjective and Empirical. The techniques listed under the 

Subjective heading require the analyst's judgment to decide the end result. The tests do 

not involve a mathematical conclusion. The techniques listed under the Empirical heading 

require objective analysis. Each empirical test requires experimentation and has a metric 

with which a conclusion is defined. The techniques are combined here into two categories 

for easy application. The techniques are described in detail in Appendix A of this thesis. 

Readers who are interested in the actual application of those techniques are referred there. 
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Table 2-2 

Subjective (Informal) 
Face Validation 

Expert Opinion 
Doctrine 
Other Sources 
Analytic Rigor 
Comparison to valid models 
Clarity and Economy 
Relevant verisimilitude 
Experience/Intuition 
Existing Theory 
Similar systems 

Animation 
Walk-Through 
Formal Review 
Inspection 
Turing Tests 
Event Validity 
Historical Methods 

Peer Review 

Empirical (Formal) 
Statistical Analysis 

Lab data 
Historical data 
Field test data 

Sensitivity Analysis 
Stress Test 
Black-box test 
Time-series Analysis 
Correlated Inspection 
Graph Analysis 
Cause/Effect Graphing 
Path Analysis 
Constraint Test 
Inductive Assertions 
Proof of Correctness 
Traces 
Extreme Condition Tests 
Fixed Values 
Predictive Validation 
Internal Validity 
Historical Data Validation 
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2.5 Confidence: Value vs. Cost 

COST 

VALUE OF 
MODEL TO 
IISEE  

0 
0% Model Confidence 100% 

Figure 2-3: Cost and Value of Validation compared to Confidence 

Certainly, one of the most important factors affecting an analysis study is cost. 

The graph in Figure 2-3 (Sargent, 1994) shows the relationships between the model's 

confidence, the value of the model's confidence, and cost associated with gaining the 

confidence level. Clearly, the exact design of the graph is dependent on the project 

situation. The amount of available resources, the time involved, and the nature of the 

project among others, will all have an effect on the shape of the two curves. Figure 2-3 is 

presented to show the general idea of the type of tradeoff associated with a validation 

effort. 

All model validations will generally reach a point that it would require a large 

amount of resources (money) to increase the confidence a small amount. At the beginning 

of the analysis, a larger gain in confidence is achievable with a similar expenditure of 

resources, which results in a larger gain in value of the model to the user. The value of the 

model to the user will increase along with the model confidence, but the value gained will 

tend to level off as the confidence approaches 100%. This is better known as the Law of 
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Diminishing Returns. Cost usually becomes a significant factor in models that require high 

confidence, because of the potential consequences of invalid model results. 

(Sargent, 1994) 

The tradeoff between cost of confidence gained and value of confidence gained is 

an important aspect of validation because of the current trend of shrinking defense 

budgets. The resulting question that comes out of the cost versus value tradeoff is; Is the 

value of the model gained significant enough to warrant the expenditure to increase the 

confidence? 

2.6 Methodology synthesis 

Table 2-3 is this author's proposed methodology. The methodology is synthesized 

from concepts from Balci, Law and Kelton, Sargent and Davis, to produce a procedure 

that covers the entire range of ideas from each authors' works. The methodology 

proposed here will be referred to as the Proposed Integrated Methodology (PIM) model. 

Table 2-3 

1. Apply the definitions and concepts to communicate the important issues of 
W&A to the customers.  

^^^^^^^^M^^fh^!^^^^^^^^^  
T. Document all workinvalidation effort.  
4. Examine validity of data.   
5. Develop the model with high face validity throughout the entire building 

process, with system experts^ej^eri^cjejm^n^^^  
~6. Experimen^deägn_vajid^tion.  
7. test or'verify the assumptions made in the conceptual modejing^^^  

______ mo~del,s Qutput ^j£ gjnpjricai techniques, especially if historical data 

exists.  
9. E^g^ainthe^  
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The PEVt model contains all of the basic aspects of Balci, Law and Kelton, 

Sargent, and Davis. The following section is an explanation of the importance of each 

methodology step. 

1) Apply the definitions and concepts to communicate the important issues of 

W&A to the customers. Understanding the concepts involved with W&A is important 

for the customer. The methodology used in any problem solution must be questioned 

when important decisions are going to be made. This fact is especially important when the 

analysis is carried out by a contractor to the government. The military and government 

contractors do no have the same agenda, and therefore careful examination must be made 

of the contractor's work. 

2) Determine tradeoff of cost vs. value of the confidence gained. The tradeoff 

between cost of validation and the value of the confidence in a model is an important 

factor that the analyst and customer must decide together. Different studies have different 

driving factors in this tradeoff. For example, studies of command and control require 

very high confidence in the results and therefore, the cost would probably be secondary. 

For non-mission essential studies, the cost might be the driving factor. 

3) Document all work in validation effort. Documentation is discussed as 

important in each reference. As noted previously, documentation is especially important 

to military analysts for continuity, because of the high turnover rate of military analysts. 

4) Examine validity of data. Validation of the input data used in a model is 

important to be sure that the data is accurate, complete, unbiased, and used in the proper 

context for the model. 
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5) Develop the model with high face validity throughout the entire building 

process, with system experts, experience and intuition, and Peer Reviews. Many serious 

errors in models are detectable through proper face validation. (Davis, 1992) 

6) Experimental design validation. Experimental design is the process of creating 

the experiments, or scenarios, with which to use the model. Validation of the 

experimental design is to justify the appropriateness of the scenarios for use in the model. 

7) Test or verify the assumptions made in the conceptual modeling. Validating 

the assumptions made during the creation of the model is discussed by all authors. The 

simulation analyst creates assumptions for the model that have to be proven valid. 

8) Test the model's output with empirical techniques, especially if historical data 

exists. Empirical analysis of output data is an important step in all references. 

9) Explain the process to the customer.  Explanation of the process to the 

customer is an important step. Study and analysis is a customer-oriented (support) effort. 

If the customer (user) of the analysis does not understand the concept of the work, the 

results or recommendations will probably not be used effectively. 

For completeness of the PM model synthesis, Table 2-4 shows that the PIM 

model incorporates all of the various author's methodologies. Table 2-4 also acts as a 

means to visually compare the various author's methodologies. Table 2-4 shows each of 

the various authors' methodologies with step names as row titles, and each step of the 

PIM model as the column title. The intersection of each row and column is marked with 

V denoting the step in the PIM model that incorporates the row element. *# denotes a 
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comment concerning the relationship between a step in a given author's methodology and 

the PIM model methodology, and are described below the table. 

Table 2-4: PIM model compared to reference methodologies 

:^^.          ■:::::::::::::::::::: A M f If P Hj IfllSflH i Fill 
*** i *** *** •kieie 1*3 

H^B 
• BALCI ************************* *** i*** *** *** i 

! 1. Formulated Problem validation *1  ! *2 j ,    !____ .  
12. Sys. & Obj. validation 
i 3. Model Qualification !Y 
\ 4. Comm. Model validation !Y !Y IY 
! 5. Experimental Design validation Y 
1 6. Data validation Y 
17. Model validation !Y IY 
1 TAW AND KELTON ************* ***i*4 1*5  1 *** ; *** *** i *** i *** *** : 

11. Model w/High face validity 
1 2. Test Assumptions 

!Y 
*6 |Y ! 

! 3. Test Output Empirically 
1 SARCENT ********************* ***j *** 

IY 
j driAnfr i *** I *** *** I *** i *** *** | 

1 1. Plan validation effort w/customer Y   1*7 
! 2. Test assumptions ;            ] *8 IY 
\ 3. Face validity | :Y 
! 4. Explore model behavior lY IY 
1 5. Compare model & system output IV 

:Y    ; 

i 7. Schedule reviews |*9 i 
;***i*** 

i 

j T) A VIS   ************************* j *** *** : *** i *** j *** 1 *** ; *** | 

11. Communicate validation issues to 
user 

jY   ! 
\  

12. Empirical & subjective techniques 
used 

;Y |Y 

1 3. Analyze cost requirements 
! 4. Data validity 

!Y 
Y i  .j  

i 5. Explain analysis to customer                             ; IY 
PIM model methodology steps >> iJLiJL UL. 4 1 5 i 6 ! 7 1 8 1 9 
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*1 Formulated Problem Validation is concerned with determining if the proper problem is 
being analyzed. For this comparison, it is assumed that the proper problem has been 
realized and that simulation has been decided upon as the best solution method. 

*2 Although Balci does not include documentation as an explicit step in his described 
methodology, complete documentation is recognized in the work as an essential element 
to a successful validation effort. 

*3 Balci's methodology reaches a very detailed level. Balci's second, third, fourth, and 
seventh steps are all similar in that they attempt to validate the conceptual model of a 
given analysis, four different times in the process. Step seven of the PEM model appears 
to encompass these particular steps. 

*4 Law and Kelton do not explicitly include the cost versus confidence tradeoff analysis 
as a methodology step, however, they do include the implication of time and cost 
constraints in their general principles for validation. 

*5 Documentation is included as being important in Law and Kelton's general guidelines, 
but not explicitly stated in their methodology. 

*6 Law and Kelton consider the use of particular data as an assumption in the model. 
Therefore, using representative (valid) data is important to the modeling process, and is 
checked under the assumption step. 

*7 Sargent includes the cost versus confidence tradeoff as a subsection of planning the 
validation effort. 

*8 Data validity is specifically discussed in Sargent, but not explicitly defined in the list of 
procedures from his methodology. Sargent states that there are not many ways to ensure 
that the data is valid, except for using good procedures for collecting data, examining 
outliers, and using consistency checks. 

*9 Schedule periodic reviews. All four authors discuss the iterative nature of validation. 
It is assumed here that the validation process is an on-going process and is checked as 
needed. 
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In this chapter, four references on validation are analyzed. The different author's 

validation methodologies are synopsized. The methodologies are compared at a general 

level and the validation techniques that the author's describe are presented. The PM 

model methodology is synthesized to incorporate the aspects of all four reference 

methodologies. 

In the following chapter, the synthesis of methodologies is compared to the current 

Department of Defense policies on validation of simulation models. Published case studies 

of validation efforts are then analyzed to determine what types of efforts are actually being 

performed by analysts and how the efforts relate to the PM model. 
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3. MILITARY VALIDATION POLICIES 

Modeling and Simulation (M&S) use is growing in the military community. 

Military policy covering M&S is in the process of being formed. Department of Defense 

directive 5000.59, DoD Modeling and Simulation Management, is the foremost policy 

covering military simulation models. The directive instructs each of the military 

components to establish verification, validation, and accreditation policies. In response to 

this directive, the Army has created Army Regulation 5-11, Army Model and Simulation 

Management Program. The Navy has a Naval Operational Instruction, OPNAVINST, 

Verification, Validation, and Accreditation of Navy Models and Simulations, which was 

still in draft as of February 1994. The Air Force has created an Air Force Instruction 16- 

1001, which is also still in draft form. This section will start with analysis of the Air Force 

policy. 

3.1 Air Force Policy 

Air Force Instruction 16-1001, still in draft form, defines validation as "the 

rigorous and structured process of determining the extent to which a model and simulation 

accurately represents the real-world phenomena from the perspective modeling and 

simulation use." The instruction presents two types of validation: structural and output 

validation. Structural validation includes examination of all algorithms, assumptions, and 

the model structure, in the context of the problem. Output validation includes 
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examination of the degree to which the simulation results accurately compare to the 

perceived real world system. 

The definition of validation in AF Instruction 16-1001 implies that the simulation 

must be comparable to the real-world system, which is restrictive, because some analyses 

only need relative differences, not absolute differences. (Kleijnen, 1995) Also, since a 

model always contains abstractions, there is no model that is perfectly valid. A possible 

change in this definition might be that validation determines if the model is good enough 

for use. Being 'good enough' is dependent on the goals of the analysis for which the 

model is being used. (Kleijnen, 1995) As stated in Chapter 1 of this thesis, the definition 

of validation used in this thesis is the process of determining if a conceptual model is 

suitable for use to achieve the goals of the particular simulation. 

Air Force Instruction 16-1001 requires that a documented validation effort is made 

on models that fit any of the following criteria: 

1) Engagement, mission, or any campaign level models that will be briefed to 
senior ranking officials outside of the Air Force; 

2) Models used significantly in a cost and operational effectiveness analysis; 

3) Models used for force structure, resources, warfare requirements, and 
assessment analysis; 

4) Models used in Acquisition projects involving over $115 million in research, 
test, design, and evaluation or $540 million in procurement; 

5) Models with 'real time' control and movement of troops; 

6) Models with aspects dealing with human safety; 

7) Models made available to agencies outside the Air Force that AF/XOM has 
determined warrant the attention. 
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These criteria apply to many projects, but not all. For simulation projects that are 

not encompassed by this list, the Instruction does not mandate validation, but rather leaves 

it to the decision of the respective MAJCOM. The Instruction does not mandate how to 

validate models, but rather defines a management policy for the W&A process. 

The Air Force Instruction does not mandate a methodology for use in validation of 

simulation models. However, a methodology for validation is implied in the definition of 

validation; structural and output validation. 

1. Examine structural validity. 

- Make internal examination of simulation assumptions and algorithms. 

2. Examine output validity. 

- Use empirical tests to determine how well the model results compare with 
the real-world results. 

Although this list is not comparable to the methodologies listed in the previous chapter, 

some guidance for validation can be derived by analysts. 

The A.F. Instruction does suggest a list of techniques for possible validation use. 

However, the instruction does not give guidance on how to apply the techniques and 

under what circumstances the techniques should be used. The list of techniques from A.F. 

Instruction 16 is as follows: 

1) Face validation. 

2) Comparison with historical data. (Statistical analysis) 

3) Comparison to similar models already accredited. 

4) Comparison to developmental test data. 

5) Comparison to operational test data. 
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6) Peer review. (Subject matter experts analyze model and determine if it is an 
accurate representation of their system.) 

7) Independent third party validation. 

8) Threat data audits on models and simulations that are part of AC AT ID and 
ACAT 2 programs that rely on threat data. 

These techniques are all discussed under the description of validation techniques in 

Appendix A, with the exception of number 8. ACAT ID and ACAT 2 programs are 

specific Air Force programs that are unreferenced in the Instruction. The actual process of 

data audit is similar to Bald's tracing. Tracing consists of monitoring the low level path of 

threat data as it transfers through sub-models in the simulation. 

Lack of concrete guidance in the methodology of validation is a shortfall of the 

instruction. As noted in the SMART report, Comparative Analysis ofTri-service 

Accreditation Policies and Practices (1995), "the major shortcoming of the Air Force 

process is the lack of guidance on the criteria that should be used to determine the amount 

of W&A required." 

3.2 Army Policy 

The Army covers Model and Simulation (M&S) management under regulation 

5-11, entitled Army Model and Simulation Management Program. Regulation 5-11 is a 

Headquarters, Department of the Army document, covering the management of simulation 

models. 

Army Regulation 5-11 defines validation as "the process of determining the extent 

to which M&S accurately represent the real-world from the perspective of the intended 
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use of the M&S." The regulation then states that the ultimate purpose of validation is to 

validate the 'entire system', which consists of the M&S, data, and the operator-analyst 

who will execute the simulation. 

The Army definition is very similar the Air Force definition. The same argument 

used for the Air Force definition is applicable for the Army definition. Both of the 

definitions of validation imply that the simulation must be comparable to the real-world 

system. Since a model always contains abstractions, no model is perfectly valid. As with 

the Air Force definition, a possible change in this definition might be that validation is the 

process of determining if a conceptual model is suitable for use to achieve the goals of the 

particular simulation. 

Like the AF Instruction 16-1001, Army Regulation 5-11 suggests possible 

techniques for validation use. These techniques are: 

1) Face validation; 

2) Comparison with historical data; 

3) Comparison with other simulation results; 

4) Comparison with engineering test data; 

5) Comparison with operational test data; 

6) Peer Review (face validation by system experts); 

7) Independent or third party validation. 

This list of techniques is essentially identical to the list in the Air Force Instruction. 

These techniques form a small subset of the validation techniques reviewed in Appendix 

A. Like the A.F. Instruction, the regulation does not mandate a specific procedure to 
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follow. The regulation does mandate the use of a systematic plan for W&A of all Army 

models, but no plan in particular is specified. The requirement for a W&A plan, and the 

subsequent lack of any guidance is, like the A.F. Instruction, a large shortcoming of the 

regulation. 

3.3 Navy Policy 

The Navy is in the process of creating policy covering modeling and simulation. 

The draft operational instruction is titled Verification, Validation, and Accreditation of 

Navy Models and Simulations. 

The Navy instruction defines four levels of W&A information requirements to 

cover all Navy models. The level of effort is dependent on the tradeoff between the risk of 

using an inaccurate model and the cost of validating the model to a higher level. Level 1 

W&A requires documentation of model development, improvements, past applications, 

any validation effort performed, and defines the application domain for use. Level 2 

requires examination of the model's assumptions, algorithms, architecture, and 

implementation in addition to level 1 requirements. Level 3 requires analysis of the 

model's application results in addition to requirements for level 2. Level 4 W&A is used 

for models of real time movement of forces or those that deal with human safety. Level 4 

effort includes all of the requirements for lower levels, performed at an 'extraordinary 

level.' 

One interesting note seting the Navy instruction apart from the other service 

policies is the requirement for an independent team to either 1) assess the validation work 
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performed by the simulation analysts, or 2) perform the validation work themselves. 

Independent verification of the W&A work increases the probability of having a good 

model, but adds to the cost and extends the length of time needed to develop the proper 

tools for the analysis. 

The instruction defines the information requirements for each level of effort, but 

does not define an acceptable level of effort for each requirement. The information 

requirements define a validation methodology as follows (W&A level in parenthesis): 

1) Design documentation, (levels 2,3,4) 

2) Determine level of V,V & A needed by cost vs. confidence required, (all levels) 

3) Summary of assumptions, algorithms, architecture, and data, (levels 2,3,4) 

4) Face validation, (levels 2,3,4) 

5) Comparison to real world data, (level 3,4) 

6) Data validation, (levels 3,4) 

7) Users and analysts trained, (level 3,4) 

The seven steps are validation elements of the overall W&A process. 

3.4 Tri-service Policy comparison 

After analysis of the three services' policies, the Navy seems to have the most 

guidance for validation. The Army and Air Force policies do not contain enough guidance 

on how to conduct a validation effort. The Navy draft policy on the other hand, defines a 

methodology.  The Navy methodology is summarized in Table 3-1. 
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Table 3-1 

1. Design documentation, (levels 2,3,4^  

2. Determine level of V,V & A needed by cost vs. confidence needed. 
(AULeyels)  

3. Summary of assumptions, algorithms, architecture, and data, 
(levels 23,4)  

4. Face validation.„ÖSY?.!.?.2-AS.  
5. ComparisontojreajJ^ldjd^ajlek^ejlj^    
6. Data validation..„(levels»3,4)  
7. Users and analysts trained, (level 3,4)  

The methodology implied by the Navy policy is extremely close in detail to the 

PIM model (Table 2-3). Several elements of the methodology comparison are worth 

noting. The first element of note is the cost tradeoff with confidence required. The Navy 

instruction highlights the cost versus confidence tradeoff of the validation effort as a key 

component. 

The second element of note is the requirement for an independent team to either 

1) perform W&A on the model in question, or 2) examine and verify the W&A effort 

performed by the analyst who created the model. Requiring the independent check will 

greatly improve the probability of a valid model and analysis, but can become costly for 

some analysis projects. Smaller projects might not be worth the cost of performing the 

independent check. In some cases, the analyst's W&A effort might be suitable. Sargent 

(1994) states that independent W&A is definitely too costly for the benefit gained. 

Sargent suggests that the independent W&A only examine and verify the W&A work 

completed by the analyst. 

Table 3-2 shows the comparison between the Navy policy and the PIM model. 
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Table 3-2: PM model compared to the Navy policy model. 

1. Design documentation. 
2. Analyze cost vs. % confidence. 
3. Model documentation. 
4. Face validation 
5. Comparison to real world data 
6. Data validation 
7. Users and analysts trained *2 

*1 Summary of assumptions, algorithms, architecture, and data. 

*2 The intent of the users and analysts trained validation step is that the model is only 
valid if the users of the model are trained properly. For this study, it is assumed proper 
training is given. 

3.5 Conclusions on Policy 

The Army has the regulation 5-11 concerning W&A, while the Air Force and 

Navy have draft policies under creation for W&A. In their present forms, the Army and 

Air Force policies have shortfalls. The two policies define how to manage simulation 

studies, but give no guidance on how to carry out the actual W&A effort, specifically the 

validation portion. The Navy policy presents a validation methodology to be used. 

Inspection shows that the Navy methodology is extremely close to the PM model. 

By requiring a third party, independent validation, the Navy has projected itself as 

the most concerned over proper analysis. This type of concern over validation of models 

is very important, since modeling and simulation is becoming a more popular tool for use. 

Proper validation may cost more money in the analysis, but it can save much more money, 

and even lives, by catching mistakes in the simulation rather than in the real-world. 
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4. CASE STUDIES 

This chapter contains evaluations of published case studies of validation efforts. 

Each case study evaluation will proceed by the following approach: 

1) a description of pertinent model background information, 

2) a description of the validation methodology used in the case analysis, 

3) a comparison of the analysis methodology to the PM model, and 

4) an assessment of the shortcomings, benefits, and overall effectiveness of the 

methodology used in each case. 

The PM model is reprinted below for easy comparison to the methodologies used in each 

case study. 

Table 2-3 

1. Apply the definitions and concepts to communicate the important issues of 
VV&A to the customers.   

27 Determine tradeoffofcostys.^ 
3. Document all work in validation effort  
4. Examine validity of data.  

T"'D^^^"iSe'imJ^i"\^1h high face validity throughout the entire building 
process, with system experts, experä^ 

6. Experimental„design.validation.  
7. Test or verify the assumptions made in tihe conceptual modeling.  

ITTest the model's output with empirical techniques, especially if historical data 
exists.  „___  

9. Explain the process,j0 the .customer 
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Six case studies covering a broad range of model topics, from a classified military 

model, to an ecological model of a fish habitat, were evaluated. However, the case studies 

were not chosen because of the broad range of their subject matter, rather, they represent 

the entire set of published, detailed validation efforts that could be found through an 

extensive literature search. This confirms Kleijnen's (1995) assertion that, "case studies on 

validation are rare." 

4.1 Case Study 1: RETACT Model 

4.1.1 Model Background 

The Real-Time Advanced Core and Thermohydraulic (RETACT) nuclear power 

plant simulation (Balci, 1987) is a mini-computer based, real-time simulation model used 

for analysis of nuclear power plant control and engineering. Nuclear power plant 

simulations are normally run on large mainframes and do not operate in real-time. The 

simulation focuses on modeling the reactor coolant system thermohydraulics and core 

kinetics. Model validation is of obvious importance since failure of the real-world system 

could result in thousands of fatalities. 

Six test facilities were built that enabled analysts to conduct a large variety of 

extremely detailed experiments that could not have been conducted in an operational 

nuclear power facility. The test facilities thus gave the analysts access to data that would 

otherwise not exist, especially data from experiments that studied the effects of power 

plant accidents. The use of the test nuclear facilities provided a better understanding of 
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the complex thermohydraulic processes and added credibility to subsequent analysis of the 

simulation results. 

4.1.2 Validation Methodology 

The simulation was created with forethought of the validation effort, specifically so 

that the model output could easily be compared to test data. The validation approach 

consisted of several empirical comparisons of model data to test and real world data. 

Statistical analysis was the primary technique used in conducting these empirical 

comparisons. As a secondary validation effort, the senior plant control operators of the 

nuclear reactor performed face validation on the model. Finally, data collection and 

manipulation processes were validated by the analysts and plant operators. 

The following sequence of methods was used in the RETACT model validation 

effort: 

1) Model development included plan for validation. 
2) Face validation performed by system experts. 
3) Data validation. 
4) Model output tested empirically against test and real world data. 

4.1.3 Methodology Analysis 

Table 4-1 shows which components of the PIM model were used in the RETACT 

validation effort. The table contains a Y in the row/column intersection where the PIM 

model contains the validation step performed in the case study. 
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Table 4-1: RETACT methodology compared to PIM model 

1. Communicate validation issues to 
customer. 

2. Cost vs. value of confidence gained.  
3. Documentation. 
4. Examine date validity. 
5. Face validation. 
6. Experimental d^  
7. Test assumptions. 
8. Test model output empirically.  
^Explain processJo^stomer.  

*1 It is implied from the documentation that the important issues of the validation effort 
were discussed by the analysts and plant operators, so that the analysts could create the 
model for easy comparison to test data. 

*2 The documentation step is included because of the fact that the case study was 
published. 

The PIM model steps excluded from the RETACT methodology are the cost 

versus value of confidence gained tradeoff, test assumptions, experimental design 

validation, and validation process explanation. 

4.1.3.1 Face validation 

The senior operators gave their opinion to the analysts that the model was indeed a 

suitable representation of nuclear power plant control. Furthermore, the analysts plotted 

the simulation output data and the test facility data in a time-series output graph and 

subjectively approved, by inspection, that the two series had sufficiently similar time-series 

patterns. 

4.1.3.2 Empirical output analysis 

The analysts used statistical analysis, primarily time-series analysis, to show that 

the model output was a valid representation of the real-world data. The analysts used data 
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from multiple model runs in statistical analysis tests with data from two test facilities and 

the real power plant. Readers who are interested in the details of the actual techniques 

used are referred to Appendix B, Section 1 of this thesis. 

4.1.3.3 Data validation 

Data for the simulation analysis was collected from the six test facilities as well as 

from actual nuclear power plants that had undergone major transients. The test facilities 

were scaled down versions of actual nuclear power plants. The data from the actual 

power plants was not accurate enough for sole use in the simulation, but it allowed the 

analyst to correctly scale the data from the test facilities (such as power output, volume of 

coolant, etc.). The analysts and senior operators subjectively validated that the scaling of 

the test data was a legitimate assumption. 

4.1.4 Shortcomings, Benefits and Overall Effectiveness of the Validation Methodology 

The validation effort gives no mention to any evaluation of the tradeoff between 

cost and confidence. The subject of the simulation, however, is important enough that the 

tradeoff would be heavily weighted in the favor of confidence. The validation effort did 

not explicitly test, or examine, all of the assumptions made in the model development. 

The analysts did subjectively approve the assumption concerning the data collection and 

manipulation as discussed previously. 

The validation methods appear to have been useful in increasing confidence in the 

validity of the model. The subjective face validation effort increased the confidence in the 

model by the system experts affirming that the model was an accurate representation of 
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the power plant and that the data was properly collected and manipulated. The empirical 

statistical tests added confidence by showing a close match existed between the simulation 

data and the test data. 

The analysts concluded that the RETACT simulation gives predictions for nuclear 

power plant operation as accurately as the mainframe based simulations, and has the added 

feature of operating in real-time. The analysts believe that their validation effort was 

extensive enough to declare the simulation sufficiently validated for use. 

4.2 Case Study 2: HUNTOP Model 

4.2.1 Model Background 

The Naval mine hunting model HUNTOP (Kleijnen, 1995) was created to simulate 

the hunting of mines by ships using SONAR. SONAR propagates sound waves into the 

water, then detects the reflection of the sound waves off of objects, such as mines. The 

objects are detected by a human operator observing an echo that appears on the SONAR 

screen. 

The simulation models an area of the ocean with randomly placed mines and other 

objects, that can be mistaken for mines. Simulated ships modeled with SONAR search for 

mines by tracing out sections of the simulated ocean. The mines can only be detected if 

they are in the small range of the SONAR. The key factors in detection of the mines are 

the SONAR window of illumination, the ship position, and the human operator. The 

position of the ship is a fairly obvious factor, since a ship can only detect mines if it is 

actually above the mine. The SONAR window is the area that the SONAR is illuminating 
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at any given instant. Finally, the human operator will always have a probability of error. 

Other factors that are not as significant in detection of the mines are the size of the mine, 

the echo created by the mine's environment (i.e., noise), the angle that the SONAR 

reaches the mine, and other acoustic noise created by other ships, waves, fish, etc. 

One assumption made in the model concerns the Sound Velocity Profile (SVP) in 

the water. The SVP maps sound velocity as a function of the depth of the water. 

SONAR accuracy is dependent on the velocity that sound travels through water. The 

model uses a simple piecewise-linear SVP that remains constant throughout each 

simulation run. In reality, there are many factors that can change the velocity of sound 

through water. The analysts decided that the variations in the velocity were not significant 

enough to warrant the extra effort of creating a more accurate SVP. 

A second assumption is with human behavior. The behavior of the human 

operator is represented by statistical distribution functions, called operator curves. 

Several curves give the probability of detection, which is modeled as an increasing 

function of the amount of time that the echo is visible on the screen. 

The bottom of the ocean is modeled as a geometric pattern that is fixed for the 

length of each simulation run. Changing the ocean bottom pattern for different scenarios 

can add the uncertainty of nature to the simulation. Hills, valleys, and other prominent 

features of the ocean floor can hide mines, create SONAR noise, etc. 

The model uses a parameter that does not have any physical interpretation to 

calibrate the results of the model, to coincide more closely to the real world results that 
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were observed in tests. The use of such a calibration factor was addressed by Law and 

Kelton and is discussed in Chapter 2, Section 2.2.2 of this thesis. 

The field test data was collected from test runs of a SONAR equipped ship hunting 

a 'mock' mine field. Each mine location was marked on the SONAR scope. For purposes 

of the test, a mine was classified as detected only when a SONAR echo appeared in the 

marked area on the SONAR scope. 

The HUNTOP model is intended to investigate different tactics for mine searching. 

Use of the model can help improve mine searching efficiency. The main intent of the 

model is to achieve relative results from different searching tactics of a particular mine 

field. A secondary objective is to achieve absolute predictions of mine detection 

probabilities for each search tactic. Scenarios can be set up for either approach. 

4.2.2 Validation Methodology 

This case study provides an example of independent, or third party validation. The 

HUNTOP model was a completed model when the validation effort began. Since the 

validation analysts were not involved with the model development, the lifecycle approach 

of validation is limited. Regardless, the methodology used by Kleijnen consists of 

essentially four steps. The first step in the validation methodology, model description, 

shows that the validating analysts had thorough knowledge of the model and system. The 

second step was face validation by system experts. Empirical testing of sub-models and 

the overall model using different statistical analysis techniques made up the third step. 
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Test data validation was the fourth step. Details of the techniques used in the HUNTOP 

validation effort are presented in Appendix B, Section 2 of this thesis. The following list 

summarizes the methods of Kleijnen's validation work: 

1) Model description. 
2) Face validation from 1) system experts 2) existing theory. 

-Including validation of assumptions. 
3) Empirical testing of model output. 
4) Data Validity. 

4.2.3 Methodology Analysis 

Table 4-2 is a comparison of the HUNTOP methodology to the PIM model. 

Table 4-2: HUNTOP methodology compared to PM model 

1. Communicate Yjah^ion issuesi to[.customer, j 
2. Cost vs. value of confidence gained, | 
3. Documentation. 
4. Exanime^tej^lidit^.  
5. Face validation.  
6. Experimental^ 
7. test assumptions. Y   I 

8. J^^^jm^üj^SEE^L. 
9. Explain process; to•customer.  

! Y 

*1 The documentation step is included because of the fact that the case study was 
published. 

The HUNTOP methodology lacks the PM model steps of cost versus confidence 

tradeoff, empirical design validation, and any communication with the user or customer. 

Interaction with the customer may have occurred but was not documented. Although no 
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cost versus confidence analysis was presented, the cost of validation is probably secondary 

to the desired confidence, since the benefits acquired from use of the model can help save 

sailor's lives. 

Kleijnen's validation relies primarily on statistical analysis. Kleijnen used several 

empirical statistical analysis techniques to test the relationships between the simulation 

output data and the test data. Kleijnen did not test the assumptions explicitly (such as the 

SVP, human operator curves, etc.), but it is implied that system experts validated the 

assumptions subjectively by inspection (face validation). 

HUNTOP is made up of 40 sub-models. Kleijnen started the validation by 

examining the validity of the sub-models, then examined the validity of the entire model 

overall. 

4.2.3.1 Sub-model Validation 

Kleijnen used Response Surface Methodology (RSM) with sensitivity analysis as a 

large component of his validation work on the sub-models (see Appendix B, Section 2 for 

details). Subjective face validation was used, but was secondary to the empirical statistical 

analysis work done. Davis' statement, discussed in Chapter 2, Section 2.2.4 of this thesis, 

that it is infeasible (too long and too expensive) to conduct rigorous statistical validation 

on the entire model, is corroborated by the fact that because of time constraints, Kleijnen 

was only able to perform validation on two sub-models and a portion of the model overall. 

4.2.3.2 Model Level Validation 

Validation of the overall model was attempted by comparing real versus simulated 

probabilities of detection. Kleijnen obtained mixed results from the attempted overall 
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validation. Kleijnen compared the probabilities of mine detection from the simulation and 

the field tests from three different scenarios, each scenario with a different mine field 

layout.  The comparison was made using hypothesis testing, and using a comparison of 

confidence intervals. The results from the hypothesis testing could not be printed due to 

the classified nature of the information. The confidence intervals, however, were 

presented. Kleijnen took each probability of mine detection from each of the three 

scenarios run, and created confidence intervals (with unreported confidence level) for each 

probability. A comparison was made between the intervals, shown in Figure 4-1. It 

should be obvious that the probabilities in scenario 1 have little chance of being equal. 

The probabilities in scenario 2 are very close to each other. The probabilities in scenario 3 

are closer than scenario 1, but not close enough to have confidence in a conclusion of a 

valid model. 

4.2.3.3 Data Validity 

Kleijnen addressed the validity of the field-test data. Kleijnen did not directly 

question the validity of the test data, but implied that the field test could have been set up 

better and suggested the following refined testing procedure: Instead of only declaring a 

detection when a return is spotted in a circle on the scope, detections away from the 

drawn circles are assigned a probability of actually being a mine. The closer that the 

return is to the circled mine position, the higher weight it receives. For example, a 

detection 20 meters away from a circled position could be assigned a 90% probability of 

being a mine. 
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Figure 4-1: Comparison of simulated and real confidence intervals 

4.2.4 Shortcomings, Benefits and Overall Effectiveness of the Validation Methodology 

Time restrictions limited Kleijnen's validation effort to two of the forty sub-models. 

Confidence in the validity of the HUNTOP model could be increased by validating more of 

the sub-models in the model. 
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The documentation does not contain a description of interaction between the 

analysts and the customer. It is very possible that a large amount of interaction occurred, 

but the analysts might not have deemed the interactions worthwhile of case study 

documentation. 

There was no reference to cost considerations in the validation effort. As stated 

before, this may have been due to the nature of the system being simulated. 

Determination of the legitimacy of the calibration parameter is an important aspect 

of the validation that Kleijnen does not address. As stated in Chapter 2, Section 2.2.2 of 

this thesis, use of a calibration factor must be done carefully because the model might only 

be valid over a small range of inputs, and not the entire range of inputs. Kleijnen does not 

directly test the calibration factor as discussed earlier, but the three scenarios that were 

tested act to achieve the same result as directly testing the factor. Of the three scenarios 

that were tested by Kleijnen, only one set of the model and test data confidence intervals 

overlap significantly (Figure 4-1). This fact strongly suggests that the calibration factor 

made the model results look correct for the one set of inputs, but not for the entire range 

of inputs. 

The methods that Kleijnen used appear to be beneficial to the validation of the 

model. Kleijnen's use of face validation by expert opinion for the RSM and sensitivity 

analysis for the sub-model validation appears to have incresed the confidence in the 

validity of the model. The analyst's determinations of which factors were important and 

which factors were not, agreed with the system experts' views. This determination led to a 

strong confidence in the sub-models that were tested.  In the case of the detection 

54 



probabilities, the validation confidence was in the negative sense. A major drawback in 

the model (but a benefit gained by the validation methodology) was discovered by the 

confidence interval analysis of the probabilities of mine detection.  This test showed that 

there is a validity problem with the model and that more testing is required. 

Confidence in the validity of the model could be stronger if all of the sub-models 

had been tested. Kleijnen planned to validate all 40 sub-models using empirical statistical 

analysis, but was only able to validate two of the sub-models because of time restrictions. 

Kleijnen's validation attempt adds evidence in support of the statement by Davis that 

rigorous empirical analysis of a complex model is usually not feasible because it is too 

lengthy and expensive. Kleijnen's conclusion about the simulation based on the partial 

validation is that the model should not be used for prediction of future behavior, unless 

changes are made. 

4.3 Case Study 3: RADGUNS Model 

4.3.1 Model Background 

The Radar-Directed Gun System Simulation (RADGUNS) is a simulation that 

models the detection, tracking, and firing performance of 20 different Anti-Aircraft 

Artillery (AAA) systems during engagements with several different types of airborne 

targets. RADGUNS simulates one aircraft versus one AAA battery. A secondary use of 

the model is evaluation of the performance of target aircraft with different characteristics 

against the AAA systems. Important system characteristics that the simulation 

encompasses include the weapon system, the operators, the target aircraft, flight paths, the 
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environment, and electronic countermeasures (ECM). Each weapon system is modeled 

with search and track radar, anti-aircraft guns, fire-control computer, servo aiming system 

and the operational crew. The target aircraft's modeled characteristics include radar cross 

section, maneuvers, use of ECM, etc. 

RADGUNS is a deterministic, rather than probabilistic, model. Making the model 

deterministic is an assumption that the real world system's characteristic relationships are 

well known and that their variability is very small, or that the variability of the system is 

not a concern for the study in question. Assessing the legitimacy of this assumption 

should be included in the validation effort. 

4.3.2 Project Team 

The Susceptibility Model Assessment and Range Test (SMART) project is located 

at the Naval Air Warfare Center at China Lake, California. The project team is part of the 

Joint Technical Coordinating Group. The SMART team was tasked by the Office of the 

Secretary of Defense to 1) develop a process for improving the credibility of simulations 

that are used in the acquisition of airborne weapon systems, 2) test the process on widely 

used models, and 3) expand the process to include all types of simulations. At this 

writing, all SMART project team documents are still in draft form 

4.3.3 Validation Methodology 

The SMART project team created a methodology for verification, validation, and 

configuration management. The overall methodology was created from survey responses 

of modeling and simulation users and policy makers. 
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The validation methodology has three phases. Phase I is called Model 

Characterization. This phase consists of compiling background information to provide the 

model user with important information about the model. This information includes a 

synopsis with respect to the applicability of use of the model. The summary is directed 

towards answering questions the user might have about past model use, model 

documentation, model assumptions and limitations, and management of the model. This 

information is intended to be complete enough to let the user determine if the model is 

applicable for his or her intended analysis. Phase I could be looked at as an Executive 

summary for analysts. This information could help a user avoid a type HI error, which is 

finding the solution to the wrong problem. (Balci, 1994) The primary purpose of Phase I 

for validation is to prepare the user for more rigorous validation in Phases II and HI. 

Phase II is a subjective review of the model structure and output by system matter 

experts. This effort is primarily face validation. This review by the system experts covers 

1) validity of input data, 2) validity of the conceptual model, 3) all assumptions and 

limitations of the model, and most importantly, 4) sensitivity analysis of the model output. 

Phase HI of the validation effort is made up of detailed, empirical validation 

techniques used on the functional elements (sub-models) and the overall model. This 

process includes using statistical analysis to compare model results to real-world data 

gathered from operational or field testing, laboratory testing, and bench testing. 

The following list is a summary of the methods employed by the SMART team: 
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1) A. Model Characterization 
-Model Use 
-W&A history 
-Model management and support 

B. Model documentation 
-Assumptions and limitations 

2) A. Subjective review by Subject Matter Experts 
-Face validation of model 
-Sensitivity analysis 

B. Data validation by subjective analysis 
3) Detailed empirical testing (statistical analysis) of model results to test or real-world 

data. 

4.3.4 Methodology Analysis 

Table 4-3 shows a comparison between the SMART methodology and the PM 

model methodology. 

Table 4-3: SMART methodology compared to PM model 

1. Communicate validation issues to 
customer.  

2. Cost vs. value ofjcoj^dence^gamed^ 
3. Documentation. L* j  
4jExarnined^taj^a]Mit^ \ j j j. 
5. Face validation. j |.X...i 

7. Test.assumptions.  
8- test model output empirically 

Y   ! 

Y   ! 

9. Explain process to customer. 1.X....1 1 1 1  

The SMART methodology differs from the PM model because it does not include 

a cost versus confidence tradeoff analysis. The lack of cost tradeoff is possibly due to the 

fact that the SMART project team was tasked to create their methodology for acquisition 

of new airborne weapon systems. Such a model would need extremely high confidence 
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because of both the very high cost of acquiring the real system, plus the fact that soldier's 

lives will depend on the new system. Model validation costs would be a secondary 

constraint behind confidence. The SMART methodology also does not include validation 

of the experimental design. 

The validation of the RADGUNS model is separated into functional element 

validation and overall model validation. The methodology presented above was used on 

each of eight functional elements (sub-models) then on the model as a whole. The eight 

functional elements are flight path, target characteristics (radar cross section (RCS) static), 

waveform generator, thermal noise, angle track, range track, fire enable/disable, and 

ballistics. The validation effort was divided between the SMART project team and several 

different contractors. Specific details of the techniques used in the validation effort are 

listed in Appendix B, Section 3 of this paper. 

4.3.4.1 Functional Element Validation 

The model uses two methods to compute flight path information. The first method 

is computation by several subroutines in RADGUNS. The input data is manipulated by 

the subroutines and used by the model. The second method is computation by an external 

stand-alone program, called Blue Max, that manipulates the input data and creates an 

external file, which is then read by the RADGUNS model. The Blue Max data is used as a 

comparison tool for the RADGUNS data. Since the Blue Max program has already been 

validated, the data produced by the program is used to compare to the data created by the 

RADGUNS program. 
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The techniques used in the validation analysis of the flight path functional element 

of the RADGUNS model are statistical analysis, specifically the Mann-Whitney U test, and 

a subjective face validation of the standard deviations of the model and Blue Max test data 

sets. Visual inspection by the analysts of the data from the simulation and from the test 

data showed that the data sets are sufficiently close to each other. The use of the Mann- 

Whitney test showed fairly conclusively that the two data sets are from the same 

population, in other words the two methods of creating the flight path information are 

sufficiently identical.. 

The SMART analysts declared this functional element portion of the validation 

effort a success. All eight functional elements were validated in the same manner as the 

flight path functional element. 

4.3.4.2 Model Level Validation 

The model level validation was conducted with the same methodology as the sub- 

models. From inspection of the system and system expert advice, the SMART team 

determined that four applications of the model were the most important, and therefore 

were determined to be of primary interest in the overall validation effort. Those four areas 

are 1) target detection, 2) target tracking, 3) shooting performance, and 4) operator 

performance. Examination of these four areas of concern guided the analysts to the 

conclusion that validation of several of the concerns would be extremely difficult. Lack of 

credible test data, or unattainability of test data was the main reason for the analysts' doubt 

of acceptable validation. 
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Target tracking performance was one area that the analysts were able to examine 

in depth. Three sets of tracking error data from range tests were compared to two sets of 

simulated tracking errors. The results of the analysis were ambiguous. Some comparisons 

were favorable, and some were not. The comparisons were not conclusive in either 

positive or negative sense. The SMART analysts decided that more range tests needed to 

be conducted and that the comparisons would be continued with larger data sets. The 

analysts decided that the validity of the data was in question. Therefore, no conclusions 

pertaining to the validity of the model were drawn from the overall model validation 

effort. See SMART (1995, Accreditation Support Package) for full details of the 

techniques used, and the ambiguities discovered from the validation effort. 

4.3.5 Shortcomings, Benefits and Overall Effectiveness of the Validation Methodology 

The documentation does not include interactions with the customers. Interactions 

could have taken place, but they were not documented. The lack of cost and confidence 

tradeoff could be a drawback, except that the SMART project team was tasked to create a 

methodology and apply it to models that required very high confidence. Still, some 

mention of the cost tradeoff in the methodology would be beneficial. 

As noted earlier, the documentation does not include justification of making the 

model deterministic, rather than probabilistic. Deterministic simulation models do not 

contain random variables, by definition. It seems that there would be many areas where 

random events could affect the performance of the AAA battery. Documentation of this 

decision would be appropriate. 
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The validation of the overall model led the analysts to discover potential problems 

with the model. The SMART analysts did not declare the model level validation effort a 

failure, but they concluded that the validity of the data was in question. The SMART 

analysts believed that their approach to the analysis was correct, but that the data used 

was not complete enough for proper comparison. 

The model characterization phase produced detailed background information on 

the RADGUNS model. The documentation seems to be extensive enough to cover most 

conceivable questions about the model. Face validation (subjective) and statistical analysis 

(empirical) techniques used in the validation of the functional elements led to increased 

confidence in their validity. The model level validation proved to be effective by 

uncovering problems in the model. 

The SMART analysis team declared the functional element validation effort a 

success and concluded that the elements were sufficiently validated.  The analysis team 

did not make any conclusions concerning the overall model validity of the RADGUNS 

model, but decided that more testing was required. 

4.4 Case Study 4: Star Field Model 

4.4.1 Model Background 

Star field simulations model different sections of the night sky to be used for the 

testing of navigation and tracking algorithms. Validation of the simulations historically 

has been very difficult because the sensors measuring real star fields produce massive 

amounts of data. Descriptions of the star fields include accurate spatial relationships as 
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well as the correct statistical distributions of number of visible stars. The simulation in 

Winter and Wisemiller (1974) models the space background and the sensors (Silicon 

Intensifier Target tube) used in the field's measurement. The output of the simulation is a 

'mock' photograph of a particular star field to be used to test navigational equipment. 

The key elements of the model for validation are 1) the reproduction of the 

position of catalogued stars, 2) the accurate modeling of the sensor image blooming, 3) 

modeling of the noise interference from background light, and 4) the creation of non- 

catalogued stars. The Smithsonian Astrophysical Observatory (SAO) catalogues stars that 

have an intensity magnitude greater than 9.5 (on a relative measuring scale, with no 

reported details). Image blooming is caused by saturation of a sensor element which 

causes spreading of energy into neighboring elements. 

The main difficulty in validating a star field simulator is using data from real star 

sensors. The quantity of data from real sensors is of unmanageable proportions. One 

observation can produce one-third of a million light intensity values. 

There is no catalogue of stars that are smaller in magnitude than 9.5. The 

simulation was created using an assumption that the exact locations of these smaller stars 

are not very important to the effectiveness of the simulation. A sub-model based on 

position in galactic latitude, randomly generates stars with magnitudes under 9.5 by 

position and magnitude. 

4.4.2 Validation Methodology 

Since the number of catalogued stars in any particular star field is known, the 

number of stars created by the simulation is easy to validate. Simply counting the stars of 
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magnitude 9.5 or greater, and comparing the total to the known number can partially 

validate the model. Star position and blooming are not quite so easy to validate. The 

analysts use statistical analysis to compare the relative geometry between three catalogued 

stars in each simulated field with the known geometry of the cataloged positions. Using 

relative positions as opposed to absolute positions of the stars is not as accurate overall, 

but the information flow is much more manageable. Image blooming is validated by 

comparing the statistical distributions of the sizes of the model output blooms to real 

sensor blooms. 

The following list is a summary of the methods used in the star field simulation: 

1) Statistical Analysis 

4.4.3 Methodology Analysis 

Table 4-4 is a comparison of the Star field methodology and the PM model 

methodology. The documentation of the validation effort states that the effort relied 

solely on statistical analysis of the output data. The methodology used on the Star field 

model is limited for analysis. 
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Table 4-4: Star field methodology compared to PIM model 

1. Communicate validation issues to 
customer. 

2. Cost vs. value of .confidence; gained. 
3. Documentation. 
4. Examine dato .validity. 
5. Face validation. 
6. Ej^erimen^desijgnvalidation.^ 
7. Test assumptions. 
8. Test model output empirically ;..Y | 
9. Explain process to customer [ \ 

*1 The documentation step is included because of the fact that the case study was 
published. 

4.4.4 Shortcomings, Benefits and Overall Effectiveness of the Validation Methodology 

The documentation included description of empirical statistical analysis used in the 

validation effort. However, the documentation did not include details of the confidence 

levels used in the analysis techniques. There were no details documented concerning any 

subjective evaluation, assumption testing, communication with users, data validation, or 

experimental design validation. 

Details of a cost tradeoff with confidence of the validation effort were not included 

in the documentation. The analysts do mention that validating the absolute position of the 

catalogued stars would be extremely difficult and time consuming. It is implied from this 

statement that the effort to perform absolute position validation would be too costly in 

time and resources. Details of this tradeoff would be beneficial. 

In the documentation conclusions, the analysts seemed confident in the 

methodology used for validation. The analysts were satisfied that the results from the 
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statistical analysis techniques used to compare relative positions in the star field and 

analyze blooming effects were sufficient to declare the model valid for use. 

It was noted in the documentation conclusions that there exists potential for 

inaccuracies of the measurements because of blooming. The potential was not great 

enough to warrant the analysts to perform more analysis on the data. Exact details of the 

inaccuracies would be beneficial in support of the validation methodology used. 

4.5. Case Study 5: CERES-Wheat Model 

4.5.1 Model Background 

Zemankovics and Bacsi (1995) present a study of the validation of the simulation 

model CERES-Wheat. The CERES-Wheat simulation is used for crop growth analysis. 

The model incorporates several important factors in environmental management such as 

weather, soil type and characteristics, and management decisions. The model uses a data 

set that was the result of an initiative of the Technical University of Braunschweig. The 

data base was created to use as a common testing basis for various ecological models. 

(McVoy, et al., 1995) The database includes the following elements; soil type, daily 

weather data, nitrogen and water balance, and crop growth observations for three crops at 

three locations. 

The model uses environmental information, farming management information, 

weather data, and six parameters that describe the type of wheat being analyzed as the 

model inputs. The model has many output variables but the main use is to predict how 

different types of wheat will grow under different conditions. 
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4.5.2 Validation Methodology 

Statistical analysis of the output variables is the sole step of validation of the 

model. Five output variables were chosen in validating the CERES-Wheat model: the 

above ground mass of plant, leaf area, grain yield, and dates of antithesis and maturity. 

The principal techniques used were sensitivity analysis, confidence intervals and the t-test. 

Sensitivity analysis was performed on two (PID and G3) of the six wheat 

parameters, resulting in one of the parameters being much more sensitive to change than 

the other. Independent researchers claim that the three parameters, PI V, PID, and P5, 

are more sensitive than the other three, G2, G3, and P5. Bacsi and Zemankovics found 

that PID was much more sensitive than G3. Although this agrees with the independent 

research claim, Bacsi and Zemankovics did not make any claim about the validity of the 

model from that result. This comparison is implicitly face validation by system experts, 

but the authors did not comment on this result. 

Full validation was not carried out because of the limited number of observations 

of the particular variety of wheat in the field data. The case study is presented as an 

excersize in the methodology used, as opposed to a full assessment of the model's validity. 

The following list is a summary of the methods used in the validation effort: 

1) Statistical Analysis of output data 
-Confidence intervals and t-test 
-Sensitivity analysis 
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4.5.3 Methodology Analysis 

Table 4-5 shows the comparison between the CERES-Wheat methodology and the 

PIM model methodology. 

Table 4-5: CERES-Wheat methodology compared to PIM model 

1. Communicate validation issues to 
customer.  

2. Cost vs. value ofconfidencejained. 
3. Documentation. 
4. Examine data^validit^. 
5. Face validation. 

*1 

6. Ej^erimenJ^desjg^ 
7. Test assumptions. 
8- TesimodeJ^^utjmr^ricalh/^ 
9. Explain process to customer. 

Y  ! 

*1 The documentation step is included because of the fact that the case study was 
published. 

The documentation included description of empirical statistical analysis used in the 

validation effort. There were no details documented concerning any subjective evaluation, 

assumption testing, communication with users, data validation, cost versus percentage 

confidence, or experimental design validation. 

4.5.4 Data Validity 

The test data set used in the CERES-Wheat model was not validated by 

Zemankovics and Bacsi, but the database has undergone extensive analysis for validity by 

other sources. McVoy, et al., (1995) demonstrate partial validation of the data using 

statistical analysis. McVoy references other works that also validate portions of the data 

set. 
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4.5.5 Shortcomings, Benefits and Overall Effectiveness of Validation Methodology 

The methodology used in the validation was very limited. As noted previously, 

there were no details documented concerning any methodology steps other than empirical 

statistical analysis. 

Zemankovics and Bacsi do not make any final claims about the validity of the 

CERES-Wheat model. The analysts state that the lack of field test data prevented them 

from performing a full validation effort. The data set used was not complete enough to 

gain conclusive results. In this type of simulation situation, Davis' methodology would be 

most applicable. With a general lack of suitable data for empirical testing, subjective 

validation techniques, as Davis suggests, would give the analysts the only validation 

results. However, subjective validation needs 'system experts' to give judgment for 

validation. If there are no such experts, the only validation possible would be from the 

experience and intuition of the analyst. It does appear that the authors could have made a 

subjective claim concerning the validity of the parameters as noted previously. 

The authors concluded that larger data sets are needed for proper validation, which 

they did not have for the CERES-Wheat model. Zemankovics and Bacsi do not make any 

conclusions about the validity of the CERES-Wheat model. 

Zemankovics and Bacsi did claim that the different statistical analysis tests would 

make for proper validation, given an acceptable data set. The authors state that assessing 

the validity of a model is often a subjective decision, and empirical tests can be useful to 

support such a decision. However, the authors do not make any subjective assessment 

themselves. 
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4.6 Case Study 6: Fish Habitat Model 

4.6.1 Model Background 

The Fish Habitat model was developed to predict the presence of cold water, cool 

water, and warm water fish in lakes of northern and southern Minnesota. 

(Stefan, et al., 1995) The simulation uses 25 years of daily weather data to model 

temperature and dissolved oxygen characteristics to be used as the main factors for the 

suitability to sustain fish life in 3002 lakes. 

The simulation uses three variables to model the physical differences of the lakes: 

lake surface area, maximum depth, and the Secchi depth (the depth that a certain 

percentage of the radiation from the sun travels into the water). Several combinations of 

values of the three physical variables made for conditions that were unsuitable to support 

some of the fish. These cases were excluded from the analysis. 

4.6.2 Validation Methodology 

The methodology used in this case study is strictly statistical analysis. The sole 

test of reliability was comparing the simulated prediction of the presence of the different 

types offish, to the observations of the actual fish populations at the respective lakes. 

The lakes were first categorized by northern and southern portion of the state. 

The lakes were then separated into 27 classifications by all combinations of shallow, 

medium, and deep depth; small, medium, and large surface area; and eutrophic, 

mesotrophic, and oligotrophic Secchi depths. The number of northern lakes in each 

classification ranged from zero for shallow depth, large surface area, and oligotrophic 

70 



Secchi depth, to 531 lakes in medium depth, medium surface area, and mesotrophic Secchi 

depth. The number of southern lakes in each classification ranged from zero in shallow 

depth, large surface area, and oligotrophic Secchi depth to 168 in shallow depth, medium 

surface area, and eutrophic Secchi depth. 

The model predicted the presence or absence of each type of fish for each 

classification of lake. If the prediction agreed with the observations, the class was labeled 

(A) for agreement. If the prediction and the observation did not match, then the class was 

labeled (D) for disagreement. The scores were quantified by assigning a 100% score to an 

(A) and a 0% to a (D). The scores were then averaged over the range of fish types for 

each classification to get a percentage for each (see Table 4-6 below). 

The second comparison was performed by counting the number of lakes in which 

the most common fish was observed for each classification and reporting that number as a 

ratio of the total number of lakes in that classification. This ratio of lakes was compared 

to the simulated results of the percentage of lakes in each classification that are habitable. 

The analysts examined the percentages of correct predictions and made a 

subjective assessment that the model did a good job predicting the presence of fish. There 

was no documentation of any other subjective assessments of the model. 

Table 4-6 is the percentages of agreements between the simulation and actual 

observations. 
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Table 4-6 

North South 
_    _   c9Ld_.Co°l   Warm            ^ld___C59L_^™L 

Fishpreläice"lÖO% I'ÄTÄIIIIIJS^, 1M% JÖ0% 

lAi^^^^^^^L^^-J^  ?1%_85%_85%_ 

The authors explained the disagreements observed in Table 4-6 by the fact that the 

suitability for fish existence is an average value and several fish, such as the cold water fish 

Cisco, are more tolerant to the temperature. The Cisco can survive in water at a deadly 

temperature for a short amount of time. Other explanations for disagreements include; 

human interference by stocking or eliminating fish species, winter conditions that were not 

modeled, uncertainty in measurements, among others. 

The following list is a summary of the methods used in the validation effort: 

1) Statistical Analysis 

4.6.3 Methodology Analysis 

Table 4-7 is a comparison of the fish habitat model methodology to the PM model 

methodology. 
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Table 4-7: Fish habitat methodology compared to PIM model 

1. Communicate validation issues to 
customer. 

2. Cost vs. valueof confidencegained; 
3. Documentation. 
4. Examine data validity. 
5. Face validation. 
6. Experimental.design vahdation. 
7. Test assimiptions. 
8. Test model ou^ut empirically. pL.| 

j^Ex^lainjsrocejisL^Mt?™*. I ■ 

*1 The documentation step is included because of the fact that the case study was 
published. 

The methodology used in the validation of the fish habitat model is strictly 

statistical analysis. As in the previous two case studies, there were no details documented 

concerning any subjective evaluation, assumption testing, communication with users, data 

validation, cost versus percentage confidence, or experimental design validation. 

4.6.4 Shortcomings, Benefits and Overall Effectiveness of the Validation Methodology 

The first point of discussion in the potential deficiency of the validation is the data 

validity.  There are several areas of the data that the authors raise as potential cause for 

concern: 

1) The 25 year data is averages of the seasonal maximum temperatures. There 

could have been one or two years of extremely cold conditions that could have killed off a 

fish species, but the average would not have been affected significantly. 
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2) The temperature and dissolved oxygen data have uncertainties in the 

measurements. 

3) Some fish can survive short periods at a lethal temperature. The time of 

exposure to the lethal temperature may not have been long enough to kill off the species. 

The next point of potential deficiency in the case study is the method of comparing 

simulated results to observed values. Simply comparing the percentages of correct 

predictions is rather simplistic. Furthermore, the subjective choice of what percentage is 

passing and what percentage would be declared invalid seems arbitrary and has no 

explanation in the documentation.  The average of the 'fish presence' percentages in Table 

4-6 is 86%, while the average of the 'most common species' percentage is only 70%.  The 

analysts explain away these obvious deviations without commenting on the potential for an 

invalid model. 

Fish should not be expected to be observed in all lakes that are suitable for their 

existence. However, the result of 18% for cold water fish in the southern portion of the 

state should show the possibility of an invalid conceptual model. The authors admit that 

more investigation is warranted to determine if more parameters than just temperature and 

dissolved oxygen should be used in the model, specifically for the southern cold water fish. 

The analysts present the percentages of observations of the 'most common 

species' of each type (cold, cool, and warm) offish, but there does not appear to be any 

benefit to the overall validation by this analysis. A fish species could be the most prevalent 

species in its particular type and still not be present in fifty percent of the lakes. The 

authors do not give statistics for the observations of presence of the most common 
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species. There does not seem to be any real comparison. The analysts seem to have 

committed a type III error, they answered the wrong question. (Balci, 1994) This 

validation process does not seem to answer the question of validity of the simulation 

model. 

The analysts claim that the results in Table 4-6 show that water temperature and 

dissolved oxygen content in water are good indicators of suitable fish habitats. The 

simulation tries to predict which lakes are hospitable to the different types of fish. The 

output results show good agreement with the observed results in all of the 'fish presence' 

classes except for the southern cold water fish. It is apparent that more work is needed in 

the validation effort. The 'most common species' comparison does not seem to add any 

benefit to the validation. More testing is appropriate before the model can be declared 

valid enough for unlimited use. 

4.7 Case Study Summary 

Table 4-8 is a summary of the methodology steps from each of the six case studies. 

Table 4-8: Summary of Case Study methodologies 

HBS>STO''WWS 

1. Communicate validation issues to 
customer.  

2. Cost vs. value of confidence gained. 
3. Documentation.  
4. Examine data validity.   
5. Face validation.  
6. Experimental„design;.yalidjtion.  
7. Test assumptions. 
8. test modei output empirically.  

! 9. Explain process to customer. 

0 
I Y 

"Y I'Y IT 
Y   i Y   i Y   i 

j6(*l) 
Li  

1 3 
To  

"Y I'Y I'Y I'Y !"Y \YJJL 
Y   ! 
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*1 All six case studies include documentation, simply because of the fact that the efforts 
were published, except for case study 3, the SMART methodology, which explicitly 
recommends documentation of the modeling and validation process. 

It appears from Table 4-8 that there is a minor disconnect between the validation 

methodologies that are created for publication and the actual validation efforts that are 

being performed by simulation practitioner.   Assuming that the six case studies examined 

in this thesis are representative of actual practice, some conclusions about the types of 

efforts that practitioners find important and useful can be proposed. It is apparent from 

Table 4-8 that empirical analysis of output data is the strongest and most widely used 

method in validation. Face validation and data validation are secondary methods for use 

and the testing of assumptions and interaction with the customer are on the outer edge of 

apparent usefulness. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

This research examined the challenges that face military analyst in validating 

simulation models. The main challenges addressed in this thesis include examination and 

comparison of the following: 1) the types of validation efforts that academic simulation 

experts recommend as complete efforts, 2) military policy that guides the simulation 

analyst, and 3) actual efforts that simulation practitioners have performed. 

This chapter starts with a brief review of the ideas on which Chapters 2,3, and 4 

are based. The remainder of the chapter is a discussion of conclusions from this research. 

5.1 Summary 

An extensive background research revealed a large quantity of references on the 

validation of simulation models. Four references were picked to represent the academic 

perspective on validation. The particular references were chosen because they appeared 

to span a large portion of the prevalent ideas on validation and the authors are well known 

and respected in the simulation field. This examination concluded with the creation of the 

Proposed Integrated Methodology (PIM) model, which is a synthesis of the ideas 

presented by the four references. The PM model is shown in Table 2-3 in Chapter 2. 

The military policy examination consists of analysis of draft Air Force instruction 

16-1001, the draft Naval Operational Instruction, OPNAVINST Verification, Validation, 

and Accreditation of Navy Models and Simulations, and the Army Regulation 5-11, which 
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is the only military policy not in draft form at this writing. The policies are compared and 

contrasted between themselves and to the PIM model. 

The analysis of published case studies was intended to determine the types of 

methodologies that analysts are actually performing. Unfortunately, only six detailed case 

studies were found after extensive research. This sample of case studies is too small to 

justify making broad conclusions, but they helped in gaining an idea as to the types of 

efforts that practitioners are actually completing. 

5.2 Conclusions 

5.2.1 Methodology Examination and Synthesis 

There exists a very broad range of references concerning the validation of 

simulation models. Of the references examined in this research, many are very detailed in 

their approaches to validation, while others provide very general approaches. There does 

not seem to be one methodology that is accepted as best. 

5.2.2 Military Policy 

The Army and Air Force policies are very similar and share the same shortcoming: 

a lack of concrete guidance concerning the proper methodology needed to perform a 

satisfactory validation effort. Both policies describe the management of simulation 

models, but neither give specific direction with regard to the type of validation 

methodology that needs to be performed. More guidance in this area would be expected 

to produce better simulation studies. 
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The Navy policy gives much more direction than either the Army or Air Force 

policies. The Navy policy proposes a validation methodology to be used, that is very 

close in nature to the PM model methodology. Although the Navy policy is still in draft 

form at this writing, it shows the most clear-cut direction for analysts to follow. 

5.2.3 Case Studies 

It is readily apparent from Table 4-8 of Chapter 4, the case study methodology 

summary, that there is a minor disconnect between the methodologies that the academics 

have created for publication and the methodologies that simulation practitioners are 

performing. 

Assuming that the six case studies examined in this thesis are representative of 

actual practice, some conclusions about the types of efforts that practitioners find to be 

practical, important and useful can be proposed. It is apparent from Table 4-8 that 

empirical analysis of output data is the strongest and most widely used method in 

validation. Face validation and data validation are secondary methods for use and the 

testing of assumptions and interaction with the customer are on the outer edge of apparent 

usefulness and practicality. 

There will exist some cases of simulation models where one method or another, 

such as empirical output testing, is the only means of achieving confidence in the model 

validity. However, the case studies examined show that increased confidence in the 

validity of the models was gained by the use of extensive methodologies, such as those 

including subjective assessments and examination of the validity of the data used. 
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For example, the CERES-Wheat model validation showed that strict use of only 

empirical techniques is sometimes not feasible. The analysts did not have appropriate data 

with which to validate the model empirically, and thus, were not able validate the model to 

any significant degree. A more extensive methodology might have helped gain some 

confidence in the model. 

None of the case studies include explicit discussion of the cost of the validation 

effort versus the confidence gained from that effort. However, in the days of shrinking 

defense budgets, it is important for analysts to keep this trade-off in mind. 

Time was a constraining factor in the HUNTOP validation effort, and can be 

viewed as a cost in the trade-off with confidence. The cost versus confidence gained 

trade-off depends on the simulation subject matter, the customer, and the analysts; but the 

trade-off is an important aspect of the overall model validation effort that needs to be 

addressed at the beginning of model development. 

It is this author's conclusion that enough discussion has been presented to say that 

the PIM model is a reasonable methodology for use. The PIM model appears to be 

sufficiently realistic in scope so that it is feasible to implement. At the same time, it also 

appears to be extensive enough to guarantee an adequate validation effort. Although 

several steps of the PIM model were not shown to be used by practitioners, the ideas of 

interaction with the customer, cost versus confidence trade-off analysis and experimental 

design validation are important concepts to include in the validation process. 
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5.2.4 Observations 

One observation that comes out of this research is that simulation practitioners and 

academic experts need to come together to find a methodology that can be acceptable to 

both. The academic experts need to research a methodology that incorporates the 

concerns of the practitioner, such as limited time and resources. Conversely, the 

simulation practitioners need to make a more concerted effort to conduct more extensive 

validation efforts on their models. Somewhere in the middle is a common ground where, 

hopefully, both can exist and simulation models can be economically validated. 

A second observation is that because simulation analysis is intended to help 

decision makers make important decisions, it is vitally important that the simulation 

analyst performs a proper validation effort. If such an effort is not made, very little 

confidence should be placed in the analysis results and the effort expended to create the 

simulation would be for naught. 

5.3 Recommendations for Validation Policy for Air Force Analysts 

The following recommendations are presented to shape a policy that can help 

guide simulation practitioners in their work. 

1) Use the unrestrictive definition of validation in the Air Force wide validation 

policy. Validation is the process of determining if a conceptual model is suitable for use to 

achieve the goals of the particular simulation. 

2) Create a methodology for validation similar to the Proposed Integrated 

Methodology and define specific times throughout the lifecycle of the model development, 
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in the manner of Balci's lifecycle diagram (Figure 2-1), where milestones in the validation 

effort need to be achieved. Also, create a version of the methodology that can be used 

with completed models. 

3) Define a set of levels, as the Navy Operational Instruction does, to categorize 

all models under Air Force control by level of importance and define an amount of effort 

that needs to be performed for each level of importance. 

5.4 Recommendations for Further Research 

The following recommendations are presented as potential topics for follow-on 

research to this thesis. 

1) Examine, the trade-off between cost of effort, the value of the model, and the 

percentage of confidence gained in validity of model in more detail. Determining how to 

approximate the cost of a validation effort and the value of the model after the validation 

is one potential area of research. 

2) Research of more case studies of validation efforts would be beneficial. A 

larger sample size of validation case studies would produce a more lucid picture of what 

types of efforts that simulation practitioners are performing. The SMART project team 

will have completed documentation on the validation efforts that they performed on two 

more models, ESAMS and ALARM, as well as the completed RADGUNS effort, 

available for distribution as of 31 December 1995. 

3) Research on the validation of distributed simulations is a topic that could be 

important in the near future. Use of distributed simulations is becoming more common. 
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Models that have been validated for working alone will now need some type of validation 

effort to achieve confidence to work in conjunction with each other. 
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Appendix A. Validation Techniques 

Appendix A is a compilation of the techniques described by the various academic 

references to be used in each step of the methodologies. 

Table A-l is a summary of all of the validation techniques presented by the four 

authors. The techniques are categorized by subjective or empirical technique. 

Table A-l: Validation Techniques 

Face Validation Statistkal Analyses 
Expert (pinion Lab data 
Doctrine Historical data 

Other Sources 
AnaJy_ticRigor_ 

Field test data 
Sensitivity Analysis 
Stress Test Comparison to valid1 models 

ClarityandJEoonomy__  
RelevanTverisimilitude  Tme:series Analysis 

Black-box test 

F^perienc^n^toition 
Existing; Theory 
Sümiar systems  

Animation 

Correlated Inspection 
Graph Analysis 
Cause/Effect Graplung 
Path Analysis 

Wajk-Through Constraint Test 

Formal Review 
Inspection  

Inductive Assertions 
Boundary Analysis 

Turing Tests 
EventJ^Hdity 

Traces 
Extreme Condition Tests 

Historical Methods  Fixed Values _ 
Predictive Validation 

Peer Review M?™.^..YiMty... 
Historical Data Validation 
Degenerate Tests 

Table A-l: Validation Techniques 
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A.l Subjective Techniques 

Face validation 

Face validation is a rather bland term, and can be interpreted many ways. For this 

paper, face validation will consist of the model development team, along with system 

experts, formally discussing all the model's assumptions, the entities of the model, the 

variables of the model, the processes used and the output described in the model. This 

effort gives the system experts a chance to have an input into the model, during model 

development. If the system experts are convinced that the model is representing their 

system well, they can be a powerful ally in convincing management that the results are 

useful. Convincing the system experts that the model is a valid representation of the 

system under study also forces the model developer to examine his own work carefully. 

Face validation is basically a subjective comparison of the model and the real system. If 

there is no historical data to analyze, face validation can prove to be the most effective 

validation tool available. An example of such an instance would be the analysis of the 

feasibility of a new system and there is not an existing system to study. Dr. Gene 

Woolsey of the Colorado School of Mines goes even further in saying that to perform a 

valid simulation study, the analyst must actually be trained and work on the project before 

attempting to analyze the system.l  Unfortunately, this is not a possibility for most 

analysts. 

Seminar, Dr. Gene Woolsey at the Air Force Institute of Technology, 1994. 
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Animation 

Animation is a helpful validation tool, but can also be a pitfall. It can be very 

useful to get a visual confirmation that a model works as the analyst expected. It can also 

be a very good tool for selling the model results to management. If the manager can see a 

depiction of his system running on the computer, he is much more likely to trust the 

results. Animation can build more confidence in the manager than just delivering a list of 

numbers at the end of a report. Animation can be a hazard though. While animation can 

help in the understanding of the dynamic qualities of the model, it can lead to a false sense 

of security in believing the model is valid, just because it looks correct. A better idea is to 

use animation, if it is available, as a verification tool, and as a tool to prove that a model is 

not valid, instead of trying to prove that it is valid. (Law and Kelton, 1992; pg. 242) 

Animation should be used in a manner that it does not declare a model valid, rather it 

should be a test that the model must pass so that it is not declared invalid. 

Walk-through 

A Walk-through is similar to the inspection except that the team is concerned with 

standards and long-term implications. This effort adds to the overhead and does not 

appear to actually be a technique to increase validation confidence. 

Formal reviews 

These are structured efforts similar to inspections, but they are usually at a more 

general level of detail, and also involves management. Reviews should be scheduled 
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periodically, to keep management involved and to keep the analyst up to date on any large 

scale managerial changes that could affect the system and hence invalidate the conceptual 

model. 

Inspection 

An inspection is in fact a rather formal, structured, and large effort. It consists of 

a team of four or five analysts completing a formal list of steps to find faults. This 

includes 1) overview, 2) preparation, 3) inspection, 4) rework and 5) follow-up. This 

formal structure will probably make for a time consuming task. 

Along the same lines is an effort called a Peer Review. None of the authors 

referenced in this work defines an effort exactly as a Peer Review. It is not a formal 

activity, like Balci's inspection, but rather the Peer Review is a face validation effort using 

a group of simulation analysts who are not associated with the project in question. 

Getting as much simulation experience together as possible and reviewing the conceptual 

model can be a large benefit to the validation effort. 

Turing Tests 

Turing tests consist of presenting two sets of data, one from the real system and 

one from model output, to system experts. The system experts then try to differentiate 

between the two sets, without prior knowledge as to which is which. This effort is 

presented by Balci (1995), Sargent (1994), and Law and Kelton (1991). 
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Event Validity 

Events that occur in the simulation are compared to the real world system. The 

events do not have to be specific output of the model, rather an event can consist of any 

action that is performed by or on an entity in the model. Event validity is only possible if 

there is a method to track the events occurring during a simulation execution and if the 

events are comparable to the real-world occurrences. Simulation models contain 

abstractions that could make a one to one comparison with real-world events impossible. 

Historical Methods 

The historical methods of validating models are: Rationalism, Empiricism, and 

Positive Economics. Rationalism assumes that the underlying assumptions involved in a 

model are true, from these assumptions, logical deductions are made to create a valid 

model. Empiricism requires that all assumptions in the model must be validated 

experimentally. Positive Economics requires that the model only be able to predict the 

future correctly and is not concerned with the model's assumptions or structure used to 

achieve the results. 

Peer Review 

The peer review is the process of the validation analyst convincing other analysts 

who are not associated with the project that his conceptual model is good. 
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A.2 Empirical Techniques 

Statistical analysis techniques 

Statistical analysis covers a broad spectrum of topics. Use of statistical analysis 

techniques can be very powerful tools in validation, if used properly. The system needs to 

be observable (i.e., data can be collected) and the model has to be verified. Various 

methods can determine a confidence range for elements of the model, leading to overall 

validation of the model. The major stumbling block is the data. Very often, either the real 

world data is not in a usable format, if it exists. It is rare that an analyst can get the 

perfect data set needed. (Gass, 1991) Many times the system has no built in features to 

collect the data, or if it does, the level of detail of the data collected is so immense that the 

useful information cannot be sorted out. An example is log files of computer transactions. 

If the log file contains every action that the computer performed, sorting out the required 

information would be extremely difficult. When useful data is acquired, statistical analysis 

is one of the most powerful tools used. Statistical analysis techniques can yield objective, 

quantitative, reproducible data concerning the quality, or validity, of a simulation model. 

(Kleijnen, 1995) 

Techniques such as Analysis of Variance, confidence intervals, Goodness of Fit 

tests, time series analysis, regression analysis, and F tests can be strong tools for 

validation. Several of the techniques are used as measures in hypothesis testing. All of 

these techniques are described in detail in Neter, Wasserman, and Kutner (1990). 

89 



Time series analysis is based on analysis of data relative to time. The output 

processes of most real-world systems and most simulations are not stationary processes 

(the distributions change over time) and are autocorrelated (Observations of the process 

are correlated with each other). (Law and Kelton, 1991) Under these conditions, classical 

statistical analysis based on independent, identically distributed (HD) observations cannot 

be directly used. However, there are many situations where time series analysis can be 

used. Details of time series analysis can be found in Neter, Wasserman, and Kutner 

(1990). 

Basic concepts of time series analysis can be used regardless of any characteristics 

of the observations. Time series data and graphs can be analyzed for periodicity, 

max/min, inflection, skew, time periods of increase or decrease, etc. If they exist, basic 

time-series aspects are detectable and can be compared to known real world aspects. 

Hypothesis testing is a concept used to test if the real world data and the model 

data could have come from the same population. Since the data sets could actually be 

looked at as samples from a population, hypothesis testing lets the analyst assign a degree 

of confidence to the nature of the relationship between the two data sets.  There are 

several excellent software packages on the market for statistical analysis including SAS, 

Statistix, and Excel. 

Sensitivity Analysis 

Another important tool is sensitivity analysis. Varying inputs one at a time, and 

observing the changes in the output will identify variables that are important to the system 
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behavior. These variables can be used in a comparison to those in the real system. Most 

likely, this is used in the actual analysis of the system, via the model, after the model has 

been verified and validated. Sensitivity analysis is part of the information that the owner 

of the real system wants to find out about the performance of their system. If the proper 

data is available, sensitivity analysis can be used in validation. An example of it's possible 

use in validation is analysis where known phenomena exist. A model of a supersonic jet 

should have a marked change in performance when the speed of the plane is changed from 

mach .999 to mach 1. The changes in flight performance at the sound barrier are well 

documented and should be mimicked by the model, if the model was correct. 

Very often, sensitivity analysis is done ad hoc. Normally, a few cases are used, 

where each variable is changed one at a time. While this can be useful, Kleijnen offers 

another approach that is a more scientific one, Response Surface Methodology (RSM). 

(Kleijnen, 1995) RSM uses polynomial response functions to approximate complex 

input/output relationships of a system. RSM consists of creating an experimental design 

of input variables that the analyst thinks might be important. Linear regression with first 

and second order terms is then used and the relationship between the input and output 

variables is approximated. The RSM design is then used for analysis in place of the actual 

relationship. Neter Wasserman, and Kutner (1990) has full details of carrying out the 

RSM analysis. 
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Stress Testing 

Stress testing requires loading the model to it's maximum constraints and 

observing the model for any invalid response. Intuition on the analyst's part will be needed 

to discern if the behavior is an accurate prediction of real system behavior or if it is a 

problem with the model.  If the model is showing poor results and there does not seem to 

be a good reason why, it could very well be indicating an error in the model.  If no errors 

are detected from stress testing, the test will be included as part of the analysis of the 

system behavior. 

Black-box testing 

Black-box testing or functional testing, is an excellent method of validation, as 

long as all the proper historical data is available, and the model is verified to a high degree 

of confidence. Black-box testing consists of using test data in the model and checking if 

the resulting output is reasonably close to the actual output of the real system. This 

comparison requires statistical analysis, such as hypothesis testing, to compare the model 

outputs and the real-world system outputs. Most likely, an analyst will only be able to test 

a relatively small number of inputs. (Balci, 1994) Testing a limited range of inputs may 

lead the analyst to be suspicious of the actual validity over a larger range of inputs.  The 

analyst should take careful consideration when choosing the inputs to cover as large a 

range as possible. For models with relatively small numbers of inputs and outputs, this 

task is manageable. Large, complex models can have millions of transformation paths 

between the inputs and outputs, which would be impossible to test. In this case, Response 
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Surface Methodology, which is described under sensitivity analysis, could be used in place 

of Black-box testing and achieve similar results. 

Correlated inspection.. 

If the real system exists, hypothesis tests can be performed to determine if the 

simulation output data and the real-system data are distributed the same. Statistical 

analysis techniques as described under Balci are relevant for use. In addition, a technique 

called the Correlated Inspection approach can be useful. This technique compares the 

relative changes in the outputs from the simulation and the real-world system when using 

the same inputs. Comparing the relative changes, instead of the absolute results, 

attributed to identical inputs will show the correlation between the simulation and the real- 

world system. Since the model is an abstraction, it may not achieve the absolute results 

sought after, but may still achieve the correct relative results. 

Graph based analysis 

Graph based analysis is an exception that consists of creating flow charts of model 

control. These flow charts can help the analyst detect faults in the conceptual model 

during its creation.  This technique seems to be more of a verification tool to check the 

implementation of the conceptual model. 
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Cause and Effect graphing 

Cause and effect graphing can be used in conjunction with sensitivity analysis and 

addresses "what causes what". It is a graphical representation of which inputs and 

parameters affect output variables. This process requires analyzing the real system to 

determine the cause/effect relationships (possibly using the multivariate techniques 

described earlier) and then deciding if they are accurately described in the model. These 

relationships would be used in creating the model, if they were available. In this case, 

cause/effect graphing would become a verification effort. The cause/effect effort can 

become extremely large for large complex models. The HUNTOP model described by 

Kleijnen (1995) has over 40 input variables and a comparative number of outputs 

(unspecified). Creating a cause/effect graph for each of these would be a large, time 

consuming effort. 

Path Analysis 

Path analysis consists of testing all the control paths in the model. This analysis 

would be a good effort given unlimited time. Path analysis has the potential to become a 

very large task for a model of any complexity, since even small models will have many 

submodels. This type of analysis would be more of a verification tool, but could possibly 

identify validation errors. Testing a control path of a model is a difficult undertaking. The 

test requires executing data that will cause model control to pass into desired areas or 

submodels in the model. A software 'probe' would be required to track the flow of control 
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in the model. Limited path analysis is required in verification and debugging, but testing 

all control paths would be very time consuming for a model of any complexity. 

Inductive Assertions 

Inductive assertions (IA) is also mainly a verification tool, but could have some 

validation uses. IA consists of determining input-output relations, converting the relations 

into assertions, and checking the assertions at various points in the model's execution path. 

Checking the assertions, like several of the proceeding techniques, requires traceability 

along the execution path. The majority of errors detected would probably fall into 

verification, (Balci, 1994) but the test was included here because it is possible that it might 

detect validation errors also. 

Boundary Analysis 

Boundary analysis is similar to sensitivity analysis in that the analyst varies certain 

inputs by very small amounts to see the resulting changes in the output. The difference 

between boundary and sensitivity analysis is that the inputs varied are variables that have 

distinct regions, or domains, over their entire range. The variables are being tested at the 

boundaries of those regions. The reason why this test is included separately from 

sensitivity analysis is that the most error-prone cases lie near on the boarders of the 

variable ranges. (Balci, 1994) 
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Traces 

Traces consist of following specific entities through the model and determine if the 

model's logic is correct. 

Extreme-Condition Tests 

The model should be tested for any conditions that maybe very unlikely, but are 

still possible. In such cases, the model should be bound if there are limitations on the 

actual operating ranges, such as a limited queue size for example. This test is similar, but 

not exactly, to Balci's stress test and constraint testing. 

Fixed Values 

All of the model's inputs and internal variables are set at fixed values to allow 

checking the model's results by calculation. This test sounds to be in the line of 

verification more than validation. 

Predictive Validation 

Predictive validation is determining if the model's prediction of the system 

behavior is accurate. 

Internal Validity 

Randomness of a stochastic model is checked by making multiple runs of the 

simulation model. A large amount of variability in the results may indicate a non-valid 

96 



model. If such a case occurs, the policy or system under consideration should be 

questioned. 

Historical Data Validation 

If enough historical data exists, the data is split into two groups. The first group is 

used to create the model, and the second group is used for validating the results of the 

model. 

Degenerate Tests 

The degeneracy (or state of becoming worse) of the model's behavior is tested by 

1. Removing a section of the model, or 2. Making appropriate selections of values for 

inputs and parameters. An example of a degenerate test would be to increase the arrival 

rate to a queue until it is larger than the service rate and observe the resulting 

performance. 
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B. Case Study Techniques 

Appendix B consists of details of particular validation techniques of interest in 

each of the case studies. 

B.l Case Study 1: RET ACT 

Table B-l is a compilation of validation techniques reviewed in Appendix A. 

Details of the use of the techniques can be found in Appendix A. The techniques used in 

the RET ACT analysis are highlighted with Yes. 

Table B-l: RETACT Validation Techniques 

Face Validation Statistical Analysis 
-Expert Opinioni Yes -Lab data Yes 

-Doctrine  
-Other Sources 
-AnalyticJRigor  
-Comparison to valid models 

^Historical data.Yes 
-Field test data Yes 

StressTest 

Black-box test -Clarity and Economy 
-RelevantverisimHtu.de 
-Experience/Intuition Yes 

Time-series Analysis Yes 
Correiated Inspection 

-Existing Theory Graph Analysis 
-Similar systems 

Agnation  
"mik^nirough  
Formal Review 

Cause/Effect^Graphing 
Path Analysis 
Constraint Test 
Inductive Assertions 

fosp???*?.0*! ?.r.9.9.t.9ll?.9.?I?.^???.s... 
Turing Tests  Traces 
Event Validity 
Historical Methods 

Extreme Condition Tests 
Fixed Values 
Predictive Validation 

Peer Review Internal Validity 
Historical Data Validation 
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B.2 Case Study 2: HUNTOP 

Table B-2 is the compilation of validation techniques from Appendix A. 

Techniques that were used in the HUNTOP validation effort are designated by Yes. 

Details of the use of the techniques are in Appendix A. 

Table B-2: HUNTOP Validation Techniques 

Face Validation 
Expert Opinion Yes 
Doctrine 
Other Sources 

Statistical .Analysis 
Lab data 
Historical data Yes 
Field test data Yes 

Analytic; Rigor 
Comparison to valid models 

Sensitivity ..Analysis Yes 
Stress Test 

cla^.^..??4.I?.0.9.0M.  
Relevant verisümlitude 
Experience/^tuition 

Black-box test 
Time-series Anab^sis_ 
Correlated Inspection 

Existing TheoryYes 
Simila^s^stems 

Graph Analysis 
Cause/Effect Graphing 

Animation  P#..^.lysis. 
WaJk{rjirouj^ 
Formal Review 
Inspection  
Turing Tests 

Constraint Test 
Inductive Assertions 
Proof of Correctness 
Traces 
Extreme Condition Tests EventJValidity  

"ffistoricafMethods  Fixed.Values^ 

Peer Review 

Predictive Validation  
Internal Validity 
Historical Data Validation 
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B.3 Case Study 3: RADGUNS 

Table B-3 is the compilation of validation techniques from Appendix A. 

Techniques that were used in the RADGUNS validation effort are designated by Yes. 

Details of the use of the techniques are in Appendix A. 

Table B-3: RADGUNS Validation Techniques 

...StibfertktffMOTHmj 
Face Validation StatisticaljWlysis 

Expert Opinion Yes 
Doctrine 
Other Sources 

Lab data Yes 
Historical data Ves 
Field test data Yes 

...^S?ly!??.Mi.9L Se^tiyi^Analysis Yes 
Comparison to valid models SfressTest^ 
Cl^JSjodJEoonOTrxL 
Relevant verisimilitude 

Black-box test 

„., .Experience/Intuition 
JExisting.TheoryYes 
Similar; systems 

AnimatiojQ_  
Wafk-ftoouehYes  
Formal Review 

Time-series Analysis Yes 
Cc^JÄtedJtais^ectioji  
Graph Analysis 
Cause/Effect^Graphing^ 
Path Analysis 
Constraint Test 
Inductive Assertions 

Inspection 
Turing Tests 

Proof of Correctness 
Traces 

Event Validity 
Historical Methods 

Extreme Condition Tests 
Fixed Values 
Predictive Validation 

Peer Review Internal Validity 
Historical Data Validation 
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B.4 Star-Field Model 

Table B-4 is the compilation of validation techniques from Appendix A. 

Techniques that were used in the Star-Field validation effort are designated by Yes. 

Details of the use of the techniques are in Appendix A. 

Table B-4: Star-Field Validation Techniques 

Face Validation 
Expert Opinion Jjfes 

Statistical Analysis 
Lab data 

Doctrine Historical data Yes 

Other Sources 
Analyse Rigor  

Comparison to valid models 
Clarity and Economy 

....?l?|[dtest.data___Yes__ 
Sensitivity Analysis; Yes 
Stress Test 
Black-box test 
Time-series Analysis Relevant verisimilitude 

Experience/towtion 
E^ristixLgjn^ryJ^es^ 
Similar systems 

Correlated Inspection 
Graph Analysis 
Cause/Effect Graphing 

Animation Path Analysis 

Walk-Through 
Formal Review 

Constraint Test 
Inductive Assertions 

Inspection 
Turing Tests  
Event Validity  
Historical Methods 

Proof of Correctness 
Traces 
Extreme Condition Tests 
Fixed Values 
Predictive Validation 

Peer Review Internal Validity 
Historical Data Validation 
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B.5 CERES-Wheat Model 

Table B-5 is the compilation of validation techniques from Appendix A. 

Techniques that were used in the CERES-Wheat validation effort are designated by Yes. 

Details of the use of the techniques are in Appendix A. 

Table B-5: CERES-Wheat Validation Techniques 

Face Väüdation Statisti«yLmüj«is_ 
Expert (pinion Lab data 
Doctrine Historical data 

Other Sources Field test data Yes 

„Analytic_Rigor_ 
Comparison to valid models 
Clarity and Economy.  

Sensitivity Analysis> Yes 
Stress Test 
Black-box test 
Time-series Analysis Relevant verisimilitude 
Correlated Inspection Experience/Intuition 

Existing Theoiy  
SirälaTsysterrK  Caus?^???!:.9^BB.. 

Graph Analysis  

Animation Path Analysis 
Walk-Ttoough 
Formal Review 

Constraint Test 
Inductive Assertions 

Inspection 
TuringJests  
Event Validity 
Historical Methods 

Proof of Correctness 
Traces 
Extreme Condition Tests 
Fixed Values 
Predictive Validation 

Peer Review Internal Validity 
Historical Data Validation 
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B.6 Fish Habitat Model 

Table B-6 is the compilation of validation techniques from Appendix A. 

Techniques that were used in the Fish Habitat validation effort are designated by Yes. 

Details of the use of the techniques are in Appendix A. 

Table B-6: Fish Habitat Validation Techniques 

Face Validation Statistical Analysis 
Lab data 

Doctrine Historical data Yes 

Other Sources Field test data 
Sensitivity; Analysis  Analytic Rigor  

Comparison to valid models 
Claris and Economy  

Stress Test 
Black-boxJest 
Time-series Analysis Relevant verisimilitude 

Experience/Intuition  
Existing Theory 

Con-elated:.Injipection 
Graph Analysis 

Similar systems 
Animation 
Wä-T^qugh 

Cause/Effect Graphing 
Path Analysis 
Constraint Test 

Formal Review ^^.H^.Y.?.^?.?!^.0.??.. 
Inspection Proof of Correctness 

Traces Turing Tests  
Event Validity  
Historical Methods  £«$4 Vjüues. 

Extreme Condition Tests 

Predictive Validation 

Peer Review M?™.^...Y?.!!.^.  
Historical Data Validation 
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