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Parallel Software Engineering Assessment 
 Executive Summary 

Scope 

This assessment looks at parallel 
applications and architectures from the 
viewpoint of a C3I system builder. 
Figure ES - 1 shows these issues. 
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Figure ES - 1. Parallel Software Engineering 

Applications 

C3I applications need parallel compute 
capabilities. Present systems could better 
fit their physical constraints (size, 
weight, volume, power, etc.) with 
effective parallel computing.  Parallel 
processing at the source of data reduces 
communication. Data fusion into events 
and information fusion into decisions 
can be performed faster and more 
thoroughly. Designers can bring global . ,    .    .   . . 
information to bare on local command decisions and vice versa. Performing mulnple simulations and 
iterations instead of one improves battle plans and scenarios. The reduction in execution time makes 
each opportunity possible The contribution of parallel computing is in improving the speed or 
thoroughness of the result, thus advancing the capability of C3I system applications. 

Our assessment includes a rating of C3I and parallel applications by criteria that are independent of the 
particular parallel architecture. Together these criteria form a characteristic pattern of execution. By 
observing successful parallel applications with a similar characteristic pattern, one can identify 
architectures that are suitable. The result shows that there are too few successes to meet patterns 
required by C3I systems. We find that we must make a new focus on parallel architecture capabilities. 

Scientific-research parallel computing is not general enough to provide a complete model for C3I 
system applications. Client-server data base and on-line transaction processing, a successful example of 
parallel computing, are limited to applications where the parallel application serves many independent 
users. The present parallel successes fail to solve mission critical applications, those in which a few 
users need an execution that effectively uses the entire capability of the parallel computer. 

Architectures 

Gains in throughput processing via parallel processing have, so far, have a significant penalty. 
Builders find the penalty in the inability to design with assurance that the application can be performed 
at a predictable speed on the chosen architecture. They experience the penalty when the effort to fit the 
application into the architecture grows beyond original estimates. The extra effort often compromises 
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the schedule and cost budget In addition, they have no structured way of designing their system for 
rapid response computing, real time predictability, system availability, fault tolerance, and security. We 
conclude that today's parallel computers fail to deliver the promised performance in complex Air 
Force C3I systems. The C3I industry needs a mixture of a robust hardware parallel architecture and 
software engineering processes that will lead to significant performance leverage, while maintaining 
programmability, portability and maintainability. The system designer must be able to include physical 
constraints, time response predictability, fault tolerance and security. 

Market Force Strategy 

The Commercial-off-the-shelf (COTS) strategy is one in which competition provides advances in 
capabilities needed for military systems with only marginal investment by the government. COTS 
components provide an affordable technology for building high performance C3I systems. Often 
overlooked is that the savings in software costs due to mainstream market acceptance is the most 
important factor in COTS strategies. When designers overspecialize parallel architectures to reduce 
hardware costs, they lose the benefits of COTS provided software.  Operating systems, programming 
tools and languages, and data base systems are a fall out of commercial successes. 

Software Engineering Issues 

Software engineering is a discipline that deals with the large, complex, dynamic, mixed hardware of 
C3I and large scale systems over a long life. Parallel processing technology now exacerbates the 
development process by reducing portability, increasing software costs and creating performance 
uncertainties. Parallel computer technology must adapt to attain the performance benefits without the 
process uncertainty of parallel processing. 

The software engineer needs a set of tools that find out the capability and generality of use of parallel 
computers. Once the engineer knows the adequacy of parallel architectures and the patterns of 
operation of the C3I system application, the development process can be based on an architecturally 
independent model. Separation of hardware and software development is important to the engineering 
of parallel hardware and parallel software. Without this capability each effort by hardware vendors 
and software developers is ad hoc and has little potential for reaching the large markets necessary for 
commercial advantage. 
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Parallel Software Engineering Assessment 
~~~— " 1 Assessment Overview 

1.1 Topics and Organization 

This set of essays assesses the status of parallel computing and software engineering for parallel 
computing. The essays intend to show how parallel computing effects the normal software 
engineering process for design, development and support of C3I systems. The essays also intend to 
evaluate the state-of-the-art of parallel computing with respect to supporting C3I system development 
needs. The essays stress use of parallel computing for reducing the execution time of C3I system 
components - time response is a critical factor in C3I systems. 

The discussion includes the following topics and the issues: 

♦ Application Characterization and Needs 
♦ Parallel Architecture Capabilities 
♦ Strategic Use of Market Forces 
♦ Parallel Software Engineering Issues 

- Process and Design Metrics 
- Application Metrics 
- Performance Delivery & Metrics 
- Programmability & Portability 
- Relation of Needs to Capabilities 
- Breadth and Market for Applications & Tools 

Figure 1-1 Gives relationships between assessment topics and a scheme for discussion. 

TECHNOLOGY AND ISSUES OF 
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Figure 1 - 1 Parallel Technology Related to Software Engineering 

Each comer in the figure is a major topic. Software Engineering issues relate these major topics. The 
focus is upon those parallel issues that lead to a software engineering process with quantitative 
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planning, design, and development. The process must allow effective building of C I applications 
within architectural capabilities. The marketplace effect is the complicating underside of the 
relationships - no one can design computer systems without consideration of this dynamic and 
powerful market. 

1.1.1 Discussion Focus - Applications and Architectures 

Software engineering practitioners provide the procedures for design, development and long term 
support within the conflict between applications needs and architecture capabilities. Figure 1-1 shows 
the Application-Architecture axis. That axis forms the basis of discussion for assessing the 
state-of-the-art of parallel computing. 

1.1.2 Market Forces and Issues 

Budgets and risk considerations add constraints in building C3I systems. These constraints prevent a 
purely theoretical solution. Therefore, a further influencing factor in the discussion is the market for 
parallel applications and architecture systems. The assessment deals with the present state of 
applications and available architectures, and not theoretical research computers. Figure 1-1 shows that 
market force issues are part of the assessment. 

1.1.3 Software Engineering Assessment 

Software engineering processes provide the process and mechanisms for building large complex 
systems. Parallel computing leads to different design, programming and performance prediction 
models from the sequential process. Conventional software engineering processes also target a 
different model of development. The assessment considers the issues for classifying, evaluating and 
measuring applications and architectures. The goal is to find out their impact on the software 
engineering process. Finally, software engineers need to know the capability of architecture types to 
meet application needs. Figure 1-1  shows the relationships found in the analysis. 

1.2 Applications 

1.2.1 C3I Requirements for Parallel Processing 

Designers and builders of C3I systems generally have a specific mission problem with specific physical 
constraints. To create a design the mission is typically broken into component subsystems. Each 
component has a period during which its execution must complete to act in concert with the other 
components. Parallel computing offers both a reduced response time and improved capabilities 
because more computation can complete within the system's time constraints. 
1.2.2 Parallel Applications 

A reduction in the response time for a wide range of application types allows opportunities for 
improvements in C3/ system capabilities. 

WS<JW^IWtflWWr^^f^ViVV^ -»■■■■ »MMM#tf«WWSMIM»A»WW>^^ 

These essays focus on the technology of parallel processing. This stresses tightly-coupled, 
self-contained multiple processor computers. C3I subsystems are built from these multiprocessor 
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components. The assessment also includes distributed computing technology of building multiple 
computer systems. That technology is needed to construct large, complex C3I systems. 

Parallel computing in C3I systems has many sizes and forms. C3I systems use parallel computers for 
high throughput computing for many independent operations and for rapid response for a single 
application. Therefore, the essays consider a wide range of parallel multiprocessor types. The C I 
system need for information and knowledge processing increases the importance of information 
systems. Therefore, the assessment includes commercial and business decision making parallel 
computers along with technical parallel computing. 

1.2.3 C3I Application Requirements 

 ,     — —  m~~ 

Despite a significant investment by the government, the available parallel computers have 
failed to address all the requirements of Air Force C3/ systems. 

         ■[.rr-r-.-.-.,T.Vi.wlXwjj.vtfAn.^'vinrriwiV.v.-rt-i-i-i «AAWWWV^VWWSW^WIAW^^ 

Command, Control, Communications and Intelligence (C3I) systems must respond to multifaceted 
threats and scenarios. These systems contain a variety of computing types and subsystems. Parallel 
processing is necessary to improve both throughput and response time demands. Parallel processing 
needs improvement in availability, real time response, security, fault recovery, and physical 
parameters. The system software needs of parallel processing includes operating systems, languages, 
debugging tools and controls consistent with parallel machines. It needs reliable, portable and reusable 
software. Present programming processes are too costly and difficult. Air Force C3I application 
complexity makes it difficult to use the present generation of high performance parallel hardware, 
system software and applications. A key ingredient in the difficult is the design of predictable rapid 
response components for complex, unstructured elements of applications. 

1.2.4 Parallel Applications Classification 

The rating of parallel applications by characteristics shows that few of the available successes 
are suitable for the characteristics of Cfl systems. The industry needs a new focus on parallel 
computer systems that can adequately support complex and dynamic parallel applications. 

C3I systems have some characteristics similar to business and scientific research ones. However, they 
have a broader set of characteristics than the more narrowly focused applications supported by 
commercially available parallel computers. This essay proposes a classification scheme. The first typing 
is by the length and degree of time guarantees for completing an application. The classification 
extends the one used by Furtney and Taylor to include C3I requirements. The time-of-execution types 
we propose are the following: 

♦ Continuous Data Rate (maintaining a constant level of data throughput) 
♦ Hard Real Time (guaranteed maximum response time) 
♦ Response Time Goal (graceful operation during occasional failure to meet response time ) 
♦ Interactive Single Job (visual display of results and rapid response to single user) 
♦ Interactive Multiuser (meets combined delay and throughput benchmark) 
♦ Capacity Constrained (delays of several minutes are allowed to respond to user) 
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♦ Capability Constrained (results are not needed for immediate use; delays of hours or days 
allowed; used to improve quality of system operation) 

The C3I classification extends the one proposed by Worlton for scientific computing. That classification 
splits each of four criteria into halves and rates applications on their fit to the resulting sixteen criteria. 
The four criteria are: 

♦ Degree of Parallelism (High or Low Concurrency) 
♦ Parallelism Uniformity (High or Low Uniformity) 
♦ Grain of Synchronism (High or Low Grain) 
♦ Communication Distance (Local or Global Distance) 

Worlton's criteria is too simple for consideration in rating C3I applications. We propose that the 
following additions are necessary: 

♦ Resource Demand Huctuation (Static or Dynamic Resources) 
♦ Complexity (Intensive or Extensive ). 

Typical C3I systems consist of many components, each with a response time goal or hard limit. 
Predictable response time is critical to our interests. Therefore, our focus is on response time 
reduction for very general, concurrent applications. These span all the time response types. 
Unfortunately, scientific processing application characterizations apply to the parallel computers that 
are specialized for structured scientific applications. These are typically limited to Capability 
Constrained time response types. A business oriented characterization would be limited to Interactive 
Multiuser (for on line transaction processing) and Single User (for decision support data base access) 
time response types. 

The C3I application classification extensions for execution time type, resource demand fluctuation, and 
application complexity are significantly more general than the restricted time response and 
characteristic classifications and the computers that are build for specialized application needs. This 
shows that a C3I application characterization must provide very general speed improvements, and 
cannot be specialized to selected needs. Therefore, the C3I research investment should concentrate on 
achieving dependable across the board response time improvement and on multiprocessors that can 
respond rapidly for a wide range of general applications. That part is the missing element in today's 
parallel software techniques. 

1.3 Parallel Architectures 

This assessment includes the following subjects: 

♦ Brief Classification of Parallel Computers 
♦ Systems of Computers: Parallel Processors, Clusters and Heterogeneous Systems 
♦ Architectural Trends 

1.3.1 Classification of Parallel Computers 

Due to their more tightly-coupled structure, multiprocessors have the potential to reduce the execution 
time of concurrent applications. Our classification stresses communications content and latency that 
match the parallel system to its potential for a dependable reduction in an application's response time. 
These are: 
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♦ networks-of-computers - for selected applications with restricted communications and loose 
time constraints (Capacity and Capability) 

+      multicomputers (cost-scalable) - for selected applications with limited communication and time 
goals over a narrow size, structure, and dynamic range 

♦ multiprocessors (capability-scalable) - for more general applications with some 
communications and time limits, capable over a wider range of application structure, dynamic 
operation and sizes 

♦ symmetric multiprocessors (count-limited) - for servers in distributed systems with relaxed 
time limits and for applications with time constraints that can be met with small processor 
counts 

A software engineering classification ignores the structure of the computer and concentrates on the 
capability to support general applications. 

1.3.2 Systems of Computers 

There are many competing parallel technologies. Client-server systems, clusters and heterogeneous 
computing methods provide choices for meeting computing needs. The parallel system software 
engineer must address the allocation of requirements between parallel processors, clusters, networked 
computers and heterogeneous systems. These choices form a hierarchy of applications that must match 
the computer architecture's interconnect capacity. Understanding how a language or tool fits into the 
hierarchy is critical to evaluation of its value. 

Industry understands the software research needs of throughput computing. Applications are On-Line- 
Transaction-Processing (OLTP), Data-Base-Management-Systems (DBMS), and replicated applications. 
Clusters and networks of computers are effective for high-throughput processing of independent tasks 
and replicated processes. Heterogeneous computing mixes network and tightly coupled computing. 
One form even breaks an application into specialized parts to match specialized processors. 

1.3.3 Architectural Trends 

Architectural trends are toward a dynamic and multifaceted industry that is on the verge of 
establishing itself as a major market. Competing forces arise from multiple vendor sources: "scalable" 
parallel systems, symmetric multiprocessors, commercial on-line-transaction processing, 
data-base-management-systems, and mainframe vendors. Trends are toward the following: 

♦ a smaller maximum processor count 
♦ higher bandwidth capacity interconnects 
♦ hardware supported programming enhancement mechanisms 
♦ increased capability for input/output, memory, and disk access 
♦ increased availability 

The trend is also toward improving programmability. Costs per processor node are tending upward as 
vendors target an engineering production instead of a research laboratory market. 
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1.4 Market Forces 

The discussion of market forces includes the following: 

♦ Using Commercial Off the Shelf Parallel Processing Resources 
♦ Market Driven Technology Forces 

1.4.1 Off-the-shelf 

Commercial-off-the-shelf (COTS) components are important in high performance C3! systems. 

The economy of scale of commercial hardware and software leads to wide spread use of COTS 
workstations. As a result operating systems, data base systems and high level languages are readily 
available for scientific and commercial uses of workstations and personal computers. The success of 
workstations and their ever increasing performance and programmability leads to the same high 
expectations for parallel processing. Commercial parallel processing industry success is important to 
the use of parallel processing in C3I systems. C3I system developers need economy-of-scale hardware 
and software for parallel system, applications, tools, and development processes. Presently parallel 
processing attracts too few independent software vendors. 

1.4.2 Market Driven Technology Forces 
■tfy>ff^yVr*^Af^f^^^^***1WpftfVM^ftft^^*#*A**ft*ftft#*ftftftftrtftf 

There is a constant, cost-driven pressure to move to less costly semiconductor technology. 
That trend results in reduced demand for large mainframes and supercomputers and an 
increased one for microprocessor based parallel computers. 

Highly competitive markets drive the technology of computing. As a result, technology significantly 
affects the application of parallel computing. The parallel machine OLTP and DBMS industry shows 
the success of large processor count parallel computers in multiuser applications. Business information 
system builders now embrace small-processor-count symmetric multiprocessors for those applications. 
(Both Compaq and Sun sell over 10,000 units per month as file and query servers.) Workstation, 
symmetric multiprocessor and scalable parallel vendors now compete in the same market. This 
convergence shows that parallel computers have market viability. However, few independent 
software vendors are aggressively porting functional applications to parallel computers. Until they do, 
the market may remain viable but constrained. 

1.5 Software Engineering 

The software engineering assessment includes the following: 

♦ Performance Measures for Parallel Processing 
♦ Software Engineering for Parallel Systems 
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1.5.1 Performance Measures 
  <— ««..." ""* * ~~«««' 

VWVV*AAMMV*MAAAM VMWMMWWWMMMMWMMMM 

In sequential computing there is a quantitative measurement capability based on instruction 
timing and the mix of instructions in a typical application. In parallel computers, performance 
benchmarks and application suites are not adequate. 

Workstation designers use application benchmarks and quantitative measures (SPECmarks) to guide 
development of microprocessors and workstations. Parallel computer designers have no similar 
quantitative foundation to allow performance estimates for different machines. Parallel computers 
have no accepted set of commonly accepted instructions upon which to base the measures. 
Researchers continue to devise nonportable mapping schemes that apply only to a restricted type of 
applications. Amdahl's law continues to apply in spite of anecdotal results of restricting application 
types to defeat it. As a result, parallel computers have not escaped the trap of low efficiency and 
unfulfilled promises of peak speeds. 

1.5.2 Software Engineering Process 

The software engineering process needs a programming model that is architecturally 
independent and quantitative. For these reasons, the software engineering process lacks an 
integrated set of parallel tools. 

Jl^^innf^^lf^^^lf'flf^^nf^w^^,^'^'\ I**«**«**MW*WWIWI^W^^ 
AViAavLn.^i™wwwyi-rt-i ....P>W«>WWWW.W.W>MIW^ 

Software engineering for parallel systems suffers significantly from a too rapid obsolescence of 
hardware, a lack of common programming models, and the requirement to map to obtain reasonable 
performance. The general process of software engineering has evolved as a basis for managing the 
building of long-lived, complex C3I systems. Software engineering processes for conventional 
sequential computing systems have a built-in factor-of-safety from the progress of technology. The 
obsolescence of parallel computers, the long procurement cycle, and the lack of an adequate 
quantitative model for performance assessment of parallel computers negatively affects the software 
engineering process. 
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Parallel Software Engineering Assessment 
2 Applications Characterization and Classification 

2.1 Applications 

Software engineering is a discipline that deals with the large, complex, dynamic, mixed 
hardware of C3I systems over a long useful life. Parallel processing technology now 
exacerbates the C3I engineering process by reducing portability, increasing costs and creating 
performance uncertainties. C3I systems need to use parallel processing to meet response time, 
physical constraints, and new mission functions. Parallel computer technology must adapt to 
attain the performance benefits without the process pain of parallel processing. 

2.1.1 C3I Systems 

The goal is to devise a mechanism to characterize C3/ system components. If applications fit 
into types, parallel computers succeed or fail based on how well they execute for a particular 
type. This means that anecdotal evidence is less subjective. If this can be done without 
concern for the exact details of the component, then a degree of separation forms between 
architectures and programming. 

Command, Control, Communications and Intelligence (C3I) systems are large systems that 
must respond to multifaceted threats and scenarios.   C3I systems typically deal with complex 
warfare situations and dynamic scenarios. They respond to multiple forces, to dispersed 
geographies and unexpected threats across a spectrum of weapon technologies. C I functions 
are both highly complex and highly concurrent. They include: transformation of multisource 
data into information, fusion of information into intelligence, automated and human 
controlled decision making, simulated scenarios, force and weapon's system responses, 
communications to higher or lower command levels, etc. As a result C3I System components 
include a variety of subsystems and interactions: 

♦ Real time - sensor data conditioning, acceptance, and preprocessing 
♦ Data Communications 
♦ Information Base Access 
♦ Information Fusion & Evaluation 
♦ Event Detection Decision 
♦ Scenario Based and Real Time Simulation 
♦ Action Path Decision 
♦ Response System Control 

C3I systems are heterogeneous multiserver environments. Designers construct them ad hoc, 
with mixtures of special hardware and commercial hardware to meet specific system needs. 
Interaction is necessary with humans, networks, sensors and weapons. Burdens of 
responsiveness, availability, fault tolerance and recovery, security, and reliability, are severe 
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in C3I systems.  Due to their size and complexity software engineering processes are 
necessary for building these systems and maintaining them over their life cycle. 

Performance and programmability on complex, concurrently operating components of a 
system are important to C3I systems. Building such systems, requires multiple organizations, 
large programming teams and a hierarchy of skills and knowledge. The systems operate and 
improve over a long period - their life cycles. These systems contain a mix of computer types 
ranging from specially developed parallel processors to commonly available workstations. 
The result is a heterogeneous system. Airborne or fixed locations across global areas are 
common. Distributed system technology results. 

2.2 Assessment of Parallel Applications 

2.2.1  Parallel Processing Application Typing and Characterization 

The software engineering aspiration is that one can derive a qualitative indication of the 
suitability of marketplace successes in (fl systems. Therefore, the classification is a way of 
matching similar execution characteristics among applications in different fields. It is a starting 
point in separation of parallel architecture design and application programming. 

This assessment essay reviews parallel processing applications. C3I system components have 
a widely varying requirement for execution completion time. Therefore, the discussion 
provides a C3I application typing by response time requirement. The typing begins with one 
proposed by Furtney and Taylor and extends it to type that apply to C3I systems. The typing 
is important because the goal of parallel processing within C3I systems is to achieve reduced 
response time. That may allow engineers to improve a C3I system, meet physical constraints, 
or even execute up to performance specification. Another parallel computer use is to improve 
fault tolerance by physically distributing execution or verifying valid results. The typing is 
orthogonal to that aspect and use of parallel computing. 

Next the characteristics of applications derive from their execution structure. The starting 
point for that evaluation is one proposed by Worlton for scientific applications. The added 
parameters of dynamic operation and complexity extend the characterization to C3I systems. 
The essay reviews the present state of parallel applications and characterizes some successful 
applications. We relate these applications to C3I application classes. 

The result shows that present research computing methods do not apply to the general needs 
of C3I system components. Research scientists have a significantly higher tolerance level for 
the extra effort and frustration of mapping their application to a computer. Their successes^ 
tend to be well-understood ones in the signal, image and initial data processing stages of CI 
systems. The state-of-the-art in parallel computing architecture contributes little to better C I 
systems. The C3I systems must be too complex, too dynamic, too real-time constrained and 
too reliable to make good use of scientific research computers. 
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22.1.1  Response Time Application Typing 

Furtney and Taylor, IEEE Spectrum May 1993, identify three types of applications. Their 
labels go according to the time scale allowed for the computation. They used the following 
terms: 

♦ Interactive - human control of display - only momentary waits allowed 
♦ Capacity or Minutes Frame - uses full capacity of a machine - human would do other 

tasks while waiting for the results 
♦ Capability or Hours Frame - problem is significantly larger than full capacity - long 

time delays, possibly overnight 

By extending from a research scientist's point-of-view to a C3I system one, the time response 
labels expand to include dynamic operation and complexity. C3I systems include many 
subsystems. This means that the constituent parts often have a different response-time type. 
Table 2 - 1 shows a proposed C3I oriented typing. 

TABLE 2 - 1 Application Types (Extended from Furtney and Taylor) 

Application Types by Response Time Characteristic 

Capability Constrained - Hours 
Frame (Uses capability of largest 
parallel machines) 

Long turnaround time allowed, could use the 
maximum capability of parallel computing 
available 

Capacity Constrained - Minutes 
Frame (Full Capacity of a required 
for up to an hour) 

A delay of several minutes or tens of minutes 
allowed for the computation (need several 
iterations per day) 

Interactive Multiuser * multiple users operate on each processor, sharing 
the processor resource gives a high transaction 
rate 

Single User Interactive* yet a goal is set for interaction with users 
Single Job Interactive * fast interaction with a 
single user is necessary 

Response Time % Response Time Goal - Graceful response to failure 
to meet time 

Hard Real time * Guaranteed maximum response time 

Continuous Data Rate * Perform a continuous process at a minimum input 
data rate; reduce the input rate to a lower output 
rate; (buffers typically provide continuous rate if 
time frames are missed) 

* Shows an addition to the Furtney and lay lor application typing necessary tor Cl. 
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Table 2 - 2 rates various applications. Parallel computing contributes in the following ways: 

♦ to improve the performance of an application, 
♦ to transform it from one time response type into another 
♦ to radically change the use of the application 

A radical change in the use of the application often means moving it from one response-time type to 
another. 

The change could allow novel uses of the application within the C?I system because the application 
meets a new time scale. For example, if a simulation of a scenario on a workstation lasting several 
hours executes in a few minutes, then multiple scenarios could be checked out This could significantly 
improve the battle plan. Moving weather forecasts from Capability to Capacity Constrained could 
make them important in tactical battle plans. 

Table 2 - 2 Some Parallel Applications by Response Time Type 

General Category Examples Usual Response Time Type 

SCIENTIFIC 
Large Scale Scientific Research 
Codes - Grand Challenges 

Weather Modeling 
Climate Prediction 

Hours to Day Frame (Capability) 

TECHNICAL 
Engineering Applications Semiconductor modeling 

Electronic Design 
Mechanical Design 
Chemical and Molecular Modeling 
Fluid Dynamics 
Combustion 
Biomedical 
Composite Manufacturing Design 
Materials 

Wanted to be Minutes (Capacity) 
but most often Hours (Capability) 

BUSINESS 
Client Interaction Applications Customer Interaction 

OLTP 
Data Base Management System 

Multiuser Interactive 
Multiuser Interactive 
Multiuser Interactive 

Business Reaction Knowledge Based and Neural 
Network Decision Automation 
Data Base Management System 

Single Job Interactive 

Response Time Goal 

Business Decision Support Strategic Decision Query 
Data Mining 

Hours to Days Time Frames 
(Capability) 

Communications Applications Voice Response 
Switches 
Multimedia 

Constant Data Rate (for Voice) 
Response Time Goal (Telephone) 
Multiuser Interactive 
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COMMAND, CONTROL, 
COMMUNICATIONS & 
INTELLIGENCE 

Image Processing & Understanding LID AR Constant Data Flow (Processing) 
Response Time Goal (Understanding) 

Command Decision Support Single Job Interactive / 
Response Time Goal 

Information Base Access Shared Situation Data Base Multiuser Interactive 

Data Fusion Target Tracking Response Time Goal 

Information Fusion & Evaluation External Events combined with Target 
Events 

Single Job Interactive 

Event Detection Decision Event Matching Automatic - Guaranteed Response 
Time 
Manual - Response Time Goal 

Action Path Decision Command Scenario Matching Response Time Goal 

Planning and Scenario  Simulation Battle Plan Preparation Single Scenario - Hours Frame 
(Capability) 
Multiple Scenario - Minutes Frame 
(Capacity) 

Real Time Simulation Event Projection & Prediction Response Time Goal 

Process Control Weapon System Control 
Aim & Fire Missile System 

Guaranteed Response Time 
(Real Time) 

Visualization Battle Situation Display Interactive 

Real time - Data Communications Distributed Identification Data 
Delivery 

Guaranteed Response Time (Real 
Time) 

Real Time - sensor data conditioning, 
acceptance, and preprocessing 

Guaranteed Response Time 
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22.12   Fitting Applications to Response Time Types 

JWUtfinftVJJVl\VL\VlVin/Wtfl'>Vl,»V,l^*l-l'l''l*,l*1*l'l *■ MM»»MM«MM*IW«MM*M<MMW>*WWWllVgWWWWWl^^ ̂ Vyy^AA/^HAJV^VWVVVVVVVVVtfVVWVtfVVWVVVVVlVV^VWVWVWVV^AVl^V^^ 

Changing the performance of the underlying computer can change a capability type requiring 
several hours into a capacity one that completes in a few minutes. 

/WHVVWW^A^VMWVWWVWMV^^^MMMtHMMM'AAMWA^^MM' ,V*SNSN%%%W>SANVW>«WUV»W«VVVVS^VW^»A^^ 

A given computation can fit into any of the response time types.  For example, decision making using 
a massively parallel computer might allow multiple iterations of a battle plan instead of a single plan 
per day. A C?l system design includes a mix of these response time types. The designer characterizes 
each subsystem by a response time type. Hard real-time response within one subsystem doesn't force 
all subsystems to be of that type. Often the subsystems are relatively independent. This means that a 
weapon control subsystem with a real time response requirement is independent of a subsystem that 
uses simulations to plan a mission planning and scenario operations. Both may be part of the complete 
C3I system. Their response times can be reduced independently by application of parallel methods. 
Therefore, they can be used to radically change mission requirements and can drastically improve the 
system's war fighting capability. 

22.1.3 Reducing Response Time by Parallel Processing 

MWWAVMWVVMMVAWMVWW^WW^^MMMVMMMftMWM^MWMM ^VVVWVW*VVWVS«IW****AVWVVVV*VVW^WVVVW«VVVW¥W*ftM***«W«VW**^^ 

Our goal is to apply parallel processing methods to reduce component response times within 
a C3/ system into the type required by mission goals and system design. 

This often includes fixing the number of processors and accepting constraints on the power, volume 
and size of the system. The approach is to isolate the applications that make up a C3I system. One 
rates them by breaking them into response time types and observing the parallel processing 
opportunity for meeting their response time goals. We can then evaluate the benefits of parallel 
processing for the subsystems where parallel speed up brings an advantage to the system. Therefore, 
the CT goal is to use parallel processing to reduce each subsystem into its mission fulfilling response 
time type. We then characterize the computation to observe the suitability of a parallel processor. 

2.2.2 Application Characterization 

Worlton and Associates have published a classification of scientific computations based on scale of 
parallelism, uniformity of communication, distance of communication, and granularity of 
synchronization. Figure 2-1 gives the sixteen-way division made if each of these classifiers is split into 
two parts and graphed orthogonally. 
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Figure 2-1. Worlton's Characterization Adjusted for C3I Context 

Worlton's classification is intended for scientific supercomputer applications. To use it for the more 
general C3I case, its criteria need new definitions. The following interpretations are necessary. 

■ I interpret the global/local communication distance factor to represent locality-of-reference 
potential of the application. (All parameters must be application ones and not dependent on 
programming or architecture.) A shared memory system caches a local variable but would not 
if the context is too large. If not cached it is global. Thus, locality-of-reference is an 
interpretation of the communication distance. Local references in a distributed memory 
multiprocessor could represent either cache or data locality. Global would be communications 
with other processors. 

■ Parallelism Scale represents the number of processors that could be kept busy if there were an 
unlimited number. (Note: I use concurrency for that term in other essays in this report.) 
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■ Parallelism uniformity represents the fluctuation in the concurrency during the computation. In 
some systems, this is a measure of the differences in computational length of the tasks. The 
single program, multiple data programming style represents this highly uniform parallelism. 
Programmers map data to each processor where copy of the code is present to provide the 
computation. 

■ Grain of synchronization represents the ratio of parallelism operations to ordinary instructions. 
Note that there are many definitions of Grain but the bimodal evaluation allows one to ignore 
some detail of the definition. 

According to this scheme the ideal parallel application has high uniformity, high concurrency, local 
communication, and coarse grain. It is a W16 type. The most difficult to benefit from parallel 
computation is a W6 type, with low concurrency, low uniformity, global communications and fine 
grain synchronization. Note that the Worlton scheme is for evaluating scientific applications and for 
comparing parallel computers to vector computers. 

C3I system builders have a different set of constraints.  For example, the first steps of image 
processing are  a W9 category. Later steps, which operate over the entire image, would be a W10 
type because of the change to global communications. 

The Worlton evaluation scheme does not support a dynamic switch between types of processing. 
Adding a dynamic resource demanding application creates a "dynamic resource demand" as a criterion. 

In addition, Worlton's typing is directed toward well-structured problems. I call those applications 
intensive, a term taken from game theory for cases where it is possible to analyze all moves. I call 
applications that are too complex for complete analysis extensive ones. Operating system kernels are an 
example of an extensive application. Therefore, a sixth criterion is added, complexity, to distinguish 
intensive and extensive complexity types. 

Note that input/output capacity and access from the parallel nodes is not included in the criteria list. 
C3I systems have a balance requirement for I/O defined by the application and systems design. 
Consideration of I/O capability is necessary for evaluation of a parallel computer within that system. 
Table 2 - 3 gives the criterion and their impact on system difficulty. 
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Table 2 - 3 Expanded Classification Scheme for Applications 

Criterion Difficult Aspect (Requires 
better capability by 
architecture) 

Facile Aspect 

Degree of Parallelism (Concurrency) Low Concurrency High Concurrency 

Uniformity of Parallelism Low Uniformity High Uniformity 

Grain of Synchrony Fine Grain Coarse Grain 

Communication Distance (Locality) Global Distance Local Distance 

Dynamic Resource Demand Resources Dynamic Resources Static 

Complexity Extensive (unstructured) Intensive (well structured) 

2.2.3 Parallel Application Review 

223.1 Large Scientific Computations 

The MPP ("cost-scalable") multicomputers cannot yet be considered successful in production 
scientific and technical computation. In addition, their ineffectiveness in smaller sizes, unless 
there is significant mapping effort, has left them out of the engineering technical computing 
market. 

/juvuvuvipjjirvuvutnivvi^^ fjyjwuwirvwxwifwwwyywYv^^  MuM»*»MMMrfMWWM>wiw.w*Wi^^ 

Scientists use computing as an essential tool. Computer simulations create the opportunity to explore 
ideas and design practical experiments leading to a more rapid and economical advance in science. 
Scientific grand challenges do require massive performance. Some suggest parallel computers as the 
solution, while they see vector-parallel computers as about to saturate in performance gains. The 
massively parallel processors (MPP) computers resulted, but have failed to work well on the more 
needed and economically justified smaller applications used by many engineers and scientists. (The 
assessment essay on parallel architectures defines MPP machines as "cost-scalable multicomputers.") 
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A large fraction of parallel processing research concentrates on scientific computations. This 
perspective comes from the role of vector supercomputers at National Laboratories, NASA, 
and the NSF Centers. In that sense, parallel processing would be successful when it shows 
displacement of the vector supercomputer in the day-to-day computational operations at 
those centers. 

These computations are large Fortran codes, often developed and run by the same scientists 
who need their results. This creates a role model for parallel development of individuals 
creating and using their own creations for scientific studies. Many successes reported are of 
this type. Appendix A ~ Table A identifies some of these successful scientific applications. 
The tool builders target their products, e.g., High Performance Fortran, to those scientists and 
their computations. Table 2 - 4 gives results of a NASA scientific kernel for four parallel 
computers. ["Future Directions in Supercomputing," D. Robb, Cray Research, 
Supercomputing '93.] 

TABLE 2 - 4. NAS Benchmarks (equivalent Cray Research C-90 processors) 
(Sixty Four Processors for each parallel system) 

EP LU BT SP IS FT CG 

T3D 0.27 0.55 0.48 0.50 0.52 0.49 0.62 

SP-1 0.42 0.55 0.43 0.45 0.27 N.A. 0.24 

CM-5 0.23 0.2 0.37 0.32 0.12 0.23 0.3 

Paragon 0.075 0.11 0.27 0.18 0.07 0.14 0.22 

Since this table was published some vendors have significantly changed their systems, 
claiming that these benchmarks are not representative of their machines. The table states a 
rating in terms of the fraction of the parallel computer's performance compared to that 
obtained by a single processor Cray Research C-90 on the same benchmark. Note the 
dilemma of the multicomputer machines represented by the CM-5 and the Paragon. The EP 
benchmark, believed to be embarrassingly parallel by the benchmark designer, was not done 
well by the Paragon. This points out that systems can be deceptive in delivered performance 
for applications even when their grain of synchronization matches the multicomputer. 

The conclusion is that the cost-scalable multicomputer machines, claimed to do well on 
communications scarce (computational expandable) codes, do poorly on some of them. They also often 
execute poorly on smaller problems that contain communication content that grows with problem size. 

In addition, many common applications contain a significant fraction of code that is not like 
the core parallel codes. Evaluators give NASTRAN as the example, only one-half of its core 
matches the parallel model provided by the cost-scalable multicomputer machines. The other 
half is too complex and dynamic for a single-program, multiple-data computation system. 
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For these reasons, the cost-scalable multicomputer machines remain in research departments, while 
vector processors continue to provide the production execution for large Fortran applications. Cost- 
scalable multicomputer machines do not provide production work for a broad range of scientists even 
in the most innovative of environments. Since these machines have not integrated well with the normal 
scientific research processes, they cannot yet be considered successful in the large scale scientific 
computation. In addition, their ineffectiveness in smaUer sizes, unless one makes significant mapping 
effort, has left them out of the engineering technical computing market. They don't fit into the 
engineering process either. From the viewpoint of a C3I system designer the chosen applications 
reported for these machines have little relationship to the needs of C3I systems. However, the next 
section shows that some methods are useful in the scientific computing arena. The disappointing 
acceptance of cost-scalable multicomputer machines does not mean that the methods and processes are 
not valid for some specific C3I needs. 

2232 Lessons from Scientific Computing 

Baskett and Hennessy [Baskett93] describe some parallel techniques used in scientific applications. 
They give the following problem types and the techniques for obtaining high performance: 

♦ multipole - treat clusters of particles 
♦ direct matrix - do blocking and tiling 
♦ iterative - combine grids from discrete grids (multigrid) 
♦ spectral - tile 

Tiling means grouping of clusters of frequently communicating tasks to reduce communication 
between processors. Some degree of some "tiling" is necessary to use a microprocessor well. If a code 
is such fine grain that it destroys locality-of-reference and breaks pipelines the microprocessor will 
operate ineffectively. However, tiling, beyond that necessary to keep caches warm and pipelines 
operating, reduces the potential speedup in a parallel application by making the amount of parallelism 
smaller. For C3I applications, with fixed size, this means that this technique limits on the number of 
processors that can be effective on the problem. 

2.2.4   Business Applications 

Multiuser applications for on line transaction processing and data base accesses are established 
applications in business systems. The "client/server" mode of processing has allowed a server market 
estimated to be over $4 Billion in 1994. Together Sun Microsystems and Compaq sell over 20,000 of 
these servers per month. Almost all these servers are small processor counts (two to four). They use 
shared memory for'symmetric multiprocessing. The typical applications are multiuser access to data 
bases. Data-base-management-systems for these computers have been the subject of porting at the 
"commodity" level, e.g., a Microsoft /Sybase consortium for SQL server software. 

Some systems have large processor counts and are local memory based. For example, AT&T provides 
both types and supports both Oracle and Sybase DBMS systems across the product line. Special 
programs (e.g., AT&T's Navigator products) allow execution of large complex queries in parallel. A 
breakdown of applications can be guessed from AT&T's portions given in Table 2 - 5. 
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Table 2 - 5 Diverse Areas of Business Success in Large Parallel Computers 

AT&T Global Information Systems Application Areas Portion of Revenues [Smaby] 

Telecommunications 36% 

Retail/consumer 18% 

Banking/Financial 12% 

OEM 7% 

Government 6% 

Airline 4% 

Insurance/Health Care 4% 

Other 13% 

22.4.1 Lessons from Business and Commercial Systems 

Corporate purchases of small parallel servers for transaction processing and data base 
accesses show the quick acceptance occurs with application success. Both hardware and 
software technology in that market are moving toward commodity pricing and volume 
production. The methods rapidly become understood and applied. 

The client server approach is successful primarily in multiuser interaction applications. Symmetric 
multiprocessor servers have displaced business applications that were formerly on large mainframes. 
The reported cost savings over mainframes varies from a factor of three to twenty. Large-scale, 
decision-support applications have a more limited success. There are several examples that provide a 
good indication that there is excellent potential for doing large applications of the capacity type. One 
lesson is that there is a difficult integration process with heritage systems. Working with legacy 
systems built on proprietary data management and operating systems inhibits use on large-scale, 
decision-support applications. 

An application expected to require large scale parallel computers are the switches necessary for 
multimedia communication switches. Large parallel computer switches will follow the asynchronous 
transfer mode (ATM) standard specification. Telephone PBX exchanges have been special purpose 
parallel computers but more general-purpose parallel computers provide part of this new demand. 

22.42 Some Successes of Parallel Computers 

Most of the successes and role models created by parallel researchers are class W16s. Since many 
applications at the National Laboratories are of that type there has been a rush to serve that special 
market The W16 applications have high concurrency, coarse grain, local communications, and high 
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uniformity of parallelism. (See Figure 2 - 1 for the rating definitions.) The W16 additional criteria are 
steady and intensive. I/O requirements are typically low, because they for Capability Constrained time 
response problems.  (See Table 1 on page 1 for the definitions of F&T typing.) The response-time 
type is that of Capability when the application is so large that it can take a day if necessary. The 
characterization of C3I applications placed no computational components in the W16 category. (Note 
that these ratings are subjective and worth additional debate.) However, they do show a trend or 
general condition. The research sector has been picking the easy applications, or the available 
computers do well only on W16 type applications and few others. Usefulness for the computers built 
to specialize in grand challenge applications is limited. This is due to their specialization for the W16 
application type. Market needs for such a specialized machine are too limited to support a parallel 
industry. 

The success of multiuser transaction and data base machines in the business community is in the Wll 
category, having global communications, high concurrency, and high uniformity. The grain is fine 
because the model used is a data-base-manager task communicating with multiple user transaction 
tasks. Communications between the two are high. An analysis of the interconnect structure of large 
commercial data base machines shows a highly capable interconnect structure. The result is that these 
communications execute well. Symmetric multiprocessor machines maintain balance by keeping the 
processor count low. A broader acceptance of symmetric multiprocessors is taking place because of 
this successful application. Problems with large, complex queries will drive these processors to better 
performance on a wider range of application types. 

Communication switches are another successful example, although most of those presently in use are 
special purpose PBXs and not general-purpose parallel machines. They typically do telephonic, or 
multimedia switching. This is a category Wll. The criteria fit a high concurrency and coarse grain 
(the parallel commands are only used to set up a link). The uniformity is high because packet sizes are 
constant. Its communications are global, since any output port can connect to any input port. 

Data collection or signal processing is another example of special purpose parallel machine success. 
This example falls into category W16. Users and integrators assemble these machines from single 
board, multiple signal processor computers. One characteristic of these designs is that there is little 
storage. The system brings in data, converts it and combines it into the necessary signals. Typically, it 
spectrally processes the signals and sends the results to other programs that do conversion into 
information that allows decision making code to analyze it. Special purpose processors, not 
microprocessors for workstations, are dominant in this sector. Multiple TI TMS320C240 processors on 
a VME bus are typical. Parallel signal processors of this type are found in many C3! systems. A 
variety of real time operating systems and libraries are available. An interesting observation is that 
these systems are highly competitive and users can put together large processor count systems for 
significantly less cost than the available MPP models. For example, board with four i860 processors 
costs significantly less than a single node of the Intel Paragon. These boards use VME bus for power 
and system control but have proprietary interconnect structures to build high speed communication 
paths between processors. Mercury, CSPI and Sky are example manufacturers. These computers are 
also used in process control systems. Other hardware successes are attached special purpose parallel 
processors. The MassPar is a typical example attaching to DEC mainframes, minicomputers and 
workstations as hosts. 
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Parallel Software Engineering Assessment 
3 C\ System Focus 

3.1  C3! Requirement 

WUWijjLAjWWUVVl^^ri^^  »"»" >«»>M*W"««*WMW*'*W*'W*W*W* VWVVWYVWVVVWSWWWVWWIW^^ 

Parallel systems do not yet have the capabilities to meet (fl system needs for rapid response 
computing, real time predictability, availability, fault tolerance, and security 

VWWWWuWJlAr^^  *«»«»^w««*^*»«w■w■^w■»*^WA^^^ 

C3I systems are complex and dynamic. Parallel system research and vendors presently focus 
on replicated and static applications that fit only a part of the C3I component spectrum. 
However, we hope to influence the vendors to build systems that meet these needs by 
focusing on rapid response instead of multiuser-throughput-only hardware and software 
capability. By bringing that focus to bear for parallel systems with adequate capability, we 
can make the software engineering process for parallel computers feasible and valuable. 
Independent software vendors will join in the movement if parallel computers are suitable 
for the entire spectrum of C3I system needs. 

3.1.1  Effect of Technology on C3! Systems 
WWW1WVMMMAMMAAMAAAAMV 

The success of user interface software creates a higher expectation that leads to demands for 
increased performance and new operational actions and responses. Parallel computers are a 
solution to many increased performance and capacity demands. 

Ever increasing demands for higher performance is a common characteristic of large systems, 
both military and commercial. New missions and threats require continued performance 
increases and functional improvements within existing physical constraints. Excellent 
progress in workstation performance and human interfaces and standards (e.g., Common 
Operating System Environment or COSE) has led to higher expectations from the user. Now 
one can create complex requests and demand increased system capacity without realization 
of the demand's scope. 

We need a mixture of a robust hardware parallel architecture and software engineering 
processes that will lead to significant performance leverage, while maintaining 
programmability, portability and maintainability. 

BMM6BMCM6M 

The potential leverage gained through parallel computing is significant. However, in C?l the 
multiple processes interact in complex ways. They may synchronize or communicate 
frequently with each other and have little recognizable structure. However, C3I systems are 
also highly concurrent. The potential amount of parallel processing done within a given 
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period is very high, in spite of its unpredictable nature. The potential leverage from parallel 
processing is present. C3I systems gain an advantage only if the parallel computers are 
capable and software is available for processing dynamic and complex parallelism. 

3.2 C3! System Limitations 
fl^wH^lW^^ff^>'^^»^^'*'t't'>'>'>'>'>"tf^'"VJI*l' 

Gains in throughput processing made via parallel processing have, so far, suffered a 
significant penalty. One dimension of this penalty is that the expected availability, portability 
and programmability are very difficult to achieve. A second dimension is that each generation 
of parallel hardware is significantly different from its predecessors - leading to reduced 
portability. A third dimension is that today's parallel computers fail to deliver the promised 
performance in complex Air Force C3! systems. 

The government makes significant investments toward the development of hardware 
systems, software applications and software tools for building and programming high 
performance parallel computers. So far these investments fail to address all the requirements 
of Air Force C3I systems. Specifically they lack availability, real time response, security, fault 
recovery, reliable software, portability and reusability, etc. In addition, programming 
processes remain costly, difficult and nonportable among different parallel computers. Users 
often find that high level programming only works for selected applications that consist of 
replicated copies and multiple independent tasks. They find reasonable performance 
efficiencies difficult to attain. System builders usually find a mismatch between the Air 
Force's dynamic and unstructured C3I applications and the capabilities of today's high 
performance parallel systems. Commercial system builders find that their distributed servers 
are good matches only for multiuser "throughput" processing, where multiple transactions 
and multiple users run simultaneously. Their success has not yet been consistently replicated 
in complex business decision support systems with applications more closely attuned to C3I 
systems. 

Potentially, parallel processing offers significant operational speed and cost advantages for 
building C3I systems. However, the present limitations of commercially available parallel 
computers restrict their use to static and well structured C3I system components. These 
limitations also lead to expensive development costs and inefficient use of processing 
capability. In addition, the budgets for C3I systems require more commercial-off-the-shelf and 
high level coding content than used in the past. Faced with these burdens the builders of C3I 
systems need both" more capable parallel computers and parallel software engineering 
processes and tools. The combination of parallel systems and software engineering processes 
and tools must yield reasonable development and life cycle costs and deliver expected 
performance levels. 
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The Air Force opportunity is to influence this paradigm shift so that the added software tools, 
applications, and techniques increase the effectiveness and productivity of building C3/ 
systems. 

The multiprocessor industry is reaching a critical nexus in its development. Expectations are 
high that commercial and industrial uses will shift from Emitter Coupled Logic (ECL) 
supercomputers and mainframes to multiprocessors. The latest commercial vendors have 
brought out parallel designs that have lower latency and higher bandwidth capacity. Those 
improvements may allow more dynamic use of the parallel capability. These investments 
have included higher emphasis on availability, programmability and portability. As a result, 
advances in technology are creating an opportunity for the C3I system industry to influence 
these market forces. Some expect that a widespread parallel computing market will allow 
C3I systems to contain a higher fraction of commercially standard software and network 
interface components. The Air Force needs to influence vendors to provide the real time, 
fault recovery, security and other requirements inherent in C3I systems. Vendors (hardware, 
operating system, language and independent tool and application developers) would 
consider, and likely include, these C3I factors if well identified and publicized. 

A successful strategy for software engineering would be to contribute to processes and tools 
for development of commercially viable process control, information and engineering 
systems. These tools should be effective and portable across all the marketplace winners. If 
there is a need for support of specialized processors from outside the commercial 
marketplace, then those costs would remain programmatic. Extensions of the commercially 
viable model to include the added complexity of C3I systems (e.g., physical package 
constraints) are often necessary. Such extensions would be based on a widely used tool set 
than on a purely military C3I tool set. 

3.3.1  C3I System Profiles 

The goals of C3I systems are the following: 

♦ Reduced Planning and Execution Cycle - Move Capability to Capacity - more 
iterations per day 

♦ Decentralize Execution Control - Automatic and Human Local Situation Response 
♦ Improve Joint Interoperablity/Joint/Common Evaluations - Global Views for Decision 

Making 
♦ Distributed Command & Control - Communications of Plans, Situation Evaluations, 

and Actions 
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The computing technologies necessary for building Command and Control systems are: 

♦ decision support systems 
♦ systems engineering and integration 
♦ distributed computing environments 
♦ distributed data base management 
♦ human computer interaction 
♦ communications networks 
♦ intelligence exploitation 
♦ surveillance 

The range of processing in C3I systems is large. An Air Campaign Plan guides the 
operations. The plan includes air battle planning, projected intelligence, battle plan execution, 
and enemy situation correlation. Those plans require simulations, historic data bases, and 
integration communications across the command structure. At each level, the users monitor, 
replan, direct and act upon the battle situation. Some plan elements change interactively, 
others hourly, others daily. 

During execution, some components of the C3I system operate automatically and respond to 
threats in real time. Others operate on the time frame of human interaction. They display 
information and interact with humans for decision processing. Surveillance systems collect 
and process data collected by many mechanisms across a wide spectrum. Multiple types of 
radar, radio interceptions, identification signals, optical detection, and human visual 
information are necessary. These signals are processed and integrated with intelligence 
information to provide a decision information base. 

Some components communicate with other C3I systems to obtain a global situation overview 
to guide subsequent battle decision making. Some actions follow battle plans made on a daily 
cycle. Often planners must adapt these plans and decision guidance on a short cycle. Ideally, 
a planner has multiple simulations of the proposed scenarios resulting from a plan. Data 
bases of assets and personnel are updated and used for planning. They are the basis for 
making resource requests and reports to higher level commands. Table 3 -1 gives some 
processing types that match C3I system computations. 

Table 3 - 1 C3! Activity and Computational Components 

C3! Component' 

Signal Processing & Data 
collection - filtering and 
preparation 

Mission Description 

spectral, direct matrix, signal 
feature extraction, 
communication 

Application Characteristic 
(RTT = Response Time Type) 

RTT: Continuous Data Rate 
Concurrency High; 
Uniformity High; 
Grain Fine; 
Distance Local ; 
Resource StaticChigh I/O) 
Application Intensive 
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C3! Component Mission Description Application Characteristic 
(RTT = Response Time Type) 

Surveillance, target 
identification, friendly 
identification 

symbolic feature extraction 
and interpretation, feature 
generation - hypothesis 
learning, feature extraction 
signal recognition, false 
signal removal, identification 
& false alarm detection 

RTT: Response Time Goal 
Concurency Low; 
Uniformity Low; 
Grain Fine; 
Distance Global; 
Resource Dynamic 
Application Extensive 

Air Battle Planing: Weapon 
resource allocation, air 
battle simulations, 
scenarios, projection of 
events, battle planning & 
history 

planning and scenario 
evaluation, Al, data base, 
system decision making 
improvement (Al) 

RTT: Capacity Constrained 
Concurency High; 
Uniformity Low; 
Grain Fine; 
Distance Global; 
Resource Static; 
Application Extensive; 

Battle Execution: command 
response (rapidly varying 
demands on system), 
automatic response 
execution 

real time, dynamic 
capability and fault 
tolerance system fault 
correction and recovery 
(system coordination with 
other components) 

RTT - Hard Real Time 
Concurency High; 
Uniformity Low; 
Grain Fine; 
Distance Global; 
Resource Dynamic; 
Application Extensive; 

Human interaction decision control, displays, 
alarm information 
presentation, 
human interaction (GUIs, 
transaction processing) 

RTT Interactive Multiuser 
Concurency Low; 
Uniformity Low; 
Grain Coarse; 
Distance Local- 
Resource Static- 
Application Extensive; 

Information Display graphics, rendering 
virtual reality (scene 
projection & computation) 
sound and voice 

RTT - Response Time Goal 
Concurency High; 
Uniformity Low; 
Grain Coarse; 
Distance Local- 
Resource Static- 
Application Intensive; 
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C3! Component Mission Description Application Characteristic 
(RTT = Response Time Type) 

Battle actions potential event recognition 
(multidimensional 
correlation, blackboard), 
event determination 
(numerical, multipole, 
symbolic), decision surface 
computation (neural 
networks, Al), multiple event 
association and data fusion 
(fuzzy logic) 

RTT: Response Time Goal 
Concurency High; 
Uniformity Low; 
Grain Fine; 
Distance Global- 
Resource Dynamic- 
Application Extensive; 
(high I/O 

Battle Commands weapon system command, 
human overview, command 
overview 

RTT: Interactive Single Job 
Concurency Low; 
Uniformity Low; 
Grain Coarse; 
Distance Local- 
Resource Dynamic- 
Application Extensive; 

Battle replanning: battle 
resource limits, constraints 
and projections 

linear algebra, resource 
modeling, data base 
access 

RTT: Capacity Constrained 
Concurrency Low: 
Uniformity Low; 
Grain Coarse; 
Distance Global; 
Resource Static(high I/O) 
Application Extensive 

Situation Evaluation, 
position and geometry 
correction 

filters, transforms, spectral, 
real time decision 
processing, data base 

RTT: Interactive Single Job 
Concurrency High: 
Uniformity Low; 
Grain Coarse; 
Distance Global; 
Resource Static- 
Application Extensive 

Communications, external 
information exchange, joint 
operations and multiple 
users 

communication switches, 
decision making, 
transaction processing, data 
base, external oversight, 
signals via IFFN system 

RTT: Response Time 
Concurrency High: 
Uniformity Low; 
Grain Coarse; 
Distance Local; 
Resource Dynamic 
Application.Extensive 
(high I/O) 
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C3! Component Mission Description Application Characteristic 
(RTT = Response Time Type) 

Development System Simulations, 
Testbeds, Emulators 

RTT: Capacity Constrained 
Concurrency Low: 
Uniformity Low; 
Grain Coarse; 
Distance Global- 
Resource Static 
Application Extensive 

Life cycle large development teams, 
reusable codes, object 
oriented. Future costs 

RTT: Interactive Multiuser 
Concurrency Low: 
Uniformity Low; 
Grain Coarse; 
Distance Global; 
Resource Static(high I/O) 
Application Extensive 

Constraints physical size, power 
consumption, response time, 
radiation, fault tolerance, 
fault recovery,... 

RTT: Real Time + Fault 
Tolerant + Physical 
Constraints 
Concurrency High: 
Uniformity Low or High; 
Grain Fine; 
Distance Local or Global- 
Resource Static or Dynamic 
(high I/O) 
Application Extensive 

3.3.2 Recommended Focus on C3! Parallel Factors 

The C3/ parallel system designer needs tools that adequately characterize parallel C3/ 
applications, C3/ based benchmarks that adequately test the architectures now available and 
suitable quantitative measures of applications that guide hardware designers. 

Present successes are usually machine dependent. They are typically coarse grain, 
uniform parallelism, and local communication. They operate steadily, most often in a 
single program, multiple data mode. Many types of applications necessary for 
building C3I systems are missing from the list of successes. The centralization of 
parallel processing research has led to over-concentration in a few applications 
instead of supporting many. As a result, there is a workstation viewpoint instead of a 
systems view. There is a lack of generality in the available hardware. There is a lack 
of portable applications due to mapping for chosen machines instead of insisting on 
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general solutions. In depth understanding of the long range use'of applications is ^ 
lacking. There is too much attention to the latest "buzz word" instead of investigating 
underlying principles. 

3.3.3 System Viewpoint 

Building C3I systems requires a system viewpoint. C3I builders need a method of 
typing and characterizing their component computations. The methods used in this 
essay are too subjective and coarse.  By typing and characterizing the computation 
required in each subsystem, we will make better decisions about applying parallel 
computers to C3I applications. This is not an advocacy of "heterogenous" computing. 
The state of the art of parallel hardware and software is too primitive to accomplish 
heterogenous computing effectively. 

3.3.4 Application Characterization Tools 

There are no tools that adequately characterize parallel C3I applications. Such tools 
would allow us to set better research directions. There are no adequate parallel C3I 
benchmarks or measurement systems that adequately test the architectures now 
available. ( Rome Laboratory has one project in process to define a C3I parallel 
benchmark.)  Most of the present benchmarks come from the National Laboratory 
scientific research computing model instead of from applications representative of C3I 
systems. 

There are no suitable quantitative measures of applications that guide hardware 
designers. With the right benchmarks and tools they can create parallel computers for 
the complex and dynamic execution necessary for large scale C3I systems. We need 
quantitative measures of parallel machines and applications similar to the RISC 
efforts pioneered by Hennessey and Patterson. These measures must come from a 
standard parallel instruction set that encompasses both message-passing and shared- 
memory architectures. 

Only by creating a quantitative approach to C3I system building can architecture 
development and application programming become an engineering activity. A 
quantitative approach would allow inadequacies of parallel machines to be identified 
and corrected and would allow the software engineering community to build its 
processes upon a firm base. 
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4.1 Parallel Systems 

Parallel Software Engineering Assessment 
4 Parallel Architecture Assessment 

There are various types of parallel systems, each with its own advantages and disadvantages 
in programmability, cost, and performance. C3I systems include parallel systems and 
components of many organizations and types. In addition, the software engineering process 
might be different for each parallel system type. A parallel system naming that is consistent 
with the software engineer's needs is appropriate. The use of these names is to ensure that 
the context of a discussion is understood by all involved. Too often discussions switch from 
one type of parallel system to another without considering the significant shift in underlying 
capacity and the wide variation in techniques that might apply to one type and not another. 
Without a parallel system naming convention there is little chance that the capability can be 
matched to the time response requirement of an application. 

The following parallel system types derive from the software designer's need to consider the 
underlying interconnect structure speed and bandwidth capacity: 

♦ networks of computers (linked standard workstations and server computers) 
♦ multicomputers with constant bandwidth capacity added per node computer 

(cost-scalable) 
♦ multiprocessor computers with constant bandwidth capacity between any two 

processors for any processor count  (capacity-scalable) 
♦ symmetric multiprocessors 

4.2 Networks of Computers 

Networks of computers are multiple workstations and servers in a loosely coupled local area 
or wide area network. The protocols used for information transfer between nodes are based 
on telephonic requirements. Messages go outside one system and into another. Those 
protocols are efficient for large-size message passing. A dedicated network of homogenous 
multiple microcomputer nodes is a Cluster or Farm. Often servers of various types are 
added for enhanced performance. That results in a client server network. 

4.2.1 Systems of Computers - A Necessity In C3I Systems 

Clusters, multiserver and heterogeneous computing are all components used in building C I 
systems and subsystems. All of them require significant systems design and analysis for use 
as C3I subsystems. Their technology and software engineering techniques are necessary for 
building CI systems. The interaction of parallel processors with systems of computers is a 
critical factor in software engineering of parallel computers. System designers get little 
objective and quantitative information about performance and responsiveness of a parallel 
subsystem. Engineers need such information to put parallel computers into either CI systems 
or systems of computers. 
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When over specialized, C3I systems face significant cost associated with development and life 
cycle maintenance. The desire to use commercial parallel systems comes from the need to 
avoid this high life cycle cost. Complex C3I systems cannot use currently available 
commercial parallel systems because their responsiveness and performance on complex and 
dynamic applications are unpredictable. 

Performance and functionality demands are rapidly growing. The reasons are: competition 
for more responsive reaction, requirements for shorter product development cycles, needs for 
"whole" process solutions. Parallel systems operating with client workstations reaching 
networks with high performance servers are a potential solution to meeting high performance 
needs cost effectively. Providing functionality along with performance on parallel systems is 
the primary issue of the parallel software engineering process. Client-Server operational 
modes are typically used to separate the user and the high performance computational 
engines. 

4.2.2 Systems Perspective 

Networks of computers, such as clusters, multiserver networks and heterogeneous computer 
networks are alternatives to parallel multicomputers and multiprocessors. The common 
network of computers in a C I system is a heterogeneous one where various types occur. 
Multiprocessors are often servers in heterogeneous networks, providing data, graphical 
display and computational capabilities. For highly structured applications, a homogenous 
cluster is another alternative to a parallel computer. Our purpose is to clearly separate the 
issues of parallel computing to focus the discussion. Clusters, networks of computers and 
heterogeneous computing networks are valid ÖI ideas, but this assessment focuses on closely 
coupled parallel computers because of the need to control the response time of the 
application being performed on the parallel computer. 

422.1 Clusters and Farms 

Clusters of workstations are standard workstation processors that connect to each other via a 
network, not an interconnect backplane. Two forms are available: those built from dedicated, 
rack-mounted workstation processors (without a display unit for each processor) and those 
that are networks of desktop workstations. We will refer to the first type as clusters and the 
second as "farms." Clusters and Farms operate effectively on replicated copies of applications 
executing the same code on different parameter sets. Clusters also can be dedicated systems 
that operate as throughput engines supporting multiple engineers, each running a separate 
copy of an application. Many engineering problems require repeated computation over 
different parameter sets. System administrators can set up farms to run overnight, also for 
replicated copies of applications applied to different parameter sets. The Farm approach has 
appeal to overnight use of "idle" workstations, thus optimizing an organization's use of 
compute resources. 

Clusters provide a choice for many organizations with the need to share an application 
among users. When a replicated multiparameter application is the only requirement, the 
cluster also serves well. However, if the user has a large application that does not fit the 
throughput or replicated application type for which these machine are useful, the cluster is 
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less appealing. Here the programming effort is expensive and the users must wait 
significantly longer for turnaround than if a multiprocessor or supercomputer were available. 
The multiprocessor server is the solution to the performance shortfall of clusters. 

4222 Heterogeneous Systems 

"Heterogeneous" parallel systems are network systems with mixed server types. C3I systems 
are classical versions of the heterogeneous system. The software engineering processes for 
network systems deal with complexity of development, acceptance, and long term 
maintenance. The industry needs development and operational tools that deal with the 
management of applications within a heterogeneous environment of workstations and 
conventional servers. Pipelines built of individual applications are a typical solution. Parallel 
servers add an additional level of complexity because they often have low system 
input/output capacity. Performance falls off rapidly when a part of an application 
mismatches a machine's ideal form of the computation. Mapping to match the computer is 
necessary. Due to the "mapping" portability is very low and performance is brittle. (Brittle 
means that small changes in the application make significant differences in the time taken for 
delivery of the result.) Programmers find that performance can fall significantly with even 
small changes to codes or when a code is ported to another parallel computer. 

Researchers have concentrated on how to break up applications into components that match 
different parallel machines to overcome machine mismatches. The idea is to pass the results 
of components across the network so that each executes on an ideal machine for its structure. 
By avoiding any mismatch the whole computation runs faster. The approach assumes that 
there is an ideal match for each application component in the system and that the 
programmer or compiler can identify it. However, the obsolescence rate of parallel computers 
is so great that mapping of application components to different servers is often required. If 
the heterogeneous system must change on a yearly cycle the entire set of heterogeneous 
computers may have to be remapped to take up the slack of one obsolete specialized 
computer in the system. The long term life cycle support problem is extremely daunting. 
Keeping a mix of specialized computers and nonportable codes in the face of frequent 
obsolescence is against good software engineering practices. 

The multiserver system provides a wide range of specialized services requested by users to 
reach their solution. Coordination of these operations, which is moving staged results from 
one computer to another with special capability, is an established method. Commercial 
products provide this capability. ISIS and TaskBroker are examples. The implementation 
remains a difficult one but the technology is understood. 

Some researchers believe that heterogeneous computing could speed up a single 
computational intensive execution. In this form of processing, the programmer splits a large 
computation into stages. Each of these splits, matches one or more specialized architectures. 
Perhaps some of these splits are types of computation that expand with an increase in grain. 
For those cases, the communications fraction falls as the problem's computation expands. 
The problem is that when one component of the application execution does not reduce its 
computation fraction as it expands. A heterogeneous system would use an architecture with 
high performance multiprocessors (capacity-scalable) for the structure solution and a SPMD 
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rated multicomputer (cost-scalable) for the CFD computation. The results at the information 
surface between the fluid and the structure passes back and forth between the two computers 
on each iteration. 

The chances of success of the heterogeneous computing approach depend upon the 
application. Extremely high communications rates between processor types are necessary. All 
information about the surface must go out, change to match the other architecture, and come 
in again on each iteration. In addition, this method may lose the advantages of data- 
locality-of-reference in caches or local memories. It is feasible to demonstrate applications but 
the programming and life cycle expense makes successful heterogeneous systems of this type 
doubtful. 

4.2.3 Heterogeneous Life Cycle 

In a heterogeneous computing environment the expense of specialized programming and 
upkeep of many different machines leads to high life cycle costs. Comparison of costs over 
the entire system life is necessary for a complete evaluation. A less complex environment 
with fewer machine types would have significantly lower development and long term 
support costs. The obsolescence of parallel computers exacerbates this problem. 

In its present state, heterogeneous computing cannot create a paradigm shift among third 
party vendors because of the fragmentation and myriad architecture types. The performance 
differences and application suitability of cost-scalable multicomputers are not sufficiently 
different to justify buying several machine types. Government laboratory centers may find 
the use of heterogeneous computing effective on "grand challenge" applications because 
software labor costs and system support are not factors in the evaluation. However, the 
method is not presently suitable for working in the engineering process. There are several 
reasons: 

♦ First, users will experience added wall clock time. The time saved would not be worth 
the extra effort. 

♦ Second, the commercial user doesn't usually have the resources to use the complex 
heterogeneous methods. 

♦ Thirdly, long term support is too complex and costly. 

The methods and processes of parallel computer software engineering are very important to 
the building of heterogeneous computing systems. However, the present status of 
understanding of parallel systems is not adequate for effective use of heterogeneous 
computing techniques. The task of breaking apart a general application into heterogeneous 
parallel components is too difficult and too complex for quantitative design engineering. 
Each system with different networks, different loading, and different available architectures 
makes each site a unique problem. Until the problem of performance prediction for general 
applications on a single multiprocessor is solved the corresponding problem in a 
heterogeneous system should be shelved. 

Performance of parallel systems in this environment is not adequately predictable. One cause 
is the dynamic behavior of C3! systems.   The analysis of complex networks that include 
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parallel computer subsystems is intractable. Bandwidth demands on the system are not 
predictable and are nonlinear. As a result heterogeneous computing is not ready for L 1 

systems. 

4.3 MultiComputers & Multiprocessors 

Success of parallel computing in the commercial marketplace requires a virtual machine 
model that separates programming from architecture. Many diverse viewpoints and special 
interests now prevent the introduction of such a model. The necessity to classify the 
architectures is an indication that the "buying public" lacks an adequate depth of 
understanding about parallel computers 

Distributed multicomputers are computers that "cost-scale." Cost-scaling computers have 
reduced bandwidth capacity as machine size grows. Each node has a fixed bandwidth per 
processor module added to the system. Multicomputers have a higher performance 
backplane interconnection that provides the capability to add additional processor nodes. 
These architectures are also cost-scalable because the addition of a module (unit of 
processor(s)) adds a fixed amount of bandwidth capacity to the system, theoretically at a 
fixed cost. Therefore, cost is directly proportional to the number of processor(s). In theory, 
by doubling the size, one only doubles the price. 

Symmetric multiprocessors (BMP), are multiprocessors with limited processor count Other 
multiprocessors have increased bandwidth capacity per processor module added. This gives 
approximately constant bandwidth capacity between any arbitrary processor for any size 
machine. Types could be local memory based (LMMP) or directory based shared memory 
based multiprocessors (DMMP). Other multiprocessors have a backplane interconnection that 
provides the increased bandwidth per processor module. The increase is that necessary for 
approximately constant bandwidth capacity between any arbitrary processor pair for any size 
machine. Doubling the size requires paying the costs of extra bandwidth necessary for 
maintaining the fixed bandwidth between arbitrary pairs. Multiprocessors, except for the 
SMP ones, are capacity-scalable. Symmetric multiprocessors typically have an upper limit 
based on the bus. Some allow added bus interconnect capacity at fixed processor counts. For 
example, a Cray SuperServer with sixteen processors has a single bus and the sixty-four 
processor version has a shared memory with four parallel busses. The capacity growth has a 
modular step of sixteen processors, making it capacity-scalable in four fixed increments. 

4.3.1 Examples of Multicomputers and Multiprocessors 

These classifications are theoretical. Few designs are pure cost-scalable or capacity-scalable. 
Practical hardware designs include modularity and a fixed upper limit to size. A 
multiprocessor or multicomputer becomes equivalent to a cluster when communication 
protocols require communications grain so large as to make the bandwidth irrelevant. A 
network of computers on a backplane is the result. Furthermore, a given design must suit the 
needs of many clients. To be effective in the marketplace, parallel products must provide a 
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wide range of input/output, disk units, memory sizes and speeds, and standard interfaces. In 
addition, one might expand the classification to include fault-tolerance/availability, and 
programmability/performance requirements. An example of meeting programmability 
requirements is the AT&T products. They provided either shared memory or directory-based 
cache memory coherence. The IBM SP2 and Meiko Computing Surface use memory mapped 
hardware mechanisms for synchronization and communications that allow effective passing 
of packets between processors. Table 4-1 gives the author's classification of some 
well-known machines. 

TABLE 4 - 1 Classification of Parallel Machines 

Machine Vendor General Type Comment 

Paragon Intel Multicomputer Message Passing - one node 
processor dedicated to messages 

CM-5 Thinking 
Machines 

Multicomputer/ 
Multiprocessor 

SIMD and single program multiple 
data message passing 

SP-2 IBM Multiprocessor Memory Mapped Shared Buffer to 
Cross bar 

3600 AT&T (NCR) Multiprocessor Memory Mapped - Cross bar 

The discussion on multicomputers and multiprocessors will continue in the architectural 
trend discussion. Networks of computers are not suitable for the consistent achievement of 
predictable time response on general computations. 

With local memory multiprocessors that are capacity-scalable, applications may increase in 
size as the processor size increases. However, those machines grow in cost since added 
bandwidth capacity per processor maintains the balance between application demand and 
processor size. The tradeoff of hardware cost against system software development and 
software maintenance over a long life is, however, seldom applied. Considering the cost of 
development of operating systems and tools, they compare more favorably with the costs of 
multicomputers. Including the costs of software for system integration, application 
development, and maintenance the multiprocessor often is more cost effective than a 
multicomputer. There are specialized applications where the multicomputer is more cost 
effective because the application matches the processor. There are not enough of those 
applications to gain an economy of scale. For the multiprocessor software engineering 
processes, portable development tools, portable application codes and programming model 
standards are feasible. The developers of software should choose target architectures based 
on the ease of software development and portability among their leading selection criteria. 
(Availability and Delivered Performance are the other primary criteria.) This has not been the 
case for many parallel projects. 
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4.3.2 Symmetrie Multiprocessors 

This small processor count type is important in the marketplace. The symmetric 
multiprocessor or SMP is now popular in client-server environments and is displacing 
mainframes in some important multiuser applications. SMPs are bus based machines with 
relatively low maximum processor counts. Obtaining good performance on these machines 
requires good locality-of-reference. Therefore, cache consistency mechanisms are provided in 
hardware. The programming model assumes equal shared access to memory from any 
processor. The builders of these machines assume that their maximum size limitation can be 
overcome by distribution of an application over a network or that a larger scale 
multiprocessor can be used to extend the range of processing. 

Symmetric multiprocessors (SMP) typically use buses and are not capacity scalable 
multiprocessors. A bus is a fixed resource. Therefore, changing the number of processors 
changes each node's share of the fixed bandwidth capacity. Increasing the size of an 
application typically increases its communication demands. Therefore, an application can 
only scale in size if its portion of communication per size goes down. However, within those 
limits, the operation is less brittle than on distributed multicomputers. Programming is very 
portable since there is no mapping necessary. However, shared memory programming uses 
semaphore and mutual exclusion operations to coordinate memory access. Those approaches 
are error prone and difficult to program. A needed element for shared memory programming 
is a model for programming which allows symmetric multiprocessing code to be 
source-compatible with local memory based multiprocessors. A common set of agreed upon 
standard that bridges between cost-scalable multicomputers and shared memory 
multiprocessors is necessary. The Nexus specification (Aerospace Corporation) is possibly an 
example of such a message passing system. If used with only small packets it may be 
suitable for both symmetric multiprocessor and local memory based multiprocessor standard 
for communications. 

4.3.3 Multiserver Systems 

Workstations and their graphical user interfaces have brought the user closer to the 
computation. Putting the user at the display has significant advantages. The entire process of 
application set up, computing, and results analysis works directly with the user's immediate 
environment. However, if the computational stage of the engineering process is too long, the 
close coupling of the user to the application is lost.  Keeping this coupling requires a link to 
an external computational engine. The files and applications that other members of a team 
also use, are common in an external file or data base computer. High performance local 
networks now provide this capability. The external compute and file engine is a server and 
the user station is a client. Clients and servers connect via networks. 
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4.4 Architectural Trends 

4.4.1  General High Performance Architectural Trends 

The trend in parallel systems architecture is toward more useful production computers 
instead of research oriented computers. ARPA funded massively parallel research computers 
have recently increased their interconnect structure capability. The commercial symmetric 
multiprocessor servers have increased bus bandwidth capacity and the number of processors. 
However, at the high end, shared memory vector supercomputers still set the standard for 
production supercomputing. They provide extremely high individual processor performance 
and a processor count of sixteen. Most often, they deliver a higher fraction of their maximum 
performance than other parallel architectures. The "massively" parallel vendors move toward 
production systems by lowing their maximum processor count and paying more attention to 
provisions for input/output and multiuser access. As a result they use the label "scalable" 
parallel instead of the massively parallel label, popular in prior generations. Vendors of 
scalable parallel system now place greater importance on system robustness to make their 
move to production computing. Throughput computing, which is serving multiple users for 
small transactions or replicated copies of a program, is a demonstrated capability of large 
scale parallel computers. Shared memory symmetric multiprocessors with low processor 
counts are very successful commercially as transaction processing throughput servers. 
Workstation and personal computer desktop vendors lead this change. 

Emitter-coupled-logic (ECL) processors set the production standard for high-performance, 
production, technical computing. However, C3I systems have different requirements from 
"technical" production computing. Both physical and cost constraints limit the use of ECL 
based vector supercomputers in C3I systems. In addition, application of CMOS technology 
computers to C3I systems includes a combination of many types of processing that are not 
important to technical research computing. Commodity microprocessor architectures are 
better matches to the requirements of C3I systems. Therefore, we restrict this assessment to 
Complementary Metal Oxide Semiconductor (CMOS) based parallel architectures.  We 
include both shared memory and "scalable" parallel multiprocessors in the architectural 
assessment since C3I systems require a range of machine sizes and types. 

The shift toward production from research is leading to the following technical trends in 
parallel computers: 

♦ use of workstation-compatible microprocessors 
♦ convergence of processor count 
♦ increased interprocessor bandwidth/ decreased latency 
♦ programmability enhancing mechanisms 
♦ proposed standards for message passing 
♦ increased and more flexible input/output, disk, and memory subsystems 
♦ increased fault tolerance, reliability, and decreased repair effort and time 
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4.4.1.1 Microprocessor Trend 

Vendors of parallel machines use the same microprocessors commonly found in workstations. 
Workstation vendors are rapidly improving the processes and the designs of microprocessors 
to attain high performance. Using those microprocessors as the processor in parallel systems 
keeps the vendor on the latest technology curve at a low cost. Vendors also may not have to 
develop node operational software. Application vendors are also more attracted to extend for 
parallel ports than to do a total porting. Microprocessors with 64 and 32-bit data paths and 
32-bit address ranges are now common. 

Microprocessor vendors are taking a more active role in symmetric multiprocessor designs as 
shown in Table 4-2. 

TABLE 4 - 2 Microprocessor Application to Parallel Computers 

Microprocessor Parallel 
Computer 

Type Interconnect 
Structure 

Comment 

MIPS SGI 

PowerChallenge 

Multiprocessor Bus based 
Symmetric 
shared memory 

(18 most 
powerful nodes 
or 36 with less 
powerful) 

PowerPC IBM 
SP-2 

Multiprocessor Cross Bar Large processor 
counts 

Alpha Cray Research 
T3D 

Multicomputer (3-D mesh) Tightly Coupled 
to Vector Super 
Computer 

Alpha Digital Equipment 
Corp 

Multiprocessor Bus based 
Symmetric 
shared memory 

Precision Convex 
Computer 
(Exemplar) 

Multiprocessor Both Bus Based 
Symmetric and 
SCI directory 
based shared 
memory 

SPARC Sun Microsystems 
and Cray 
Research 

Multiprocessor Bus and 
Multi-Bus Based 
Symmetric 
shared memory 

(Sun 20 and 
Cray 64 
maximum 
nodes) 

SPARC Thinking 
Machines 

Multiprocessor (a limited fat 
tree) 

SPMD and 
SIMD operation 
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Microprocessor Parallel 
Computer 

Type Interconnect 
Structure 

Comment 

Pentium AT&T (NCR) Multiprocessors Symmetric Software tools 
(2 types) shared memory 

to 32 nodes, 
Crossbar based 
above 

across both 
architecture 
types (OLTP 
and DBMS) 

i860 (not a Intel Multicomputer 2-D mesh Large 
workstation maximum 
microprocessor) count 

Pentium Compaq, Encore, Multiprocessor Small Processor UNIX and 
Gateway, Dell, Count WindowsNT 
IBM, AST Symmetric Bus Chip sets: 
Research, shared memory Corollary, LSI 
Hewlett-Packard, for Network Logic, Pequr 
etc Servers and Wyse 

in-house nCUBE Multicomputer (hypercube) Large 
maximum 
processor 
counts 

4.4.2 Maximum Processor Count Trend 

Scaling of an architecture to Teraops (1012 operations per second) peak performance is a feature 
necessary for only a few systems in a few locations. Massively parallel processing (MPP) versions of 
cost-scalable multicomputers sacrifice volume sales at lower processor counts. Scalability over a range 
of ten to a few hundred processors is very important to attain an adequate volume to support the gross 
margin necessary for building operating system and other system software.  Sales volumes necessary 
to achieve critical economic mass require volume at lower processor counts and demonstration of high 
processor count capability. The trend in "cost-scalable" multicomputer architecture is to meet this 
range of processor counts with the most powerful node processor available. The latest architectures in 
the parallel market trend toward reduced maximum processor counts. Recent entries from IBM, Cray 
Research, and Convex are beginning at smaller maximum counts and with plans to extend upward. 

Symmetric Multiprocessors 

A second trend that has significantly more economic power behind it is following this sequence: 

♦ to start at a very low count, as low as two to four 
♦ convince users of its value 
♦ increase the count over time 

The vendors of workstations and personal computers have taken that approach. Both Sun 
Microsystems and Compaq sell over 10,000 symmetric multiprocessors each month for file, OLTP, 
data base servers and multiuser servers. Sales of these systems were almost $5 billion in 1993. IDC 
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projects a business level of over $7 billion in 1996. Profit margins are higher than in single processor 
systems. As a result, a significant fraction of a vendor's profit comes from multiprocessor server 
systems. Thirty percent of Compaq's profits came from servers with 3 percent of the units sold. The 
data shown in Table 4 - 2 shows that competitive designs are coming from symmetric multiprocessor 
vendors using high performance bus systems. These processor types have the opposite trend in 
processor count from the technical computing multicomputers and multiprocessors. Once limited to 
four to eight processors, symmetric multiprocessors now go to sixty-four processors (Cray Research 
SuperServer) using four complete cache coherence busses. AT&T Global Information Systems (NCR) 
sells server systems with data base and OLTP applications. Their models scale across symmetric and 
tightly coupled distributed multiprocessor architectures and over the range of two to 512 processors. 

4.4.3 Interconnect Latency and Bandwidth Trend 

The cost-scalable multicomputer vendors trend to the optimum point on the connectivity (the number 
of network routing paths from a given point) and bandwidth curve. Now under the name of "scalable" 
parallel processing, this trend is changing.    A generation back, researchers favored the hypercube and 
other high connectivity networks. Then designers began to reduce the connectivity and increase the 
bandwidth of individual links. Their reason was that the communication mechanism - message passing 
using large messages - fits well with low connectivity interconnects. Delays in the protocols for 
creating and transferring messages dominated the latency. For example, machines from Intel changed 
connectivity from hypercube to a two dimensional mesh or torus. Due to protocol processing delay, 
the message latency of the interconnect was less important than the time to transfer the message body. 
Engineers are reversing the trend by reducing protocol delays and shortening messages. Examples of 
the trend reversal are IBM with eight way cross bars, and Cray Research with a 3-D mesh. These 
changes stress low latency for small packet transfers. nCUBE's use of an eighteen-way path is useful 
in the multimedia server application, another indication of a rebound in this trend.. 

4.4.4 Obsolescence Trend 

There is a flux in performance and architectural designs on the market From the prior generation of 
multicomputer machines (MPP) to the present one (SPP) Intel, Thinking Machines, nCUBE, and 
MassPar have not succeeded in creating a rapid growth in new applications. These early machines had 
a scarce list of features. They lacked virtual memory. Their designs targeted doing well on common 
functions and benchmark cases. Performance on complete applications was disappointing. They used 
inadequately robust interconnect designs. Most had inadequate input/output capability for production 
environments. They concentrated on research markets instead of commercial and industrial technical 
applications. These machines emphasized peak performance instead of the reliability and 
programmability necessary of the commercial marketplace. As a result, a large government research 
component in the market is necessary for their existence. The risk to the government is that many 
programs committed to those machines cannot take advantage of software from a broad base of 
suppliers. In addition, the general needs of C3! systems lack suitable parallel hardware and software 
because the MPP machines are suitable for only a limited set of application types. C3! systems builders 
also cannot take advantage of a broadly accepted programming model and tool sets that meet all their 
needs. 
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The difference in the research and production oriented machines shows up in results on the National 
Aerospace Simulator (NAS) benchmarks. The IBM (SP1) and Cray (T3D) products are consistently 
above those from the earlier generation. The importance of high bandwidth, low latency and high 
connectivity shows in the results reported by Cray Research on the NAS benchmarks. The table of 
results are given in the application essay in Table 2 - 4. 

4.4.5 Programming Model Support Trend 

Features have been added to the interconnect/backplane to support either shared memory or scalable 
parallel message passing communications between processors. The shared memory programming 
models have cache coherence components that allow cache updates when any processor writes a 
location. Hardware coprocessors now directly support the message passing model, for example, the 
Intel Paragon. Dedicated hardware that transfers buffers between processor memory (e.g., IBM SP2) 
also directly supports message passing. Meiko supports the Computing Surface model in a VLSI 
interface circuit for each processor interface to the interconnect. AT&T (formerly NCR) provides its 
commercial software tool for decision support DBMS access on small symmetric multiprocessors and 
on its larger local memory based parallel machines. The larger of these machines emulate shared 
memory to ease programming effort. 

Meiko, IBM, Cray and Convex have recently introduced machines with global or virtual memory, 
more robust and reliable interconnect designs and more balanced input/output capability. IBM, Cray, 
and Convex have made heavy investments in complete solutions, including commercial business and 
production technical design and engineering applications from independent software vendors. They, by 
necessity, have concentrated on higher reliability and programmability than the early research 
machines. If they succeed in meeting commercial availability and programmability standards, they 
have the potential for widening the acceptance of parallel computers. This could convince large 
numbers of independent software vendors begin to provide new parallel applications. 

The shared memory programming model is to update the locations held in a cache whenever any 
processor writes to the location. This capability is "cache coherence." Cache coherence is found in 
machines ranging from small two and four processors network servers to several hundred processors in 
the AT&T 3600. The Stanford Dash computer uses directory-based cache memory coherence and 
common microprocessors. The Scalable Coherent Interface (SCI) bus used by Convex also has a large 
processor-count with directory based cache coherence. 

For message passing the mechanisms are different in concept because the architecture has a wider 
range of update and transfer capability beyond the cache line. For example, the Intel Paragon has an 
i860 dedicated to providing message passing and routing though its 2-D interconnect. The 
memory-mapped buffer appears in a cross-bar based interconnect structure. Theoretically, it provides 
the capability for transferring small messages at low latency. The IBM SP2 has a memory-mapped 
buffer for transfers. Special circuits take data from the buffer and deliver it from node memory to node 
memory. Similar support is found in the Meiko Computing Surface and the AT&T 3600. The Cray 
T3D shares these capability and performance features. 
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4.4.6 Capability Trend 

Significant increases in input/output capability and disk support makes these machines practical for 
continuous operation. For example, the Cray Research T3D has a significant advantage due to its 
proven input/output system. Cray's T3D uses an attached vector Supercomputer and its input/output 
and storage system interfaces. The AT&T 3600 has disk drives and communication ports at each 
processor. The Thinking Machines CM5 has a very high bandwidth between its disk drives and its 
processors. As a result, advanced commercial information decision systems find that the AT&T 3600 
and CM5 are ideal for large, complex queries. The AT&T 3600 runs Oracle, Sybase and a proprietary 
data base system. TMS's CM5 is typically used in SIMD mode for rapid sorts of information. The 
Oracle DBMS has been successfully ported to nCUBE, Meiko, and symmetric multiprocessors based 
on workstation microprocessors. A glowing success of parallel systems is the capability to provide 
high throughput for transaction processing systems. Pyramid, Tandem, AT&T, Sequent, and Encore 
are companies that do business in this important application area. AT&T hardware sales for this 
purpose exceeded all the MPP vendor sales in 1992 and in 1993. However, vendors have recently 
added the capability for providing quick responses for complex queries. They accomplish this by a 
preprocessor parallel program that breaks apart, transactions for concurrent execution. 

4.4.7 Utility Trend 

The latest trend is to add features for increased availability. AT&T 3600, with folded Banyan 
interconnect, has built in redundancy control for fault tolerance. The folding provides lower latency 
when fully functional. One failing of research oriented parallel computers is that both hardware and 
operating system reliability have fallen short of that required in both engineering and commercial 
applications. Since common use is outside a mission critical application this deficiency survives. The 
trend is to correct this shortfall. Adaptation outside the research computing environment requires high 
availability. 

4.4.8 Cost Trend 

Cost trends are up but with increased delivered performance. This comes from the necessity to 
increase interconnect performance, provide fault tolerance, develop operating systems on new 
architectures, and provide the input/output balance necessary for out-of-the-laboratory operation. 
System software costs have been significant. Reliability and instability problems have plagued some 
scalable architectures. The conclusion is that good computers are expensive to build. 

The foundry cost differential between using a specialized processor instead of a standard workstation 
microprocessor is not the significant cost benefit factor once believed. Interconnect costs are 
necessarily high when vendors serve a broad application spectrum. Lack of support for a broad 
application set restricts the market and doesn't allow for amortization of development costs across 
several machines. 
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4.4.9 Real Time Trends 

The capability to perfonn acceptably within hard real time systems is not one that scalable parallel 
computers have reached. This area remains a specialized parallel processor field with corresponding 
high life cycle costs and long term support issues. 

4.5 Architectural Trend Conclusion 

Trends toward more robust parallel computer systems are turning in the right direction for the 
software engineer. A common programming model requires robust hardware and operating systems. 
However, the capability to perform on complex and dynamic applications is not yet a capability of 
available machines. 

The latest introductions have punctured the idea that cost-scalable computing is generally useful. 
Capability-scalable machines have a better cost to effective performance ratio than cost-scalable ones. 
The extra investment in interconnect structure is off-set by lower software costs and wider applications 
set and market. The extra hardware and system software for fault tolerance are necessary for the 
commercial market. Costs in that area are returned by satisfied clients. Providing compatible software 
tools over the range of processor counts and varying the architecture also pays off, as shown by the 
sales success of AT&T for its OLTP and DBMS machines. As capability-scalable machines grow in 
the commercial market the benefits of large scale markets will provide better tools and broader 
understanding. This doesn't mean that these trends will solve all the problems of parallel 
programming. It only means that it is now feasible to accomplish some ideas and tools necessary for 
portability and low-risk design. 

Machines are now more capable but with fewer processors and lower peak speeds. Higher and more 
stable communication bandwidth capacity between processors is the result. Vendors are putting 
hardware support parallel commands and programming models into practice. Availability increases 
because fault tolerance features must meet commercial user needs. Some data base and transaction type 
applications have been ported across a range of symmetric multiprocessors and distributed 
multiprocessors. The mix of architectures is still too diverse. However, the trend to increase 
interconnect capability reduces the wide differences between architectures. These differences become 
less a disadvantage to software engineering processes for parallel systems because with adequate 
capability the timing of parallel instructions over a range of typical example applications can be used 
to evaluate the suitability of a machine for an application. In that case, the architecture's structure can 
be hidden and a quantitative evaluation of cost to performance benefit can be calculated from the 
parallelism content of the application. 
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Parallel Software Engineering Assessment 
5 Market Forces and Issues 

5.1 Commercial-off-the-shelf (COTS) Parallel Computers 

The present research parallel computers are not adequately robust in either interconnect 
performance or machine availability for commercial viability. COTS approaches presently 
succeed for workstation C3I components, but not for parallel computers. C3I system builders 
who need parallel computing need a strategy to leverage COTS advantages and encourage 
systems with commercial viability and widespread acceptance. 

5.1.1 Strategy for Future Cost Effectiveness 

Commercial-off-the-shelf (COTS) components are important and provide an available 
technology for building high performance C3I systems. The economy of scale of having 
commercially available hardware leads to widespread use of COTS workstations and 
associated technology. Operating systems, data base systems and high level languages are 
readily available for scientific and commercial uses of workstations and personal computers. 
Standard committees have captured the most common workstation operating system (UNIX) 
and created a military standard (POSIX). Windows NT from Microsoft is expected to increase 
the market for symmetric multiprocessor (SMP) processors in commercial client-server 
markets. The success of workstations and their ever increasing performance and 
programmability leads to the same high expectations for parallel systems. 

The strategy is: 

♦ encouraging the parallel industry, 

♦ nurturing it into wide acceptance 

♦ reaping the benefits of associated commercially developed software and hardware 

These strategies are valid for workstations and personal computers. The same strategy should 
work for parallel computers but has not. 

One reason the strategy has not worked is that advocates treat COTS scientific parallel high 
performance computer systems as specialized processors and not as general computing 
products. Before the COTS strategy, designers developed parallel computers into C3I systems 
specifically for a given need. Each had its applications carefully mapped to achieve high 
performance. Designers isolated these specific capabilities. They placed them only where 
needed and where structure matched needs. These special-purpose, parallel computers had 
specific, well-engineered capabilities. The life cycle costs were high (each required special 
maintenance) but the system met performance and physical constraint goals. 

5-1 



5.1.2 Research Viewpoints 

Presently researchers treat COTS systems in much the same fashion: they are fielded in only 
a few sites and each is programmed for a set of specialized applications. These applications 
are typically carefully selected to match the limitations of the parallel computer. In the 
original approach the parallel computer was carefully selected to match the C3I needs. This 
approach provides some advantage in that a few different COTS systems share the same 
architectures. However, the cost is loss of efficiency, performance and capability because 
system needs came second. The number of parallel computers sold remains small because 
there is no broad applicability or market for the parallel computer. 

5.1.3 Building Industry Capability 

This is not a good strategy for attracting and building a COTS industry. First, independent 
software vendors find less than their critical mass since there are only a few tens or hundreds 
of each model. They amortize their application software development costs over thousands of 
sales to main sound business practices. Second, hardware vendors fail to achieve promised 
hardware cost saving. They failed to consider development, marketing, and financing in 
setting their cost goals. The vendors did not consider that they must amortize their hardware 
interconnect, mass storage, operating system design and development over only a few sales. 
Third, the vendor finds that hardware is obsolete by the time the operating systems 
development completes. (NASA found that one well-known cost-scalable multicomputer 
system failed on the average of three times out of twenty-four tries of the same application 
execution.) Fourth, the reputation of parallel computers suffers due to the difficulty in 
attaining desired performance and functionality. Finally, they do not meet the wide range of 
complex and demanding mix of execution types expected in either a C3I or large-scale, 
commercial, production system. A large market requires the general capability for meeting 
real time, numeric, symbolic, visual, control, etc. processing types. 

The COTS approach offers the advantages of common and widely used tools, software, 
computers, and peripherals. However, for scientific high performance computer markets 
there are no commonly agreed upon common architecture models. Each vendor must bare 
the development and maintenance burden of the underlying operating system software and 
languages. Hardware vendors need to leverage the efforts of independent software vendors 
to reach the critical mass market. 

5.1.4 Failure at Generality 

The failure at generality of the systems forces an interaction between hardware and software 
that leads to nonportable codes. A key feature of the success of workstation software is that 
applications could be easily ported between vendors without regard for specific hardware 
machine details. Hardware vendors do not need knowledge of the software vendor's 
applications in any specific way and vice versa. Each goes on with assurance that they can 
attain a reasonable performance level without tying themselves to a specific matching 
technology. Without independence of hardware and software developer there cannot be a 
successful COTS strategy for parallel computing. 
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5.2 Opportunity and Challenge 

The challenge to the C3I system builder is to encourage a market for parallel COTS products. 
To attain a market size suitable for attracting the independent software vendors the hardware 
products must be adequate for a wide range of applications. The software must be portable 
with reasonable performance across a wide range of architectures and machine sizes. This 
results in a sacrifice due to increased hardware costs because the vendor must beef up the 
interconnect and improve fault tolerance and recovery capability. Robust interconnect 
performance and machine availability is necessary in the larger market. It also means that a 
significant increase in portability and programmability is gained when buyers force these 
capabilities on machine vendors. 

These changes offer new opportunities for enhancing command, control, communications and 
intelligence (C3I) systems. Market-coupled, commercial-off -the-shelf (COTS) solutions allow 
C3I builders to meet their budgets. Application specific parallel processors necessary for 
meeting tight physical constraints could use the same common model for efficiencies in 
software development. The Air Force needs a strategy for making effective use of technology 
and market driven COTS technology. 

A part of that strategy is to encourage the software engineering tool set that is necessary for 
the commercial successes and extend the marketplace successes to suit C3I needs. In addition, 
success of a programming model applicable to the expected commercially successful 
architectures would serve the C3I builder.  The trend in production technical computing is 
toward data base and object-oriented storage for design and analysis information. That trend 
turns the computing attention center away from Fortran applications, and toward use of 
application packages and system integration languages like C and C++. Most commercial 
research and engineering production already use applications from independent software 
vendors. The software that is written is for integration of the packages to make the engineer's 
job easier. Industrial production centers use that same approach, mirroring the purchase of 
software vendor and integrator packages. 

5.3 Market Driven Technology Forces 

A successful strategy for C3I system and software engineering must be consistent with and 
take advantage of the market dynamics of commercial information and technical engineering 
systems. In this essay, we make a case that the growth in small symmetric multiprocessor 
systems might leverage parallel software engineering processes. Use of a common 
programming model allows these processes to also work for low-latency, scalable 
multiprocessors. 

Competition ties technology advances and market forces together. The computer marketplace 
is an environment of intense competition, resulting in rapid technology advances and 
changes. These changes are generally beneficial to the users - performance and capacity grow 
significantly each year at constant cost. Often performance increases cover up a product or 
system shortfall. Marketplace dynamics in parallel processing brings the opposite. The 
changes increase the disadvantages of hardware obsolescence, disappearance of support, and 
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a dearth of supporting software tools. Because of this flux, technology advances may even 
exacerbate any weakness in the software development process and management of large 
scale software efforts. 

Today's dynamic changes in the computer market result from the displacement of Emitter 
Coupled Logic (ECU processors by Complementary Metal Oxide Semiconductor (CMOS) 
Logic microprocessors. The result is a rapid advancement in speed of the single 
microprocessor chips. Low cost and open systems standards make this technology useful as 
a high throughput (many independent operations per second) computer for workstations and 
parallel computers. For structured applications with fixed data locations few processors (10 to 
30) reach a single processor's (ECL) operational speeds with lower hardware cost. Advocates 
think that cost-scalable multicomputers built from very high performance parallel CMOS 
computers will far exceed the capabilities of today's highest performance ECL computers. 
They also hope that they will be available at a reduced cost per unit of performance. 

Large volume production of microprocessors is necessary to recover development and 
foundry costs and to allow a margin for continued development. The most popular models 
will rapidly evolve and improve while the less popular ones become obsolete and disappear 
from the market. The Intel i860 is an example of volume inadequacy and architectural 
performance limits, causing obsolescence. While the Intel 80x86 / Pentium series is a 
successful volume case. A processor applications base and choices of operating systems are 
critical factors for market success in personal computers and workstations that use 
microprocessors. 

Other equally dynamic changes in the paradigms of computing are underway. The human 
interface is changing rapidly. Object oriented screen building has reduced the cost of 
conventional interface construction. Voice commands, pen control, written text to ASCII 
character transformation, and wireless and remote, self-contained information collection 
capabilities are now available. Network control and communication's software for building 
homogeneous clusters of computers is now feasible for throughput demanding applications. 
Forecasters expect that wide-area communication speeds will increase and become more 
broadly available. They project that future transfer speeds will be greater than today's 
workstation microprocessors even at their higher operational speeds. They will not be able to 
do the necessary protocol processing in real time without extra hardware assistance. 
Technology advances in field programmable devices, magnetic storage media, and virtual 
reality add to the opportunity for computer technology's capability to contribute to C3I 
system requirements. 

In parallel systems the microprocessor cost is not the critical issue - many highest 
performance microprocessors are available for $500 per package, while multicomputer nodes 
are priced at 100 times that cost. Even the design and foundry costs of a specialized 
microprocessor are not overwhelming if foundries are available. The critical factors are the 
development cost of a robust system, compiler software, operating systems and the existence 
of an application's base. Achieving that base requires the investment of many independent 
software application developers. Broad market acceptance of a microprocessor is necessary 
for attracting the investment in operating system, languages and applications. For example, 
IBM, Motorola, and Apple combined forces for ensuring a broader market, adequate volume 
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and applications base for the PowerPC microprocessor.  HP and Intel jointly announced an 
advanced processor to replace the Pentium series. 

5.3.1 Demand for Commercial Parallel Systems 

A recent New York Times best seller, "Reengineering the Corporation," by Hammer and 
Champy, describes a revolution occurring in corporate organization. Corporations are 
rethinking fundamentals and making radical changes to achieve dramatic results. The key to 
that revolution is the identification of "value added processes." Hammer and Champy 
emphatically make the case that all large United States corporations must undergo this 
"Reengineering" if they are to remain in the worldwide, competitive marketplace. Many 
major US corporations are committed to Reengineering. The key to success is to use 
information, simulation, communication, computer information technology as the facilitator. 
The level and direction of the "Reengineering" depend upon available and projected 
information technology. A significant market is emerging for parallel computers to support 
the needs of corporate Reengineering. 

These dynamic and fast-moving trends create the market for new multiprocessor software 
products. These new products create the conditions for additional hardware and software 
products. Synergism like this creates a paradigm shift. Including the larger scalable 
multiprocessor systems in this paradigm shift requires a programming model that allows 
them to execute the same application's code. The technology necessary to accomplish this is 
twofold: 

♦ a combination of adequate low latency and a high bandwidth from hardware 

♦ a "virtual machine" model that works on both smaller symmetric multiprocessors and 
local-memory-based, bandwidth-scalable multiprocessors 

A factor that helps the process is that the needs of commercial and industrial complexes and 
C3I system ones are sometimes similar. 

5.3.2 Acceptance of Parallel Processing in the Marketplace 

Parallel computing also requires broad acceptance of both processor usage and parallel 
architecture. Some successful forms are emerging in the marketplace. C3I parallel systems 
must leverage off'those successes and extend them for their military use. 

Market forecasters predict sales of several hundred thousand symmetric multiprocessor 
servers for calendar year 1994. These may average only four processors per server. They are 
based on CMOS/RISC microprocessors with cache coherence shared memory control chips. 
Their success is based on significantly reducing costs below the equivalent mainframe 
technologies. SMP machines are commercially available for Pentium (AT&T, Encore, 
Compaq, Acer, etc.), SPARC (Sun Microsystems and Cray Research), Precision (HP and 
Convex), MIPS (SGI), and Alpha (DEC). 
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For high-throughput on-line transaction processing and data base access, the industry 
believes in "shared nothing" local memory based multiprocessors (LMMP). Most models of 
these are capacity-scalable multiprocessors with increased interconnect structure to maintain 
performance across a large range of processor counts. They are found to be effective in both 
performance and price on multiuser on-line transaction and data base applications. They are 
now supplementing mainframes in some large new information systems.  Data storage 
servers also have a large market. These machines are inexpensive compared to mainframes, 
however, they are robust and have high performance interconnects. Such structure is 
expensive to engineer and produce. Successful market entries have paid close attention to 
availability, programmability, fault tolerance and Input/Output capability. Capacity scalable 
LMMP machines are available from IBM, AT&T, nCUBE and Meiko. The LMMP machine 
from Thinking Machines is not fully capacity-scalable as the "fat tree" capacity favors local 
communications. The LMMP systems from Intel, the Paragon, is a cost-scalable 
multicomputer with poor multiuser capability. In addition, Intel uses a special purpose 
microprocessor, the i860. Intel sells it also for signal processing applications. The others use 
large sales volume microprocessors also found in workstations. IBM uses the Power2 in its 
SP2 parallel computer. The Power2 is a multiple chip module processor provided in their 
top-end workstations. 

Cray Research provides its T3D for large scale applications with multiple Alpha processors, 
and the SuperServer with multiple SPARC processors. The T3D has a very rapid access to 
memory.  Note that AT&T and Cray Research bridge the shared and local memory barriers 
and provide machines in both SMP and LMMP categories. Convex provides an SMP 
programming model via bus based systems at low processor counts and a directory based 
coherent cache (DMMP) system using the Scalar Coherent Interconnect (SCI) standard. 
Directory-based coherence preserves the shared memory programming model to larger 
processor counts. Memory is local but updated via separate mechanisms. Convex provides 
one using the directory coherence features of the SCI bus. This trend points to the possibility 
of shared memory programming on larger processor count system. 

Because of the recognition of their effectiveness, industry routinely uses high performance 
parallel computing for OLTP and DBMS servers over a range of sizes and architectures. Data 
base and transaction applications for parallel computers have been ported and are available 
from several independent software vendors. These products span both symmetric 
multiprocessor and local memory based multiprocessor architectures. An example is Sybase 
DBMS on the AT&T Global Information System product line with both SMP and LMMP 
architectures. The success in this field shows that if parallel machines are adequate and 
useful for an application that independent software vendors will respond. C3I systems could 
use this type of processor for applications that match them. The suitable applications are 
multiuser transactions, data base storage, and replicated copies of programs, one copy per 
user. AT&T's robust interconnect structure in its model 3600 has proven reliability. More 
important, the operating systems for the commercial system are robust and reliable. 
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Scientific research, high-performance parallel computers have not achieved the level of 
effectiveness necessary for broad acceptance. Although highly popular for computer science 
and algorithm mapping research funded by the government they remain outside the 
production for day-to-day operations. 
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Computer science research has failed to develop in a direction that fits it into the production 
engineering process. A concentration of grand challenges has lead the field away from the 
industrial processes and operations necessary for market acceptance. Typical engineering 
projects are performed using workstations and low processor count servers reached via a 
network in a client-server mode. The server might be a four-processor one that provides files 
for several users. Much of this parallel processing is now limited to replicated applications 
for different parameter sets. Unfortunately, a single large application, such as simulation or 
detailed operations of an engineering process, gets little speedup gain from the present server 
technology. Often engineers wait overnight for critical runs because the necessary processing 
performance is not available. If the four processor servers delivered speed on a variety of 
engineering processes a sixteen-processor system would be justifiable in these environments. 
Instead of concentrating on creating an integrated industry, parallel programming research 
has left these practical engineering process applications and concentrated on applications that 
require Teraops level processing speeds. 

5.3.4 Commercial Parallel Systems 

The present research parallel systems do not meet all the requirements of the production 
center for technical or commercial computing. Programming models are not portable and 
require architectural knowledge and detail level programming. Advanced commercial efforts 
for decision support systems require development teams of tens and hundreds of people. 
The lack of software engineering processes to deal with system and parallel computers often 
leads to these inefficient projects. Much of the present parallel computer research community 
considers scalability of hardware above that of software. 

However, symmetric multiprocessor applications establish a basis for independent software 
vendor products. Symmetric multiprocessors provide a few primitive mechanisms (e.g., 
threads coordinating via locks) to allow the programmer to deal with concurrency. The 
thread programming model is often not portable with other vendor's hardware and is not 
portable to local memory based multiprocessors. Sales of these machines, data base and 
transaction processing software, and a full spectrum of business process applications is now 
available on those machines. The popular client(a workstation) and server(a parallel 
processor) operation allows many corporations to spread their operations across the nation 
on wide area networks. The commercial software package industry has built a significant 
inventory of software, making skilled and trained personnel with experience available. C I 
systems often require the similar transaction, data base, and reporting applications. C?l 
system designers should understand and capitalize upon these capabilities. Due to the small 
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processor count, these processors cannot solve some of the large scale problems of C3I 
systems. However, they can contribute a significant level to the matching application types. 

This leaves the large scale LMMP processor. These systems are also finding applications in 
industry for support of decision support systems. All of the well-known examples 
communicate with an operating legacy system. The systems extract data and feed it into the 
parallel computers for processing. They work on large and complex queries and analysis 
applications. They often cut completion time down from weeks to days. However, there is a 
demand for even quicker results. The primary disadvantage is that each example is ad hoc 
and required a significant staff for development and operational support. 

Large scale commercial applications have expectations of mainframe-like operations (general 
applicability) but at much higher performance. Multitasking (switching between multiple 
users to overlap and hide delays) makes interconnect latency less important to getting high 
throughput for transaction and data base applications. However, a single user with a large 
decision support application with complex queries requires multiple processors. AT&T 
provides software that breaks complex queries into independent parallel transactions for 
execution on either SMP or LMMP systems. This allows use of local memory based 
multiprocessors for complex queries. However, large scale parallel systems still do not have 
the general applicability of mainframes. The vendors of large scale parallel systems have 
"skimmed the cream" of transactions and data access. Their products do not provide the 
versatility of programming and effective operation provided by the supercomputer or 
mainframe on complex and dynamic applications. 

Early examples of commercial systems that have embraced parallel methods, show that the 
present successful parallel offerings cannot replace entire systems. Large information systems 
have additional capability or function instead of simple replacement of "legacy" or "heritage" 
or "dusty deck" operational systems. Industry now uses parallel computing to accelerate 
processing of new throughput-oriented applications. However, the   mainframe or 
supercomputer remains the operational, day-to-day production system for heritage or legacy 
applications. Often the prior software investment is too large for a parallel system to displace 
an operational system. The proprietary file systems upon which these systems have been 
based compound this problem. The investment is significant and requires the following: 

♦ extract data from the legacy system 
♦ insert it into the new parallel system 
♦ do the decision processing 
♦ extraction" 
♦ post analysis 
♦ put data back into the legacy system 

Often this effort requires tens and sometimes hundreds of people. Over the next five years 
both commercial and C3I systems will likely consist of mixed legacy and advanced 
technologies. Software engineering progress is necessary to build this mixed operational 
capability to allow incremental insertion of parallel technology. 
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5.4 Strategy for Embracing the Commercial Successes 

The parallel computer industry is experiencing significant competition at all levels of systems. 
In the Intel 486/Pentium marketplace AT&T, Pyramid, Sequent, TriCord, Compaq, and 
Encore plus many other smaller vendors are already present. Compaq has already sold 
several hundred thousand multiprocessor systems. Intel recently included key parts of the 
shared memory consistency control within the Pentium microprocessor chip. In addition, 
Intel has announced a standard for Pentium systems that will allow the commodity "clone 
builders" to join the symmetric multiprocessing hardware market. Cyrix has announced a 
competing open standard to prevent Intel patents from cornering the market. 

Workstation vendors have also joined the market for parallel servers. For example, in 1994 
Sun Microsystems managers expect to reach 150,000 system sales for servers, although with 
an average of only four processors per server. Other workstation vendors (Hewlett Packard, 
Silicon Graphics, Digital Equipment Corporation, IBM, etc.) have powerful symmetric 
multiprocessing products. These systems are based on shared memory multiprocessor busses 
that provide cache control. Single bus versions of these systems allow up to twenty 
processors (Sun SPARCCenter2000). Cray Research is selling a sixty-four-processor 
SuperServer SPARC system using shared memory organized around four such busses. 

This commercial trend reveals that hardware vendors are expecting rapid expansion in the 
use of symmetric multiprocessors. These computers operate well in a throughput mode 
where several users share a processor. These symmetric multiprocessors are not subject to 
message passing mapping effort. However, they require threads programming using locks 
and semaphores - a technique requiring very careful programming to avoid concurrency 
conflicts. Independent software vendors are not enthusiastic over use of proprietary threads. 
POSIX threads are not yet widely received because vendors are still pushing their own 
thread environments. 

The opportunity for the Air Force is to recognize the shortfall in proprietary threads and 
large-message passing models. Then define a standard programming model that will work 
on both shared (SMP) and scalable (LMMP) architectures with low latency. One would not 
expect high effectiveness on clusters due to high protocol latency in protocol based parallel 
systems. Possibilities include carrying out a small-packet, message-passing mechanism in 
software for both symmetric multiprocessors and for the buffer exchange hardware for 
LMMP designs. Synchronization latency would be similar in both cases. Highly portable 
code results. With a similar latency and common programming model, applications are 
portable across a range of sizes and architectures. 

Scalable parallel processing applications and symmetric multiprocessing now share the same 
software applications and tools market. Independent software vendors would find the 
opportunity for profit from parallel computing. This produces a larger base for the creation 
of software engineering tools and processes. The Air Force goal should be to influence the 
direction of a standard those tools so they also apply to large local memory-based 
multiprocessors required for dynamic, complex C3I systems. The result would be 
programmable scalable parallel software applications that span architecture types and sizes. 
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Parallel Software Engineering Assessment 
6 Status of Software Engineering tor Parallel systems 

6.1 The Software Engineering Goal for Parallel Computing 
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Separation of hardware and software development is important to the engineering of parallel 
hardware and parallel software. Without this capability each effort by hardware vendors and 
software developers is ad hoc and has little potential for reaching the large markets necessary 
for commercial advantage. 
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Parallel systems have the common problem with other complex engineering tasks because 
careful functional, performance, and resource modeling are required at each phase of 
developments. As a result software that must be mapped to a parallel architecture cannot be 
separated from the hardware adequately to ensure that design does not overwhelm the 
parallel computer. However, a well defined parallel instruction set should server as a 
equivalent to the gate construct. Such a mechanism would allow the same simulate at each 
level and an automated design process. 

6.2 Process Mismatch 

6.2.1 Limited Commercial Applications Successes 

The reason that multicomputers are not ready for large scale decision systems in commerce is 
that they are too limited in application type. [Richmond: July 1993] The introduction of large 
processor count multicomputers and multiprocessors into commercial uses is inhibited by the 
following reasons. 

♦ performance is uncertain 
♦ difficulty of carrying out the project 
♦ intensive interaction with heritage systems and interface is difficult 
♦ software tools are not in place 
♦ obsolescence leads to tactical applications 
♦ high complexity leads to high life cycle costs 
♦ cost of project raises visibility to high-level management 
♦ economics allows only incremental change not radical ones 

Yet the introduction of symmetric multiprocessors as data base management system and on- 
line-transaction-processing servers has been phenomenal. The success of Compaq and Sun 
Microsystems in the server market has led to others joining the market. This market is for 
two to four processor parallel computers. The conclusion is that successful applications lead 
to a large and high value added market if the technology is consistent with the system 
engineering process. 

6-1 



6.3 "Sequential" Software Engineering 

System design and development processes and tools are now maturing. Applying them 
carefully provides a well-managed path to system development. The process of software 
engineering has evolved to provide a basis for tools and for managing the building of 
long-lived, complex C3I systems. Steady improvement by tool builders has provided a 
steadily improving progression of process environment tools for large system development 
using sequential computers. The results are Computer-aided-software-engineering (CASE) 
environments, built-in configuration management (SCCS), and reusable language features 
(from Ada and Object Oriented languages). Personal computer programming systems now 
feature some encapsulation and code reuse aspects of modularity and libraries. For example, 
Microsoft provides VisualBasic data and code encapsulation "objects." Their Dynamically 
Linked Libraries aid programmer productivity and maintainability.  Builders of commercial 
products used some ideas that led the DOD to create the Ada language. 

To avoid misunderstandings and errors in specification between developers and users the 
Spiral Method is available. The Spiral Development method allows the detailed user, 
developer and tester interaction at stages that lead to a final system. A progression of stages 
and builds lead to a finished system that more accurately meets users needs than a one-shot 
development. Tools for providing performance estimates for system designs (e.g., SES Object 
and SES Workbench) are now available. These tools let the designer apply them for both 
hardware and software at very detailed levels. 

The success of graphical user interfaces lets the user create a new demand for higher 
performance.  A paradigm of close user interaction results. The resulting cycle is setup, 
computation, and analysis with intimate user control. Often the developer's dilemma is that 
user expectations grow faster than performance. Technology influences those processes. This 
rapid change gives the user increased expectations during system development. Since new 
features become feasible as technology advances users expectations grow. Command 
capability provided by Graphical User Interfaces, specially the object oriented ones, let the 
user increase demands for features and performance. The computer industry has reached a 
state that users expect a holistic problem solution environment. This is where they interact 
with the system in short turnaround times for an entire solution process of preparation, 
computation, and analysis. (For example, VisiCalc and its modern descendent spreadsheets 
provide this create, compute, observe, and repeat.) 

A "holistic" approach by human interaction to reach "non-canned" solutions is a leading 
example of growing expectations of processing responsiveness. Corporate Reengineering 
projects show that information systems give a "case worker" the capability to do an entire 
process. This approach is far more efficient than using several specialized workers. Instead 
this new model of processing is that the user gets results in adequate time to iterate the 
solution several times in a day. Thus, demand grows due to increased human interaction 
with the computer system. The capability to make informed decisions using interactive 
iteration is a demand brought by the human interface capabilities of workstations and 
personal computers. This demand exists in many professional projects: business decision 
making, software development, mission planning, computer-aided-engineering, and control 
systems. 
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4 paradigm shift is needed to focus the parallel research community on extensive parallel 
applications and architectures that are capable of supporting them. Mapping the same 
problems on the latest new architecture has little learning or state-of-the-art advancement 
potential.. 
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Programming tools for aiding development of parallel programs are widely available but 
little used. Academia fills research journals with new reports each year. However, parallel 
computer tools seldom reach the users outside research laboratories. One reason is that the 
user community for parallel processing is research oriented. This research orientation leads to 
building more tools instead of seeking a consensus of common tools and using them. The 
result is an availability of many tools, used only briefly and by a small portion of users. A 
second reason is that there is a lack of a common theme and principle. Too often, tools are 
reworks of already tried ideas carried out on the latest architecture. Each generation goes to 
the same depth of understanding. They often fail to advance general principles. Mapping 
production applications to parallel computers is difficult. Production applications are 
dynamic, complex, and concurrent and it is necessary to have mature tools to program them. 
By concentrating on replicated and well-structured applications researchers fail to advance 
into the required tool space. 

6.4 Computer-Aided-Software-Engineering (CASE) Review 

For sequential computing, CASE tool vendors define the phases and processes in the 
software engineering process in their tools. Figure 6 -1 gives one vendor's view of standard 
components. When used to complete each cycle of the Spiral Method, a CASE system is a 
useful tool for management of the development process. The CASE process shown has a 
critical assumption: that the hardware and software of the system can be separated by 
interface constraints. The CASE process assumes that the hardware will be available for 
execution of the software when the testing phase begins. System design analysis is supposed 
to establish that the hardware system meets performance requirements. The complexity of 
interconnect structures makes this a formidable task. Lightly stressed interconnect structures 
require less demanding analysis. Otherwise, the latency and demand constraints are 
nonlinear. Physical constraints in C3I systems sometimes limit the designer to reducing the 
interconnect capability until interconnects are well used. Standard processes and CASE tools 
do not provide the necessary interaction mechanisms between system hardware and software 
design to accomplish this task. C3I applications are too complex and dynamic for tools that 
require one to build large grain modules. In von Neumann architectures, the rapid advances 
in performance and capacity are powerful compensators for these errors. CASE developed 
systems often succeed due to the factor-of-safety provided by technology advances. One 
reason for the spiral method's success is that hardware design and software designs merge 
along with the user and developer's perceptions of the system. 

The insertion of parallel technology negatively affects the validity of the CASE process and 
its assumptions. The interaction of interconnects within a parallel system is not suitable for 
closed form analysis for applications of the complexity that require CASE tools. Software 
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developers must consider the details of the hardware organization and bandwidth capacity 
along with the software effort. Setting constraints (or goals) for software modules is no 
longer a suitable method of separating software and hardware. To correct this assumption, 
CASE systems need to allow a similar process to integrated circuit development tools. The 
electronic design automation process offers a model for these changes. 

Tools for electronic design automation provide a paradigm useful for the software 
engineering process for parallel systems. Figure 6 - 2 shows that process. 

6.4.1 Comparison of CASE and EDA 

Electronic-automated-design (EDA) process tools use system interaction models as an integral 
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Figure 6 - 1 Computer Aided Software Engineering 

part of each design phase. Languages that support the EDA process allow design expression 
at all levels: behavioral, register-transfer, standard cell, gate, and transistor level design 
expression. At each stage simulators execute the design and provide functional tests and 
quantitative timing* and resource responses. At each stage, the designer defines the ^ 
organization, placement and interconnection of the components. Mapping to a specific 
foundry occurs at the gate-to-transistor interface, allowing portability of the design to various 
sources. Foundry-rule libraries are the analog of the software developer's use of extensions to 
standards. Thus gate-to-transistor mapping is based on a standard set of gate constructs that 
are the EDA user's equivalent of a virtual machine. Engineers use automatic and hand 
guided tools in the last stage to match foundry design rules. Object oriented methods are 
commonly used throughout the process by vendors of EDA tools. During each transition 
between phases, engineers generate a set of tests and test vectors. Those tests provide a 
decision basis for passing to the next phase. Simulators of the actual operating environment 
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are often used to place the design under expected stress. Test vectors for a computer chip 
come from running code of the type expected. For example, RISC computer designers use 
SPECmarks as the test generator. SPECmarks are performance indicators but are also used 
as test vector generators. Millions of lines of code run through the simulator to ensure that a 
processor chip is adequate for foundry insertion. Foundries guarantee that the chip 
produced will work (function, timing, and power) according to the test vectors used to accept 
the chip for production. In both EDA and Spiral/CASE, the process advantage is the early 
resolution of the imprecision of initial specification. The EDA system has the advantage that the 
target instruction set(gates) is significantly more restricted and well defined than that of the 
CASE system.1 

Separation of hardware and software development is important to the engineering of parallel 
hardware and parallel software. Without this capability each effort by hardware vendors and 
software developers is ad hoc and has little potential for large markets necessary for 
commercial advantage. 

6.4.2 Influence on Software Engineering for C3I Systems 

Software engineering deals with large, complex, dynamic, mixed hardware systems that have 
a long useful life. Parallel research technology now exacerbates the software engineering 
process. 
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Performance and programmability on large scale, complex, concurrently operating 
components are issues important to C3I systems. Such systems require multiple organizations, 
large programming teams and a hierarchy of skills and knowledge for their carrying out. 
They operate and change over a long period - the life cycle. The systems are heterogeneous 
and contain a mix of computer types ranging between special developed processors and 
commonly available commercial workstations. The systems often operate over a wide 
geographic range. Their components may be airborne or at fixed locations spread across a 
wide area. The complexity of development requires software engineering methods. These 
methods define a process for managing the complexity of the system and the information 
exchange between builders. Software engineering processes provide a rational means of 
dealing with these systems. For example, the Spiral Model (Boehm) provides one way of 
dealing with the risks of imprecise user needs and unknown external or environmental 
factors. 

Ever increasing demands for higher performance is a common characteristic of large systems, 

1EDA tool vendors are now in the process of reengineering their tools because the wire delay time can be ignored in feature 
sizes above 1 micron. Now that gate delays are not the dominant delay the accuracy of predicting timing delays across a circuit 
becomes less precise. The separation of gate delay from layout delay provided a hidden layer in prior versions. (The layer following, 
foundry rules, is much like the compiler action on intermediate compiler form.) Their debate is whether the logic designer should learn 
layout methods and penetrate the layer in their next versions to get more repeatable timing delay predictions. The problem appears 
to be similar to that of "mapping" to architectures. 
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PHASES OF VLSI DESIGN 
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Figure 6 - 2 VLSI CAD Process - Quantitative Results at Each Stage 

both military and commercial. New missions and threats often require continued 
performance expansion. However, they remain constrained by the existing system. The 
excellent progress in workstation performance and human interfaces and standards (e.g., 
Common Operating System Environment or COSE) leads to higher expectations from the 
user. Now she can easily create complex requests and expect the same rapid response as 
prior simple screen constrained requests. This higher expectation leads to demands for higher 
performance and new operational actions and responses. The 35% growth in processor speed 
each year of workstations and microprocessors provides one performance deficit solution. 
However, many systems now have performance gain assumptions built into the system 
design. Parallel computers are a solution to the performance demands. 
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6.4.3 Software Engineering Project Metrics 

For conventional computing, software engineering processes have a factor-of-safety due to 
resource capacity and performance growth provided by the rapid progress of technology. 
However, parallel systems violate assumptions of conventional software engineering 
processes. Rapid obsolescence of parallel computers, long procurement cycles, the lack of a 
quantitative model for performance assessment effects these processes. Integrating 
quantitative methods into the parallel software development process is necessary for an ideal 
environment where each phase accurately reflects the expected performance of the system 
being built. Enhancing the spiral method for performance modeling at each phase of 
development for parallel computers is one approach. To accomplish this goal there is a need 
for a programming model that is architecturally independent which couples to quantitative 
methods of performance evaluation based on instruction timing. Such a programming 
model either requires bandwidth-scalable interconnects for every target parallel machine or 
requires development of analysis techniques allowing compilers to deal with the nonlinear 
response of interconnects. 

6.5 Expressing Parallelism 

6.5.1 Parallel Machine Models 

The discussion that follows is for complex parallel programs which have dynamically 
changing requirements.Well structured, data partitioned algorithms may not have the same 
requirements. 

It is commonly believed that shared memory and distributed memory systems require 
locks/monitors and message passing respectively as programming models. This is not 
necessarily the case. The programming styles of shared memory systems with implied 
freedom from mapping and distributed memory message passing both have advantages. 
Shared memory systems provide a common name space but require that shared access be 
controlled by locks and monitors found by many to be difficult to program correctly. Many 
reliability problems result from the difficulty in correct and provable codes for shared 
memory systems. Message passing automatically provides protection and no locks and 
monitors are required for correctness. Message passing is conceptually less difficult to 
program. However, message passing is believed to be difficult because it is blamed for the 
mapping required to achieve good performance in distributed memory parallel computers 
with very high overhead for creating and delivering a message. If messages were as efficient 
as a shared memory access then the user related problems of message passing would be 
eliminated. The system vendor would have to provide a method of naming across all the 
processors with protected space for each thread of execution. This point of view points out 
that weak parallel systems capabilities (high latency and low bandwidth) has led to the 
wrong view of message passing. 

Shared memory multiprocessing can become common place and widely used if the software 
reliability cost of locks and mutual exclusion operations are overcome. The solution for a 
shared memory system is protected threads of operation created by the compiler and 
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operating system can allow the protection of the message passing systems. Likewise, with 
adequate bandwidth and low latency for delivery of small messages the distributed memory 
systems can perform without mapping. Distributed memory systems with hardware support 
for interface to the interconnect system can mimic shared memory. Both are viable and a 
common programming model (or models) can be built on both if adequate hardware, 
compiler and operating system performance and features are present. The result is message 
passing protection for the private context between threads of execution with the common 
name space of shared memory programming. 

The ideal programming model is a message passing interface which hides the architecture of 
the multiprocessor and provides its user the private memory safety of locally protected 
memory for each process. The hardware and operating system could be shared memory or 
distributed memory. A criteria for existence in the marketplace will be that the specific 
architecture would be invisible, in fact might change over a single manufacturers line (e.g. 
At&T's symmetric multiprocessors up to 32 extended by distributed architecture up to 
hundreds). This interface should allow small as well as large messages to be created and 
transmitted. Thus, on shared memory machines small messages of single memory accesses 
would be better supported directly. On distributed memory systems low latency software 
protocols and hardware interconnects would allow similar message sizes. On larger machines 
multithreading (switching in another task) would be used to hide latency of the interconnect. 
Without hardware and support software that meets this model a common programming 
model is difficult. (This discussion does not include clusters it applies only to closely coupled 
processors. A second programming model is required to increase the granularity and hide 
latency in clusters. However, clusters are best used for multiple copies of an application for 
throughput, not for running a single application at its lowest turnaround time.) 

The future of parallel compute models is that one will emerge in a short time and that 
systems vendors will then use the individual operations of that model as the test of 
performance. They will add the extra hardware necessary for some markets and leave it out 
for others, but the addition and subtraction will be on a quantitative basis. Thus, architecture 
and programming model will be separated. 

Programming models for message passing and directory based shared memory have a 
dilemma if they must support both high and low latency architectures. High latency systems 
should be considered a form of clusters. Low latency ones should be candidates for single 
application rapid response applications. Computer researchers should concentrate on 
providing a model that operates on low latency systems independent of architecture type. In 
addition, the programming environments might prevent use of the same tools on both low 
latency and high latency ones. This barrier makes it clear that applications for high latency 
systems would not execute effectively on high latency systems. 

The software engineering community needs a programming and software engineering 
process that provides portability across both architecture types. There are two choices: 

♦ Emulate the shared memory model in capability-scalable computers via directory 
emulation 

♦ Build an effective small grain, message passing model for both SMP and capacity- 
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scalable architecture types 

Effective operation of either choice is technically feasible for processors with adequately 
robust interconnect (high bandwidth and low latency). 

6.5.2 Cluster Programming Methods 

Message passing is necessary in clusters and farms. The protocol latency in clusters and 
farms requires application selection or mapping to get a high grain. This mapping process 
gives message passing a poor and undeserved reputation for difficulty and poor performance 
results. However, the difficulty in programming is due to the necessity for masking high 
protocol processing and not to the message passing paradigm itself. Languages for clusters 
and farms provide a message-passing interface but leave the mapping to the user 
programmer.  Parallel computer vendors now commonly provide Parallel Virtual Machine 
(PVM) as a message-passing interface for clusters. PVM is likely the most widely used. 

PVM is widely ported and now operates on the following: 

♦ local memory based multiprocessors (e.g., IBM's SP2) 
♦ shared memory multiprocessors (e.g., Sun Microsystems servers) 
♦ clusters 
♦ networks of computers 

This does not mean that applications that run well on one type will run well on another. 
Consequently, PVM ports provide functionality moves between architectures but not 
performance ones. For example, the mapping necessary to get good performance on a 
network of computers may reduce the processor count and speedup on the more tightly 
coupled multiprocessors. Similarly applications running on a large processor count IBM SP2 
or Cray Research T3D would take advantage of the low latency. These applications would 
run poorly on any of the loosely coupled parallel machine types. Applications that do not 
maintain the level of grain (latency-ratio) expected at the network of computers mode cannot 
move across architectures and obtain good performance. 

Researchers in high level languages for clusters and networks now concentrate on 
accomplishing general usefulness for arbitrary and multigrain applications without user 
programmer mapping. So far this is not a reachable goal.   Products from Scientific 
Computing Associate's (Piranha), Parasoft (Express), and Meiko (Computing Surface) provide 
programming tools for replicated applications. There are also wide area programming tools, 
such as, ISIS, TaskBroker and Cronus. Oak Ridge National Laboratory distributes and 
supports the Parallel Virtual Machine (PVM) tool. NQS (EXEC) is a tool for programming of 
high throughput applications. A drawback of the cluster is the significant cost of software for 
replicated applications since each station requires a license. 
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6.5.3 Heterogeneous System Programming Tools 

Tools and mechanisms are also available for clusters of workstations and super large grain 
heterogeneous computing. These methods, protocols, networks, etc. apply directly to C I 
systems. For conservative uses, there is an established software engineering technology for 
dealing with clusters and large grain-size, heterogeneous systems. Products such as ISIS, 
Cronus, Linda, PVM, etc. can provide the necessary mechanisms for spreading multiple 
copies of applications across and managing the resources and processing among clusters. 

Distributed cost-scalable multicomputers are more closely connected than the network 
computers and less so than the capacity-scalable multiprocessor. Their vendors call cost- 
scalable ones "scalable parallel processors (SPP)." Their rational is that the addition of a 
module of processing power costs the same no manner the size of the machine. This essay 
calls that form of scaling cost-scalable. However, since bandwidth capacity does not grow 
with processor count, an application that runs on one size machine does not necessarily run 
well on another. To run effectively on any size the computer must have a property of 
reduced bandwidth demand per computation as the application size grows. Applications that 
fit this model are "data parallel" since data partitioning reduces communications significantly. 
There are several components of applications that have been found that fit this model. To 
make applications feasible on these machines they must be data partitioned (mapped) to 
minimize use of bandwidth capacity. Technology influences this approach by allowing the 
bandwidth capacity to grow in proportion to the computational demand. However, this 
growth must be faster than the speed growth of the microprocessors. Each of these changes 
affects the mapping of an application to the processor. Code portability is assured for only 
pure data-parallel applications. When communications are present, the nodes share the 
system's bandwidth capacity. Performance often falls off rapidly and differently on different 
size machines. 

6.5.4 The Problem of Application Selection 

The tools and parallel computers have become specialized for a set of applications that fail to 
represent the complex and dynamic executions characteristic of C3I systems. The parallel 
industry has selected application types and as a result the process of evaluation of both tools 
and parallel computers has been distorted. Computers must be judged based on a broadly 
representative application set because the builders cannot anticipate the applications to which 
they will be put. By concentrating on an applications set that can be mapped to cost-scalable 
architectures, researchers have created non-representative methods, tools, and evaluation 
criteria for parallel computers. The result is an inverted rating scheme where software tools 
are expected to fill the missing capacity of multicomputers that are suited only a structured 
and stable applications set. Application selection cannot drive the hardware if the hardware 
is expected to fulfill a wider role than its design criteria. 

Some still expect that software solutions can be found to solving problems of inadequate 
bandwidth capacity growth in cost-scalable multicomputers. As long as mapping is required, 
extensive applications cannot be ported with dependable performance expectations. General 
source compatibility of software for general and arbitrary applications across different cost- 
scalable multicomputers is not feasible unless a common denominator is found. That usually 

6-10 



will compromise the performance potential for all the multiComputers. The structure, latency 
and bandwidth capacities of multicomputers differ too drastically and are often inadequate 
for any but their selected application sets. Some cost-scalable multicomputers are simply 
inadequate for portability of applications, each one must be mapped carefully to obtain 
reasonable performance. Also, the research community often judges software tools by how 
well they meet the widely varying demands of a wide range of available machine 
architectures and sizes. Yet these multicomputers are not suitable for applications beyond 
their suitable applications.   Such an expectation is unrealistic. 

Software programming tools for cost-scalable multicomputers are Express, PARMACS, Linda, 
and PVM. This same tool set is also used on networks-of-computers, which have very high 
protocol latencies.  Applications that perform well on networks-of-computers would be 
expected to do well on multicomputers due to a reduction in latency. Since only independent 
and very large grain (infrequent communicating) tasks can be programmed on networks-of- 
computers these are portable only in the direction from clusters to cost-scalable 
multicomputers and not in the other direction. However, expectations can vary. A cost- 
scalable multicomputer is often expected to provide a more dependable execution time since 
the interconnect structure is in a dedicated backplane. The network-of-computers expectation 
may well be only to keep idle workstations busy on an application during evening hours. In 
one case wall clock time is important, someone is waiting for the result, in the other only 
completion by morning. 

6.5.5 Object Oriented Methods 

If we assume that applications for industry will bring the parallel computing arena to life the 
programming methods will be quite different from the academic research that has dominated 
MPP research computers. Industry uses programmers that tie together shrink wrapped 
applications from independent software vendors and develop few applications from scratch. 
When they do have applications and when they are the independent software vendors 
portability and reusability are important features of the application development. Object 
oriented software engineering methods and languages are critical to their success. In 
addition, the applications are likely to be more complex and dynamic than present MPP 
methods allow. Therefore, parallel technology will have to provide high performance support 
for applications expressed in C++ or other object oriented languages. Many commercial firms 
would require even simpler languages that are more easily learned because the individuals 
that do the applications and know the corporation's information technology are Cobol/ SQL 
and Fortran based. 

6.5.6 Graphical Programming 

The requirement for graphical programming is critical to the wide spread acceptance of 
parallel systems. Graphical system users can be relieved of detailed knowledge of both the 
parallel architecture and even some of the programming language details. Such users are 
necessarily high level users that are building application by integrating lower level 
constructs. Programming using graphical methods should be a template and button bar 
oriented approach where the parallel language commands and structures are available for 
integration into a working application by the user. A user would be requested to provide the 
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logic for cases, loops, by entering it into a window which guides them through any language 
specific logic expression details. Good programming practices can be enforced automatically 
by querying the user on the action to be taken for exceptions, etc. The goal of programming 
should be to provide a very high degree of reusable modules. For a project the engineering of 
the detailed modules would be left to a small set of power programmers with others simply 
integrating the detailed objects into the specific application. However, graphical 
programming must express the "problem architecture." Graphical mapping tools intended to 
match an application to a particular parallel processor defeat the portability virtue that 
should be available and are applied at the wrong level, only power users should be doing the 
detailed mapping required to map the common button bar commands to a particular 
processor. Those commands should be standardized as a virtual machine programming 
model and template and button bar calls provided on the graphical screen. Only in this 
fashion can the benefits of porting only a small set of commands be gained by the users and 
vendors. 

6.5.7 Debugging and Performance Tuning 

A separate element is the need to provide debugging and performance tuning. These 
tools provide instrumentation and constraint probes of the parallel application to control the 
operation to verify correctness and to eliminate performance bottlenecks. Debugging and 
performance tools should have a proven interface to selected operating system(s) and an 
interface to the parallel system's "run time executive" that controls the operation of the 
application on the system and which provides the implementation of parallel intertask 
commands. Measures should be provided for the following: 

♦ individual time delays for each of the parallel commands provided as experienced in 
the application 

♦ time delays for the average mixture of parallel commands of the application 
♦ concurrency - count of the average number of runnable tasks 
♦ instantaneous concurrency - count of runnable tasks during a step 
♦ slackness - the concurrency minus the number of processors 
♦ granularity - ratio of normal instructions to parallel instructions 
♦ potentiality - count of waiting instructions (total and by value) 
♦ kernel accesses - count of access to kernel interface 
♦ external accesses - count of accesses to operating system 
♦ context switch count - the number of processor swaps (by application, kernel, or 

operating system) 

6.5.8 Performance Tools 

Performance tools should provide a post mortem or analysis after completion of application. 
They should provide all the information necessary for performance prediction - efficiency and 
speedup equations - based on the measured timings of the parallel instructions and their 
mixture within the application. The tools should make a recommendation for processor count 
based on concurrency and provide a processor architecture timing data base. 
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6.5.9 Correctness Tools 

Correctness tools should interface to a commercial debugger that is commonly used in 
normal workstation programming. There should be history files created during debugging 
and constraints on execution that allow repeatable (deterministic) operations when active. 
This control requires control of program re-execution between set break points, or between 
barriers, or between identified steps in the execution. A history of communication events is a 
necessary element of the data base that must be provided to control these operations. 

6.5.10 Visual Tools 

Parallel programmers must manage enormous quantities of information and complex 
program behavior. To understand these operations visual aids are one solution. To be 
effective they must provide a proven interface from graphics programming to object oriented 
languages. Communications must be displayed in such a manner that correctness can be 
evaluated. Complex interactions should be capable of being built from primitive proven ones. 
Execution graphs should be displayed between pairs of barriers created to investigate errors 
or performance bottlenecks. Tools should allow easy and structured building of a concurrent 
application from a small set of objects defined to perform the application. 

6.5.11 Power Languages 

Power languages are needed to provide expression of complex operations that cannot be 
defined in standard languages with expressiveness for simple data partitioning and process 
interaction structures. Such languages must provide execution of the power expression and 
provide a performance prediction of the expression on a chosen architecture. A good 
example, is Proteus, from the University of North Carolina. 

6.5.12 Intelligent Interaction 

Advances in the way computers interact with humans are providing new opportunities for 
building systems that are dispersed in unique and different locations. Wireless terminals, 
power pens, voice interaction, point-of-operation terminals, etc. may provide significant 
opportunities for systems building that were not previously available. The interaction of 
humans with a parallel execution should be a goal since human guidance could lead to a 
more effective solution in both quality and time of execution. Interactive control requires an 
extreme of dynamic resource and computational scheduling. It also requires that 
input/output in multimedia forms are required to be integral parts of the computation. 
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Parallel Software Engineering Assessment 
7 Issues in Parallel Software Engineering 

7.1 Parallel Software Engineering Issues 

Lack of tools and software has been the battle cry of today's parallel system builders when 
expectations are not met. This is true, the software engineer needs a set of tools that 
demonstrate the need for more generality and capability by parallel systems for dynamic and 
complex applications. Without the right tool kit the software will always be blamed. 

7.1.1  Process and Design Metrics 

One of the major weaknesses in parallel software engineering is the lack of a staged process 
that can assure the system designer that the performance expectations of parallel computer 
based components will meet their performance and program goals. Ideally, the tools to 
support performance delivery and program goals would be based solely on input of a set of 
characteristics of an arbitrary application set that provides the C3I system required functions. 

7.1.1.1 Quantitative Performance Assurance 

Performance is measured against the requirements of the C3I system. System designers take 
this to mean more than raw speed. They include features such as availability, physical 
constraints, real time response types as parameters in performance requirements. Software 
engineers should have the capability to define the characteristics of an application, possibly 
based on an existing version implemented in a different computer technology, possibly based 
on the observed characteristics of similar systems. After defining those characteristics it 
should be possible to use a set of standard parallel instructions to predict the performance 
of different parallel architectures. The characteristics step requires a model of computation 
that quantifies the characteristics. Possibly those given in the application's characterization 
essay. The instruction set requires a virtual model of parallel computers and instruction set 
that is complete and sufficient to model both shared memory and capability-scalable buffer 
transfers or message passing. The performance prediction requires a level of robustness in 
the computers to avoid non-linear bandwidth effects. To complete the system feedback input 
is needed from several different system implementations. A software engineer needs a 
measurement scheme for testing and feedback of how well architectures deliver operational 
speed according to prediction. 

7.1.12 Quantitative Program Assurance 

A development program goals are measurements of skills, schedule and cost budgets. This 
tool gives engineers a metric for difficulty of development based on the application and on a 
selected architecture. This tool would provide the ability to make choices about the allocation 
of costs to hardware or software development. The staged development process needs a 
process similar to the VLSI process where each synthesis stage is verified and tested for 
functionality and timing before the next stage is synthesized. A component based system 
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design would have the execution characteristics of each component defined and matched to 
the chosen parallel processor. A simulation of the characteristics and the architectural 
instruction timings could be used as verification. At the next stage the component design 
synthesis would be measured according to characteristics of the module design using modem 
CASE simulation tools. At the next stage a detailed module program using only the generic 
machine instruction set would be used to write the module. Simulation and analysis would 
again verify performance goals. The last stage is the one in which the target machine 
knowledge is used to increase performance. (This matches the VLSI design rule stage where 
foundry information is first imposed.) This approach would be criticized by parallel 
advocates of many of today's machines because the effort of the last stage is significant. The 
value in the approach is that machines whose instruction set closely matched the output of 
the third stage would be more easily programmed. Those machines could be expected to 
cost more since additional hardware capability is required to allow them to perform that 
instruction set well. However, the experience to data has shown that the investment in 
operating system software and the attraction of independent software vendors favor the 
economics of parallel machines that provide availability and robust interconnect structure 
capability. 

7.1.1 J Development and Life Cycle 

An ideal measurement of a parallel computer is to evaluate its impact on the system's 
development and life cycle costs. Parallel computers potentially eliminate many other 
computers in the system. Their high execution rates can make a system feasible as well as 
cost effective. However, if the cost of software development increases to the degree that the 
hardware savings are insignificant then the parallel computer is hardly cost effective. 
Comparisons of parallel computers by evaluation of mission life cycle costs could be telling 
factors in an evaluation. In general, those systems that are the most quantitatively predictable 
and programmable will lead to lower support and minimum effects from assumed mission 
changes. Evaluators set criteria from mission need statements. They need a process for 
relating mission need and life cycle costs for alternative parallel solutions. 

7.1.2 Application Metrics 

In order to make any quantitative approach to parallel software engineering the application 
must be characterized and related to known performance impacts at each stage of 
development. Measurement tools for all aspects of characterization would have to allow 
estimates of characteristics, models of characteristics, benchmarks measurements of 
characteristics, and actual code characteristics as inputs. The effort is equivalent to rebuilding 
the electronic automated design tools set, the associated libraries of behavioral models, 
benchmarks, and timing estimation tools. 

7.12.1 Physical Constraints 

Additional factors arise in C3I systems that complicate the analysis of the potential use of 
parallel computers. These include limitations on size, weight, volume, and power 
consumption. These constraints make it difficult to analyze the application, the system and 
the computation expansion characteristics of the application. The typical use of many parallel 
computers as compute engines for single large applications lends itself to being matched to 
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C3I system requirements. Embedded parallel processors are also traditional for some 
portions of a C3I application. For example, processing data at its collection point to reduce 
very high data collection rates down to reasonable internal system communication rates. 

Tools would be required that measure the resource consumption of various choices as well as 
their performance potential, programmability and program suitability. 

7.1.3 Performance Delivery & Metrics 

7.13.1 Evaluation Criteria 

The purpose of parallel computers is usually to provide higher speed. Speed can mean a 
higher throughput for independent transactions or it can measure the rate at which a large 
single application can be completed. Speed can mean response time to an external interrupt 
during execution of the single large application. Engineers use other measures of speed that 
match specific C3I system needs. 

This does not mean that engineers only use speed as the only performance criteria to judge a 
system. Consequently benchmarks include measures other than speed measures. The 
suitability of a parallel computer for a particular system depends upon many criteria. 
Commercial organizations insist upon proven availability and portability before even 
considering speed performance factors. The following are evaluation characteristics for 
parallel computers: 

♦ Availability includes stability, reliability and fault tolerance of both the hardware and 
operating system 

♦ Programmability includes portability, reusability, relative development ease, 
consistency with normal programming methods, and performance prediction based on 
software measurements 

♦ Physical Constraints includes power, weight, volume, sizes, electromagnetic noise, 
etc. as deemed necessary for meeting mission goals 

♦ Life Cycle Costs include hardware, application development, long term support over 
the entire life cycle 

♦ Delivered Performance includes the following measures: nominal delivered 
throughput rate for independent transactions, computation-rate on a single 
application, responsiveness to dynamic overloads, and real time response 

♦ Quantitative Performance and Risk Assessment - include accuracy and sensitivity of 
quantitative measures that portray delivered performance, schedule and cost 
estimates „. 

♦ Application Access - includes common applications, tools, languages, operating 
systems, standard open system interfaces 

The users of computers want computers that solve their applications reliably and swiftly. 
Users do not care about the type of computer. They are concerned only that the system meet 
the requirements criteria derived from their mission statement. Benchmarks for parallel 
machines must include measures of the integrity and actual delivered performance of the 
machine on similar applications, 
and actual delivered performance of the machine on similar applications. 
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Availability 

Availability is a test that requires long test periods while running complex applications to 
stress all the features of a computer. Availability includes operation of all system software 
and hardware. C3I tests of availability are based upon mission criteria. 

In commercial application's users expect parallel processors to match the positive experiences 
of the user with workstations, servers, supercomputers or mainframes. They expect hardware 
to be reliable and fault-tolerant. Their high availability expectations require that parallel 
systems allow replacement of failed modules without full operational loss. Similarly, they 
expect operating system and application software to be reliable and repeatable. C3I systems 
have more extensive requirements for fault tolerance and recovery since human life and 
mission success may depend upon the availability of the processor. 

The present status is that most "massively" parallel machines meet research environment 
expectations, not commercial ones. The availability and integrity levels experienced by early 
users do not meet the needs of either commercial or C3I demands. Some machines from the 
business community do meet commercial reliability and fault tolerance acceptability. For 
example, AT&T's NCR 3600 has dual paths in a folded network with on-line module 
replacement to give reliability. Data base applications such as Oracle and Sybase are available 
on the NCR 3600. 

Delivered Performance 

General performance delivered by a parallel machine depends upon several detail level 
factors. The way those factors change with changes in the number of processors, p(n) is a 
primary consideration. The factors and the primary influencing design issues are: 

♦     The effective execution rate of the node computer on sequential code operating as a 
standalone processor, cache memory, local memory, access to input/output at the 
node 

♦ The effective node execution rate within the parallel system with no application 
intertask communications, i.e., the processor effectiveness during interconnect latency 
(for both multitasking and multithreading), the link bandwidth from the processor to 
the system, uniformity of access to input/output and operating system overheads 

♦ Performance of the interconnect structure - capacity-scaling, small latencies 
(application intertask communications timing) 

Appendix <B> gives additional detail on stand-alone node, node-in-the-parallel system, and 
interconnect structure performance. 
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7.1.4 Programmability & Portability 

The lack of a common consensus on an approach for decomposing, mapping and 
synchronization and on a common programming model (shared memory, message passing, 
explicit use of virtual shared memory) leads to a situation that anecdotal results are used to 
defend one position over another. Each case is ad hoc. The work and effort of parallel 
programmers is not appreciated because it suits special cases, not a general principle on 
which others can base their decisions. 

7.1.4.1 Programmability 

The von Neumann model gets acceptable performance for applications programmed with 
functional goals and no great concern for performance. This initial performance can often be 
improved using a mix of nonportable methods. Some programmers take the extra effort and 
accept the long term maintenance disadvantages of nonportability. They typically get a 
performance improvement of a small constant factor. Parallel computer programming should 
be no different. Programmers should obtain acceptable performance with good portability 
with a moderate first level of effort. They should expect that additional performance obtained 
though mapping would be nonportable. 

Portability is one measure of programmability. The industry problem of attracting the 
independent vendor to MPP computing is the symptom that programmability is far below 
acceptable standards. Present programming models (PVM, Linda, etc.) attempt to serve for 
both networks of computers and for tightly coupled computers. Such a broad attempt yields 
a program that cannot provide acceptable performance on either target machine class across a 
wide range of applications. An application design, which serves widely different machine 
types, compromises the programmer and requires extra effort to map to very large latencies 
for the network machine. This mapping reduces the concurrency that could have been 
expressed and executed in the tightly-coupled, low-latency machine. This reduced 
concurrency limits the performance potential on the low latency machine. Therefore, dealing 
with a wide range of latency for different parallel computer types is not a realistic goal. 
Advocates of portability techniques do not clearly define the domain of portability for their 
products. They should distinguish their product's suitability for both networks of computers 
and types of parallel computers. 

Leaving networks of computers aside, we find that some of the available parallel machines 
do not deliver acceptable performance except on carefully mapped applications. Efforts to 
create a portable software structure should not be considered a failure if the parallel 
computers are capable of effective operation on only replicated copies. Portability measures 
of architectures should distinguish these architectures and reduce their evaluation rating. 
Such computers are not much more than a network of computers on a backplane. 

Automatic compiler success is another measure of programmability of parallel computer 
architectures. An automatic parallel program generator that gives effective performance 
would be an important advance. However, recent experience shows that efficiencies are too 
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low on many parallel machines for automatic program analysis. Present data decomposition, 
necessary to use high performance compilers, has lead to disappointing results unless the 
applications were limited to highly structured ones. 

Evaluators of parallel software systems say that porting effort is inversely proportional to the 
latency of a parallel processor. Decreasing latency impact by scaling the application is often a 
solution for only part of the application. Engineers make careful designs of interconnection 
systems. They seek to reduce the time spent for message transfer into and passage though 
the interconnect. Their efforts are in vain if delays for communications protocols dominate 
the total delay. High latency causes the programmer to build applications with higher 
computation content than communications. This effort reduces the opportunity for 
parallelism and limits the application's potential for higher speed through parallel 
computing. The use of coprocessors to overlap the protocol latency with computational use of 
microprocessor has not been as successful as one would expect. This is most likely a 
reflection of a concentration on large-message passing as a model instead of packet size 
message passing. 

7.1.5 Relation of Needs to Capabilities 

The most important issue in parallel computing is that mission critical application capability is 
missing in both government and commercial uses of parallel computing. 

Like military C3I systems projects, the large scale mission critical applications built for 
commercial decision support applications have required excessive labor and maintenance and 
risk of performance. A software engineering goal is to find a solution for this daunting 
problem. Mission needs for quick results to a complex decision that solves battle (or market 
competitive) pressures is the area that the most gain can be derived. The commanders that 
make these decisions are willing to pay for solutions in their decision making process. They 
care not for the technology used, but are unwilling to change their needs to match the 
computer's shortcomings. The present approach of selecting applications due to their 
suitability to an architecture has limited value added. A significant payoff would result from 
use of robust capability-scalable parallel computers. Interfaces to legacy systems are necessary 
so a balance of I/O and computational capability is needed. Software engineering practices 
are feasible for computers that deliver promised performance on portable programs with 
high complexity and dynamic action. Software engineering practices cannot solve their 
applications solutions if the computers lack the capability to provide adequate support for 
mission critical applications. 

7.15.1 Suitability Uncertainty 

Another major issue in use of parallel computing is the uncertainty of application suitability 
and parallel performance benefits in the face of the complicated architectures and unknown 
application characteristics. Deciding when an application is suited to parallel computing is 
difficult. The characterization of many C3I components in the application assessment essay 
concluded that the components have high parallel performance potential but not on many of 
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the available machines. Those machine have resulted from a different set of goals than that of 
C3I and most system builders and of most users in industry. 

7.152 Conflicting Measures 

An application with fine synchronization grain and high parallelism uniformity is one for 
which parallel instruction communication delays become insignificant. (Terms are defined in 
the characterization method in the application essay.) However, the process of creating 
applications with large grain is difficult. It requires selection of algorithms, mapping and 
often unresolvable decisions about dynamic portions of the application. Most often the 
degree of parallelism is reduced as the synchronization grain is increased. The uniformity of 
parallelism is aided by having many small grain tasks. 

Note the conflict between the efficiency attained by large grain creation and scheduling 
improvement gained by high and uniform parallelism. With more tasks the parallelism is 
high. When programmers combine tasks to create large grain modules, they reduce the 
number of tasks available for easing scheduling inefficiency. The solution: increase the 
computation-to-communication ratio without decreasing the task number or affecting their 
size differences. The result is that many parallel processors are capable for selected 
applications where each task is identical at each node. Data is mapped to the nodes to keep 
communications low. This type of processing is called single-program, multiple-data (SPMD) 
and is typically the mode in which a cost-scalable multicomputer is used). 

7.1.6 Breadth and Market for Applications & Tools 

A key measure of a parallel system is the number and diversity of independent software 
vendor tools and applications. Defining a set of application types that match the needs of C3I 
subsystems is a useful exercise. The set is a qualifier for a parallel computer. The 
performance of those application types on the processor provides a measure of how the 
parallel computer might do on a future C3I system. Such matching would require a wide 
range of application types to include the diverse needs of C3I systems. The selection could 
include process control, transaction processing, data base, engineering simulation, economic 
modeling, etc. An important tool would be one that measures the concurrency, grain, 
complexity and parameters of these applications to allow comparison to the content of CI 
systems. 

Parallel computers have been accepted enthusiastically by only one application vendor - the 
data base manager server application. The most common data base management systems 
have been ported to a number of parallel computer of all types. This is due to the use of 
these machines as servers, performing the single parallel data base application for many 
clients on a network. Other applications remain on the workstation being fed their data from 
the servers. 

However, acceptance among other independent software vendors has been weak. ISVs have a 
hard decision to make on the target parallel machines. The diverse number of architecture 
requires that a standard model be used for all before fine tuning to machine dependencies. 
Threads (shared memory programming) and message passing are the two approaches most 
widely used. 
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Threads in symmetric multiprocessors are being standardized to POSEX, but each system 
vendor's use of proprietary methods and structures requires a different design. The 
competitive forces are so great in the server market place that no vendor is guaranteed to 
maintain market share. Unless carefully constrained shared memory programming is not 
portable to message passing machines. Therefore, threads are unlikely to be ported to operate 
on distributed memory architectures, requiring a second port (and a very different design) 
for the large processor count machines. Lacking a common model ISVs tend to only port to 
the vendors that can pay. In addition, many industries are not willing to pay for a second 
copy of an application in their computer center. The vendor may have to choose to support 
the vector processor or the parallel processor at a given site. These constraints and difficulties 
limits access to parallel applications. 

PVM and other message passing tools reduce the performance potential of the application 
because of the high latency costs require building large messages to hide protocol latency. 
Linda and other explicit virtual shared memory models are in competition with the 
government's free distribution of PVM. Therefore, they lack the business level necessary to 
select and finely tune their model on suitable architectures, the combined difficulty of 
suitability uncertainty, non-portable models, and small market keep ISVs out of the market. 
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A. Appendix A Some successful large scale scientific computing results. 

TABLE A. High Performance MPP Applications (TMC CM-5) 

Application Problem Domain Size GFLOPS on 1024 
Nodes 

EFES Finite Element 3D 
Flow 

1 M elements 
1 M nodes 

37 

TeraFrac Ductile Fractures 1.2 M elements 27 

BGK Gas Dynamics Not published 59 

SPaSM Molecular 
Dynamics 

180 M atoms 50 

ENSA Aerodynamics 30 M grid points 18.7 

QCD Quantum 
Chronodynamics 

644 Lattice 44 

Other MPP systems give promising results. For example, the Intel Paragon reached 102 GFLOPS on 
an LU factorization code. The Cray T3D and IBM SP2 also provide significant performance on 
parallel benchmarks. Table 2 compares the result for NAS benchmarks for a 64-processor case. 
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B. Appendix B: Capability Evaluation of Parallel Computers 

Individual Node Evaluation 

The designer of a parallel program needs a model of computation and memory access that is simply an 
extension of the von Neumann model. In the von Neumann model each layer of memory access incurs 
an additional delay in the instruction used. The hierarchy is: Register to Register, to Internal Cache, to 
local Secondary Cache, to local memory, to distant memory within the parallel computer, to virtual 
memory, to local disk, to distant disk system. Software support tools (compiler and operating system) 
should deal with these delays automatically. Operating systems on sequential computers provide 
multitasking and multithreading to deal with the delay in disk access. Virtual memory, used to extend 
the physical memory size, allows the programmer to avoid considering mapping of the problem to 
physical memory. Users should expect the same of a parallel computer, that is, virtual memory 
automatically provided by the multiprocessor hardware and parallel operating system. 

A microprocessor-based workstation delivers a useful fraction of its peak performance. In this market, 
performance statements often come from the chip's peak performance while operating at peak speed 
on register-to-register code. Evaluators quote a benchmark that represents a mix of workstation 
applications (SPECmarks). This benchmark requires a complete set of supporting cache memory, 
normal memory, disk accesses, etc. components. The results are not perfect. Vendors publish numbers 
affected by compiler tricks and use of maximum speed and capacity caches, memory, and disks. 
However, the results do establish bands of performance. For example, they clearly separate 80486 
personal computers from RISC based workstations. 

Hardware designers, therefore, have a target applications set upon which to concentrate their efforts. 
The applications set is too complex to design for it directly. This requires quantitative methods to 
assess performance of an instruction set and chip design on the benchmark. IBM pioneered the 
technique. The authors, Hennessey and Patterson, describe quantitative methods in "Quantitative 
Design of Computers." These methods depend upon establishing a weighing of the use of each 
instruction, the timing of the instruction, and the typical ordering of instructions. The idea of the 
Reduced Instruction Set Computer (RISC) computer and their designs are the result of the methods. 
In RISC computers the most used instructions are primitives of the instruction set Compilers build 
infrequently used instructions from the primitive set. The compiler also improves the ordering found in 
the application mix for the pipeline and register set. 

No user of a RISC-based machine expects to obtain the peak instruction issue and execution rate of 
the microprocessor on real applications. The published SPECmarks provide a better clue to a user's 
performance. A finely tuned performance estimate would use numbers from a subset of SPECmark s 
that match one's application. Yet parallel system discussions frequently evaluate parallel computer 
processing nodes in terms of multiples of the peak instruction issue rates. These discussions should use 
an effective rate for individual nodes as configured within the parallel system. The Cray T3D, for 
example, has no secondary cache for the DEC Alpha chip used as a node processor. In addition, its 
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node memory does not allow the maximum size available in workstations built by DEC. Access to 
input/output or virtual memory page faults may require delays not found in the standard workstation 
even when operating on sequential codes. Therefore, there is no Alpha workstation equivalent to a 
node of the Cray T3D. Some compare parallel computers based on multiples of the instruction issue 
rate. Such comparisons are invalid but are often used to build unrealistic performance expectations. 
The single node performance is difficult to obtain because there is no equivalent standalone hardware. 
The performance measured "in silica," that is within the system is the right number. Running a 
sequential application on one processor at a time while varying the node location provides an estimate 
of single node performance in the system. Use of that measure is far superior to use of outside the 
system node estimates. 

In-System Node Performance 

This is a measure of parallel computer node performance with sequential applications (no interprocess 
communications) running at all nodes. It measures the node performance. It is a better measure of the 
peak speed of a parallel computer. One can establish a machine scaling baseline by measuring the 
sequential performance for the smallest module through maximum node count available. The baseline 
also reveals any compromises in input/output at higher node counts. Shared-nothing benchmarks are 
good candidates for deciding node performance. On-line -transaction-processing benchmarks use 
parallel computers in the "shared nothing" way. Therefore, they may be ideal candidates for evaluating 
node performance capability across a range of machine sizes. Thus, one can start with an accurate 
value for the effective, in system, node performance. Its performance degradation, due to parallel 
communications, measures the effectiveness of the interconnect system. 

Interconnect Performance 

Opinions differ about which machine factors are important. One factor that does not appear on the list 
above is scalability. Vendors misuse this term and use different definitions. Many vendors consider 
modularity as the definition of scalable. This essay gives two contrasting definitions below. 

Massively parallel advocates define scalability as the capability of an architecture to maintain constant 
interconnect cost (bandwidth capacity) with respect to the number of processors. This essay calls that 
definition cost-scalable. Others claim that a scalable architecture has constant bandwidth capacity 
between any two arbitrary processors for any processor count This essay calls that definition 
capacity- scalable. Both definitions fail at true scaling. That is, constant execution time of an arbitrary 
application as it grows in size to match the number of processors. Latency increases as machines grow 
larger, even if only by a log2 p(n). Capacity-scalable architectures can approach true scaling by 
multithreading to hid latency variations. 

Why is capacity-scaling an important feature? If the programmer must consider the bandwidth of the 
application then the non-linearity of interconnect can cause unexpected and significant swings in ^ 
performance. Benchmarks can show architectural capability for capacity-scalable operation. Machines 
that do not capacity-scale can only suitable for applications of special types. When machines are not 
capacity-scalable they require selection of special algorithms. Applications must be "mapped." The 
resulting software is not portable. Machines can have such a large latency in communications start up 
protocol processing that the bandwidth is not the leading issue. Present massively parallel systems 
have a start up delay when creating a message to another processor that is large enough to hide the 
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impacts of the bandwidth saturation non-linearity. However, careful designers would test this 
assumption before analyzing performance using linear network delays. 

Given an adequate interconnect band interconnect bandwidth, latency differentiates between parallel 
computers. Latency is the delay incurred when information passes between two processors when the 
machine's interconnect is very lightly loaded. The validity of using a linear latency method in 
evaluating the communication delays within a parallel system depends upon adequate bandwidth 
capacity. 

When it is valid to use linear techniques, a useful factor is the ratio of communication time to average 
instruction period. Communication time is the time to move a single datum from one computing 
resource to another. That ratio is the latency-ratio for the parallel computer [Astfalk]. It sets limits on 
the potential efficiency of the application on a processor. 

Latency 

Latency has three terms: 

P - the fixed start up or protocol processing time 

W - the time to transfer a 64-bit word out of the memory at one node into the interconnect then out 
of the interconnect to the memory at the other node multiplied by the number of words 

H - the interconnect stage-hop-delay-time multiplied by the number of stages necessary to get the 
message to the memory in the other node 

For typical scientific applications W is found to range from one to 10. In good designs H varies with 
the log2 of the number of processors. In good designs the per word transfer time and the hop delay^ 
times can be kept below ten instruction times. The start up or protocol time is a latency bottleneck in 
many parallel computers. This delay can take about one thousand instruction times to do. For example, 
Intel's Paragon takes about 800 instructions for protocol processing. Programmers hide the costs of 
protocol delay by making W large. Presently parallel computers require the user to data partition or 
map the application to create large message sizes (larger W) to overcome the protocol component of 
latency. 

The latency of starting a communication has remained embarrassingly constant when measured in 
terms of the number of processor clocks taken. As clock periods are reduced inside the microprocessor 
the protocol and interconnect structure interface operations must be improved significantly just to keep 
up. For networks-of-computers the latency of TCP/IP is so large that significant improvements are 
feasible, but for multicomputers and multiprocessors making improvements is a difficult task. 
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C. Appendix C: Quantitative Performance and Risk Assessment 

The increase W solutions presented here apply only to selected applications for which the problem's 
computational size increases faster than the required communications. Some applications fit the criteria 
(e.g., fluid dynamics) and others do not (e.g., structures) .Therefore, combinations of algorithms with 
both application types are performance limited. Amdahl's law expressed this limit. When applications 
are selected to contain only the type that fit they can be scaled. The two extremes provide a least and 
most optimistic bound on expected performance. 

Amdahl's Law - Least Optimistic Case 

The speedup promised by the parallel system can be compromised due to failure to do well on even 
very small portions of the system. Therefore, it is more important that the parallel analysis include all 
components. The speedup impact is Amdahl's Law. [Amdahl] Equation 1 shows this law for one 
sequential and one parallel subsystem. To use it one must expand it to include each separate subsystem 
operation in the system. 

SpeeduPAmdha] = fraction. Equation (1) 
(1 -fraction,) + —L 

1     Speedup^ 

Where the Speedup ^^ is the speed gain due to the enhanced function par, speedup, is the ratio of 
the parallel component speed to the sequential component speed, and fraction, is the fraction of the 
application sped up. The only way to avoid this speedup limit for a chosen parallel enhancement is to 
increase the concurrency by increasing the term fraction,. Some applications expand their 
computational fraction as increase in size and attain a higher fraction,. That allows speedup close to 
one. An excess of task count over processor count (slackness) makes fraction, nearer to one. 

A more detailed analysis of extensive approaches is feasible when bandwidth capacity is adequate. In 
that case the parallel communication instructions have constant latency values. The factor T|, as 
defined in Equation _2, gives a maximum performance boundary. Performance and efficiency prediction 
are the critical decision parameters in the analysis level. Equation 2 gives the maximum efficiency in 
terms of the application's grain, G, the average parallel instruction set time, Tp, and the average node 
instruction set time, T0. 

n = 
1 + —* 

1    T Equation (2) 

G   T0 
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Scaled Speedup - Most Optimistic Case 

Since problem expansion increases the parallel portion of an application it is possible to overcome the 
limit imposed by Amdahl's Law. Assuming that the sequential portion stays constant as the parallel 
portion is expanded, the speedup for p processors is: 

Speedup^4 = (1 -fraction^)+p*fraction Equation (3) 

This formulation gives a perfectly linear speedup as processors and the application both increase in 
size. Realistically the actual results can fall between the two formulations. Some portions of an 
application speed up through expansion while others do not. The ratio of scalable to non-scalable 
content in a benchmark is a predict or of performance potential over a range of problem sizes. 
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D. Appendix D: Connectivity of some parallel architectures 

The information in Table [D-l] shows the connectivity of some parallel architectures. The purpose of 
the table is not to provide information that should be necessary for the selection of a computer. In fact, 
such information should be hidden from the software engineer. The essay on performance evaluation 
and appendix 5F provides the mechanisms that should be used to determine the effectiveness of a 
parallel computer for a given application. However, the trends are indicated by the approximate year of 
introduction. 

TABLE D - 1 Connectivity of Selected Architectures 

Company Model & Trend 
Date 

Organization Connectivity/ 
Degree 

Comment 

nCUBE (1992) Hypercube 12 

Intel Paragon (1992) 2-D Column 
based Mesh 

4 Eight processors/ 
column 

Kendall Square 
Research 

KSR-2 (1993) Multi-ring with 
directory based 
cache 
coherence 

2 + Off - Ring Off-Ring 
interconnects 
have higher 
bandwidth 

Cray Research T3D (1993) 3-D mesh 6 

Thinking 
Machines 

CM5 0992) Fat Tree with 
reduced 
bandwidth 
outside local 
connections 

4 + Off - Tree Separate SIMD 
Control 

IBM SP2 0994) Cross-Bar 8 paths 

AT&T 3600 (1993) Folded Banyan 8 paths Folding provides 
fault tolerance 

Cray Research SuperServer 
(1994) 

four busses and 
segmented 
memory 

4 x Busses with 
cache 
coherence 

Multiple busses 
provide 
extension to 64 
processors 

Compaq. Encore, 
AT&T. Sun, and 
PC network 
servers 

(1991 -1994) bus with cache 
control 

2 Single High 
Performance 
Busses 
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E. Appendix E: Clusters 

Cluster and Farm Networks 

The networks used in farms are typically based on Ethernet protocol and physical communication 
channels. Clusters use high performance Ethernet or Fiber Distributed Data Interface (FDDI) for 
communications between processors. The latest technology examples are the IBM Fiber Optic Link 
(220 mbps), the Network Systems Corporation DX series and the DEC FDDI Gigaswitch. HP and 
Convex also have prepackaged cluster systems. 

Cluster Protocols 

Protocols necessary to use these networks contribute to the latency of communications. The 
underlying delay and bandwidth capacity of the physical network often has a smaller contribution to 
latency than the protocol processing. Because of protocol delay, programmers must either create or 
select applications with a very large ratio of computation to communications. That type of application 
is a large grain one. Because of large grain selection or programming, the typical communication 
requirements are for transmission of large files. 

The need for the robust services of TCP/IP in dedicated clusters is not necessary. TCP/IP processing is 
often processor compute intensive. In some systems, builders use the protocol (IPI-3) that requires less 
processing and sustains a higher bandwidth. Fifty to Eighty Mbps transfers between workstations are 
feasible over HiPPI (High Performance Parallel Interface) and Fiber Channel Standard (FCS) paths. A 
switch bandwidth of one Gbps is now available. These changes put the burden on the physical 
capability of networks (contention delay and bandwidth capacity) instead of hiding it in processing 
protocols. 

Cluster Cost Elements 

Clusters have powerful economic advantages because they use standard, commodity volume hardware 
and software components. Clusters also have a system software development cost advantage over 
multiprocessors. No system extensions other than racking the components and installing operating 
systems and PVM on each processor is necessary. The burden of tools and programming falls on the 
user. Vendors like to this design because it has high margins and low risk. 
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Rome Laboratory 

Customer Satisfaction Survey 

RL-TR- 

Please complete this survey, and mail to RL/IMPS, 
26 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and 
feedback regarding this technical report will allow Rome Laboratory 
to have a vehicle to continuously improve our methods of research, 
publication, and customer satisfaction. Your assistance is greatly 
appreciated. 
Thank You 

Organization Name: . (Optional) 

Organization POC: (Optional) 

Address:  

1.  On a scale of 1 to 5 how would you rate the technology 
developed under this research? 

5-Extremely Useful   1-Not Useful/Wasteful 

Rating  

Please use the space below to comment on your rating.  Please 
suggest improvements.  Use the back of this sheet if necessary. 

2.  Do any specific areas of the report stand out as exceptional? 

Yes  No  

If yes, please identify the area(s), and comment on what 
aspects make them "stand out." 



3. Do any specific areas of the report stand out as inferior? 

Yes  No  

If yes, please identify the area(s) , and comment on what 
aspects make them "stand out." 

4. Please utilize the space below to comment on any other aspects 
of the report. Comments on both technical content and reporting 
format are desired. 

MJ.S. GOVERNMENT PRINTING OFFICE:    1995-710-126-20057 
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OF 

ROME LABORA TORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Materiel 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, reliability 
science, electro-magnetic technology, photonics, signal processing, and 
computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


