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1. Introduction 

This is the final report for the project "Methodologies for Mapping Tasks onto Heterogene- 
ous Processing Systems," supported by Rome Laboratory under contract number F30602-94-C- 

0022. The Co-Principal Investigators for this project were H. J. Siegel and John K. Antonio. 
The project period was from January 27,1994 to January 26, 1995. Richard C. Metzger was the 

Rome Laboratory project manager. 
The work done on this project focused on heterogeneous computing, both mixed-mode and 

mixed-machine. Section 2 describes a mixed-mode case study involving singular value decom- 

position. Based on information learned from this and other case studies, a method for selecting 

the best mode of parallelism to use for each block of a mixed-mode program was devised, and is 

presented in Section 3. Section 4 builds on the results of Section 3 to construct a heuristic for 
assigning subtasks to machines in a mixed-machine environment. A complete model of 
automatic heterogeneous computing is developed in Section 5 (the research in Section 4 
represents one approach to one piece of the model). An evaluation and survey of the state-of- 

the-art of heterogeneous computing is also given in Section 5. Section 6 examines the estima- 
tion of non-deterministic execution times for use in enhancing the technique in Section 3. The 
heuristic of Section 4 is extended in Section 7 by considering optimal data relocations for a 
given matching of subtasks to machines. The publications that were supported by this effort are 

listed in Section 8. The rest of this section provides more details about Sections 2 through 7 of 

this report. 
In motion rate control applications, it is faster and easier to solve the equations involved if 

the singular value decomposition (SVD) of the Jacobian matrix is first determined. A parallel 

SVD algorithm with minimum execution time is desired. One approach using Givens rotations 

lends itself to parallelization, reduces the iterative nature of the algorithm, and efficiently han- 

dles rectangular matrices. The research in Section 2 focuses on the minimization of the SVD 
execution time when using this approach. Specific issues addressed in this section include con- 

siderations of data mapping, effects of the number of processors used on execution time, impacts 
of the interconnection network on performance, and trade-offs among the SIMD, MIMD, and 
mixed-mode implementations. Results are verified by experimental data collected on the PASM 

mixed-mode parallel machine prototype. 
One of the challenges for mixed-mode computing is, given a mode-independent parallel 

language, to generate executable code for a variety of computational models, and to identify 
those specific parallel modes for which portions of a program are well-suited. One part of this 
problem, developing a method for estimating the relative execution time of a data-parallel 

1 



algorithm in an environment capable of the SIMD and SPMD (MIMD) modes of parallelism, is 

presented in Section 3. Given a data-parallel program in a language whose syntax is mode- 

independent and empirical information about instruction execution time characteristics, the goal 

is to use static source-code analysis to determine an implementation that results in an optimal 
execution time for a mixed-mode machine capable of SIMD and SPMD parallelism. Statistical 
information about individual operation execution times and paths of execution through a parallel 
program is assumed. A secondary goal of this study is to indicate language, algorithm, and 
machine characteristics that must be researched to learn how to provide the information needed 

to obtain an optimal assignment of parallel modes to program segments. 

The problem of minimizing the execution time of programs within a mixed-machine 

heterogeneous environment is considered in Section 4. Different computational characteristics 

within a parallel algorithm may make switching execution from one machine to another 

beneficial; however, the cost of switching between machines during the execution of a program 
must be considered. This cost is not constant, but depends on data transfers needed as a result of 
the move. Therefore, determining a minimum-cost assignment of machines to program seg- 
ments is not straightforward. The block-based mode selection (BBMS) approach, presented in 
Section 3 for use in a single mixed-mode machine, is used as a basis to develop a polynomial 
time heuristic for assigning machines in a mixed-machine suite to program segments of data- 
parallel algorithms. Simulation results of parallel program behaviors using the heuristic indicate 
that good assignments are possible without resorting to exhaustive search techniques. 

Section 5 is an overview of heterogeneous computing. A heterogeneous computing system 

provides a variety of architectural capabilities, orchestrated to perform an application whose sub- 

tasks have diverse execution requirements. To exploit such systems, a task must be decomposed 

into sub tasks, where each subtask is computationally homogeneous. The subtasks are then 

assigned to and executed with the machines (or modes) that will result in a minimal overall exe- 
cution time for the task. Currently, users typically specify this decomposition and assignment. 

One long-term pursuit in the field of heterogeneous computing is to do this automatically. This 

section presents a model for automatic heterogeneous computing. It also surveys and examines 
the state-of-the art in heterogeneous computing. 

In Section 6, a methodology is introduced for estimating the distribution of execution times 

for a given data parallel program that is to be executed in an SIMD/SPMD mixed-mode hetero- 
geneous computing environment. The program is assumed to contain operations and constructs 
whose execution times depend on input-data values. The methodology uses the block-based 

approach of Section 3 to transform the program into a flow analysis tree. It then computes the 

distribution of execution times for the program, given the execution modes for each node in the 



flow analysis tree, an estimated execution time distribution for each operation in both modes, 

and an appropriate probabilistic model for each control and data conditional construct. A 

numerical example is given to illustrate the utility of the proposed methodology. 

A mathematical model is presented in Section 7 for three of the factors that affect the exe- 
cution time of an application program in a heterogeneous computing system: matching, schedul- 
ing, and data relocation schemes. As stated earlier, in a heterogeneous computing environment, 
an application program is decomposed into subtasks, then each computationally homogeneous 
subtask is assigned to the machine where it is best suited for execution. It is assumed in this sec- 
tion that, at any instant in time during the execution of a specific application program, only one 

machine is being used for program execution and only one subtask is being executed. Two data 

relocation situations are identified, namely data-reuse and multiple data-copies. It is proved that 
without considering multiple data-copies, but allowing data-reuse, the execution time of given 
application program depends only on the matching scheme. A polynomial algorithm, which 
involves finding a minimum spanning tree, is introduced to determine the optimal scheduling 
scheme and the optimal data relocation scheme with respect to an arbitrary matching scheme 

when data-reuse and multiple data-copies are considered. Finally, a two-stage approach for 

matching, scheduling, and data relocation in heterogeneous computing is presented. The work 

extends and enhances the matching heuristic developed in Section 4. 



2. Parallel Algorithms for Singular Value Decomposition 

2.1. Introduction 

Decreasing the execution time of computerized tasks is the focus of a tremendous amount 

of study. The use of parallel computer systems is one method to help decrease these times. The 

performance of a parallel system, however, is dependent on the algorithm implementation and 

the parallel machine characteristics. Performance optimization is therefore complicated, due to 

the wide variety of algorithm characteristics [Jam87] and the rapidly growing variety of parallel 

machines that have been built or proposed. Thus, the study of mapping algorithms onto parallel 

machines is an important research area. 
The singular value decomposition (SVD) of matrices has been extensively used in control 

applications, e.g., during the computational analysis of robotic manipulators [K1H83, Yos85]. 
The decomposition aids the computational solution of system equations such as the motion rate 

control formula x = J9, where xeRM specifies the end effector velocity, 6eRN specifies joint 

velocities, and JeRM"N is the Jacobian matrix [Whi69]. For systems with many cooperating 

manipulators, the value of N can reach into the hundreds, resulting in a severe computational 

burden for achieving real-time control. 
In general, computation of the SVD of an arbitrary matrix is an iterative procedure, so the 

number of operations required to calculate it to within acceptable error limits is not known 
beforehand. The control of many systems, however, is based on equations involving the current 

Jacobian matrix, which can be regarded as a perturbation of the previous matrix, i.e., 

J(t+At) = J(t)+AJ(t). It has been demonstrated that for these cases knowledge of the previous 
state can be used during the computation of the current SVD to decrease execution time 
[MaK89]. This section describes and analyzes two SVD algorithm implementations for these 
cases. Experimental data obtained on the PASM prototype parallel computer [ArW93, SiS87] is 

provided that supports the conclusions of the algorithm analyses. 

Subsection 2.2 provides background information about SVD, Givens rotations, and PASM. 

Descriptions of the two parallel SVD implementations being analyzed are presented in 

Subsection 2.3.   Subsection 2.4 demonstrates an analysis  approach to determine which 

The co-authors of this section were Renard Ulrey, Anthony A. Maciejewski, and Howard Jay Siegel. 
This research was supported by Sandia National Laboratories under contract 18-4379B, and by Rome Laboratory 
under contract F30602-94-C-0022. This research used equipment supported by the National Science Foundation 
under grant CDA-9015696. 
This material appeared in the Proceedings of the 8th International Parallel Processing Symposium, sponsored by 
the IEEE Computer Society, April 1994, pp. 524-533. 



implementation has the shorter execution time. The performances of SVD implementations on 

PASM are evaluated in Subsection 2.5. 

2.2. Background Information 

The SVD of a matrix JeRM"N is defined as the matrix factorization J=UDVT, where 

UGR
M

"
M
 and VeRN*N are orthogonal matrices of the singular vectors, and DeRM"N is a 

nonnegative diagonal matrix. The singular values of J, a, are ordered from largest to smallest 

along the diagonal of D. It is assumed here that M ^ N. 

The Golub-Reinsch algorithm [GoV83] is the standard technique for determining the SVD 

of a matrix. This method, however, has two unattractive aspects. The first is that the algorithm, 

as it is defined, cannot use knowledge of a previous matrix decomposition. The second is that 

the technique is relatively serial in nature, making more parallelizable algorithms desirable. 

Several parallel SVD algorithms have been implemented for various machine architectures, 

including those proposed in [BrL85, ChC89, Luk80, Luk86, ScL86]. These implementations 

also do not allow their iterative natures to be reduced. Algorithms being studied in this section 

are based on a methodology presented in [MaK89], which exclusively uses Givens rotations 

[GoV83] to orthogonalize matrix columns. 

Successive Givens rotations are used to generate the orthogonal matrix V that will result in 

JV=B, where the columns of B_eRM"N are orthogonal. A matrix with orthogonal columns can 

be written as the product of an orthogonal matrix U and a diagonal matrix D (i.e., B=UD) by 

letting the columns of U, Uj, equal normalized columns of B, b,, 

ui = bi/||bi||   (where HbilhVbTbT), (D 

and defining the diagonal elements of D to be equal to the norm of the columns of B 

Oi = Hbil|. (2) 

This results in the SVD of J. 

The orthogonal matrix V that will orthogonalize the columns of J is formed as a product of 

Givens rotations, each of which orthogonalizes two columns. Considering the i-th and k-th 

columns of an arbitrary matrix A, a single Givens rotation results in new columns, ai' and a£, 

given by 

af = aiCos(<t>) + aksin(<])) (3) 

&k = akCOs(<t>) - aisin(()>). (4) 

The cos((|>) and sin(<J>) terms necessary to achieve orthogonality are computed using the formulas 

in [Nas79], which are based on the quantities 



P = aJafc, q = ajTai - ajjak, and c = \4p2+q2 . (5) 

Using these quantities, when q 2:0 

cos(<(>) = V(c+q)/(2c) and sin(<})) = p/(c • cos(<|))). (6) 

Whenq<0, 

sin(<()) = sgn(p)-V(c-q)/(2c)   and (7) 
cos((|)) = p/(c • sin(<f>)), 

where sgn(p) equals 1 if p £ 0 and -1 if p < 0.  Two sets of formulas are given so that ill- 

conditioned equations resulting from the subtraction of nearly equal numbers can always be 

avoided. 

To orthogonalize each possible pair of columns requires N(N-1)/2 rotations, referred to as 

a sweep [GoL83]. The matrix V can be computed by iteratively forming the product of a set of 

sweeps and testing for convergence. While the number of sweeps required to orthogonalize the 
columns of J is not generally known beforehand, it was shown in [MaK89] that by using the V 
matrix from the SVD of the previous J to find an initial estimate for B, 

B(t+At) = J(t+At)*V(t), (8) 
one can obtain a good approximation to the new SVD using a single sweep if AJ(t) is small. 

N-l   N 
Therefore, in this work the current V matrix is calculated using V(t+At) = V(t)*fJ II ^ik» 

i=l k=i+l 

where (L denotes the Givens rotation to orthogonalize columns i and k. Only a single sweep is 

performed to update the matrix V. 

The PASM (partitionable SIMD/MIMD) parallel processing system [ArW93, SiS87] was 

used to implement these algorithms. PASM, designed at Purdue University, supports 
mixed-mode parallelism, i.e., it can operate in either SIMD or MIMD mode of parallelism, and 

can switch modes at instruction level granularity with generally negligible overhead. A small- 
scale 30-processor PASM prototype has been built with 16 PEs (processor/memory pairs) in the 

computational engine. For inter-PE communications, PASM uses a partitionable circuit- 
switched multistage cube interconnection network [Sie90], also called an Omega [Law75]. The 
network can be used in both SIMD and MIMD modes. 

PASM is capable of employing barrier synchronization [DiS89] in MIMD mode, called 
Barrier MIMD (BMIMD). Each PE executes its code independently until it arrives at a 

synchronization point called a barrier. Then, each PE waits at the barrier until all PEs indicate 

they have reached it. One use for this is to synchronize inter-PE transfers performed in MIMD 
mode. 



2.3. Data Mapping 

2.3.1. Overview 

Based on the equations in Subsection 2.2, Figure 2.1 gives an algorithm to calculate V, D, 
and U using Givens rotations. This algorithm assumes that the SVD of the Jacobian matrix from 

the previous control sample period has been computed. Thus, for step 1, the previous V matrix 

is available on the system. It is assumed that the algorithm then converges with a single sweep 

of rotations in step 2. 
step 1: 
calculate initial estimate for B from J and previous V, using (8) 
step 2: 
for all column pairs (i,k) do /* one sweep */ 

calculate p, q, and c using (5) 
calculate cos((|)) and sin(<])) using (6) or (7) 
perform rotation on columns i and k of B, similar to (3) and (4) 
perform rotation on columns i and k of V, similar to (3) and (4) 

end for 
step 3: 
calculate D from B, using (2) 
calculate U from B and D, using (1) 

Figure 2.1:    High-level algorithm for finding SVD using Givens rotations. 

Referring to the parallel execution of a Givens rotation by all PEs as a rotation step, N-l 

rotation steps must be performed on N/2 column pairs to form all N(N-l)/2 column pairs. With 

unique column pairs distributed among N/2 PEs, inter-PE communication is avoided within each 

rotation step. After the initial rotation step, however, an inter-PE communication is required 

before each remaining rotation step. This rotate-transfer-rotate sequence is required both to 

form all column pairs and to converge the B and V matrices to their single-sweep values. Newly 

updated columns are being transferred in each communication step. 

As presented in Subsection 2.2, the calculations involved in this algorithm are 
straightforward. Of greater interest are ways to effectively map matrix elements to particular 

parallel machines, and the types of inter-PE communication these mappings dictate. Various 

implementations of column transfer operations have been devised, including those in [BrL85, 
ChC89, ScL86]. Each of these methods map a unique column pair to each of N/2 PEs. The 
availability of a multistage cube network on PASM allows matrix data to be distributed across 

more PEs than allowed by implementations in [BrL85, ChC89, ScL86], and thus increases the 
number of PEs that can perform useful work while still performing all necessary inter-PE 
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Communications in single transfer steps. 
Two different methods for mapping matrices to PEs are presented. These implementations 

assume that M = 2m ^ N = 2n for the Jacobian matrix Je RM"N. If the matrix does not have these 

dimensions, it can always be padded with zeroes. This subsection explains the data layout and 
communication patterns for each method. The algorithmic details for each are in Subsection 2.4. 

2.3.2. Mappings Being Analyzed 

A two columns per PE (2CPP) data mapping is the first to be considered. Assume that N/2 

PEs are used, numbered from 0 to (N/2)-l. Let S be the number of PEs in a communicating 

subgroup (S a power of two), and let i be the address of a PE that is transferring a column 

through the network. The 2CPP method uses the interconnection function 

Shift. (i,S) = S[i/Sj + ((i+j) mod S), where j is the Shift length, to determine the address of the 

destination PE. This function allows the destination PE address to remain within a current 
communicating subgroup of size S. The resulting communication patterns are conflict-free 

transfers on a multistage cube network [Law75, Sie90]. 
Let each PE contain columns x and y. All possible column pairs are formed by iteratively 

performing a two-step process. To begin, S = N/2 so that all PEs being used are in a 
communicating subgroup. In the first step, all y columns are shifted to all other PEs in the 
subgroup by applying the function Shiftx (i, S) a total of S-l times. In the second step, the 

subgroup is split in two by exchanging x and y columns between subgroup halves using 

Shifts/2 (i,S) and reducing S by a factor of two for the next iteration. 

A model of the inter-rotation transfers for this algorithm is shown for N = 8 in Figure 2.2. 
Each row of blocks in the figure represents a rotation step where calculations are being 

performed in each of 8/2 PEs. Number pairs in the blocks denote the columns being 
updated/rotated in each PE. Arrows illustrate the inter-rotation column transfer steps. Beside 
each transfer step, the communication function used to achieve the interconnection pattern is 

specified, as well as the columns being exchanged (x is the left column number in each box, y is 

the right). 
A second implementation was developed that allows all three algorithm steps to be 

implemented with a one column per PE (1CPP) distribution. Using the capabilities of the 

multistage cube network, a communication pattern was derived that forms all possible column 

pairs using N-l column transfers. Assume N PEs are used, numbered 0 to N-l. PE i always 

contains the most recent version of column i. In the k-th rotation step, 1 ^ k < N, PE i exchanges 

data with PE i ©k, where © is the bit-wise exclusive-or. These transfers are conflict-free on the 
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Figure 2.2:    Column transfer model for 2CPP mapping. 

multistage cube [Bat77]. 
Operations in step 2 require data from both columns of the pair being rotated. Therefore, 

the 1CPP mapping requires column transfers within each rotation step (intra-rotation transfers) 

rather than between rotation steps (inter-rotation transfers). A performance trade-off is 
immediately apparent with respect to the 2CPP method. Steps 1 and 3 can execute with half as 
many operations using the 1CPP mapping, but step 2 requires one additional column transfer to 
complete a full sweep. Later subsections compare both the expected performance and observed 

performance between the two methods. 
A model of the intra-rotation transfers for this implementation is shown in Figure 2.3 for 

N = 8. Having the columns sequentially ordered after the decomposition may be an advantage 

for post-SVD operations. 
With the 2CPP and 1CPP column distribution models now formed, it is a goal of this study 

to further utilize parallelism in the SVD algorithm to possibly decrease execution times. The 

approach taken divides each column of the B and V matrices into R = 2r segments. The total 

number of PEs that are used increases by a factor of R. For this study, R ^ M < N. 

In the 2CPP mapping, because RN/2 total PEs are being used, r+n-1 PE address bits can be 

used to fully define the column segment distribution. To map column segments onto PASM, 
PEs whose addresses agree in the n-1 most significant bits contain different segments of the 

same column, and PEs with the same r least significant bits have corresponding segments of 

different columns. Similarly, for the 1CPP mapping, r+n address bits define the column segment 
distribution among the RN PEs. PEs with the same n most significant bits contain segments of 
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Figure 2.3:    Column transfer model for 1CPP mapping. 

the same column, and PEs with the same r least significant bits have the same segment number. 

These segment mappings allow the system network to still perform the column transfer 

communications as explained for both the 1CPP and 2CPP methods. These communications 
will occur between PEs that have the same segment number, i.e., agree in a given set of address 
bits. All PEs can also perform simultaneous communications between PEs containing different 
segments of the same column as a conflict-free transfer. The addresses of these PEs will agree in 
a different set of bits. This is due to the partitioning properties of the multistage cube [Sie90]. 

Communication patterns between PEs that have different segments of the same column 

have not been discussed. The patterns that provide the fastest algorithm execution were found to 

be dependent on both the column mapping (1CPP or 2CPP) and the current operation being 

performed. The communication patterns providing the best performance are detailed in 

[U1M95]. 

2.4. Performance Analysis 

2.4.1. Analysis Overview 

There are three goals of this analysis. The first is to demonstrate some considerations when 
examining algorithm performance.   The second is to see whether a speedup of the SVD 
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algorithm can always be expected when more PEs are used (this is not always the case, e.g., 

[SaS93]). The third is to determine the conditions when one of the 1CPP and 2CPP 

implementations performs better. 

An operation count analysis for the SVD implementations is the first step toward predicting 

the better algorithm mapping. The two main components of the SVD algorithm are considered 
to be computation and inter-PE communication. The number of floating-point operations 
(FLOPs) performed by each PE will be used as the measure of the amount of computation for 

this analysis. 

In general, the time to perform FLOPs on a machine will depend on the operation to be 

performed, and possibly on the operands. For this analysis, it is assumed that all FLOPs and 

their associated address calculations take the same constant amount of time. It was shown in 
[SaS93] that using an experimentally-derived average time as the execution time of each FLOP 

can provide good results. 
The time it takes to set up a valid network configuration in SIMD mode on the PASM 

prototype is close to that to perform a floating-point (FP) data transfer. For this reason, and 

because the inter-PE transfers performed throughout the SVD algorithm involve different 

numbers of data items, the time spent performing communications in this analysis is represented 

by the total number of single data transfers (DTs) performed by each PE. Experimental results 

presented in Subsection 2.5 will show that this is a good approximation. 

2.4.2. Operation Counts 

Various methods were derived to perform each of the three steps of the SVD algorithm 
with both the 2CPP and 1CPP approaches. A comparison of the operation counts for the 

different methods is detailed in [U1M95]. The methods with the smallest complexities were 

implemented. 

Because of the distribution of columns and column segments among PEs, many operations 

require the combining of the partial sums of calculations performed by single PEs. In most 
cases, some variation of recursive doubling (described in [SiA92]) allowed execution with the 
fewest FP and DT operations. Other methods were also found to reduce the number of 
operations. The similarity of (6) and (7) is exploited so that both cos((|)) and sin(0) are calculated 

using only 6 non-data-dependent FLOPs, regardless of the mode of parallelism being used. For 

the 1CPP approach, a method was developed for both SIMD and MIMD modes to perform 

column rotations on all PEs simultaneously, where half of the PEs rotate their own columns 

according to (3) and the other half according to (4). Again, the similarity of the equations is 
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exploited. These methods are detailed in [U1M95]. 

The complete complexity equations for both approaches are shown in Table 2.1. Because 

of the method chosen to perform the 2CPP approach, its total operation count has a special case 
when R = 1. For comparison purposes, the total number of FLOPs needed to perform the entire 

SVD algorithm using a single processor is also shown in the table. 

2.4.3. Relation of Number of PEs to Operation Count 

To find the number of PEs to use so that the fewest number of operations are performed, the 

derivative with respect to R of the equations shown in Table 2.1 are found and set to zero. 

Doing this for the FLOP count of the 2CPP implementation and rearranging the resulting 

equation reveals that the minimum number of FLOPs are performed when 
R=(2N + (16NM-8M-2N)/(3N-2)). Similarly, for the ICPP implementation, 
R=(1.5N+(9NM-5M-1.5N)/(2N-1)). Recall that as R increases the number of PEs 
increases, and that for this study it is assumed 1 < R < M < N. Because R > M in these two 
equations, the number of FLOPs used in each implementation continues to decrease as R (and 

the number of PEs) increases, up to the maximum allowed when R = M. 
Floating-point Operation Count 

implementation total condition 

2CPP 

(RN/2 PEs) 

(1/R)(6N2-6N+16NM-8M) 
+ r(3N-2)+(9N-10) 

KRsM 

6N2+3N+16NM-8M-9 R=l 

ICPP 
(RNPEs) 

(1/R)( 3N2-3N+9NM-5M ) 
+ r(2N-l)+(10N-10) 

lsRsM 

onePE 
3N3+(3/2)Nz + 8N2M 
-5NM-(9/2)N+M2 

Network Data Transfer Count 

implementation total condition 

2CPP 

(RN/2 PEs) 

(1/R)(N2-2N+NM-4M) 
+ r(3N-2)+(N+2M-l) 1<R*M 

N2-N+NM-2M-2 R=l 

ICPP 
(RNPEs) 

(1/R)(N2-N+NM-2M) 
+ r(2N-l)+(N+M-l) 

IsRsM 

Table 2.1:    SVD algorithm operation count totals. 

Setting the derivative of the DT count of the 2CPP approach to zero results in the 
mathematically optimal value of R = ((N2-2N+NM-4M)/(3N-2)). In this equation, R may 
be less than M, depending on the values of N and M. Setting the derivative of the DT count of 

the ICPP approach to zero results in the mathematically optimal value of 
R = ((N2 -N+NM-2M)/(2N-1)). Again, R may be less than M, depending on the values of N 
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and M. An examination of this equation, however, provides interesting results. Letting M = N, 

the equation reduces to R = N-(2N/(2N-1)), so the optimal value of R will be between N-2 
and N-l. Therefore, when using the 1CPP algorithm with M = N, the number of DTs will 

decrease as R increases from 1 to M-2. Also, if M in the original equation is reduced to less 
than N ^ 4 by some power of two, the mathematically optimal value of R is larger than its 
assumed maximum value of M ^ N/2, and the minimum number of DTs is always reached when 

the maximum number of PEs are used. 
The possibility that the number of DTs performed by an algorithm may increase as the 

number of PEs increases means that there could be a case when the total algorithm execution 

time increases when more PEs are used. A method is presented in the next subsection for 

determining whether this is true for a given system and problem size. 

2.4.4. Performance Prediction 

A method is adapted from [SaS93] to predict the number of PEs to use that will minimize 

the execution time for the SVD algorithm. This method gives relative weights to the FP and DT 
operations by the determination of a communication ratio (CR). This ratio is used with the 

complexity equations in Table 2.1 to predict only whether performance improves as more PEs 
are used. Because the numbers of FP and DT operations do not account for the total execution 

time, machine-dependent data was collected to use for the prediction. 

The CR is calculated in terms of average expected time to perform a DT over the average 
expected time to perform a FLOP (including memory access and array address calculation 
times). The units of measure for the CR are ((secs./DT)/(secs./FLOP)) = FLOPs/DT. Various 

methods can be used to determine the CR. The one chosen executes one implementation of the 
SVD algorithm on a small matrix, using the minimum number of PEs that the implementation 

allows. The 1CPP algorithm was arbitrarily selected to measure the CR, with four PEs being 
used to decompose a random 4*4 matrix. Although the PASM prototype can operate in different 

modes of parallelism, SIMD mode is used throughout this analysis for consistency. Hardware 

timers are used to measure the execution times of the operations being considered. Because the 
PASM prototype currently performs all FP calculations in software and has a relatively fast 
inter-PE communication network, its CR measured 0.119. It is assumed for this analysis that the 

CR does not vary with the number of PEs used. 
Using the CR, the predicted performance (PP) of a machine running an SVD 

implementation is approximated by PP = (no. of FLOPs)+CR(no. of DTs), and is a function of 
both matrix size and the number of PEs. With this definition, PP will have units of number of 
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FLOPs. Because the PP equations for the 2CPP and 1CPP approaches (PPJCPP and PPICPP) do 

not consider many overhead operations, they do not provide absolute execution times, but they 

are reasonable estimates of relative execution times as R, N, and M are varied. Therefore, they 

can be analyzed to determine the number of PEs that will provide minimum execution time on a 

particular machine. 

2.4.5. Implementation Comparison 

The operation counts of the 2CPP and 1CPP approaches are now compared. One 

comparison covers when the number of PEs equals the minimum common number that the two 

implementations can use (N PEs). A second comparison is for when the maximum common 

number of PEs are used (NM/2 PEs). These two cases are focused on because various numbers 

of PEs can be used, depending on the values N, M, and R. The third case directly compares 

PP2CppandPPicpp. 
To compare the two implementations with N PEs, replacements are made for R and r in the 

equations of Table 2.1 which correspond to using N PEs with either approach. The 2CPP 
approach requires both fewer FLOPs and fewer DTs under the constraints that M ^ 2 and N M 
(details in [U1M95]). Because these constraints are met for all values of N and M of interest, the 
2CPP implementation is expected to be the fastest (neglecting differences in overhead between 

the two approaches) when the minimum common number of PEs are used. 

To compare the two approaches using NM/2 PEs, the same method is followed, with 

different values replacing R and r in the equations of Table 2.1. Analysis in [U1M95] shows that 
the 1CPP implementation uses fewer FLOPs when NM/2 PEs are used, under the constraint that 

M>2, which is true for all values of M of interest. It is also shown that the 1CPP 
implementation uses fewer DTs under the constraint (M(N-l)-(m+l) + M2)>N2. This 
inequality is not true for all values of N and M, but it can easily be shown to be true when 
M^N^M(m+l), which covers many cases. Thus, for this range of N, the 1CPP 
implementation is expected to be the fastest when the maximum common number of PEs are 
used. For N outside this range, the PP of the two implementations can be compared, taking into 

account the CR of the system. 

PP2CPP and PPicpp are directly compared for three matrix sizes of interest and a 
CR = 0.119 in Figure 2.4. The figure shows that as the number of PEs used increases from N to 

NM/2, the execution times of both methods are expected to decrease, and the fastest 

implementation is predicted to change from the 2CPP approach to the 1CPP approach. It also 

shows that the 1CPP implementation with NM PEs is expected to provide the overall minimum 
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Figure 2.4:    Comparison of PPüCPP and PPICPPJ CR=0.119. 

2.5. Performance Evaluation 

2.5.1. Experimental Algorithm Performance 

Matrices of size 4*4, 4*8, and 8X8 allow timing data to be recorded while using different 

numbers of PEs on the 16-PE prototype. Both the 2CPP and 1CPP implementations were 

executed on the PASM computer with matrices of these sizes. Jacobian matrix data consisted of 

randomly generated FP values within the range (-5,+5). Algorithms were coded using a 
combination of a C language compiler, AWK scripts (for pre- and post-processing), and library 

routines for data-conditionals, network transfers, and data transfers from the control unit (CU) to 

the PEs. Matrix and column elements were stored in arrays. Values for M, N, and R were left as 
variables that could be updated before each execution so that several data points could be 
obtained easily. But, because M, N, and R were variables, all column and column segment 

operations involved loops that could not be unrolled. 
The execution times were recorded for both the 2CPP and 1CPP implementations executed 

in SIMD mode on the PASM prototype. Matrices of each of the three dimensions specified were 

decomposed using both implementations, with all allowable numbers of PEs between one and 

16, inclusive. The recorded data is plotted in [U1M95]. 
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A comparison of the 2CPP and 1CPP implementation execution times is illustrated in 

Figure 2.5. The experimental timing data represents the average execution times of an algorithm 
run on 256 different Jacobian matrices of the given size. The experimental data is normalized to 

the average execution time of the S VD algorithm when decomposing a 4><4 matrix with a single 
PE. For the 4><4 matrix case, it is apparent that the fastest implementation switches from the 

2CPP approach to the 1CPP approach when going from four to eight PEs. Also, the 1CPP 

approach can use 16 PEs when working with a 4*4 matrix, whereas the 2CPP approach cannot. 

The data obtained for 4><4 matrices is as expected. Similarly, for the 4X8 matrix case, the fastest 

implementation switches from the 2CPP to the 1CPP approach when going from eight to 16 PEs. 

When working with an 8X8 matrix, the 1CPP implementation execution time approaches that of 

the 2CPP implementation when going from eight PEs to 16 PEs. All of these observations of 

Figure 2.5 match exactly the comparison of the PPs shown in Figure 2.4. 
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Figure 2.5:    Experimental performance of 2CPP vs. 1CPP. 

It was desired to determine how algorithm execution times are affected by the number of 

PEs when the CR is much higher than 0.119, as would be expected on a commercially available 

machine with FP coprocessors or digital signal processors. For this purpose, the 2CPP and 1CPP 

programs were changed to operate on integer data (the square-root FLOP, which is comparable 
to a FP division with an MC68881 FP coprocessor [Mot87], was replaced by a single integer 

division). This was done for experimental timing studies only; FP operations are needed to get 

the desired accuracy for this application. The CR for this new code was determined to be 1.205. 
The PP for the two algorithms with this CR are analyzed in [U1M95]. It is shown that for 4X4, 
4><8, and 8X8 matrices, execution times are still expected to decrease as the number of PEs 
increases.  These predictions were verified by experimental execution times on the PASM 
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machine [U1M95]. 

2.5.2. Modes of Parallelism 

The 2CPP and 1CPP algorithms were performed on the PASM prototype using SIMD, 
MIMD, BMIMD, and mixed-mode parallelism. To determine the most effective mode 

mappings, both algorithms were divided into several code fragments. The fastest execution 

mode for each code fragment was then determined. 
The SIMD and MIMD modes of parallelism each have several advantages and 

disadvantages [SiA92]. An advantage of SIMD is the ability to utilize CU/PE overlap. For the 
SVD implementations, this overlap occurs when the CU performs the overhead associated with 
loops while the PEs execute the loop bodies. Another advantage of SIMD is that the implicit 
synchronization after every instruction broadcast to the PEs implies that explicit synchronization 
is not required during communication. A SIMD disadvantage is that data conditional "then" 

and "else" clauses must both be broadcast to the PEs. 
An advantage of MIMD is the ability to execute the clauses of data conditional statements 

without underutilizing PEs. A block of instructions whose execution times are data-dependent 
will complete faster [SiA92]. A MIMD disadvantage is that explicit sender/receiver 
synchronization is required before inter-PE communication can take place. On PASM, sending 
and receiving PEs must be synchronized for every value sent through the network in MIMD 
mode. In the BMIMD implementations, all operations are executed in MIMD with the exception 

that a barrier is executed once for every network setting. After the barrier, all required data 

transfers can be made as if the PEs were in SIMD mode, with less overhead than MIMD network 

transfers. 
Mixed-mode implementations incorporate advantages of both the SIMD and MIMD mode 

implementations while trying to avoid the disadvantages of each. Various mode combinations 

were considered for the different program fragments of both the 2CPP and 1CPP approaches. 
The following is an analysis of the implementations that resulted in the shortest execution times 

of each method. 
Table 2.2 shows how the 2CPP algorithm was divided into code fragments. Fragment 1 is a 

nested loop calculation of partial sums of two columns of the B matrix, where each of M column 
elements is determined from N/R matrix elements of J and V. This fragment is implemented in 

SIMD mode to maximize the advantage of CU/PE overlap. Fragment 2 is a set of transfers in a 

loop that combines the partial sums of segments of bj and bj. Fragment 2 is also implemented in 
SIMD to utilize both CU/PE overlap and implicit network transfer synchronization. 
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alg. 
step 

code 
frag. 

code fragment 
description 

1 1 derive partial sums of columns bj and bj 

2 combine segments of bj and bj 

2 3 determine columns to transfer in Shifts/2(i,S) op. 

4 transfer column segments via Shifts/2(i.S) op. 

5 transfer column segments via Shifti (i,S) op. 

6 reorder left/right columns by their number 

7 derive partial sums of bj' bj, bj' bj, and p 

8 combine bj' bj, bj' bj, and p partial sums 

9 calculate q, c, sin(<t>), and cos(<|>) 

10 rotate bj, bj, Vj, and Vj 

3 11 derive partial sums of bj' bj and bj' bj 

12 calculate Oj and Oj, R=l 

13 determine b' b value to combine, R*l 

14 combine b1 b term, and partners exchange a, R*l 

15 conditional calculation of U; and Uj 

Table 22:    Code fragmentation of 2CPP implementation for mixed-mode parallelism. 

Inter-rotation column segment transfers are handled by code fragments 3 through 6. 
Fragments 3 and 4 are performed n-1 times during the execution of 2CPP, once for each 
Shifts/2(i,S) operation. Fragment 3 performs a short if-then-else conditional in MIMD mode to 
determine the column segments to be transferred. In fragment 4, a column segment of B and V 
is transferred by each PE. The matrix element transfers are performed in two loops. SIMD 
mode is used to take advantage of both CU/PE overlap and transfer efficiency. Code fragment 5 

performs the Shifti (i, S) operation N-n-1 times throughout execution of 2CPP. These transfers 

are again executed in SIMD mode for the advantages of CU/PE overlap and transfer 

synchronization. Fragment 6 is performed after each inter-rotation Shift (i.e., N-2 times). It is 

an if-then-else operation executed in MIMD mode that reassigns i/j (left/right) column order. 

Code fragments 7 through 10 are performed N-1 times during the execution of the 2CPP 

algorithm; once for each rotation. Fragment 7 calculates three partial sum values within a loop 

executed in SIMD mode. Fragment 8 combines these partial sums via recursive doubling 

transfers that get performed r times in a loop. Again, this loop is executed in SIMD to take 
advantage of both CU/PE overlap and implicit transfer synchronization. Code fragment 9 
calculates the values q, c, sin(<J>), and cos(<|)). This is an in-line block of code requiring no loops, 
so MIMD mode is used because the instructions' execution times are data-dependent. Fragment 
10 performs the rotation on two column segments of B and of V. Rotating column segments of 
B requires M/R iterations of a tight loop, and rotating column segments of V requires N/R loop 

iterations. These loops are again performed in SIMD mode to take advantage of CU/PE overlap. 
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Calculation of partial sums of the values bjTbi and bjTbj occurs in fragment 11 as another 
tight SIMD loop. Fragment 12 is performed only in the special case when R= 1. In this case, 
the values b,Tbi and bjTbj found in fragment 11 are final values, not partial sums, and two 

square-root FLOPs will yield Gj and Gj. Fragment 12 is performed in MIMD mode because 

instruction execution times are data-dependent. When R#l, fragments 13 and 14 are performed 

to find the final G{ and Oj values. Fragment 13 is a short if-then-else operation performed in 
MIMD that determines the single bTb value a given PE will be calculating (i.e., for column i or 
for column j). Fragment 14 performs transfers in a loop to combine the single bTb term in each 

PE, then finds the square-root of this final value to obtain G, and exchanges G with its partner PE 

(so both have the final Gj and Oj values). These transfers are performed in SIMD mode to take 

advantage of both CU/PE overlap and implicit transfer synchronization. 

The final code fragment, 15, calculates column segments of U by dividing elements of B by 
the corresponding G value. If G is nonzero, the division is executed. If G is zero, the 
corresponding column of U is replaced with zeroes. Fragment 15 is therefore performed in 
MIMD mode to take advantage of parallel "then" and "else" clause execution. 

Figure 2.6 shows the execution times of the 2CPP implementation when run in different 

modes of parallelism on PASM. The data shown in the figure are the results of 4*4 matrix SVD. 

The minimum execution time was obtained using mixed-mode parallelism. 
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Figure 2.6:    2CPP algorithm execution time comparison" "for different modes of parallelism;  4«4 

matrix. 

From the figure, it is obvious that the advantage of strictly SIMD mode over MIMD 
increases as the number of PEs increases. It is also obvious that SIMD and BMIMD execution 
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provide similar execution times, meaning that the greatest advantage that SIMD has over MIMD 

for the SVD algorithm is implicit network transfer synchronization. Using the 2CPP DT count 

equation in Table 2.1, it can be determined that for a 4X4 matrix, the number of DTs increases as 

the number of PEs used increases. This means that network transfers become a larger portion of 
the operations performed, and that the SIMD advantage in transfer times becomes a greater 

asset. 
The execution times displayed in Figure 2.6 also show that the advantage mixed-mode 

parallelism has over stricdy SIMD increases as the number of PEs increases. It is apparent from 

the code fragment analysis that the fragments performed in MIMD generally do not operate on 

column segments, and therefore their performance is generally independent of the number of 

PEs, i.e., the value of R. Thus, the MIMD code fragment execution times become a larger 

fraction of the overall execution times as more PEs are used. As the overall execution times 

decrease, the MIMD advantage of those code fragments becomes more prominent. 

The 1CPP algorithm was also fragmented to determine the best combination of modes of 

parallelism for fastest mixed-mode execution (details in [U1M95]). The 1CPP algorithm has 
fewer code fragments than the 2CPP approach, and each is analogous to one already presented in 
the 2CPP mixed-mode analysis. The observations made between the different modes of 
parallelism with the 2CPP approach held with the 1CPP approach. 

2.6. Conclusions 

Several methods for performing SVDs using column transformations have been previously 

developed. Many of these use rotation operations in an iterative construct to perform the 

decomposition. Those methods map a unique pair from N columns to each of N/2 PEs, and 

implement inter-PE communication patterns designed to accommodate their systems' 
interconnection network. This study presents a similar method, 2CPP, which utilizes the 
capabilities of a multistage cube network. Another method, 1CPP, was also developed, which 
maps one matrix column to each of N PEs. The method introduced here for dividing each matrix 
column into R segments provides the greatest impact on performance. It allows the use of R 
times the number of PEs previously used, by utilizing more of the inherent parallelism of the 

SVD algorithms. The approach works effectively with both the 2CPP and 1CPP mappings due 

to both the methods of data distribution and the capabilities of the multistage cube network. 

The methods derived to implement one sweep of rotations (step 2 of the SVD algorithm) 

can also be applied to other SVD algorithms that iteratively perform multiple sweeps of column 

rotations.   These algorithms would be useful when greater accuracy is needed in the 
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decomposition, or when successive matrices being decomposed cannot be considered as small 

perturbations of previous matrices. Using more PEs by distributing column segments among 
PEs may decrease the execution times of these algorithms as well. The performance prediction 

method presented in Subsection 2.4 can be used for this determination. 
The analysis presented in Subsection 2.4 and supported by experimental data in Section 2.5 

provides the following results. First, the PP analysis presented in Subsection 2.4 can be used to 
determine the number of PEs to use in a system to achieve the minimum execution time of either 
the 2CPP or 1CPP implementation. Second, the execution times of both implementations 

depends on the size of the matrix being decomposed, the number of PEs being used, and the CR 

of the system executing the algorithm. Third, when increasing the number of PEs being used 
from N to NM/2, the fastest implementation generally changes from the 2CPP approach to the 

1CPP approach. 
Experimental data presented in Subsection 2.5 demonstrates that the mode of parallelism 

used can have an affect on the execution time of an algorithm. The results obtained show that an 
SIMD implementation of either the 2CPP or 1CPP SVD approach performs better than an 

MIMD implementation regardless of the number of PEs used. By using barriers to reduce the 

synchronization overhead involved in MIMD mode network transfers, the BMIMD 

implementations outperformed the MIMD implementations. Finally, a mixed-mode 
implementation can outperform SIMD, MIMD, and BMIMD implementations by using the 

advantages of each mode on different program fragments. 
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3.   A   Block-Based   Mode   Selection   Model   for   SIMD/SPMD   Parallel 
Environments 

3.1. Introduction 

In general, writing effective programs for parallel computers remains a complex and 

difficult endeavor. In many cases, algorithms that work well under a serial execution model 

require reformulation for implementation on a parallel system. The problem is compounded by 

the rich diversity of parallel architectures available, each with its own attributes. Subsequently, 

parallel languages for these systems vary substantially, as vendors are (justifiably) concerned 

with maximizing performance for their products. One of the challenges for compilers and 

compiler-related tools is, given a machine-independent parallel language, to generate executable 

code for a variety of parallel computational modes, and to identify those specific modes for 

which the program is well-suited. This problem is even more difficult on a heterogeneous system 

[Fre91, FrS93], where different parallel modes and/or machines can be used to perform the 

segments of a single task. 

One type of a heterogeneous system is a mixed-mode machine, in which the processors are 

capable of operating in either the SIMD or MIMD modes of parallelism and can dynamically 

switch between modes at instruction-level granularity with generally negligible overhead, e.g., 

PASM [SiS94], Triton [PhW93], and OPSILA [AuB86]. The focus here is the use of mixed- 

mode machines to perform data-parallel algorithms, where the data is distributed among the 

processor/memory pairs of a parallel machine and all processors use the same code to operate on 

their local data [HiS86]. In MIMD mode, data-parallel algorithms are associated with SPMD 

(single program - multiple data) operation, where all processors are executing the same program, 

but are doing it asynchronously with respect to one another, i.e., each processor follows its own 

control path through its copy of the program [DaG88]. The relative execution times of the 

segments of an algorithm using the SIMD or SPMD modes of computation must be estimated to 

map a data-parallel algorithm onto a mixed-mode machine in an effective way. Given a data- 

parallel program written in a language whose syntax is mode-independent and empirical 

information about instruction characteristics and execution paths, the goal addressed here is to 
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make a static source-code based determination of the implementation that results in the optimal 

execution time on a mixed-mode machine. 
One aspect of current research in parallel optimization and analysis techniques is concerned 

with extending traditional compiler optimization techniques, including loop concurrentization, 

code hoisting, and common subexpression elimination, for parallel programs. Many 
conventional optimization techniques employed by serial compilers are applicable in parallel 
compilers; however, in some cases, traditional optimization approaches without proper analysis 
can produce erroneous results [MiP90]. There are a number of research efforts directed 
specifically towards improving execution time in a parallel environment by performing 
compile-time analysis of programs. In [GuB92], communication costs in a parallel program are 
analyzed as a function of array dimension and the number of available processors. A time-cost 
approach based on analysis and simulation is developed in [QiS91] to determine time-cost 
behavior of parallel computations based on parameters such as input, algorithm, data structure, 
execution overhead, and execution environment. In [DiZ92] a timing analysis is employed to 

allow compilers for barrier MIMD machines to eliminate a significant percentage of run-time 
synchronization. The goal of code-type profiling is to identify partitions of a program with 

similar computational requirements [Fre89]. An "optimal selection framework" is presented in 
[WaK92] as a model for determining the optimal configuration of a heterogeneous suite of 

supercomputers to perform each task in a given set of applications. 
One area where static source-code analysis may prove beneficial is in the execution of 

parallel algorithms in an environment capable of both SIMD and MIMD modes of parallelism. 
Heterogeneous systems exploit the diverse computational requirements of traditional 

supercomputing problems by the selection and use of different types of machines for the 
computation required [Fre91, FrS93, KhP93]. Typical examples of implementation studies 

using heterogeneous suites of machines are summarized in [Sun92]. Several studies [e.g., 
AuB87, BeK91, FiC91, GiW92] have examined the implementation of parallel programs in a 

mixed-mode machine, i.e., a machine that can operate in either the SIMD or MIMD mode of 

parallelism and can dynamically switch between modes at instruction-level granularity with 

generally negligible overhead. A common result from these studies is that cases exist where the 
execution time of a parallel application can be reduced by exploiting the mode of parallelism 

that best matches each portion of the program. 
Recent academic and commercial interest in parallel computing systems has increased 

activity in the development of unifying parallel programming models. New programming 

languages and refined models of programming for parallel machines form an area of research 

that benefits from this increased interest.   Some examples are "Refined C," CODE, and 
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SUPERB. The "Refined C" parallel language is developed in [DiK85] to provide programmers 

with a means of expressing algorithms for different parallel computers without imposing a 

specific parallel programming style. A computation-oriented display environment (CODE) is 

introduced in [BrA89] that encompasses most existing or proposed MIMD architectures and the 

programming systems related to them. The SUprenum ParallelizER Bonn (SUPERB) [ZiB88] is 
an interactive system for the semi-automatic transformation of FORTRAN 77 programs into 
MIMD and SIMD programs by using a catalog of parallelization transformations. 

Another approach in the development of unifying programming models is to provide 

languages that support multiple modes of parallelism. Examples of languages designed to 

support either the SIMD or SPMD modes of data-parallel programming include CM-Fortran 

[ChC92], HPF [HPF92], and Fortran-D [HiK91]. Other languages, such as CSL [BrT82], 

Hellena [AuB87], and ELP [NiS93], have been developed for machines that are capable of 

mixed-mode parallelism, and include language elements for both SIMD and SPMD (or MIMD) 
computation. These "mixed-mode" languages provide support for executing different portions 
of the same program in different modes (e.g., SIMD versus SPMD). CSL CSL (Computation 
Structures Language) is a PASCAL-like explicitly parallel job control language used on TRAC 
that supports the high-level specification and scheduling of SIMD and MIMD tasks. Hellena is 
an explicitly parallel preprocessed version of PASCAL for OPSILA that supports dynamic mode 
switching at the instruction level. An Explicit Language for Parallelism (ELP) is an example of 

a language whose goal is for all of the statements and constructs to have functionally equivalent 
SIMD and SPMD interpretations, allowing segments of the same program to be compiled for 

different parallel models. 
The development of mode-independent languages makes possible the incorporation of the 

decision-making process for selecting the appropriate parallel mode (heretofore performed by 
knowledgeable programmers) into the realm of the parallel code compiler. Toward that goal, 

this study proposes a framework for the static source-code based analysis of execution time for 

data-parallel algorithms on a mixed-mode machine. These algorithms are assumed to be written 

in a mode-independent language, and to be implemented in an SIMD/SPMD environment. By 
establishing this framework, the three elements described above, compile-time analysis, use of 
different parallel modes, and unifying programming models, are brought together to provide a 
basis for writing efficient parallel algorithms. The technique involves transforming the program 
into an SIMD/SPMD trade-off tree, whose structure represents the scope levels within the 
program. Information at the leaf nodes of the tree, representing blocks of code in the program, is 

then combined using rules to arrive at decisions for the best parallel mode in which to implement 

each portion of the program. 
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To illustrate underlying concepts for the methods presented, the techniques are first 
developed for the case where a parallel program is to be implemented in either pure SMD mode 
or pure SPMD mode (distributed memory machines are assumed). The more general case of a 
single program that employs both modes during the course of execution on a mixed-mode 
machine is then considered. For ease of presentation, the programming model presented here is 

restricted to basic processor operations and elementary control-flow constructs. Statistical 
information about individual operation execution times and paths of execution through a parallel 
program is assumed. This basic model can be enhanced to include other language constructs. 

The techniques presented here are directly applicable to the analysis of programs for 
implementation in a mixed-mode system. Furthermore, they provide a basis for studying the 
more general problem of optimizing resources in a multiple-machine heterogeneous computing 

environment. A secondary goal of this study is to indicate language, algorithm, and machine 

characteristics that must be researched to learn how to provide the information needed to obtain 

an optimal assignment of parallel modes to program segments. 
The system model and representative mode-independent language assumed in later sections 

are described in Subsection 3.2. Many of the reasons why different parallel implementations 
exhibit disparate execution time performances are the result of inherent differences in parallel 
modes. These differences are examined in Subsection 3.3. In Subsection 3.4, techniques are 
presented for choosing the single-mode implementation of a parallel program that minimizes 
execution time. Basic definitions used throughout the rest of the section are included in 
Subsection 3.4.2, and the single-mode framework itself is developed in Subsection 3.4.3 using a 

simplified execution-time model for machine-level operations. In Subsection 3.4.4, a more 

refined model for operation execution times using probabilistic analysis is considered, and in 

Subsection 3.4.5 the effect of interaction between program segments is explored. The single- 

mode analysis of Subsection 3.4 introduces many concepts that are useful in Subsection 3.5. In 
Subsection 3.5.1, some of the challenges associated with mode-independent languages are 

considered by examining how programs written in a mode-independent manner can be executed 
on a mixed-mode machine. The single-mode analysis of Subsection 3.4 is expanded to find an 

efficient mixed-mode implementation in Subsection 3.5.2. Subsections 3.5.3 and 3.5.4 introduce 
a method to determine the minimum execution time in an SIMD/SPMD mixed-mode machine 
implementation through the use of multistage optimization techniques. Concluding remarks and 

areas for further research are summarized in Subsection 3.6. 
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3.2. Machine and Language Model 

The mixed-mode machine model assumes a physically distributed memory. Thus, each 

processor is paired with a memory, forming a processing element (PE). It is assumed for 

mixed-mode machines that all PEs are in the same mode at any point in time (i.e., SIMD versus 

MIMD). 
In the SIMD model used here, the control unit (CU) enqueues instructions to be performed 

on the PEs into an instruction queue. The PEs then fetch instructions from the instruction queue 

independently of CU operation. Thus, in SIMD mode, the CU can overlap its operations with 

those of the PEs. 
One way of programming machines that are capable of mixed-mode parallelism is by using 

a mode-independent language, i.e., a language whose syntactic elements have interpretations 

under more than one mode of parallelism. An example of a mode-independent language is the 

Explicit Language for Parallelism (ELP), under development at Purdue University [NiS93]. 

ELP provides constructs for SIMD, MIMD, and mixed-mode parallelism. The ELP syntax is 
based on C, and allows the programmer to specify the SIMD, MIMD, and SPMD modes of 
parallelism within a program. Although ELP contains specifiers for full MIMD mode 
processing, this section focuses on SIMD and SPMD modes only. A goal of ELP is to provide 
uniformity with respect to the SIMD and SPMD modes of parallelism by having interpretations 
for the syntax within both of these modes that are identical in semantics. This is an important 

characteristic because it allows a data-parallel algorithm to be coded in a mode-independent 

manner, producing a data-parallel program for which: (1) only SIMD code is generated, (2) only 
SPMD code is generated, or (3) execution mode specifiers can be added to facilitate mixed-mode 

experimentation. 
ELP associates with each variable defined in a program a variable class. A variable defined 

to be of class mono always has a single value with respect to all PEs, independent of execution 

mode; whereas a variable defined to be of class poly can have different values in each PE, 

independent of execution mode. Each mono variable has storage allocated for it on the CU and 

on all PEs. If a mono variable is referenced while in SIMD mode, its CU storage is active. If a 

mono variable is referenced while in SPMD mode, its PE storage is active and all PE copies of 
the mono variable will have the same value. For variables defined to be poly, each PE has its 

own copy with its own value, independent of execution mode. 
In SIMD mode, operations on mono variables indicate work to be done on the CU, and they 

permit CU/PE overlap to be explicitly specified. This, in turn, allows the user to experiment 
with load balancing between the CU and the PEs. In SPMD mode, mono variables can be used 
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to force if, while, do, and for statements on different PEs to execute in the same fashion 

on all PEs; for example, mono variables could be used as the index variable and as the common 
upper bound for a for loop with all PEs. All PEs must execute the same instructions, but not 

necessarily at the same time (as in SIMD mode). Thus, mono variables in ELP are guaranteed to 
have the same value spatially, but not temporally. This spatial congruency is enforced 

syntactically by the ELP compiler. Mono variables also permit other SPMD operations to be 

performed in an identical fashion across all PEs, such as having each PE access the same 

element of an array. 
In the assumed model, when changing between SIMD mode and SPMD mode, only the 

source of the instructions (control) is changed between the CU and each PE's local memory, 
respectively. In both the SIMD and SPMD modes of execution, the same local memory and 
registers are used at each PE to store poly variables. Thus, mode changes in themselves do not 
cause a need for data transfers except for mono variables, the time for which is assumed to be 
relatively negligible. A more detailed description of the ELP language and compiler can be 

found in [NiS93]. 

3.3. Parallel Performance Issues 

There are trade-offs that exist between the SIMD and MIMD modes of parallelism that 

explain why some sequences of instructions are better performed in one mode than in the other 
[BeS91, SiA92]. Some of the advantages and disadvantages of each mode are summarized here. 

Conditional statements in the synchronous execution of an SIMD program can introduce 

serialization. Consider an if-A-then-B-else-C statement. Let the conditional test A depend on 
PE data. In some PEs, A is true and in others false. Those PEs where A is false are disabled 

(masked off) during the execution of clause B. Once B has executed, the PEs where A is true are 

disabled and the PEs where A is false enabled. C is then executed. This serializes the execution 

of B and C. Conversely, in MIMD mode those PEs where A is true can execute B while the 
other PEs execute C. In MIMD mode, the maximum time to execute the if-then-else statement 

in a PE is approximately TA + max(TB,Tc), while in SIMD mode the time would be 
approximately TA + TB + Tc (where a PE is idle for either TB or Tc). Thus, in general, MIMD 

mode is more effective for executing conditional statements. 
Another distinction between SIMD mode and MIMD mode pertains to synchronization 

overhead. In SIMD mode, the synchronization of program execution is implicit, because there is 
a single thread of control. However, when synchronization of program execution is required 
among PEs in MIMD mode, explicit synchronization mechanisms, such as semaphores or 
barriers, must be employed in the parallel program. Thus, synchronization costs are greater for 
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MIMD mode. One benefit of implicit PE synchronization becomes apparent when inter-PE data 
transfers are needed. In SIMD mode, when one PE sends data to another PE, all enabled PEs 

send data. Therefore, the "send" and "receive" commands are implicitly synchronized. 
Because all enabled PEs follow the same single instruction stream, each PE knows from which 

PE the message has been received and for what use the message is intended. Conversely, MIMD 

mode programs are executed asynchronously among all PEs. As a result, the PEs must execute 
explicit synchronization and identification protocols for each inter-PE transfer. While the details 

of the inter-PE transfer protocol in both SIMD and MIMD mode are implementation dependent, 

there is generally more overhead associated with MIMD mode inter-PE transfers. Like the 

synchronization overhead described above, this protocol overhead is a cost of the flexibility of 

programming in MIMD mode. 

In SIMD mode, the CU can overlap its operations with those of the PEs. For example, the 

CU can perform the increment and compare operations on scalar-valued loop control variables, 

while the PEs execute the loop body. Furthermore, any operations common to all PEs, such as 
local array address calculations, can be performed in the CU while the PEs are performing other 
computations. In MIMD mode, CU/PE overlap does not occur, and the PEs must perform all of 
the instructions. 

It is possible that the execution time of an instruction is data dependent, taking a variable 
length of time to perform on each PE. Such variable-time instructions execute at least as 

efficiently in MIMD mode as in SIMD mode. This is illustrated in Figure 3.1. In SIMD mode, 
PEs can execute the next instruction only after all PEs have completed the current instruction. 

Therefore, each instruction takes as long as it takes the PE that executes it most slowly. In 

MIMD mode, the PEs are not synchronized and each PE executes the next instruction 

independently. Let Ty- represent the time it takes instruction i to execute in PE j. Assume that 

Ty in SIMD mode is equal to Ty- in MIMD mode. The execution time in SIMD mode of a 

sequence of variable-time instructions can be expressed as £max(Tjj), for all i in the sequence. 
i   J 

The time to perform the same sequence of instructions in MIMD mode can be expressed in terms 
of Tjj as max(]£Tij) (Figure 3.1).  Because max(£Ty) < £max(Ty), the time to execute the 

j     i j     i i   j 

sequence of variable-time instructions in MIMD mode is less than or equal to the time to execute 

the same sequence of instructions in SIMD mode. Thus, because of this "sum of maxs" versus 

"max of sums" effect, MIMD mode is more appropriate for executing sequences of variable- 

time instructions. 

The "sum of maxs" versus "max of sums" property is not limited to single instructions 
whose execution time is data dependent. In mixed-mode, an entire block of instructions whose 
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execution time varies on different PEs due to data-conditional statements and/or variable-time 
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Figure 3.1:     Execution of variable-time instructions in SIMD and MIMD mode. 

instructions may exhibit the same performance characteristics on a "macro" level if 
synchronization is required after the block. Consider a loop body with two blocks A and B, such 
that the first block is best executed in MIMD and the second block is best implemented in SIMD. 
Because all PEs must synchronize after block A, before any PE can go on to block B, an added 

synchronization cost is encountered during each iteration of the loop. Consequently, the time 

penalty for synchronizing with the other PEs may outweigh the benefit of implementing block A 
in SIMD; i.e., the overall execution time may possibly be reduced by implementing the loop 

entirely in MIMD mode [BeK91]. The former case corresponds to the "sum of maxs" and the 

latter to the "max of sums." 
From the discussion above it is evident that there are trade-offs between operating in SIMD 

mode and operating in MIMD mode. Although it is often clear in which mode a sequence of 
instructions should be implemented, this is not the case when counteracting trade-offs are 
involved. For example, a data-conditional clause may contain instructions that perform network 

transfers. Choosing the best mode of operation is not straightforward; i.e., conditional 

statements should be performed in MIMD mode while network transfers should be performed in 
SIMD mode. Studies examining the implementation of algorithms on mixed-mode machines 

have been performed [e.g., AuB87, BeK91, BrC90, FiC91, GiW92]. One long-term goal of 
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these efforts has been to increase the understanding needed to develop automatic, static source- 

code based determination of parallel modes for algorithm segments. In Subsections 3.4 and 3.5, 

a methodology for analyzing data-parallel programs to do this is examined. 
By employing the methodology developed in Subsections 3.4 and 3.5, quantifications of all 

of the trade-offs discussed in this subsection can be incorporated in a straightforward manner, 

except for the "sum of maxs" versus "max of sums" trade-off, as well as the "macro" effect 
of this trade-off. Accurately modeling this trade-off is complex and replete with subtle nuances. 

In Subsection 3.4.4, a probabilistic basis for studying this aspect of SIMD/SPMD mode 

comparison is outlined. 

3.4. Single-Mode Selection 

3.4.1. Overview of Single-Mode Selection 

A methodology is presented here to estimate the execution time of a data-parallel 

algorithm, written in a mode-independent language, that can be implemented in either the purely 

SIMD or purely SPMD mode of parallelism. This framework can be used to select the optimal 

single-mode for a mixed-mode parallel computer. Many of the concepts developed in this 

section are needed for the analysis in Subsection 3.5, where the use of both SIMD and SPMD 

within the same program is considered. 

3.4.2. Assumptions and Definitions 

Applications for this study are assumed to be data parallel [HiS86], i.e., the data for a 

program is distributed among the PEs, and the algorithm exhibits a high degree of uniformity 

across the data [Jam87]. This is in contrast to function (or control) parallelism [TuR88], where 

each PE executes a unique program. 
Syntactic elements of the mode-independent language in which the algorithm is coded will 

be referred to as operations. Operations in a language represent the most explicit level at which 

program representation is identical for each mode of parallelism. Consider an operand fetch for 
a mono variable for use in a calculation that must be performed on the PEs. In SPMD mode, the 

operation is a simple fetch, because mono variables are stored on the PEs; however, in SIMD 

mode the mono variables are stored on the CU, and must be transferred to the PEs through the 

instruction queue or via a separate data bus. An operand fetch of a mono variable would 

therefore be considered a single operation for which execution-time information is known for 
both the SIMD and SPMD modes, even though different multiple machine level commands are 

required to perform the operation under each mode. 
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In general, the execution time of an operation may be fixed (and known) or data dependent. 

For the case of data-dependent operations, a probabilistic model is introduced in Subsection 

3.4.4 to estimate the expected execution time for a block of operations. It is assumed that the 

necessary statistical information can be estimated empirically and is known a priori. 
Even if the target architecture for both SIMD and SPMD implementations is virtually 

identical, as is typically the case for a mixed-mode machine, execution times of the same 
operation under SIMD and SPMD modes may differ significantly. For example, the expected 

time required to perform the mono operand fetch described in a previous paragraph would 

generally be greater under SIMD mode than under SPMD mode. 
To estimate the overall execution time of a parallel program, code is examined in terms of 

constructs and blocks. Constructs include control constructs, such as looping structures and 

function calls, and data-conditional constructs, such as if-then-else and case 

statements. For the analysis here, the set of permissible control constructs is restricted to for 
loops for which the number of iterations, Q, is assumed to be known at compile time. 

Furthermore, because programs under consideration exhibit characteristics that make them 

candidates for implementation in SIMD mode (in which all PEs iterate the same number of 
times) it is also assumed that all PEs executing a loop in SPMD mode iterate the same number of 
times. In a practical sense, the expected value for Q may be obtained directly from the program 
source, either directly as a constant in the program, or as information provided to the compiler 
by the programmer in the form of a compiler directive. Alternatively, a sufficiently accurate 
value for Q might be obtained empirically by executing a prototype version of the parallel 

program on sample data sets. While time-consuming, this empirical approach may be 

reasonable for production codes. 
The set of data-conditional constructs is limited here to if-then-else constructs, 

where all PEs may or may not perform the same blocks of code, depending on the outcome of a 
condition test of local PE data. It is assumed that the necessary statistical information regarding 
the probability that a branch will be taken can be estimated empirically or is obtainable by 

compiler directives provided by the programmer. 
Future work will examine relaxing the restrictions to include other constructs, e.g., while 

and case statements. It will also investigate methods for obtaining the statistical information 

assumed to be known here, and for eliminating the assumption that all PEs iterate the same 

number of times. 
Code blocks are the parallel equivalent of the serial basic blocks described in [AhS86]. 

Blocks of code are identified by their leading statements, called leaders. The first statement in a 

program is a leader, any statement that becomes the target of a conditional or unconditional 
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branch at the machine code level is a leader, and any statement that follows a conditional branch 

at the machine code level is a leader. In the approach described here, an additional constraint is 

used in the determination of blocks: any statement requiring synchronization and any statement 

that follows a statement requiring a synchronization is a leader, and any statement requiring an 
inter-PE data transfer and any statement that follows an inter-PE data transfer is a leader. This is 
an important distinction from the serial definition of a basic block in [AhS86], because 
synchronization points within an algorithm indicate when PEs are idle, waiting for one or more 

other PEs to arrive at the synchronization point. 
Blocks consist of either pure scalar code or pure parallel code. Scalar blocks consist of 

instructions that, if performed in SIMD mode, would be executed on the CU (i.e., code that 

references only mono-valued variables). Parallel blocks consist of instructions to be performed 

on the PEs in SIMD mode (i.e., code that includes a reference to poly-valued variables). As an 

example, consider the execution of the loop for i=l to n in SIMD mode, where both i 
and n are mono-valued variables, and where the loop body contains no references to mono- 
valued variables. One way to implement the loop is for the CU to perform an end-of-loop test, 
enqueue the appropriate SIMD instruction blocks to be broadcast to the PEs, perform an 
induction step, and branch back to the test. In this case, the PE instructions forming the body of 
the loop would be considered parallel blocks, while the increment and test code would each form 
a scalar block. Even if that portion of the program were to be executed in SPMD mode, the 

block definitions are the same as for the SIMD case. 

3.4.3. Description of the Single-Mode Selection Technique 

To determine the best single mode for a given program, the program is first transformed 

into a flow-analysis tree, which is a tree whose structure represents the scope levels within the 

algorithm. The flow-analysis tree is then used to create an SIMD/SPMD trade-off tree. For both 

trees, the leaf nodes of the tree represent parallel and scalar code blocks, and the non-leaf nodes 
correspond to control constructs and data-conditional constructs. The root node represents the 
scope of the entire program. Initially, only information about the execution times of the leaf 
nodes is assumed to be known. The proposed technique involves combining this known 
information to arrive at SIMD and SPMD execution times for the intermediate nodes. The 

optimal mode determined for the root node represents the "best" mode for the entire program. 

In this section, it is assumed that both the SIMD and SPMD execution times associated with 
each leaf node are known constants. In Subsection 3.4.4, methods are given for estimating 

SIMD and SPMD execution times for leaf nodes under the assumption that the execution times 

of the operations are random quantities with known probability distributions. 
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block_a 
for (...) { 
block_b 
if (...) { 
block_c 

} else { 
block_d 
block_e 

} 
block_f 

} 

entire scope 
of program 

for () 

block a 

:> block b 

block d block e 

Figure 3.2:     Example preliminary flow-analysis tree. 

Figure 3.2 illustrates how a program is transformed into a preliminary flow-analysis tree. 

The program on the left side of the figure is composed of two elements, block_a and a for 
loop. Thus, the root node has two children, one for each of the elements. The for loop is 
composed of block_b, an i f construct, and block_f, each of which is a child of the for 
node. For the if construct, the then clause is a single block (block_c), and is placed in the 
preliminary flow-analysis tree as a child of the if node. However, because the else clause is 
composed of block_d and block_e, an interior node representing the else clause is 

formed, whose children are the leaves block_d and block_e in Figure 3.2. At each level 
in the tree, the sibling blocks are represented in the same order (left to right) as they appear in 

the program. This order dependence 
becomes important for the analysis of juxtaposed nodes and the use of SIMD/SPMD operations 

together, presented in Subsection 3.4.5 and Subsection 3.5, respectively. 
To include the overhead required for for and if constructs, it is necessary to add nodes 

to the preliminary flow-analysis tree. This is illustrated for the previous example in Figure 3.3. 
Associated with each for loop is a block required for initializing induction variables, and 

another block required to execute the induction step for the loop, perform an end-of-loop test, 

and conditionally branch back to the top of the loop. Because the initialization block is executed 

only once, it is represented as a separate child of the root node in Figure 3.3, labeled 

for_init. Because the increment, test, and conditional branch are executed during each 
iteration of the loop, they are represented by a single block as the last child of the  for node in 
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entire scope 
of program 

block  a   for  init 
for () 

block_b if_test 

then 

block c post_then block d block e post_else 

Figure 3.3:     Final flow-analysis tree after modification to include overhead for for and  if 
constructs. 

Figure 3.3, labeled for_test. 
Associated with each if construct is a conditional test (if_test in Figure 3.3), 

performed before either the then clause or the else clause is executed. There is also special 
processing required at the end of the then clause (post_then in Figure 3.3). In SPMD 
mode, this is an unconditional branch performed on each of the PEs for which the condition is 

true. In SIMD mode, this corresponds to disabling those PEs for which the condition is true and 

enabling those PEs for which the condition is false (with nested conditionals handled 

appropriately). Similarly, at the end of the else clause in SIMD mode, those PEs for which 
the condition is true must be re-enabled (post_else in Figure 3.3). Because there is no 
corresponding operation required in SPMD, the cost for executing the post_else in SPMD 

mode is 0. Because the then clause of the if construct is now composed of two blocks, an 
interior node is added representing the then clause, with leaves block_c and post_then 

as children. 
After the final flow-analysis tree is formed, the following steps are performed to convert it 

to an SIMD/SPMD trade-off tree, as illustrated in Figure 3.4: 
1) For each leaf / of the tree, assign an ordered pair (T^0,^™0), which represents the 

times for executing the block associated with leaf / in SIMD mode and SPMD mode, 

respectively. 
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entire scope 
of program 

for  i=l  to  10 

Pthen =0-5 
"then = "else = " 

(2,4)       (10,10) 

else 

(8,15)        (2,1)   (3,5)(6,3)(2,0) 

Figure 3.4:     SIMD/SPMD trade-off tree for the flow-analysis tree in Figure 3.3. 

Steps 2 and 3 are then performed for each non-leaf node in the order of a depth-first traversal of 

the tree. 
2) For each non-leaf node d corresponding to a data-conditional construct, assign the ordered 

pair (TJ/IMD,T§PMD), which represents the times for executing the data-conditional 

construct at node d, including the time to execute all the children of d in SIMD mode and 

SPMD mode, respectively. To estimate the values of the ordered pair (T^^T^p10), 

consider how data conditionals are performed in SIMD and SPMD modes. In SIMD 

mode, if the conditional test for an if-then-else is true for all PEs, then only the PE 

instructions that belong to the then clause need to be broadcast to the PEs. Similarly, if 

the conditional test is false for all PEs, only the else clause needs to be broadcast. 

However, if the condition is true for some PEs and false for others, then the PE 

instructions for both the then and else clauses must be broadcast, effectively 

serializing the two clauses, as discussed in Subsection 3.3. Let ffthen denote the 

probability that a PE executes the then clause, let Pthen denote the probability that all 

PEs execute the then clause, and let Peise denote the probability that all PEs execute the 

else clause. For the special case when the outcomes of the conditional tests are mutually 

independent among N PEs, P,hen = (Pthen)N- In general however, the assumption of 

mutual independence cannot be made, and therefore Pthen andren must be determined 

separately. The values of Pthen, Peise> and P then can be estimated in a similar manner to the 

value of Q as discussed in Subsection 3.4.1  (e.g., empirical data and/or compiler 

directives). LetT„ SIMD be the execution time in SIMD associated with node u, and let 
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TS1MD _ v T
S1MU 

all children u 
of then clause 

and 

T-SIMD _ v        rpSIMD 
dSe       ~    „    1.-W u 

all children u 
of else clause 

Then the expected time required to perform the if-then-else in SIMD mode can be 

estimated by 

T^D = P,hen«D + PelseTf^0 + d " Pthen " PelseX«0 + Te
S^D) 

= (1 - Pelse)Tthen    + (1 - Pthen)Telse     • 

In contrast to SIMD mode, in SPMD mode each PE independently follows its own control 

path through the program. The then clause is executed on those PEs where the 

condition is true, and the else clause is executed on those PEs where the condition is 

false. Let T^PMD be the execution time in SPMD associated with node u, and let 

SPMD _ £        jSPMD 
all children u 
of then clause 

T.SFMD _ v TS 
Athen     - f lu 

all children u 

and 

TSPMD _ y        TSPMD 
dSe        ~    11    I.-W " all children u 

of else clause 

Then the expected time to perform the conditional construct in SPMD mode is 

TSPMD _ _       TSPMD  , /i      _       \TSPMD ld -Pthenlüien     + U -Püien)1 else      • 

The estimates for Tjjj™0 and T^PMD derived above are expected execution times and will 
not necessarily be the actual (observed) times for any particular execution. To clarify the 

meaning and use of the formulas for T%mD and TfMD, consider a simple example. 

Assume there is a sequence of m data conditionals with expected execution times 
(TSIMD) TSPMD)f  (TSMD) TSPMDX   . . .    ^SINTC   TSPMD}     TQ simpUfy ±& iUusttation, 

assume that /?then = 0.5 for all m conditionals, that Tg™ = T^D = T^D = 

Teke40 = T> and that the conditional tests are mutually independent, which implies that 

Pthen = (Pthen)N and Peise = (1 -p\hen)N- Assuming N is moderately large, the formula for 
the expected execution time in SIMD mode yields T^MD = 2T, ie {1 • • • m}. The formula 

for the expected execution time in SPMD mode yields T^PMD = T, ie{l • • -m}. The 

expected execution time for executing all m conditionals in SIMD mode is therefore 
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approximately 2mT, while the expected execution time for executing all m conditionals in 

SPMD mode is ml. 
3) For each non-leaf node c corresponding to a control construct, assign the ordered pair 

(T?MD,T?PMD), which represents the times for executing the control construct at node c, 

including the time to execute all the children of c in SIMD mode and SPMD mode, 

respectively. In SPMD mode, the control construct is performed entirely on the PEs. In 
SIMD mode, the control steps are performed on the CU, and then the PE instructions that 
form the loop body are placed in the instruction queue to be broadcast to the PEs. For 
SIMD, significant improvement in execution time can be obtained by overlapping the 
execution of operations on the CU and the PEs, and the need for adding this to the existing 
model in the future is discussed in Subsection 3.4.5. Disregarding for the moment the 

effects of CU/PE overlap, the values of the ordered pair (T^mD,TfMD) can be estimated 

by 

TSIMD _ Q 

TSPMD=Q 

2      jSIMD 1 

all children 
«of c 

£      TSPMD 1 

all children 
uof c 

where Q is the number of iterations in the construct and is assumed to be known, as 

discussed in Subsection 3.4.2. 
4)      For the node representing the root, assign the ordered pair (Troot  >Troot   )» which 

represents the times for executing the entire program in SIMD mode and SPMD mode, 

respectively, where 
TSIMD _      v     TSIMD 
A root    —       ■"       x u 

all children 
u of root 

and 

TSPMD _        y       TSPMD 1 root     —        ■"       A« 
all children 
u of root 

If 7r™D * Tfo^D , then implement the algorithm in SPMD mode, else implement it in 

SIMD mode. 
As an example, consider the SIMD/SPMD trade-off tree in Figure 3.4, which corresponds 

to the the flow-analysis tree in Figure 3.3. In the tree, the ordered pairs (T^0, jfmD) are 

assigned to each of the leaf nodes. For the example, let Q = 10, p then = 0.5, and let Pthen = Peise 
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= 0. The analysis algorithm performs a depth-first traversal beginning at the root node. When 

the algorithm considers the then clause, it assigns the ordered pair (T|j™D, T^n0) = 

(8 + 2,15 + 1)= (10, 16). Similarly, for the else clause, (T^D, T^D) = 
(3 + 6 + 2, 5 + 3 + 0)= (11, 8). Then the algorithm considers the if node, and assigns the 
ordered pair (TJP10, TfMD) = (10 + 11, 0.5 * 16 + 0.5 * 8) = (21, 12). At the for node, the 

algorithm assigns the ordered pair 01™°» T*PMD) 
(10x(12 + 3 + 21 +2+ 10), 10x(8 + 4+ 12 + 4+ 10)) = (480,380). For the root node, the 
ordered pair (7 + 5 + 480, 12 + 6 + 380) = (492,398) is assigned, indicating that SPMD mode is 

best suited for this program. 

3.4.4. A Probabilistic Model for Data-Dependent Operation Execution Times 

The technique of Subsection 3.4.3 for estimating the execution time of a program operating 

in either SIMD mode or SPMD mode assumes that the execution times TfmD and TfPMD are 

known constants for each leaf node / in the flow-analysis tree. While the leaf blocks do not 
contain conditional or control statements, times for these blocks may be data dependent if the 
block includes instructions whose execution times are data dependent (e.g., floating point 
addition). In this subsection, a probabilistic model to account for the uncertainty in the 
execution times of the blocks of code associated with the leaf nodes of the flow-analysis tree is 

considered. 
The model presented here can be used as a basis for describing the general behavior of code 

segments whose execution time is data dependent. The model does not attempt to completely 

describe program behavior. Instead, it seeks to estimate expected execution times for individual 

code segments. Of particular interest is the difference between the expected execution time of a 

parallel code block across all PEs and the expected execution time of the same block for the PE 
which takes the most time to complete execution of the block. This difference represents a cost 

associated with performing a synchronization across PEs. 
Let k; denote the number of operations in the block of code associated with the leaf node /. 

Label the operations in the block of code associated with the leaf node / as 0,l,...,k/-l. For each 
leaf node /, define an array of continuous random variables denoted by x\j, i e {0,l,...,k/-l}, 
;' G {0,1,...,N-1}, where N is the number of PEs executing that block. The value of the random 
variable x\j corresponds to the execution time of operation i executing on PE j. In a mixed- 

mode machine, where all of the PEs are of the same architecture, it may be reasonable to assume 
that the probability distribution of the random variable x'y- is the same, regardless of the mode of 

execution of operation i. Examples of operations whose times will differ include statements that 

require the accessing of mono variables, for reasons discussed earlier, and inter-PE transfers, 

38 



where the software overhead for SPMD is much greater than for SIMD. To ease the notational 
burden, this possible distinction in the distribution of X\j for SIMD and SPMD is not explicitly 

indicated, but implied. 

The expected value of the random variable X\j, i.e., E xfy , is assumed to exist and 

denoted by \i\j. The variance of the random variable X\j, i.e., E (X|y-4-)2], 
is 

is assumed to 

exist and is denoted by (c\j)2. Recall that the expected value of a function of a continuous 
oo 

=   j g(x)fx(x)dx, where fx(x) is the random variable X, say g(X), is defined by E 8(X) 

probability density function for the random variable X [Pap84]. 
For the purpose of this section, it is assumed that the random variables X\j are mutually 

independent for all i e {0,l,...,k/-l}, j e {0,1,...,N-1}. Furthermore, it is assumed that for 
each j e {0,l,...,k;-l}, the random variables Xjy are independent and identically distributed for 
all j 6 {0,1,...,N-1}. Thus, for each value of /, \i\j will be denoted as jxf and (of,)2 will be 

denoted as (a[)2. 

The random variable for the execution time associated with implementing a block of k/ 
operations in SIMD mode is defined by the following transformation (the "sum of the maxs" 

referred to in Subsection 3.3): 

XSIMD_ v  f      max       {Xj;}] 
^—~ A L/-{o.i N-i}  ,jl\- 

The random variable for the execution time associated with implementing a block of k/ 

operations in SPMD mode is defined by the following transformation (the "max of the sums" 

referred to in Subsection 3.3): 

fk,-l 
XfPMD =       max 
      je {0,1,...,N-1} So*» 

The above formula assumes that the PEs are synchronized both when they enter and exit the 
block associated with leaf node /. If the block is preceded and/or followed by a SPMD block 

that does not require synchronization, then this formula represents a worst case estimate. 

If the probability distribution for each X\j is assumed to be known, then it is possible 
(although tedious) to determine the exact probability distribution for both Xp**0 and XfPMD. 

For the purposes of the present section, only bounds for the expected values of these random 

variables will be determined. Upper bounds for E Xf^0   and E XfPMD   are derived next. 

The expected value of Xf™D is given by: 
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XSIMDJ=E 
kr-1 

I       max      {X{;} 
i=oy€(o,i,....N-ij 

(1) 

By the linearity of the E[ ] operation, it follows that 

P [VSIMD] _ v F [      max      {X{/}1 
L '      J"«i   y«I0ii N-i}1   " J 

Because for each i e {0,l,...,k/-l} the random variables XJy- are independent and identically 

distributed with mean jij and variance (of)2 for all j e {0,1,...,N-1}, a standard result from 

order statistics [Dav81] can be applied to bound each term in the summation of Equation 1. In 

particular, 

E[      max       {Xi,}]<nj + aj    (N-1) 11 |/« {0,1 N-1J       J   J     Pt ' (2N-1)1/2 ' 

Thus, it follows that 

E[xPMD'UkzVi+    (N"^ 
L J    i=o        GN-l)17 

kr-l 

j'=0 (2N-1)1/2 

Next, an upper bound for E X/PMD    is derived.   Define S{-   : 

j e {0,1,...,N-1}. Thus, the random variable XfPMD can be expressed as 

(2) 

k,-i 
2   X ,-, for each 

j=0 
L«; 

rSPMD max 
ye{0,l,...,N-l} 

{Sj}. 

Because of the independence assumption, the expected value and variance of the random 
k,-l k,-l 

variables S{ are given by   E   \i\ and   Z   (of)2, respectively.  The upper bound result from 
j=0 »=o 

[Dav81] can be applied to bound E 

E 

XSPMD , as follows: 

YSPMD (N-l) k,-i 

i=o        (2N-1)1/2 

»1 

k,-l 
l\2 £ (a ) 

<=o 

1/2 

(3) 

»1 The upper bounds for E xfmD and E xfPMD could be used to approximate the 

execution times T^0 and TfPMD for large N, assumed to be given constants in the previous 

subsection. Determining the actual distributions for the random variables xfmD and xfPMD 

could give a better indication of what the fundamental trade-offs are between the SIMD and 

SPMD modes. For instance, the exact value for the mean and variance of xfmD and xfPMD 

could be computed. In certain applications, a moderate mean execution time with an associated 

small variance may be preferred over a smaller mean execution time with a relatively large 
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variance. 
The above difference between SIMD and SPMD involves just one aspect of the relationship 

between these two modes of parallelism. There are other trade-offs, as discussed in Subsection 

3.3, that must also be included in a determination of the best mode to use. 

3.4.5. Effects of Block Juxtaposition 

The total execution time for all children of a non-leaf node is estimated in Subsection 3.4.3 

as the sum of the associated execution times. This estimate can be sharpened by considering the 

effects of juxtaposing blocks of code in either the SIMD or SPMD mode. 

Consider first the case of estimating the total SIMD execution time for several sibling 

blocks. One factor that can have a significant effect is the overlapped execution of operations on 

the CU and PEs while in SIMD mode. A detailed analysis and explanation of CU/PE overlap, 

such as that presented in [KiN91], is beyond the scope of this section; however, the effect of 

CU/PE overlap can be accounted for in the present framework by using a simplified model. 

Consider a sequence of m blocks of code, say Bj, B^i, ... Bj+m.where each block is a pure 

parallel code block or pure scalar code block. Let Ov(Bj,Bj+1> • • • Bj+m), denote the amount of 

execution time overlap among the blocks. Thus, the total execution time for a sequence of m 

such blocks in SIMD mode is given by 

j+m 
Tj,...,j+m = S Ti - Ov(Bj,..., Bj+n,) 

which represents the difference between the sum of the expected execution times of each of the 

blocks and the CU/PE overlap as a result of the juxtaposition of those blocks in SIMD mode. 

PEs CU 

time 

0 

1 a 

2 

1 b 

4 
5     __. c 

6    __. 

Figure 3.5:     Overlapped execution of CU and PE instructions. 

As an example, consider Figure 3.5, where two parallel blocks,   a and   c, are to be 

performed on the PEs, and block b is to be performed on the CU in SIMD mode. Blocks a and 
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b require a total of 5 time units; however, the CU and the PEs overlap execution for one time 

unit. Similarly, although blocks b and c require a combined total of 6 time units, they also 

overlap execution for one time unit. For this example, Ov(a,b,c) = 2, Ta, bf c = Ta + Tb + 

Tc - Ov(a,b,c) = (2 + 3 + 3 - 2) = 6. 
In SPMD mode, PEs may need to perform some type of synchronization at the end of a 

block. The cost of synchronizing is related to the amount of processing performed since the 

previous synchronization. 
For this section, TJ;^J£m and Tf,^m are approximated by the sum of the (known or 

j+m 

estimated) individual block execution times, i.e., Tf^?j+m =    Z T?mD and T**¥.%„ = 

j+m 
Z xfPMD. Extending the probabilistic model of Subsection 3.4.4 to describe the probability 

distributions of the execution times of all types of leaf and non-leaf nodes is possible but not 

straightforward. 
For example, consider the case of a sequence of two or more nodes to be implemented in 

SPMD mode. If no synchronization is required between nodes, then a smaller than expected 

execution time may result, because of the effect of the macro-level "sum of maxs" versus "max 
of sums" property described in Subsection 3.3. For a practical implementation, an extension of 

the concepts presented in Subsection 3.4.4 is needed. 

3.4.6. Summary of Single-Mode Model 

In this section, a model for determining the single mode of parallelism for which execution 

time is minimized has been described. Beginning with a program written in a mode-independent 

language, and given basic information about the execution time of the operations that are 

included in the language, useful execution time information for blocks within the program can 
be estimated. Employing a set of rules, block information is used to determine how fast a 

program will execute under either the SIMD or SPMD mode of parallel processing. This 

comparison technique can be used at compile time to determine which single-mode 
implementation on a mixed-mode machine would result in the minimum execution time. 

3.5. Mixed-Mode Analysis 

3.5.1. Assumptions and Definitions 

In mixed-mode systems, it is possible for some portions of a single parallel algorithm to be 

implemented in SIMD mode, and other portions of the same program to be executed in SPMD 
mode. The programmer can select the mode of parallelism best-suited for each segment of the 
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program. The analysis of single-mode parallel programs developed in the previous subsection is 
expanded here for the implementation of data-parallel programs in SIMD/SPMD mixed-mode 

environments. In this section, an algorithm that may use both SIMD and SPMD modes will be 

referred as a mixed-algorithm. 
The execution time estimation technique for mixed-algorithm programs is a generalization 

of the single-mode case. For the analysis in this section, several simplifying assumptions are 

made on the selection of modes within a program. 
First, leaf blocks are assumed to be implemented completely in either SIMD mode or 

SPMD mode. Given that block boundaries are defined by control-flow and data-conditional 

constructs, synchronizations, inter-PE data transfers, and CU operations that can be overlapped 
in SIMD mode, there is no benefit in changing modes within a leaf block. Mode changes are 

therefore allowed only at inter-block boundaries. 
Another assumption is that, if a block is to be executed more than once, i.e., as part of a 

looping construct, the mode of parallelism for that block is the same for all iterations. Because 
there are no branches or targets of branches within a block, and no inter-PE transfers or 

synchronization points within a block, there is no perceived advantage for the same block to 

execute in different modes from iteration to iteration; i.e., if a given mode is better for one 

instance of a block, it should be better for all instances. 
Additionally, all blocks that comprise each data-conditional construct are to be 

implemented in the same mode of parallelism, i.e., for each if construct, all the blocks within 
the construct are either implemented in SIMD mode, or they are all implemented in SPMD 
mode. This assumption is necessary because mode changes within data-conditional constructs 

can translate into operations that cannot be implemented without excessive execution-time 
overhead. For example, consider an SPMD data-conditional construct with an embedded SIMD 

block. Because each PE independently performs a test to determine whether to perform the 

then clause or the else clause of a data-conditional construct, the CU cannot know which 

PEs are performing each clause. The CU therefore cannot know when all the appropriate PEs 
have arrived at the SIMD block, because some PEs may never execute the clause that contains 
the SIMD block. The situation can become worse when conditionals are nested. This type of 
problem led to the operational constraint of the mixed-mode model, given in Subsection 3.2, that 

all PEs must be in the same mode at a given point in time. 
Finally, it is assumed that each iteration of a loop must begin and end execution in the same 

mode of parallelism. Consider, for example, a sequence of blocks that comprise the body of a 

loop, such that the first block is implemented in SMD mode and the last block is implemented 
in SPMD mode. Between each successive iteration of the loop, a mode switch from SPMD to 
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SIMD is required to allow the PEs to perform the first block of the next iteration. Because the 

last block does not end in the same mode as the first block, a mode switch is added at the 

beginning of the loop body. 

3.5.2. Optimal Selection of Modes for Mixed-Algorithms 

To perform the execution time analysis and optimization for a mixed-algorithm, an 

SIMD/SPMD trade-off tree is constructed, where, as before, each block in the program is a leaf 

node and the data-conditional and control constructs form the interior nodes, with the root node 
representing the scope of the entire program. For mixed-algorithms, the mode of parallelism 

may be changed between adjacent sibling nodes, with an appropriate time cost. These mode 

changes are not nodes and are not represented in the SIMD/SPMD trade-off tree. 
For the following discussion, let the ordered pair (TS^TS-n) represent the minimum 

mixed-algorithm execution time estimate for a non-leaf node n, where n is not the root node for 
the entire program, i.e., for a subtree with root n that begins and terminates execution in one of 
SIMD or SPMD, respectively, but may switch modes zero or more times during execution. The 
values for TJ^.„ and TJ^d-« include the time required for any mode switches that are 
performed. In the SIMD/SPMD trade-off tree, interior nodes can represent if constructs, 
then and else clauses, and for constructs. Recall that for non-leaf nodes corresponding to 

descendents of data-conditional constructs, mode changes are disallowed. Therefore, for nodes 
corresponding to if, then, and else nodes, T|j§£L and TjjJgS« represent the estimated 

execution time for that node purely in SIMD or purely in SPMD, which can be determined using 

the techniques given in Subsection 3.4. Recall that for a sequence of nodes that are children of a 

for construct, the modes of the nodes can differ. However, the first and last nodes must be 

implemented in the same mode of parallelism or a mode switch must be added before the first 

node. Therefore, the mode of the for subtree is defined to be that of the last node that is a 
child of that for node. Thus, the only subtree that does not necessarily begin and terminate in 

the same mode is the node corresponding to the root of the entire program. 
There is a cost CSIMP associated with switching to SIMD mode, and a cost CSPMD 

associated with switching to SPMD mode. The values of CSIMD and CSPMD are assumed to be 
known constants. The value of CSIMD is determined by the execution time of the mode 
switching hardware and software, and does not include the time it takes between the first PE 
reaching the mode change synchronization point and the last PE reaching that point. Although 

the time to synchronize PEs is generally not a fixed constant because it depends on the amount 

of processing performed since the last synchronization, for the purposes of this framework a 

"typical" synchronization time is assumed to be included in the cost CSIMD associated with 

44 



switching to SIMD mode. Explicitly including these times into the analysis relates to the 

discussion in Subsection 3.4.5 and is beyond the scope of this section. 
For the case of a heterogeneous suite of parallel machines, CSIMD and CSPMD will typically 

not be constants and will generally be greater than for a single mixed-mode machine, because 
data may have to be moved between machines. The application of this technique under the 
relaxed assumption of non-constant mode-switching costs for a heterogeneous suite of parallel 

machines is currently under study [WaA94]. 
The methodology of Subsection 3.4.3 is adapted below for analyzing mixed-algorithms. 

The following steps are performed to determine the execution times for all nodes: 

1) For each leaf / of the tree, assign an ordered pair (rf^.Tf™0), where TfMD is the 
SIMD execution time estimate for block /, and TfPMD is the SPMD execution time 
estimate for block /, determined as in the single-mode analysis presented in Subsection 

3.4. 
Steps 2 and 3 are performed for each non-leaf node in the order of a depth-first traversal of the 

tree: 
2) For each non-leaf node d corresponding to a data-conditional construct, assign an ordered 

pair (T^S^.Tmb^d-d), which represents the times for executing the data-conditional 

construct at node d, including the time to execute all the children of d. Analogous to the 

single-mode case presented in Subsection 3.4.3, an estimate for (Tmjxed.d,TmjK&i.d)> *s 

given by 

Tmixed-d = (1 — Pelse)Tmixed-then + (1 ~~ Pthen)Tmixed-else 

Tmixed-d = PthenTmixed-then + (* ~P then) *■ mixed-else • 

Because of the single execution mode constraint assumed for data-conditional constructs, 
T-SIMD        _  TSIMD   TSPMD        _  TSPMD   TSMD        _ TSIMD       A TSPMD       _ jSPMD 1 mixed-then _   A then   > l mixed-then _   l then    > l mixed-else _   l else   > <U1U x mixed-else       A else    > 

and the above equations reduce to the single-mode case. The formula used for TJ^d^ is 

the expected time for each PE to execute the data-conditional construct at node d, and not 

necessarily the maximum time taken over all PEs for a given execution. Thus, the value 
of Tn^elj^ does not account for the time to synchronize the PEs for the case where the 

node following node d is executed in SIMD mode. 

3) Case (a): 
For each non-leaf node c corresponding to a control construct that is not in a subtree with 

a data-conditional construct as its root, assign an ordered pair 

(Tmbfed-c.T^d-c). wnich represents the times for executing the control construct at node 
c, beginning and ending in SIMD and SPMD modes, respectively, including the time to 
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execute all the children of c. Let the ordered pair (T^S.iteration.T^^d.iteration) represent 
the minimum mixed-algorithm execution time estimate for a single iteration of the loop 

corresponding to node c. Because the last block in the loop is the for_test, and 

because the first and the last block must be in the same mode of parallelism, T^SS.iteration 

corresponds to performing the for_test in SIMD on the CU, and T^^d.iteration 

corresponds to performing the f or_test in SPMD on the PEs. Recall that Q is the 

number of iterations of the loop to be executed. Then (T^S.c,T^^d_c) is given by 

TSIMD   _ n x TSIMD 1 mixed-c — V     1 mixed-iteration 

TSPMD   _ n x TSPMD 1 mixed-c — V    A mixed-i iteration 

Recall that if the first node of a loop body and the  f or_test are in different modes, a 

mode switch is inserted before the first node in the loop body. This may lead to an 

unneeded mode switch for the first iteration. This situation is described in detail later. 

Case (b): 
If node c is the descendent of a node corresponding to an   if construct, then only pure 
SIMD and pure SPMD implementations are considered, and the equations for the single- 
mode analysis methodology are used instead. 

4)      For the  node  representing  the  root,  assign  the  ordered  quadruple   (TJJSt0^1^, 
TSJMQ/5PMDf   T?™D/SIMD)   TSPMD/SPMD))   where   TX/Y   corresponds   t0   me   minimum 

mixed-algorithm execution time required to perform all the children of the root node, 

beginning in mode X and ending in mode Y (where zero or more mode switches can occur 
between X and Y). Thus, it is possible for the root node to avoid a final mode change. The 
minimum quadruple value then represents the best mixed-mode implementation. 

As the SIMD/SPMD trade-off tree is traversed, the deepest levels of the tree are combined 

by employing the above steps.  As the analysis works its way up the tree, higher levels are 

combined, until only the root is represented. Then the parallel mode for each segment of the 

program can be assigned. 
One effect that must be considered when traversing the tree is the possibility of adding 

unnecessary mode switches when going from the f or_init block to the first child in the loop 

body of a for node. For example, consider a for construct such that the for_in it block 
is implemented in SPMD, the first child in the loop body of the for node is implemented in 
SPMD, and the f or_test block (the last child of the for node) is implemented in SIMD, as 

illustrated in Figure 3.6a. Because the last and first nodes are performed one after the other 
when iterating over the loop, a mode switch from SIMD to SPMD is required before executing 

the first node. Additionally, by the definition of a for loop node, the mode of the  for node is 
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Figure 3.6:    Modification of   for loop to avoid unnecessary mode switches for the first 
iteration, (a) With unneeded mode switch, (b) Without unneeded mode switch. 

the same as that of the f or_test in the loop (as stated in Subsection 3.5.1). Thus, a mode 
switch from the SPMD for_init node to the SIMD for node is inserted before the first 

iteration of the loop body. However, immediately after the execution of the f or_init, and 

before the first iteration, the parallel system is already in SPMD mode, which is the mode of 

parallelism required for the first node in the loop body. By detecting this case, the mode switch 

from SPMD to SIMD and from SIMD back to SPMD can be avoided for the first iteration, as 

illustrated in Figure 3.6b. Thus, it is beneficial for the analysis to recognize this case, and to 
remove mode switches that are not needed for the first iteration of the loop from the time-cost 

estimate. 
One element of the analysis not addressed, which should be included in a practical 

implementation of the techniques presented here, is the effect of implementing a sequence of 

two or more nodes in SPMD mode. Recall from Subsection 3.4.5, if an SPMD node is directly 
followed by another SPMD node with no intervening synchronization, then a reduced execution 
time may result, due to the macro-level "sum of maxs" versus "max of sums" effect described 
in Subsection 3.3. This effect is particularly applicable to the estimated execution time of for 
constructs. Thus, for a practical implementation, an extension of the concepts presented in 
Subsection 3.4.4 is needed, where such adjacent SPMD nodes are treated as a single node for the 

purposes of the type of analysis discussed in that subsection. 
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3.5.3. Computational Aspects of Optimal Selection of Modes for Mixed-Algorithms 

Exhaustively testing all possible implementations to find the minimum mixed-algorithm 

execution time for a node with m children would require testing 2m combinations. For nodes 

with many children, this approach is impractical; therefore, an efficient method of finding the 

minimum execution time is needed when m becomes large. 
An efficient way of computing (TS.n, T^d-n) is to transform the subtree rooted at n 

into a multistage optimization problem. In multistage optimization problems, proceeding to 

stage j + 1 is possible only by passing through stage j. There is a cost associated with 

proceeding from stagey to stage ;' + 1, depending on the initial state (at stagey") and the final state 

(at stage j + 1). In a multistage optimization graph, each state in each stage is represented by a 

vertex, and edges connecting vertices in stage j to vertices in stage j + 1 indicate valid 

transitions, each with an associated cost. The goal of a multistage optimization problem is to 

find the minimum cost path between the initial and final stages, e.g., see [AnT91, BrH75]. 

Multistage optimization problems can be solved using Moore's algorithm [Moo57] (a 
variant of Dijkstra's algorithm [Dij59]) in s - 2 iterations for an s-stage problem. In each 

iteration, two successive stages of the multistage optimization graph are reduced to a single 
stage, so that at the end of s - 2 iterations, only the initial and final stages remain, with 
connecting edges indicating the minimum cost from each of the states in the initial stage to each 

of the states in the final stage. 
An example of a general multistage optimization problem and its solution is illustrated in 

Figure 3.7. Initially, there are four stages, numbered from 0 to 3. In the first iteration, for each 

vertex g in stage 0, a minimum path is found from g to each vertex h in stage 2, passing through 

stage 1. Stage 1 is then removed from the graph, and new edges are drawn from vertices in stage 

0 to vertices in stage 2, indicating the minimum cost to proceed from stage 0 to stage 2 for each 
possible (g,h) pair. The multistage optimization algorithm is applied again, and the problem is 

reduced to two stages, indicating the minimum cost to proceed from each initial state to each 
final state. By recording the minimum paths selected during each iteration of the algorithm, the 

path through the entire multistage problem resulting in the minimum cost for each initial/final 
pair is obtained. The correctness of the optimization algorithm is based on the principle that all 

sub-paths along an optimal (i.e., shortest) path must themselves be optimal. 
To find the minimum execution time for all the children of a node in the SIMD/SPMD 

trade-off tree, let a stage and the edges exiting that stage in a multistage optimization graph 
correspond to a single child node. Let each mode of parallelism represent a separate state within 

each stage. Let the cost associated with each edge correspond to the cost of performing that node 

in SIMD mode or SPMD mode. Then, before the representation of each node in the multistage 
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Figure 3.7:     Example of a general multistage optimization problem and the aggregate 
structure of the intermediate and final solution graphs. 

graph, include a stage and associated edges representing the cost of a possible mode switch 

between nodes. 

As an example, consider the transformation illustrated in Figure 3.8a. To find the minimum 

mixed-algorithm execution time for a sequence of sibling nodes, each node is modeled as three 

stages of a multistage graph (numbered 0 to 2 in Figure 3.8a) and then joined together to form a 

multistage optimization graph for the entire sequence of nodes. In each stage, the upper vertex 

represents SIMD mode, while the lower vertex represents SPMD mode. For stage 0 and its 

associated edges, a possible mode change is represented. The edge from the upper vertex in the 

stage 0 to the lower vertex in stage 1 is labeled with the cost of switching from SIMD to SPMD 

mode. Similarly, the cost of switching from SPMD to SIMD is indicated as the label for the 

edge from the lower vertex in stage 0 to the upper vertex in stage 1. There is zero cost for 

remaining in the same mode of parallelism. The edges from stage 1 to stage 2 in Figure 3.8a 

represent the cost of executing the node in each mode. Figure 3.8b illustrates transforming an 
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Figure 3.8: Transformation from flow-analysis tree to multistage graph, (a) Transforming a 
node into two stages, (b) Transforming a node with three children into a 
multistage graph. 

SIMD/SPMD trade-off tree with three children into a multistage optimization graph. The 

ordered pair (T^^-4. Tmwed^) is obtained from the solution of the multistage optimization 

problem shown in Figure 3.8b. 
A node with m children is represented by a multistage optimization problem with 2m + 1 

stages: m stages to represent the nodes, m stages to represent possible mode switches, and one 

stage to represent the final states at the end of the multistage optimization graph. Thus, 
2m + 1 - 2 = 2m iterations of Moore's algorithm are required to find a solution. For each 

iteration corresponding to a reduction of the solved portion of the graph with a possible mode 
switch, 22=4 comparisons and 22=4 assignments are needed, while for each iteration 
corresponding to a reduction of the solved portion of the graph with a node execution, no 
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Figure 3.9: Mixed-algorithm analysis example for a parallel code segment, (a) Time 
assignments made for leaf blocks, (b) Time assignments for then and else 
nodes calculated, (c) Time assignments for if node calculated, (d) Time 
assignments for for loop calculated (except for initialization), (e) Time 
assignments for root node calculated. 
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comparisons and 22 = 4 assignments are needed. Thus, rinding the minimum mixed-algorithm 

execution time by this approach has a sequential time complexity of 8w + Am = 12m = 0(m) 

time. 
By recording the minimum paths selected at each iteration, the mode of parallelism for each 

stage is selected. Each edge in the minimum-cost path selected corresponds to performing a 
node in SIMD, performing a node in SPMD, performing a mode switch, or staying in the same 
mode. When the multistage optimization is completed for all the children of a node in the 

SIMD/SPMD trade-off tree, the execution time information is used to generate the execution 

time for the parent node. The multistage approach is then applied to the parent node and its 

siblings. In this way, the analysis works up the trade-off tree until execution costs are obtained 

for the root node. 

3.5.4. An Example of Optimal Mixed-Algorithm Selection 

As an example of an optimal assignment of modes to the segments of a data-parallel 
program, consider the SIMD/SPMD trade-off tree in Figure 3.9, composed of a for loop, 
where one of the nodes of the loop is an if construct (the first child of the root node is the 

for_init for the for loop). For this example, let Q = 10, CSIMD = 4, and CSPMD = 2. For 

the if construct, assuming that the outcome of the conditional tests are not mutually 

independent, let p then =0-1» pthen = 0.1, and P^e = 0.8. 
In Figure 3.9a, the SIMD/SPMD trade-off tree for the program is shown, where the ordered 

pairs for the leaf nodes have been determined. After the first transformation, the leaf nodes for 
the then clause have been combined to a single node, illustrated in Figure 3.9b. Because the 

then node is part of a data-conditional construct, the ordered pair (T^Jd-then. T^^hen) is 
simply the ordered sum of its children, (8 + 20 + 2, 10 + 17 + 3) = (30, 30). Similarly, for the 

else clause, the ordered pair 

(Tmixed-else» T^gd-else) is (5 + 5, 18 + 12) = (10, 30). 

In Figure 3.9c, an ordered pair for the i f construct can then be found, as indicated in step 

2. Specifically, 

Tmixed-if = (1 - Pelse)Tmixed-then + (1 - Pthen )Tmixed-else = (0.2 x 30) + (0.9 x10)=15 

Tmixed-if = P thenTmixed-then + (1 -/?then)Tmixed-else = (0.1 x 30) + (0.9 x 30) = 30 

The ordered pair (T^jdlfor T^j^d-for) can then be found using the multistage optimization 
approach and step 3. Using the multistage optimization approach for the children of the for 

construct, it is determined that T^ed-iteration» the minimum execution time for a single iteration 
beginning and ending in SIMD, is obtained by implementing the first block in SPMD mode, the 
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if construct in SIMD mode, and the last block in SIMD mode. There will need to be a mode 

switch before the i f node (CSIMD), and before the first node of the loop body (CSPMD). Thus, 

«Nation = CSPMD (=2) + (10, 2) + C8™0 (=4) + (15, 30) + (15, 5) 

= 2 + 2 + 4+15+15 = 38. 

The multistage optimization approach also determines that for TJ^d-iteration> me ^^ block is 

implemented in SPMD mode, the if construct in SIMD mode, and the last block in SPMD 

mode: 

Tnffiiteraüon = (10, 2) + C5™0 (=4) + Q5, 30) + CSPMD (=2) + (15, 5) 

= 2 + 4+15 + 2 + 5 = 28. 

Applying step 3 yields: 

«-for = Q * ^»iteration = 10 * 38 = 380 

Tfflffifa = Q x TS-Won = 10 - 28 = 280. 

This is shown in Figure 3.9d. 
By applying step 4, using the multistage optimization approach, and including mode switch 

costs the values for the root node are obtained: 

Q-SIMD/SIMD   TSIMD/SPMD) jSPMD/SIMD^ TSPMD/SPMD) _ (3g6> 288, 383, 285) . 

This is shown in Figure 3.9e. 
To determine the value of T^078™0, the first node in Figure 3.9d, representing the 

for_init, requires a time of 5 in SIMD. The second node, representing a for loop to be 
executed in SPMD, requires 380. However, the calculation of the value of 380 for the body of 

the for loop includes the cost of switching from SIMD to SPMD, needed at the beginning of 
the loop body. This mode switch can be bypassed, as discussed in Subsection 3.5.2 and 

illustrated in Figure 3.6, saving 2 time units. Thus, T8™D/SPMD = 5 - 2 + 380 = 383. 
For comparison, the estimated execution time for a pure SIMD or pure SPMD 

implementation for this example is 406 and 375, respectively. 
The mode of parallelism for each portion of the tree can then be chosen, as illustrated in 

Figure 3.10. For this example, the first child and the last child of the for node are 

implemented in SPMD mode. Because the last child of the for node is implemented in 
SPMD, by definition the for construct is implemented in SPMD. The if node and all its 

descendents are implemented in SIMD mode. 
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Figure 3.10:   Selection of parallel modes for the example of Figure 9. 

3.6. Summary and Future Work 

The block-based mode selection model proposed in this section establishes a framework on 

which to build static source-code analysis techniques for the selection of parallel modes in a 
mixed-mode context. The model consists of an algorithm for determining information in an 

SIMD/SPMD trade-off tree, which is then combined using a set of rales and by employing a 

multistage optimization technique to determine the minimum mixed-algorithm execution time 

for a sequence of nodes. With this approach, parallel programs written in a mode-independent 

language can be executed on a mixed-mode machine with each program segment using the most 

appropriate mode of parallelism for minimum total program execution time. 
There are various extensions to the model that form the basis for future work. The set of 

control and data-conditional constructs can be expanded to include other useful constructs, e.g. 
while statements, case statements, and function calls. The probabilistic model introduced in 
this section can be enhanced to consider more fully the effect of juxtaposed blocks on overall 
execution time. The framework can also include a more complete model of CU/PE overlap for 

SIMD operation. Other research may involve more practical aspects of the analysis, for 

example, the details of incorporating the techniques presented here into a parallel compiler. 
Methods for estimating the parameters used in the model, when they are not deterministic, must 

54 



be developed. 
For a practical implementation in a heterogeneous environment composed of a suite of 

parallel machines, the time to move data among machines will not be a constant for all blocks, 
and decisions at one point will impact the quantity future data movements (and thus the amount 
of time required for inter-machine data transfers). Therefore, an important extension to this 
study is to examine the case where the cost of switching machines/modes is not constant, but 

depends on the size, location, and usage of data within the program [WaA94]. 
Another research area that is the subject of future work is the impact on the analysis of 

including computation models other than SIMD and SPMD, e.g., MIMD and vector processing. 
The incorporation of other parallel/vector models would form the basis for future efforts to 

provide programming tools for heterogeneous systems. 
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4.   Static Program Decomposition Among Machines in an SIMD/SPMD 
Heterogeneous Environment with Non-Constant Mode Switching Costs 

4.1. Introduction 

One of the benefits of heterogeneous parallel processing is that programs can be executed 

on those machines that best exploit the parallelism in each part of the program. One of the 

associated challenges of implementing heterogeneous systems is finding a mapping of program 

segments to parallel machines. In [WaS93], a Block-Based Mode Selection (BBMS) framework 

for estimating the relative execution time of a data-parallel algorithm in an environment capable 

of the SIMD and SPMD (Single Program - Multiple Data) modes of computation was presented, 

where SPMD is MMD with the restriction that all PEs are executing copies of the same 

program. The BBMS framework provides a methodology whereby static source-code based 

decisions of computational mode of execution can be made for each portion of an algorithm. 

One of the assumptions of the framework in [WaS93] is that the cost of performing mode 

changes in a heterogeneous system is constant. 

In the model of heterogeneous computing assumed here, each segment in a program has a 

set of zero or more data elements that must be available to it (i.e., on the same machine where 

the program segment is to be executed). Because each data element may be used and/or 

generated by other program segments, and because program segments may execute on different 

machines within the system, it may be necessary to transfer data elements needed by a segment 

before execution can begin. The transfer cost is assumed to be proportional to the size and 

number of the data elements transferred. Thus, the cost of switching between machines during 

the execution of a program is not a constant cost, but depends on data transfers needed as a result 

of the switch. 

Because the mode-switching costs are non-constant, determining a minimum-cost 

assignment of machines to program segments is not straightforward. The cost of executing a 

given program segment depends on previous machine selections and associated data transfers 

made in the past. Exhaustively testing each possible mapping of program segments to machines 

provides a minimum-cost schedule, but because the number of possible mappings grows 

The co-authors of this section were Daniel W. Watson, John K. Antonio, Howard Jay Siegel, and Mikhail J. Atallah. 
This research was supported by the Office of Naval Research under grant number N00014-90-J-1937, Rome 
Laboratory under contract numbers F30602-92-C-0150 and F30602-94-C-0022, and the National Science 
Foundation under grant number CCR-9202807. 
This material appeared in the Proceedings of the Third Heterogeneous Computing Workshop (HCW '94), sponsored 
by the IEEE Computer Society, April 1994, pp. 58-65. 
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exponentially with the number of segments, this approach is not computationally feasible. 

The BBMS approach, which provides the optimal sequence of modes under the constant 
switching cost assumption, is used here as a basis for a heuristic method for associating parallel 
machines with data-parallel program segments in an environment with non-constant switching 

costs. The heuristic provides an efficient approach for selecting near-optimal mappings of 
program segments to machines. Simulation results based on randomly generated parallel 
program behaviors indicate that good assignments are generally provided by the heuristic. 

The rest of this section is organized as follows. Underlying assumptions and basic terms 
are defined in Subsection 4.2. Subsection 4.3 overviews the BBMS framework and isolates the 
specific area of investigation. Also included in Subsection 4.3 is an explanation of why the 
BBMS must be extended for the case of data-location (i.e., non-constant) machine-switching 

costs. In Subsection 4.4, a heterogeneous program execution model is introduced, a static 

heuristic developed, and a series of simulations is presented to validate the approach. 

4.2. Machine and Language Model 

In a heterogeneous system [Fre91], different types of parallel machines can be used to 

perform a single task. One example of a heterogeneous environment is a mixed- mode machine 

[SiA92b], a single machine which is capable of operating in either the SIMD or MIMD mode of 
parallelism and can dynamically switch between modes at instruction-level granularity with 

relatively small overhead, e.g. PASM [ArW93], Triton [PhW93], and OPSILA [AuB86] (limited 
to SIMD/SPMD). Another type of heterogeneous system is a suite of independent machines of 

different types interconnected by a high-speed network, referred to as a mixed-machine system. 

Unlike mixed-mode systems, switching execution among machines in a mixed-machine system 

requires measurable overhead because data may need to be transferred among machines. 

Mixed-machine systems considered here are assumed to have high-speed connections 
among machines that make decomposition at the sub-program level feasible. The emphasis for 

this study is on machines interconnected using a current or future high-speed network. 

Whenever the term "SPMD machine" is used, recall that any MIMD machine can operate as an 

SPMD machine. 
Each system in a mixed-machine suite is assumed to have a physically distributed memory. 

Thus, each processor in the system is paired with a memory, forming a processing element (PE). 

Applications for this study are assumed to be data parallel [HiS86], i.e., the data for a 

program is distributed among the PEs, and the algorithm exhibits a high degree of uniformity 
across the data [Jam87]. It is assumed for mixed-mode machines that all PEs are in the same 
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mode at any point in time (i.e., SIMD versus SPMD). Similarly for mixed-machine systems, a 

job is actively executed on only one machine at a time (i.e., only one SIMD or SPMD machine is 

being used for the program at any one time). It is assumed for this study that all machines in the 

system are available for the execution of any program segment. All PEs in a given machine 
must be synchronized at program segment boundaries before an inter-machine transfer can 

occur. Although the focus here is on SIMD versus SPMD machines, the approach can also be 

used to select among two or more machines of the same class (e.g., among several different 

SIMD machines). 

One way of programming machines that are capable of mixed-mode and mixed-machine 
parallelism is by using a mode-independent language, i.e., a language whose syntactic elements 

have interpretations under more than one mode of parallelism. An example of a mode- 
independent language is the Explicit Language for Parallelism (ELP), currently under 

development at Purdue University [NiS93]. The ELP syntax is based on C, and allows the 

programmer to specify SIMD, MIMD, SPMD, and mixed-mode operation within a program. A 
goal of ELP is to provide uniformity with respect to the SIMD and SPMD modes of parallelism 

by having interpretations for all the elements of the syntax within both of these modes that are 

identical in semantics. This is an important characteristic because it allows a data-parallel 
algorithm to be coded in a mode-independent manner, producing a data-parallel program for 

which: (1) only SIMD code is generated, (2) only SPMD code is generated, or (3) execution 
mode specifiers can be added to facilitate mixed-mode experimentation. Other related unifying 

parallel language studies include [BrA89], [PhW93], and [ZiB88]. 

4.3. The BBMS Framework 

4.3.1. Framework Overview 

To determine the best machine for each portion of a parallel algorithm, the program is first 
transformed into a flow-analysis tree, which is a tree whose structure represents the scope levels 

within the algorithm. The flow-analysis tree is then used to create a trade-off tree that has a 

structure identical to the flow-analysis tree, but indicates the machine in a mixed-machine 

system on which to execute each portion of the program. For both trees, the root node represents 

the scope of the entire program, the non-leaf nodes correspond to control constructs and data- 
conditional constructs, and the leaf nodes of the tree represent parallel or scalar code blocks. 

Code blocks are the parallel equivalent of the serial basic blocks described in [AhS86]. 
Blocks of code are identified by their leading statements, called leaders. The first statement in a 

program is a leader, any statement that becomes the target of a conditional or unconditional 
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branch at the machine code level is a leader, and any statement that follows a conditional branch 

at the machine code level is a leader. In the approach described here, in addition any statement 
requiring synchronization and any statement that follows a statement requiring a synchronization 
is a leader, and any statement requiring an inter-PE data transfer and any statement that follows 
an inter-PE data transfer is a leader. This is an important distinction from the serial definition of 

a basic block, because synchronization points within an algorithm indicate when PEs are idle, 

waiting for one or more other PEs to arrive at the synchronization point. 

Initially, only information about the execution times of the leaf nodes is assumed to be 
known. The technique proposed in [WaS93] combines this known information to arrive at 
comparative mixed-mode execution times for the intermediate nodes, using a limited set of 

language constructs. Intermediate nodes, which correspond to looping and data-conditional 
constructs, are implemented such that they begin and terminate execution in either SIMD or 
SPMD, but may switch modes zero or more times during execution. For non-leaf nodes 
corresponding to descendents of data-conditional constructs, mode changes are disallowed, 

because these changes can translate into operations that cannot be implemented without 
excessive execution time overhead [WaS93]. For a sequence of nodes that are children of a 
looping construct, the modes of the nodes can differ. However, the first and last nodes must be 
implemented in the same mode of parallelism or a mode switch is added before the first node. 
Thus, the only subtree that does not necessarily begin and terminate in the same mode is the 

node corresponding to the root of the entire program. 
It is assumed that both the SIMD and SPMD execution times associated with each leaf 

node are known constants. The case where execution times of the operations are assumed to be 
random quantities with known probability distributions (which impacts the distribution of 

execution time of combined adjacent blocks) is a consideration that will be examined in future 
studies. In [WaS93] and in this paper, iterative loop bounds and information regarding the 

probability of data-conditional outcomes is assumed known or estimated statistically. 

Figure 4.1 illustrates how a program is transformed into a preliminary flow-analysis tree, 

and then used to generate a trade-off tree (details are in [WaS93]). At each level in the tree, the 
sibling blocks are represented in the same order (left to right) as they appear in the program. In 

the final trade-off tree, only machine selection information is retained. 

In mixed-mode and mixed-machine systems, it is possible for some portions of a single 
parallel program to be implemented in one mode or machine, and other portions of the same 

program to be executed in a different mode or machine. This is referred to as a 
mixed-algorithm. Leaf blocks are assumed to be implemented completely in one mode/machine. 

Given the definition of a block, it is assumed that there is no benefit in changing modes except at 
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Figure 4.1:     Example of transformation from program to flow-analysis tree to trade-off tree. 

block boundaries. 

4.3.2. With Constant Switching Costs 

Consider the mixed-mode case, where a node may be executed in either SIMD or SPMD 
mode, and there is a cost (assumed for the moment to be constant) associated with switching 

from one mode of parallelism to the other. One portion of the block-based framework developed 

for this case is the approach taken to reduce a set of children in the flow-analysis tree under a 

common parent so that it is represented by a single node at the location of the parent node in the 
original tree. An ordered pair (TpMD, TfPMD) is assigned to each leaf block, representing the 

execution time required to perform block i in SIMD or SPMD mode, respectively. Leaf nodes 
with a common parent are executed in order from leftmost node to rightmost node. For each 
non-leaf node n within the flow-analysis tree, (T^™D, T^PMD) corresponds to the time required 
to perform the entire subtree rooted at n beginning and ending in either SIMD or SPMD mode, 
with no restriction on the number of mode changes that occur within the subtree. 

Because there are two choices of mode for each of m children of a parent node, there are 2m 

possible ways to execute the sequence of children nodes. Exhaustively testing all possible 
implementations to find the minimum mixed-algorithm execution time for a node with m 

children would therefore require testing 2m combinations. For nodes with many children, this 
approach is impractical. A non-exponential method of finding the minimum execution time is 
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needed when m is large. 
One efficient way of computing (T*™0, TfMD) is to transform the m children of node n 

into a multistage optimization problem. In multistage optimization problems, proceeding to 

stage ; +1 is possible only by passing through stage ;. There is a cost associated with 

proceeding from stage; to stage ; + 1 dependent on the initial state (at stage;-) and the final state 

(at stage ; + 1). In a multistage optimization graph, each state in each stage is represented by a 
vertex, and edges connecting vertices in stage j to vertices in stage ; + 1 indicate valid state 
transitions, each with an associated cost. The goal of a multistage optimization problem is to 

find the minimum cost path between the initial and final stages, e.g., see [AnT91, BrH75]. 

Multistage optimization problems can be solved using Moore's algorithm [Moo57] (a 
variant of Dijkstra's algorithm [Dij59]) in s-2 iterations for an s-stage problem. In each 
iteration, two successive stages of the problem are reduced to a single stage, so that at the end of 
s - 2 iterations, only the initial and final stages remain, with connecting edges indicating the 
minimum cost from each of the states in the initial stage to each of the states in the final stage. 

By redrawing the set of m children nodes of a parent as a multistage optimization problem, the 
minimum cost mapping of parallel modes to m leaves can be found for the corresponding 

ordered pairs and mode switching costs in 0(m) time. 
An example of a general multistage optimization problem and its solution is illustrated in 

Figure 4.2. Initially, there are four stages, numbered from 0 to 3. In the first iteration, for each 
vertex in stage 0, a minimum path is found to each vertex in stage 2 (passing through stage 1). 
Stage 1 is then removed from the graph, and new edges are drawn from vertices in stage 0 to 

vertices in stage 2, indicating the minimum cost to proceed from stage 0 to stage 2 for each 

possible source/destination pair. This reduction procedure is applied again, and the problem is 

reduced to two stages, indicating the minimum cost to proceed from each initial state to each 

final state. 
By recording the minimum paths selected during each iteration of the algorithm, the path 

through the entire multistage graph resulting in the minimum cost for each initial/final pair is 

obtained. To find the minimum execution time for all the children of a node in the SIMD/SPMD 
trade-off tree, let a stage and the edges exiting that stage in a multistage optimization graph 

correspond a single child node. Let each mode of parallelism represent a separate state within 

each stage. The cost associated with each edge corresponds to the cost of performing that node 
in SIMD mode or SPMD mode. Then, before the representation of each child node in the 

multistage graph, include a stage and associated edges representing the cost of a possible mode 

switch between nodes.  If the mode switching cost is assumed to be constant (C and 

es™0), then all the arc weights in the multistage graph are independent of past decisions, and 
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the minimum cost path can be determined. 

initial 
problem 

after 
first 
iteration 

after 
second 
iteration 

stage 0       stage 1      stage 2      stage 3 

stage 0 

stage 0 

stage 2      stage 3 

stage 3 

Figure 4.2:     Example of a general multistage optimization problem and its solution. 

As an example of the transformation of a flow-analysis subtree into into a multistage 
optimization problem, consider the transformation illustrated in Figure 4.3(a). To find the 
minimum mixed-algorithm execution time for a sequence of sibling nodes, each node is modeled 

as three stages of a multistage graph, numbered 0 to 2 in Figure 4.3(a), and then joined together 

to form a multistage optimization graph for the entire sequence of nodes. In each stage, the 

upper vertex represents SIMD mode, and the lower vertex represents SPMD mode. For stage 0 
and its associated edges, a possible mode change is represented. The edge from the upper vertex 
in the stage 0 to the lower vertex in stage 1 is labeled with the cost of switching from SIMD to 

SPMD mode. Similarly, the cost of switching from SPMD to SIMD is indicated as the label for 
the edge from the lower vertex in stage 0 to the upper vertex in stage 1. There is zero cost for 
remaining in the same mode of parallelism. The edges from stage 1 to stage 2 in Figure 4.3(a) 

represent the cost of executing the node in each mode (or for a loop construct starting and 
stopping in that mode). Figure 4.3(b) illustrates the graph for a SIMD/SPMD trade-off tree with 

three children. The ordered pair (T^^4, T^^d-4), which represents the optimum mixed-mode 
implementation of the subtree, is obtained from the solution of the multistage optimization 
problem. 

A node with m children is represented by a multistage optimization problem with 2m+ 1 

stages: m stages to represent the nodes, m stages to represent possible mode switches, and one 

stage to represent the final states at the end of the multistage optimization graph. Thus, 

2m + 1 - 2 = 2/n iterations of Moore's algorithm are required to determine a solution. For each 
iteration corresponding to a possible mode switch, 22 = 4 comparisons and 22 = 4 assignments 
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are needed, while for each iteration corresponding to a node execution, no comparisons and 
22 = 4 assignments are needed. Thus, finding the minimum mixed-algorithm execution time by 

this approach has a sequential time complexity of 8m + Am = 12m = 0(m) time. 

By recording the minimum paths selected at each iteration, the mode of parallelism for 
each stage can be determined. Each edge in the minimum-cost path selected corresponds to 
performing a node in SIMD, performing a node in SPMD, or performing a mode switch. When 

the multistage optimization is completed for all the children of a node in the SIMD/SPMD 
trade-off tree (under the constant mode-switching cost assumption), the execution time 

information is used to generate the execution time for the parent node. The multistage approach 

is then applied to the parent node and its siblings. In this way, the analysis works upwards 

through the trade-off tree until execution costs are obtained for the root node. 
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Figure 43:    Transformation from flow-analysis tree to multistage graph. 

4.3.3. With Non-Constant Switching Costs 

In mixed-machine heterogeneous systems, the cost to switch from one machine to another 

is assumed to depend primarily on the cost of moving the required data between machines. A 

given machine may contain a data set because it was initially loaded there, it was received from 
another machine, or it was generated by that machine. (It is assumed that the assignment of 
program code will be determined, and code distributed, prior to execution time.) Thus, unlike 
the assumption of the previous subsection, the cost of switching execution from one machine to 
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another is dependent on which machine(s) contain the data structures that are required to execute 

the next block, which in turn is dependent on the machine choices made for previous blocks. 

Alternatively, the effectiveness of a current machine selection and associated data movement is 

impacted by the data movement required for the optimal machine assignment for a later program 
segment. Under these conditions, it can be shown that the multistage optimization approach 
described in the previous section does not directly apply because the cost of switching machines 
is not a known constant. However, as to be described, it forms the basis of a useful heuristic in 

this situation. 

4.4. Extension of BBMS 

4.4.1. A Simplified Parallel Program Behavior Model 

Parallel programs are divided into a sequence of individual blocks (BQ, BJ, B2, ...). Each 
block is considered exactly once, in a sequence beginning with the first block and ending with 
the last. In this way, the execution of a sequence of sibling nodes under a common parent node is 
modeled. A block sequence itself may, as the flow-analysis tree is reduced, form an interior 
node as part of another construct, but in this section the focus is on determining a low-cost path 
only for the immediate block sequence under a single parent node in a mixed-mode 

heterogeneous system. 
Each block B, in the parallel program can be executed on one of several machines. For 

each possible machine, there is an associated execution time assumed to be known a priori. 
Mixed-machine systems consisting of two parallel machines are considered here, but the results 

can be generalized to include systems with more than two machines. 

Associated with a parallel program is a set of data structures that are used by the program 

during execution. Each data structure j is assigned a weight G\ indicating the cost of moving 

that data structure to another machine in the system. Although the time cost of moving a data 
structure can be related to the source and destination machines, to clarify the concepts presented, 
the time cost for each data structure is assumed to be independent of the source and destination 
of the transfer. The analysis can be extended to include these source/destination dependent 

costs. 
Also associated with each data structure is a location attribute. The location of a data 

structure can be enumerated as being on no machine, on a single machine, or on a set of 

machines. A data structure having no location corresponds to a structure that may be available at 

an I/O device for the system, but not available on any machine. According to the machine 
selection policy, the data structure can be assigned to the portion of the heterogeneous 
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environment where it is first used. A structure that has multiple locations is defined to have the 

same state at each location. This may correspond to a data set that is only read by a block. 

A data location (DL) table is defined as a table with entries for each data structure used 

within a parallel program. The DL table initially corresponds to the starting location for each of 
the data structures used. As the static source-code based analysis of the program proceeds, the 
DL table is updated to reflect the movement of data structures that would occur as a result of 

machine choices made thus far in the program. 
To differentiate the state of the DL table for different portions of the program, a subscript is 

added to indicate the block that corresponds to the state of the table before execution of that 
block. For example, DL0 corresponds to the initial location of data structures in the 
heterogeneous system before B0 is executed, and DL} reflects the changes in the location of 

data structures required as a result of Bo. 
Associated with each block in the program is a data use (DU) table listing each data 

structure used in that block, as well as a usage type, which designates the way in which that 

structure is modified by the block associated with the DU table. Possible usage types include the 

read type, where a structure is used but not altered by a block; the create type, where the values 

of a structure are first generated; and the modify type, where one or more elements of the 

structure are modified, based on on the current state of the data structure. Other usage types are 

also possible. 
As an example, consider the representation of a parallel program given in Figure 4.4. The 

program consists of three blocks, labeled B0, B^ and B2, illustrated vertically in the center of 

the figure. The blocks labeled "begin" and "end" in the figure do not correspond to executable 
code, but instead to initial and final states. B0 requires a time cost of 20 to execute on machine 
X, and 2 on machine Y. B! and B2 each require 10 to execute on machine X, and 10 on 
machine Y. Each DU table is shown to the left of its corresponding block. In B0 the data 

structure P is modified, in Bx the data structure Q is created, and in B2 the data structures P and 

R are modified. 
The DL tables are shown for each step during the planned parallel execution. Before 

execution there are three data structures, P, Q, and R, initially placed on machine X, as indicated 
by DLo. Assume the first block is be executed on machine Y. It modifies data structure P and 
this change is reflected in DL}. Assume Bj is also to be executed on machine Y. It creates data 

structure Q. Therefore, DL2 indicates that Q is now also on machine Y. It is assumed B2 is 

executed on machine X. Because it modifies P, P must be moved from Y to X, as indicated in 
DL^ and DL^. Block B2 also modifies R, but R is already in X (see DI^) so no data transfer 

is needed. 
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Figure 4.4:     Simplified model of parallel program behavior. 

4.4.2. Heuristic Based on BBMS 

Given a sequence of blocks (B0, B1? B2,...), a set of data usage tables and associated costs 
to transfer the data structures between machines in a heterogeneous system, the goal to to find an 
assignment of machines to blocks that results in the minimum execution time. As discussed in 
Subsection 4.3, the multistage optimization technique presented in [WaS93] finds the optimum 
mapping of modes to program segments when the cost to switch modes is constant, but the 
technique cannot be applied directly to the mixed-machine case where non-constant data transfer 

costs are considered. 
To reduce the complexity of finding an assignment of machines to program segments, a 

heuristic approach is used. In this approach, four independent sets of DL tables are used to track 
possible routes through the multistage optimization graph. To find the shortest path through a 

completely-weighted multistage graph with s stages, s - 2 iterations are required. During each 

iteration, the shortest path from each state in the initial stage to each state in the next stage is 

determined. Because there are only two initial states (representing machine X and Y) and two 
states in the next stage, only four paths are considered at each iteration. In the heuristic 
extension for non-constant switching costs, a DL table is associated with each path in the solved 
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portion of the multistage graph (Figure 4.5). Each DL table represents the location of all data 

structures needed by the parallel program that results from choosing the path designated by the 

corresponding arc in the solved portion of the multistage graph. Additionally, because programs 

with large data sets often are found to execute in minimum time without switching machines, the 

single-machine implementation is always considered for each machine in the heterogeneous 

system. 

machine X 

machine Y 

Figure 4.5:    Heuristic building on the multistage technique. 

4.4.3. Simulation Study 

Examples exist for which the heuristic selects machine mappings that are not optimal. This 

is because machine choices, and hence data transfer decisions, do not consider the data location 

needs of blocks that follow. To determine if the heuristic generally provides good results, a 

simulation study has been performed. In the study, randomly-generated parallel program 

behavior representations were used to test the proposed heuristic. Then, the resulting assignment 

of machines was compared to the optimum assignment (found by exhaustive search) to 

determine the validity of the machine-selection decision. Parameters of the parallel program 

behavior being modeled are then modified to determine the effect of the parameters on the 

quality of the assignment decision. 

One of the goals of the simulation study is to explore how the heuristic performs in a 

general-purpose environment. To examine the behavior of the approach for a variety of program 

structures, and because it is unclear what is meant by a "typical" parallel program, randomly- 

generated parallel program representations are used instead of specific program traces. 

In the simulation, parallel program behaviors are generated using the simplified model in 

Subsection 4.1. No parallel code is generated; only parameters needed by the model. For each 

leaf block B, in the simulated program, an ordered pair (T^, Tj) is randomly assigned with 

uniform distribution over a specified range. No correlation between T,- and T(- is assumed. 

67 



The number of data structures used by the program is then assigned, also with uniform 
distribution over a specified range. Each data structure is given an initial location and weight 

(cost to transfer), again uniformly over a specified range without correlation. A DU table is then 

assigned to each block in the program, with data structure requirements and usage types also 

assigned. Again, all the values are uncorrelated. This is important because of interest is how the 
heuristic performs in the absence of predictable events, and because the characterization of 
"typical" parallel programs remains unclear in the general purpose computing field. 

After the parallel program behavior is generated, four separate analyses are performed with 

the following policies: best, worst, heuristic, and random, each providing an assignment of 

machines to each block in the program. The best policy determines the optimum (minimum 

time cost) assignment of machines to program blocks by exhaustively testing every possible 

mapping. Because this approach is so expensive, simulations can be performed for only a limited 
number of stages (twelve in this study). The worst policy finds the most costly mapping, again 

by exhaustive search, and is used as a lower bound. The 
heuristic policy implements the policy described in Subsection 4.2. The random policy makes 

machine assignments by using the bit-wise representation of a randomly-generated integer to 
serve as a map for making machine selections. 

Three sets of simulations are included here, differing in the ratio of transfer time to 
computation time. In each set, the number of stages in the generated parallel program behaviors 
is controlled, and is varied from three to twelve. At each setting of the number of stages to be 

simulated, 2 simulated parallel program behaviors were generated. For each generated 
program, each of the four policies were used to determine an assignment of machines to blocks. 
Then, the time cost for each selected mapping was determined. 

Because the actual time cost for each parallel program varies significantly, the information 
for each heuristically and randomly selected mapping was normalized against the best and worst 
mapping for that algorithm. Specifically, the heuristic norm for a parallel program k, termed 
h-norm, is determined by the following definition: 

h-normk = 1 - 
(heuristic^ - best^) 

(worsts - bestk) 

The random norm (r-norm) is defined similarly. 

Using this definition, an h-norm of 1 indicates that the optimum mapping was selected, 

while an h-norm of 0 indicates that the worst possible mapping was selected. The results for all 
generated programs for each parameter setting are then averaged. 
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Figure 4.6:     Effectiveness of machine selection policies for data/execution ratio of 0.1. 
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In each of the three simulation sets, the relative size of data structures (i.e., data transfer 
cost) is controlled in relation to the computational cost of each stage. This is accomplished by 
restricting the range over which data structure sizes and execution times are chosen. In the first 

set of simulations, the data/execution cost ratio is set at 1/10, indicating that data size is 
generally small in relation to the execution requirements for the algorithm. For this set of 

simulations the heuristic is expected to perform well, because the effect of transferring data 
between machines is not significant, and therefore results should be similar to the constant-cost 

case. 

Results for this simulation are shown in Figure 4.6. The horizontal axis in the graph 

indicates the number of stages in the simulated parallel program behavior. The vertical axis 

indicates the relative worth of the machine-selection decisions for the simulated program 

behaviors. The solid line in the graph represent the "best" policy, which is a constant value of 

1. Similarly, the "worst" policy (large-dashed line) is a constant value of 0. The dotted line 

indicates the relative worth of the "random" policy. The heuristic policy is represented by the 
small-dashed line and performs close to the optimal. For many of the simulated cases, the 
heuristic policy chooses the same mapping as the "best" policy. Each data point in the graph 

o 

represents the average of the r-norms and h-norms of 2  simulations. 
In the second set (Figure 4.7), the data/execution ratio is set to 10. Again, the heuristic 

performs very well. 
In the third set of simulations, shown in Figure 4.8, the data/execution ratio is 1000. 

Parallel programs for these parameter settings tend to become polarized in that they are normally 

implemented entirely in one machine, because switching from one machine to another normally 

incurs a very high data transfer penalty. Even under these extreme conditions, the machine 

selection heuristic still selects good mappings. 

In Table 4.1, the percentage of optimal execution time required for both the random 
assignment policy and the heuristic assignment policy for the 12-stage simulation is given. As 
the data/execution cost ratio increases, the random assignment policy results in significantly 
higher cost assignments, while the heuristic policy finds mappings that are close to optimal 

(100%). 
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data/execution 

cost ratio 

random 

assignment 

heuristic 

assignment 

0.1 

10 

1000 

140.7% 

449.1% 

515.6% 

100.6% 

100.1% 

100.5% 

Table 4.1: Percentage of optimal execution time for random and heuristic assignments (# stages = 12). 

4.5. Summary 

The problem of minimizing the execution time of programs within a mixed-machine 
heterogeneous environment has been considered. A heuristic for determining the machine to 
execute each portion of a parallel program is examined, with an emphasis on efficiently 
determining the best assignment of machines to program segments in the presence of data- 
location dependent machine switching costs. Results of simulated parallel program behaviors 

indicate that good assignments are possible without resorting to exhaustive search techniques. 
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5. Heterogeneous Computing 

5.1 Overview 

A single application task often requires a variety of different types of computation (e.g., 

operations on arrays versus operations on scalars). Numerous application tasks that have more 

than one type of computational characteristic are now being mapped onto high-performance 

computing systems. Existing supercomputers generally achieve only a fraction of their peak per- 

formance on certain portions of such application programs. This is because different subtasks of 

an application can have very different computational requirements that result in different needs 

for machine capabilities. In general, it is currently impossible for a single machine architecture 

with its associated compiler, operating system, and programming tools to satisfy all the compu- 

tational requirements of various subtasks in certain applications equally well [FrS93]. Thus, a 

more appropriate approach for high-performance computing is to construct a heterogeneous 

computing environment. 

A heterogeneous computing ( HC ) system provides a variety of architectural capabilities, 

orchestrated to perform an application whose subtasks have diverse execution requirements. 

One type of heterogeneous computing system is a mixed-mode machine, where a single machine 

can operate in different modes of parallelism. Another is a mixed-machine system, where a suite 

of different kinds of high-performance machines are interconnected by high-speed links. To 

exploit such systems, a task must be decomposed into subtasks, where each subtask is computa- 

tionally homogeneous. The subtasks are then assigned to and executed with the machines (or 

modes) that will result in a minimal overall execution time for the task. Typically, users must 

specify this decomposition and assignment. One long-term pursuit in the field of heterogeneous 

computing is to do this automatically. The field of HC is quite new, having been made possible 
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by recent advances in high-speed inter-machine communication. This section is a brief introduc- 

tion to HC. 

In the most general case, an HC system includes a heterogeneous suite of machines, high- 
speed interconnections, interfaces, operating systems, communication protocols, and program- 

ming environments [KhP93]. HC is the effective use of these diverse hardware and software 
components to meet the distinct and varied computational requirements of a given application. 

Implicit in this concept of HC is the idea that subtasks with different machine architectural 
requirements are embedded in the applications executed by the HC system. The goal of HC is to 
decompose a task into computationally homogeneous subtasks, and then assign each subtask to 

the machine (or mode of parallelism) where it is best suited for execution. 

Figure 5.1 shows a hypothetical example of an application program whose various subtasks 

are best suited for execution on different machine architectures, i.e., vector, SIMD, MIMD, 
data-flow, and special purpose [Fre91]. Executing the whole program on a vector supercomputer 
only gives twice the performance achieved by a baseline serial machine. The vector portion of 

the program can be executed significantly faster. However, the non-vector portions of the pro- 

gram may only have a slight improvement in execution time due to the mismatch between each 
subtask's unique computational requirement and the machine architecture being used. Alterna- 
tively, the use of five different machines, each matched with the computational requirements of 
the subtasks for which it is used, can result in an execution 20 times as fast as the baseline serial 

machine. 

Two types of HC systems are mixed-mode machines and mixed-machine systems 

[WaA94]. A mixed-mode machine is a single parallel processing machine that is capable of 

operating in either the synchronous SIMD or asynchronous MIMD mode of parallelism and can 

dynamically switch between modes at instruction-level granularity with generally negligible 

overhead [FiC91]. A mixed-machine system is a heterogeneous suite of independent machines 
of different types interconnected by a high-speed network. Unlike mixed-mode machines, 
switching execution among machines in a mixed-machine system requires measurable overhead 
because data may need to be transferred among machines. Thus, the mixed-machine systems 
considered in this section are assumed to have high-speed connections among machines that 
make decomposition at the subtask level feasible. Another difference is that in mixed-machine 

systems, the set of subtasks may be executed as an ordered sequence and/or concurrently. 

Mixed-machine HC has also been referred to as metacomputing [KhP93]. 

A programming language used in an HC environment must be portable. To allow full flexi- 

bility of execution targets, the language must be compilable into efficient code for any machine 

in the mixed-machine suite or any mode available in a mixed-mode machine. Thus, ideally, this 
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Figure 5.1: A hypothetical example of the advantage of using heterogeneous computing 
[Fre91], where the execution time for the heterogeneous suite includes inter- 
machine communications. Percentages are based on 100% being the total execution 
time on the baseline serial system, but are not drawn to scale. 

portable programming language must be machine/mode-independent, and supply the compiler 

with the information it needs to produce efficient code for different target architectures and/or 

modes of parallelism. In this section, the future existence of such a language is assumed. More 

about this topic is in [WeW94], where a collection of parallel programming languages are sur- 

veyed and various aspects of programming parallel systems from the perspective of supporting 

HC are addressed. 

In Subsection 5.2, examples of mixed-mode machines are given and the mechanism of 

switching modes for each example is discussed. After Subsection 5.2, "HC system" will imply 

"mixed-machine system," as it is most commonly used in that way. Descriptions of and appli- 

cations for example existing mixed-machine systems are presented in Subsection 5.3. Subsec- 

tion 5.4 provides examples of existing software tools and environments for HC systems.  A 
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conceptual model for HC is introduced in Subsection 5.5. In this conceptual model, task 
profiling and analytical benchmarking are two steps necessary for characterizing an application 
program to automatically decompose it for processing on an HC system. Existing literature that 
presents explicit frameworks for performing task profiling and analytical benchmarking in the 
context of HC is overviewed in Subsection 5.6. Matching and scheduling are techniques for 
selecting machines for each subtask based on certain cost metrics. In Subsection 5.7, some basic 

characteristics of matching and scheduling techniques are described and some existing formula- 
tions are reviewed. Finally, open problems in the field of HC are discussed in Subsection 5.8. 

5.2. Mixed-Mode Machines 

5.2.1. Introduction 

Two types of parallel processing systems are the SIMD (single instruction stream - multiple 
data stream) machine and the MIMD (multiple instruction stream - multiple data stream) 

machine. An SIMD machine typically consists of N processors, N memory modules, an intercon- 

nection network, and a control unit [Fly66]. Figure 5.2(a) shows a distributed memory SIMD 
architecture in which each processor is paired with a memory module to form N processing ele- 
ments (PEs). In the SIMD mode of parallelism, there is a single program and the control unit 
broadcasts instructions of this program in sequence to the N PEs. All enabled PEs execute the 
same instruction (broadcast by the control unit) at the same time, but each on its own distinct 
data. The operand data for these instructions are fetched from the memory associated with each 

PE. The interconnection network provides inter-PE communication. 

In an MIMD machine, each PE stores its own instructions and data. Distributed memory 

MIMD systems are typically structured like SIMD systems without the control unit, i.e., N PEs, 
an interconnection network, and multiple data streams [Fly66] (see Figure 5.2(b)). Each PE exe- 

cutes its own program asynchronously with respect to the other PEs. Thus, in contrast to the 
SIMD model, there are multiple threads of control (i.e., multiple programs). In both of the 

models in Figure 5.2, a PE processes data stored locally or received from another PE through the 
interconnection network. The use of SIMD and MIMD machines is discussed further in 

[SiW95]. 

SIMD machines and MIMD machines each have their own advantages when they are used 

to execute application programs. The advantages of SIMD mode include: 

a)  The single instruction stream and implicit synchronization of SIMD make programs easier to 

create, understand, and debug. Also, as opposed to MIMD architectures where common 
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Figure 5.2:     (a) Distributed memory SIMD machine model, (b) Distributed memory MIMD 

machine model. 

programs can be executed asynchronously, the user does not need to be concerned with the 

relative timings among the PEs. 

b) In SIMD mode, the PEs are implicitly synchronized at the instruction level. Explicit syn- 
chronization primitives, such as semaphores, may be required in MIMD mode, and generally 

incur overhead. 

c) The implicit synchronization of SIMD mode also allows more efficient inter-PE communica- 
tion. If the PEs communicate through messages, during a given transfer all enabled PEs send 

a message to distinct PEs, thereby implicitly synchronizing the "send" and "receive" 
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commands. The receiving PEs implicitly know when to read the message, who sent it, and 

why it was sent. MIMD architectures require the overhead of identification protocols and a 

scheme to signal when a message has been sent and received. 

d) Control flow instructions and scalar operations that are common to all PEs (e.g., computing 
common local subimage data point addresses) can be overlapped (i.e., executed con- 
currently) on the CU while the processors are executing instructions (this is implementation 

dependent); this is referred to as CU/PE overlap [ArN91, KiN91]. 

e) Only a single copy of the instructions needs to be stored in the system memory, thus possibly 
reducing memory cost and size, allowing for more data storage, and/or reducing communica- 

tion between primary and secondary memory. 

f) Cost is reduced by the need for only a single instruction decoder in the CU (versus one in 

each PE for MIMD mode). 

The advantages of MIMD mode include: 

a) MIMD is very flexible in that different operations may be performed on the different PEs 
simultaneously (i.e., there are multiple threads of control). Thus, MIMD is effective for a 
much wider range of algorithms, including tasks that can be parallelized based on functional- 

ity (i.e., MIMD can exploit data parallelism and functional parallelism, while SIMD is lim- 

ited to the former [Jam87]). 

b) The multiple instruction streams of MIMD allow for more efficient execution of conditional 

statements (e.g., "if-then-else") because each PE can independently follow either decision 

path. In SIMD mode, when conditionals depend on data local to PEs, all of the instructions 

for the "then" block must be broadcast, followed by all of the "else" block. Only the 

appropriate PEs are enabled for each block. 

c) MIMD's asynchronous nature results in a higher effective execution rate for a sequence of 
instructions each of whose execution time is data dependent (e.g., floating point operations 
on some processor architectures). In SIMD mode, a PE must wait until all the other PEs 
have completed an instruction before continuing to the next instruction, resulting in a "sum 

of max's" effect: TSIMD =   X max (mstr-time)- M!MD mode allows each PE to execute 
instr's PE 

the block of instructions independently, resulting in a "max of sum's" effect: TMJMD = 

max £ (instr. time) < TSIMD (see Figure 5.3). 
PEs insü's 

d) MIMD machines do not have the added cost of a SIMD CU and the hardware for broadcast- 

ing instructions. 
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Figure 53: "Sum of max's" versus "max of sums" effects. 

The trade-offs above are summarized from [BeS91]. The reader is referred to that paper 

and to [Jam87, SiA92b] for more details and examples. Because both SIMD and MIMD modes 

have advantages, various mixed-mode machines have been proposed. 

A mixed-mode machine, which can dynamically switch between the SIMD and MIMD 

modes of parallelism at instruction-level granularity, allows different modes of parallelism to be 

applied to execute various subtasks of an application program. Various studies have shown that 

the mode of parallelism has an impact on the performance of a parallel processing system, and a 

mixed-mode machine may outperform a single-mode machine with the same number of proces- 

sors for a given algorithm (e.g., [GiW92, SaS93, U1M94]). 

As an example of the use of a mixed-mode machine, consider the bitonic sorting [Bat68] of 

sequences on the mixed-mode PASM prototype [FiC91]. Assume there are L numbers and N = 

2n PEs, where L is an integer multiple of N, that L/N numbers are stored in each PE, and that the 

L/N numbers within a PE are in sorted order. The goal is to have each PE contain a sorted list of 

L/N elements, where each of the elements in PE / is less than or equal to all of the elements in 

PE k, for / < k. The regular bitonic sorting algorithm for L = N is modified to accommodate the 

L/N sequence in each PE. As shown in Figure 5.4, an ordered merge is done between the local 

PE sequence X and the transferred sequence Y using local data conditional statements in 

merge(X, Y). The lesser half of the merged sequence is assigned the pointer X and the greater 

half is assigned the pointer Y. The pointers to the two lists may be swapped by swap(X, Y), based 

on a precomputed data-independent mask. 
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for k = 1 to log2iV do 
for / = 1 to k do 

{ for<7=ltoL/ZVdo 
{loadX[<?] into network 

send to PE whose number differs in bit (k - i) 

Y[q] <— network output} 

merge(X, Y) 

swap(X, Y)} 

Figure 5.4: Bitonic sequence-sorting algorithm [FiC91]. 

When choosing the mode of parallelism, the programmer must consider various charac- 

teristics of the algorithm. The ordered merge involves many comparisons, all of which can be 
more efficiently computed in MIMD mode. The innermost loop of the algorithm requires many 
network transfers, which are better performed in SIMD mode. In a mixed-mode implementa- 

tion, the ordered merge and swap routines can be executed in MIMD mode, while the rest of the 
operations, including network transfers, are performed in SIMD mode. This approach has an 
advantage over pure SIMD or pure MIMD mode implementations because all comparisons are 
done in MIMD mode and all network transfers are done in SIMD mode. Additionally, there is 
potential in SIMD mode for overlapping operations done by the control unit (i.e., loop index 

variable increment and compare) with operations done by the PEs (i.e., the loop body). It is 

shown in [FiC91] that there is a noticeable improvement in execution time for the mixed-mode 

implementation. The mixed-mode results are shown to be the product of properties inherent to 

the modes of parallelism. 

Most of the advantages of SIMD and MIMD modes can be realized with a mixed-mode 

architecture that allows the most appropriate mode to be selected at each step in the execution of 

a program. Disadvantages of mixed-mode parallelism include higher hardware cost (because 
mixed-mode machines must have the hardware needed for both modes), more complicated use 
(because the mode switching ability adds another dimension of complexity for the programmer), 
and, when switching from MIMD to SIMD mode, some PEs may remain idle while they wait for 
the other PEs to reach the switch point (which they may not need to do if only MIMD mode was 

used) [BeK91]. 

Very brief descriptions of four existing mixed-mode machines follow, emphasizing the par- 
ticular mechanisms for implementing mode-switching during the execution of the application 
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program. Readers can refer to the references provided for each system for detailed descriptions 

of the hardware organization and related issues. 

5.2.2. PASM 

PASM is a PArtitionable-SIMD/MIMD system concept being developed as a design for a large- 

scale dynamically reconfigurable parallel processing system [SiS87, SiS95]. The PASM design 
concept is a distributed memory machine and can support at least 1024 PEs in the computational 

engine. A small-scale proof-of-concept prototype (30 processors, 16 PEs in the computational 

engine) has been built at Purdue University, in the USA. The prototype is a constantly evolving 

tool for validating design concepts and studying issues related to the use of reconfigurable paral- 

lel processing systems. 

As a partitionable mixed-mode system, PASM can be dynamically reconfigured to form 

submachines of various sizes. Each submachine can independently perform mixed-mode paral- 
lelism. PASM uses a flexible multistage interconnection network for inter-PE communication. 
Thus, PASM is dynamically reconfigurable along three dimensions: partitionability, mode of 
parallelism, and connections among PEs. To simplify the discussion, the additional hardware 

needed for partitioning is ignored, and a single control unit will be assumed. 

The mechanism used by PASM to switch modes at instruction-level granularity is as fol- 

lows. In SIMD mode, a PE fetches SMD instructions by reading an instruction word from the 

SIMD instruction space of the PE's memory. This is only a logical address space because SIMD 

instructions are not physically located in the memory of the PEs. Each memory access made by a 

PE's processor is monitored by the Instruction Broadcast Unit (BU). The IBU sends an SIMD 

instruction request to the control unit, and when all enabled PEs have requested a new instruc- 

tion, it is broadcast from a queue in the control unit. In MMD, a PE fetches instructions from its 
local memory. A PE can switch from SIMD mode to an MIMD program located at some 
address A in its local memory by receiving a "branch to A" instruction in SIMD mode. Simi- 
larly, a PE can change from MIMD mode to SIMD mode by executing a branch to the logical 
SIMD instruction space. Such flexibility in mode switching allows mixed-mode programs to be 
written that change modes at instruction-level granularity with generally nominal overhead. 

5.2.3. TRAC 

The Texas Reconfigurable Array Computer (TRAC) is a partitionable mixed-mode parallel pro- 

cessing system, which was developed at University of Texas at Austin, in the USA [LiM87]. Its 

resources can be dynamically reconfigured to fit the structures of the applications. TRAC uses a 
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Banyan interconnection network for inter-processor communication. TRAC 1.1, a shared 

memory machine, was an experimental prototype of the original paper design of TRAC 1.0. It 

consisted of four microprocessors that were connected to nine memory modules by an SW- 

Banyan network with fan-out of three, spread of two, and two levels (see Figure 5.5). 

data tree 

instruction tree 
processor 

Figure 5.5: A task tree (instruction tree and data tree) of TRAC 1.1 [A1G89]. 

In TRAC 1.0, after configuring the Banyan network, several data trees connect data 

memories with their corresponding processors, and an instruction tree connects a specific pro- 
gram memory with processors. As shown in Figure 5.5, the dashed lines in the network illustrate 
two data trees, each connecting a processor at the top to a number of data memories at the bot- 
tom. The dotted lines illustrate an instruction tree that connects a single program memory to two 
processors that will work together in SIMD mode. In MIMD mode, each processor can indepen- 

dently fetch its own instructions from a memory module associated with it. Mode switching 
between SIMD and MIMD is implemented by changing the source of the instructions for the 

processors. 

5.2.4. OPSILA 

OPSILA is a limited mixed-mode parallel machine built at University of Nice, in France 

[DuB88]. It runs with two different modes of parallelism, SIMD and SPMD. SPMD (single pro- 
gram - multiple data stream) mode is a special form of MIMD mode where all the PEs execute 
the same program in an asynchronous fashion, each on its own data [DaG88].  OPSILA is 
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composed of two parts: a central control unit and a computation unit with 16 PEs. Each PE is a 
processor associated with a memory bank (MB). A synchronous Omega/Benes interconnection 
network is used for inter-PE communication. 

The central control unit consists of two processors: the scalar processor (SP) and the 
instruction processor (IP). In SIMD mode, the application program is stored entirely in the scalar 

memory (SM) of the central control unit and managed by the SP. The data are located in the vec- 

tor memory (VM) of the computation unit. The IP broadcasts SIMD instructions to each PE. The 

PEs then execute the same instruction simultaneously, each on data from its own MB. 

SPMD mode is initialized by the IP, which provides each PE the starting SPMD code 

address. In SPMD mode, the same program is duplicated in each MB. PEs cannot exchange 
information during SPMD mode. Data exchanges can only occur in SIMD mode via the synchro- 
nous Omega/Benes interconnection network. The synchronization mechanism for initializing the 

SPMD mode and for returning to SIMD mode is a fork-join operation executed over the set of 
PEs. The transition from SPMD to SIMD mode is made in one machine cycle after the end of the 
execution of the PE with the largest work load. 

5.2.5. Triton 

Triton is a mixed-mode SIMD/MIMD parallel processing system developed at University of 
Karlsruhe, in Germany [HeW93, PhW93]. It uses a generalized De Bruijn interconnection net- 
work for inter-PE communication. The Triton architecture is scalable up to 4096 nodes. The Tri- 

ton/1 prototype will consist of 260 nodes (four are for fault tolerance). Each node consists of a 

processor/memory pair, a memory management unit, a numeric co-processor, a SCSI interface, 
and a network processor. 

In SIMD mode, a single front-end processor produces the instruction stream for all PEs. If a 
PE is selected not to execute an instruction, a local signal for the instruction stream is turned off 
and the corresponding PE is disabled. To switch to MIMD mode, the program has to be down- 

loaded to the local memory of the PEs. This is done via load instructions in SIMD mode. The 

switch from SIMD to MIMD mode is accomplished by two instructions. First, the program 

counter is set according to the location of the program to be executed in MIMD mode by a 

branch instruction. Second, the SIMD request bit for each PE is deactivated. Each PE then 

switches to MIMD mode and starts the execution of the code stored in the local memory. To 
switch from MIMD to SIMD mode, the SIMD request bit for each PE is activated. The result of 
a global-wired-or operation of all PEs' SIMD request bits instructs the front-end processor to 
activate the SIMD mode. Then each PE switches to SIMD mode and the next instruction is from 
the instruction stream broadcast by the front-end processor. 

82 



5.2.6. EXECUBE Chip 

The EXECUBE chip is a building block for parallel processing systems that can support both the 
SIMD and MIMD modes of parallelism [Kog94]. Its current chip design consists of eight PEs. 
Each PE is a 16-bit CPU, associated with a 64KB memory module. A hypercube interconnection 
network is used for inter-PE communication. This is all contained on a single chip developed by 

IBM Federal Systems Division, in the USA. A system with 64 EXECUBE chips (512 CPUs) has 

been constructed. 

In SIMD mode, instructions are sent into each PE's instruction register by a separate con- 
troller via the SIMD broadcast bus. In MIMD mode, each PE obtains its own instructions from 

its local memory. Because the only way for accessing the memory system of each PE is through 
its CPU, the MIMD instructions are sent and stored into participating PEs' local memory in 
SIMD mode via the SIMD broadcast bus. Arbitrary collections of PEs can be in either mode 

simultaneously, with mode switching instructions included for changing modes between SIMD 

and MIMD. Those mode switching instructions are machine operation codes that activate spe- 

cial hardware functions. The mode switch from SIMD to MIMD is activated by executing an 
instruction to "switch to MIMD mode" and participating PEs begin execution at a specified 
address in local memory. After executing a switching instruction, the participating PEs stop 
fetching instructions from the SIMD broadcast bus and start to execute the instructions stored in 
local memory. A "switch to SIMD mode" instruction causes PEs to fetch instructions from the 
SIMD broadcast bus. A collective signal from the PEs is sent to the controller that sends SIMD 

instructions to each PE's instruction register. If any PE in the PE group that is changing to SIMD 
mode is still in MIMD execution, then the controller will wait until the collective signal from the 

PEs is set, at which point the SIMD execution is started. 

5.2.7. Conclusions 

Mixed-mode machines are one extreme form of HC, where two different modes of parallel- 

ism are available in one machine. This is in contrast to mixed-machine HC systems, where a 
suite of machines can provide different modes of parallelism by having each mode in a different 

machine. Both types of heterogeneous systems can support tasks that include some subtasks that 

execute faster in SIMD mode and others that execute faster in MIMD mode. Decomposing a 
task for mixed-mode execution is easier than mixed-machine because the same PEs are used for 
both modes and, in general, no data has to be moved as a result of a mode change. This elim- 
inates two major problems in the use of mixed-machine HC: moving data among machines and 

determining machine loads. 

83 



The study of the design and use of mixed-mode machines provides valuable information 
about the trade-offs between SIMD and MIMD parallelism, explores the advantages and disad- 

vantages of mixed-mode computation as a mode of parallelism, and establishes a relatively 

simpler environment for developing algorithm mapping techniques that may possibly be adapted 

to the mixed-machine arena. For example, a block-based mode selection methodology 
developed for mixed-mode machines, presented in [WaS94], was then extended for use as a 
heuristic for the mixed-machine case [WaA94]. 

Thus, mixed-mode machines are important for their advantages over single-mode machines 

and for their use in developing methodologies that may be adaptable for mixed-machine HC use. 

The emphasis of this report, however, is on mixed-machine systems. Therefore, for the rest of 

the report, "HC system" by itself will imply a mixed-machine suite. 

5.3. Examples of Uses of Existing HC Systems 

5.3.1.   Simulation of Mixing in Turbulent Convection at the Minnesota Supercomputer 
Center 

In [K1M93], the usefulness of a "metacomputer" developed at the Minnesota Supercom- 
puter Center is demonstrated through a particular application involving the simulation of mixing 
in turbulent convection in three dimensions. "Metacomputer" is defined in [K1M93] to be a 

coordinated set of CPUs, I/O devices, mass storage, and graphical capabilities that are appropri- 

ately balanced for solving large-scale computational problems, and is equivalent to the term 

"HC system" defined in Subsection 5.1. The particular HC system developed consists of 

Thinking Machines' CM-200 and CM-5, a CRAY 2, and a Silicon Graphics VGX workstation, 
all interconnected over a high-speed HiPPI (high-performance parallel interface) network. 

The underlying physics and mathematics that govern the dynamics associated with simulat- 
ing mixing in turbulent convection are not included here, but are overviewed in [K1M93]. The 
required calculations for the simulation were divided into three phases: (1) calculation of velo- 
city and temperature fields, (2) calculation of particle traces, and (3) calculation of particle distri- 

bution statistics and refinement of the temperature field. In the following paragraphs, a brief out- 

line of how the required computations were decomposed and assigned to various machines in the 
system is given. 

The velocity and temperature fields associated with the phase 1 calculations are governed 

by two second order partial differential equations. Three-dimensional cubic splines (over a grid 
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of size 128 x 128 x 64) were used to approximate the velocity and temperature fields in these 

equations, resulting in a linear system of equations for the unknown spline coefficients. A conju- 

gate gradient method was applied to solve this system of equations. These computations were 
done on the CM-5. At each time step, the grid of 128 x 128 x 64 spline coefficients were 

transferred to the CRAY 2, where the calculation of the particle traces were done. 

The particle traces were calculated by solving a set of ordinary differential equations that 

are dependent on the velocity field solution computed in phase 1. Initially, this computation was 
attempted on the CM-200 by employing an Eulerian approach. Although this approach worked 

well for a two-dimensional instance of the problem, the same approach could not be used for the 

three-dimensional simulations reported in [K1M93] because a prohibitive amount of memory 
was required. Instead, the three-dimensional simulations were implemented using a vectorized 
Lagrangian approach on the CRAY 2, which required substantially less memory than the parallel 
Eulerian scheme. The coordinates of the particles and the spline coefficients of the temperature 

field were then sent from the CRAY 2 to the CM-200. 

The CM-200 was used to calculate statistics of the particle distribution and to assemble a 

three-dimensional temperature field from the associated spline coefficients (phase 3). A 
256 x 256 x 128 point temperature field file was produced from the 128 x 128 x 64 grid of splines, 
representing a volume of eight million voxels (a voxel is a three-dimensional element). This file 
of voxels and the coordinates of the particles (one million particles were used in the model) were 
then sent to an SGI VGX workstation where they were visualized using an interactive volume 

renderer. 

The application was successful in demonstrating the benefits of HC, however, the authors 

note that there is still much work to be done to improve the environment for developing HC 

applications. The authors state that there is a need for more vendor involvement, in addition to 
the need for more basic research in the areas of reliability, I/O software, interactivity, and distri- 

buted scheduling. 

5.3.2. Interactive Rendering of Multiple Earth Science Data Sets on the CASA Testbed 

In 1990, the National Science Foundation (NSF) in conjunction with the Defense Advanced 

Research Projects Agency (DARPA) established a program to conduct research in the area of 
networking at gigabit per second speeds [SpR90]. The program established five gigabit testbeds 

to carry out research in different application areas, each with a different research focus, such as 
networking protocols, software development, and networking hardware. The research results 

from this program will contribute to the proposed National Research and Education Network 

(NREN) and ultimately to the National Information Infrastructure (Nil). The NREN will link 
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government, industry, and higher-education institutions involved in general research areas that 

can utilize the interconnected computational resources. In this and the next subsection, two 

applications that utilize the heterogeneous computing resources available on two of the testbeds 
are overviewed. 

The CASA testbed interconnects several remote sites including the California Institute of 
Technology, San Diego Supercomputer Center, Jet Propulsion Laboratory (JPL), and Los 

Alamos National Laboratory. In the future, these sites will be interconnected via SONET (syn- 

chronous optical network) connections operating at 2.488 gigabits per second; they are currently 

connected with lower speed connections [BeB93]. The computational resources of the testbed 

consists of various parallel and vector machines including an Intel Touchstone Delta, Thinking 

Machines' CM-5 and CM-200, CRAY Y-MP8/864, Y-MP/264, and Y-MP/232, and a number of 
workstations and specialized visualization engines. 

One of the applications developed on the CASA testbed involves interactive three- 
dimensional rendering of multiple Earth science data sets. Geology can be regarded as a 
"three-dimensional science," in the sense that both surface and subsurface data from the Earth 

are collected and studied. In the past, these two types of data were generally collected and 
analyzed separately. By making effective use of the computing and networking resources of the 

CASA testbed, researchers can construct a more complete image of the Earth's surface and sub- 
surface, together, by combining multiple sets of data from various sources. The required process- 

ing and communication for merging these data sets should be fast enough to enable interactive 
manipulation of the associated image. According to [BeB93], researchers can rotate, slice, 
zoom, and "fly over" a full-color view of the Earth's surface and subsurface while sitting at a 
workstation. 

The software for the application is divided into three categories: (1) a collection of func- 
tionally distinct two-dimensional image processing modules that generate and/or manipulate 

color images and elevation data, (2) a rendering process that combines data and creates an elec- 
tronic rendered image, and (3) the network and control software that coordinate the various 

processes. The two-dimensional modules are implemented using Network Express, which is a 

portable, message passing, programming environment developed by the ParaSoft Corporation. 
Network Express can be used on MIMD machines, vector machines, and other computers. 

Under Network Express, each machine is considered a node within the network. One node is 
chosen as a host, which manages a set of other nodes in the network. 

As was done for the "simulation of mixing in turbulent convection" application described 
in the previous subsection, this application was decomposed based on functionality. Functional 
modules were identified and optimized for specific machines (and executed on those machines). 
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Thus, when a functional module begins execution, it processes data sets that are completely 

resident on the machine where the module is executed. Initially, raw data sets are transferred to 
one of the two-dimensional functional modules for processing. The two-dimensional modules 

manipulate image and/or elevation data via a number of different algorithms. Most of the two- 

dimensional modules were developed for the CRAY Y-MP/232 at JPL and the CRAY Y- 
MP8/864 at the San Diego Supercomputer Center. Two of the two-dimensional modules were 

implemented on the CM-5 and CM-200 located at Los Alamos. Output from the two- 
dimensional modules are sent over the network to the three-dimensional rendering process, 

which was implemented on the Intel Touchstone Delta located at the California Institute of 

Technology. 

In the current implementation of the CASA testbed, there are high-speed HiPPI connections 
only among machines located at a common geographical site (e.g., the CM-5 and CM-200 
located at Los Alamos are both connected to a local HiPPI switch). The current connections 
among the distributed sites, which utilize lower speed networks, will be upgraded by using 

HiPPI-SONET gateways to interconnect each site's local HiPPI network to a wide area high- 
speed SONET network. Future work includes executing the application over this new high- 
speed HiPPVSONET network to obtain new benchmark timings that will be compared with 

those of the current implementation. 

5.3.3. Using VISTAnet to Compute Radiation Treatment Planning for Cancer Patients 

VISTAnet is another network in the group of five gigabit testbeds mentioned in the last subsec- 
tion. The VISTAnet testbed consists of several remote sites including the Center for Communi- 

cations and Signal Processing at North Carolina State University, BellSouth, GTE, and three 

organizations within the University of North Carolina at Chapel Hill (the Graphics and Image 
Laboratory in the Department of Computer Science, the Microelectronics Systems Laboratory in 
the Department of Computer Science, and the Department of Radiation Oncology) [StA93]. The 
machines connected to the testbed include a CRAY Y-MP, a Pixel-Planes 5, a MasPar MP-1, 

and Silicon Graphics workstations. 

A major application focus for this testbed has been the computation of radiation treatment 

planning for cancer patients [RoC92]. Recent improvements in the care of cancer patients are 

due in large part to the effective use of radiation treatment for attacking cancerous cells. Radia- 

tion is effective in treating the disease only if it is delivered to the tumorous cells in a high dose 

while sparing the nontumorous cells. To do this, the physician must determine the number of 
treatment beams to be used, the beam angles and shapes, the time the beam is to be activated, 
and which custom filters to use to alter the beam. This process is know as radiation treatment 
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planning and in the past was carried out in only two spatial dimensions. 

Some types of cancer require that the radiation treatment planning take place in three 

dimensions to achieve maximum effectiveness. This three-dimensional type of planning 

requires advanced modeling of human anatomy (rendered from tomography scans) as well as 

three-dimensional modeling of the radiation beam (i.e., the treatment plan). In the application, 

the treatment plan model is superimposed onto the anatomical model. One of the objectives is to 
provide a visualization of these models that can be rotated, zoomed, and/or modified interac- 

tively. 

The computational requirements of the application were decomposed in an attempt to take 

advantage of the strengths of the machines available in the testbed. The CRAY Y-MP was 
demonstrated to be ideal for radiation dose calculation and interpolation throughout the entire 
model. The Pixel-Planes 5 machine (which contains a quarter-million custom one-bit proces- 
sors) is designed for rendering images and is used for shading and merging large amounts of 

image data. 

The physician interacts with the system via a medical workstation hosted on a Silicon 
Graphics 340 VGX. >From this workstation, the physician can modify the treatment plan based 

on the current dosage patterns and can adjust the view by rotating the image. When an image 
viewpoint is adjusted, the new viewpoint information is sent to the Pixel-Planes 5, which renders 
the otherwise unchanged data according to the new viewing angle and presents the new image to 
the physician at the workstation. If the treatment plan is modified, the new treatment plan infor- 
mation is sent to the CRAY Y-MP, which computes the new three-dimensional dose distribution 

and sends the information to the Pixel-Planes 5 for rendering. 

In the future, a MasPar MP-1 will be integrated into the application and will receive the 

three-dimensional dose distribution generated by the CRAY Y-MP. With this information, the 

MP-1 will be used to compute a statistical analysis of the treatment plan in relation to the ana- 
tomical data. This computed information will provide the physician with a quantitative measure 

of merit for each treatment plan. 

5.4. Examples of Existing Software Tools and Environments 

5.4.1. Overview 

A variety of software tools and environments have been implemented to assist programmers in 
developing applications to execute across a heterogeneous suite of computers. A common 
feature among most of the existing tools is that they create a layer of abstraction between 
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programmers and the suite of machines. Some also provide explicit constructs needed to express 
synchronization and communication among tasks within the application. The following subsec- 

tions discuss examples of software tools that exist and/or are being developed for HC systems. 

The functionalities of most of the tools described in this section tend to evolve and change 
rapidly; the descriptions here are based on the references given. A survey of distributed queue- 
ing and clustering systems, some of which can be applied to HC, is given in [KaN93]. 

5.4.2. Linda 

Linda was originally implemented for homogeneous computing environments such as shared 
memory parallel computers (e.g., the Sequent Symmetry), distributed memory computers (e.g., 

the Intel iPSC/2), and local area networks (e.g., a network of workstations). However, as sug- 
gested in [CaG92], the tuple space abstraction of Linda makes it an attractive choice for HC sys- 
tems as well. The tuple space acts to loosely connect processes that communicate via persistent 
objects called tuples, and not through transient events such as message passing or procedure 

calls. A process can generate a tuple and place it in a globally shared collection of tuples, which 
is called the tuple space. Additionally, tuples can be removed, read, and evaluated from the tuple 
space. There are two types of tuples: process tuples that incorporate executable code and data 
tuples that are passive, ordered collections of data items [BuL93]. Although the current version 
of Linda does not support concurrent utilization (i.e., interaction) among machines in an HC sys- 

tem, Linda programs are portable across a range of architecture types. Issues that must be 

resolved in order to extend the present version of Linda for concurrent use among machines in 

an HC system are outlined and discussed in [CaG92]. 

5.4.3. p4 

p4 is a set of parallel programming tools designed to support portability across a wide range of 
multicomputer/multiprocessor architectures [BuL92, BuL93, BuL94]. p4 includes high-level 

operations built on top of low-level system-dependent primitives. These high-level operations 
allow certain procedure calls for a given system to be replaced with the equivalent p4 calls. The 
p4 functions are implemented by utilizing the lower-level system-specific set of procedures. The 
long term goal of this project is to allow a single program to be written for an entire class of sys- 
tems (e.g., message passing) without requiring the explicit utilization of constructs of the specific 

system (e.g., Intel Paragon versus nCUBE 2) in the source code. The p4 function library is 
linked with the source code to provide functions for message passing, shared memory monitor- 

ing, process management, debugging, and language interfacing. 
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The architectures supported by p4 can be divided into three distinct classes. The first class 

is shared memory multiprocessors (e.g., the Alliant FX/8). In general, the method of communi- 

cation for shared memory architectures is through the use of the global memory space. Using 

this method of communication requires that shared data be protected from unsafe concurrent 

access. p4 provides monitor data types for encapsulating shared data and controlling access. 

The second class of architectures supported by p4 is the class of distributed memory systems that 
implement communication through message passing. The members of this class are distributed 

memory multiprocessor machines and groups of workstations that communicate over a network 
[BuG93]. The third class of architectures supported by p4 is the class consisting of called "com- 

municating clusters," which can include multiprocessor machines that communicate via shared- 
memory and/or through the exchange of messages. Therefore, p4 can support communication 

within and among both shared-memory and message-passing machines. 

The process of executing a p4 program begins with the user compiling the code for the 

desired set of machines. The configuration of the system is then defined by creating a procgroup 

file, which defines how many programs are to be executed, the names of the programs, and 
where they are to be executed. The procgroup file gives the user the flexibility to experiment 

with different configurations and types of machines. 

In addition to facilitating code portability in an HC environment, p4 also helps the user 

understand and analyze the behavior of the program's execution. This is accomplished using a 
utility called ALOG, which creates a log of time-stamped events captured during program exe- 
cution. ALOG consists of a set of macros that can be used to instrument C or FORTRAN pro- 
grams. These macros record various events during execution and then dump the associated 

information to a file on disk (i.e., log) upon program completion or memory exhaustion. This 

event log can then be used as an input file for a graphical tool called Upshot [HeL91]. With 
Upshot, the log file can be examined in detail to detect computational and/or communication 

bottlenecks. 

The developers of p4 stress that it is not an "abstract tool" and that various components of 

p4 evolved through the development of real applications. As an example, p4 was used in 
developing a piezoelectric crystal simulation program. In this particular application, p4 was used 
to coordinate the computations and communications among an Intel Touchstone Delta, the 
graphical output on a Stardent Titan, and a Solbourne workstation (which was used as an I/O 

server). Current and future research directions for p4 include the implementation of Linda with 

p4 to provide a single high-level programming model. 
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5.4.4 Mentat 

Overview 

Mentat is an object-oriented parallel processing system designed to provide a layer of abstraction 

between the user's application and the hardware and system software used to execute the appli- 

cation. Mentat consists of run time support facilities and language abstractions that provide a 

clear separation between the user and the physical systems [GrW94]. This separation is 
achieved by using an object-oriented language to specify parallelism within the application and 
compiler technology to handle many of the tedious and time consuming bookkeeping tasks. 
Mentat combines a medium-grain dataflow computation model with the object-oriented pro- 
gramming paradigm to produce a system that facilitates hierarchies of parallelism [Gri93]. In 
this medium-grain dataflow model, programs are characterized as directed graphs. The vertices 
of the graph represent computational elements (e.g., class member functions) and the edges 
model data dependencies between these elements. The idea behind Mentat is to allow the pro- 
grammer to express the problem in a C++ based language, called MPL (Mentat Programming 

Language), which facilitates data hiding and other popular features of the C++ language. Mentat 
uses the dataflow model to exploit the inherent medium-grain parallelism of the program; in 
addition, the programmer can specify those C++ classes which are themselves of sufficient com- 

putational complexity to warrant parallel execution [Gri93]. 

The Mentat system consists of two major parts. The first is the MPL programming 
language, which is used to express the high-level abstractions of parallelism within the applica- 

tion. The second is Mentat's run time system (RTS). 

MPL 

The use of object-oriented programming languages, such as MPL, masks much of the underlying 
complexity from the user and is the basis for "separating" the user from the various machines in 
the HC system. The basic unit of computation in MPL is the Mentat class instance, which is 

similar to a C structure. The Mentat class instance consists of objects (e.g., local and member 

variables), their procedures, and a thread of control [GrW94]. 

In MPL, the standard object-oriented notions of data encapsulation and method encapsula- 
tion have been extended to include "parallelism encapsulation" [Gri93]. MPL supports two 
types of parallelism encapsulation: intraobject parallelism encapsulation, where the implemen- 

tation (i.e., sequential or parallel) of a member function is hidden from the user, and interobject 
parallelism encapsulation, where the parallelism among member-function invocations is also 
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hidden from the user. For interobject parallelism encapsulation, it is the responsibility of the 

MPL compiler to ensure that data dependencies between invocations are satisfied and that com- 

munication and synchronization are handled correctly [Gri93]. The MPL compiler maps MPL 

programs onto the dataflow model by translating the MPL programs into C++ programs with 

embedded calls to the Mentat run time system. These C++ programs are then compiled by the 

host C++ compiler resulting in executable object code. 

A distinguishing feature of MPL is its implementation of a construct called rtf (return-to- 
future) [Gri93], which is analogous to the "return" function commonly found in imperative 
languages such as C. The rtf construct allows Mentat member functions to return values to suc- 

cessor nodes in the macro-dataflow graph. These returned values are forwarded to all member 

functions (of the successor nodes) that are dependent on the result. The rtf function differs from 

a standard return in three ways. First, a member function may "rtf a value" from a Mentat- 
object member function that has not completed execution. Second, the execution of rtf indicates 

only that the associated values are ready (additional computation may be carried out after the rtf 

call). Finally, depending on the program's data dependency structure, rtf may not return data to 
its caller. In particular, if the caller does not use the resulting values locally, then the caller does 

not receive a copy of the values. 

RTS (Run Time System) 

The RTS, which initially supported execution on homogeneous parallel machines, has been 

extended to support HC systems. The RTS supports Mentat's macro-dataflow model via a port- 

able virtual macro-dataflow machine. The virtual macro-dataflow machine provides support 
routines that perform run time data dependence detection, program graph construction, program 

graph execution, scheduling, communication, and synchronization [Gri93, GrW94]. The virtual 
macro-dataflow machine contains two inner components: a set of machine-independent com- 
ponents and libraries, and a set of machine-dependent components. One of the important 

features of the virtual macro-dataflow machine is that it can be ported to any supported machine 

in the HC system by changing only the machine-dependent components. This low-level porta- 

bility allows the user to port the application source code to any machine in the supported net- 

work and have the code execute without source code changes. 

The RTS has been implemented for several platforms including a network of Sun worksta- 
tions, the Silicon Graphics Ms, and the Intel iPSC/2. Matrix multiplication and Gaussian elimi- 
nation programs have been coded in MPL and executed on a network of eight Sun workstations 
and a 32 node iPSC/2. While MPL improved the ease of use of the HC system, it was indicated 
that the performance may not be as good as hand-coded versions that use send and receive 
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protocols. Thus, there is a trade-off between ease of use and some performance degradation. 

Future work includes the implementation of several optimizations for the MPL compiler. 

5.4.5. PVM, Xab, and HeNCE 

Overview 

In this subsection, the PVM (Parallel Virtual Machine) system and two tools that support 

development of applications using PVM are overviewed. The first of the supporting tools is Xab 

(X-window Analysis and Debugging), which provides run time monitoring of PVM programs 

[Beg93]. The second supporting tool is HeNCE (Heterogeneous Network Computing Environ- 
ment), which provides a high-level PVM-based environment for constructing parallel programs 

via directed acyclic graphs [BeD93]. 

PVM 

PVM is a software system that enables a collection of heterogeneous computers to be used as a 

coherent, flexible, and concurrent computational resource [BeD93, Sun90, Sun92]. The PVM 
package consists of two major parts. The first part includes system level daemons, called pvmds, 
which reside on each computer in the HC system. The second part is a library of PVM interface 

routines. 

The pvmds provide services to both local processes and remote processes on other plat- 

forms in the HC system. Together, the entire collection of pvmds form what is called a "virtual 

machine" by enabling the HC system to be viewed as a single "meta-computer." Two of the 

major services provided by the pvmds are communication and synchronization. Processes com- 

municate via the use of messages. The messages are exchanged asynchronously so that a send- 
ing process may continue execution without waiting for an acknowledgment from the receiving 
process. The other major service provided is the synchronization among processes. Synchroni- 
zations can be accomplished by using barriers or by using event rendezvous. The synchroniza- 

tions may be among multiple processes that are executing on a local machine and/or be among 

processes on different machines. 

The second part of the PVM package is a library of interface routines. Applications 

developed with PVM must be linked with this library. Applications to be executed on one or 

more computing platforms in the HC system are able to access these platforms via library calls 

embedded in imperative procedural languages such as C or FORTRAN. The library routines 
interact with the pvmd (resident on each machine) to provide services such as communication, 
synchronization, and process management. The pvmd may provide the requested service alone 
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or in cooperation with other pvmds in the HC system. 

From the user's point of view, the PVM system can be conceptualized as a three-level 

hierarchy. At the uppermost layer, which is the interface to the programmer, is the concept of an 
instance (or process), which is the basic unit of computational abstraction in PVM. Applications 

developed with PVM generally consist of several instances (possibly executing concurrently) 

that cooperate across machine boundaries. The middle layer is defined as the virtual machine 

layer. The virtual machine layer consists of the pvmds that reside on the machines of the HC 
system. The lowest layer is the actual set of machines in the HC system. 

The computational resources in the HC system may be accessed using three different 

modes: 1) the transparent mode in which instances are automatically located at the most 

appropriate sites based upon a user-specified cost matrix, 2) the architecture-dependent mode in 

which the user can indicate specific architecture types on which particular instances are to exe- 

cute, and 3) the low-level mode in which particular machines may be specified by the user. The 
supporting tools described in the next two subsections (Xab and HeNCE) aid the user in moni- 
toring and developing PVM applications based on any of these access modes. 

Xab 

Xab is a tool developed for the run time monitoring of PVM programs [BeD93, Beg93]. The 
Xab tool gives the user direct feedback on what PVM functions the program is executing and 
how the program is performing in a heterogeneous environment. Xab consists of three parts: the 
Xab library, which contains instrumented PVM routines that are linked to the user's code, a spe- 

cial monitoring process called admon, which receives trace messages from the library routines, 

and a front-end process, which graphically displays trace events. 

Xab monitors a user's program by instrumenting calls to the PVM library. The instru- 
mented calls generate events that can be displayed during program execution. The instrumenta- 
tion takes place by replacing PVM calls with instrumented Xab calls. Each instrumented call 
not only performs its intended PVM function, but also sends an Xab event message to the admon 

process. (The Xab event message is itself a PVM message.) An Xab event message generally 
includes an event type, a time stamp, and event-specific information. 

The admon process receives event messages from the instrumented PVM calls and formats 

them into human-readable form. These formatted event messages can be sent either to a file or 

to the Xab display process. At the display process, formatted messages are received from admon 

and displayed in an X-window. The window displays each event captured during the execution 
of the program. The user can single-step through these events or allow Xab to replay the events 
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continuously in real-time. 

HeNCE 

HeNCE aids users of PVM in decomposing their application into subtasks and deciding how to 

allocate these subtasks onto the available machines in the HC system [BeD92, BeD93, Sun92]. 
In HeNCE, the programmer explicitly specifies the parallelism for an application by drawing a 

directed graph, where nodes in the graph represent subtasks written in either FORTRAN or C. 
The arcs in the graph represent dependencies and flow control. In addition to subtask nodes and 

dependency arcs, there are four types of control constructs: conditional, looping, fan-out, and 

pipelining. 

The user must specify a cost matrix, which represents the cost of executing each subtask on 
each machine in the HC system. Each cost entry is a positive integer; the higher the value the 
higher the cost of executing a subtask on the associated machine. The meaning of the cost 
parameters are defined by the user (e.g., estimated execution times or utilization costs in terms of 

dollars). At run time, HeNCE uses the cost matrix to estimate the most cost effective machine 

on which to execute each subtask. 

Once the graph has been specified and the cost matrix has been defined, the HeNCE tool 

configures a "virtual machine" using PVM constructs. The machines that make up this virtual 
machine are a subset of those defined in the cost matrix. After the virtual machine is configured, 
HeNCE begins execution of the program. Each node in a HeNCE graph is realized by a distinct 
process on some machine. The nodes communicate with each other by sending parameter values 
needed for execution of a given node, which are specified by the user for each node (subtask). 

The subtasks execute in three phases. First they obtain those parameter values needed to begin 

execution. These parameters are obtained from predecessors of each node. If the immediate 
predecessors do not have all the required parameters for a node, earlier predecessors are checked 

until all required parameters are found. The second phase is the actual execution of the subtask. 
Finally, a node finishes execution and passes the needed parameters onto descendant nodes 

before exiting. 

HeNCE can trace the execution of the heterogeneous application. The captured trace infor- 

mation can be displayed in real-time or replayed later. The trace tool displays active machines 

in the network as icons whose colors change depending on whether they are computing or com- 
municating. The tool also displays the user's directed graph and dynamically illustrates paths of 

execution. These visualizations can be used in different ways. They can enable the programmer 
to detect bottlenecks in the application by displaying the states of the application components 

while the application is executing. Alternatively, the trace animation can be used for 
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performance tuning. After viewing the program's behavior, the programmer can reallocate sub- 

tasks across the machines in the HC system and tune the application's behavior to match the 

environment for subsequent executions of the application. 

5.5. A Conceptual Model for Heterogeneous Computing 

A conceptual model for the automatic assignment of subtasks to machines in an HC 

environment is shown in Figure 5.6. This model builds on the one presented in [FrS93]. In Fig- 

ure 5.6, the rectangles contain actions or procedures to be performed as part of the conceptual 

model. The ellipses show the information used and/or created by action blocks. Figure 5.6 is 
referred to as a "conceptual" model because no complete automatic implementation currently 
exists. As stated earlier, automatic decomposition and assignment is a long-term goal in the field 
ofHC. 

In stage 1 of the conceptual model in Figure 5.6, a set of descriptive parameters is gen- 

erated that is represented as the general characteristics of both the computational requirements of 

the applications and the machine capabilities of the HC system. These parameters define the 

multi-dimensional decision space to be used for describing and matching subtasks and machines. 

Information about the expected types of application tasks to be executed and about the machines 
that currently exist in the heterogeneous suite are used to generate these parameters. For each 
parameter, a corresponding computational requirement and a corresponding machine architec- 
ture feature are derived. For example, considering the parameter "floating point operations," the 
computational requirements of the application tasks to be quantified are the number and types of 

the floating point operations needed to perform the calculation. The architecture feature of the 

machines in the heterogeneous suite to be quantified is the speed for these different types of 

floating point operations. 

A particular parameter is included for further consideration in the following stages of this 

conceptual model only if both the related computational requirements and the architecture 

features exist. For example, if the given applications have no floating point operations, then it is 

not necessary to evaluate the machine capabilities for executing floating point operations in stage 

2. As another example, if there is no vector machine available in the heterogeneous suite, vector- 

izable code may be excluded from the set of the computational requirements that needs to be 

considered. 

After stage 1, a collection of corresponding features of the application tasks and machines 
in the heterogeneous suite can be enumerated. As stated above, these features determine the 
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dimensions of this automatic assignment problem for the given applications and the given HC 
system. Each of these dimensions represents a specific parameter, which characterizes computa- 

tional requirements and the related machine capabilities, that needs to be considered in the rest 
of the stages of this conceptual model. The total number of features enumerated determines the 
complexity of this automatic assignment problem. An important aspect of the chosen parameters 

is that they evolve dynamically when new types of applications and/or new types of machines 

are added. 

In stage 2, two characterization steps, task profiling and analytical benchmarking, are used 
to quantify these corresponding features and transform them into concrete quantitative data. 
Task profiling is a method used to identify the types of computational requirements that are actu- 
ally present in a specific application program. The task is decomposed into computationally 
homogeneous subtasks, and the computational requirements for each subtask are determined. 
The term often used for this characterization step in the existing literature is code profiling. The 
reason for using task profiling in this section instead is that, to identify the types of computa- 
tional requirements present in a specific task, both the code and data upon which the specified 

HC system will operate must be profiled. Analytical benchmarking is a procedure that provides a 
measure of how effectively each of the available machines in the heterogeneous suite performs 

on each of the types of computations being considered. 

Only the computational requirements and the machine capabilities that are included in the 

collection of corresponding features from stage 1 are identified and evaluated by task profiling 

and analytical benchmarking. Recall the example above, if no vector machine is available, then 
task profiling does not need to search for vectorizable code in each application program. If no 

floating point operations are performed, then it is not necessary for analytical benchmarking to 

estimate the machine capabilities for those types of operations. Existing literature that presents 

explicit methodologies for performing task profiling and analytical benchmarking in the context 

of HC is reviewed in Subsection 5.6 of this section. 

One of the functions of stage 3 is to use the information from stage 2 to derive, for a given 

application, the estimated execution time of each subtask on each machine in the heterogeneous 
suite and the inter-machine communication overhead associated with each possible assignment 
of subtasks to machines. In stage 3, these results and the information about the current loading 

and "status" of the machines and inter-machine network are used to generate an assignment of 

the subtasks to machines in the HC system based on certain cost metrics. The "status" could 
include such items as whether the machines/network are fully or partially functioning due to 

faults, and when other tasks using the machines/network are expected to complete. The most 
common cost metric for HC is to minimize the overall execution time (including the inter- 
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machine communication time) of a given application task on a particular HC system. Another 

interesting problem is to find the most appropriate suite of heterogeneous machines for a given 

collection of applications, such that the cost of the corresponding HC system is minimized for a 

given set of execution time constraints [Fre89]. Subsection 5.7 of this section presents a variety 
of techniques available in the existing literature for selecting a machine for each subtask based 
on certain cost metrics. 

Stage 4 of this conceptual model is the execution of the given applications on the hetero- 
geneous suite of machines in the HC system. Because the loading of the machines and network 

in the HC system may change and some faults may occur, sometimes it is necessary to reselect 
machines for certain subtasks of the application program. Under such circumstances, the current 
loading and status of the machines and network are updated and stage 3 is reactivated to decide 
the new assignment of subtasks. Finding techniques for the actual migration of a subtask from 
one type of machine to another in the middle of execution is a difficult problem; one approach is 
described in [ArS94]. 

It is important to note that the mathematical formulation and automation of the intelligent 

assignment of subtasks to a heterogeneous suite of machines connected by high-speed links 
are two relatively new fields in HC. Thus, most of the automatic methods that have been pro- 
posed for stages 2 and 3 of the conceptual model are frameworks that require further research 
before they are completely working systems. The task profiling, analytical benchmarking, and 
matching and scheduling techniques discussed in Subsections 5.6 and 5.7 of this section are 
representative frameworks. 

5.6. Task Profiling and Analytical Benchmarking 

5.6.1. Overview 

Executing a given task by using an HC system requires identifying and profiling the sub- 

tasks in the application code. The basic approach for this, as is described in the literature, is to 
decompose the overall task into a collection of subtasks, where each subtask is a homogeneous 
code block, such that the computations within a given code block have similar processing 

requirements (e.g., [ChE93, FrC90, Fre89, KhP93, Sun92, WaK92]). That is, the concept of a 
subtask discussed in Subsection 5.5 is represented as a homogeneous code block when consider- 

ing the actual implementation of the applications. These homogeneous code blocks are then 
assigned to different types of machines to minimize the overall execution time. In general, the 
goal is to assign each homogeneous code block to the best-matched machine type. In some 
cases, it is better not to use the best matched machine because of the overhead involved in any 
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Figure 5.6:   Conceptual model of the assignment of subtasks to machines in an HC 

environment 

inter-machine data transfer that may be needed. Thus, it is important to know how well a code 

block and machine match with each other even when they do not form the optimal pairing. Also, 

communication overhead must be considered, as indicated as an input to stage 3 of the concep- 

tual model in Subsection 5.5. This section presents example methodologies for task profiling and 

analytical benchmarking. 
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5.6.2. Definitions of Task Profiling and Analytical Benchmarking 

Task profiling is a method used to identify the types of computations that are actually present in 

the application program and quantify how effectively each type can be executed on a particular 

kind of machine [Fre89]. Task profiling divides the source program into homogeneous code 

blocks based on the types of computations required. The definition of the set of code-types is 

based on the features of the machine architectures available and the computational requirements 

of the applications being considered for execution on the HC system. This is done in stage 1 of 

the conceptual model, as discussed in Subsection 5.5. 

Analytical benchmarking is a procedure that provides a measure of how well each of the 

available machines in the heterogeneous suite performs on each of the given code-types [Fre89]. 
Together, the task profiling and analytical benchmarking steps provide the information needed 
for the matching and scheduling step, which is described in Subsection 5.7. The performance of 
a particular kind of machine on a specific code-type is a multivariable function. The parameters 
(i.e., variables) for this performance function can include the problem domain, the requirements 
(e.g., data precision) of the application, the size of the data set to be processed, the algorithm to 
be applied, the programmer's and compiler's efforts to optimize the program, and the operating 

system and architecture of the machine that will execute the specific code-type [GhY93]. 

There are a variety of mathematical formulations, collectively called selection theory, that 

have been proposed to choose the appropriate machine for each code block of the application 

program. Many of these mathematical formulations (e.g., [ChE93, KhP92, WaK92]) define 
analytical benchmarking as a method of measuring the optimal speedup a particular kind of 
machine can achieve compared to a baseline system when the best matched code-type for that 

machine is executed. The ratio between the actual speedup and the optimal speedup defines how 
well a code block is matched with each machine type, and the actual speedup, in general, is less 

than the optimal speedup. 

5.6.3. Methodologies for Performing Task Profiling and Analytical Benchmarking 

Overview 

There are only a few papers in the literature that provide specific methodologies for performing 

task profiling and analytical benchmarking in the context of HC. These papers are the focus of 

this subsection. 
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A Comparison between Traditional Benchmarking and Analytical Benchmarking 

There are a variety of benchmarking techniques used today for evaluating and comparing the 

performance of different computers. One of the most widely used methods is to execute a set of 

well-studied programs on a machine (e.g., [CoH91, DoM87]), using the total execution time as 
the final measure to compare that specific machine's performance with that of others. But in the 

context of HC, only code blocks, rather than a whole program, are executed on a specific type of 
computer. The overall execution time cannot illustrate the true comparative performance of a 
given machine when it is used for applications suited for an HC environment [Fre89]. Such trad- 
itional benchmarking techniques do not reflect the individual contributions of several underlying 
factors to the performance of a particular kind of machine on a specific code-type. These factors 
can include the mode of the parallelism, hardware architecture, compiler, operating system, I/O 
capacity, etc. [GhY93]. The problem with these traditional benchmarking techniques is that they 

are not analytical. 

The techniques for analytical benchmarking should not only be able to show the overall 

execution time of a specific kind of machine on a certain type of code, but should also be able to 

predict future capabilities of an HC environment when new types of machines and/or new types 
of applications are added [Fre91]. As introduced in [Fre91], the goal of analytical benchmarking 

is to construct a class of relatively basic benchmarking programs for each type of computer 
available in the heterogeneous suite. A set of benchmarking programs can be used to derive the 
performance metrics of the system for a range of conditions. Thus, each performance metric is a 
function associated with a set of parameters, such as the size of the input data file and the type of 
calculations required. This is in contrast to the usual benchmarking program, whose result is just 

the execution time. 

Parallel Assessment Window System 

Parallel Assessment Window System (PAWS) is an experimental platform capable of perform- 

ing machine and application evaluations for task profiling and analytical benchmarking. It con- 
sists of four tools: the application characterization tool, the architecture characterization tool, the 

performance assessment tool, and the interactive graphical display tool [PeG91]. 

Through the application characterization tool, PAWS transforms a given program written in 

Ada into a graph that illustrates the program's data dependencies. IF1, an acyclic graphical 
language, is used to generate the intermediate graphical form of the program. In IF1, basic 

operations, such as addition and multiplication, are represented by simple nodes, and complex 

constructs, such as conditional branches and loops, are represented by compound nodes. By 
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grouping sets of nodes and edges into functions and procedures, the application characterization 
tool can describe the execution behavior of a given program at various levels. 

The architecture characterization tool in PAWS partitions the architecture of a specific type 

of machine into four categories: computation, data movement and communication, I/O, and con- 

trol. Each category can be further partitioned into subsystems until the subsystems in the lowest 
level are fine enough to be enumerated and characterized by raw timing information. PAWS 
stores this hierarchical organization of subsystems in a tree data structure. The raw timing infor- 
mation of each leaf node of the tree can be obtained by low-level benchmarking. This hierarchi- 

cal organization of architectural parameters for a specific machine provides a detailed model for 

determining the operational behavior of each subsystem. This facilitates analytical benchmark- 

ing in evaluating the execution time of a particular kind of machine when it is used to execute a 

specific type of code. 

The performance assessment tool obtains information from the architecture characterization 

tool and generates timing information for operations on a given machine upon request. Timings 
for primitive operations are stored within the architecture characterization tool; the performance 
assessment tool uses these to determine timings for more complicated operations (e.g., complex 
floating point multiplication). The user provides the machine performance data for the architec- 
ture characterization tool and the parameters that define the primitive operations to be used by 

the performance assessment tool. 

Two sets of performance parameters for an application, parallelism profiles and execution 

profiles, are generated by the performance assessment tool using the information provided by the 
application characterization tool. Parallelism profiles represent the applications' theoretical 
upper bounds of performance (e.g., the maximal number of operations that can be parallelized). 
Execution profiles represent the estimated performance of the applications after they have been 
partitioned and mapped onto one particular machine. Both parallelism and execution profiles are 
produced by traversing the applications' task-flow graph and then computing and recording each 

node's performance and statistically based execution time estimates. 

The interactive graphical display tool is the user interface for accessing all the other tools in 

PAWS. It has been implemented as a hierarchical menu-driven system. The main menu allows 

the user to select the other three PAWS tools. Windows containing information for each of these 
three tools can be opened simultaneously. 

The terms "task profiling" and "analytical benchmarking" are not used in PAWS. How- 
ever, the objectives of parallelism and execution profiles are very similar with those of these two 
characterization steps. 
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Distributed Heterogeneous Supercomputing Management System 

In [GhY93], a framework called the Distributed Heterogeneous Supercomputing Management 

System (DHSMS) is proposed for managing an HC environment. DHSMS introduces a sys- 
tematic methodology for performing both task profiling and analytical benchmarking. The basic 

approach in DHSMS is to generate a Universal Set of Codes (USC) for task profiling. The USC 

can also be viewed as a standardized set of benchmarking programs used in analytical bench- 
marking. Because the method of generating USC is architecture-driven, the benchmarking pro- 
grams based on USC can provide information about the hardware features of machines in an HC 

system. 

The construction of a USC in DHSMS is based on an architecture-dependent hierarchical 

structure. This hierarchical structure is a detailed architectural characterization of machines 
available in an HC system and is similar to the hardware organization generated by the architec- 
tural characterization tool in PAWS. At the highest level of this hierarchical structure, the modes 
of parallelism for classifying machine architectures are selected. At the second level, finer archi- 
tectural characteristics, such as the organization of the memory system, can be chosen. This 
hierarchical structure is organized in such a way that the architectural characteristics at any level 
are choices for a given category, e.g., type of interconnection network used. 

To generate a USC, DHSMS assigns a code-type to each path from the root of the hierarch- 
ical structure to a leaf node. Every such path defines a set of architectural features corresponding 
to the nodes traversed by that path. Mathematically, a USC is defined as a set of code-types 
{Q}, where 1 ^ i < K and K is the total number of paths from the root of the hierarchical struc- 

ture to a leaf node. In this proposed framework, conceptually each Q represents the type of code 
ideally suited for the architectural features indicated by the i-th path of the hierarchical structure. 

Thus, K is also the number of code-types available in C. A task profiling vector Vj for a given 

code block Sj is defined as Vj = [v0(/)> yiQ\ v2(/). ••> vK(/)]. v0(/) is the size of the parallelism 
(e.g., maximum possible number of concurrent threads of execution) in the given code block Sj. 

\i(j) (I < i < K) is a real number between 0 and 1 that indicates how well the code block Sj is 
matched with the code type Q. The objective of task profiling in DHSMS is to estimate Vj for 

eachSj. 

There are two points that need to be emphasized in this methodology for performing task 

profiling. First, in the task profiling vector Vj, the element vo(/) that quantifies the size of paral- 
lelism for code block Sj is very important. Benchmarking results for supercomputers show that 

the size of parallelism can affect the choice of machines used to achieve the best performance on 

certain programs [CoH91, DoM87]. As an example, consider the study in [Fre91] where the per- 
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formances of a SIMD machine and a vector machine on SAXPY code (i.e., matrix-vector calcu- 

lation of the form S = AX + Y) are evaluated and compared. Even for a code block that is perfect- 

ly matched with the vectorizable code-type, the SIMD machine outperforms vector machine on 

vectors with length longer than the optimal length for the vector machine. Task profiling must, 

therefore, consider the size of the parallelism (in the above case, vector length) for each code 
block with inherent parallelism. Hence, the suggestion in Subsection 5.5 that the term "task 
profiling" be used instead of code profiling is very appropriate, because both code and data must 

be considered. 

Second, the task profiling process must be repeated for each given application. A fine- 

grained task profiling, with all levels of architectural features incorporated into the hierarchical 

structure of machine characteristics mentioned above, will certainly generate a more accurate 

task profiling vector Vj, but the overhead associated with it increases significantly. Alternatively, 
a coarse-grained task profiling, which chooses only a few levels of architectural features in the 

corresponding hierarchical structure, can result in relatively low overhead, but the information 
obtained from task profiling may not be accurate enough for the subsequent procedures of 
matching and scheduling. Thus, there is a trade-off between the accuracy of the task profiling 

and the complexity of the overhead incurred [YaG93]. This trade-off is largely dependent on the 
number of levels of the hierarchical structure being selected in DHSMS, and this choice can be 

user-specified. 

In DHSMS, the proposed USC is not only used as a set of code-types, but can be viewed as 
a standard set of architecture-dependent benchmarking programs in the following sense. Analyti- 

cal benchmarking can be formally defined as a vector B{n) = [bq(n)], q = 1, 2,..., M, where M is 

the number of machines available in the heterogeneous suite. The variable bq(«) is the speedup 

that machine q can achieve compared to a baseline system by executing optimally matched 
benchmarking programs with the size of parallelism equal to n. Conceptually, this optimally 

matched benchmarking program belongs to one of the code-types Q in USC. Thus, Q is associ- 
ated with a benchmarking program that optimally matches the j'-th path of the machine architec- 

ture hierarchical structure. 

Because B{n) only estimates the execution time that each machine spends on its best 
matched code-type, the inter-machine communication overheads of the application program are 
not evaluated. This kind of benchmarking technique is categorized as computation 
benchmarking in DHSMS. There are two other kinds of benchmarking techniques in DHSMS, 
I/O benchmarking and network-interface profiles. I/O benchmarking estimates the VO overhead 
of a given architecture as a performance metric that is a function of the amount of data being 
transmitted through the I/O subsystem. Network-interface profiles estimate the overhead of the 
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network due to the protocols for communication and media access. Both types of benchmarking 
techniques are necessary for accurate matching and scheduling in an HC system discussed in 

stage 3 of the conceptual model. 

I/O benchmarking and network-interface profiles are defined by a vector of length M, which 

is called the communication overhead vector £>(am) = [di(am), d2(am), ... , dM(am)l- Each ele- 
ment dq(am) of D(am) represents the destination-independent expected I/O and network- 

interface overhead of machine q, when there are am units of data transmitted through the /w-th 
edge of the data dependence graph of the original program. In reality, the amount of data being 
transmitted through the network may not be deterministic, in which case some stochastic perfor- 

mance measures are required. 

By systematically applying the task profiling and analytical benchmarking techniques 
described above, DHSMS can generate a code-flow graph (CFG) for the subsequent procedures 
of matching and scheduling. The process begins with a task-flow graph (TFG), which provides 
the execution time of each code block Sj on a baseline system and the amount of data transferred 
between code blocks due to data-dependencies. By using the information generated by task 

profiling, a task profiling vector Vj is assigned to each code block Sj in TFG, forming an inter- 
mediate CFG. The length of Vj and the complexity of task profiling each depend on the number 

of levels of the hierarchical structure selected by the user. In the final CFG, each code block Sj 
in the intermediate CFG is associated with an estimated computation time vector Ej = [ei, e2,... 
, eM], where eq (1 < q £ M) is the estimated computation time of code block Sj on machine q and 

is a function of Vj and B(n). 

In the resulting CFG, each communication link m between two code blocks in the original 

TFG is associated with a communication overhead matrix D*(am) = {dP)q(am)}, 1 <p, q < M (in 
[GhY93], an asterisk is used to distinguish the communication overhead matrix D from the com- 

munication overhead vector D). The element dj>q(am) represents the expected I/O and 

network-interface overhead, when there are d^ units of data transmitted between machine p and 

machine q. The data format conversion overhead also can be added to dp>q(am). The MxM ma- 
trix D*(am) is assumed to be symmetric along the diagonal. Each element dPiq(am) is a function 
of both dpiam) and dq(am). where 1 <p, q < M, and p # q. The resulting CFG contains detailed 
information about machine-dependent execution time, I/O performance, and the inter-machine 
communication overhead associated with each code block in the TFG. The final CFG, can be 

used in matching and scheduling. 

The USC introduced in DHSMS is machine-dependent (i.e., depends on the characteristics 

of the machines in the HC system), but is not application-dependent because there is no 

characterization of the given applications involved during the construction of the USC. 

105 



However, the efficient management of an HC system requires a detailed analysis of both the 

architectures of the machines and the structures of the applications. In [YaG93], two techniques 
called augmented task profiling and augmented analytical benchmarking, are proposed to 
characterize the applications as well as the machines available in the corresponding HC system. 

The new augmented approach is a two level framework that combines both fine-grained and 

coarse-grained characterization techniques. This framework of task profiling and analytical 

benchmarking is based on generating a Representative Set of Templates (RST) that can 

characterize the execution behavior of the programs at variant levels of details. 

Parametric Task Profiling and Parametric Analytical Benchmarking 

In the above two methodologies for performing task profiling and analytical benchmarking, a 

task profiling vector is defined as a function that maps each combination of the subtasks in the 

application program and the elements in the set of code-types to a real number in the range [0, 
1]. This real number quantifies the degree of the match between the specific subtask and the 
code-type. Analytical benchmarking is defined as a method of measuring the optimal speedup a 
certain kind of machine can achieve compared to a baseline system when the best matched 
code-type for that machine is executed. By combining the results from the above two characteri- 
zation steps as discussed in DHSMS, the estimation of the execution times of the subtasks on the 
available machines in the HC system can be obtained. Most of the selection theories of HC adopt 
the above mathematical formulation for task profiling and analytical benchmarking (e.g., 

[ChE93, WaK92, NaY94]). Subsection 5.6.4 presents that mathematical formulation in detail. 

The parametric task profiling and parametric analytical benchmarking proposed in [YaK94] 

adopt different mathematical formulations for these two characterization steps. The goal of 

[YaK94] is to predict the execution of a task on a single machine. At first, a set of parameters is 
defined such that each parameter represents a distinct category of low-level operations per- 

formed in a task. This step corresponds to stage 1 of the conceptual model for HC presented in 
Subsection 5.5. Then formally, in parametric task profiling, the computational task profiling of 

stage 2 is defined as a parametric task profiling vector Vt = [vls V2, ... , vp] for an application 
task f. The size of Vt is P, where P is the cardinality of the parameter (operation) set. Each v; (1 

< i < P) of Vt represents the operation count for parameter i. The handling of data-dependent 
loop parameters and conditionals is not included in this formulation. 

In parametric analytical benchmarking, a parametric computation benchmarking vector Bm 

= [bmi, bm2,... , bm?] is also defined, where P is the cardinality of the parameter set also. Each 

bmi (1 < / < P) represents the execution time of machine m, when that specific kind of machine is 

used to execute one occurrence of parameter i. 
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A computation estimation vector for a given application task t is defined as E£°mp = [e iomp, 

e2°mp,..., eMmpL where M is the number of machines available in the HC system. The element 

eoomp (i < m < Af) represents the estimated computational time of task t on machine m, where 
p 

goomp _ ^Vibmi. Vi and bmj are obtained from parametric task profiling and parametric analyti- 
i=o 

cal benchmarking, respectively. 

Although parametric task profiling and parametric analytical benchmarking adopt a 

mathematical formulation that is different from the one presented in Subsection 5.6.4, this 

methodology for performing these two characterization steps is still compatible with the concep- 
tual model presented in Figure 5.6. Parametric task profiling is defined as a procedure to esti- 
mate the computational requirement of the application task and parametric analytical bench- 
marking is defined as a method to evaluate the machine capability of the specific HC system as 

discussed in Subsection 5.5. 

In [DiC93], a prototype software system called Automatic Heterogeneous Supercomputing 

(AHS) is introduced. AHS uses a method similar to the Vt and Bm vectors in [YaK94] to predict 
execution time. It differs from [YaK94] in several ways. Data-dependent loop parameters and 
conditional branch probabilities are approximated by constant values. AHS can use information 
about the current load on a machine to appropriately weight the expected execution time. AHS 

can estimate the execution time of a specific application program on a group of networked 
sequential UNIX machines. The inter-machine data transfers are handled by asynchronous com- 
munication through a UDP socket. AHS can generate the code for inter-machine communication 

automatically. A proof-of-concept functioning AHS prototype has determined the usefulness of 

this approach. 

5.6.4.    A Mathematical Formulation for Task Profiling and Analytical Benchmarking 

A mathematical formulation for task profiling and analytical benchmarking can now be present- 

ed in unambiguous terms. Let CS be a code space spanned by C, where C = {Q} (1 < / < K) is a 

set of code-types generated as dimensions for task profiling and analytical benchmarking. CS is 

a ÄT-dimensional space, where K is the number of code-types in C. The contents of C depend on 
the characteristics of the applications as well as the machine architectures in a given HC system. 

For example, in DHSMS [GhY93], a USC is generated to be C, where C is a set of code-types 

for characterizing the architectures of machines in the corresponding HC system. As an example, 

in [YaK94] and [DiC93], the code types are individual machine instructions. 
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Let S = {Sj} be a set of computationally homogeneous code blocks generated by decom- 
posing a given application program. After task profiling, for each code block Sj, a K- 

dimensional vector Q.(j) = [Qi(/), ^(/X - , ^K0')1 is generated, where Q|(/)is a real number in 
the interval [0, 1] that quantifies the degree of match between Sj and the j-th dimension of the 

code space CS. 

Let/? = {mk} be a set of machines in the HC system. A computation cost-coefficient vector 

T = {tk} can also be defined, where tk is the maximal speedup a machine k can achieve com- 
pared to a baseline system when it executes the best matched code-type. The purpose of analyti- 

cal benchmarking is to estimate tk as a function of a set of parameters, such as types of opera- 

tions and length of data vectors. 

The amount of communication overhead depends on many factors, such as the bandwidth 

of the memory channels of the source and destination machines, the topology and bandwidth of 
the interconnection network, and the complexity of the data format conversion. A communica- 

tion cost-coefficient matrix B*(a) = {8*)S(a)}, where the variable 5*>s(a) represents the expected 

communication overhead incurred when there are a units of data transmitted from machine r to 
machine s [KhP92], is also part of analytical benchmarking. It is possible for B (a) to be im- 

pacted during execution time due to network usage by other tasks. 

The above formulation is based on the ideas presented in several papers [ChE93, Fre89, 
KhP92, NaY94, WaK92]. Methods for automatically determining C, S, Q, T, and B* are still 

largely open problems. 

5.6.5. Summary 

Definitions and example methodologies for performing task profiling and analytical benchmark- 

ing were presented in this section. Also, a mathematical formulation for these two characteriza- 
tion steps was given. As mentioned earlier, these formulations make many simplifying operating 

assumptions. Further research is needed before these formulations are practical tools that can 

provide the quantitative results needed in subsequent matching and scheduling techniques, ex- 

amples of which are presented in the next section. 
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5.7. Matching and Scheduling for HC Systems 

5.7.1. Overview 

For HC systems, matching involves deciding on which machine(s) each code block should 
be executed and scheduling involves deciding when to execute a code block on the machine to 
which it was mapped. Mapping and scheduling problems for parallel and distributed computing 
systems, which are closely related to matching and scheduling problems for HC systems, have 
been studied extensively in the past. Much of the work in mapping and scheduling for parallel 

and distributed systems has focused on how to effectively execute multiple subtasks across a net- 
work of sequential processors (e.g., see [AtB92, CaK88, NiH81]). In such an environment, load 
balancing can be an effective way to improve response time and throughput Although some of 
these existing mapping and scheduling concepts and techniques can be (and have been) applied 
to matching and scheduling for HC systems, there is a fundamental distinction between mapping 
and scheduling subtasks for a network of sequential processors (e.g., a network of workstations) 
and matching and scheduling subtasks for an HC system consisting of various types of parallel 

computers (e.g., MIMD, SIMD, and vector). In the latter case, the subtasks can be characterized 

based on "type of parallelism" present in each subtask to account for the fact that certain types 
of subtasks may execute most effectively on a particular type of parallel architecture. In general, 

matching subtasks to machines of the appropriate type(s) is a more important factor than merely 
balancing the load among all machines in the suite. This section describes some basic charac- 
teristics of matching and scheduling for HC systems and overviews some existing techniques 

and formulations for matching and scheduling. 

5.7.2. Characterizing Matching and Scheduling for HC Systems 

In HC systems, the total execution time of a task depends on the matching and scheduling tech- 

niques used as well as the local mapping and local scheduling employed on each machine in the 
HC system. Local mapping involves the assignment of a code block and its associated data onto 
the processors/memories of a given parallel architecture. Formulating and solving local map- 
ping problems for specific types of parallel architectures is a subject of extensive research within 
the parallel processing community ([NoT93] is a recent thorough review on this subject). The 
choice of the local mapping will impact the execution time of a block, which influences 
matching/scheduling decisions [ChE93, NaY94]. Local scheduling is typically performed by the 

individual operating system of each machine in the HC system to decide when to execute multi- 
ple jobs that are assigned to run on that machine. Matching/scheduling techniques for HC sys- 
tems often assume that load information such as start time and percentage of cycles available can 
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be obtained from local schedulers [AtB92]. 

In a broad sense, matching and scheduling problems can be viewed as resource manage- 

ment problems consisting of three main components: consumers, resources, and policy 
[CaK88]. In the context of HC systems, the consumers are represented by the code blocks, 
which are identified by task profiling. The resources include the suite of computers, the 
network(s) that interconnect these computers, and the I/O devices. The policy is the set of rules 
used by the matcher/scheduler to determine how to allocate resources to consumers based on 

knowledge of the availability of the resources and the suitability of the available resources for 
each consumer. 

Matching/scheduling policies are generally designed to optimize an objective function sub- 

ject to a set of constraints. Minimizing the overall execution time under a cost constraint or 

minimizing cost under a performance constraint are two commonly used formulations for HC 
systems [ChE93, Fre89, WaK92]. Cost can be defined in different ways, including as a weighted 
sum of execution times for each machine in an existing HC system, or as the total system price 

(in terms of dollars) for prospective purchases. Execution time can be estimated through the 
analytical benchmarking and task profiling techniques discussed in Subsection 5.6, or from em- 

pirical measurements based on typical input data sets. The I/O time and network delay among 
machines can also be incorporated in the formulation, e.g., see [GhY93, WaA94]. Once the ob- 
jective function and constraints are defined, the associated matching/scheduling problem can be 
solved. In many cases, matching and scheduling problems are NP-complete, thus heuristics and 
approximation algorithms are often used in practice to obtain solutions (e.g., [TaN93]). 

Matching/scheduling techniques (i.e., policies) can be classified as either static or dynamic. 
Static refers to the case where the decisions of where/when to execute the various code blocks of 

the given task are made at compile time, and information about the code blocks (e.g., code types 

and execution time estimates) are available. Either no information on the load of the machines 
in the HC system is used, or statistically-based models and/or assumptions for these loads may 

be incorporated. Dynamic matching/scheduling decisions are made at run time, utilizing static 

information as well as information available only at run time, such as measured load. Dynamic 
techniques can either be non-preemptive assignments or can allow dynamic reassignments. 
They can be adaptive or non-adaptive, depending on whether feedback on the effectiveness of 
the matching/scheduling policy is used to modify the policy itself. 

In the next subsection, some of the existing matching and scheduling techniques and for- 

mulations for HC systems are reviewed. This is not a complete review of research done in the 
area; it is presented to demonstrate the range of issues involved and overview some of the ap- 
proaches proposed for solving matching and scheduling problems for HC systems. 
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5.7.3.    Examples of Techniques and Formulations for Matching and Scheduling for HC 

Systems 

Block-Based SIMD/SPMD Mode Selection Technique and its Extension 

An SIMD/SPMD environment, such as a single mixed-mode machine (e.g., PASM [SiS95]) or 

an SIMD/SPMD mixed-machine system (i.e., a network of SIMD and MIMD machines), 
represents a special class of HC systems. In [WaS94], a block-based mode selection (BBMS) 

technique is proposed that uses static source code analysis of data-parallel program behavior to 
assign each code block to SIMD mode or SPMD mode in a mixed-mode machine. BBMS is 

used as a basis for a heuristic for machine selection for SIMD/SPMD mixed-machine systems in 
[WaA94]. In the remainder of this subsection, the application of BBMS for mixed-mode 

machines is overviewed first, followed by its extension to mixed-machine systems. 

In the framework developed in [WaS94], the application program is assumed to be written 
in a mode-independent language. In a mode-independent language, operations represent the 
most explicit level at which program representation is identical for each mode of parallelism. 
Mode-independent languages make it possible to utilize the most appropriate parallel execution 

mode (machine) for each block of a given program. 

In the BBMS framework, task profiling is done by dividing the program into code blocks. 

Code blocks are identified by their leading statements, called leaders. The first statement in a 
program is a leader, any statement that is a target of a branch at the machine code level is a 
leader, any statement following a conditional branch at the machine code level is a leader, and, 
in addition, any statement requiring a synchronization or an inter-PE data transfer and the state- 
ment that follows it are leaders. After the code blocks are defined, the program is transformed 

into a flow analysis tree, whose structure represents the scope levels within the program. The 

root of the tree represents the scope of the whole program. The non-leaf nodes represent control 

and data-conditional constructs. Code blocks are represented by leaf nodes of the tree. An ex- 

ample program segment and its associated flow analysis tree are shown in Figure 5.7. 

It is assumed that leaf blocks (i.e., code blocks) are executed either completely in SIMD or 
completely in SPMD mode, and mode changes are allowed only at inter-block boundaries. 
Also, the leaf blocks are executed in an ordered sequence (from left to right) as they appear in 

the flow analysis tree. Thus, the schedule for executing the code blocks is static and is defined 

by the program itself. If a block is to be executed more than once, such as in a loop, then the 
mode of parallelism for that block is the same for all loop iterations. Each iteration of a loop 

body must begin and end execution in the same mode of parallelism (but can change modes 
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block_a 
for (...) { 
block_b 
if (...) { 
block_c 

} else { 
block_d 
block_e 

} 
block_f 

} 

entire scope 
of program 

block  a     for_init 

for   () 

^> block f  for test 

block c post_then block d block e post_else 

Figure 5.7: Example program segment and its associated flow-analysis tree [WaS94]. 

within the body). All blocks that are part of (i.e., descendants of) a data-conditional construct 

are implemented in the same mode of parallelism. 

Execution time estimates are assumed to be known (e.g., based on the results of analytical 
benchmarking) for the leaf blocks in both SIMD and SPMD modes, and are denoted by TiSIMD 

and TfPMD for the 1-th leaf block. It is also assumed that the number of iterations for each loop- 

ing construct and the probability that a PE executes the "then" clause of each data conditional 

construct are known or estimated at compile time (e.g., through compiler directives). In general, 

the information associated with sibling nodes at each level of the tree is combined to determine 

the minimum execution times for starting and ending in SIMD, starting and ending in SPMD, 

starting in SIMD and ending in SPMD, and starting in SPMD and ending in SIMD. These four 

times are determined by using a multistage optimization algorithm. Traversing the flow analysis 

tree using a depth first traversal, the deepest levels of the tree are combined first, and higher lev- 

els are combined until only the root node remains. Then the parallel mode for each segment of 

the program is assigned. 

Figure 5.8 shows how the problem of selecting the best modes of execution for a sequence 
of sibling code blocks is transformed into a multistage optimization graph.  The parameters 
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C?mD and C?VUD represent the times for switching to SIMD and SPMD modes, respectively. 

From the multistage optimization graph, four shortest (in terms of time) paths, corresponding to 
the four minimum execution times mentioned earlier, are determined. The algorithm for the mul- 
tistage optimization problem reduces a sequence of three stages to two stages by determining the 

shortest four paths associated with all possible starting and ending mode choices (starting at the 
first stage and ending at the third stage). This is repeated until only the initial and final stages 

remain. 

(rSIMD) -fSPMD) (7SIMDt j-SPMD) (jf™>, jfMD) 

ySIMD jSIMD j-SIMD 

Figure 5.8: Transformation from flow-analysis tree to multistage optimization graph [WaS94]. 

If the parent node is a looping construct, then the (assumed) information for the number of 

iterations is utilized to estimate the total time for the loop. If the parent node is a data condition- 
al construct, then the (assumed) information for the probability of executing the "then" clause is 

used to estimate the total time for the data conditional. The time of the shortest of the four paths 

at the root is the optimal mixed-mode execution time. The mode assignments corresponding to 

this path are then made. For more details, refer to [WaS94]. 
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Optimal machine selection in a mixed-machine system consisting of two machines is con- 

sidered in [WaA94]. The time to switch execution from one machine to the other is assumed to 

depend on the time to transfer the required data between machines. Thus, in contrast to the as- 

sumed constant time associated with switching modes in a mixed-mode machine, the time of 

switching execution from one machine to another is dependent on which machine(s) contain the 

data sets that are required to execute the next block, which depends on the machine choices 
made for executing the previous blocks, and the size of the data set to be transferred. A given 
machine may contain a data set because it was initially loaded there, it was received from anoth- 

er machine, or it was generated by that machine. 

Consider a program segment consisting of a sequence of blocks (So, Si, S2, ' • •), where 
each block is to be executed on one of the two machines. For each machine, there is an associat- 

ed execution time that is assumed to be known for each block. It is assumed that a collection of 

data structures are used to execute the sequence of blocks and for each block, a subset of these 
data structures is used. The data structure requirements for each block are assumed to be known 
and are stored in a data use (DU) table denoted by DU,- for block S,-. For each data structure list- 
ed in a DU table, one of three usage types is tabulated: read, create, or modify. 

Each data structure is assigned a cost attribute, which corresponds to the time required to 
transfer the data structure between the two machines (for clarity of presentation, this cost is as- 
sumed to be independent of the source of the transfer). A location attribute is used to track the 

availability of each data structure for each machine. A data location (DL) table stores these as 
the cost and location attributes for each data structure. The value of the tabulated cost attribute 

depends on the location(s) of the data structure: if the data structure is on one machine only, then 
the cost to transfer the data structure to the other machine is tabulated; if the data structure is lo- 
cated on both machines, then a cost of zero is used. DL, is used to denote the state of the data lo- 

cation table just before executing block S,-. Figure 5.9 shows example DU and DL tables for a 

program segment consisting of three blocks. In the figure, blocks So and Si are assigned to 

machine Y and block S2 is assigned to machine X (this assignment is arbitrary). Tf is the time 
required to execute block S,- on machine X. 

Given the information specified above, the goal is to find an assignment of blocks to 
machines that results in the minimum overall execution time. In [WaA94], this problem is 
transformed into a multistage optimization problem similar to the one used in [WaS94]. Each 

time the graph is reduced, a separate DL table is kept for each of the four aggregate paths gen- 

erated in the reduction step (see Figure 5.10). Because the time to switch between machines 

depends on past machine selections, the proposed approach may not always produce optimal as- 

signments. For example, the algorithm may make a machine assignment for a given block that 
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Figure 5.9: Simplified model of parallel program behavior with an arbitrary choice of machine 
for each code block [WaA94]. 

will either require a later block to read a large data structure from the other machine or use a 
machine that is not well suited for that block. However, simulation studies of program behaviors 

indicate that the proposed approach, which has a polynomial time complexity, typically pro- 
duces assignments with overall execution times that are less than 1% more than the optimal as- 
signments, which are determined using an exhaustive search that has an exponential time com- 

plexity. This research is currently being extended to more than two machines. 

Optimal Selection Theory and its Extensions 

A mathematical programming formulation for selecting an optimal heterogeneous configuration 

of machines for a given set of problems under a fixed cost constraint, known as Optimal Selec- 
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Figure 5.10: Heuristic building on the multistage technique [WaA94]. 

tion Theory (OST) [Fre89, Fre91], is overviewed in this subsection. An extension of OST, called 

Augmented Optimal Selection Theory (AOST) [WaK92], is presented (in considerable detail) to 

illustrate the various components of the mathematical model. Two other extensions of OST, 

Heterogeneous Optimal Selection Theory (HOST) [ChE93] and Generalized Optimal Selection 

Theory (GOST) [NaY94] are also reviewed. 

In the OST framework, the application is assumed to consist of a set of non-overlapping 

code segments that are totally ordered in time. Thus, the total execution time of the application is 

equal to the sum of the execution times of all its code segments. These code segments are 

identified by task profiling such that each segment is homogeneous in computational require- 

ments. A code segment is defined to be decomposable if it can be partitioned into different code 

blocks that can be executed on different machines of the same type concurrently. A nondecom- 

posable code segment is a code block. The OST formulation assumes for simplicity linear 

speedup when a decomposable code segment is executed on multiple copies of a best matched 

machine type and there are always a sufficient number of machines of each type available. Vari- 

ous information about the code blocks and machines is assumed known, as was the case for the 

methodologies described in Subsection 5.6. It is noted in [Fre91] that integer programming tech- 

niques can be used with the OST formulation to solve the problem of minimizing the execution 

time of the application under a fixed dollar cost constraint to purchase the machines that will 

compose the HC suite, or minimizing the cost under a fixed execution time constraint. The solu- 

tion from the OST framework shows the existence of an optimal suite of heterogeneous super- 
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computers for a given problem set under a fixed cost constraint. 

AOST augments OST by incorporating the performance of code segments for all available 

machine choices (not just the best matched machine type) and by considering non-uniform 
decompositions of code segments. The issue of considering all available choices of machines is 

important in practice because the best matched machine may be unavailable. 

In the formulation of AOST, five machine types are considered: vector, SIMD, MIMD, 

scalar, and special purpose. Each machine type may include different models (e.g., the SIMD 

machine type may include multiple copies of Thinking Machine's CM-2 and/or MasPar's MP- 
1.) Unlike the OST formulation, the number of available machines for each type is limited. For 
ease of presentation and without loss of generality, the case of having only one model (perhaps 
multiple copies) for every machine type is considered here. The details of dealing with more 

than one model per machine type are described in [WaK92]. 

The optimal speedup 8[x] with respect to a baseline sequential system (e.g., a VAX 
machine), is assumed to be estimated by analytical benchmarking based on the best matched 

code type for each machine type x. For each code segment j, a five-tuple is assumed to be known 

from task profiling: co[j] = (ic[vector, j], n [SIMD, j], % [MIMD, j], % [scalar, j], % [specialj]), 
where 0 £ TC[XJ] £ 1 is an indicator of how well code segment j can be matched with machine type 
x. Let S be the set of |S| non-overlapping code segments of the application task. Let *i be the 

number of different machine types to be considered. 

The maximum number of independent code blocks into which code segment j can be 

decomposed for concurrent execution on machines of type x is defined as v[x,j], and is assumed 

to be known. Let ß[x] = number of machines of type x available (or possible to purchase). 

Therefore, the actual number of code blocks into which code segment j can be decomposed is 
defined by Y[x,j] = min(v[x,j], ß[x]). Assume on the baseline system, p[j] = fraction of time spent 
executing code segment j relative to the overall execution time of S, and p[j,i] = fraction of time 

|S| 
spent executing code block i relative to the execution time of code segment j, thus £p[j]=l and 

H 

£p[j,i]=l,forallx,j. 
i=l 

The available parallelism of a code segment is defined to be the minimum number of proces- 

sors that results in the optimal execution time with respect to its assumed machine model. Let 
A[xj] denote the utilization factor when running a code segment (or block) j on a machine of 
type x. A[xj] = 1 if the available parallelism of code segment j with respect to machine type x is 
not less than the number of processors within machine type x; otherwise A[x,j] = (available paral- 
lelism) / (total number of processors). Thus, the expected actual speedup of code segment j on 
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machine x is 8[x]x rc[x,j]x A[x,j]. The execution time of a decomposable code segment is the 

longest execution time among all its code blocks executing on the selected machines. The rela- 

tive execution time for code segment j on machine type x is given by: 

X[x,j] =   max   Kp[j] - plj.i]) / (8[x] * ;i[x,j] * A[x,i])}. 

Code segment j is assumed to be executed on machines of type x(j], 1 < x[j] £ \i, for each 
1 ^ j s |S|. Thus, for a given matching of code segments to machine types (i.e., x[j]'s), the relative 

execution time of S is given by: 

|S| 
ET{x[l],X[2],...,X[|S|]}=ZX[X[j],j]. 

j=l 

Given the overall cost constraint, H, and the cost of a machine of type x, h[t], AOST is formulat- 
ed as: 

min  ET{x[l],x[2],...,x[|S|]} 

l*j*|S| 

subject to V ( max 7[x,j])* h[x] ^ H. 
£    lsj*|S| 

HOST extends AOST by incorporating the effects of various local mapping techniques and 
allowing concurrent execution of mutually independent code segments on different types of 
machines. The "Hierarchical Cluster-M" model [EsF92] is discussed in [ChE93] as a way to 
simplify the matching process by exploiting the hierarchically clustered structure of both the sys- 
tem architecture and the application's communication graph. 

In the formulation of HOST, it is assumed that a particular application task is divided into 

subtasks. Subtasks are executed serially. Each subtask may consist of a collection of code 

segments (as defined earlier) that can be executed concurrently. A code segment consists of 

homogeneous parallel instructions. Each code segment is further decomposed into several code 

blocks that can be executed concurrently on machines of the same type. The execution time of a 
subtask is equal to the longest execution time among all code segments in that subtask. 

Similarly, the execution time of a code segment is equal to the longest execution time among all 

code blocks in that segment. The underlying mathematical formulation of HOST is similar to 
(and a natural generalization of) that of AOST. 

GOST generalizes OST and its extensions to include tasks modeled by general dependency 
graphs. In GOST, it is assumed that there are <o different machine types and an unlimited 
number of machines in each type. Different machine models are treated as different types. 
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In GOST, the most basic code element is a process, which corresponds to a block or a non- 

decomposable code segment (as defined by AOST). It is assumed that an application task con- 
sists of several processes modeled by a dependency graph, which could be generated by task 

profiling. Each node rii of the graph represents a process and has a number of weights 
corresponding to the execution times of that process on each machine type for each mapping 

available on that machine. An edge of the graph represents dependencies between two processes 
that require communication. Each edge (rji, r|j) has a number of weights (communication times), 
one for each reasonable communication path between each possible pair of host machines for 

processes ru and r|j. The weights for nodes and edges are assumed to be derivable from analyti- 

cal benchmarking. The objective is to determine the optimal matching/scheduling in which each 
process node in the dependency graph is assigned one machine type and a start time, and the 
completion time of the whole application is minimized using polynomial time algorithms. 

Other Formulations and Solution Techniques 

In [TaN93], the problem of mapping interacting code blocks of a given application task to 
machines in an HC system is studied. The HC system is represented by an architecture graph, in 
which the nodes represent the machines and the edges represent the interconnections among the 
machines. The application task, which is also modeled with a graph, uses nodes to represent the 
interacting code blocks and edges to represent data communication dependencies among the 
code blocks. It is assumed that the bandwidth of each link and the interface overhead between 

each pair of machines are known. It is also assumed that the computation time of each code 

block on each machine and the amount of communication required between each pair of code 

blocks are known. Mapping is done by assigning each code block to a machine (i.e., node in the 
architecture graph). The objective is to minimize the completion time of the whole program. 
An initial mapping is assumed at the beginning of the search. The basic actions of the proposed 
graph-based search are called moves. An example of a move is swapping the current locations 
of two code blocks. Three types of heuristics are used for attempting to find the optimal map- 

ping. Simulations on randomly generated models are conducted to compare the solution quality 

and execution times among the three approaches. 

In [LeP93], another graph-based method for representing problems for automatically 
matching code blocks to machines in an HC environment is presented. In this work, a "general- 

ized virtual fully-connected architecture graph" is proposed as the machine abstraction and a 
"Meta Graph" is proposed as the abstraction for the task. In the architecture graph, each node 
represents a machine in the HC system and contains various machine characteristics. Each edge 
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represents the virtual communication link between every pair of machines, and includes infor- 

mation such as connectivity (i.e., direct versus indirect), connection bandwidth, physical dis- 

tance, and node-pair heterogeneity (i.e., data-reformatting requirements). In the Meta Graph, the 
nodes represent code blocks, and edges represent control and data flows between code blocks. 
Classical list scheduling [P0I88] is augmented to utilize the node-pair heterogeneity representa- 
tion and is used in simulations on randomly generated problems to match code blocks to 
machines. Based on several hundred simulations, an average improvement of approximately 

70% is obtained from this implementation over the regular weighted graph implementation (i.e., 

without the node-pair heterogeneity information). 

In [Lil93], a crossover strategy for assigning tasks on a simple HC system consisting of two 

machines is proposed. It is assumed that the two machines work in a client/server mode. The 
proposed strategy is used by the client to decide when the speedup of running a subtask on the 
server can compensate for the communication/interface overhead involved. When deemed to be 
beneficial, a remote procedure call is used to execute this subtask on the server. Two experi- 
ments were conducted on an actual HC system consisting of a Sun workstation, which func- 
tioned as the client, and a Thinking Machines CM-200, which operated as the server. The first 
experiment was an implementation of the "maximum subvector problem," which involves 

finding the maximum sum of elements of any contiguous subvector of a given real input vector. 
The second experiment was based on an implementation of the shallow weather prediction 

benchmark [Swa84]. The proposed crossover strategy was shown to make the correct choice for 
executing these applications (i.e., executing entirely on the client or using both the client and the 

server). In the first application, using both the client and the server was shown to be the proper 

choice provided that the vector size was larger than a critical value. For the second application, 

the choice was to always use (only) the client because of high communication requirements. 

5.7.4. Summary 

Some existing matching and scheduling techniques for HC systems were overviewed in this 
section. All of these frameworks, which are applicable to stage 3 of the conceptual model of 
Subsection 5.5, assume that information from stage 2 of the conceptual model is available and 
given. Although some of the proposed techniques make simplifying assumptions that may be 
difficult to justify in practice, the body of work reviewed represents solid research that is being 

conducted as important first steps in a relatively new field. More research is needed to integrate 

all of the stages of the conceptual model into a practical system. Specific research challenges for 

HC are discussed in the next section. 
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5.8. Conclusions and Future Directions 

Although the underlying goal of HC is straightforward — to support computationally inten- 

sive applications with diverse computing requirements — there are a great many open problems 
that need to be solved before heterogeneous computing can be made available to the average ap- 

plications programmer in a transparent way. Many (possibly even most) need to be addressed 
just to facilitate near-optimal practical use of real heterogeneous suites in a "visible" (i.e., user 
specified) way. Below is a brief informal discussion of some of these open problems; it is far 

from exhaustive, but it will convey the types of issues that need to be addressed. Others may be 

found in [KhP93, Sun92]. 

Implementation of an automatic HC programming environment, such as envisioned in Sub- 
section 5.5, will require a great deal of research for devising practical and theoretically sound 
methodologies for each component of each stage. A general open question that is particularly 
applicable to stages 1 and 2 of the conceptual model is: "What information should (must) the 
user provide and what information should (can) be determined automatically?" For example, 
should the user specify the subtasks within an application or can this be done automatically? Fu- 

ture HC systems will probably not completely automate all of the steps in the conceptual model. 

A key to the future success of HC hinges on striking a proper balance between the amount of in- 
formation expected from the user (i.e., effort) and the level of performance delivered by the sys- 

tem. 

To program an HC system, it would be best to have one or more machine-independent pro- 
gramming languages that allow the user to augment the code with compiler directives. The pro- 
gramming language and user specified directives should be designed to facilitate (a) the compila- 

tion of the program into efficient code for any of the machines in the suite, (b) the decomposition 

of tasks into homogeneous subtasks, and (c) the use of machine-dependent subroutine libraries. 

Along with programming languages, there is a need for debugging and performance tuning 

tools that can be used across an HC suite of machines. This involves research in the areas of dis- 

tributed programming environments and visualization tools. 

Operating system support for HC is needed. This includes techniques applicable at both the 

local machine level and at the system-wide network level. 

Ideally, information about the current loading and status of the machines in the HC suite 
and the network that is linking these machines should be incorporated into the matching and 

scheduling decisions. Many questions arise here: what information to include in the status (e.g., 

faulty or not, pending tasks), how to measure current loading, how to effectively incorporate 
current loading information into matching and scheduling decisions, how to communicate and 

121 



structure the loading and status information in the other machines, how often to update this in- 

formation, and how to estimate task/transfer completion time. 

There is much ongoing research in the area of inter-machine data transport. This research 

includes the hardware support required, the software protocols required, designing the network 
topology, computing the minimum time path between two machines, and devising rerouting 
schemes in case of faults or heavy loads. Related to this is the data reformatting problem, in- 

volving issues such as data type storage formats and sizes, byte ordering within data types, and 

machines' network-interface buffer sizes. 

Another area of research pertains to methods for dynamic task migration between different 

parallel machines at execution time. This could be used to rebalance loads or if a fault occurs. 

Current research in this area involves how to move an executing task between different machines 
and determining how and when to use dynamic task migration for load balancing. 

Lastly, there are policy issues that require system support. These include what to do with 
priority tasks, what to do with priority users, what to do with interactive tasks, and security. 

In conclusion, there is clearly a gap between the state-of-the-art in practical HC computing 

(briefly illustrated in Subsections 5.2 through 5.4) and automating all of the steps characterized 

by the conceptual model of Subsection 5.5 (and discussed in Subsections 5.5 through 5.7). In 

particular, stages 1 through 3 of the conceptual model are typically done entirely by the user, 

while some aid is provided for the user for stage 4 by existing tools and environments. Thus, 
although the uses of existing HC systems demonstrate the significant potential benefit of HC, the 
amount of effort currently required to implement an application on an HC system can be sub- 
stantial. Future research on the above open problems will improve this situation and make HC 

more viable. 
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6. Estimating the Distribution of Execution Times 
for SIMD/SPMD Mixed-Mode Programs 

6.1. Introduction 

A heterogeneous computing (HC) system provides a variety of architectural capabilities, or- 

chestrated to perform an application whose subtasks have diverse execution requirements 

[SiA95]. Two types of HC systems are mixed-mode machines and mixed-machine systems. 

A mixed-mode machine is defined here as a single parallel processing machine that is capable 

of operating in either the synchronous SIMD or asynchronous MIMD [Fly66] mode of paral- 

lelism and can dynamically switch between modes at instruction-level granularity [SiA95]. A 

mixed-machine system is a suite of independent machines of different types interconnected 

by a high-speed network. 

The SPMD (single program - multiple data) mode of parallelism is a special case of 

MIMD in which the processors execute the same program asynchronously on their own data 

[DaG88]. Applications for this study are assumed to be data parallel programs written 

in a mode-independent language for execution on an SIMD/SPMD mixed-mode machine. 

Examples of mixed-mode machines include PASM [SiS95], TRAC [L1M87], Triton [PhW93], 

OPSILA [DuB88], and EXECUBE [Kog94]. The model of a mixed-mode machine assumed 

here is a distributed memory machine, in which each processor is paired with a memory 

module to form a processing element (PE). When PEs switch mode, all that changes is 

the source of their instructions. For SIMD mode, PEs receive their instructions from a 

common control unit (CU), while in SPMD mode, each PE fetches its instructions from its 

own memory module. 

Studies on how to make effective use of the heterogeneity present within mixed-mode 

machines can provide useful insights for how to make effective use of mixed-machine systems. 

For example, in [WaS94], an optimal mode selection technique was developed for mixed- 

mode machines that was later generalized for use with mixed-machine systems in [WaA94]. 

Similarly, much of the work presented here for predicting execution times for mixed-mode 

machines may be applicable and/or adaptable to mixed-machine systems. 

To effectively utilize the computational resources in an HC system (i.e., modes of paral- 

The co-authors of this section were Yan Alexander Li, John K. Antonio, Howard Jay Siegel, Min Tan, and 
Daniel W. Watson. 
This work was supported by Rome Laboratory under contract number F30602-94-C-0022. 
This material will appear in the Proceedings of the Fourth Heterogeneous Computing Workshop (HCW '95), 
sponsored by the IEEE Computer Society, April 1995. 
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lelism and/or machines) for executing a task consisting of a set of subtasks, it is very impor- 

tant to be able to predict the execution times of different subtasks for each mode/machine 

in the system, because performance prediction is the basis of matching and scheduling for 

HC systems. Many matching and scheduling algorithms make the simplifying assumption 

that the execution time for each subtask is a known constant for each mode/machine in the 

system (e.g., [Fre89, WaA94, WaS94]). However, there are elements of uncertainty, such 

as the uncertainty in input data values or in inter-machine communication time, which can 

impact the execution times. Mode/machine choices for executing subtasks can also affect 

the execution time and its degree of uncertainty. For example, in a mixed-mode machine 

during a MIMD to SIMD mode switch, all PEs must wait for the last one to finish its MIMD 

execution before entering the synchronous SIMD mode. Thus, the amount of time a partic- 

ular PE waits depends not only on when it finishes MIMD execution, but also on when the 

last PE finishes MIMD execution. 

Consider the execution of the loop in Fig. 6.1 on a mixed-mode machine. The loop 

body contains subtasks A and B. Assume the execution times of each subtask vary among 

the PEs (because the execution time of each subtask depends on input data values that 

vary across all PEs) and the loop control overhead time is ignored. Assume that, when 

executed independently, the average execution time of subtask A is minimal in SIMD mode 

and the average execution time of subtask B is minimal in MIMD mode. In the figure, the 

wide rectangles spanning horizontally across all PE labels represent the execution time of a 

subtask in SIMD mode. The thin rectangles under each PE label represent the execution 

time of a subtask in MIMD mode on each PE. The rectangles are shaded differently to 

represent the execution times of subtask A and subtask B. 

Intuitively, executing subtask A in SIMD mode and subtask B in MIMD mode should 

be faster than any other combination (because subtask A is fastest in SIMD and subtask B 

is fastest in MIMD). This intuition is correct provided that the variation in execution time 

across the PEs is sufficiently small, as shown in Fig. 6.1(a). However, as shown in Fig. 6.1(b), 

if the variation is large across the PEs, then it is possible that executing everything in MIMD 

mode is fastest due to the effect of block juxtaposition, even if the average execution of 

subtask A in MIMD mode is larger [BeK91]. Therefore, incorporating only information for 

average execution times may lead to incorrect mode selections. 

This study introduces a methodology for statically estimating the distribution of execu- 

tion times for a given data parallel program to be executed in an SIMD/SPMD mixed-mode 

computing environment.   The program is assumed to contain operations whose execution 
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Figure 6.1:   Execution of a loop with variable execution time subtasks: (a) low variance for 
execution time of subtask B; (b) high variance for execution time of subtask B. 
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time behaviors depend on input data values that cannot be perfectly predicted at compile 

time. For instance, in the example shown in Fig. 6.1, the number of iterations executed 

by the looping construct may be data dependent. Also, each subtask within the loop body 

may themselves contain looping constructs where the number of iterations to be executed is 

uncertain. Probabilistic models are constructed to model these types of uncertainties, e.g., 

a probability distribution function is used to represent the number of iterations executed 

by each looping construct. The aggregate effect of these elements of uncertainty on total 

execution time of the program is captured by computing the probability distribution for the 

total execution time. 

In the proposed methodology, a block-based approach is used to transform the applica- 

tion program into a flow analysis tree in which the internal nodes represent control or data 

conditional constructs and the leaf nodes represent basic code blocks [AhS86]. The method- 

ology takes as input the structure of the flow analysis tree, the mode in which each node in 

the flow analysis tree is to be executed (SIMD or SPMD), execution time distributions for 

all operations for both SIMD and SPMD modes, and an appropriate probabilistic model for 

each control and data conditional construct. Based on this information, the distribution of 

execution times for the entire program is computed. Deriving this proposed methodology for 

combining statistical information about a SIMD/SPMD mixed-mode program is the focus 
of this section. J. 

Subsection 6.2 presents the basic assumptions and a brief overview of the proposed ap- 

proach. Subsection 6.3 reviews some basic probability theory that is used in later subsections. 

Methods for computing the execution time distribution of a single code block in either SIMD 

or SPMD mode are discussed in Subsection 6.4. The methods for estimating execution time 

distributions of an entire program in single and mixed-mode are described in Subsections 

6.5 and 6.6, respectively. A numerical example is given in Subsection 6.7 to demonstrate the 

effect of mode choices on the distribution of total execution time. 

6.2. Overview of the Approach 

Applications for this study are assumed to be data parallel programs written in a mode- 

independent language for execution on an SIMD/SPMD mixed-mode machine. A mode- 

independent language (e.g., ELP [NiS93]) is a language whose syntactic elements have in- 

terpretations under more than one mode of parallelism. In a mode-independent language, 

operations represent the most explicit level at which the program representation is identical 

for each mode of parallelism.  Mode-independent languages make it possible to utilize the 
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most appropriate parallel execution mode for each block of a given program. 

. As in the BBMS (block-based mode selection) framework introduced in [WaS94], a flow- 

analysis tree is used to represent the application program. The application program is 

divided into code blocks, identified by their leading statements called leaders [AhS86]. The 

first statement in a program is a leader, any statement that is a target of a branch at 

the machine-code level is a leader, any statement following a conditional branch at the 

machine-code level is a leader, and any statement requiring or following a synchronization 

or an inter-PE communication is a leader. After the code blocks are defined, the program 

is transformed into a flow analysis tree, whose structure represents the scope levels within 

the program. The root of the tree represents the scope of the entire program. The non-leaf 

nodes represent control and data-conditional constructs. Code blocks are represented by the 

leaf nodes of the tree. An example program and its associated flow analysis tree are shown 

in Fig. 6.2. A simple model for the language is assumed here, as in [WaS94]. 

entire  scope 
of program 

blk a 

for (...){ 
blk b 

if (...){ 
blk c \ 

} else{ 
—\ 

blk d —/ 

blk e 

for   () 

blk_a for  init 

} 
blk f 

blk  f for  test 

blk_c     post_then blk_d blk_e      post_else 

Figure 6.2:   Example program and its associated flow analysis tree [WaS94]. 

It is assumed that leaf blocks (i.e., code blocks) are executed completely in either SIMD 

or SPMD mode, and mode changes are allowed only at inter-block boundaries. It is also 

assumed that the sibling nodes are executed in an ordered sequence (from left to right) as 

they appear in the flow analysis tree.  Thus, the schedule for executing the code blocks is 
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static and is defined by the program itself. If a block is to be executed more than once, such 

as in a loop, then the mode of parallelism for that block is the same for all loop iterations. 

Each iteration of a loop must begin and end execution in the same mode of parallelism 

(or else a mode switch would need to be added to make this true). All blocks that are 

part of (i.e., descendants of) a data-conditional construct are executed in the same mode 

of parallelism (e.g., this is a requirement in the operation of PASM to avoid complex and 

costly bookkeeping overhead). 

The execution time of each basic operation within a code block in each mode on a single 

PE can either be deterministic (i.e., have a constant value) or can assume different values, 

each with a specified probability. In both cases, a discrete random variable is used to model 

the execution time, where the former is a special case in which the random variable assumes 

the constant value with probability 1 (i.e., it is deterministic). Examples of such operations 

are architecture dependent and may include inter-PE communications and floating point 

operations. Estimates for the execution time distribution of each operation in each mode 

is assumed to be known. This information is assumed to be application independent, thus 

it can be measured (i.e., empirically estimated) for each mode and stored in a database for 

future reference. 

It is assumed that the branching probability of each data conditional construct and the 

distribution for the number of iterations each loop will execute are application/data de- 

pendent and are available from the application programmer (e.g., in the form of compiler 

directives). In general, the more accurate the information the application programmer pro- 

vides, the better the prediction that can be made on the distribution of the execution time of 

the entire program. For example, a program may contain an exception-handling branch that 

takes a long time to execute. If the application programmer can indicate that this exception 

occurs only rarely (i.e., with low probability), then it can be predicted that the total execu- 

tion time distribution is affected only slightly. Otherwise, an arbitrary assumption, such as 

using a branching probability of approximately one-half, gives a more pessimistic estimate 

for the total execution time distribution. In addition to getting information directly from 

the application programmer, empirical information can be derived based on a number of 

measured execution times. 

Given the above information and the mode of parallelism (i.e., SIMD or SPMD) in which 

each code block is to be executed, the distribution of the execution time of each block—which 

corresponds to a leaf node in the flow analysis tree—is computed. After that, traversing the 

flow-analysis tree in depth-first order, each lowest level subtree is pruned.   Repeating this 
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step, the entire flow-analysis tree is pruned, and the execution time distribution of the whole 

program is computed. In the next subsection, basic probability theory, which forms the basis 

of our analysis, is reviewed. 

6.3. Basic Probability Theory 

The purpose of this subsection is to provide an overview of relevant concepts from basic 

probability theory. Additional definitions and derivations can be found in textbooks on the 

subject (e.g., [MoG74]). 

Define a sample space to be the collection of all possible outcomes of a conceptual ex- 

periment. Define an event to be a subset of the sample space. Define a probability function, 

denoted by Pr[-], to be a function that maps each event to a real number in [0, 1], which 

represents the likelihood that a given event occurs. In the context of this section, all possible 

execution times for a SIMD/SPMD program represent events within a sample space. 

Define a random variable, denoted by X or X(-), to be a function that maps each event 

to a real number. For instance, suppose the execution time of a program takes on one of 

several possible values. The random variable X is used to map the event "program execution 

time = x seconds," to the real number x. A random variable X is defined to be discrete 

if the range of X is countable. Throughout this section, only discrete random variables are 

used, and the discrete values from the range of the random variable X shall be denoted by 

Xi,i > 0. The notation X = Xj is used to denote the event that is mapped to the value a;,-. 

The notation X < Xj is used to denote the union of all events that are mapped to values less 

than or equal to the value a;,-. 

The density function of X is defined as: 

,  ,  s   _   f PT[X = Xi],   lfx = Xi, i = 0,1,... 
Jx(x)  -  I o, otherwise. 

The distribution function of X is defined as: 

Fx(x) = Px[X < x}. 

Three basic properties of a distribution function are: (1) Fx(-oo) = 0, (2) Fy(oo) = 1, 

and (3) Vxj > ar,-, FX(XJ) > Fx(xi). Also, as shown below, the distribution function can be 

derived from the density function and vice versa: 

Fx(x)=     £     /*(*••)> 
{i : Xi<x} 
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Consider two random variables XQ and X\, and let XQ = XQJ and Xi = x\k denote 

arbitrary events associated with these random variables. The random variables XQ and Xi 

are defined to be independent if and only if for all xoj and x^ 

Pr[X0 = xoj DXi= xlk] = PT[X0 = xoj] Pr[Xi = xlk]. 

Let X0,Xi,... ,Xk-i be a collection of k independent random variables defined on the 

same probability space and assume that the range for each of these random variables is a 

subset of {A • i : i = 0,1,...}, for some real constant A. Without loss of generality, assume 

A = 1 for the remainder of this section. 

Let the random variable Y denote the sum of the independent random variables X0, X\, 

...,Xk-\, i.e., Y = YliZo Xi- F°r k = 2, the density function of Y is the convolution of 

fx0(-) and ./*,(•), denoted by /y(-) = /y„(-) * /*,(•), which is defined by: 

frU) = Ef*oU-i)fxl(i), 3 = 0,1,.... 
»=o 

In general, the density function of Y is given by 

To illustrate, consider two independent random variables XQ and X\ that have identical 

density functions defined by: 

f |,   » = 0,1,2 
fx0(i) = fXl{i) = { I     ^     . (6-2) 

[ U,   otherwise. 

Therefore, the random variable Y = X0 + X\ has the following density function: 

( -     i = 0 4 

Mi) 
9,    l — 1, o, 

t = 2, 3' 

0,    otherwise. 

Let the random variable Z denote the maximum over the set of independent random 

variables X0, Xi,..., Xk-i, i.e., Z = ma.x{X0, Xi,... ,Xk-i}. Because of the independence 

assumption, the distribution of Z is derived as follows: 

Fz(i)   =   Fv[Z<i] 

=   Pr[X0 < i] PrfXi <i]--- Pv[Xk-i < i\. 
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Therefore, 

Fz(i) = FXo{i)FXl(i)--'FXh_1(i). (6.3) 

To illustrate, consider the two identical and independent random variables X0 and Xi 

denned in Equation (6.2). The distribution functions for these random variables are defined 

by: .     A 
( 0,      i < 0, 

Fx0(i) = FXl(i) = < j±i,   * = 0,1,2, 3 

I 1,       *>2. 

Thus, the random variable Z = max{X0,Xi} has a distribution function given by: 

f 0, i < 0, 

Fz(i) 0±i)2,   t = 0,l,2, 

t 1, i>2. 

In the next subsection, the approach to compute the execution time distribution of a code 

block using the probability theory reviewed in this subsection is introduced. Throughout 

the discussion, it is assumed that time is measured based on a given discrete unit and thus 

assumes non-negative integer values. All execution times are assumed to be modeled as 

discrete random variables. The case of a constant execution time is regarded as a special 

case where the random variable is equal to the specified constant with probability 1. 

6.4. Execution Time Distribution of a Code Block 

It is assumed that the execution times of an operation on all PEs are independent and 

identically distributed (i.i.d.), and the execution times of different operations of the program 

are assumed to be mutually independent. There are N PEs in the mixed-mode machine. 

Because a code block contains no data conditional statements, any given PE must either be 

enabled to execute the whole block or disabled for all operations of this block. Thus, the 

number of enabled PEs does not change during the execution of a code block. It should be 

noted that the number of enabled PEs may change during the execution of data conditional 

or looping constructs in SIMD mode, or during the execution of mixed-mode loops (see 

Subsections 6.5 and 6.6). The computational complexity for keeping track of the number of 

enabled PEs is very high, thus AT is used instead as an approximation in this section. 

The code block associated with the £-th leaf node in the flow analysis tree is called 

code block I. Let ke_ denote the number of operations in code block £, and label the operations 
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in code block £ as 0,1,..., kt -1. For each code block £, define two arrays of random variables 

Pe'
3 and P}'3, i e {0,1,..., ke -1}. The values of the random variables V£_ and P}'3 correspond 

to the execution time of operation i of block £ executed on PE j in S/MD and SPMD modes, 

respectively. It is assumed that for each operation i, I}'3 are i.i.d. for all PEs j. Likewise, 

for each PE j, I'/3 are independent for all operations i. The same is assumed for P\'3. 

For each code block £ executed in SIMD mode, define a random variable I£, and for each 

operation i in this block, define a random variable I\. The value of I\ corresponds to the 

execution time of operation i of code block £ in SIMD mode, and the value of h corresponds 

to the execution time of code block £ in SIMD mode. Because every operation in the block 

is synchronized among all enabled PEs, the execution time of an operation is the maximum 

of the execution times of this operation among all enabled PEs. The random variables I\ 

and li are determined from Vt'
3' as follows: 

Pp —       max      {Pc3\ 
ie{o,i,...,7V-i}L l } 

kt-l 

Thus, the distribution function of ~I\ and density function of It are: 

*¥■)= n1^-(-)=(^(-))jv 
3=0 

fh(-) = fi°(.) * //»(■)*■••* /j**-i (•) 

where Fji,j{-) = F7.,o(-) for all j because of the i.i.d. assumption. 

For each code block £ executed in SPMD mode, define two random variables P£ and P/. 

The value of P/ corresponds to the execution time of code block £ in SPMD mode on PE j, 

and the value of fy corresponds to the execution time of code block £ in SPMD mode with 

all PEs synchronized at the beginning and end of the block. The random variables P/ and 

Pi are determined from Pg'3 as follows: 

kt-l 

P3 = £ P-- 
!=0 

Pt =       max      {P/}. 

The density function of P/ is the convolution of the density functions of P^3 for all operations 

i, thus: 

fpj(-) = //?■>(•) * fp}4-) *■■■* fp«t-i4-)- 
Z I t *■ i 
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The distribution function of Pi can be computed from the distribution function of P/ as 

follows: 

6.5. Single-Mode Execution of a Program 

6.5.1. Overview of Single-Mode Execution 

This subsection presents a methodology for computing the execution time distribution of 

an entire program in a single mode. A method for reducing a series of blocks to a single 

block having equivalent execution time characteristics is introduced first. Then, methods for 

reducing two basic program structures, pure loop and pure data conditional construct, are 

presented. A pure loop is a loop whose body is currently represented as a series of one or 

more leaf blocks. Similarly, a pure data conditional construct is a data conditional construct 

for which each clause is currently represented as a series of one or more leaf blocks. It is 

shown that pure loop and pure data conditional construct can each be reduced to a single 

equivalent block. Finally, it is shown how these methods can be combined in an divide-and- 

conquer way to handle arbitrary program structures. 

In rest of this section, it is assumed that among all PEs, the distributions for the number 

of iterations for each looping construct are i.i.d., and the probability that a PE executes the 

"then" clause of each data conditional construct is identical with and independent from that 

of any other PE. These distributions and probabilities are assumed to be known or estimated 

at compile time (e.g., through compiler directives). 

6.5.2. A Series of Blocks 

Consider the single-mode execution of a series of L blocks, B0,..., i?L_i. It will be shown 

that they can be reduced to a single block having an equivalent execution time distribution. 

The case of two blocks is studied first and the case of more than two blocks follows by 

induction. 

Suppose L = 2 and B0 and B\ are both executed in SIMD mode. Because each operation 

is synchronized in SIMD mode, the total execution time of B0 and B\ is the sum of execution 

times of both blocks. Thus, B0 and £?i can be reduced to an equivalent block B with 

IB = ho + hi and //B(-) = //flo(-) * fiBi (•)• By induction, for L > 2, a series of L SIMD 
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blocks Bo.,..., -BL-I are equivalent to one SIMD block B with 

L-l 

//B(0  = //Bo (0 * flBl (•)*•••* flBL_t (•)• 

Suppose L = 2 and J90 and ßi are both executed in SPMD mode. If no synchronization 

among the PEs at the block boundaries is explicitly specified in the source code, each PE 

will execute operations of both code blocks as one contiguous block. Therefore, B0 and By 

are equivalent to a SPMD block B whose SPMD execution time on PE j is 

Thus, 

fpB(-) = fPB (•)*%(•)• B BQ til 

If all PEs are synchronized before B0 and after Bi, then 

PB =       max      {PL}, 
i€{0,l N-1}X    S/' 

^(•) = n1^(-) = (^g(-))jv. 
j=0 

By induction, for L > 2, a series of L SPMD blocks B0,..., i?L_i are equivalent to one 

SPMD block B with 

L-l L-l ki-1 

fp>B(-) = f%(-)*fp>B{-)*~'*fp>B     (•) B B0 Bj BL-1 

Ps =       max      {P3
B} 

ie{o,i,..,JV-i}1 

i=o 

6.5.3. Pure Loop 

For each pure looping construct, it is assumed that the given distribution for the number of 

iterations to be executed by each PE is i.i.d. across all PEs. If the pure loop body consists 

of a series of blocks, it can be reduced to one equivalent block using the techniques discussed 

in the previous subsection. Therefore, the focus here is on determining the execution time 

distribution of a loop whose body is a single block. 
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Suppose node n of the flow analysis tree corresponds to a loop whose equivalent body 

is denoted by code block £?n_body, and the random variable for the number of iterations to 

be executed by PE j is R{, where Vr < 0, fpJn(r) = 0. For each possible (i.e., non-zero 

probability) number of iterations r, unroll the loop into a series of r blocks (i.e., repeat 

loop body block Z?„_body r times). The density for the execution time of this series can be 

estimated using the summation method discussed in the previous subsection. The density 

for the execution time of the entire loop is the weighted sum of the densities of execution 

times for the unrolled loop for all possible number of iterations (the densities are weighted 

by the probability of executing the associated number of iterations). 

Because the number of iterations to be executed by each PE can be distinct, bounds for 

looping iterations are assumed to be based on local data from each PE. The case where loop 

bounds are defined based on data from the central CU (in SIMD mode) is a simpler case, 

and is not considered here. 

When executing a loop in SIMD mode, r iterations of the loop body /„-body are equivalent 

to a single SIMD block, whose execution time is /r_iteration, where its density function is given 

by: 

J 'r— iteration V   / J *n—body V   / J *n—body V   / 
 v • 

r times 

Because the number of iterations to be executed can be different among the PEs, the CU 

must broadcast instructions for the PE(s) that executes the largest number of iterations 

(and the other PEs must wait until this PE(s) finishes its last iteration before executing 

operations that follow the loop). Let Rn correspond to the largest number of iterations to 

be executed by all PEs, then 

Rn = ,e{om.aX"-i}™ 

^(•)=n1^(-) = (^o(-)r 
3=0 

By the total probability theorem [MoG74]: 
oo 

JlnVJ /  j jRn\' ]J ir-iteration V ) ' 

r=l 

In SPMD mode, r iterations of the loop body P^_body for PE j can be represented by a 

block -Pr
J_iteration5 witn density function: 

/A»,   ,   (■) = /*„„(•)*■■■*/*>■„,(■)■ r—iteration n—body n—body 

r times 
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Therefore, the density function for the execution time of the loop on PE j is: 

oo 

/*(0 = £/*£(»■)/>*■, , (•)• * n '" '■*     ■**« ■* r—iteration r—iteration 

If there are synchronizations prior to and after completion of the loop, the random variable 

and its associated distribution function for the execution time across all PEs are given by: 

Pn =       max      {P£} 

Fpn(-)=T[FPi(-) = (FPo(-))N. 
3=0 

6.5.4. Pure Data Conditional Construct 

For a pure data conditional construct, if either clause consists of a series of two or more 

blocks, then the series of blocks can be reduced to one equivalent block using the techniques 

discussed in Subsection 6.5.2. Hence, the focus of this subsection is on data conditional 

constructs in which each of the "then" and "else" clauses is represented by a single block. 

Assume node n of the flow analysis tree corresponds to a pure data conditional construct. 

It is assumed that PE j executes the "then" clause with probability p^, and this branching 

probability is independent across the PEs. Thus, PE j executes the "else" clause with 

probability 1 — p£. The whole data conditional construct can be represented by a single 

block having an equivalent execution time distribution, which is computed as follows. 

In SIMD mode, instructions are broadcast by the CU. During the execution of a data 

conditional construct, when instructions of the "then" clause are broadcast, PEs for which 

the condition is false are disabled; when instructions of the "else" clause are broadcast, PEs 

for which the condition is true are disabled. If all PEs are to execute the same clause, then 

the other clause is skipped (i.e., the instructions for the other clause are not broadcast). 

Thus, there are three cases to consider: all PEs execute the "then" clause (with probability 

(pi)N); all PEs execute the "else" clause (with probability (1 - p3^); or some PEs execute 

"then" and the others execute "else" (with probability 1 - (p{)N - (1 - pi)N). Therefore, 

the density function of the execution time of node n is: 

//„(■) = (Äf f!*-*»(•) + a-P'nffln-.J-) + [1 - (Pif ~ (1 -A)"]//.-«.«*-) * //„^u. CO- 

In SPMD mode, each PE fetches instructions from its own memory, thus during the 

execution of a data conditional construct, some PEs may execute the "then" clause while 
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the others are executing the "else" clause. Therefore, for each PE j, 

fp>(-) = pLfp>     (•) + {i -rDfpi , (•)• * rn \   / 
rn-then n-else 

If all PEs are synchronized prior to and after completion of node n, the random variable and 

its associated distribution function for the execution time of node n are given by: 

Pn = .     max      {Pi}, 
J€{0,1 N-l} 

i?p-(o = n1^(-)=(^(-))jv. 

6.5.5. Arbitrary Program Construct 

It was shown in the previous two subsections that any subtree corresponding to a pure loop 

or a pure data conditional construct can be reduced to one equivalent leaf node. Thus a 

divide-and-conquer algorithm can be used to calculate the execution time distribution of an 

arbitrary program. 

Traversing the flow-analysis tree in depth-first order, each non-leaf node traversed can 

only have leaf nodes as its children. Therefore, each such non-leaf node corresponds to one of 

the following program structures: (1) a pure loop; (2) a pure data conditional construct; or 

(3) a clause of a data conditional construct that contains a series of blocks. The applicable 

technique is then used to reduce the subtree under this node into an equivalent leaf node. 

This procedure is repeated until only the root node remains. If the program is executed in 

SIMD mode, then the execution time distribution is //„„»(•). otherwise the execution time 

distribution is /proot(-)- 

6.6. Mixed-Mode Execution of a Program 

6.6.1. Overview of Mixed-Mode Execution 

In this subsection, a methodology is presented to estimate the execution time distribution 

of a program executed in mixed-mode. Many of the concepts developed in the previous 

subsection are used for the mixed-mode analysis. 

Compared with single mode execution, during the mixed-mode execution of a program, a 

significant factor that affects the overall execution time distribution is the possible difference 

in execution time distribution for each code block (associated with SIMD and SPMD modes). 

In addition, mode switching overheads and the synchronization required at a mode switch 
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from SPMD to SIMD also play important roles in shaping the distribution. The calculation 

of the execution time distribution for individual code blocks is the same as in single mode 

execution. Also, the calculations for data conditional constructs are the same as the single 

mode case (because all descendants of a data conditional construct must be executed in the 

same mode). In contrast to single mode execution, where a series of blocks or a loop can be 

reduced to a single equivalent block, in mixed-mode execution, a series of blocks or a pure 

loop can be reduced to an equivalent series of at most three blocks. A method for combining 

these techniques to model arbitrary mixed-mode program execution is presented. 

6.6.2. A Series of Mixed-Mode Blocks 

It was demonstrated earlier that the single mode execution of a series of blocks can be 

modeled by an equivalent single block. Thus, a series of blocks executed in mixed-mode can 

be transformed into an equivalent series of alternating SIMD and SPMD blocks. A series 

of SIMD and SPMD blocks can begin and end with either mode, so there are four cases 

to consider: (1) begin with SIMD and end with SIMD; (2) begin with SIMD and end with 

SPMD; (3) begin with SPMD and end with SIMD; (4) begin with SPMD and end with 

SPMD. 

Recall from Subsection 6.2 that cases (2) and (3) are possible with the root node only. 

For case (1), it is shown below that the series can be reduced to one single block (in SIMD 

mode). This result enables cases (2) and (3) to be reduced to a series of at most two blocks 

and case (4) to be reduced to a series of at most three blocks. For case (1), it will be shown 

next how a three-block series is reduced to an equivalent single block, and the case of more 

than three blocks follows by induction. 

Let Tto-SPMD and Tto-siMD denote the random variables whose values represent the mode- 

switching time from SIMD to SPMD and from SPMD to SIMD, respectively. Let B0, Bu 

and B2 be a series of blocks executed in the order of B0 —> Bi —V B2. Assume that B0 and 

B2 are executed in SIMD mode and B\ in SPMD mode. Although the PEs can execute 

block Bi in an asynchronous fashion, they must begin execution at the same time because 

block B0 is in SIMD mode, and they must wait for the last PE to finish before they begin to 

execute block B2, which is executed in SIMD mode. Thus, they can be reduced to a block 

B whose execution time can be calculated as follows: 

Iß     =     IB0 + ^to-SPMD + PBX + 7t0_siMD + Iß2 

flB{-)       =      //fl,, (0* /Tto-SPMD (■)*/i'fl1(-)* /Tto-SIMD(-)*//fl2 (•)' 
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By induction, a series of blocks that begins and ends with SIMD mode can be reduced 

to one equivalent SIMD block by repeatedly applying this method and the methods from 

Subsection 6.5. This is referred to as an equivalent SIMD block because the PEs must be 

synchronized at the end of this composite block. 

From the above discussion, the following conclusions are made. 

1. If the series begins and ends with SIMD blocks, then it can be reduced to an equivalent 

single SIMD (composite) block. 

2. If the series begins with an SIMD block and ends with an SPMD block, then it can be 

reduced to an equivalent series of an SIMD (composite) block followed by an SPMD 

(composite) block. 

3. If the series begins with an SPMD block and ends with an SIMD block, then it can be 

reduced to an equivalent series of an SPMD (composite) block followed by an SIMD 

(composite) block. 

4. If the series begins with an SPMD block and ends with an SPMD block, then it can 

be reduced to either a single equivalent SPMD (composite) block (if all blocks in the 

original series are in SPMD mode), or an equivalent series of three (composite) blocks 

executed in the order of SPMD -»■ SIMD -» SPMD. 

For case (2), (3), and (4), the beginning and/or the ending SPMD (composite) blocks in the 

resulting series are the equivalent of the longest subseries of SPMD blocks from the beginning 

and/or the end of the original series. The key is that each series of composite blocks must 

begin and end with the same type of beginning and ending blocks that the original series 

had to be able to correctly merge with other nodes (due to synchronous nature of SIMD and 

asynchronous nature of SPMD). 

6.6.3. Pure Loop 

Recall from Subsection 6.2, it is assumed that the different blocks inside a loop may use 

different modes of parallelism, but must be the same for all iterations of the loop, and each 

iteration of a loop must begin and end execution in the same mode. Therefore, the body of a 

mixed-mode loop contains a series of blocks that begin and end with the same mode. From 

the discussion in the previous subsection, if it begins and ends with SIMD mode, then the 

loop body can be reduced to a single block and the single mode technique can be applied to 

reduce the loop to a single SIMD block.  Otherwise, if it begins and ends in SPMD mode, 
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then the loop body can be represented as a series of three blocks executed in the order of 

SPMD-^-SIMD-J-SPMD. This fact will be demonstrated in the remainder of this subsection. 

Suppose the loop body contains a series of three blocks Bo, #1, and B2, where B0 and 

B2 are in SPMD mode and Bi is in SIMD mode. Recall that Rj corresponds to the number 

of iterations that PE j is to execute the loop body. Because SIMD instructions must be 

broadcast by the CU, the number of iterations the CU will go through is: 

R =       max      {&}. 
je{o,i,...,N-i] 

As in the single mode case, the loop is unrolled. For each possible number of iterations r, the 

resulting series of blocks from unrolling the loop is a series consisting of SIMD and SPMD 

blocks beginning with B0 (SPMD) and ending with B2 (SPMD). From the discussion in the 

previous subsection, this series can be reduced to a series of three blocks executed in the 

order of B0 —> Qr -» B2, in which B0 and B2 are in SPMD mode and Qr is in SIMD mode, 

and 
r-1 

'Qr = 'B1 + E(rto-sPMD+       max     i{(i^2 + P4)} + Tto_siMD + /B1)- 
k=1 je{o,i N-i} 

Therefore, the loop is equivalent to the series B0, Qr, and B2 with probability /ß(r) (fn.n(r) 

in Subsection 6.5.3). Using the total probability theorem [MoG74], an equivalent SIMD 

block Q can be used to represent all of the Qr's for all possible numbers of iterations r. The 

density function for Q is given by: 

oo 

r=l 

Thus, the loop is reduced to a series of three blocks: B0 —»■ Q —»• B2. 

6.6.4. Arbitrary Program Construct 

As stated earlier, because all descendents of a data conditional construct must be executed in 

the same mode, each data conditional construct can be reduced to one block using the single 

mode reduction technique. It was shown in the previous subsections that a series of blocks 

or a pure loop can be reduced to a series of at most three blocks. As in the single mode 

case, a divide-and-conquer algorithm can be used to calculate the execution time distribution 

of the whole program. Traversing the flow-analysis tree in depth-first order, each non-leaf 

node n traversed can only have leaf nodes as its children. Therefore, each such non-leaf 

node corresponds to one of the following program structures: (1) a pure loop; (2) a pure 

data conditional construct; or (3) a series of blocks that is a clause of a data conditional 
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SPMD 

SIMD 

© 

blk c    post_then blk_d     blk_e    post_else 

(d) 

entire scope 
of program 

B 0 B 1 blk_a    for_init       B_3     B_4     B_5 

(e) 
entire scope 
of program 

blk_b      if_test     B_2 blk_f for_test B_6 B_4 B_5 

Figure 6.3:   An example of mixed-mode tree reduction. 
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construct. Using the techniques introduced above, the subtree under node n is reduced to a 

equivalent series of at most three leaf nodes (a single leaf node for case (2) and (3)). Node 

n is then replaced with this series of leaf node(s). This procedure is repeated until only the 

root node is represented by a series of at most three blocks. There are four possible cases. 

1. The root is represented by a SIMD node ßroot-o, in which case the execution time is 

•Broot-0 • 

2. The root is represented by a series of two blocks, £root_o and #root-i. #root-o is 

executed in SIMD mode and #root-i in SPMD mode. The execution time of the 

program is /Broot_0 + Tto_SpMD + PBIOO^ ■ 

3. The root is represented by a series of two blocks, #root_o and 5root-i. Broot_0 is 

executed in SPMD mode and Z?root-i in SIMD mode. The execution time of the 

program is PBloot_0 + rto_SiMD + /*„„»_,. 

4. The root is represented by a series of three blocks, Broot_0, #root-i, and jBroot_2. 5root_0 

is executed in SPMD mode, £root-i in SIMD mode, and BTOot_2 in SPMD mode. The 

execution time of the program is Psroot_0 + rto_SiMD + ifjroot-i + Tto_SPMD + ^Broot_2. 

Fig. 6.3 illustrates how the flow-analysis tree of Fig. 6.2 is reduced when mixed-mode 

execution is assumed. In the figure, part (a) shows one possible assignment of modes to leaf 

nodes. In part (b), each clause of the if statement is reduced to an equivalent SIMD block 

(blocks B_0 and B_l). In part (c), the if statement itself is reduced to an equivalent SIMD 

block B_2, and the loop becomes a pure loop. In part (d), the pure loop is reduced to a 

series of three blocks B_3, B_4, and B_5, where B_3 and B_5 are executed in SPMD and B_4 

is executed in SIMD. The entire tree is reduced to an equivalent series of three blocks B_6, 

B_4, and B_5 (part (e)), where B_6 and B_5 are executed in SPMD and B_4 is executed in 

SIMD. 

6.7. Numerical Example 

To demonstrate how mode choices can affect the distribution of total execution time, numer- 

ical parameters are assumed in the flow analysis tree of Fig. 6.2 to construct a very simple 

example. The program is assumed to be executed on an 8-PE SIMD/SPMD mixed-mode 

machine. It is assumed that in each mode, the execution time for each basic operation is 

a constant (i.e., deterministic).   Therefore, the execution time of each of the original leaf 
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blocks for each mode is deterministic. It is also assumed that the execution time of each 

operation is identical in SIMD and SPMD mode except for inter-PE communication opera- 

tions, in which case SIMD mode is assumed to execute faster than SPMD mode. Only blkjf 

is assumed to contain inter-PE communications, and so it executes faster in SIMD mode 

than in SPMD mode. Execution times of each block is listed in Table 6.1. For each PE, the 

loop is assumed to execute 8, 9, 10, 11, or 12 iterations with equal probability, and the data 

conditional statement is assumed to execute the "then" clause with probability 0.8. 

mode blk_a blk_b blk_c blk_d blk_e blk_f overhead* 

SIMD 12 15 10 29 23 10 1 

SPMD 12 15 10 29 23 40 1 
(»assumed overhead for: mode switching, for_init,  for_test,   if-test,  post_then, and post_else) 

Table 6.1:    Assumed execution times of each block in SIMD and SPMD modes. 

entire scope 
of program 

for   () 

SPMD blk 

SIMD 

© 

blk  f      for  test 

blk c  post_then      blk_d      blk_e    post_else 

Figure 6.4:   Mixed-mode execution for the numerical example. 

The execution time distribution of the whole program is computed for three cases: exe- 

cuting the program in SIMD mode, SPMD mode, and in mixed-mode. For the mixed-mode 

case, the if statement (and its descendents) and the if-test are executed in SPMD mode 

and the rest of the program is executed in SIMD mode (Fig. 6.4). The expected values and 

standard deviations of the resulting distributions for program execution times are listed in 

Table 6.2.   These tabulated statistics were computed after evaluating the density function 

143 



for each case considered. From the tabulated statistics, pure SPMD execution provides a 

smaller expected value and smaller standard deviation for the total execution time than 

pure SIMD execution (SPMD's advantages associated with effectively executing the data 

conditional construct and juxtaposition of SPMD blocks without inter-block synchronization 

exceed its disadvantage—compared to SIMD—for inter-PE communication time). However, 

the mixed-mode execution scheme combines the advantage of SPMD mode in executing the 

data conditional construct and the advantage of using SIMD mode for inter-PE communica- 

tion to obtain a significantly smaller expected execution time (with a comparable standard 

deviation) than either pure SIMD or pure SPMD execution. 

statistics of 
execution time 

SIMD SPMD mixed-mode 

expected value 983.1 947.6 898.6 
standard deviation 76.8 61.3 62.9 

Table 6.2:   Expected value and standard deviation of execution times of the whole program 
in SIMD, SPMD, and mixed-mode. 

6.8. Summary and Future Work 

A methodology was introduced for estimating the distribution of execution times for a given 

data parallel program that is to be executed on an SIMD/SPMD mixed-mode heterogeneous 

system. A block-based approach was used to transform the application program into a flow 

analysis tree in which the internal nodes represent control and data conditional constructs 

and the leaf nodes represent basic code blocks. Given the mode in which each node in the 

flow analysis tree is to be executed (SIMD or SPMD), execution time distribution for each 

operation for both SIMD and SPMD modes, and an appropriate probabilistic model for each 

control and data conditional construct, the methodology computes the distribution of exe- 

cution times for the program. A numerical example was given to illustrate the utility of the 

proposed technique by comparing execution time characteristics for pure SIMD, pure SPMD, 

and mixed-mode execution of a sample program structure. Future work includes developing 

optimal mode selection techniques for mixed-mode machines in which the optimality criteria 

can be defined in terms of various combinations of execution time statistics (e.g., a weighted 

combination of expected execution time and variance in execution time). Extensions of the 

proposed framework to compute execution time distributions for mixed-machine systems are 

currently under development. 
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7. Scheduling and Data Relocation for Sequentially Executed Subtasks 

7.1. Introduction 

A single application program often requires many different types of computation that result 

in different needs for machine capabilities. Heterogeneous computing (HC) is the effective use 

of the diverse hardware and software components in a heterogeneous suite of machines con- 

nected by a high-speed network to meet the varied computational requirements of a given appli- 

cation [FrS93, KhP93, SiA95]. 

The goal of HC is to decompose an application program into subtasks, and then assign each 

computationally homogeneous subtask to the machine where it is best suited for execution. In 

general, each subtask is assigned to one of the machines in the heterogeneous suite such that the 

total execution time (computation time and inter-machine communication time) of the 

application program is minimized. This subtask assignment problem is referred to as matching in 

HC. 
There are a variety of mathematical formulations for matching, collectively called selection 

theory, that have been proposed to choose the appropriate machine for each subtask of an 

Ration program (e.g., [ChE93, Fre89, NaY94, WaK92]). A collection of algorithms, called 

graph-based algorithms in this section (e.g. [Bok81, NaY94, Sto77, Tow86]), have been 

developed to solve matching-related problems based on a subtask flow graph that describes the 

data dependencies among subtasks of an application program. As shown in Figure 7.1(a), each 

vertex of the subtask flow graph represents a subtask. Let SJ® denotes the fc-th subtask. There is 

an edge from S[k] to S[f] labeled with the variable name of the data that S[k] transfers to S\j] 

during execution. An extra vertex labeled Source denotes the locations where the initial data 

elements of the program are stored. The purpose of selection theory formulations and graph- 

based algorithms is to find the matching scheme that minimizes the total execution time of the 

application program. For this section, it is assumed that matching has already been done. 

This co-authors of this section were Min Tan, John K. Antonio, Howard Jay Siegel, and Yar.A. Li. 
This research was supported by Rome Laboratory under contract number F30602-94-C-0022 
This material will appear in the Proceedings of the Fourth Heterogeneous Computing Workshop (HCW  95) 
~e?b7 the TEffi Computer Society, April 1995. Versions have appeared in (1) Purdue Univoaty Techmcal 
Report TR-EE-95-2 January 1995, and (2) MSEE thesis by Min Tan, December 1994. 
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S[k]j   machine A 

S[i])   machine B 

t     / 

S[k])   machine A 

'      (S[i]j   machine B 

/ S[i] and S[j] are       ;        / 
d assigned to same     ('      / d 

fpf        machine      ry' 
V—/   machine B V_x 

S[j] can get data 
from S[i] and S[k] 

machine C 

(a) Subtask-flow graph. (b) Data-reuse problem. (c) Multiple data-copies problem. 

Figure 7.1: Data-distribution situations in HC. (a) Subtask flow graph, (b) Data-reuse, (c) The 

multiple data-copies situation. 

Let a data item be a block of information that can be transferred between subtasks. For 

example, a data item can be an integer, an array of characters, or a large file, such as a 

multispectral image. Based on static (compile time) analysis, a given subtask may need as input 

one or more data items generated (or modified) by one or more other subtasks. Using 

information from the subtask flow graph, a data item is denoted by the two-tuple (s, d), where s 

> 0 is the number of the subtask that generates the needed value of d upon completion of 

execution of that subtask. For example, (3, x) represents the value of variable x generated by 

subtask 5[3] upon completion of its execution. In (s, d), s = -1 if the needed value of d is an 

initial input to the program. Two data items are the same if and only if they are both associated 

with the same variable name in an application program and the corresponding value of the data 

is generated by the same subtask (which implies that the two data items have the same value). 

Sequential execution of subtasks implies that at any instant in time during the execution of 

a specific application program P, only one subtask of P is being executed on any of the machines 

in the heterogeneous suite. In practice, concurrent execution of subtasks is possible, however, 

the simplifying assumption of sequentiality is made here as a step toward solving the more 
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general problem. This simplifying assumption is used by many other researchers as well (e.g., 

[Bok81, Sto77, Tow86]). 

In general, most of the graph-based algorithms for matching-related problems assume that 

the pattern of data transfers among subtasks is known a priori and can be illustrated using a sub- 

task flow graph (e.g., [Bok81, L088, NaY94, Sto77, Tow86]). Thus, no matter which machine is 

used for executing each subtask of a specific application program, the locations (subtasks) from 

which each subtask obtains its corresponding input-data items are determined by the subtask 

flow graph and independent of any particular matching scheme between machines and subtasks. 

The above assumption generally needs refinement in the case of HC. Two data-distribution 

situations arise, namely data-reuse and multiple data-copies. It is assumed that each subtask S[i] 

keeps a copy of each of its individual input-data items and output-data items on the machine to 

which S[i] is assigned by the matching scheme. Data-reuse arises when two subtasks, S[i] and 

S[f], need the same data item from S[k] (as in the example subtask flow graph in Figure 7.1(a)). 

For any data item e = (k, d), e represents the value of the associated data and \ej_ (or \d\) 

represents the size of the associated data. As shown in Figure 7.1(b), suppose the particular 

matching scheme is the one that assigns S[k] to machine A, and both S[i] and S\j] to machine B. 

Furthermore, assume for this example that the subtasks are executed in the order k, i, then j. In 

this case, there is no need to transfer data item e from S[k] to S[ß as shown by the dashed line in 

Figure 7.1(b), because e is already on machine B due to the data transfer of e from S[k] to S[i] 

completed earlier (solid line in Figure 7.1(b)). If a subtask flow graph is used to compute inter- 

subtask communication cost, then without considering machine assignments, the impact of 

data-reuse is ignored. 

The multiple data-copies situation arises when two subtasks, S[i] and S[f], need the same 

data item e = (k,d) from S[k], where S[i], S\J], and S[k] are assigned to different machines in the 

HC system. In the example in Figure 7.1(c), the matching scheme assigns S[k] to machine A, 

S[i] to machine B, and S\J] to machine C. Therefore, S\j] can get data item e from either machine 

A or machine B (shown by the two dashed lines). The choice that results in the shortest time 

should be selected. Retrieving the needed data item from the selected source is referred to as 

data relocation. In general, when using information only from the subtask flow graph, the 

possibility of multiple sources of a needed data item due to a specific matching scheme is not 

considered. 

When a subset of subtasks can be executed in any order and the multiple data-copies 

situation is considered, varying the order of the execution of these subtasks (while maintaining 

the data dependencies among all subtasks) can impact the execution time of the application 

program. Determining the sequence of execution for the subtasks is referred to as scheduling in 
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this section. Thus, matching determines on which machine each subtask should be executed, 

while scheduling determines when to execute a subtask on the machine to which it is assigned 

[SiA95]. 

The inter-machine communication time between subtasks can be substantial in an HC 

system. Thus, this inter-machine communication time can be a major factor in degrading the 

performance of an HC system. Taking the effects produced by data-reuse and multiple data- 

copies into account can potentially decrease this time and hence the total execution time of the 

application program. This section focuses on methods for minimizing the communication time 

of an application program with a known matching scheme. In particular, the impact of 

scheduling and data relocation schemes on the communication time of the subtasks executed in 

sequence are examined. 

In Subsection 7.2, a mathematical model for matching, scheduling, and data relocation in 

HC is introduced. Subsection 7.3 presents a theorem, which states that, when multiple data- 

copies are not considered but data-reuse is taken into account, the execution time of a given 

application program depends only on the specific matching scheme (i.e., it is independent of 

scheduling). In Subsection 7.4, an extension to the usual scheduling methodology is introduced. 

Specifically, temporally interleaved execution of the atomic input operations of different 

subtasks (TIE) is considered. When considering multiple data-copies, this extension to 

scheduling can decrease the execution time of an application program. A minimum spanning 

tree based algorithm (referred to as the TEE algorithm) is described in Subsection 7.5 that finds, 

for a given matching, the optimal scheduling scheme for the execution of subtasks and the 

optimal data relocation scheme for each subtask. Both data-reuse and multiple data-copies are 

considered in the TIE algorithm. The correctness of the TEE algorithm is proved and an example 

is given. Based on this TIE algorithm, a two-stage approach for matching, scheduling, and data 

relocation in HC is proposed in Subsection 7.6. 

7.2. A Mathematical Model for Matching, Scheduling, and Data Relocation in HC 

A mathematical model for matching, scheduling, and data relocation in HC is formalized in 

this subsection. The model serves as the mathematical basis for Theorem 1 presented in 

Subsection 7.3. The TEE algorithm in Subsection 7.5 is based on this mathematical model. 

(1) An application program P is composed of a set of subtasks S = { S[0], 5[1], ..., S[n - 1] }, 

where n is the number of subtasks in P. 

(2) Suppose that NI[i] is the number of input-data items required by S[i] and NG[i] is the 

number of output-data items generated by S[i]. There are two sets of data items associated 
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with each S[i\. One is the input-data set /[/] = {Id[i, 0], Id[i, 1],..., Id[i, NI[i] - 1] }, the 

other is the generated output-data set G[i] = { Gd[i, 0], Gd[i, 1], ..., Gd[i, NG[i] - 1] }. 

Each Id\i,j] and Gd[i,j] is a data item (i.e., a two-tuple as defined in Subsection 7.1). The 

program structure of P is specified by a subtask flow graph. In this section, the subtask flow 

graph of any application program P is assumed to be acyclic. To satisfy this assumption, a 

combination of following two approaches is used: (i) a cycle is unrolled (conceptually) and 

the number of times a cycle repeats is known or estimated (as is typically done by 

optimizing compilers) or (ii) the whole looping construct is viewed as part of a single 

subtask and the boundaries for decomposing an application program into subtasks are not 

allowed to be in the middle of a loop. 

(3) An HC system consists of a heterogeneous suite of machines M = { M[0], M[l], ..., M[m - 

1] }, where m is the number of machines in the system. 

(4) Each S[i] of the application program P can be executed by any of the machines M\j\ in the 

HC system. There is a computation matrix C = { C[i, j] } associated with S and M, where 

C[i, fl denotes the computation time of S[i] on machine M\j] [GhY93, YaK94]. The 

computation matrix C is assumed to be known. It can be computed from empirical 

information or by applying two characterization techniques in HC, namely task profiling 

and analytical benchmarking (see [SiA95] for a survey of these techniques). 

(5) Suppose that a set of initial data elements { do, dj,..., dQ_i } are required for executing the 

application program P, where Q is the number of initial data elements for P. A set of 

initial-data functions H = { //[0], H[l],..., H[Q - 1] } is defined, where H[k](J) (0<k<Q 

and 0 <j < m ) represents the smallest communication time for machine M\J] to obtain the 

initial data element dk from one of the devices where dk is stored before the execution of P. 

Initial data element dk is also denoted as data item (-1, dk). 

(6) The communication function matrix D{\e\) = { D[s, r](\e\) }, for 0 < s,r < m, where D[s, 

r]Qe\) denotes the communication time for transferring data item e (of size \e\) from 

machine M[s] to machine M[r] [GhY93, KhP92]. It is assumed that D[s, s](\e\) < D[s, r]Qe\) 

for r * s, i.e., the communication time for machine M[s] to fetch any data item from its 

local storage (denoted by D[s, s](\e\)) is smaller than the communication time required to 

fetch the same data item from any other machine in the heterogeneous suite (denoted by 

D[s, r](\e\) and r * s). Having s = -l indicates that e = (-1, d) and d is one of the initial data 

elements of P and there exists k (0 < k < Q ) such that d = dk andD[s, r](\e\) = H[k](r). 
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(7) An assignment function 4/" is associated with the application program P, such that Af: S -» 

M. If Af(i) = j, then S[i] is assigned to be executed on machine M\j\. The assignment 

function 4/corresponds to the matching problem discussed in Subsection 7.1. 

(8) Given that sequential execution of the subtasks for the application program P is assumed, a 

scheduling function Sf is associated with the application program P. Sf(i) = k means that 

S[i] is the k-th subtask to be executed. The scheduling function Sf corresponds to the 

scheduling problem discussed in Subsection 7.1. Sf is a bijection from the set S onto itself 

(i.e., a permutation). 

Sf is defined as a valid scheduling function if and only if for all Sfr] and 5[i2] such that 

G[ii] n 7[i2] * 0, Sflii] < Sf[i2]. For the rest of the section, all scheduling functions considered 

will be valid. Therefore, if one of the input-data items required by S[i2] is one of the output-data 

items generated by Sty, then, with respect to a valid scheduling function, 5[i2] must be 

executed after Sfa] is executed. If two subtasks have no data dependency between them, then 

either can be executed before the other. 

(9) The set of data-source functions is DS = { DS[0], DS[l],..., DS[n - 1] }, where DS[i](j) = k 

(0<i,k<n) means that S[i] obtains the input-data item Id[i,j\ from S[k]. If DS[i](j) = -1, 

then Id[i,j] = (-1, dx) and S[i] obtains the associated data from the "closest" device where 

dx is initially stored. The set of data-source functions DS corresponds to the data relocation 

problem discussed in Subsection 7.1. When data-reuse is considered, a restriction on DS is 

made. For any two subtasks 5[ij] and5[i2], if Af{ix) = Af(i2) = k, Sf(i2) <S/(ii), and if there 

exists J! and j2 such that Id[iu jj] = Id[i2, j2], then ZW[ii]Qi) = i2. That is, if Sfr] and 

5[i2] are assigned to the same machine M[k] by Af, and if 5[i2] is executed before Sfr] 

according to Sf, and if 5[i2] and S[ii] have a common input-data item (possibly generated 

from third different subtask), then Sfr] should take advantage of data-reuse and obtain the 

common data item from S[i2] that was executed previously on the same machine M[k]. 

Because each machine in the HC system can fetch any data item from its local storage 

faster than fetching it from other machines in the HC suite (see definition (6)), this 

restriction on DS when considering data-reuse is justified. 

For different scheduling functions (as well as assignment functions), with consideration of 

the data-reuse and multiple data-copies situations, there are different sets of choices for the 

data-source functions. Thus, the communication time of an application program P depends on 
both Sf and DS. 

(10) For a given computation matrix C and communication function matrix D(\e\), the total 

execution time of the application program P associated with an assignment function Af, a 
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valid scheduling function Sf, and a set of data-source functions DS is defined by the 

following formula: 

Execution_timep(A/, Sf, DS) = 
Computation_timeP(A/, 5/, DS) + Communication_timeP(A/, Sf, DS), 

such that, 
n-l 

Computation_timeP(A/, 5/, DS) = £C[i, AMI = Computation_timeP(A/) 
i=o 

and 
n-l   NI[i]-l 

Communication_timep(A/, Sf, DS) = £      Z D[Af(DS[i](j)X AjmiMUM- 
i=o     j=o 

Although the dependence of Communication_timeP on Sf is not explicitly shown in the 

above equation, the possible sets of data-source functions DS depend on Sf (see definition 

(9)). Thus, Communication_timeP does indeed depend on Sf The objective of matching, 

scheduling, and data relocation for HC is to find an assignment function A/*, a valid 

scheduling function Sf*, and a set of data-source functions DS* such that 

Execution timeP (Af, Sf*, DS*) =   min   /Execution_timeP(A/, 5/, DS)}. 
Af.Sf.DS 

7.3.   Impact of Data-Reuse Without Considering Multiple Data-Copies 

The following lemma and theorem use the mathematical model described in the previous 

subsection for the case where there is data-reuse. The multiple data-copies situation is not 

considered in this subsection. 

Lemma 1: When data-reuse is considered and the multiple data-copies situation is not, DS = 

f(Af, Sf), where f is a function of Af and Sf. 

Proof: Without considering both data-reuse and multiple data copies, DS is uniquely determined 

by the underlying given subtask flow graph and Af When the data-reuse (only) is considered, 

then by definition, DS is uniquely determined by the conditions imposed by Af and Sf (see 

definition (9) in Subsection 7.2). Thus, without considering multiple data-copies, DS is a 

function of Af and 5/. '-' 

Theorem 1: If data-reuse is considered but the multiple data-copies situation is not, then the 

execution time of an application program P is a function of Af only, i.e., 
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Execution_timep(4/; Sf, DS) =Mf>- 

Proof: From Lemma 1, DS is a function of Af and Sf. Thus, Execution_timeP is only a function 

of Af and Sf. It needs to be shown that Execution_timeP is independent of Sf. 

As shown in definition (10), because Computation_timeP is independent of Sf and DS, it needs to 

be shown that Communication_timeP is independent of Sf and DS. Recall that the formula for 

Communication_timeP is 

n-l   NI[i]-l 
CommunicationjimepOV; Sf,DS)=%      £ D[AfiDS[i](j)),Af{i)Wd[i, f]\). 

i=0      j=0 

Case 1: Subtask S[i] cannot receive its data item Id[i, J] from a subtask on machine M[Af(j)] 

according to any valid scheduling function Sf (i.e., there is no opportunity for data-reuse for the 

particular data item Id[i, j] of S[i]): As stated in the proof of Lemma 1, with no data-reuse, the 

value of DS[i](j) (and hence the value of D[Af(DS[i](j)), 4/(0] iMi,J]\) is independent of 5/. 

Case 2: Subtask S[i] can receive its data item Id[i, j] from a subtask on the same machine 

M[Afii)] according to an arbitrary scheduling function 5/(i.e., there is opportunity for data-reuse 

for the particular data item Id[i, j] of S[i]): Let Id[i, j] = (x, d), where d is the corresponding 

variable name and S[x] is the subtask that generates d. Af determines which subtasks are 

executed on machine M[Af(i)]. Let S' c 5 be the subset of subtasks that are executed on M[Afii)] 

and need the unique input-data item (x, d). The data item (x, d) must be moved from M[Af(x)] to 

M[Afl})] just once, and then can be used by all S[k] e S . Thus, the communication time for all 

S[k] e S' to receive {x, d) from M[Af{x)] is equal to the time for any one of the subtasks in S to 

receive (x, d) from M[Af(x)] and the time for other subtasks in s' to fetch (x, d) from local 

storage with the consideration of data-reuse. Mathematically, if |S | is the size of the subset S , 

and S[q] is an arbitrary element of S', then the time for all S[k] e S' to receive (x, d) is: 

D{Af{x), Af(q)]{\{x, d)|) + (IS' | - l)D[Af(q), Af(q)](\(x, d)\). 

Therefore, the communication time for all S[k] e S' to obtain data item (x, d) is independent of 

the order of execution of the subtasks in S', and hence is independent of Sf Thus, as with Case 1, 

it is shown that Communication_timeP is independent of Sf. 

Therefore, both Computation_timeP and Communication_timeP are independent of Sf. 

Thus, Execution_timeP depends on Af only. □ 
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7.4.   Impact of Multiple Data-Copies and Temporally Interleaved Execution of Atomic 

Input Operations for Different Subtasks (TIE) 

In this subsection, both the data reuse and multiple data-copies situations are considered. 

Furthermore, data reuse is viewed as a special case of having multiple data copies. 

It was shown in Theorem 1 that, when data-reuse is considered and multiple data-copies are 

not, the execution time of any application program P depends only on the assignment function 

Af. But when one considers the multiple data-copies situation, the execution time of an 

application program P also depends on the scheduling function 5/ and the set of data-source 

functions DS. Each scheduling function 5/defines a set of possible choices for DS. 

Recall from Subsection 7.1 that the size of a data item e = (k, d) is denoted by \e\ (or \d\). 

To show the effect of utilizing the multiple data-copies, consider an HC system with four 

machines connected by the network illustrated in Figure 7.2. The number with each link 

represents the communication cost for obtaining the corresponding data item. The order for 

executing the data transfers is indicated by the numbers in the circles. An initial data element do 

is stored on machine M[0], and (-1, do) is the only required input-data item for both 5[0] and 

S[l] (thus, there is no data dependency between S[0] and 5[1]). Assume that A/(0) = 1 and A/(l) 

= 2; thus, Computation_timeP is determined. If 5[0] is scheduled for execution before S[l], by 

the data transfers illustrated by the arrows in Case 1 of Figure 7.2, Communication_timeP = 205. 

If S[0] is executed after S[l], by the data transfers illustrated by the arrows in Case 2 of Figure 

7.2, Communication_timeP = 305. Hence, depending on which scheduling function (and, in 

general, which set of data-source functions) is chosen, the execution time of an application 

program P may be different. 

It is assumed, without loss of generality, that all input-data items are received for a subtask 

prior to that subtask's computation. For an arbitrary S[i], there are M[/] necessary operations for 

obtaining the input-data items in /[/]. These operations are defined as the atomic input 

operations of S[i\. The scheduling function Sf only represents the order for executing the 

subtasks, not the order for executing the atomic input operations. Most of the existing 

algorithms for matching, scheduling, and data relocation in HC only allow consecutive 

execution of the atomic input operations of each subtask. This means that if Sf(i\) < S/fo), then 

all atomic input operations of Sfr] must be executed before the atomic input operations of S[i2] 

are executed. The temporally interleaved execution of atomic input operations for different 

subtasks (TIE) allows some of the atomic input operations of S[it] to be executed after some 

atomic input operations of 5[i2] are executed even if Sf(k) < 5/(i2). The effective use of TIE can 

result in a smaller execution time than that associated with considering the sequence of NI[i] 
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Case 1 

S[0] is executed BEFORE S[l] 

Case 2 

S[0] is executed AFTER 5[1] 

S[0]onM[l] 
S[l]onM[2] 

S[0]onM[l] 
5[l]onM[2] 

Figure 7.2: Network of four machines with the initial data element do on M[0]. 

atomic input operations of S[i] to be indivisible. This is true because TIE gives more options for 

choosing the set of data-source functions for S[i]. 

As an example, for the same HC system and the same assignment function Af described in 

Figure 7.2, assume that (-1, do) and (-1, di) are the only required input-data items of both S[0] 

and S[l] (initially stored on M[0] and M[3], respectively, and with |dol = |di|). If S[0] is executed 
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before S[l], by the data transfers illustrated by the arrows in Case 1 of Figure 7.3, 

Communication_timep = 505. If S[0] is executed after S[l], by the data transfers illustrated by 

the arrows in Case 2 of Figure 7.3, Communication_timeP = 505. But if TIE is allowed, suppose 

the atomic input operation for 5[0] to obtain do is executed first, then the atomic input operation 

for S[l] to obtain di is executed second, followed by the atomic input operation for 5[0] to 

obtain d! and the atomic input operation for S[l] to obtain do. In this case, 

Communication_timeP = 410. For all three cases mentioned, the same Af is used, and hence 

Computation_timep is the same. 

A set of ordering functions Order = { Order[i] | 0 < i < n } is associated with P. If 
n-l 

Order[i](j) = k, where 0 <j < NI[i] and 0 < k < £ WL then the;-th atomic input operation of 
i=o 

S[i] (to obtain the input-data item Id[i, fl) is the k-th atomic input operation to be executed 

during the execution of P. 

The usual definition of scheduling implicitly assumes that the atomic input operations 

(corresponding to communication) and computation of S[i] are executed indivisiblely. Suppose 

the execution steps of two or more subtasks are interleaved and the concept of sequential 

execution of subtasks (i.e., no concurrent execution of different subtasks across different 

machines in the HC suite) is still enforced. Given the mathematical model presented in 

Subsection 7.2, the interleaved computation of subtasks cannot change the total computation 

time (which is determined by Af). However, interleaved communication (i.e., the atomic input 

operations of subtasks) may result in smaller total communication time. Thus, extending the 

definition of scheduling function 5/to allow TIE can potentially enhance the performance of the 

HC system. The set of ordering functions, Order, defines the interleaving of the execution of 

atomic input operations for the subtasks in a program and is an extension to the regular 

scheduling function Sf. 

In the following Steps 1 to 4, a graph (denoted as Gr[Af, DS]) corresponding to a particular 

DS (with respect to an arbitrary assignment function Af) is generated. When using TIE, the 

concept of a valid set of data-source functions DS for the atomic input operations of the 

application program P can be defined according to the properties of Gr[Af, DS]. There may be 

many such valid sets, each corresponding to a unique graph, and each resulting in a 

Communication_timeP that may be different from the others. An invalid DS would correspond to 

a set of data-source functions that does not result in an operational program (e.g., in Figure 7.3, 

the case where 5[0] receives do from 5[1], 5[1] receives do from 5[0], and neither receives do 

from M[0] is not valid). 
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Case 1 

STO] is executed BEFORE ST1] 
SCO] onM[l] 
S[l] onM[2] 

5*[0] 

5[1] 

Case 2 

SCO] is executed AFTER S[l] 
5[0] onM[l] 
S[l] onikf[2] 

lOO ^^^   A^[l] 

5[0] 

S[l] 

Case 3 

Temporally interleaved execution 
of atomic input operations 

SCO] 

SCO] onM[l] 
S[l] onM[2] 

lOO 

S[l] 

Figure 7.3: Network of four machines with the initial data on M[0] and Af[3]. 
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Step 1: A Source vertex is generated that represents the locations for all the initial data 

elements (which may be on different devices/machines). 

Step 2: For each S[i], NI[i] + 1 vertices, one for each of the NI[i] atomic input operations and 
one for all of the generated output data items of S[i], are created. These are the set of 

input-data vertices, labeled V[i,j\ (0<j< NI[i] ) and the output-data vertex Vg[/] (as 
shown in Figure 7.4). V is a set that contains all the above vertices associated with the 

application program P in Steps 1 and 2. 

V[i,0] V[i,l] V[i,NI[i]-l] 

v.m 

Figure 7.4: The generation of the vertices for the atomic operations of S[i]. 

Step 3: Let W denote the maximum communication time necessary to transfer any data item 

from an initial source or machine in the heterogeneous suite to any other machine (this 

can be determined from H and D defined in Subsection 7.2). 

Step 4:  For any input-data vertex V[ii, j i ], suppose that D5[ii ](ji) = i2, where -1 < i2 < n. 
Case A: If 0 < i2 < n, then for all j2 such that Id[h, jj = Id[i2, j2], a directed edge with 

weight D[Af(i2), Af&iWdfri, ji]|) is added from V[i2, j2] to V[h,hl 
Case B: If 0 < i2 < n, then for all j2 such that Jd[ii, ji] = Gd[i2, j2], a directed edge with 

weight D[A/(i2),4/(ii)](IMii, Jill) is added from Vg[i2] to V[ii, jil- 
Case C: If i2 = -1, then there exists k (0 < k < Q ), such that Id[iu jj = (-1, dk), and a 
directed edge with weight H[k](Af(\i)) is added from the Source vertex to V[ii, ji]. 

For any input-data vertex V[il5 jj] ( 0 < ii < n and 0 < ji < Nlfti] )> one and only one case 
of A, B, or C can occur. That is, S[ix] can obtain its required input-data item Id[iu jj either 

from copying S[i2]'s input-data item (Case A), or from the subtask that generates Id[iu ji] (Case 
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B), or from the Source vertex if/d[ils jj] = (-1, dk) and dk is one of the initial data elements 

(Case C). Thus, any vertex Vfr, jj has one and only one parent vertex. Also, the weight of the 

edge between V[ii, ji] and its unique parent vertex is the communication time for 5[ii] to obtain 

Mil»ji ] with respect to a given Afand DS. 

As an example, suppose that a specific application program P is illustrated by the subtask 

flow graph shown in Figure 7.5 and the sizes of the data items are shown as follows (do and di 

are the variable names of initial data elements of P; X0, Xi, Y, Zo, and Z\ are the variable names 

of generated data items of P; a is an arbitrary constant). 

S[0]: A7[0] = 1, MO, 0] = (-1, do), |dol = 2a; 

NG[0] = 2, Gd[0,0] = (0, X0), Gd[0,1] = (0, X^, |X0| = 8a, |XX | = 3a. 

S[l]: M[l] = 2, Id[l, 0] = (-1, do), Ml, 1] = (0, X0); 

NG[l] = l,Gd[l,0] = (l,Y),\Y] = 5a. 

S[2\: M[2] = 2, Id[2,0] = (0, X0), Id[2,1] = (-1, d!), \d{ | = 6a; 

NG[2] = 2, Gd[2, 0] = (2, Zo), Gd[2, 1] = (2, Zj), |Zo| = 4a, |Zj| = a. 

S[3]: M[3] = 3,Id[3,0] = (-1, di), Id[3,1] = (1, Y), Id[3, 2] = (2, Zo); andNG[3] = 0. 

5[4]: M[4] = 2, Id[4,0] = (0, X!), Id[4,1] = (2, Zj); and WG[4] = 0. 

S[5]: M[5] = 2, Id[5,0] = (0, X^, Id[5, 1] = (2, ZQ); andiVG[5] = 0. 

Consider, for ease of presentation, an HC system with four machines connected by the very 

simple linear array network illustrated in Figure 7.6(c). Here, D[s, r](\d\) = \ s - r \\d\L, where 0 < 

s, r < 4 and L is the length of the physical link between the neighboring machines in the linear 

array network. This equation for D is an oversimplified example; any appropriate equation that 

represents the communication costs of the network in the HC system can be used. The result of 

applying the set of data-source functions defined by the subtask flow graph in Figure 7.5 is 

shown in Figures 7.6(a) and 7.6(b). The solid lines in Figure 7.6(a), except the lines with weight 

W + 1, show the direct edges added by applying Step 4. The assignment function Af for this 

current example is shown in Figure 7.6(c): ,4/(0) = 1, Af(\) = 2, Af{2) = 2, Af(3) = 1, Af(4) = 3, 

and Af(5) =0. W is 24aL according to Step 3. 

Step 5: For every 0 < / < n, a directed edge with weight W + 1 (i.e., a weight greater than any 

possible communication time) is added from V[i, 0] to Vg[/]. Vg[/] also has one and 

only one parent vertex, i.e., V[i, 0]. These directed edges are shown by the solid lines 

with weight W + 1 in Figure 7.6(a). 
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(a) 

£>S[0](0) = -1; 

DS[1](0) = -1, £>S[1](1) = 0; 

DS[2](0) = 0, £>S[2](1) = -1; 

DS[3](0) = -1, D5[3](l)=l, £>S[3](2) = 2; 

£>S[4](0) = 0, 

£>S[5](0) = 0, 

05[4](1) = 2; 

DS[5]<1) = 2. 

(b) 

M[0]J 

S[S] 

M[l] 

S[0] 

5[3] 

M[2] 

S[l) 

S[2] 

A 
M[3]j 

5[4] 

(C) 

Figure 7.5: Subtask flow graph for the example application program. 
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If Gr[Af, DS] generated above is a tree (denoted as Tree[Af, DS]) with the Source vertex 

being the root of the tree, then the corresponding DS is defined as a valid set of data-source 

functions for atomic input operations of the application program P. The DS defined in Figure 

7.6(b) is a valid set of data-source functions. 

The reason for this definition is that, for a valid set of data-source functions DS, Gr[Af, DS] 

must be an acyclic graph. Otherwise deadlock arises in the application program P, which makes 

P unschedulable (recall the earlier example of an invalid DS). Because a Gr[Af, DS] generated 

with respect to a valid DS is acyclic and each vertex (except the Source vertex) of Gr[Af, DS] 

has one and only one parent vertex, from basic graph theory [BoM76], Gr[Af, DS] is a tree with 

the Source vertex as the root of the tree. Thus, the validity of the corresponding DS can be 

determined according to whether the Gr[Af, DS] generated by above Steps 1 to 5 is a tree or not. 

Furthermore, with an arbitrary assignment function Af and a valid set of data-source functions 

DS, the weight of the edge between Vfti, ji] ( 0 < i2 < n and 0 < ji < M[ii] ) and its unique 

parent vertex is the communication time for 5[ii] to obtain Id[ii,}i] with respect to the given Af 

and DS. Thus, the communication time for the application program P is only a function of Af 

and DS (DS must be valid) and 
Communication_timep04/, DS) = Weight(7>ee[i4/, DS]) - n(W + 1), 

where Weight^) is the sum of the weights on all edges of tree x. For the application program P 

specified by Figure 7.5, with respect to the given assignment function Af and the given valid 

data-source functions DS as defined in Figure 7.6(b), Communication_timeP(4/', DS) = 67aL. 

To determine a set of ordering functions Order corresponding to a valid DS for executing 

the atomic input operations of different subtasks, a directed edge with weight zero from V[\\, ji ] 

to Vgfo] is added to the Tree[Af,DS] for every ix andji except ji =0(i.e.,0<ii <«andl <ji 

< M[ii]). These directed edges are illustrated by the dashed lines shown in Figure 7.6(a) for the 

example application program P. After adding these zero-weight edges, the tree becomes a 

directed acyclic graph (DAG). One possible set of ordering functions Order corresponding to 

DS can be determined by applying a topological sort algorithm [CoL92] to this generated DAG. 

For the example application program P, the numbers in the circles in Figure 7.6(a) indicate one 

ordering for the execution of the corresponding atomic input operations and subtask computation 

of P as determined by one particular topological sort. 

It is stated in part (10) of the mathematical model presented in Subsection 7.2 that 

Communication_timeP is a function of Af, Sf, and DS. If TIE is allowed, because Order is an 

extended version of 5/, Communication_timeP is a function of Af, Order, and a valid DS. Order 
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must be one of the sets of ordering functions, generated by the topological sort described above, 
corresponding to a valid DS. If not, the scheduling scheme and the data relocation scheme are 
incompatible with one another (i.e., Order and DS collectively cannot result in an operational 
program). If Orderi and Order2 are two sets of ordering functions, then, because 
Communication_timeP04/, DS) = Weight(7r^[A/, DS]) - n(W + 1), Communication_timeP(A/, 

Order!, DS) = Communication_timeP(A/, Order2, DS). Thus, if TIE is allowed and the 
corresponding DS is a valid set of data source functions for the atomic input operations of the 
application program P, Communication_timeP is a function of Af and DS only. Because the 
computation time for P is a function of only Af, the total execution time for P is a function of Af 

and DS. The objective of matching, scheduling, and data relocation for HC is to find an 

assignment function Af and a valid set of data-source functions DS*, such that 
Execution timeP(Af ,DS*)= min {Execution_timeP(A/,DS)}. 

Af.DS 

7.5.    A Minimum Spanning Tree Based Algorithm for Finding the Optimal Set of Data- 
Source Functions and the Corresponding Set of Ordering Functions 

7.5.1.   Description of the Algorithm 

For an arbitrary assignment function Af, a minimum spanning tree based algorithm is 

presented for finding a corresponding optimal valid set of data-source functions DS*, such that 

for any other valid set of data-source functions DS, 
Execution_timep04/, DS*) < Execution_timep(y4/, DS). 

A directed graph Dg (see Figure 7.7(a)) corresponding to a specific assignment function Af 

can be generated by connecting the vertices in V as follows (recall that V is a set that contains all 

the vertices generated for any specific application program P according to Steps 1 and 2 
described in Subsection 7.4). Figure 7.7, which is based on the example program shown in 
Figure 7.5, uses the same machine and assignment function as in Figure 7.6(c), and has all the 

same vertices as in Figure 7.6(a). 

(a) For every ilf ji, i2, and j2, where 0 < h, i2 < n, 0 <h < M[iiL 0 < j2 < M[i2], and ii * i2, 
such that Mil, jil = Mi2, j2] = e, a directed edge from VTu, jil to V[i2, j2] with weight 
D[AAh), Afli2)]Qe\) and a directed edge from V[i2, j2] to Vpi, Jil with weight D[A/(i2), 

A/(ii)](|e|) are added. 

(b) For every i^h,^, and j2,whereO<i1,i2<n,0<j1<iVG[i1],andO<j2<M[i2], such that 

Gdih, h]= Mi2, hi = e> a directed edge from VgtiJ to V[i2, j2] with weight D\Af<S\\ 
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(a) 
DS*[0](0) = -1; do 4 
DS*[1](0) = 0, DS*[1](1) = 2; 

(M[O\)- 
L /~\ L r~^ L r^ 

\M[l]j— \M[2]J —\M[i] 

DS*[2](0) = 0, DS*[2](1) = -1; V_X V_/ V_/ v_> 
DS*[3](0) = 2, DS*[3](1)=1, DS*[3](2) = 2; S[5] S[0] S[l] S[4] 

DS*[4](0) = 0, DS*[4](1) = 2; 5[3] S[2) 

DS*[5](0) = 0, DS*[5](1) = 3. 

(b) (c) 

Figure 7.6: Generating a spanning tree with respect to the set of data-source functions 

associated v. ith the subtask flow graph, (a) The spanning tree (solid lines), (b) The 

set of data-source functions, (c) The linear array network and the matching 

scheme. 
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AAh)](\e\) is added. 

(c) For every i,j, and k, such that Id[i,j\ = (-1, dk), where 0 < i < n, 0 <j < NI[i], and 0 < k < Q, 

a directed edge from the Source vertex to V[i,ß with weight H[k](Af(i)) is added. 

Figure 7.7: Generating a minimum spanning tree for the example application program and its 

corresponding valid data-source functions, (a) The minimum spanning tree (solid 
lines), (b) The set of data-source functions, (c) The linear array network and the 

matching scheme. 

All the edges generated in (a), (b), and (c) are called fetch edges. For the example 

application program P illustrated by the subtask flow graph in Figure 7.5, with the linear 
network of four machines as the heterogeneous suite and the assignment function defined in 
Figure 7.7(c) (and Figure 7.6(c)), the edges (both solid lines and dashed lines) of Dg in Figure 

7.7(a) (except the ones with weight W + 1) are fetch edges, 

(d) For every 0 < i < n, a directed edge from V[i, 0] to Vg[i] with weight W + 1 is added. 
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All the edges generated in (d) are called activate edges. There are a total of n activate edges 

with total weight n(W +1). Notice that the weight of an activate edge is larger than the weight 

of any fetch edge because of the definition of W. The edges of Dg shown in Figure 7.7(a) with 

weight W + 1 are activate edges. 

For given system parameters D and H, the directed graph Dg can be generated by knowing 

only P and Af. After generating Dg corresponding to a specific Af, a modified version of Prim's 

algorithm [CoL92], referred to as the TIE algorithm in this section is applied, to find a minimum 

spanning tree MST[Af\ of Dg. The Source vertex is the root of the minimum spanning tree. 

Suppose A is a set that contains the vertices that have been added to the tree, and T is the tree 

partially generated during the execution of the TIE algorithm. The order of execution for the 

atomic input operation that corresponds to any vertex V[i, j](0<i<n and 0 <j < NI[i]) in V is 

Order*[i](j). The TIE algorithm is described as follows. 

Step 1:  Let A = {Source},T = {Source}, and Counter = 0. 

Step 2: Case A: If the set of cut edge(s) between A and V - A (a cut edge is an edge that 

connects a vertex in A and a vertex in V - A) contains fetch edge(s), then find a cut edge 

that has the smallest weight (there might be several, in which case an arbitrary 

minimum weight edge is chosen). Include that edge in T and move the corresponding 

vertex V[i, j] that is currently in V - A into A and T. Increment Counter by 1 and set 

Order* [/](/) = Counter. Because the set of cut edges between A and V — A contains 

fetch edges, then no activate edge can be chosen, because the weight of an activate edge 

is greater than the weight of any fetch edge. 

Case B: If the set of cut edges between A and V — A contains only activate edges, these 

edges will connect to a subset of the Vg vertices. Let this subset be denoted as { Vg[io], 

Vg[ii], ..., Vg[ij], ..., Vg[iu_i] }, where 1 < u < n, 0 <j < u, 0 < ij < n, and u is the 

number of activate edges in that set. It can be shown that there always exists at least one 

j(0<j<u) such that all V[ij, k] is contained in A already (0 < k < iV/[ij]) by previous 

iterations of the TIE algorithm. Any such Vg[ij] is defined as a ready-to-execute vertex. 

Given that the application program is valid and that the set of cut edge(s) between A and 

V - A only contains activate edges, there is at least one subtask 5[ij] such that all of its 

input-data vertices V[ij, k] are already in A. Otherwise, P is not a valid program because 

it would allow deadlock. Include a ready-to-execute vertex Vg[ij] in A and T (if there 

are several, any one of the ready-to-execute vertices is chosen), and its corresponding 

activate edge (i.e., the edge from V[ij, 0] to Vg[ij]) in T. Because all Vg[i] ( 0 < / < n ) 

are included in the MST[Af\ after they become ready-to-execute vertices, S[i] generates 
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all of its output-data items after it obtains all of its input-data items. Unlike Prim's 

algorithm, the TIE algorithm uses two classes of edges and places a ready-to-execute 

vertex into T and A. In all other respects, the algorithms are the same. Because each 

activate edge is the only edge entering a computation vertex (i.e., Vg vertex), all 

activate edges will eventually become part of the minimum spanning tree. Hence, this 

modification to Prim's algorithm to create the TIE algorithm still generates a minimum 

spanning tree. 

Step 3:  If A = V, terminate the algorithm, otherwise execute Step 2 again. 

For the application program P illustrated by the subtask flow graph in Figure 7.5, with the 

linear network of four machines as the heterogeneous suite and the same assignment functions 

defined in Figure 7.7(c), the solid lines in Figure 7.7(a) show the MST[Aj) corresponding to Af 

after applying the TIE algorithm to Dg. This MST[Af\ was generated by knowing only Af, I[i\, 

and G[i] (for given system parameters D and H). 

The optimal valid set of data-source functions DS* for atomic input operations of the 

application program P that corresponds to the minimum spanning tree MST[Af\ generated above 

can be determined as follows: 

(a) If, in MS1\Af\, the parent vertex of V[ii, ji] is V[i2, j2], then DS*[ii](ji) = h- 

(b) If, in MST[Af\, the parent vertex of Vpi, ji] is Vg[i2], then DS*[iJCJi) = h> 

(c) If, in MST[Af\, the parent vertex of V[ii, ji ] is the Source vertex, then DS* [ii ](ji) = -1. 

Because MST[Af\ is a tree, every vertex except the Source vertex has one and only one 

parent vertex, and the value of DS*[ii](ji) for any 0 < ix < n and 0 <h < NI[h] is unique. The 

optimal set of data-source functions DS for the application program P illustrated by the subtask 

flow graph in Figure 7.5 is derived and given in Figure 7.7(b) according to the procedures 

described above. The numbers in the circles in Figure 7.7(a) indicate the order in which vertices 

were added to the minimum spanning tree, which is the order for executing their corresponding 

atomic input operations and subtask computation. The set of ordering functions, Order* [/](/), 

generated by the TIE algorithm corresponds to this order except that the computation vertices 

(i.e., Vg' s) are not included. 

For the complexity analysis of the TIE algorithm, suppose that |£| is the number of edges in 

Dg and |V| is the number of vertices in Dg. If a Fibonacci heap is used to implement the priority 

queue inThe TIE algorithm, as was done in Prim's algorithm [CoL92], the worst case asymptotic 

complexity of the algorithm for finding DS* is 0( \E\ + |V|lg|V|). For Dg, \V\ = £ (MM + 1) + 1 
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n-1 
= ]TM[/] + n + 1.  Each vertex V[i, j] is connected to at most n other vertices in Dg. This 

i=0 

corresponds to the case where S[i] can obtain its required input-data item Id[i, j] from all the 

other subtasks in P and from the source where the initial data elements are stored. Each vertex 
n-l n-1 

Vg(0 is connected only to V\i, 0]. Thus, |£| < n%NI[i] + n. If A = £M[/], then \V\=A + n+\ 
i=0 i=0 

and \E\<nA + n. The worst case asymptotic complexity of the TEE algorithm in terms of A and 

n is 0[nA + (n+ A)lg(n + A)], where n is the number of subtasks in P. 

7.5.2.  Proof of Correctness of the Algorithm 

It is shown in Subsection 7.4 that with an arbitrary assignment function Af, any valid set of 

data-source functions DS for atomic input operations of the application program P corresponds 

to a spanning tree of Dg (denoted as TreeP[A/, DS]). The weight of TreeP[i4/, DS] (denoted as 

Weight(TreeP[4/, DS])) is Communication_timeP(4/, DS) + n(W + 1). 

Thus, 

Execution_timep(A/, DS) - Computation_timep(4/) + Communication_timeP(A/, DS) 

= Computation_timeP04/) + Weight(TreeP [Af, DS]) - n(W+l). 

Because 

Execution_timeP(/4/, DS*) = Computation_timeP(A/) + Weight(TreeP[i4/, DS*]) - n(W+l) 

= Computation_timeP(4/) + Wtight(MST[Af]) - n(W+l) 

and 

it is true that 

Weight(MS7T4/]) < Weight(TreeP[4/; DS]), 

Execution_timep(/4/, DS*) < Execution_timepG4/, DS). 

For the application program P illustrated by the subtask flow graph in Figure 7.5, if the set 

of data-source functions DS is determined directly from the subtask flow graph provided (as 

shown in Figure 7.6(b)), then Execution_timeP is C[0, 1] + C[l, 2] + C[2, 2] + C[3, 1] + C[4, 3] 

+ C[5, 0] + 67aL. After applying the algorithm presented in Subsection 5.1 and using DS*, then 

Execution_timep is C[0,1] + C[l, 2] + C[2,2] + C[3,1] + C[4, 3] + C[5,0] + 47aL. 

7.6. Two-Stage Approach for Matching, Scheduling, and Data Relocation in HC 

In Subsections 7.4 and 7.5, it was shown how to calculate an Order* and a DS* given a 

fixed Af (allowing both data-reuse and multiple data-copies). The algorithm presented in 

Subsection 7.5 can be used to do this in polynomial time. However, as was stated in Subsection 
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7.4, the objective of matching, scheduling, and data relocation (with the assumption that TEE is 

allowed) is to find Af and DS* (with one of its corresponding Order*) for a specific application 

program P, such that, for any assignment function Af and any valid set of data-source functions 

DS, Execution_timeP(A/\ DS*) < Execution_timeP(A/, DS). The problem of finding Af is, in 

general, NP-complete with an arbitrary heterogeneous suite of m machines and an arbitrary 

application program P with n subtasks [Fer89]. 

One approach to matching, scheduling, and data relocation in HC is to find some (possibly 

suboptimal) assignment functions Af and some valid sets of data-source functions DS using a 

heuristic algorithm. Another approach, called the two-stage approach for matching, scheduling, 

and data relocation in HC, is introduced as follows: 

Stage 1: Any existing heuristic (e.g., [L088, WaA94, WaS94]) for finding a (possibly subop- 

timal) assignment function, Afsub, can be applied in the first stage. 

Stage 2: Once a specific assignment function A/sub is found, the TEE algorithm can be applied 

to find the optimal set of data-source functions DS* and the corresponding set of order- 

ing functions Order* with respect to Afsub. The tuple (A/sub, Order*, DS*) is a subop- 

timal solution for matching, scheduling, and data relocation problems in HC. 

One of the advantages of the two-stage approach is that efforts for deriving the heuristic 

can be concentrated solely on finding a "good" assignment function A/sub. After Stage 1, the 

separate provably optimal TEE algorithm for finding Order* and DS* with respect to A/sub can be 

applied. 

7.7. Summary 

In an HC system, the subtasks of an application program P must be assigned to a suite of 

heterogeneous machines to utilize computational resources effectively (the matching problem). 

The execution time of P is impacted by the order of execution of subtasks (the scheduling prob- 

lem), and the scheme for distributing the initial data elements and the generated data items of P 

to different subtasks (the data relocation problem). 

The inter-machine communication time in an HC system can have a significant impact on 

overall system performance, so any techniques that can be used to reduce this time are impor- 

tant. This section focuses on scheduling schemes and data relocation schemes to minimize 

inter-machine communication time for a given matching scheme. 

In this section, a mathematical model for matching, scheduling, and data relocation in HC 

was presented. The assignment function Af, the scheduling function 5/(including the set of ord- 
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ering functions Order), and the set of data-source functions DS were used to quantify the match- 
ing, scheduling, and data relocation problems respectively. Two data-distribution situations 

were identified, namely data-reuse and multiple data-copies. A theorem was presented, which 

states that if only data-reuse is considered (and not the multiple data-copies situation), then the 
execution time of P is independent of Sf and DS. Subsection 7.4 introduced an extension to 
scheduling, called temporally interleaved execution of the atomic input operations for different 
subtasks (TIE). Examples were provided to show that both multiple data-copies and TIE have an 
impact on the execution time of the application program P. A minimum spanning tree based al- 
gorithm with polynomial complexity was described for finding an optimal set of ordering func- 

tions Order* and an optimal set of data-source functions DS* for an arbitrary assignment func- 
tion Af. Based on this algorithm, a two-stage approach for matching, scheduling, and data reloca- 

tion in HC was proposed. 

To limit the scope of this section, sequential execution of subtasks for a specific application 
program P was assumed. Data-reuse and multiple data-copies will also occur when concurrent 

execution of subtasks across different machines in the HC is allowed, but this sequential work is 
a necessary step in solving the more general situation involving concurrency. Future research in- 

cludes applying the concepts developed here to the more general problem. 
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