
RL-TR-95-208
Final Technical Report
October 1995

DESIGN RECOVERY
TECHNOLOGY FOR REAL
TIME SYSTEMS

The MITRE Corporation

Lester J. Holtzblatt, Richard Piazza, and Susan N. Roberts

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19960122 056
P,r!?W ■^m i

Rome Laboratory
Air Force Materiel Command

Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will be releasable
to the general public, including foreign nations.

RL-TR-95- 208 has been reviewed and is approved for publication.

APPROVED: ~^^U^ ^- - ^ +-~"

RODERICK K. TAYLOR, Captain, USAF
Project Engineer

^M^^ FOR THE COMMANDER: „

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory mailing list,
or if the addressee is no longer employed by your organization, please notify Rome Laboratory/
(C3CA), Rome NY 13441. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Pi^rtcaiiTQlxi^fatmcclm3xri&rfanwöcnKtain*tMltoBnnQi-i hour perresponse, ndudngtfieor»for reviewingnsmjaion& sesrcnngsastrc data sources.
ga™^arxJmaiti««qthedmne«c^«Tdccrr^^
ecleUiui of r*OMn*Uiineij*giuggMiyii for reducing ^
Daws Higrwrsy, SL*« 1204, Arfrigton, VA 22202-002. and to the Office of Management and Budget. Paperwork Reduction Projea (070*0198), Washngtan, DC 20sm

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

October 1995

a REPORT TYPE AND DATES COVERED

Final Oct 92 - Jan 95
4. TTTLE AND SUBTITLE

DESIGN RECOVERY TECHNOLOGY FOR REAL-TIME SYSTEMS

6. AUTHOR(S)

Lester J. Holtzblatt, Richard Piazza, and Susan N. Roberts

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)
The MITRE Corporation
Center for Air Force C3 Systems
202 Burlington Road
Bedford MA 01730-1420

9. SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESSES)

Rome Laboratory/C3CA
525 Brooks Rd
Rome NY 13441-4505

5. FUNDING NUMBERS
C - F19628-89-C-0001
PE - N/A
PR - MOIE
TA - 74
WU - 01

a PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-95-208

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Roderick K. Taylor, Captain, USAF/C3CA/
 (315) 330-2940
12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT(M«rruri 200words)

Software maintainers typically rely on source code as the only completely reliable
source of information on the software for which they are responsible. This process of
trying to develop an understanding of the software by manually navigating through
the code is extremely time consuming and error prone. This report describes a
technology that automaticlly extracts information from the source code and presents
the information in a comprehensible format. Further, the report details the reverse
engineering tools and design recovery techniques used to accomplish these goals.

14. SUBJECT TERMS

Reverse engineering tools, Design recovery, Software analysis

17. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

1a SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

«5. NUMBER OF PAGES

80
16. PRICE CODE

20. UMITATION OF ABSTOAC T

UL
NSN754OC1-2BM5C0 Standard Form 298 -»■. -.-

Prescrbedby ANS'3:^ . s i
298-102

TABLE OF CONTENTS

SECTION PAGE

1 Introduction 1

1.1 Limitations of Reverse Engineering Tools 1
1.2 Overcoming the Limitations of Reverse Engineering Tools 2

1.2.1 Building Tools for Multiple Legacy Languages 2
1.2.2 Capturing Inter-task Communication in Legacy Systems 3

1.3 Background 4

2 The Language-Independent Model 5

2.1 Separating Parsing and Analysis 5
2.2 Creating an Intermediate Language-Dependent Representation 6
2.3 Language-Independent Analysis 6
2.4 Implementation Approaches 8
2.5 Language-Dependent Accessors 8

2.5.1 Analysis-Dependent Organization of Methods 9
2.5.2 Analysis-Independent Organization of Methods 10
2.5.3 Declarative Approach 10
2.5.4 Model Completion 11

2.6 Code Reuse 12
2.7 Conclusions 13

3 Task Flow Recovery 15

3.1 Determining the Task Called by RTOS • 15
3.2 Determining the Calling Task 16
3.3 Implementing the Design Construct Recognition 17
3.4 Implementing Program Slicing 19

3.4.1 Intra-procedural Data Dependence Analysis 19
3.4.2 Inter-procedural Data Dependence Analysis 20

3.5 Evaluating Execution Threads Through a Program Slice 22
3.6 Extending M-CLUE to Recognize Other Services 23
3.7 Results 23

3.7.1 How the Results were Evaluated 23
3.7.2 Language Description for Graph Specification Language 24
3.7.3 Results

i

25

SECTION PAGE

3.8 Limitations
3.8.1 Inherent Limitations of the Approach
3.8.2 Current Limitations of the Implementation
3.8.3 MCE Not Implemented According to MCE Documentation

3.9 Other Uses for the Tasking Graph Comparitor
3.9.1 Comparing Specifications to Implementation
3.9.2 Comparing Different Software Versions
3.9.3 Comparing for Debugging Test Flow Generation Software

3.10 Conclusions

4 Related Work

4 Summary

References

Appendix A

28
28
29
31
31
31
32
32
32

35

37

39

41

Accesion For

NTIS CRA&l
DTIC TAB
Unannounced
Justification

D

By
Distribution /

Availability Codes

Dist

m
Avail and/or

Special

li

SECTION 1

INTRODUCTION

The software for many large military systems is maintained by DOD organizations that are
responsible for both enhancing as well as correcting problems in these systems' software.
The productivity of software maintenance organizations can be adversely affected by the
considerable amount of time software maintainers spend simply trying to understand the
software they are maintaining. Studies of the software maintenance process indicate that
software maintainers, on the average, spend approximately one-half of their time developing
an understanding of the software. One of the primary reasons for this is that the
documentation and other formal descriptions of large software intensive military systems are
often inadequate and unreliable. As a result, software maintainers typically rely on source
code as the only completely reliable source of information on the software. This process of
trying to develop an understanding of the software through manually navigating through the
code is extremely time consuming and error prone. This situation has created a need for a
technology that both automatically extracts information from the source code and presents
this information in a comprehensible format.

1.1 LIMITATIONS OF REVERSE ENGINEERING TOOLS

Reverse engineering tools that extract certain aspects of the structure of a software system
from source code are commercially available. Although these tools vary in the range of
capabilities that they provide, most of them share a common core of capabilities. For
example, all of the tools we have surveyed will display the calling hierarchy of a program,
although they will vary in how this information is displayed. Many of the tools will also
display information about the flow of control within individual procedures. Tools will also
typically extract and display information concerning the structure and usage of data within a
program. For example, tools will often generate reports concerning which procedures use or
set particular variables. They will also typically display information concerning the structure
of records, tables, or arrays used within a program.

These tools can provide maintainers insight into the structure of a program particularly when
they are coupled with navigational aids. For example, using one of the family of tools
available from Reasoning Systems, (Refine/C, Refine/Ada, Refine/Fortran, Refine/ Cobol), a
software maintainer can interactively navigate through code by selecting different portions of
code to view from a structure chart. A maintainer may also begin to gain insight into the
potential impact of changes he plans to introduce into a program by using these tools to
identify areas of the program that may be affected by making the change. In each of these

cases, reverse engineering tools may improve the productivity of a software maintainer both
by providing the maintainer insight into the structure of a program and by making relevant
portions of a program readily accessible to the maintainer.

In spite of the potential of these tools, two factors limit their utility for many DOD software
systems. First, although reverse engineering tools are widely available for C, Fortran, Cobol,
and Ada, relatively few tools are available for programming languages in which many older
military applications were written (e.g., Jovial, CMS-2, and various assembly languages). In
addition, different non-standard variants of common programming languages, for which no
reverse engineering tools are commercially available, were often used.

Second, the utility of commercially available tools for many DOD software systems is
limited by their ability to extract only information concerning the sequential execution of a
computer program. Real-time military systems frequently consist of individual units of
execution (tasks) that can operate concurrently on different processors or by interleaving their
functioning on the same processor. These concurrent tasks typically exchange both control
information as well as data through a variety of mechanisms. However, with the exception of
tools that support Ada and its explicit tasking constructs, reverse engineering tools fail to
capture information concerning the flow of information between tasks. As a result, these
tools provide limited support for understanding the structure of real-time systems

1.2 OVERCOMING THE LIMITATIONS OF REVERSE ENGINEERING TOOLS

1.2.1 Building Tools for Multiple Legacy Languages

One factor limiting the general availability of reverse engineering tools for different legacy
languages is the relative cost of building these tools. To the extent that these tools can rely
on capabilities that can be reused to support multiple languages, the overall cost of building
these tools should be significantly reduced.

Reverse engineering tools generally are not built to easily support porting analysis
capabilities from one source language to another. One reason for this is that most reverse
engineering tools tightly couple their two primary activities: parsing and analysis. To
provide efficient analysis capabilities, a tool builder may decide to provide a fixed set of
analysis reports and then optimize the tool to extract just the information needed for these
reports. In this sort of design an explicit intermediate representation of the source program is
usually not created thus saving greatly on memory costs. Furthermore, the information
required for the reports can be extracted during the parsing phase and then populated into
idiosyncratic data structures to support the required analyses. One tradeoff in such an
approach is that flexibility to support unanticipated analysis capabilities is lost. By tightly

coupling parsing, analysis, and analysis optimization, the task of adding support for new
languages or new analysis capabilities can be tantamount to a complete redevelopment
activity.

Some tools may create an explicit intermediate representation of the source code. Doing this
provides some flexibility in adding new analysis capabilities in that a clean interface to the
source code information can be defined and the information itself persists after parsing.
However, if this intermediate representation is syntax specific, then porting capabilities from
source language to language will still be a major effort. In Section 2, we describe an
approach to language-independent representation of source code that permits reuse of
analysis capabilities within source languages of a particular family (e.g., 3GLs).

1.2.2 Capturing Inter-task Communication in Legacy Systems

As we noted above, reverse engineering tools generally fail to capture information
concerning the interaction of concurrent tasks in a system. One of the primary reasons for
this situation is that understanding design constructs relevant to the execution of concurrent
tasks requires more than an implementation level understanding of the software [Biggerstaff,
1989]. The syntax of programming languages, particularly older legacy languages such as
CMS-2 or Fortran, does not make constructs such as inter-task communication and task
synchronization explicit. Instead, the inter-task behavior of a system often depends on the
design of the specific operating system and the way in which the application code interacts
with the operating system. Since reverse engineering tools only extract information that is
represented explicitly in the syntax of the programming language, tools for sequential
programming languages can only extract information concerning the sequential execution of
individual tasks. These tools will fail to capture information concerning how these tasks
interact.

However, people can often extract knowledge about how concurrent tasks interact from the
source code of older systems, even though such information is not explicitly available in the
syntax of a programming language. Extracting this information requires knowledge about
the type of processing model used by the system software and how this processing model has
been implemented in a particular system.

In addition to knowledge about the type of processing model used by a system, it is also
necessary to understand the idiosyncratic techniques used by a system to implement these
constructs. For example, although tasks may not be explicitly represented through syntactic
constructs in the code, specific recurring patterns of code may be used to represent a task in a
particular application. As a result, it may still be possible to recognize those specific portions
of code that implement a particular task. Similarly, the specific actions through which these
tasks communicate with each other may be implemented through particular types of calls to

the real-time operating system. Interpreting how specific tasks communicate with each other
will depend on being able to interpret the meaning of these specific calls.

As can be seen, the ability of a person to manually extract extra-linguistic information from
the source code of a program depends on his ability to use knowledge about how specific
design constructs are implemented in the source code. Reverse engineering tools are not
designed to make use of such meta-design knowledge. However, unless techniques are
developed to make use of meta-design knowledge, reverse engineering tools will fail to
extract more than the implementation level detail of a program. As long as tools can only
provide limited visibility into the structure of a program, they will not be able to provide the
insight required to understand the design of a real-time system. In Section 3, we describe an
approach for using this meta-design information to support the extraction of task flow
information from a system implemented in CMS-2.

1.3 BACKGROUND

In FY92 MITRE developed CLUE, CMS-2 Language Understanding Environment, a reverse
engineering tool for CMS-2. CLUE was implemented on top of a commercially available
reverse engineering development environment, Software Refinery from Reasoning Systems.
Software Refinery consists of three components: Dialect, a parser generator that was used to
build the CMS-2 parser; Software Refine, a programming language that was used to develop
the CLUE reports; and InterVista, a graphical user interface builder that was used to develop
the displays for these reports. Initially, CLUE consisted of two reports: a procedure calling
hierarchy and a data set/use report. The research described in Section 2 extended the CLUE
tool by incorporating several advanced analysis capabilities that were initially developed as
extensions to Refine/C, a commercial reverse engineering tool for C. CLUE is available
under a General Public Licence.

The research described in Section 3 was also built on top of CLUE, adding the capability to
analyze the task flow behavior of a real-time system built in CMS-2, the Modular Control
Equipment (MCE) system. CLUE, including the enhancements described in this report, have
been made available to the Computer Support Squadron, Air Combat Command (CSS/ACC).
This version of CLUE with its MCE specific extensions is known as M-CLUE. The
CSS/ACC is responsible for maintaining MCE. M-CLUE has been integrated into the
Theater Software Maintenance Environment (TSME) that has been procured by the MCE
project to support maintenance activities of the CSS/ACC.

SECTION 2

THE LANGUAGE-INDEPENDENT MODEL

One of the goals of this work was to develop a tool that would be useful for many different
legacy systems. Since legacy systems use a host of different source languages, it is important
to discover ways to avoid creating a completely new tool for each language. This is
necessary because commercial tools are probably not available for these languages due to
their small non-commercial customer base. This is particularly true when assembly
languages are involved. Therefore, since not much effort can be expended for each language,
a method must be found that will make the development of a similar tool for another legacy
language straightforward and inexpensive.

At first this problem might seem trivial. The answer might be summed up as "all you have to
do is add another parser." We found this solution to be naive based on our efforts to modify
a tool in just this manner [Reubenstein et al., 1993]. Our approach is the use of a language-
independent model (LIM). A language-independent model can be the basis for implementing
language-independent analysis capabilities that are not developed for a particular language
but for a family of languages based on an abstract model. Analysis capabilities can then be
written referencing this model without worrying about or depending upon the idiosyncrasies
of any one language.

Our approach is predicated upon the ability to separate the issues of parsing and analysis.
Using this approach a parser converts the source code into a language-dependent parse tree.
We then use language-independent analysis capabilities to produce reports and higher-level
views of the software. A small amount of language-dependent code must be written to access
information from the parse tree, but the core code for the analysis capability is common to all
languages. This makes the analysis capabilities transparent to the underlying language-
dependent representation.

2.1 SEPARATING PARSING AND ANALYSIS

One approach to writing reverse engineering tools is to intermingle parsing and analysis.
With this approach, it is straightforward to use parsing in a limited way to traverse the code
to recognize constructs and gather information that is pertinent for a particular report.
Therefore, there is often no internal representation of the source code.

A problem with this approach becomes clear when one tries to port an analysis capability to a
new language. Since the analysis capability is intertwined with the parsing of the source

code and there is no common internal representation of the source code, it is difficult to reuse
the analysis code. The analysis capability generally must be rewritten from scratch for the
new language.

We feel that there is another problem with this approach. The intertwining of parsing and
analysis is really a mixing of language, syntax, and semantics. The grammar productions
used by a parser capture the syntax of a language, but individual productions do not
necessarily correspond to the programming concepts of a language. Separation of these two
concerns not only makes it possible to reuse much of the analysis code, but also frees the tool
builder from needing to address subtle differences in languages when trying to write analysis
capabilities.

2.2 CREATING AN INTERMEDIATE LANGUAGE-DEPENDENT
REPRESENTATION

A language-dependent representation of the source code is created through parsing the code.
Parsing takes the textual representation of software and converts it in into an internal
representation that captures the structure of the program as an Abstract Syntax Tree (AST).
Parsers are usually constructed by an automatic parser generator that takes as input a formal
description of the syntax of a language. We used a parser generator called DIALECT that is
a part of a reverse engineering development environment known as Software Refinery from
Reasoning Systems. The parser generated by DIALECT represents the nodes in the AST as
objects that belong to a class of objects associated with the left-hand side of non-terminals of
the appropriate grammar rule. The arcs in the AST are labeled. These labels represent part-
whole syntactic relationships between the objects in the AST. For example, a node in the
AST may represent a conditional statement. A conditional statement may be decomposed
into several parts including a test condition, a then clause, and an else clause, each of which
may be viewed as attributes of the conditional statement. Each of these parts are represented
as objects. The arcs connecting the conditional statement to each of its parts are labeled with
the corresponding names of the attributes they represent (i.e., test-condition, then-clause,
else-clause).

2.3 LANGUAGE-INDEPENDENT ANALYSIS

Analysis routines operate on the contents of an AST by creating different views of the
structure of the code. These views each reveal relationships between parts of the code that
are not explicitly represented in the AST. These views include a procedure calling hierarchy,
intra-procedural control flow, data flow, data set/use, and the task flows described in

Section 3. In addition, it is possible to perform analyses on top of these views to either
compute statistical attributes of these views or to identify specific portions of a view that
satisfy particular conditions. An example of a statistical analysis is the McCabe complexity
metric which operates on a control flow graph to compute the number of independent test
paths in a procedure. Such a measure provides an estimate of the understandability of a
procedure and may be used to estimate the maintainability of the procedure [Banker et al.,
1993]. Other analyses that identify relevant portions of a particular view include dead code
detection and program slices. Dead code detection identifies portions of the code that will
not be referenced. Dead code can be identified from the procedure calling hierarchy by
identifying disconnected subgraphs of the hierarchy. A program slice identifies all of the
statements that are used to compute the value of a particular variable used at a particular
statement in the code. Program slices are derived from data flow and control flow graphs.

In order for analysis routines to be written in a language-independent manner, it is necessary
for these routines to reference language constructs independent of the syntax of a specific
programming language. For example, a language-independent implementation of a routine to
generate control flow graphs needs to distinguish between types of statements represented in
the AST. The types of statements it is looking for will fall into one of several predefined
classes, including procedure-calls, while-loops, iteration-loops, conditionals, case-statements,
and variable assignment statements. Each of these statement types represents language-
independent constructs to which the analysis routine must make reference. Once a type of
statement is identified the analysis routine will perform different actions depending on the
type of statement identified. These actions must also reference language constructs in a
language-independent manner. For example, if the analysis routine has identified a
conditional block, then it needs to identify the test-condition, then-part, and else-part of the
conditional. Each of these parts also represents a language-independent construct.

By implementing analysis routines that reference the AST through language-independent
constructs, it is possible to port these routines from one programming language to another. In
doing so, the language model used to generate the AST for a specific programming language
is transparent to the analysis routines that are accessing information from the AST.

A language-independent model that identifies the set of language constructs that will be
referenced by analysis routines cannot encompass all computer languages. There are several
types of languages (e.g., algorithmic (third generation), functional, object-oriented,
assembly). These language types have different semantic constructs and need different
language-independent models. Since this project is focusing on legacy systems, we are
developing two distinct language-independent models; one for third-generation languages
and one for assembly languages.

2.4 IMPLEMENTATION APPROACHES

There are two approaches for implementing the LIM. In both approaches the analysis
capability core code would be written making reference to the language-independent
constructs like those described in Section 2.3. In the first and more obvious approach, the
language-independent model is fully instantiated for the source code. In this approach a
language-independent AST would be generated. As a result, all accessing of syntactic and
semantic information from the AST would be exactly the same across different languages.
Therefore, no extra code would need to be written to support the analysis capabilities. In a
second approach, the language-independent attributes are computed via accessors which are
specialized for each language. One can think of the two approaches to implementing
language-independent analysis capabilities as being similar to the design decision often faced
in object-oriented programming. In that situation there is a choice between storing or
computing an object's state. Using a full LIM can be thought of as storing the state. The
language-dependent accessor approach can be thought of as computing the object's state on
an as needed basis.

Regarding the first LIM approach, there are two ways to generate a language-independent
AST. First, it could be generated from a language-dependent AST. However, this would
require two ASTs (one language-dependent and one language-independent). This would
overwhelm the memory available on most processors. Another way is to generate a
language-independent AST while parsing, possibly avoiding generating the language-
dependent AST. However, this probably could not be done using the DIALECT tool in
Software Refinery. Also, it would only reduce, but not eliminate, the amount of language-
dependent code that was needed to generate the AST. Furthermore, access to the original
source syntax, which is important for source code navigation, would be lost.

2.5 LANGUAGE-DEPENDENT ACCESSORS

Instead of computing a complete language representation of the AST, we implemented the
second approach, which is the language-dependent accessor approach. Because of
differences in the syntax and semantics of third generation languages, the DIALECT
generated parsers for each language use different domain models and grammars, making the
structure of their ASTs different. It is necessary to write some language-dependent code to
specialize the accessors for each language. We will call these accessors methods - the
colloquial name for a function that is specialized depending upon the type of its arguments.

These methods may be syntactic or semantic in nature. Some of the approaches below
support only the implementation of syntactic methods. In one of the approaches the

accessors are generated automatically. In the rest of this section we will discuss the various
approaches.

2.5.1 Analysis-Dependent Organization of Methods

When an analysis capability is written using the analysis-dependent approach, all methods
are organized with the capability. When writing the analysis capability, a method stub is
created for those parts of the code that are language-dependent. These method stubs are then
implemented for each language in the tool suite. In this way, the core code of the analysis
capability is reused. One disadvantage of this approach is that similar access routines written
for one analysis capability will probably not be used in other analysis capabilities because
they are not written for general use and are probably too idiosyncratic. One advantage is that
the language-dependent code is only written on an as-needed basis.

The following is a list of some of the language-dependent methods which need to be written
in order to support the language-independent data flow analyzer. Observe that the
specification for each routine is straightforward and independent of the complexities of flow
analysis.

• collect-primary-objects:
given a code object this method returns call locations in the object's AST

• assignment-stmt?:
true if the object represents an assignment or variable initialization
(assignment statement, initialization)

• left-hand-side:
the code object on the left-hand side of an assignment

• right-hand-side:
the code object on the right-hand side of an assignment

• get-all-output-actual-arguments:
all locations in a procedure call that will be assigned a value upon return

• get-global-variables:
returns a list of global variables defined in the program

• global-variable?:
true if the location represents a globally defined memory location

• pointer-variable?:
true if the location represents a memory location that holds a pointer

• array-variable?:
true if the location represents an array

2.5.2 Analysis-Independent Organization of Methods

In the analysis-independent approach the methods are organized around abstract language
classes rather than a particular analysis capability. However, since Software Refinery does
not explicitly support object-oriented programming, we have not defined explicit language-
independent classes or class instances. Below are two examples - the method signatures
associated with the abstract classes procedure and procedure-call.

procedure:
procedure-declarator(procedure) -> declarator
procedure-declarator?(any-type) -> boolean
procedure-called-by(procedure) -> set(procedure)
procedure-id-name(procedure) -> symbol
get-enclosing-procedure(any-type) -> procedure
root-of-procedure-hierarchy?(procedure) -> boolean
get-all-procedures(program) -> set(procedure)
get-procedure-wifh-name(symbol) -> procedure
get-root-of-procedure-hierarchy(set(procedure)) -> procedure
get-formal-arguments(procedure) -> set(any-type)

procedure-call:
procedure-call?(any-type) -> boolean
get-all-procedure-calls(any-type) -> set(procedure-call)
get-procedure-calls-with-name(symbol) -> set(procedure-call)
get-procedure-called(procedure-call) -> procedure
get-procedure-called-name(procedure-call) -> symbol
get-actual-arguments(procedure-call) -> set(any-type)

This approach has two advantages over the analysis-dependent method. First and foremost is
the potential for greater reuse of code. Second is that this solution is more object-oriented,
and therefore, a more locally understandable design.

2.5.3 Declarative Approach

Many of the language-dependent methods that are written are simply used to access the
appropriate attribute in an abstract syntax tree. For instance, to obtain the "then" part of a
conditional, which is a language-independent attribute, it is necessary to access a differently
named slot in a C source AST as opposed to a CMS-2 source AST.

A more efficient way to write these slot accessors is to set up a mapping from the language-
independent abstract class and attributes to the language-dependent class and attributes.

10

Once this mapping is constructed, it can be used by some utility routines to access/test for the
language-dependent attribute/class given the name of the language-independent
attribute/class.

A tool has been written to help build this mapping. It presents each language-dependent
class and an example code fragment, together with a menu of the possible language-
independent abstract classes. Once a class has been selected from the menu, the attributes are
matched in a similar way.

In this example we look at a part of the map from two different languages of the same
language-independent class - a case statement. A LIM case statement has two attributes:
test and body.

In C the mapping is:
[switch-statement, lim::case, [< switch-expr, lim::test>, <switch-body, lim::body>]

This declaration states that switch-statement is C's case construct. The attribute switch-expr
is where the case's test attribute is found and the switch-body is where the case's body
attribute is found. Below is the declaration for the for-block, CMS-2's case construct.

In CMS-2 the mapping is:
[for-block, lim::case, [<for-expression, lim::test>, <value_bk>ck, lim::body>]

As in the C example, the language-dependent attributes are mapped to the language-
independent attributes, test, and body, of a case statement.

2.5.4 Model Completion

Although third generation languages share abstract constructs, their syntax is often very
different. Also, their attributes are sometimes represented implicitly. An example of this is
an iteration loop. An iteration loop has several attributes: loop variable, initialization of loop
variable, test, bump of loop variable, and loop body. In C these attributes are represented
explicitly in the syntax and therefore the AST. This is an example of a C FOR statement.

for (i = 0; i < 10; i++)
{

<some other statements>
}

However, in CMS-2, some of the attributes are implicit in the syntax of the language (some
are also optional); they are not explicitly represented in the source code. Therefore, they are

11

not in the parsed representation (AST). The following is an example of a CMS-2 VARY
statement where many of the iteration loop attributes have been elided.

VARY I THRU 10
<some other statements>

Notice that the test, initialization, and bump are not expressed in this code fragment, but the
semantics of the VARY statement indicate that the test is i <= 10, the initialization is i=0, and
thebumpisi = i+l.

The language-independent analysis routines assume that all of the attributes of an iteration
loop will be explicitly available. Additionally, it would be antithetical to the idea of
language-independence to write special case code within the analysis capability core code to
detect which attributes are pre-set. In the model completion approach, all of the ASTs are
brought up to a "least common ancestor" by completing the model - making implicit
attributes explicit by adding attributes. This is done in a preprocessing step, after parsing.

One can think of this approach as being a hybrid of the two main approaches. Because it is
creating and storing information on the AST it has some of the flavor of the full LIM
approach. However, this is done only to make implicit syntactic attributes explicit and not to
replace language-dependent attributes with language-independent ones. One can think of the
creation of the full LIM approach as the logical extension of model completion. However,
since the language-dependent code needed to make the attributes explicit could be used
during analysis, this approach is also similar to the language-dependent accessor approach.

2.6 CODE REUSE

The following table indicates the amount of code reuse that was achieved by the approaches
in the previous section. Three different analysis capabilities are listed. The first column
indicates the number of lines of language-independent core code. The second column
indicates the number of lines which needed to be added to specialize the code so that it
handles C. The third column indicates the number of lines which needed to be added to
specialize the code so that it handles CMS-2. The fourth column indicates the approaches

used.

12

Analysis Capability Core Code Code for C Code for
CMS-2

%
Reuse

Approach Used1

Data Flow 1303 363 304 78.2 AD, AI
Control Flow 1137 123 266 90.5 D,MC
Orphans 56 - - 100 AI

The language-dependent code for the control flow analysis capability was generated using the
declarative approach. The reason why there are twice as many lines of code for CMS-2 is
that the language domain model is twice as large as the domain model for C.

It is interesting to note that no extra code needed to be written to support orphan detection.
This is because all of the language-dependent code required to support orphan detection had
already been written to support data flow analysis. Since the code pertaining to procedures
and procedure calls was organized using the analysis-independent approach, it was simple to
locate and reuse the code when writing the orphan analysis.

2.7 CONCLUSIONS

A methodology has been developed to foster the reuse of analysis capabilities across reverse
engineering tools for different languages. This methodology reduces the level of effort
required to implement new analysis capabilities by partitioning analysis routines into
language-dependent accessors and language-independent analyses. Once a language-
independent analysis has been implemented, it can be ported to a new programming language
by developing the accessors for that language. In addition, we are able to accomplish further
reuse by allowing analysis routines to share the same accessors. As a result, once these
accessors have been developed for one analysis routine, they can be reused to access the
same information for another analysis routine.

To date, we have demonstrated considerable success in porting analysis routines between C
and CMS-2. In addition, we have also begun to demonstrate reuse across analysis routines.
Because of the lack of tools for assembly languages and the diversity of assembly languages
used in DOD systems, this approach will have a significant payoff when applied to the
development of assembly language reverse engineering tools. To address this need, we are
developing a set of language-independent assembly language analysis reports in FY 94.

1 Key for table: AD
model completion.

analysis dependent, AI - analysis independent, D - declarative, MC -

13

SECTION 3

TASK FLOW RECOVERY

Although one of the goals of this work has been to develop techniques to recover the inter-
task behavior of real-time systems in general, our initial efforts have centered on recovering
this information from one system in particular, the Modular Control Equipment (MCE)
system. MCE is a command and control system written in the Navy source language CMS-2.
It also contains a relatively small amount of embedded assembler language. The assembler
code is less than ten percent of the system and is predominately located in the real-time
operating system (RTOS). The MCE software runs in a distributed, multiple CPU hardware
environment. The software consists of 14 functional subprograms that comprise 44 CMS-2
modules. The software modules are distributed across the different CPUs. RTOS enables the
software on different CPUs to communicate, sharing both data and control (task invocation).

Tasks in MCE are executable units within a module and are comprised of many different
procedures. Tasks spawn a variety of actions on themselves or other tasks through procedure
calls to RTOS. These actions include scheduling a task, terminating a task, or removing a
previously scheduled task. We have focused primarily on developing techniques for
determining which tasks schedule other tasks, although this approach can be extended to
recover information regarding other types of operating system calls.

Determining the flow of tasks within MCE requires extracting information that is not directly
available in the MCE source code. Extracting the task flows requires extracting the two
primary pieces of information required to understand any task flow: who called a task and
what task was called. Neither piece of information is explicitly represented in the source
code. The following two sections will describe the overall strategy that was required to
automatically extract this information from MCE.

3.1 DETERMINING THE TASK CALLED BY RTOS

The task scheduled by an RTOS call is uniquely determined by a set of arguments passed to
RTOS by the RTOS call. These arguments identify a module and the task contained in that
module. A module/task pair uniquely identifies a task in the MCE system.

In order to determine the task spawned by an RTOS call, it is necessary to determine the state
of the two variables that uniquely identifies this task at the particular point in the program
when an RTOS call is made. In some cases determining the value of these variables is
relatively straightforward since these values are set once and then remain constant throughout
the execution of that module. Other variables, however, are set multiple times within a

15

module. In these cases it is necessary to statically evaluate a portion of the program that
determines the state of the variables.

When a variable is not preset, its state can be determined by identifying and evaluating the
set of statements that may impact the value of that variable. Algorithms for identifying the
minimal set of statements that may impact the state of a variable are known as program
slicing [Weiser, 1984]. We implemented a program slicing algorithm to use when
identifying the minimal set of statements impacting the module and task variables within an
RTOS call. For our purposes, this technique assumed that the state of a module and task
variable were completely determined within the scope of a task since the program slicing
algorithm does not trace data dependencies across task boundaries. This assumption was
valid for all but one module in the MCE system.

For any particular RTOS call, module and task variables may assume different values in
different contexts. Because a program slice contains the set of all statements that may
influence the state of a variable, only a subset of these statements may actually be executed
under a particular context. In order to evaluate each program slice under each possible
context, each syntactically possible execution thread within a module that may reach a
designated RTOS call is evaluated. Each of these evaluations derives a distinct value for the
module and task variables for the particular RTOS call. These values identify the maximal
set of tasks that may be called by a specific source code RTOS call.

3.2 DETERMINING THE CALLING TASK

RTOS calls are made within the context of a particular task. A task is said to spawn some
action on another task when an RTOS call is made within the context of that task. One of the
difficulties in determining task flows is in determining which task spawned a particular
action. This is because there exists no syntactic structure, such as a procedure, that
corresponds to a task in CMS-2. Therefore, one cannot simply read the source code to
determine the task containing a particular RTOS call.

Although no syntactic structure exists in CMS-2 that corresponds to a task, it is possible to
determine which task spawns another through a call to RTOS by identifying the calling
context for that call. Because this calling context is associated with a task, once the calling
context is identified, the task that spawned this call can be identified. To do this, we needed
to define a set of recognition rules that could be used to identify occurrences of MCE tasks.
These recognition rules were based on our understanding of how tasks were implemented in

MCE.

16

Tasks are activated in MCE when an "entry-procedure" for a module is called by RTOS.
This entry-procedure is implemented by a CMS-2 construct known as a p-switch, which will
pass control to one of a set of procedures depending on the value of the argument passed by
RTOS to the p-switch. Each procedure to which an entry procedure can pass control
represents the root procedure of a different MCE task. A task continues executing in MCE
until the root procedure terminates.

To recognize the occurrences of tasks, we needed first to identify objects in the code that
represented "entry-procedures" for modules. Once these entry-procedures were recognized
the root procedures for each task could be identified by tracing through the p-switch. In
order to recognize these entry-procedures we used information extracted from external
documentation. Since this documentation was available in a structured format, we wrote a
parser to extract the relevant information from the documentation. We used this information
to select the p-switch in a file that functioned as the entry-procedure for a module. Once the
entry-procedure for a module was identified we could identify the root procedure for each
task contained in that module.

The identification of the root-procedure for each task provided the knowledge necessary for
identifying the context of an RTOS call. As noted in Section 3.1, a specific RTOS call may
be made within different contexts, resulting in different values for the module and task
variable and hence spawning different tasks. Each calling environment contains a root
procedure that corresponds to the calling task. Therefore, determining the task that spawned
a new task requires determining the calling environment for a particular RTOS call passed a
specific set of module/task values. This was done as part of evaluating each execution thread
through a program slice.

3.3 IMPLEMENTING THE DESIGN CONSTRUCT RECOGNITION

The overall strategy for determining task flows required the implementation of a set of
recognition rules that identified a small set of design constructs (e.g., tasks and modules) in
the MCE code. This information was then supplemented with techniques for evaluating the
states of specific variables in the code that identified the tasks spawned by a particular RTOS
call. These evaluations required determining the program slice for the module and task
variable in each RTOS call. This program slice was evaluated within the calling environment
of each task within the module containing the RTOS call. This evaluation returned a value
for the module and task variable together with the calling environment in which these values
were computed. These values identified the task spawned by a particular RTOS call and the
calling environment identified the task spawning the new task. In this section, we will
describe the approach we implemented for recognizing design constructs in MCE source

17

code. In the following sections, we will describe how program slicing was implemented and
how a program slice was evaluated to determine the task flow.

The purpose of design construct recognition is to identify instances of the design constructs
implemented in a software system and their interrelationships. We created a domain model
that identifies a small set of design constructs in the MCE code: tasks, modules, and a small
set of events through which tasks interact with each other (e.g., tasking spawning). The
current implementation hard-codes recognition rules for these design constructs. Each
recognition rule creates an instance of an abstract design construct or determines the value of
one of its attributes.

Because of the difficulty of recognizing these abstract design constructs from information
contained solely in the source code, we implemented recognition rules that operated on both
design documentation and the parsed representation of the source code. We were able to
identify a portion of the on-line documentation for MCE which described each of the 44
modules of the system. For each module, the module's name and a list of tasks was listed. A
list of files relevant to the module and the file that contained the entry procedure for the
module were also identified.

Although this documentation was written in English, it was fairly structured. Thus, with a
minimal amount of editing, we were able to automatically parse the documentation using a
recursive-descent parser written in Refine. The parser automatically created module and task
objects for each module and task identified in the documentation. The module and task
names and the list of relevant files for each module were also set automatically during
parsing.

After obtaining as much information about modules and tasks as possible from the
documentation, we turned to the source code to complete the model. As noted in Section 3.1,
each module is associated with an entry procedure. Because the documentation only
identifies the name of the file containing a module entry procedure, we needed to find this
procedure from the source code. This is done by generating the procedure calling hierarchy
of the module. The module entry procedure is equivalent to the root procedure in the
procedure calling hierarchy. To avoid orphan procedures, the root of the largest disconnected
subgraph is used. As stated in Section 3.2, the module entry procedure contains a CMS-2
construct called a p-switch. The p-switch passes control to the entry procedure for a
particular task depending upon the value of the p-switch variable. Therefore, from the p-
switch we were able to determine the names of the task entry procedures for each of the tasks
in that module.

Once modules, tasks, and their entry procedures have been recognized, it is possible to
determine the behavior of each task by identifying and interpreting RTOS system calls used

18

by a task. Our domain model represents each of the events produced via an RTOS call and
its associated attributes. We implemented event recognition algorithms that identify
occurrences of these events.

The first step is to find all of the RTOS calls in the source code. This is easy to do by
traversing the abstract syntax tree and testing for the name RTOS in each procedure call
object encountered. The next step is to evaluate the value of the arguments used by RTOS to
determine the task behavior the RTOS call represents. An RTOS call has two arguments; the
type of the RTOS call and a table (a CMS-2 data structure) containing information for that
type of call. The fields in the table vary depending on the type of RTOS call invoked. For
example, if the RTOS call schedules a task, then the table includes two fields which contain
the information necessary for the operating system to determine which task to schedule. For
each RTOS call identified in the code, the first argument identifying the type of RTOS call is
accessed and the appropriate event object is created to represent the event. Our algorithm
then determines the task invoking this event and the values of designated fields in the table to
determine the value of the event's attributes. This is done by computing and evaluating a
program slice for the relevant fields in the table.

3.4 IMPLEMENTING PROGRAM SLICING

A program slice on some variable v, or set of variables, at statement n consists of those
statements that contribute to the value of v just before statement n is executed. In the current
implementation, we compute a program slice from a data flow graph.

A data flow graph is constructed by identifying a set of "reaching definitions" for each
variable used in a program. Statement m is a reaching definition for variable v used by
statement n when statement m defines the value of v actually used at n through some
execution path. Note that a variable v in statement n may have several reaching definitions
under different execution paths, n "backward depends" on m, and m "forward depends" on n.
A backward (forward) program slice is computed on statement n by taking the transitive
closure of all backward-depends (forward-depends) relations on statement n.

3.4.1 Intra-procedural Data Dependence Analysis

The first step needed to generate an intra-procedural data flow graph is to generate a control
flow graph (CFG). A control flow graph for a procedure is a directed graph that contains an
initial node which represents the entry point for a procedure and a final node which
represents the procedure's exit point and a set of remaining nodes that each represent
sequences of simple statements in the procedure represented by the CFG. Each edge in the
graph represents a possible flow of control.

19

The next step in data dependency analysis is to identify the reaching definitions for each
location used in a procedure. The term location is used instead of variable because it is
necessary to keep track of arrays and data structures. Each node in a CFG is mapped to a set
of locations defined and a set of locations used in the statement represented by a node. There
exists a reaching definition between a definition and a use of a location if there is a path in
the CFG between the node that contains the definition of the location and the node that
contains the use of the location. Since a location may be defined multiple times within a
procedure, there are many potential candidates for the definition that actually reaches a use of
a location at a statement. It is possible for a location to have several reaching definitions
because the definitions for that location are in the body of conditionals. However, a
definition can also cancel another, eliminating the canceled definition as a reaching definition
for all subsequent uses of that location.

3.4.2 Inter-procedural Data Dependence Analysis

We extended the concept of reaching definitions to take into account reaching definitions
between statements contained in different procedures. Our extensions only consider reaching
definitions contained within the scope of a single task. Reaching definitions that occur
between tasks are not considered by our algorithm. Inter-procedural data flow analysis
considers both global variables and parameter passing between procedures.

In order to support inter-procedural data flow analysis, the process is done in several steps.
First, the control flow graph is generated. Second, within each procedure the definitions and
uses of a location are computed. Third, reaching definitions are computed for all locations
used in a procedure. Finally, the relations forward-depend and backwards-depends are
computed. During this process the reaching definitions for global variables are found. Each
step is done for all procedures, via a post-order traversal of the procedure calling hierarchy.

The inter-procedural reaching definitions for a global variable use can be in found one of
three places: within the procedure (an intra-procedural reaching definition), in a procedure
called by the procedure, or in a procedure which calls the procedure. Each of these are
considered in order. First, the reaching definitions within the procedure are considered. If
the reaching definition is a regular assignment statement, that statement is returned. Second,
a procedure call contains the reaching definition, if the global variable was defined within
that called procedure. The called procedure must be investigated to find the assignment
statement which is the actual reaching definition. The intra-procedural information for all
global variables defined within a procedure is summarized in the unique exit node of the
CFG, so it is easy to access. Finally, if no definitions are found within the procedure or a
called procedure, then all procedure that call this procedure must be investigated. This
process is a recursive one, traversing the calling hierarchy as needed.

20

If the variable is a formal parameter, and is not defined within the procedure then the
reaching definition must be the one implicit in parameter passing. Therefore, all of the calls
to the procedure are the reaching definitions. This will work for call-by-value parameter
passing. The issue of aliases (call by reference) or other parameter passing schemes have not
been investigated.

An example of a program slice is below, with emphasis on the inter-procedural data flow.

int some_global_variable;

intp()
{

inti = 0, z, x= l,y = 2;
z = x * y;
if(i = 0)
{
i = 5;

}
else
{
i = 6;

}
t(0);
z = i + some_global_variable;
return z;

}

int t(x)
intx;

{
some_global_variable = 1;

}

The program slice for this program is:
p: i = 5
p: i = 6
p: t(0)
p: z = i + some_global_variable
p: return z
t: some_global_variable = 1

21

In this program the value of z at return z is computed using the previous statement, therefore
the value of z depends upon some_global_variable and i. The value of i depends only on
statements in procedure p. i is set conditionally, so both assignments appear in the slice. If
conditionals were included in the slice, i == 0 would also appear. Note that even though it is
easy to determine that i does equal 0 and, therefore, i = 5 is executed and not i = 6, both still
appear in the slice because there is no way, in general, to determine statically what will
happen when the program is executed. The value of some_global_variable is set in
procedure t which is called by p. Therefore, the call to t and the assignment are included in
the slice by using inter-procedural data flow analysis.

3.5 EVALUATING EXECUTION THREADS THROUGH A PROGRAM SLICE

Once a program slice is available it is possible to evaluate the slice to determine the possible
values of the table fields used by an RTOS system call. Evaluation of a slice is made
somewhat easier in CMS-2 because procedure invocation does not introduce a new scope.
All variables in a CMS-2 program, including formal arguments of procedures, are global.

Inputs given to the evaluator are the variables of interest, a list of the variables for which
values are requested, and the statement of interest, the statement in the slice for which the
variable values should be evaluated. The execution of a slice is guided by a pre-order
traversal of the procedure calling hierarchy. As it is traversed, each procedure that is
encountered may contain some statements that are found in the slice. They are evaluated in
the order in which they occur in the procedure (i.e., statements are sorted by line number) and
their values are saved for use in other computations of the evaluator. When the statement of
interest (the RTOS call in this case) is encountered, the values of the variables of interest are
checkpointed. If the statement is encountered again, the values at that time are also
checkpointed. Sets of checkpointed values together with the calling environment for each set
are returned from the evaluator.

Given the value for the module/task pair and the calling environment, is it possible to
compute the calling tasks and the called tasks of the RTOS call. A calling task is one whose
entry procedure is contained in the calling environment. A called task is the one that
corresponds to the module/task pair. If the module is the same as the one under
investigation, the task number is an index into the module's entry procedure p-switch
statement, which can be thought of as a list of all intra-module task entry procedures. If the
module number corresponds to another module, then information from the documentation is
used to determine the name of the task so that it can be displayed in the task flow graph or
table.

22

3.6 EXTENDING M-CLUE TO RECOGNIZE OTHER SERVICES

Other services are provided via calls to the RTOS operating system in addition to spawning
new tasks. As part of computing the automatically generated documentation, we also found
these relationships. The method to find the calling task of the RTOS call is the same as
outlined above. Different information is often sent to RTOS depending upon the service
requested. These are also passed to RTOS as a slot in a data structure. The values of these
slots can be computed via a program slice and evaluation in a way similar to the method used
to discover the called module/task pair. The table below summarizes the other services that
were evaluated, whether these services spawned tasks, and the type of information extracted
regarding the service.

Services Spawn Tasks Other Infon

REGISTER yes period, delay
REGXTERNL yes period, delay
BUFREG yes period, delay
REMOVE task removed from queue
IOREQUES no file number
BUFIOREQ no file number
NOTIFY no message id
DMU maybe ddb-address

3.7 RESULTS

3.7.1 How the Results were Evaluated

As part of MITRE's support for the MCE system, each module was evaluated by hand and
written documentation including a tasking graph was prepared. These manually generated
graphs identified each task within a module, the set of tasks called by each task, and other
service calls made to RTOS by a task.

In order to validate the approach for generating tasking/service graphs that was discussed
above, it was necessary to compare the automatically generated graphs with these manually
generated ones. The Tasking Graph Comparitor was developed to automatically accomplish
this task.

The results of comparing the automatically generated graphs with manually generated graphs
are discussed in Section 3.7.3. Many of the inconsistencies found were caused by errors in

23

the manually generated documentation, and not by the algorithm to produce the automatically
generated graphs. These discrepancies are discussed in Section 3.8 and Appendix A.

3.7.2 Language Description for Graph Specification Language

To be compared, automatically generated and manually generated graphs must have a
common representation. There must be some way to specify the manually generated graphs
in a form that is readable by the machine so that it can be put into that common
representation. For this reason a graph specification language was developed. This language
is used to enter the relationship between tasks and other RTOS services. Essentially, it is a
way to specify each arc of the graph. Together a set of the individual specifications of these
relationships is used to form the graph.

For instance, to specify the arc in the ATA graph between task ATA5 and DSE9 the
following specification would be used:

(def-rtos-info

:caller-module ATA

:caller-task-number 5

:called-module DSE

:called-task-number 9)

To specify that a particular io-request was made by a module, the following specification
would be used:

(def-rtos-info
:type *rtos-io-request-call

:caller-module SCB

:caller-task-number 11

:file-number 50)

A full description of the specification language is below.

<rtOS-info> -> (def-rtos-info <type>
: caller-module <module-name>
: caller-task-number <integer>
<attribute-list>)

24

<type>-> *rtos-register-call | *rtos-remove-call | *rtos-io-request-call |

*rtos-buffer-register-call | *rtos-register-external-call |

*rtos-notify-call | *rtos-buffer-io-request-call |

*dmu-read-call | *dmu-write-call | *dmu-distribute-call |

<empty>

<module-name>-> X\TA | CMB | CMC |

<attribute-list> -> <attribute> <attribute-list> I <attribute>

<attribute> -> :caiied-task <module-name> :caiied-task-number <integer> I
notify <integer> I
ddb-address <integer> I
file-number <integer> I
delay <integer> I
line-number <integer> I

3.7.3 Results

In the table below we list the actual results of comparing the manually and automatically
generated graphs for each module of the MCE system. The columns contain data about the
two different sets of information which were manually and automatically generated,
respectively. The number in common indicate the number of relationships in the intersection
of these two sets. The recall statistic measures the number of relationships found and how
correct they were. Recall does not consider relationships that are not in the intersection. In
this way it measures the number of false negatives. The lower the recall, the fewer correct
relationships were found.

Recall = number of relationships found by both methods
number of relationships generated manually

Precision indicates the ratio of correctly found relationships over all of the relationships
found. In this way it indicates the percentage of extra relationships found (i.e., the number of
false positives). If the precision is low that means a high percentage of extra relationships
were found.

Precision = number of relationships found by both methods
number of relationships generated automatically

25

Table 3-1. Results Comparing Manually Generated and Automatically Generated Graphs

Module Number in
Manually
Generated
Graph

Number in
Automatically
Generated
Graph

Number in
Common

Recall Precision

ATA 19 21 18 94.7 85.7

CMB classified

CMC classified
CMD classified

CME classified
CMF classified
CMG classified
CMU 49 49 45 91.8 91.8

CXF classified
CXM classified
CXU 13 13 10 76.9 76.9

DMA 9 6 6 66.7 100.0

DMB 9 9 8 88.9 88.9

DRA 41 42 41 100.0 97.6

DSA not run
DSB non-standard
DSC not run
DSD
DSE 37 57 29 78.4 50.9

PMA 56 56 54 96.4 96.4

RTH non-standard
SCB 165 140 83 50.3 59.3

SIA not run
SIB 120 211 109 90.8 51.7

SMA 24 24 17 70.8 70.8

SMB 19 19 19 100.0 100.0

SMD 5 5 5 100.0 100.0

SME 36 36 29 80.6 80.6

SMF 44 36 16 54.5 66.7

SMG 18 18 17 94.4 94.4

SRC 35 33 33 94.3 100.0

SRD 39 40 39 100.0 97.5

SRE 25 22 22 88.0 100.0

SRF non-standard
SRG 9 9 9 100.0 100.0

26

Table 3-2. Optimal Results Based on "Corrected" Manually Generated Graphs

Module Number in
Manually
Generated
Graph

Number in
Automatically
Generated
Graph

Number in
Common

Recall Precision

ATA 21 21 20 95.24 95.24
CMB classified
CMC classified
CMD classified
CME classified
CMF classified
CMG classified
CMU 49 49 49 100.0 100.0
CXF classified
CXM classified
CXU 13 13 13 100.0 100.0
DMA 6 6 6 100.0 100.0
DMB 9 9 9 100.0 100.0
DRA 42 42 42 100.0 100.0
DSA
DSB non-standard
DSC
DSD
DSE 42 57 34 80.9 59.6
PMA 56 56 56 100.0 100.0
RTH non-standard
SCB
SIA not run
SIB 141 211 132 93.6 62.6
SMA
SMB 19 19 19 100.0 100.0
SMD 5 5 5 100.0 100.0
SME 36 36 28 77.8 77.8
SMF 44 36 29 65.9 80.6
SMG 18 18 18 100.0 100.0
SRC 35 33 33 94.3 100.0
SRD 40 40 40 100.0 100.0
SRE 25 22 22 88.0 100.0
SRF non-standard
SRG 9 9 9 100.0 100.0

This leads to an optimal average performance for a module of 99.7% recall and 98.6%
precision.

27

The average performance for a module is 85.9% recall and 85.5% precision. Each
discrepancy was investigated to determine if there was an error in the manually generated
graphs or in the algorithm to compute the graphs automatically. Appendix A explains each
of the discrepancies in detail. As noted, a number of these discrepancies were due to errors
in the manually generated graph. The following table expresses the optimal results that
would be obtained if the manually generated graphs were correct.

3.8 LIMITATIONS

In this section we will enumerate reasons for the incorrect results when the automatically
generated graphs produced the wrong result. In Appendix A we will take a detailed look at
all inconsistencies and relate them to these limitations.

3.8.1 Inherent Limitations of the Approach

1. The program sheer is a static tool. It cannot take into consideration dynamic
information. Additionally, the data flow analyzer does not currently take other
control flows into consideration, i.e., exception or error handling.

2. The algorithms generating task flows assumed that all variables are set within the
module. This is for the most part true, with some exceptions. One example where
this is occurs is in module CXU (see SCA in Appendix A for another example).

Missing from Automatically Generated Graph:
CXU4IOREQUES 2084
CXU5 IOREQUES 2084
CXU6 IOREQUES 2084

Not in Manually Generated Graph:
CXU4 IOREQUES 2052
CXU4 IOREQUES 2052
CXU4 IOREQUES 2052

All of these descrpencies are cause by the same code.

CMU.2573 (CXUSMD)
SET CXURTIO(0, BUSADDR) TO 2052 + ((GCUMARK(0, DCUADDR) *
32))

CMU.2574 (CXUSMD)
RTOS INPUT IOREQUES, CORAD(CXURTIO) OUTPUT GPOINTER

28

The problem is caused by the fact that GCUMARK (o, DCUADDR) is never set to
anything within the module.

3.8.2 Current Limitations of the Implementation

Some of the results are incorrect because of current limitations of the implementation. Most
of these limitations could be eliminated by enhancing the implementation of the program
slicer, CMS-2 source code evaluator, or the task flow graph generator. The following
enumerates these limitations in more detail.

1. The slicing algorithm does not include test statements in a conditional as part of a
slice because of the computational explosion that may result from including these
statements. As a result, a slice may not be correctly evaluated. For example,
consider the following MCE code:

SMAGEN.2050 (SMARDSCN):

IF GVMODE EQ MODIFYSM

OR GVMODE EQ PRINTSM

THEN BEGIN ''READ SCENARIO SMAGEN''$

SET IDDMSRD(0,MODULE) TO SMAGENMN ''SMAGEN MODULE''$

SET IDDMSRD(0,TASK) TO SMARDCTN

END ''READ SCENARIO SMAGEN''$

ELSE BEGIN ''LOAD SCENARIO SMGSWP''$

SET IDDMSRD(0,MODULE) TO SMGSWPMN ''SMGSWP MODULE''$

SET IDDMSRD(0,TASK) TO SMGRDCTN

END ''LOAD SCENARIO SMGSWP''$

The statements

SET IDDMSRD(0,MODULE) TO SMAGENMN ''SMAGEN MODULE''$

SET IDDMSRD(0,MODULE) TO SMGSWPMN ''SMGSWP MODULE''$

are both part of the slice for IDDMSRD (o, MODULE) since either statement will affect
its value.

The problem arises when evaluating this slice. Slices do not include information
regarding the context in which a statement should be executed intra-procedurally.
In actuality, only one branch of the conditional is executed at any time, which
means that a slice may include two or more different contexts. However, since the
evaluator simply uses line numbers to establish the order of execution of the
statements within a procedure, all but one execution path will be to be obscured.

29

This is because the execution of the last assignment to the variable will overwrite
the other previous assignments.

In the case of the example, the evaluator will overwrite the statement:

SET IDDMSRD(0,MODULE) TO SMGSWPMN ''SMGSWP MODULE''$

with the statement:

SET IDDMSRD(0,MODULE) TO SMAGENMN ''SMAGEN MODULE''$.

When computing the tasking graph we must investigate all contexts. The missing
conditional information causes the evaluator to misses at least one context.

To remedy this limitation, it is necessary to enhance the evaluator so that it uses the
control flow graph to order the statements, starting a new context when
encountering conditionals.

2 Statements controlling iteration are not included in the slice or handled by the
evaluator. In MCE source code, many 10 requests are made within a loop. For
example, in the following code:

VARY VSUINDX FROM 0 THRU SMNRDR - 1
IF GTM0CU(VSUINDX,RDRN0) EQ RADARIFF THEN ''VSU sim'ing Rdr''

BEGIN
SET IDRIOPKT(0,BUSADDR) TO VSUINDX + 567 "Set Logical

RT0S INPUT I0REQUES, C0RAD(IDRI0PKT) OUTPUT DUMMY

END

END ''VARY Loop''

only the RTOS call that would have been executed the first time through the loop
will be evaluated. Therefore, many 10 requests are missing

3 Impossible Paths. Certain control flow paths are not possible since they may
depend on a contradictory set of conditions. Since tests within a conditional are not
evaluated these impossible paths are still evaluated, leading to the identification of
task calls that would never occur.

4 Array/Pointer References. In CMS-2 an address of a table can be set to a variable
via the language construct CORAD. Since we do not perform data flow analysis on
what is essentially a pointer, we miss certain relationships. An example of this
occurs in module SIB.

30

SIBATO.13818 (SIBMSACT)

SIBREAD INPUT CORAD(IDMRPMRC)

SIBATO.13945 (SIBREAD)

SET CORAD(IPACKET) TO PCKTADDR - the formal parameter

SIBATO.13961 (SIBREAD)

DMUREAD INPUT CORAD(IPACKET)...

Since we don't know what the value is of IPACKET (it is IDMRPMRC), we cannot
determine the task/module pair of this call.

3.8.3 MCE Code not Implemented According to the MCE Documentation

The degree to which the automatically generated graphs accurately capture the correct
relationships is dependent upon how well the actual MCE source code adheres to the
documentated design of the MCE system. This is necessary because many of the heuristics
built into the the tool depend upon this.

In particular, in modules DSB, RTH, and SRF the p-switches in the module entry procedures
are non-standard. Therefore, the heurstics don't work very well, and we get incomplete
results.

3.9 OTHER USES FOR THE TASKING GRAPH COMPARITOR

The Comparitor can also be used for additional purposes. It could be used to compare the
tool's results to specifications of the real time system created during the design phase. It can
be used to compare different versions of the system to insure consistency. Lastly, it can be
used in software debugging of our tool. Below we discuss all of these uses in more detail.

3.9.1 Comparing Specification to Implementation

The Tasking Graph Comparitor can be used to compare the automatically generated graphs to
a specification of the task flow which was produced during the design phase (although such
documentation might be less detailed than the manually generated graphs that MITRE
prepared). In this way, a comparision between the design and the implementation would be
possible. A situation similar to this could arise if new modules were added to the MCE
system. In general, such a comparitor could be an important part of a software forward
engineering tool set.

31

3.9.2 Comparing Different Software Versions

The MCE system is undergoing constant changes during its maintenance phase. New
versions of the system are produced. Under the assumption that the higher level abstractions
of the software do not change much from version to version, the tasking relationships should
remain relatively unchanged. It would be useful to compare the tasking graphs from the old
and the new versions to see the differences. This would be a good way to focus on the
impact of the changes made in the new version. Although certain differences would be
correct, other unexpected differences could indicate a software bug.

3.9.3 Comparing for Debugging Test Flow Generation Software

Lastly, the Comparitor was very helpful when debugging the task flow graph generator.
First, it was useful to compare the automatically generated graphs to the manually generated
ones so that one could focus in on where problems with the code could be. Additionally, the
current results could be compared to previous results so that it could be determined that a bug
fix to correct the graph of one module did not cause an incorrect graph to be generated for
another module. In this way, changes to the software could be made with more confidence.

3.10 CONCLUSIONS

The real-time tasking tool implemented for MCE demonstrates that a significant level of
design recovery can be obtained when a small amount of design knowledge regarding a
system is encoded into a powerful set of tools and then applied in an analysis across the
entire system. The current implementation hard codes recognition rules for a small set of
MCE relevant objects (e.g., tasks and modules) and a small set of MCE relevant events (e.g.,
tasking spawning via RTOS calls). The notion of "objects" of interest in a program and
"events" of interest that relate objects to each other is a generic way to view the design of a
software system. We are building a framework that supports the recognition of objects and
events in an attempt to capture what can be termed the architecture [Shaw, 1989; Perry and
Wolf, 1992] of a software system. This recognition framework supports the specification of
recognition rules for object and event types (versus hard coded system specific rules) and
provides powerful visualization facilities for the set of events recognized in a program
[Harris, 1995].

The techniques used in this system are all static analysis techniques and thus are inherently
limited by the degree to which static analysis can be used to evaluate run time behavior. We
have implemented a program slicing technique that enables static evaluation of program

32

values where feasible. This capability is currently limited in its ability to deal with name
aliasing (an intractable problem), but we are continuing to increase its abilities to resolve
aliases and statically evaluate resulting program slices.

By applying powerful program analysis capabilities in concert with recognition rules derived
from some basic system design knowledge a significant level of system design recovery can
be achieved. The information is derived directly from the source code and traceable back to
that source code. As software baselines change, design recovery can be reapplied to produce
current design information, yielding a form of "living" documentation that can reliably aid in
program maintenance and understanding.

33

SECTION 4

RELATED WORK

Our approach is influenced by work that recognizes the organizational power of software
architecture, techniques for program understanding and concept formation, and the enabling
technology of reverse engineering.

Software architectures as described by [Shaw, 1989; Perry and Wolf, 1992] provide the
organizational patterns that drive the real-time design recovery system. In this case, the
architecture we analyzed and recognized was a fairly simple real-time system architecture in
which modules and tasks are the relevant architectural objects and the key architectural event
is the spawning of tasks.

Traditional program understanding work has focused on cliche-based recognition [Rich and
Wills, 1990; Harandi and Ning, 1990]. Generally, this is a bottom-up recognition approach
in which the program is matched to a set of pre-defined plans/cliches from a library.
Recognition is based on a precise data and control flow match which indicates that the
recognized source component is precisely the same as the library template. Our approach is
more of a top-down hypothesis driven recognition approach coupled with bottom-up
recognition rules. Our recognition rules do not require algorithmic equivalence of the plan
and the source being matched, rather they are based on source code level events in the code.
Quilici [1993] also explores a mixed top-down, bottom-up recognition approach using
traditional plan definitions. The style of source code event-based recognition rules is also
exemplified in [Kozzaczynski, et al., 1992; Engberts et al., 1991] which demonstrates a
combination of precise control and data flow relation recognition and more abstract code
event recognition.

Design recovery work, such as DESIRE [Biggerstaff, 1989] relies on: externally supplied
cues regarding program structure, modularization heuristics, manual assistance, and informal
information. Informal information and heuristics can also be used to reorganize and
automatically refine recovered software designs as in the modularization tool described in
[Schwanke, 1991]. In general, design recovery tools need to take advantage of extra-
linguistic information such as that provided in our design recovery rules.

35

SECTION 5

SUMMARY

CLUE, a reverse engineering tool that MITRE developed for analyzing CMS-2 programs,
was enhanced through the addition of several advanced analysis capabilities. The enhanced
CLUE, known as M-CLUE, will be integrated with other maintenance tools as part of TSME,
an automated maintenance environment for MCE. The analysis capabilities developed for
M-CLUE should provide software maintainers improved visibility into the structure of the
MCE software, allowing them to more quickly localize errors in the code and to more
thoroughly assess the potential impact of changes in the code on other system components.
The effect of these capabilities on the activities of software maintainers will be assessed as
part of an evaluation of the effectiveness of the TSME environment.

A number of capabilities were developed for Refine/C and CLUE using a language-
independent model (LIM). The LIM approach to developing capabilities allows the
separation of parsing and analyses in the capabilities, thus enabling the capabilities to be
ported to reverse engineering workbenches for different source languages with a minimal
amount of effort. A LIM has been developed for third generation languages. This approach
will be particularly useful for developing reusable capabilities for reverse engineering
assembly languages.

A task flow analysis capability was developed as part of M-CLUE to automatically extract
information from MCE source code regarding the behavior of concurrent tasks in MCE.
Although this capability recovers this information from just the MCE system, the approach
we used to developed this capability can be generalized to recover the inter-task behavior of
real-time systems in general. In particular, our success in implementing this capability
demonstrates that a significant level of design recovery can be obtained when a small amount
of design knowledge regarding a system is encoded into a powerful set of tools and then
applied in an analysis across the entire system.

37

LIST OF REFERENCES

[Banker et al., 1993]
R. Banker, S. Datar, C. Kemerer, and D. Zweig
Software Complexity and Maintenance Costs
CACM, November 1993, Volume 36-11

[Biggerstaff, 1989]
T. Biggerstaff
Design Recovery for Maintenance and Reuse
IEEE Computer, July 1989

[Engberts, et al, 1991]
A. Engberts, W. Kozaczynski, and J. Ning
Concept Recognition-based Program Transformation
Proceedings of the 1991 IEEE Conference on Software Maintenance, 1991

[Harris et al., 1995]
D. R. Harris, H. B. Reubenstein, A. S. Yeh
Reverse Engineering to the Architectural Level
Proceedings of the Working Conference on Reverse Engineering, July, 1995

[Harandi and Ning, 1990]
M. Harandi and J. Ning
Knowledge-based Program Analysis
IEEE Software, 7(1), 1990

[Kozaczynski and Ning, 1989]
W. Kozacynski and J. Ning
SRE: A Knowledge-based Environment for Large-scale Software Re-engineering Activities
Proceedings of the 11th International Conference on Software Engineering, 1989

[Perry and Wolf, 1992]
D. Perry and A. Wolf
Foundations for the Study of Software Architectures
ACM Software Engineering Notes, 17(4), 1992

[Quilici, 1993]
A Hybrid Approach to Recognizing Program Plans
Proceedings of the Working Conference on Reverse Engineering, May 1993

[Rich and Wills, 1990]
C. Rich and L. Wills
Recognizing a Program's Design: A Graph Parsing Approach
IEEE Software, 7(1), 1990

39

[Reubenstein et al., 1993]
H. Reubenstein, R. Piazza, and S. Roberts
Separating Parsing and Analysis in Reverse Engineering Tools
Proceedings of the Working Conference on Reverse Engineering, May 1993

[Schwanke, 1991]
M. Schwanke
An Intelligent Tool for Re-engineering Software Modularity
Proceedings of the 13th International Conference on Software Engineering, 1991

[Weiser, 1984]
M. Weiser
Program Slicing
IEEE Transactions on Software Engineering, SE-10(4), July, 1984

40

APPENDIX A

TASKING GRAPH DISCREPANCIES

The following is a detailed description of the discrepancies between the manually generated
documentation and the automatically generated documentation. For each module we have
summarized the differences in a discrepancy report and discuss the reasons for the
differences. Differences that cannot be accounted for are in bold in the discrepancy report.

ATA:

Discrepency Report

Missing:
ATA01 -> ATA05

Extra:
ATA01 -> ATA05 delay 5.0 sec
ATA05 -> ATA05 delay: uneval expr
ATA06 -> ATA06

• ATA5 -> ATA5 is in the graph, but doesn't have a delay. The slice which indicates that
there should be a delay is:

IF (DAYDIFF GT 1)
THEN SET TIMEDIF TO 100
ELSE BEGIN

IF (DAYDIFF EQ 1)
THEN SET TIMEDIF TO MINUTE + 1440 - TMINDAY
ELSE BEGIN

SET TIMEDIF TO MINUTE - TMINDAY
IF (DAYDIFF LT 0) OR (TIMEDIR LT 0)
THEN SET TIMEDIF TO 0

END
IF (TIMEDIF GT 0) AND (TIMEDIR LT SKEDTIME)
THEN SET SHEDTIME TO TIMEDIR

ATAFS.4796 (ATAMON)
SET SKEDTIME TO 30 $

ATAFS.4975 (ATAMON):
SET IDMNRQ(0,DELAY) TO SKEDTIME * 120 - 60 $

ATAFS.4978 (ATAMON):
RTOS INPUT REGISTER, CORAD(IDMNRQ) OUTPUT DUMMY $

41

• ATA1 -> ATA5, does not have a delay in the documentation, but one was found. The
revelant code is:

ATAFS.4351 (ATAPOS):
SET IDMNRQ(0,DELAY) TO 10

ATAFS.4353 (ATAPOS)
RTOS INPUT REGISTER, CORAD(IDMNRQ) OUTPUT DUMMY $

• ATA6 -> ATA6 was found by is not in the documentation. The relevant code is:

ATAFS.1782
TABLE IDPENT H 4 1 ''TASK 6 REQUEST PACKET'' $

ATAFS.1783
FIELD MODNUM I 8 U 0 15 P ATAFSMN ''MOD NUMBER'' $

ATAFS.1784
FIELD TSKNUM I 8 U 0 7 P 6 ''TASK NUMBER'' $

ATAFS.5314 (ATACAL)
RTOS INPUT REGISTER, CORAD(IDPENT) OUTPUT DUMMY $

CMU

Discrepency Report

Missing:
CMU6 -> CMU6
CMU7 -> CMU7
CMU 17 -> CMU 14 REMOVE
CMU 18 -> CMU9 delay 500msec

Extra:
CMU6 -> CMU6 delay 500 msec
CMU6 -> CMU7
CMU 18 -> CMU9 REMOVE
CMU18 -> CMU14 REMOVE

• CMU6 -> CMU6 is missing, but CMU6 -> CMU6 delay 500msec was generated. The
correct answer is from the automatically generated graph. The relevent code is:

CMU.5519 (CMUG)
CMUSKED INPUT REGISTER, CMUMN, AUTOINP, DELAY500, ZERO, NODATA

42

where AUTOINP is a equals tag with value task 6 andCMUG is the task entry procedure for
task 6.

• CMU7 -> CMU7 is missing, but CMU6 -> CMU7 was generated. In task 7 (CMUH) there
is no call to CMU7, however, in task 6 (CMUG) there is the following call:

CMU.5531 (CMUG)
CMUSKED INPUT REGISTER, CMUMN, MSGINTRP, NODELAY, ZERO, NODATA

where MSGINTRP is an equals tag with value task 7, and CMUG is the task entry procedure for
task 6

• CMU18 -> CMU9 delay 500msec is missing, but CMU18 -> CMU9 REMOVE was
generated. The correct answer is from the automatically generated graph. The relevent code
is:

CMU.13215 (CMUMCAN)
CMUSKED INPUT REMOVE, CMUMN, AUTOOUTP, NODELAY, ZERO, NODATA

where AUTOOUTP is a equals tag with value task 9 and CMUMCAN is the task entry procedure
for task 18.

• CMU17 -> CMU14 REMOVE is missing, but CMU18 -> CMU14 REMOVE was
generated. In task 17 (CMUH) there is no call to CMU 14, however, in task 18
(CMUMCAN) there is the following call:

CMU.13219 (CMUMCAN)
CMUSKED INPUT REMOVE, CMUMN, RAUTOUTP, NODELAY, ZERO, NODATA

where RAUTOUTP is an equals tag with value task 14, and CMUMCAN is the task entry procedure
for task 18.

cxu
Discrepency Report

Missing:
CXU4IOREQUES 2084
CXU5 IOREQUES 2084
CXU6 IOREQUES 2084

43

Extra:
CXU4IOREQUES 2052
CXU4 IOREQUES 2052
CXU4 IOREQUES 2052

All of these descrpencies are cause by the same code.

CMU.2573 (CXUSMD)
SET CXURTIO(0, BUSADDR) TO 2052 + ((GCUMARK(0, DCUADDR) * 32))

CMU.2574 (CXUSMD)
RTOS INPUT IOREQUES, CORAD(CXURTIO) OUTPUT GPOINTER

The problem is caused by the fact that GCUMARK (o, DCUADDR) never set to anything within
the module.

DMA

Discrepency Report

Missing:
DMA3 IOREQUES ^UNDEFINED*
DMA3 IOREQUES 515
DMA3 CHGFILA

The task entry procedure for DMA3 is the same as the one for DMA3, therefore, in the
interpretion of the task flow graph generator task DMA3 really doesn't exist (it looks for the
first match of task entry procedure in the list of tasks).

DMB

Discrpency Report

Missing:
DMB5 -> DMB5 IOREQUES 2054

Extra:
DMB5 -> DMB5 IOREQUES 0

44

The task entry procedure for DMB5 is DMBCYMSM. This directly calls RTOS without any
intervening calls to other procedures. Since the ddb address field of the table(s) passed to
RTOS are is not pre-set, the ddb-address is 0. The ddb-address of those tables are set in
DMB4, which often calls DMB5, but this is only known because of the task flow, so this data
flow dependency cannot be used.

DRA

Discrpency Report

Missing:
DRA00 -> DMUDISTR 224
DRA17 -> DMUDISTR 224

Extra:
DRA12 -> DRA7

• The relationship DRA 12 -> DRA7 is found, but is not in the manually generated graph.
The relevent code is:

DRARAR.524 (IDRT7RQ)
FIELD MODNUM I 8 U 0 15 P DRARARNM
FIELD TSKNUM I 8 U 0 7 P DRATKP

DRARAR.7582 (DRAWRTK)
DRATKOFF

DRARAR.6357 (DRATKOFF)
RTOS INPUT REGISTER, CORAD(IDRT7RQ) OUTPUT DUMMY

where DRATKP is task 7 and DRAWRKTK is the task entry procedure for task 12.

DSA

Discrepency Report

• DSA3 -> CXM17 DMUDISTR 32 is called from DSADISTR, which is called from
DSARSTRT which is DSA3.

• DSA5 -> CXM17 DMUDISTR 32 is called from DSADISTR, which is called from
DSAPOINT which is DSA5.

45

DSD

Discrepency Report

Missing:
DSD4 -> CXC7
DSD6 -> CXC7
DSD7 -> CXC7
DSD9 -> CXC7
DSD10 -> CXC

Extra:
DSD4 -> CXC9
DSD6 -> CXC9
DSD7 -> CXC9
DSD9 -> CXC9
DSD10 -> CXC9

• DSDx -> CXC(M)7 should be DSDx -> CXC(M)9. There are no references to task number
7 associated with the CXC(M) module. All references to CXC(M) are assoicated with
module number 9. An example of the relevent code is:

DSDHP.14739 (DSDRETRL)
SET GMVRMN TO CXMXTLMN

DSDHP.14740 (DSDRETRL)
SET GMVTASK TO 9

DSDHP.14741 (DSDRETRL)
CSGPACK INPUT GMEEXR, 1

CSDSG1.1274 (CSGPACK)
DSGPKBF

CSDSG1.1029 (DSGPKBF)
SET IDBFSRQ(0, MNUM) TO GMVRMN

CSDSG1.1030 (DSGPKBF)
SET IDBFSRQ(0, TASK) TO GMVTASK

CSDSG1.1035 (DSGPKBF)
RTOS INPUT BUFREGST, CORAD(IDBFSRQ) OUTPUT GMVPTR

46

DSE

DiscreDencv Reüort

Missing:
DSE3 > IOREQUES 16
DSE4 -> IOREQUES 16
DSE5 -> SMC4
DSE5 -> IOREQUES 16
DSE6 ->SRF7
DSE6 -> IOREQUES 16
DSE7 -> IOREQUES 16
DSE8 -> IOREQUES 16

Extra:
DSE3 ->
DSE3 -> IOREQUES 0
DSE3 -> IOREQUES 18
DSE3 -> IOREQUES 54
DSE3 -> DSB5
DSE4 ->
DSE4 -> DSB5
DSE4 -> IOREQUES 0
DSE4 -> IOREQUES 18
DSE4 -> IOREQUES 54
DSE5 ->
DSE5 -> IOREQUES 0
DSE5 -> IOREQUES 18
DSE5 -> IOREQUES 54
DSE6 -> DSB5
DSE6 -> IOREQUES 0
DSE6 -> IOREQUES 17
DSE6 -> IOREQUES 18
DSE6 -> IOREQUES 54
DSE7 -> DSB5
DSE7 -> IOREQUES 0
DSE7 -> IOREQUES 18
DSE7 -> IOREQUES 54
DSE8 -> DSB5
DSE8 -> IOREQUES 0
DSE8 -> IOREQUES 18
DSE8 -> IOREQUES 54

47

• DSE6 -> SRF7 should be called, but the module/task pair is set in a conditional, and
because of the limitations of the evaluator, the else part of the code is executed in the same
context, and overwrites the settings for SRF7. The relevent code is:

DSEAP.16575 (DSEDROP)
IF IDADMSUB(0, FRMTNM) EQ FTM2038

DSEAP.16577 (DSEDROP)
SET GMVTASK TO 7

DSEAP.16578 (DSEDROP)
SET GMVRMN TO SRFTMMN

DSEAP.16586 (DSEDROP)
SET GMVTASK TO 5

DSEAP.16587 (DSEDROP)
SET GMVRMN TO DSADPMN

• DSE5 -> SMC4 should be called, but the module/task pair is set in a conditional, and
because of the limitations of the evaluator, the else part of the code is executed in the same
context, and overwrites the settings for SRF7. The relevent code is:

DSEAP.14504 (DSEWCFF)
IF DSEORDROJQINDX, PARM8) GT 0 THEN

DSEAP.14508 (DSEWCFF)
SET GMVRMN TO SMCDLKMN

DSEAP.14509 (DSEWCFF)
SET GMVTASK TO 4

DSEAP.14514 (DSEWCFF)
SET GMVRMN TO CXMCTLMN

DSEAP.14515 (DSEWCFF)
SET GMVTASK TO 9

• DSE3 -> DSB5, DSE4 -> DSB5, DSE6 -> DSB5, DSE7 -> DSB5, DSE8 -> DSB5 is
generated via:

CSDSGl.946 (DSGCHECK)
SET GMVRMN TO DSBPMN

CSDSGl.947 (DSGCHECK)
SET GMVTASK TO 5

CSDSGl.949 (DSGCHECK)
CSGALLOC INPUT GMEANS

CSDSGl.560 (CSGALLOC)
SET IDRTSRQ(0,MNUM) TO GMVRMN

CSDSGl.561 (CSGALLOC)
SET IDRTSRQ(0,TASK) TO GMVTASK

CSDSGl.958 (DSGCHECK)
CSGSEND INPUT GMEANS

CSGSG1.695 (CSGSEND)
RTOS INPUT REGISTER, CORAD(IDRTSRQ) OUTPUT GMVPTR

DSECHNG (DSE6), DSESAVIT (DSE7) and DSERSTRT (DSE3) all call DSECLERA
which calls DSGCHECK. DSEPSMTO (DSE8) calls DSECLEARO which calls

48

DSEPLMOD, which calls CSGPACK, which calls DSGCHECK. DSEQALRT (DSE4) calls
DSECAPAL which calls CSGPACK.

• DSE3 ->, DSE4 ->, DSE5 -> are all caused by calls to CGSEND. One argument,
GMEANS, is passed to CGSEND, and within that function , as REGISTER call or an
IOREQUES call is made, depending upon the value of the argument. When the call to
CGSEND is to perform the IOREQUES, then no module/task pair is set. If conditionals were
in the slice then these extra relationships could be avoided.

PMA

Discrepency Report

Missing:
PMA5 -> PMA6
PMA11->RTH7

Extra:
PMA5 -> PMA6 delay 500 msec
PMA10 -> CMG6

• PMA5 -> PMA6 is missing but PMA5 -> PMA6 delay 500 msec was found. The relevent
code is:

PMA.12019 (PMACCSR):
SET IDRTSR(0,PMDLY) TO 1

PMA.12020 (PMACCSR):
RTOS INPUT REGISTER, CORAD(IDSTSR), OUTPUT PMDUM

• PMA 10 -> CMG6 should be in the manually generated documentation based on the
following code. PMAES is task 10.

PMA.13812 (PMAES)
PMARESET

PMA.18186 (PMARESET)
SET IDRTSR(0, PMNM) TO CMGDMN

PMA.18187 (PMARESET)
SET IDRTSR(0, PMTM) TO CMGLNKST

PMA.18191 (PMARESET)
RTOS INPUT REGISTER, CORAD(IDRTSR), OUTPUT PMDUM

• PMA11 -> RTH7 doesn't appear to be necessary. PMAPCM (task 11) makes no
RTOS/DMU calls. It calls only one procedure, PMACVTME, which calls no other
procedures, including RTOS/DMU.

49

RTH

Discrepency Report

Missing:

SIB

Extra:
SIB1->SIB4 delay 60 sec
SIB3->DMUREAD51
SIB 3 -> SIB4 delay 60 sec
SIB3 -> SIB 17 DMUDISTR 51
SIB3 -> SIB 17 DMUWRITE 22
SIB3 -> SIB 19 DMUREAD 245
SIB3 -> SIB22 DMUREAD 245
SIB3->WCA10
SIB4 -> SIB4 delay 500 msec
SIB4-> DMUDISTR 51
SIB10->DSD7
SIB 11 -> SIB20 REMOVE
SIB 17 -> SIB 17 DMUWRITE 23
SIB18->CMU8
SD323 -> DSE4
SIB23-> DMUDISTR 51
SIB23 -> SIB4 delay 60 sec
SIB23 -> SIB 17 DMUDISTR 51
SIB23 -> SIB 17 DMUWRITE 22
SIB23 -> SIB 19 DMUREAD 245
SIB23 -> SIB22 DMUREAD 245

• SIB 1,3 -> SIB4 should have a delay of 60 sees. The relevent code is:

SIBATO.8602 (TABLE IDTOPERD)
FIELD MN ... SIBATOMN

SIBATO.8603 (TABLE IDTOPERD)
FIELD TN ... CTNPER

SIBATO.8608 (TABLE IDTOPERD)
FIELD TIMED...120

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.11845 (SIBPSTIN)

50

RTOS INPUT REGISTER CORAD(IDTOPERD) OUTPUT DUMMY
SIBATO.12502 (SIBRSTIN)

SIBFILAC
SIBATO.12743 (SIBFILAC)

SIBFILCU
SIVATO.11965 (SIBFILCU)

RTOS INPUT REGISTER CORAD(IDTOPERD) OUTPUT DUMMY

• SIB3 -> DMUDISTR 51 was found and should be in the graph. The relevent code is:

SIBATO.6355 (TABLE IDMWGATO)
FIELD FILEID ... CNGATAOG

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.12502 (SIBSTRT)
SIBFILAC

SIBATO.12743 (SIBFILAC)
SIBFILCU

SIBATO.11962 (SIBFILCU)
SIBSACT

SIBATO.13824 (SIBSACT)
SIBPERWT

SIBATO.15355 (SIBPERWT)
SET IDMWGATO(0, MN) TO 0

SIBATO 15356 (SIBPERWT)
SET IDMWGATO(0, TN) TO 0

SIBATO.15357 (SIBPERWT)
DMUDISTR INPUT CORAD(IDMWGATO)...

• SIB3 -> SIB 17 DMUWRITE 22 was found and should be in the graph. The relevent code
is:

SIBATO.6415 (TABLE IDMWPLET)
FIELD FILEID ... CNSIBLTF

SIBATO.6425 (TABLE IDMWPLET)
FIELD MN ... SIBATOMN

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.12502 (SIBSTRT)
SIBFILAC

SIBATO.12743 (SIBFILAC)
SIBFILCU

SIBATO.11962 (SIBFILCU)
SIBSACT

SIBATO.13824 (SIBSACT)
SIBPERWT

SIBATO.15348 (SIBPERWT)
SET IDMWPLET(0, TN) TO CTNPWRTC - equal tag for 17

SIBATO.15349 (SIBPERWT)
DMUREAD INPUT CORAD(IDMWPLET)

51

• SIB3 -> SIB 17 DMUWRITE 51 was found and should be in the graph. The relevent code
is:

SIBATO.6355 (TABLE IDMWGATO)
FIELD FILEID ... CNGATAOG

SIBAT0.6359 (TABLE IDMWGATO)
FIELD MN ... SIBATOMN

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.12502 (SIBSTRT)
SIBFILAC

SIBATO.12743 (SIBFILAC)
SIBFILCU

SIBATO.11962 (SIBFILCU)
SIBSACT

SIBATO.13832 (SIBSACT)
SET IDWGATO(0, TN) TO CTNPWRTC - equal tag for 17

SIBATO.13833 (SIBSACT)
DMUDISTR INPUT CORAD(IDMWGATO)....

• SIB 3 -> SIB 19 DMUREAD 245 was found and should be in the graph. The relevent code
is:

SIBATO.6598 (TABLE IDMRFCUR)
FIELD FILEID MNSIBMRF

SIBATO.6602 (TABLE IDMRFCUR)
FIELD MN SIBATOMN

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.12502 (SIBSTRT)
SIBFILAC

SIBATO.12743 (SIBFILAC)
SIBFILCU

SIBATO.11962 (SIBFILCU)
SIBSACT

SIBATO.13824 (SIBSACT)
SIBPERWT

SIBATO.15345 (SIBPERWT)
SIBMAINC

SIBATO.15508 (SIBMAINC)
SET IDMRFCUR(0, TN) TO CTNHIGHC

SIBATO.15511 (SIBMAINC)
DMUREAD INPUT CORAD(IDMRFCUR)....

• SIB3 -> SIB22 DMUREAD 245 was found and should be in the graph. The relevent code
is:

SIBATO.6598 (TABLE IDMRFCUR)
FIELD FILEID MNSIBMRF

SIBATO.6602 (TABLE IDMRFCUR)
FIELD MN SIBATOMN

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

52

SIBATO.12502 (SIBSTRT)
SIBFILAC

SIBATO.12743 (SIBFILAC)
SIBFILCU

SIBATO.11949 (SIBFILCU)
SET IDMRFCUR(0,TN) TO CTNFUTUR - equal tag for 22

SIBATO.11950 (SIBFILCU)
DMUREAD INPUT CORAD(IDMRFCUR) OUTPUT...

• SIB3 -> WCA10 was found and should be in the graph. The relevent code is:

SIBATO.7619 (TABLE TRTOALMS)
FIELD MN ... WCACTLMN

SIBATO.7620 (TABLE TRTOALMS)
FIELD TN . . . CTNWCMSG - equal tag for 10

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.12466 (SIBSTRT)
RTOS INPUT REGISTER, CORAD(TRTOALMS) OUTPUT GPOINTER

• SIB4 -> SIB4 delay 500 msec was found and should be in the graph, which was a different
delay than that in the manually generated graphs. The relevent code is:

SIBATO.8665 (TABLE IDREPERD)
FIELD MN SIBATOMN

SIBATO.8666 (TABLE IDREPERD)
FIELD TN ... CTNPER

SIBATO.8671 (TABLE IDREPERD)
FIELD TIMED ... 1

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.13016 (SIBPER)
RTOS INPUT REGISTER, CORAD(IDREPERD) OUTPUT DUMMY

• SIB4 -> DMUDISTR 51 was found and should be in the graph. The relevent code is:

SIBATO.6355 (TABLE IDMWGATO)
FIELD FILEID ... CNGATAOG

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.12806 (SIBMSACT)
SIBPERWT

SIBATO.15355 (SIBPERWT)
SET IDMWGATO(0, MN) TO 0

SIBATO 15356 (SIBPERWT)
SET IDMWGATO(0, TN) TO 0

SIBATO.15357 (SIBPERWT)
DMUDISTR INPUT CORAD(IDMWGATO)...

53

• SIB 10 -> DSD7 was found and should be in the graph. The relevent code is:

SIBATO.7997 (TABLE IDTOSTDU)
FIELD MN ... DSDHPMN

SIBAT0.7998 (TABLE IDTOSTDU)
FIELD TN ... 7

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.16583 (SIBNMSA2)
RTOS INPUT REGISTER, CORAD(IDTOSTDU) OUTPUT GPOINTER

• SB 11 -> SIB20 REMOVE was found and should be in the graph. The relevent code is:

SIBATO.9017 (TABLE IDTOCLRP)
FIELD MN ... SIBATOMN

SIBATO.9018 (TABLE IDTOCLRP)
FIELD TN ... CTNCLRPC

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.17633 (SIBDISP)
RTOS INPUT REMOVE, CORAD(IDTOCLRP)...

• SIB 12 -> WCA10 was found and should be in the graph. The relevent code is:

SIBATO.7619 (TABLE TRTOALMS)
FIELD MN ... WCACTLMN

SIBATO.7620 (TABLE TRTOALMS)
FIELD TN ... CTNWCMSG - equal tag for 10

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.18601 (SIBDSCMB)
SIBDSPRC

SIBATO.18354 (SIBDSPRC)
SIBEDDSR

SIBATO.19285 (SIBEDDSR)
SIBMNDAT

SIBATO.20146 (SIBMNDAT)
SIBDEACT

SIBATO.14624 (SIBDEACT)
SIBNDALT

SIBATO.17353 (SIBNDALT)
SIBALRTD

SIBATO.13595 (SIBALRTD)
RTOS INPUT BUFREGST, CORAD(TRTOALMS)....

54

• SIB 17 -> SIB 17 DMUWRITE 23 was found and should be in the graph. The relevent code
is:

SIBATO.6454 (TABLE IDMWPMNU)
FIELD FILEID.... CNSIBMSN

SIBAT0.6463 (TABLE IDMWPMNU)
FIELD MN ... SIBATOMN

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.15804 (SIBPWRTC)
SET IDMWPMNU(0, TN) TO CTNPWRTC

SIBATO.15805 (SIBPWRTC)
DMUWRITE INPUT CORAD(IDMWPMNU)....

• SIB 17 -> SIB 17 DMUWRITE 51 was found and should be in the graph. The relevent code
is:

SIBATO.6355 (TABLE IDMWGATO)
FIELD FILEID ... CNGATAOG

SIBATO.6359 (TABLE IDMWGATO)
FIELD MN ... SIBATOMN

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.15813 (SIBPWRTC)
SET IDWGATO(0, TN) TO CTNPWRTC - equal tag for 17

SIBATO.15814 (SIBPWRTC)
DMUDISTR INPUT CORAD(IDMWGATO)....

• SIB 18 -> CMU8 was found and should be in the graph. The relevent code is:

SIBATO.7190 (TABLE IDCOMMTS)
FIELD MN ... CMUMN

SIBATO.7191 (TABLE IDCOMMTS)
FIELD TN 8

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.26581 (SIBMTSMG) - TASK 18
RTOS INPUT REGISTER, CORAD(IDCOMMTS) OUTPUT GPOINTER

• SIB23 -> DSE4 was found and should be in the graph. The relevent code is:

SIBATO.8411 (TABLE IDTOAEMD)
FIELD MN ... DSEAPMN

SIBATO.8412 (TABLE IDTOAEMD)
FIELD TN ... 4

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.12806 (SIBRSTCP) - TASK 23
SIBFILAC

SIBATO.12743 (SIBFILAC)
SIBFILCU

55

SIBATO.11962 (SIBFILCU)
SIBMSACT

SIBATO.13800 (SIBMSACT)
SIBAEWG INPUT SIBLTFF(NDX,MSNNDX)

SIBATO.27164 (SIBAEWG)
RTOS INPUT BUFREGST, CORAD(IDTOAEMD) OUTPUT GPOINTER

• SIB23 -> SIB4 delay 60 sec was found and should be in the graph. The relevent code is:

SIBATO.8602 (TABLE IDTOPERD)
FIELD MN ... SIBATOMN

SIBATO.8603 (TABLE IDTOPERD)
FIELD TN ... CTNPER

SIBATO.8608 (TABLE IDTOPERD)
FIELD TIMED...120

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.11845 (SIBRSTCP)
RTOS INPUT REGISTER CORAD(IDTOPERD) OUTPUT DUMMY

SIBATO.12502 (SIBRSTIN)
SIBFILAC

SIBATO.12743 (SIBFILAC)
SIBFILCU

SIVATO.11965 (SIBFILCU)
RTOS INPUT REGISTER CORAD(IDTOPERD) OUTPUT DUMMY

• SIB23 -> DMUDISTR 51 was found and should be in the graph. The relevent code is:

SIBATO.6355 (TABLE IDMWGATO)
FIELD FILEID ... CNGATAOG

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.12806 (SIBRSTCP)
SIBFILAC

SIBATO.12743 (SIBFILAC)
SIBFILCU

SIBATO.11962 (SIBFILCU)
SIBSACT

SIBATO.13824 (SIBSACT)
SIBPERWT

SIBATO.15355 (SIBPERWT)
SET IDMWGATO(0, MN) TO 0

SIBATO 15356 (SIBPERWT)
SET IDMWGATO(0, TN) TO 0

SIBATO.15357 (SIBPERWT)
DMUDISTR INPUT CORAD(IDMWGATO)...

56

• SIB23 -> SIB 17 DMUDISTR 51 was found and should be in the graph. The relevent code
is:

SIBATO.6355 (TABLE IDMWGATO)
FIELD FILEID ... CNGATAOG

SIBAT0.6359 (TABLE IDMWGATO)
FIELD MN ... SIBATOMN

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.12502 (SIBRSTCP)
SIBFILAC

SIBATO.12743 (SIBFILAC)
SIBFILCU

SIBATO.11962 (SIBFILCU)
SIBSACT

SIBATO.13832 (SIBSACT)
SET IDMWGATO(0, TN) TO CTNPWRTC - equal tag for 17

SIBATO.13833 (SIBPERWT)
DMUREAD INPUT CORAD(IDMWGATO)

• SIB23 -> SIB 17 DMUDISTR 22 was found and should be in the graph. The relevent code
is:

SIBATO.6415 (TABLE IDMWPLET)
FIELD FILEID ... CNSIBLTF

SIBATO.6425 (TABLE IDMWPLET)
FIELD MN ... SIBATOMN

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.12502 (SIBRSTCP)
SIBFILAC

SIBATO.12743 (SIBFILAC)
SIBFILCU

SIBATO.11962 (SIBFILCU)
SIBSACT

SIBATO.13824 (SIBSACT)
SIBPERWT

SIBATO.15348 (SIBPERWT)
SET IDMWPLET(0, TN) TO CTNPWRTC - equal tag for 17

SIBATO.15349 (SIBPERWT)
DMUREAD INPUT CORAD(IDMWPLET)

57

• SIB23 -> SIB 19 DMUREAD 245 was found and should be in the graph. The relevent code
is:

SIBATO.6598 (TABLE IDMRFCUR)
FIELD FILEID MNSIBMRF

SIBATO.6602 (TABLE IDMRFCUR)
FIELD MN SIBATOMN

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.12502 (SIBRSTCP)
SIBFILAC

SIBATO.12743 (SIBFILAC)
SIBFILCU

SIBATO.11962 (SIBFILCU)
SIBSACT

SIBATO.13824 (SIBSACT)
SIBPERWT

SIBATO.15345 (SIBPERWT)
SIBMAINC

SIBATO.15508 (SIBMAINC)
SET IDMRFCUR(0, TN) TO CTNHIGHC

SIBATO.15511 (SIBMAINC)
DMUREAD INPUT CORAD(IDMRFCUR)....

• SIB23 -> SIB22 DMUREAD 245 was found and should be in the graph. The relevent code
is:

SIBATO.6598 (TABLE IDMRFCUR)
FIELD FILEID MNSIBMRF

SIBATO.6602 (TABLE IDMRFCUR)
FIELD MN SIBATOMN

SIBATO.11700 (SIB)
SIBATAOP USING IDTSK

SIBATO.12502 (SIBRSTCP)
SIBFILAC

SIBATO.12743 (SIBFILAC)
SIBFILCU

SIBATO.11949 (SIBFILCU)
SET IDMRFCUR(0,TN) TO CTNFUTUR - equal tag for 22

SIBATO.11950 (SIBFILCU)
DMUREAD INPUT CORAD(IDMRFCUR) OUTPUT...

58

SCA

Discrepency Report

Missing:
SCA1 -> SCA5,6,7,8 REMOVE
SCA4 -> SCA5,6,7,8,9 REMOVE
SCA4 -> SCA5,6,7,8,9 DELAY 3,5,10
SCA4 -> SCA15,16,17,18,19 DELAY 3,5,10\
SCA4 -> SCA 15,16,17,18,19 REMOVE
SCA5 -> SCA6,7,8,9 REMOVE
SCA5 -> SCA5,6,7,8,9 DELAY 3,5,10
SCA5 -> SCA10 REMOVE
SCA5 -> SCA15,16,17,18,19 DELAY 3,5,10
SCA5 -> SCA 16,17,18,19 REMOVE
SCA5 -> IOREQUES 2091
SCA6 -> SCA5,6,7,9 DELAY 3,5,10
SCA6 -> SCA10 REMOVE
SCA6 -> SCA15,16,17,18,19 DELAY 3,5,10
SCA6 -> SCA 15,17,18,19 REMOVE
SCA6 -> IOREQUES 2091
SCA7 -> SCA5,6,7,8,9 REMOVE
SCA7 -> SCA5,6,7,8,9 DELAY 3,5,10
SCA7 -> SCA10 REMOVE
SCA7 -> SCA15,16,17,18,19 DELAY 3,5,10
SCA7 -> SCA 15,16,18,19 REMOVE
SCA7-> IOREQUES 2091
SCA8 -> SCA5,6,7,9 REMOVE
SCA8 -> SCA5,6,7,8,9 DELAY 3,5,10
SCA8 -> SCA10 REMOVE
SCA8 -> SCA15,16,17,18,19 DELAY 3,5,10
SCA8 -> SCA 15,16,18,19 REMOVE
SCA8 -> IOREQUES 2091
SCA9 -> SCA5,6,7,9 REMOVE
SCA9 -> SCA5,6,7,8 DELAY 3,5,10
SCA9 -> SCA10 REMOVE
SCA9 -> SCA15,16,17,18,19 DELAY 3,5,10
SCA9 -> SCA 15,16,18 REMOVE
SCA9 -> IOREQUES 2091
SCA10 -> SCA5,6,7,9 REMOVE
SCA10 -> SCA5,6,7,8 DELAY 3,5,10
SCA10 -> SCA10 REMOVE
SCA10 -> SCA15,16,17,18,19 DELAY 3,5,10
SCA10 -> SCA 15,16,19 REMOVE
SCA10 -> IOREQUES 2091
SCA11 -> SCA5,6,7,8,9 REMOVE
SCA11 -> SCA5,6,7,8 DELAY 3,5,10

59

SCA11 -> SCA10 REMOVE
SCA11 -> SCA15,1617,18,19 DELAY 3,5,10
SCA11 -> SCA 15,17,18,19 REMOVE
SCA11 ->IOREQUES2091
SCA12 -> SCA5,6,7,8,9 REMOVE
SCA12 -> SCA5,6,7,8 DELAY 3,5,10
SCA12 -> SCA10 REMOVE
SCA12 -> SCA15,1617,18,19 DELAY 3,5,10
SCA12 -> SCA 15,16,17,18,19 REMOVE
SCA12 ->IOREQUES2091
SCAB -> SCA5,6,7,8,9 REMOVE
SCA13 ->SCA5,6,7,8 DELAY 3,5,10
SCA13 -> SCA10 REMOVE
SCA13 -> SCA15,1617,18,19 DELAY 3,5,10
SCA13 -> SCA 15,16,17,18,19 REMOVE
SCA13 -> IOREQUES 561
SCA13 ->IOREQUES2091
SCA14 -> SCA5,6,7,8 DELAY 3,5,10
SCA15 -> SCA 6,7,8,9 REMOVE
SCA15 -> SCA5,6,7,8 DELAY 3,5,10
SCA15 -> SCA10 REMOVE
SCA15 -> SCA 15,16,17,18,19 DELAY 3,5,10
SCA15 -> SCA 16,17,18,19 REMOVE
SCA15 -> IOREQUES 2091
SCA16 -> SCA 5,7,8,9 REMOVE
SCA16 -> SCA5,6,7,8 DELAY 3,5,10
SCA16 -> SCA10 REMOVE
SCA16 -> SCA 15,16,17,18,19 DELAY 3,5,10
SCA16 -> SCA 15,17,18,19 REMOVE
SCA16 -> IOREQUES 2091
SCA17 -> SCA 5,6,8,9 REMOVE
SCA17 -> SCA5,6,7,8 DELAY 3,5,10
SCA17 -> SCA10 REMOVE
SCA17 -> SCA 15,16,17,18,19 DELAY 3,5,10
SCA17 -> SCA 15,16,18,19 REMOVE
SCA17 -> IOREQUES 2091
SCA18 -> SCA 5,6,7,9 REMOVE
SCA18 -> SCA5,6,7,8 DELAY 3,5,10
SCA18 -> SCA10 REMOVE
SCA18 -> SCA 15,16,17,18,19 DELAY 3,5,10
SCA18 -> SCA 15,16,17,19 REMOVE
SCA18 -> IOREQUES 2091
SCA19 -> SCA 5,6,7,8 REMOVE
SCA19 -> SCA5,6,7,8 DELAY 3,5,10
SCA19 -> SCA10 REMOVE
SCA19 -> SCA 15,16,17,18,19 DELAY 3,5,10
SCA19 -> SCA 15,16,17,18 REMOVE
SCA19 -> IOREQUES 2091

60

SCA20 -> SCA 5,6,7,8,9 REMOVE
SCA20 -> SCA5,6,7,8 DELAY 3,5,10
SCA20 -> SCA10 REMOVE
SCA20 -> SCA 15,16,17,18,19 DELAY 3,5,10
SCA20 -> SCA 15,16,17,18,19 REMOVE

Extra:

SCB

Discrepency Report

Missing:

Extra:
SCB18->SRD6

• SCB 18 -> SRD6 should be included because of the following code:

SCBINT.9022
FIELD MODNUMSRDIDMN

SCBINT.9023
FIELD TASKNUM ... 6

SCBINT.24787 (SCBSMINP)
SCBRIUIN

SCBINT.21826 (SCBRIUIN)
SCBWNDOW

SCBINT.22918 (SCBWNDOW)
SCBGOTWE

SCBINT.23112 (SCBGOTWE)
SCBSNDWE

SCBINT.23221 (SCBSNDWE)
RTOS INPUT REGISTER, CORAD(IDSRVWDW) OUTPUT DUMMY

• SCB 11 -> DSC4 should have been found, but because of the conditional (FOR stmt)
SCB11 -> DSA5 was found instead. The relevent code is:

SCBINT.14218 (SCBDSPOU)
FOR IDSUBHRD(0, FRMTNMBR)

SCBINT.14220 (SCBDSPOU)
SET IDDSPACM(0,MODULE) TO DSCRPMN

SCTINT.14221 (SCBDSPOU)
SET IDDSPACM(0,TASK) TO 4

SCBINT.14224 (SCBDSPOU)
SET IDDSPACM(0,MODULE) TO DSADPMN

61

SCBINT.14225 (SCBDSPOU)
SET IDDSPACM(0, TASK) TO 5

SCBINT.14230 (SCBDSPOU)
RTOS INPUT REGISTER, CORAD(IDDSPACM) OUTPUT DUMMY

• SCB3,4,5,6,7,8,11,12,13,14,15,18 -> SMF6 appears instead of
SCB4,5,6,7,8,11,12,13,14,15,18. This is because of the conditional problem in program
slicing. The following code is contained in procedure SCBSIMOU.

©DP15.12.2FOR IDSIMH(0,MSSGTYPE) $
©DPI 5 .12 .2
©DP15 .12 .2
©DP15 .12 .2
©DP15 .12 .2
©DPI 5 .12 .2
©DP15 .12 .2
©DP15 .12 .2
©TR22939 .2
©DPI 5 .12 .2
STATUS R
1

EQUEST

©TR22939
©B/CS0006
©TR22939
©TR22939
©TR22939
©TR22939
©TR22939
©B/CS0006
©DP15 .12 2
©DP15 12 2
©DP15 12 2
©DP15 12 2
©B/CS0006
©TR22939
©TR2293
©DP15 12. 2
POSCMD,SYSTIME
©DP15 12. 2
RESET,
©DPI5. 12. 2
©DP15. 12. 2
©DP15. 12. 2
©DPI5. 12. 2
©DP15. 12. 2
©DP15. 12. 2
©DP15. 12. 2
©DP15. 12. 2
©DP15. 12. 2
©DP15. 12. 2
©DP15. 12. 2
©DPI5. 12. 2

BEGIN RDRCMDS radar command''$
SET CORAD(IDSMHD) TO CORAD(BUFFRADR) $
FOR IDSMHD(0,CMDTYPE) $

BEGIN EMCONON,EMCONOFF,IFFMODES $
SET IDSMPK(0,TASK) TO 4 $
SET IDSMPK(0,MODULE) TO SMFRIGMN $

END $
BEGIN 15 ''FILTER,RDRREG,MIGSTS'' $

''FILTER DESIGNATION,RADAR REGISTRATION,MIG

IF IDSMHD(0,SUBCODE) EQ 3
THEN BEGIN ''request MIG status''$

SET IDSMPK(0,TASK) TO 4 $
SET IDSMPK(0,MODULE) TO SMFRIGMN $

END $
ELSE BEGIN "1" $

IF IDSMHD(0,SUBCODE) EQ 2
THEN BEGIN ''filter designation cmd''$

SET IDSMPK(0,TASK) TO 9 $
SET IDSMPK(0,MODULE) TO SMETDGMN $
END $

ELSE
SET FNDIT TO TRUE ''radar correction cmd.''$

END ''ELSE BEGIN 1'' $
END ■'begin 15'' $
BEGIN

PURGE,MIGRESET,LSFILTER,MIGTEST $
''POSITIONAL CMD,SYSTEM TIME,PURGE ALL TRACKS,MIG

LOW SPEED FILTER,MIG TEST TARGET CMD''
IF IDSMHD(0,SUBCODE) EQ 2 AND IDSMHD(0,IFC) EQ 3

''PURGE ALL TRACKS COMMAND''
THEN BEGIN $

SET IDSMPK(0,TASK) TO 4 $
SET IDSMPK(0,MODULE) TO SMFRIGMN $

END ''PURGE'' $
ELSE

SET FNDIT TO TRUE $
END $
BEGIN MOD4CNTL,DECOYS $

SET FNDIT TO TRUE $

62

■

©DP15.12.2 END $
©DP15.12.2 END ''FOR''$
©DP15.12.2 END ' 'RDRCMDS' $
©DP15.12.2 BEGIN RDRMSG ' radar select command''$
©DP15.12.2 SET IDSMPK{0 TASK) TO 6 $
©DPI5.12.2 SET IDSMPK(0 MODULE) TO SMFRIGMN $
©DP15.12.2 END $
©DP15.12.2END ''FOR'' $

SMA

Discrepencv Report

Missing:
SMA4 -> SMA8 DMUREAD 280
SMA4 -> SMG5 DMUREAD 280
SMA5 -> SMA4 DMUREAD 280
SMA7 -> SMA7 REMOVE
SMA8 -> SMA7 REMOVE
SMA9 -> SMA8 DMUREAD 280
SMA9 -> SMG5 DMUREAD 280

Extra:
SMA4
SMA4 -> SMG6 DMUWRITE 283
SMA4 -> SMG4 DMUREAD 280
SMA5 -> SMG5 DMUREAD 283
SMA5 -> SMG5 DMUREAD 283
SMA6 -> SMA6 DMUWRITE 283
SMA9 -> SMG5 DMUREAD 283

• SMA9 -> SMA8 DMUREAD 280 missing because the slice doesn't deal with conditionals
correctly. The relevant code is:

SMAGEN.2050 (SMARDSCN):
IF GVMODE EQ MODIFYSM

OR GVMODE EQ PRINTSM
THEN BEGIN ''READ SCENARIO SMAGEN''$

SET IDDMSRD(0,MODULE) TO SMAGENMN ' 1SMAGEN MODULE''$
SET IDDMSRD(0,TASK) TO SMARDCTN
END ''READ SCENARIO SMAGEN'' $

63

ELSE BEGIN ''LOAD SCENARIO SMGSWP''$
SET IDDMSRD(0,MODULE) TO SMGSWPMN ''SMGSWP MODULE''$
SET IDDMSRD(0,TASK) TO SMGRDCTN
END ''LOAD SCENARIO SMGSWP''$

• SMA4, SMA5, SMA9 -> SMG5 DMUREAD 280 is missing, and file number was found.
As we can see this for statement indicates that 280, 281, 282, and 283 is possible, so both the
documentation and the automatic process is wrong. If the conditionals are included in the
slice, then the automatic method should be "more" correct.

SMAGEN.2062 (SMARDSCN):
FOR GVSCENIX ''FOR SCENARIO INDEX'' $

©DP15.1 BEGIN 0,1,2 ''SCENARIO FILE A''$
SET IDDMSRD(0,FILEID) TO MNSMSCNA
SET IDDMSRD(0,STARTREC) TO SMLSCEN*GVSCENIX + RSCNDIR

END ''SCENARIO FILE A1'$
©DP15.1 BEGIN 3,4,5 ''SCENARIO FILE B''$

SET IDDMSRD(0,FILEID) TO MNSMSCNB ''SCENARIO FILE B''$
0DP15.1 SET IDDMSRD(0,STARTREC) TO SMLSCEN*(GVSCENIX-3)'

END ''SCENARIO FILE B''$
©DP15.1 BEGIN 6,7,8 ' 'SCENARIO FILE C'$

SET IDDMSRD(0,FILEID) TO MNSMSCNC ''SCENARIO FILE C'$
©DP15.1 SET IDDMSRD(0,STARTREC) TO SMLSCEN*(GVSCENIX-6)

END ''SCENARIO FILE C''$
SDP15.1 BEGIN 9,10 ''SCENARIO FILE D''$
©DP15.1 SET IDDMSRD(0,FILEID) TO MNSMSCND ''SCENARIO FILE D''$
©DP15.1 SET IDDMSRD(0,STARTREC) TO SMLSCEN*(GVSCENIX-9)
©DP15.1 END ''SCENARIO FILE D''$

• SMA7 -> SMA7 (REMOVE) and SMA7 -> SMA8 (REMOVE) are missing. The only
remove call is the one listed below, yet we don't know how to handle a call where the whole
table isn't passed to RTOS.

SMAEGN.18 3 7(SMAPRTOP) :
RTOS INPUT REMOVE,CORAD(IDREGTSK(0,MODULE))
OUTPUT DUMMY ''HAVE RTOS DESCHEDULE

• SMA5 -> SMG5 DMUREAD 283 is found, but not in the documentation. SMABUILD
(SMA5) calls SMARDSCN (SMA9) which tasks SMG5 via a DMUREAD call. The
revelent code is:

SMAGEN.2 058 (SMARDSCN)
SET IDDMSRD(0, MODULE) TO SMGSWPMN

SMAGEN.2 059 (SMARDSCN)
SET IDDMSRD(0, TASK) TO SMGRDCTN

SMAGEN.2 093 (SMARDSCN)
DMUREAD INPUT CORAD(IDDMSRD) OUTPUT...

64

• SMA5 -> SMA4 DMUREAD 280 is missing, because of the problems with conditionals.
The relevent code is:

SMAGEN.2053 (SMARDSCN)
SET IDDMSRD(0, MODULE) TO SMAGENMN

SMAGEN.2054 (SMARDSCN)
SET IDDMSRD(0, TASK) TO SMARDCTN

SMAGEN.2058 (SMARDSCN)
SET IDDMSRD(0, MODULE) TO SMGSWPMN

SMAGEN.2059 (SMARDSCN)
SET IDDMSRD(0, TASK) TO SMGRDCTN

SMAGEN.2093 (SMARDSCN)
DMUREAD INPUT CORAD(IDDMSRD) OUTPUT...

• SMA4 -> ? was found. The following code indicates that the RTOS call is made without
setting the module and task number in that task. This is an example where the data
dependencies cannot be found via this static method

SMAGEN.1236 (SMAGENT)
SMAILSA

SMAGEN.2572 (SMAILSA)
RTOS INPUT REGISTER, CORAD(IDREGDSC)...

• SMA4 -> SMA6 DMUWRITE 283 was found but not in the manually generated
documentation. Conditionalized code is again the culprit. As we can see this for statement
indicates that 280, 281, 282, and 283 is possible, so both the documentation and the
automatic process is wrong. If the conditionals are included in the slice, then the automatic
method should be "more" correct.

SMAGEN.1630 (SMARECRD)
SET IDDMSWR(0, FILEID) TO

SMAGEN.1630 (SMARECRD)
SET IDDMSWR(0, FILEID) TO

SMAGEN.1630 (SMARECRD)
SET IDDMSWR(0, FILEID) TO

SMAGEN.163 0 (SMARECRD)
SET IDDMSWR(0, FILEID) TO

SMAGEN.1653 (SMARECRD)
DMUWRITE INPUT CORAD(IDDMSWR).

MNSMSCNA (= 280)

MNSMSCNB (= 281)

MNSMSCNC (= 282)

MNSMSCND (= 283)

SMB

No discrepencies

65

SMD

No discrepencies

SME

This module was run interactively.

Discrepency Report

Missing:

SME4 -> SME4 DELAY 625 msec
SME4 -> IOREQUES 567
SME5 -> SME4 DELAY 625 msec
SME5 -> IOREQUES 567
SME6 -> SME4 DELAY 625 msec
SME6 -> IOREQUES 567
SME7 -> SME4 DELAY 625 msec
SME7 -> IOREQUES 567

Extra:

SME4 -> IOREQUES 568
SME4 -> IOREQUES 603
SME5 -> IOREQUES 568
SME5 -> IOREQUES 603
SME6 -> IOREQUES 568
SME6 -> IOREQUES 603
SME7 -> IOREQUES 568
SME7 -> IOREQUES 603

; Missing

66

SMF

Discrepency Report

Missing:

SMF5 -> SME5
SMF5 -> SME6
SMF5 -> SME7
SMF5 -> SMF8 delay 10 sec
SMF5 -> SMF8 REMOVE
SMF5 -> SMF9 delay 10 sec
SMF5 -> SMF9 REMOVE
SMF5 -> SMF10 delay 10 sec
SMF5 -> SMF10 REMOVE
SMF6->SCB18
SMF6IOREQUES 589
SMF7IOREQUES 589
SMF8IOREQUES 589
SMF9IOREQUES 589
SMF10IOREQUES 589

Extra:
SMF4 IOREQUES 567
SMF5 IOREQUES 567
SMF6 IOREQUES 567
SMF7 IOREQUES 567
SMF8 IOREQUES 567
SMF9 IOREQUES 567
SMF10 IOREQUES 567

• SMF5 -> SMF8,9,10 REMOVE are missing because RDRINDX is not set, TASKNUM
always 7. The value of RDRINDX is equal to SMFRDRID(0, RADX), which is not set to
any value within the module. The relevent code is:

SMF.6615 (SMFRATE)
SET IDSMFRIG(0,TASKNUM) TO RDRINDX + 7

SMF.5138 (SMFRDM)
SET RDRINDX TO SMFRDRID(0,RADX)

• SMF5 -> SME5,6,7: are missing Because RDRINDX not set, TASKNUM always 4. The
value of RDRINDX is equal to SMFRDRID(0, RADX), which is not set to any value within
the module.

67

SMF.6366 (SMFSCAN)
SET TASKNUM TO RDRINDX + 4

SMF.5138 (SMFRDM)
SET RDRINDX TO SMFRDRID(0,RADX)

SMF5 -> SMF5,6,7,8 should have a delay Seems like there should always be a delay...
SET DELAY TO 20 "to delay 1st execution by 10 seconds "$
SET MODNUM TO SMFRIGMN
SET TASKNUM TO RDRINDX + 7

• SMF4,5,6,7,8,9,10 IOREQUES 567 should be 568-571, but we don't evaluate loops (related
to missing 568). The relevent code is:

VARY VSUINDX FROM 0 THRU SMNRDR - 1
IF GTMOCU(VSUINDX,RDRNO) EQ RADARIFF THEN ''VSU sim'ing Rdr''

BEGIN
SET IDRIOPKT(0,BUSADDR) TO VSUINDX + 567 "Set Logical
RTOS INPUT IOREQUES, CORAD(IDRIOPKT) OUTPUT DUMMY

END
END ''VARY Loop''

• SMF6,7,8,9,10 IOREQUES 567 should be 589, (or something else depending upon what
IDFRECV(0,GVOCUNUM) is, which wasn't in slice for some reason) (related to missing
589)

(SMFSLM)
SET OCUNUMBR TO IDFRECV(0,GVOCUNUM)

(SMFSLM)
SET VSUINDEX TO (OCUNUMBR - 16) / 4

(SMFNORTH) SET BUSADR TO 589

IF VSUIO EQ 0 THEN ''Output to go to <SIC>''
SET IDRIOPKT(0,BUSADDR) TO BUSADR

ELSE ''Output to go to a single VSU''
SET IDRIOPKT(0,BUSADDR) TO VSUINDEX + 567 ''Set Logical
RTOS INPUT IOREQUES, CORAD(IDRIOPKT) OUTPUT DUMMY

68

SMG

Discrepency Report

Missing:
SMG04->SMG05 DMUREAD 280

Extra:
SMG04 -> SMG04 DMUREAD 280

• SMG4 -> SMG5 is missing but SMG4 -> SMG4 was found instead. The relevant code is:

SMGPNN.308: SWACTNTN EQUALS 4

SMGBWP.2581 (SMGXXSIM):
SET IDDMSRD(0,TASK) TO SWACTNTN

SMGBWP.2584 (SMGXXSIM):
DMUREAD INPUT CORAD(IDDMSRD) OUTPUT DMSCODE, DMSADDR

SRC

Discrepency Report

Missing:
SRC6 -> IOREQUES 1940
SRC12 -> IOREQUES 1940

69

SRD

Discrepency Report

Extra:
SRD8 -> DMUDISTR 52

• SRD8 -> DMUDISTR 52 (CNGATAOG) is found, but not in the documentation. In what
follow, the procedure SRDSIPT is the entry procedure of task 8. The revelant code is:

SDRID.14881 (SRDSIPT):
SET IDDMUPR{0, FILEID) TO CNFATAOG

SRDID.14884 (SRDSIPT)
DMUDISTR INPUT CORAD(IDDMUPR) OUTPUT GCOMPCDE, GDMADDR

SRE

Discrepency Report

Missing:
SRE4 -> DSC4
SRE5 -> DSC4
SRE6 -> DSC4

• All of these missing events are due to missing conditional code in the program slices. The
relevent code is:

SRETE.3871 (SREDSOUT)
SET IDDSREQ(0,TSKNUM) TO 5

SRETE.3874 (SREDSOUT)
SET IDDSREQ(0,TSKNUM) TO 4

SRETE.3 879 (SREDSOUT)
RTOS INPUT REGISTER, CORAD(IDDSREQ) OUTPUT DUMMY

«U.S. GOVERNMENT PRINTING OFFICE: 1995-710-126-2OO66

70

MISSION

OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

