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SECTION 1 

INTRODUCTION 

The software for many large military systems is maintained by DOD organizations that are 
responsible for both enhancing as well as correcting problems in these systems' software. 
The productivity of software maintenance organizations can be adversely affected by the 
considerable amount of time software maintainers spend simply trying to understand the 
software they are maintaining. Studies of the software maintenance process indicate that 
software maintainers, on the average, spend approximately one-half of their time developing 
an understanding of the software. One of the primary reasons for this is that the 
documentation and other formal descriptions of large software intensive military systems are 
often inadequate and unreliable. As a result, software maintainers typically rely on source 
code as the only completely reliable source of information on the software. This process of 
trying to develop an understanding of the software through manually navigating through the 
code is extremely time consuming and error prone. This situation has created a need for a 
technology that both automatically extracts information from the source code and presents 
this information in a comprehensible format. 

1.1      LIMITATIONS OF REVERSE ENGINEERING TOOLS 

Reverse engineering tools that extract certain aspects of the structure of a software system 
from source code are commercially available. Although these tools vary in the range of 
capabilities that they provide, most of them share a common core of capabilities. For 
example, all of the tools we have surveyed will display the calling hierarchy of a program, 
although they will vary in how this information is displayed. Many of the tools will also 
display information about the flow of control within individual procedures. Tools will also 
typically extract and display information concerning the structure and usage of data within a 
program. For example, tools will often generate reports concerning which procedures use or 
set particular variables. They will also typically display information concerning the structure 
of records, tables, or arrays used within a program. 

These tools can provide maintainers insight into the structure of a program particularly when 
they are coupled with navigational aids. For example, using one of the family of tools 
available from Reasoning Systems, (Refine/C, Refine/Ada, Refine/Fortran, Refine/ Cobol), a 
software maintainer can interactively navigate through code by selecting different portions of 
code to view from a structure chart. A maintainer may also begin to gain insight into the 
potential impact of changes he plans to introduce into a program by using these tools to 
identify areas of the program that may be affected by making the change. In each of these 



cases, reverse engineering tools may improve the productivity of a software maintainer both 
by providing the maintainer insight into the structure of a program and by making relevant 
portions of a program readily accessible to the maintainer. 

In spite of the potential of these tools, two factors limit their utility for many DOD software 
systems. First, although reverse engineering tools are widely available for C, Fortran, Cobol, 
and Ada, relatively few tools are available for programming languages in which many older 
military applications were written (e.g., Jovial, CMS-2, and various assembly languages). In 
addition, different non-standard variants of common programming languages, for which no 
reverse engineering tools are commercially available, were often used. 

Second, the utility of commercially available tools for many DOD software systems is 
limited by their ability to extract only information concerning the sequential execution of a 
computer program. Real-time military systems frequently consist of individual units of 
execution (tasks) that can operate concurrently on different processors or by interleaving their 
functioning on the same processor. These concurrent tasks typically exchange both control 
information as well as data through a variety of mechanisms. However, with the exception of 
tools that support Ada and its explicit tasking constructs, reverse engineering tools fail to 
capture information concerning the flow of information between tasks. As a result, these 
tools provide limited support for understanding the structure of real-time systems 

1.2      OVERCOMING THE LIMITATIONS OF REVERSE ENGINEERING TOOLS 

1.2.1   Building Tools for Multiple Legacy Languages 

One factor limiting the general availability of reverse engineering tools for different legacy 
languages is the relative cost of building these tools. To the extent that these tools can rely 
on capabilities that can be reused to support multiple languages, the overall cost of building 
these tools should be significantly reduced. 

Reverse engineering tools generally are not built to easily support porting analysis 
capabilities from one source language to another. One reason for this is that most reverse 
engineering tools tightly couple their two primary activities: parsing and analysis. To 
provide efficient analysis capabilities, a tool builder may decide to provide a fixed set of 
analysis reports and then optimize the tool to extract just the information needed for these 
reports. In this sort of design an explicit intermediate representation of the source program is 
usually not created thus saving greatly on memory costs. Furthermore, the information 
required for the reports can be extracted during the parsing phase and then populated into 
idiosyncratic data structures to support the required analyses. One tradeoff in such an 
approach is that flexibility to support unanticipated analysis capabilities is lost. By tightly 



coupling parsing, analysis, and analysis optimization, the task of adding support for new 
languages or new analysis capabilities can be tantamount to a complete redevelopment 
activity. 

Some tools may create an explicit intermediate representation of the source code. Doing this 
provides some flexibility in adding new analysis capabilities in that a clean interface to the 
source code information can be defined and the information itself persists after parsing. 
However, if this intermediate representation is syntax specific, then porting capabilities from 
source language to language will still be a major effort. In Section 2, we describe an 
approach to language-independent representation of source code that permits reuse of 
analysis capabilities within source languages of a particular family (e.g., 3GLs). 

1.2.2   Capturing Inter-task Communication in Legacy Systems 

As we noted above, reverse engineering tools generally fail to capture information 
concerning the interaction of concurrent tasks in a system. One of the primary reasons for 
this situation is that understanding design constructs relevant to the execution of concurrent 
tasks requires more than an implementation level understanding of the software [Biggerstaff, 
1989]. The syntax of programming languages, particularly older legacy languages such as 
CMS-2 or Fortran, does not make constructs such as inter-task communication and task 
synchronization explicit. Instead, the inter-task behavior of a system often depends on the 
design of the specific operating system and the way in which the application code interacts 
with the operating system. Since reverse engineering tools only extract information that is 
represented explicitly in the syntax of the programming language, tools for sequential 
programming languages can only extract information concerning the sequential execution of 
individual tasks. These tools will fail to capture information concerning how these tasks 
interact. 

However, people can often extract knowledge about how concurrent tasks interact from the 
source code of older systems, even though such information is not explicitly available in the 
syntax of a programming language. Extracting this information requires knowledge about 
the type of processing model used by the system software and how this processing model has 
been implemented in a particular system. 

In addition to knowledge about the type of processing model used by a system, it is also 
necessary to understand the idiosyncratic techniques used by a system to implement these 
constructs. For example, although tasks may not be explicitly represented through syntactic 
constructs in the code, specific recurring patterns of code may be used to represent a task in a 
particular application. As a result, it may still be possible to recognize those specific portions 
of code that implement a particular task. Similarly, the specific actions through which these 
tasks communicate with each other may be implemented through particular types of calls to 



the real-time operating system. Interpreting how specific tasks communicate with each other 
will depend on being able to interpret the meaning of these specific calls. 

As can be seen, the ability of a person to manually extract extra-linguistic information from 
the source code of a program depends on his ability to use knowledge about how specific 
design constructs are implemented in the source code. Reverse engineering tools are not 
designed to make use of such meta-design knowledge. However, unless techniques are 
developed to make use of meta-design knowledge, reverse engineering tools will fail to 
extract more than the implementation level detail of a program. As long as tools can only 
provide limited visibility into the structure of a program, they will not be able to provide the 
insight required to understand the design of a real-time system. In Section 3, we describe an 
approach for using this meta-design information to support the extraction of task flow 
information from a system implemented in CMS-2. 

1.3  BACKGROUND 

In FY92 MITRE developed CLUE, CMS-2 Language Understanding Environment, a reverse 
engineering tool for CMS-2. CLUE was implemented on top of a commercially available 
reverse engineering development environment, Software Refinery from Reasoning Systems. 
Software Refinery consists of three components: Dialect, a parser generator that was used to 
build the CMS-2 parser; Software Refine, a programming language that was used to develop 
the CLUE reports; and InterVista, a graphical user interface builder that was used to develop 
the displays for these reports. Initially, CLUE consisted of two reports: a procedure calling 
hierarchy and a data set/use report. The research described in Section 2 extended the CLUE 
tool by incorporating several advanced analysis capabilities that were initially developed as 
extensions to Refine/C, a commercial reverse engineering tool for C. CLUE is available 
under a General Public Licence. 

The research described in Section 3 was also built on top of CLUE, adding the capability to 
analyze the task flow behavior of a real-time system built in CMS-2, the Modular Control 
Equipment (MCE) system. CLUE, including the enhancements described in this report, have 
been made available to the Computer Support Squadron, Air Combat Command (CSS/ACC). 
This version of CLUE with its MCE specific extensions is known as M-CLUE. The 
CSS/ACC is responsible for maintaining MCE. M-CLUE has been integrated into the 
Theater Software Maintenance Environment (TSME) that has been procured by the MCE 
project to support maintenance activities of the CSS/ACC. 



SECTION 2 

THE LANGUAGE-INDEPENDENT MODEL 

One of the goals of this work was to develop a tool that would be useful for many different 
legacy systems. Since legacy systems use a host of different source languages, it is important 
to discover ways to avoid creating a completely new tool for each language. This is 
necessary because commercial tools are probably not available for these languages due to 
their small non-commercial customer base. This is particularly true when assembly 
languages are involved. Therefore, since not much effort can be expended for each language, 
a method must be found that will make the development of a similar tool for another legacy 
language straightforward and inexpensive. 

At first this problem might seem trivial. The answer might be summed up as "all you have to 
do is add another parser." We found this solution to be naive based on our efforts to modify 
a tool in just this manner [Reubenstein et al., 1993]. Our approach is the use of a language- 
independent model (LIM). A language-independent model can be the basis for implementing 
language-independent analysis capabilities that are not developed for a particular language 
but for a family of languages based on an abstract model. Analysis capabilities can then be 
written referencing this model without worrying about or depending upon the idiosyncrasies 
of any one language. 

Our approach is predicated upon the ability to separate the issues of parsing and analysis. 
Using this approach a parser converts the source code into a language-dependent parse tree. 
We then use language-independent analysis capabilities to produce reports and higher-level 
views of the software. A small amount of language-dependent code must be written to access 
information from the parse tree, but the core code for the analysis capability is common to all 
languages. This makes the analysis capabilities transparent to the underlying language- 
dependent representation. 

2.1       SEPARATING PARSING AND ANALYSIS 

One approach to writing reverse engineering tools is to intermingle parsing and analysis. 
With this approach, it is straightforward to use parsing in a limited way to traverse the code 
to recognize constructs and gather information that is pertinent for a particular report. 
Therefore, there is often no internal representation of the source code. 

A problem with this approach becomes clear when one tries to port an analysis capability to a 
new language. Since the analysis capability is intertwined with the parsing of the source 



code and there is no common internal representation of the source code, it is difficult to reuse 
the analysis code. The analysis capability generally must be rewritten from scratch for the 
new language. 

We feel that there is another problem with this approach. The intertwining of parsing and 
analysis is really a mixing of language, syntax, and semantics. The grammar productions 
used by a parser capture the syntax of a language, but individual productions do not 
necessarily correspond to the programming concepts of a language. Separation of these two 
concerns not only makes it possible to reuse much of the analysis code, but also frees the tool 
builder from needing to address subtle differences in languages when trying to write analysis 
capabilities. 

2.2      CREATING AN INTERMEDIATE LANGUAGE-DEPENDENT 
REPRESENTATION 

A language-dependent representation of the source code is created through parsing the code. 
Parsing takes the textual representation of software and converts it in into an internal 
representation that captures the structure of the program as an Abstract Syntax Tree (AST). 
Parsers are usually constructed by an automatic parser generator that takes as input a formal 
description of the syntax of a language. We used a parser generator called DIALECT that is 
a part of a reverse engineering development environment known as Software Refinery from 
Reasoning Systems. The parser generated by DIALECT represents the nodes in the AST as 
objects that belong to a class of objects associated with the left-hand side of non-terminals of 
the appropriate grammar rule. The arcs in the AST are labeled. These labels represent part- 
whole syntactic relationships between the objects in the AST. For example, a node in the 
AST may represent a conditional statement. A conditional statement may be decomposed 
into several parts including a test condition, a then clause, and an else clause, each of which 
may be viewed as attributes of the conditional statement. Each of these parts are represented 
as objects. The arcs connecting the conditional statement to each of its parts are labeled with 
the corresponding names of the attributes they represent (i.e., test-condition, then-clause, 
else-clause). 

2.3      LANGUAGE-INDEPENDENT ANALYSIS 

Analysis routines operate on the contents of an AST by creating different views of the 
structure of the code. These views each reveal relationships between parts of the code that 
are not explicitly represented in the AST. These views include a procedure calling hierarchy, 
intra-procedural control flow, data flow, data set/use, and the task flows described in 



Section 3. In addition, it is possible to perform analyses on top of these views to either 
compute statistical attributes of these views or to identify specific portions of a view that 
satisfy particular conditions. An example of a statistical analysis is the McCabe complexity 
metric which operates on a control flow graph to compute the number of independent test 
paths in a procedure. Such a measure provides an estimate of the understandability of a 
procedure and may be used to estimate the maintainability of the procedure [Banker et al., 
1993]. Other analyses that identify relevant portions of a particular view include dead code 
detection and program slices. Dead code detection identifies portions of the code that will 
not be referenced. Dead code can be identified from the procedure calling hierarchy by 
identifying disconnected subgraphs of the hierarchy. A program slice identifies all of the 
statements that are used to compute the value of a particular variable used at a particular 
statement in the code. Program slices are derived from data flow and control flow graphs. 

In order for analysis routines to be written in a language-independent manner, it is necessary 
for these routines to reference language constructs independent of the syntax of a specific 
programming language. For example, a language-independent implementation of a routine to 
generate control flow graphs needs to distinguish between types of statements represented in 
the AST. The types of statements it is looking for will fall into one of several predefined 
classes, including procedure-calls, while-loops, iteration-loops, conditionals, case-statements, 
and variable assignment statements. Each of these statement types represents language- 
independent constructs to which the analysis routine must make reference. Once a type of 
statement is identified the analysis routine will perform different actions depending on the 
type of statement identified. These actions must also reference language constructs in a 
language-independent manner. For example, if the analysis routine has identified a 
conditional block, then it needs to identify the test-condition, then-part, and else-part of the 
conditional. Each of these parts also represents a language-independent construct. 

By implementing analysis routines that reference the AST through language-independent 
constructs, it is possible to port these routines from one programming language to another. In 
doing so, the language model used to generate the AST for a specific programming language 
is transparent to the analysis routines that are accessing information from the AST. 

A language-independent model that identifies the set of language constructs that will be 
referenced by analysis routines cannot encompass all computer languages. There are several 
types of languages (e.g., algorithmic (third generation), functional, object-oriented, 
assembly). These language types have different semantic constructs and need different 
language-independent models. Since this project is focusing on legacy systems, we are 
developing two distinct language-independent models; one for third-generation languages 
and one for assembly languages. 



2.4 IMPLEMENTATION APPROACHES 

There are two approaches for implementing the LIM. In both approaches the analysis 
capability core code would be written making reference to the language-independent 
constructs like those described in Section 2.3. In the first and more obvious approach, the 
language-independent model is fully instantiated for the source code. In this approach a 
language-independent AST would be generated. As a result, all accessing of syntactic and 
semantic information from the AST would be exactly the same across different languages. 
Therefore, no extra code would need to be written to support the analysis capabilities. In a 
second approach, the language-independent attributes are computed via accessors which are 
specialized for each language. One can think of the two approaches to implementing 
language-independent analysis capabilities as being similar to the design decision often faced 
in object-oriented programming. In that situation there is a choice between storing or 
computing an object's state. Using a full LIM can be thought of as storing the state. The 
language-dependent accessor approach can be thought of as computing the object's state on 
an as needed basis. 

Regarding the first LIM approach, there are two ways to generate a language-independent 
AST. First, it could be generated from a language-dependent AST. However, this would 
require two ASTs (one language-dependent and one language-independent). This would 
overwhelm the memory available on most processors. Another way is to generate a 
language-independent AST while parsing, possibly avoiding generating the language- 
dependent AST. However, this probably could not be done using the DIALECT tool in 
Software Refinery. Also, it would only reduce, but not eliminate, the amount of language- 
dependent code that was needed to generate the AST. Furthermore, access to the original 
source syntax, which is important for source code navigation, would be lost. 

2.5 LANGUAGE-DEPENDENT ACCESSORS 

Instead of computing a complete language representation of the AST, we implemented the 
second approach, which is the language-dependent accessor approach. Because of 
differences in the syntax and semantics of third generation languages, the DIALECT 
generated parsers for each language use different domain models and grammars, making the 
structure of their ASTs different. It is necessary to write some language-dependent code to 
specialize the accessors for each language. We will call these accessors methods - the 
colloquial name for a function that is specialized depending upon the type of its arguments. 

These methods may be syntactic or semantic in nature. Some of the approaches below 
support only the implementation of syntactic methods. In one of the approaches the 



accessors are generated automatically. In the rest of this section we will discuss the various 
approaches. 

2.5.1   Analysis-Dependent Organization of Methods 

When an analysis capability is written using the analysis-dependent approach, all methods 
are organized with the capability. When writing the analysis capability, a method stub is 
created for those parts of the code that are language-dependent. These method stubs are then 
implemented for each language in the tool suite. In this way, the core code of the analysis 
capability is reused. One disadvantage of this approach is that similar access routines written 
for one analysis capability will probably not be used in other analysis capabilities because 
they are not written for general use and are probably too idiosyncratic. One advantage is that 
the language-dependent code is only written on an as-needed basis. 

The following is a list of some of the language-dependent methods which need to be written 
in order to support the language-independent data flow analyzer. Observe that the 
specification for each routine is straightforward and independent of the complexities of flow 
analysis. 

• collect-primary-objects: 
given a code object this method returns call locations in the object's AST 

• assignment-stmt?: 
true if the object represents an assignment or variable initialization 
(assignment statement, initialization) 

• left-hand-side: 
the code object on the left-hand side of an assignment 

• right-hand-side: 
the code object on the right-hand side of an assignment 

• get-all-output-actual-arguments: 
all locations in a procedure call that will be assigned a value upon return 

• get-global-variables: 
returns a list of global variables defined in the program 

• global-variable?: 
true if the location represents a globally defined memory location 

• pointer-variable?: 
true if the location represents a memory location that holds a pointer 

• array-variable?: 
true if the location represents an array 



2.5.2 Analysis-Independent Organization of Methods 

In the analysis-independent approach the methods are organized around abstract language 
classes rather than a particular analysis capability. However, since Software Refinery does 
not explicitly support object-oriented programming, we have not defined explicit language- 
independent classes or class instances. Below are two examples - the method signatures 
associated with the abstract classes procedure and procedure-call. 

procedure: 
procedure-declarator(procedure) -> declarator 
procedure-declarator?(any-type) -> boolean 
procedure-called-by(procedure) -> set(procedure) 
procedure-id-name(procedure) -> symbol 
get-enclosing-procedure(any-type) -> procedure 
root-of-procedure-hierarchy?(procedure) -> boolean 
get-all-procedures(program) -> set(procedure) 
get-procedure-wifh-name(symbol) -> procedure 
get-root-of-procedure-hierarchy(set(procedure)) -> procedure 
get-formal-arguments(procedure) -> set(any-type) 

procedure-call: 
procedure-call?(any-type) -> boolean 
get-all-procedure-calls(any-type) -> set(procedure-call) 
get-procedure-calls-with-name(symbol) -> set(procedure-call) 
get-procedure-called(procedure-call) -> procedure 
get-procedure-called-name(procedure-call) -> symbol 
get-actual-arguments(procedure-call) -> set(any-type) 

This approach has two advantages over the analysis-dependent method. First and foremost is 
the potential for greater reuse of code. Second is that this solution is more object-oriented, 
and therefore, a more locally understandable design. 

2.5.3 Declarative Approach 

Many of the language-dependent methods that are written are simply used to access the 
appropriate attribute in an abstract syntax tree. For instance, to obtain the "then" part of a 
conditional, which is a language-independent attribute, it is necessary to access a differently 
named slot in a C source AST as opposed to a CMS-2 source AST. 

A more efficient way to write these slot accessors is to set up a mapping from the language- 
independent abstract class and attributes to the language-dependent class and attributes. 

10 



Once this mapping is constructed, it can be used by some utility routines to access/test for the 
language-dependent attribute/class given the name of the language-independent 
attribute/class. 

A tool has been written to help build this mapping. It presents each language-dependent 
class and an example code fragment, together with a menu of the possible language- 
independent abstract classes. Once a class has been selected from the menu, the attributes are 
matched in a similar way. 

In this example we look at a part of the map from two different languages of the same 
language-independent class - a case statement. A LIM case statement has two attributes: 
test and body. 

In C the mapping is: 
[switch-statement, lim::case, [< switch-expr, lim::test>, <switch-body, lim::body>] 

This declaration states that switch-statement is C's case construct. The attribute switch-expr 
is where the case's test attribute is found and the switch-body is where the case's body 
attribute is found. Below is the declaration for the for-block, CMS-2's case construct. 

In CMS-2 the mapping is: 
[for-block, lim::case, [<for-expression, lim::test>, <value_bk>ck, lim::body>] 

As in the C example, the language-dependent attributes are mapped to the language- 
independent attributes, test, and body, of a case statement. 

2.5.4   Model Completion 

Although third generation languages share abstract constructs, their syntax is often very 
different. Also, their attributes are sometimes represented implicitly. An example of this is 
an iteration loop. An iteration loop has several attributes: loop variable, initialization of loop 
variable, test, bump of loop variable, and loop body. In C these attributes are represented 
explicitly in the syntax and therefore the AST. This is an example of a C FOR statement. 

for (i = 0; i < 10; i++) 
{ 

<some other statements> 
} 

However, in CMS-2, some of the attributes are implicit in the syntax of the language (some 
are also optional); they are not explicitly represented in the source code. Therefore, they are 
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not in the parsed representation (AST). The following is an example of a CMS-2 VARY 
statement where many of the iteration loop attributes have been elided. 

VARY I THRU 10 
<some other statements> 

Notice that the test, initialization, and bump are not expressed in this code fragment, but the 
semantics of the VARY statement indicate that the test is i <= 10, the initialization is i=0, and 
thebumpisi = i+l. 

The language-independent analysis routines assume that all of the attributes of an iteration 
loop will be explicitly available. Additionally, it would be antithetical to the idea of 
language-independence to write special case code within the analysis capability core code to 
detect which attributes are pre-set. In the model completion approach, all of the ASTs are 
brought up to a "least common ancestor" by completing the model - making implicit 
attributes explicit by adding attributes. This is done in a preprocessing step, after parsing. 

One can think of this approach as being a hybrid of the two main approaches. Because it is 
creating and storing information on the AST it has some of the flavor of the full LIM 
approach. However, this is done only to make implicit syntactic attributes explicit and not to 
replace language-dependent attributes with language-independent ones. One can think of the 
creation of the full LIM approach as the logical extension of model completion. However, 
since the language-dependent code needed to make the attributes explicit could be used 
during analysis, this approach is also similar to the language-dependent accessor approach. 

2.6      CODE REUSE 

The following table indicates the amount of code reuse that was achieved by the approaches 
in the previous section. Three different analysis capabilities are listed. The first column 
indicates the number of lines of language-independent core code. The second column 
indicates the number of lines which needed to be added to specialize the code so that it 
handles C. The third column indicates the number of lines which needed to be added to 
specialize the code so that it handles CMS-2. The fourth column indicates the approaches 

used. 
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Analysis Capability Core Code Code for C Code for 
CMS-2 

% 
Reuse 

Approach Used1 

Data Flow 1303 363 304 78.2 AD, AI 
Control Flow 1137 123 266 90.5 D,MC 
Orphans 56 - - 100 AI 

The language-dependent code for the control flow analysis capability was generated using the 
declarative approach. The reason why there are twice as many lines of code for CMS-2 is 
that the language domain model is twice as large as the domain model for C. 

It is interesting to note that no extra code needed to be written to support orphan detection. 
This is because all of the language-dependent code required to support orphan detection had 
already been written to support data flow analysis. Since the code pertaining to procedures 
and procedure calls was organized using the analysis-independent approach, it was simple to 
locate and reuse the code when writing the orphan analysis. 

2.7      CONCLUSIONS 

A methodology has been developed to foster the reuse of analysis capabilities across reverse 
engineering tools for different languages. This methodology reduces the level of effort 
required to implement new analysis capabilities by partitioning analysis routines into 
language-dependent accessors and language-independent analyses. Once a language- 
independent analysis has been implemented, it can be ported to a new programming language 
by developing the accessors for that language. In addition, we are able to accomplish further 
reuse by allowing analysis routines to share the same accessors. As a result, once these 
accessors have been developed for one analysis routine, they can be reused to access the 
same information for another analysis routine. 

To date, we have demonstrated considerable success in porting analysis routines between C 
and CMS-2. In addition, we have also begun to demonstrate reuse across analysis routines. 
Because of the lack of tools for assembly languages and the diversity of assembly languages 
used in DOD systems, this approach will have a significant payoff when applied to the 
development of assembly language reverse engineering tools. To address this need, we are 
developing a set of language-independent assembly language analysis reports in FY 94. 

1 Key for table: AD 
model completion. 

analysis dependent, AI - analysis independent, D - declarative, MC - 

13 



SECTION 3 

TASK FLOW RECOVERY 

Although one of the goals of this work has been to develop techniques to recover the inter- 
task behavior of real-time systems in general, our initial efforts have centered on recovering 
this information from one system in particular, the Modular Control Equipment (MCE) 
system. MCE is a command and control system written in the Navy source language CMS-2. 
It also contains a relatively small amount of embedded assembler language. The assembler 
code is less than ten percent of the system and is predominately located in the real-time 
operating system (RTOS). The MCE software runs in a distributed, multiple CPU hardware 
environment. The software consists of 14 functional subprograms that comprise 44 CMS-2 
modules. The software modules are distributed across the different CPUs. RTOS enables the 
software on different CPUs to communicate, sharing both data and control (task invocation). 

Tasks in MCE are executable units within a module and are comprised of many different 
procedures. Tasks spawn a variety of actions on themselves or other tasks through procedure 
calls to RTOS. These actions include scheduling a task, terminating a task, or removing a 
previously scheduled task. We have focused primarily on developing techniques for 
determining which tasks schedule other tasks, although this approach can be extended to 
recover information regarding other types of operating system calls. 

Determining the flow of tasks within MCE requires extracting information that is not directly 
available in the MCE source code. Extracting the task flows requires extracting the two 
primary pieces of information required to understand any task flow: who called a task and 
what task was called. Neither piece of information is explicitly represented in the source 
code. The following two sections will describe the overall strategy that was required to 
automatically extract this information from MCE. 

3.1  DETERMINING THE TASK CALLED BY RTOS 

The task scheduled by an RTOS call is uniquely determined by a set of arguments passed to 
RTOS by the RTOS call. These arguments identify a module and the task contained in that 
module. A module/task pair uniquely identifies a task in the MCE system. 

In order to determine the task spawned by an RTOS call, it is necessary to determine the state 
of the two variables that uniquely identifies this task at the particular point in the program 
when an RTOS call is made. In some cases determining the value of these variables is 
relatively straightforward since these values are set once and then remain constant throughout 
the execution of that module. Other variables, however, are set multiple times within a 
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module. In these cases it is necessary to statically evaluate a portion of the program that 
determines the state of the variables. 

When a variable is not preset, its state can be determined by identifying and evaluating the 
set of statements that may impact the value of that variable. Algorithms for identifying the 
minimal set of statements that may impact the state of a variable are known as program 
slicing [Weiser, 1984]. We implemented a program slicing algorithm to use when 
identifying the minimal set of statements impacting the module and task variables within an 
RTOS call. For our purposes, this technique assumed that the state of a module and task 
variable were completely determined within the scope of a task since the program slicing 
algorithm does not trace data dependencies across task boundaries. This assumption was 
valid for all but one module in the MCE system. 

For any particular RTOS call, module and task variables may assume different values in 
different contexts. Because a program slice contains the set of all statements that may 
influence the state of a variable, only a subset of these statements may actually be executed 
under a particular context. In order to evaluate each program slice under each possible 
context, each syntactically possible execution thread within a module that may reach a 
designated RTOS call is evaluated. Each of these evaluations derives a distinct value for the 
module and task variables for the particular RTOS call. These values identify the maximal 
set of tasks that may be called by a specific source code RTOS call. 

3.2      DETERMINING THE CALLING TASK 

RTOS calls are made within the context of a particular task. A task is said to spawn some 
action on another task when an RTOS call is made within the context of that task. One of the 
difficulties in determining task flows is in determining which task spawned a particular 
action. This is because there exists no syntactic structure, such as a procedure, that 
corresponds to a task in CMS-2. Therefore, one cannot simply read the source code to 
determine the task containing a particular RTOS call. 

Although no syntactic structure exists in CMS-2 that corresponds to a task, it is possible to 
determine which task spawns another through a call to RTOS by identifying the calling 
context for that call. Because this calling context is associated with a task, once the calling 
context is identified, the task that spawned this call can be identified. To do this, we needed 
to define a set of recognition rules that could be used to identify occurrences of MCE tasks. 
These recognition rules were based on our understanding of how tasks were implemented in 

MCE. 
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Tasks are activated in MCE when an "entry-procedure" for a module is called by RTOS. 
This entry-procedure is implemented by a CMS-2 construct known as a p-switch, which will 
pass control to one of a set of procedures depending on the value of the argument passed by 
RTOS to the p-switch. Each procedure to which an entry procedure can pass control 
represents the root procedure of a different MCE task. A task continues executing in MCE 
until the root procedure terminates. 

To recognize the occurrences of tasks, we needed first to identify objects in the code that 
represented "entry-procedures" for modules. Once these entry-procedures were recognized 
the root procedures for each task could be identified by tracing through the p-switch. In 
order to recognize these entry-procedures we used information extracted from external 
documentation. Since this documentation was available in a structured format, we wrote a 
parser to extract the relevant information from the documentation. We used this information 
to select the p-switch in a file that functioned as the entry-procedure for a module. Once the 
entry-procedure for a module was identified we could identify the root procedure for each 
task contained in that module. 

The identification of the root-procedure for each task provided the knowledge necessary for 
identifying the context of an RTOS call. As noted in Section 3.1, a specific RTOS call may 
be made within different contexts, resulting in different values for the module and task 
variable and hence spawning different tasks. Each calling environment contains a root 
procedure that corresponds to the calling task. Therefore, determining the task that spawned 
a new task requires determining the calling environment for a particular RTOS call passed a 
specific set of module/task values. This was done as part of evaluating each execution thread 
through a program slice. 

3.3      IMPLEMENTING THE DESIGN CONSTRUCT RECOGNITION 

The overall strategy for determining task flows required the implementation of a set of 
recognition rules that identified a small set of design constructs (e.g., tasks and modules) in 
the MCE code. This information was then supplemented with techniques for evaluating the 
states of specific variables in the code that identified the tasks spawned by a particular RTOS 
call. These evaluations required determining the program slice for the module and task 
variable in each RTOS call. This program slice was evaluated within the calling environment 
of each task within the module containing the RTOS call. This evaluation returned a value 
for the module and task variable together with the calling environment in which these values 
were computed. These values identified the task spawned by a particular RTOS call and the 
calling environment identified the task spawning the new task. In this section, we will 
describe the approach we implemented for recognizing design constructs in MCE source 
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code. In the following sections, we will describe how program slicing was implemented and 
how a program slice was evaluated to determine the task flow. 

The purpose of design construct recognition is to identify instances of the design constructs 
implemented in a software system and their interrelationships. We created a domain model 
that identifies a small set of design constructs in the MCE code: tasks, modules, and a small 
set of events through which tasks interact with each other (e.g., tasking spawning). The 
current implementation hard-codes recognition rules for these design constructs. Each 
recognition rule creates an instance of an abstract design construct or determines the value of 
one of its attributes. 

Because of the difficulty of recognizing these abstract design constructs from information 
contained solely in the source code, we implemented recognition rules that operated on both 
design documentation and the parsed representation of the source code. We were able to 
identify a portion of the on-line documentation for MCE which described each of the 44 
modules of the system. For each module, the module's name and a list of tasks was listed. A 
list of files relevant to the module and the file that contained the entry procedure for the 
module were also identified. 

Although this documentation was written in English, it was fairly structured. Thus, with a 
minimal amount of editing, we were able to automatically parse the documentation using a 
recursive-descent parser written in Refine. The parser automatically created module and task 
objects for each module and task identified in the documentation. The module and task 
names and the list of relevant files for each module were also set automatically during 
parsing. 

After obtaining as much information about modules and tasks as possible from the 
documentation, we turned to the source code to complete the model. As noted in Section 3.1, 
each module is associated with an entry procedure. Because the documentation only 
identifies the name of the file containing a module entry procedure, we needed to find this 
procedure from the source code. This is done by generating the procedure calling hierarchy 
of the module. The module entry procedure is equivalent to the root procedure in the 
procedure calling hierarchy. To avoid orphan procedures, the root of the largest disconnected 
subgraph is used. As stated in Section 3.2, the module entry procedure contains a CMS-2 
construct called a p-switch. The p-switch passes control to the entry procedure for a 
particular task depending upon the value of the p-switch variable. Therefore, from the p- 
switch we were able to determine the names of the task entry procedures for each of the tasks 
in that module. 

Once modules, tasks, and their entry procedures have been recognized, it is possible to 
determine the behavior of each task by identifying and interpreting RTOS system calls used 
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by a task. Our domain model represents each of the events produced via an RTOS call and 
its associated attributes. We implemented event recognition algorithms that identify 
occurrences of these events. 

The first step is to find all of the RTOS calls in the source code. This is easy to do by 
traversing the abstract syntax tree and testing for the name RTOS in each procedure call 
object encountered. The next step is to evaluate the value of the arguments used by RTOS to 
determine the task behavior the RTOS call represents. An RTOS call has two arguments; the 
type of the RTOS call and a table (a CMS-2 data structure) containing information for that 
type of call. The fields in the table vary depending on the type of RTOS call invoked. For 
example, if the RTOS call schedules a task, then the table includes two fields which contain 
the information necessary for the operating system to determine which task to schedule. For 
each RTOS call identified in the code, the first argument identifying the type of RTOS call is 
accessed and the appropriate event object is created to represent the event. Our algorithm 
then determines the task invoking this event and the values of designated fields in the table to 
determine the value of the event's attributes. This is done by computing and evaluating a 
program slice for the relevant fields in the table. 

3.4      IMPLEMENTING PROGRAM SLICING 

A program slice on some variable v, or set of variables, at statement n consists of those 
statements that contribute to the value of v just before statement n is executed. In the current 
implementation, we compute a program slice from a data flow graph. 

A data flow graph is constructed by identifying a set of "reaching definitions" for each 
variable used in a program. Statement m is a reaching definition for variable v used by 
statement n when statement m defines the value of v actually used at n through some 
execution path. Note that a variable v in statement n may have several reaching definitions 
under different execution paths, n "backward depends" on m, and m "forward depends" on n. 
A backward (forward) program slice is computed on statement n by taking the transitive 
closure of all backward-depends (forward-depends) relations on statement n. 

3.4.1   Intra-procedural Data Dependence Analysis 

The first step needed to generate an intra-procedural data flow graph is to generate a control 
flow graph (CFG). A control flow graph for a procedure is a directed graph that contains an 
initial node which represents the entry point for a procedure and a final node which 
represents the procedure's exit point and a set of remaining nodes that each represent 
sequences of simple statements in the procedure represented by the CFG. Each edge in the 
graph represents a possible flow of control. 
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The next step in data dependency analysis is to identify the reaching definitions for each 
location used in a procedure. The term location is used instead of variable because it is 
necessary to keep track of arrays and data structures. Each node in a CFG is mapped to a set 
of locations defined and a set of locations used in the statement represented by a node. There 
exists a reaching definition between a definition and a use of a location if there is a path in 
the CFG between the node that contains the definition of the location and the node that 
contains the use of the location. Since a location may be defined multiple times within a 
procedure, there are many potential candidates for the definition that actually reaches a use of 
a location at a statement. It is possible for a location to have several reaching definitions 
because the definitions for that location are in the body of conditionals. However, a 
definition can also cancel another, eliminating the canceled definition as a reaching definition 
for all subsequent uses of that location. 

3.4.2   Inter-procedural Data Dependence Analysis 

We extended the concept of reaching definitions to take into account reaching definitions 
between statements contained in different procedures. Our extensions only consider reaching 
definitions contained within the scope of a single task. Reaching definitions that occur 
between tasks are not considered by our algorithm. Inter-procedural data flow analysis 
considers both global variables and parameter passing between procedures. 

In order to support inter-procedural data flow analysis, the process is done in several steps. 
First, the control flow graph is generated. Second, within each procedure the definitions and 
uses of a location are computed. Third, reaching definitions are computed for all locations 
used in a procedure. Finally, the relations forward-depend and backwards-depends are 
computed. During this process the reaching definitions for global variables are found. Each 
step is done for all procedures, via a post-order traversal of the procedure calling hierarchy. 

The inter-procedural reaching definitions for a global variable use can be in found one of 
three places: within the procedure (an intra-procedural reaching definition), in a procedure 
called by the procedure, or in a procedure which calls the procedure. Each of these are 
considered in order. First, the reaching definitions within the procedure are considered. If 
the reaching definition is a regular assignment statement, that statement is returned. Second, 
a procedure call contains the reaching definition, if the global variable was defined within 
that called procedure. The called procedure must be investigated to find the assignment 
statement which is the actual reaching definition. The intra-procedural information for all 
global variables defined within a procedure is summarized in the unique exit node of the 
CFG, so it is easy to access. Finally, if no definitions are found within the procedure or a 
called procedure, then all procedure that call this procedure must be investigated. This 
process is a recursive one, traversing the calling hierarchy as needed. 
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If the variable is a formal parameter, and is not defined within the procedure then the 
reaching definition must be the one implicit in parameter passing. Therefore, all of the calls 
to the procedure are the reaching definitions. This will work for call-by-value parameter 
passing. The issue of aliases (call by reference) or other parameter passing schemes have not 
been investigated. 

An example of a program slice is below, with emphasis on the inter-procedural data flow. 

int some_global_variable; 

intp() 
{ 

inti = 0, z, x= l,y = 2; 
z = x * y; 
if(i = 0) 
{ 
i = 5; 

} 
else 
{ 
i = 6; 

} 
t(0); 
z = i + some_global_variable; 
return z; 

} 

int t(x) 
intx; 

{ 
some_global_variable = 1; 

} 

The program slice for this program is: 
p: i = 5 
p: i = 6 
p: t(0) 
p: z = i + some_global_variable 
p: return z 
t: some_global_variable = 1 
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In this program the value of z at return z is computed using the previous statement, therefore 
the value of z depends upon some_global_variable and i. The value of i depends only on 
statements in procedure p. i is set conditionally, so both assignments appear in the slice. If 
conditionals were included in the slice, i == 0 would also appear. Note that even though it is 
easy to determine that i does equal 0 and, therefore, i = 5 is executed and not i = 6, both still 
appear in the slice because there is no way, in general, to determine statically what will 
happen when the program is executed. The value of some_global_variable is set in 
procedure t which is called by p. Therefore, the call to t and the assignment are included in 
the slice by using inter-procedural data flow analysis. 

3.5      EVALUATING EXECUTION THREADS THROUGH A PROGRAM SLICE 

Once a program slice is available it is possible to evaluate the slice to determine the possible 
values of the table fields used by an RTOS system call. Evaluation of a slice is made 
somewhat easier in CMS-2 because procedure invocation does not introduce a new scope. 
All variables in a CMS-2 program, including formal arguments of procedures, are global. 

Inputs given to the evaluator are the variables of interest, a list of the variables for which 
values are requested, and the statement of interest, the statement in the slice for which the 
variable values should be evaluated. The execution of a slice is guided by a pre-order 
traversal of the procedure calling hierarchy. As it is traversed, each procedure that is 
encountered may contain some statements that are found in the slice. They are evaluated in 
the order in which they occur in the procedure (i.e., statements are sorted by line number) and 
their values are saved for use in other computations of the evaluator. When the statement of 
interest (the RTOS call in this case) is encountered, the values of the variables of interest are 
checkpointed. If the statement is encountered again, the values at that time are also 
checkpointed. Sets of checkpointed values together with the calling environment for each set 
are returned from the evaluator. 

Given the value for the module/task pair and the calling environment, is it possible to 
compute the calling tasks and the called tasks of the RTOS call. A calling task is one whose 
entry procedure is contained in the calling environment. A called task is the one that 
corresponds to the module/task pair. If the module is the same as the one under 
investigation, the task number is an index into the module's entry procedure p-switch 
statement, which can be thought of as a list of all intra-module task entry procedures. If the 
module number corresponds to another module, then information from the documentation is 
used to determine the name of the task so that it can be displayed in the task flow graph or 
table. 
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3.6      EXTENDING M-CLUE TO RECOGNIZE OTHER SERVICES 

Other services are provided via calls to the RTOS operating system in addition to spawning 
new tasks. As part of computing the automatically generated documentation, we also found 
these relationships. The method to find the calling task of the RTOS call is the same as 
outlined above. Different information is often sent to RTOS depending upon the service 
requested. These are also passed to RTOS as a slot in a data structure. The values of these 
slots can be computed via a program slice and evaluation in a way similar to the method used 
to discover the called module/task pair. The table below summarizes the other services that 
were evaluated, whether these services spawned tasks, and the type of information extracted 
regarding the service. 

Services Spawn Tasks Other Infon 

REGISTER yes period, delay 
REGXTERNL yes period, delay 
BUFREG yes period, delay 
REMOVE task removed from queue 
IOREQUES no file number 
BUFIOREQ no file number 
NOTIFY no message id 
DMU maybe ddb-address 

3.7       RESULTS 

3.7.1    How the Results were Evaluated 

As part of MITRE's support for the MCE system, each module was evaluated by hand and 
written documentation including a tasking graph was prepared. These manually generated 
graphs identified each task within a module, the set of tasks called by each task, and other 
service calls made to RTOS by a task. 

In order to validate the approach for generating tasking/service graphs that was discussed 
above, it was necessary to compare the automatically generated graphs with these manually 
generated ones. The Tasking Graph Comparitor was developed to automatically accomplish 
this task. 

The results of comparing the automatically generated graphs with manually generated graphs 
are discussed in Section 3.7.3. Many of the inconsistencies found were caused by errors in 
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the manually generated documentation, and not by the algorithm to produce the automatically 
generated graphs. These discrepancies are discussed in Section 3.8 and Appendix A. 

3.7.2   Language Description for Graph Specification Language 

To be compared, automatically generated and manually generated graphs must have a 
common representation. There must be some way to specify the manually generated graphs 
in a form that is readable by the machine so that it can be put into that common 
representation. For this reason a graph specification language was developed. This language 
is used to enter the relationship between tasks and other RTOS services. Essentially, it is a 
way to specify each arc of the graph. Together a set of the individual specifications of these 
relationships is used to form the graph. 

For instance, to specify the arc in the ATA graph between task ATA5 and DSE9 the 
following specification would be used: 

(def-rtos-info 

:caller-module ATA 

:caller-task-number 5 

:called-module DSE 

:called-task-number 9) 

To specify that a particular io-request was made by a module, the following specification 
would be used: 

(def-rtos-info 
:type *rtos-io-request-call 

:caller-module SCB 

:caller-task-number 11 

:file-number 50) 

A full description of the specification language is below. 

<rtOS-info> -> (def-rtos-info <type> 
: caller-module <module-name> 
: caller-task-number <integer> 
<attribute-list> ) 
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<type>-> *rtos-register-call | *rtos-remove-call | *rtos-io-request-call | 

*rtos-buffer-register-call | *rtos-register-external-call | 

*rtos-notify-call | *rtos-buffer-io-request-call | 

*dmu-read-call | *dmu-write-call | *dmu-distribute-call | 

<empty> 

<module-name>-> X\TA |  CMB  | CMC  |  .... 

<attribute-list> -> <attribute> <attribute-list> I <attribute> 

<attribute> -> :caiied-task <module-name> :caiied-task-number <integer> I 
notify <integer> I 
ddb-address <integer> I 
file-number  <integer> I 
delay <integer> I 
line-number  <integer> I 

3.7.3   Results 

In the table below we list the actual results of comparing the manually and automatically 
generated graphs for each module of the MCE system. The columns contain data about the 
two different sets of information which were manually and automatically generated, 
respectively. The number in common indicate the number of relationships in the intersection 
of these two sets. The recall statistic measures the number of relationships found and how 
correct they were. Recall does not consider relationships that are not in the intersection. In 
this way it measures the number of false negatives. The lower the recall, the fewer correct 
relationships were found. 

Recall = number of relationships found by both methods 
number of relationships generated manually 

Precision indicates the ratio of correctly found relationships over all of the relationships 
found. In this way it indicates the percentage of extra relationships found (i.e., the number of 
false positives). If the precision is low that means a high percentage of extra relationships 
were found. 

Precision = number of relationships found by both methods 
number of relationships generated automatically 
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Table 3-1. Results Comparing Manually Generated and Automatically Generated Graphs 

Module Number in 
Manually 
Generated 
Graph 

Number in 
Automatically 
Generated 
Graph 

Number in 
Common 

Recall Precision 

ATA 19 21 18 94.7 85.7 

CMB classified 

CMC classified 
CMD classified 

CME classified 
CMF classified 
CMG classified 
CMU 49 49 45 91.8 91.8 

CXF classified 
CXM classified 
CXU 13 13 10 76.9 76.9 

DMA 9 6 6 66.7 100.0 

DMB 9 9 8 88.9 88.9 

DRA 41 42 41 100.0 97.6 

DSA not run 
DSB non-standard 
DSC not run 
DSD 
DSE 37 57 29 78.4 50.9 

PMA 56 56 54 96.4 96.4 

RTH non-standard 
SCB 165 140 83 50.3 59.3 

SIA not run 
SIB 120 211 109 90.8 51.7 

SMA 24 24 17 70.8 70.8 

SMB 19 19 19 100.0 100.0 

SMD 5 5 5 100.0 100.0 

SME 36 36 29 80.6 80.6 

SMF 44 36 16 54.5 66.7 

SMG 18 18 17 94.4 94.4 

SRC 35 33 33 94.3 100.0 

SRD 39 40 39 100.0 97.5 

SRE 25 22 22 88.0 100.0 

SRF non-standard 
SRG 9 9 9 100.0 100.0 
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Table 3-2. Optimal Results Based on "Corrected" Manually Generated Graphs 

Module Number in 
Manually 
Generated 
Graph 

Number in 
Automatically 
Generated 
Graph 

Number in 
Common 

Recall Precision 

ATA 21 21 20 95.24 95.24 
CMB classified 
CMC classified 
CMD classified 
CME classified 
CMF classified 
CMG classified 
CMU 49 49 49 100.0 100.0 
CXF classified 
CXM classified 
CXU 13 13 13 100.0 100.0 
DMA 6 6 6 100.0 100.0 
DMB 9 9 9 100.0 100.0 
DRA 42 42 42 100.0 100.0 
DSA 
DSB non-standard 
DSC 
DSD 
DSE 42 57 34 80.9 59.6 
PMA 56 56 56 100.0 100.0 
RTH non-standard 
SCB 
SIA not run 
SIB 141 211 132 93.6 62.6 
SMA 
SMB 19 19 19 100.0 100.0 
SMD 5 5 5 100.0 100.0 
SME 36 36 28 77.8 77.8 
SMF 44 36 29 65.9 80.6 
SMG 18 18 18 100.0 100.0 
SRC 35 33 33 94.3 100.0 
SRD 40 40 40 100.0 100.0 
SRE 25 22 22 88.0 100.0 
SRF non-standard 
SRG 9 9 9 100.0 100.0 

This leads to an optimal average performance for a module of 99.7% recall and 98.6% 
precision. 
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The average performance for a module is 85.9% recall and 85.5% precision. Each 
discrepancy was investigated to determine if there was an error in the manually generated 
graphs or in the algorithm to compute the graphs automatically. Appendix A explains each 
of the discrepancies in detail. As noted, a number of these discrepancies were due to errors 
in the manually generated graph. The following table expresses the optimal results that 
would be obtained if the manually generated graphs were correct. 

3.8      LIMITATIONS 

In this section we will enumerate reasons for the incorrect results when the automatically 
generated graphs produced the wrong result. In Appendix A we will take a detailed look at 
all inconsistencies and relate them to these limitations. 

3.8.1   Inherent Limitations of the Approach 

1. The program sheer is a static tool. It cannot take into consideration dynamic 
information. Additionally, the data flow analyzer does not currently take other 
control flows into consideration, i.e., exception or error handling. 

2. The algorithms generating task flows assumed that all variables are set within the 
module. This is for the most part true, with some exceptions. One example where 
this is occurs is in module CXU (see SCA in Appendix A for another example). 

Missing from Automatically Generated Graph: 
CXU4IOREQUES 2084 
CXU5 IOREQUES 2084 
CXU6 IOREQUES 2084 

Not in Manually Generated Graph: 
CXU4 IOREQUES 2052 
CXU4 IOREQUES 2052 
CXU4 IOREQUES 2052 

All of these descrpencies are cause by the same code. 

CMU.2573 (CXUSMD) 
SET CXURTIO(0, BUSADDR) TO 2052 + ((GCUMARK(0, DCUADDR) * 
32)) 

CMU.2574 (CXUSMD) 
RTOS INPUT IOREQUES, CORAD(CXURTIO) OUTPUT GPOINTER 

28 



The problem is caused by the fact that GCUMARK (o, DCUADDR) is never set to 
anything within the module. 

3.8.2   Current Limitations of the Implementation 

Some of the results are incorrect because of current limitations of the implementation. Most 
of these limitations could be eliminated by enhancing the implementation of the program 
slicer, CMS-2 source code evaluator, or the task flow graph generator. The following 
enumerates these limitations in more detail. 

1.      The slicing algorithm does not include test statements in a conditional as part of a 
slice because of the computational explosion that may result from including these 
statements.   As a result, a slice may not be correctly evaluated. For example, 
consider the following MCE code: 

SMAGEN.2050 (SMARDSCN): 

IF GVMODE EQ MODIFYSM 

OR GVMODE EQ PRINTSM 

THEN BEGIN  ''READ SCENARIO SMAGEN''$ 

SET IDDMSRD(0,MODULE) TO SMAGENMN  ''SMAGEN MODULE''$ 

SET IDDMSRD(0,TASK) TO SMARDCTN 

END ''READ SCENARIO SMAGEN''$ 

ELSE BEGIN  ''LOAD SCENARIO SMGSWP''$ 

SET IDDMSRD(0,MODULE) TO SMGSWPMN  ''SMGSWP MODULE''$ 

SET IDDMSRD(0,TASK) TO SMGRDCTN 

END ''LOAD SCENARIO SMGSWP''$ 

The statements 

SET IDDMSRD(0,MODULE) TO SMAGENMN  ''SMAGEN MODULE''$ 

SET IDDMSRD(0,MODULE) TO SMGSWPMN  ''SMGSWP MODULE''$ 

are both part of the slice for IDDMSRD (o, MODULE) since either statement will affect 
its value. 

The problem arises when evaluating this slice. Slices do not include information 
regarding the context in which a statement should be executed intra-procedurally. 
In actuality, only one branch of the conditional is executed at any time, which 
means that a slice may include two or more different contexts. However, since the 
evaluator simply uses line numbers to establish the order of execution of the 
statements within a procedure, all but one execution path will be to be obscured. 
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This is because the execution of the last assignment to the variable will overwrite 
the other previous assignments. 

In the case of the example, the evaluator will overwrite the statement: 

SET IDDMSRD(0,MODULE) TO SMGSWPMN  ''SMGSWP MODULE''$ 

with the statement: 

SET IDDMSRD(0,MODULE) TO SMAGENMN  ''SMAGEN MODULE''$ . 

When computing the tasking graph we must investigate all contexts. The missing 
conditional information causes the evaluator to misses at least one context. 

To remedy this limitation, it is necessary to enhance the evaluator so that it uses the 
control flow graph to order the statements, starting a new context when 
encountering conditionals. 

2 Statements controlling iteration are not included in the slice or handled by the 
evaluator. In MCE source code, many 10 requests are made within a loop. For 
example, in the following code: 

VARY VSUINDX FROM 0 THRU SMNRDR - 1 
IF GTM0CU(VSUINDX,RDRN0) EQ RADARIFF THEN ''VSU sim'ing Rdr'' 

BEGIN 
SET IDRIOPKT(0,BUSADDR) TO VSUINDX + 567 "Set Logical 

RT0S INPUT I0REQUES, C0RAD(IDRI0PKT) OUTPUT DUMMY 

END 

END ''VARY Loop'' 

only the RTOS call that would have been executed the first time through the loop 
will be evaluated. Therefore, many 10 requests are missing 

3 Impossible Paths. Certain control flow paths are not possible since they may 
depend on a contradictory set of conditions. Since tests within a conditional are not 
evaluated these impossible paths are still evaluated, leading to the identification of 
task calls that would never occur. 

4 Array/Pointer References. In CMS-2 an address of a table can be set to a variable 
via the language construct CORAD. Since we do not perform data flow analysis on 
what is essentially a pointer, we miss certain relationships. An example of this 
occurs in module SIB. 
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SIBATO.13818 (SIBMSACT) 

SIBREAD INPUT CORAD(IDMRPMRC) 

SIBATO.13945 (SIBREAD) 

SET CORAD(IPACKET) TO PCKTADDR - the formal parameter 

SIBATO.13961 (SIBREAD) 

DMUREAD INPUT CORAD(IPACKET)... 

Since we don't know what the value is of IPACKET (it is IDMRPMRC), we cannot 
determine the task/module pair of this call. 

3.8.3   MCE Code not Implemented According to the MCE Documentation 

The degree to which the automatically generated graphs accurately capture the correct 
relationships is dependent upon how well the actual MCE source code adheres to the 
documentated design of the MCE system. This is necessary because many of the heuristics 
built into the the tool depend upon this. 

In particular, in modules DSB, RTH, and SRF the p-switches in the module entry procedures 
are non-standard. Therefore, the heurstics don't work very well, and we get incomplete 
results. 

3.9      OTHER USES FOR THE TASKING GRAPH COMPARITOR 

The Comparitor can also be used for additional purposes. It could be used to compare the 
tool's results to specifications of the real time system created during the design phase. It can 
be used to compare different versions of the system to insure consistency. Lastly, it can be 
used in software debugging of our tool. Below we discuss all of these uses in more detail. 

3.9.1    Comparing Specification to Implementation 

The Tasking Graph Comparitor can be used to compare the automatically generated graphs to 
a specification of the task flow which was produced during the design phase (although such 
documentation might be less detailed than the manually generated graphs that MITRE 
prepared). In this way, a comparision between the design and the implementation would be 
possible. A situation similar to this could arise if new modules were added to the MCE 
system. In general, such a comparitor could be an important part of a software forward 
engineering tool set. 
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3.9.2 Comparing Different Software Versions 

The MCE system is undergoing constant changes during its maintenance phase. New 
versions of the system are produced. Under the assumption that the higher level abstractions 
of the software do not change much from version to version, the tasking relationships should 
remain relatively unchanged. It would be useful to compare the tasking graphs from the old 
and the new versions to see the differences. This would be a good way to focus on the 
impact of the changes made in the new version. Although certain differences would be 
correct, other unexpected differences could indicate a software bug. 

3.9.3 Comparing for Debugging Test Flow Generation Software 

Lastly, the Comparitor was very helpful when debugging the task flow graph generator. 
First, it was useful to compare the automatically generated graphs to the manually generated 
ones so that one could focus in on where problems with the code could be. Additionally, the 
current results could be compared to previous results so that it could be determined that a bug 
fix to correct the graph of one module did not cause an incorrect graph to be generated for 
another module. In this way, changes to the software could be made with more confidence. 

3.10    CONCLUSIONS 

The real-time tasking tool implemented for MCE demonstrates that a significant level of 
design recovery can be obtained when a small amount of design knowledge regarding a 
system is encoded into a powerful set of tools and then applied in an analysis across the 
entire system. The current implementation hard codes recognition rules for a small set of 
MCE relevant objects (e.g., tasks and modules) and a small set of MCE relevant events (e.g., 
tasking spawning via RTOS calls). The notion of "objects" of interest in a program and 
"events" of interest that relate objects to each other is a generic way to view the design of a 
software system. We are building a framework that supports the recognition of objects and 
events in an attempt to capture what can be termed the architecture [Shaw, 1989; Perry and 
Wolf, 1992] of a software system. This recognition framework supports the specification of 
recognition rules for object and event types (versus hard coded system specific rules) and 
provides powerful visualization facilities for the set of events recognized in a program 
[Harris, 1995]. 

The techniques used in this system are all static analysis techniques and thus are inherently 
limited by the degree to which static analysis can be used to evaluate run time behavior. We 
have implemented a program slicing technique that enables static evaluation of program 
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values where feasible. This capability is currently limited in its ability to deal with name 
aliasing (an intractable problem), but we are continuing to increase its abilities to resolve 
aliases and statically evaluate resulting program slices. 

By applying powerful program analysis capabilities in concert with recognition rules derived 
from some basic system design knowledge a significant level of system design recovery can 
be achieved. The information is derived directly from the source code and traceable back to 
that source code. As software baselines change, design recovery can be reapplied to produce 
current design information, yielding a form of "living" documentation that can reliably aid in 
program maintenance and understanding. 
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SECTION 4 

RELATED WORK 

Our approach is influenced by work that recognizes the organizational power of software 
architecture, techniques for program understanding and concept formation, and the enabling 
technology of reverse engineering. 

Software architectures as described by [Shaw, 1989; Perry and Wolf, 1992] provide the 
organizational patterns that drive the real-time design recovery system. In this case, the 
architecture we analyzed and recognized was a fairly simple real-time system architecture in 
which modules and tasks are the relevant architectural objects and the key architectural event 
is the spawning of tasks. 

Traditional program understanding work has focused on cliche-based recognition [Rich and 
Wills, 1990; Harandi and Ning, 1990]. Generally, this is a bottom-up recognition approach 
in which the program is matched to a set of pre-defined plans/cliches from a library. 
Recognition is based on a precise data and control flow match which indicates that the 
recognized source component is precisely the same as the library template. Our approach is 
more of a top-down hypothesis driven recognition approach coupled with bottom-up 
recognition rules. Our recognition rules do not require algorithmic equivalence of the plan 
and the source being matched, rather they are based on source code level events in the code. 
Quilici [1993] also explores a mixed top-down, bottom-up recognition approach using 
traditional plan definitions. The style of source code event-based recognition rules is also 
exemplified in [Kozzaczynski, et al., 1992; Engberts et al., 1991] which demonstrates a 
combination of precise control and data flow relation recognition and more abstract code 
event recognition. 

Design recovery work, such as DESIRE [Biggerstaff, 1989] relies on: externally supplied 
cues regarding program structure, modularization heuristics, manual assistance, and informal 
information. Informal information and heuristics can also be used to reorganize and 
automatically refine recovered software designs as in the modularization tool described in 
[Schwanke, 1991]. In general, design recovery tools need to take advantage of extra- 
linguistic information such as that provided in our design recovery rules. 
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SECTION 5 

SUMMARY 

CLUE, a reverse engineering tool that MITRE developed for analyzing CMS-2 programs, 
was enhanced through the addition of several advanced analysis capabilities. The enhanced 
CLUE, known as M-CLUE, will be integrated with other maintenance tools as part of TSME, 
an automated maintenance environment for MCE. The analysis capabilities developed for 
M-CLUE should provide software maintainers improved visibility into the structure of the 
MCE software, allowing them to more quickly localize errors in the code and to more 
thoroughly assess the potential impact of changes in the code on other system components. 
The effect of these capabilities on the activities of software maintainers will be assessed as 
part of an evaluation of the effectiveness of the TSME environment. 

A number of capabilities were developed for Refine/C and CLUE using a language- 
independent model (LIM). The LIM approach to developing capabilities allows the 
separation of parsing and analyses in the capabilities, thus enabling the capabilities to be 
ported to reverse engineering workbenches for different source languages with a minimal 
amount of effort. A LIM has been developed for third generation languages. This approach 
will be particularly useful for developing reusable capabilities for reverse engineering 
assembly languages. 

A task flow analysis capability was developed as part of M-CLUE to automatically extract 
information from MCE source code regarding the behavior of concurrent tasks in MCE. 
Although this capability recovers this information from just the MCE system, the approach 
we used to developed this capability can be generalized to recover the inter-task behavior of 
real-time systems in general. In particular, our success in implementing this capability 
demonstrates that a significant level of design recovery can be obtained when a small amount 
of design knowledge regarding a system is encoded into a powerful set of tools and then 
applied in an analysis across the entire system. 
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APPENDIX A 

TASKING GRAPH DISCREPANCIES 

The following is a detailed description of the discrepancies between the manually generated 
documentation and the automatically generated documentation. For each module we have 
summarized the differences in a discrepancy report and discuss the reasons for the 
differences. Differences that cannot be accounted for are in bold in the discrepancy report. 

ATA: 

Discrepency Report 

Missing: 
ATA01 -> ATA05 

Extra: 
ATA01 -> ATA05 delay 5.0 sec 
ATA05 -> ATA05 delay: uneval expr 
ATA06 -> ATA06 

• ATA5 -> ATA5 is in the graph, but doesn't have a delay. The slice which indicates that 
there should be a delay is: 

IF (DAYDIFF GT 1) 
THEN SET TIMEDIF TO 100 
ELSE BEGIN 

IF (DAYDIFF EQ 1) 
THEN SET TIMEDIF TO MINUTE + 1440 - TMINDAY 
ELSE BEGIN 

SET TIMEDIF TO MINUTE - TMINDAY 
IF (DAYDIFF LT 0) OR (TIMEDIR LT 0) 
THEN SET TIMEDIF TO 0 

END 
IF (TIMEDIF GT 0) AND (TIMEDIR LT SKEDTIME) 
THEN SET SHEDTIME TO TIMEDIR 

ATAFS.4796 (ATAMON) 
SET SKEDTIME TO 30 $ 

ATAFS.4975 (ATAMON): 
SET IDMNRQ(0,DELAY) TO SKEDTIME * 120 - 60 $ 

ATAFS.4978 (ATAMON): 
RTOS INPUT REGISTER, CORAD(IDMNRQ) OUTPUT DUMMY $ 
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• ATA1 -> ATA5, does not have a delay in the documentation, but one was found. The 
revelant code is: 

ATAFS.4351 (ATAPOS): 
SET IDMNRQ(0,DELAY) TO 10 

ATAFS.4353 (ATAPOS) 
RTOS INPUT REGISTER, CORAD(IDMNRQ) OUTPUT DUMMY $ 

• ATA6 -> ATA6 was found by is not in the documentation. The relevant code is: 

ATAFS.1782 
TABLE IDPENT H 4 1 ''TASK 6 REQUEST PACKET'' $ 

ATAFS.1783 
FIELD MODNUM   I   8 U    0 15 P ATAFSMN ''MOD NUMBER'' $ 

ATAFS.1784 
FIELD TSKNUM   I   8 U    0  7 P 6 ''TASK NUMBER'' $ 

ATAFS.5314 (ATACAL) 
RTOS INPUT REGISTER, CORAD(IDPENT) OUTPUT DUMMY $ 

CMU 

Discrepency Report 

Missing: 
CMU6 -> CMU6 
CMU7 -> CMU7 
CMU 17 -> CMU 14 REMOVE 
CMU 18 -> CMU9 delay 500msec 

Extra: 
CMU6 -> CMU6 delay 500 msec 
CMU6 -> CMU7 
CMU 18 -> CMU9 REMOVE 
CMU18 -> CMU14 REMOVE 

• CMU6 -> CMU6 is missing, but CMU6 -> CMU6 delay 500msec was generated. The 
correct answer is from the automatically generated graph. The relevent code is: 

CMU.5519 (CMUG) 
CMUSKED INPUT REGISTER, CMUMN, AUTOINP, DELAY500, ZERO, NODATA 
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where AUTOINP is a equals tag with value task 6 andCMUG is the task entry procedure for 
task 6. 

• CMU7 -> CMU7 is missing, but CMU6 -> CMU7 was generated. In task 7 (CMUH) there 
is no call to CMU7, however, in task 6 (CMUG) there is the following call: 

CMU.5531 (CMUG) 
CMUSKED INPUT REGISTER, CMUMN, MSGINTRP, NODELAY, ZERO, NODATA 

where MSGINTRP is an equals tag with value task 7, and CMUG is the task entry procedure for 
task 6 

• CMU18 -> CMU9 delay 500msec is missing, but CMU18 -> CMU9 REMOVE was 
generated. The correct answer is from the automatically generated graph. The relevent code 
is: 

CMU.13215   (CMUMCAN) 
CMUSKED INPUT REMOVE, CMUMN, AUTOOUTP, NODELAY, ZERO, NODATA 

where AUTOOUTP is a equals tag with value task 9 and CMUMCAN is the task entry procedure 
for task 18. 

• CMU17 -> CMU14 REMOVE is missing, but CMU18 -> CMU14 REMOVE was 
generated. In task 17 (CMUH) there is no call to CMU 14, however, in task 18 
(CMUMCAN) there is the following call: 

CMU.13219 (CMUMCAN) 
CMUSKED INPUT REMOVE, CMUMN, RAUTOUTP, NODELAY, ZERO, NODATA 

where RAUTOUTP is an equals tag with value task 14, and CMUMCAN is the task entry procedure 
for task 18. 

cxu 
Discrepency Report 

Missing: 
CXU4IOREQUES 2084 
CXU5 IOREQUES 2084 
CXU6 IOREQUES 2084 
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Extra: 
CXU4IOREQUES 2052 
CXU4 IOREQUES 2052 
CXU4 IOREQUES 2052 

All of these descrpencies are cause by the same code. 

CMU.2573 (CXUSMD) 
SET CXURTIO(0, BUSADDR) TO 2052 + ((GCUMARK(0, DCUADDR) * 32)) 

CMU.2574 (CXUSMD) 
RTOS INPUT IOREQUES, CORAD(CXURTIO) OUTPUT GPOINTER 

The problem is caused by the fact that GCUMARK (o,  DCUADDR) never set to anything within 
the module. 

DMA 

Discrepency Report 

Missing: 
DMA3 IOREQUES ^UNDEFINED* 
DMA3 IOREQUES 515 
DMA3 CHGFILA 

The task entry procedure for DMA3 is the same as the one for DMA3, therefore, in the 
interpretion of the task flow graph generator task DMA3 really doesn't exist (it looks for the 
first match of task entry procedure in the list of tasks). 

DMB 

Discrpency Report 

Missing: 
DMB5 -> DMB5 IOREQUES 2054 

Extra: 
DMB5 -> DMB5 IOREQUES 0 
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The task entry procedure for DMB5 is DMBCYMSM. This directly calls RTOS without any 
intervening calls to other procedures. Since the ddb address field of the table(s) passed to 
RTOS are is not pre-set, the ddb-address is 0. The ddb-address of those tables are set in 
DMB4, which often calls DMB5, but this is only known because of the task flow, so this data 
flow dependency cannot be used. 

DRA 

Discrpency Report 

Missing: 
DRA00 -> DMUDISTR 224 
DRA17 -> DMUDISTR 224 

Extra: 
DRA12 -> DRA7 

• The relationship DRA 12 -> DRA7 is found, but is not in the manually generated graph. 
The relevent code is: 

DRARAR.524 (IDRT7RQ) 
FIELD MODNUM I 8 U 0 15 P DRARARNM 
FIELD TSKNUM I 8 U 0 7 P DRATKP 

DRARAR.7582 (DRAWRTK) 
DRATKOFF 

DRARAR.6357 (DRATKOFF) 
RTOS INPUT REGISTER, CORAD(IDRT7RQ) OUTPUT DUMMY 

where DRATKP is task 7 and DRAWRKTK is the task entry procedure for task 12. 

DSA 

Discrepency Report 

• DSA3 -> CXM17 DMUDISTR 32 is called from DSADISTR, which is called from 
DSARSTRT which is DSA3. 

• DSA5 -> CXM17 DMUDISTR 32 is called from DSADISTR, which is called from 
DSAPOINT which is DSA5. 
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DSD 

Discrepency Report 

Missing: 
DSD4 -> CXC7 
DSD6 -> CXC7 
DSD7 -> CXC7 
DSD9 -> CXC7 
DSD10 -> CXC 

Extra: 
DSD4 -> CXC9 
DSD6 -> CXC9 
DSD7 -> CXC9 
DSD9 -> CXC9 
DSD10 -> CXC9 

• DSDx -> CXC(M)7 should be DSDx -> CXC(M)9. There are no references to task number 
7 associated with the CXC(M) module. All references to CXC(M) are assoicated with 
module number 9. An example of the relevent code is: 

DSDHP.14739 (DSDRETRL) 
SET GMVRMN TO CXMXTLMN 

DSDHP.14740 (DSDRETRL) 
SET GMVTASK TO 9 

DSDHP.14741 (DSDRETRL) 
CSGPACK INPUT GMEEXR, 1 

CSDSG1.1274 (CSGPACK) 
DSGPKBF 

CSDSG1.1029 (DSGPKBF) 
SET IDBFSRQ(0, MNUM) TO GMVRMN 

CSDSG1.1030 (DSGPKBF) 
SET IDBFSRQ(0, TASK) TO GMVTASK 

CSDSG1.1035 (DSGPKBF) 
RTOS INPUT BUFREGST, CORAD(IDBFSRQ) OUTPUT GMVPTR 
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DSE 

DiscreDencv Reüort 

Missing: 
DSE3 > IOREQUES 16 
DSE4 -> IOREQUES 16 
DSE5 -> SMC4 
DSE5 -> IOREQUES 16 
DSE6 ->SRF7 
DSE6 -> IOREQUES 16 
DSE7 -> IOREQUES 16 
DSE8 -> IOREQUES 16 

Extra: 
DSE3 -> 
DSE3 -> IOREQUES 0 
DSE3 -> IOREQUES 18 
DSE3 -> IOREQUES 54 
DSE3 -> DSB5 
DSE4 -> 
DSE4 -> DSB5 
DSE4 -> IOREQUES 0 
DSE4 -> IOREQUES 18 
DSE4 -> IOREQUES 54 
DSE5 -> 
DSE5 -> IOREQUES 0 
DSE5 -> IOREQUES 18 
DSE5 -> IOREQUES 54 
DSE6 -> DSB5 
DSE6 -> IOREQUES 0 
DSE6 -> IOREQUES 17 
DSE6 -> IOREQUES 18 
DSE6 -> IOREQUES 54 
DSE7 -> DSB5 
DSE7 -> IOREQUES 0 
DSE7 -> IOREQUES 18 
DSE7 -> IOREQUES 54 
DSE8 -> DSB5 
DSE8 -> IOREQUES 0 
DSE8 -> IOREQUES 18 
DSE8 -> IOREQUES 54 
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• DSE6 -> SRF7 should be called, but the module/task pair is set in a conditional, and 
because of the limitations of the evaluator, the else part of the code is executed in the same 
context, and overwrites the settings for SRF7. The relevent code is: 

DSEAP.16575 (DSEDROP) 
IF IDADMSUB(0, FRMTNM) EQ FTM2038 

DSEAP.16577 (DSEDROP) 
SET GMVTASK TO 7 

DSEAP.16578 (DSEDROP) 
SET GMVRMN TO SRFTMMN 

DSEAP.16586 (DSEDROP) 
SET GMVTASK TO 5 

DSEAP.16587 (DSEDROP) 
SET GMVRMN TO DSADPMN 

• DSE5 -> SMC4 should be called, but the module/task pair is set in a conditional, and 
because of the limitations of the evaluator, the else part of the code is executed in the same 
context, and overwrites the settings for SRF7. The relevent code is: 

DSEAP.14504 (DSEWCFF) 
IF DSEORDROJQINDX, PARM8) GT 0 THEN 

DSEAP.14508 (DSEWCFF) 
SET GMVRMN TO SMCDLKMN 

DSEAP.14509 (DSEWCFF) 
SET GMVTASK TO 4 

DSEAP.14514 (DSEWCFF) 
SET GMVRMN TO CXMCTLMN 

DSEAP.14515 (DSEWCFF) 
SET GMVTASK TO 9 

• DSE3 -> DSB5, DSE4 -> DSB5, DSE6 -> DSB5, DSE7 -> DSB5, DSE8 -> DSB5 is 
generated via: 

CSDSGl.946 (DSGCHECK) 
SET GMVRMN TO DSBPMN 

CSDSGl.947 (DSGCHECK) 
SET GMVTASK TO 5 

CSDSGl.949 (DSGCHECK) 
CSGALLOC INPUT GMEANS 

CSDSGl.560 (CSGALLOC) 
SET IDRTSRQ(0,MNUM) TO GMVRMN 

CSDSGl.561 (CSGALLOC) 
SET IDRTSRQ(0,TASK) TO GMVTASK 

CSDSGl.958 (DSGCHECK) 
CSGSEND INPUT GMEANS 

CSGSG1.695 (CSGSEND) 
RTOS INPUT REGISTER, CORAD(IDRTSRQ) OUTPUT GMVPTR 

DSECHNG (DSE6), DSESAVIT (DSE7) and DSERSTRT (DSE3) all call DSECLERA 
which calls DSGCHECK. DSEPSMTO (DSE8) calls DSECLEARO which calls 
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DSEPLMOD, which calls CSGPACK, which calls DSGCHECK. DSEQALRT (DSE4) calls 
DSECAPAL which calls CSGPACK. 

• DSE3 ->, DSE4 ->, DSE5 -> are all caused by calls to CGSEND. One argument, 
GMEANS, is passed to CGSEND, and within that function , as REGISTER call or an 
IOREQUES call is made, depending upon the value of the argument. When the call to 
CGSEND is to perform the IOREQUES, then no module/task pair is set. If conditionals were 
in the slice then these extra relationships could be avoided. 

PMA 

Discrepency Report 

Missing: 
PMA5 -> PMA6 
PMA11->RTH7 

Extra: 
PMA5 -> PMA6 delay 500 msec 
PMA10 -> CMG6 

• PMA5 -> PMA6 is missing but PMA5 -> PMA6 delay 500 msec was found. The relevent 
code is: 

PMA.12019 (PMACCSR): 
SET IDRTSR(0,PMDLY) TO 1 

PMA.12020 (PMACCSR): 
RTOS INPUT REGISTER, CORAD(IDSTSR), OUTPUT PMDUM 

• PMA 10 -> CMG6 should be in the manually generated documentation based on the 
following code. PMAES is task 10. 

PMA.13812 (PMAES) 
PMARESET 

PMA.18186 (PMARESET) 
SET IDRTSR(0, PMNM) TO CMGDMN 

PMA.18187 (PMARESET) 
SET IDRTSR(0, PMTM) TO CMGLNKST 

PMA.18191 (PMARESET) 
RTOS INPUT REGISTER, CORAD(IDRTSR), OUTPUT PMDUM 

• PMA11 -> RTH7 doesn't appear to be necessary. PMAPCM (task 11) makes no 
RTOS/DMU calls. It calls only one procedure, PMACVTME, which calls no other 
procedures, including RTOS/DMU. 
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RTH 

Discrepency Report 

Missing: 

SIB 

Extra: 
SIB1->SIB4 delay 60 sec 
SIB3->DMUREAD51 
SIB 3 -> SIB4 delay 60 sec 
SIB3 -> SIB 17 DMUDISTR 51 
SIB3 -> SIB 17 DMUWRITE 22 
SIB3 -> SIB 19 DMUREAD 245 
SIB3 -> SIB22 DMUREAD 245 
SIB3->WCA10 
SIB4 -> SIB4 delay 500 msec 
SIB4-> DMUDISTR 51 
SIB10->DSD7 
SIB 11 -> SIB20 REMOVE 
SIB 17 -> SIB 17 DMUWRITE 23 
SIB18->CMU8 
SD323 -> DSE4 
SIB23-> DMUDISTR 51 
SIB23 -> SIB4 delay 60 sec 
SIB23 -> SIB 17 DMUDISTR 51 
SIB23 -> SIB 17 DMUWRITE 22 
SIB23 -> SIB 19 DMUREAD 245 
SIB23 -> SIB22 DMUREAD 245 

• SIB 1,3 -> SIB4 should have a delay of 60 sees. The relevent code is: 

SIBATO.8602 (TABLE IDTOPERD) 
FIELD MN ... SIBATOMN 

SIBATO.8603 (TABLE IDTOPERD) 
FIELD TN ... CTNPER 

SIBATO.8608 (TABLE IDTOPERD) 
FIELD TIMED...120 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.11845 (SIBPSTIN) 
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RTOS INPUT REGISTER CORAD(IDTOPERD) OUTPUT DUMMY 
SIBATO.12502 (SIBRSTIN) 

SIBFILAC 
SIBATO.12743 (SIBFILAC) 

SIBFILCU 
SIVATO.11965 (SIBFILCU) 

RTOS INPUT REGISTER CORAD(IDTOPERD) OUTPUT DUMMY 

• SIB3 -> DMUDISTR 51 was found and should be in the graph. The relevent code is: 

SIBATO.6355 (TABLE IDMWGATO) 
FIELD FILEID ... CNGATAOG 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.12502 (SIBSTRT) 
SIBFILAC 

SIBATO.12743 (SIBFILAC) 
SIBFILCU 

SIBATO.11962 (SIBFILCU) 
SIBSACT 

SIBATO.13824 (SIBSACT) 
SIBPERWT 

SIBATO.15355 (SIBPERWT) 
SET IDMWGATO(0, MN) TO 0 

SIBATO 15356 (SIBPERWT) 
SET IDMWGATO(0, TN) TO 0 

SIBATO.15357 (SIBPERWT) 
DMUDISTR INPUT CORAD(IDMWGATO)... 

• SIB3 -> SIB 17 DMUWRITE 22 was found and should be in the graph. The relevent code 
is: 

SIBATO.6415 (TABLE IDMWPLET) 
FIELD FILEID ... CNSIBLTF 

SIBATO.6425 (TABLE IDMWPLET) 
FIELD MN ... SIBATOMN 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.12502 (SIBSTRT) 
SIBFILAC 

SIBATO.12743 (SIBFILAC) 
SIBFILCU 

SIBATO.11962 (SIBFILCU) 
SIBSACT 

SIBATO.13824 (SIBSACT) 
SIBPERWT 

SIBATO.15348 (SIBPERWT) 
SET IDMWPLET(0, TN) TO CTNPWRTC - equal tag for 17 

SIBATO.15349 (SIBPERWT) 
DMUREAD INPUT CORAD(IDMWPLET) .... 
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• SIB3 -> SIB 17 DMUWRITE 51 was found and should be in the graph. The relevent code 
is: 

SIBATO.6355 (TABLE IDMWGATO) 
FIELD FILEID ... CNGATAOG 

SIBAT0.6359 (TABLE IDMWGATO) 
FIELD MN ... SIBATOMN 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.12502 (SIBSTRT) 
SIBFILAC 

SIBATO.12743 (SIBFILAC) 
SIBFILCU 

SIBATO.11962 (SIBFILCU) 
SIBSACT 

SIBATO.13832 (SIBSACT) 
SET IDWGATO(0, TN) TO CTNPWRTC - equal tag for 17 

SIBATO.13833 (SIBSACT) 
DMUDISTR INPUT CORAD(IDMWGATO).... 

• SIB 3 -> SIB 19 DMUREAD 245 was found and should be in the graph. The relevent code 
is: 

SIBATO.6598 (TABLE IDMRFCUR) 
FIELD FILEID .... MNSIBMRF 

SIBATO.6602 (TABLE IDMRFCUR) 
FIELD MN .... SIBATOMN 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.12502 (SIBSTRT) 
SIBFILAC 

SIBATO.12743 (SIBFILAC) 
SIBFILCU 

SIBATO.11962 (SIBFILCU) 
SIBSACT 

SIBATO.13824 (SIBSACT) 
SIBPERWT 

SIBATO.15345 (SIBPERWT) 
SIBMAINC 

SIBATO.15508 (SIBMAINC) 
SET IDMRFCUR(0, TN) TO CTNHIGHC 

SIBATO.15511 (SIBMAINC) 
DMUREAD INPUT CORAD(IDMRFCUR).... 

• SIB3 -> SIB22 DMUREAD 245 was found and should be in the graph. The relevent code 
is: 

SIBATO.6598 (TABLE IDMRFCUR) 
FIELD FILEID .... MNSIBMRF 

SIBATO.6602 (TABLE IDMRFCUR) 
FIELD MN .... SIBATOMN 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 
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SIBATO.12502 (SIBSTRT) 
SIBFILAC 

SIBATO.12743 (SIBFILAC) 
SIBFILCU 

SIBATO.11949 (SIBFILCU) 
SET IDMRFCUR(0,TN) TO CTNFUTUR - equal tag for 22 

SIBATO.11950 (SIBFILCU) 
DMUREAD INPUT CORAD(IDMRFCUR) OUTPUT... 

• SIB3 -> WCA10 was found and should be in the graph. The relevent code is: 

SIBATO.7619 (TABLE TRTOALMS) 
FIELD MN ... WCACTLMN 

SIBATO.7620 (TABLE TRTOALMS) 
FIELD TN . . . CTNWCMSG  - equal tag for 10 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.12466 (SIBSTRT) 
RTOS INPUT REGISTER, CORAD(TRTOALMS) OUTPUT GPOINTER 

• SIB4 -> SIB4 delay 500 msec was found and should be in the graph, which was a different 
delay than that in the manually generated graphs. The relevent code is: 

SIBATO.8665 (TABLE IDREPERD) 
FIELD MN .... SIBATOMN 

SIBATO.8666 (TABLE IDREPERD) 
FIELD TN ... CTNPER 

SIBATO.8671 (TABLE IDREPERD) 
FIELD TIMED ... 1 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.13016 (SIBPER) 
RTOS INPUT REGISTER, CORAD(IDREPERD) OUTPUT DUMMY 

• SIB4 -> DMUDISTR 51 was found and should be in the graph. The relevent code is: 

SIBATO.6355 (TABLE IDMWGATO) 
FIELD FILEID ... CNGATAOG 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.12806 (SIBMSACT) 
SIBPERWT 

SIBATO.15355 (SIBPERWT) 
SET IDMWGATO(0, MN) TO 0 

SIBATO 15356 (SIBPERWT) 
SET IDMWGATO(0, TN) TO 0 

SIBATO.15357 (SIBPERWT) 
DMUDISTR INPUT CORAD(IDMWGATO)... 
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• SIB 10 -> DSD7 was found and should be in the graph. The relevent code is: 

SIBATO.7997 (TABLE IDTOSTDU) 
FIELD MN ... DSDHPMN 

SIBAT0.7998 (TABLE IDTOSTDU) 
FIELD TN ... 7 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.16583 (SIBNMSA2) 
RTOS INPUT REGISTER, CORAD(IDTOSTDU) OUTPUT GPOINTER 

• SB 11 -> SIB20 REMOVE was found and should be in the graph. The relevent code is: 

SIBATO.9017 (TABLE IDTOCLRP) 
FIELD MN ... SIBATOMN 

SIBATO.9018 (TABLE IDTOCLRP) 
FIELD TN ... CTNCLRPC 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.17633 (SIBDISP) 
RTOS INPUT REMOVE, CORAD(IDTOCLRP)... 

• SIB 12 -> WCA10 was found and should be in the graph. The relevent code is: 

SIBATO.7619 (TABLE TRTOALMS) 
FIELD MN ... WCACTLMN 

SIBATO.7620 (TABLE TRTOALMS) 
FIELD TN ... CTNWCMSG  - equal tag for 10 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.18601 (SIBDSCMB) 
SIBDSPRC 

SIBATO.18354 (SIBDSPRC) 
SIBEDDSR 

SIBATO.19285 (SIBEDDSR) 
SIBMNDAT 

SIBATO.20146 (SIBMNDAT) 
SIBDEACT 

SIBATO.14624 (SIBDEACT) 
SIBNDALT 

SIBATO.17353 (SIBNDALT) 
SIBALRTD 

SIBATO.13595 (SIBALRTD) 
RTOS INPUT BUFREGST, CORAD(TRTOALMS).... 
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• SIB 17 -> SIB 17 DMUWRITE 23 was found and should be in the graph. The relevent code 
is: 

SIBATO.6454 (TABLE IDMWPMNU) 
FIELD FILEID.... CNSIBMSN 

SIBAT0.6463 (TABLE IDMWPMNU) 
FIELD MN ... SIBATOMN 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.15804 (SIBPWRTC) 
SET IDMWPMNU(0, TN) TO CTNPWRTC 

SIBATO.15805 (SIBPWRTC) 
DMUWRITE INPUT CORAD(IDMWPMNU).... 

• SIB 17 -> SIB 17 DMUWRITE 51 was found and should be in the graph. The relevent code 
is: 

SIBATO.6355 (TABLE IDMWGATO) 
FIELD FILEID ... CNGATAOG 

SIBATO.6359 (TABLE IDMWGATO) 
FIELD MN ... SIBATOMN 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.15813 (SIBPWRTC) 
SET IDWGATO(0, TN) TO CTNPWRTC - equal tag for 17 

SIBATO.15814 (SIBPWRTC) 
DMUDISTR INPUT CORAD(IDMWGATO).... 

• SIB 18 -> CMU8 was found and should be in the graph. The relevent code is: 

SIBATO.7190 (TABLE IDCOMMTS) 
FIELD MN ... CMUMN 

SIBATO.7191 (TABLE IDCOMMTS) 
FIELD TN  8 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.26581 (SIBMTSMG) - TASK 18 
RTOS INPUT REGISTER, CORAD(IDCOMMTS) OUTPUT GPOINTER 

• SIB23 -> DSE4 was found and should be in the graph. The relevent code is: 

SIBATO.8411 (TABLE IDTOAEMD) 
FIELD MN ... DSEAPMN 

SIBATO.8412 (TABLE IDTOAEMD) 
FIELD TN ... 4 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.12806 (SIBRSTCP)  - TASK 23 
SIBFILAC 

SIBATO.12743 (SIBFILAC) 
SIBFILCU 
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SIBATO.11962 (SIBFILCU) 
SIBMSACT 

SIBATO.13800 (SIBMSACT) 
SIBAEWG INPUT SIBLTFF(NDX,MSNNDX) 

SIBATO.27164 (SIBAEWG) 
RTOS INPUT BUFREGST, CORAD(IDTOAEMD) OUTPUT GPOINTER 

• SIB23 -> SIB4 delay 60 sec was found and should be in the graph. The relevent code is: 

SIBATO.8602 (TABLE IDTOPERD) 
FIELD MN ... SIBATOMN 

SIBATO.8603 (TABLE IDTOPERD) 
FIELD TN ... CTNPER 

SIBATO.8608 (TABLE IDTOPERD) 
FIELD TIMED...120 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.11845 (SIBRSTCP) 
RTOS INPUT REGISTER CORAD(IDTOPERD) OUTPUT DUMMY 

SIBATO.12502 (SIBRSTIN) 
SIBFILAC 

SIBATO.12743 (SIBFILAC) 
SIBFILCU 

SIVATO.11965 (SIBFILCU) 
RTOS INPUT REGISTER CORAD(IDTOPERD) OUTPUT DUMMY 

• SIB23 -> DMUDISTR 51 was found and should be in the graph. The relevent code is: 

SIBATO.6355 (TABLE IDMWGATO) 
FIELD FILEID ... CNGATAOG 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.12806 (SIBRSTCP) 
SIBFILAC 

SIBATO.12743 (SIBFILAC) 
SIBFILCU 

SIBATO.11962 (SIBFILCU) 
SIBSACT 

SIBATO.13824 (SIBSACT) 
SIBPERWT 

SIBATO.15355 (SIBPERWT) 
SET IDMWGATO(0, MN) TO 0 

SIBATO 15356 (SIBPERWT) 
SET IDMWGATO(0, TN) TO 0 

SIBATO.15357 (SIBPERWT) 
DMUDISTR INPUT CORAD(IDMWGATO)... 
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• SIB23 -> SIB 17 DMUDISTR 51 was found and should be in the graph. The relevent code 
is: 

SIBATO.6355 (TABLE IDMWGATO) 
FIELD FILEID ... CNGATAOG 

SIBAT0.6359 (TABLE IDMWGATO) 
FIELD MN ... SIBATOMN 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.12502 (SIBRSTCP) 
SIBFILAC 

SIBATO.12743 (SIBFILAC) 
SIBFILCU 

SIBATO.11962 (SIBFILCU) 
SIBSACT 

SIBATO.13832 (SIBSACT) 
SET IDMWGATO(0, TN) TO CTNPWRTC - equal tag for 17 

SIBATO.13833 (SIBPERWT) 
DMUREAD INPUT CORAD(IDMWGATO) .... 

• SIB23 -> SIB 17 DMUDISTR 22 was found and should be in the graph. The relevent code 
is: 

SIBATO.6415 (TABLE IDMWPLET) 
FIELD FILEID ... CNSIBLTF 

SIBATO.6425 (TABLE IDMWPLET) 
FIELD MN ... SIBATOMN 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.12502 (SIBRSTCP) 
SIBFILAC 

SIBATO.12743 (SIBFILAC) 
SIBFILCU 

SIBATO.11962 (SIBFILCU) 
SIBSACT 

SIBATO.13824 (SIBSACT) 
SIBPERWT 

SIBATO.15348 (SIBPERWT) 
SET IDMWPLET(0, TN) TO CTNPWRTC - equal tag for 17 

SIBATO.15349 (SIBPERWT) 
DMUREAD INPUT CORAD(IDMWPLET) .... 
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• SIB23 -> SIB 19 DMUREAD 245 was found and should be in the graph. The relevent code 
is: 

SIBATO.6598 (TABLE IDMRFCUR) 
FIELD FILEID .... MNSIBMRF 

SIBATO.6602 (TABLE IDMRFCUR) 
FIELD MN .... SIBATOMN 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.12502 (SIBRSTCP) 
SIBFILAC 

SIBATO.12743 (SIBFILAC) 
SIBFILCU 

SIBATO.11962 (SIBFILCU) 
SIBSACT 

SIBATO.13824 (SIBSACT) 
SIBPERWT 

SIBATO.15345 (SIBPERWT) 
SIBMAINC 

SIBATO.15508 (SIBMAINC) 
SET IDMRFCUR(0, TN) TO CTNHIGHC 

SIBATO.15511 (SIBMAINC) 
DMUREAD INPUT CORAD(IDMRFCUR).... 

• SIB23 -> SIB22 DMUREAD 245 was found and should be in the graph. The relevent code 
is: 

SIBATO.6598 (TABLE IDMRFCUR) 
FIELD FILEID .... MNSIBMRF 

SIBATO.6602 (TABLE IDMRFCUR) 
FIELD MN .... SIBATOMN 

SIBATO.11700 (SIB) 
SIBATAOP USING IDTSK 

SIBATO.12502 (SIBRSTCP) 
SIBFILAC 

SIBATO.12743 (SIBFILAC) 
SIBFILCU 

SIBATO.11949 (SIBFILCU) 
SET IDMRFCUR(0,TN) TO CTNFUTUR - equal tag for 22 

SIBATO.11950 (SIBFILCU) 
DMUREAD INPUT CORAD(IDMRFCUR) OUTPUT... 
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SCA 

Discrepency Report 

Missing: 
SCA1 -> SCA5,6,7,8 REMOVE 
SCA4 -> SCA5,6,7,8,9 REMOVE 
SCA4 -> SCA5,6,7,8,9 DELAY 3,5,10 
SCA4 -> SCA15,16,17,18,19 DELAY 3,5,10\ 
SCA4 -> SCA 15,16,17,18,19 REMOVE 
SCA5 -> SCA6,7,8,9 REMOVE 
SCA5 -> SCA5,6,7,8,9 DELAY 3,5,10 
SCA5 -> SCA10 REMOVE 
SCA5 -> SCA15,16,17,18,19 DELAY 3,5,10 
SCA5 -> SCA 16,17,18,19 REMOVE 
SCA5 -> IOREQUES 2091 
SCA6 -> SCA5,6,7,9 DELAY 3,5,10 
SCA6 -> SCA10 REMOVE 
SCA6 -> SCA15,16,17,18,19 DELAY 3,5,10 
SCA6 -> SCA 15,17,18,19 REMOVE 
SCA6 -> IOREQUES 2091 
SCA7 -> SCA5,6,7,8,9 REMOVE 
SCA7 -> SCA5,6,7,8,9 DELAY 3,5,10 
SCA7 -> SCA10 REMOVE 
SCA7 -> SCA15,16,17,18,19 DELAY 3,5,10 
SCA7 -> SCA 15,16,18,19 REMOVE 
SCA7-> IOREQUES 2091 
SCA8 -> SCA5,6,7,9 REMOVE 
SCA8 -> SCA5,6,7,8,9 DELAY 3,5,10 
SCA8 -> SCA10 REMOVE 
SCA8 -> SCA15,16,17,18,19 DELAY 3,5,10 
SCA8 -> SCA 15,16,18,19 REMOVE 
SCA8 -> IOREQUES 2091 
SCA9 -> SCA5,6,7,9 REMOVE 
SCA9 -> SCA5,6,7,8 DELAY 3,5,10 
SCA9 -> SCA10 REMOVE 
SCA9 -> SCA15,16,17,18,19 DELAY 3,5,10 
SCA9 -> SCA 15,16,18 REMOVE 
SCA9 -> IOREQUES 2091 
SCA10 -> SCA5,6,7,9 REMOVE 
SCA10 -> SCA5,6,7,8 DELAY 3,5,10 
SCA10 -> SCA10 REMOVE 
SCA10 -> SCA15,16,17,18,19 DELAY 3,5,10 
SCA10 -> SCA 15,16,19 REMOVE 
SCA10 -> IOREQUES 2091 
SCA11 -> SCA5,6,7,8,9 REMOVE 
SCA11 -> SCA5,6,7,8 DELAY 3,5,10 
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SCA11 -> SCA10 REMOVE 
SCA11 -> SCA15,1617,18,19 DELAY 3,5,10 
SCA11 -> SCA 15,17,18,19 REMOVE 
SCA11 ->IOREQUES2091 
SCA12 -> SCA5,6,7,8,9 REMOVE 
SCA12 -> SCA5,6,7,8 DELAY 3,5,10 
SCA12 -> SCA10 REMOVE 
SCA12 -> SCA15,1617,18,19 DELAY 3,5,10 
SCA12 -> SCA 15,16,17,18,19 REMOVE 
SCA12 ->IOREQUES2091 
SCAB -> SCA5,6,7,8,9 REMOVE 
SCA13 ->SCA5,6,7,8 DELAY 3,5,10 
SCA13 -> SCA10 REMOVE 
SCA13 -> SCA15,1617,18,19 DELAY 3,5,10 
SCA13 -> SCA 15,16,17,18,19 REMOVE 
SCA13 -> IOREQUES 561 
SCA13 ->IOREQUES2091 
SCA14 -> SCA5,6,7,8 DELAY 3,5,10 
SCA15 -> SCA 6,7,8,9 REMOVE 
SCA15 -> SCA5,6,7,8 DELAY 3,5,10 
SCA15 -> SCA10 REMOVE 
SCA15 -> SCA 15,16,17,18,19 DELAY 3,5,10 
SCA15 -> SCA 16,17,18,19 REMOVE 
SCA15 -> IOREQUES 2091 
SCA16 -> SCA 5,7,8,9 REMOVE 
SCA16 -> SCA5,6,7,8 DELAY 3,5,10 
SCA16 -> SCA10 REMOVE 
SCA16 -> SCA 15,16,17,18,19 DELAY 3,5,10 
SCA16 -> SCA 15,17,18,19 REMOVE 
SCA16 -> IOREQUES 2091 
SCA17 -> SCA 5,6,8,9 REMOVE 
SCA17 -> SCA5,6,7,8 DELAY 3,5,10 
SCA17 -> SCA10 REMOVE 
SCA17 -> SCA 15,16,17,18,19 DELAY 3,5,10 
SCA17 -> SCA 15,16,18,19 REMOVE 
SCA17 -> IOREQUES 2091 
SCA18 -> SCA 5,6,7,9 REMOVE 
SCA18 -> SCA5,6,7,8 DELAY 3,5,10 
SCA18 -> SCA10 REMOVE 
SCA18 -> SCA 15,16,17,18,19 DELAY 3,5,10 
SCA18 -> SCA 15,16,17,19 REMOVE 
SCA18 -> IOREQUES 2091 
SCA19 -> SCA 5,6,7,8 REMOVE 
SCA19 -> SCA5,6,7,8 DELAY 3,5,10 
SCA19 -> SCA10 REMOVE 
SCA19 -> SCA 15,16,17,18,19 DELAY 3,5,10 
SCA19 -> SCA 15,16,17,18 REMOVE 
SCA19 -> IOREQUES 2091 
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SCA20 -> SCA 5,6,7,8,9 REMOVE 
SCA20 -> SCA5,6,7,8 DELAY 3,5,10 
SCA20 -> SCA10 REMOVE 
SCA20 -> SCA 15,16,17,18,19 DELAY 3,5,10 
SCA20 -> SCA 15,16,17,18,19 REMOVE 

Extra: 

SCB 

Discrepency Report 

Missing: 

Extra: 
SCB18->SRD6 

• SCB 18 -> SRD6 should be included because of the following code: 

SCBINT.9022 
FIELD MODNUM ....SRDIDMN 

SCBINT.9023 
FIELD TASKNUM ... 6 

SCBINT.24787 (SCBSMINP) 
SCBRIUIN 

SCBINT.21826 (SCBRIUIN) 
SCBWNDOW 

SCBINT.22918 (SCBWNDOW) 
SCBGOTWE 

SCBINT.23112 (SCBGOTWE) 
SCBSNDWE 

SCBINT.23221 (SCBSNDWE) 
RTOS INPUT REGISTER, CORAD(IDSRVWDW) OUTPUT DUMMY 

• SCB 11 -> DSC4 should have been found, but because of the conditional (FOR stmt) 
SCB11 -> DSA5 was found instead. The relevent code is: 

SCBINT.14218 (SCBDSPOU) 
FOR IDSUBHRD(0, FRMTNMBR) 

SCBINT.14220 (SCBDSPOU) 
SET IDDSPACM(0,MODULE) TO DSCRPMN 

SCTINT.14221 (SCBDSPOU) 
SET IDDSPACM(0,TASK) TO 4 

SCBINT.14224 (SCBDSPOU) 
SET IDDSPACM(0,MODULE) TO DSADPMN 
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SCBINT.14225 (SCBDSPOU) 
SET IDDSPACM(0, TASK) TO 5 

SCBINT.14230 (SCBDSPOU) 
RTOS INPUT REGISTER, CORAD(IDDSPACM) OUTPUT DUMMY 

• SCB3,4,5,6,7,8,11,12,13,14,15,18 -> SMF6 appears instead of 
SCB4,5,6,7,8,11,12,13,14,15,18. This is because of the conditional problem in program 
slicing. The following code is contained in procedure SCBSIMOU. 

©DP15.12.2FOR IDSIMH(0,MSSGTYPE) $ 
©DPI 5 .12 .2 
©DP15 .12 .2 
©DP15 .12 .2 
©DP15 .12 .2 
©DPI 5 .12 .2 
©DP15 .12 .2 
©DP15 .12 .2 
©TR22939 .2 
©DPI 5 .12 .2 
STATUS R 
1 

EQUEST 

©TR22939 
©B/CS0006 
©TR22939 
©TR22939 
©TR22939 
©TR22939 
©TR22939 
©B/CS0006 
©DP15 .12 2 
©DP15 12 2 
©DP15 12 2 
©DP15 12 2 
©B/CS0006 
©TR22939 
©TR2293 
©DP15 12. 2 
POSCMD,SYSTIME 
©DP15 12. 2 
RESET, 
©DPI5. 12. 2 
©DP15. 12. 2 
©DP15. 12. 2 
©DPI5. 12. 2 
©DP15. 12. 2 
©DP15. 12. 2 
©DP15. 12. 2 
©DP15. 12. 2 
©DP15. 12. 2 
©DP15. 12. 2 
©DP15. 12. 2 
©DPI5. 12. 2 

BEGIN RDRCMDS radar command''$ 
SET CORAD(IDSMHD) TO CORAD(BUFFRADR)  $ 
FOR IDSMHD(0,CMDTYPE) $ 

BEGIN EMCONON,EMCONOFF,IFFMODES $ 
SET IDSMPK(0,TASK) TO 4 $ 
SET IDSMPK(0,MODULE) TO SMFRIGMN $ 

END $ 
BEGIN 15  ''FILTER,RDRREG,MIGSTS''  $ 

''FILTER DESIGNATION,RADAR REGISTRATION,MIG 

IF IDSMHD(0,SUBCODE) EQ 3 
THEN BEGIN   ''request MIG status''$ 

SET IDSMPK(0,TASK) TO 4 $ 
SET IDSMPK(0,MODULE) TO SMFRIGMN $ 

END $ 
ELSE BEGIN "1" $ 

IF IDSMHD(0,SUBCODE) EQ 2 
THEN BEGIN   ''filter designation cmd''$ 

SET IDSMPK(0,TASK) TO 9 $ 
SET IDSMPK(0,MODULE) TO SMETDGMN $ 
END $ 

ELSE 
SET FNDIT TO TRUE  ''radar correction cmd.''$ 

END ''ELSE BEGIN 1'' $ 
END ■'begin 15'' $ 
BEGIN 

PURGE,MIGRESET,LSFILTER,MIGTEST $ 
''POSITIONAL CMD,SYSTEM TIME,PURGE ALL TRACKS,MIG 

LOW SPEED FILTER,MIG TEST TARGET CMD'' 
IF IDSMHD(0,SUBCODE) EQ 2 AND IDSMHD(0,IFC) EQ 3 

''PURGE ALL TRACKS COMMAND'' 
THEN BEGIN $ 

SET IDSMPK(0,TASK) TO 4 $ 
SET IDSMPK(0,MODULE) TO SMFRIGMN $ 

END ''PURGE'' $ 
ELSE 

SET FNDIT TO TRUE $ 
END $ 
BEGIN MOD4CNTL,DECOYS $ 

SET FNDIT TO TRUE $ 
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■ 

©DP15.12.2                    END  $ 
©DP15.12.2               END   ''FOR''$ 
©DP15.12.2          END   ' 'RDRCMDS' $ 
©DP15.12.2          BEGIN RDRMSG '   radar select command''$ 
©DP15.12.2               SET  IDSMPK{0 TASK)   TO  6   $ 
©DPI5.12.2               SET  IDSMPK(0 MODULE)    TO   SMFRIGMN   $ 
©DP15.12.2          END  $ 
©DP15.12.2END      ''FOR''   $ 

SMA 

Discrepencv Report 

Missing: 
SMA4 -> SMA8 DMUREAD 280 
SMA4 -> SMG5 DMUREAD 280 
SMA5 -> SMA4 DMUREAD 280 
SMA7 -> SMA7 REMOVE 
SMA8 -> SMA7 REMOVE 
SMA9 -> SMA8 DMUREAD 280 
SMA9 -> SMG5 DMUREAD 280 

Extra: 
SMA4 
SMA4 -> SMG6 DMUWRITE 283 
SMA4 -> SMG4 DMUREAD 280 
SMA5 -> SMG5 DMUREAD 283 
SMA5 -> SMG5 DMUREAD 283 
SMA6 -> SMA6 DMUWRITE 283 
SMA9 -> SMG5 DMUREAD 283 

• SMA9 -> SMA8 DMUREAD 280 missing because the slice doesn't deal with conditionals 
correctly. The relevant code is: 

SMAGEN.2050   (SMARDSCN): 
IF  GVMODE   EQ  MODIFYSM 

OR  GVMODE   EQ   PRINTSM 
THEN  BEGIN      ''READ   SCENARIO   SMAGEN''$ 

SET   IDDMSRD(0,MODULE) TO   SMAGENMN      ' 1SMAGEN  MODULE''$ 
SET   IDDMSRD(0,TASK)   TO   SMARDCTN 
END                         ''READ   SCENARIO   SMAGEN'' $ 
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ELSE BEGIN  ''LOAD SCENARIO SMGSWP''$ 
SET IDDMSRD(0,MODULE) TO SMGSWPMN  ''SMGSWP MODULE''$ 
SET IDDMSRD(0,TASK) TO SMGRDCTN 
END ''LOAD SCENARIO SMGSWP''$ 

• SMA4, SMA5, SMA9 -> SMG5 DMUREAD 280 is missing, and file number was found. 
As we can see this for statement indicates that 280, 281, 282, and 283 is possible, so both the 
documentation and the automatic process is wrong. If the conditionals are included in the 
slice, then the automatic method should be "more" correct. 

SMAGEN.2062 (SMARDSCN): 
FOR GVSCENIX  ''FOR SCENARIO INDEX''  $ 

©DP15.1 BEGIN 0,1,2       ''SCENARIO FILE A''$ 
SET IDDMSRD(0,FILEID) TO MNSMSCNA 
SET IDDMSRD(0,STARTREC) TO SMLSCEN*GVSCENIX + RSCNDIR 

END  ''SCENARIO FILE A1'$ 
©DP15.1 BEGIN 3,4,5      ''SCENARIO FILE B''$ 

SET IDDMSRD(0,FILEID) TO MNSMSCNB ''SCENARIO FILE B''$ 
0DP15.1   SET IDDMSRD(0,STARTREC) TO SMLSCEN*(GVSCENIX-3)' 

END  ''SCENARIO FILE B''$ 
©DP15.1 BEGIN 6,7,8     ' 'SCENARIO FILE C'$ 

SET IDDMSRD(0,FILEID) TO MNSMSCNC ''SCENARIO FILE C'$ 
©DP15.1   SET IDDMSRD(0,STARTREC) TO SMLSCEN*(GVSCENIX-6) 

END  ''SCENARIO FILE C''$ 
SDP15.1 BEGIN 9,10      ''SCENARIO FILE D''$ 
©DP15.1   SET IDDMSRD(0,FILEID) TO MNSMSCND ''SCENARIO FILE D''$ 
©DP15.1   SET IDDMSRD(0,STARTREC) TO SMLSCEN*(GVSCENIX-9) 
©DP15.1 END  ''SCENARIO FILE D''$ 

• SMA7 -> SMA7 (REMOVE) and SMA7 -> SMA8 (REMOVE) are missing. The only 
remove call is the one listed below, yet we don't know how to handle a call where the whole 
table isn't passed to RTOS. 

SMAEGN.18 3 7(SMAPRTOP) : 
RTOS  INPUT REMOVE,CORAD(IDREGTSK(0,MODULE)) 
OUTPUT DUMMY ''HAVE RTOS DESCHEDULE 

• SMA5 -> SMG5 DMUREAD 283 is found, but not in the documentation. SMABUILD 
(SMA5) calls SMARDSCN (SMA9) which tasks SMG5 via a DMUREAD call. The 
revelent code is: 

SMAGEN.2 058 (SMARDSCN) 
SET IDDMSRD(0, MODULE) TO SMGSWPMN 

SMAGEN.2 059 (SMARDSCN) 
SET IDDMSRD(0, TASK) TO SMGRDCTN 

SMAGEN.2 093 (SMARDSCN) 
DMUREAD INPUT CORAD(IDDMSRD) OUTPUT... 
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• SMA5 -> SMA4 DMUREAD 280 is missing, because of the problems with conditionals. 
The relevent code is: 

SMAGEN.2053 (SMARDSCN) 
SET IDDMSRD(0, MODULE) TO SMAGENMN 

SMAGEN.2054 (SMARDSCN) 
SET IDDMSRD(0, TASK) TO SMARDCTN 

SMAGEN.2058 (SMARDSCN) 
SET IDDMSRD(0, MODULE) TO SMGSWPMN 

SMAGEN.2059 (SMARDSCN) 
SET IDDMSRD(0, TASK) TO SMGRDCTN 

SMAGEN.2093 (SMARDSCN) 
DMUREAD INPUT CORAD(IDDMSRD) OUTPUT... 

• SMA4 -> ? was found. The following code indicates that the RTOS call is made without 
setting the module and task number in that task. This is an example where the data 
dependencies cannot be found via this static method 

SMAGEN.1236 (SMAGENT) 
SMAILSA 

SMAGEN.2572 (SMAILSA) 
RTOS INPUT REGISTER, CORAD(IDREGDSC)... 

• SMA4 -> SMA6 DMUWRITE 283 was found but not in the manually generated 
documentation. Conditionalized code is again the culprit. As we can see this for statement 
indicates that 280, 281, 282, and 283 is possible, so both the documentation and the 
automatic process is wrong. If the conditionals are included in the slice, then the automatic 
method should be "more" correct. 

SMAGEN.1630 (SMARECRD) 
SET IDDMSWR(0, FILEID) TO 

SMAGEN.1630 (SMARECRD) 
SET IDDMSWR(0, FILEID) TO 

SMAGEN.1630 (SMARECRD) 
SET IDDMSWR(0, FILEID) TO 

SMAGEN.163 0 (SMARECRD) 
SET IDDMSWR(0, FILEID) TO 

SMAGEN.1653 (SMARECRD) 
DMUWRITE INPUT CORAD(IDDMSWR). 

MNSMSCNA ( = 280) 

MNSMSCNB ( = 281) 

MNSMSCNC ( = 282) 

MNSMSCND ( = 283) 

SMB 

No discrepencies 
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SMD 

No discrepencies 

SME 

This module was run interactively. 

Discrepency Report 

Missing: 

SME4 -> SME4 DELAY 625 msec 
SME4 -> IOREQUES 567 
SME5 -> SME4 DELAY 625 msec 
SME5 -> IOREQUES 567 
SME6 -> SME4 DELAY 625 msec 
SME6 -> IOREQUES 567 
SME7 -> SME4 DELAY 625 msec 
SME7 -> IOREQUES 567 

Extra: 

SME4 -> IOREQUES 568 
SME4 -> IOREQUES 603 
SME5 -> IOREQUES 568 
SME5 -> IOREQUES 603 
SME6 -> IOREQUES 568 
SME6 -> IOREQUES 603 
SME7 -> IOREQUES 568 
SME7 -> IOREQUES 603 

; Missing 
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SMF 

Discrepency Report 

Missing: 

SMF5 -> SME5 
SMF5 -> SME6 
SMF5 -> SME7 
SMF5 -> SMF8 delay 10 sec 
SMF5 -> SMF8 REMOVE 
SMF5 -> SMF9 delay 10 sec 
SMF5 -> SMF9 REMOVE 
SMF5 -> SMF10 delay 10 sec 
SMF5 -> SMF10 REMOVE 
SMF6->SCB18 
SMF6IOREQUES 589 
SMF7IOREQUES 589 
SMF8IOREQUES 589 
SMF9IOREQUES 589 
SMF10IOREQUES 589 

Extra: 
SMF4 IOREQUES 567 
SMF5 IOREQUES 567 
SMF6 IOREQUES 567 
SMF7 IOREQUES 567 
SMF8 IOREQUES 567 
SMF9 IOREQUES 567 
SMF10 IOREQUES 567 

• SMF5 -> SMF8,9,10 REMOVE are missing because RDRINDX is not set, TASKNUM 
always 7. The value of RDRINDX is equal to SMFRDRID(0, RADX), which is not set to 
any value within the module. The relevent code is: 

SMF.6615 (SMFRATE) 
SET IDSMFRIG(0,TASKNUM) TO RDRINDX + 7 

SMF.5138 (SMFRDM) 
SET RDRINDX TO SMFRDRID(0,RADX) 

• SMF5 -> SME5,6,7: are missing Because RDRINDX not set, TASKNUM always 4. The 
value of RDRINDX is equal to SMFRDRID(0, RADX), which is not set to any value within 
the module. 
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SMF.6366 (SMFSCAN) 
SET TASKNUM TO RDRINDX + 4 

SMF.5138 (SMFRDM) 
SET RDRINDX TO SMFRDRID(0,RADX) 

SMF5 -> SMF5,6,7,8 should have a delay Seems like there should always be a delay... 
SET DELAY TO 20 "to delay 1st execution by 10 seconds        "$ 
SET MODNUM TO SMFRIGMN 
SET TASKNUM TO RDRINDX + 7 

• SMF4,5,6,7,8,9,10 IOREQUES 567 should be 568-571, but we don't evaluate loops (related 
to missing 568). The relevent code is: 

VARY VSUINDX FROM 0 THRU SMNRDR - 1 
IF GTMOCU(VSUINDX,RDRNO) EQ RADARIFF THEN ''VSU sim'ing Rdr'' 

BEGIN 
SET IDRIOPKT(0,BUSADDR) TO VSUINDX + 567 "Set Logical 
RTOS INPUT IOREQUES, CORAD(IDRIOPKT) OUTPUT DUMMY 

END 
END ''VARY Loop'' 

• SMF6,7,8,9,10 IOREQUES 567 should be 589, (or something else depending upon what 
IDFRECV(0,GVOCUNUM) is, which wasn't in slice for some reason) (related to missing 
589) 

(SMFSLM) 
SET OCUNUMBR TO IDFRECV(0,GVOCUNUM) 

(SMFSLM) 
SET VSUINDEX TO (OCUNUMBR - 16) / 4 

(SMFNORTH) SET BUSADR TO 589 

IF VSUIO EQ 0 THEN ''Output to go to <SIC>'' 
SET IDRIOPKT(0,BUSADDR) TO BUSADR 

ELSE ''Output to go to a single VSU'' 
SET IDRIOPKT(0,BUSADDR) TO VSUINDEX + 567 ''Set Logical 
RTOS INPUT IOREQUES, CORAD(IDRIOPKT) OUTPUT DUMMY 
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SMG 

Discrepency Report 

Missing: 
SMG04->SMG05 DMUREAD 280 

Extra: 
SMG04 -> SMG04 DMUREAD 280 

• SMG4 -> SMG5 is missing but SMG4 -> SMG4 was found instead. The relevant code is: 

SMGPNN.308: SWACTNTN EQUALS 4 

SMGBWP.2581 (SMGXXSIM): 
SET IDDMSRD(0,TASK) TO SWACTNTN 

SMGBWP.2584 (SMGXXSIM): 
DMUREAD INPUT CORAD(IDDMSRD) OUTPUT DMSCODE, DMSADDR 

SRC 

Discrepency Report 

Missing: 
SRC6 -> IOREQUES 1940 
SRC12 -> IOREQUES 1940 
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SRD 

Discrepency Report 

Extra: 
SRD8 -> DMUDISTR 52 

• SRD8 -> DMUDISTR 52 (CNGATAOG) is found, but not in the documentation. In what 
follow, the procedure SRDSIPT is the entry procedure of task 8. The revelant code is: 

SDRID.14881 (SRDSIPT): 
SET IDDMUPR{0, FILEID) TO CNFATAOG 

SRDID.14884 (SRDSIPT) 
DMUDISTR INPUT CORAD(IDDMUPR) OUTPUT GCOMPCDE, GDMADDR 

SRE 

Discrepency Report 

Missing: 
SRE4 -> DSC4 
SRE5 -> DSC4 
SRE6 -> DSC4 

• All of these missing events are due to missing conditional code in the program slices. The 
relevent code is: 

SRETE.3871 (SREDSOUT) 
SET IDDSREQ(0,TSKNUM) TO 5 

SRETE.3874 (SREDSOUT) 
SET IDDSREQ(0,TSKNUM) TO 4 

SRETE.3 879 (SREDSOUT) 
RTOS INPUT REGISTER, CORAD(IDDSREQ) OUTPUT DUMMY 

«U.S. GOVERNMENT PRINTING OFFICE:       1995-710-126-2OO66 
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MISSION 

OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Materiel 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, reliability 
science, electro-magnetic technology, photonics, signal processing, and 
computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


