
RL-TR-95-147
Final Technical Report
August 1995

INTEGRATION OF OPTIMAL
SCHEDULING WITH CASE-
BASED PLANNING

General Electric Company

Sponsored by
Advanced Research Projects Agency
ARPA Order No. 7686

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or
implied, of the Advanced Research Projects Agency or the U.S. Government.

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

')M&dt)L mm?E(fgED I

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS) At
NTIS it will be releasable to the general public, including foreign nations!

RL-TR-95-147 has been reviewed and is approved for publication.

APPROVED:

DONALD F. ROBERTS
Project Engineer

FOR THE COMMANDER: //
Sg./fJ/Lu^U

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3CA) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

r

INTEGRATION OF OPTIMAL SCHEDULING WITH
CASE-BASED PLANNING

P. Bonissone
J. Stillman
J. Ar agones
R. Arthur
S. Ayub

J. Farley
L. Blau Halverson

Contractor: General Electric Company
Contract Number: F30602-91-C-0030
Effective Date of Contract: 15 May 1991
Contract Expiration Date: 15 July 1994
Short Title of Work: Integration of Optimal

Scheduling with Case-Based
Planning

Period of Work Covered: May 91 - Jul 94

Principal Investigator: Pierro Bonissone
Phone: (518) 387-5155

RL Project Engineer: Donald F. Roberts
Phone: (315) 330-3577

Approved for public release; distribution unlimited.

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was
monitored by Donald F. Roberts, RL (C3CA), 525 Brooks Rd,
Griffiss AFB NY 13441-4505.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

l^»iigi«rimirtM*igtt»itonMdirt»Tdccral«tairidrwl»>»irxi of«« ,.,„,, ., ■ <_T^^ ccrTTl«^iridrwl»»^t»MB<«tocn<arn«luaS«ndccrT^^
™~*^™<»n,»^*i«»J^«iW*«ior»tor«^^
D^HI^.S^^A^^VA 22802^.^ to tr»0fffc«<*M.n«^«r1^^

1. AGENCY USE ONLY (Leav* Blank) 2. REPORT DATE

August 1995
4. TITLE AND SUBTITLE

a REPORT TYPE AND DATES COVERED
Final May 91 - Jul 94

INTEGRATION OF OPTIMAL SCHEDULING WITH CASE-BASED
PLANNING

& AUTHOR(S)
P. Bonissone, J. Stillman, J. Aragones, R.
S. Ayub, J. Farley, and L. Blau Halverson

Arthur,

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)
General Electric Company
Corporate Research & Development
1 River Rd
Schenectady NY 12301

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)

Advanced Research Projects Agency
3701 North Fairfax Drive Rome Laboratory (C3CA)
Arlington VA 22203-1714 525 Brooks Rd

Griffiss AFB NY 13441-4505

5L FUNDING NUMBERS

C - F30602-91-C-0030
PE - 62301E
PR - G686
TA - 00
WU - 08

a PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-95-147

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Donald F. Roberts/C3CA/(315) 330-3577

12a. DISTRIBUnON/AVAILABIUTY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

1 a ABSTRACT (M«*iun 200 word«)

This report combines information from several articles and theses. Those of particular
interest are summarized here. "Planning in an Uncertain and Dynamic Environment with
Weak Domain Theory" summarizes the author's research and results in the field of
planning in the Mergers and Acquisitions (M&A) domain, as well as giving a comprehen-
sive history of CBR and CBP. "Similarity Measures for Case-Based Planning Systems"
focuses on the case retrieval problem and the computation of similarity measures
between cases. "Planning with Dynamic Cases" describes the Case Representation
Language (CRL) and the architecture of a Case-Based Planning (CBP) system.
"Representing Cases and Rules in Plausible Reasoning Systems" describes a hybrid
system that integrates Case-Based Reasoning (CBR) and Rule-Based Reasoning (RBR)
systems. "Tachyon: A Constraint-Based Temporal Reasoning Model and Its Implementa-
tion" provides an overview of the Tachyon temporal's reasoning system and discusses
its possible applications. "Dual-Use Applications of Tachyon: From Force Structure
Modeling to Manufacturing Scheduling" discusses the application of Tachyon to real
world problems, specifically military force deployment and manufacturing scheduling.
A Case Study in Integration of Case-Based and Temporal Reasoning using CAFE and
Tachyon" describes the integration of CAFE (a Case-Based Tool for Expansion of
Forces) with Tachyon, with the goal of allowing the user to tailor Csee reverse)

14. SUBJECT TERMS

Scheduling, Temporal reasoning, Case-based reasoning,
Planning, Artificial intelligence

17. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

NSN 7540-01-2BW600

1a SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

1S NUMBER OF PAGES
134

14 PRICE CODE

20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev 2 89)
PmotMd by ANSI Std Z39-18

13. (Cont'd)

forces for a current mission by using historical cases, while also tracking
the effect of temporal constraints on those forces.

Dkt I Avail ar>d/or Ulst Special

Contents

Case Based Reasoning and Case Based Planning 3/4

Background and History 5
1.1 Case Based Reasoning 5

1.1.1 Previous Work 6
1.2 Case Based Planning 7

Case Memory 9
2.1 Organization of Case Memory 9

2.1.1 Conceptual Knowledge 9
2.1.2 Episodic Knowledge 10

2.2 Case Representation Language 12
2.2.1 Domain Knowledge Representation 13

Case Retrieval 17
3.1 Analysis of Cases 19
3.2 Feature Value Comparisons 22
3.3 Combination of Similarities 25

Plan Development 29
4.1 Plan Extraction 32

4.1.1 Representation of plan 32
4.1.2 Identification of a plan 32
4.1.3 Identification of resources and constraints 35

4.2 Planning Architecture 37
4.3 Goal Resolution 39

4.3.1 Identifying an event for a goal 40
4.3.2 Identifying an interpretation for a goal 41

Evaluation and Results 42
5.1 Methodology for Evaluating the Generated Plans 42

5.1.1 Generate plans for an agent 42
5.1.2 Represent the generated plan as a case 42
5.1.3 Compare the events in the planned case and stored case 43

5.2 Interpretation 45

Conclusions and Summary 46

1

II Temporal Reasoning 51

7 Introduction 53
7.1 Motivation and Applications 53
7.2 Background 55

8 Design Issues 58
8.1 Defining the Problem 58
8.2 Difficulties 59

9 Results/Implementation 60
9.1 Temporal Constraint Networks 60
9.2 The Tachyon Model 61
9.3 Propagation of Constraints 63
9.4 Path Consistency 66
9.5 Interval Trees 68
9.6 The Tachyon User Interface 68

9.6.1 Objectives 68
9.6.2 Functionality 69

10 Discussion 8z Related Issues 77

11 Future Directions and Conclusions 78

12 Project Planning Example 80

13 Scheduling Example 82

III Integration of Case Based Reasoning and Temporal Rea-
soning 84

14 Background 86
14.1 CAFS/CAFE 86
14.2 Tachyon 89

15 Integrated Capabilities 91
15.1 An Example 91

16 Future Directions &c Conclusions 95
16.1 ForMAT Integration 95
16.2 Extended Capabilities of Tachyon 95
16.3 Conclusions 96

Part I

Case Based Reasoning and Case
Based Planning

3/4

Chapter 1

Background and History

1.1 Case Based Reasoning

Case Based Reasoning (CBR) is at the core of any Case Based Planning (CBP) system. Ob-
viously, the plans generated by a CBP system are highly dependant on the CBR foundation.
As noted in [2]:

Case-Based reasoning (a method of analogical reasoning), thought common and extremely
important in human cognition, has only recently emerged as a major reasoning methodology.
Case-based reasoning (CBR) involves solving new problems by identifying and adapting
solutions to similar problems stored in a library of past experiences/problems. The important
steps in the inference cycle of CBR are to retrieve cases from the case library which are most
relevant to the problem at hand and to adapt the retrieved cases to the current input. Within
this broad framework, two major classes of CBR can be identified [97]: problem solving
CBR and precedent based CBR. In problem solving CBR, the emphasis is on adapting
the retrieved cases for finding a plan or a course of action to solve the input problem. Case-
based planning is in the class of problem solving CBR. In precedent based CBR, the
emphasis is on retrieving cases so as to justify an action or explain a solution. A common
application of precedent based CBR is in legal domain [55, 58, 53].

A similar, more elaborate definition can be found in [57].
Case-based reasoning (CBR) is the process of using previously acquired solutions to

problems as the basis for computing new solutions to new problems. The stored problem
descriptions and solutions are cases. CBR has been applied to problem solving in many
different application areas, for example legal [29, 47, 49], medical [85], financial [60] and
engineering [46, 45].

Case-based reasoning can provide an alternative to rule-based expert systems, and is
especially appropriate when the number of rules needed to capture an expert's knowledge is
unmanageable or when the domain theory is too weak or incomplete. Historically, CBR has
shown its greatest success in areas where individual cases or precedents govern the decision-
making processes, as in case law.

CBR Reasoning Process: In general, CBR systems comprise a case-memory, indexing,
matching and retrieval mechanisms, and a reasoning component. The matching and retrieval
mechanisms, driven by the current context (reasoner's goal and probe), return the most

similar cases from the case memory. Similarity among cases is based on an evaluation of
salient and relevant features. In some CBR systems the output of the matching process
provides a complete solution to the input problem without requiring additional reasoning.
In others, the reasoning component will process the retrieved cases, adapting their solutions
(plans, explanations, interpretations) to apply in the current situation.

Uncertainty in CBR: Uncertainty and incompleteness pervade the CBR reasoning pro-
cess. Uncertainty is present in the semantics of abstract features used to index the cases, in
the evaluation of the similarity measures computed across these features, in the determina-
tion of relevancy and saliency of the similar cases, and in the solution adaptation phase.

Incompleteness is present in the partial domain theory used in the indexing and retrieval,
in the (usually) sparse coverage of the problem space by the existing cases, and in the

description of the probe.

1.1.1 Previous Work

We give a summary of the previous work done in this area in [59].
One of the earliest and best known examples of a case based planner is the CHEF system

built by Kristian Hammond [72]. The CHEF program addresses the problem of planning in
the cooking domain. It generates new plans (recipes) by adapting the sequence of actions
from similar past plans (recipes). The input to CHEF is a list of goals (such as hot stir fry
dish with chicken and broccoli), that have to be satisfied. The result of planning by CHEF is
a plan that satisfies these goals. If part of a plan fails, CHEF repairs the plan and an index
to the repair is added to memory to avoid repeating that planning failure. CHEF does not
have any interpretation of input goals for the retrieval of plans but it does exhibit complex
plan adaptation and learning capabilities.

CHEF retrieves similar cases based only on goal similarity. Therefore when a plan fails
during execution, due to failed preconditions or objectional results, CHEF stores the failure,
but must begin from scratch in rebuilding the plan (recipe). One major requirement of the
problem domains which we are addressing is the ability to continue planning from any point
in plan execution, while maintaining consistency with previous actions. This is the result of
having to deal with other (possibly antagonistic) agents changing the world state.

More recent work in planning by Hammond et al.,[73] addresses the issues of opportunism
and flexible plan use in the areas of reactive planning and strategic/tactical planning. In
RUNNER, the observation of particular values of environmental features (state), triggers the
activation of a goal(s), which is used to index into memory to retrieve an existing plan for sat-
isfying the goal(s). The retrieved plan is used to give permission to sub-plans/actions to take
place. An action must have both permission and opportunity to be executed. Opportunity
for an action depends on the the observation of particular features in the environment. In
summary the guidance on permissible actions comes top down from the goals and recognition
of opportunity comes bottom up from the state. The action which lies on their intersection

is taken.
The representation of cases in Redmond's work [94] is the closest to our approach to case

representation. In his approach, cases are stored in pieces, or snippets [82]. Each snippet is
organized around one goal and contains both local context (state/knowledge obtained from

the actions taken so far) and global context (the overall problem description). The pieces of
a case (snippets) are linked to represent the whole case of problem solving. The underlying
assumption in the architecture of snippets and this approach is that there is only one agent
executing the plan/actions. The changes in the state of knowledge and the environment are
due to the actions in the pursuit of a certain goal (around which snippet is organized). As it
is now, the representation of snippets does not lend itself naturally to represent cases where
the state of the world changes due to the actions of multiple agents.

Our previous work in the area of CBR includes MARS [60], a Mergers and Acquisition
system chosen to illustrate the use of reasoning (Case Based and Rule Based Reasoning)
for solving problems in a complex business domain, and CARS [30] a case based system for
the same domain, which reasoned with a static representation of the events in a takeover,
and explored the integration of independent case-based and rule-based systems. MARS was
used to explore the possible contribution of previous cases to problem solving in a rule-based
system. Cases were analyzed off-line and stored as plausible rule templates. CARS was used
primarily as a precedent based system; when given a probe, and indication of the reasoners
goals, it returned the most similar cases from the case library.

The domains which are currently the focus of our efforts are areas where multiple agents,
with different goals and viewpoints, attempt to plan strategies using incomplete, or uncer-
tain information. In addition, these cases develop over time, requiring us to reason about
sequences of events. We found that the lack of a representation of the dynamic aspects of
these cases severely limited our reasoning capability when we moved our work with CARS
into the area of solution adaptation. Therefore we developed a case representation language
which provides for the representation of the dynamic aspects of the cases.

1.2 Case Based Planning

CBP is a specialized application of CBR. First, CBR is used to retrieve and analyze similar
cases. Then CBP algorithms are applied to generate a plan.

An explanation of the development of a Case Representation Language (CRL) with re-
gards to Case Based Planning can be found in [2]:

Classical planning systems assume a good domain theory for generating plans. However,
complex domains have incomplete domain theories. In some problem domains, lack of a
good domain theory can be compensated by using past cases to guide the planning system.
These past cases may contain uncertain information and may have evolved over time.

Case-Based Reasoning (CBR) uses past cases, which contain acquired solutions to pre-
vious problems, as the basis for computing new solutions to new problems. The CBR ar-
chitecture consists of a case library and an inference cycle. The case library is an organized
collection of previously experienced problems and their associated solutions. The inference
cycle is an iterative procedure for solving the current problem. Its two major components
are the retrieval of relevant cases and their adaptation to obtain a suitable solution.

For our CBR system, we have developed a Case-Representation Language (CRL) to store
previous cases, a process to determine case similarity to identify the most appropriate case
to retrieve, and a process to adapt a retrieved case to get a suitable plan for the goals.

The CRL is developed to represent cases that evolve over time and exhibit uncertain

information. It provides a way for representing cases in their natural evolution without many
transformations or loss of information. It also allows the expert to add his own explanations
to the case evolution.

The case similarity between the probe and stored cases is done by aggregating their
situational and dynamic similarities. Situational similarity is obtained by determining the
similarity between the states of the objects involved in the cases. Dynamic similarity is
obtained by determining the similarity between the evolution of the cases. The aggregation
is done hierarchically according to a semantic taxonomy.

The adaptation of a retrieved case is done by extracting a plan from the retrieved case.
The plans for goals not resolved in the extracted plan are identified in cases in the case library.
The extracted plan is augmented with the identified plans and is structurally adapted to the
current situation. This plan is then modified, using the cases in the case library, to ensure
its executability in the current context.

Our CBR system, named Combined Approximate Reasoning System (CARS), is tested
in the domain of Mergers and Acquisitions (M&A). It uses combined reasoning to develop
plans. Partial domain knowledge of M&A (i.e., financial knowledge) is represented using
rules and its weak domain theory is complemented by real M&A cases.

Chapter 2

Case Memory

Case Memory is at the foundation of case retrieval. Without a good system for organization
of case memory, useful retrieval of similar cases is nearly impossible.

2.1 Organization of Case Memory

Since the organization of case memories is central to any CBR system, there are numerous
explanations of memory organization in the literature.

Our organization of case memory is described in [2]:
The case memory has been designed to represent cases consisting of the top-level goal(s)

and information about states and events. This information can be obtained from two basic
sources: world observers and domain experts. World observers are capable of recording the
state at any time, and of recognizing the execution of state changing actions in the world.
Domain experts are capable of interpreting/relating these states and actions to the behaviors
of an agent(s) attempting to satisfy the top-level goal(s) of the case.

The case memory is organized around two types of knowledge:

• Conceptual Knowledge is the information about the objects, actions, and goals in
the domain. This knowledge, which represents an incomplete domain theory, is used
during retrieval, case comparison, and solution adaptation.

• Episodic Knowledge is the collection of cases. Each case is represented as a situa-
tion/solution pair where the situation consists of the top-level goal(s) and a starting
state, and the solution consists of the representation of the observable portion of the
agent's execution of the plan to satisfy the goals.

2.1.1 Conceptual Knowledge

We summarize the definition of conceptual knowledge, and its application to the domain of
M&A in [56].

The conceptual knowledge can be organized into various hierarchies depending on the
problem domain. It provides a way to define various entities that are involved in a cases. It
also provides a channel for understanding entities in cases for various purposes.

In the M&A domain three hierarchies were used for representing the conceptual knowl-
edge: object hierarchy, action hierarchy and goal hierarchy. These hierarchies are implicitly
linked to each other and explicitly linked to the stored cases. Examples of links are: objects
from one hierarchy are used as slot fillers or slot-type specifiers (implicit link), like instance
of "common stocks" object is used as slot filler in an instance of "tender offer" action, and
interpretations of some actions in a case are linked to a node in the goal hierarchy (explicit

link)

2.1.2 Episodic Knowledge

The episodic knowledge of the system is a collection of instances of cases in the Case Base. We
consider each case as the set of executed plans of one or more agents for achieving their top
level goals from a given initial state. The parallel to a case in a classical generative planning
paradigm is a state space representation of multiple plans of the agents for achieving some
top level goals and a description of an initial state. [2]

The representation of dynamic cases using CRL in other domains like transportation is
discussed in [59].

As discussed earlier, each case is represented by a network of events (actions taken)
and a sequence of states in temporal order. Identifiable plan steps are represented using
interpretations and these interpretations facilitate the indexing, understanding, and re-use
of the plans. Links are used to encode the explanatory information about the relations
between events and states. There are four types of links: causal, temporal, membership, and
enable. Each link can be qualified by a degree of belief.

A partial representation of a case is given in Figure 2.1. In this case the action tender-
-offer by the raider company is followed by the actions re j ect-tender-of f er and announce-
-restructure-plan by the target company. The initial state of the objects when the case
begins is phase-1. The state of the world changes in state-2 with the increase in the
price-per-share of the target company. The state of the world changes to state-3 when
the target company knows for sure that it is the target of a hostile takeover. The sequence
of state changes have a temporal order in which state-3 follows state-2. The change in
the world to state-3 was certainly (i.e. belief in this causal relation is *certain*) caused
by the action tender-offer. This action also caused an action reject-tender-offer by
the target company. The new belief of the target company in state-3 enabled them to take
a difficult action such as announce-restructure-plan. The actions reject-tender-offer
and announce-restructure-plan are most probably a part of the target Companys' plan
for convincing the raider to increase the offer. These actions are grouped together in an
interpretation and the goal of this interpretation is TR-Sweeten-deal.

Situational Representation of a Case The representation of a case is divided into two
components: situational and dynamic. The situational aspect of the case handles the de-
scriptions of the objects involved in the case during case evolution. These object descriptions
are stored as States. The initial state of each object is represented by a set of state variables
(surface and abstract features) with their associated values. The surface features store the
observed descriptions of the objects. The abstract features store the descriptions of the

10

STATES

♦certain*

Figure 2.1: Partial representation of a case

11

objects which are derived from the surfaces feature using some form of knowledge. The
abstract features also have certainty evaluation qualifying the feature value assignments.

States Xt is the state at time t, where X is a set of state variables with their associated
values. These state variables represent the known values of the features (slots) of the object
instances that define the case. The initial state of each object contains all the known values
attached to the slots. Following states only contain the incremental changes to the state
variables. The value of each state variable at a certain state Xt is taken from the most
recent state-change object that refers to this variable. State changes are temporally linked
with other state changes, forming a complete ordering. State changes can be indexed from
the event network, by one or more events.

The context in which an event takes place is represented by a state. A state of the world
may also be satisfying a pre-condition of an action in some event and that information is
also stored with the state. An example of the definition of a state is given in Figure 2.2.
In the sequence of states, the state state-rpp-5 is defined to be after state-rpp-4 and
is followed by state-rpp-6. The value-assignments in this state represent changes to
the state variables. The event rpp-e-decrease-tender-offer-PP-01 was enabled by this
state. The events, which have state-rpp-5 in their context are added by the CRL to the
events-at-state slot which has no value at state definition time.

STATE-RPP-5 is a STATE
time: 9/1/85
previous-state: STATE-RPP-4
next-state: STATE-RPP-6
events-at-state: ()
value-assignments: ((target-debt-situation :increased)

(target-cash-situation :decreased)
((price-per-share ,*Revlon*) 77.5))

enables-events: (rpp-e-decrease-tender-offer-PP-01)

Figure 2.2: State Definition

2.2 Case Representation Language

We give a description of the Case Representation Language that we designed in [56]:
To facilitate the organization of case memory, we have designed a A Case Representation

Language (CRL). CRL, developed in CLOS [79], is a tool to represent dynamic cases and to
provide a mechanism for representing uncertainty in the feature values of the cases.

Using CRL, the information from the cases can be organized around two types of knowl-
edge: conceptual knowledge and episodic knowledge.

12

1. Conceptual Knowledge is the information about the objects, actions, goals which are
involved in a case. This knowledge, which for some applications may represent an
incomplete domain theory, is used by CARS for case retrieval, case comparison, and
solution adaptation.

2. Episodic Knowledge is composed of cases. A dynamic case can be thought of a situa-
tion/solution pair. The situation consists of the top-level goals and a starting state of
the agents; the solution consists of the observable portions of the executions of actions
by the agents and their effects on the states of the world. Using CRL these cases can
be represented in their actual instantiation without any transformation. The cases are
built using the conceptual knowledge.

2.2.1 Domain Knowledge Representation

We describe how domain knowledge is acquired in [59]:
The domain knowledge available to the reasoner (and user) can be obtained from expert

input, generalization from cases, or extraction from existing KBs. This knowledge is orga-
nized into various hierarchies, which are implicitly linked when objects from one hierarchy
are used as slot fillers or slot-type specifiers in another.

Object Heirarchy

The object and action hierarchies in the M&A domain are described in [2]:
This hierarchy describes the objects of the domain and their relationships. It is a tradi-

tional IS-A hierarchy with slots, fillers, and a classical inheritance mechanism.
All the objects that are used in representing the cases are part of this IS-A hierarchy.

The objects in the hierarchy are described using slots. [...] In addition to using the object
hierarchy for describing objects, the planner uses this hierarchy for analyzing the cases (i.e
for retrieval) and for substituting one object with another similar object (i.e. during plan
adaptation).

Action Heirarchy

Actions are operations that can alter the states of the objects in the domain. An execution of
an action results in some state change. The actions are organized in an IS-A hierarchy that
defines an abstraction from special actions with more restricted preconditions and effects to
more general actions. [...]

This hierarchy can be used by the reasoner for deriving a solution. The instances of a
particular action class are elements of executed plan actions in the case library. From these
instance links, the system can reason about the effects of executing an action. A planning
system can use this information (obtained from previous cases) to supplement its knowledge
(derived from a weak domain theory) about the effects of actions on state changes.

This hierarchy can also be used by the reasoning system during the solution adaptation
phase to perform local search. This process substitutes an action that cannot be performed
in the current situation clue to resource constraints or failing preconditions with another
action that can provide similar effects.

13

The actions in the hierarchy have implicit links to interpretations of actions in cases . An
implicit link between an action and an interpretation is composed of: 1) an instantiation link
between the action in hierarchy and its instance in a certain case, and 2) membership link
between the action's instance and an interpretation of actions in that case. These implicit
links to interpretations provides a lot of useful information to the planning system, such as
actions that need to be generated, and expected actions of other agents. The actions needed
are ones that are part of the an interpretation which has implicit link (as defined above) to
the planned action in the hierarchy.

The expected actions of other agents in response to a planned action can be generated by
using the implicit links between this action in the action hierarchy and interpretations. The
implicit links here is composed of: 1) an instantiation link between the action in hierarchy
and its instance in a certain case, 2) causal links between the instance of action in a case
and actions it had caused in that case, and 3) membership links between the caused action
and interpretation of actions in that case. For a planned action, a set of interpretations can
be retrieved by using these implicit links. The expected actions, in response to the planned
action, is the set of actions that heve membership links to the retrieved set of interpretations.

RPP-A-TO-PP-01 is a Tender Offer
Agent: *Pantry-Pride*
Shares-of-company: *Revlon*
Price-per-share: 47.5
No-of-shares: 17.95
Total-price: 852.62
Payment-unit: :CASH
Dollars-per-unit: 1.0
Offer-expires:

Figure 2.3: Instantiation of Tender Offer action

An action in one of the events of the hostile takeover attempt of Revlon was Tender Offer
by Pantry Pride , and the instantiation of that action in the event is illustrated in Figure 2.3.

Goal/Plan Hierarchy

The Goal Hierarchy in the M&A domain [2]:
The Goal hierarchy represents the partial knowledge of the domain theory and provides

an initial, albeit incomplete, goal decomposition. Its incompleteness is the reason for resort-
ing to case-based reasoning and mixed reasoning paradigms. The goal hierarchy captures the
initial domain knowledge structure and provides a mechanism for expanding it by indexing
into each new case at various levels of abstractions (i.e., top level goal of the case, strategies,
plan steps, interpretations of single actions, etc.).

14

RcdE«r|Esit| m

y^y l CZT-riWAHCIKD-TO-ACQOIRZ

CET-IMITIM.-FimHCIMG)

IMRrASE-AVAILABLt-MfflHCIHO)

ÄC0-Wrra-KAHAGE«EKI-ÄPPROVM/)-

■^MA-COALJ— -43S3I2E

CrT-UPPER-mMD-OH-TARSET)

GET-OBM-SKARES-BACK)

GET-MAHAOEMEgr-APPROVAL

ACO-ATTIR-APPROVM.)

Fonci-mmoimffr-nrro-SELLiHo')

IHCKEASE-SHARE-IH-TAROET)

CET-OM-PEBSM-IM)

ACQOIBZ-IK-OPEH-MARKET)

CET-SBARE-H0LDEft5-TO-5IU.)

Instance Tracking Metaclass #<lnstance-Tracking-Metaclass RAtDER-GOALS>
slot«: t<Standsid-Siol-De«nition COAL-TVPE>

•■=Stanaa<i-Siol-D8tiniiionPLAri-LINK>
»<Staraard-siol-DeflnHii>n PLAN-TYPE>
«<Siandant-siot-DefiniiionSTATE-VAHS>

J

>»-GOAL

RAIDER-COALS

1_C

CokMarid: Focus On Kod« RAIDER-GOALS
Command: Describe KInstance-Tcacking-Hotaclaas RAIDER-COALS> ML
COM and:

Figure 2.4: Partial Goal Hierarchy

The hierarchy is modeled by a tree of And/Or goal nodes. Each node in the hierarchy
represents a goal. If the goal of a node can be achieved by achieving the goal of any of its
child nodes, then it is a Or node. If the goal of a node can only be achieved by achiev-
ing the goals of all its child nodes, then it is an And node. For example, we can observe
that one of the raider's goals is acquire-company. This goal is modeled as an Or node
since it can be achieved by either acquiring the company with the approval of the com-
pany's management (acq-with-management-approval) or without management approval
(acq-without-management-approval). The goal-type slot is used to indicate whether the
node is an OR node or an AND node. The plans for achieving the goals are indexed by the
goals and are stored in the case library. The plan-link slot stores the index to the executed
plan. The type of executed plan, which can be an event, an interpretation, or a complete
case, is stored in the slot plan-type. The state-vars slot stores the state variables that
will change if the goal is achieved.

Each case is linked to one or more nodes in the goal hierarchy. Each link represents the
interpretation that the executed action in the case was attempting to achieve a given goal.
These links are qualified by a degree of belief indicating the certainty in such an interpre-
tation. For example, the degree of belief in the goal acq-without-management-approval
must be higher for the tender-offer action than the buy-stock action. The goals near the
top of the hierarchy are very general and are common indices to many cases. As goals are
specialized and decomposed into interpretations of events and actions, they provide more
specific indices to fragments of the cases.

15

The underlying assumption used in developing the planner which uses this hierarchy, is
that initially the hierarchy will indicate the goals to achieve but may not have all the plans for
achieving those goals. On the other hand if all possible plans were captured by this hierarchy,
the planning problem could be reformulated in the more traditional generative planning
paradigm. Then planning could be based on the selection, refinement and instantiation of
plan templates. Our planning system uses this hierarchy like a channel to look for plans
in cases. As more cases are added, more (maybe better) plans for achieving the goals
in the current situation will be found by the planner. For example, to achieve the goal
get-own-shares-back, one case may have the executed plan chunk-buy-back. An addition
of another case where the same goal was achieved by a company by swapping shares provides
another plan which might be better in some circumstances. The swapping shares plan of
the company in the case is composed of actions: return-shares-free (for other company's
shares), and get-shares-back-free (for it's own shares). After the addition of the second
case the planner retrieves both the plans using the goal hierarchy and then selects the
appropriate plan for the current situation.

16

Chapter 3

Case Retrieval

We describe why case retrieval is so important to the process in [57]:
We believe that case retrieval is of primary importance to the overall effectiveness of any

CBR system, for the following reasons:

1. Retrieving the case that will yield the best solution to a new problem ensures the best
solution within the system's capability. This may or may not be the case that matches
the new problem the most with respect to superficial (i.e., surface or "raw") features.

2. Retrieving the case or cases that yield the best solution to a new problem must include
some computation of the similarities and differences between the input problem and
the retrieved cases. All subsequent case modification uses this computation as a basis.

Methods previously used to determine similarity are discussed in [2]:
Case-based reasoning uses past experiences for doing the task at hand. Therefore, deter-

mination of similarity affects all aspects of case-based reasoning. The similarity of salient
features identifies the relevant cases, and the similarity of non-salient features of the current
and retrieved cases can confirm the relevance. To determine the -probability of correctness of
an analogy (correctness of relevance of retrieved case), Russell [99] uses the number of total
features, salient features and similar features. The dissimilarities of relevant features of a
retrieved case can guide the adaptation of the old solution to the new solution. The rest
of this sub-section briefly describes some of the work done by other researchers in assessing

similarities.
Even though, both CBR and analogical reasoning require retrieving previous instances

for reasoning, there are some differences in their similarity assessment. Seifert [102] points
out that analogical reasoning typically focuses on inter-domain retrieval, whereas CBR typ-
ically performs intra-domain retrieval. Also, exact matches are ideal in CBR, but useless
in analogical reasoning. Among other differences, analogical reasoning requires systematic
similarity between input and retrieved cases, whereas this requirement may not be needed
for CBR as long as the retrieved case can be used in the new problem situation. In this
view, similarity is derived from those features (either surface or abstract) of the retrieved
cases likely to be useful in the new situation. This set of features changes from situation to
situation, so in this sense, the similarity is not systematic.

17

In CYRUS [81], the assessment of similarities is combined with the indexing process.
Cases retrieved during the traversal of the indexing hierarchy are known to be similar to a
new case because the cases match on the indexing features. In PARADYME [84, 83], a small
subset of best cases is selected from the retrieved cases using preference heuristics.

In general, the MEDIATOR [104] first retrieves multiple cases by following all possible
indices. The cases are then ranked according to their similarity to the probe case by a
heuristic procedure. This procedure first eliminates all cases in which the most important
features (i.e. the disputant's goals) are not identical to the features of the new case. The
ranking of the remaining cases is based on how many important features matched the features
of the retrieved case.

Multiple similar cases are retrieved by trying to assess similarity along different dimen-
sions. This approach is followed in HYPO [55] for reasoning in the legal domain, and in
TACTICAL ASSISTANT [114] for scenario generation in the military planning domain.
These dimensions are used as indices and they form discrimination nets. The choice of what
features serve as indices is made after knowledge engineering. All cases that match the
current case/situation on any of the dimensions are retrieved. In the domain of CBR legal
reasoning, certain pre-specifiable features of the input cases are the only features of relevance
in finding similar cases, as in HYPO. This constrains the dimensions along which features
can usefully be relaxed, and index traversal is a done along those dimensions. In HYPO,
the cases that had dimensions in support of the reasoner's position and none in support of
the opposite position are considered to be most-on-point. The importance of a dimension
depends on the context, and in HYPO, the context is characterized by the features of the
case and the role a case plays in an argument. In TACTICAL ASSISTANT, cases that do
not match on the dimension (situational concept), but are classified nearby, are also retrieved
for generating the hypothetical what-if alternatives.

The JUDGE [58] system first "interprets" (determines abstract features) from the "ac-
tions and results" (surface features) of the "crime" (case). The results of interpretations are
used as indices for finding similar cases. Determination of salient features is done on a case
by case basis by using the causal structures built while interpreting each case.

The retrieval of a story in the CreANIMate system is based on its educational objective.
When it is retrieving a story to present as an explanation of an animal morphology under
consideration, it uses either the feature/function index or function/behavior index. The
former index is used to retrieve stories that exemplify the relation between certain physical
features (i.e., long legs) and functions performed (i.e., run fast) by animals while the later
index is used to retrieve stories that exemplify the relation between the functions performed
(i.e., run fast) and a high level survival behavior (i.e., purse-prey). To retrieve a story that is
related at an abstract level to the explanation of animal morphology under consideration, it
uses the abstraction information encoded along with the indexing information in each case.
For example, the abstraction information on a story that has the index run-fast to pursue-
prey may indicate that this story can be abstracted upto the abstract level of move-fast to
hunt. To retrieve a story that would give an expectation violation of the animal morphology
under consideration, it uses the rules that indicate the expectations a student might have
for certain animal morphologies. The retrieval is performed by searching the hierarchy of
rules to see if one applies, and in case it does the story indexed by the rule is retrieved. The
retrieval of cases (stories) in CreANIMate is different from other systems in the sense that it

18

does not use the contents of the story/case but uses the information encoded with the story
for determining which case (story) should be retrieved.

Another system, Broadway [105], also includes in the case the information that will be
useful in retrieving the case. In this approach knowledge sources are created from the cases.
These knowledge sources have preconditions that are local to specific type of knowledge
sources. If these preconditions become true for a certain input case then this knowledge
source will post the case as relevant to current problem solving. This approach provides
for handling special considerations for similarity determinations depending on the cases,
because the similarity determination is based on the evaluations of the pre-conditions of
their knowledge sources.

Another interesting aspect of similarity determination is representation and reuse of sim-
ilarity [91]. This aspect is not addressed very much in the research on similarity assessment
but it may help in complex domains. The concepts of preconditions used in the Broadway
system may be useful for representation and reuse of similarity.

In Redmond's work [94], cases are represented as snippets. The retrieval of a case trans-
lates into retrieval/access of snippets. At each step of diagnosis, the next snippet is accessed
either sequentially by following links between snippets of the same case or directly through
retrieval which uses the current situation, snippet's goals and context. The direct retrieval
of snippets is done using the goal as an index. The selection of a snippet from the retrieved
snippets is accomplished using a weighted similarity metric for matching. The match is done
on all the features in the internal and global context of snippets. The weights on the feature's
importance may be adjusted using the success or failure of prediction during learning.

Case retrieval can be broadly categorized into three types: those which use pre-determined
indexing techniques (i.e., CreANIMate) for fast retrieval, those that group cases which share
general features (i.e., CYRUS), those that base their retrieval on the contents of a case. Our
approach falls in the third category.

In this third category in general, case retrieval and similarity assessment are differenti-
ated. Abstract features (i.e., dimensions in HYPO, interpretations of features in JUDGE)
are derived from the raw features of the cases and are used for similarity assessment. After
they derive the needed abstract features they basically use these features as indices for re-
trieving cases. They do not do a partial matching on these features, so they do not really
address the problem of aggregating the partial matches. Also none of the research on case
retrieval, other than ours [30], addresses the problem of how to assess similarity when there
is uncertainty associated with the case features. No other case-base reasoning system reasons
with dynamic cases therefore none of these systems try to find similarity between sequences
of events.

3.1 Analysis of Cases

Case analysis is a critical step in the CBR process, because it is this analysis which determines
the salient features of a case, which in turn determine the suitability of that case as a potential
matching case. The procedure for the analysis of cases is given in [2]:

Domain specific knowledge is used for analyzing cases to derive abstract features. These
features are assigned a value and a, degree of certainty. Values for features (abstract or

19

surface) can be raw data or lexical terms (linguistic values representing fuzzy intervals [120])
chosen from feature value term-sets provided in the planning system. The degree of certainty
represents the extent to which the abstract features can be inferred from the surface features.

The companies in a case are analyzed along six categories that are financial through
relation-with-other. One or more abstract features are derived for each category. Figure 3.1
shows all the abstract features and their categories. To analyze a case along a certain
category, only the abstract features for that category have to be derived. For example,
to analyze the financial situation, only short-term-fc, long-term-fc, coverage, and
profitability abstract features have to be derived. As discussed earlier, both plausible
rules and conceptual knowledge is used for deriving abstract features. Abstract features for
the relation-with-other category are derived using CRL conceptual knowledge. Abstract
features for all the other categories are derived using the PRIMO plausible rules. These
rules are organized into various rule classes and the rule classes for each abstract feature are
also shown in the figure. In this section we will discuss in detail how one abstract feature
short-term-fc is derived using a PRIMO rule.

The derivation of the short-term-fc abstract feature is determined using five PRIMO
plausible rules which are denoted by rectangles in the figure. One of these rules, Acid-Ratio-
-St-Fc, is illustrated in Figure 3.2.

The rule in Figure 3.2 consists of a rule name, rule class, instantiation class, object
variables, documentation, context, antecedent, consequent, and rule strength. These rule
components are used for 1) rule base design, 2) rule instantiation, 3) control of inference,
and 4) rule evaluation.

1) Rule Base Design: R.ule name and rule class are used to identify the rule and
structure the rule base for the purposes of efficiency in inference and ease of debugging and
knowledge engineering.

2) Rule Instantiation: Rules are written with object variables scoped by an implicit
universal quantifier. While rule classes are design partitions of the rule base, Instantiation
classes are instantiation partitions of the same rule base, i.e., they define the subsets of rules
to be jointly instantiated when a new instance of an object occurs. Also, object variables are
instantiated with the corresponding slot values of the new instance. In our example, they
are ?company and ?industry-ratios.

3) Inference Control: The Context is a pre-condition that must be satisfied before
the antecedent of the rule is evaluated. Typically a context is a conjunction of predicates
on object-level variables (i.e., domain variables) or meta-level variables (i.e., processing re-
sources and requirements). In our example, they perform a type checking on the value of
the predicates used in the antecedent (to guarantee that all numeric values are available).

4) Rule Evaluation: The Antecedent is a conjunction of (possibly) fuzzy predicates on
object-level variables. The conjunction is implemented using T-norms [34], which are de-
scribed below. The result of the antecedent is the degree to which the conjunct of predicates
is satisfied. The output of the antecedent, in conjunction with the Rule Strength, is used to
determine the truth value of the R.ule Conclusion. In our example we have one predicate
acid-rat io-pred, which computes the acid ratio of the company as:

. Current Assets — Inventory
AcidRatio = — .

6 urrent Liabilities

20

Categories Abstract Features Rule Classes

/ Financial

Industry

, Organizational

Analyze
Company

"General

Mergers &
Acquisition

Short terra

Long term

Coverage

Profitability

Growth company
vs industry

Working ease

Anti trust in
industry

Ranking

Employee
morale

new market trend

Future Outlook -
Stock holders
loyalty
Politics
company strenght

Desire for independence

Candidate as
target
Performance as
raider
Company ma
invovement

resources
operation related
capital structure
service debt ability
sales
investments

financial aspects
market size
employee
regulation

sales-r
profit-r

labor problems
employee ratings

deferral

share holders type
legislative
public

past response
past bid result

past raid way
past raid result

past target

i Relation
with others

Location relation

Industry sector relation

Business relation

Figure 3.1: Analysis of a company

21

(def-rule (acid-ratio-st-fc case-based
(resources)
(company*industry-ratios))

(?company ?industry-ratios)
"short term financial condition using acid ratio"

(lb-pass-threshold
(t3 (number-predicate (current-assets ?company))

(number-predicate (current-liabilities ?company)

(number-predicate (inventory ?company))
(number-predicate (acid-ratio ?industry-ratios))

250)
(acid-ratio-pred (current-assets ?company) ;

(current-liabilities ?company)

(inventory Tcompany)
(acid-ratio Tindustry-ratios))

(((short-term-fc ?company) ;
((acid-ratio-cons (current-assets Tcompany)

(current-liabilities Tcompany)

(inventory Tcompany)
(acid-ratio Tindustry-ratios))

(i::d3 *certain* *likely* :premise) :INTERSECT)))) ;

RULE NAME
RULE CLASS

INST. CLASS

OBJ. VARIABLE
DOCUMENTATION

CONTEXT

)

)

ANTECEDENT

CONCLUSION

RULE STRENGTH

Figure 3.2: PRIMO Rule Inferring the Company Short Term Financial Condition

and normalizes it with respect to the industry average acid ratio. The mapping illustrated
in Figure 3.3 is then used to select the term that best describes the short term financial
condition of the company, given the acid ratio average of its industry sector.

In our implementation, the intervals used in the mapping are actually fuzzy intervals.
Therefore, the membership value of the acid ratio percentage is computed for each term in
the termset. The term with the highest membership value is selected. The corresponding
membership value describes the degree of confidence of this linguistic value assignment.

3.2 Feature Value Comparisons

By analyzing both the probe and the retrieved case, a linguistic value's label is obtained for
each of the abstract features. Each linguistic value's label has a meaning defined in its term
set. For example, the labels and their semantics in the financial condition termset are given
in Figure 3.4.

In the second column of Figure 3.4, a parametric representation is used to describe
the membership distribution of each term, N{. Using this representation, a fuzzy set of a
universe of discourse U can be described as a four-tuple: (a, b, a, ß). The universe U is a unit

22

Acid Ratio
Percentage Interval

Linguistic
Value's Label

[0,60] *VERY-WEAK*
[60,80] *WEAK*
[80,90] *BELOW-AVERAGE*
[90,115] *AVERAGE*
[115,140] *ABOVE-AVERAGE*
[140,170] *STRONG*
[170, oo] *VERY-STRONG*

Figure 3.3: Mapping of Percentage Acid Ratio to Terms Labels

Term Label Term Semantics
VERY-WEAK (0 130 0 20)
♦WEAK* (170 270 20 30)
♦BELOW-AVERAGE* (310 410 30 30)
♦AVERAGE* (450 550 30 30)
♦ABOVE-AVERAGE* (590 690 30 30)
♦STRONG* (730 830 30 20)
♦VERY-STRONG* (870 1000 20 0)

Figure 3.4: Linguistic values for Financial condition termset

interval (represented by an integer representation on the scale from 0 to 1000). The first two
parameters (a, b) indicate the interval of the universe of discourse in which the membership
value is 1.0; the third and fourth parameters (a,ß) indicate the left and right width of the
distribution. Linear functions are used to define the slopes. Let /i;v,(x) '■ X —> [0,1] be the
membership function of the fuzzy set Ni, as illustrated in Figure 3.5.

The fuzzy set A,- can be represented as a four-tuple («;,&,•, a,-,/?,) where:

HNi(x) =

0 if x < (a,- - a,-)
±:(x - a{ + a,-) if x € [(a,- - a,-), a;]
1 if x G [a.i,bi\

±-(bi + ßi-x) if x € [M&,-+ #)]
0' if x > (k + ßi)

The membership distribution described by the above equation is illustrated in Figure 3.5.
Having established the meaning of the labels used to define each abstract feature value,

we will now discuss how the similarity measure for each abstract feature is determined. This
is done by executing a two step procedure.

The first step, referred to as degree of matching determination, consists of computing the
closeness of two linguistic values based on their semantics. Initially, the distance between

23

X
a- a

Figure 3.5: Membership Distribution of N{ = (a, b, a, ß)

the fuzzy set representations of the corresponding values is computed. For example, let us
assume that the abstract feature Target-Short-Term-Fc-Sim has the value *STRONG*
in the probe case and *VER.Y STRONG* in the retrieved case. The distance between the
two corresponding fuzzy sets is computed as the absolute value of their difference. This
is done using fuzzy arithmetic operations that are closed under the four-tuple parametric
representation [41, 33, 31]. Specifically, given two fuzzy numbers X = (a,b,a,ß) and Y =
(c, cZ, 7,8) we can define the difference

X-Y = {a- d, b-c,a + 8,ß + 7).

In this example, the difference between *VERY-STRONG* and *STRONG* is (40, 270,
40, 30). This distance is then transformed into a degree of matching by taking the comple-
ment with respect to the unit interval. Using the same formula for the difference, by repre-
senting the unit as (1000, 1000, 0,0), the degree of matching l-\X -Y\ = (730,960,30,40).

The second step, referred to as linguistic approximation, consists of selecting a label
(chosen from one of the similarity term-sets provided) whose meaning is the closest to that
of the computed degree of matching. This semantic closeness is evaluated by a measure of
set inclusion [50]: ^ ffl where P is the similarity term and D is the result of complementing
the set-distance. This measure, representing the degree of matching between the reference
(P) and the data (D), is used as an associated certainty value for the label. A detailed study
of measures of inclusions is given in [42] (page 23-24).

A simple example of a seven term similarity termset is given in Figure 3.6.
The degree of matching between *VERY-STRONG* and *STRONG*, as computed in

the last example, is a fuzzy number (730,960,30,40). By using the termset described in
Figure 3.6, one can see that the term with the closest meaning (730,830,30,20) is *ALMOST-
COMPLETE-MATCH*. The degree of confidence in this label selection is

(730,830,30,20) n(730,960,30,40) | 125

(730,960,30,40) 265
= 0.47.

24

Term Label Term Meaning
NO-MATCH (0 130 0 20)
ALMOST-NO-MATCH (170 270 20 30)
LESS-THAN-PARTIAL-MATCH (310 410 30 30)
PARTIAL-MATCH (450 550 30 30)
MORE-THAN-PARTIAL-MATCH (590 690 30 30)
ALMOST-COMPLETE-MATGH (730 830 30 20)
COMPLETE-MATCH (870 1000 20 0)

Figure 3.6: Termset For Partial Matching of Abstract Features

From the same Figure 3.6 one can see that the term *COMPLETE-MATCH*, with its
meaning described by (870,1000,20,0), has a degree of confidence of

(870,1000,20,0) n(730,960,30,40) | 120

(730,960,30,40) 265
0.45.

Therefore the term *ALMOST-COMPLETE-MATCH* is selected as the value for the
similarity measure for the abstract feature
Target-Short-Term-FC-sim.

Multiple similarity term sets are used to have different "views" of similarity (e.g., the
lenient similarity term set has wide fuzzy intervals for the labels representing high similarity
and narrower intervals for those representing low similarity. The opposite is true for the
strict term set.)

3.3 Combination of Similarities

The similarity measures can be aggregated or chained (using the transitivity of similarity)
according to well-defined operators called triangular norms. Triangular norms (T-norms) are
the most general families of binary functions that satisfy the requirements of the conjunction
operators. T-norms are two-place functions from [0,l]x[0,l] to [0,1] that are monotonic,
commutative and associative. Their corresponding boundary conditions, i.e., the evaluation
of the T-norms at the extremes of the [0,1] interval, satisfy the truth tables of the logical
AND operator [51], [52], [34]. Five uncertainty calculi based on the following five T- norms
are used:

25

Tx{a,b) =max(Q,a + b-l)

ri.6(a, 6) = («°-5 + i0-5 - l)2 if (a05 + b05) > 1
= 0 otherwise

^(a, b) = ab

T2.6(a,b) =(a-1+t-1-l)-1

T${a, b) = min(a, b)

Their corresponding DeMorgan dual T-conorms, denoted by Si(a,b), are defined as:

Si(a, b) = 1 - Ti(l -a,l-b)

These five calculi provide the user with an ability to choose the desired uncertainty
calculus starting from the most conservative (Ti) to the most liberal (T3).

The use of T-norms in aggregating and chaining certainty intervals during the extraction
of abstract features is extended in CARS to the aggregation of similarity measures.

This mechanism aggregates similarities by taking as input a list of similarities to be
combined, their associated uncertainties, and optional weights indicating the importance of
the feature in the aggregation. This mechanism is based on three aggregation operators:
T-norms, T-conorms, and Linear combinations.

T-norms are used to discount low similarities

T-conorms are used to enhance high similarities

Linear combinations are used to average remaining similarities.

First the low and high values of similarity are aggregated; (weighted) low values are
aggregated using the minimum operator (with the option of using other T-norms), while
(weighted) high values are aggregated using the maximum operator (with the option of using
other T-conorms). The result of these partial aggregations (multiplied by the cardinality of
the aggregated values) are averaged with the intermediate values of similarity.1

First, this process normalizes the similarity values of various abstract features according
to their relevance weights. Then the process penalizes bad matches and rewards good ones.
Finally, the process considers tradeoffs by averaging the remaining intermediate values with
the previous results. A detailed study of aggregating operators is given in [43].

1Let X and W be two nth dimensional vectors with elements in [0,1]. a:,- G X represents the similarity
value of the ith abstract feature, while wj G W is its corresponding relevance weight. The weighted minimum
WMIN(#,JQ is defined as

•=1

WMIN(W, X) = /\(wi — x{) = f\ max(\ - witXi)
»=i

26

In Figure 3.7, two levels of aggregation of similarity measures can be observed: All
the relation abstract features similarities (from raider—target-location-relation-sim to
raider-target-business-relation-sim) are aggregated to determine the raider-target-
-relation-similarity between the probe and the case. All the raiders abstract fea-
ture similarities (from Raider-short-term-FC-Sim to Raider-Perf ormance-As-Raider-
-Sim) are aggregated to determine the Raider-Raider-Similarity between the probe
and the case. Similarly, the target abstract feature similarities are aggregated to derive
the Target-Target-Similarity. Finally, Target-Target-Similarity, Raider-Raider-
-Similarity and Raider-Target- Relation-Similarity are combined to derive the case
Phase-1-Similarity.

During the aggregation process of similarity, we do not account for slots with no values
(its certainty is denoted by the extended certainty bar, representing complete ignorance)
in determining the similarity. But in aggregating the certainty of similarity, we do use the
certainty of that slot (which is complete ignorance). This reduces the certainty in the overall
result which should be the case when there are missing values.

Most of the target abstract feature similarities range from *COMPLETE-MATCH* to
LESS-THAN-PARTIAL-MATCH with varying degrees of certainties. Their aggregation is
performed using T-conorms and linear combination operators and it results in an *MORE-
THAN-PARTIAL-MATCH*. The last aggregation to obtain Phase-1-Similarity returns
a similarity of *MORE-THAN-PARTIAL-MATCH*, as shown in Figure 3.7.

The similarity between two cases can be computed by aggregating the five phase-similarities
in an analogous fashion. It is straightforward to customize this final aggregation to reflect
different goals of the retriever. Let us recall the definition of the five phases: (1) Initial
Condition, (2) Pre-tender, (3) Tender-negotiation, (4) Outcome and (5) Long-term results.

For instance, by only aggregating phases 1, 2, and 4 one can stress the need to find
successful cases with similar initial and pre-tender conditions. The result can give the range
of tender-negotiations (plans/counter-plans) which are applicable to the current situation.

Alternatively, by only aggregating phases 2, 3 and 4 one can observe the range of macro-
economic conditions to ascertain raider/target financial assessments, for which a particular
(pre-tender and post-tender) plan was successful.

Similarly, the weighted maximum WMAX(W,X) is defined as

n

WMAX(W,X) = \J min(wi,xi)
•=i

In our system we use linguistic values (with fuzzy numbers semantics) to represent similarity and weights.
Therefore we have extended the above operations to fuzzy numbers in [0,1] using the four parameter repre-
sentations and the formulae in reference [31].

27

D|a CIo3n|ChaitijB PfobejKBtrieve AU Ca3ga]jftetrieve Matching Ca3ea|Show Retrieved Plana|Coiniare Caae3|Ca3e Si»iUrity]|Hake Haider PlanjHakg Target Plan|

Ma Case KHAFI-I'HILII'-MOHHIS
Start State: STATE-KPM-PHASE)
Tarnet: KRAFT
Rainer: PHILIP
Goal: NIL
Cmh Of: KRAFT

SWEETEM-DEAL 1
PHILIP
ACO-WITHOUT-MAMAGEMENT-APFROVAL -

PROBE: XRßTT-PHILrP-HORftlS

Ma Case HEVLON-PANTHV-PHIDE
Start Stata: STATE-RPP-PHASE1
Target:
RaMtfH
Goal:
Gott» Of:

REVLON
PANTRY-PRICE
NIL
REVLON
ANYONE-BUT-RAIDER I
PANTRY-PRIGE
ACO-WITIIOUT-MANAGEMEHT-AFTHOVAL-

BETKIEVED-UASE: REVLON-PAtrotY-PftlDE

R4IDEK-T«K[>IT-LOCATI0S-MLaTIOH-SI»: HO-VAlUt laBeafl

PAIDER-TÄ»O£T-THmJSTRY-STCT0R-raL«TI0K-SIH: m-VALITE I

PAIDER-TftROET-BDSDICSS-RELÄTIOH-SIll; NO-YALUI aB^aM

SIMLSRITY MCRECATlmiS
RAIDER-RfilDER-SrjlILÄRITY: tamE-THAN-PARTIAl -MATCH*

TfcRGET-TARGET-SlHTLMUTY: *V«RE-TtUN-PAKTIAI.-MTCK* ■

RAIDER-TaRCET-RELmOH-SIKILARnY: MQ-TAIVE I

PHASE-1-SIHILARITY: »WRE-llUN-PAKTIAL-HATClt*

UJ'ÜUUWJilUtJ-l
WR-NADISCO-KKR
US-VOKS-SaOPPIBO-MO
ARVIH-riRST-ritJAHCIAL
LmTISS-tffilUHr-KEHHECOTT
US-FALSTWF
rTC-CUHSDLIDATED-OEWTRY
US-ITT-CRnwILL

RELIEVED CASES

Figure 3.7: Aggregation of Similarities

28

Chapter 4

Plan Development

We give a general overview of the planning process [2]:
Planning can be defined as the problem of deciding the sequences of actions that will

transform the given initial state of the world into the desired goal state. Along with the
problem of deciding the sequence of actions, the planning research in the Artificial Intelligence
(AI) community also addresses the issue of how to make sure that the goal state is reached.
This second planning task requires the planner to keep track of the different world states and
to modify (or refine) the plans if desired. This requirement is the basic difference between
AI and non-AI planning systems. Typical operations research [109] tools, like CPM and
PERT, do not represent the causal relationships between actions and can not reason about
the effects of their actions nor can they revise their plans.

Planning can be divided into two categories: strategic and tactical planning. Strategic
planning is concerned with producing the sequence of actions for the long term. The strate-
gic planning system, using its knowledge about actions and their effects, chooses between
possible courses of actions. Typically the sequences of actions are not completely ordered
and are at a higher level of abstraction. Tactical planning (reactive planning) involves a
constant feedback from the state of the world in which planning is being done. It is concerned
with generating actions for the short term in the context of the current world state.

Plans for reaching a goal state from a given initial world state can be developed in two
ways: a whole plan can be generated from scratch or a previous plan can be modified. In
Generative planning, the planner decides which action should be taken first by taking
into account constraints, the initial situation and the final goal state. From its knowledge
about the effects of actions, its projects a new state that will be reached after the action(s) is
performed and then selects the next action. This process is done recursively until the entire
course of actions that will take the planner to the goal state is generated. In Case-based
planning, the sequence of actions (the stored plan) which solved a previous similar problem
is retrieved. The previous plan is modified, so that the actions which do not contribute to
reaching the goal state are dropped/replaced. New actions may be added to overcome some
situation that was not present in the previous problem.

And plan development:
In case-based planning (CBP), the existing plans are used in planning for a new situation.

The CBP systems emphasize how to modify/adapt a retrieved plan rather than producing
just one answer as in CBR (i.e., jail sentence in JUDGE). The cases in the case memory of

29

a CBP system consist of situational context (events, constraints, and goals) and a solution
(the plan executed at that time). The task is to retrieve the case with the most similar
situational context and to adapt the solution from that case for use in the situational context
of the probe. Case-based plan representation can be compared to both the state space
representation and the action ordering representation of generative planning. Initially, the
retrieved relevant plan has goals/subgoals, states of the world and the actions that were
carried out to obtain those states. This state space representation of previous plans is then
adapted using the domain knowledge, other cases, current goals, and context to obtain the
new plan (list of action).

Case-based planning differs from the more traditional generative planning in many as-
pects. Generative planners build the plans in many micro steps and while building, the
planner has to ensure that the plan will achieve the goal state from the given initial state,
constraints, and resources. The case-based planner retrieves the plans in one step and then
adapts them to ensure that they will achieve the goal. The major system resource used by
the generative planner is computer time needed for generating a plan while the case-based
planner uses the storage space of the system for storing previous cases. The generative plan-
ner requires a good domain theory so that it can extrapolate the effects of actions that it
has generated for achieving the goal. The case-based planner requires a wealth of previous
cases so that it can find relevant cases close to the current situation.

One of the earliest and best known examples of a case based planner is the CHEF system,
built by Kristian Hammond [72]. The CHEF program addresses the problem of planning in
the cooking domain. It generates new plans (recipes) by adapting the sequence of actions
from similar past plans (recipes). The input to CHEF is a list of goals (such as a hot stir fry
dish with chicken and broccoli) that have to be satisfied. The result of planning by CHEF is
a plan that satisfies these goals. If part of a plan fails, CHEF repairs the plan and an index
to the repair is added to memory to avoid repeating that planning failure. CHEF does not
have any interpretation of input goals for the retrieval of plans, but it does exhibit complex
plan adaptation and learning capabilities.

CHEF retrieves similar cases based only on goal similarity. It does not address how to
retrieve a recipe which is similar to an incomplete recipe (where the incomplete recipe may
have goals along with a partial description of actions already taken). Therefore, when a plan
fails during execution, due to failed preconditions or objectionable results, CHEF stores the
failure, but must begin from scratch to rebuild the plan (recipe). One major requirement of
the problem domain which we are addressing is the ability to continue planning from any
point in plan execution, while maintaining consistency with previous actions. This is the
result of having to deal with other (possibly antagonistic) agents changing the world state.
This is one of the major difference between the CHEF system and our work. Our system
can retrieve a plan which will be most suitable for continuation of a partially executed plan.

If planning involves multiple agents then the planner has to resolve the conflict of goals of
these agents while developing plans. PERSUADER [108] first presents a plan and if that plan
is rejected due to conflicting goals of the agents, it follows two options to resolve this conflict:
it generates persuasive arguments to convince the rejecting agent or it modifies/repairs the
plan to make it more acceptable. To persuade a rejecting agent it uses a goal hierarchy.
It takes the goal of the rejecting agent and uses the goal hierarchy to find some goal with
higher importance which will be effected if the agent tries to achieve the conflicting goal. To

30

modify/repair the plan, it uses the reason of rejection (explanation) given by the rejecting
agent for repair. It then uses explanation-based similarity retrieval to retrieve a plan that
fixes that problem. This system uses the goal hierarchy and the knowledge encoded in it to
persuade the agents. Our system can also use the goal hierarchy, but it also uses previous
cases to see how others were persuaded in past cases and from those examples it determines
a new action that should persuade. This approach then does not depend on encoding the
domain knowledge but relies on and leverages past cases.

Adaptive planning is somewhere in between Case-Based Planning and Generative Plan-
ning. It attempts to mix old specific plans with general plans while developing a plan for
a current situation. PLEXUS [54] is an adaptive planner that successfully adapts a spe-
cific plan from an old situation to work for the current situation. The flexible utilization
of the old plans is done by using: 1) background knowledge associated with an old plan
for situation matching, 2) a specific plan for an old situation, and 3) treating the failing
steps of the old plan by representing the categories of actions that have to be achieved. The
background knotnledge associated with an old plan is determined by the old plan's position in
a knowledge network. The network includes: taxonomic structure for property inheritance
and reasoning about categories, partonomic structure (step-substep hierarchy) for refitting
actions, and causal knowledge that includes relations such as purpose and reason. Each of
the steps (substeps) in the old plan have appropriateness conditions like precondition, out-
come, and goal associated with them. A situation difference occurs between the old plan and
current situation if one of the appropriate conditions fails or the steps in that plan are out of
order. To correct the situation difference, PLEXUS treats the failing plan as a category of
action and uses the background knowledge for finding a substitution. This is accomplished
by first abstracting until a category of plans common between the two situations is found,
and then specializing until an alternate course of action appropriate for the current situation
is found. It utilizes various rules for abstraction and specialization to ensure that efficient
and correct substitution is done. To handle the step out of order situation difference, it uses
relations like reason to look ahead at the effect of those steps in the previous plan.

More recent work in planning by Hammond et al., [73] [65] addresses the issues of oppor-
tunism and flexible plan use in the areas of reactive planning and strategic/tactical planning.
In RUNNER, the observation of particular values of environmental features (state) triggers
the activation of a goal(s), which is used to index into memory to retrieve an existing plan
for satisfying the goal(s). The retrieved plan is used to give permission to sub-plans/actions
to take place. Opportunity for an action depends on the observation of particular features
in the environment. An action must have both permission and opportunity to be executed.
In summary, the guidance on permissible actions comes top-down from the goals, and recog-
nition of opportunity comes bottom-up from the state. The action(s) which lies on their
intersection is taken.

All case-based planning systems retrieve a plan for the goal they are trying to achieve. We
first retrieve the most similar case in which actions were done by various agents. From this
we identify a plan. During adaptation of a plan we rely on past cases and the explanations
that an expert has given, while the current planners rely on the informations encoded in their
plan modifiers. We also use the uncertainty in cases while identifying a plan and adapting
it.

31

4.1 Plan Extraction
Plan extraction in the M&A domain [2]:

The cases in our planning system are observed episodes of takeover battles. We do not
make the assumption like other case-based planners (CBP) that the retrieved case is a specific
plan of a past situation. Since our case is an actual episode of what happened in the past,
we have to analyze this episode and extract a plan of the agent whose executed actions are
part of this case. This step can be added as a pre-processing step to any of the existing CBP
to enhance their capability so that they will be able to use cases that are not just specific
plans.

4.1.1 Representation of plan

The plan of an agent consists of strategies and planned actions. The strategy encapsulates
the information about each sub-pla.n of the planner. This information consists of the subgoal
of this sub-plan, the higher level goal whose achievement depends on successful completion
of this strategy, the executed plan in the stored case from which this sub-plan was extracted,
the totally ordered set of steps that have to be executed for this sub-plan, and the time
consideration (i.e., phases) in which this sub-plan has to be executed. The planned action
1 encapsulates the local information about each step in the plan. This information consists
of the goal of this step, the actual action «,- that will be executed to achieve the goal, the
strategy of which this planned action is a part of, the action from which this step was
identified, the actions that have to be performed with and/or before the execution of the
action a,-, and the stage of planning through which this planned action has passed.

The lower right box in Figure 4.1 on page 34 shows the information for the strategy
initial-open-purchase-1024. The goal of the strategy is to buy the stocks of the target
company in open market before their prices go up and this goal is represented as initial-
-open-purchase. The planned step for this strategy is the planned-action buy-stock-1027.
This plan has to be executed at the time when it is not know for sure that the target company
is a potential target for a takeover. This information is stored in the start-phase and end-
-phase slots of the strategy object. This strategy has to be executed in phase-2 of the
takeover.

The goal get-share-holders-to-sell of this planned action is a subgoal of the raider's
goal to acquire-in-open-market the stocks of the target company. This goal can be
achieved by executing the actual action tender-off er-1028 which was identified from action
rpp-a-to-pp-01 in the stored case. The plan-stage of this planned action is structural
which represents that this action has been structurally adapted to current situation.

4.1.2 Identification of a plan

The identification of a plan to achieve a goal </,- by an agent in the probe case is done using
the role r,- of this agent, the goal hierarchy, and the information in the retrieved case. This
identification of a plan is done in three steps: the identification of all possible events for the

1 Sometimes we use the word planned step instead of planned action for readabilty.

32

plan, the compression of the plan by removing unnecessary actions, and the linking of the
parts of this plan to the hierarchical expansion of the goal </,-.

First, the identification of all possible events for the plan is done using the role r,-. All
events in the retrieved case, that have actions executed by an agent whose role is the same as
r,- are identified as possible events for the plan. All the identified events are added to the set
Pa of events. These identified events include the actions planned by the agent for achieving
the goals and also the actions that had to be executed for other reasons such as countering
the actions of the opponent.

Then the compression of the plan is done using the contextual information, encoded as
links, of the events in the set Pa. This step removes the enabling events, compensatory
events and reactory events. The enabling events of an event e,- are those events whose
execution caused a new state which is the enabling state of the event e,-. The enabling events
of an event e,- are determined by using the enable-link to get the enabling state and then
using causal-links to get the events which caused the enabling state. All those events that
are enabling events for other events in Pa and do not have a goal which is a desendent of
goal gi are removed from the set. These events are removed because they were executed to
enable a planned action and they did not contribute to the achievement of the goal. The
compensatory events of an event e; are those events that were executed to compensate
for the lack of expected impact of the executed action of event e,-. The compensatory
events of an event e,- are determined by using the membership-links to get the compensation
interpretation and then using parts-of links to get all the events grouped by the compensation
interpretation. All the events in this group except the event e,- are compensatory events. Also
as a convention this event e,- is always the first event in a compensation interpretation. All
the compensatory events are removed from the set Pa. The need for these compensatory
events would only be known after the execution of the action, therefore they need not be
included in the strategic plan. The reactory events are those events that were caused by
the execution of an action by the opponent agent. The reactory events of an event et- are
those events that are linked to event e,- by a causal link. These events are also removed from
the set Pa. Our approach to plan compression relies on the contextual information of the
events in the cases unlike plan compression in CHEF [72] which uses the information about
the actions encoded in the knowledge base.

Finally, the linking of the parts of the compressed plan to the hierarchical expansion of
the top level goal </,• is done in a bottom up way. The remaining events in Pa are linked to
goals in the hierarchy. These events are grouped into sub-plans which are linked to higher
level goals in the hierarchy, and then the sub-plans are recursively grouped and linked to the
next higher level goals till we reach the top level goal. This grouping of events into sub-plans
can be done either by using plan-steps interpretations (if there are any) or by using the goal
hierarchy. The events that are part of plan step interpretation are grouped into a sub-plan
and the goal of this sub-plan is the goal of the interpretation. The rest of the events in Pa,
which can not be grouped using interpretations, are grouped using the goal hierarchy. The
events, whose goals have the same parent goal node parg, are grouped into a sub-plan. The
goal ofthis sub-plan is the parent goal parg. This grouping also checks whether the goal node
parg is an AND node and in that case if each of the sub-goals of parg have a plan in the
newly formed group. In case some sub-goals do not have a plan, these sub-goals are added to
the list of unresolved-goals. For each of the remaining ungrouped events, which do not have

33

El PLANNER VIEW browser ,n,...».»-..Vf«i,.,,m'-t ■■!■■■■«»■ ■■--■ --"
Exit[|Redraw|Redi9pIay|Resolve Coal3||StructuraL Adaptatitrnjconplete Adaptation] Dig

&CQ-WITHOUT-MANAGEMENT-APPROVAL

| INITIAL-OPEN-PÜRCHASE-1024 | | ACQUIRE-IN-OPEN-MARKET-1025] | rORCE-MANAOEMENT-INTO-SELLINO-1026 |

(BUY-STOCK-1027) (TENDER-OFFER-1028) { ACCEPT-BUY-SHARES-1029) (H-C0PRT-103Ö")

Planner Current View RAIDER-VIEW-1017
Agent: PHILIP
Role: RAIDER
Current State: STATE-KPM-PHASE1
Current Phase: PHASE-1
Available Funds: 2418.0
Low Price: 60.1 Z
High Price: 87.174

Strategy INITIAL-OPEN-PURCHASE-1024
Goal: INITIAL-OPEN-PURCHASE
Keta Strategy: ACQ-WITH0UT-MANAGEMENT-APPROVAL
Past Strategy: RPP-I-TOE-HOLD
PLan: *<PLANNED-ACTION BUY-STOCK-1027 SADAADS>
Start Phase: PHASE-2
End Phase: PHASE-2

X
Redisplay
Describe New #<STRATEGY INITIAL-OPEN-PURCHASE-1024 5ADAAC6>
Describe #<PLANNER-CURRENT-VIEW RAIDER-VIEW-1017 E9402FE> NIL
^display
Describe *<PLANNER-CURRENT-VIEW RAIDER-VIEW-1017 S9402FE> NIL
Describe New *<STRATEGY INITIAL-OPEN-PURCHASE-1024 SADAA06>

D

Figure 4.1: Plan extracted for the Raider

a parent goal common with other events in set Pa, a sub-plan consisting of only that event
is made. The goal of this new sub-plan is the parent goal of the event's goal. If this goal
is an AND goal then all its subgoals except the goal of the event in the sub-plan are added
to the list of unresolved-goals. These identified sub-plans are recursively grouped together
using the goal hierarchy until we reach the top goal (j{.

At the end of this final step of the extraction of the plan, we have identified the parts
of the plan from the retrieved case which can be used for goals that contribute to the
achievement of the top level goal of the agent. This identified plan is then represented using
strategies and planned actions. A planned action is made for each event in the extracted
plan. The example of a planned action was given earlier. This planned action can also have
information about other planned actions (not shown in the example). For example, if the
event for which a planned action is made is a member of the two-agent interpretation, then
slot with-action of the planned action will indicate the action that needs to be executed
with this planned action along with the possible agent. This action is of the same type as
the action of the other event in the two-agent interpretation. The possible agent is the one
which has the same role in the current situation as the role of the agent of the action in the
other event. For example, a transaction type planned action will have to be planned to be

34

executed with an action by another agent.
After completion of plan extraction, we have a list of unresolved-goals that the goal

hierarchy indicates are necessary but that did not have plans in the retrieved case. In our
planning system we give the user the option of identifying the goals to be resolved. As a
default the system resolves all the goals. The resolution of these goals is discussed in the

next section.
The plan extracted for the raider in the probe case is given in Figure 4.1. This plan is ex-

tracted for achieving the top level goal acq-without-management-approval of the raider. It
consists of three sub-plans represented by strategies initial-open-purchase-1024, acquire-
-in-open-market-1025, and force-management-into-selling-1026. The goals of these
subplans are the sub-goals of the top level goals. Therefore, these sub-plans are not further
grouped. The goal node of acq-without-management-approval is of type OR and its sub-
goals have plans identified. Therefore, after extraction of this plan there are no unresolved
goals. The planned actions for each strategy are linked to their strategy as shown in the

figure.

4.1.3 Identification of resources and constraints

After the extraction of a suitable plan from the retrieved case and the identification of the
goals that may have to be resolved, the planner sets up its view of the world. This view
includes resources of the planner, its constraints, and what it knows about the opponent
agent. The initial information in these views are the state, the phase of the takeover, the
resources of the planner, and the price range in which the agent can operate.

In a hostile battle this price range indicates the minimum and maximum price-per-share
of the target company in which the battle can take place. For the raider, the lower bound
of this price indicates the minimum price he can start with and the higher bound indicates
the maximum price he can offer. He will have to abort his takeover attempt if the trading
price per share of the target company goes over the maximum or some other company offers
more than the maximum. For the target, the lower bound indicates that he has to reject any
offer below it and the upper bound indicates that he has to accept any offer above it. These
ranges are local to each view. A raider view may have a different range from the target view.
A study of various methods of determining the price of companies is given in [86] (pages
38-79). We use two of these methods to determine the price range.

The two methods we use for determining the price for the shares of a company rely on
two types of knowledge. One method requires the experiencial knowledge of a person, that
is what he has seen in the past as the price paid for the shares of a company which was
in a situation similar to the target company. This method fits well with our Case-Based
reasoning technique. The second method requires general knowledge for determining the
quantitative value of the target company to the raider. This knowledge is stored as rules.

We use both methods to determine a low and high premium that should be acceptable for
the current price of the target company's shares. This premium is in the form of a percentage
of the company's share price. For the first method, the most similar target company is the
target company in the retrieved case. We analyze all the actions of type shares-handling-
-actions in the retrieved case to get the highest and lowest premium offered by any agent for
the shares of the target company. The premium offered by an agent in each of these actions

35

Operational Factor

Transactional-Financial Factor

Quantitative Value

Competitors Factor

Company Factor

Figure 4.2: The factors for Quantitative value

is a function of the price-per-share offered by the agent and the price-per-share of
the target company shares in the state in which the action was executed. For the second
method, the knowledge of the quantitative value is represented as rules whose rule classes
are shown in Figure 4.2. Each rule class determines the quantitative value based on that
factor. For example, the operational factor determines how much of value is the target
company to the raider based on the operations of the target. This includes such things as do
the operations of the target give synergy to the operations of the raider in cases when the
target ma,kes the same products as the raider or when he has the same type of distribution
channels, does the target operate in a market which is hard to enter, and does the target
have a good market share. The evaluation of the above rules will indicate the quantitative
value of the operational factor. The sum of the values of all four factors will give the
quantitative value of the target company to the raider company. This quantitative value is
also represented as a percentage. These two methods give us three premium values in the
form of percentages for the share price of the target company. After determining the three
premium, the low price of the price range is determined by changing the current price-per-
-share of the target company's shares to the minimum percentage in the three premiums.
The high price of the price range is determined by changing the current price-per-share
of the target company's shares to the maximum percentage in the three premiums.

The use of these two methods shows another example of combined reasoning performed
by the system to solve a subproblem during planning.

Figure 4.1 shows the initial view of the raider. The current state of the raider is state-
-kpm-phasel and the current phase is phase-1. This phase reflects that no action has been

36

taken by the raider yet. The funds available to the raider in this state are $ 2418.0 million.
The price range for shares in which the raider should attemp to takeover the target company
is $ 60.12 and $ 87.174 for each share of the target company.

4.2 Planning Architecture

We describe the architecture of the planning system in [59].
We are currently implementing an architecture for CBP which consists of the modules

described below.
Case Data Base: The Case Data Base (CDB) is a library of successful and unsuccess-

ful situation/plan pairs (cases). These cases are stored in frame-like structures containing
surface features (original raw data) and abstract features (inferences and generalizations)
encoded in CRL. These features describe the situation (events, resource constraints, and
goals) for which a plan was constructed. The library also maintains a record of our previous
successful and unsuccessful attempts at modifying (sub-)plans.

Case Acquisition/Classifier: The Case Acquisition/'Classifier Module is the keeper
of the case library (CDB). There are many possible ways to generate the case structures.
In our previous work with CARS [30]), we acquired and stored cases using an existing GE
conceptual information storage and retrieval system called SCISOR[93, 78] to tap on-line data
bases containing unrestricted natural language descriptions of stories. This information was
then stored as surface features of the case and interpreted by a rule-base which generated
abstract features of the case. In other applications in which the information has already
been organized, these frame-like structures can be derived from the schemas of the data
bases used to store the raw input.

In either case, we determine taxonomic criteria for the representation, storage and clas-
sification of cases in the CDB. As part of this task we must determine the cases' relevant
and salient features, their values' granularity, and their data structure and knowledge rep-
resentation.

Case Indexer/Matcher/Retriever: This module takes a (possibly partial) descrip-
tion of a situation (referred to as the probe), and returns the most similar case(s) from the
CDB, according to a measure of similarity based on relevant and salient features. This mea-
sure of similarity is used to rank and select the closest case(s) to the probe. The most salient
features of a case for initial retrieval in case based planning, are its top-level goal(s), and its
available resources.

Similarity Measure: Encoding cases in CRL allows similarity to be measured based on
levels of abstraction between salient features in the domain knowledge hierarchies. We have
designed multiple metrics for abstraction based similarity, and we plan to run experiments
comparing their usefulness for different retrieval tasks (after collecting approximately 30
cases in the transportation domain). Currently we are using the most strict metric, which
prefers abstraction up the hierarchy (ie. a class is more similar to its parent and grandparent
than to its sibling).

Case Analyzer: Once the retrieved cases have been compared with the probe, the
"best" case(s) are sent to the Case Analyzer Module. This module generates a difference
analysis between the probe and the retrieved case. This analysis consists of the most relevant

37

similarities among abstract features, used to justify the retrieval of the case, the most relevant
differences among abstract features, used to identify missing pre-conditions that could disable
parts of the associated retrieved solution (plan), and the goal similarity and differences, used

to guide the adaptation and repair rules.
The choice of case(s) to be passed on to the case modifier is based on the needs of the

reasoner, and the context of the probe. An evaluation of the similarities and differences and
how they affect the ability of our system to modify plans is used to determine the case to be
used by the reasoner. This information is displayed to the user by the Dialog Manager for
verification, possible interactions and user-guided selections.

Case Modifier: The Case Modifier identifies all the parts of the retrieved solution
(plan) which are not applicable or repeatable, because of a lack of "resources"2 noted in the
difference list generated by the case analyzer. The case modifier proceeds to individually
adapt these parts by using substitutions (e.g., replacing a sub-plan for a sibling node in a
goal-plan taxonomy), compressions (e.g. eliminating the step from the plan and substituting
dependent sub-plans), extensions (e.g., generalizing another sub-plan to cover and replace
the current one), and other possible strategies.

Another possible way to adapt a plan is to recursively use case-based reasoning on the
sub-plan. By indexing on the inapplicable sub-plan and its associated sub-goal, we can
screen the other retrieved cases (or if necessary, the case data-base) to see if the same or
similar sub-goal has been achieved by other sub-plans or if this specific sub-plan has been
successfully modified in the past.

Case Projector/Evaluator: The modified plan is passed to a Case Projector/Evaluator,
which tries to predict the success or failure of the modified plan by projecting it in time/space
and by evaluating its relevant performance functions. This projection/evaluation can be done
by a simulating the plan execution or by performing a theoretical analysis of its character-
istics (e.g. throughput analysis of a network).

Beside determining if all the constraints have been met, this module also produces a
cost of the entire plan (degree of success or failure) identifies possible sources of failures, and
generates a prioritized list of sets of resource-goal constraints among which tradeoffs must be
performed. For the military transportation planning domain, the case projector/evaluator
will be implemented by scheduling algorithms and other analytical techniques.

Case Repairer: The output of the case projector, augmented by the difference analysis
generated by the case analyzer, is the input to the Case R.epairer. This sub-module uses a
specialized knowledge base to determine if:

• it can accept some of the tradeoffs of the resource/goals constraints (thus considering
the plan to be successful and propagating the modified constraints to the other sub-

plans), or

• the plan needs to be returned to the case modifier to attempt a different adaptation

rule, or

• the originally retrieved plan cannot be successfully modified and another similar plan
must be selected for adaptation.

2These resources include such things as differences in geographic features, lack of physical resources like
planes, etc..

38

4.3 Goal Resolution

The resolution of the goals after the plan extraction stage is done using the information in
the stored cases. The plan for an unresolved goal gi can be determined in one of the three
ways: by identifying a suitable event for the goal #,•, by identifying an interpretation for
goal </,-, or by resolving the subgoals of </,-. If a suitable event is found for the goal g,-, then
a planned action is made for this goal using that event. This planned action is added to
the strategy which had gi as its unresolved goal. If no suitable event is found then the next
step is to identify a plan step interpretation for this goal #,. If a plan step interpretation
is found for this goal </,-, then a strategy is made using the interpretation. This strategy
is added to the plan of the strategy which had </,■ as its unresolved goal. The goal of this
strategy is the goal #, and its planned actions are made using the events that are part of the
identified interpretation. In case no interpretation is found, then the subgoals of the goal gi
are resolved. Before starting to resolve the subgoals, a new strategy is made whose goal is
goal </,-. The plan of this new strategy will be the plan found by resolving the subgoals of
goal gi. If the goal node of goal gi is of type AND then all its subgoals have to be resolved.
If the goal node of goal gi is of type OR. then one of its subgoals has to be resolved. This
process is repeated until we resolve the goals or the unresolved goals have no subgoals. If
any goal is still unresolved then that goal is added to the list of goals with no possible plans.

(resolve-goal SWEETEN-DEAL)
WARNING: No event for the SWEETEN-DEAL goal
WARNING: No interpretation for the SWEETEN-DEAL goal
The goal SWEETEN-DEAL is an AND node
Find plans for achieving the subgoals (TR-SWEETEN-DEAL TA-SWEETEN-

DEAL)
WARNING: No event for the TR-SWEETEN-DEAL goal
WARNING: No interpretation found for TR-SWEETEN-DEAL goal
Attempting to find plan for goal TR-SWEETEN-DEAL by planning for its sub

goals
The sub goals of TR.-SWEETEN-DEAL are: NIL
The TR-SWEETEN-DEAL goal is of type: OR
NO sub goals so it can not find plans for goal: TR-SWEETEN-DEAL
(NIL (#<PLANNED-ACTION SEEK-BUYERS-1140 5759CAE>))

Figure 4.3: The Resolution of SWEETEN-DEAL goal

The technique for resolving a goal (/, can best be illustrated by following the steps taken
during the resolution of a specific goal. The steps followed in resolving the goal SWEETEN-DEAL
are given in Figure 4.3. No suitable event or interpretation from which a plan could be made
is found for this goal. The subgoals TR-SWEETEN-DEAL and TA-SWEETEN-DEAL are then
considered. For the subgoal TR-SWEETEN-DEAL, again no suitable event or interpretation is

39

found. The TR-SWEETEN-DEAL goal has no subgoal, therefore this goal can not be resolved
and is added to the list of goals with no possible plans. For the subgoal TA-SWEETEN-DEAL,
an event is found in the RJR-Nabisco case. Using this event a planned action #<PLANNED-
-ACTION SEEK-BUYERS-1140 5759CAE> is made and is added to the plan for goal SWEETEN-
-DEAL.

In the following sections we describe how the suitable events and interpretations are

identified.

4.3.1 Identifying an event for a goal

The identification of an event for a goal <7,- is done by making a set P, of possible events,
making an information tuple for each event in P,-, and identifying an event based on the lower
bound of probabilities of the actions of events in P,.

First, the set P,- of possible events is made using the goal #, as an index. Instantiation
links for goal </; are used to retrieve all the past instances of the goal. Only those goals are
kept whose plan type is : event. Using the plan-goal links of the selected goals all the events
that have been executed in the past cases for executing this goal are retrieved. The events
in the list events-to-ignore are removed from retrieved events and the rest of the retrieved
events form the set p of possible events.

Then, the information tuple for each event in P; is made. This information tuple contains
the action, the belief that the action achieved the goal, and the context of the action. The
belief for this action that it did achieve the goal (ji is the minimum of the belief in the goal
and the belief in the goal achievement. The belief in the goal is obtained from the plan-goal
link which contains the belief that the actual goal is the indicated goal. The belief in goal
achievement is obtain from the belief in the causal link between the event and the changed
state value. The changed state value which is considered for this belief is of the value of the
state variable indicated by the state-var slot of goal </,-. As described earlier, state-var
for the goal contains the state variables that will change if the goal is achieved. The context
of the action is the context of the event for which the information tuple is made.

Finally, the identification of an event is made by first selecting an action and then selecting
an event with that action. The action with the highest lower bound of probability is selected
from all the actions of the events in P,. The lower bounds of probabilities of the actions
is determined using the information tuples made for the events in P,. After selecting the
action, the events in P, which have instances of the selected action are grouped. Among
the grouped events is the event with the highest situational similarity that is identified as a
suitable event for the goal </,-.

This approach for identifying the suitable event does not rely on domain knowledge.
It uses the goal hierarchy for indexing into possible events and then uses the contextual
information of the events and their similarities to the current situation to select the event.
This approach shows how an event for making a plan step can be selected by leveraging the
information in the past cases and how we can complement our weak domain theory by these
cases.

40

4.3.2 Identifying an interpretation for a goal

The identification of an interpretation for a goal </,• is done by making a set P,-n of possible
interpretations and identifying an interpretation based on the situational similarity.

First, the set P{n of possible interpretations is made using the goal #,- as an index. In-
stantiation links of goal </, are used to retrieve all the past instances of the goal. Only those
goals are kept whose plan type is : interpretation. Using the plan-goal links of the selected
goals, all the interpretations that have been executed in past cases for achieving this goal
are retrieved. Among the retrieved interpretations, the interpretations of type plan step are
selected. The interpretations in the list interpretations-to-ignore are removed from the se-
lected interpretations and the rest of the selected interpretations form the set P,n of possible
interpretations.

Then, the identification of interpretation is made. The interpretations in the set P,n

are ranked by their situational similarities. Among the group of interpretations that have
the highest similarity, the interpretation which has the highest level-of-typicality is
selected. This level-of-typicality is used by experts to indicate how good this subplan
is for the indicated goal.

41

Chapter 5

Evaluation and Results

5.1 Methodology for Evaluating the Generated Plans

The method used for evaluation of the generated plan within the M&A domain [2]:
The evaluation of the plans generated by CARS was clone by comparing the plans gener-

ated by it for a given initial state of the case with the actual plans in that case. To evaluate
the plan generated for a stored case Cs, three steps were followed. First, a plan was gener-
ated for the goals of an agent in this case Cs. Then, this generated plan was represented as
a planned case Cp using CRL. Finally, the similarity between the events of the planned case
Cp and the stored Cs was determined.

5.1.1 Generate plans for an agent

The stored case Cs was removed from the case library. A probe case was made for this case.
The probe case only contained the initial state of the stored case Cs. The most similar case
was retrieved for this probe case. This retrieval was done on the ranking of the cases based
on the situational similarity because the probe case only had the initial state. The plans for
the goals of one of the agents in case Cs were then generated.

5.1.2 Represent the generated plan as a case

The generated plan was represented as a planned case Cp using CRL. The initial state
of this case was the same as the initial state of the stored case Cs. The planned actions
of the generated plan were represented as events. The goals of the planned actions were
represented as the goals of the events with degree of belief as *certain*. The events for the
core planned actions in a strategy were linked together by the causal links with degree of
belief as * certain*. A unique state was used as the context of the events except for the events
of the planned actions whose with-action slots were not empty. The events of these planned
actions had the same context state. For example, if planned action buy had planned action
sell in its with-action slot, then the two events buy and sell for these planned actions had
the same state as their context. The events Eak and Eai for the planned actions Pak and
Pai, where Pai appeared in the after-action slot of the planned action Pak, were linked via
causal and enable links. A new state Sn was defined. A causal relation from the event Eai

42

to new state Sn was defined with degree of belief as *certain*. This state Sn was then added
as an enabling state of the event Eak. The ■plan-steps interpretations were made for all the
strategies in the generated plans. The goals of the strategies were defined as the goals of the
interpretations. Initially, the interpretations were made for the strategies which had planned
actions. For each strategy Si which had planned actions, a plan-steps interpretations /,- was
made. The events for the planned actions in strategy S, were then made as the parts of the
new interpretation /,. The strategies that were part of another strategy were then grouped
into another plan-step interpretation. The top most interpretations were then grouped in
the meta-strategy interpretation. The goal of this interpretation was the top level goal of the
agent in the probe case.

5.1.3 Compare the events in the planned case and stored case

The events in the stored case Cs were compared with the events in the planned case Cp in a
manner similar to the dynamic similarity, but with some differences. The main differences
were that the similarity was clone based on the actions rather then goals and the grouping
of events in both cases were done, using interpretations1. We will next discussed how events
were grouped into sub-plans followed by the discussion of how similarity was determined
between these sub-plans.

Group events into sub-plans

All the events in the stored case Cs are retrieved. Only the events whose agent has the same
role as the agent for which the plan was generated are selected. The enabling events, com-
pensatory events and reactory events are removed from these selected events. The selected
events in the case Cs and all the events in the case Cp are divided into their phases (i.e.,
phase-2 and phase-3) because the comparison of events in a sub-plan is done within each
phase.

The plan-step interpretation indicates the events that belong to an identifiable plan. From
the set of events in a phase, using the membership links, all the plan step interpretations
of these events are retrieved. This gives the sub-plans in a phase in both the cases. The
grouping of events for these sub-plans is then done in the following three steps. First, for
each interpretation, a set of events is made. An event may be a member of more than one
set, when it is a part of more then one interpretation. Then, the events that are causally
related within each set are grouped together. This grouping identifies the core events in a
plan. Finally, the events in each group are further grouped together based on the states in
which they were executed. All events executed at the same state are grouped together.

Similarity between sub-plans

The similarity between the plans in a phase were determined hierarchically based on the
groupings of the events. Firstly, the similarity between the events grouped by state was
determined. Secondly, the similarity between the sub-plans was determined. The similarity

xThe reader will recall that in dynamic similarity we used interpretations for grouping the events in the
retrieved cases and relationships for grouping of the events in the probe case.

43

between the sub-plans was based on the aggregation of similarities between the groups of
causally related events in that sub-plan. Finally, the similarity between the sub-plans were
aggregated to get a phase level similarity.

Similarity between events grouped by state: The similarity between the events is
based on the actions of the events unlike the similarity between events grouped by state in
dynamic similarity determination, where the similarity is based on goals. The reason for this
is that the plans in the two cases here are for the same goals at the sub-plan level and what
we want to determine is how similar these plans are. To determine the similarity between
two groups of events, where each group has events at the same state, only the similarity
between the actions of events in these two groups was considered. The similarity between
these two groups of events was determined by computing the similarity between two lists of
actions where each list of actions represents the actions of events in a group.

The similarity between the lists was determined by computing a pair wise similarity of
actions in the two lists and then aggregating them. This pair wise similarity and aggregation
was done for all the combinations of actions and the best result was considered as the
similarity between the two lists.

The pair -wise similarity of two actions was obtained by doing similarity by abstraction
on the action hierarchy. This similarity by abstraction returns a similarity value, which is
based on how close two actions are in the action hierarchy. For same actions the similarity
value returned is *complete-match*, and for siblings it is *almost-complete-match*. The
certainty of this similarity value is based on the certainties of the actions. In our case these
certainties of the actions are *certain*. For example, the similarity between the actions
MAIL-CONTACT and TELEPHONE-CONTACT is based on their relation in the action
hierarchy. Both these actions are direct children of CONTACT-ACTIONS. Therefore, their
pair wise similarity is * almost-complete-match* with certainty *certain*.

If the two lists had different number of events then the difference was considered as *no-
match*. The certainty of this similarity was (0 1.0) representing ignorance because we had
no evidence as to what that missing event would have been. For example, if one list had five
and the other had seven events then two *no-match* similarities with (0 1.0) certainty were
added to the pairwise similarity list before aggregation.

Similarity between sub-plans: Pair wise similarities between the groups of causally
related events in the set representing a sub-plan were computed and then aggregated. This
process was performed for all the combinations of the causally related groups in the two sets.
The similarity between the two sub-plans was the best similarity of all these combinations.

To determine the similarity between the groups of causally related events, again pair
wise similarity between events was computed and then aggregated. It was only done for the
combinations which maintain the order, and then the best result was taken. Here, while
determining the combination, the order of execution was maintained. For example, consider
two groups of causally related event, (ei e2 e3) and (e4 e5). A combination maintaining the
order will be ((ei e4) (e3 e5)). A combination that does not maintain the order is ((e2 e4)

(ei e5)).

44

Similarity between events at the same phase: The similarity at the phase level was
based on the similarity between the sub-plans. The pair wise similarity between sub-plans
in the phase was computed, as discussed in the last section. If the top level goal node of the
agent was of type AND then *no-match* with certainty (0 1.0) was added to the pair wise
similarity list for each direct child goal with a missing sub-plan. The pair wise similarity
was then aggregated. Again this process was performed for all combinations of sub-plans
and the best similarity was taken as the resultant similarity between the sub-plans in the
two cases. The similarities between sub-plans and the similarities between the events at the
phase level were used to determine how close the generated plans were to the actual plans.

5.2 Interpretation
We explain what is meant by interpretation of a plan in [59].

Interpretations are explanations for the occurrance of sets of events. M(/i) is a link
with associated certainty level which includes an event in an interpretation. The certainty
level indicates the degree of belief in the inclusion. Interpretations may contain some local
knowledge such as a goal, objects affected by the interpretation, etc.

Example:
TRANSFER-CARG0-001 is a TRANSFER-CARGO
from: WAREH0USE-001
to: WESTOVER
cargo: (contents WAREHOUSE-001)
goal: '(((location cargo) to))
parts: '(L0AD-001 TAKE0FF-001 LAND-234 UNLOAD-23)

Some example interpretations are constraint maintenance, cargo transfer, etc. The interpre-
tations are currently used to represent the case analysis of a domain expert. At some levels
these interpretations can be seen as steps in the hierarchical expansion of a plan and can be
used to augment the goal/plan hierarchy.

45

Chapter 6

Conclusions and Summary

This report has described work done in the area of case based planning in several domains.
Ayub [2] summarizes for us the contribution made in the field of M&A.

The goal of this thesis is to apply AI planning techniques to complex and real world
situations. In these situations, the expansion in the problem occurs along various dimen-
sions, such as the lack of a complete domain theory, the inherent uncertainty present in the
information used in planning, and the dynamic nature of the planning process. In this thesis
we address each of these dimensions.

First, we investigate how to develop a strategic plan when we do not have a good model of
the world in which actions are going to be applied. Lacking a good domain theory to model
the real world, we resort to using past cases to guide us in the development of strategic plans.
Then, we study the development of plans using information from the past cases which may
have uncertainty. Uncertainty in planning can be of two types: structural and parametric.
Structural uncertainty occurs in various mappings and parametric uncertainty occurs in
various assignments of the state variables. Finally, we investigate the representation of the
dynamic nature of the planning process. This planning process is observed as the changing
world states and the actions executed by the agents.

Our proposed planning system, named CARS (Combined Approximate Reasoning System),
is rooted on Case-Based Planning (CBP) techniques. The main contribution of this research
is the development of a CBP approach that uses cases to supplement its weak domain theory.
This is the first case-based reasoning system that reasons with cases that are dynamic and
have uncertain information in their case features.

We tested our system in the domain of Mergers and Acquisitions (M&A). The techniques
we have developed for reasoning can be applied to planning problems in other domains. Our
reasoning techniques rely on the conceptual and episodic knowledge of the domain. For
another domain, these two types of knowledge can be defined using our representational
language (CRL). The planning can then be done in this new domain using our techniques.

The specific contributions of this research to the subfields of case-based planning are
summarized in the rest of this section. For each subfield, first we identify our contribution,
then we summarize how it is achieved, and finally we justify why it is our contribution.

• Case representation: Development of a Case Representation Language (CRL) to
represent cases that evolve over time (dynamic cases) and have both structural and

parametric uncertainty.

46

CRL uses a network of states and events to model the case evolution. The sequence
of states represent the changing states of the world in the case. The sequence of events
represents the encapsulation of state changing actions with their contextual information
encoded as links such as: membership, causal, enable. The structural uncertainty is
modeled as the degree of belief in the links representing the mappings. The parametric
uncertainty is modeled as the membership of the label, representing an ill-defined value,
in a fuzzy set.

Our work on case representation is a contribution to the field of case-based plan-
ning as no other reasoning/planning system represents cases that are dynamic and
have uncertain information. The cases in our system are the actual episodes of what
happened unlike other CBP systems whose cases are specific plans for each situation.

• Similarity assessment: Our contributions to the field of similarity assessment are:

— The determination of similarity between dynamic cases based on the aggregation
of the situational and dynamic similarities.

— The determination of pairwise similarity as a function of the fuzzy distance be-
tween two objects in the pair.

— The determination of dynamic similarity based on the goals of actions causing
the case evolution.

— A flexible approach to aggregating similarities of partial matches.

— The Propagation of the uncertainty in case information to the uncertainty in
similarity.

The process of determination of situational similarity uses the state variables that
define the situation of the case. These state variables are used to get abstract (derived)
features. The similarity of each abstract feature is computed as the complement of the
distance between the fuzzy numbers representing the feature values. The abstract
features similarities are aggregated hierarchically, according to a semantic taxonomy,
to get situational similarity. The aggregation is based on T-norms, averaging opera-
tors, and T-conorms. The parametric uncertainty is propagated through all steps of
the similarity computation to get the certainty in the determined value of situational
similarity. The process of determination of dynamic similarity uses the state changing
actions that cause the evolution of the case. The goal links are used to get the goals of
these actions. Goal estimation is done for the actions that are not known. The actions
are grouped using their contextual information encoded as links such as: membership,
causal, enable and context. The similarity of each group is computed based on the re-
lationship between goals of the actions in the group. The grouped actions similarities
are aggregated hierarchically to get dynamic similarity. The structural uncertainty is
propagated through all steps of the similarity computation to get the certainty in the
determined value of dynamic similarity. The emphasis on certain values during simi-
larity computation and/or leniency/strictness in similarity aggregation is represented
by varying the range of operators, the termsets, and the weights.

47

No other case-based reasoning system uses dynamic similarity in case similarity
assessment. Therefore our approach to determining dynamic similarity is an original
contribution to this problem. No other system considers the uncertainty in the case
features values and thus can not reflect it in their determined similarity. Our system is
the first system that uses a flexible approach to aggregating similarities that also takes
into account the uncertainty in the similarities.

• Goal estimation: Development of an approach to estimate the goal of an action using
stored cases.

The process of goal estimation of an action uses the action's past goals to define
the possible goal space for determining the goal and belief in the determined goal. The
probability distribution of the goals in the defined goal space is determined based on
the lower bound of the probability of each goal. The lower bound of the probability
of a goal is the aggregation of the contributed mass of that goal for each of the past
executions of the action. The contributed mass of a goal, when it is among the indicated
goals of an executed action, is determined as the product of the belief that the goal is
the actual goal of the executed action (structural uncertainty) and the relative mass of
this executed action's context. The situational similarities between the context of the
past executions of the action and the current context are normalized, and the relative
mass of an action's context is that normalized situational similarity. The degree of
belief in the determined goal is computed as a function of the entropy, relative entropy,
and the cardinality of the determined probability distribution.

Our system is the first case-based planning system that tries to estimate the goals
of input actions using cases in its case memory. All other CBP systems assume the
goals to be known.

• Plan adaptation/modification: Our contributions to the field of Plan adaptation
are:

— The identification and extraction of a plan from past cases.

— The development of an approach for determining an appropriate plan for a goal
using previous cases.

— The development, of an approach for Case-based adaptation which only uses the
semantics of the features of CR.L for modifying plans.

— The use of multiple paradigms (CBR and RBR) in plan identification and adap-
tation.

The process of plan adaptation/modification uses the cases in the case library that
define the episodic knowledge to modify the plan extracted from the retrieved case.
The extraction of a plan also involves the identification of resources and constraints
which are achieved by combined reasoning (CBR and RBR) on the retrieved case and
the current situation. The planners' goals which do not have plans in the extracted plan
are resolved. The resolution of each goal is done by identifying for it a suitable plan in
one of the cases in the case library. The identification of the plan for a goal is based on

48

the situational similarity of the context for that plan's actions with current context and
the structural uncertainty in the mapping of the plan to the goal. The plan extracted
from the retrieved case is augmented with the identified plans for the unresolved goals.
This plan is then structurally adapted to the current situation. Structural adaptation
is done on the slots of the planned actions using the adaptation information attached
to the action classes in the action hierarchy. Case-based adaptation is done on the
planned actions that can not be executed in the current context. This adaptation
attempts to find a suitable action whose execution will change the state of world such
that the planned action can be executed in it. This is again based on the situational
similarity of the context of past actions and the structural uncertainty. In case no
suitable action is found, then an alternate plan is developed for the subgoals of the
goal of the planned action.

We do not assume that each case represents a plan, so our approach to extracting
and identifying a suitable plan adds to the capability of any existing CBP system. We
determine appropriate actions for a goal by considering all the past actions for this goal,
their contextual similarities to the current context, and their structural uncertainty.
Our approach is unique in the sense that we leverage on all the past experiences for
achieving a certain goal when we are planning for that goal. All other CBP systems rely
on domain knowledge for adaptation while we do most of the adaptation using cases.
The Case-Based adaptation techniques of other systems rely on domain knowledge
encoded in some form, while we use the features of the CRL to make appropriate
adaptations. We use the structural uncertainty in cases for adapting our plan while
other systems do not consider structural uncertainty at all.

Integrated reasoning methodologies: The integration of a rule based reasoning
(RBR) system with a Case-based reasoning (CBR) system where the dominant reasoner
is CBR.

The case-based reasoning cycle uses rules that define general domain knowledge at
various stages of reasoning. The rule-based reasoning with these rules is done using
PRIMO. The parts of the problem whose solution can to be determined using RBR are
declared in the RBR. interface and PRIMO rules are developed for them. When the
system encounters a subproblem which is declared in the RBR interface, then it invokes
PRIMO for the solution. This solution is then used by the Case-based reasoner.

Our system is the only system that uses the Case-Based Reasoning technique as
the dominant reasoning technique and has a RBR system integrated with it so as to
leverage the general domain knowledge whenever it is available.

We summarize the CRL in
In this paper we have described the design and implementation of the Case Representation

Language (CRL), a language designed to represent dynamic cases. We have illustrated CRL
with examples from the military transportation domain, which will be the focus of our CBP
efforts in the forthcoming future. We have described the design of our CBP architecture and
its partial implementation.

Our preliminary results in using CRL and a subset of the architecture modules have
confirmed the soundness and the representational adequacy of CRL for case storage, case

49

retrieval, case analysis, and solution adaptation. Our future work will be focused on complet-
ing the implementation of the CBP architecture, expanding our case library with a variety
of military transportation cases, and continuing the testing and validation of our CRL im-
plementation.

50

Part II

Temporal Reasoning

51

Abstract

We describe a constraint-based model for representing and reasoning about qualitative and
quantitative aspects of time. Our model allows substantial expressiveness, provides fast com-
putation over convex intervals, and will serve as a testbed for heuristic topology-driven tech-
niques for handling calculations over non-convex intervals. We describe an implementation
of this model that features a graphical interface using X-Windows and InterViexos. We antic-
ipate that this model and its implementation will find applicability in several areas, including
scheduling, project planning, feasibility analysis, and spatial/temporal databases.

52

Chapter 7

Introduction

We will describe the development of ontology, algorithms, and software to provide effective,
efficient temporal reasoning capabilities critical to applications such as scheduling, project
planning, feasibility analysis, and spatial/temporal databases. In particular, we will describe
Tachyon, a prototype software tool for constraint-based temporal reasoning. (A tachyon is
a theoretical subatomic particle capable of traveling faster than the speed of light, perhaps
even traveling backwards through time. The name is chosen for its relation to time, and our
emphasis on performance.) One key reason for developing Tachyon is to serve our need for
a test-bed for evaluating new methods of coping with disjoint constraints as they appear in
the transportation planning and scheduling domains. Tachyon also has the potential to be
used as a more sophisticated project planning tool than the likes of MacProject, a popular
tool available for the Macintosh. It also promises to be useful in scheduling problems such as
satellite and telescope use. We have integrated an early version of this work into GE-CRD's
plan recognition program Patti++, where it was used to validate temporal sequencing of
events as an aid in formulating plan hypotheses. We have also integrated the Tachyon event
model and query capabilities into a geographic information system (GIS) package under
development at GE Aerospace.

7.1 Motivation and Applications

Reasoning about time pervades our daily lives. Few of us are free of schedules, appointments,
and deadlines. Temporal reasoning needs are also critical in many computer applications:
databases, simulators, expert systems, and industrial scheduling and planning systems. Each
of the following examples need to manipulate temporal information to model the world.

The productivity of assembly lines is inversely proportional to the total down time, that
is, all intervals during which a station or tool is idle or being prepared for the next job. Idle
time can be reduced by such methods as altering the route a job takes through a line or by
maximizing the use of limited resources. When a tool requires maintenance between jobs,
e.g. changing bits on a drill press, and the maintenance varies depending on the nature of
the job, the total maintenance time becomes highly-dependent on the order in which the jobs
are scheduled. By minimizing clown time, we can increase the productivity of an assembly
line.

53

max |Z3Juti82

\:W GISDataBrowser

fTime Formal: O (seconds)] [Profile J | Display | [Remove J (View) Num. Entries: S [DonejOptjpris

NAME LAT LON TYPE TIME

Porshe 21d 26' 10TJ 157d5B'35'W (Jar (707418793,708138476,708132369,709739635,1,2320842) Fj
Taivker 2 21d28'53'N 157d43'53"W Tanker (708519732,708798120,708739430,708980158,1,460426)

Tanker 3 2ld30'l6'N 157d48'57"W Tanker (708519732,708798120,708739430,708980158,1,460426)

Piper 1 21d27'20"N 157d54'54"W Piper (708014328,708698045,708949354,708961418,251309,947090)

Tr.irk 1 9m?T7i-H ig7ri ar ia-w T,,„-t- r7n7/ia^?rig 7n7ccc i jn 7n7SQ 1 Rig imtmtan twi 1 IBI 7H?1

Figure 7.1: A tool using spatial/temporal queries to access a database

Plan deployment often involves complex interaction between critical steps in the plan.
For instance, in a relief exercise, people must be available to unload a cargo plane. If they
arrive too early, their time is wasted; if they arrive too late, the pilot's time is wasted.
Either way, the efficiency of the operation is reduced, and the separate paths of the plane's
schedule and the relief-workers' itinerary are affected. Separate branches of an overall plan
should interact smoothly. All such interactions should be carefully considered and specified

accurately.
The GIS system in Figure 7.1 keeps spatial and temporal information on a number of

objects in the world ranging from locations of mobile vehicles at different times, to permanent
positions of cities, buildings, and mountains. In this example we have selected a region of
interest, and request retrieval from the database of all vehicles that could possibly have been
in that region between June 7th and June 23rd, 1992. As such databases can be extensive,

performance in retrieval is critical.
Natural language processing requires understanding of temporal and tense information

in order to answer queries about the sentences. Consider a search for discussion of Japanese
economics during the mid-seventies. The query should find historic references in articles
published after 1980, as well as "current" reports during the 1970's. Another query re-

54

quiring temporal reasoning would be a request for the names of all senators who served as
representatives for at least two terms before being elected to the senate, where they died in
office during their first term.

Problems such as those cited above become difficult due to the number of possible con-
figurations the solutions may take. By developing an automated means of expressing the
system and its constraints, high-speed computers using efficient algorithms can outperform
humans in their ability to both digest a voluminous amount of data and produce optimal
solutions to the problems.

To communicate the system and its constraints to a computer, a sufficiently expressive
language/representation must be constructed. The model should easily map to the real-
world problem so the user can perceive the interactions, both while specifying the system
and interpreting the solution. The effects of decisions made by the computer (e.g., ordering)
should be evident in the numbers returned by the system when all constraints have been
considered and propagated.

Time is a precious, nonrenewable resource. Operating costs directly reduce profits. We
can realize substantial efficiency gain by finding optimal solutions to problems where these
resources are critical. Computers greatly outperform humans in organization and number-
crunching skills, so exploiting this ability in the field of temporal representation and reasoning
shows great promise.

7.2 Background

Temporal reasoning and representation issues have provided fertile ground for research for
many years, and many unresolved questions remain. There exists a wealth of literature on
the topic, aspects of which have been studied by philosophers, linguists, computer scientists,
operations researchers, and artificial intelligence researchers. Research that is particularly
relevant to the work presented in this document is the interval algebra of Allen [10, 11], the
philosophies of Van Benthem [25], and the models and methods of Dean &; McDermott [15],
Dechter, Meiri, k Pearl [16], Put [22], Valdes-Perez [23], and Vilain [26].

In the following, we will call the basic objects in temporal reasoning "events". Events are
related to one another by symbolic and numeric constraints. A temporal reasoning system
evaluates the events in the context of the constraints and derives solutions that conform to
all specified requirements.

An event might be a fact, execution of a task, or a simple time stamp, depending on
the level of abstraction. We will consider any proposition with temporal extent an event
in this discussion. Occurrences of events are one-dimensional segments in time. Repetitive
events which occur more than once (e.g. having lunch each day) are not explicitly part of
the paradigm we will be exploring; we can model them by decomposing them into individual
occurrences (e.g. Lunch on Aug 4th, 1992). As events are often shown as nodes in a graph,
we may use the term node and event interchangeably.

We usually derive relationships between events from more abstract descriptions of the
world, such as a project plan. These descriptions may indicate an ordering (e.g. A is before
B), or show a relationship between two intervals (e.g. A is before or during B), or specify
a quantitative separation between the events (e.g. A is between 2 to 4 hours before B).

55

Qualitative relationships allow simple orderings of events, while quantitative relationships
can enable the model to explicitly find occurrence times for the events. Relationships or
"constraints" correspond to edges when a graph representation is used, thus we may use the
terms relation, constraint, and edge interchangeably.

The most basic way to represent time is to label all instants with an absolute time stamp.
Each such event corresponds to an instant in time. An alternative to this is to provide a
full, linear ordering, without any mapping to a clock or scale. Instantaneous events whose
placement in time is uncertain can be constrained within a range of values (e.g. 9am to 10am)
corresponding to the earliest and latest possible time of occurrence. Allen based his well-
known temporal relation calculus and propagation algorithm [10, 11] on this model of using
intervals to represent the time over which an event may occur. This representation allows
expression of 213 possible constraints between two intervals. Though an incomplete, local
constraint propagation can be accomplished in 0(n3) time, any complete algorithm using
this expressiveness and guaranteeing consistency verification (or constraint satisfaction) is
NP-hard [27]. Such intractability extends even to simple (qualitative, disjoint) models [13].
VanBeek h Cohen [24] went on to enumerate a subset of these constraints which allow
polynomial solution of such systems. There are techniques, such as path consistency which
can simplify networks by imposing local consistency as a preprocessing step to constraint
satisfaction. Path consistency has been the favored approach, explored by Allen [11], and
others [16, 24].

The model is further complicated when we recognize that real-world events with dura-
tions map more directly into a. single event, than a start event, plus a finish event. Dean &
McDermott [15] developed a representation using exclusively duration constraints. All in-
formation in their model is duration between time points. Gantt charts, used in scheduling
and project management, provide a familiar example of such events. An acyclic directed
graph provides a partial ordering over such events. The world-events each have a specified
start and end event, constrained by the duration of such an event (e.g. Lunch takes 30 to
60 minutes). This model is useful in applications such as scheduling where event durations
are known. In the same manner in which intervals are used to denote uncertain event times,
uncertain length of the duration can also be specified as an interval.

Temporal constraint networks typically use quantitative values to express the allowable
relationships between events. In our work we have also conformed to this, using a "point-
based" representation of time. The other prominent representational paradigm for time is
found in James Allen's interval calculus. Allen [11] developed a set of qualitative linguistic
values for describing relationships between events. Qualitative constraints allow one to
specify relationships between events using linguistic descriptions, without numeric bounding.
For instance, we may want to express abstract temporal ordering on a delivery route by
saying that store A is visited before store B, without specifying when either delivery is
made or numerically constraining the time between the two deliveries. Deviation from that
sequence should be identified as causing temporal inconsistency. A qualitative network is
inconsistent when there exists an unresolvable conflict between instantiated variables and
their constraints. In the above example, specifying A before B, but giving B earlier times
than A results in inconsistency. Table 7.1 shows a listing of qualitative temporal relations.

A constraint is convex if the allowed distances between the constrained event-variables
form a continuous interval. Projected into dimensions for each related variable (in the six-

56

before <— x—► after <—x—►

meets <—xH

i-y—

metby he—►

^yH
overlaps <—x—► overlappedby

< y >

starts hx-^

t-y—

startedby hx—■*

hy->
during <— X—> contains

•«-y-*
finishes ^-xH

<—yH

finishedby —xH

equals hxH

1-yH

Table 7.1: Relations Expressible in Allen's Calculus The relation x -(e.g., before)- y is
illustrated by the relative positions of the intervals in this table. Simultaneous starts and finishes
are indicated by vertical end-brackets (h), while the angular end-brackets (•*—) indicate otherwise.
Line length represents relative duration of the events.

tuple), the interval will enclose a convex polygon. Some problems require expression of
non-convex, disjoint1 constraints.

For example, consider a single-Lane train track between A and B. There are two trains;
train 1 is scheduled to travel from A to B, while train 2 will go from B to A. Clearly, they
cannot use the track simultaneously. The constraint we need to state is "Train 1 will use
the track before or after train 2." Such disjoint constraints, which require performance
of multiple tasks on a single vehicle/tool/machine without precedence constraints between
the competing tasks, arise frequently in planning and scheduling domains. Unfortunately,
introducing them may greatly increase the complexity of processing the network [27]. This
is due to an explosion in the number of potentially valid combinations of constraints to be
considered during solution. Another key purpose of our temporal reasoning environment is
to serve as a test-bed for evaluating new methods of coping with disjoint constraints.

What we will call a solution to a system is either a response that the network is inconsis-
tent or what is called the minimal network [20]. Montanari defines a minimal network as the
least element of the set of equivalent, optimal approximating networks which conform to the
binary constraints between sets of possible value pairs of variables. All global constraints
that can be transmitted through all the possible paths in the network are explicit, and are
equivalent to a solution of the set of linear equations formed by these variables.

1Strictly speaking, many convex relations are disjoint. For this discussion, assume we mean non-convex
relations when we say disjoint.

57

Chapter 8

Design Issues

8.1 Defining the Problem

While developing Tachyon, specification of requirements and a survey of literature helped
us formulate desiderata for a constraint-based temporal reasoning system for planning and

scheduling tasks.
It should be able to deal with uncertainty regarding the exact occurrence time and

duration of occurrence of events. We do not always have complete or certain information
concerning the events, but may still wish to instantiate the known values.

Some constraints are sufficiently expressed by linguistic values, while others need numeric
distances separating the events. Constraints should be able to express both quantitative and
qualitative relations between events, e.g., A' is before or meets Y, and X ends between 15 days
before Y starts. They should be capable of expressing parameterized qualitative constraints
between events, e.g., A' is before Y by at. most 6 days, and allow specification of disjoint
constraints, e.g., 2-4 or 8 hours before.

We should provide data structures and algorithms for effiecient storage and retrieval
of temporal data. Queries on current event instantiations should be supported, e.g., "What
events could possibly take place from 10:00am to 11:00am?". System variables should support
different granularities of time units, e.g., seconds or days. We should be able to check
the system for constraint satisfaction and propagate values to the events which satisfy the

constraints.
To demonstrate the system and allow integration into other efforts and user communities,

precautions should be taken in preparation for projected uses. The overall system should
promote ease-of-use via graphical input and display capabilities, run as a subprocess in other
applications as well as stand-alone, utilize techniques that will remain effective even in very
large application domains, and serve as a versatile testbed for exploring new techniques for
coping with the intractability associated with disjoint constraints.

Some models, e.g., Allen [11], have given special attention to persistence. That is, default
reasoning such as "The computer is on" should remain true (persist) so long as we receive
no contrary information ("Joe shut off the computer at 10:00am"). Given these capabilities,
a notion of "current situation" is formulated. This work is not intended to address such
questions. From a position out-of-time, we look at cross-sectional models of an entire system,
projected into the past and/or future, with no explicit sense of "now."

58

8.2 Difficulties

We faced three main difficulties in providing the capabilities outlined above. The first is
that consistency verification of a system supporting interval algebra (disjoint constraints
between interval-based events) is NP-hard [13, 27], so heuristics must be applied to solve
large systems.

The second problem, related to the first, is that when disjoint constraints are allowed, a
large number of unique, consistent solutions may be found. Deciding which solution(s) to
present to the user, and/or how to present more than one must be addressed. Some solutions
might be preferable to others, though we currently have no means of specifying preferences.

The third difficulty is tracing what caused a system to become inconsistent. The con-
straints are usually specified at a much higher level of abstraction than the level at which
they are solved, thus mapping the point of inconsistency to the original problem is non-
trivial, and outside the scope of the current effort. Vilain [26] examined tracing the origin
of inconsistency, but his work was performed on a much simpler event model. Dean &
McDermott [15] use truth maintenance to address this issue.

59

Chapter 9

Results/Implementation

9.1 Temporal Constraint Networks

Although not without limitations, we found that the graph-based temporal constraint net-
work (TCN) paradigm provided a good starting point for our research. This paradigm has
also been explored by others, including Raul E. Valdes-Perez [23] and Dechter, Meiri, and
Pearl [16]. Temporal constraint networks are a specialization of general constraint networks,
formulated by Montanari [20]. A constraint network is simply a graph in which nodes corre-
spond to variables and edges constrain the values the associated variables can be assigned.
The constraints express binary relations between two variables. Assigning unique domain
values to the variables is an instantiation. An instantiation satisfies a constraint if the
variable assignments do not violate the constraint. A graph instantiation is consistent if it
satisfies all the constraints of the network.

The simple TCN shown on the left of Figure 9.1 has three node-events [Eat Lunch,
Coffee Break, and Eat Dinner), about which only duration is known. The edge-constraints
shown indicate: Eat Lunch occurs no more than 2 hours before Coffee Break, Coffee Break
ends at least 2 hours before Eat Dinner, and Eat Lunch will precede Eat Dinner by no less
than 4 hours, and no more than 6. Once a time is given for the start or completion of any
of the events, the constraints will narrow the possible times at which the other events can
consistently occur; this narrowing is called propagation or tightening of the network.

There are several advantages to using TCNs to represent temporal relationships. These
include easy visualization through graphical representation and the ability in some cases
to use linear programming techniques to evaluate consistency and propagate information
throughout the network. The TCN shown on the right in figure 9.1 demonstrates one type of
TCN, that described in Dechter et. al. They call this the "Temporal Constraint Satisfaction
Problem" (TCSP). The temporal distance between two events is shown as an interval, noted
near the edge. The TCSP uses an interval representation for event times and constraints.
This representation imbues events with the ability to express duration by time-stamping the
start and the end times. The interval on the constraints allows for some uncertainty in the
temporal distance separating events (e.g., 4-6 hours between Eat Lunch and Eat Dinner).

60

sg v Duration:
/Eat \ 20-60 min.
I Lunchy

4-6
hours
before

at most 2 hours before

Duration:
5-10 min.

at least 2 hours before

Duration:
Eat "\ 30-90 min.
Dinner

[0,120]

[120,infinity]

Partial representation
in TCSP format.

Figure 9.1: Simple TCN

9.2 The Tachyon Model

To handle both uncertainty (in event occurrence) and duration, Tachyon represents events
using 6-tuples, as described by Rit [22]. This representation satisfies several of our key
desiderata, facilitating the job of mapping real-world event data to a single event in the
model.

Earliest Possible
Latest Possible

Start Time
Start Time

Earliest Possible
Latest Possible

Finish Time
Finish Time

Minimum Possible
Maximum Possible

Duration
Duration

Table 9.1: Event 6-tuple

The event template shown in Table 9.1 represents the parameters of a Tachyon event.
In order to represent the same uncertain information using TCSP intervals, an event must
"artificially" be divided into a start event and a finish event, with a constraint between the
two indicating duration. There are also occasions where duration is known, but no start of
finish time information is available, e.g., templates: refueling always takes 5-10 minutes.

The 6-tuple from Table 9.1 allows a single network node to map to an entire real-world
event, accounting for both duration and uncertainty. The added event expressiveness de-

Gl

mands similar expansion of the constraint model. Rit's work [22] and the model we used in
the Patti++ software were limited to using qualitative constraints.

Although we feel that a point-based representation is to be preferred for most of the
temporal reasoning tasks we face, it is often convenient to allow relationships to be ex-
pressed using qualitative values, which are converted to numeric equivalents internally. This
also allows some expansion in expressiveness of qualitative relationships, e.g., parameterized
qualitative constraints such as at least 2 hours before, with no performance penalty.

Tachyon networks require numerical distances between events, i.e., quantitative con-
straints are needed. Quantitative constraints place numerical bounds on the temporal rela-
tionship between two events. For example, we should be able to express the constraint that
a job can't be started on a given machine until some interval is allowed for changeover from
the previous job. This interval is known (at least within some bounds) and any deviation
from it should be found to be inconsistent.

We express qualitative constraints by introducing the notions of epsilon, the smallest
distance possible, and infinity, the largest. For example, the qualitative relation before is
interpreted as "There is a non-zero, positive distance between Event 1 and Event 2." Thus,
we can say the distance between Event 1 and Event 2 is at least epsilon, at most infinity.
In Tachyon, we can also expand on Allen's linguistic relationships by adding parameters to
some of the relations. For instance, instead of simply saying we pick up our tickets before
our flight, we can say we pick them up at least 1 hour before our flight. Parameteri-
zation is an option for the Allen relations before, overlaps, overlapped by, and after.
Each of these is given the ability to take on two parameters, representing the minimum
and maximum distance to which they refer. We must exercise care in introducing such pa-
rameterized qualitative relationships, however, as they can introduce intractability. Several
convex disjunctions, e.g., as enumerated by VanBeek and Cohen [24], lose convexity when
parameters are added. To illustrate this problem, consider the convex relation before or
meets, meaning one event occurs zero to infinity time units before the other. If the user
specified a minimum value for before (e.g., at least 10 before) then the relation is no longer
convex. Thus, we carefully enforce convexity when possible.

Minimum time
Maximum time

between Starti and Start2
between Starti and Start?

Minimum time between Starti and Finish?
Maximum time between Starti and Finish?
Minimum time between Finishi and Start?
Maximum time between Finishi and Start?
Minimum time between Finishi and Finish?
Maximum time between Finishi and Finish?

Table 9.2: Constraint 8-tuple between Eventi and Event?

Edge constraints are expressed internally by an 8-tuple in Tachyon, the semantics of
which are described in Table 9.2. The Allen relations described in Table 7.1 are translated
into this 8-tuple representation for consistency (as mentioned before).

62

at most 2 hours before

Eat Luncli
(-oo,oo,-oo,oo,20,60)

/ \«
V V« sV N> & / \v £/ \%

*/ vfe

Coffee Break
(•<>o,oci,-ao,oo,5,10)

(e,oo,e,oo,120,oo,e,oo) Eat Dinner
(-00,00,-00,00,30,90)

Figure 9.2: New model equivalent of TCN shown earlier

We seek to merge the highly-expressive model found in Rit's work [22] with (temporal)
constraint network techniques to produce a model with the best aspects of both: complete
expression of an event in a single node, and high-performance computation on the system.
The sample network shown in Figure 9.1 is shown in Figure 9.2 with its corresponding event
and constraint values according to the tuple models described earlier. Note that unknown
values are shown as infinite intervals.

9.3 Propagation of Constraints

On graphs consisting solely of convex constraints, or "chosen" convex constraints on non-
convex constraints, Tachyon uses a modification of the Bellman-Ford shortest-path algorithm
to propagate information and tighten the bounds of variables in the graph. This differs from
Dechter et. «/., who use the Floyd-Warshall algorithm. Descriptions of these can be found in
Cormen, Leiserson, and Rivest [14]. Both algorithms have 0(n3) time complexity, where n
is the number of nodes. In the testing we have done, the Bellman-Ford algorithm provided
a substantial performance increase over the Floyd-Warshall algorithm, especially when the
corresponding graphs are fairly sparse.

The Bellman-Ford algorithm solves the single-source shortest-paths problem where edge
weights can be negative. The Floyd-Warshall algorithm solves the all-pairs shortest-paths
problem on a directed graph. Bellman-Ford solves for the node values relative to a "zero
reference" node, then reverses the arcs (thus making it a single-sink problem), and solves
again, thus we tighten the event values, but not the constraint values. Therein lies the
difference between Floyd-Warshall and Bellman-Ford as far as this paradigm. We assume
specified constraints, in general, should only be changed by the knowledgebase user.

Given weighted, directed graph G — (V,E), the Bellman-Ford algorithm uses relaxation,
decreasing the estimated vertex weight d[v] of the shortest path between the source node
(zero reference) .s and each vertex v 6 V until the actual shortest-path weight S(s,v) is
achieved [14]. If a negative-weight cycle is obtained during computation, the graph is incon-

sistent.

03

The algorithm, as it appears in Cormen, et. al. [14] is outlined in Figure 9.3.

Bellman-Ford(G, iv, s)

1. for each vertex v 6 V[G]

2. do d[v] <— oo; ir[v] <— nil

3. d[s] «- 0

4. for i «- 1 to |V[G]| - 1

5. do for each edge (u,v) 6 £[G]

6. if d[w]>rf[M] + iü(«,v)

7. then ri[u] <— d[u] + w(u,v); ir[v] <— u

8. for each edge (u,'v) € £[G]

9. do if d[v] > d[u] + io(u,v)

10. then return INCONSISTENT

11. return CONSISTENT

Figure 9.3: The Bellman-Ford single-source shortest-paths algorithm.

The for loop in lines 4-7 relaxes each edge. This is performed |V| -1 times. Lines 8-11
then verify that no negative cycle has been created. The algorithm thus runs in 0(V E) time;
the initialization being linear in the number of vertices (0 (V)), and each traversal of all edges
(0(E)) being performed j V| - 1 times. A non-asymptotic performance improvement can be
made by checking for negative cycles in the edge traversal, short-circuiting the algorithm as
soon as inconsistency is becomes evident.

The Bellman-Ford algorithm assumes point-weights on the nodes and edge-weights. It is
readily adapted, however to an interval model, where the interval weights from the source
node correspond to early and late (uncertain) values on a. node or edge. Our tuple model can
be decomposed to an interval model by splitting each sixtuple event into two nodes (start
and finish) at the time the algorithm is applied.

Figure 9.4 shows the mapping of an event in 6-tuple format to the interval equivalent.
Note duration now expresses an interval constraint between start and finish time. The 8-tuple
constraint between two events is translated to interval constraints as shown in Figure 9.5.

As mentioned above, the need to specify non-convex constraints between events arises
frequently in practice. For this work, we have applied a heuristic called Path Consistency
to reduce convexity in a network prior to solution. We then solve the network, choosing one
constraint in turn on each disjoint constraint; thus evaluating the Cartesian product of all
constraints. Consistent solutions are presented to the user one at a time, allowing the "next"
consistent solution to be sought out and displayed.

64

Early Start Late Start

Early Start Early Finish Minimum Duration

Late Start Late Finish Maximum Duration

Minimum Duration

Maximum Duration

Early Finish Late Finish

Sixtuple Event Interval Network Equivalent

Figure 9.4: The sixtuple event model and interval equivalent

Start-Start Mln Start-Start Max

Start-Finish Mln Start-Finish Max

Finish-Start Mln Finish-Start Max

Finish-Finish Mln Finish-Finish Max

EarlyStart EarlyFinlsh MlnDuratlon

LateStart LateFlnlsh MaxDuratlon

EarlyStart EarlyFinlsh MlnDuratlon

LateStart LateFlnlsh MaxDuratlon

Plnish-Plniah Max

EarlyFinlsh LateFlnlsh

EarlyStart LateStart

EarlyFinlsh LateFlnlsh

LateStart

Start-Start Max

Figure 9.5: Two sixtuple events, constrained by an eighttuple constraint

65

9.4 Path Consistency

The constraint satisfaction heuristic of path consistency operates by imposing local consis-
tency on the variables of the graph. Path consistency was first used by Montanari [20],
and has been further explored by Dechter et. al. [16], VanBeek & Cohen [24], among others.
Path consistency can be used to assist consistency checking. It is necessary, but not sufficient
for consistency verification. Thus, it is used as a heuristic to simplify the problem before
another method, e.g., Bellman-Ford is used. If it detects inconsistency, however, we know
the network to be inconsistent.

Path consistency operates by examining a fully-connected version of the graph in ques-
tion. Unspecified constraints from the original graph are initialized as "unconstrained."
The algorithm then tightens the network, considering the constraints and event-variables in
triples. A constraint-path of length two on this triple of events is compared to the third
constraint. If this third constraint is contained in (a subset of) the pair of constraints, it is
updated to their net effect. When the edges stop changing, we have reached path consis-
tency. The network can be found to be inconsistent during this process if an edge ever has
no constraints which are valid. When exclusively qualitative constraints are used, the path
consistency algorithm runs in 0(n3) time, where n is the number of events.

An algorithm for computation of path consistency is outlined in Figure 9.6. Graph G is
assumed to be a working copy of the original '«-node graph, over which we wish to compute
path consistency. The list of (disjoint) constraints on edge between nodes i and j is denoted

A more efficient version of path consistency keeps queues of edges which need to be re-
examined in the next iteration, thereby reducing the operations required each pass through
the network. When this list is exhausted, the procedure is completed. This procedure is
described by Dechter et. al. [16].

The network is inconsistent if we find an edge for which no constraint is consistent in
terms of its neighbors. Complex networks can be checked for inconsistency before the full
consistency check and propagation.

There are three basic operations necessary to implement path consistency: intersection,
composition, and smoothing. The data, structure used for doing operations on disjunctions
of intervals is a pair of sorted, linked-lists. One list holds the start points, while the other
holds the finish points of the intervals on the edge.

Intersection between two sets of intervals, I\ k h, admits only values which are in both.
Intersection is denoted:

To illustrate, consider:

h -{(1,3), (4,6)}

h*- {(0,1), (2,5)}

/xe/2 = {(l,l),(2,3),(4,5)}

66

Composition of two sets of intervals takes a complete pairwise mapping of start and finish
times so that the composition, C of I\ and 72 is denoted:

And calculated for each interval in each (all-pairs):

c(start) = ii(start) + i2(start)

c(finish) = ii(finish) + i2(finish)

where:
c(start) G C(start) and c(finish) G C(finish)

ii(st.art) G Ii(start) and i2(start) G 72

ii(fiiiish) G Ii(finisli) and i2(finish) G 72

For example, if we have:

7i«-{(2,3),(6,8)}

/3-{(0,1), (2,2)}

A ® 72 = {(2 + 0,3 + 1), (2 + 2,3 + 2), (6 + 0,8 + 1), (6 + 2,8 + 2)}

which simplifies to:

71®/2 = {(2,4),(4,5),(6,9),(8,10)}

Note that some of the intervals in this solution overlap. The sorted linked-list data
structure for the disjunction of intervals assumes that the intervals do not overlap or contain
subintervals. To minimize "redundant" data like this, we must "smooth" the interval list.
This must be performed after composition, which is prone to creating redundant interval
information.

Smoothing an interval is performed by sweeping through the values on the interval, track-
ing the number of "active" intervals, and removing unneeded starts and finishes.

From our composition example:

71®72 = {(2,4),(4,5),(6,9),(8,10)}

when the solution set of intervals is smoothed:

71®72 = {(2,5),(6,10)}

Intersection can be implemented in 0(n), where n is the number of disjunctions, by using
an insertion sort (they are already ordered). Composition requires a Cartesian product, thus
it requires 0(n x m), where m and n are the number of intervals in each list, respectively.
Smoothing takes 0(n) time where n is the number of intervals in the list to be smoothed.

67

9.5 Interval Trees

To perform efficient queries such as "Which events are potentially active between the hours
of 10am and 6pm?" or "What events must be active on February 7th?", two features must
be added to the model.

The first feature is a calculation on the sixtuples to provide an interval over which the
event is possibly occurring or known to be occurring. The former is trivial, being nothing
more than the early-start and late-finish times on the event. The latter is a bit more complex;
the calculation of known time is shown in figure 9.7.

We define the known time as the interval over which the event must occur

[Istart(known), Ifinish(known)].

The interval (LateStart, EarlyFinish) is a naive answer, but we find that duration semantics
must be taken into consideration, especially if you recognize that events may not be fully
specified (e.g. they might just have early start and duration data). Note that there may not
even be a time at which the event must occur, if it is underconstrained. The above formula
will choose the more constraining (conservative) time, if the finish of this interval occurs
before the start, then we cannot specify a known time for the given event. "Tightening" of
the sixtuple in question must be performed prior to the calculation of the known interval, to
insure values are in line with one another. The method for tightening is shown in figure 9.8.

The second feature we must add for efficient queries is a data structure for storage
and retrieval of these possible/known intervals. An interval tree [21] allows performance
of storage, and interval and point queries over intervals in optimal time1. This feature is
particularly useful when large systems of databases of events are used.

Interval trees consist of a primary, static skeleton that is a balanced, binary tree whose
in-order traversal yields the sorted list of endpoints of the interval set. A secondary overlay
indicates active sub-branches, thereby pruning the tree during search. Non-leaf nodes corre-
spond to the interval over which their child-nodes are active. Intervals are uniquely stored
at the highest level fully containing the endpoints. Detailed discussion of this structure and
its use can be found in [21].

9.6 The Tachyon User Interface

9.6.1 Objectives

The Tachyon system we developed was first embedded into the Patti++ software, so that we
could gather information for verification and performance tests. For special tests on temporal
examples, we encapsulated this code into a "batch mode" form by adding some routines to
perform I/O on simple text files. To market the system beyond performing benchmarks and
technical demonstrations, we built a graphical user interface (GUI). A picture of the Tachyon
interface with a sample network is shown in Figure 9.9.

intersection can be found in optimal time 0(N log(N)) with 0(N log N) preprocessing time and using
optimal space O(N) Insertions and deletions can be performed in 0(log(N)) time.

68

This graphical editor allows loading and saving of temporal data files that are compatible
with the batch mode version. Thus, one could use Tachyon to test consistency of a network,
fine tune it, or test it in "What if..." scenarios as desired, then save the network in a file the
batch-mode system can use. The interface itself is a CAD-like direct-manipulation editor for
the graphical representation of the underlying network. Popup panels allow manipulation of
the data within the network.

The architecture of the Tachyon interface is illustrated in Figure 9.10. The GUI allows
intimate interaction between the user and a network. The user can make incremental changes
and immediately observe their side-effects. The core reasoning-engine remains capable of
running as an embedded process or as a batch job through pipes or files. We are also
isolating the interface itself to provide a generic graph editor library for future applications.

9.6.2 Functionality

Canvas Operations

The canvas allows the user to layout the network graphically. Nodes appear as boxes with
name and tuple information within. Edges (optionally labeled) appear as lines between the
nodes. Direction of the constraint is indicated by an arrowhead. Nodes may be created
so long as they do not overlap another. They may be be moved as desired (moving their
edges with them), as long as they do not overlap another node at the final "drop" location.
We disallow overlap to avoid ambiguity when picking objects. Edges may only be created
between two existing node, and can only be moved by moving the nodes.

Objects (nodes and edges) may be selected by left-clicking the mouse over them. This
will unselect all other objects unless the user shift-clicks to select. Multiple objects can also
be selected by enclosing the desired objects in a rectangle drawn by right-dragging. Selected
objects can be deleted by clicking the Delete icon. If exactly one object is selected, clicking
on the Edit icon will bring up the I/O panel for that object (see next section). This panel
may also be brought up by double-clicking on the desired object.

Meta-left on an object will pop-up a brief, descriptive window (a "Peek") of the object's
data. This window will pop-down as soon as the mouse button is released.

System and User I/O

The Node Information menu (figure 9.11) is pretty straightforward, allowing direct changes
to be made to the name-tag, temporal values of the event associated with the node, and
verbose description of the event.

In contrast, the Edge Information menu is very complex. The default representation
for a temporal distance is an 8-tuple, as described earlier, and shown in the top portion
of figure 9.12. Allen relations are qualitative relationships between events. Each Allen
relation has a corresponding 8-tuple, which the system substitutes for it at solution time.
For example, "before" would be represented by a minimum distance of e (epsilon) and
maximum distance of +oo (positive infinity) on all four of the 8-tuple pairs. This says that
a non-zero positive (but otherwise unknown) distance exists between the start and finish
times of event 1 and the start and finish times of event 2.

69

The Allen button on the menu toggles between allowing entry into the 8-tuple values
and allowing selection of Allen relations. Selection of Allen relations will disable other Allen
relations in order to force convexity of the given distance. In the example in figure 9.12,
Before and Meets are selected, disabling all but Before, Meets and Overlaps. Parameters for
the Allen relations might be altered and/or disabled based on selection and deselection of
other relations. If Meets is selected, for instance, the minimum values of Before and Overlaps

are set to e, to maintain convexity.
Nonconvexity on an edge is entered by selecting the Add button after entering the first

relationship. This produces a new set of tuples and Allen relations, which may be used in
any combination on nonconvex edges. Paging between multiple relations on a single edge is
accomplished by the buttons with the left and right arrow on them (<— & -»). Displayed
between these are the index and total number of relations on the edge (e.g., "1 of 4"). The
Annotation area at the bottom of the menu contains a text region and a "cycle button".
The options on this button select whether the edge will be: unlabeled, have a user-specified
label, or be labeled according to the constraint(s) on the edge.

The information from the currently-displayed distance can be inserted into the text region
by clicking the "Append Distance Information to Annotations" button. This region

supports many of the emacs editing functions.
There are two files associated with networks created in the editor. The first is identical

to the files used by the batch-mode version. The second file specifies layout information,
modes, etc. We intend these two files to merge in the future. This includes being able to
layout a graphic view of the network from just the constraint information.

Network Operations

The user can "lock" the current values the event sixtuples a.re instantiated to and "revert"
to these variables when desired. This facilitates incremental fine-tuning of a system. The
current instantiations can also be compared to the locked values to determine which parts
of the graph have changed.

There are two ways to ask the system to solve the current network. The first always solves
the network using the current sixtuples and active convex constraints (if disjoint). Networks
with disjoint constraints may have multiple consistent solutions, so a second way to solve
the network is to reset all the active constraints and start from the default values. This
will search for the first configuration of the disjoint constraints that produce a consistent
solution. The active constraint on each edge will be indicated. The current "state" of the
network is saved so we can solve for the "next" consistent solution.

Time Line

Gantt charts are a common presentation format for project management and scheduling.
Tachyon is capable of creating a view akin to a Gantt chart, based on the current tuple
values on each node. An example of this is shown in Figure 9.13.

The events are represented by blocks such as the one shown in Figure 9.14. Each is
appropriately positioned on the time line and stacked vertically. The length of the block
corresponds to the possible length of the event. The left side corresponds to the earliest

70

possible start time, while the right side corresponds to the latest possible finish time. The
interval of uncertainty for the start time is represented by a green band in the top left
corner. Similarly, a red band in the bottom right corner indicates the interval of potential
finish times. The length of the two black bands across the center of the block show the
minimum and maximum durations for the event. Infinities in all cases are drawn to the left
and/or right side of the screen, as appropriate.

Our experience has been this representation is quite intuitive, requiring minimal expla-
nation, and unambiguous. Thus, we are able to meaningfully display the events on a time
line, without losing information.

When this screen is invoked, an interval tree is created. The screen also allows point
and interval queries to be made on the events in the time line. The events responding to
the queries will invoke a screen of their own, providing the desired "slice" of the events to
be examined. This is performed by Meta+Middle-mouse. A simple click will perform a
point query across the events, while dragging an interval will perform an interval query. The
subsequent window will have all the functionality of the original.

We also have enabled this screen to choose crisp intervals for events, which are then copied
back to the network. The intent is events which have occurred in a project (or whatever) can
be explicitly set to their actual (certain) values, and incorporated into the model (allowing
subsequent projection, etc.)

71

boolean procedure PATH_CONSISTENCY

1. Fully connect graph G by adding unconstrained edges

2. stilLupdating *- TRUE

3. while stilLupdating the matrix

4. stilLupdating <- FALSE

5. for k <— 1 to n do

6. for j <— 1 to n do

7. for i <— 1 to n do

8. temp «- (i, j) 9 (i, fc) ® (fc,i)

9. if |(t,j)| is empty

10. return INCONSISTENT

11. if it emp differs from (i, j)

12. stilLupdating = TRUE

13. return CONSISTENT

Figure 9.6: Path consistency algorithm

function KNOWN

1. TIGHTEN the event sixtuple

2. Istart{knOUm) <— min((LateFinii,h — MinimumDuration),LateSta.rt)

3. Ifinish{knOWn) <— max((EarlyStart + MinimumDuratioii),EarlyFinish)

4. if {Ifinish(known) < Iatart(known)) then

5. there is no known time

Figure 9.7: Calculation of an event's known interval

72

procedure TIGHTEN

1. II [Miii-L/uraticm < ^arty-Tinish ~ ■L'ate'JtaTtj

o. A* induration < &arly-Tinisli J-'ate^tart

3. if \MaxDuration > LaitFinisk — EarlyStart)

• A ax-Duration > -L'at(*'inish ~ J^arlybtart

5. if {EarlyFinish ~ MaxDuration > EarlyStavt) 0 (EarlyStart + MinDuration > EarlyFinish)

0. &arly Start <"" Early-Tinish ~ MaxDuration

7. or

"• E/arlyFinish * ■E'arly&tart T MinDuration

9. if (LateStart + MaxDuration < LateFiniah) © {LateFinish - MinDUTation < LateStart)

11). Liatet'inish *~ LateStart + MaxDuration

11. or

12. LateStart <~ -^u/e-Fims/,. ~ MinDuration

Figure 9.8: Tighten the sixtuple so that start and finish are consistent with duration

73

|f.la7.»rifty:->

fc> 53

CREATE

~w
UELETE

äß
EDIT

ö ö ** S *> O

lunch.net loaded successfully.

I File I | Solve | | Format | | View | Solve Commands

H

—TSF

Figure 9.9: The Tachyon temporal constraint network editor.

X-Windows Interface Batch Mode

Graph feature
editing

Value
access

Graphical Network
Solve

Update

Input file
Text Output

TCN Engine

Shell Program
(e.g. Patti++)

Figure 9.10: System architecture for TCN / Tachyon

74

Node Information (Done](Cancel]

Taq: |Eat_Lunch |
Time: Early Start:

Late Start:
Early Finish:
Late Finish:

Min Duration:
Max Duration

l-oo
l+oo

j-00
|»00

120
160

Description: (optional)
Lunch consists of:

Milk
Fruit
Entree w/ side
Dessert

vegetable

£

5
«1 k>

Figure 9.11: Node Information menu

Edge Distances (Done](Cancel]

(Add] [Delete] (Allen]

Minimum Maximum

Start-Start:
Start-Finish:
Finish-Start:
Finish-Finish:

& 1 Of 1 @

Allen Relations
■ Before
■ Meets
□ Overlaps

Minimum Maximum
|i2Ö"

dur(A) < dur(B)
LJS.tari-:

.JC-yiir.fi

dur(A) - dur(B) dur(A) > dur(B)
Lptarivti m

nrm^hsd &v

ClArtsr"'
(" Append Distance Information to Annotations "]

Annotation: £? Display Tuple(s)
(meets or (at most 120 before) Pi

Figure 9.12: Edge Information menu

75

Coffee_Break

Eat_Lunch

89

EaLDinner c

650

Figure 9.13: A time line view of the lunch example (instantiated)

EaLDinner

355 574

Figure 9.14: Event representation on the time line.

76

Chapter 10

Discussion 8z Related Issues

We have described a new temporal model which combines an extremely expressive model
with high-performance computation techniques. Our model is the first to allow expression
of uncertainty and duration in a single event, qualitative, parameterized qualitative, and
quantitative events, and calculation over disjoint constraints. It holds a great deal of promise
for further exploration of heuristic techniques of dealing with the intractability of reasoning
over disjoint constraints.

An unexpected issue encountered while addressing the practical applications of the model
was that of enumerating time itself. Different granularities are desired for different applica-
tions. Project management is most likely to want times expressed in days and dates, whereas
a factory process scheduler would use minutes. If the latter were a subnetwork of the former,
the two would have to be able to merge their two networks somehow.

To accomplish this, a special type was created. This type internally stored everything in
seconds, but would input and output itself in terms of what sort of granularity the user was
interested in. This problem is trivial when nothing more than weeks, days, hours, minutes
and seconds are used, but adding months, years, and dates introduces some complexity.

To overcome this, we took advantage of the time functions built-in to C/Unix which
provide such a translation capability. Tins had the disadvantage of limiting the universe to
the era of Dec. 13th, 1901 to Jan 18th, 2038. This is caused by the 32-bit limit on the long
int type in C. The system stores the number of seconds since Jan. 1st, 1970. Thus, given
it's finite continuum, we have a limitation on the period over which this solution is valid.
We do not plan to address this problem ourselves immediately, in hopes that later versions
of the UNIX system people will provide a solution themselves.

A side effect of this limitation is that when we express unconstrained events, we must
differentiate ±oo from the limit dates. To make things worse, since the model is numeric,
rather than symbolic, it is possible to appreciably decrement from infinity. To keep infinity
infinite throughout the calculations special care is taken by the algorithms and new time
type. This is provided at slight performance cost.

77

Chapter 11

Future Directions and Conclusions

We have described a model for temporal reasoning and a corresponding environment pro-
viding opportunity for evaluation and experimentation. The model offers considerable ex-
pressiveness without severe performance drawbacks. We are still exploring the performance
characteristics. Some areas where we see potential for use of this model include: scheduling
satellite use, project planning, equipment delivery/deployment, job scheduling in manufac-
turing, and temporal consistency checks for knowledge bases.

Tachyon is a prototype tool, and as such we are constantly modifying it. There are many
enhancements we are adding to the Tachyon GUI, including: hierarchical representation,
PostScript output, panning, zooming, true date representation capabilities, and some cos-
metic enhancements. By "hierarchical," we mean an entire (sub)graph may be represented
by a single node in a view of the graph at a more abstract level. We believe hierarchical
capabilities are necessary to process large graphs (e.g., 10,000 nodes) in a form meaningful
to people, and we are investigating the issues involved.

We have assumed the small problems can be solved quickly, and their dependencies on
other components can be resolved reasonably quickly. We are currently exploring the ap-
plicability of several graph-based decomposition techniques to bringing down the cost of
searching for a feasible solution to problems in which there is a nontrivial number of non-
convex constraints present after simple heuristics, e.g., path consistency, have been applied.
For instance, when the edges of a graph with disjunctive constraints (e.g., "before or af-
ter") form planar subgraphs; algorithms, such as the Planar Separator Algorithm, developed
by Lipton and Tarjan [19], can be exploited to handle a subset of the intractable prob-
lems. This algorithm uses decomposition to simplify the problem by dividing the network
into small parts with minimal dependency on one another. The decomposition method is
"divide-and-conquer," breaking the problem into multiple smaller problems, that are recur-
sively decomposed. The Planar Separator Algorithm tries to divide the problem into roughly
equal subparts, by estimating component costs based on vertex weights.

There are many features we foresee as beneficial long-term goals. We have already
adopted a CAD-like interface, and adding the ability to express entire networks as a sin-
gle event in a higher-level network (hierarchically) would greatly enhance visualization and
possibly reduce network complexity.

Right now the model chooses between disjoint constraints arbitrarily. We would like to
provide some preference-specification capabilities to assist in finding a solution better fitting

78

the desires of the user.
As noted earlier, we do not attempt to backtrace the cause of inconsistency. This makes

it difficult to debug a complex, inconsistent network. Providing diagnostic information to
identify and remedy constraint failure would address this problem.

An issue often intimately related to temporal reasoning in the scheduling and planning
arenas is that of resource management. Time is essentially a resource to be allocated as
needed, and other resources require consideration in the context of the schedule. Some
resources are expendable, e.g., we have 20 gallons of red paint, while others are renewable,
but limited in number, e.g., we have 3 lathes, each capable of performing a single job at a
time.

79

Chapter 12

Project Planning Example

We will illustrate a common use for temporal representation and reasoning by showing a
generic Software Engineering example. Figure 12.1 shows a generic template for a constraint
network with three initial values specified: Early and Late Start (August 4th - 6th) for the
Customer Meetings and Late Finish (October 30th) for the Spec Approval. To see temporal
windows for the events between, we propagate and get the network as shown in Figure 12.2.

A library of templated for various projects commonly performed could be archived and
retrieved when a new operation of the same type is performed. Prior solutions to similar
problems could also be archived for comparison to present situations.

80

Internal Staff Review
(■oo,+oo,-oo,+oo,1.3)

IritialCustomerMeerjngs
[4Aug92.6Aug92.-oo,+oo,5,5)

ProductDescription
(-oo,+oo,-oo,+oo,9,12)

DetaiedSy sRequi rements
{-oo,+oo,-oo,+oo, 10,14)

(bShm)

InitialCustomerfleview
(-00 .+00,-00,400,2,3)

MaricetingReview
(-00,+00,-00,+00,»,1)

ResourceAllocation
{-oo ,+oo,-oo,+00,2,4)

Writes pecification
(-00,+00,-00,+00.5,8)

Functi onal De finitionReady
{-oo ,+00,-00.+oo.e.e)

SystemReview
(-oo.+oo,-oo,+oo, 1,2)

Hardwa reReview
(•oo,+oo,-oo,+oo,1.2)

SoltwareReview
(-oo,+oo,-oo,+oo, 1.2)

QA_Review
(-oo.+oo,-oo,+oo,1,2)

Revi ewModi fications
f>00,+00,-00,+00,8,10)

System Sp«c_Approved
(*oo ,+oo ,-oo ,30Oct92 ,e ,e)

Figure 12.1: Template for Software Engineering

Internal Staff Review
18Ai>ja2.1 Oc<92.19AU092.20aB2.1 .3

InitialCus tome (Meetings ProductDescripton
[9Auy«,K.S»(j9I.lBAU99tlOelK:.9.ir)

WriteSpecification
(2S*pl)2,l60<»2.7&tt«2i21Oct92.£,ß)

DetailedSy sRequi rements
(2!Au9SK40c>K.31Au9»2, UOcr«. 10.14)

(bBhntj) "^-T"

N rjalCustomerfleview
[lflAug92.20<*B2.21Augfi2.40cte2.2.3)

Functi onal De finitionReady
[2Se(>(l2.t6r)aS2.2f;«T«2.l60ctS2,«i«

SystemReview
[7S«>92,2K><*e2.BR>C*2.220er92.1.2

HardwareReview
|7S(f>«2.2Kxifl2.a.'>*p02.22(ic1B2,1.2

SoltwareReview
[7Sep»2.21CXJ9I.e&<**I.220c)91,1,2

QA_Review

|7S*t>K. 2 !Cia92,eS«pB2.WOcifi2,U:

ResourceAJIocatJon
I AugB2.1400B2.2S«f >2.1BOcf>2.2,

RevlewModi fications
SS*f> H.220d92,1 OSapM. SOO ««2,8, 1

SystemSpec_App roved
l«S*pe!.300cte2.1 «S.pK.SOOdM.t,

Figure 12.2: Software Engineering example, propagated

81

Chapter 13

Scheduling Example

Our second example involves scheduling use of limited resources by multiple clients. We
have four newspapers, the Guardian, the Daily Express, the Financial Times, and the Star.
Four people read these papers each morning. Each takes a different amount of time to read
each paper. Exactly one person can read a single paper at a time, and each reader has an
order in which they prefer to read the papers.

By expressing "before or after" constraints between the events corresponding to a par-
ticular person reading a particular paper, we can have Tachyon choose an ordering for the
paper circulation, constrained by the various start times and the desired completion time
(for lunch). This example is taken from [17].

82

a!_rises

|(0e.5O).(0S:90),(OBJ1),(Ofl:3t)...(0O0l)

al_reads_financiaLtimes
(-m1««i,-tii,*«i.(01:00)1(01:00))

al_reads_guardian
(-«»,+« i.-t«».««i,{0030).(0030))

al_reads_daily_express

,M MI, < M i,+« >,(OO:02MO0;O2))

a!_reads_star

(•(i(.+ui,-t«i.*iii.((ili:()5).(oo:05))

bob_rises
(OB :«).(<» «H« :4B).(08:4«).*.(00 01)

bob_reads_guardian
(-<x),MHi,-(Ki,+((),(oi:t5),(oi:l5))

bob_reads_star
(-tn.4<Kt,-iii,+<n,(()0:10),(00:10))

lunch

|(tl 00),(11 IO).-oo.*oo.(0030),(Ot.30))

Cal_rises
-o^«m,(08:45),(08:45),»,(00:01))

Sal„reads_daily_express
(<*i,+ao,-oo,«)O,{00;05),(00:05))

Cal_read s_guardian
[-t(Ci,«w,-*w,«i«i.(00:1 S),(00:15))

al_readsjinancial_times

(-i»,«»,<«V<m,(O0:10),(0O:10))

Cal_reads_star

l-c M i,*txt,<ti,M K»,(oo:30),(ooao))

Figure 13.1: Template for Scheduling Paper Use

al_rises
(J»J0).(O8a0).(«>»1).(0»JI).(0CH)t).(OOC

al_reads_financial_times

al_reads_guardian
I >O2qjlOK).(1Oe0).(l1O7M0O3«),(M»l

il_reads_daily_expresj
»60) .| 11: M).(1 o 51).() t.«).(00 M).(00 0:

al_reads_star
11oet).(ii«).(11 M).(IIM).(OCO«).(OOM i

bob_fises

(*4*>.[Oe4B).f084fl|.(0«43.(°°QI).[0*'

bob_re ads_gua rdi a n
I ■*0S).(O»l1).[IOiq.(ietQ.(01 I6).(01:1

bob_reads_star
OJ%(IOM),(10€«|,(I1 W).(00 10).(W1

lunch
I I!«|.(I1'1[I).(1!H!.(17«0).((»»M0VJC I

CaLrises
|(08.44).(08 «).(08;4fi),(08 «).•.(« 01))

Cal_reads_daily_expf es s
4S).(MBi),(oa«o).(ot««).(ooot}.(oataB i

Cal_reads_guardian
, »BO).(0»e«*(0»«)^0»:H)^ftlB)^«tB |

;al_reads_financial_tinw
*1),(10IJ),(Ot4l).(1»24),(OO;1O),(O»U l

Cal_reads_star
1|.(1O14).(10;11MlOe4).(O0».(O«* I

Figure 13.2: Scheduling Example, propagated

83

Part III

Integration of Case Based Reasoning
and Temporal Reasoning

84

Abstract

We describe the integration of two -prototype software tools currently under development
at GE-CR&D: CAFE, a case-based tool for expansion of forces, and Tachyon, a tool for
constraint-based temporal reasoning. The goal of the integration is to provide operational
users with the ability to custom tailor forces for a current mission by drawing from his-
torical cases, at th.e same time tracking the effect of temporal constraints on those forces
through instantiation and deployment, thus facilitating faster, better force development and
deployment.

85

Chapter 14

Background

14.1 CAFS/CAFE
Case based reasoning (CBR) involves solving new problems by identifying and adapting sim-
ilar problems stored in a library of past experiences/problems. CBR systems are comprised
of a case-library, indexing, matching and retrieval mechanisms, and a reasoning component.
The important steps in the inference cycle of CBR are to find and retrieve cases from the
case library which are most relevant to the problem at hand (probe) and to adapt the re-
trieved cases to the current input. The matching and retrieval mechanisms, driven by the
current context (reasoner's goal and probe), return the most similar cases from the case
memory. Similarity among cases is based on an evaluation of salient and relevant features
[57]. The reasoning component processes the retrieved cases, adapting their solutions (plans,
explanations, interpretations) to apply in the current situation.

CAFS is a Case-Based Reasoner designed to select forces for military missions. Currently,
CAFS receives probes from SRI's planning system SOCAP, which consist of information on
a military task, its location, and the expected threat at that location. CAFS returns to
SOCAP the available force(s) best suited to successfully completing that task.

Features used in case indexing, retrieval and matching include:

• the type of task (e.g., set-up ground-defense or establish evacuation center),

• the terrain at the location, and

• the type of threat (e.g., terrorist cell or volcano eruption).

Figure 14.1 illustrates a. fragment of the mission hierarchy used by CAFS to identify
the probe's tasks and guide the matching of the case's tasks. A simple semantic distance
measure is used to compute similarity. A force hierarchy, similar to the mission hierarchy,
completes the taxonomical knowledge used by the CBR. The case library contains the CBR
episodic knowledge [3].

Additional features can be added by users of the system as their usefulness is established
(e.g., the climate of the region or the expected weather). Once a. set of possible matching cases
is retrieved from the library, CAFS develops a set of force suggestions based on the retrieved
cases solutions. For those cases where there is an exact match, CAFS attempts to find an

86

li biJtt»!H36j|
Quit
Show Mission Hierarchy

Change Display >
Graph Hierarchy >

•LOCAIE-RESERVES

HOVEMENT-MIS SION^ EA-MOVEMENT-MISS ION

X5ROUND-MOVEMEN T-HISSI

PECIAL-AIR-OPS

.TACTICAL-AIRLIFT-

lOUNTER-AIR-MISSION-sC^j,,
IO-OP

IR-MISSION

iVE-SEA-SECTOR
iTRAVERSE-TERRAIN
SPECIAL-MISSION
MEDEVAC
•LOGISTIC-AIRLIFT
•AIRBORNE-AIRLIFT

FFENSIVE-COUNTBR-AIRI
BFENSIVB-COUNTBR-AIR'

IR-RECON

IR-OFFENSE

■AIR-DEFENSE-

yNAVAL-OFFENSE

//NAVAL-DEFENSE-

AVAL-MISSION

'AMPHIBIOUS-MISSIONJ

/S ^PHIBIOUS-OFFENSE SETUP-AIRBASE

PHIBIOUS-DEFENSE .-"OSE TUP-BASE

ANDp£^-/C1VIL-*FFAIRS

-*^ PSY-OPS
PROTECT-LOC

;ROUND-SPECIAL-OPS^ /ODELAYING-OPS

SCREENING-OPS

 ,.SECURE-LODGEMENT
^GROUND-OFFENSE

MPHIBIOUS-LAND

GROUND-BUILD'

3ROUND-REC0N

■CLOSE-AIR-SUPPORTv ^PASSIVE-DEFENSIVE-COUNTER-AIP,
■AIR-INTERDICTION^ \\
PROTECT-ALOC

IMBAT-AIR-PATROL^
PROTECT-SLOC

-DEFEND-HARBOR \\ ^TTACK-GROUND-TRCOPS-WEAPONS

NAVAL-PATROL

1MED-RECCE

TTACK-GROUND-SUPPORT-AND-SUPPLS

ECURE-AIRPORT

^SECURE-SEAPORT

Figure 14.1: CAFS Mission Hierarchy

available force of the same type used in the retrieved case. If such a force is unavailable,
CAFS attempts (through adaptation) to find an available force that is similar enough to
the retrieved solution that it also could successfully complete the task. This adaptation is
based on the forces type (i.e. infantry unit or medical evac unit) and capabilities. When a
retrieved case is not an exact match, CAFS first tries to adapt the required capabilities from
the retrieved case using the differences found between the probe and the retrieved case. Then,
starting with the solution from the retrieved case, CAFS attempts to find (using adaptation)
an available force that has the required capabilities. Once a plan as been completed (using
SOCAP, in a recent application), new force selection cases can be extracted from the plan
and added to the case library for future use. Having completed our Technology Integration
Experiment (TIE) with SOCAP, we plan to extend the same CAFS capabilities to TARGET,
a collaborative mixed initiative planning environment currently under development by BBN.

Figure 14.2 illustrates the matching and retrieval process for a ground patrol task. Three
force modules have been retrieved and partially ordered according to an aggregate measure
of match to mission requirements. The top-ranked solution is displayed in the top right
corner of the figure.

CAFE takes the major force list generated by a planning system , e.g., SOCAP, during
course of action (COA) development phase and return a complete set of forces (both combat
and support forces) appropriate to the plan (based on missions, location, weather, etc.).

This expansion is clone by retrieving previous cases and adapting the expanded force list
from best matching previous case. When an appropriate case cannot be found, a generic
expanded force can be generated using rules (like those in the Automatic Force Generation
Package) or component information from the force module data base. If tailoring information
can be retrieved from current planners, these generic forces can then be specialized to the
context of the current case. The set of forces output from the CAFE can then be analyzed

87

quit
Change Display >

describe
Next Probe (C-n)

GROUND-PATROL-l872
REGION: NWTUNISIAN-BORDER

GHAR-AD-DIMA
TRAVERSE-TERRAIN

ALG-2NDARMBDE
CAPABILITIES: (ARMOR ANTIARMOR GROUND-MOBILITY)
SIZE: BRIGADE

az

TIE-DETER-2
GOAL DETER-BORDER-INCURSIOH-BY-GROU»

ACTIONS
GROUND-PATROL-l847

REGION: NWTUNISIAN-BORDER
INSERT

(INSERT-FORCE FROM: TO: GHAR-AD-DIMA
METHOD: TRAVERSE-TERRAM

BASE
(BASE-FOR-FORCE BASE:)

CONTEXT
ENEMY
ALG-2NDARMBDE

CAPABILITIES: (ARMOR ANTIARMOR
SIZE: BRIGADE

SOLUTION
1MB

SIZE: BRIGADE
CAPABILITIES: (GROUND-MOVE ARMOR ANT

3TIE-DEIER-2
TIE-DEFEND-1
TIE-DETER-1

IMB-1B75 «COMPLETE-MATCH*
LIB-1876 «ALMOST-COMPLETE-MATCH*
ACR-1877 «ALMOST-COMPLETE-MATCH*

Figure 14.2: Probe description and retrieved force in CAFS.

88

for supply and resupply needs, scheduling choices, etc.

14.2 Tachyon

Tachyon is a constraint-based model for representing and reasoning about both qualitative
and quantitative aspects of time, together with a software implementation of that model.
Temporal reasoning problems arise in numerous computer applications: databases, simula-
tors, expert systems, and industrial scheduling and planning systems (minimizing assembly
line slack time, projecting critical steps in a deployment plan to insure proper interaction
between them, etc.) all need to manipulate temporal information to model the world. In
developing both Tachyon's data model and software implementation (our current software
prototype is implemented in C++ using X-Windows and extensions to the Interviews class
library, and is compiled for the Sun Sparestation), we have tried to provide the versatility
and power to handle effectively a variety of temporal reasoning problems typically arising in
planning and scheduling applications, in keeping with our goal of producing a powerful and
versatile tool. Some of the key features we provide are listed below:

• deal with uncertainty regarding the exact time and duration of occurrence of events1,
e.g., X will occur sometime in the morning, and refueling takes between 15 and 40
minutes,

• express both quantitative and qualitative constraints between events, e.g., X is before
or meets Y, and X ends between 10 und 15 mirmtes before Y starts,

• express parameterized qualitative constraints between events, e.g., X is before Y by at
most 6 days,

• provide multiple granularities, e.g., seconds, hours, days, etc., and their combinations,
e.g., days:hours:minutes, day:month:year,

• promote ease of use via graphical input and display capabilities,

• run as a subprocess in other applications as well as stand-alone,

• utilize techniques that will remain effective even in very large application domains,

• serve as a versatile testbed for exploring new techniques for coping with the intractabil-
ity associated with disjoint constraints.

One of the key reasons we began developing Tachyon was as a research vehicle to explore
new techniques for dealing with the inherent complexity of temporal reasoning and schedul-
ing. We recognized it's applicability to a number of problems of both military and commer-
cial interest, and have simultaneously sought opportunities to explore the appropriateness
of using Tachyon in a diverse set of applications. In addition to the prototype integrating

although we will use the term event, it should be noted that one could as easily refer to an arbitrary
proposition that has temporal extent.

89

p1 _process_release
(08:30,06:30,06:31,06:31 ,«,00:01)

sit (meets dn before)

p1_notched
(-OO.+OO.-OO.+OO.01:00,01:00)

(-oo,+oo.-oo,+oo.00:30,00:30)

(meets c r before)

p1_turned_on_lathe
(-oo,+oo,-oo,+oo.02:00.02:45)

(meets c r before)

p1_finishing
(-oo,+oo,-oo,+oo.OO:35.00:S5)

p2_process_release
(06:45.06:45,06:46,06:46,e,00:01)

(meets c' before)

 !!
p2_drilled

(-oo,+oo,-oo,+oo,01:15,01:15)

(meets c r before)

p2_turned_on_lathe
(-oo,+oo,-oo.+oo,00:03,00:03)

(meets c r before)

p2_notched
(-oo,+oo,-oo,+oo,00:25,00:25)

(meets i

Vhgfnrpl

before)

f (aftpr)

p2_finishing
3,+oo.-oo,+oo,00:10.00:1

(bef Dre)

assembly_and_ship
[11:00,14;00,-oo,+oo,00:30.01:30)

p3_process_release
[-oo,+oo,08:45,08:4S,e,00:0i;

(meets i before)

p3_turned_on_lath©
(-oo,+oo,-oo,+oo.01:00,01:30)

(meets c • before)

 !!
p3_drilled

(-oo,+oo,-oo.+oo,00:15,00:15)

(meets c ■ before)

p3_notched
(-oo,+oo,-oo,+oo,00:10,00:10)

(meets c' before)

p3_finishing
(-oo,+oo,-oo,+oo.00:30,00:30)

Figure 14.3: The Tachyon temporal constraint network editor, shown with a simple example.

Tachyon with CAFE described in this paper, we have applied it to plan recognition tasks,
where it was used to validate temporal sequencing of events as an aid in formulating plan
hypotheses, to plan generation and monitoring, to scheduling for plastics and power systems
manufacturing, and to retrieval and situation refinement in a prototype spatio-temporal data
management system. In this last application, we used Tachyon's constraint propagation ca-
pabilities together with partial information about interrelated events to provide intra-force
temporal refinement for tasking support [5, 7].

The interested reader is referred to [1, 6] for more technical details on Tachyon.

90

Chapter 15

Integrated Capabilities

One important aspect of force expansion is incorporating all the information from the major
force list into the full force list. A good example of this is the required delivery date (RDD)
that the planner associates with each major force based on the COA. As each major force is
expanded into its component units, and non-organic support forces are added in response to
projected needs of the force, the RDD (as well as other major force level information) must
be passed down to the lower level units. This is not simply a direct translation. Temporal
constraints exist between the units of a force as well as between major forces (for example,
the unloading crews for an airfield must arrive before the cargo planes). CAFE represents
the explicit temporal constraints in such a way that Tachyon can be used to check for
temporal consistency over the entire force, and subsequently to maintain maximal regions
of temporal feasibility for the forces as the COA evolves. The addition of these explicit
temporal constraints will allows greatly expanded flexibility in adapting the time phasing of
a force to the resource constraints which exist at the time of plan execution.

15.1 An Example

An simple example of the integrated use of Tachyon and CAFE for force expansion and
time phasing is given in Figures 15.1 and 15.2 below. While the prototype can handle
arbitrary temporal constraints, for simplicity we will use only a simple restriction on RDDs.
In Figure 15.1, the user has selected a force for expansion and that force has been expanded
into its component units and non-organic support forces, which are listed in the highlighted
section of the CAFE window (top of figure). Note that the RDDs of the component forces
are not known at this time.

Once the expansion of the major force has been determined, we can, from the associated
temporal constraints, use Tachyon to compute the modified RDDs for the expanded force,
as shown in Figure 15.2.

In order to implement this temporal reasoning aspect of the Case Based Force Expansion
Module we need to capture the temporal constraints which hold between the components
of a force. The inter force constraints will be based on the COA and coded into the plan,
e.g., by SOCAP operators, but the intra force constraints are expected to be plan indepen-
dent, although they may be mission or location dependent. We plan to obtain intra force

91

■i-mm

■ '•: ■':■•?;:.*;'-;V:-:,T.""v ~;<::C.i' ■■■". ■ ■'•.': ":'•.•'., ■•:•':•••■:;?•.••'.;•;.•!»•:

ÄrV:^' -i-iw-.1...-..-'.^--. :.-_^^_j.V-ti.V.."JiJ.!._.;.":.. _:.'.\l.;l''. jl^.V- i ; vf.K'>-•:■...' j '.n f i-r '•'

ry,-.-\-:"r-,T-:u- ;piYiravrv:r--- .; * : SiÄSgSBK
.:'= u-;;.';i.i'v•c::;.'.-.-j.";-. .-!

jr. ... -a- • .-.-.• ' -. ■- !.:'...:• ' .'• .'• ■•. .:

vmimt®

'- : •=

m
I; - -

Tachyan

V::

]■■■.:' '••. : ■■."-;.- ? V. -i

ILM

^MW^^ili^lw^il^Äk^^i^W'

Ipi^MSCi. i:-.^'.; • ••''■:,.-.';' '■' " ■ ■ """■
; ■'£.' .1

(f»W*

s§IM§il|Pffi§

3»

'}>.;?::!

wämml

I

Figure 15.1: CAFE (top) and Tachyon (bottom) in coordinated use

92

s^S^^^ülSSi^H^R^^Si^B
■ •: wfsmmi

H-n5-t;S?Kf!SIQN il-TH-Flv O/i.4 XJ-.U' i>l:BJ.«.i.;T-h.t.,(X.'

SKüIJö K^;. if;.:TicfLi,.FiG;tTi;i.-V1J.M J ■ .rHDX£j:yi>?HT o,'-:'4 twt?:>
W«:K "H:V..':.Jt;T...i:'Ul';L.-,;;\N''...':roir,r'-nF 0/-M XJ.tD
IH'MB ...i;tl-.::.i !ri;;^/i; v ;■'!■» XJJT1

tin« W'n^'.'»!**Mi;...:r.r-Ä'-S".? "L". il/.'-i y.JJT)

pp - - - WnsS?,

-#B9'-'

Tachyon „,.....;.., Lt, t.,t.;.

Iltli§ll«<ü3fisf

ifelSpSj^(jj|^?^^^i^p^^.^

llllS
ijfSfil

'•v
IP alii

Figure 15.2: After Tachyon has propagated the stated temporal constraints and returned
the modified RDDs to CAFE.

93

constraints from the same sources who will provide us with the knowledge about force struc-
ture. By integrating Tachyon into a force module editor, we will be able to capture temporal
constraints as force modules are acquired.

94

Chapter 16

Future Directions & Conclusions

16.1 ForMAT Integration

One of the key requirements for making the integrated Tachyon/CAFE tool succeed is that
we must capture cases and temporal constraints in force libraries. Little of this information
has been captured to date, largely because there has been no technology available to sup-
port its exploitation. As tools begin to emerge that can exploit the data, a parallel need
emerges for tools to capture it. We have recently begun an effort to develop a Force Module
Editor for creating and modifying force modules. This effort will integrate ForMAT (a Force
module/TPFDD editor being developed by MITRE), Tachyon, and the FM and Mission
ontologies developed for CAFS. This Force Module Editor will also be used to capture the
temporal constraints that hold among force components. This will provide a knowledge ac-
quisition tool for information about force structure and force usage, and a smart editor for
modifying existing force modules.

We will also integrate CAFS matching and ranking capabilities with ForMAT. As a
result of this integration, the force modules retrieved by ForMAT will be (partially) ranked
according to their degrees of matching with the mission requirements specified by the probe.
The user will be able to analyze the results, observe the difference in force capabilities among
cases that lead to different partial matches, and express his/her preference by changing the
saliency of the features used in the matching process.

16.2 Extended Capabilities of Tachyon

There are also several planned extensions to Tachyon that will enhance its ability to be
used effectively when deployed in an inteegrated framework such as that described above.
These include hierarchical representations, which will allow a user to work with temporal
constraints on forces at an arbitrary level of detail without direct concern for constraints at
lower levels, and a greatly expanded "debugging" capability designed to provide non-expert
users with the ability to recover from situations of temporal inconsistency.

95

16.3 Conclusions

We have demonstrated the integration of two technologies to provide a powerful tool for
developing and maintaining forces for crisis response. The integrated CAFE/Tachyon pro-
totype has now been demonstrated to several groups of domain experts, and has been well
received by that community. The biggest and most immediate obstacle to fielding this capa-
bility is that no one has captured the force packages or their associated intra force constraints
in a disciplined way to date. Our planned work to integrate the prototype with Mitre's For-
MAT tool should help to minimize this obstacle. We plan to be able to demonstrate an
integrated ForMAT/CAFE/Tachyon prototype later this year.

96

Bibliography

[1] Arthur, R., and Stillman, J., "Tachyon: A model and environment for temporal reason-
ing," GE CRD Technical Report, 1992, (see also Arthur, R., "Tachyon: A Model and
Environment for Temporal Reasoning", M.S. Thesis, Rensselaer Polytechnic Institute,
Troy, NY, 1992).

[2] Ayub, S., Planning in an Uncertain and Dynamic Environment with Weak Domain
Theory. PhD thesis, Rensselaer Polytechnic Institute, 1992. Computer Science.

[3] Blau, L.„ Bonissone, P., and Ayub, S., "Planning with Dynamic Cases," in the Pro-
ceedings of the Case-Based Reasoning Workshop, pp. 295-306, Washington, D.C., May
1991.

[4] Bonissone, P., and Ayub, S., "Similarity Measures for Case-based Reasoning Systems," In
Proceedings of the International Conference on Information Processing and Management
of Uncertainty in Knowledge-Based Systems (IPMU-92), pp. 483-487, July 1992.

[5] Stillman, J., et al., "Spatio-temporal Data Management," in Proceedings of the Sympo-
sium on Advanced Information Processing and Analysis, Tyson's Corner, VA, 2-4 March
1993.

[6] Arthur, R., Deitsch, A., and Stillman, J., "Tachyon: A Constraint-based Temporal Rea-
soning Model and its Implementation," SIGART Bulletin, 4:3, July 1993.

[7] Stillman, J., "An Approach to Spatio-Temporal Retrieval and Reasoning," in Proceedings
of GIS '93, Washington, DC, Nov. 1993.

[8] Stillman, J., "Dual Use applications of Tachyon: From force structure modeling to man-
ufacturing scheduling," In Proceedings of 4th Annual IEEE Dual Use Technologies and
Applications Conference, Utica, NY, May, 1994.

[9] Bonissone, P., Stillman, J., "A Case Study in Integration of Case Based and Temporal
Reasoning Using CAFE and Tachyon," in Proceedings of the ARPA/Rome Laboratory
Knowledge-based Planning and Scheduling Initiative Workshop, Tucson, AZ, February
21-24, 1994, Morgan-Kaufman Publishers, Inc., pp. 169-177.

[10] Allen, J.F., "An Interval-Based Representation of Temporal Knowledge," Proceedings
of IJCAI-7, (1981), pp. 741-747

97

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Allen, J.F., "Maintaining Knowledge about Temporal Intervals," Communications of
the ACM, 26.11, (1983), pp. 832-843

Allen, J.F., "Time and Time Again: The Many Ways to Represent Time," International
Journal of Intelligent Systems, 6, (1991), pp. 341-355

Arthur, R., and Stillman, J., "Tachyon: A model and environment for temporal reason-
ing", Workshop Notes: A A AI Workshop on Implementing Temporal Reasoning, (1992),
pp. 1-13

Cormen, T.H., Leiserson, C.E., and Rivest, R.L., Introduction to Algorithms, MIT Press,
(1990)

Dean, T.L., and McDermott, D.V., "Temporal data base management," Artificial In-
telligence, 32, (1987), pp. 1-55

Dechter, R., Meiri, I. and Pearl, J., "Temporal constraint networks," Artificial Intelli-
gence, 49, (May 1991), pp. Gl-95

French, S., "Sequencing and Scheduling", Ellis Horwood, Ltd., (1982)

Kahn, K., and Gorry, G.A., "Mechanizing Temporal Knowledge," Artificial Intelligence,
9, (1977), pp. 87-108

Lipton, R. and Tarjan, R.E., "A Separator Theorem For Planar Graphs," SI AM J. on
Computing, 36.2, (April 1979), pp. 177-189

Montanari, U., "Networks of Constraints: Fundamental Properties and Applications to
Picture Processing," Information Sciences, 7, (1974), pp. 95-132

Preparata, F., and Shamos, M., "Computational Geometry: An Introduction",
Springer-Verlag, (1985)

Rit, J.-F., "Propagating temporal constraints for scheduling," Proceedings of AAAI,
(August 1986), pp. 383-388

Valdes-Perez, R.E., "Spatio-temporal reasoning and linear inequalities," MIT Artificial
Intelligence Laboratory Memo 875, (May 1986)

Van Beek, Pp., and Cohen, R., "Exact and approximate reasoning about temporal
relations," Computational Intelligence, 6.3, (August 1990), pp. 132-144

Van Benthem, The Logic of Time, Reidel, (1983)

Vilain, M.B., "A System for Reasoning About Time," Proceedings of AAAI, (1982), pp.
197-201

[27] Vilain, M., and Kautz, H., "Constraint Propagation Algorithms for Temporal Reason-
ing," Proceedings of AAAI, (August 1986), pp. 377-382

98

[28] J. K. Aragones, P. P. Bonissone, and J. Stillman. PRIMO: A Tool for Reasoning with
Incomplete and Uncertain Information. In Proceedings of the International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based Systems

(IPMU-90), July 1990.

[29] Kevin Ashley. Modelling Legal Argument: Reasoning with Cases and Hypotheticals.
PhD thesis, University of Massachusetts at Amtierst, 1988. Computer and Information

Science.

[30] Piero Bonissone, Lauren Blau, and Saad Ayub. Leveraging the integration of approx-
imate reasoning systems. In Proceedings of the 1990 AAAI Spring Symposium Series,
Symposium: Case-Based Reasoning, pages 1-6. AAAI, March 1990.

[31] Piero P. Bonissone and Keith S. Decker. Selecting uncertainty calculi and granularity:
An experiment in trading-off precision and complexity. In L. Kanal and J. Lemmer,
editors, Uncertainty in Artificial Intelligence, pages 217-247. North Holland, Amsterdam,

1986.

[32] Piero P. Bonissone and Soumitra Dutta. Mars: A Mergers and Acquisitions Reasoning
System. Journal of Computer Science In Economics and Management, 3:239-268, 1990.

[33] Piero P. Bonissone. A Fuzzy Sets Based Linguistic Approach: Theory and Applications.
In M.M. Gupta and E. Sanchez, editors, Approximate Reasoning in Decision Analysis,
pages 329-339. North Holland Publishing Co., New York, 1982.

[34] Piero P. Bonissone. Summarizing and propagating uncertain information with triangular
norms. International Journal of Approximate Reasoning, 1(1):71—101, January 1987.

[35] Piero P. Bonissone. Now that I Have a Good Theory of Uncertainty, What Else Do
I Need? In Proceeding Fifth AAAI Workshop on Uncertainty in Artificial Intelligence,

pages 22-33. AAAI, August 1989.

[36] L. K. Branting. Exploiting the complimentarity of rules and precedents with reciprocity
and fairness. In Proceedings of Case-Based Reasoning Workshop, pages 39-50, San Mateo,
CA, May 1991. Morgan Kaufmann Publishers, Inc.

[37] Leon Brillouin. Science and Information Theory. Academic Press Inc., New York, NY,

second edition, 1963.

[38] Jaime Carbonell and Manuela Veloso. Integrating derivational analogy into a general
problem solving architecture. In Proceedings of the Case-Based Reasoning Workshop,
pages 104-124, San Mateo, Ca, May 1988. Morgan Kaufmann Publishers, Inc.

[39] S. Dutta and P.P. Bonissone. An Approach To Integrating Diverse Reasoning Tech-
niques. In In Proc. Avignon-90, Conf. on 2nd Generation Expert Systems, 1990.

[40] S. Dutta and P.P. Bonissone. Integrating case based and rule based reasoning: the
possibilistic connection. In Uncertainty In Artificial Intelligence - Vol. 6. North Holland,

Amsterdam, 1991.

99

[41] D. Dubois and H. Prade. Fuzzy real algebra. Fuzzy Sets and Systems, 2(4):327-348,
1979.

[42] D. Dubois and H. Prade. Fuzzy Sets and Systems: Theory and Applications. Academic
Press, New York, 1980.

[43] D. Dubois and H. Prade. Criteria aggregation and ranking of alternatives in the frame-
work of fuzzy set theory. In H. Zimmermann, Lofti Zadeh, and B. Gaines, editors, Fuzzy
Sets and Decision Analysis, pages 209-240. North-Holland, Amsterdam, Holland, 1984.

[44] Andrew Golding and Paul Rosenbloom. Integrating rule-based and case-based reason-
ing for name pronunciation. In Proceedings of the National Conference on Artificial
Intelligence, Menlo Park, August 1991. A A AI, A A AI Press.

[45] Gte. Gte traffic controller. In Proceedings of the Darpa Case-Based Reasoning Workshop,
San Mateo, May 1989. Darpa, Morgan Kaufmann Publishers.

[46] Daniel Hennessy and David Hinkle. Initial results form clavier: A case-based autoclave
loading assistant. In Proceedings of Case-Based Reasoning Workshop, pages 225-232,
San Mateo, Ca, May 1991. Morgan Kaufmann Publishers, Inc.

[47] A. Oskamp, R.F. Walker, J.A. Schrickx, and P.H. Vanden Berg. Prolexs, divide and rule:
A legal application. In Proceedings of the Second International Conference on Artificial
Intelligence and Law, 1989.

[48] Edwina L. Rissland and David B. Skalak. Combining case-based and rule-based reason-
ing: A heuristic approach. In Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence, San Mateo, Ca, August 1989. Morgan Kaufmann Publishers,
Inc.

[49] Edwina L. Rissland and David B. Skalak. Interpreting statuatory predicates. In Pro-
ceedings of the Second International Conference on Artificial Intelligence and Law, pages
46-53, 1989.

[50] Elie Sanchez. Inverse of a fuzzy relations, applications to possibility distributions and
medical diagnosis. Fuzzy Sets and Systems, 2(l):75-86, 1979.

[51] B. Schweizer and A. Sklar. Associative functions and abstract semi-groups. Publicationes
Mathematical Debrecen, 10:69-81, 1963.

[52] B. Schweizer and A. Sklar. Probabilistic Metric Spaces. North Holland, New York, 1983.

[53] Kevin D. Ashley and Vincent Aleven. Generating dialectric examples automatically.
In Proceedings of Tenth National Conference on Artificial Intelligence, AAAI-92, pages
654-660, Menlo Park, CA, July 1992. AAAI, AAAI Press.

[54] Richard Alterman. An adaptive planner. In Proceedings of Fifth National Conference
on Artificial Intelligence, AAAI-86, pages 65-69. AAAI, August 1986.

100

[55] Kevin D. Ashley and Edwina L. Rissland. Waiting on weighting: A symbolic least
commitment approach. In Proceedings of Seventh National Conference on Artificial In-
telligence, AAAI-88, pages 239-244, August 1988.

[56] Piero P. Bonissone and Saad Ayub. Representing cases and rules in plausible reasoning
systems. In Proceedings of the IEEE International Conference on Tools with Artificial
Intelligence, November 1992.

[57] Piero P. Bonissone and Saad Ayub. Similarity measures for case-based reasoning sys-
tems. In Proceedings of the International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems (IPMU-92), pages 483-487,
July 1992.

[58] William M. Bain. A case-based reasoning system for subjective assessment. In Proceed-
ings of Fifth National Conference on Artificial Intelligence, AAAI-86, pages 523-527.
AAAI, August 1986.

[59] Lauren Blau, Piero P. Bonissone, and Saad Ayub. Planning with dynamic cases. In
Proceedings of the DAB PA Case-Based Reasoning Workshop, pages 295-306, San Mateo,
CA, May 1991. Morgan Kaufmann Publishers, Inc.

[60] Piero P. Bonissone and Soumitra Dutta. Mars: A mergers and acquisitions reasoning
system. Journal of Computer Science In Economics and Management, 3:239-268, 1990.

[61] Piero P. Bonissone, Stephen Gans, and Keith S. Decker. Rum: A layer architecture for
reasoning with uncertainty. In Proceedings of the Eleventh International Joint Confer-
ence on Artificial Intelligence, pages 891-898, San Mateo, August 1987. AAAI, Morgan
Kaufmann Publishers.

[62] Piero P. Bonissone. Plausible reasoning: Coping with uncertainty in expert systems. In
Stuart Shapiro, editor, Encyclopedia of Artificial Intelligence, pages 854-863. John Wiley
and Sons Co., New York, 1987.

[63] M.S. Braverman and R. Wilensky. Towards an unification of case-based reasoning and
explanation-based learning. In Proceedings of the 1990 AAAI Spring Symposium Series,
Symposium: Case-Based Reasoning, pages 80-84. AAAI, 1990.

[64] Jaime G. Carbonell. Derivational analogy and its role in problem solving. In Proceedings
of Third National Conference on Artificial Intelligence, AAAI-83, pages 64-69. AAAI,
August 1983.

[65] Timothy M. Converse and Kistian J. Hammond. Preconditions and appropriateness
conditions. In Proceedings of Fourteenth Annual Conference of the Cognitive Science
Society, pages 13-17, Hillsdale, New Jersey, July-August 1992. Cognitive Science Society,
Lawrence Erlbaum Associates, Inc.

[66] A. Julian Craddock. Common sense retrieval. In Proceedings of Tenth National Con-
ference on Artificial Intelligence, AAAI-92, pages 661-666, Menlo Park, CA, July 1992.
AAAI, AAAI Press.

101

[67] Mark Drummond and Austin Täte. Ai planning: A tutorial and review. Technical
Report AIAI-TR-30, AI Applications Institute, University of Edinburgh, Edinburgh,

U.K, January 1989.

[68] Daniel C. Edelson. When should a cheetah remind you of a bat? reminding in case-
based teaching. In Proceedings of Tenth National Conference on Artificial Intelligence,
AAAI-92, pages 667-672, Menlo Park, CA, July 1992. AAAI, AAAI Press.

[69] Brian Falkenhainer, Kenneth D. Forbus, and Dedre Centner. The structure-mapping
engine. In Proceedings of Fifth National Conference on Artificial Intelligence, AAAI-86,

pages 272-277. AAAI, August 1986.

[70] R.E. Fikes and N.J. Nilsson. Strips: A new approach to the application of theorm
proving to problem solving. Artificial Intelligence, 2:189-208, 1971.

[71] A. K. Goel. Grounding case modification in deep models. In Proceedings of the
1990 AAAI Spring Symposium Series, Symposium: Case-Based Reasoning, pages 41-

44. AAAI, 1990.

[72] Kristian J. Hammond. Case-Based Planning: Viewing Planning as Memory Task. Aca-
demic Press, Inc., San Diego, CA, 1989.

[73] Kristian Hammond, Timothy Converse, and Charles Martin. Integrating planning and
acting in a case-based framework. In Proceedings of Eight National Conference on Arti-
ficial Intelligence, AAAI-90, pages 292-297. AAAI, August 1990.

[74] Kristian Hammond and Neil Hurwitz. Extracting diagnostic features from explanations.
In Proceedings of the DARPA Case-Based Reasoning Workshop, pages 169-178, San
Mateo, Ca, May 1988. Morgan Kaufmann Publishers, Inc.

[75] James A. Hendler and Subbarao Kambampati. Refitting plans for case-based reasoning.
In Proceedings of the DARPA Case-Based Reasoning Workshop, pages 179-181, San
Mateo, CA, May 1988. DARPA, Morgan Kaufmann Publishers, Inc.

[76] James C. Van Home. Fundamentals of Financial Management. Prentice-Hall, Inc.,

Englewood Cliffs, NJ, 6 edition, 1986.

[77] Jane Yung-Jen Hsu. Partial planning with incomplete information. In Proceedings of
AAAI Spring Symposium Series, Symposium: Planning in Uncertain, Unpredictable, or
Changing Environments, pages 62-66. AAAI, March 1990.

[78] Paul Jacobs and Lisa. Rau. SCISOR: A system for extracting information from on-
line news. Communications of the Association for Computing Machinery, 33(ll):88-97,

November 1990.

[79] Sonya E. Keene. Object-oriented programming in COMMON LISP: A programmer's
guide to CLOS. Addison-Wesley, 1989.

102

[80] Subbarao Kambhampati and James A. Hendler. Flexible reuse of plans via annota-
tion and verification. In Proceedings of IEEE Fifth Conference on Artificial Intelligence
Applications, pages 37-43. IEEE, March 1989.

[81] Janet L. Kolodner. Maintaining organization in a dynamic long-term memory. Cognitive

Science, (7):243-280, 1983.

[82] Janet L. Kolodner. Retrieving events from a case memory: a parallel implementation. In
Proceedings of the DARPA Case-Based Reasoning Workshop, pages 233-249, San Mateo,
CA, May 1988. DARPA, Morgan Kaufmann Publishers, Inc.

[83] Janet L. Kolodner. Judging which is the best case for a case-based reasoner. In Pro-
ceedings of the DARPA Case-Based Reasoning Workshop, pages 77-81, San Mateo, CA,
May 1989. DARPA, Morgan Kaufmann Publishers, Inc.

[84] Janet L. Kolodner. Selecting the best case for a case-based reasoner. In Proceedings
of the 11th Annual Conference of The Cognitive Science Society, pages 155-162, August

1989.

[85] Phyllis Koto. Reasoning about evidence in causal explanations. In Proceedings of the
DARPA Case-Based Reasoning Workshop, pages 260-270, San Mateo, CA, May 1988.
DARPA, Morgan Kaufmann Publishers, Inc.

[86] Robert Lawrence Kuhn, editor. Mergers, Acquisitions, and Leveraged Buyouts. Dow
Jones-Irwin, Homewood, IL, 1990.

[87] Drew V. McDermott. Darpa-sponsored planning research: Report and prospects. Tech-
nical Report YALEU/CSD/RR-522, Yale University, Conneticut, March 1987.

[88] David L. McKee, editor. Hostile Takeovers: Issues In Public and Corporate Policy.
Praeger Publishers, New York, NY, 19S9.

[89] Marvin Minski. A framework for representing knowledge. In P. Winston, editor, The
Psychology of Computer Vision. McGraw-Hill, 1975.

[90] N.J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Co., Palo Alto, CA,

1980.

[91] Bruce W. Porter. Similarity assessment: Computation vs representation. In Proceedings
of the DARPA Case-Based Reasoning Workshop, pages 82-84, San Mateo, CA, May 1989.
DARPA, Morgan Kaufmann Publishers, Inc.

[92] Edwina L. Rissland and Kevin D. Ashley. Credit assignment and the problem of compet-
ing factors in case-based reasoning. In Proceedings of the DARPA Case-Based Reasoning
Workshop, pages 327-344, San Mateo, CA, May 1988. DARPA, Morgan Kaufmann Pub-
lishers, Inc.

[93] Lisa Rau. Knowledge organization and access in a conceptual information system.
Information processing and management, Special Issue on artificial intelligence for in-

formation retrieval, 23(4):269-283, 1987.

103

[94] Michael Redmond. Distributed cases for case-based reasoning; facilitating use of multi-
ple cases. In Proceedings of Eight National Conference on Artificial Intelligence, AAAI-
90, pages 304-309. AAAI, August 1990.

[95] Stanley Foster Reed and P. C. Lane and Edson. The Art of M&A: A Merger and
Acquisition Buyout Guide. Dow Jones-Irwin, Homewood, IL, 1989.

[96] Christopher K. Riesbeck and Roger C. Schänk. Inside Case-Based Reasoning. Lawrence
Erlbaum Associates, Hillsdale, NJ, 1989.

[97] Edwina L. Rissland and David B. Skalak. Case-based reasoning in a rule-governed
domain. In Proceedings of IEEE Fifth Conference on Artificial Intelligence Applications,
pages 45-53. IEEE, March 1989.

[98] Richard Ruback. Philip morris - kraft. Technical Report 9-289-045, Harvard Business
School, Boston, MA, March 1990.

[99] Stuart .1. Russell. A quantitative analysis of analogy by similarity. In Proceedings of
Fifth National Conference on Artificial Intelligence, AAAI-86, pages 284-288. AAAI,
August 1986.

[100] Earl D. Sacerdoti. A Structure for Plans and Behavior. American Elsevier, New York,
NY, 1977.

[101] Eric Shafto, Ray Bareiss, and Lawrence Birnbaum. A memory architecture for case-
based argumentation. In Proceedings of Fourteenth Annual Conference of the Cognitive
Science Society, pages 307-312, Hillsdale, New Jersey, July-August 1992. Cognitive Sci-
ence Society, Lawrence Erlbaum Associates, Inc.

[102] Colleen Seifert. Analogy and case-based retrieval. In Proceedings of the DARPA Case-
Based Reasoning Workshop, pages 125-129, San Mateo, Ca, May 1989. DARPA, Morgan
Kaufmann Publishers, Inc.

[103] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, Princeton,
New Jersey, 1976.

[104] Robert L. Simpson. A Computer Model of Case-Based Reasoning in Problem Solving:
An Investigation in the Domain of Dispute Mediation. PhD thesis, School of Information
and Computer Science, Georgia Institute of Technology, Atlanta, GA, 1985. Technical
Report No. GIT-ICS-85/18.

[105] David B. Skalak. Representing cases as knowledge sources that apply local similarity
metrics. In Proceedings of Fourteenth Annual Conference of the Cognitive Science Soci-
ety, pages 325-330, Hillsdale, New Jersey, July-August 1992. Cognitive Science Society,
Lawrence Erlbaum Associates, Inc.

[106] G.A. Sussman. A computational model of skill acquisition. Technical Report AI-TR-
297, M.I.T. A.I. Lab., Boston, MA, 1973.

104

107] William Swartout. Summary report on darpa santa cruz workshop on planning. In
Proceedings of DARPA Knowledge-Based Planning Workshop, pages A1-A23, San Mateo,
CA, December 1987. Morgan Kaufmann Publishers, Inc.

108] Katia Sycara. Resolving goal conflicts via negotiation. In Proceedings of Seventh
National Conference on Artificial Intelligence, AAAI-88, pages 245-250. AAAI, August
1988.

109] Hamdy A. Taha. Operations Research: An Introduction. Macmillan Publishing Co.,
Inc., New York, NY, 3 edition, 1972.

110] Austin Täte, James Hendler, and Mark Drumond. A review of ai planning techniques.
In James Allen, James Hendler, and Austin Täte, editors, Reading in Planning, pages
26-49. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.

Ill] Paul Thagard, Keith J. Holyoak, Greg Nelson, and David Gochfeld. Analog retrieval
by constraint satisfaction. Journal of Artificial Intelligence, 46(3):259-310, December
1990.

112] Walter L. Updegrave. Takeovers and turnarounds. In Landon Y. Jones, editor, Money
Guide: The stock market, pages 95-102. Andrews, McMeel and Parker, Kansas City,
Missouri, 1987.

113] Manuela Veloso and Jaime Carbonell. Variable-precision case retrieval in analogical
problem solving. In Proceedings of the DARPA Case-Based Reasoning Workshop, pages
93-106, San Mateo, Ca, May 1991. Morgan Kaufmann Publishers, Inc.

114] Rajendra S. Wall. Retrieval in case-based reasoning: Using semantic representation to
cluster cases. In Proceedings of IEEE Fifth Conference on Artificial Intelligence Appli-
cations, pages 183-189. IEEE, March 1989.

115] David E. Wilkin. Can ai planners solve practical problems? Technical Report 468R,
SRI International, Menlo Park, CA, November 1989.

116] Patrick H. Winston. Learning and reasoning by analogy. Communications of the
Association for Computing Machinery, 23(12):689-703, December 1980.

117] Patrick H. Winston. Learning new principles from precedents and exercises. Artificial
Intelligence, (19):321-350, 1982.

118] Lofti A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Sys, 1:3-28,
1978.

119] Lofti A. Zadeh. Fuzzy sets and information granularity. In M. Gupta, R. Ragade, and
R. Yager, editors, Advances in Fuzzy Set Theory and Applications, pages 3-18. Elsevier
Science Publishing Co., Inc., New York, 1979.

120] Lofti A. Zadeh. A computational theory of disposition. In Proceedings of 1984 Inter-
national Conference on Computational Linguistics, pages 312-318, 1984.

105

[121] Roland J. Zito-Wolf and Richard Alterman. Multicases: A case-based representation
for procedural knowledge. In Proceedings of Fourteenth Annual Conference of the Cogni-
tive Science Society, pages 331-336, Hillsdale, New Jersey, July-August 1992. Cognitive
Science Society, Lawrence Erlbaum Associates, Inc.

«U.S. GOVERNMENT PRINTING OFFICE: 1995-710-126-20061

106

DISTRIBUTION LIST

addresses number
of copies

DONALD F. ROBERTS 5
ROME LASORATORY/C3CA
52 BROOKS ROAD
GRIFFISS AF8 NY 1341-4505

GENERAL ELECTRIC CORPORATE RESEARCH 5
1 RIVER R0A9
SCHENECTADY NY 12309

RL/SUL 1
TECHNICAL LI3RARY
26 ELECTRONIC PKY
GRIFFISS AF3 NY 13441-4514

ADMINISTRATOR 2
DEFENSE TECHNICAL INFO CENTER
DTIC-FOAC
CAMERON STATION BUILDING 5
ALEXANDRIA VA 22304-6145

ADVANCED RESEARCH PROJECTS AGENCY 1
370.1 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

NAVAL WARFARE ASSESSMENT CENTER 1
GIDEP OPERATIONS CENTER/CODE QA-50
ATTN: E RICHARDS
CORONA CA 91713-5000

WRIGHT LABORATORY/AAAI-2 1
ATTN: MR FRANKLIN HUTSON
WRIGHT-PATTERSON AFB OH 45433-6543

AFIT/LDEE 1
2950 P STREET
WRIGHT-PATTERSON AFB OH 45433-6577

DL-1

WRIGHT LÄ3QRAT0RY/MTEL 1
WRIGHT-PATTERSON AF8 OH 45433

AAMRL/HE 1
WRIGHT-PATTERSON AF8 QH 45433-6573

AUL/LSE 1
3L0G 1405
MAXWELL AF8 AL 36112-5564

US ARMY STRATEGIC DEF 1
CSSD-IM-PA
PO 30X 1500
HUNTSVILLE AL 35807-3301

COMMANDING OFFICER 1
NAVAL AVIONICS CENTER
LIBRARY 0/765
INDIANAPOLIS IN 46219-2189

COMMANDING OFFICER 1
NCCOSC ROTE DIVISION
CODE 02743, TECH LIBRARY
53560 HULL STREET
SAN DIEGO CA 92152-5001

CMOR 1
NAVAL WEAPONS CENTER
TECHNICAL LI8RARY/C3431
CHINA LAKE CA 93555-6001

SPACE & NAVAL WARFARE SYSTEMS COMM I
WASHINGTON DC 20363-5100

COR, U.S. ARMY MISSILE COMMAND 2
REDSTÖNE SCIENTIFIC INFO CENTER
AMSMI-RD-CS-R/ILL DOCUMENTS
REDSTONE ARSENAL AL 35898-5241

DL-2

ADVISORY GROUP ON ELECTRON DEVICES 2
ATTN: DOCUMENTS
2011 CRYSTAL DRIVE,SUITE 307
ARLINGTON VA 22202

REPORT COLLECTION, RESEARCH LIBRARY 1
MS P364
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM 37545

AEOC LIBRARY 1
TECH FILES/MS-100
ARNOLD AFS TN 37389

COMMANÖER/USAISC 1
ATTN: ASOP-OO-TL
8LDG 61301
FT HUACHUCA AZ 85613-5000

AIR WEATHER SERVICE TECHNICAL LIB 1
FL 4414
SCOTT AF8 IL 62225-5458

AFIWC/MSO 1
102 HALL 3LVD STE 315
SAN ANTONIO TX 78243-7016

SOFTWARE ENGINEERING INST CSEI> 1
TECHNICAL LIBRARY
5000 FORBES AVE
PITTSBURGH PA 15213

DIRECTOR NSA/CSS 1
W157
9800 SAVAGE ROAD
FORT MEADE MO 21055-6000

NSA 1
ATTN: 0. ALLEY
DIV X911
9300 SAVAGE ROAD
FT MEADE MD 20755-6000

OL-3

000 1
R31
9800 SAVAGE ROAD
FT. M6ÄDE MO 20755-6000

OIRNSA 1
R509
9800 SAVAGE ROAD
FT MEAOE MD 20775

ESC/IC 1
50 GRIFFISS STREET
HANSCÖM AF8 MA 01731-16.19

FL 2807/RESEARCH LIBRARY 1
OL AA/SULL
HANSCQM AF8 MA 01731-5000

TECHNICAL REPORTS CENTER 1
MAIL DROP 0130
SURLINGTON R0A9
BEDFORD MA 01731

DEFENSE TECHNOLOGY SEC AOMIN CDTSA) 1
ATTN: STTO/PATRICK SULLIVAN
400 ARMY NAVY ORIVE
SUITE 300
ARLINGTON VA 22202

DARPA/TTO 1
ATTN: DV
1400 WILSON BLVD
ARLINGTON VA 22203-2309

MS* KAREN ALGUIRE 1
RL/C3CA
52 5 BROOKS RD
GRIFFISS AFB NY 13441-4505

JAMES ALLEN 1
COMPUTER SCIENCE DEPT/8L0G RM 732
UNIV OF ROCHESTER
WILSON BLVD
ROCHESTER NY 14627

DL-4

YIGAL ARENS
USC-ISI
4676 ADMIRALTY
MARINA DEL RAY

WAY
CA 90292

MR. RAY 8AREISS
THE IN5T. FOR LEARNING SCIENCES
NORTHWESTERN UNIV
1390 MAPLE AVE
EVANSTON IL 60201

MR. JEFF BERLINER
88N SYSTEMS t TECHNOLOGIES
10 MOULTON STREET
CAMBRIDGE «A 02138

MARIE A. BIENKQWSKI
SRI INTERNATIONAL
333 RAVENSWOOD AVE/EK
MENLO PRK CA 94025

337

DR MARK S. BODDY
HONEYWELL SYSTEMS t RSCH CENTER
3660 TECHNOLOGY DRIVE
MINNEAPOLIS MN 55418

PIERO P. SONISSONE
GE CORPORATE RESEARCH & DEVELOPMENT
SLOG Kl-RM 5C-32A
P. 0. BOX 8
SCHENECTAQY NY 12301

MR. DAVID 8RQWN
MITRE
EAGLE CENTER 3, SUITE 8
O'FALLON IL 62269

MR. MARK BURSTEIN
BBN SYSTEMS & TECHNOLOGIES
10 MOULTON STREET
CAMBRIDGE MA 02138

MR. GREGG COLLINS
INST FOR LEARNING SCIENCES
1390 MAPLE AVE
EVANSTON IL 60201

ÜL-5

MR. RANDALL J. CALISTRI-YEH
ORA CORPORATION
301 DATES DRIVE
ITHACA NY 14850-1313

DR STEPHEN E. CROSS
SCHOOL OF COMPUTER SCIENCE
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213

MS. JUDITH DALY
ARPA/ASTO
3701 N. FAIRFAX DR.» 7TH FLOOR
ARLINGTON VA 22203-1714

THOMAS CHEATHAM
HARVARD UNIVERSITY
OIV OF APPLIED SCIENCE
AIKEN, RM 104
CAMBRIDGE MA 02133

MS. LAURA DAVIS
CODE 5510
NAVY CTR FOR APPLIED RES IN AI
NAVAL RESEARCH LABORATORY
WASH DC 20375-5337

MS. GLADYS CHOW
COMPUTER SCIENCE DEPT.
UNIV OF CALIFORNIA
LOS ANGELES CA 90024

THOMAS L. DEAN
8R0WN UNIVERSITY
DEPT OF COMPUTER SCIENCE
P.O. SOX 1910
PROVIDENCE RI 02912

WESLEY CHU
COMPUTER SCIENCE DEPT
UNIV QF CALIFORNIA
LOS ANGELES CA 90024

MR. ROBERTO DESIMONE
SRI INTERNATIONAL C£K335)
333 RAVENSWOOO AVS
MENLO PRK CA 94025

DL-6

PAUL 8. COHEN
UNIV OF MASSACHUSETTS
COINS OEPT
LEDERLE GRC
AMHERST MA 01003

MS. MARIE DSJARDINS
SRI INTERNATIONAL
333 RAVENSWOOO AVENUE
MENLO PRK CA 94025

JON DOYLE
LABORATORY FOR COMPUTER SCIENCE
MASS INSTITUTE OF TECHNOLOGY
545 TECHNOLOGY SQUARE
CAM3RI0GE MA 02139

OR- SRIAN DRABBLE
AI APPLICATIONS INSTITUTE
UNIV OF EDINBURGH/80 S. BRIDGE
EDINBURGH EH1 LHN
UNITED KINGDOM

MR. SCOTT FOUSE
ISX CORPORATION
4353 PARK TERRACE DRIVE
WESTLAKE VILLAGE CA 91361

MR. STU DRAPER
MITRE
EAGLE CENTER 3, SUITE
O'FALLON IL 62269

MARK FOX
OEPT 0 INDUSTRIAL ENGRG
UNIV OF TORONTO
4 TADOLE CREAK ROAD
TORONTO, ONTARIO, CANADA

MR. GARY EDWARDS
4353 PARK TERRACE DRIVE
WESTLAKE VILLACA 91361

MS. MARTHA FARINACCI
MITRE
7525 COLSHIRE DRIVE
MCLEAN VA 22101

DL-7

MR. RUSS FREW
GENERAL ELECTRIC
«OORESTOWN CORPORATE CENTER
8LDG ATK 145-2
MOORESTOWN NJ 08057

MICHAEL FEHLING
STANFORD UNIVERSITY
ENGINEERING ECO SYSTEMS
STANFORD CA 94305

MR. RICH FRITZSON
CENTER OR ADVANCED INFO TECHNOLOGY
UNISYS
P.O. BOX 517
PAOLI PA 19301

MR KRISTIAN J. HAMMOND
UNIV OF CHICAGO
COMPUTER SCIENCE DEPT/RY155
1100 E. S8TH STREET
CHICAGO IL 60637

MR. ROBERT FROST
MITRE CORP
WASHINGTON C3 CENTER, MS 644
7525 COLSHISR ROAD
MCLEAN VÄ 22101-3481

RICK HAYES-ROTH
CIMFLEX-TEKWOWLEOGE
1310 EM8ARCA0ERQ RD
PALO ALTO CA 94303

RANDY GARRETT
INST FOR DEFENSE ANALYSES (IDA)
1301 N. BEAUREGARO STREET
ALEXANDRA VA 22311-1772

MR. JIM HENDLER
UNIV OF MARYLAND
OEPT OF COMPUTER SCIENCE
COLLEGE PARK MO 20742

MS. YOLANDA GIL
USC/ISI
4676 ADMIRALTY WAY
MARINA DEL RAY CA 90292

DL-8

MR.MAX HERIQN
ROCKWELL INTERNATIONAL SCIENCE CTR
444 HIGH STREET
PALO ALTO CA 94301

MR. STEVE GOYA
OISA/JIEO/GS11
CODE T80
11440 ISAAC NEWTON
RESTON VA 22090

SQ

MR. MORTON A. HIRSCHBERG, DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN; AM5RL-CI-C3
ABERDEEN PROVING GROUND MD
21005-5066

MR. MARK A. HOi=FHAN
ISX CORPORATION
1165 NORTHCHASE PARKWAY
MARIETTA GA 30067

MR. RON LARSEN
NAVAL CMO, CONTROL £, OCEAN SUR
RESEARCH, DEVELOP, TEST t EVAL
CODE 444
SAN DIEGO CA 92152-5000

CTR
OIV

DR. JAMES JUST
MITRE
DEPT. WÖ32-M/S Z360
7525 COLSHIER RD
MCLEAN VA 22101

MR. CRAIG KN08L0CK
USC-ISI
4676 ADMIRALTY WAY
MARINA DEL RAY CA 90292

MR. RICHARD LOWE <AP-1Ö)
SRA CORPORATION
2000 15TH STREET NORTH
ARLINGTON VA 22201

MR. TED C. KRAL
8BN SYSTEMS £ TECHNOLOGIES
4015 HANCOCK STREET, SUITES
SAN DIEGO CA 92110

101

DL-9

MR. JOHN LÖWRENCE 1
SRI INTERNATIONAL
ARTIFICIAL INTELLIGENCE CENTER
333 RAVENSWOOQ AVE
MENLO PARK CA 94025

OR. ALAN MEYROWITZ I
NAVAL RESEARCH LA30RATORY/CODE 5510
4555 OVERLOOK AVE
MASH DC 20375

ALICE MULVEHILL 1
MITRE CORPORATION
3URLINGT0N RO
M/S K-302
BEDFORD MA 01730

R03ERT MACGREGÖR 1
USC/ISI
4676 ADMIRALTY MAY
MARINA DEL REY CA 90292

WILLIAM S. MARK, MGR AI CENTER 1
LOCKHEED MISSILES & SPACE CENTER
1801 PAGE MILL RO
PALO ALTO CA 94304-1211

RICHARO MARTIN 1
SQTWARE ENGINEERING INSTITUTE
CARNEGIE MELLON UNIV
PITTSBURGH PA 16213

DREW MCDERMQTT 1
YALE COMPUTER SCIENCE DEPT
P.O. 80X 2158, YALE STATION
51 PROPSPECT STREET
MEW HAVEN CT 06520

MS. CECILS PARIS 1
USC/ISI
4676 ADMIRALTY WAY
MARINA DEL RAY CA 90292

DOUGLAS SMITH 1
KESTREL INSTITUTE
3260 HILLVIEW AVE
PALO ALTO CA 94304

DL-10

DR. AUSTIN TÄTE
AI APPLICATIONS INSTITUT?
UNIV OF EDINBURGH
80 SOUTH BRIDGE
EDINBURGH EH1 IHN - SCOTLAND

EDWARD THOMPSON
ARPA/SISTO
3701 N. FAIRFAX OR., 7TH
ARLINGTON VA 22209-1714

FL

MR, STEPHEN F. SMITH
ROBOTICS INSTITUTE/CMU
SCHENLEY PRK
PITTSBURGH PA 15213

DR. ABRAHAM WÄKSMAN
AFOSR/NM
110 DUNCAN AVE., SUITE 8115
BULLING AF8 DC 20331-0001

JONATHAN P.STILLHAN
GENERAL ELECTRIC CRD
1 RIVER RD» RH K1-5C31A
P. 0. BOX 8
SCHENECTAOY NY 12345

MR. EDWARD C. T. yALKER
BBN SYSTEMS £ TECHNOLOGIES
10 MOULTON STREET
CAMBRIDGE MA 02138

MR. SILL SWARTOUT
USC/ISI
4676 ADMIRALTY WAY
MARINA DEL RAY CA 90292

GIO WIEDERHOLO
STANFORD UNIVERSITY
DEPT OF COMPUTER SCIENCE
439 MARGARET JACKS HALL
STANFORD CA 94305-2140

KATIA SYCARA/THE ROBOTICS INST
SCHOOL OF COMPUTER SCIENCE
CARNEGIE MELLON UNIV
OOHERTY HALL RM 3325
PITTSBURGH PA 15213

DL-11

MR. DAVID :£. WILKINS
SRI INTERNATIONAL
ARTIFICIAL INTELLIGENCE
333 RAVENSWOOQ AVE
HENLO PARK. CA 94025

CENTER

OR. PATRICK WINSTON
MASS INSTITUTE OF TECHNOLOGY
RM NE43-817
545 TECHNOLOGY SQUARE
CAMBRIDGE MA 02139

HUA YANG
COMPUTER SCIENCE DEPT
UNIV OF CALIORNIA
LOS ANGELES CA 90024

LTCÜL DAVE NEYLANO
ARPA/ISTO
3701 N. FAIRFAX DRIVE, 7TH
ARLINGTON VA 22209-1714

FLOOR

MR. RICK SCHANTZ
83N SYSTEMS & TECHNOLOGIES
10 MOULTON STREET
CAMBRIO&E MA 02138

LTC FRED M. RAWCLIFFE
USTRANSC0M/TCJ5-SC
3LDG 1900
SCOTT AF3 IL 62225-7001

ARPA/SISTO
ATTN: MR JOHN P. SCHILL
3701 N FAIRFAX DRIVE
ARLINGTON VA 22203-1714

MR. DONALD F. ROBERTS
RL/C3CA
525 BROOKS ROAD
GRIFFISS AFE NY 13441-4505

ALLEN SEARS
MITRE
7525 COLESHIRE DRIVE,
MCLEAN VA 22101

STOP Z289

DL-12

STEVE ROTH
CENTER FOR INTEGRATED MANUFACTURING
THE ROBOTICS INSTITUTE
CARNEGIE MELLON UNIV
PITTSBURGH PA 15213-3390

JEFF ROTHEN8ERG
SENIOR COMPUTER SCIENTIST
THE RAND CORPORATION
1700 MAIN STREET
SANTA MONICA CA 90407-2138

YDAV SHÖHAM
STANFORD UNIVERSITY
COMPUTER SCIENCE DEPT
STANFORD CA 94305

MR. OAVIO 3. SKALAK
UNIV OF MASSACHUSETTS
DEPT OF COMPUTER SCIENCE
RM 243, LGRC
AMHERST MA 01003

MR. MIKE ROUSE
AFSC
7800 HAMPTON RD
NORFOLK VA 23511-6097

MR. DAVID E. SMITH
ROCKWELL INTERNATIONAL
444 HIGH STREET
PALO ALTO CA 94301

JEFF ROTHENBERG
SENIOR COMPUTER SCIENTIST
THE RANG CORPORATION
1700 MIN STREET
SANTA MONICA CA 90407-2138

OR LARRY BIRNBAUM
NORTHWESTERN UNIVERSITY
ILS
1890 MAPLE AVE
EVANSTON IL 60201

MR RANOALL J. CALISTRI-YEH
ORA
301 DATES DR
ITHACA NY 14850-1313

DL-13

MR WESLEY CHU
COMPUTER SCIENCE DEPT
UNIVERSITY OF CALIFORNIA
LOS ANGELES CA 9002

MR PAUL R COHEN
UNIVERSITY OF MASSACHUSETTS
COINS ÖEPT, LEOERLE GRC
ÄMH5RST MA 01003

MR DON EDDINGTON
NAVAL COMMAND, CONTROL 6 OCEAN
SURV CENTER
RDTtE DIVISION, CODE 404
SAN DIEGO CA 92152-5000

MR. LEE ERMAN
CIMFLEX TECKNQWLEDGE
1310 EM3ARCARDERO RD
PALO ALTO CA 94303

MR DICK ESTRADA
BBN SYSTEMS & TECHNOLOGIES
10 MOULTON ST
CAMBRIDGE MA 02138

MR HARRY FORSDICK
BBN SYSTEMS AND TECHNOLOGIES
10 MOULTON ST
CAMBRIDGE MA 02138

MR MATTHEW L- GINS3ERG
CIRL, 1269
UNIVERSITY OF OREGON
EUGENE OR 97403

MR IRA GOLDSTEIN
OPEN SW FOUNDATION RESEARCH INST
ONE CAMBRIDGE CENTER
CAMBRIDGE MA 02142

MR MOISES G0LDS2MIDT
INFORMATION AND DECISION SCIENCES
ROCKWELL INTL SCIENCE CENTER
444 HIGH ST, SUITE 400
PALO ALTO CA 94301

DL-14

MR JEFF GROSSMAN, CO
NCCOSC ROTE DIV 44
5370 SILVERGATE AVE, ROOM 1405
SAN OIEGO CA 92152-5146

JAN GÜNTHER
ASCENT TECHNOLOGY, INC.
64 SIDNEY ST, SUITE 380
CAMBRIDGE MA 02139

OR LYNETTc HIRSCHHAN
MITRE CORPORATION
202 BURLINGTON RO
SeOFORD MA 01730

MS ADELE E. HOWE
COMPUTER SCIENCE DEPT
COLORADO STATE UNIVERSITY
FORT COLLINS CO 80523

OR LESLIE PACK KAELSLING
COMPUTER SCIENCE DEPT
8R0WN UNIVERSITY
PROVIDENCE RI 02912

SU38ARA0 KAM8HAMPATX
DEPT OF COMPUTER SCIENCE
ARIZONA STATE UNIVERSITY
TEMPE AZ 35237-5406

MR THOMAS E. KAZMIERCZAK
SRA CORPORATION
331 SALEM PLACE, SUITE 200
FAIRVIEW HEIGHTS IL 62208

PRADEEP K. KHQSLA
ARPA/SSTO
3701 N. FAIRFAX OR
ARLINGTON VA 22203

MR CRAIG KN08L0CK
USC-ISI
4676 ADMIRALTY WAY
MARINA DEL RAY CA 90292

DL-15

I

DR CARLA LUOLOW
ROME LA8ÖRATORY/C3CA
525 BROOKS RD
GRIFFISS AFS NY 13441-4505

OR MARK T. MAYBUR*
ASSOCIATE DIRECTOR OF AI CENTER
ADVANCED INFO SYSTEMS TECH 6041
MITRE CORP, BURLINGTOM RO, MS K-329
BEDFORD HA 01730

MR DONALO P. MCKAY
PARAMAX/UNISYS
P 0 30X 517
PAOLI PA 19301

OR KAREN MYERS
AI CENTER
SRI INTERNTXONAL
333 RAVENSWOOD
MENLO PARK CA 94025

DR MARTHA E POLLACK
OEPT OF COMPUTER SCIENCE
UNIVERSITY OF PITTSBURGH
PITTSBURGH PA 15260

RAJ REDDY
SCHOOL OF COMPUTER SCIENCE
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213

EOWINA RISSLAND
DEPT OF COMPUTER & INFO SCIENCE
UNIVERSITY OF MASSACHUSETTS
AMHERST MA 01003

MR NORMAN SAOEH
CIMOS
THE ROBOTICS INSTITUTE
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213

MR ERIC TIFFANY
ASCENT TECHNOLOGY INC.
237 LONGVIEW TERRACE
MILLIAMSTOMN MA 01267

OL-16

MANUELA VELDSO
CARNEGIE MELLON UNIVERSITY
SCHOOL OF COMPUTER SCIENCE
PITTSBURGH PA 15213-3391

1

MR DAN WELÖ
OEPT OF COMPUTER SCIENCE £ ENG
MAIL STOP Ffi-35
UNIVERSITY OF MASHINGTON
SEATTLE WA 98195

1

MR CRAIG WIER
ARPA/SISTO
3701 N. FAIRFAX OR
ARLINGTON VA 22203

1

MR JOE ROBERTS
ISX CORPORATION
4301 N FAIRFAX ORIVE, SUITE 301
ARLINGTON VA 22203

1

COL JOHN A. WARDEN III
ASC/CC
225 CHENNAULT CIRCLE
MAXWELL AFB AL 36112-6426

1

OR TOM GARVEY
ARPA/SISTO
3701 NORTH FAIRFAX ORIVE
ARLINGTON VA 22203-1714

1

MR JOHN N- ENTZMINGER, JR.
ARPA/OIRQ
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

1

LT COL ANTHONY WAISANEN, PHD
COMMANO ANALYSIS GROUP
HQ AIR MOBILITY COMMAND
402 SCOTT DRIVE, UNIT 3L3
SCOTT AF3 IL 62225-5307

1

DIRECTOR
ARPA/SISTO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

1

DL-17

MS LESLIE WILLIAMS
DIGITAL SYSEMS RSCH INC
4301 NORTH FAIRFAX DRIVE
SUITE 725
ARLINGTON VA 22203

DECISIONS £ DESIGNS INC.
ATTN: ANN MARTIN
8219 LEESBURG PIKE
SUITE 390
VIENNA VA 22182

HS LEAH WONG
NCCOSC RDTE DIV
53570 SILVERGATE AVE
SAN DIEGO CA 92152-5246

OFFICE OF THE CHIEF OF NAVAL RSCH
ATTN: MR PAUL QUINN
CODE 311
800 N. QUINCY STREET
ARLINGTON VA 22217

NCCOSC RDTE OIV 404
ATTN: MR DON EDDINGTON
53560 HULL STREET
SAN DIEGO CA 92152-5001

38N SYSTEMS AND TECHNOLOGY
ATTN: W MAURICE MCNEIL
9655 GRANITE RIOGE DRIVE, SUITE 245
SAN DIEGO CA 92123

DL-1

Rome Laboratory

Customer Satisfaction Survey

RL-TR-

Please complete this survey, and mail to RL/IMPS,
26 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and
feedback regarding this technical report will allow Rome Laboratory
to have a vehicle to continuously improve our methods of research,
publication, and customer satisfaction. Your assistance is greatly
appreciated.
Thank You

Organization Name: (Optional)

Organization POC: (Optional)

Address: ^^^

1. On a scale of l to 5 how would you rate the technology
developed under this research?

5-Extremely Useful 1-Not Useful/Wasteful

Rating

Please use the space below to comment on your rating. Please
suggest improvements. Use the back of this sheet if necessary.

2. Do any specific areas of the report stand out as exceptional?

Yes No

If yes, please identify the area(s) , and comment on what
aspects make them "stand out."

3. Do any specific areas of the report stand out as inferior?

Yes No

If yes, please identify the area(s) , and comment on what
aspects make them "stand out."

4. Please utilize the space below to comment on any other aspects
of the report. Comments on both technical content and reporting
format are desired.

MISSION

OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

