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THE MULTIVARIATE GRAM-CHARLIER SERIES APPLIED TO 
RANDOM SIGNAL DETECTION 

1. INTRODUCTION 

The application of probability theory and statistical modeling to the analysis of physical 
systems frequently leads to mathematical problems that are not amenable to closed-form solution. 
Complicated nonlinearities, unwieldy computations, and other manipulative difficulties often 
necessitate the use of numerical techniques and/or approximations. In the latter case, several 
alternatives are possible. One common approach is to represent the probability density function 
(PDF) as an infinite series of orthogonal polynomials, with the expansion coefficients being 
specified in terms of statistical moments.1'2'3 The key to successful application of this procedure 
lies in judiciously selecting the orthogonal polynomials. For practical applications, series 
approximations prove useful only when a small number of terms suffice to provide the required 
accuracy. In this context, the Gram-Charlier series3 is known to render good service, especially in 
situations where the original PDF exhibits Gaussian characteristics; viz., unimodality, continuity, 
and bounded variation. The theoretical and computational aspects of approximating a univariate 
PDF via the Gram-Charlier series have been extensively documented in the literature.1"5 

Unfortunately, corresponding results for a multivariate PDF are conspicuously meager.   This is 
due to the added complexity that typically characterizes «-dimensional mathematical analysis, as 
well as a general lack of familiarity with the properties of orthogonal polynomials in several 
variables. Such considerations need not be of great concern, however, since the Gram-Charlier 
series expansion technique can actually be extended to higher dimensions without explicit use of 
complicated analytical procedures or functions; viz., tensor analysis6 and multivariate orthogonal 
polynomials.7 A straightforward extension is described in the first part of this report. 

Section 2.1 focuses on developing a suitable infinite series representation for the n- 
dimensional Dirac delta function. The Gram-Charlier expansion of an arbitrary multivariate PDF 
is then obtained as demonstrated in section 2.2. There, analytical expressions for the unknown 
expansion coefficients are also developed and explicitly evaluated in terms of the central moments 
of the distribution. In section 2.3, a linear integral equation of the second kind is derived for 
subsequent use in solving an important binary detection problem that arises in sonar array 
processing applications. Finally, section 2.4 provides a comprehensive discussion of the 
mathematical results. 

The second part of this report examines the problem of detecting random multivariate signals 
embedded in Gaussian noise. A canonical representation for the likelihood ratio is derived in the 
form of an infinite series whose terms depend on the received measurement vector, central 
moments of the random signal, and the background noise statistics. The representation explicitly 
prescribes the optimum processing required to detect a broad class of multivariate random signals. 
Unfortunately, few representations of the type developed here are available in the literature. 
Those that do appear usually avoid detailed characterization of non-Gaussian signals. Low signal- 
to-noise ratio conditions are typically assumed to exist, allowing the use of simplifying 



approximations that preclude explicit specification of the signal PDF; only its mean and 
covariance are required, as in the case of locally optimal Bayes detectors. '9 A notable exception 
to the aforementioned approach is the work of Kelly and Tague.10 There, a canonical 
representation is developed for non-Gaussian univariate signals without any restrictions on input 
signal-to-noise ratio. The only assumptions made are that the background noise is Gaussian 
distributed and the signal PDF can be represented by a Gram-Charlier series expansion. The first 
assumption is reasonable for most sonar signal processing applications, since ambient noise in the 
ocean environment usually exhibits Gaussian statistical characteristics.    The second assumption 
imposes no significant restrictions either, since it is satisfied by a wide variety of acoustic signals 
encountered in practice. In fact, the generality of Kelly and Tague's work renders it an important 
contribution to the signal processing literature. 

Despite its obvious attributes, the aforementioned representation was developed for 
univariate signals only; thus it cannot be used effectively for array processing applications 
involving vector-valued measurements. A desire to overcome this limitation provides impetus for 
the present study. Following the approach originally employed by Kelly and Tague,   pertinent 
mathematical formulae are developed, extended, and modified to accommodate multivariate 
signals. The resulting «-dimensional representation retains all the functional characteristics, 
attributes, and generality of its one-dimensional counterpart, and as expected, becomes identical 
to it for the case n = 1. An attractive feature of all formulae is that statistical means and 
covariances associated with signal and noise always appear in their compact vector and matrix 
formats, respectively.  The need to explicitly depict individual vector components or matrix 
elements is avoided via utilization of Kronecker products.12 Indeed, this artifice greatly simplifies 
expressions that would otherwise be cumbersome and not amenable to analysis and/or 
interpretation. 

Section 3.1 provides a mathematical formulation of the binary detection problem for random 
multivariate signals embedded in Gaussian background noise. The problem is examined in the 
context of sonar array signal processing, and the solution is specified as a statistical hypothesis 
test; viz., the "likelihood ratio test."2'10'13 In section 3.2, a canonical representation for the 
likelihood ratio is developed. This representation takes the form of an infinite series whose terms 
depend on the received measurement vector together with the signal and noise statistics. Some 
interesting possibilities for approximating the likelihood ratio are discussed in section 3.3. The 
various alternatives are revealed via analysis of the series expansion. In addition, insight is gained 
regarding the optimal signal processing required to detect non-Gaussian signals embedded in 
Gaussian noise. 

It is not necessary to go through the mathematical derivations presented in the first part of 
this report completely before proceeding to the signal detection material discussed in the second 
part. The reader interested primarily in results and applications may omit the first part entirely, or 
content himself with making only slight acquaintance with the multivariate Gram-Charlier series 
derivation. Pertinent results used in the second part are appropriately referenced to the first part 
as they occur. 



2. THE MULTIVARIATE GRAM-CHARLIER SERIES 

2.1  REPRESENTATION OF THE «DIMENSIONAL DIRAC DELTA FUNCTION 

It is well known14 that the functions 

Pk{z) = [2kyfck!)~V2Hk{z) * = 0,1,2  

where Hk (z) are Hermite polynomials defined by the formulae14 

(1) 

Hk{z) = (-l)'S*£- k = 0,1,2,..., (2) 

form an orthonormal system on the interval -oo < z < GO . Accordingly, these functions must 
satisfy Bessel's equality,15 or the equivalent completeness relation 

S(z-z) = ^Pk(z)Pk(z). 
k=0 n   Ük! 

2-k f  & \k 

a2 

\dzdz) 

where 8{z - z) represents the one-dimensional Dirac delta function.15 

If one makes the substitutions* 

u = u. / V2 for u = (z,z), 

in equation (3), and uses the chain rule formula for derivatives 

for« = (l,z), 
d _ dut   d _  K d 

du     du dut dut 

along with the relation15 

2, - z. ^J=^-4 

(3) 

(4) 

(5) 

(6) 

" Throughout this report, the notation employed in equation (4) will be used. The desired substitutions are 
z -1i I ■yjl and z = zt IV2 . To obtain these fomulae, simply replace the letter u with z and z, respectively. 



it is readily shown that 

1/4(5; 
1 r a2 ^ 

2K    f^kly^dzj 

For notational convenience, one can introduce the scalar function 

(7) 

-Vl(»f) 

fay 

and the differential operator 

for u = [z ,z), (8) 

L.= 
d2 

dZ;dz, 
(9) 

These quantities allow equation (7) to be recast in a more compact form: 

k=0 K ■ 

(10) 

Although equations (3) and (10) describe identical completeness relations in one dimension, 
the latter expression is more readily extended to «-dimensions. To this end, let 

u = [wj, u2,..., un ] for u = [z, z), 

where the superscript'T' denotes matrix transpose, and observe that 

„ -\/2(uTu) 

(11) 

WM=Hu)= 
1=1 {In) n/2 

for u = [z, z), 

Y\S(%-z) = 8{lL-z). 

Using the preceding formulae in conjunction with equation (10) leads to the result 

(12) 

(13) 

^{lp(z)S(l-z) = ni w k,\ 

,=\ U,=o   k, ■  ) 
fcQO^te)- (14) 



The product of« infinite series appearing in square brackets on the right-hand side of 
equation (14) can be expressed as a single infinite series by repeated application of the double 
summation formula16 

^  oo A f    °° i com 

\-k- (15) 
m=Ok=0 

To see this, let 

. f 

/,=nz (A) *.> 

< = /> V*,=0    *, •    J 

p = \,2,...,n. (16) 

Equation (14) then takes the form 

*Jm)®(z)S(Z-z) = /,0(z)0(z). (17) 

16 It now follows from equation (15), equation set (16), and the Binomial Expansion Theorem   that 

W'Y^iJ 
U^o   k\ ■' j Kk~?o K ! J 

\k2=0 t, = 0   "l   V   2      K\f- 

tC\ /       -m- \'t? **\ ( °°      1      *2 £  / 

(18) 

f     CO , > 

/,. 

Repeating this procedure yields a similar expression 



',= 
,,Y^ (4) IiM^r I 

U2=o K'- 

kA 

A*3 = °      ^3-    J 

oo        Ar3 * (A+^r(4) 
\k3=0  k2=0 k2!(k3-k2)i 

z    z - 
U3=0    *3"    i2=0   *2-(*3_*2) 

*3-'       (L1+Z2)
tl(Z3)*1"*2 

(19) 

V/t,=0   Ä3 ■ 
/4> 

and, finally, by induction the following result is obtained: 

1 f   n \ 
(20) 

The desired single series representation for I\ is now deduced by noting that 

d2 n n f d^ 
\dz ) 

f^ 

\dz. 
(21) 

where 

d_ 
du du^  du2 

_d_ 
~\T 

for» = {z ,z), (22) 

is the gradient operator associated with the vector u. Combining the results embodied in 
equations (17), (20), and (21) yields the «-dimensional analogue of equation (10): 

k=0 K ■ 

f  d\ 

\cJz) 

(d^ 
\dz) 

3>0O#fe), (23) 

or, equivalently, 



s(l - *) =1 
\cz) dz. 

-\k 

0(F)(D(2) 

V*©*GO &*■'       *©*(*) 
(24) 

To facilitate the Gram-Charlier expansion of an arbitrary multivariate PDF later on, it is 
convenient at this point to change the variables from I and z to x_ and x via the relations 

z = r,/2(x-x), (25) 

and 

z_ = rU2(x-x), (26) 

where T is an arbitrary (n x n) symmetric, positive definite matrix, and x is an arbitrary (« x 1) 
vector (these quantities will be specified later). Substituting equations (25) and (26) into equation 
(24), and using the following relationships 

£(r,/2{*-x})=^£(x-x), (27) 

d =ri/2  d 

dz dx 
(28) 

— = YV2~ 
dz dx 

(29) 

Y — Y     Y 

(r,/2)r = r1/2, 

(30) 

(31) 

leads to the expression 

S(x_-x) _ "   1 

^(x;f,r)^(x,-x,r)"^*/ 

f dV   f 

\dx \dx. 

-1* 

#(£-£ r)#fe'£r) 

^(x;x,r)JV(x;x,r) 
(32) 

where 



N(u;x,T) 
®(rU2{u-x})        e-^(u-ifY"(u- 

W\ (2nf> 
forw = (x,x), (33) 

is the «-dimensional Gaussian PDF. 

Although the series representation for £(x - x) given by equation (32) is pleasingly compact, 

it does not yet exhibit the "separation attribute" necessary for utilitarian applications. Specifically, 
individual terms on the right-hand side of equation (32) are not written in a form that explicitly 
uncouples the x_ dependence from the x dependence. This can be accomplished, however, by 
using the Kronecker product formula for differential operators derived in appendix A (see 
equation (A-17)); viz., 

f— 
\dx) 

f^ 

.dx) 
M/2 d_ 

dx) 
1-1/2    u 

V dx) 
k = 0,1,2,..., (34) 

where the notation 

' [A®...]' = A® A&..&A 
A: times 

k = 0,1,2,..., (35) 

has been employed. Substituting equation set (34) into equation (32) yields the desired result 

^-d_ = j;±^gI-x,r)|t(r.-ir> 
N(x;x,T)N(x;x,T)    f0k! 

(36) 

Here, 

4M;^T) N(u;x,T) ^       du) 
N{u;x,T) 

(37) 

k = 0,1,2,..., for u = (x, x), 

is a (nk x 1) vector valued function of its argument u. An alternative representation for 
£ (w/x.r), which is simpler to evaluate explicitly, may also be derived by combining equations 

(12), and (25), through (31) with equations (33) and equation set (37). Performing the necessary 
algebraic manipulations yields 

^,*,r) = ^(r-{.-*}) k = 0,1,2,... for u = (x,x), (38) 



where 

vM = O(w) 

d_ 

du) 
®... 3>(w) k = 0,1,2,. (39) 

2.2  EXPANSION OF AN ARBITRARY MULTIVARIATE PDF 

Let x be a random (nxl) vector defined over all «-dimensional space R„ whose PDF is given 
bypfx). The mean value of x and its covariance matrix then satisfy the relations 

x-\   xp{x)dx, 

r = j  (x - x)(x - x) p(x)dx. 

(40) 

(41) 

Substituting these parameters into equation (36), multiplying both sides ofthat expression by 
p(x), and then integrating the result over Rn (here x is used as the variable of integration) yields 

the formula 

CO 1 

p(x) = AA(x;x,r)£-^(x;x,r), 

where 

ßk=\RiM;±'T)A*)dx- 

(42) 

(43) 

Equation (42) describes the Gram-Charlier series expansion of an arbitrary multivariate PDF. 
The expansion coefficients ß   are specified in terms of the central moments of the PDF via 

equation (43). To compute ß   explicitly, it is first necessary to determine the vector-valued 

polynominals* £ (x,'x,r) in closed form. To this end, recall that £ (x;x,r) is simply related to 

¥ (r~1/2{x-x}J as is indicated by equation set (38). Consequently, knowledge of the latter 

provides sufficient information to evaluate the former.  Since y/ (w) satisfies equation set (39), it 

immediately follows that 

" The components of E, (x;x, T) are related to the Hermite polynomials in several variables described by 

Erdelyi.7 



1    d 
W     (M) =—TT  — ( 

\du) 
O(w) 

1     d 
 1 

$(w) du <%yto<)] 
(44) 

——-—^-®u/- (w) +— ®i/ (u) 

-«®^t(«)+^®^t(«> 

Using the functional definition embodied in equation set (39), the recursion formula specified by 
equation (44), and the differentation rules given in appendix A, it is possible to determine 

polynomial representations for all members of the set Wk{u)'k = 0,1,2,...J. Note, however, that 

y/ («) is a (nk x 1) vector valued function of its argument u. Unfortunately, since the 

dimensionality of y/ (u) grows exponentially with increasing index k, there is a concomitant 

increase in computational complexity associated with the explicit evaluation of each successive 
vector. To forestall this encumbrance, an alternative recursion formula may be employed. In 
particular, observe that (see appendix A) 

0(w)[ 
r d^ 

du) 

2k 

<D(«) = vec< 
O(w) 

f d(d^ 
du VCM    W«. \du) 

0>(w) (45) 

and 

—1 
<&{u)\Kdu) 

2* + l 

$(«) = vec< 
1     d 

<J>(w) du 

d f d^ 
r\ 

\du \du) 
O(w) (46) 

where 

_d_ 

du \du) 

T 
d2 

duidu] 

ij = 1,2,-..,n, (47) 

10 



d2 

is a {n x ri) matrix operator whose (ij) element is . This matrix is sometimes referred to in 
dulduJ 

the literature   as the "Hessian" operator. If 

M2k(u) = 
<%) 

d f d^ 
T\ 

du \duj j 
<S>(u), (48) 

and 

M2k+x{u) 
1 d 

O(w) du 
d f g\^ 

ydu^duj j 
<%) (49) 

it then follows from equation set (39) and equations (45), (46), (48), and (49) that 

y/ (u) = vec{Mk(u)} k = 0,1,2,...   . (50) 

A recursive relation for M2t+l(u) derives by substituting equation (48) into equation (49). 

The result is 

M»*i(-)=^I;0[<I,(-)M"(-)1 

•®¥--w+S-»w (51) 

-u®M2k{u)+—®M2k(u). 

Next, the matrix transpose of equation (49) is taken and the Hessian operator symmetry property 

d 
du 

d_ 

Vdu) 

d( d^ 

du \du 
(52) 

is used to obtain the expression 

11 



<&(u)MT2k+\(u) = 
_d_ 

.du) 

8_ 

du 

r—1 
.du) 

T\ 

O(w) 

Differentation of equation (53) subsequently yields the result 

d d_ 
du 

®[o(w)Mr
2*+,(w)]: <d^ 

du du 

( d( d^ T\ 

du \du) j 

(53) 

<%) 

d 
\du) 

T\ 

from which it follows that 

M2k+2(u) 
1     d 
 I 

O(w) du 

ydU  M/». 

®(u)M2k+2{u), 

H^W.lM 

O(w) 

0>(w)   du 2t+lW   <?w        2<r+lW 

-ä®M»M + d_ 
du 

®MJ 
2*r ;,» 

(54) 

(55) 

Finally, letting k = 0 in equation (48) leads to the initial condition 

Me(v)=l (56) 

Equations (51), (55), and (56) specify a recursive procedure for computing the set of 
matrices [Mk(u):k = 0,1,2,...] . An examination of equations (48) and (49) reveals that the 

dimension ofM2*(w) andM2*+i(w) are of dimension («* x nk) and (>/+!) x «*). Furthermore, since 
the vec (•) operator simply rearranges matrix elements in a prescribed fashion (see appendix A), 
it follows from equation set (50) that y/k{u) can be easily evaluated onceMi(w) is determined 

explicitly. At the 2kA stage, actual computations involve (// x nk) dimensional matrices rather 
than (n2k x 1) dimensional vectors. This reduction in the exponential growth rate by a factor of 2 
significantly reduces the complexity of required mathematical operations. For convenience, the 
pertinent equations and first few polynomial representations are summarized as follows: 

12 



M0(u) = l, (57a) 

M2k+](u) = -u®M2k(u) + ~®M2k(u), (57b) 

M2k+2 (u) = -u ®M2;+] (u) + j- ®mJ+] («), (57c) 

Yk(u) = vec{Mk{u)} k = 0,1,2,..., (57d) 

M0(u) = \, (58a) 

M, («) = -«, (58b) 

M2(u) = uuT-I, (58c) 

M3(w) = C[/®w]-^2(w)wr, (58d) 

M4(u) = v2{u)vl(u)-C[l®M2(u)]C-C. (58e) 

Here, 

/=Z &(")*» (59) 
1=1 

is the (« x n) identity matrix. In addition, 

C = I®I + U(n,n), (60) 

where 

u(n>n)=zi fcw* ■ w} ® K (%»} (6i) 
i=i    ;=i 

is the («2 x «2) permutation matrix,12 and 

13 



*iM = e2{n) = e„(»)■ (62) 

0 

are (nxl) unit vectors. 

Returning to the problem at hand, a closed-form expression for the vector valued 
polynomial £ (x;x,r) follows immediately by combining equation set (38) with equation set 

(50). In particular, 

£k(x;x,r) = vec{Mk(r
W2{x-x})} k = 0,1,2  

Substituting this expression into equation (43) then yields 

ßk = vecti  M,(r!/2{x -x})p(x_)dx) k = 0,1,2  

Use of equations (40), (41), and equation set (58) allows explicit evaluation of ßk as shown 

below: 

ß = 0 = (n x l)«w// vector, 

ß - o(g)0 = (n2 x \\null vector, 

(63) 

(64) 

ß3 = -[r-^..]i\J(x-x)®..]3p(x_)di, 

ß4 = [r,/2<8>.. | J [(* - x)<S>.. ]4p(x)dx_ - vec{C(T <g> f)} - vec(r)<8>wc(r) 

(65a) 

(65b) 

(65c) 

(65d) 

(65e) 

Since each term in the multivariate Gram-Charlier series expansion of/?(x) takes the form of 
a scalar product of two vectors, the computation process can be simplified further by employing 

14 



various mathematical artifices. Details of the procedure, along with explicit evaluation of the first 
two non-trivial terms, are presented in appendix B. 

2.3    AN INTEGRAL EQUATION SATISFIED BY THE MULTIVARIATE 
GRAM-CHARLIER EXPANSION FUNCTIONS 

In section 2.1, the Gram-Charlier expansion functions were defined by the differential 
relationships expressed in equation set (37), or equivalently, in equation set (63). An alternative 
relationship in integral form may also be developed by using the well-known characteristic 
function formula for a «-dimensional normalized Gaussian PDF,3 viz., 

O(w) = f    e 
W    (27r)"J*- 

ju   w-\/2iw   w- 
dw, (66) 

where O(w) is specified by equation (12). Differentiating this expression successively with 

respect to u, and noting that 

du 
(67) 

leads to the expression 

.du) 
<D(w) = -±— f  \w®.. .f e}"T^U2(-T^dw. (68) 

An integral formula for if/ («) is now obtained by dividing both sides of equation (68) with 

O(M) , and then using equations (12) and (43). The result is 

VM) = TTWI [w®-feV2(V+n^^dw • (69) 
\27T) 

Combining equation set (38) with equation (69) also yields 

£{x;x,T): (2*r i lw®-] 
k  i/2{r'1/2(x-j)+iw]1'{r,/2(x-*)+jw\ 

dw 

To derive the integral equation for y/ (w), multiply both sides of equation (69) by 

N(U;U,[I + Q]   J and integrate the resulting expression over R„ to obtain 

(70) 

15 



f  N\u;ü,[l + Cl]jy/k(u)du 

(71) 

/ f    f   W+Mr   ^    1*      -1/2 (ü-«)r/+o (»-«)-(«+;»■) («■*;>) 
——^- -pr- \w®...\    e     < ' 

(2ny/llRjR„ (2n) 
dwdu. 

Here, it is assumed that Q is a positive definite symmetric matrix. This assumption insures that 
the integrals appearing on the right-hand side of equation (71) are both absolutely convergent, 
thus permitting the order of integration to be interchanged. Performing this operation allows 
equation (70) to be rewritten in the form 

f  Afu/;w,[/ + Q] 'V {u)du 

(72) 

/+n 
(2*)" -U-irt fe®-l 

k    ]/2(C+jw)T\l + Q '\(ü+jw) 

}RnV Q {In) 
n/2   L 

-\/2{u-u\   Cl{u-u 
du dw , 

where 

u = w + Q ' (w + jw). (73) 

Since the integral enclosed by the square brackets on the right-hand side of equation (72) is equal 
to unity, it follows that 

\  N(u;ü,[l + a]-%^du = -^jRi 
jk      f    ll/ + ^[w0...f^(a"+>s)rf/+Q1(s+>sW     (74) 

(2,r)"/2jM    M 

Under the assumption that O is positive definite and symmetric, the matrix \I + D ' J will 

also possess these properties; consequently, it has a square root decomposition of the form 

(75b) 

[/ + n-,] = [/ + n-,f[/ + n-,f, (75a) 

{['+°T}r=['+°T- 
A new variable of integration can then be introduced into equation (74) via the formula 

z = 17 + Q"11    w.  Performing the necessary algerbraic manipulations and using the "Mixed 

Multiplication Rule" described in appendix A {see equation (A-8)} yields 
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J  N{U;ü\I + Q\x}yk(u)du 

(76) 

[/ + Q1] 
k f f -i*      l/2[[/ + n~1]"Zü+jr)   n/ + Q"']"2ü+;? 

(in) M. b®-f« rfz 

The desired integral equation for y/ («) follows immediately by comparing the right-hand side of 

equation (76) with equation (69); viz., 

f  AMM;M,[/ + Q] 'V (u)du 

(77) 

[[/+n-I]-,/2®...]t^([/+n-ffi) k = 0,1,2,. 

The result embodied in equation set (77) will be used in section 3 of this report to provide a 
closed-form solution to the problem of detecting random multivariate signals embedded in 
Gaussian noise. 

2.4 DISCUSSION OF SECTION 2 RESULTS 

With the aid of the «-dimensional Dirac delta function representation given by equation (36), 
it was a straightforward task to obtain the Gram-Charlier series expansion for an arbitrary 
multivariate PDF as depicted in equation (42). Similarities between the univariate PDF expansion 
and its multivariate counterpart are clearly evident. In the univariate case, the expansion 
coefficients are all scalar quantities; the first three values being 1,0, and 0, respectively, while the 
remaining coefficients depend successively upon progressively higher-order moments starting with 
third order.3 An examination of equation set (65) reveals that the same pattern prevails in the 
multivariate case, only now the expansion coefficients are vectors of exponentially increasing 
dimension. Furthermore, using only the first term of the Gram-Charlier series expansion to 
approximate an actual PDF, whether in the univariate or multivariate case, will result in the 
equality of corresponding moments up to and including second order. As might be expected, 
including successively more terms of the series expansion will result in the equality of 
progressively higher order moments. 
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3. MULTIVARIATE RANDOM SIGNAL DETECTION IN GAUSSIAN NOISE 

3.1  FORMULATION OF DETECTION PROBLEM 

The sonar detection problem is usually formulated as a binary statistical hypothesis test.13'18 

Under the null hypothesis H0, observations (i.e., data describing the output of acoustic sensors) 
consist of noise alone; under the alternative hypothesis H\, observations consist of noise and 
signals that represent responses of the acoustic sensors to the presence of a target or other 
interesting object. In practice, the signals and noise are usually time-varying functions; however, 
the time parameter can actually be suppressed without loss of generality via judicious application 
of the Karhunen-Loeve expansion.13 Consequently, only the single-time epoch problem will be 
considered, the results being readily extended to time-varying situations without undue 
complication. With this in mind, the aforementioned detection problem is mathematically 
described as follows: 

H0:r = n, (78a) 

H,:r = s+n, (78b) 

where 

L = [rx,r2,...,rn]
T, (79) 

*=[*,,^....^„f, (80) 

n = [n],n2,...,nnf. (81) 

Here ri denotes the output of the /lh sensor element (e.g., the response of the 7th transducer of an 
acoustic array), and st and n, are the corresponding signal and noise components, respectively. 
The vector r is a random process that describes the output (voltage) of an array of acoustic 
transducers comprising the data. The signal and noise vectors are assumed to be uncorrelated 
random processes, with the noise having a multivariate Gaussian PDF given by 

Pjn) = N(n;n,rB} (82) 

The signal PDF, denoted by ps(s), is an arbitrary multivariate distribution that satisfies the 
relations 

1 = J sp±(s)ds (83a) 

19 



rs = \R{s-s)(s-s)TpXs)ds (83b) 

3 and, additionally, fulfills all the usual requirements of a legitimate PDF. 

The optimal solution to the binary detection problem specified by equation (78) is well- 
known and readily available in the literature.2'4,10'13 It is called the "likelihood ratio" test, denoted 
by A(r), and can be expressed as 

AfeK^^GC* (84) 

When both signal and noise vectors are Gaussian random processes, the integral appearing on the 
right-hand side of equation (84) can be evaluated explicitly. In this case, a simple canonical 
representation for the likelihood ratio is obtained; viz., 

N(r;{s + n},\rs + Tn] 

N(r;n,rB) 

The subscript "g" is used here to underscore the Gaussian character of both signal and noise. The 
case involving non-Gaussian signals embedded in Gaussian noise yields a more formidable 
expression for the likelihood ratio that is not amenable to closed-form evaluation. As a result, 
some type of approximation technique is required. One particularly attractive procedure is 
described in the next section. 

3.2 DERIVATION OF A CANONICAL REPRESENTATION FOR 
THE LIKELIHOOD RATIO 

The derivation of a canonical representation for the likelihood ratio A(r) is based on the 

result embodied in equation (84). In that expression, closed-form evaluation of the integral is 
prohibited becauseps(s) is specified as an arbitrary PDF. However, this difficulty is circumvented 
by expandingps(s) in a multivariate Gram-Charlier series as described by equation (42), viz., 

00 -I 

p,(s)= N(s;sT£)j:-fkZk(s;ir±), (86) 
k=0 K ■ 

where 

ßk=\jM'r>Mds- (87) 
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and £ (jSViS.rj are the (nk x 1 ) vector valued functions defined by equation set (37). If equations 

(82) and (86) are substituted into equation (84), and the summation and integration processes 
interchanged (which is permissible since both are assumed to be absolutely convergent), it follows 
that 

^-ifl^£^%*rj* ^;«,r„) 
(88) 

Next, observe that the identity 

(89) 

where 

u = [l + Ql]  r;U2(r-S-n), (90) 

and 

a=       U2        ,      U2f (91) 

can be readily deduced via straightforward algebraic manipulation and use of equation (85). If 
equations (38) and (89) are now substituted into the integral appearing on the right-hand side of 

equation (88), and the variable of integration changed via the formula u = Ts     (s -1), 

P\ Afe) = A.^Zfrl N(u;ü,[l+Q]\k(u)du. (92) 

The integral appearing in equation (92) is identical to the one shown in equation set (77), and 
the matrix Q. defined by equation (91) is symmetric and positive definite. As a result, equation 
(92) may be rewritten in the form 

Afe) = \«i![['+n-']-"20...1'4'+n-f;4 (93) 
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Alternatively, 

AfeM.feEfy (rVT,+r5p)®... |,(r;{|+,;},[rA+rJ) (94) 

where the latter expression follows by substituting equations (90) and (91) into equation (74), 
algebraically manipulating the result, and then using equation (70) along with the "Mixed 
Multiplication Rule" described in appendix A. This is the desired canonical representation for the 
likelihood ratio. It might be noted that the first two terms of the series given by equation (94) are 
explicitly evaluated in appendix B (see equations (B-20) through (B-25)). 

3.3 DISCUSSION OF SECTION 3 RESULTS 

It is noteworthy that the infinite series appearing in equation (94) can be summed explicitly 

in the absence of the matrix Kronecker product 

substituting equation sets (33) and (38) into equation (86) reveals that 

r."2[r, + rJ 1/2 
.  In particular, 

r.+r. 
^(|+r//2[r^+rj1/2{r-j-»}) 

r. + r N[r;{s+ü}.[r£+re\ 
(95) 

This result suggests some interesting possibilities for simply approximating A(r) in situations 

where the signal-to-noise ratio is high. For example, an intuitively pleasing formula is obtained by 
introducing the approximation Ys + Y „ « Y s.  Under this assumption, equations (82), (85), 

(94), and (95) may be combined and subsequently manipulated to produce the expression 

A(r) p,(r-n) 
PM • 

(96) 

Comparing equation (84) with equation (96) reveals that the noise PDF takes on Dirac delta 
function characteristics as the signal strength increases to the point of overwhelming the noise. 
This is expected, since the condition Y s + Y „ -> Y s has a mathematically analogous effect on the 

integration process depicted in equation (84) as the condition Y n -»[0].  Recalling equation (82) 

and the fact that 

lim 
rWo: N ({L ~ a}',«. r „) ->S(r-s- n), (97) 

readily explains the approximation given by equation (96). 
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Equation (95) may also be used to confirm earlier results depicted by equation (85). 
Indeed, for Gaussian signal and noise vectors, the right-hand side of equation (95) reduces to 
unity, while all terms on the left-hand side vanish except for the one corresponding to k = 0. In 
this case, the equivalence between (85) and (94) is manifest. Finally, even if no constraints are 
imposed on the signal-to-noise ratio, the canonical representation depicted in equation (94) may 
be recast in the form 

A(r>. 
1     s n\ 

^(| + rf
1/2[rJ + r„]"'/2{r-5-»}) 

Prk. 

ß\ 

(98) 

AIfe)I=7[rf
,,2®-]4a£tt-.{l + s}.[ri + rJ), 

where 

a=[r,-"«...]'-f[r,+r.] -1/2 
(99) 

In practical applications, situations may arise wherein an TV-term series approximation based 
on equation (98) will provide more accuracy than a similar type approximation based on equation 
(94). Of course, the opposite situation may also arise under appropriate circumstances. 
Ostensibly, equation (94) should prove to be more utilitarian under low signal-to-noise ratio 
conditions, while equation (98) is preferred when high signal-to-noise ratio conditions prevail. 
Having both representations available thus provides a greater degree of flexibility for dealing with 
specific problems. 

4. SUMMARY AND CONCLUSIONS 

Section 2 of this report extended the well-known Gram-Charlier series expansion technique 
for an arbitrary univariate PDF to the multivariate case. The approach employed here deliberately 
avoided explicit use of tensor analysis and multivariate Hermite polynomials, both of which are 
cumbersome to apply, even under the best of circumstances. The desired expansion was obtained 
by developing a suitable infinite series representation for the «-dimensional Dirac delta function, 
and then judiciously using Kronecker product formulae and matrix calculus rules to manipulate 
the result. 

The analogy between a univariate PDF series expansion and its multivariate counterpart is 
clearly evident. Expansion coefficients in the univariate case are all scalar quantities, the first 
three values being 1,0, and 0, respectively. The remaining coefficients depend, in succession, on 
progressively higher order moments starting with the third order. For the multivariate case, a 
similar pattern exists; however, the expansion coefficients are now vector quantities whose 
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dimension increases in an exponential manner with the summation index. In both cases, only a 
single term in the series expansion is needed to exactly replicate any Gaussian PDF.   Under such 
circumstances, all the expansion coefficients vanish except the first. When the actual PDF is non- 
Gaussian, using a one-term series approximation leads to the equality of corresponding moments 
up to and including second order. As might be expected, retaining successively more terms in the 
series approximation of the actual PDF will result in the equality of progressively higher order 
moments. 

While the computational procedure for explicitly evaluating the multivariate expansion 
coefficients is by no means trivial, it is nevertheless tractable. A particularly attractive feature of 
the formulae is that the statistical mean and covariance associated with the actual PDF always 
appear in their compact vector and matrix formats, respectively. The need to explicitly depict 
individual vector components or matrix elements has been avoided by using Kronecker products. 
This artifice greatly simplifies expressions that would otherwise be unwieldy and not at all 
amenable to analysis and/or interpretation. 

An important application of the multivariate Gram-Charlier series expansion technique is in 
solving the binary detection problem for multivariate signals embedded in Gaussian background 
noise. Section 3 of this report addressed that problem in the context of sonar array signal 
processing. The solution was specified as a binary statistical hypothesis test, viz., the "likelihood 
ratio test." A canonical representation for the likelihood ratio was developed in the form of an 
infinite series whose individual terms depend on the received measurement vector together with 
the signal and noise statistics. A closed-form expression for each term was subsequently obtained 
via use of an integral equation satisfied by the multivariate Gram-Charlier expression coefficients. 
This description reveals manifest similarities between the multivariate and univariate canonical 
representations. In fact, it is easily demonstrated that the former reduces to the latter as the 
dimensionality parameter n approaches unity. 

Another important consequence of evaluating the individual terms of the infinite series in 
closed-form is that it facilitates the derivation of likelihood ratio approximations that are suitable 
for use under various operating conditions. In particular, the aforementioned description of 
individual terms allows the original infinite series to be decomposed into two other infinite series, 
one of which is summable to a recognizable function. As a result, the likelihood ratio can be 
represented in either of two canonical forms. The forms are equivalent and of identical 
composition; viz., both are expressed as infinite series. Ostensibly, the convergence 
characteristics of these two series are quite different.   When the signal-to-noise ratio is high, one 
series appears to converge rapidly, while the other does not. When the signal-to-noise ratio is 
low, this pattern seems to reverse itself. Consequently, in practical applications, judiciously 
choosing the appropriate canonical representation before making an TV-term series approximation 
should yield a more accurate description of the actual likelihood ratio. Having both 
representations available obviously enhances the capability to address specific problems more 
effectively. 
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APPENDIX A 

KRONECKER PRODUCT FORMULAE AND MATRIX CALCULUS RULES 

Presented in this appendix are some formulae for manipulating Kronecker products and for 
performing matrix calculus. The results are presented without proof. Interested readers are 
referred to Graham 12 for detailed derivations and a comprehensive treatment of the subject 
material. 

DEFINITION OF THE KRONECKER PRODUCT 

Consider a matrix A = [or;-.-] of order (m xp) and a matrix B = [bjj] of order (r x s). The 
Kronecker product of the two matrices, denoted by A ® B, is defined as the partitioned matrix: 

A®B = 

auB    anB   ...   a]pB 

alxB    a22B   ...   a2pB 

a.B   amlB   ...   aB ml ml mp 

(A-l) 

<■   -\th A ® B is seen to be a matrix of order {mr x ps). It has mp blocks; the (/',_/')  block is the matrix 
a,jB of order (rxs). 

Some properties and rules for Kronecker products are: 

1. (aA) ® (/SB) = ap\A ® B) for any scalars a, ß. 

2. If A and B are both (m xp), and C is (r x s), then 
{A+B)®C = A®C + B®C. 

3. If A is {m xp) and both B and C are (r x s), then 
A®(B + Q = A®B + A®C. 

(A-2) 

(A-3) 

(A-4) 

4.    ^ ® (5 ® O = 04 ® B) <8> C. 

5.    (A®B)T = AT( B1 

6.    If ^ and 5 are both (m x m), then 
tr(A ®B) = tr(A) tr(B), 

(A-5) 

(A-6) 

(A-7) 

A-l 



where tr{ ) is the trace operator. 

7. If A is (m xp), Bis(qx r), C is (p x s), and D\s(rx v), then 
04 ® £)(C ® D) = (^Q ® (££>). 

8. If A and 5 are both nonsingular, then 
(A®B)'l= Äx®Rl. 

9. If A is (m x p) and B is (q x r), then 
A®B= U(m,q) (B ® A) U(r,p), 

(A-8) 

(A-9) 

(A-10) 

where 

k        I 

"M'izKcii^O!:«) 
i=l    ;=1 

(A-ll) 

is the (A:/ x kl) permutation matrix   defined for all integer values of A: and /, and 

ex(n) e2(»): en{
n) = (A-12) 

are (n x 1) unit vectors defined for all integer values of n. 

Let 

d_ 
du dux   du2        dun 

-\T 

for u = (x,x), (A-13) 

and assume that T is a symmetric, positive definite (n x ri) matrix. Under these assumptions, it is 
easily shown19 that T has the square root decomposition 

r = r,/T i/2ri'2 (A-14) 
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rr M/2 (A-15) 

Now observe that 

f d\TJ d 
\dx. \dx 

(        d\ rl/2 — (A-16) 

Consequently, the square of this scalar differential operator can be expressed in the form 

\dx) 

T 

r 
\dx) 

2 

7    #} pi/2     V 

\       dx_) 

T (     dS pl/2    ° 
\       dx) 

® 
7     ^ r-l/2     V 

r 
(      d\ 

K        dx) 
(A-17) 

since the Kronecker product of two scalar quantities is identical to the ordinary scalar product. 
Using equation (A-8) allows equation (A-17) to be rewritten as 

f d^ 
.dx) 

d_ 

{dx. 

r      dY pl/2    U 

v       dx) 
®. -1/2 d_ 

dx) 
®... (A-18) 

where the notation 

[A®...f =A®A®...®A k = 0,1,2,. 
k times 

has been employed. Repeating this process yields the following result by induction: 

(A-19) 

\dx_) 

T 

r 
Kdx) 

\k 

7     d^ pl/2    ^ 

v       dx) 
®... 

7            /?   > y\nd_ 
®... (A-20) 

vec( ) OPERATOR 

If 

= [«, :_«2 : •■• : «J (A-21) 

is an (m x p) matrix partitioned as shown, then 
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a, 

a, 

vec\ (A) (A-22) 

a, 

is a (w/? x 1) vector. Some useful formulae connecting the vec of a matrix product with the 
Kronecker product and the trace of a matrix product are specified below: 

1. If B is (m x n), C is (n x q), and D is (q x s), then 
vec(BCD) = (DT ® 5) vec(Q. 

2. If 5 is (w x n) and w is a (« x 1) vector, then 
vec(B <8> u} = vec(B) ® u 
vec(uuT) = u® u. 

3. If B is (m x w) and C is (n x /w), then 
{vec(BT)}T{vec(C)} = tr(BQ. 

(A-23) 

(A-24) 
(A-25) 

(A-26) 

DIFFERENTIATION FORMULAE FOR KRONECKER PRODUCTS 

1.    If A is (m xp),B'\s(px q), and u is a (« x 1) vector, then 

— ®{AB} = (— ®A 
du    l     j    \du 

B + {I®A}[—®B (A-27) 

2.    If/4 is (/w x/?), Bis(qx r), and w is a (w x 1) vector, then 

d_ 
du 

{A®B} = ^-®A 
ßu       ) 

d 
®B + {l® U(m,q)}\\ — ®B\®A >U(r,p). 

du 
(A-28) 

In equations (A-27) and (A-28), / represents the (n x ri) identity matrix, while U(m,q) and U(r,p) 
represent permutation matrices defined by equation (A-l 1). Some special results are given as 
follows: 
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If A is a constant (m x n) matrix and u is a (« x 1) vector, then 

vec(w) = w, (A-29) 

vec(uT) = u, (A-30) 

vec(w7^r) = ^w, (A-31) 

— ®uT=I, (A-32) 

— ®«=vec(A (A-33) 

d 
— ®{uTu} = 2u, (A-34) 

® {v4w} = vec{A), (A-35) 

— ®{uTAT\ = AT. (A-36) 
/9»/       I " du 

HA is a constant (n x «) matrix and u is a (« x 1) vector, then 

—®{uT Au}^ = Au + ATu. (A-37) 
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APPENDIX B 
COMPUTATION OF THE FIRST TWO NON-TRIVIAL TERMS OF THE 

MULTIVARIATE GRAM-CHARLIER SERIES 

In this appendix, the first two non-trivial terms appearing in the Gram-Charlier series given 
by equation (42) are evaluated. Since each term in that series takes the form of a scalar product 
of two vectors, various mathematical artifices may be employed to simplify the calculations. To 
this end, observe that the first two non-trivial terms are associated with the indices k = 3 and k = 
4. Those corresponding to k = 0, k =1, and k = 2 are trivial to compute; their numerical values 
being 1, 0, and 0, respectively. Focusing on the non-trivial term with index k = 3, the evaluation 
process begins by using the formula 

ys2{ä) = ä®H-vec(l), (B-]) 

which follows from equations (57d), (58c), and (A-25). Substituting equation (B-l) into 
equation (58d), and combining that result with equations (57d), (A-23), and (A-24) yields 

y (u) = {/. ®C}{vec(l)® u) + u® vec(l)-u®u®u. (B"2) 

Aided by equations (B-2) and (A-8), along with the relations 

/?3{/0C}{vec(/)0!/} =ß[{2vec(l)®u}, (B"3) 

and 

ßT
3[u®vec(l)}=ß[[vec(l)®u}, (B"4) 

it can be shown that 

where 

z = T'{x-x}. (B-6) 

From equations (A-24) and (A-25) it also follows that 

[z®z-3vec(r"1)]®z = vec{[zzr-3r1]®2}, (B-7) 

and 
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J  [(* -1)®• • •]3 P®dL = vec(A 3)' (B-8) 

where 

A3=j \(L-X)(X-X)
T
 ®(x-x)Tp(xi)dx (B-9) 

is the matrix of third order central moments associated with p(x).Finally, substituting equations 
(B-7) and (B-8) into equation (B-5), and using equation set (38) and equation (A-26) leads to the 
desired result; viz., 

ß\^(x;xj)^tr[^[(zzT -3Y~')®z\ (B-10) 

Computation of the non-trivial term associated with index k = 4 is initiated by using the 
formula 

in conjunction with equation (58e) to obtain 

(B-ll) 

(B-12) 

Combining this expression with equation set (63), and then using equations (A-8) and (A-23) 
along with some algebraic manipulations, yields the result 

£4M.r): —®— 
2      2 

[r,/2®...]4vec{Q(z)}, (B-13) 

where 

Q(z)=lvec(zzT -Y-x)\\vec(zzT -T'^ - 4r ' ®{zz?) + 21^ ®T~\ (B-14) 

and z is defined by equation (B-6). With the aid of equations (B-13) and (65e), and the identity 

ß — <S> — 
2     2 

=ß\ (B-15) 

it follows that 
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£i4(*.- £r)=[£ [£ - ä®- • -IV *y * - vecfc(r ®r)) 
(B-16) 

vec(Y) <g> vec(T)] vec{ Q.(zj\. 

Next, observe the relation 

[v<?c{C(r®r)}]rv<?c{Q(z)j = 2[vec[r)®vec(Y)]Tvec{Q(z)}. (B-17) 

If 

A4 =  [    \{x~ *)(* ~ *)      ®  (* _ *)(* ~~ *)     Z^)^— (B-18) 

is defined as the matrix of fourth order central moments associated with/?(x), then equations 
(B-17), (B-18), and (A-26) allow equation (B-16) to be rewritten in the desired form; i.e., 

£|4fe£.r) = »■ JA4 - 3{vec(r)}[vec(r)}T]n(z)}. (B-19) 

Equations (B-10) and (B-19) represent simplified expressions for the first two non-trivial 
terms in the Gram-Charlier series expansion ofp(x). It is noteworthy that analogous expressions 
also exist for the corresponding non-trivial terms in the likelihood ratio representation given by 
equation (94). They are 

/[(r.,/2[r.+r-],>-"I^^+^[r.+r.]) 

= HA >Zr-3[rj+r3]",)®z 

(B-20) 

rr 

ß r";[r,tr,f>... ;,(.(i«),[r,tr,| 

= tr A;-3{vec(^)}{vec(r?)}   fo'(y) 

(B-21) 

where 

y = [rx+Yn]'\r-ä-n), (B-22) 
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and 

A3*= I [(s-s)(s-s}T^(s-sfps(s)ds, 

K=l\{ä-l)(ä-l)T]®l{s-l)(s-l)T]Ps(ä)ds, 

n'{y) = {wc(^r -[r, + rj,)}{v,c(^ -[r, + rj-)}7 

-4[r,+rB] ",®(wr)+2[ri
+rJ",®[r* + rBr

1 

(B-23) 

(B-24) 

(B-25) 
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