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Abstract

We present a novel approach to3D shape synthesis of closed surfaces. A curved or polyhe-

dral 3D object of genus zero is represented by a curvature distribution on a spherical mesh

that has nearly uniform distribution with known connectivity among mesh nodes. This cur-

vature distribution, i.e., the result of forward mapping from shape space to curvature space,

is used as the intrinsic shape representation because it is invariant to rigid transformation

and scale factor. Furthermore, with regularity constraints on the mesh, the inverse mapping

from curvature space to shape space always exists and can be recovered using an iterative

method. Therefore, the task of synthesizing a new shape from two known objects becomes

one of interpolating the two known curvature distributions, and then mapping the interpo-

lated curvature distribution back to a 3D morph. Using the distance between two curvature

distributions, we can quantitatively control the shape synthesis process to yeild smooth cur-

vature migration. Experiments show that our method produces smooth and realistic shape

morphs.
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1  Introduction

A traditional approach to synthesizing 3D shape is to use volume metamorphosis (or vol-

ume morphing). Similar to image morphing [1], volume morphing [12] is achieved by first

warping two original volumes to new volumes, and then blending both into an intermediate

shape, i.e., a morph. A major challenge to the 3D morphing system is the automatic feature

recognition and matching because it is crucial to defining the transformation of the two

objects. Unlike image morphing, however, a simple morph map can not be easily estab-

lished for volume morphing. What is to be morphed between two volumes is not clearly

defined. Most 3D morphing systems [4][12] (except [7], which attempts to do automatic

feature registration) resort to a good user interface which allows the user to specify feature

segments in both objects. However, even when many feature segments are located, smooth

shape transition between two shapes is not guaranteed because the curvature may not be

interpolated properly. Computationally, the volume morphing is very expensive because of

the huge amount of data used.

This paper provides a means of synthesizing a 3D shapes on 3D surface instead of on 3D

volume. We restrict our study on shapes of genus zero. We prefer to synthesize shape on 3D

surface rather than 3D volume because surface data are most common in computer vision

applications, such as from a light stripe range finder, a laser range finder, or stereo. On the

other hand, if volume data is available (e.g., from a CT scan), it can be converted to a sur-

face model using techniques such as “marching cube” [14]. For the purpose of shape synthe-

sis, volume data is perhaps redundant.

We define our 3D shape synthesis problem as follows. Given two 3D shapes A and B, we

synthesize a sequence of intermediate shapes (or morphs) which should have the following

desirable properties defined in [12]:
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1. Realism: the morphs should be realistic objects which have plausible 3D geometry and
which retain the essential features of the originals.

2. Smoothness: the change in the sequence of morphs must show a smooth transition
between two originals.

To meet the above requirements, we propose to synthesize a shape in terms of its curvature

distribution because curvature is independent of rigid transformation and scale. However,

neither Gaussian curvature nor mean curvature fully captures the essence of 3D shape. Peo-

ple have long searched for proper spherical shape representations using curvatures

[6][9][13] for closed shape. For example, from the Extended Gaussian Image, we can con-

struct the original shape if the object is convex. However, to synthesize arbitrary non-con-

vex shape, we have to search for proper representation of 3D shape.

In our work, we use a spherical mesh to represent an object shape, and store local curvature

at each node as its intrinsic representation. From this intrinsic representation, we show that,

provided that some regularity constraint is introduced, the original shape can be recon-

structed up to a scale factor and a rigid transformation. The correspondence between two

original shapes can be automatically obtained by minimizing the difference between two

curvature distributions as we have shown previously in [5][16]. Then the task of synthesiz-

ing a new object from two known objects becomes one of interpolating the two curvature

distributions, and then mapping the interpolated curvature distribution back to 3D shape.

We first illustrate our basic approach on shape synthesis in Section 2. After introducing our

spherical shape representation of closed 3D surfaces, Section 3 describes the mapping from

shape space to curvature space, while the inverse mapping from curvature space to shape

space is discussed in Section 4. Section 5 describes our curvature-based shape synthesis in

detail. Correspondence between two shapes is briefly discussed; details of this are given

elsewhere [12]. Finally, we show the results of our shape synthesis. and close with a discus-

sion and conclusion.
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2  Basic Idea

Our ultimate goal is to generate a sequence of intermediate shapes from two given 3D

shapes which can be either closed curved or polyhedral surfaces without holes. We represent

our 3D shape using a special spherical coordinate system [5]. A semi-regularly tessellated

sphere is deformed so that the meshes sit on the original data points, while the connectivity

among the mesh nodes is preserved. After the deformation process, we obtain a spherical

representation with local curvature1 at each mesh node. The local curvature at each node is

calculated by its relative position to its neighbors. By enforcing local regularity at each

mesh node, we can reconstruct shape from its curvature distribution up to a scale factor and

a rigid transformation.

Our approach to shape synthesis is straightforward: for each original shape, we build its cur-

vature distribution as its intrinsic representation. The correspondence between them is either

specified by the user or can be directly computed, e.g., by minimizing the difference

between their curvature distributions [16]. The problem of synthesizing a new shape from

two known shapes becomes one of interpolating two known curvature distributions. The

new shape is reconstructed from the interpolated curvature distribution. This approach is

summarized in Figure 1.

An advantage of our shape synthesis using curvatures is that the resulting shapes vary

smoothly because the morphs are interpolated according to the original curvature distribu-

tions. Volume morphing, on the other hand, can hardly quantitatively specify this kind of

shape change. Instead, it has to rely on careful feature selection which provides only qualita-

tive shape change at best. By making explicit use of the curvature information, our method

reduces the ambiguity of matching two shapes. This is especially important for smooth

1.  We adopt the terms local curvature and curvature distribution here in a different way than the formal defini-
tion of curvature such as in [11]. Our local discrete curvature measure was first introduced in [5].
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curved objects, where features are very difficult to identify manually. Compared with vol-

ume morphing, our method is more efficient.

Figure 1 Shape synthesis in curvature space: an example of a sphere and a hexahedron. The curvature
has been color-coded so that the darker the bigger positive curvature and the lighter the bigger
negative curvature.

Original

Curvature
Distributions
on Sphere

Interpolated
Curvature
Distribution

Inverse mapping

Synthesized object

objects

Forward mapping
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3  From Shape to Curvature Distribution:
Forward Mapping

3.1  Spherical Representation of a Closed 3D Surface

To synthesize object shapes, one first has to find appropriate representations of those shapes.

A natural discrete representation of a surface is a graph of nodes, or tessellation, such that

each node is connected to each of its closest neighbors by an arc of the graph. For example,

Szeliski and Tonnesen [17] used oriented particles to model arbitrary surface; Witkin and

Heckbert [20] also used particles to sample surfaces. We use a special mesh each node of

which has exactly three neighbors. Such a mesh can be constructed as the dual of a triangu-

lation of the surface [5]. Our representation differs from particle systems [17][20] in that it

restricts to the spherical topology and has a fixed neighborhood; but it leads to more efficient

computation and robust local curvature approximation. To tessellate a unit sphere, we use a

standard semi-regular triangulation of the unit sphere constructed by subdividing each trian-

gular face of a 20-face icosahedron intoN2 smaller triangles. The final tessellation is built

by taking the dual of the 20N2-face triangulation, yielding a tessellation with the same num-

ber of nodes.

In order to obtain a mesh representation for an arbitrary surface, we deform a tessellated sur-

face until it is as close as possible to the object surface. The deformable surface algorithm

drives the spherical mesh to converge to the correct object shape by combining forces

between the data set and the mesh. Our algorithm originates from the idea of a 2D deform-

able surface [10][19] and is described in detail in [5]. The deformed surface can accurately

represent concave as well as convex surfaces. Our deformable algorithm is not sensitive to

deformation parameters such as the initial center and radius of the sphere. An example of a

free-form object model created using the deformable surface and multiple view merging

techniques [15] is shown in Figure 2. The deformation process is robust against data noise

and moderate change of parameters such as initial sphere center and radius [15].
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Figure 2 An example of a free-form object modeled from a deformable surface: (a) (c) Images of a
sharpei; (b) (d) Deformable models of a sharpei

The key idea of our spherical representation of a surface is to produce meshes in which the

density of nodes on the object’s surface is nearly uniform1. Although perfectly uniform dis-

tribution is impossible, a simple local regularity constraint can enforce a very high degree of

uniformity across the mesh. We implement the local regularity constraint in the deformable

surface algorithm such that each mesh has similar area as the others [5].

The local regularity constraint is a generalization to three dimensions of the regularity con-

dition on two dimensional discrete curves; this condition simply states that all segments are

of equal lengths. The difference between 2D and 3D is that it is always possible to create a

uniform discrete curve in 2D, while only nearly uniform discrete surfaces can be generated

in 3D. In practice, the variation of mesh nodes on the surface is on the order of 2% [5].

3.2  3D Local Curvature: An Approximation

After we obtain a nearly uniform surface mesh representation, the next step is to define a

measure of curvature that can be computed from the surface representation. Conventional

ways of estimating surface curvature, either by locally fitting a surface or by estimating first

and second derivatives, are very sensitive to noise. This sensitivity is mainly due to the dis-

1.  Koenderink warned that one has to be very careful of any method that uses the surface area of a polyhedral
model (p.597 of [11]). Surface area depends on the way in which triangulations are done. In our previous
work, we have shown how areas of different shapes are adjusted before comparison, in particular for partial
views[5].

(a) (b) (c) (d)
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crete sampling and, possibly, to the noisy data. We introduced in [5] a robust measure of

curvature computed at every node from the relative positions of its three neighbors. Our

method is robust because all the nodes are at relatively stable positions after the deformation

process. The deformable surface process serves as a smoothing operation over the possibly

noisy original data. We call this measure of curvature the simplex angle.

The simplex angle  varies between -π andπ, and is negative if the surface is locally con-

cave, positive if it is convex. Given a configuration of four points, the angle is invariant by

rotation, translation, and scaling because it depends only on the relative positions of the

points, not on their absolute positions.

The spherical representation can approximate not only free-form objects, but also polyhe-

dral objects. For example, Figure 3 shows an example of a spherical polyhedral approxima-

tion of an octahedron with one concave face. Because of the regularity constraint, corners

and edges are not represented perfectly. All plane surfaces, however, are well approximated

even though the local regularity is enforced on all meshes. Different tessellation frequencies

result in different approximations.

Figure 3 (a) A spherical tessellation; (b) Deformable surface of an octahedron with a concave dent; (c)
Local curvature on each mesh node; (d) Curvature distribution on spherical representation
(The curvature on (c) and (d) is negative if it is light, positive if dark, zero if grey).

ϕ
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4  From Curvature Distribution to Shape:
Inverse Mapping

4.1  Shape Reconstruction

Now we know how to map object shape to its intrinsic representation defined above, i.e., a

curvature distribution on a special spherical coordinate system. But does the inverse map-

ping exist? In other words, can we reconstruct the shape given its intrinsic representation?

We formulate this reconstruction as an optimization problem which minimizes the curvature

difference between the known and reconstructed curvature distributions. The initial shape

can be, for example, a sphere where constant curvature is at every mesh node. This minimi-

zation problem is, however, complicated because of the nonlinear and coupling nature of the

local curvature computation. We devise an iterative method, similar to what has been used

in deformable surface extraction, to solve this minimization problem. The motion of each

vertex is modeled as a second order dynamics equation,

(EQ 1)

wherem is the mass unit of a node andk is the damping factor.Fint is the force which

deforms the surface to have the assigned curvature distribution while remaining continuous.

The above equation is integrated over time using finite differences. Starting from an initial

shape, e.g., a semi-tessellated sphere, using Euler’s method we can update each mesh node

by

. (EQ 2)

Notice thatFint has to be updated at each iteration. The reader is referred to [3][5] for the

details of howFint is computed. Figure 4 shows an example of the evolution of this recon-

m
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struction process. Given its curvature distribution, a toy sharpei is reconstructed from a

sphere.

Figure 4 An sequence of shapes at different steps of deformation. From sphere to sharpei.

4.2  Regularization for the Underconstrained Minimization

The above minimization is unfortunately underconstrained. There are3n unknowns (3D

coordinates at each mesh node of the unknown spherical mesh) but onlyn equations defined

by local curvature at each mesh node. The object shape can not be determined without addi-

tional constraints. It is well-known that Gaussian curvature and mean curvature can not

determine the shape. First fundamental forms are the necessary and sufficient condition for

reconstructing shape [11].

t=1 t=5 t=10 t=20

t=50 t=100 t=200 t=500
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4.2.1  Delingette’s Constraint: metric parameters

One way to add more constraints is to record the relative positioning between each node and

its three neighbors. Delingette [3] defined a so-called metric parameter set ,

such that

, (EQ 3)

, (EQ 4)

where Q is the projection ofP on the planeP1P2P3 as shown in Figure 5.

Figure 5 Metric parameters relating a mesh node with its three neighbors.

If the shape is known, i.e., if each mesh nodeP and its three neighborsP1P2P3 are known,

the surface normal of the planeP1P2P3 can be computed as

. (EQ 5)

From

 and ,

we can easily solve the metric parameters from the following 2x2 linear equations

ε1 ε2 ε3, ,{ }

Q ε1P1 ε2P2 ε3P3+ +=

ε1 ε2 ε3+ + 1=

P

P3

P2

P1

n

Q

n
P1P2 P1P3×

P1P2 P1P3×
------------------------------------=

QP QP n P1P n• 
  n= = P1Q P1P QP– ε2P1P2 ε3P1P3+= =
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. (EQ 6)

The above equation provides us two equations at each mesh node. Thus we have3n sparse

nonlinear equations for3n unknowns if we augment our intrinsic representation from

to , .

4.2.2  Regularity Constraint: a means of regularization

The metric parameter augmentation to our intrinsic shape representation may not be neces-

sary. Instead, we introduce a regularity constraint in the shape reconstruction which forces

each mesh node to be projected onto the center of its three neighbors. This regularity con-

straint implicitly gives a complete intrinsic description , . It shows that

our intrinsic representation is sufficient to guarantee that the inverse mapping exists. This

regularity constraint is, in spirit, similar to imposing a regularization term for ill-posed prob-

lems [18]. Given known local curvature, the expected location of a mesh node can be regu-

larized through its three neighbors. As shown in Figure 6, we can then define  as the

scale distance between the current mesh node  and its regularized position

, . (EQ 7)

Figure 6 Regularity and Internal force. Q* = (P1 + P2 + P3)/3.
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Why does this regularity constraint ensure us the correct original shape? Obviously if we

keep the intrinsic representation but pick an arbitrary set of metric parameters, we will

reconstruct another shape which may be close to, but different from, the original shape. The

reason is that this same regularity constraint has been enforced in the model extraction pro-

cess when we construct an object model from range data [5][15]. At the end of the model

extraction, the metric parameters converge to the expected value. Figure 7 shows the distri-

bution of metric parameters of the sharpei model and their histograms. It clearly shows that

the metric parameters are well regularized around its nominal values .

Figure 7 Metric parameter distributions of a sharpei.

1
3
---

mesh node mesh node

Metric parameter 2 Metric parameter 3

Histogram of parameter 2 Histogram of parameter 3
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4.3  Examples

The above analysis does not eliminate the local minima problem associated with our itera-

tive process. Therefore the initial shape plays an important role for convergence to correct

shape. To be fair, we start our reconstruction from a semi-tessellated sphere in all experi-

ments. We show two examples of shape reconstruction: a polyhedral object and a free-form

object in Figure 8 and Figure 9, respectively.

Both examples show very good reconstruction. The reconstructed shape has a very similar

curvature distribution to that of the original one. The relative error in the SAI angle between

the original and the reconstructed is less than 1% for each example. However, we do

observe apparent shape discrepancy between the reconstructed and the original mainly due

to the tessellation frequency, i.e., the discretization effect. Because the shape reconstruction

is only up to an unknown rigid transformation (rotation and translation) and an unknown

scale factor, constant area or constant volume [2] can be enforced during the reconstruction

process.

Figure 8 An example of polyhedral object shape reconstruction (the solid arrow shows the forward
mapping from shape to curvature, the dotted arrow shows the inverse mapping from
curvature to shape): (a) Deformable surface of an octahedron; (b) Intrinsic representation or
its curvature distribution (The curvature is negative if it is light, positive if dark, zero if grey).
(c) The reconstructed shape from the curvature distribution (b).

(a) (b) (c)

Forward
mapping

Inverse
mapping
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Figure 9 An example of free-form object shape reconstruction (the solid arrow shows the forward
mapping from shape to curvature, the dotted arrow shows the inverse mapping from
curvature to shape): (a) An image of a sharpei; (b) A sharpei model constructed from range
data; (c) Local curvature distribution at each mesh node of a sharpei; (d) Intrinsic
representation of a sharpei; (e) reconstructed sharpei model from its intrinsic representation.

(a)

(b) (c)

(e) (d)

Forward
mapping

Inverse
mapping



15

5  Shape Synthesis with Curvature Interpolation

5.1  Shape Correspondence

Given the intrinsic representations of two original shapes, we can compute correspondence

between them based on two important properties of the semi-regularly tessellated sphere:

that it has a fixed topology and that each mesh node has exactly three neighbors. We have

observed [5] that the correspondence between two shapes is determined once three pairs of

nodes are matched. In Figure 10, nodeP of the shapeA correspondsP’ of the shapeB, and

the two neighbors ofP (P1, andP2) are put in correspondence with two of three neighbors

(P’1, P’2 andP’3) of P’, respectively. Figure 10 shows only3 valid neighborhood matches,

since each node has exactly three neighbors and the connectivity among them is always pre-

served. Moreover, the number of such correspondences is3n wheren is the number of nodes

of spherical tessellation [5].

Figure 10 Matching of neighbors from (P1, P2 P3) to: (a) (P’1, P’2, P’3); (b) (P’2, P’3, P’1); (c) (P’3, P’1,
P’2) when P of shapeA is matched to P’ of shapeB.

Given the correspondence, the distance between two shapes is defined as theLP distance

between two curvature distributions [16]. An efficient algorithm has been devised for com-

paring two shapes so that the minimum distance between two shapes, also defined as a shape

similarity measure [16], represents the best matching.

P
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P3
P’2

P’3

P’1

P’ P
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P3

P
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P3
P’ P’
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5.2  Shape Similarity for Interpolation

It is unclear how to interpolate two shapes unless we know how to compare them. It is very

difficult to compare two 3D shapes because of the unknown scale factor and rigid transfor-

mation. We have shown [16] that it is possible to quantitatively measure the distance

between two shapes using the intrinsic representation. Thus we can also interpolate these

two shapes to obtain a new curvature distribution from the intrinsic representations of two

original shapes and their correspondence. An advantage of this approach is that it shows

quantitatively how much the morph is different from the originals. For example, at each

mesh node of the new meshC, its curvature can be computed by a linear interpolation of its

counterparts in the original shapesA andB. More specifically,

, , , (EQ 8)

where  is the local curvature measure. Alternatively nonlinear cross-dissolve techniques

can also be used. For instance, if we use the following interpolation function,

, , , (EQ 9)

, , , (EQ 10)

to blend curvatures, we can enforce desirable small shape change at initial steps. Figure

11(a) shows linear change of a shape similarity distance between each morph and the toy

sharpei, while (b) shows the distance between each morph and the toy pig. Figure 12 shows

the nonlinear change of a shape similarity distance. The distance between two shapes is

defined as theL2 norm of the distance between two curvature distributions, which has also

been used as a measure of shape similarity in our previous work [16]. It is clear that our syn-

thesis approach is not only consistent with, but also can be controlled by, our metric measure

of shape similarity.

ϕCi
1 t–( ) ϕAi

tϕBi
+= t 0 1,[ ]∈ i 1...n=

ϕ

ϕCi
1 2t

2
– 

 
ϕAi

2t
2ϕBi

+= t 0 0.5,[ ]∈ i 1...n=

ϕCi
2 1 t–( ) 2ϕAi

1 2 1 t–( ) 2
– 

 
ϕBi

+= t 0.5 1,[ ]∈ i 1...n=



17

Figure 11 Linear interpolation of shape distance between the morph sequence and two originals (a)
sharpei; (b) pig.

Figure 12 Nonlinear interpolation of shape distance between the morph sequence and two originals (a)
sharpei; (b) pig.

5.3  Result and Discussion

Figure 13 shows a sequence of morphs which are synthesized from a toy sharpei and a toy

pig, while Figure 14 shows a different view of the same sequence. The models of these free-

form objects are constructed from real range images using methods described in [15]. The

frequency of spherical tessellation is set to 13, which means that the total number of meshes
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is 3380. After the models and their curvature distributions are obtained, we use linear inter-

polation to generate the intermediate curvature distributions which are then inversely

mapped to the morphs. These morphs clearly show a gradual and smooth shape transition

between sharpei and pig.

Compared with volume morphing, our method is fast and simple to implement. While vol-

ume morphing takes more than a day [12] to render a sequence of morphs, our method takes

less than an hour to do the shape synthesis. In our experiments, it takes 20 minutes to build

deformable models and curvature distribution, and 20 minutes for cross-dissolve curvature

interpolations and shape synthesis of a sequence of 10 morphs on a SUN Sparc 20. This

does not account for the time taking images and rendering images for the final display. To

speed up the iteration process, the morph from last step is used to start next morphing step.

One possible drawback of our approach is that the quality of approximation of a polyhedral

or free-form surface depends on the number of patches chosen. For example, with frequency

7 semi-regular spherical tessellation, we have 980 surface patches; when the frequency is

13, we have 3380 patches. Obviously, the more surface patches we use, the better the

approximation. Our shape synthesis approach generates good morphing sequence provided

that a sufficient number of tessellations is adopted.

For the purpose of shape synthesis, we can also incorporate any user-specific forceFext in

the (EQ 1) such that

(EQ 11)

which is similar to deformable surface model extraction [5] whereFext is dominated by data

force.

m
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d Pi k
td

dPi+ Fint Fext+=
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Figure 13 A morphing sequence between a toy sharpei and a toy pig.
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Figure 14 Another view of the morphing sequence between a toy sharpei and a toy pig.
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6  Conclusion

We have described a novel approach to synthesizing shapes using curvature distributions. To

store an object shape of genus zero, either free form or polyhedral, we use a spherical mesh

with known connectivity among its nodes. Our spherical mesh, which starts with a semi-tes-

sellated sphere, is iteratively deformed to converge to the original object shape while main-

taining nearly uniform distribution with known connectivity among mesh nodes. The local

curvature computed at each node captures the averaged curvature information in its vicinity.

This curvature distribution, i.e., the result of forward mapping from shape space to curva-

ture space, is used as the intrinsic shape representation because it is invariant to rigid trans-

formation and scale factor. Furthermore, with regularity constraints on the mesh, the inverse

mapping from curvature space to shape space always exists and can be recovered using an

iterative method. We have shown that the shape can be reconstructed, from the spherical

curvature distribution only, up to a scale factor and a rigid transformation. Therefore, the

task of synthesizing a morph from two original shapes is essentially one of interpolating two

known curvature distributions generated from the deformed meshes generated from original

shapes. This curvature-based interpolation yields smooth curvature migration along the

morphing sequence. Experiments show that our shape synthesis creates realistic and intui-

tive shape morphs which show a gradual change between two originals.

Currently our approach is restricted to genus zero shape topology. We can modify the mesh

representation to accommodate the arbitrary topology as in [2]. With the appropriate user

interface, we can also incorporate the user’s specification for even more realistic and spe-

cific shape synthesis. As shown in the paper, this kind of user-specified constraint can be

easily incorporated in our framework.



22

Acknowledgement

We thank Marie Elm for proofreading different versions of this paper.

References

[1] T. Beier and S. Neely. Feature-based Image Metamorphosis. Proc. SIGGRAPH’92,

pp. 35-42, July, 1992.

[2] H. Delingette, H. Watanabe and Y. Suenaga. Simplex Based Animation. Tech report

NTT Human Interface Lab. Japan, 1994.

[3] H. Delingette. Simplex Meshes: a General Representations for 3D Shape Recon-

struction. INRIA report 2214, 1994.

[4] T. He, S. Wang and A. Kaufman. Wavelet-based Volume Morphing. Proc. Visualiza-

tion’94, pp. 85-91. 1994.

[5] M. Hebert, K. Ikeuchi and H. Delingette. A Spherical Representation for Recogni-

tion of Free-form Surfaces. IEEE Trans. PAMI Vol. 17 No. 7, pp. 681-690, 1995.

[6] B.K.P. Horn. Extended Gaussian Image. Proc. of IEEE, Vol. 72, No. 12, pp. 1671-

1686, December, 1984.

[7] J. Hughes. Scheduled Fourier Volume Morphing. Proc. SIGGRAPH, pp. 43-46, July,

1992.

[8] K. Ikeuchi and M. Hebert. From EGI to SAI. CMU-CS-95-197.

[9] S. Kang and K. Ikeuchi. The Complex EGI: New Representation for 3D Pose Deter-

mination. IEEE Trans. PAMI Vol. 15, No. 7, pp. 707-721, July, 1993.

[10] M. Kass, A. Witkin and D. Terzopoulos. Snakes: Active Contour Models. Int’l. J.

Computer Vision. Vol. 1, No. 4, pp. 321-331, January, 1988.

[11] J. Koenderink. Solid Shape. The MIT Press, Cambridge, 1990.



23

[12] A. Lerios, C. Garfinkle, and M. Levoy. Feature-based Volume Metamorphosis. Proc.

SIGGRAPH’95, pp.449-456, August, 1995.

[13] J. Little. Determining Object Attitude for Extended Gaussian Image. Proc. IJCAI,

Los Angeles, California, pp. 960-963, August, 1985.

[14] W. Lorensen and H. Cline. Marching Cubes: A High Resolution 3D Surface Con-

struction Algorithm. Proc. SIGGRAPH’87, pp. 163-169, July, 1987.

[15] H. Shum, M. Hebert, K. Ikeuchi and R. Reddy. An Integral Approach to Free-form

Object Modeling. CMU-CS-95-135, May 1995.

[16] H. Shum, M. Hebert, and K. Ikeuchi. On 3D Shape Similarity. CMU-CS-95-212,

November, 1995.

[17] R. Szeliski and D. Tonnesen. Surface Modeling with Oriented Particle Systems.

Proc. SIGGRAPH’92, pp. 185-194, July, 1992.

[18] D. Terzopoulos. Regularization of Inverse Visual Problems Involving Discontinui-

ties. IEEE Trans. PAMI, Vol. 8, No. 4, pp. 413-424, July, 1986.

[19] D. Terzopoulos, A. Witkin and M. Kass. Symmetry-Seeking 3D Object Recognition.

Int. J. Computer Vision. Vol. 1, No. 1, pp.211-221, 1987.

[20] A. Witkin and P. Heckbert. Using Particles to Sample and Control Implicit Surfaces.

Proc. SIGGRAPH’94 , pp. 269-278, July, 1994.


