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Preface 

This volume contains some of the lectures presented at the 1994 AMS/SIAM 
Summer Seminar, held June 20-July 1 at the Mathematical Sciences Research 
Institute in Berkeley. It was the intent of the organizers of the summer seminar 
to introduce the participants to as many of the interesting and active applications 
of dynamical systems to problems in applied mathematics as the time constraints 
of the workshop allowed. Consequently, this book covers a great deal of ground. 
Nonetheless, the pedagogical orientation of the lectures has been retained in this 
volume, and as such, we hope that it will serve as an ideal introduction to these 
varied and interesting topics. 

While the focus of the workshop was quite broad, several organizing prin- 
ciples emerged.  The first was the increasing role of dynamical systems theory 
in our understanding of partial differential equations. The first three contribu- 
tions of the present volume are devoted to this theme. In particular, all of these 
lecturers stressed the importance that the geometrical structures present in the 
phase spaces of these systems have for our understanding of their dynamics. A 
second theme was the central importance of certain prototypical partial differ- 
ential equations. These equations, which include the complex Ginzburg-Landau, 
nonlinear Schrödinger and Korteweg-de Vries equations, arise in many different 
contexts and hence have an importance that transcends their apparently special 
form. In this book, two sets of lectures explore this phenomenon in greater detail 
for the complex Ginzburg-Landau equation, one examining in detail the sorts of 
phenomena that can arise in this equation, and the other focussed on showing rig- 
orously how a knowledge of the behavior of the solutions of the Ginzburg-Landau 
equation implies information about a host of more complicated systems. In addi- 
tion to their ubiquity, the nonlinear Schrödinger and Korteweg-de Vries equation 
share the additional remarkable property of being completely integrable.   The 
meaning and consequences of complete integrability are explored in the lectures 
of section 2. Finally, the last set of lectures looks specifically at problems in fluid 
mechanics and turbulence.   More specifically, it examines the extent to which 
one can determine the limits of popular physically motivated heuristic theories 
of fluids like the renormalization group and the Kolmogorov scaling law. 

Percy Deift 
C. David Levermore 

C. Eugene Wayne 
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Dynamical Systems 
and PDE's 



Lectures in Applied Mathematics 
Volume 31, 1996 

An Introduction to KAM Theory 

C. EUGENE WAYNE 

1. Introduction 

Over the past thirty years, the Kolmogorov-Arnold-Moser (KAM) theory has 
played an important role in increasing our understanding of the behavior of non- 
integrable Hamiltonian systems. I hope to illustrate in these lectures that the 
central ideas of the theory are, in fact, quite simple. With this in mind, I will 
concentrate on two examples and will forego generality for concreteness and (I 
hope) clarity. The results and methods which I will present are well-known to 
experts in the field but I hope that by collecting and presenting them in as 
simple a context as possible I can make them somewhat more approachable to 
newcomers than they are often considered to be. 

The outline of the lectures is as follows. After a short historical introduction, 
I will explain in detail one of the simplest situations where the KAM techniques 
are used - the case of diffeomorphisms of a circle. I will then go on to discuss 
the theory in its original context, that of nearly-integrable Hamiltonian systems. 

The problem which the KAM theory was developed to solve first arose in ce- 
lestial mechanics. More than 300 years ago, Newton wrote down the differential 
equations satisfied by a system of massive bodies interacting through gravita- 
tional forces. If there are only two bodies, these equations can be explicitly 
solved and one finds that the bodies revolve on Keplerian ellipses about their 
center of mass. If one considers a third body (the "three-body-problem"), no 
exact solution exists - even if, as in the solar system, two of the bodies are 
much lighter then the third. In this case, however, one observes that the mutual 
gravitational force between these two "planets" is much weaker than that be- 
tween either planet and the sun. Under these circumstances one can try to solve 
the problem perturbatively, first ignoring the interactions between the planets. 
This gives an integrable system, or one which can be solved explicitly, with 

1991 Mathematics Subject Classification. Primary 58F05; Secondary 34C20 70H05. 
The author was supported in part by NSF Grant #9203359 

© 1996 American Mathematical Society 



4 C. EUGENE WAYNE 

each planet revolving around the sun oblivious of the other's existence. One 
can then try to systematically include the interaction between the planets in a 
perturbative fashion. Physicists and astronomers used this method extensively 
throughout the nineteenth century, developing series expansions for the solutions 
of these equations in the small parameter represented by the ratio of the mass 
of the planet to the mass of the sun. However, the convergence of these series 
was never established - not even when the King of Sweden offered a very sub- 
stantial prize to anyone who succeeded in doing so. The difficulty in establishing 
the convergence of these series comes from the fact that the terms in the series 
have small denominators which we shall consider in some detail later in these 
lectures. One can obtain some physical insight into the origin of these conver- 
gence problems in the following way. As one learns in an elementary course in 
differential equations, a harmonic oscillator has a certain natural frequency at 
which it oscillates. If one subjects such an oscillator to an external force of the 
same frequency as the natural frequency of the oscillator, one has resonance 
effects and the motion of the oscillator becomes unbounded. Indeed, if one has a 
typical nonlinear oscillator, then whenever the perturbing force has a frequency 
that is a rational multiple of the natural frequency of the oscillator, one will have 
resonances, because the nonlinearity will generate oscillations of all multiples of 

the basic driving frequency. 
In a similar way, one planet exerts a periodic force on the motion of a second, 

and if the orbital periods of the two are commensurate, this can lead to resonance 
and instability. Even if the two periods are not exactly commensurate, but only 
approximately so the effects lead to convergence problems in the perturbation 

theory. 
It was not until 1954 that A. N. Kolmogorov [8] in an address to the ICM in 

Amsterdam suggested a way in which these problems could be overcome. His 
suggestions contained two ideas which are central to all applications of the KAM 

techniques. These two basic ideas are: 

• Linearize the problem about an approximate solution and solve the lin- 
earized problem - it is at this point that one must deal with the small 

denominators. 
• Inductively improve the approximate solution by using the solution of 

the linearized problem as the basis of a Newton's method argument. 

These ideas were then fleshed out, extended, and applied in numerous other 
contexts by V. Arnold and J. Moser, ([1], [9]) over the next ten years or so, 
leading to what we now know as the KAM theory. 

As I said above, we will consider the details of this procedure in two cases. 
The first, the problem of showing that diffeomorphisms of a circle are conju- 
gate to rotations, was chosen for its simplicity - the main ideas are visible with 
fewer technical difficulties than appear in other applications. We will then look 
at the KAM theory in its original setting of small perturbations of integrable 
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Hamiltonian systems. I'll attempt to parallel the discussion of the case of circle 
diffeomorphisms as closely as possible in order to keep our focus on the main 
ideas of the theory and ignore as much as possible the additional technical com- 
plications which arise in this context. 

Acknowledgments: It is a pleasure to thank Percy Deift and Andrew Török 
for many helpful comments about these notes. 



6 C. EUGENE WAYNE 

2.  Circle Diffeomorphisms 

Let us begin by discussing one of the simplest examples in which one encoun- 
ters small denominators, and for which the KAM theory provides a solution. 
It may not be apparent for the moment what this problem has to do with the 
problems of celestial mechanics discussed in the introduction, but almost all of 
the difficulties encountered in that problem also appear in this context but in 
ways which are less obscured by technical difficulties - this is, if you like, our 

warm-up exercise. 
We will consider orientation preserving diffeomorphisms of the circle, or equiv- 

alently, their lifts to the real line: 

<j>: R1 -» R1 

4>{x) = x + fj{x) with fj{x +1) = fj(x) and fj'{x) > -1 • 

We wish to consider «/» as a dynamical system, and study the behavior of its 
"orbits" - i.e. we want to understand the behavior of the sequences of points 
{(j>^(x){modl)}^L0, where </>(n) means the n-fold composition of <f> with itself. 
Typical questions of interest are whether or not these orbits are periodic, or 

dense in the circle. 
The simplest such diffeomorphism is a rotation Ra(x) = x + a. Note that 

we understand "everything" about its dynamics. For instance, if a is rational, 
all the orbits of Ra are periodic, and none are dense. However, we would like 
to study more complicated dynamical systems than this. Thus we will suppose 

that 

(1) <f>(x) =x + a + r](x) , 

where as before, n(x + 1) = r/(z) and rf{x) > -1. As I said in the introduction, 
I will not attempt to consider the most general case, but rather will focus on 
simplicity of exposition. Thus I will consider only analytic diffeomorphisms. 
Define the strips Sa = {z e C \ \Imz\ < a}. Then I will assume that 

r) G Ba ={r] I r](z) is analytic on Sa, 

r]{x + 1) = ri(x) and     sup    \q{z)\ = \\r]\\a < oo} . 
\Imz\<a 

Note that one can assume that a < 1, without loss of generality. 
Our goal in this section will be to understand the dynamics of <f>{x) = x + 

a + T){x) when r) has small norm. One way to do this is to show that the 
dynamics of <f> are "like" the dynamics of a system we understand - for instance, 
suppose that we could find a change of variables which transformed (f> into a pure 
rotation. Then since we understand the dynamics of the rotation, we would also 
understand those of </>. If we express this change of variables as x = H{£), where 
H(£ + 1) = 1 + jff(0 preserves the periodicity of 4>, then we want to find H such 

that 
H~1o(j)oH(0 = Rp(0, 
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or equivalently 

(2) <l>°H(Z)=HoRp(Z). 

Such a change of variables is said to conjugate <f> to the rotation Rp. 

REMARK 2.1. The relationship between this problem and the celestial mechan- 
ics questions discussed in the introduction now becomes more clear. In that case 
we wanted to understand the extent to which the motion of the solar system when 
we included the effects of the gravitational interaction between the various planets 
was "like" that of the simple Kepler system. 

In order to answer this question we need to introduce an important charac- 
teristic of circle diffeomorphisms, the rotation number 

DEFINITION 2.1.  The rotation number of</> is 

REMARK 2.2. It is a standard result of dynamical systems theory that for any 
homeomorphism of the circle the limit on the right hand side of this equation 
exists and is independent of x. (See [6], p. 296.) 

REMARK 2.3. Note that from the definition of the rotation number, it follows 
immediately that for any homeomorphism H, the map <p = H"1 o 0 o H has the 
same rotation number as 4>. (Since ft") = H~l o 0(») o H, and the initial and 
final factors of H and H'1 have no effect on the limit.) 

As a final remark about the rotation number we note that if </>(x) = x + a + 
n(x), then an easy induction argument shows that p(6) = a+liim, ™ ± T71'1 no 

<^>{x). In particular, if a = p, we have lim^^ I £££ v o 0Ü)(X) = 0) so we 
have proved: 

LEMMA 2.1. // </>(x) =x + p + n{x) has rotation number p, then there exists 
some x0 such that n(x0) = 0. 

We must next ask about the properties we wish the change of variables H to 
have. If we only demand that H be a homeomorphism, then Denjoy's The- 
orem ([6] p. 301) says that if the rotation number of <j> is irrational, we can 
always find an H which conjugates ^ to a rotation. However, if we want more 
detailed information about the dynamics it makes sense to ask that H have ad- 
ditional smoothness. In fact, it is natural to ask that H be as smooth as the 
diffeomorphism itself - in this case, analytic. (There will, in general, be some 
loss of smoothness even in this case. We will find, for example, that while there 
exists an analytic conjugacy function, H, its domain of analyticity will be some- 
what smaller than that of <j>.) Surprisingly, the techniques which Denjoy used 
fail completely in this case, and the answer was not known until the late fifties 
when Arnold applied KAM techniques to answer the question in the case when 
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n is small. Even more surprisingly, in order to even state Arnold's theorem, we 

have to discuss a little number theory. 
Any irrational number can be approximated arbitrarily well by rational num- 

bers and in fact, Dirichlet's Theorem even gives us an estimate of how good 
this 'approximation is. More precisely, it says that given any irrational number p, 
there exist infinitely many pairs of integers (m,n) such that \p-{m/n)\ < 1/n . 
On the other hand, most irrational numbers can't be approximated much better 

than this. 

DEFINITION 2.2. The real number p is of type (K,v) if there exist positive 
numbers K and v such that \p - (m/n)\ > K\n\-", for all pairs of integers 

(m, n). 

PROPOSITION 2.1. For every v > 2, almost every irrational number p is of 

type (K, v) for some K > 0. 

Proof: The proof is not difficult, but would take us a bit out of our way. The 
details can be found in [3], page 116, for example. Note also, that we can assume 
without loss of generality that K<1, since if p is of type (K, u) for some K > 1, 

it is also of type (1,^). 

THEOREM 2.1 (ARNOLD'S THEOREM [1]). Suppose that p is of type (Ä». 
There exists e(K, u,a)>0 such that if 4>{x) = x + p + v(*) has rotation number 
p, and \\n\\a < e(K,v,tr), then there exists an analytic and invertible change of 

variables H(x) which conjugates <j> to Rp. 

As mentioned above, Arnold's proof of this theorem used the KAM theory. 
The proof can be broken into two main parts - an analysis of a linearized equa- 
tion and a Newton's method iteration step. These same two steps will reappear 
in the next section when we discuss nearly integrable Hamiltonian systems, and 
they are characteristic of almost all applications of the KAM theory. 

REMARK 2.4. It may seem that by assuming that the diffeomorphism is of the 
form <f>{x) = x+p+v{x), where p is the rotation number oftp, we are considering 
a less general situation than that described above in which we allowed 4> to have 
the form x + a + r,{x). As we shall see below, there is no real loss of generality 

in this restriction. 

Step 1: Analysis of the Linearized equation 

Note that since \\r,\\„ is small, the diffeomorphism 4> is "dose" to the pure 
rotation Rp. Thus, we might hope that if a change of variables H which satisfies 
(2) exists is would be close to the identity i.e.   H(x) = x + h(x), where h is 
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"small". If we make this assumption and substitute this form of H in (2), we 
find that h should satisfy the equation 

(3) h{x + p)- h(x) = 7](x + h(x)) 

If we now expand both sides of this equation, retaining only terms of first order 
in the (presumably) small quantities h and 77, we find: 

(4) h(x + p)- h{x) = v(x) 

Since all the functions in this equation are periodic, and the equation is linear in 
the unknown function h, we can immediately write down a (formal) solution for 

the coefficients in the Fourier series of h. If fj(n) is the nth Fourier coefficient of 
T], then the nth Fourier coefficient of h is 

<5> *M = ife.   ».">. 
In just a moment, we will address whether or not the function 

fj{n) 
p2ninp   1 

h(x) = £ h(n)e^ = £ -J^-re2— 
n^O n^o 

makes any sense, however, we first note that even if (5) defines a well-behaved 
function, it will not solve (4) but rather: 

(6) h(x + p)- h(x) = T](x) - /   ri{x)dx = rj(x) - f)(0) . 
Jo 

This is because the zeroth Fourier coefficient of h drops out of (4). The fact that 
h does not solve (4) will complicate the estimates below. The problems with 
showing that (5) converges arise due to the presence of the factors of e2vinp - 
1 in the denominator of the summands, and these are the (in)famous small 
denominators which plagued celestial mechanics in the last century and which 
the KAM theory finally overcame. We first note that if p is rational, there is little 
hope that the sum defining h will converge since the denominators in this sum 
will vanish for the infinitely many n for which pn = m for some m € Z. Thus, 
we can only hope for success if p £ Q. Up is irrational, the denominator will 
still be large whenever np « m. However, by assuming that p is of type (K, v), 
we have some control over how close to zero the denominator can become. In 
fact, the following lemma immediately allows us to estimate h(x). 

LEMMA 2.2. If p is of type {K,v), then 

|e2«np _ !| = ^im^i(pn-m) _ ^ > 4Ä-|n|-(*-l)  {f „ ^ Q 
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Proof: Since p is of type (K,v), we know that \pn-m\> Ä"|»|-("_1) and the 
lemma follows by writing |e2-(p™-™) - 1| = 2| sin(7r(pn - m))|, and then using 

the fact that |sin(7ra;)| > 2\x\, for |x| < 1/2. 

D 

The other fact which we must use to estimate h is the fact that since r\ G Ba, 
Cauchy's theorem immediately gives an estimate on its Fourier coefficients of 
the form \fj{n)\ < |MUe~2,r<7|n|- Combining this remark with Lemma 2.2, we see 

that if \Imz\ <cr-6, one has 

r(i/)   „ „ 
- K(2n6)»m'" 

where T(i/) = /0°° xv~xe~xdx, and we have assumed that 2TT{K + 1)6 < 4n6 < 1. 

Thus we have proven, 

PROPOSITION 2.2. If p is of type (K,u), and rj e Ba, then h(x), defined by 
(5) is an element of Ba^s for any 6 > 0, and if ^6 < 1, we have the estimate: 

I»    ,,   „ 
L-6 < K{2nSy' 

REMARK 2.5. Note that we do not get an estimate on h in Ba ~ we lose some 
analyticity. This is why we can't use an ordinary Implicit Function Theorem to 
solve (2). Indeed, if we were to attempt to proceed with an ordinary iterative 
method to solve (2), we would find that we gradually lost all of the analyticity 
of our approximate solution. This is where the second "big idea" of the KAM 

theory enters the picture, namely: 

Step2: Newton's Method in Banach Space 

Recall that Newton's method says that if you want to find the roots of some 
nonlinear equation, you should take an approximate solution and then use a 
linear approximation to the function whose roots you seek to improve your ap- 
proximation to the solution. You then use this improved approximation as your 
new starting point and iterate this procedure. In the present circumstance, we 
regard ^ as an approximation to Rp and then use the linear approximation, 
H{x) = x + h(x), to the conjugating function to improve that approximation. 
Recall that if h(x) had solved (2) exactly, then H~1oct>oH = Rp. Our hope is 
that if we use the H(x) that comes from solving (6), H~lo4>oH will be closer 

to Rp than <f> was and then we can iterate this process. 
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The first thing we must do is check that H is invertible. Since H{z) = z+h(z), 
H will be invertible with analytic inverse on any domain on which \\h'\\ < 1 
Cauchy's theorem and Proposition 2.2 imply that \\h'\\a_2S <    *ffff+1 \\rj\\a, so 

we conclude 

LEMMA 2.3. J/27rr(l/)||^||ff < K(2TT6)(»+V and 4n6 < 1, then H{z) has an 
analytic inverse on the image of Sa^2s- 

REMARK 2.6. Note that if we combine the inequalities in Lemma 2.3 and 
Proposition 2.2, we find \\h\\^s < 6. Thus, if z 6 S^2S, H(z) e S^6. Fur- 
thermore, H maps the real axis into itself, and the images of the lines Imz = 
±{a - 26) lie outside the strip Sa-3S. With this information it is easy to show 
that Range(H\s„_as) Z> Sa^3S, so that H~1{z) is defined for all z e S^36. 

In addition to knowing that the inverse exists, we need an estimate on its 
properties which the following proposition provides. 

PROPOSITION 2.3. If 

27rr(i/)||j7||<7 < K(2ir6)("+V and 4nS < 1 , 

then H-X(z) = z- h{z) + g(z), where 

II0L-4« < 
K2(2irS)i2"+^] 

Proof: If we define g{z) by g(z) = H'^z) -z + h{z), then we see that 

z = H~1o H(z) = z + h(z) - h(z + h(z)) + g{z + h{z)) . 

Thus, g(z+h(z)) = h(z+h(z))-h(z) = ß h'(z+sh(z))h(z)ds. Setting £ = H(z), 
this becomes 

g(0= [ h'iH-^ + ahiH-^OWH-^ds. 
JO 

In a fashion similar to that in the remark just above, Range(H\Sa_3S) D Sa^4S, 

so if £ e Sa.i6, H-l{Q e Se-36, and hence ff"1® + *M#~1(Ö)e SaJs, so 
applying the estimates on h and h' from above we obtain 

K '  (2irS)2"+1 

D 

Let us now examine the transformed diffeomorphism <f>(x) = H~l o<f>o H(x). 
Since h is only an approximate solution of (2), 0 will not be exactly a rotation, 
but since h did solve the linearized equation (6), we hope that 4> will differ from 
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a rotation only by terms that are of second order in the small quantities h and 
n. Using the form of H"1 given by Proposition 2.3, we find 

if>(x)    =   H~1o(f>oH(x)=H-1(x + h(x) + p + ri(x + h(x))) 

=   x + h{x) + p + n(x + h{x)) -h(x + p+ h{x) + n{x + h(x))) + 

+ g(x + h(x) +p + r){x + h(x))) 

=   x + p + {h{x) - h{x + p) + n{x)} + {r](x + h(x)) - r)(x)} + 

+ {h(x + p)-h{x + p + h{x) + r){x + h(x)))} + 

+ g(x + h(x) +p + T]{x + h{x))) . 

We first note that because h solves (6), the first expression in braces in the 
second to last line of this sequence of equalities is equal to fy0 • The next expression 
in braces equals fir/(x + sh(x))h(x)ds. If 2TrT(v)\\r,\\a < K{2it6Y+\ 4TT<5 < 
1, and x £ Sa^4S, we can bound the norm of this expression on Ba-A& by 
^\\n\\<r K^y+A\n\\<T- Similarly, the quantity in braces in the next to last line 

may be rewritten as /„* h'(x + p + s(h(x) + rf(x + h(x))){h(x) + r](x + h(x))ds. 
Once again, assuming that the conditions on Hr?^ and 6 described above hold, 
and that x G Sa-4S, then we can bound the norm of this expression on Ba-4S 

by 
2TTI»    ,    T{v)    ..  „       .,  ,,  ■,,,,, 47r(r^))2 2 

where the last inequality used the fact that 2ir6K < 1. Finally, if \Imx\ < a-66, 
then \Im{x + h(x) + p + rj(x + h(x)))\ < a - AS, (since H^U < S), so that the 
last term in this expression is bounded by Proposition 2.3. 

Define fj{x) by 4>{x) =x + p + rj(x). By Remark 2.3, 4> has rotation number 
p, so by Lemma 2.1 there exists x0 such that r}(x0) = 0. Combining this remark 
with the expression for <j> just above, we find 

fi(0)    =    -{rj(x0 + h{x0)) - T}(x0)} 

- {h(x0 +p)~ h(x0 +p+ h(x0) + r]{x0 + h(x0)))} 

- g(x0 + h(x0) +p + Tj{xo + h(x0))) . 

In the previous paragraph we bounded the norm of each of the expressions on 
the right hand side of this equality, so we conclude that 

2      T(u) 47r(r(i/))2       ||2 2TTI»
2
     .,  ||2 

\fj(0)\ < Mvhxp^+i + K2{2ir6)iv+1 Wh + ^2(2^)2,+! IMI* • 

Combining this estimate with the bounds above, we have proven, 

PROPOSITION 2.4. 7/27rr(i/)||r/||a < K(2TTS)
(

-
U+1

\ and AnS < 1, then 0(x) = 

H~l o 4> o H(x) = x + p + rj(x), where 

167r(i»)2        2 
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REMARK 2.7. The important thing to note about the estimate offj is that in 
spite of the mess, it is second order in the small quantity \\n\\a as we had hoped. 
That is, there exists a constant C{K,6,v) such that I^IU-e* < C{K,6,v)\\r)\\l. 
This is what makes the Newton's method argument work. 

The proof of Arnold's Theorem is completed by inductively repeating the 
above procedure. The principal point which we must check is that we don't 
lose all of our domain of analyticity as we go through the argument - note 
that 4> is analytic on a narrower strip than was our original diffeomorphism <f>. 
The essential reason that there is a nonvanishing domain of analyticity at the 
completion of the argument is that the amount by which the analyticity strip 
shrinks at the nth step in the induction will be proportional to the amount by 
which our diffeomorphism differs from a rotation at the nth iterative step, and 
thanks to the extremely fast convergence of Newton's method, this is very small. 

The Inductive Argument 

Let </>0(x) = (f){x), be our original diffeomorphism, and set r)0{x) = n(x). 
Define ^(x) = H^ofaoH^x), and by induction, <pn+1(x) = H^o^oH^x) = 
x + p + Vn+i(x) where Hn(x) = x + hn(x), and hn solves 

hn(x + p) - hn{x) = r)n(x) - 17(0) . 

Also define the sequence of inductive constants: 

• Sn = 36(i+«2)» n>0 (Note that this insures that ATTSQ < 1.) 
• o-0 = cr, and an+1 =an- 66n, if n > 0. 
• eo = IML and en = e0

3/2r, if n > 0. 
Note that a* = lim«^ <jn > a/2. We now have: 

LEMMA 2.4 (INDUCTIVE LEMMA). // 

eo < (    K    f-)^+1> 0     V16TTI>)
1
36

J 

then (f>n+1(x) =x + p + r)n+1(x), with 7]n+1 e Ban+1, and \\r)n 

Furthermore, Hn{x) =x + hn{x) satisfies 

\\hnhn-S<      rMe" 

.+l||an+i < e«+i 

K(2n6ny 

while H~1(x)=x- hn(x) + gn{x), where 

2^Y{vfel 
ll5n|U-4«„  < 

K2(2nSn)^+1 ' 

Proof: Note that Proposition 2.2 and Proposition 2.3 imply that the estimates 
on hn and gn hold for n = 0. The estimate on ||??1||(Tl follows by noting that 
from Proposition 2.4, 

lftrflW)»        2 

limiki ^ K2{2-K6)2v+l^^a 
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and the hypothesis on the inductive constants in the Inductive Lemma was chosen 
so that this last expression is less than e[,3/2) = ei- This completes the first 

induction step. 
Now suppose that the induction holds for n = 0,1,..., N -1, so that we know 

that ||7?JV||<TN < £JV- To prove that it holds for n = N, first choose hN to solve 
hN(x + p) - hN{x) = r)N{x) - T)JV(O). By Proposition 2.2, and the inductive 

estimate on r)N, we will have \\hN\\aN-sN < K^SNY' while ProPosition 2-3 

implies that H^1(x) = x - hN(x) + 9N(X), with ll^ivlU^-«« ^ K2(2ir6N)2"+1- 

Finally, if we define <j>N+x = H^1 oct)N oHN = x +p + rjN+i, with T]N+1 defined 
in analogy with fj in Proposition 2.4, then we see that 

167rr(»/)2      2 

Once again, if use the hypotheses on the inductive constants we see that this 
expression is bounded by e^/2) = eN+i, which completes the proof of the lemma. 

D 

With the aid of the Inductive Lemma it is easy to complete the proof of 
Arnold's Theorem. Define 

HN{x) = H0OHIO--O HN{x) 

= x + hN(x) + hN-i(x + hn(x) + hN-2{x + hN(x) + hN^i(x + hN{x))) 

+ ■■■ + h0(x + h!(x + ...)...) 

By the Induction Lemma, HN is analytic on SCTN^26N and HN(z) - z is bounded 

by T^=o K(2^sn)" — ^- (This sum converges as a consequence of the hypotheses 
on the induction constants in the Induction Lemma.) Furthermore, 

HN+i(z)-nfr(z)=nNoHN{z)-HN{z)= I   H'N{z + thN{z))hN(z)ds , 
Jo 

so \\HN+1 - HN\UN+1 < (ff + 1)^0^- Note that by the definition of the 
inductive constants, the right hand side of this inequality converges if summed 
over TV. Thus, HN converges uniformly to some limit H on Sa*, and H is 
analytic. Furthermore, H(z) = z + h{z), where the estimates on HN(z)-z, plus 
Cauchy's Theorem imply that if S* = a*/16, then ||/J'||CT.-5. < A/6* < 6*, again 
using the definition of the inductive constants. By an argument similar to that 
following Lemma 2.3, we see that H is invertible on the image of Sa.-g* and 
that this image contains 5CT«_2«*- 

Finally, note that <poHN{z) = HNo4>N{z) = HN(z + p + r)N(z)). As N -> oo, 

we see that 

6oH(z) =   lim HN°4>N{Z)=  lim HN{z + p + w(z)) = H°Rp{z) , 
JV—>oo N—>oo 
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for all z £ Sa*^26* ■ (The last equality used the inductive estimate on 77^.) Since 
H is invertible on this domain, this implies H~x o <f> o H = Rp, so H is the dif- 
feomorphism whose existence was asserted in Arnold's Theorem. 

D 

REMARK 2.8. Suppose that in Arnold's Theorem we were given a diffeomor- 
phism of the (apparently) more general form 

ip(x) = x + a + n(x) . 

but still with rotation number p of type (K, v) (where a ^ p.) We can rewrite 
1>(x) = x+p+(a-p+p(x)) = x+p+n(x). If\\n\\a = \\(a-p)+fl\\a < e(K,v,a), 
then Theorem 2.1 implies that ip is analytically conjugate to Rp 

REMARK 2.9. In examples it may be difficult to determine from inspection of 
the initial diffeomorphism what the rotation number is. In such cases there is 
often a parameter in the problem which can be varied and which allows one to 
show that the conjugacy in Arnold's Theorem exists at least for most parameter 
values. For instance, the following result can be proven by easy modifications of 
the previous methods: (See, [1], page 271.) 

THEOREM 2.2.  Consider the family of diffeomophisms: 

(7) <f>a,e (x) = x + a + en{x) , 

for a e [0,1]. For every 6 > 0, there exists e0 > 0 such that if |e| < e0, there 
exists a set A{e) C [0,1] such that for a £ A(e), <j>^a is analytically conjugate to 
a rotation of the circle, and \Lebesgue measure (.4(e)) - 1| < 6. 

REMARK 2.10. It is not necessary to work with analytic functions. For in- 
stance, Moser [10] showed that if the original diffeomorphism is Ck, and if the 
rotation number is of type (K,v), then if k is sufficiently large (depending on 
v), and the diffeomorphism is a sufficiently small perturbation of a rotation, the 
diffeomorphism is conjugate to a rotation, with a Ck' conjugacy function, for 
some 1 < k' < k. Note that this theorem is still "local" in that it demands 
that the diffeomorphism which we start with be "close" to a pure rotation. More 
recent work of Hermann [7] and Yoccoz [12], has lead to a remarkably complete 
understanding of the global picture of the dynamics of circle diffeomorphisms. 
For instance (see [12],), one can write the real numbers as a union of two disjoint 
sets A and B, and prove that any analytic circle diffeomorphism, <j>, with rota- 
tion number p{<f>) e B is analytically conjugate to the rotation Rp^), while for 
any a e A, there exists an analytic circle diffeomorphism with rotation number 
a which is not analytically conjugate to Ra. 
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3. Nearly Integrable Hamiltonian Systems 

In this section we address the KAM theory in its original setting, namely 
nearly integrable Hamiltonian systems. Recall that a Hamiltonian system (in 
Euclidean space) is a system of 2N differential equations whose form is given by 

dqj 

■        dH ■       1 N qj = ä-    ;   3 = I,...,N, 
dpj 

for some function H(p, q). (Here p = (pi,... ,PN) and q = {qi,..., gjv)-) 
In general these equations are just as hard to solve as any other system of 27V 

coupled, nonlinear, ordinary differential equations, but in special circumstances 
(the integrable Hamiltonian systems) there exists a special set of variables 
known as the action-angle variables, (7, (/>), I G RN and <f> G TN, such that in 
terms of these variables, 77(7, <f>) = h{I). Since the Hamiltonian does not depend 
on the angle variables </>, the equations of motion are very simple - they become 

is    =    -ML=o-j = l,...,N, 

h    =    ~=uj(I);j = l,...,N. 

We can solve these equations immediately, and we find that I(t) = 7(0), and 
4>{t) = ui(I)t + </>(0). Thus, for an integrable system with bounded trajectories, 
the action variables I are constants of the motion, while the angle variables <j> 
just precess around an iV-dimensional torus with angular frequencies w given by 
the gradient of the Hamiltonian with respect to the actions. (In particular, if 
the components of u(I) are irrationally related to one another, <t>{t) is a quasi- 

periodic function.) 

REMARK 3.1. The three-body (or N-body) problem, in which we ignore the 
mutual interaction between the planets is an integrable system. 

Now suppose that we start with an integrable Hamiltonian h(I) and make a 
small perturbation which depends on both the action and the angle variables - 
as in the case of the solar system when we consider the gravitational interactions 
between the planets. Then the Hamiltonian takes the form: 

(8) H(I,<l>) = h(I) + f(I,<t>). 

As before we will assume that the Hamiltonian function is analytic in order 
to avoid complications. More precisely, if we think of /(/, <f>) as a function on 
RN xRN, which is periodic in </>, then v/e assume that there exists some I* € R 
such that H can be extended to an analytic function on the set Ar,p{I*) = 
{{1,4>)eCNxCN | |J - 7*| < p , \Im{ij>j)\ < o- , j = 1,. • •, N }. (I will always 
use the f norm for TV-vectors -i.e.  \I\ = £f=i \Ij\.) We define the norm of a 
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function /, analytic on ^,„(1*) by \\f\\aiP = siip^^^,.) \f(I,<f>)\.   (As in 
the previous section, one can assume without loss of generality that a < 1.) 

In addition, since we are interested in nearly integrable Hamiltonian systems, 
we will assume that / has small norm. (Just as we assumed that n was small 
in the previous section.) Furthermore, we can assume that JTN f(I, <j))dN^ = 0, 
since if this were nonzero it could be absorbed by redefining h(I). 
Question: Do the trajectories of this perturbed Hamiltonian system still lie on 
invariant tori, at least for f sufficiently small? 

To state the answer of this question more precisely, we need an analogue of 
the numbers of type (K, v) introduced in the previous section. 

DEFINITION 3.1.  We say that a vector w e RN is of type (L, 7) if 

N 

|(w,n)| = \J2ujnj\ > L\n\-> , for aline ZN\0 . 
j=i 

REMARK 3.2. Note that if p is of type (K,v), then the vector (p,-l) is of 
type {L,i) with K = L and 7 = v - 1. Also, we again assume without loss of 
generality that L < 1. 

Given this remark, and the fact that we know that the numbers of type (K, v) 
are a subset of the real line of full Lebesgue measure, the following result (whose 
proof we omit) is not surprising. 

PROPOSITION 3.1. If^>N, almost every u e RN is of type (i,7) for some 
L<1. 

We are now in a position to state the KAM theorem. 

THEOREM 3.1 (KAM). Suppose that w(/*) = w* is of type (i,7), and that 
the Hessian matrix |j| is invertible at I*. (And hence on some neighborhood of 
I*.) Then there exists e0 > 0 such that if \\f\\aiP < e0, the Hamiltonian system 
(8) has a quasi-periodic solution with frequencies w{I*). 

REMARK 3.3. Although we have claimed in the theorem only that at least one 
quasi-periodic solution exists in the perturbed hamiltonian system, we will see in 
the course of the proof that the whole torus, 1 = 1*, survives. 

REMARK 3.4. One might wonder why we study quasi-periodic orbits rather 
than the apparently simpler periodic orbits. If one considers values of the ac- 
tion variables for which the frequencies u>j(I) are all rationally related, then the 
integrable hamiltonian will have an invariant torus, filled with periodic orbits. 
However, under a typical perturbation, all but finitely many of these periodic 
orbits will disappear. Hence, the quasi-periodic orbits are, in this sense, more 
stable than the periodic ones. 
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As we will see, the proof follows very closely the outline of the previous section. 

In particular, we begin with: 

Step 1: Analysis of the Linearized equation 

The basic idea is to find new variables {I, $) such that in terms of these new 
variables (8) will be integrable. However, not just any change of variables is 
allowed, because most changes of variables will not preserve the Hamiltonian 
form of the equations of motion. We will admit only those changes of variables 
which do preserve the Hamiltonian form of the equations. Such transformations 
are known as canonical changes of variables. There is a large literature on 
canonical transformations, (for a nice introduction see [2]), but pursuing it would 
take us too far afield. In order to come to the point in as expeditious a fashion 

as possible, let us just note the following: 

PROPOSITION 3.2. Suppose that there exists a smooth function £(/,<£) such 

that the equations: 
T     ÖS     ~     öS 

can be inverted to find {1,4) = ${I,4>)-  Then $ is a canonical transformation, 

and S is called its generating function. 

Proof: See [2], section 48. 

REMARK 3.5. Note that S(/,0) = {1,4) *s the generating function for the 

identity transformation. (Here, (•, •) is the inner product in RN.) 

REMARK 3.6. There are other ways of generating canonical transformations. 
In particular, the Lie transform method has proven to be very convenient for 
computational purposes [5]. However, the generating function method offers a 
simple and direct way to prove the KAM theorem and for that reason I have 

chosen it here. 

We would like to find a canonical transformation {1,4) = ®(I,4>) such that 
H{1,4) = H o${1,4) = h{I), or 

(9) H{^(I,4),4) = Hl)- 

(This, by the way, is the Hamilton-Jacobi equation. In the last century, Jacobi 
proved the integrability of a number of physical systems by finding solutions of 
this equation.) In our example, (9) can be written as: 

(io) h{{^{i,4)) + f((^(l4),4) = Hi) ■ 

Since H is "close" to an integrable Hamiltonian for / small, we can hope that 
the canonical transformation is "close" to the identity transformation. Using 
the fact that we know the generating function for the identity transformation, 
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we will look for canonical transformations whose generating functions are of the 
form £(/, (ß) = (1,4>) + S(1,4>), where S is C(||/||CT,P), the amount by which our 
Hamiltonian differs from an integrable one. If we substitute this form for £ into 
(10) and expand, retaining only terms that are formally of first order in the small 
quantities \\f\\a,p and HSU^p, we obtain the linearized Hamilton-Jacobi equation: 

(99 
(11) ("CO, ^ (/, <f>)) + /(/, <P) = h(I) - h(l) . 

Once again, we now have a linear equation involving periodic functions, so if we 
expand f (!,</>) = £„6Z,v f{I,n)ei2^n^\ we can solve (11) and we find 

(12) 5(7,0) = f    £    ^^ 
i2ir(n,<fi) 

REMARK 3.7.  Once again, as in (6), the function S defined (formally) by 
(VI) does not satisfy fllj, but rather 

(13) M/),—(7~,0)) + /(7~,0) = O, 

and we will be forced to estimate the difference between these two equations below. 

Note that once again, we will face small denominators. Indeed, for a dense 
set of points I, the denominators in (12) will vanish for infinitely many choices 
of n. This is the reason that many people (including Poincare) at the end of 
the last century believed that these series diverged. Nonetheless, the results 
of Kolmogorov, Arnold and Moser show that "most" (in the sense of Lebesgue 
measure) points I give rise to a convergent series. Having S be defined only on 
the complement of a dense set of points I would be a problem, since we would be 
hard pressed to take the derivatives we need in order to compute the canonical 
transformation in Proposition 3.2. To proceed, we take advantage of the fact 
that because of the analyticity of /, the Fourier coefficients /(/, n) are decaying 
to zero exponentially fast as |n| becomes large. Thus, if we truncate the sum 
defining S to consider only \n\ < M, for some large M we will make only a 
relatively small error in the solution of (11). On the other hand, since there are 
now only finitely many terms in the sum defining S, we can find open sets of 
action-variables on which the generating function is defined. Before stating the 
precise estimate on S, we introduce a few preliminaries. 

First, define Q, > 1, such that 

max((   sup    |Ä|),(   sup    W&r'W)) < (l .' 
V |W|<P   ÖI \I-I'\<P    

dI J 

(Here, || ■ || is the norm of the matrix considered as an operator from CN —> CN 

with the £l norm.)   Analogously, define Q such that sup|/_/.|<   ||(|j|)|| < tt. 
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(In this case, || • || is the norm of (0) considered as a bilinear operator from 
CN xCN -► CN.) Next note that if we define 

|n|<M 

SK will no longer be a solution of (13), but rather will solve 

(w(7),^(7,^)> + /<(/,^)=0, 

where /<(/, (/)) = £W<M /(/, n)ei27r<"'^. Note that we have already discarded 
all terms that were formally of more than first order in ||/|jCT,P in order to derive 
(11). Thus, if in deriving this equation for S<, we change (11) only by amounts 
of this order, we won't have qualitatively worsened our approximation. We will 
choose M in order to insure that this is the case. 

PROPOSITION 3.3. Choose 0 < 6 < a, and set M = |log(||/||ff,p)|/(7r<5).  If 
p < i/(2QMT+1) and 4TT<5 < 1, then 5< is analytic on Aas,P{I*), and 

||c<|| < /8r(7 + l)\" (2A^)U/lk, 
IP   \\a-s,p 5= ^ (27rfi)7+i J 2TTL 

Proof: Recall that we chose our domain Aa,P(I*) so that it was centered (in 
the I variables) at a point with w{I*) = w*. Now suppose that we choose 
\n\ < M, and consider (u(I),n) for some other point I in our domain. Writing 
I = I* + (I - /*), we see that \{u{I),n) - (w(I*),n)| < fl\n\p. If we then use 
the fact that u>* is of type (£,7), we find that for \n\ < M and all \I - I*\ < p, 

|(a,(I),n)| = \(u*,n) + (W),n) - <W*,n»| > ^ - Sl\n\p > ^ , 

where the last inequality used the hypothesis on p and the fact that |ra| < M. 
If we combine this observation with the fact that |/(/,n)| < ||/||a,pe"27rcr|n|, by 

Cauchy's theorem, we find 

\s<\\a-6,P <  £ 
2\n\\ -2ir6\n\ 

2TTL 
nJ va'p~ 

\n\<M 

< 2ll/ll^pJV7n + 2 Y mie-
2^mY 

f8T(7 + l)\N2N-y\\f\\a,p 

~ \ (2TTÖP+1 J 2-KL 
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In going from the first to second line of this inequality, we used the fact that 

N 

3 = 1 

so that E|„|<M |n|7e-2wffl"l < N^(l + 2Z^=1me-^Sm)N. 

D 

Now that we know that the generating function is well-defined, we can proceed 
to check that the canonical transformation is defined and analytic, just as we 
did in Proposition 2.3 in the previous section. 

PROPOSITION 3.4. If 

[8T(1 + l)\N16N^\\f\^p 

\ (2^)7+1) 2-KÖpL ' 

p < L/(20M7+!) and 4nS < 1, then the equations 

(14) I = I+%' and<t> = <t>+d-±T, 

define an analytic and invertible canonical transformation {I,<fi) = $(!,</>) on 
the Set Ar-36,p/4- 

Proof: Just as in the proof of Lemma 2.3 we begin by using the analytic inverse 
function theorem to check that (14) can be inverted. In both of the expres- 
sions in this equation, the inverse function theorem can be applied provided 
\\-dTd$\\<T-28,P/2 < 1- This in turn, follows immediately from the estimate in 
Proposition 3.3 and Cauchy's Theorem. 

The remainder of the proposition follows if we check that the transformation 
is onto the domain Aa-3StP/i. (This is analogous to the proof of Proposition 
2.3.) Note that if (I, cf>) e Aa„2S,p/2, 

dS< /n-'-   ■ -^ N 

\\-Q0-\\cr-26,p/2 

by the hypothesis of the Proposition, while 

„dS<.. /8Tfo + l)\N 

S { (2^)7+1 ) 2^Z        < Pß ' 

31 '"*'/< HM^J 2npL        <6/2 ' 
again by the hypotheses of the Proposition. Thus, \I -1\ < p/8, while \4>-<j>\ < 
8/2. This implies that the canonical transformation maps the set Aa-2StP/2 onto 
•4o-3S,p/4. and hence that (I,<f>) = ${I,<j>) on this set. 

D 
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REMARK 3.8. For a vector valued function like ^- on a domain Aa,P. 

\\9jfc\\a,p = sup^p |^|, where we recall that \^\ is the £ norm of ^ 
This is the origin of the extra factor of N in these estimates. 

Step 2: The Newton Step 

Now, just as we did in the case of circle diffeomorphisms, where we trans- 
formed our original diffeomorphism with the approximate conjugacy function 
obtained by solving the linearized conjugacy equation, we transform our original 
Hamiltonian with the approximate canonical transformation, whose generating 
function is S<, and show that the difference between the transformed Hamil- 
tonian and an integrable Hamiltonian is of second order in the small quantity 
\\f\\a,p. As before, we will use this fact as the basis for a Newton's method 

argument. 

PROPOSITION 3.5. Define H(I, <j>) = H o $(/, 4>) = h(I) + f(I, <j>). If 

f8r(7 + l)\"l6i\H+1||/||a,P < i 
\(2irSp+1 ) 2n6pL 

p < L/(2QM7+1) and 4nS < 1, then H is analytic on Aa-3s,P/i, 
and one has 

the estimates, 

HI.   £ii .mi^^8r^ + 1)^2Ar7+1|l/lkpV 

and 

'&T{l + l)\N 2Ni+l\\f\\rj,p\
2 

-3S.P/4 <2{il + 2)U  (27r5)7+i J 2^8pL 

REMARK 3.9. The important thing to note is that f, the amount by which our 
transformed Hamiltonian fails to be integrable is quadratic in the small quantity 
\\f\\2a . Just as in Proposition 2.4 in the previous section, this will form the basis 
of a Newton's method argument, which will allow us to prove the existence of a 

quasi-periodic solution with frequencies UJ* . 
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Proof: Using Taylor's Theorem, we can rewrite 

-   *</+I£) + /(/+T£>«/.#)> 

= w+^-ä^+Vo J0
{{diiI+v-*r)-*r)>-dir)dm* 

Prom the definition of S<, we know that (u(I), ^> + /(/,<£) = f-{I,<t>) = 

E|„i>M/(^n)e27ri<0'n>- Thus>we can define 

HI)    =    h(I) + avera9e{jJo((-(I + v-)-),-)dvdt} 

/•lor £10 £10 

+average{      (—(I + t—,4>),—)dt} + averagef(I,(l>(I,4>)) , 

where average{g(I, <f>)} = JTN g(I, <j>)d<i>, and 

f1 fl''„&>,?    ds<,ds<, ds<,J J 

fr  f„du,7      Ö5<  Ö5<    .0S<       ,, 

-averagef(I,</>(I,4>)). 

REMARK 3.10. Subtracting the average of the three quantities in f insures 
that when we expand f in a Fourier series, there will be no n = 0 coefficient - 
this was used in solving (11). 

Both h and / are easy to estimate using the estimates of Proposition 3.3 and 
Cauchy's Theorem. For instance, 

rl,df.-    ds< ,, as- < 

N 
2II/IU,, /8r(7+l)V 2N^\\f\\„iP 

p      V (2TT^)T+
1
 ) 2-KSL 
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while, 

„  f1  fK.du.f      dS<sdS<.  dS<., Ml. 

S" ^ (2TT«5)7+I ; 2TT5£       )    ' 

Finally, we have the estimate 

II/^L-M.,/4 <  E n/iu^-™1"1 < ii/ik,«-*"' E e^%l 

\n\>M \n\>M 

where the last of these inequalities came from using the definition of M in Propo- 

sition 3.3. 
If we combine these remarks, we immediately obtain the estimates stated in 

the Proposition. 

□ 

The Induction Argument 
The induction follows closely the lines of the induction step in the case of the 

circle diffeomorphisms. We have to keep track of two more inductive constants 
- pn to control the size of the domain of the action variables, and Mn to control 
how we cut off the sum defining S< at the ntn stage of the iteration. Thus, we 
define our original Hamiltonian H(I,</>) = H0{I,4>) and set h{I) = h0{I) and 

f{I,<t>) = f0{I,4>)- Also define 

• *» = 36(l+n»)' n ^ 0- 
• a0 = a, and an+i =crn— 46n, if n > 0. 
• Po < P, and pn+i = /9„/8, with p0 chosen to satisfy the hypothesis of 

the following Lemma. 

• eo = ll/IU.p. and e„ = e^3/2)    T , if n > 0. 
• Mn = |logen|/(7r5n). 

We set Hn+l = Hn o $n = hn+1 + fn+u with /n+i(/,0) = 0, where $„ is the 
canonical transformation whose generating function S< solves the equation 

(w„(/),-^-(/,0)) + /n
<(/,0)=O, 

with /<(/,</») = T,\n\<Mjn{i,n)e^^), and wn(I) = ^f{I). At the nth 

stage of the iteration we will work on the domain AaniPn{In) = {(1,4>) € CN x 
CN \\I - In\ < Pn , \Im{<f)j)\ < an , j = 1,...,N }, where In is chosen so 

that u)n(In) = u*, and we define fi„ = max(l,sup ||^fH, ||(^£f )_1||), with the 
supremum in these expressions running over all I with \I - In\ < pn. 
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We then have 

LEMMA 3.1 (KAM INDUCTION LEMMA).  There exists a positive constant c\ 
such that if 

<2-.,„W)^'^;ff' a„.  <2 
r(7+l)""W  ' ™     f!MJ+1 

then 
• The generating function S„ satisfies 

11  nlk"-*"'pn- V(2TT^+V      2-KL    ' 

• $„ is defined and analytic on Aan-3sn,pn/4{In) and maps this set into 
•A-an-2Sn,pn/2{In)- 

• ||/n+l||o-„+i,/9n+i  S en+l- 

• ||ftn+l - /in|Un+i,p„+i  ^ en+l- 
• \In+1 - In\ < pn/8. 

Before proving this lemma, we show how the KAM theorem follows from it. 
If the perturbation / in our Hamiltonian is sufficiently small, the hypotheses of 
the Induction Lemma will be satisfied, and roughly speaking, the idea is that as 
n —> oo, Hn(1,4>) —> h°°(I), an integrable system, since /„ —> 0. Since all of the 
orbits of an integrable system are quasiperiodic, this would complete the proof. 
However, as n becomes larger and larger, the size of the domain in the action 
variables on which Hn is defined goes to zero. Thus, we must be a little careful 
with this limit. 

Begin by defining $„ = $0 ° $i ° • • • $n- By the induction lemma, 
*„ : Aan-3sn,pn/4(In) -> Aa0tPo(Io), and Hn= H0o *„_!. In particular, 
if (In(t), <pn(t)) is a solution of Hamilton's equations with Hamiltonian Hn, then 
^n-i(I

n(t), <j>n{t)) is a solution of Hamilton's equations with Hamiltonian HQ. 

Consider the equations of motion of Hn: 

Since ||^f IU,P„/2 < 2enN/pn, and \\^f\\an-sn,Pn < enN/Sn, the trajectory 
with initial conditions (In, <j>0) (for any cf>0 G TN), will remain in A<Tn-3sn,Pn/4(In) 
for all times \t\ < Tn = 2n, by our hypothesis on eo, and the definition of the 
induction constants. Furthermore, if (In(t), <f>n(t)) is the solution with these 
initial conditions, we have 

max (   sup  \In(t) - In\, sup  \4>n(t) - (w*t + cf>0)\ ) < 22n+2nenN/pn6n . 
\\t\<T„ \t\<Tn ) 

Noting that the inductive estimates on  In  imply that there exists   I°°  with 
liiün^ooln — I°°, we see that for t in any compact subset of the real line, 
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(In(t), <f>n{t)) ~* (I°°,w*t + 4>o) (again using the definition of the inductive con- 
stants). Using the inductive bounds on the canonical transformation one can 
readily establish that 

while 

||*„(/,0)      -      *n-l(/,0)lk+1,p„+1 

- { pJn' \(2TT^)T+I)    \2w6nPnL 

|o"n + l)Pn + l 

N 

K 2ir6npnL 

Using the definition of the inductive constants, we see that the sum over n of this 
last expression converges and hence limn^oo tyn(I°°,uj*t + (f>0) = (I*(t),</>*(t)) 
exists and is a quasi-periodic function with frequency u*. Similarly, 

lim^oo |*„(/°°,uj*t + <j>Q) - ¥„(/"(*), 4>n{t))\ = 0, 

for t in any compact subset of the real line. 

Combining these two remarks, find that 

lim^oo *„(/"(*), <f>n(t)) = (/*(*), rw), 

so (I*(t),(j)*(t)) is a quasi-periodic solution of Hamilton's equations for the sys- 

tem with Hamiltonian Ho as claimed. 
D 

REMARK 3.11. Note that this argument is independent of the point <j>o that we 
take on the original torus. Thus it shows that every trajectory on the unperturbed 
torus is preserved. 

Proof: (of Lemma 3.1.) Note that Propositions 3.3, 3.4, and 3.5, plus the 
assumption on the induction constants imply that we can start the induction, 
provided Aao^3s0,Po/4(Io) 3 AauPl(h). Prom the definitions of the domains and 
the inductive constants, we see that this will follow provided |/0 — -fi| < Po/8. 
To see that this is so we note that wo(io) = wi(7i). Thus, LüQ(IQ) — coo(Ii) = 
fcM(/i). But) ||fcM(/l)|U_3W6 < 12ei/p0i while 

WO(/O)-ü;O(/I)    =    ^(/o)(/o-/i) 

77 Jo  Jo 

t
/d

2co0,T   ,  _T WT      T ^2 

dp 
■(/o + s/i)(/i-/0)rdsdt. 

Since || (^f)   * \\ < Q and ||^M| < Ö, this implies that \I0 - h\ < Po/8 by the 
definition of the induction constants, provided flQpo < 1/2, which will follow 
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if the constant cx in the Lemma is sufficiently large.   This completes the first 
induction step. 

Suppose that the induction argument holds for n = 0,1,..., K - 1. To prove 
it for n = K we first note if S£ is defined by: 

|n|<MK 

then by Proposition 3.3, we have 

IK<II ^ /8r(7 + l)\jV2JV7£g 

Note that the hypothesis in Proposition 3.3 becomes pK < L/(2ilKMjc
+1) 

where, 

A*    =    max(l,      sup      |Ä|,      sup      life)"1!!) 
\I-IK\<PK     ol2      \I-IK\<PK       dP 

<fimax(l+^-^,(1 -£_J)-i)<2fi , 

using the definition of the inductive constants. This observation, plus the hy- 
pothesis on p0 in the inductive lemma, guarantees that the hypothesis of Propo- 
sition 3.3 is satisfied. Thus, by Proposition 3.4, the canonical transformation 
<&K defined by 

(15) , = /+M,and^+M, 

is analytic and invertible on the set AaK-3sKtPK/4(IK), and maps this set into 
•A-<TK,PK\1K)- 

If we then define fK+1 and hK+i, as we defined / and h in Proposition 3.5 
we see that 

llf„   II <?ro   ■ 0^/^^(7 + 1)^2^+1^^ 

while 

\\hK - hK+l\\aK-36K,PK/4 < 
(o     | g,^8r(7+l)\JV2JV7+ief,y 
1   * +   ; ^(27r«/f)7+i>/    2WSKPKL) 

If we use the bound on e0, and the definitions of the inductive constants, we 
see that the quantities on the right hand sides of both of these inequalities are 
less than eK+i. The proof of the inductive lemma will be completed if we can 
show that AaK+1,PK+1(IK+i) C AaK-3gK!PK/4(IK).   This follows in a fashion 
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very similar to the proof that AauPl(h) C Aao^6o,Po/4(Io), which we demon- 
strated above, so we omit the details. 

D 

REMARK 3.12. From the point of view of applications of this theory it is of- 
ten convenient to know not just what happens to a single trajectory, but rather 
the behavior of whole sets of trajectories. Simple modifications of the preceding 
argument allow one to demonstrate the following variant of the KAM theorem. 

(See [4].) Consider the family of Hamiltonian systems 

(16) He = h{I) + ef{I,<j>). 

Suppose that there exists a bounded set V C RN such that 0(7) is invertible 
for all IeV, and that for every e in some neighborhood of zero He is analytic 

on a set of the form Aa,p(V) = {(J> <l>) £ CN xCN \ \I-I\ < p , for some I £ 

V , and |/m(0j)l < v , j = 1,.. ■ ,N }. 

THEOREM 3.2. For every 6 > 0, there exists e0 > 0 such that if \e\ < e0, there 
exists a set Pe C V x TN, such that the Lebesgue measure of {V x TN)\Pt is 
less than 6 and for any point (I0,4>o) G Pe, the trajectory of (IQ) with initial 

conditions {Io,<f>o) *s quasi-periodic. 

Thus an informal way of stating the KAM theorem is to say that "most" tra- 
jectories of a nearly integrable Hamiltonian systems remain quasi-periodic. 

REMARK 3.13. Just as in the case of Arnold's theorem about circle diffeo- 
morphisms, the KAM theorem also remains true when the Hamiltonian is only 
finitely differentiable, rather than analytic. For a nice exposition of this theory, 

see [11]. 
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KAM theory in infinite dimensions 

WALTER CRAIG 

ABSTRACT. Many of the nonlinear evolution equations of mathematical 
physics can be viewed as infinite dimensional Hamiltonian systems, posed 
in a function space as a phase space. This includes nonlinear Schrödinger 
equations, nonlinear wave equations, and nonlinear systems related to the 
KdV and the water wave problem. There is a recent class of results whose 
intent is to describe some of the principal features of the phase space for 
these equations, through extensions of KAM theory to infinite dimensional 
settings. The first part of this hour talk will consist in a survey of the results 
of several authors on this theme. The second part will go into depth on 
some aspects of the construction of invariant tori for nonlinear evolution 
equations. The talk will illustrate the connection between invariant tori 
and Anderson localization in the space of normal modes, and will discuss 
the development of unstable periodic orbits in the presence of resonance. 

§1. Introduction 

It is natural to feel that we understand ODE in much more detail than PDE, 
and therefore it is a natural impulse to regard PDE which describe time depen- 
dent phenomena as dynamical systems, posed in an infinite dimensional phase 
space. As well as being an elegant point of view, it is a successful one if it leads 
to a better understanding of the solutions of the equations. The problems that I 
will be addressing today are mainly evolution equations which are Hamiltonian 
systems with infinitely many degrees of freedom. In the last several years there 
has been a research effort to extend one of the main tools of finite dimensional 
Hamiltonian mechanics, the KAM theory, to infinite dimensional settings. The 
main goal is to understand some of the principal features of the phase space in 
which the Hamiltonian PDE are posed. I will be describing the work of several 
people in this talk; my own work on the subject has been in collaboration with 
E. Wayne, who is lecturing on finite dimensional KAM theory in this series of 
talks. 
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1 he author was supported in part by NSF Grant # DMS 92-08190 
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I will describe a class of results on the existence of invariant tori for PDE, 
considered as infinite dimensional Hamiltonian systems. For initial data on these 
tori, the flow of the Hamiltonian system corresponds to solutions of the PDE 
which are time periodic and time quasi-periodic, that is they behave regularly 
in time. These solutions contrast in character with those exhibited in Dave 
McLaughlin's talk; numerical solutions of a simultaneously damped and driven 
version of the nonlinear Schrödinger equation, which apparently undergo irregu- 
lar behavior when tracked over long time intervals. The impression that we have 
received in the last two talks on the KAM theory is that these invariant tori 
are somewhat delicate structures, depending on diophantine properties of the 
frequency vector and concerning the degree of smoothness of the Hamiltonian 
system. It is true that the analysis by which we construct them is detailed. On 
the other hand the fact that they exist is very robust, in the sense that they 
are present for a large class of Hamiltonian systems, and we will see today that 
there are invariant tori present in the phase space of a large class of PDE. Indeed, 
if we somehow consider the space of nonlinearities, say, for the nonlinear wave 
equation, then most - in the sense of an open dense set - do possess invariant tori 
in their phase space. Failure to have these structures can only occur when there 
is either (i) uncharacteristically severe linear resonance, or (ii) lack of genuine 
nonlinearity in the problem. But I am getting ahead of myself, and will start by 

giving you the examples I have in mind. 

§2. Hamiltonian systems 

This is a selection of the most basic PDE that come to mind when working 
on the infinite dimensional extensions of the KAM theory. The first one that 
comes to mind is the nonlinear wave equation 

(1) d\u = d\u - g{x, u) ,        0 < x < -K 

with either Dirichlet boundary conditions 

u(0,t) = 0 = u{ir,t)        (Dir.) 

or periodic ones 
u(x, t) = u(x + it, t)        (Per.). 

This is a second order equation, but may be made into a first order Hamiltonian 
system with the following Hamiltonian function, 

H(u,p) = ^ \v{x)2 + \{dxu{x)f + G(x,u) dx 
Jo 

where 
duG{x, u) = g{x, u) = gt {x)u + g2{x)u2 + g3{x)u3 + ■■■ 
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The canonical equations 

d, 
u\-f0     l\fSuH(u,p) 
p)     \-l   Oj \SpH(u,p) 

P 
dlu - g(x, u) 

are easily seen to be equivalent to (1). We will be assuming in our later analysis 
the technical conditions that g{x,u) is analytic in (x,u) and periodic in x, and 
if we consider Dirichlet boundary conditions (Dir.), that g(x,u) = -g(-x,-u). 

The next example is the nonlinear Schrödinger equation, 

(2) iM = \d2
x^ - Q(x, V», VÖ        0 < x < 2TT 

where we also consider either boundary conditions (Dir.) or (Per.). Letting 
G{x,il>,$) be a real valued function, such that d^G = Q, this equation has the 
Hamiltonian 

_        r2v 

Hnis{^,^)=        \\dx^\2 + G{x,ijj,~$)dx , 
JO 

and equation (2) can be written as 

with J = i representing the symplectic form. 

The third natural class of examples is equations of KdV type, 

(3) dt1 = \&xQ - dx(g(x, <?)),        0 < x < 2TT 

which have Hamiltonian 

HKdv{q) = /     ±{dxq)2 + G(x,q) dx 
Jo 

where dqG = g. The equation (3) can be rewritten 

dtq = J6qHKdv(q) , 

with this time J = -dx, given by a nonclassical symplectic structure. 
Related in origin to the KdV equation is the Boussinesq system given through 

the Hamiltonian 

/•2-jr 

HB{q,p)=   I      \p2 + \q2-\{dxq)2 + G{x,p,q)dx 
J 0 

and 

7 _ ( 0    & 
U    0 

which results in the system of PDE 

(4) df(
q) =d   (      P + 

9
P
G

(
X

,P,Q)       \ 
*W      Ö'\q+\%q + dqG(x,p,q)) 
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The system that is given here is ill posed as an initial value problem, and it is 
not one of the examples that we will pursue in this talk. 

Finally I want to mention one of my favorite systems, albeit one of the least 
tractable, the water wave problem. This is the system that describes the evo- 
lution of surface waves in a body of an inviscid incompressible fluid which is in 
addition taken to be irrotational. It can be written in Hamiltonian form 

<» *0-(-oii)(S&: 
where the Hamiltonian comes from an expression originally given by V.E. Za- 
kharov. For the most convenient formulation for Hww (see Craig & Sulem [CS]) 
consider potential flow in a fluid region R{r]) = {0 < x < 2?r, -h<y< r)(x)}, 
which means that the velocity potential satisfies 

A<£(z,y)=0,        dy<Kx,-h)=0 

in R(r]). Letting (/>{x,r){x)) = £{x) be the Dirichlet data for <f> on the top 
boundary, N the outward pointing unit normal to the free surface, and G{r])t; = 
V<t> ■ Ny/\ + {dxrj)2 the Dirichlet-Neumann mapping, then the Hamiltonian is 

given by the expression 

(6) HWW(V,0= r UGm+lrfdx. 
Jo 

With our present knowledge, system (5),(6) is too difficult to fit into our analytic 
framework. It does remain one of our goals, as a mathematically challenging and 

physically relevant open problem. 
Exercise 1: Show that equations (1) through (5) are in their claimed form 
as Hamiltonian systems, with the given Hamiltonian functions and symplectic 
structures. Do the linear stability analysis about the zero solution, and explain 
that equations (2) (3) and (5) are linearly stable, (1) is linearly well-posed, and 
that (4) is linearly ill-posed. 

§3. Results 

I plan to explain the majority of the results in the context of the nonlinear 

wave equation (1). The Hamiltonian can be written 

H(u,p) = H2{u,p) + H3{u) + H4(u) + ■■■ 

where He is homogeneous of degree I in its arguments. Truncate to retain only 
H2(u,p) = j\p2 + \{dxu)2 + \gi(x)u2dx. The resulting system is of course the 
linearization of (1) about the equilibrium solution u = 0, 

(7) d2
tv = d%v - gi(x)v . 
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Using the eigenfunctions {ipj(x)} and the eigenvalues {w|} of the operator 
L{gi) — -(d/dx)2 + gi{x) with the appropriate boundary conditions (Dir.) or 
(Per.), a time periodic solution to (7) is given by 

(8) Vj (x, t) = r cos(cujt + £)ipj (x) 

with frequency Uj and 'action' r2. We assume for convenience that all eigen- 
values satisfy wj > 0; in any case there will be only finitely many exceptions for 
each choice of glt and the rest of the analysis will work independently of them. 
The general solution for L2(0, -IT) initial data is 

oo oo 

3 = 1 3=1 
which is time quasiperiodic (QP) if the set of frequencies {uje; rjt ^ 0} has 

a finite frequency basis over the rationals. In general such an expression is al- 
most periodic (AP) in time. Our main question is whether any of these periodic, 
quasiperiodic or almost periodic solutions persist for the nonlinear problem (1). 
For most nonlinearities the answer is yes, at least for some of the above mo- 
tions. Let us focus on periodic motions with frequency close to one of the linear 
frequencies u)j0. 

THEOREM 1. (Craig & Wayne [CW1] (1993)) There is a set Q in the space 
of all nonlinearities such that if g e Q then there exists a smooth Cantor family 
of periodic solutions to (1). More specifically, there exists a tolerance r0, C°° 
functions (u(x, t; r), fi(r)) for r e [0, r0), and a Cantor set C such that for r eC, 
then u(x,t;r) is a time periodic solution to (1) with frequency fi(r). Moreover, 
u is analytic with respect to (x,t), and with a choice of phase £, 

\u{x,t;r)-rcos(n(r)t + £)ipjo(x)\ < C\r\2 

\ü{r)-u3jo\<C\r\2 . 

The nonlinear solution is given as a graph over the unperturbed orbits of the 
linear solution of (7), forming a Cantor set foliated by invariant circles. 
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The set of acceptable nonlinearities Q is large in the set of analytic nonlinear- 
ities, indeed it is open and dense. In fact the conditions defining Q depend only 
upon the coefficients gi(x),g2(x) and 53(0;), the 3-jet of 5. The condition on gx 

implies that the linear frequency sequences {ujj} avoid exceptionally resonant 
cases, and those on (01,52,53) ask that the problem be genuinely nonlinear. For 
example, the potentials gx(x) = m2 a constant, 52 = 0 and 53(a;)«3 = a0u

3 are 
included in Q for all a0 ^ 0 and for an open and dense set of parameters m2 of 

full Lebesgue measure. 
This result has a direct analog when applied to the nonlinear Schrödinger 

equation (2), where the behavior of the frequency sequence c\j\2 < Wj < C\j\2 

makes certain aspects of the problem somewhat easier, [CW4]. I will give more 
details of the proof of Theorem 1, which is by an approach that is nontraditional 
in KAM theory. First however I want to paraphrase several earlier results along 

similar lines. 

THEOREM 2. (Kuksin [K] (1987)'(1993), Wayne [W] (1990)) There is a set 
Qx such that if g £ Qi then equation (1) with Dirichlet boundary conditions has 

Cantor families of quasiperiodic solutions. 

The version of E. Wayne gives Qx as a subset of the analytic nonlinearities 
which is not dense, although it is of large measure for an appropriate sense of 
measure. S. Kuksin's version of this theorem is through the study of equations 

of the form 

(9) dtu = iuj{D,a)u + f ,        0<X<2TT 

with ui(j, a) ~ \j\p, and nondegenerate in a certain sense with respect to a finite 
dimensional set of parameters a. The wave equation (1) with Dirichlet boundary 
conditions can be shown to fit into his framework, as can (2) and (3), however the 
frequency asymptotics exclude the resonances and near resonances of the periodic 
boundary conditions (Per.). In fact, a recent preprint of Kuksin & Pöschel 
[KP] shows that the nonlinear Klein-Gordon equation with Dirichlet boundary 
conditions fits into the framework of (9), using in part a global transformation 

to fourth order Birkhoff normal form. 
The methods developed for the proof of these results also provide a lot of detail 

about these solutions to nonlinear wave equations. One result which builds upon 
Theorem 1 is that linear resonance produces instabilities. 

DEFINITION 3. A set {u>je} of linear frequencies is in resonance if there is a 

relationship 

31 ~  k,      '"      kN 

for integer pairs (je, kg). 

An example of a two degree of freedom system in linear resonance wx : w2 = 
1 : 1 is given by the Hamiltonian 

(10)       H(x,y) = \{y\+ yl) + ^-(x2 + x\) + a0(xl + x2)2 + axx\ + a2x\ , 
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for (x1,x2,yi,y2) e R
4. 

Exercise 2:  Find the families of time periodic solutions of the Hamiltonian 
system 

x = dyH ,        y = -dxH , 

with frequency close to the linear frequency u. Calculate the linear stability of 
these periodic solutions. 

Equation (10) is a model problem for the nonlinear Klein-Gordon equation 

(11) d2u = d2
xu-m2u+{l + aQ{x))u\        u(x, t) = u(x + 2TT, t) 

for which there is a 1 : 1 resonance for every nonzero frequency w2j-i = w2j- = 
^/j2 + m2. 

THEOREM 4. (Craig, Kuksin & Wayne [CKW] (1994)) For the coefficient in 
equation (11) take a0(x) = acos(2jx). Then there exist smooth Cantor families 
of periodic solutions which have at least two normal hyperbolic directions. 

Here is a schematic picture of the situation: 

figure 2 

It seems to be a general principle that in the infinite dimensional phase space 
for these PDE, the traveling wave solutions (or their perturbations) are stable, 
elliptic periodic orbits, while the standing wave solutions are unstable or unstable 
after perturbation, periodic orbits with at least two normal hyperbolic directions. 
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§4. Small divisors 

We will now get to work constructing some of these solutions. In order to 
solve (1) we take the point of view of embedding a torus into our function space 

oo oo 

(12) S(x,0 = X>m(z) = E E sU,k)elk-%(x) ■ 
j=l 3=1kezN 

We ask that £ G TN, so that Sj{£ + 7) = Sj(0 for 7 G Z^. For this to be a real 
torus, the sequence is to satisfy the reality condition s(j,k) - s(j,-k). If the 
embedding is to be invariant under the flow of equation (1), and if the flow is 
to pull back to the linear flow £ -> £ + tfl on the torus TN, the function S(x, £) 

must satisfy 

(13) (0 • dz)2S- d%S + g(x, S) = 0 

In terms of the eigenfunction expansion for S in (12) the sequence of Fourier 
coefficients {(j, k)} must satisfy an equation on the lattice ZN+1; 

(14) ((0 ■ fc)2 - u>])s(j, k) + W(s)(j, k) = 0 

with a nonlinear (and nonlocal of course) function W(s) defined through the 
nonlinearity g, which satisfies in some appropriate norm ||W(s)|| < 0(||s||2). 

We will continue this discussion for the case of time periodic solutions, setting 
the torus dimension N = 1 and linearizing (14) about zero. We find 

(15) ((n-k)2-u,])s(j,k) = 0 

with one solution s0(i, k) = \re*k°8(j - j0, k - k0) + \re-^k°8{j - j0, k + k0), 
and fi = (wj0/k0), corresponding to the solution (8) of the linear wave equation 
(7),S(x,S) = rcoB(kot)il>jo(x). 
Exercise 3: Make this correspondence between the PDE and the lattice problem 
for the general quasiperiodic solution. 

Assume that there is no exact linear resonance for wjo, or that there is at 
most a finite resonance, so that the set N = {(Je, ±ke); (ujjke) = ujo} C Z2 is 
finite. Let Q be the orthogonal projection onto the subspace £2(N) in £2(Z2), the 
subspace of the linearly resonant modes, and let P = 1 - Q. Then the solution 
to equation (14) can be decomposed as 

(16) s(j, k) = {Qs + Ps){j, k) = sou.k) + UU>k) ■ 

This organizes the equation (14) as a Lyapunov-Schmidt decomposition into 
resonant and nonresonant components; 

(17) diag ((ük)2 - w2)N so + QW(s0 + «) = 0 

(18) diag ((Qk)2 - CJ
2
)Z*\N « + PW(s0 + u) = 0 . 
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The classical Lyapunov-Schmidt method would be to solve (18) for a sequence 
u = u(j, k; s0, fi), and then to find (s0, fi) to satisfy (17). The latter is the analog 
of the 'frequency map' of the classical aproach to the KAM theory. 

The small divisor problem is already evident in the diagonal elements of the 
operator V(il) = diag ((QA;)2 - w|). The standard procedure to solve (18) might 
be to use the inverse F(ft)"1 = diag((fifc)2 - a;?)"1, however for typical fre- 
quency sequences {wj} and most fi, the eigenvalues of V(Q) (simply its diagonal 
elements) are dense in R, and in particular they accumulate at zero. To overcome 
the inherent losses in the problem, we will adopt the Nash-Moser modification 
of the Newton iteration method to solve (18). 

Let Bn = {(j,k); \j\ + \k\ < L02
n}\N C Z2 be a sequence of lattice do- 

mains which eventually exhaust Z2. Then we propose to solve the approximate 
equations 

(v(n)+dupw(s0 + un))BnVn = -(v(n)Un + PW(S0 + Un))Bn 

(19)        un+1 =un + vn 

which is Newton's method F'{un)vn = -F(un), un+1 = un + vn, restricted to 
the sequence of approximate domains Bn. Now we may take advantage of the 
rapid convergence properties of the iteration. However the problems with the 
linearized operators are somehow worse even than V(ft)-1, as we have to find 
the inverse of (V(ü) + PduW)Bn, which has off-diagonal terms as well. 

There is a strong analogy with known problems in statistical mechanics and 
localization theory. There the issue is the competition between the closeness 
to resonance of random potential wells, which enhances tunnelling, and the dis- 
tance between them, which supresses it. To emphasize this in our small divisor 
problems, we will use the terminology that 

HBn = HBn (fi, u) = {V{9) + duPW(s0 + u))Bn 

is the 'Hamiltonian' operator, and its inverse 

GBn = (V(fl) + duPW(s0 + u)) -1 

is the 'Green's function'. Typically in our KAM problems, V(Sl) is diagonal and 
has small divisors recognizable by the fact that its spectrum is dense at zero, and 
duPW gives rise to off-diagonal terms which decay in the off-diagonal distance. 
Also typical is the fact that for any subdomain A, HA is self-adjoint. 

§5. The Green's function 

The last section of this lecture is a description of our analysis of the Green's 
function that is at the heart of the convergence proof for the iteration scheme 
(19). 
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DEFINITION 5. A lattice site x = (j, k) G Z2 is singular if 

\V(£l)\ = W2k2-uJ2j)\<d, 

and otherwise it is regular. A singular region is a group of singular sites, which 

we usually take to be connected. 

Consider a selfadjoint operator W on a lattice region A C ZN (which in the 

course of our iteration will be the restriction to A of duPW). 

LEMMA 6 If A C ZN is a region containing no singular sites, and i/||W||op < 

r < d, then the Green's function GA = (V(fi) + WT1 exists, and satisfies 

1 

PROOF. The Neumann series for GA converges in operator norm, 
OO 

GA = {V{Q)+wT1=vl Y^-wtywy ■ 
Our approximate solutions un correspond to analytic functions of {x, £), there- 

fore we may consider sequences which decay exponentially, measured with the 

norm „ , . 

Hl =   Yl  i«(*)i2etoN < +o° ■ 
(j,/c)=xez2 

To go along with this, we manufacture an operator norm 

||W'|L=sup J2 \W'(x,y)\e^-y\ • 
xeZ2

yez2 

Operators with finite cr-norm have matrix elements which decay exponentially 
off-diagonal; that is, if \\W% < r0 then \W'(x,y)\ < r0e^ -»    Furthermore 
the norm has the algebraic property that \\W1W2\\a < \\W1UW2\\<r, and Lemma 
6 works equally well with respect to this norm as with the regular operator norm. 

The diagonal elements of V(Sl) are dense, so it is clear that there wdl be 
singlar sites in Bn for n large, and the hypotheses of Lemma 6 wdl not hold. 
What we must do is to insure that some control of the Green's function on Bn 

will remain. The goal is to show that for a Cantor set of parameters (r, SI), there 
is an inductive choice a/2 < an < a such that \\GBn Ik < V«n, and furthermore 
all of the other inductive constants stay under control. 

To illustrate the methods to control the Green's function, I will work with a 
model problem, which will have the full character of the estimates at one iteration 
step. We make the following assumptions on the singular sites of a domain B 

and their geometry. 
(1) The singular sites of B are contained in a set of singular regions bjt so tnat 

UjSj       contains all of the singular sites 

B\ Uj Sj       contains regular points only. 
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(2) The singular regions are of bounded size, 

diam (Sj) < C0 . 

(3) For singular regions, the Hamiltonian operator has spectrum bounded away 
from zero, 

dist (spec (tf5.),0)><5, 

where 6 « d. In practice in the induction, the tolerance for small denominators 
6 = 6n -» 0. 

(4) Singular regions are separated from each other 

dist (Sj,Sm) >U . 

In the induction, I = £n will be a divergent series, but will grow less rapidly than 
the radius of the regions Bn. 

(5) Finally, we consider disks C{Sj) of radius I about each singular region Sj. 
By requirement (4) these are pairwise disjoint. We also ask that HC(s•) has 
spectrum bounded away from zero, 

dist (spec (HC(S.)),Q) >6 . 

The singular regions of the lattice Z2 will look like this: 

+ S„ 

■* J 

figure 3 

Conditions (1) through (5) will not hold for all of the values of the parameters 
(r,fi). At the nth iteration step, the parameters for which any of (1) to (5) 
fail must be excised from consideration and the approximate solution smoothly 
interpolated through the excision. This is the origin of the Cantor nature of the 
sets on which convergence of the procedure is achieved, and the C°° but not 
analytic nature of the bifurcation branches. 
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THEOREM 7. If the above hypotheses are satisfied, \\WWa < r « d and 6,7 
and I are chosen appropriately, then the Green's function GB exists, and satisfies 

(20)        \GB^v)\<\(iy*-™-^ • 

Proof: We will use a resolvant expansion for GB, based on the block diagonal 

decomposition of the Hamiltonian 

(21) HB = HA ®j HSj+T , 

where T consists of the off-diagonal coupling terms which involve lattice sites in 
A coupling to those in Sj, and couplings between different S/s. In particular, if 

both x,y £ Aox else x,y € Sj, then 

T{x,y) = 0. 

Inverting (21), the generalized resolvant identity for this block decomposition is 

that 

(22) GB = GA ®J GSi + GA ®J GSVGB , 

which we may iterate to arrive at the formal expression, 

CO 

(23) GB = GA ®J Gs3 + Y,
GA

 ®* Gs> {TGA
 ®j Gs*r ' 

771=1 

The object is to prove that under assumptions (1) through (5) this expression is 

convergent. 
The first step will be to see that the term which involves no coupling of the 

blocks obeys the correct estimate (20). 

<   \e-°\*-v\       forx,y£A 
d 

\GA®jGSj{x,y)\    <   -6       forx,yeSj 

=  0       if x,y are not in the same block 

This is in agreement with the bound (20). 
The expression involving one coupling operation between blocks is 

GA ®j GSjTGA ®j GSj , 

which we will consider by cases. Since there are potentially two occurrances of 
GSj, the object will be to avoid factors of 1/62 in the estimate, which for 6 « r 

would call into question the convergence of the series. 
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In case x £ A and y £ Sj (or vice versa), 

\GA®jGSiTGA®jGsi(x,y)\ = | £ GA(x,z)T(z,w)GSj(w,y)\ 
z€A 

»es; 

< y^ -e-°\x-Are-°\z-w\\ 
~   4-f d 5 ' 

Diminishing the exponential rate of decay by a small amount 7, 

r 1 
dtf' 

<  r_e-(<^-7)|a:-i"|   V^  e-7k-«le-7k-J/| 
z£A 

vies. 

1    /r\       -C^r A\f — ,.\    I      C ^G)«- 7)|x-2/| 
7P/2 

where we used that \w - y\ < C0 for both w,y e Sj. 

In case that both x, y £ A, ov x,y £ Sj the same block, we have GA ©.,• 
GsjTGA ©J GSj (a;, y) = 0, since the interaction operator V strictly enforces that 
the lattice sites (z, w) be in distinct blocks. The final case exhibits the need for 
assumption (4); we take x £ Sj and y € Sk, k^j. Then 

^2GSj(x,z)T(z,w)Gsk(w,y)\  <  | £ \re -a\z—w\     1 

z€S 
w€S'k 

(24) < - (-) e-W-i)\*-y\ 
6 \dJ 

Since z £ 5,- and w £ Sk with A; ^ j, there is a jump between lattice sites 
included in the exponential sum of at least distance £, and if we demand that 

-e-^'2 < 1 
6 ' 

the result is that 

(25) V |c-rl—™l < cL-i"2 < C , 
^ * 6 

w£Sk 

so that in this case too the bound is (\/8){r/d)e^i-a~1^x~y\. 

The factors (r/d)m < 1 will be the convergence factors in the sum (23). In 
order to continue the process of estimates of the terms of it, we are forced to 
study both of the local Hamiltonians HSj and HC(Sj)- The following result 
illustrates the role played by the assumption (5). 
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LEMMA 8.   Under the above hypotheses, the local Hamiltonians in a neighbor- 

hood of a singular region S satisfy 

(26) |Gc(5)(*,y)l<~e-^)l-»l. 

Proof: If both x,y G S, using assumption (5) and the fact that HC(s) is self- 

adjoint, 

\GC(s)(x,y)\ < g , 

which is a sufficient for (26) as diam (5) is bounded. However if one of x, y <£ S 
this simple bound will not give us an estimate of exponential decay. To do better 

we again proceed with the resolvant identities, 

HC{S) = HD © Hs + r , 

where D = C{S)\S. The Green's function will satisfy 

Gc{s) =GD ®Gs + GD® GSTGC{S) 

(27) 
= GD®GS + GD® GSTGD ®GS + GD® GSTGC^GD ® Gs ■ 

When x £ S but y G S, 

Gc{s) =GD®Gs + GD®GsTGC(s) , 

and the first term vanishes as x, y are not in the same block. The second term 

is controlled by an exponential sum, giving 

\GciS)(x,y)\<  £le--l-'lre-*l'-«li 
n   d 

»ES 

\d) 6 7p/2 

which is sufficient for (26). 
If both x,y G D, then we need to use the second expression in (27). The first 

term does not involve S, and is bounded safely by (l/^e"^^ using Lemma 
6. The second term vanishes as the interaction T demands a change of block, 

and we are left with; 

\Gcis)(x,y)\  < \e-°\*-y\ 

+ |    J2    GD(x,z)T{z,w)GC(s){w,p)T{p,q)GD{q,y)\ 

p£S   (ED 

< ie-*\x-v\ + (L\2±Y e-*\x-*\e-°\*-*>\ Y" e-°\p-<i\e-*\<i-v\ 

<   lc-l-«l + Q" lc-(a-7)|x-»lc-(-7)|p-»l  (£)    . 
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Since in this expression we have both w,p 6 S, the distance between them is 
bounded, and again we satisfy the criterion of the lemma, which finishes the 
proof. 

This almost completes the proof of Theorem 7, which needs only one more 
step. To make a good estimate of the terms of the resolvant expansion of degree 
m > 2, we use a slightly more sophisticated version of the resolvant expansion, 
in which we alternate the generalized resolvant identity with respect to the de- 
compositions B = AUj Sj and B = A'Uf C(Sj), where A' = B\ U, C(Sj). That 
is, we can write 

HB=HA,®jHc(s.)+T' 

and therefore alternating the use of the two decompositions, we write 

GB =GA®jGSj+GA®jGSjrGA,(BjGc(sj) 
OO 

(28) x (GA ®J GSj + GA ®j GSiTGA, ®j Gc{Si)) ■ 

The convergence of this series with uniform exponential bounds gives the proof 
of Theorem 7, and this in turn can be easily deduced from the following Lemma. 

LEMMA 9. Estimates on the principal term of the series (28). 

\GA @i GSiTGA, ®j GciSj)r'(x,y)\   <   (£)* f^\ e-i°-m*-v\ . 

The proof of this is of similar character as the above arguments, in which we 
consistently avoid factors of (1/6) which would ruin the convergence estimates. 
We do this by insuring that each summand associated with a lattice site in either 
Sj or C(Sj) must enter the sum associated with a long path (x;z; w;p;q;r;y) 
from x to y of length at least L The estimate is then similar to (24),(25). 
I will leave the precise details of the argument to the reader, as a somewhat 
combinatorial exercise. 

REFERENCES 

Principal Reading: 

[CW1] W. Craig & C.E. Wayne, Newton's method and periodic solutions of nonlinear wave 
equations, Commun. Pure Applied Math. 46 (1993), 1409-1501. 

[Kl] S. Kuksin, Nearly integrable infinite-dimensional Hamiltonian systems Springer Lec- 
ture Notes in Math. 1556, Springer Verlag, Berlin, 1993. 

Further reading: 

[CS] W. Craig & C. Sulem, Numerical simulation of gravity waves, Journal Comp Physics 
108 (1993), 73-83. 

[CW2] W. Craig & C.E. Wayne, Nonlinear waves and the KAM theorem: nonlinear degen- 
eracies, 'Large Scale structures in nonlinear physics' Proceedings Villefrache, France 
J.-D. Fourier and P.-L. Sulem, ed's. Springer Lecture Notes in Physics 392, Springer 
Verlag, Berlin, 1991. 



46 WALTER CRAIG 

[CW3] W Craig & C.E. Wayne, Nonlinear waves and the 1 : 1 : 2 resonance, Singular 
limits of dispersive waves; Proceedings of the NATO conference at ENS-Lyon, 1991, 
N. Ercolani, D. Levermore and D. Serre ed's., Series B: Physics, vol. 320 , Plenum, 

1994. 
[CW4]   W. Craig & C.E. Wayne, Periodic solutions of nonlinear Schrödinger equations and 

the Nash Moser method, ETH preprint (1993). 
fCKWl W. Craig, S. Kuksin & C.E. Wayne, in preparation (1994). 
FS]       J   Fröhlich & T. Spencer, Absence of diffusion in the Anderson tight binding model 

for large disorder or low energy, Commun. Math. Physics 88 (1983), 151-184. 
[K21       S  Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with an 

imaginary spectrum, Funts. Anal. Prilozh. 21:3 (1987), 22-37; English translation m: 

Functl. Anal. Applications 21 (1987), 192-205. 

[KP]      S. Kuksin & J. Pöschel, preprint (1994). ,„   ,   ™.    .     „.„„„„, 
[P] J. Pöschel, Small divisors with spatial structure, Commun. Math. Physics 127 (199U), 

351-393 
[VB]      M. Vittot & J. Bellissard, Invariant tori for an infinite lattice of coupled classical 

rotors, Preprint CPT-Marseille (1985). 
[W]        C.E. Wayne, Periodic and quasiperiodic solutions of the nonlinear wave equation via 

KAM theory, Commun. Math. Physics 127 (1990), 479-528. 

MATHEMATICS DEPARTMENT,  BROWN UNIVERSITY, PROVIDENCE, RHODE ISLAND 02912 

E-mail address: craigw@math.brown.edu 



Lectures in Applied Mathematics 
Volume 31, 1996 

GLOBAL CENTER MANIFOLDS AND 

SINGULARLY PERTURBED EQUATIONS: 

A BRIEF  (AND BIASED)  GUIDE 

TO  (SOME OF)  THE LITERATURE 

NANCY KOPELL 

Center manifolds arise when a critical point of a differential equation has k > 1 
eigenvalues with zero real part. The center manifold has dimension k and is tangent 
to the eigenspace of the k eigenvalues with zero real part [1]. 

In general, unlike stable and unstable manifolds, center manifolds are not unique, 
and can be constructed only locally. Indeed, there are examples which show that 
the more differentiable one requires the center manifold to be, the smaller may be 
the center manifold that can be constructed [1, p 29,30]. Some important examples 
for which a center manifold is global are so-called singularly perturbed equations. 
These are equations of the form 

(la) c dx/dt = f(x, y)      x = (Xl,...,xn) 

(1&) dy/dt = g(x,y)      y = (yu... ,ym) 

where e « 1.  Here the {Xi} are the "fast variables" and the {yj are the slow 
variables. 

Equation (1) can be rewritten as 

(2a) dx/dT = f(x,y) 

(2&) dy/dr — e g(x, y) 

where r = t/e. In this time scale, in the limit as e -»• 0 there is a manifold of critical 
points defined by 

(3) f(x,v)=0. 
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Suppose for some region of (x, y) the matrix df/dx has eigenvalues with real part 
bounded away from zero. In such a region, the manifold (3) of critical points is 
called "normally hyperbolic" and is a center manifold parameterized by y. 

For e > 0, most of these critical points disappear generically. However, there is 
still a connection to center manifolds as follows. One appends the equation 

(2c) de/dr = 0 

to (2). Then in any region in which the points satisfying (3) are normally hyperbolic, 
(2a-c) has an m+1 dimensional center manifold in x, y, e space; this center manifold 
is localized around f{x,y) = 0, e = 0. It can be shown [2] that for e sufficiently 
small, such manifolds can be chosen globally, parameterized by y. The center 
manifolds of (2) are often called "slow manifolds." (Usage varies; sometimes "slow 
manifold" refers to the e -> 0 limit of the center manifold, i.e. f(x, y) = 0.) 

The importance of the slow manifolds is that they can be used to construct 
(allegedly) approximate solutions to (1) or (2). These so-called "singular solutions" 
are unions of solutions to a pair of simpler equations, the "slow equations" and the 
"fast equations." The slow equations are 

(4) dy/dt = g(x, y) 

where x = x{y) satisfies f(x,y) = 0. The fast equations are 

(5) dx/dr = f(x, y) 

where y is a constant. There is a large applied math literature that discusses 
"matching conditions" under which solutions to (4) and (5) can be pieced together 
to get an object that satisfies some extra conditions, such as periodicity, boundary 
conditions at finite values of t, or limits as t -> ±oo. (See, e.g. [3-5]; [3] is a 
good introduction.) The singular solution is the zeroth order version of this pieced- 
together object. Better (formal) approximations can be calculated from (1) and (2) 
according to the theory of "matched asymptotic expansions" ([3-5]). Especially for 
the e = 0 version, the construction of the singular object is in general much easier 
than the construction of the actual solution to (1) or (2). 

In much of the applied math literature, there is a blanket assumption that the 
singular object is indeed an approximation to some actual solution to (1) or (2), with 
the desired extra conditions. However, it is also well-known that this assumption 
is occasionally grievously incorrect. (See papers in [6] on "resonance" for a well- 
studied example and a geometric treatment.) This uncertainty has given rise to 
another large literature on methods for figuring out circumstances under which the 
existence of a singular solution implies that there is an actual one for which the 
singular solution is an approximation. The methods invented to do this come from 
dynamical systems, topology, functional analysis, and nonstandard analysis. See 
[7,8] for references to some of that literature. The methods I find most conceptual 
and most powerful are the geometric ones, involving both topological techniques 
and dynamical systems techniques. Here I shall deal only with the latter. 
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One problem that has been much analyzed from many points of view is the 
existence of traveling wave solutions to nerve-conduction equations, a class of par- 
abolic PDE's. The desired solution is a homoclinic orbit to the associated ODE 
obtained by using the traveling wave ansatz. The singular solution associated with 
this problem has two slow pieces and two fast pieces. A description of the singular 
solution can be found in [7,9,10]. 

The first rigorous geometric treatment was given by C. Carpenter [9], working 
under the direction of C. Conley. Her proof was a topological one, based on fixed 
point theorems. In 1980, R. Langer [11] produced a proof for a simple subset of 
the class studied by Carpenter; Langer's proof was a dynamical systems version 
in which the homoclinic orbit is constructed as the intersection of the stable and 
unstable manifolds of a critical point. The advantage of Langer's version was that 
it proved local uniqueness, and gave further information that led to the proof by C. 
Jones of the stability of the homoclinic orbit as a solution to the original PDE [12]. 
The disadvantage was that it seemed very complicated and not easily generalizable. 

The essential difficulty in Langer's proof arises in a very large class of problems 
involving the construction of solutions to singularly perturbed equations by dynam- 
ical systems methods. In many cases (e.g. boundary value problems, homoclinic 
orbits, heteroclinic orbits) the desired trajectory is to be constructed as the trans- 
verse intersection of a pair of invariant manifolds.' To establish the transversality 
involves tracking the position and tangent planes of the relevant manifolds over 
global distances. Since the desired actual solution (if it exists) is near the singular 
solution, it must pass close to the slow manifolds described above. This means that 
the invariant manifolds whose intersection is the desired solution also must pass 
close to the slow manifolds. (The relevant manifolds in the case of a homoclinic 
orbit are the stable and unstable manifold of the critical point to which the orbit is 
homoclinic.) The actual trajectory in general takes time of the order r = 0(1/e) to 
pass by the slow manifold, so careful tracking is needed to keep control of estimates. 

In [13] and [14], Jones et al. resolved this difficulty by proving the "exchange 
lemma," a tool for tracking invariant manifolds as they pass close to a slow man- 
ifold. This result gives estimates on the position of the invariant manifold after a 
sojourn of time > 0(l/e) near the slow manifold, providing that some transversal- 
ity hypothesis is satisfied. This hypothesis is on submanifolds of the simpler fast 
system (5), and hence is generally easier to verify than hypotheses about the full 
system. A proof of the existence of a particular orbit for a particular set of equations 
then reduces to verifying a set of transversality conditions for that problem. (For a 
verification in the case of FitzHugh-Nagumo nerve conduction equations, see [10]). 
The exchange lemma machinery then constructs an orbit to the full equations. 

The work in [13] and [14] requires that the manifold being tracked have one 
higher dimension than the number of positive eigenvalues of a critical point on the 
slow manifold (i.e. of the matrix df/dx). This constraint is satisfied for nerve- 
conduction equations, but not for many other kinds of singularly perturbed equa- 
tions. In [15], S.K. Tin generalized [13] and [14] by removing this constraint. With 
the more general result in [15], Tin et al. [8] were able to prove in a fairly sim- 
ple way a general theorem about boundary value problems.   (See also [16]).  The 
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tracking techniques also apply to some perturbed Hamiltonian systems, in which 
the relevant manifolds of the fast system are not transversal at e = 0, but for which 
Melnikov methods yield a weaker form of transversality [17]. Finally, the tracking 
techniques are beginning to be applied to equations other than singularly perturbed 
systems (e.g. weakly perturbed Hamiltonian systems) [15]. 
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1    Introduction 

In this article we will describe the use of Melnikov Integrals, together with 
methods from invariant manifold theory and geometric singular perturbation 
theory, in the construction of global solutions to partial differential equations 
(pde's). These methods have been developed in dynamical systems theory of 
ordinary differential equations [23], [62], and have only recently been modified 
for and extended to the infinite dimensional setting of pde's. In fact, the use 
of Melnikov integrals together with geometric perturbation theory for the 
rigorous mathematical study of pde's is really very new, with most of the 
developments having occured since the summer school at the Mathematical 
Sciences Research Institute. Our purpose here is to describe, briefly, these 
very recent developments and to provide a short list of relevant literature. 

As with most methods as they are being developed, this one begins from 
explicit examples. Over the past year and a half, several rich pde examples 
have been investigated, and the study of one pde has been completed. It is 
clear that these examples could be extended and developed into general meth- 
ods for classes of pde's, a generalization which will certainly take place over 
the next few years. Here we will focus on that pde which is the most com- 
pletely understood [the nonlinear Schroedinger (NLS) equation], and mention 
the other examples with references. 

Melnikov integrals are defined for perturbations of Hamiltonian systems, 

qt = JVH + eG(q), (1.1) 

where q belongs to a linear inner product space T (the "phase space"), the 
Hamiltonian H is a real valued functional on T, the perturbation G : T' -» T', 
J is the symplectic matrix 

J 

and e is a small positive parameter. Let h(t), t £ (-co, +oo), denote a pe- 
riodic, quasiperiodic, or homoclinic orbit of the unperturbed (e = 0) Hamil- 
tonian system. Furthermore, let / denote a real valued functional on T, 

I : F->R, 

which is a constant of the motion for the unperturbed Hamiltonian system, 
i.e, which "Poisson commutes with the Hamilitonian H " 

{H,I}j := (gradH,JgradI) = 0. 

Here (•, •) denotes the inner product on the phase space T. 
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Definition 1.1   The Melnikov Integral (based upon I) is defined as 

Ml  "  TZO 2^ [T 
{9radI> Ö) k*)dt> (L2) 

where the unperturbed orbit h(t) is periodic or quasiperiodic. In the case that 
the orbit h(t) is homoclinic, the temporal integral is replaced by 

Ft lim   /      • • • dt, r 
for suitable sequences of real numbers {T- } and {Tf}, tending to — oo and 
+00 respectively. 

Remark 1.1 i) The Melnikov integral for periodic orbits appears in the 
method of averaging [54] [23]. For quasiperiodic orbits, this definition of 
the Melnikov function may be found in [56]. 

it) The sequences {T~} and {Tj~} are used [31] to define conditionally 
the Melnikov integral in those cases where the improper integral itself does 
not converge. In our own work, the constant of the motion / can be chosen to 
guarantee convergence, and the extra freedom given by the sequences {T~} 

and {Tj~} has not been needed. 

Melnikov integrals are used to assess the fate of the orbit h under the 
perturbation, (e > 0, but small). "Does h persist (as a periodic, quasiperi- 
odic, or homoclinic orbit) for the perturbed system, or does the perturbation 
destroy h ?" The Melnikov integral, together with geometric analysis, can 
provide answers to such persistence questions. 

As is clear from its definition, the Melnikov integral Mj provides an esti- 
mate of the change in the value of the constant of motion I over the perturbed 
orbit. Without an additional geometric setting, this change provides very 
little information about persistence. Nevertheless, for specific applications 
it is wise to understand very well the behavior of M/ as a function of the 
parameters of the problem before developing the geometric setting. We have 
learned this point of view from experience, and have advocated it for some 
time [48], [51]. For example, if the Melnikov function never vanishes, one 
can often quickly infer (even with mathematical rigor [56]) that persistence 
is impossible. Once the parameter dependence of the Melnikov function M/ 
is thoroughly understood, the real mathematical challenge remains - to use 
Mi together with geometric analysis to establish positive results about per- 
sistence. This complete goal has been achieved for several specific pde's, as 
described below. 

Melnikov analysis was developed [54], [31], [32] for ordinary differential 
equations where it has been a very successful tool as is well documented in 
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the literature. See, for example, [23] [62]. It was first extended to pde's 
by Holmes and Marsden, who developed a general setting [30], which they 
then applied to a nonlinear beam equation and to a perturbed sine-Gordon 
equation [29]. This work initiated the use of Melnikov methods in the context 
of pdes, where it proved the existence of solutions with extremely irregular 
behavior in time. However, numerical studies [9] of perturbed sine-Gordon 
equations did not observe this particular type of irregular behavior. Rather 
a very different type of chaotic phenomena is seen numerically. 

Remark 1.2 Frequently in the literature the expression "Melnikov analysis 
for pde's" is used to describe the following situation: The original pde (in one 
space x and one time t) is reduced to a finite dimensional ode in x through 
a traveling wave ansatz. This ode is then analysed with Melnikov methods 
for ode's. In this article, we do not use this terminology, and we restrict the 
expression "Melnikov analysis for pde's" to describe analysis of the original 
pde as an infinite dimensional dynamical system. 

2    Background 

Our own studies of chaotic behavior in pde's began with the numerical inves- 
tigation of the damped and driven sine-Gordon equation [9], 

uu ~ uxx + smu= e[-aut+ T cosut], (2.1) 

with even, periodic boundary conditions, 

u(-x,t)    =   u(x,t) 

u(x + L,t)   =   u(x,t). 

This equation provides a very natural starting point for the study of chaotic 
behavior in pdes, since it can be viewed as the continuum limit of coupled 
pendula, and since the damped and driven pendulum is a prototype [5] for 
chaotic behavior in ode's. These numerical experiments, as well as those 
for the closely related damped and driven nonlinear Schroedinger equation 

(NLS), 

-2iqT + qyy + l~qq* - l) q = ie [aq + T] , (2.2) 

q{-y,r)   =   q(y,r) 

q(y + l,T)  =  q{y,r), 

are described in detail in the survey [52], a preprint of which was made 
available at the summer school. In addition to a description of the numeri- 
cal experiments, that survey describes the unperturbed integrable theory, it's 
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connection to the perturbed numerical experiments, and our initial steps to- 
ward a Melnikov analysis for natural finite dimensional discretizations of the 
perturbed pde. Since that detailed survey is now available, in this article we 
will restrict ourselves to a very brief summary of the numerical experiments 
and focus upon very recent analytical developments for the pde which were 
completed after that survey was written. 

A broad overview of the numerical experiments is as follows: In both 
the perturbed sine-Gordon and NLS cases, for certain ranges of parameter 
values, the long time behavior is chaotic. For the sine-Gordon case, this 
chaotic behavior occurs at small amplitude \u(x, t)\ « 1; hence, one expects, 
for the NLS equation, very similar chaotic oscillations, which indeed are also 
observed. (In fact, movies of the numerical experiments have been made 
which display such chaotic behavior [5], [36].) In both the NLS and sine 
Gordon cases, several key features include (See Figure 2.1 and Figure 2.2): 

1. Temporal chaos is observed at small values of the perturbation param- 
eter e; 

2. Spatially, the wave forms are very regular and consist of coherent local- 
ized solitary waves which oscillate chaotically in time t; 

3. Both dynamical systems diagnostics (Poincare Sections, Lyapanov and 
information dimensions) and the spectral transform of the unperturbed 
integral theory indicate that the "dimension of the attractor" can be 
very small. In the simplest case, the wave consists in one solitary wave 
interacting with a long wavelength background; 

4. Spectral transform measurements of the unperturbed integrable theory 
also establish that the fundamental instability which causes the chaotic 
behavior is the modulational instability of this long wavelength back- 
ground (or mean), a classical instability well known in the theory of 
nonlinear waves [61]; 

5. In this simplest case, the lone solitary wave jumps, irregularly in time 
t, between a location at the center (x = 0) and location at the edge 
(x = L/2), the only two spatial locations allowed by even periodic 
boundary conditions. 

This last point makes feasible the existence of a "symbol dynamics" on the two 
symbols, [C (=center) and E (=edge)]. Mathematically, one anticipates the 
possibility that an invariant set exists on which the dynamics is topologically 
equivalent to a Bernoulli shift on two symbols; that is, on which the dynamics 
is as random as a sequence of coin tosses. 

In any event, the observed chaotic behavior consists in the interaction of 
coherent localized spatial structures with each other and with a long wave- 
length mean. Moreover, the modulational instability of this long wavelength 
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Figure 2.1: Unperterbed Solitary Wave 

Figure 2.2: Instabilities induced by increasing T 

mean is central to the chaotic behavior. Neither of these crucial characteristic 
features is present in the initial existence theory in [30]. Further analysis is 

required. 

3    A Perturbed NLS Equation 

We study a perturbed nonlinear Schroedinger equation (PNLS) of the form 

iqt  =   qxx + 2[qq-u2]q + ie[Dq - I], (3.1) 

where the constant w € (±, 1), c is a small positive constant, and D is a 
bounded negative definite linear operator on the Sobolev space E\v of even, 
27T periodic functions which are square integrable with square integrable first 
derivative. Specific examples of the dissipation operator D include the discrete 
Laplacian and a "smoothed Laplacian" given by 

t)q = -aq - ßBq, (3.2) 
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where the operator B has symbol given by 

This pde is well posed in E\v [60]. In fact, the solution 

q(t-e) = Fl{qin) 

has several derivatives in qin and in the parameters such as c, with the exact 
number of derivatives increasing with decreasing e. 

Our analysis of this equation begins with two observations: First, when 
e = 0, the unperturbed NLS equation is a completely integrable soliton equa- 
tion. Second, the "plane of constants" nc, 

nc:={q(x,t)\dxq(x,t) = 0}, 

is an invariant plane for PNLS. In each of these two cases, [e = 0 or q G IIC], 
the behavior of solutions q(-,t) can be described completely. In the first 
case, this description is accomplished through the spectral transform of com- 
pletely integrable "soliton mathematics"; in the second case, it is accomplished 
through "phase plane analysis". In the jargon of the theory of dynamical sys- 
tems, our methods will be a form of "local-global" analysis, where at times 
the term "local" will mean close to the plane I7C, and at other times "local" 
will mean close to the integrable case. In any event, throughout our global 
arguments, control is achieved either because of proximity to (i) the plane Ilc 

or (ii) e = 0. 

3.1     Motion on the Invariant Plane 

On the invariant plane nc, the equation takes the form 

iqt   =  2[qq-u2]q  -  ie[aq+l], (3.3) 

where it is assumed that the dissipation operator D acts invariantly on IIC as 

Dq = -aq, 

for a a positive constant. Equivalently, in terms of polar coordinates 

q := VI exp i9, 

these equations take the form 

It    =    -2e[aI + Vl cos6] 

6t    =    -2(/-w2) + -J=sinö. (3.4) 
VI 
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Figure 3.1: Phase Plane Diagram of the ODE 

When e = 0, the unperturbed orbits on nc are nested circles, with 5W a 
circle of fixed point given by I = u2. For e > 0, the perturbed orbits on IIC 

are very different (see Figure 3.1). First, only three fixed points exist: O, 
which is a deformation of the origin; Q, a saddle which deforms from the circle 
5W; and P, a spiral sink which also deforms from the circle Sw. Formulas for 
the sink P and the saddle Q, together with their associated growth rates, are 

given by 

Ip    =   ui + ±.J(l-aW) + 0(e2) 

9V    =    -tan-1- 7T + 0(e) v aw 
(3.5) 

Iq    =   J-J-yßZaflu,*)+ ()(€*) 

tan' 
_t \/l - a 2u2 

aui 
-n + 0(e) (3.6) 

=    ±2iy/eZJ[l-a2oj2]4   - ea + 0{e*) 

=    ±2^/eü[l-a2oß]^  -  ea + 0(e2). (3.7) 

While the circle of fixed points 5W for the unperturbed (c = 0) problem 
does not persist as a circle of fixed points, motion near 5W remains slow for 
small positive e. Introducing the variable J 

J = I ■ 10 

equation (3.4) is written as 
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Figure 3.2: Phase Plane Diagram of the ODE in the j 6 coordinates 

Jt    =    -2e [a(J + w2) + \/J + u>2 COS 9} 

6t   =   -2J+^JL=sm9. (3.8) 
VJ + OJ

2 

In order to describe the slow flow close to this circle Sw, we rescale the 
coordinates 

T     =     Ut 

J   =   vu (3-9) 

where v = yfl. This rescaling is suggested by the expressions (3.7) for the 
growth rates ap and aq. In these scaled coordinates, the equations (3.4) on 
the plane Ilc take the form of an 0(u) perturbation of the conservative system 

jT    =    —2(au2 + ujcos0) 

eT   =   -2j . 

Thus, we see that near the circle 5W, the slow motion is approximated as a 
driven pendulum, (see Figure 3.2) with energy 

1 
E(j,6):=-j*-u(smO + au;0) (3.10) 

This completes the information about motion on the invariant plane that 
we will use in this general overview. More information is needed for the 
detailed mathematical arguments. This additional information may be found 
in [37], [40],[52],[53],[44]. 

3.2    Two Results from the Integrable Theory of NLS 

The unperturbed (e = 0) NLS equation is a Hamiltonian system on the func- 
tion space Hlp, 

-iqt = jjH, (3.11) 
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with the Hamiltonian H given by 

r2ir r 
H = 

Jo 
QxQx {qq)1  +  2oj'qq dx. 

It is well known that this is a completely integrable Hamiltonian system, a 

fact whose verification begins from the Lax pair 

fx 

ft 

[/(A) f 

=    V^<p, 

where 

(3.12) 

(3.13) 

[/W := iXa3 + 
0    q 

VW :=i[2\2-{qq-üJ2)]<T3 + 

I 0 2i\q+qx ^ 

y +2i\q -qx 0 J 

and where cr3 denotes the third Pauli matrix a3 := diag(l,-l). This over 
determined system is compatible (8t(px = dx(pt) if and only if the coefficient 
q satisfies the NLS equation. Consequently, one can use this linear system to 

develop representations of solutions q(x, t) of NLS. 
Focusing attention upon the "spatial flow" (3.12), the integration of the 

NLS equation is accomplished through the spectral theory of the differential 

operator L = L(q), 
d 

L := -t(T3-  
ax 

0      q 
-q    0 

which is viewed as an operator on L2(M), with dense domain H1. "Soliton 
mathematics" provides a complete description of the solutions of this unper- 

turbed integrable system; however, from that complete theory, we will only 

need two results: 

1. Expressions for homoclinic orbits; 

2. A natural constant of motion F, together with an expression for the 

Melnikov function MY- 

Remark 3.1 It is natural to inquire the degree to which integrable results 
are required to carry out "local-global" analysis for pde's. In fact, no in- 
tegrable information is required, provided one has (i) an expression for the 
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unperturbed homoclinic orbit and (ii) a constant of the motion / which is 
related to the geometry of the pde in a manner that allows both the definition 
and geometric use of a Melnikov function Mj. However, integrable theory 
provides not one, but a rich class of homoclinic orbits. Moreover, as will be 
shown below, the constant of motion F from integrable theory is so natural 
from a geometric perspective that, when available, it should definitely be used 
to define the Melnikov function. We take the viewpoint that integrable theory 
sets the standard toward which other more general theories of unperturbed 
systems can strive. 

3.2.1     Integrable Homoclinic Orbits 

Fix a solution of the NLS equation, q(x,t) £ Hlp, for which v is a periodic (or 

antiperiodic) eigenvalue of the operator L(q), which is purely imaginary and 
has geometric multiplicity 2. As described in [42], this eigenvalue could be 
associated with a linear instability of q(x, t), and we assume this is indeed the 
case. As described in detail in the surveys [52], [49], [50] and in the original 
articles [16] and [42], Bäcklund (Darboux) transformations at (q,v) can be 
used to construct orbits homoclinic to (a torus translate) of q(x, t): Denote 
two linearly independent solutions of the Lax pair at (q, A = v) by (<£+, <j>~), 
and the general solution of the linear system at (q, v) by 

We use 4> to define a transformation matrix [58] G by 

G = G(X; v\ <f>) := N 
X-v 

0 
0 

X-P 
N -l 

where 

N :-- 
<t>2        <t>l 

Then we define Q and \i> by 

Q{x,t) :=q(x,t) + 2{v-v) 

and 

<i>i<t>2 

<I>1<1>1 +4>24>2 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

V(x,t;X)  :=  G(X]u;<f>)^(x,t;X), (3.18) 

where V solves the Lax pair at (q, A).   Formulas (3.17) and (3.18) are the 
Bäcklund transformations for the potential and eigenfunctions, respectively. 

We have the following 
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Theorem 3.1 (i) Q{x,t) is an solution of NLS, with spatial period 2n, 
which is homoclinic to q(x,t) in the sense that Q{x,t) —> qe±(x,t), 
exponentially as exp(-au\t\) as t —> ±00. Here qg± is a "torus trans- 
late" of q,o-v is the nonvanishing growth rate associated to the complex 
double point v, and explicit formulas can be developed for this growth 
rate and for the translation parameters 6±. 

(ii) $(x, t; A) solves the Lax pair at (Q, A). 

Remark 3.2 This theorem is quite general, constructing homoclinic solu- 
tions from a wide class of starting solutions q(x,i). The orbit Q{x,t) is 
homoclinic to a torus which itself possesses rather complicated spatial and 
temporal structure, and is not just a fixed point; nevertheless, the homoclinic 
orbit typically has still more complicated spatial structure than its "target 
torus". These Bäcklund formulas provide coordinates for the stable and un- 
stable manifolds of the critical tori; thus, they provide explicit representations 
of the critical level sets which consist in "whiskered tori" [4]. 

For this work a very important special example is the case q(x, t) con- 

stant, independent of a;: 

q(x,t) = cexp{-i[2(c2 - u2)t - 7]}. 

A standard stability calculation shows that q(x, t) linearly unstable, with pos- 
itive growth rate a for the linearized "cos x mode" given by 

a - \/Ac2 - 1. 

In this case, two linearly independent solutions of the Lax pair are given by 

'   i(±)\ 
(±)        =   exp{±i[K{X)(x + 2Xt)]}x 

V> 

where K(A) is given by 

cexp{-i[2(c2-^)t-7]/2} \      (       , 
(±K(A) - A) exp{i[2(c2 - u*)t - T]/2} ) '   ^ *j 

K{\) = VX2 + c2. 

From these eigenfunctions, one sees that 

v = -\ZAC
2
 - 1 

2 

is a purely imaginary double ( antiperiodic) eigenvalue, which is indeed as- 
sociated to an instability. Hence, the Darboux transformation will produce a 

homoclinic orbit: 

<£ 
\ cos 2p - i sin 2p tanh r ± sin p sech r cos x \ (3 20) 

~ \ 1 ^ sin p sech r cos x J 
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where 

r   =    a(t + t0) 

eiP   =    1 + »* 
2c     ' 

Here ± labels a symmetric pair of homoclinic orbits. (Notice that — cos a; = 
cos(a; + 7r), which shows that one sign (+) represents an excitation centered at 
x = 0, while the other sign (—) represents an excitation centered at x = n.) 

If we specialize to c = u>, q lies on the circle of fixed points Sw, and 
the orbit Q is homoclinic to this circle. Thus, from one point of view, (3.20) 
provides an explicit representation of a "whiskered circle"; while from another 
viewpoint, it provides an explicit representation of the unstable manifold 

W"(SU) = W'(SU) =   U    <?± (i; 7, t0, c) . 

When examining the "whiskers" for this example, one notes that while 
Q is homoclinic to the circle Sw, it is actually heteroclinic to pairs of fixed 
points on S^, with the individual fixed points separated by a "phase shift" 
of -4p, 

-Up 1 - i V4c2 - 1 
2c 

(3.21) 

(Here c = u, although this formula for the phase shift is valid more generally 
and actually applies for an open set of values for c.) This phase shift will 
play an important role in the singular behavior of the persistent homoclinic 
orbits, as well as in the construction of these persistent orbits as singular 
deformations of integrable orbits (3.20). 

3.2.2     The Constant F 

In order to introduce a constant of the motion which geometrically is the most 
natural for constructing a Melnikov integral, we must describe some spectral 
theory of the operator L. This material is described in detail in [42], [52]. 

Since the coefficient q is a periodic function of x, Floquet theory can be 
used to characterize this spectrum. Floquet theory begins from the funda- 
mental matrix M = M(x; A; q), which is defined as the 2x2 matrix valued 
solution of the linear problem 

Ltp = \ip, 

whose initial value at x = 0 is the identity matrix. Next, one introduces the 
transfer matrix T 

T(\;q)=:M(2K;\;q). 
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Then the spectrum a(L) can be characterized as the set of all A for which the 
2x2 matrix T has eigenvalues on the unit circle. Since the detT = 1, this is in 
turn determined by a single scalar function called the Floquet discriminant: 

A : C x Hl>p -+ C  by  A(A; q) := tr[T(\; q)]. 

In terms of A, the spectrum is then given in terms of the Floquet discriminant 

by 
a{L{q)) = {A G C | A(A, q) is real and - 2 < A < +2}. 

The Floquet discriminant A (A; q, q), 

A : C X H\yP X E\v -»■ C, 

is entire in A, q, and q. Its first variation admits the following representation: 

/•27T 

<5A(A; q,q) = J 
8A    . . .       ^A . 

8q{x) + T^TT oq{x) 
Sq(x) 

where 

m «*<<*> = -5(r 

*?(*) 
A(A; q, q) ■tr 

M~x{x) 

M~\x) 

6q(x) 

0 1 
0 0 

0 0 
1 0 

dx, 

M{x + 2n) 

M(x + 2n) (3.22) 

Here M(x) = M(x; Ac, g, q) denotes the fundamental matrix. To verify this 
representation, one [52] proceeds as follows: 

(L-\)M 

(L - A) 8M 

0, M(0) = / 

( 0 Sq\ 
{   -Sq     0 

M,    SM{0) = 0. 

One then solves for 5M{x) by "variation of parameters", which together with 

the definition, 
6A = tr6M{2n), 

produces the representation. 
The Floquet discriminant generates an infinite family of constants of the 

motion for the NLS system, as the following proposition states: 

Proposition 3.1  (i) Floquet discriminants Poisson commute: 

{A(A;g,g),A(A/;g,g)} = 0 VA, A', 

where the Poisson bracket is defined as 

/•3T    /SFSG     6F5G\   , 
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(it) A(X;q,q) is a constant of the motion for the NLS equation since its 
Poisson bracket with the Hamiltonian H vanishes: 

{A(X),H} = 0  VA. 

Thus, A(A;g) generates an infinite family of NLS constants of motion, one 
for each A. 

The proof of this proposition, may be found in the survey [52]. 
We will define the invariant F in terms of the Floquet discriminant A (A; q): 

Fix a potential q0 £ i/*   which has a purely imaginary critical point Ac 
) 

^A(A;,0) =  0. 

Let N\> = Nh{q0) denote a small neighborhood of q0, and consider the critical 
point as a functional on this neighborhood, Ac = Xc(q): 

lxA(X;q) = 0;    Xc(q0) = Ac 

Ac(?) 

Definition of the Invariant F: In terms of this purely imaginary critical 
point, we introduce an important invariant: 

F : Nb -)• K given by F := A(Xc(q);q). (3.23) 

The functional F is smooth, provided j^ A(A, q) ^ 0 for all q £ JV&. To 
verify this smoothness, one calculates 

_=-A(A«(,);,)    =    A> (X< (q); q) - +- 

Jq-{X>q) 
\=\-(q)   ' 

provided Xc(q) is differentiate. But Xc(q) is smooth, as the following calcu- 
lation shows: 

A'(AC(<7);<7) = 0 
A"(X%q);q)f + ^ = 0. 

If A"(Ac(g); </) ^ 0, one can continue to differentiate to any order. 
Critical Points of F: The critical points of the functional F will play 

important roles. To understand these, it will be useful to develop a formula 
for the gradient F'(q) in terms of Bloch functions. 

Remark 3.3 The specific eigenfunctions (3.19) used in the example q(x) = 
c, independent of x, were Bloch functions. 
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Let ^(x, A) denote Bloch functions, that is eigenfunctions of L at [q, X] 
which are defined (up to normalization) by the transfer condition across one 

period: 
if{x + 2iT,X) = p(X)^(x,X). (3.24) 

Here p(X) denotes the Floquet multiplier, which is related to the Floquet 

discriminant by 
lr 
2L 

p(A) = £ A(A) + JA'(A)-4. (3.25) 

The functions p and if are well defined on the Riernann surface for 
(A, V

/A2(A) -4), and ^ (a;, A) denote the values of -if on the two sheets over A. 
At branch points (simple periodic or antiperiodic points), the two sheets touch 
and V^ become linearly dependent. (This is compatible with the fact that 
at a simple eigenvalue, the eigenspace is one dimensional.) At real multiple 
points, ^ remain linearly independent, while at complex multiple points they 
may, but need not, become dependent. These two possibilities at the complex 
multiple points are a key to this nonselfadjoint spectral problem. 

In any case, for fixed A, these Bloch eigenfunctions can be represented 
explicitly in terms of the columns of the fundamental matrix M(x;X) = 
column{Y^(x;X),Y^(x;X)}: 

ftfo A) = a±{M21(l; A)^1^; A) + [M22(l; A) - p^W^Hv *)}> (3-26) 

where a± denotes normalization constants. 
The gradient of F admits a beautiful representation in terms of these 

Bloch functions, which follows from equation (3.22): 

Proposition 3.2 

,      N     VA(Ac)2-4 
gradF(q,q)=i-w^T^Fr 

rpl(x;\c)^(x;\c) 

-V>+(x;Ac)Vi>;Ac) 

(3.27) 

From this representation, one obtains the following 

Theorem 3.2 The potential q is a critical point of the functional F if and 
only ifXc(q) is a multiple point with geometric multiplicity 2. 

Remark 3.4 We note that if Ac were a real multiple point, it's geometric 
multiplicity is always 2. Thus, a potential q for which Xc{q) is a real double 
point is a critical point of F. However, since Xc(q) is a complex double point, 
the geometric multiplicity may be either 2 or 1, and q may or may not be a 

critical point of F. 
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Critical Tori: To understand the critical points of F, we first note that, 
generically, the NLS level sets are tori T°° = 5 X S X 5 • • • of infinite dimension, 
with the radius of the jth circle measured by rj = \A(\CA^2\. For g* for which 

\cj{q*) is a multiple point (A(Ap = ±2), rj = 0 and the jth circle is "pinched 
off". In this case, the function g* resides on a torus which is singular in the 
sense that it has one dimension less than maximal because rj = 0. Consider 
the singular torus associated with r = A(AC) q= 2 = 0. Any g* on this singular 
torus is a critical point of F. 

Whiskered Tori and Unstable Manifolds: The existence of these 
critical tori is guaranteed by inverse spectral theory which can be used to 
construct some of them in terms of finite genus theta functions. In reference 
[42] we have further studied these critical tori, by calculating an explicit 
representation of the Hessian of F at g». If the multiple point Ac(g*) were 
real, the Hessian shows that F is either a maximum or a minimum at g*. 
However, since Ac(g*) is a purely imaginary double point, F has a saddle 
structure at g*. In the latter case, if F were the NLS Hamiltonian, g* would 
be an unstable fixed point; however, F is only in involution with the NLS 
Hamiltonian H. As such, g* lies on a singular torus which could be unstable 
(hyperbolic) under NLS dynamics. If the complex double point Ac(g*) = v 
is indeed associated to an NLS instability, the Lax pair for the NLS flow can 
be used in a Bäcklund transformation g* —V q^, to provide a representation 
of the whiskers for the critical tori on which g* resides. In this manner one 
learns the very important fact that 

Wcs(q*) =Wcu(q*) = {q \ F(q) = ±2} , 

with the ± sign depending upon whether Ac(g*) is a periodic or antiperiodic 
eigenvalue. 

Remark 3.5 To understand these singular tori more completely, one [42] 
must study the entire sequence of invariants 

Fj(q) = A(Xj{q);q)        Vj = • • •, -2, -1, 0,1, 2, • • • . 

However, for our purposes here, we don't need this degree of generality. 

4    The Melnikov Function MF 

In this section we construct the Melnikov function. First, we obtain a useful 
formula for the gradient F', evaluated on a whisker q^. 

4.1     F'(qh) 

Let g* lie on a critical unstable torus with the instability associated with the 
purely imaginary double point z/, and with whisker qh represented by the 
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Bäcklund formulas (3.17). An explicit representation of the gradient F'{qh) 
can also be constructed with Bäcklund formulas (3.17, 3.18). 

We begin from equation (3.27) for the grad F, 

SF VA2-4      /   V(
2
+)y[ 

where ^(x, A) are a Floquet basis at {QH, v). In [42] we compute this limit 
using the Bäcklund formulas. The result is 

SF        n   c+c-WtyW,^-)] (   ft   \ f42) 

where the constant C„ is given by 

Cv;=i{y-v)   /AMA"M 

Remark 4.1 Since £ = c+^+) + c_^_), one sees explicitly from this for- 
mula that %\qh,v) -> 0 as c+/c_ -► 0,oo. Also, since the eigenfunctions 

$+) and $H at the complex double point v grow or decay exponentially, 

^W « exp (±M),   i -> oo, 

the formula also shows explicitly that grad F|(,hi„) -► 0 as t -► oo. (The 
vector field grad F must vanish because, in these limits, the point % on the 

whisker tends to a critical function of F.) 

In the case of q, = c exp{-i [2(c2 - u2)t - 7]} = c eiS, explicit formulas 
can be used to produce the following representation of F' (qh), which is valid 

when acting upon even functions of x: 

SF                      n           9    r(T sin y cosh r ± i cos p sinh r) cos a: + 1] ^g 
_    =    27rsin2psechr [i T sin p sech r cos ^ ' 

6q Sq' 

where T = a(t- t0), tanp = a, and a = ^4c2 - 1. From this representation, 

we see explicitly that 

F'(qh(t))    +    0, 

Hm    F'{qh{t))    ->    0, 
t-¥±oo 

at an exponential [exp(-ff|*|)] rate of approach. Thus, q* is indeed critical, 

while the whisker qh(t) is not. 
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4.2    The Melnikov Integral 

In this subsection we use these Bäcklund formulas for gradF to develop an 
explicit representation of the Melnikov integral. First, we write the perturbed 
NLS equation in the form 

qt   =  iH'(q) + eG(q) (4.4) 

where H'(q) = -qxx-2[qq-uj2] q and where G(q) denotes the perturbation. 
Usually we will consider a particular example of this perturbation: 

G{q) = -aq-ßBq-l, (4.5) 

where the operator B has a symbol given by: 

•<*> = {? Ill 
Definition 4.1 In this pde setting, the Melnikov function is defined by 

/oo 

{F'[qh(t)],G[qh(t)])dt. (4.6) 
-oo 

Next we specialize the orbit qh (t) to one homoclinic to a circle of fixed 
points: Recall that, on the plane of constants IIC, the unperturbed orbits take 
the form 

q = n e-<[2(r»-w
a)t-fl6] 

thus, n = u represents the circle of fixed points Su. Orbits homoclinic to SM 

are denoted qh = qw and are given by 

"cos2p - is'm2p tanhr + sinp sech r cosx' 
&/(*)    = 1 — sin p sech rcosa; 

u exp i[9i, — 2p] (4.7) 

where 

tan p   =   \/Au)2 - 1 

T   =    (tanp)(t + £0). 

While the orbit qw approaches the circle Sw as t —>■ ±oo, it approaches the 
fixed point u>expi0& as t —>■ -oo and, as t —)■ +oo, 

qu{t) —)• w e^"4p). 

Thus, the (heteroclinic) orbit experiences a p/tose shift of — 4p 

-rl4 
,-4ip I - i \f\UP- 

2w 

With these ingredients, we assemble the final expression for the Melnikov 
integral: 
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Proposition 4.1 For the specific perturbation (4-5) and homoclinic orbit q^, 
equation (4-7), the Melnikov integral takes the form 

/oo 
(F'(quJ(t)),G(qUt)))dt (4.8) 

-oo 

=    [aMa + ßMß + M{9b)], 

where 

More explicitly, 

/oo 

-oo 
/oo ^ 

(F'{qw(t)),Bqu(t))dt 
-OO 

/CO 

(F'{qu(t)), l)dt. 
-oo 

f27T       4nu2 sin2 p0 sechr /oo ri 

..n *    ;£x 
[sec/jr + sin p0 tanh2r cos a; -sin2p0 sec/i r (2 + cos2 x) 

+2sin3p0 sech3T cos x] 

/•oo I-2TT      4nuj2 sin2 po sech T 
M? = y-oo"riodx—^—x 

s'mpo sech T cos x -sin2 p0 sech 2r(l + sin2 x)   X 

[2 sec/i r - sin p0 sec/} 2r cos a; - 2 sin2 p0 sec/i r 

+2 sin3 p0 sec/i 2r cos a;] + O (sinK_2 p0) 

/•oo         y2ir       47rw sin2 p0 sech T 
M{6b)    =   cos{6b-2Po) J_    AT J     dx —2 x 

[ sech T - sin p0 cos x] 

where p0 = tan-1 \/u2 - 1, A = [I - sinp0 sechr cos x] and where the 
0(sinK_2 Po) term in the Mß equation is due to the fact that we used -dx 

instead of B in our computation. Thus, the final expression for the Melnikov 
integral is of the form 

M(a, ß, eb) = aMa + ßMß + Mj cos{6b - 2p0), (4.9) 

where Ma,Mß, and Mi are functions of to only. 

Clearly, for small a and ß, this Melnikov function has simple zeros as a 
function of 0b. At issue, of course, is the geometric meaning of these zeros. 
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5    Persistent Homoclinic Orbits for PNLS 

Simple zeros of the Melnikov function (4.9) enable us to prove the following 
persistence theorem: 

Theorem 5.1 The perturbed NLS equation (3.1) possesses a symmetric pair 
of orbits which are homoclinic to the saddle fixed point Q, provided the param- 
eters lie on a codimension 1 set in parameter space which is approximately 
described by 

a ~ E(oj)ß. 

Remark 5.1 Calculations in the proof of this theorem provide formulas which 
describe, approximately for small e, characteristic properties of these homo- 
clinic orbits such as the constant E(u) and an important "take-off" point. 

These two homoclinic orbits differ by the location of a transient spatial 
structure - a solitary wave which is located either at the center (x = 0) or 
the edge (x = n) of the periodic box. As such, this theorem provides a key 
necessary step toward a symbol dynamics for the pde. 

The proof of this theorem is organized with "local-global" analysis. It 
involves normal forms for the perturbed NLS equation [47], invariant manifold 
theory for NLS and geometric singular perturbation theory, combined with 
integrable theory and Melnikov analysis. It is described in mathematical 
detail in [44]. Here we outline the steps in the proof, emphasizing the intuition 
behind each step. 

The steps in the proof are organized in the subsections which follow: 

1. Preliminary set up including (i) motion on IIC, (ii) coordinates near 
nc, (iii) linear stability and time scales, and (iv) a normal form. 

2. Local arguments including (i) persistent invariant manifolds, (ii) fiber 
representations, and (iii) the height of WS(Q). 

3. Global arguments including (i) integrable theory, (ii) the first Mel- 
nikov measurement, and (iii) the second Melnikov measurement. 

When working through this overview of the proof, keep in mind that, through- 
out the proof, control is obtained in one of two ways - - either the orbits are 
(i) close to the invariant plane IIC, or they are (ii) close to the integrable case. 
Also keep in mind that the arguments will be a form of "shooting", where the 
goal will be to force an orbit to "hit" target manifolds of high dimension, but 
in an infinite dimensional space. To make these manifolds easy targets, we 
make them very large in the sense that they will be codimension 1. In any 
case, the overview of the proof follows: 
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5.1    Preliminary Set Up 

There are four preliminary steps before the proof really begins. These are 
(i) a study of motion on the invariant plane Ilc: (ii) the definition of local 
coordinates near IIC; (iii) the use of these local coordinates for a linear sta- 
bility analysis which identifies two time scales which result from a gap in the 
linearized spectrum; and (iv) the development of a near identity transforma- 
tion which places the local coordinates in a "normal form". Each of these 
preliminary "set-up steps", while tedious, are essential to the proof. 

5.1.1 Motion on IIC 

Motion on the plane has already been described in Section 3.1, and is sum- 
marized by the figures 3.1 and 3.2. In particular, we remind the reader of 
the two fixed points near the unit circle - the saddle Q and the sink P, with 
their growth rates on the plane IIC given by (3.7). As described in Section 
3.1, when restricted to a "resonance band" near the circle 5W, the motion will 
be slow. In particular, in the resonance band, control is achieved by the en- 
ergy of the driven pendulum, equation (3.10). In particular, with that energy 
we can obtain and control global representations of the stable and unstable 
manifolds, restricted to the plane IIC) of the saddle point Q - WS(Q) and 

WU{Q). 

5.1.2 Coordinates Near IIC 

The next preliminary step is to introduce coordinates which will be useful 
locally near the plane IIC, or more specifically, near the circle Su. This entails 
introducing coordinates (J, 0, /), where 9 is the angle on Su, J is a measure 
of distance from Sw on the plane IIC, and / is in the orthogonal compliment 
of nc. These coordinate changes, 

q^(p,e,f)-+(JAf), 

are arrived at in the following manner: 
First, we introduce coordinates (p, 9, /) given by 

q:=\p(t) + f(x,t)]expi9{t), (5.1) 

where p and 9 are polar coordinates on the plane IIC, and / G 11^-, i.e. / has 

spatial mean zero. 
The L2 norm is a constant of motion for the unperturbed (e = 0) flow; 

therefore the perturbed equations can be somewhat simplified by replacing 

the variable p with the variable I : 

j • =  JL r qqdx  =   i- /2 V + //] dx  = p2 + (//)• (5.2) 
2TT JO 2TT 7O 
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Finally since we are working 
points Sw which corresponds to / 
the variable J defined by 

in a neighborhood of the circle of fixed 
= u2, it will be convenient to introduce 

■ J   -- = I -u2 
(5.3) 

In terms of these variables, the 

Jt    =    -2e[a(J + uj2)-\ 

0t    =    -2J + e{J + u2) 

ift   =   LJ + VJ + u 

perturbed NLS equation takes tl le form 

(5.4) 

-VJ + OJ
2
 cos6] + Si(J,e,f;e) 

-1/2sin0 + £2{J,e,f;e) 

Qs(f) + S3(J,6,f;e), 

where 

LJ     —     fxx  + 

VJ   =   2J(f 

iebf + 2u2(f + f) 

7\          sin 6 

and where €k are 2n -periodic functions in 6, of order 

£3(J,e,f;e) 

=   0(ef2) 

=   0(f2) 

=   0(Jf2 + f) 

for small J and / 

5.1.3     Linear Stability and Time Scales 

The linearization of equations (5.4) is a perturbation of the linear system 

Jt =   0 

&t 

ift 

=    -2J 

=   LJ. 

(5.5) 

This is a constant coefficient linear system whose growth rates are 
compute. First, it is convenient to introduce real coordinates: 

easy to 

. 
f = UR + iuj = (UR,W/)

T
 := u, 

in terms of which the linear system takes the form 

Jt =   0 

Ot =    -2J (5.6) 

ut =    L,,u. 
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Thus, we must consider the eigenvalue problem 

Lte = A e 

for the eigen-pairs {e(x), A}. Using Fourier expansions, one finds for j = 1: 

1 T (1, ^fa)    cos a;, 
2y/nu 

\<r?. =   \±a-0(e)\, (5-7) 

where   
o- =  y/4u2 - 1. (5-8) 

For j > 2, the eigenvalues come in complex conjugate pairs, with negative 

real part: 
\j = iQj-0(e), 

where ,  
fy = iVi2 ~ 4w2 > °- (   ) 

Thus, one identifies a very important #ap in *Ae spectrum. In the "cos a;" 
direction in function space, the growth and decay rates are 0(e°), while all 
other growth and contraction is slow. Specifically, on the plane IIC, the ex- 
pansion and contraction are 0{^). All other modes {cos jx,j > 2} decay 
at the slow 0(e) rate. This gap in the growth rates will play a central role 

throughout the analysis. 
In terms of the eigen-basis, the mean zero function u may be written as 

u{x) = vueu{x) + vses(x) + v0{x) (5.10) 

where vu and vs are real scalars, and where v0(x) € [span {Ilc, eu, es}] . In 
terms of these variables the linear equations (5.6) split into 

Jt   =   o 
9t   =   -2J 

vu,t    =    <vu (5-11) 

Vs,t      =      -°fsVs 

v0, t   —   Lt v0 

Thus we explicitly see that, for e = 0 the linear equations have one unstable 
(cosaO direction eu, one stable (cosx) direction es, and an infinite number 
of center directions (J,6,v0). Combining these center variables as vc - 
(J, 0, v0)

T, the linear equations can be written as 

Vu, t      =     °lVu 

vs,t    =    -a\vs 

Vc,t       =       A Vc 

(5.12) 
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where A is defined from equations (5.11). 
In a 5 neighborhood of the circle of fixed points Sw, the nonlinear equation 

can be viewed as a perturbation of the linear equation (5.12). Under the flow 
of this linear equation, and for e = 0, Sw has one dimensional stable and 
unstable manifolds, together with a codimension 2 center manifold. We focus 
our attention on the center manifold EC(SU/), together with the center-stable 
ECS(SW) and center-unstable ECU(SU,) manifolds: 

ECS(SU)   =   span{eu}
L 

ECU(SW)    =   span{es}
L 

EC(SW)    =    span{eu, es}
x 

We will be interested in the persistence of these manifolds, under both the 
nonlinearity and the perturbations. 

5.1.4    A Normal Form of the Equations 

The stable manifold of the saddle Q, WS(Q), is a codimension 2 manifold for 
which we will need global control. On the plane Ilc, this control is achieved 
with the pendulum energy (3.10). Off the plane, we need to estimate its 
"height" in order to complete the last step in the argument call the "Second 
Measurement". 

In order to illustrate the issue, consider the following model problem: 

ft = -if-ef + \f\f. 

The origin is a stable fixed point for this equation. How large is it's stable 
manifold, jys(0) ? A quick calculation shows that 

f = eexp(-it) 

is a nearby periodic solution, and that jys(0) cannot be any larger than 0(e). 
Next, consider the similar model problem 

/* = -i/-e/ + /2, 

which is also quadratically nonlinear. The former example, together with the 
following scaling calculation, both indicate that if |/| > 0(e), the nonlinear 
term might effect the decay: 

/   =   ef 
ft   =   -if-e(f + P). 
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On the other hand, if the nonlinearity was of higher power, the effect would 

be diminished: 

9t    =  --ig-ef + f, 

g   =   ?h 

h  =   -ig-<~g + ^~lf3)- 

One sees that, for cubic nonlinearities, the decay will not be effected for 
fj, > 1/2. That is, g can be 0(e2+<S) without effecting the decay. 

For a quadratic nonlinearity, one is simply unsure of its effect without 
more detailed information about its specific nature. If it really doesn't effect 
the decay, we should be able to transform it away. Such a transformation 
approach is the philosophy behind "normal forms". In the second example, 
we introduce the "near identity transformation" 

f = g + cf. 

If we choose c = -(i + e)_1, the equation gets mapped to 

gt = -ig~eg + 0{g3), 

and we see that \g\ = 0(e2+5) without effecting the decay. 
In this example, the transformation is allowed because, in the definition 

of the constant c, 
1 

c = 

the denominator never vanishes for small e. In more general examples, van- 
ishing or small denominators can provide obstacles to the existence of the 

transformation. 
In our application to the perturbed NLS equation, we return to equation 

(5.4) and focus upon the "/ equation", 

ift = LJ + VJ + wQ3(/) + £z{JAf\t)- 

Here we consider the possibility of transforming away the quadratic nonlin- 
earity Q3(f) with a near identity transformation of the form 

g    =    f + K(f,f) (5-13) 

K(f, h)    :=   A'n(/, h) + KM h) + K-n(/, h) + Kri(f, h) , 

where K are bounded bilinear maps K : n^- x ITC  —> Uc 

Kn(f,h)    =    f f Ku{x-yi,x-y2)f{yi)h(y2)dy1dy2 

K'M,h)    =     f f K1i{x-yux-y2)f{yi)h{y2)dyidy2, 
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with similar expressions for Äjj and /fjj- ^n terms of Fourier expansions 
these bilinear maps can be written as 

Kn(f,h)   =     £   Kn(k,e)f(k)Hf)^k+tis 

R'n(f,h)   =     £   Kll(k,£)f(k)k-£)ei(k+^. 

In this pde setting, vanishing denominators.which would be obstructions 
to the transformation take the form of "resonances" for the linear equation 

idtf = /.x + 2w2 (/ + /); 

that is, simultaneous zeros of the pair of equations 

ki + fa   =   k3 

fti±ft2    =   ±fi3, 

where the dispersion relation Qj = £l(kj) is given by equation (5.9). However, 
some algebra shows that, in the space II ;f ( where k ^ 0), these equations 
have no solutions; that is, there are "no quadratic resonances". 

Thus, a near identity transformation exists which transforms away the 
quadratic nonlinearity. In fact, this transformation can be found explicitly: 

A-„(M)   =   ~ 

A~Il(M) = ~WTl) 
Ku(k,l)   =   0. 

Note that k ^ 0, £ ^ 0, and £ + k ^ 0 since we are in the space II^. 
Moreover since 

J2\I<ab(£,k)\2 <OC, 

we have K G L2 (51 X S1), and this implies that K is a bounded bilinear 
map on \\-jr 

\\K(f,f)\)m<C\\f\\2Hl 

for all / 6 Il;f. Finally we can invert the equation 

g = f + K(f,f) 

for / in a neighborhood of the zero to obtain 

f = 9 + IC(g) 
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where K is of order 0(g2). 
Applying this near identity map places the full equations in their final 

form. The transformation 

g = f + K(f,f). 

will eliminate the Q3 term, but it will introduce new quadratic terms in the 
equation for g that have e coefficients such as 

eDK(f,f), 

due to the presence of terms like eDf in the f equation.  Therefore, using 
(J ,6,g) as coordinates, the equations near Sw are written as 

Jt   =   -2e [a{J + to2) + \/j + w2 cos 6] + Ni {J, 0,g;e) 

gt   =   -2J + e(J + io2)-^2 sm6+ N2(J,e,g;e) (5.14) 

igt   =   Ltg + Wtg + N3{J,e,g;e). 

where, for g in a neighborhood of zero, we have 

Ni{J,6,g;e)   =   0(eg2) 

N2(J,0,g;e)   =   0(g2) 

N3(J,0,g;e)   =   0(Jg2 + eg2 + g3) 

Finally, since we will be working with invariant real manifolds in a neigh- 
borhood of the circle of fixed points Sw, it will be convenient to introduce a 

real coordinate system: 

u =  {Re(g),Im(g)f. 

In terms of these variables the above equation takes its final form: 

Jt    =    -2e [a{J + w2) + \/J + to2 cos 0] + iVj (J, 6, u; e) 

6t   =   -2J + e(J + u2)-1'2 sm6 + N2{J,6,u;e) (5.15) 

Ut   =    Ltu + Vtu + N3(J,e,u;e). 

Here A^3 is interpreted as a two vector, 

Lt   =   Jd2
x - 4OJ

2
S + eD 
sin Ö    ■ 

Vt   =   -4JS+ €-=== J, 
VJ + OJ

1 

where . , x 
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5.2    Local Arguments (Near Ilc) 

In this section we describe the local parts of the argument. We will be inter- 
ested in the fate of the manifolds 

ECS{SW)   =   span{eu}L 

ECU(SW)   =   sPan{es}
L 

EC(SW)    =   span{eu, es}
L 

under nonlinearity and perturbation.  It will turn out that these manifolds 
persist and become invariant manifolds for a "cut-off flow": 

Ee(Sw)   ->   Wc
t:=M. 

From the linear spaces, it is clear that these persistant manifolds will be cod 
1, cod 1, and cod 2, respectively. 

In order to establish the existence of these local invariant manifolds, as 
well as to coordinatize them in a manner useful for singular perturbation 
calculations, we begin by introducing a "cut-off flow": We start by fixing 
5 > 0, and introducing a localization function ips, 

where tp is C°° and satisfies 

V>(*) = 

Then we localize the full equations 

Jt    =    -2e[a(J + w2) + VJ + u2 COB 0]I/>S(J) + Ni(J,6fu;e)i/)S(J,.u) 

6t    =    -13 + c[(J + OJ
2
)~

1/2
 sin 0]^(J) + N2{J, 0, u; e)^5{J, u) 

ut   =   Ltu+[Vtu + N3(J,e,u;e)]^5(J,n), (5.16) 

where 

ips(J,u) = i>s(J) ipsiWuWHt) ■ 

Note that we do not cut-off the variable 6; thus, the function ips(J,f) has 
the effect of cutting off the right hand sides whenever the phase point lies 
outside a neighborhood Us of the circle Sw. Because of this localization, the 
right-hand side of equation (5.16) has a global Lipshitz constant of order 
0(e + S) . 



80 DAVID W. MCLAUGHLIN AND JALAL SHATAH 

This localization has the effect of keeping the flow unchanged in a 5- 
neighborhood of Su, while changing the nonlinear equations (5.15) to be- 
come globally a 5-perturbation of a linear constant coefficient system. Using 
v := (vu, vs, vc)

T as variables and the operator A defined in equation (5.12), 
we can write equations (5.16) as 

vu,t = <w« + R5u(v;e) 
vs,t   =   -atvs + R5

s(v;e) (5.17) 

vCit   =   Avc + Rs
c{v;e), 

where R5(v ; e) and its first derivatives are of order 0(5 + e) . 

5.2.1     Persistent Invariant Manifolds 

We will show that the localized equation (5.17) has Ck [k > 3) invariant man- 
ifolds that deform smoothly from Ecs, Ecu, and Ec. In turn, for the original 
equations, these manifolds will be locally invariant in a 6 neighborhood of 

First we define local invariance: 

Definition 5.1 Given an open set O, a manifold M is called "locally in- 
variant (in 0)" under a flow Ff if, for every open interval I such that 
FJ(?) C O,  Fu(q) G M for one t, € /     => F\q) e MVt e I. 

Then we state the persistence theorem: 

Theorem 5.2 There exist a S neighborhood Us ofSw, an e0(6) > 0, and an 
integer k such thatVe G [0,e0), equation (5.15) has a locally invariant (in 
Us) manifold of codimension 1, 

Wc
t
s = |t> G H1   vu = hu(vs, vc; e)|, (5.18) 

where the function hu is Ck in all of its arguments, and 2n-periodic in 9. 
Moreover for e = 0, W$s intersects Ecs tangentially along Sw. 

Similarly, we have a locally invariant manifold given by 

= iv£Hl  vs = hs(vu, vc; e) j (5.19) 

where the function hs is Ck in all of its arguments, and 2TT-periodic in 6. 
Moreover for e = 0, Wßu intersects Ecu tangentially along Sw. 

The existence of a codimension 2 "slow manifold" Mc is then given by 

the following: 

W* 
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Corollary 5.1 Let Me denote the intersection 

Then Mt is a locally invariant (in Us) manifold of codimension 2, 

Mt = Iv € H1  vu = hc
u {vc; e),vs = hc

s (vc; e)\ (5.20) 

where the functions hc
us are Ck in their arguments, and 1-K-periodic in 9. 

Moreover for e = 0, M intersects Ec tangentially along Sw. 

There are essentially two methods to prove such a persistence theorem - 
the "graph transform method" of Hadamard [24] and the "integral equation 
approach" of Perron [57]. The graph transform approach for the NLS pde is 
developed in [45]. (This approach is developed in generality for dissipative 
pde's in [7]; the integral equation approach is developed for pde's in [6].) 
Here, since our NLS equation may be viewed as a perturbation of a constant 
coefficient linear equation, we prefer the integral equation approach. While 
it is less geometric, it is more explicit and more concrete than the graph 
transform method. 

Remark 5.2 In this near conservative setting, the manifolds M and Wt 

are naturally infinite dimensional. (In addition, their small codimension is 
important for our "shooting " arguments.) These manifolds are not compact; 
hence, dissipative methods such as those in [7] do not apply. 

First we rewrite equation (5.17) in integral form: 

vu(t)    =   exp[al(t-tu)]vu(tu) +  /   exp[a^(t-s)]Rs
u(v(s);e)ds 

Jtu 

vs(t)    =   expl-aKt - ts)]vs(ts) +  /  exp[-al{t-s)]Rs
s{v{s);e)ds 

Jts 
rt 

vc(t)    =   exp[At]vc(0) +  /   exp[A(t-s)]Rs
c (v{s);e)ds. (5.21) 

Jo 

Most solutions of these equations will grow as exp cr^t as t —)• +oo. How- 
ever, solutions in the "center stable manifold" W°s cannot grow this rapidly. 
In fact, the gap in the growth rates allow one to characterize the invariant 
manifold W?s by 

W" = lveH1 
supfexp   —t   HF'tocJUtf )  <ooL (5.22) 
t> o V       L ^o   J / 

where F*(v; e) is the cut-off flow of equations (5.17) and no is a fixed positive 
integer. Thus, for v 6 W£s, we have 

exp[-au tu] \vu (tu)\ —> 0 as     tu -t +oo. 
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Therefore for solutions on Wc
t
s the integral equation can be written as 

vu(t)    =     f    expK(t-s)}Ri(v(S);e)ds 
J+oo 

vs{t)    =   exp [-<#]«,+ j  exp[-al{t-s)]R5
s{v(s);e)ds 

vc(t)    =   exp[At]vc + J  exp[A{t-s)]R5
c{v{S);e)dS, (5.23) 

The persistence theorem is then established with Newton iterations, using 

the space-time norm 

\v  A snpexp{[-at/\]\\v(t)\\Hi}. 
<>o 

Once convergence has been established, the function hu which represents the 

manifold Wf_s as a graph, 

vu = hu(vs, vc; e), 

is given by 

hu(vS) vc; e) = vu{t = 0) = /      exp[<(£ - s)] Rd
u(v(s); e) ds. 

J+oo 

Remark 5.3 The smoothness part of the argument is slightly more delicate, 
for an interesting reason. While solutions in Wfs cannot grow as export as 
t _+ +oo, they can grow slowly (compared with expert). This slow growth, 
together with a quadratic nonlinearity, causes the estimates of the iterates 
associated to derivatives to degenerate. Fortunately, the gap in the spectrum 
still allows these terms to be controlled. In fact, the size of the gap determines 
how many derivatives the manifolds possess. (See [44] for details.) 

5.2.2     Fiber Representations of the Normally Hyperbolic Invariant 
Manifolds 

This gap in the spectrum also indicates the presence of two distinct time 
scales in the problem - motion on the plane IT experiences slow expansion 
and contraction on the vt time scale, where v = y/e, while motion off the 
plane expands and contracts on the fast scale t. These two distinct scales 
make the long time behavior singular, and necessitate representations of the 
invariant manifolds appropriate for singular perturbation calculations. Such 
representations were introduced by Fenichel [17], [18], [19], [20] for finite 
dimensional dynamical systems. In this finite dimensional setting, recent 
uses of these "fiber representations" include [37], [40], [38], [27], [39], [34], 
[33].  Surveys of the finite dimensional situation are [35] and [63].  There is 
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V   V   V    V    V 

Unperturbed 

Figure 5.1: Orbits and Fibers 

not much literature concerning these representations for pde's. Some earlier 
work includes [12], [41], [44], [7], [45]. 

For intuition about these Fenichel Fibers, consider the following trivial 
example with two time scales: 

Vt   =   -y 
xt    =    -u(x + y), 

where 0 < v « 1. Clearly, the orbits behave very differently when v = 0 
than when v > 0. (See Figure 5.1.) For example, when v = 0, the x 
axis is a line of fixed points, while for v > 0, the origin is the only fixed 
point. However, in this latter case (y > 0) the x axis remains an invariant 
manifold on which the motion experiences slow contraction. Clearly, the 
orbits behave singularly as v —> 0. Nevertheless, the center stable manifold 
behaves smoothly with v, but its representation as a union over orbits would 
not display this smoothness. We seek an alternative representation in terms 
of fibers. 

The "stable fiber T^ through the base point m on the slow manifold .A4" 
is defined as that equivalence class of points z (initial conditions) with the 
property that the trajectories initialized at z rapidly approach trajectories 
initialized at m. For our example, this means that, for m £ M, 

•' m   — Iz  \\F\z;u) - F'(m;i/) || = 0[exp(-t)] as £-*+oo j .     (5.24) 

In this trivial example, one can calculate explicitly: Set m = (xm, 0) and 
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z = (x,y) and obtain 

F^z-v)   =    (exp(-vt) [x-r^y] + 0[exp(-t)], exp{-t)y) 

Ft{m;u)   =    (exp(-^i)a;m,0); 

from which one sees that the fiber 

K = {ix,y) x-xm = Y~^y}- 

Clearly, in contrast to orbits, these fibers are smooth with v. 
This example can also be used to describe an alternative view of the fibers. 

One seeks a coordinate transformation which diagonalizes the slow flow in the 
sense that the equations for the slow variables do not depend upon upon the 
fast variables. In the context of this simple example, one changes variables 

{x,y)-> (w,y) 

so that, in terms of the new variables, the equations take the form 

yt  =  -y 
wt   =    — vw. 

The transformation which accomplishes this is 

x = f(w,y),   f(w,0) = w, 

where v 

f{w,y) = w + j—^y- 

In the new coordinates (w, y), called "fiber coordinates", the fibers have been 

"straightened out", 
Tm = {{w,y)\w = 0}. 

In the original coordinates (x, y) the transformation function provides a rep- 
resentation of the fiber. Indeed, fix a base point m = (w, 0). Then the fiber 
through m is given by 

Tm = {(z,y) x = f{w,y) = w + Yz^y\- 

Once a flow is partially diagonalized, it is clear that "points on a fiber 
suffer the same fast fate as that fiber's base point on the slow manifold"; that 

is (for this example), 

Ft{fm) = Ft{m) + 0[exp (-*)],   t -> +00 
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In the literature, the prevalent view of fibers is the geometric one of 
an equivalence class of points, primarily because of the pioneering work of 
Fenichel. Here the perturbed NLS equation can be viewed as a perturbation 
of a constant coefficient linear problem. Because of this simplifying feature, 
we prefer the alternative view as a partial diagonalization of the flow which 
decouples the slow dynamics. In this NLS setting [44], this view allows us to 
construct the fibers with an integral equation framework which is very similar 
to the Perron method that we used for persistence. (The original "equiva- 
lence class" point of view is implemented for perturbed NLS equations in 
[41], [45].) 

With integral equation methods, one [44] can establish the following fi- 
bration theorem: 

Theorem 5.3 For all e £ [0, eo] the Ck manifold W£u admits , through a 
Ck_1 transformation, coordinates 

Vc   €    Ec 

Vu   6    [-rjo, Vo] 

such that the submanifold M.t corresponds to r\ = 0, and the flow on Wf1 

decouples in the following manner: 

Vu   =    [(rCu + rS{Vu,Vc;e)]v 
fjc   =   Arjc + SS

c(ric;e) 

where rj, Fs, Ss
c and their first derivatives are of order 0(e + S). The trans- 

formation itself is also C with respect to parameters such as e. A similar 
statement holds for W£u. 

The proof of this theorem, which proceeds by integral equation methods, 
may be found in [44]. It involves comparing solution trajectories through an 
arbitrary point with trajectories through a base point on the slow manifold. 
This comparison requires enough preliminary notation that the argument, 
while straight foreward, is somewhat tedious. As in the argument for persis- 
tence, the smoothness part is more delicate than existence. 

Remark 5.4 One reason for the loss of derivative is due to the simple iter- 
ation procedure that we use to show the persistence and the fibration of the 
manifold. We use a simple Newton's iteration procedure applied to functions 
defined on noncompact domain. 

These fibers allow general motion to be tracked by following only motion 
through the base point on the slow manifold. In addition, they are nicely 
behaved with respect to the parameter e, as well as with respect to the base 
point. As such, they are very useful in singular perturbation calculations. 
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5.2.3    Height of WS(Q) 

The final local information concerns the "height of the stable manifold WS{Q)". 
On the plane IIC, this manifold is controlled, globally, with the energy of the 
driven pendulum (3.10). Here we discuss an estimate of its height over the 

plane. 
The near identity or normal form transformation discussed earlier in Sec- 

tion 5.1.4 enables us [44] to use integral equation methods to establish the 

following 

Theorem 5.4 The point Q has a local stable manifold in Mt which can be 

parametrized by (0, v0); 

W = {(J,6,v0)\J = f(6,v0)} 

for all \\v0\\Hl e [0, e3/4]. 

Remark 5.5 Note that, in this theorem, one is restricted to lie within the 
slow manifold Mt , 

W = Ws{Q)nMt. 

The theorem states that the "wall" W is tall enough, 0(e3/4), to permit a 
successful "shooting argument" in the second measurement. 

5.3     Global Arguments 

With this material about the local behavior near the plane IIC in hand, we can 
turn to the global issues from integrable theory, and to the first and second 
measurements. 

5.3.1     Integrable Theory 

The global material from integrable theory has already been discussed in 
Section 3.2. It consists in representations of homoclinic orbits, a natural 
constant of the motion F, and a Melnikov function MF which is based upon 
F. Here we restrict ourselves to a discussion of the reason the invariant F is 
so natural an invariant upon which to base the Melnikov function. 

Remark 5.6 1. For integrable cases, the explicit representations of the ho- 
moclinic orbits provide beautiful and explicit representations of the Fenichel 

fibers [41], [43], [45]. 
2. As discussed earlier, F is critical at unstable tori; hence, F' will vanish 

exponentially as the whisker approaches its unstable torus. This provides 
exponential convergence of the Melnikov integrals and is one reason to base 
the Melnikov function on F. However, this convergence, which itself is due to 
geometric reasons, is not the main structural reason that F is natural. 
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Recall that, for the integrable NLS equation, the center-stable manifold of 
the circle of fixed points Su admits the following global characterization: 

WoW = {q e HlP\F = -2} . 

Thus, gradF is normal to Wßs(Su/). As this manifold is cod 1, the distance 
of a general point from it can be assessed with one measurement in the 
gradF direction. Under perturbation, the manifold Wßs(Su) persists to the 
manifold W£s. Since this deformation is smooth (at least Ck), gradF remains 
transversal to the perturbed manifold W£s. As this perturbed manifold is also 
cod 1, one can use the gradF direction to develop a "signed distance" of a 
general point from W^s. Indeed, this is the Melnikov function of the first 
measurement! 

5.3.2    First (Melnikov) Measurement 

Melnikov analysis was first used for pde's by Holmes and Marsden [30], [29] 
to establish the transversal intersection of the stable and unstable manifolds 
when one of them is one dimensional. However, when the perturbation intro- 
duces new slow saddle directions (i.e., when the problem is singular), their 
methods are not sufficient to establish the transversal intersection of these 
manifolds. For a truncation of NLS to a singular problem in four dimensions, 
Kovacic and Wiggins [37], [40] were the first to combine Fenichel fibers with 
Melnikov analysis. We [41], [44] then developed this combination for pde's. 

Consider the perturbed NLS equation in the form 

qt  =  iH'(q) + eG(q) 

where H'(q) = —qxx — 2[qq — u>2] q and G(q) = —aq — ßBq — 1. In this "first 
measurement" we [44] will construct a Melnikov function A whose zeros cor- 
respond to orbits that do not lie in the invariant plane nc, are asymptotic to 
the saddle point Q in backward time, and asymptotic to the locally invariant 
manifold Mt in forward time. This orbit is of the type depicted schemati- 
cally in Figure 5.2. Notice that as the orbit leaves the saddle Q, the phase 
point moves very slowly and remains near the plane nc for a long time. Then 
it suddenly "takes-off" and rapidly flies away, only to return near the slow 
manifold Mt) which it slowly approaches in foreward time. The very slow 
motion, on both the "take-off" and "landing" sides, will be described with 
Fenichel Fibers. 

The argument begins by considering the unstable manifold WU(Q) of the 
saddle Q. This manifold is two dimensional, with a slow direction in the 
plane ncCMt and the other fast direction off of the plane, tangent to cos a:. 
On the plane nc, this unstable manifold is a curve Cu which is controlled by 
the energy (3.10) of the driven pendulum. This curve Cu lies near the circle 
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Figure 5.2: Schematic Diagram of the Homoclinic Orbit 

of fixed points Su, and can be viewed as a graph over this circle. That is, the 
curve Cu can be parameterized by an angle 0&. 

Since WU(Q) is a submanifold of W™, it inherits the Fenichel Fibration 

over the curve Cu: 
wu(Q) = U {^(-;£)}- 

meCu 

In particular, we will fix a base point 9b on the curve Cu, and consider two dis- 
tinct fibers each with this same base point - the perturbed fiber T%l{-;e) and 
its unperturbed neighbor J^(-;0). (See 5.3 Fixing a short positive distance 
6 > 0 along these fibers enables us to define the unperturbed and perturbed 
"take-off" points, T° and T, each of which is a function (through m) of the 

base angle By. 

r° = KW) 
r = KV;*)- (5-25) 

In this manner, we have used fibers to describe the slow motion and have 
made a precise identification two take-off points, one on the unstable manifold 
WU{Q) and the other on the unperturbed manifold W£ (Uc) = W$(nc). 

Next, we consider two orbits initialized at these take off points: 

qh(t)   =   F*(T°;0) 

qt(t)    =    F\T;e). (5.26) 

The orbit qh(t) is an unperturbed integrable orbit, which certainly asymptotes 
to the plane IIC in foreward time. In fact, analytical expressions precisely and 
concretely determine its fate on the plane. On the other hand, the orbit qt(t) 
is a solution of the perturbed NLS equation. Our goal is to determine if a 
take-off angle 0b can be chosen to guarantee that this orbit will asymptote to 
the slow manifold Mt as t —> +oo. 
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q(0) 
h 

unperturbed 
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q(0) = qs e 8 
perturbed 
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Figure 5.3: The Initial Points on the W? Fibers 

Figure 5.4: Schematic Diagram of the First Measurement 

From the explicit expression for the integrable homoclinic orbit qh (t), one 
sees that there is a time T*(£) such that dist(qh(t), Uc) < S for all t > T*. At 
T* we define two "landing points" 

4   =   qh(T*) = FT-(T°;0) 

4    =   qt(T*) = FT*(T;e). 

By finite time perturbation theory, these two landing points are 0(e) apart. 
The unperturbed landing point £0 € M^(IIC). We hope to choose the take-off 
angle 6b so that the perturbed landing point £t £ W™. 

The manifold W™ is codimension 1 and is e close to the integrable W§s; 
moreover, the latter is characterized by {q G Hl\F(q) + 2 = 0}. Therefore, 
we can define 

A  :=(F'{£0),£e-qs) 

as a measure of the signed distance between £c and qs, where qs denotes the 
intersection of the line through £t and the manifold Wf . (See Figure 5.4). 

To actually calculate A, we define, for t < 0, the orbits 

q*(t)    =    qh(t + T«) 

qu{t)    =    qe(t + T*). 
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Similarly, for t > 0, we define qs(t) to be the solution of the perturbed problem 
with initial data qs, and we extend the definition of g*(i) to all t. These orbits 
allow us to introduce the definitions 

A-(t)    =    {F'(q*{t),qu(t)-q4t))        t<0 

A+(t)    =    (F'(q*(t),qs(t)-q*(t))        t>0 

A   =   A-(0)-A+(0) 

Finally, as in the finite dimensional case [62], differential equations for A~(t) 
and A+ (t) enable us to estimate the signed distance A in terms of the Mel- 
nikov integral: 

Proposition 5.1  The distance A is given by 

A = eMF{0b)+O(e2), 

where /oo 
(F'(q*(t)),G(q*(t))} 

-oo 
dt. 

The detailed proof of this estimate may be found in [44]. 
This proposition establishes the geometric significance of the Melnikov 

function which was calculated in Section 4.2. For the readers convenience, 
we summarize the results of those calculations. Let q^{t) denote an orbit of 
the integrable pde which is homoclinic to the circle of fixed points Sw and y/e. 
close to the integrable homoclinic orbit q* (t). 

Corollary 5.2  The distance A has an expansion in e given by 

A   =   eMF(a,ß,9b)+0(e3/2) 

/oo 
(F'(qw(t)),G(qu,(t)))dt 

-oo 

=    - [aMa + ßMß + M0 cos (9b - 2Po)]        (5.27) 

where 
/oo 

(F'(qu{t)),qUt))dt 
-oo 

/oo ,-. 
(F'(qUt)),Bquj(t))dt 

-co 
/CO 

(F'(gw(t)), l)dt. 
-co 
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More explicitly, 

f°°   ,    f2n  ,   4nu2s'm2p0 sech r 
Ma   = dr        dx £ x 

J-oo      Jo cr A6 

[sech T + sinp0tanh2rcosa; - sin2 p0 sech r(2 + cos2a:) 

+2 sin3 p0 sech 3r cos x] 

,            f2*  ,   4TTOJ
2
 sin2 p0 sech r 

Mß   =    I      dr I     dx j§  x 
f°°        f 

= dr 
J-oo JO 

\s'mp0 sech rcosa; - sin2p0 sech 2r(l + sin2a;) 

[2 sech T - sin p0 sech 2r cos x - 2 sin2 p0 sech r 

+2sin3p0 sech 2rcoscc] + 0(sinK_2 p0) 

f°°   ,    f2n  ,   47TW sin2 p0 sech r 
Mo   = dr        dx ^ x 

J-oo      Jo (TA
Z 

[ sech r — sin p0 cos x] 

where p0 = tan-1 Vw2 - 1, A = [1 — sinp0 sech rcosx] and where the 
0(sinK~2 p0) term in the Mß equation is due to the fact that we used — d2 

instead of B in our computation. 
Assuming that Ma of Mß are nonzero, then the function 

M(a, ß, 6b) = aMa + ßMß + M0 cos{6b - 2p0) (5.28) 

has nondegenerate zero. This implies that we can choose our parameters so 
that A = 0, i.e., 

4  =  qs   G W
c

t
s , 

and the first measurement is complete. 

5.3.3     Second Measurement 

As a consequence of the first measurement, the "take-off angle" 6i can be 
chosen so that the landing point £c lives in W£s, and thus the orbit asymptotes 
to Mt. However, we do not know if it asymptotes to the saddle point Q. In 
order to ascertain that it does return to Q, we perform a second measurement. 

The necessity of a second measurement was first understood in finite 
dimensional discretizations of this NLS system - first for a four dimensional 
system [38],[53], and then for the more delicate 2iV + 2 dimensional system 
[41], [43]. 

This second measurement makes substantial use of Fenichel Fibers. In 
order to determine the foreward fate of the orbit, one does not follow the 
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orbit through the landing point lt. Rather, one follows the orbit through the 
base point of that stable fiber on which tt resides. 

This second measurement is also a shooting argument. While the stable 
manifold WS(Q) is cod 2 as a submanifold of the entire space, it is cod 1 as a 
submanifold of W^s. Moreover, as a consequence of the first measurement, the 
landing point £t resides in W™. Thus, a one dimensional shooting argument 
should suffice for the second measurement. 

Denote the base points of the landing fibers in the perturbed and unper- 
turbed cases by bt and b0, respectively: 

to  e  -nso(-;o). 

The unperturbed base point is known to lie on the plane b0 £ ITC. On the 
other hand, the perturbed base point is only restricted to reside in the cod 
2 slow manifold bt £ Mt. (In the four dimensional model problem [53], [38], 
both base points lie on the plane IIC which makes the second measurement 
easier.) However, because of the smoothness of the fibers with respect to e, 
we do know that the two base points bt and b0 are e close. 

The issue is whether the base point bt £ Mt actually lies on the stable 
manifold W = WS(Q) n Me. In [44], we establish 

Proposition 5.2 The distance from the landing base point bc to the stable 
manifold W can be measured as a function of the take-off angle 0h by 

d = u[2sin2p0cos{6b - 2p0) + 4aup0] + O (y/e) 

The proof of this second measurement involves 

1. the smoothness of the fibers to estimate that the perturbed and unper- 
turbed base points are close; 

2. the energy (3.10) of the driven pendulum to measure distances on the 

plane IIC; 

3. the height of the wall W as estimated by the normal form calculation 
to ensure that projections on the plane accurately capture the landing 
base point as it oscillates across the wall (as a function of the "shooting 

parameters"); 

4. the explicit formula for the integrable phase shift which expresses the 
landing angle as a function of the take-off angle 0b. 

Details of this second measurement are described in [44]. 
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In summary, the first and second measurement produce a pair of equations 
which must be satisfied for a homoclinic orbit to persist: 

cos(06 - 2Po) = _2^» (5 29) 
sin 2p0 

ß = -a 
sin 2p0 

Mß (5.30) 

By the implicit function theorem, for e small we can solve d = A = 0 in a 
small neighborhood of the point given by equations (5.29) and (5.30). Finally, 
ß can be shown to be positive (so that the perturbation is indeed dissipative) 
either numerically for wide range of parameter values, or with a completely 
analytic argument if we assume that p0 = tan-1 ^/Au2 — 1 is small enough 
i.e., u close to l/\/2- 

The simultaneous zeros of d and A determine (i) the take- off angle 9b 
as a function of the external parameters and (ii) one relationship amongst 
the external parameters. Thus, the homoclinic orbit is shown to persist (as a 
singular deformation of the integrable orbit) provided the external parameters 
are restricted in a cod 1 manner. 

Remark 5.7 Notice that both measurements are used together to remove 
the "cut-off". The first measurement establishes a heteroclinic connection 
between the saddle Q and the slow manifold Me, a manifold which has only 
been shown to persist for the cut-off flow. However, the second measurement, 
which shows that the orbit returns to the saddle Q, can be used, together 
with control provided by the unperturbed homoclinic orbit, to show that the 
orbit homoclinic to Q, once it returns near Mt, never leaves the region where 
the cut-off function is the identity. In this manner, the theorem establishes 
the existence of a orbit homoclinic to the saddle Q for the original perturbed 
NLS equation, without any cut-off. 

Remark 5.8 Once the persistence of one homoclinic orbit is established, the 
symmetry x -> x + ir shows the persistence of a second homoclinic orbit. One 
member of this pair represents a coherent spatial excitation located at x = 0, 
and the other represents an excitation at a; = ir. In addition, equations 
(5.29) and (5.30) can possess several distinct solutions in some parameter 
ranges, each with its symmetric partner. Thus, the analysis shows that many 
homoclinic orbits can persist for the perturbed NLS equation. 

6    Remarks on Symbol Dynamics 

The simplest chaotic behavior which was observed in the numerical experi- 
ments for the perturbed NLS equation consisted of a single solitary spatial 
excitation which jumps, irregularly in time, between the two distinct spatial 
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locations at x = 0 and x = n. These numerical experiments, together with 
the persistence of a symmetric pair of homoclinic orbits, suggests a "symbol 
dynamics" explanation of this phenomena. 

More precisely, the term " symbol dynamics" refers to the existence of 
an invariant set in the phase space which is topologically equivalent to a set 
of all symbol valued sequences. In our setting, these sequences would take 
the values of C (center) or E (edge), and the dynamics is represented as a 
shift on this sequence space. As such, the dynamics, when restricted to the 
invariant set, is as random as a sequence of "coin tosses". 

In finite (usually very small) dimensional, the existence of such an invari- 
ant set is established by constructing a "Smale horseshoe", [59], [55], [23], 
[62]. Such constructions are carried out for orbits homoclinic to the saddle 
Q for the four dimensional truncation [53] and for the 2iV + 2 dimensional 
truncation in [41], [46]. A similar construction is in progress for the pde. 

Symbol dynamics is very appealing because it demonstrates the existence 
of chaotic motions which last for all time. However, it has some drawbacks. 
First, it occurs on a very small set in phase space, which is not shown to be 
(and is likely not) a stable set. As such, this type of chaos my not be observ- 
able. Moreover, the behavior depends on parameters in a bifurcation fashion. 
Often the parameter values required to show the existence of the horseshoe 
are very far from the values of the parameters at which chaotic behavior is ob- 
served in numerical experiments. (For example, in our analytical results [44], 
an addition dissipation ß > 0 is required which satisfies a cod 1 constraint. 
However, in the numerical experiments [52], chaotic behavior is observed for 
ß = 0, over a range of a values.) Finally, the construction of the horseshoe 
is almost always done for generic abstract models, rather than for a fixed 
specific dynamical system. To us, this generic situation seems to be a severe 
limitation of the practice of the method. (Sometimes numerical constructions 
are used to vefify the generic assumptions for specific examples, and thus to 
overcome this limitation. However, in high dimensional singular situations, 
such numerical verifications are extremely difficult - if not impossible.) 

Recently, Haller has been developing an alternative perspective which he 
has applied to finite dimensional discretizations of the perturbed NLS equa- 
tion [27], [25], and which he is currently extending to the pde [26]. In his 
work, using very similar geometric perturbation methods to those summa- 
rized here, he constructs a large class of heteroclinic orbits from the saddle Q 
to (for example) the sink P. He fixes a finite, but arbitrary, positive integer 
N, as well as any sequence of C's and E's of length N, and then establishes 
the existence of a heteroclinic orbit which recovers this pattern. While only 
transient behavior, the length of the transients is arbitrarily long. In any 
case, this set of heteroclinic orbits certainly demonstrates very complicated 
dynamics which depends sensitively upon initial conditions. Moreover, as the 
second measurement is not required to force the orbit to return to the saddle 
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Q, these heteroclinic orbits exist for a full open set of external parameter 
values, without any cod 1 restriction. 

7    Other Equations and Related Work 

The importance of this work is not in the construction of one particular homo- 
clinic orbit for one specific equation. Rather, it is the development Melnikov 
methods, together with geometric singular perturbation theory, for near con- 
servative pde's. We believe that these will become general methods which will 
be applicable to a wide class of problems. For example, the methods should 
be useful for the study (i) perturbations of other integrable pde's such as the 
sine-Gordon [22], [8], and Davey-Stewartson equations; (ii) discretizations of 
integrable equations [2], [3], [51], [10]; (iii) systems without even symmetry [1]; 
(iv) the Ginzburg- Landau equation [56], and many others. Connections be- 
tween Melnikov analysis and the methods of inertial manifolds [13], [14], [15], 
should be developed. Melnikov methods should also be useful in the study 
of conservative perturbations of conservative pde's, which possess interesting 
transport and diffusion properties [21]. Finally, these methods should also 
play a role in the description of the spatial, as well as temporal, chaos [28], 
[11], [52]. 

Clearly this work for pde's, which combines Melnikov methods with geo- 
metric singular perturbation theory, is just beginning. The study of pertur- 
bations of the NLS equation shows that the methods are useful tools for pde's. 
Their generality, and general usefulness, is yet to be determined. 
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Section II 

Exactly Integrable Systems 



Lectures in Applied Mathematics 
Volume 31, 1996 

Integrable Hamiltonian systems 
Percy Deift, Courant Institute 

These four lectures concern integrable Hamiltonian systems. The goal in the 
lectures is to give a rapid but elementary introduction to the subject, with a view 
to describing some recent results in the field: the reader is of course encouraged 
to consult the References for more details. The lectures are presented in informal 
"blackboard" style in order to preserve the tutorial atmosphere of the Summer 
School, and are divided up as follows. 
Lecture 1. What is a Hamiltonian system? What is an integrable system? 
Lecture 2. Examples of finite-dimensional integrable systems. 
Lecture 3. Examples of infinite-dimensional integrable systems. 
Lecture 4. Long-time behavior of integrable systems. 

Lecture 1. (References: [G] — a physics text, [A] — a mathematical physics text, 
[AM] — a mathematical view of the foundations of mechanics.) The space M — M2n 

is an example of a symplectic manifold i.e., it is an 

• even dimensional manifold, with a 

• non-degenerate 2-form w, i.e., w(u, v) = 0 for all v G TmM, implies u = 0, 

• which is closed, i.e. dw = 0. 

Exercise: Show that a symplectic manifold must be even dimensional. 
n 

For M2n, the standard 2-form is w = J^ dxt A dy{.   Clearly dw = 0.   If v = 

S [aia^- + ^äfr) — (&)> v' = (&<)> then a simple calculation shows that w(v,v') = 

{(I)' J(l')) > where J - ( _j 0 ] , / is the n x n identity, and (■, •) denotes the 

standard inner product on M2n. From this it is clear that 

w(v, v') = 0 for all „' => JT (a\ = 0 => (a\ = 0, i.e. v = 0, 

so w is non-degenerate. 
Functions (i.e. 'Hamiltonians') H: M -> M generate vector fields through w in 

the following way. At any point m G M, dHm is a 1-form: hence v <-+ dHm(v) is 
a linear map from TmM to M. Thus, as w is non-degenerate, there exists a unique 
vector VH{m) £TmM such that 

(1) dH(v) = w(vH,v),    for all    v£TmM. 

In the case of I M2n, w = J2 d%i A dyi ), equation (1) becomes 

( 
fri\dxi dyi   )      \\HyJ   \bjJ      \     '    \b 'SH°>+^) = (C!;lh) = \«„,j 
»=i 
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Hence ("*) - JTvH, which implies vH = (_*# J- Thus H gives rise to the standard 

Hamiltonian vector field 

d (x\ ( Hy 

The fact that w is non-degenerate plays an obvious role, as above. The role that 
the closedness of w plays, is more subtle. If H, K are two Hamiltonians on M, we 
define their Poisson bracket {H, K} through 

{H,K} = w(vH,vK). 

Note that {H,K} = -{K,H}. Clearly {H,K} = dH{vK) = vK{H) = ^§, where 
^M- is the derivative of H in the direction of VR ■ Thus 
at 

and in particular ^ = {K, K) = 0, as {•, ■} in skew i.e. K is a conserved quantity 
for the flow that it generates. 

Exercise: Verify Leibniz's rule, i.e. {HK, L} = H{K, L} + {H, L}K for all Hamil- 
tonians H, K, L. 

Observe that for (M2n, J2 dxt A dyt 

^«fXi«; Hx\   j I Kx 

Hy/      \Ky 

V/^— — -    -f-f \dxi dyi 
1 = 1 

dHdK     dH_9K_ 
dyi dxi 

which is the standard Poisson bracket on M2n. 
Now it is an (Exercise) in the exterior calculus to show that up to a constant 

C, dw is a 3-form satisfying 

dw(vH,vK, vL) = C({{H, K}, L} + {{K, L}, H} + {{L, H}, K}) 

for all Hamiltonians H,K,L. Thus 

w is closed  <$ {■, •} satisfies the Jacobi identity, i.e. 

{{H, K), L} + {{K, L}, H} + {{L, H}, K} = 0. 

This leads to the following critical calculation for the commutator [vH,vK] of 
Hamiltonian vector fields: 

[VH,VK]{L)    = vH{vK{L)) - vK{vH{L)) 

= vH({L,K})-vK({L,H}) 

= {{L,K},H}-{{L,H},K} 

= {{L,K},H} + {{H,L},K} 

= -{{K,H},L},    by the Jacobi identity, 

=     V{K,H}{L) 
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i.e. 

(2) lvH,VK] = V{KiH}. 

Thus the commutator of two Hamiltonian vector fields is again a Hamiltonian vector 
field. Moreover the map, H >->■ vH, is an anti-isomorphism from the Poisson algebra 
of functions on M with product given by the Poisson bracket, into the algebra of 
vector fields with product given by the commutator of vector fields. Most impor- 
tantly, we notice that two Hamiltonian vector fields commute O their Hamiltonians 
Poisson commute. This is perhaps the most useful consequence of the fact that w 
is closed. 

Exercise: Two vector fields v, v' commute «=► the flows #,, <^', that they generate 
commute i.e., if ft ft = „(#), A. ^ = ^'^ then ^ Q ^ = ^ 0 ^ 

To summarize, we see that symplectic manifolds (M, w) are equivalent to non- 
degenerate Poisson manifolds (M, {•,■}) where {•, •} 

• is bilinear from CX(M) x C°°(M) -» C°°(M), 

• satisfies Leibniz's rule {HK, L) = H{K, L} + {H, L}K, 

• is non-degenerate, i.e. {H, K) = 0 for all functions K implies H = const., 

• satisfies the Jacobi identity. 

Exercise: Prove the equivalence. 

Question: How do symplectic manifolds arise? There are three main sources for 
symplectic manifolds: 

(i) T*X, i.e. cotangent bundles of manifolds 

(ii) co-adjoint orbits of groups on their dual Lie algebras (Kostant-Kirillov 2- 
forms) 

(iii) constrained systems. 

(i) Let X be a manifold, let x G X, and let ax G T*X. Let v be a vector field 
on T*X. Let IT denote the natural projection on T*X to the base point x: thus 
ir(ax) = x and TT*V G TXX. Hence, as ax G T*X, 

9(ax)(v) = -ax(ir*v) 

defines a natural 1-form 6 on T*X. Then w = dd defines a 2-form onT*X, which 
is clearly closed, and which can easily (Exercise) be shown to be non-degenerate. 

Exercise: On M2n = T*ffln, show that 0 = - jr yidxt and hence 

do — y^ dxi A dyi. 
i=i 

The above construction is very basic in mathematics and leads to the appearance 
of symplectic manifolds in many different mathematical situations. 

(ii) Let Q be a Lie algebra with Lie bracket [-,-]. Thus [•, •] is 
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• bilinear, and 

• satisfies the Jacobi identity, i.e. [[x,y]z] + [[y,z],x}+ [[z,x],y] = 0, for all 

x,y,z e Q. 

Let G be the associated (connected) group and let Q* be the dual Lie algebra. 

Then G acts on Q by the Ad-action, 

Ad: Q^Q 

AdgX = 2i 
t=o 

getxg-\    geG,xeG. 

Also G acts on Q* by adjointness 

Ad*: G* ->G* 
{Ad*ga,x) = {a,Adgx} = a{Adgx), 

where (■, •) denotes the pairing of Q* and Q. 

Exercise: Show that Adg^gi = Ad*giAd*g2. 
The co-adjoint orbit Oa through a point a G Q* is given by 

Oa = {Ad*ga: g G G). 

The remarkable fact is that Oa carries a non-degenerate 2-form, and hence is natu- 
rally a symplectic manifold (and hence is always an even dimensional manifold). To 
see what this 2-form is one can proceed functorially. Vector fields on Oa through 

the point ß = Ad*ga G Oa, are given by j-t       Ad*etxß for arbitrary xeG- Indeed, 

dt 
Ad*ei,ß = - 

t=o dt t=o 
Ad*.t,Ad*a = — 

t=o 
Ad*get*aeTaOa. 

Question: How should we define 

Wß 

The only natural way is 

dt t-0 
Ad*e,*ß,    -      Ad*etyß 

dt t=o 

= ß([x,v]) = (ß,[*M), 
and indeed with this definition (Exercise), Oa is indeed a symplectic manifold. 

Example: Consider 

G    =    G/+(n,K) = G/(n,M)n{M: detM>0}, 

Q    =    0/(n,R)= Af(n,ffi). 

We can identify Q* as M{n,WL) through the non-degenerate pairing 

(A,B)=tiAB 

i.e. the matrix A induces a linear map on 5 to M through 

ßHtr AB, 
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and moreover every linear map £(B) on Q to M is of this form for some (unique) 
A = A(£). 

Now for g G G,x G G, Adgx — j^       getxg = gxg~x, where the RHS can now 

be taken to be ordinary matrix multiplication. Also 

(Ad*gA,x)    =    (A,Adgx) = (A^xg*1) = tr Agxg~l = txg~lAgx 

=    (g-lAg,x). 

Thus Ad*gA = g~1Ag and hence 

0A    =    {9~lAg: geG} 

=    {set of all (real) matrices that are Gl+(n, ffi)-conjugate to A}. 

Also dimOyi can be any even number < n2 — n. 

Exercise: Compute all possible co-adjoint orbits OA in the case of 2 x 2 matrices. 
Now observe that each x G Q induces a function Hx on Q* in a natural way, as 

follows, 
HX(A) = (A,x) = tr Ax. 

For such functions Hx we have 

dHx dt 
Adl,aA      = 

t=o dt 

dt 

t=o 
Hx(Ad*etyA) = ^       H^e-^Ae*«) 

dt t=o 

tr{e-tyAetyx) = —       tx(Aety xe~ty) 
dt t=o 

tr{A[y,x}) 

wA dt 
AdetyA, 

t=o dt 
AdlixA 

t=o 

Thus 

VHM) = ~ dt 
Ad-txA —      -- 

o dt t=o 
e-txAetx = [x,A]. 

But then this means that 

{Hx, Hy} = WA{VH*,VHV) = tr A[x,y}. 

The differential dHx(A) is by definition the (unique) functional on Q*, and hence 
the unique element in (G*)* = G, such that 

dHx{A)(B) 
dt 

Hx(A + tB) = - 
t=o dt t=o 

tr x{A + tB) = tr xB, 

which implies dHx(A) — x, and we see that 

{Hx, Hy}(A) = tr A[dHs{A),dHy{A)]. 

By linearity and Leibniz's rule we conclude that 

{H,K}{A) =tr A[dH(A),dK{A)} 
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for arbitrary smooth functions on Q*. 

Exercise: Show that arbitrary smooth functions on Q* can be approximated by 
finite linear combinations of powers of functions of type Hx. 

On more general dual Lie algebras the above formula becomes 

{H, K}{a) = (a,[dH(a)dK(a)). 

In the case of G/+(n,R), for H: M(n,K) -> K, we have 

ffM+u^E^U,»*™^)« 
A 

where VH(A) is the matrix with entries igj-J ■ Thus 

{H,K}(A) = tv (A[VHT(A),VKT(A)}). 

Notice that what we have really constructed is a Poisson manifold i.e. £* is a 
manifold with a bracket {•, •} which satisfies all the conditions for a Poisson bracket, 
except that it is in general degenerate. However Q* is foliated by symplectic leaves 
i.e. submanifolds of Q* which are symplectic i.e. on which the 2-form becomes non- 
degenerate. These symplectic leaves are precisely the co-adjoint orbits. We will say 
much more about this construction in the next lecture. 

Exercise: In the case that the base manifold X is a group, say G, the manifolds in 
(i) and (ii) are related. Basically the symplectic structure in (ii) is a pull-back of 
the structure in (i) to the identity in G. Make this explicit. 

(iii) Constrained systems 
Suppose we have n one-dimensional harmonic oscillators, xt + X,Xi = 0, 1 < 

i  <     n.    This flow is generated by the Hamiltonian H  =   \ J2 vl + ^xi   on 

2 = 1 

2n, Y\ dxi A dyt ). Suppose we now constrain the oscillators to lie on the sphere 
«=i 

6i(s) = $>?-l = 0. 
i=i 

How would we describe the motion? Well, we would recall how we solved the 
problem in our first physics course of a particle moving along a wire, and proceed 
accordingly. The Hamiltonian version of this procedure is the following. 

Let <f>2 = t *iVi (= E **<) ■ Let X = tf*'*') G R2n'- ^=^ = °>- CIearly 

the constrained motion should lie on X C M2n. Moreover X is even dimensional and 
it carries a natural 2-form i*w, the pull-back of w under the immersion i: X -» M2n. 
Alternatively, w\X is just the restriction of w to TX C Tffi2". As the operator d 
commutes with the restriction (or the pull-back) operation it is clear that d(w\X) 
is closed. The only question is whether it is non-degenerate. 
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Exercise: Show that {^1,^2} 7^ 0, and hence w\X is non-degenerate. 
n 

The constrained flow is generated by the Hamiltonian H = \ J2(vf + wfxl) 

restricted to X with 2-form w\X. 

Exercise: Compute the equations of motion for the above constrained flow. This 
constrained system is called the Neumann system. As a reference for constrained 
motion, see for example [DLTr]. We will say more about such systems in the next 
lecture. 

Question: How can we integrate a dynamical system 

(3) x = V{x) 

in Km, say? Suppose we are really lucky and have m — 1 (independent) conserved 
quantities (f>\,..., 4>m-\, so that -jt<l>j{x(t)) = 0, j = 1,..., m — 1, for solutions x(t) 
of (3). Then we could solve for m — 1 of the variables in favor of the first one, 
say, and then we would be left with the equation ^- = V{x\, X2(x\), ■ ■ ■, xm(x{)), 
which can then be integrated by quadrature. 

Now in the theory of Hamiltonian, as opposed to general, systems a remarkable 
reduction occurs. One can "solve" systems of dimension m — 2n which have only n 
(independent) integrals (f>\,..., </>„, provided that these integrals have the additional 
property, 

{<f>i,<f>j} = 0,        T-<iJ<n, 

i.e. the integrals Poisson commute. As the Hamiltonian H for the system is con- 
served, we may always take one of the integrals, say <t>\, equal to H. 

The main theorem in the subject is the so-called Liouville-Arnold-Jost Theorem, 
which says the following: 

A Hamiltonian vector field VJJ is called integrable (or completely integrable) on a 
domain D C M2n if it possesses n integrals <f>i(— H), fa,.. .,<f>n which are linearly 
independent on D (i.e. d<f>i,..., d<j)n are linearly independent at all points of D) and 
which Poisson commute. 

We require that D is invariant under the flow generated by H for all t. Any 
Hamiltonian system is locally integrable i.e. given any H and a point m £ M2n, 
there exists a neighborhood B of m such that H has n Poisson commuting integrals 
in this neighborhood (Exercise: prove this). But in general the flow generated by 
H escapes from B, and so these local integrals teach us nothing about the global 
behavior of the flow. The invariance of D is essential. 

Theorem 1 (Liouville-Arnold-Jost) Suppose that H = <f>\ is integrable on a do- 
main D C M with integrals <fi = {(f>i,.. -,(f>n} and suppose that NQ = ^_1(0) C M 
is compact and connected.  Then 

(a) NQ is an imbedded n-dimensional torus Tn 

(b) there exists an open neighborhood U(No) C M which can be coordinatized 
as follows: if x — {xi,.. .,xn} are variables on the torus Tn — 1R"/Zn and 

V = (j/ii • • •! Vn) £ D\, where D\ C 1" is a domain containing the origin 0, 
there exists a diffeomorphism 

ip: Tnx A -+U(N0). 
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Moreover tp is symplectic I i.e. tp*w = J2 dxi A dyi ) and 

H oip = h(yi,...,yn) 

for some function h. 

dyj                 dyi dxj                    dxj 

Al 

xj{t) = xj{0)+t — (yu... ,Vn),         %(^) = %(0)- 

In particular, near a compact, connected level set <^_1(0), the flow is extremely 
simple. Indeed, as i}> is symplectic, the flow generated by H is again Hamiltonian 
in the variables (x, y) of Tn x D\ (Exercise: show this), and we find 

so that 

Thus the system can be integrated explicitly and the solution is given by straight 
line motion on a torus. The variables {%■} are called the actions for the system and 
the {XJ} are called the angles. 

The Theorem not only tells us how to integrate the system (in terms of the 
variables (x,y), which may or may not be hard to construct), but perhaps more 
importantly, we can understand the qualitative behavior of the system. 

The quantities w = (u>i,..., wn) = [ß^,..., -§^A are called the frequencies of 

the system. The neighborhood U(N0) in the Theorem is foliated by tori which we 
parameterized by the values of y G D\. As w = w(y), and as y is conserved by the 
flow, the frequencies are constant on the torus. However, in general, they vary from 
torus to torus. We can distinguish tori according to whether the w.'s are rationally 
independent or rationally dependent. 

n 
Rationally independent: Here £ jiWi = 0 for j» G Z => j; = 0.   In this case, 

»=i 
by a well-known theorem of Kronecker, {x0 +tw: t £ ffi} is dense in Tn. Thus the 
orbit of the flow is dense on such tori and in fact the flow is quasi-periodic in time 
with n frequencies. 

n 

Rationally dependent: Here there exist jt G Z, not all zero, such that J2 Jiwi = °- 

Then the flow is restricted to a sub-torus of Tn. For example if n = 2 and w% -2w2 = 
0, then the flow is restricted to {(xi,x2) G T2: xx - 2x2 = const(modZ)}. Again 
the flow is almost periodic, but with fewer frequencies. 

Thus the essential problem of describing the long-time behavior of integrable 
Hamiltonian systems is solved, in principle, provided that the invariant set <p~1(0) 
is compact and connected. If <^-1(0) is compact but not connected, we can just 
restrict our attention to each connected component. Also if <^_1(0) is not compact, 
then the Theorem goes through provided it is known a priori that each <f>i generates 
a global flow, at least for data near <^_1(0). In this case one learns that <^_1(0) 
has a neighborhood U(N0) which is a thickening by an n-dimensional disk D\ of a 
product of lines and circles, 

U(N0) =TfcxM"-fcx £»i. 
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On each leaf Tk x En_fc x {y} the flow is again given by straight line motion, but 
now the winding takes place on a cylinder rather than a torus. 

The Liouville-Arnold-Jost Theorem describes qualitatively the behavior of an 
integrable system. In each case the serious and essential task remains of determining 
the action-angle variables explicitly. 

Sketch of the proof of the Theorem: 
As {<f>i,<j>j} = 0, [vt^Vfj] = i>{^i} = 0 which shows that the Hamiltonian 

vector fields v(pi induced by the (pi's commute. This means that we can immerse 
M2n into M2n as follows. Let ^'(m) = tl>i{U,m), il>i(0,m) = m, be the flow induced 
on M2n by fa. Then, fixing m0 G <?i_1(0), the map 

K" 9 t = (ti ,...,<„) —► T{t) = V'?1 o • • • o fö (mo) 

takes Mn into the level set N0 = {m: fa(m) = fa{m0), i = l,...,n}. This is 

because -^:fa{^j{m)) = {&> MW^'M) = °> s0 that & is a constant °f the 

motion for the <^j-flow, 1 < i,j < n. Simple arguments show that T is onto N0. Let 
A = {t £ Mn: T(t) = m0}. Now as the flows commute it follows that A is a lattice 
in Mn. On the other hand ffin/A is mapped diffeomorphically onto N0. But N0 is 
compact by assumption. It follows that A must have n generators and hence En\A 
is a torus, and hence N0 is a torus. Then one has to "thicken" things«.... 

Elementary examples: 
(i) Harmonic oscillator 

M = R2,H= \{p2+W2q2) = fa. 

The system is integrable as fa is conserved and n = 1 (clearly all Hamiltonian 
systems on 2-dimensional manifolds are integrable!). N0 = {(q,p)- H = fa = C > 
0} = {(q,p): p2 + w2q2 = 2C}, which is clearly a torus. The equations of motion 
are 

q = Hp=p, p=-Hq--w2q, 

with solution 

V2C 
w 

„2   i   „,,2_2 

sm(wt + a),        p = V2C cos(wt + a) 

Note p2 + w2q2 = 2C. 
The map ip in the Theorem is constructed as follows. We can take D\ = M+. 

Then 

IR+xT1 3 (?,*)■—+ ip{y,x) = {q{y,x),p(y,x)) = U-^-sm2irx,^j^- cos2irxj . 

We have 

Ho^(y,x)    - 
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and 

i>* (dq A dp)    = 
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 —= sin 2TTX dy + W  cos 2nx 2ir dx ] A 
2 yjnwy V 7TW 

-. / — cos 27ra; dy — \  — sin 2wx 2ix dx 
2 y ny \   TT 

=    dx A dy. 

In the (a;, y) variables the flow becomes 

.       d Hoi)=—, y=- — Hoi> = 0 
dy 2TT OX 

so that x(t) = ^ + x0, y(t) = yo, which implies 

q(t) 

as it should. 

s'm(wt + 27ra;o),        pit) = \    cosfwt + 2irx0), 
-KW V     K 

Exercise: Analyze H = ^J^pj + wfqf in M2n. 
•=i 

(ii)   Simple pendulum 
Here M2 = (T xR,w = dqx dp) and H - \p2 + 1 - cos 2irq, which gives rise to 

the equations of motion, q — Hp = p,p= -Hq = -2iTsm2iTq, or g + 27rsin27rg = 0. 
Here 2irq is the angle that the pendulum makes with the vertical 

Exercises: 

(a) The motion of the pendulum depends on the value of H = C > 0. Show that 
there are three different cases, C < 2, C - 2, C > 2. If C < 2, the pendulum 
oscillates back and forth with \2irq{t)\ < TT. If C > 2, the pendulum rotates 
"over the top". If C = 2, the pendulum moves from 27rg = —ir to 2-irq = +7r 
as t runs from -co to +oo; this case is the so-called separatrix for the system. 

(b) Describe N0 = {(q,p): H(q,p) = C} in the above three cases and draw a 
picture of M2 foliated by the invariance sets ./V0 = N0(C) for all values of 

C>0. 

(c)  Construct the map ij) of the Theorem. 
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Lecture 2 
The Liouville-Arnold-Jost Theorem describes the flow of an integrable system, 

once we have determined that the system is indeed integrable. The big question 
is, how do we determine whether a given system is integrable? The true analog of 
this question already arose in freshman calculus. You are given a list of twenty 
integrals to do and you struggle with one of them, say, over the entire weekend. 
Then someone tells you to replace the variable x by y = ex +x log(l + x4), say, 
and then the whole problem pops out! The truth is that there is no systematic 
way to determine whether a given system is integrable. You have to guess and be 
lucky. You can analyze large classes of systems which have similar features and free 
parameters and which are known to be integrable, and see whether a given system 
fits into the class. You can also test a system to see if it behaves like an integrable 
system. Does it have "soliton-like" solutions, for example. But to really discover 
the structure that makes it integrable, you have to guess — you just have to guess 

that "y = ex2+x log(l + x4)" will do the job for you! 
Now in the nineteenth century many systems were shown to be integrable. For 

example, in a famous paper Jacobi showed that geodesic flow on an ellipsoid (he 
considered only the 3-dimensional case) was integrable. This example generated 
great interest at the time because he showed that the functions he needed to solve 
the flow were hyperelliptic functions and that the flow was linearized by mapping 
certain divisors on a Riemann surface onto the associated Jacobi variety via the 
Abel map (for a recent analysis of the flow see [M2]). Of course the pride of 19th 

century mathematics was the Theory of Riemann surfaces, and the fact that this 
theory, recently developed, was exactly what was needed to explicitly solve some 
dynamical system, created great excitement in the mathematical world. Other ex- 
amples, amongst many others, were the Neumann system of n harmonic oscillators 

Xi + wfxi = 0,l<i<n, constrained to lie on a sphere J2 x\ = 1 (this system 
t=i 

was shown to be integrable in the case n = 3 by C. Neumann — for a recent anal- 
ysis of the general case, see, for example, [M2]), a variety of spinning tops, and 
of course Sonia Kovalevskaya's extraordinary discovery of her integrable top with 
its deep connections to complex function theory and the origins of Painleve theory. 
Geometric symmetries of a system give rise to integrals of the motion, a fact most 
clearly understood by Emmy Noether — for example, translation invariance gives 
rise to conservation of momentum, etc. But this rarely gives us enough integrals: 
in general we must find other integrals which people like to think of as arising from 
"hidden symmetries". The whole exuberant development of the theory of integrable 
systems came to an abrupt halt at the end of the last century, however, as a result 
of a theorem of Poincare, who showed for the 3-body problem that, apart from 
the geometric integrals, there are no other conserved quantities. At this point the 
explicit solution of dynamical systems declined as an area of mathematical activity, 
and the so-called qualitative theory of dynamical systems, pioneered by Poincare 

himself, came to the fore. 
This was the situation for almost 80 years, until the remarkable discovery of 

Kruskal and his collaborators (see [GGKM]). In 1967 they showed that the Korteweg 

de Vries (KdV) equation 
(4) qt - Sqq* + q*** = 0 
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of shallow water wave theory was "integrable" in a precise sense and they showed 
how to linearize the flow explicitly. The extraordinary message of their work was 
that the integrals for the flow were contained in spectral and scattering theoretic 
quantities of an associated operator 

#0 = -^?+ ?(*><)• 

The fundamental significance of this work was quickly grasped by P. Lax [L], 
who showed that the KdV equation was equivalent to an isospectral deformation of 
H{t). Indeed he showed that 

(4)    =    ¥L = [B(t),H(t)] = B(t)H(t)-H(t)B(t), 

To see that the RHS is indeed an isospectral deformation of H(t) let Q{i) be the 
solution of 

d-9- = -QB,        Q(t = 0) = /. 

Then 4£- = BQ*, as B = -B*, and hence 

;{QQ*) = -QBQ* + QBQ* = 0, 

dt 

d_ 
dV 

so that QQ* = I. A similar argument shows that Q*Q = I, and hence Q is unitary. 
Set L(t) = Q*{t)H{0)Q{t). Then 

jfL = BQ*H(Q)Q + Q*H(0){-QB) = [B, L}. 

As L(0) = H(0), we conclude that H{t) = L{t) = Q*(t)H{0)Q(t), i.e., H(t) is 
unitarily equivalent to H{t = 0). In particular, if X(H(t)) is an eigenvalue of H{t). 
Then X(H(t)) — const., etc. Thus the spectrum of H(t) gives integrals for the KdV 
equation. These are the integrals that arise from "hidden symmetries". 

If the matter would have stayed there, we would just have been looking at some 
glorious, but isolated, example. But now we know, some 27 years later, and due 
to the efforts of many people, that there are literally hundreds of systems of prime 
physical interest that are integrable via a spectral transform. More precisely, at- 
tached to the dynamical system of interest, there is an associated linear operator, 
and the motion of the system is equivalent to an isospectral deformation of the 
operator, and hence the eigenvalues, etc., of the operator provide integrals for the 
flow. And indeed many people in the "integrable business" believe that a system 
is integrable, if and only if it is equivalent to the isospectral deformation of some 
associated operator. 

In the rest of this lecture I am going to tell the story of just one such integrable 
system. I hope you won't mind my focusing on this system, but its story contains the 
elements of all other integrable systems. I am going to consider the so-called Toda 
Lattice, consisting of n particles on the line interacting with exponential forces. Thus 
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we consider the flow generated on o2n = ^ dxi A dyi )  by the Hamiltonian 

n-l 

HT = ^J2 yf + J2 (e^Xi  Xi+1^- A general reference for the approach that we will 
»=i »=i 

follow is [DLTo] and the references therein. 
The so-called Toda lattice equations generated by HT have the form 

(5) gSj-i-Cj   _  eXi-Xi + i 1 < i < n, 

where ex°  Xl = e1"   Xn+1 = 0.   This system has the standard geometric integrals 
n 

HT = energy and P = J2 Vi = total momentum, but it was clear from the numerical 

calculations of J. Ford in the mid 70's that something very special and "KdV-like" 
was going on with these equations. And indeed in 1975 Flaschka, and independently 
Manakov, showed that the Toda lattice was equivalent to an isospectral deformation, 
as follows. 

Introduce Flaschka's variables, 

o-k    =    -Vk/2, l,...,n, 

bk    =    -e* 

and consider the Jacobi matrix 

(xk-xk + i) ,n- 1, 

L = 

( ai     bi 

b2 

O 

O 

bn-l 

bn-1        dn      ) 

= Ll 

and the associated matrix 

B = B(L) 

(   o 
-6i 

V 

6i 
0 

-bo 

O 

o   \ 

-bn- 
0 

= -B1. 

I 

Note that B = L+ — L^_ where L+ denotes the upper part of L. A straightforward 
calculation shows that 

(«)   S     'i = [B.H. 
Thus the eigenvalues Aj,..., A„ of the associated matrix L give n integrals for the 
Toda flow. Moreover (Exercise) one can show that 

{A;, Xj} = 0        1 < i,j < n 

in £2n, w = Y^, dxi A dyi ). Hence the system is completely integrable. 
i=i 
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According to the Liouville-Arnold-Jost Theorem, in appropriate variables, the 
flow becomes a straight line motion on some cylinder Mfc x Tn-fc. What are these 

variables? Associated to each A,, there is a normalized eigenvector vit £ vf(j) = 1. 

All eigenvalues are simple (Exercise) and without loss of generality (Exercise) 
we can and do specify vt uniquely by choosing v;(l) > 0. Label the eigenvalues 
such that Ai < • • • < A„. Differentiating the eigenvalue relation (L - A,-)«,- = 0 with 
respect to t, we obtain 

(L - Xi)vi + {L- Xi)vi = 0, 

or, as Ai = 0, 
(BL - LB)vi + {L- \i)ii = 0, 

which implies that 
(L - Xi){ii - Bvi) = 0. 

Hence i>; - Bvi = //v,- for some scalar fi = fi(t). But (vi,Vi) = 1, and so (VM) = 0. 
Thus ii = n{vi,vi) = fi[((vi,Vi) - {vi,Bvi)] = 0, as B = -BT. This proves that 
Vi = Bv{. In particular 

0      6i \   / Vi{l) 

*(1)=L,|   -h     °     M       Vi{2)'\ \=hwW- 

But (L - Xi)vi = 0 implies, in particular, that (ai - Xi)vi(l) + M;(2) = 0, and we 
obtain the relation 

vi{l) = {\i-a1(t))vi(l). 

In turn, for i ^ j, ft log(v;(l)/u,-(l)) = A,- - Aj; which leads to the formula 

„,•(!, 0)e*-' 
u,-(l,t) = - -777- 

On the other hand, ^ £ zs- = £y; = P = const- This shows that 

S = l 

lA ,    u,-(i)        0 , . . 
zcm =  centre of mass  =->£;, log ——r, ^ < i < n 

n /—' vi(l) 

are the variables which move linearly under (5). 
From the point of view of the Liouville-Arnold-Jost Theorem, where is the cylin- 

der Mfc x Tn_fc? We have the map x, 

J    =    n x n Jacobi matrices  3 L 1—> x (L) = (Ai,..., An, t>i(l), •. •, vn(l)) 

eY= <{a,ß) GK2n: <*i < •••<<*„,# >0,j^/?? = l>. 
»=1 
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One can show (Exercise) that x is a bijection of J onto Y. Consider the invariant 
set 

{ff}xlx    /?£!": ßi>0,J2ßf = l\. 

Observe that log |j-, i = 2,..., n, are clearly coordinates for 

lßeRn: ßi>0,J2ß? = l\ 

which shows that this set is = K"-1. Thus there is no torus and the invariance set 
is ffi» x T»-» = M». The variables {A,}, 1 < i < n, xcm, log |$jj, 2 < j < n, are, 
essentially, the action-angle variables for the Toda flow. 

The above solution of the Toda lattice is due to Moser [Ml]. Furthermore, Moser 
showed that as t -» oo, 

bi(t)    =    Ic*(»<-«<+i)_K) 

&i    =    Vi = —2ai(t) -» const. 

Physically this means that as t -> oo, particle xx moves out to the left at a steady 
speed, followed by x2, followed by x3, etc. 

In another important development in 1980, Bill Symes made a wonderful obser- 
vation. Let LQ = L{t = 0) and let etL° = Q{t)R(t) be the (unique) QR factorization 
of etL° i.e. Q is orthogonal and R is upper triangular with #,-,- > 0. This is just the 
Gram-Schmidt procedure applied to the columns of etL°. 

Then, remarkably, 
L{t) = QT{t)L0Q(t) 

is the solution of the Toda lattice equations (5) with 1(0) = L0. 

Exercise: Verify this by direct calculation. 
Observe also that ez'('=1) = QT(l)eL°Q(l) = gT(l)Q(l)JR(l)Q(l) = R{1)Q(1). 

Thus (the exponential of) L(t) at time t = 1 can be obtained from (the exponential 
of) L0 by simply permuting the factors Q(l) and R(l)\ 

At this point Tomei, Nanda, L.C. Li and I became interested in the problem from 
the following point of view: the Toda lattice in fact gives an algorithm to compute 
the eigenvalues of a matrix L0 (here, for the moment L0 = L% = tridiagonal). 
Indeed, solve (5) with L(0) = L0. As t -> oo, bi(t) -> 0. When |6,-(i)| <e«l, the 
spectrum of L{t) is essentially given by the diagonal elements of L(t), and hence 
by isospectrality, this gives the eigenvalues of the original matrix L0\ Try it out on 
your hand calculator: it works! 

Our main question, however, was whether this Toda algorithm has anything to 
do with, and perhaps is competitive with, the standard methods for computing the 
eigenvalues of a matrix. Suppose we have a matrix LQ. How do we compute its 
eigenvalues? In 98/100 cases, if you go to a computer and use an eigenvalue package, 
it will be based on the so-called QR algorithm. The heart of the algorithm, which 
is probably the most successful algorithm in numerical analysis, is the following. 
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Factor 
Lo = QoRo- 

Write 
Lx = RoQo = Q^LoQo (so that spec(Li) = spec(L0)) 

and factor 
L\ = Q\R\- 

Write 
L2 = RiQi    (so that spec(L2) = spec(Li) = spec(L0)) 

and factor 
Li — Q2R2 

etc. In this way we produce a sequence {Lk} of isospectral (in fact unitarily equiv- 
alent) matrices. In many, many cases Lk converges as k -> 00 to a diagonal matrix 
LTO, whose diagonal entries must therefore give the eigenvalues of the original matrix 

L0\' 

Question: does this method have anything to do with the Toda lattice? 
We made the following observation. Let HQR{L) = tr(IlogL - L). Through 

Flaschka's transformation, in the tridiagonal case, this is a function on R2n. Hence 
it gives rise to a flow <j>QR.{t, Lo), <{>QR{0, L0) = Lo- 

Then we showed that 

<!>QR{k] Lo) = Lk, the kth step in the QR algorithm. 

In other words, we proved the following result. 

Stroboscope Theorem (tridiagonal case) 
The QR algorithm is the time 1 map of a completely integrable Hamiltonian 

system which commutes with the Toda flow. Furthermore the flow can be solved 
explicitly by a matrix factorization. 

Note: HQR = £ (A,- log Xt - A,-), HT = 2 tr L2 = 2 £ A?. Thus 
i=i »=i 

{HQR,HT}, {HQR,Xj} = 0,    as    {A^.A^^O. 

At this point we must introduce some information from Lie group theory. You 
cannot tell a Lie theorist that some dynamic is taking place on the space of tridi- 
agonal matrices without eliciting the following response (B. Kostant, ~ 79): the 
tridiagonal matrices form a (minimal) co-adjoint orbit of the action of the lower 
triangular group C on its dual Lie algebra t, presented as the symmetric matrices. 

This remark opens up the whole game. As we saw in Lecture 1, dual Lie alge- 
bras are carriers of a (Kostant-Kirillov) Poisson bracket and co-adjoint orbits are 
the symplectic leaves of this Poisson manifold. In particular we can lift the Toda 
lattice to a flow on general symmetric matrices. So we can take \HT = 5 tr L as a 
Hamiltonian on t. With the Kostant-Kirillov bracket this generates a flow on gen- 
eral symmetric matrices which has the same form (Exercise) as in the tridiagonal 

case 
d± = [B(L),L],        B(L) = L+-LT

+. 
at 
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Remark. The push forward, under Flaschka's transformation, of the form ]T) da;,-A 
i=i 

dyi to the Jacobi matrices J, induces a 2-form which is a non-trivial multiple of the 
2-form that J inherits as a co-adjoint orbit of C. This explains why we must take 
\HT, rather than Uf. 

Now the QR algorithm also applies to general symmetric matrices L0 (as long 
as detLo ^ 0). We generate as before LQ, Lu L2,. ■ ■, Lk,..., with Lk ->• Im = 
diagonal as k —> oo. 

Question: Is the Stroboscope Theorem still true? 
On generic co-adjoint orbits, which have dimension 2[n2/4] (Exercise), the 

answer is yes! What are the new integrals? The eigenvalues of L are certainly still 
conserved. This gives ~ n conserved quantities. But we need ~ [n2/4] — n more. 

Consider a 4 x 4 example. From det(L - A) = 0 we obtain four eigenvalues 
Aio, A20, A30, A40, say. Now consider the 3 x 3 matrix (L — A)i, obtained by chopping 
the first row and last column from L — A 

/*-A \ 

\ 

* * — A       * 

* *       * — A 

* * * 

* 

* 

*-A/ 

Then we consider det(L-A)i = 0, which has two solutions Au, A2i. Now it turns out 

that a generic co-adjoint orbit is given by < L =LT:  J2 ^«0 = const,   J^ A,i = const \ 
I i=l i=i J 

which has dimension 10-2, which equals 2[42/4] = 8, as it should. Thus we need four 
integrals. Fortunately An,A2i turn out to be additional integrals for the flow and 
moreover, all the integrals A10, A20, A30, A40) An, A2i Poisson commute with each 
other. Thus we may take, for example, the four independent integrals to be A10, A20, 
A30 and An. Again the associated angles are the first components of the associated, 
appropriately normalized, eigenvectors. If n > 4, then we consider det(L - A)2 = 0, 
where (L - A)2 is obtained by chopping the first two rows and the last two columns 
from L — A, etc. 

Now what about general real matrices L G M(n,R)7 The equation ^ = 
[B(L), L], B — L+—L^. still makes sense and generates a global flow (as B = —BT). 
We need a symplectic structure, and in light of the foregoing discussion, we under- 
stand that what we really need is a Lie group and its dual Lie algebra. Consider 
invertible matrices L, V. Factor L = QR, L' = Q'R' and define a product 

LoL' = QQ'R'R. 

It turns out that with this product the invertible matrices form a Lie group G = GQR 

with dual Lie algebra Q = QQU- Generic co-adjoint orbits have dimension n2 — n 
and if we look at the flow generated by \HT - \ tr L

2 through the Kostant-Kirillov 
form on Q*Qn we again get the generalized Toda flow L = [B,L]. Also the QR 
algorithm still applies. 

Question: Is the Stroboscope Theorem still true? 
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On generic orbits, the answer is again yes! 
We now need (n2 - n)/2 integrals. Approximately [n2/4] integrals can be ob- 

tained by chopping I - A as before. Now consider the polynomial in two variables, 

P(h,z; L) = det(I + hLT - z) = X)7y(£)A''*i- 

It turns out that the ^-(Lj's give the remaining approximately [n2/4] integrals. In 
other words the whole Riemann surface 

P(h,z;L) = 0 

is conserved by the flow. Moreover the flows linearize on an appropriately singular- 
ized Jacobi variety associated with the curve. Again the QR algorithm is the time 1 
map of the flow generated by HQR(L) = tr(L log L-L) through the Kostant-Kinllov 

structure on Q*Q1t, etc. 

Not only are the ideas and constructions introduced in this lecture of theoretical 
interest, but they can also be used to analyze the performance of eigenvalue and 
singular value algorithms. However, that's another story .... 
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Lecture 3 
In the previous lecture we described how the QR algorithm can be viewed as the 

time 1 map of a Hamiltonian flow. Moreover the associated symplectic structure is 
the Kostant-Kirillov 2-form on co-adjoint orbits of a specific Lie group GQR. As 
a set GQR, the Lie algebra of GQR, is simply M(n,M), the set of all real n x n 
matrices, but using the definition of the multiplication rule on GQR, it is easy to 
see (Exercise) that the Lie bracket on GQR is given by 

[M, M'}QR = '[TT/M, nM'] - [TTSM, irsM'] 

where TTSM = M+ - Mj, mM = (1 - irs)M = M_ + M0 + M\. Here M_,M0,M+ 
are the strictly lower, diagonal and strictly upper parts of M respectively, M = 
M_ + Mo + M+, and [-, •] denotes the standard commutator. The dual Lie algebra 
GQR can be identified with GQR through the non-degenerate pairing 

(M, N) = tr MN. 

In the previous lecture we mentioned the basic "conjecture", strongly believed 
by many people, that every integrable system is an isospectral deformation of some 
associated linear operator. There is a more refined conjecture that I now want to 
describe. 

Given a Lie algebra (£?[-, •]), a linear operator R: G —> G is said to be a classical 
R-matrix (reference [STS]) if the bracket on G given by 

[x> V\R = 2^Rx' y\ + [*> Ry^ 

is again a Lie bracket. As [•, -]R is bilinear and skew, the only issue is whether it 
satisfies the Jacobi identity. Thus if R is a classical i?-matrix on G we obtain two 
Lie algebras (G, [■, •]) and (GR = G, [■, -]R), and two associated Lie-Poisson brackets 
(see Lecture 2), 

{FuF2}{a)    =    a([dFi{a),dF2(a)]),        a e G*, 

{FuF2}R{a)    =    a([dF1{a),dF2(a)}R), a G GR = G*. 

We call the first Lie algebra/bracket the free Lie algebra/bracket and the second 
the interacting Lie algebra/bracket. 

An interesting and useful sufficient condition for [-,-]R to be a Lie bracket is the 
so-called modified Yang-Baxter equation (mYB), 

(mYB) [Rx,Ry]-2R([x,y]R) = -[x,y],    for all    x,y£G. 

Thus if R satisfies (mYB), [•, -]R is a Lie bracket. Now it is a fundamental observa- 
tion (Exercise) the (mYB) can be reformulated, equivalently, as 

(6) [(fl±l)a;,(Ä±l)y] = 2(Ä±l)[a:)j/]HI for all x, y G Q. 

This shows immediately that R gives rise to a (not necessarily direct) decomposition 
ofö, 

G = G+ + G-, 
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into a sum of subalgebras Q±={\± R)Q. Set TT± = ±(1 ± R) so that 

/ = 7T+ + 7T_ , R — 7T+ — 7T_ . 

Exercise 1: If the decomposition is direct, then 7r± are complementary projections. 
Conversely, if Q = G+ © G- is a direct decomposition of £ into subalgebras with 
associated projections ir±, show that R = 7r+ — 7r_ solves (mYB). 

Exercise 2: For £ = ^(n,M), .ft = n - ns solves (mYB) and [•, -]R is precisely 
the Lie algebra [•, -]QR above. Here G+ = {lower triangular matrices} and G- = 
{skew matrices}. 

Let G be a Lie group with Lie algebra Q.   We say that F: G* ->■ K is Ad*- 
invariant if 

F(^Q) = F(a) 

for all a 6 G*, g € G. 

Example. G = Gl{n,U),F{a) = irak, a £ G* - G- We showed in Lecture 1 that 
Ad*ga = g'lag. Hence F{Ad*ga) = ti^-1 ag)h = tr g-^ofig = tr ak = F{a). 

Finally we consider an invariant, nondegenerate pairing (•, ■) on G, i.e. 

{x,[y,z]) + ([x,y],z) = 0,    for all    x,y,z£G- 

Exercise: Show that (x,y) = tr xy is an invariant, non-degenerate pairing on 
G = gl{n,R). 

It is straightforward to see that ,4c?*-invariant Hamiltonians H generate trivial 
flows through {■,■}, but in the interacting structure {-,-}R, H gives rise to the 
differential equation 

(7) -£ = [ir-dH{a),a] 

on G*R, which is identified with GR = G, through the invariant pairing. 

Exercise: For H = \HT = \ tr L2, dH{L) = L and 

ir.[dH(L)) = TTSL = L+-Ll = B(L). 

This verifies that H generates the generalized Toda flow ^ = [B(L),L] on G*R = 

GQR- 
We are interested in the above definitions and calculations primarily because of 

the following basic result. 

Theorem 1 Ad*-invariant functions Poisson commute on {GR,{-,-}R)- 

Theorem 2 Suppose H is Ad* -invariant and that the decomposition G -G+®G- 
is direct. Let a0 G G* be given. Then for some 0<T = T(a0) < oo, there exists a 
unique decomposition 

etdF(*0) = g+{t)g_(t) 

forO<t<T, where g±(t) G exp£±, and 

a(t) = Ad*g+{t)a0 = Ad*g_{t)-1a0 

solves (7) for 0<t<T, with a(0) = a0. 
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Example. In the QR case, 

exp<?+   = identity component of the group of lower triangular, invertible matrices, 

exp Q-.   = identity component of the orthogonal matrices. 

Now for H = i tr L2, dH(L) = L and 

etdH{L0) _ gtL0 _ g+g_^    g+ orthogonal, </_ lower triangular, 

and L(t) = Ad*  LQ — g+1Log+ = g+Log+.  This is exactly the Symes procedure 
described in Lecture 2 (with upper triangularity replaced by lower triangularity). 

Proof of Theorem 1.  Differentiating Fi(Ad*,xa) = Fi(a), i = 1,2, with respect 
to t at t = 0, we obtain for any x £ Q, a([x, dFi(a)]) = 0. Thus 

{Fi,F2}R(a)    =    a{[dFl{a),dF2{a)}R)=l-a{[RdFl{a))dF2{a)}) 

+ ±a([dF1(a),RdF2(a)}) 

=     l-a{[RdFl{a),dF2{a)]) - l-a{[RdF2{a), dFx(a)]) 

=    0, by the invariance of F2 and F\. 

In particular, if {As-} are the eigenvalues of M G M(n,R) in the QR case, then the 
{A;} are clearly ,4d*-invariant and hence {Ai,A,}(M) = 0, which shows that the 
eigenvalues give n commuting integrals for the Toda flow. 

Exercise: Prove Theorem 2 by direct calculation. 

We are now ready to consider infinite dimensional systems. Of course, an 
infinite-dimensional system, the KdV equation, was responsible for all the develop- 
ments that we have been discussing so far. But as is often the case, the motivating 
example in a new theory is often not the simplest and most basic example. Now we 
know, for many reasons, some of which will become clear during this and the next 
lecture, that the Nonlinear Schrödinger (NLS) equation is the simplest example of 
an infinite dimensional, integrable Hamiltonian system and without further apolo- 
gies I am going to restrict my attention to this equation. The discovery that the 
NLS equation is integrable is due to Zakharov and Shabat [ZS]. 

The NLS equation has the form 

iyt +Vxx - 1n\y\2y = 0, 

where K = 1 is the defocusing case and K = —1 is the focusing case. Both cases are 
of great interest, but again, without any further apologies, I am going to restrict 
myself in this and the next lecture to the simpler case when K = 1, i.e. the defocusing 
case. So from now on we only consider 

NLS iyt+yxx-2\y\2y = 0. 
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This equation can be written in generalized Lax-pair form as 

(8) 

where 

and 

I"- 
P = -iza3 + 

A. 
dx 

0    y 

y    0 

Q,P~T ax 

C3 
1       0 
0    -1 

Q = -2iz2cr3 + 2z 
0   y 

y   0 
+ >' -\y\2 

-yx 

Vx 

Exercise: Check this! Also verify that 

where 

and 

dt V        dt 

P = —iza3 — i 

0   y 

'*?-* 

0   y 
V   0 

Q = -1iz2(T3 - liz 
y     0 

, ■, \y\2   -w* 
1   iy*    -2/1 

is the generalized Lax-pair form for the focusing NLS equation.  This information 
will be needed in Dave McLaughlin's lecture. 

Remarks 
Equation (8) is slightly different from the Lax-pair for the KdV equation de- 

scribed in Lecture 2. Here the spectral parameter z is present in P and in Q and, 
in particular, the dependence of Q on z is quadratic. However, arguing as before, 
we see that for any fixed z, 

P(i,z)-± = U(tr(p(0,z)-±)u(t) 

for some invertible operator U{t).   In particular the spectrum of the generalized 
eigenvalue equation 

dx 
-iza3 + 

0    y 

y   0 
4> 

is conserved by the NLS equation. 
Observe that equation (8) can be, and usually is, written in the form 

dt       ox 

which is the so-called zero-curvature form of the equation. 
Now I want to draw your attention to a basic difference between finite and infinite 

dimensional systems. That is, the answer to a given infinite-dimensional problem 
depends, far more than in the finite-dimensional case, on the context of the problem. 
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For example, the NLS equation can be thought of as describing solutions which are 
periodic in x, y(x,t) = y(x + l,t), say, or on the other hand, solutions which decay 
as \x\ -)■ oo, y(x,t) ->■ 0 as \x\ -» oo, the so-called scattering situation. The behavior 
of the system is radically different in these two situations. Moreover, even within 
a given context, a particular question can have different answers, depending on 
the detail required. For example, in the scattering situation for NLS, we may ask 
whether y(x, t) —> 0 as t ->• oo. If we are speaking about compacta in ffi, the answer 
is yes, but considering the system more globally, /^ \y(x,t)\2dx cannot go to zero 
as t —> oo: in fact, it must be constant. 

In the finite-dimensional case, there is usually only one reasonable answer to a 
question. But in the infinite-dimensional case, the situation is far more subtle, with 
different answers depending on the analytical nature of the question. These remarks 
must be kept in mind, in particular, when we try to apply dynamical system methods 
to PDE's. These methods give us a guide what to look for, but now each question 
can have many different answers. So, again without any apologies, I am going to 
restrict my attention to the scattering case for the defocusing NLS equation, 

y(x) —»• 0    sufficiently rapidly as    \x\ -> oo. 

The Hamiltonian character of the defocusing NLS equation in the scattering situation 
is discussed, for example, in [FT]. 

In the scattering situation (see, for example, [BC]), there exists for all z £ M, 
a unique solution * = ^(x,z) of the eigenvalue equation j^W = P^f with the 
properties 

m = tfe*«"5 _j. / _ ( J    J   )     ^    x _> +0O] 

m (x, z)    is bounded as    x —> —oo. 

Using the (generalized) Lax-pair form for NLS, we find, as in the case of Toda, 
that Jj* = Qty + \PC for some matrix C. Letting x -)■ ±oo, and using the given 
asymptotics of m, we obtain C = 2iz2a3. Thus |f = Qty + 2iz2^cr3. 

Now it turns out that for all x and t, 

*± (x, t, z) = lim^z, t,z± is) 

exist for all z G R. Also ^± are clearly both solutions of ^±- = P^r±: hence there 
exists a matrix v = v(t, z), z £ 1, such that 

(9) V+{x,t,z) = V-.(x,t,z)v{t,z). 

For obvious reasons, v — v(t,z) is called the jump matrix for ^f(x,t, •). Differenti- 
ating (9) with respect to t, we find *+t = *_tv + ^~vt, i.e. 2izH+a3 + Q^+ = 
2iz2y-<T3V + Q^-V + ^-vt, which implies 

(10) vt = 2iz2[v,<r3]- 

This is, explicitly, the linearization of the flowl Indeed inverse scattering theory 
(see, for example, [FT] or [BC]) tells one that the map y >->■ v is 1-1 (and onto, for 
v in a suitable space). Thus the v's (or, more precisely, the r's from which the v's 
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are constructed — see below) are essentially the "angles" for the problem. Solving 

(10) we obtain 

v{z,t) = e~2izH°*v{z)e2izt°\ z £l, 

where v(z) is the jump matrix for the scattering problem j^V = P^ at time t — 0. 
One shows easily (see [FT] or [BC]) that v has the form 

"&={       r(z) 1      )> ZeR> 

for some function r with ||r||L»(]R) < 1. If y(x,t = 0) G 5(1), the Schwartz space on 
R, then also r(z) G 5(ffi). And conversely if r G 5(K) is given with ||r||L=o(m) < 1, 
inverse scattering theory tells one that there exists a unique function y G 5(M) with 

/ 1 - \r\2    -r \ 
associated jump matrix v = v(z) =  f '  ' -.   j.   The function r = r(z) is 

called the reflection coefficient for the scattering problem ^f- = P*. 

If we set m = ^!eizx"3 as above, then from -£^ = P^ we obtain 

d . r ,      /   0    2/ 
—m=-4z[cT3,m]+l    -    0    in». 

Also it is a fact (see [FT] or [BC]) that, for fixed x, 

mi(x)      „ / 1 \ 
m(x, z) = I +       v  y + O [ — I   as z -> oo. 

Substituting this asymptotic expansion into the above differential equation for m, 

we obtain i[<r3, mi] = (   _    »   1, which establishes the basic formula 

(11) !/(<c) = 2i(mi(a;))i2- 

The preceding calculations can be summarized as follows.   Let ya{x) G S(R) 
be given and let r — r(z) be the corresponding reflection coefficient. Set vx>t(z) = 

e-i(2tz*+xz)asv(zy{2tz*+xz)a^ where „(z) =  f   1 ~J^'      "^   \ 

Theorem 3 Let m(z) - m(x,t,z) solve the Riemann-Hilbert (RH) problem 

• m = m(-) = m(x,t, ■) is a 2 x 2 matrix valued analytic function in C\M, 

• m+(2) = m-(z)i)i,t(2),«eM, 

• m(^) —>• / as z —> oo. 

Then if m = / + ^^ + 0 (£) as z -> oo, 

(12) y(a;,t) = 2i(mi(a!,i))i2 

solves the NLS equation with initial data y(a;, 0) = yo(x). 
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Thus we see that to analyze the solution of NLS we must solve a Riemann-Hilbert 
problem and control the solution of the problem as x,t become large. We will see 
how to do this in the next lecture. 

Now the point I want to make here is that the above RH formulation should be 
understood in the classical fi-matrix framework (see [FT] for details). Indeed we 
saw that if we are in an i?-matrix situation, the solution of the equation generated by 
an invariant Hamiltonian can be solved by a factorization problem. For example, in 
the case of the Toda lattice on Q*QR, the abstract factorization problem guaranteed 
by the R-matrix formalism takes the concrete form of a finite-dimensional matrix 
factorization, etL0 = QR. For NLS, as we see above, the abstract factorization takes 
the form of a Riemann-Hilbert factorization. 

This theme, I believe, is a unifying concept in the theory of integrable systems. 
The more refined conjecture mentioned above is the following: not only is every 
integrable system integrable because there is an associated Lax-pair, but even more, 
in the background, there is an .R-matrix, and hence a factorization problem, whose 
solution gives the solution of the basic dynamical system. 

Remark 1. The first person to recognize that an inverse scattering problem was 
equivalent to a Riemann-Hilbert problem was Shabat [S]. 

Remark 2. In the infinite-dimensional setting, questions arise about the meaning 
of "complete integrability". In the finite-dimensional case, of dimension 2n, say, we 
need n (commuting) integrals to integrate the system. In the infinite-dimensional 
case, what does it mean to have "half" the integrals? In what sense can we add 
one integral in or take one out? When do we have enough? These questions, and 
more, were considered in the case of KdV with periodic boundary conditions, for 
example, by McKean and Trubowitz, in their beautiful paper [MT]. In the scattering 
situation, however, these are in general only a finite number of L2-eigenvalues, and 
these must be complemented with a "continuum of integrals" constructed from 
scattering theoretic quantities (see [FT]). In these four lectures we unfortunately 
do not have the time to develop these elegant considerations: rather, we take the 
practical point of view that a(n infinite-dimensional) system is integrable if we can 
construct, by hook or by crook, a one-to-one change of variables which linearizes 
the flow. For example for NLS, we have 

y(x,t) ^vXit = rXit = re2i(2tz*+xzS> ^logrXit = logr + 2i(2tz2 + xz). 

Analyzing the inverse map, rx>t >-» y(x,t), we are able to describe the behavior, and 
in particular, the asymptotic behavior of the flow. 
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Lecture 4 
The Liouville-Arnold-Jost Theorem teaches us that the flow generated by a finite- 

dimensional integrable system is equivalent to a straight line motion on a cylinder 
Tfc x Rn~k. If k = n, say, the cylinder is a torus and the motion is almost periodic 
in time, etc. In the integrable, infinite-dimensional case, we still have straight line 
motion on a (now infinite-dimensional) cylinder, but when we invert the linearizing 
map, the implications of the straight line motion for the flow in physical z-space will 
depend on the topology we impose (see the discussion in the middle of Lecture 3). 
Special tools are needed to analyze the inverse map and again, without apologies, 
we restrict our attention to the defocusing NLS equation. 

We are interested, in particular, in the long-time behavior of the solution y{x,t) 
of NLS with initial data y(x,0) = y0{x) G <S(K). By Theorem 3, this reduces to 
controlling the large x,t behavior of a Riemann-Hilbert problem. Now a straight- 
forward calculation (Exercise) shows that if ||r||L~(]s) -C 1, then 

y(x,t)    =    2i(mi(x,t))i2 
/oo    

-oo 

and the long-time behavior of y(x,t) can be computed to leading order using the 
standard method of stationary phase. In other words, if we think functorially, then 
there exists some (highly nonlinear) functional JF, y(x,i) = J7(r(-)e'(2'() +*())), 
which reduces when r is small to the ordinary Fourier transform, to which the 
standard methods of stationary phase then apply. 

This raises the following question! Does there exist some kind of "nonlinear" 
steepest-descent/stationary phase type method which can be applied directly to 
(11), even when Hr^«^) is not small? 

More generally, we are looking for a steepest-descent/stationary phase-type 
method that applies directly to oscillatory Riemann-Hilbert problems (of the type 
occurring in Theorem 3 above, for example) as the external parameters (x and t in 
our case) become large. 

What features should the method have? First let us review the classical method 
of stationary phase to determine the asymptotic behavior as t -4 oo of an integral 
F(t) = Jc f(z)eit9^dz on a contour C, say, where f(z) and g(z) are analytic. 

Step 1 Locate the points Zj of stationary phase, g'(zj) = 0. 

Step 2 Determine paths of steep(est)-descent in the neighborhood of the Zj's: as 
one moves along these paths away from the stationary phase points, \elt(z>\ 
should decrease exponentially. 

Step 3 Using Cauchy's Theorem, deform C to coincide with these paths of steep(est)- 
descent near the Zj's. 

Step 4 As t -> oo, the problem is localized to the part of the deformed contour 
that lies in an e-neighborhood of each Zj; the contribution from the remainder 
of the contour is exponentially small. 

Step 5 The localized integrals can be computed explicitly: indeed, after scaling 
z _ z. _» (2 _ Zj)\ft, the integrals reduce to Gaussian integrals on M. Thus 
the leading asymptotics of F(t) can be computed explicitly. 
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Recently Xin Zhou and I [DZ1] have discovered a method for RH problems that 
is the analog of the above classical method for integrals. In addition to the NLS 
equation, the method has now been used to obtain the asymptotics of a wide variety 
of problems ranging from integrable wave equations such as Modified KdV [DZ1] 
and KdV [DVZ1] etc., to "integrable" ode's such as the Painleve equations [DZ3], 
to integrable discrete models such as the Toda lattice [K], to integrable statistical 
mechanical models such as the transverse Ising chain at the critical magnetic field 
[DZ2] and also the so-called XY model [DIZ2], to small dispersion problems [DVZ2], 
and finally, most recently, to the theory of random matrix models [DIZ2]. 

The application of the method to the NLS equation, which is the main subject 
of this lecture, was developed together with Alexander Its and X. Zhou [DIZ1]; for 
a more detailed exposition, refer to [DZ4], which is also intended as a pedagogic 
introduction to the general steepest-descent method for RH problems. 

So how does the method work? Set 6(z) = 2z2 + fz . Step 1 is the same. Setting 
6'{ZQ) = AZQ + - = 0, we obtain the stationary phase point ZQ = —x/4t. To describe 
the analog of Step 3, we must explain what it means to "deform" a RH problem. 
What we mean is that we can replace a given RH problem on one contour by an 
equivalent RH problem on another contour — the one problem is solvable if and 
only if the other is solvable. 

To be explicit, we consider more generally RH problems on oriented contours 
EcC 

with given jump matrices v. E —> Gl(n,C). If E is unbounded, we always assume 
v(z) —)■ I sufficiently rapidly as \z\ —)■ oo. Recall that the orientation on an arc is 
equivalent to specifying the ± sides of the arc, e.g., 
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By convention, the + side is taken to lie on the left as we traverse the arc in the 
direction of the orientation. 

Given (E, v) we seek an n x n matrix-valued function m which is 

• analytic in C\E, 

and satisfies, 

• m+(z) — m..(z)v(z) for z £ E, 

• m(z) -> I as z —> oo. 

This is the RH problem determined by (E, v). It is not at all clear that, given E and 
v, the RH problem has a (unique) solution, and indeed, a beautiful and profound 
mathematical theory has been developed over the years to consider such questions 
(see, e.g., [CG]). Fortunately our RH problem in Theorem 3 has a unique solution 
(see e.g., [DZ4] for details). 

Now suppose we have a RH problem (E, v) 

and suppose that there are two distinguished points zx and z2 on E which support 
a circular disk D intersecting E as follows, 

Suppose that within the disk v{z) has a factorization v(z) = 6_ (z)v1(z)b+{z), 
z E E n D, where b±(z) have analytic continuations to the ± segments of the disk, 
respectively: vi(z), however, has no analyticity properties. Let m be the solution of 
the RH problem determined by (£,v). 

Define fh(z) on the complement of the extended contour E = EU<9D, as follows: 
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Observe that 

• m is analytic in C\E, 

• satisfies m+ = fh-V on E, 

• fh(z) —> I as z —> oo, 

where v is defined on E by 

V=V 

The RH problem corresponding to (E, v) is the deformed RH for (E, v); clearly 
the two problems are equivalent in the sense stated above. 

For the RH problem, what do we mean by paths of steep(est)-descent as in 
Step 2? Somehow we feel that the main contribution to the solution of the RH 
problem should be coming from the stationary phase point Zg. The key to the 
problem is the signature table of Re i6 = Re i(2z2 — AzQ z). In the ^-plane we have 

Re ;e>o 

Re;e<o 

Rei9<0 

To 

Rei9>0 

What we would like is to  "put" the e2,te factor in vx>t in the region where 
Re iO < 0, and the e~2ite factor in the region where Re id > 0: in that way the RH 
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problem would clearly localize to a neighborhood of Zo, as t —> oo. This would then 
be the RH analog of Step 2. But how can we do it? Algebraically the two factors 
are locked together in the same expression. The basic observation is that we can 
factor vXit(z), 

vx,t(z)    = 
1 \r(z) 

„2it6 
-re -2ite -re -2it9 1 

a2it9 

= bZ1b+. 

Assuming for the moment that r(z) has an analytic continuation to Im z > 0, and 
hence r(z) = r(z) has an analytic continuation to Im z < 0, we see that for z > ZQ 

in particular, this gives rise to a deformed RH problem in the sense described above 
(here Z\ <->■ z0,z2 <r± oo), 

v = vx,t 

2 ite 

Clearly this is what we want as b+(z) —¥ I for z on the upper leg and b-(z) —> I for 
z on the lower leg, as t -> oo (see signature table of Re id). But if we try the same 
trick for z < ZQ , we obtain 

which is clearly not what we want as 6+, bZ1 now blow up exponentially. What we 
want to do somehow is to reverse the order of appearance of the multipliers e 2ue 

in the factorization of vx<t{z)- Fortunately, this can be achieved by performing a 
lower/upper, as opposed to an upper/lower, factorization of vxj, 

vx,t(z) = 
1 0 

l-rl 
„2ite 

(l-\r(z) 
0 

0 
n-\r(z \r(z)\zY 

-2ite 
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(Recall that ||r*||i°^(ffi) < 1 so that 1 — |r(,z)|2 ^ 0.) To remove the diagonal factor 
set 

' 6-1    0 
0     8 

mSl> = m 

where 8 is an as yet undetermined function, which we will choose below to be 
analytic and invertible in C \ (—00,20]. 

Simple algebra shows that m^ solves a RH problem on X^1) = E = ffi with 

,(!)       = 6-{z)        0 
0       SZl{z) 

1    -r8 
0 

Vx,t{z) 
S?     0   \ 

0     84 

2„-2i6t 

rS -2„2ite 

1 0 

l_|rp
e       °-        l 

(l-|r|a)<- 

0 

for z > z0, 

0 

(l-|rP)<5_ 

=•„-2**0 r2 

1       i-Ma 

0 1 

for z < ZQ. 

We choose 8 to solve the following scalar RH problem, 

• 8{z) is analytic in C \(—oo, zo], 

. (J+(z) = <5_(2)(l-|r(z)|2),z<z0! 

= J_(,z), .z > 20 

• 8{z) —¥ 1 as z —>■ oo. 

Such scalar problems can be solved explicitly by formula, 

_L.   f*°     '-B(l-Ir(.)l2)  dj 

J(z) = e2" J-~        *~* 

With <J as above, v^> takes the form 

(13)        vM{z)    = 
1    -fS2e-2iU 

0 1 

1 0 
„lite 

l 

, £ > ZQ , 

\  i-kl2 <5i 

=    bZ1b+. 

Deforming now leads to the RH problem 

1-H3   + 
0 1 

, z < z0 

( ~ (1)    _ (1) \ 
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with jump matrices v^ as indicated above. Referring to the signature table for 
Re i9, we see that all the jump matrices converge exponentially to the identity, 
uniformly on the complement of e-neighborhoods of ZQ in E^1'. 

What if r is not analytic? In this case, for z > zo, we factor r(z)e2tte(z> = 
r(z,t) + r\{z,i), where r(-,t) is analytic and r\{z,t) is small as t —\ oo, and for 
z < ZQ we factor r(l — \r(z)\2)~1e2,t$^ similarly. Instead of (12), this leads to a 
factorization v^ = bz}v\b+, where v\ —> I rapidly as t —>■ oo. Under deformation 
this, in turn leads to a RH problem of the form 

But as vi —>• / rapidly, we again end up, to any desired order, with a RH problem 

on a cross of type (X^1', v^ ) as before. Either way, for any s > 0, the RH problem 

localizes to a RH problem on a small cross of size e, as t —>■ oo 

This completes Steps 1, 2, 3 and 4. 
In the analog of Step 5, we again scale z —> (z — zo)\fi and this leads to a RH 

problem on an infinite cross, but now the jump matrices have constant coefficients. 
At this stage all the analytical tricks have been used up and there are no small 
parameters left to scale. Like the Gaussian integral that you just have to compute 
in the classical, scalar case, this is a problem you just have to solve: either the 
heavens are with you or against you. Fortunately, in this problem they are with 
you and it turns out that this local RH problem can be solved explicitly in terms 
of parabolic cylinder functions. We thus obtain the leading order behavior of the 
solution, with controlled error terms. Furthermore, the method is algorithmic and 
we do not need to make an a priori ansatz for the asymptotic form of the solution. 

The kind of result that we obtain is the following. 

Let yas(x,t) = t-V^a^e^-™^10^, zQ = -x/At, where 

„(zo)    =    -^log(l-|r(*o)|2)>0, 

H*o)|2    =    2^°)> 
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IT 
arga(z0)    =    -/      log(z0 - s)d(log(l - |r(s)|2)) 

7T 

+ - + axgT{iv{zQ)) - argr(zo) 

(F = gamma function). Fix M > 1. 

Theorem 4 Let y(x,t) solve NLS with y(x,t = 0) = y0(x) 6 <S(M).    T/ien as 
i —^ oo 

(i) y(x,t) = ya,(x,t) + 0(^f) for\zQ\=\-ft\<M, 

(ii) /or any j, 

y{x,t) =yas(x,t) + 0[ ~j + cj(zo)-^p-) ,\z0\ > —, 

where CJ(ZQ) decreases rapidly as \zo\ —>■ oo. 

Note that the asymptotics match in the common region M~l < | — £| < M. 
Remarks 
(1) The asymptotic form of the solution y ~ yas for NLS was first obtained by 
Zakharov and Manakov [ZM], using a so-called "isomonodromic-type" technique. 
The calculations in [ZM], however, contain no error bounds. 
(2) The scaled RH problem arising in Step 5 above, first arose, and was solved, in 
the work of Its and Novokshenov (see [IN]). 

The steepest-descent/stationary phase type method presented above for RH 
problems is a kind of nonlinear Fourier integral method, and we may reasonably 
raise the following question: do the analogs of singular optical phenomena, such as 
caustics, occur in the non-linear problem? The NLS equation is indeed the simplest 
case because there are no caustics i.e. the pair of equations 

(fc'+f'H.   ^♦f'H 
has no solutions. In the case of the Modified KdV equation, however, there is a 
similar RH to NLS, but now 8 is replaced by 8MKdv = tpz3 + fz. For this problem 
there are indeed caustics: 

d   (A  3  .   x   \      «   . . .    F    x~ 
dzK^+r) = o=>z=±z0 = ±j--, X<Q, 

dz*\4z +TZ)=0=>Z = ±Z° = °- 

Thus x/t —> 0 is a "caustic" region, and indeed there are two main regions for 
the asymptotic behavior of MKdV (see [SA], [DZ1]). In the first region, M_1 < 
\J— i§7 < M, x < 0, the stationary phase points ±z0 are separated and do not 
interact to leading order and the solution is a sum of two terms of the same type as 
the asymptotic form yas occurring in NLS. In the caustic region, \^JJ\ < c, however, 
the solution y(x,t) of Modified KdV now takes a new and different form, y ~ 



136 PERCY DEIFT 

~T73U (w*) where u = u(s) solves the Painleve II equation u"(s) = su(s) + 2u3(s). 
Again there are overlapping regions, etc. 

A problem which has two stationary phase points but no caustic region arises 
in evaluating the long-time asymptotics for the autocorrelation function x{t) = 
(o-o(i)<To)T at temperature T for the transverse Ising chain at the critical mag- 

netic field with Hamiltonian H = -\ J2 itftf+i +crt)- In [DZ2L Zhou and l show 

that 
if   log|tanh(S/T)|<fc + 0(logt) 

Now, so far, we have presented the RH method as a nonlinear analog of the 
classical method of stationary phase. But it turns out that there are genuinely 
nonlinear phenomena which can arise. For example for KdV, which is closely 
related to the Modified KdV equation, a third region, called the collisionless shock 
region and discovered by Ablowitz and Segur [AS], appears between the regions 
M~i < J-j- < M, \x/tll3\ < c, in describing the long-time behavior of the 

solution. In this region, which is described by the inequalities c\ < ti/3^ty/z < 

ci, the solution of KdV behaves like a modulated cnoidal wave. As is shown in 
[DVZ1], this region arises from the fact that the full line joining the stationary 

phase points 

-ZQ. .z0 

becomes "electrified" and each point on the line contributes equally to the long-time 
behavior of KdV. Thus in the steepest-descent/stationary phase method for RH 
problems we can have "lines of stationary-phase", and not just points of stationary 

phase. 

Remarks A complete description of the leading asymptotics of the solution of 
the Cauchy problem for KdV, with connection formulae between different regions 
(including the collisionless shock region, which is their discovery!) was presented 
by Ablowitz and Segur [AS], but without precise information on the phase (and 
without error estimates). In a later development, Segur and Ablowitz [SA] used a 
modification of the method in [ZM] to derive the leading asymptotics of the solutions 
of the MKdV, KdV (but not in the collisionless shock region) and Sine-Gordon 
equations, including full information on the phase. For more historical information 
on the contributions of many authors to the calculation of the asymptotic behavior 
of integrable systems, see, for example, [DIZ1]. 
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ABSTRACT. The generalized complex Ginzburg-Landau (CGL) equation de- 
scribes the evolution of a complex-valued field u = u(x, t) by 

dtu = Ru + (1 + iv)Au - (1 + iß)\u\2,Tu. 

It has a long history in physics as a generic amplitude equation near the on- 
set of instabilities that lead to chaotic dynamics in fluid mechanical systems, 
as well as in the theory of phase transitions and superconductivity. In this 
role it and equations like it have had remarkable success in describing evolu- 
tion phenomena in a broad range of physical systems, from fluids to optics. 
More recently, it has been proposed and studied as a model for "turbulent" 
dynamics in nonlinear partial differential equations. It is a particularly inter- 
esting model in this respect because it is a dissipative version of the nonlinear 
Schrödinger equation, a Hamiltonian equation which can possess solutions that 
form localized singularities in finite time. 

This article summarizes the status of well-posedness and regularity ques- 
tions for the CGL equation subject to periodic boundary conditions in any 
spatial dimension. It also discusses the relationship of these results to the 
above investigations and, in particular, to analogous issues for Navier-Stokes 
fluid turbulence. Appropriately defined weak solutions exist globally in time 
and unique classical solutions are found locally. Conditions are given under 
which these classical solutions exist globally in time and have bounds on all 
derivatives that are uniform over large times, thereby providing the setting 
in which ideas from finite dimensional dynamical systems can be applied to 
the CGL equation. Moreover, by using a characterization of Gevrey classes in 
terms of decay of Fourier coefficients, these solutions are shown to be analytic 
for positive times. Refinements in both some of the theorems and some of the 
proofs are introduced. 
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1. Introduction 

The description of chaotic dynamics or, more dramatically, turbulence in con- 
tinuum systems by nonlinear evolution equations (often partial differential equa- 
tions) is one of the central challenges facing theoretical physics and applied math- 
ematics. We would like to be able to apply ideas from the studies of dynamical 
systems or statistical physics to these evolution equations in order to gain a deeper 
understanding of these phenomena and, as a byproduct, to hopefully achieve sim- 
pler or more tractable descriptions. One of the main mathematical stumbling blocks 
to studying these questions often lies in our lack of understanding of even the most 
basic issues of existence, uniqueness and regularity for solutions of the underlying 
evolution equations. This situation has led mathematicians and physicists either 
to derive, usually through systematic asymptotics, or to propose, usually in an ad 
hoc manner based on intuition and symmetries, simpler equations for which these 
mathematical issues can be addressed with greater success. 

One such equation is the generalized complex Ginzburg-Landau (CGL) equa- 
tion, which describes the evolution of a complex-valued field u = u(x, t) over a 
d-dimensional spatial domain by 

(1.1) dtu = Ru + (l + iv)Au- (l + iß)\u 2a 
U . 

Here the parameters R and a are positive while v and ß are real. Without loss of 
generality, the equation has been normalized so that the coefficients of the linear 
and nonlinear dissipation (damping) terms are unity. The R is the coefficient of 
the linear driving term, without which all solutions would decay to zero. Clearly, 
a sets the degree of the nonlinearity. The v and /x are the coefficients of the linear 
and nonlinear dispersive terms respectively. 

The CGL equation with a cubic nonlinearity (a = 1) has a long history as a 
generic amplitude equation derived asymptotically near the onset of instabilities in 
fluid dynamical systems. The case with real coefficients was first derived by Newell 
and Whitehead [65] and Segel [74] to describe Benard convection. The case with 
complex coefficients was put forth in a general setting by Newell and Whitehead [66] 
and DiPrima, Eckhaus, and Segel [20], and was shown by Stewartson and Stuart 
[76] to apply to plane Poiseuille flow. The reader may also want to consult more 
comprehensive reviews of the application of amplitude equations, such as the CGL 
equation to chemical reactions [51] and to pattern formation [17, 64]. Here we 
remove it from any particular physical context and investigate it as a mathematical 
model of a variety of possible phenomena in nonlinear partial differential equations. 
Considered over the d-dimensional torus Td, the CGL equation is both theoretically 
and numerically tractable, and has proved fruitful for illustration of connections 
between infinite dimensional and finite dimensional dynamical systems [3, 24, 73]. 
We shall therefore focus our study on the spatially periodic CGL equation (1.1) 
and point out those results that extend to Rd. 

This lecture will present to nonspecialists one overview of how the generalized 
CGL equation can be viewed as a dynamical system. We have therefore tried not 
to presume familiarity with material beyond that from standard graduate level 
analysis and functional analysis courses. The style will be expository. We will give 
a big picture along with enough detail to clarify the strategies that are used to prove 
many basic theorems. Without any pretense of being exhaustive, we review several 
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of the avenues of investigation taken in the literature, all of which have application 
far beyond the context of the CGL equation. 

The material is organized as follows. Section 2 begins to paint the CGL phase 
portrait by identifying some special solutions, examining their stability, and de- 
scribing how chaotic behavior might arise. Section 3 presents the attributes of the 
CGL equation that allow it to be a focus for general studies of turbulent behavior. 
In particular its relation to the nonlinear Schrödinger (NLS) equation, 

(I-2) dtu = iuAu - i/j,\u\2cru, 

is discussed as an analogue to the relation of the driven Navier-Stokes equations 
to the Euler equations in fluid dynamics. The existence of global (in time) weak 
solutions to the CGL equation for L2 initial data is proved in Section 4. Such 
solutions exist in any spatial dimension and degree of nonlinearity. The result is 
similar in spirit to that of Leray's existence theorem for global weak solutions to 
the Navier-Stokes equations. Also similarly, the question of uniqueness for weak 
solutions remains open. Section 5 discusses the existence and uniqueness of local 
(in time) classical solutions^even C°° solutions provided a is a positive integer. 
Initial data in the classes Lp and Hq are considered. In cases when s can be 
negative this will include initial data that are distributions. Section 6 presents 
local estimates which show that when a is an integer the solutions are not only 
C°°, but also contained in a subclass of the real analytic functions. The derivation 
of these estimates employs a characterization of Gevrey classes in terms of decay 
of Fourier coefficients. Our inability to unconditionally extend the local solutions 
to global ones is a manifestation of the instability in the inviscid dynamics. One 
cannot generally exclude the possibility of a finite-time blow-up, even in dissipative 
systems. Section 7 establishes global classical solutions through a priori bounds of 
Lp norms and does not restrict a to integer values. When a is a positive integer, 
direct global bounds on every Hn norm are derived in Section 8. The role of 
these results in applying dynamical systems methods to the study of the long-time 
behavior of CGL solutions is discussed. 

2.  The CGL Equation as a Model for the Onset of Chaos 

This investigation has two main themes. The first theme is to gain as complete 
an understanding as possible of the CGL "phase portrait" in any infinite dimen- 
sional phase space in which the flow is defined globally in time. The second theme is 
to justify the asymptotic derivation of the CGL equation as an amplitude equation 
and to determine whether the CGL phase portrait can be related to the onset of 
chaos in solutions of the original dynamical system. This question will be taken up 
in the lecture of A. Mielke [63] and is also reviewed in [17, 51], so it will not be 
discussed here. 

Crucial to the understanding of the phase portrait of any dynamical system 
is the nature of the long-time asymptotics. Our main focus will be to establish 
existence and properties of a globally attracting set. Such a set, the global attractor, 
is compact, invariant under the flow, and attracts all orbits uniformly over bounded 
sets of initial data [29, 78]. Naturally, the attractor contains the w-limit set and 
the unstable manifold of the w-limit set of every orbit. The nature of orbits on and 
about the attractor provides valuable information for understanding the mechanism 
for the onset of chaos. 
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Our investigation begins by identifying classes of solutions that are known ex- 
plicitly and which are therefore amenable to local analysis using linear and nonlinear 
methods. First, the number of linearly unstable directions gives a lower bound on 
the dimension of the unstable manifold, thereby providing a lower bound on the 
dimension of the attractor. This analysis was first carried out in detail for the 
cubic CGL equation for d = 1 by Doering, Gibbon, Holm and Nicolaenko [24] and 
for d = 1, 2 by Ghidaglia and Heron [35]. Second, we will indicate the nonlinear 
techniques used to paint a picture of the bifurcations from these solutions as R 
increases. 

To illustrate the procedure, we first linearize the CGL equation (1.1) about the 
zero solution and obtain 

(2.1) dtü = Rü + (l + iv)Aü. 

Then a small perturbation with a pure Fourier mode ü(x, t) = a(t) exp(i£-x) where 
£ G 2-7rZd (= (2nZ)d) evolves according to 

(2.2) dtä = Rä-(l+iv)\£\2ä. 

This shows that with respect to this perturbation the zero solution is linearly un- 
stable when |£|2 < R, linearly asymptotically stable when |£|2 > R, and linearly 
neutrally stable when |£|2 = R. Hence, the dimension of the subspace of linear 
instability, which gives a lower bound on the dimension of the globally attracting 
set, grows like Rdl2 as R becomes large. 

The simplest class of nontrivial spatially periodic solutions is comprised of 
rotating wave solutions, which have the form 

(2.3) u(x, t)=a exp (i(£-x - u>t)), 

where a G C, w G R, and £ G 2-7rZd satisfy 

(2.4) w = fiR+(v-nm2,        \a\2a = R-\t\2. 

The largest of these, corresponding to £ = 0, is the spatially homogeneous solution, 
sometimes referred to as the Stokes solution. For each wave vector £ such that 
|£|2 < R, formulas (2.3) and (2.4) define a circle of rotating wave solutions that 
is parameterized by the phase of a. These solutions that play an important role 
in many physical applications and their existence is one of the reasons that the 
CGL initial-value problem posed in Lp(Td) is more interesting than that posed in 
Lp(Rd). Notice that, as R increases, the circle of rotating waves corresponding to 
wave vector £ bifurcates off the zero solution at R = |£|2, thereby corresponding to 
the addition of two real dimensions to the subspace of linear instability of the zero 
solution for each such £ as R increases beyond |£|2. There are on the order of Rd/2 

such circles as R becomes large. 
Due to the simple form of the rotating waves (2.3), their linear stability can 

be analyzed exactly. This is not something one can do for any nontrivial solution 
of any partial differential equation because the associated linearized equation will 
generally have coefficients that depend on both space and time. Indeed, a naive 
linearization of the CGL equation (1.1) about a rotating wave (2.3) leads to a 
variable coefficient equation. However, if one introduces a perturbation of the form 

(2.5) u(x, t) = a exp (i(£-x -ut))(l + e ü(x, t)), 
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then the resulting linearization is 

(2.6) dtü = 2(l + iv)i£-Vü+(l + ii;)Aü-{l+in)cr\a\2'T(ü + ü*). 

This equation can be viewed as a real linear system for the real and imaginary parts 
of ü (alternatively, for ü and ü*) with constant coefficients, which can therefore be 
analyzed using Fourier modes. Due to the multiplicative form of the perturbation 
(2.5), the Fourier mode of ü with wave vector f corresponds to the Fourier mode 
of the perturbation with wave vector £ + f. Hence, this procedure is often called a 
side-band analysis and | a side-band wave vector. 

This general analysis will not be carried out here (see [24] for details), but some 
of its features will be illustrated by analyzing the linear stability of the homogeneous 
solution. In that case (2.6) simplifies to 

(2-7) dtü = (1 + ii/)A« - (1 + ifx)aR(ü + «*). 

When it is written as a real linear system for üR and üj, the real and imaginary 
parts of ü, this equation becomes 

(2.8) % üR\ _ / A - 2oR      -vA\ füR 

üi J      \vA-2/j,crR      A  ) \Ü! 

It is easily checked that the Fourier mode with wave vector f will decay exponen- 
tially provided 

(2-9) (l + i/2)|||4 + 2<7.R(l+/u/)|£|2>0. 

This will certainly be satisfied for every nonzero £, no matter what values the degree 
a and forcing R may have, whenever fj, and v lie in the region of the /xi/-plane where 
(1 + fj.v) > 0, commonly referred to as the modulationally stable region (illustrated 
in Figure 7.1 on page 39). 

A slightly more general class than the rotating wave solutions are the harmonic 
(or monochromatic) solutions, which have the form 

(2-10) u(x,t)=a(t)exp(i$-x), 

where the complex-valued amplitude a = a(t) satisfies 

(2-11) ~ = (R - (1 + iv)\£,\2)a - (1 + i»)\a\2°a. 

Multiplying this equation by a* and separating real and imaginary parts gives 

(2.12) i^H» = (Ä- |£|=)|a|a - 

<213) s(''l-£)--■*!'M"-"WM- 
It is easily seen that when R - |£|2 < 0 these solutions decay exponentially to 
zero. In this case, these solutions are part of the stable manifold of the trivial 
solution. When R - |£|2 = 0 these solutions decay algebraically to zero, reflecting 
the marginal stability of the zero solution at the given value of R to perturbations 
with wave vector £. When R - |£|2 > 0 these solutions are attracted exponentially 
to a rotating wave solution corresponding to the wave vector £. In this case, these 
solutions lie on the intersection of the unstable manifold of the zero solution with 
the stable manifold of the rotating wave solution of wave vector £. 
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The rotating waves are also part of the more general class of traveling wave 
solutions, each of which has the form 

(2.14) u(x, t) — exp(-iat) v(x - ct), 

where a € R is the phase frequency, c € Rd is the wave velocity and v = v(z) is the 
complex-valued profile function over z = x — et G Td that satisfies 

(2.15) (R + ia)v + (1 + iv)Azv - c ■ Vzv - (1 + iß)\v\2<7v = 0. 

Within the class of traveling waves are the so-called standing waves, for which c = 0, 
and which possess a nontrivial spatial structure in both amplitude and phase. A 
rotating wave (2.3) will solve (2.15) provided 

(2.16) w = a + Z-c. 

More general traveling wave solutions will bifurcate off these rotating wave solu- 
tions as R increases [77]. In particular, standing waves bifurcate off the spatially 
homogeneous solution [67]. Traveling wave solutions have also been shown to exist 
when d — 1 near the NLS limit [18]. However, a complete understanding of all 
solutions of (2.15) is still lacking. 

Stability is not as easy to assess for these traveling waves as it was for the ro- 
tating waves. For example, to study their linear stability, introduce a perturbation 
of the form 

(2.17) u(x,t) = exp(-iat)(v(x - ct) + ev(x - ct,t)), 

into the CGL equation and retain only terms of order e to obtain 

dtv = (R + ia)v + (1 + iv)Azv -c-Vzv 
(2'18) -{l + iß)\v\2av-a{l + in)\v\2°-2v(v*v + vv*). 

The operator on the right side is independent of t, so the linear stability analysis is 
thereby reduced to studying the semigroup generated by that operator, which is not 
easy because the operator generally has coefficients with a complicated dependence 
on z. 

Harder still is analytically determining the bifurcation sequence of solutions 
in the attractor. Some insight into these questions has been gained through nu- 
merical studies [57]. For the parameter choices studied in [57], as R is increased, 
the standing wave solutions undergo supercritical Hopf bifurcations, creating two 
stable periodic orbits. Further increase in R gradually deforms these orbits into 
a pair of homoclinic orbits which connect the homogeneous solution to itself (the 
homogeneous solution is really a fixed point of the CGL system). When this ho- 
moclinic orbit is broken, a single stable periodic orbit appears which looks like a 
combination of the two periodic orbits that formed the homoclinic orbit. This bi- 
furcation sequence is known as a "gluing bifurcation" (see [33] and the references 
therein); it is not a period doubling bifurcation, but rather a length doubling that 
can be understood in a three dimensional context. At this homoclinic connection, a 
chaotic set is not created because of the stable nature of the periodic orbits involved: 
the orbits bring their attracting neighborhoods to the homoclinic orbit, which is 
consequently a stable object in the phase space, and therefore cannot produce a 
hyperbolic chaotic set of trajectories when the homoclinic connection is broken by 
a change in R [57]. As R is increased beyond this initial bifurcation, a series of 
unstable homoclinic orbits occur that connect the homogeneous solution to itself. 
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These homoclinic orbits lead to chaotic attractors through so-called "homoclinic 
explosions", similar to those found in the Lorenz equations. 

A special case of the CGL equation for which the attractor can, in principle, 
be completely characterized is when ß = v. In that case it is natural to introduce 
the new complex-valued field v = v(x, t) by 

(2.19) u(x, t) = exp(—iR/j,t) v(x, i). 

The evolution of v is then governed by 

(2.20) ^ = .(1 + ^)^, 

where 

(2.21) ^- = -Av + \v\2av-Rv, 
bv* 

which is the classical variational partial derivative with respect to v* of the so-called 
Ginzburg-Landau functional G defined by 

(2.22) G= [  |Vt>|2 + —*— \v\2a+2 - R\v\2 dx. 
Jfd c +1 

Computing the time derivative of this functional under the flow (2.20) gives 
> 
dx, 

6G 2 

6v (2-23) §=[   fdtv+^dtv*dx=-2[ 
dt      Jjd bv bv* Jjd 

which shows that G is a monotonically decreasing function of time except at points 
where bG/bv* vanishes. Such points are stationary points of the flow (2.20) and, 
hence, are standing waves of the CGL flow. They include as a special case the circle 
of stationary harmonic waves given by 

(2.24) v(x) = bexp(i£-x),        \b\2cr = R - |£|2 > 0, 

for some b G C and £ G 27rZd. When d = 1, the stationary points generally satisfy 
the ordinary differential equation 

(2.25) -dxxv + \v\2av -Rv = 0, 

so their existence may be determined through a phase plane analysis. Furthermore, 
these solutions may be expressed explicitly in terms of elliptic functions when a = 
1,2 and in terms of hyperelliptic functions when a > 2 is an integer. 

In general, (2.23) shows that the functional G formally acts as a global Lya- 
punov functional for the flow, a fact that will be made rigorous once sufficient 
regularity is established to justify the formal manipulations. This will be done in 
Section 5. The stability of any stationary point v can be examined through the 
spectrum of H.(v), the Hessian operator of the functional G at the point v, which 
is given by 

/ b2G        62G  \ 

H{v) 

(2.26) 

6v*bv    bv*bv* 
b2G        b2G 

\ bvbv      SvSv* ) 

A + (<T + 1)\V\
2
°-R 

a|v|2"-V2 -A + (a+l)\v\2°-R 
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The Hessian is the self-adjoint linear operator associated with the real quadratic 
form that is the second variation of G at u. Zero is always in the spectrum of 
H(v) with multiplicity at least one because (iv, -iv*)T is always the null vector 
associated with changing v by a constant phase. The analysis of the remaining 
spectrum of H(v) is generally difficult because of its nonconstant coefficients. 

In the case when v is a stationary harmonic wave (2.24) the Hessian operator 
(2.26) is unitarily similar to the constant coefficient self-adjoint operator 

,       x Z, ^      f-A - 2t£ • V + a\b\2° a\b\2" \ 

whose spectrum can be analyzed through Fourier analysis. For example, the di- 
mension of the unstable manifold of the circle of stationary harmonic waves (2.24) 
is given by the number of nonzero | e 27rZd such that 

(2.28) \i\A + 2a\b\^\i\2-i(H)2<0, 

assuming there are no such | for which the left side of this equation vanishes. In 
particular, the circle of stationary harmonic waves (2.24) will be stable whenever 
(a + 2)\e2<aR. 

When d = 1 and a = 1 the unstable manifold of each stationary point de- 
termined by (2.25) can also be analyzed through the Hessian (2.26) by using the 
machinery of the integrable NLS equation [44]. However, in all other cases our 
knowledge of the phase portrait for even this simplest of all CGL equations (2.20) 
is far from complete. 

3. The CGL Equation as a Model for Turbulent Phenomena 

Much work on the theory of turbulent phenomena has focused on simple flu- 
ids, where the phenomena are presumably described by the incompressible Navier- 
Stokes equations [5]. One of the major obstacles in this area of study is that fact 
that, as of this writing, the existence of smooth, or classical, or strong solutions to 
the Navier-Stokes initial value problem in three spatial dimensions has never been 
demonstrated for arbitrarily large (albeit smooth) initial data, or arbitrarily strong 
(albeit smooth) applied forces [14]. Leray established the existence, although not 
the uniqueness, of weak solutions to the Navier-Stokes equations over half a cen- 
tury ago [55], and interpreted the implied loss of regularity in the general case 
as an indication of the onset of turbulent behavior. This would mean that vis- 
cous dissipation in three spatial dimensions is unable to inhibit singularities driven 
by instabilities in the underlying inviscid system, the Euler equations. There is, 
however, an obvious logical gap associated with connecting our inability to prove 
regularity and uniqueness with an actual failure of those properties. Moreover, the 
necessity of a breakdown of regularity in the Euler equations remains an open area 
of investigation which is discussed in the lecture by P. Constantin [12]. Uniqueness 
of these weak solutions is not established, and this fact carries its own implica- 
tions for the question of the self consistency of any hydrodynamic description at 
all! These issues remain today in an unsatisfactory state of nonresolut ion. 

There are two key attributes of the CGL equation that allow us to seriously 
consider it as a worthwhile focus for general studies of turbulent behavior. First, 
in the absence of driving (R = 0) it has an inviscid limit that is a Hamiltonian 
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system, namely, when pv ^ 0 it is the nonlinear Schrödinger (NLS) equation 

(3.1) idtu = -vAu + p\u\2cru, 

which is essentially the usual Schrödinger equation of quantum mechanics with its 
potential V replaced by p\u\2a. Second, this inviscid limit possesses a self-focusing 
mechanism capable of provoking spatially localized singularities in the solutions, 
within a finite time, starting from arbitrarily smooth initial data. This effect can 
be thought of as a rather violent cascade process whereby energy concentrated in low 
wavenumber modes is rapidly transported to high wavenumber modes. These two 
properties are in direct analogy to the problem of incompressible fluid turbulence, at 
least so far as the conventional wisdom is concerned. The Euler equations constitute 
the underlying Hamiltonian dynamics of the dissipative Navier-Stokes equations, 
and instabilities in the inviscid equations can create a cascade of energy between 
widely separated length scales. We will examine these two attributes in more detail 
below. 

The NLS equation can be naturally recast as a Hamiltonian system in the form 

(3.2) ivdtu = — , 

where the Hamiltonian H is given by 

(3.3) H= [ i/2|Vu| 2 + J^\uf°+2dx. 
a+11 

Defining the Poisson bracket of any two functionals F and G to be 

(3 4) IFG\ = — [ (——- ——\ dx 
iv JTd \ 6u 6u*     Su* 6u )      ' 

the evolution of any functional F under the NLS flow (3.2) is governed by 

(3-5) £-«*>■' 
At least formally, the Hamiltonian H is conserved by the NLS flow. Besides H, the 
NLS flow also generally conserves the mass M and the momentum P, which are 
given by 

(3.6) M= f  \u\2dx,        P=^ [   (u*Vu - uVu*) dx. 
Jfd Zl JTd 

These quantities play an important role in the general study of the NLS equation, 
but such a digression would take us to far afield. However, it should be noted that 
the one-dimensional cubic NLS equation (d = a = 1) is completely integrable and 
therefore possesses an infinite number of conserved quantities in involution with 
respect to the Poisson bracket (3.4) [82, 83]. 

Ginibre and Velo [36] showed that the nonlinear Schrödinger equation is a 
locally well-posed initial-value problem in the Hilbert space Hl{Rd) provided 

(3.7) d < 2 + - . 
a 

More precisely, if (3.7) is satisfied then for every p > 0 there exists a time T(p) > 0 
such that for every initial data uin e if1^) with ||uin||Hi < p there exists a unique 
u € C{[Q,T],Hx{Rd)) satisfying a mild form of the NLS initial-value problem. 
Moreover, the quantities M, P, and H are all conserved by this solution. Extending 
this result to Td is not direct, and requires some different ideas. Recently, Bourgain 
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has developed new techniques that allow the NLS dynamics over periodic domains 
to be extended to larger spaces [8, 9], but here we shall confine ourselves to H1 

dynamics. We will leave imprecise the exact nature of what it means to be a mild 
solution of the NLS initial-value problem—it is not important for the following 
considerations. However, it is important to understand that whenever (3.7) is 
satisfied, the NLS equation will make sense as a dynamical system in Hl, at least 
locally in time, with M, P and H conserved. 

Condition (3.7) arises from the need to control the contribution of the nonlinear 
term of the NLS equation to the Hamiltonian H (or equivalently, to control the 
L2a+2 norm 0f u) witi1 the jji norm 0f Uj which we take to be 

(3.8) ||u||ffl =      /   n2\u\2 + \Vu\2dx 

where -K
2
 is the largest negative eigenvalue of the Laplacian. This control is 

achieved through a Gagliardo-Nirenberg type of Sobolev inequality [2, 32, 68], 
which states that there exists a positive nondimensional constant C(a, d) < oo such 
that the L2<7+2 norm of u can be bounded by a geometric average of the I? and 
H1 norms of u as 

l 

\L2<'+2 

\h<i 

\  2<r+2 
2°+2dx\ 

(3.9) / \2 
<C(M)     /   K2\u\2 + \Vu\2dx\ 

= C{a,d)\\u\\6m ||u||i2   , 

whenever the geometric interpolation parameter 9 satisfies 

<3-10> ÖS2^2<1- 
The above value of 0 is determined by balancing units of length in (3.9), thereby 
rendering C(cr, d) nondimensional, which leads to the relation 

(3.11) _L_d=«j(d_2) + !^d. 

The inequality in (3.10) is equivalent to condition (3.7). 
These local solutions can be extended to be global solutions if one can find an 

upper bound on \\u\\Hi that is uniform in time. When fiu > 0 such a bound follows 
directly from the estimate 

(3.12) v2\\ufHl<H + v2K2M. 

On the other hand, when /JLU < 0 the Gagliardo-Nirenberg inequality (3.9) yields 
the estimate 

(3.13) 
H + V2

K
2
M = v2 \\ufm + ^ |M&2

2 

|2       ,       W    n,       ,V2<r+2||„,||(2<H-2)0||    ,,(2<7+2)(l-fl ^      2 II     ll-i        i        A*"     r>(„   j\2a+2 ||„,|K-i°T-^<7     ., K^" 

(T + i. 

where 0 is given by (3.10). Because ||U||L
2
 is conserved, the above estimate gives a 

uniform upper bound for \\u\\Hi whenever the degree of \\u\\Hi in the second term is 
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less that in the first term, which is the case if and only if ad < 2. For the marginal 
case ad = 2, the above estimate gives a uniform upper bound for \\u\\Hi provided 
||W||L

2
 is small enough. 

The above argument shows that necessary conditions for the possible formation 
of finite-time singularities are v/j, < 0 and ad > 2. This is simply understood by 
considering the 'NLS equation to be a "mean field" quantum mechanical descrip- 
tion of locally interacting particles. Without loss of generality, taking v > 0, the 
potential in (3.1) is V = n\u\2a. When \i > 0 the interaction is repulsive, and 
consequently there is no tendency for the particles to concentrate; this is referred 
to as the defocusing case. On the other hand, when ß < 0 the interaction is at- 
tractive, providing the so-called self-focusing mechanism, and the particles tend to 
concentrate; this is referred to as the focusing case. When ad < 2 this attraction 
is not strong enough that it can induce a collapse of the matter. However, as will 
be argued below, when ad > 2 this attraction is strong enough that collapse may 
occur. The term critical indicates that the condition for blow-up is satisfied as 
an equality, ad = 2. The terms supercritical and subcritical indicate ad > 2 and 
ad < 2 respectively. 

That the self-focusing mechanism can produce finite time blow-up for solutions 
of the NLS equation when ad > 2 was first established over Rd [38, 81, 84] by the 
following argument. Given any u € Hl{Rd), consider the vector-valued quantity x 
and scalar-valued quantity I defined by 

(3.14) x=±- /  x\u\2dx,        1= f   \\x-x\2\u\2dx, 
M JRd JWLd 

which, by analogy with classical mechanics, can be interpreted as the center of mass 
and the moment of inertia of \u\2 respectively. These quantities will be finite for 
any u e H1^) for which 

(3.15) / 
JR 

\x\2 \u\2 dx < co. 
Rd 

Moreover, I will be positive for any nonzero u e H1^). Now consider any initial 
data uin e H1^) which satisfies (3.15). When (3.7) is satisfied it can be shown 
that, so long as the corresponding H1 solution u(t) of the NLS equation exists, 
condition (3.15) remains satisfied. The quantities x and I of (3.14) can then be 
differentiated and written in terms of the conserved quantities M, P and H defined 
in (3.6) and (3.3), so that 

dx _2P 
~di ~~M' 
dJ 
~dl     4i 

(3.16) 

— /   (x-x)-(u*Vu-uVu*)dx, 

[  ^2|VU|2 

jRd 

V 2      ; a+1 V ' ' 

**=[  „2\Vu\2 + ^-^lu\2^2dx-l-f.P 
dt2      JRd 2 a + 1'  ' 2 dt 

= H      M 

If we assume that i//x < 0 and ad > 2, which are necessary conditions for a possible 
singularity to develop, then 

d2T I PI2 

dt2 M 
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This inequality can be integrated to obtain the bound 

(3.18) I(t) < 7(0) + ft (0) t + \ [E - ^ t2 . 

It is clear that if uin is chosen so that H - \P\2/M is negative then I{t) would have 
to become zero at a finite time T*, in contradiction with (3.14), which shows it to 
be positive. The H1 solution must therefore develop a singularity no later than the 
time T*, an upper bound that could be far larger than the actual blow-up time. By 
exploiting the local nature of the self-focusing mechanism, this argument has been 
extended to bounded domains for various kinds of boundary conditions (including 
periodic) in [48] by introducing a cut-off version of the \x - x\2 weight in (3.14). 

The nature of the NLS singularity has been studied extensively both asymp- 
totically and numerically [53, 54, 71], and is understood to behave self-similarly 
in the supercritical case and nearly so in the critical case. In this sense, our knowl- 
edge about the possible breakdown of classical solutions is much better for the 
NLS equation than for the three-dimensional Euler equations, where it is not 
even known whether or not singularities develop. Numerical simulations show 
that the self-focusing mechanism persists in the CGL equation inside the mod- 
ulationally unstable regime 1 + vfx < 0 and when ad > 2 is capable of provoking 
many spatially localized near NLS-singularities in solutions, starting from arbitrar- 
ily smooth initial data. Each near singularity produces a rather violent cascade 
process whereby energy concentrated in low wavenumber modes is rapidly trans- 
ported to high wavenumber modes, after which it is damped by the CGL dissipation 
and then is dispersed in a somewhat less violent inverse cascade process whereby 
some undissipated energy returns from high wavenumber modes to low wavenumber 
modes [39, 75]. Admittedly the mechanisms by which energy transfer is generated 
for the CGL equation (self-focusing) is very different than that for the 3-dimensional 
Euler equations (vortex stretching), and we make no claims as to a direct physi- 
cal analogy. Self-focusing blow-up in the NLS equation plays a more direct role 
in describing strong turbulence in plasma (the NLS equation is a limit of the Za- 
kharov equations [40, 81]), but dissipative mechanisms in plasma do not directly 
correspond to the dissipative terms in the CGL equation. Rather, we regard the 
CGL equation as a convenient nonlinear dissipative partial differential equation 
displaying intrinsic inviscid instabilities that we may exploit to test and hone our 
mathematical tools. 

Finally, there are several distinct advantages to considering the CGL equation 
rather than, say, the Navier-Stokes equations or the Zakharov equations. First, 
there is the obvious point that there are simply fewer dependent variables in the 
CGL equation, so we may in general expect the analysis to be simpler. Indeed, 
the basic techniques that have been developed for the study of semilinear parabolic 
equations [80], and the NLS equation over Rd [10, 24, 79] and, just recently, over 
Td [8, 9], can be applied to the CGL equation. Second, the self-focusing mechanism 
and its resulting finite time blow-up for solutions of the NLS equation is quite well 
understood both physically and mathematically (also see [54, 61, 62, 71] and 
references therein). Third, from a numerical viewpoint it is much faster and more 
convenient to run simulations in low spatial dimensions, and the self-focusing blow- 
up behavior is already present in the 1-dimensional NLS equation for a > 2. 
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4.  Global Weak Solutions 

For many nonlinear evolution equations of mathematical physics, classical so- 
lutions are either known to break down or not known to exist after a finite time. 
The best example of the former case is the formation of shocks in solutions of the 
compressible Euler equations of gas dynamics, while the best example of the later 
case is the open problem as to whether temporally global classical solutions exist 
for the incompressible Navier-Stokes equations of hydrodynamics. One approach 
around this problem is to enlarge the notion of a solution to that of a so-called weak 
solution by only requiring that the equation be satisfied in a "weak" sense, namely, 
after integrating it against a member of a prescribed class of test functions. In a 
seminal paper of 1934, Leray [55] proved the existence of a temporally global weak 
solution to the incompressible Navier-Stokes equations over the whole space R3 for 
any initial data with finite energy. Subsequently, the strategy used by Leray has 
been applied to prove the existence of global weak solutions for a number of other 
equations, most notably for the Boltzmann equation by DiPerna and Lions [19]. 
This section gives the analogue of this result for the CGL equation (1.1) over Td, 
the d-dimensional periodic box. 

The technical setup and notation for this section is as follows. Throughout this 
section it is more convenient to use 7 = a + 1. We consider the evolution of a 
complex valued field u = u(t, x) governed by the generalized CGL equation 

(4.1) dtu = Ru + (1 + iv)Au - (1 + %n)\u\2^-^u, 

with initial condition 

(4.2) u(0,x)=um(x). 

As before, we assume R > 0 and 7 > 1 (a > 0), while v and /x can take any real 
value. This arbitrariness contrasts sharply with the theory of classical solutions 
presented in later sections where the admissible parameter values of 7, v, and fi 
and the dimension d are interrelated. 

Without loss of generality the units of length may be chosen so that 

(4.3) /  dx = 1. 

We employ the notation 

(4.4) (/)= /  fdx, 

which by (4.3) denotes the mean value of / over the torus. 
In order to state the main result of this section we must first introduce the 

principal spaces involved. For 1 < p < 00, the classical Lebesgue ip-space over 
(Td,dx) will be denoted LP(Td). The Sobolev space of functions in L2(Td) with 
partial derivatives in L2(Td) will be denoted Hl(Td). Given any Banach space X 
with norm || • ||x and 1 < p < 00, the space of (equivalence classes of) measur- 
able functions v = v(t) from [0,00) into X such that ||-y||x e Lp([0,T}) for every 
T > 0 will be denoted Lfoc([0,oo),X). And finally C([0,oo),w-L2(Td)) will de- 
note the space of continuous functions from [0,00) into w-Z/2(Td), which denotes 
i2(Td) equipped with its weak topology. This means that v £ C([0,00), w-L2(Td)) 
if for every ip e L2(Td) the function t >-> {ip*v(t)) is in C([0,00)) endowed with 
the usual topology of uniform convergence over compact intervals.   We remark 
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that Lfoc([0, oo),X) and C([0, oo),w-L2(Td)) are Frechet spaces rather than Ba- 
nach spaces. As such, their topologies are completely determined by the class of 
convergent sequences. 

The main result of this section, established in [25], is the following global 
existence theorem for L2 initial data; it is the CGL analogue of Leray's result for 
the Navier-Stokes equation. 

THEOREM 4.1. Given uin G L2(Td), there exists a function 

(4.5) u G C([0, oo), w-L2(Td)) n L?oc([0, oo),H1^)) n Ljä([0, oo), L^(Td)), 

that satisfies the initial condition (4.2) and the weak form of the CGL equation 
(4.1); 

0 = {i/j*u(t2)) - (il>*u(h)) -R I* Wu)dt' 
(4.6) t2 

Jtl       t2 

+ I 2 ((1 + ti/)V^* • Vu) dt'+ I' ((1 + i/x)V*|u|2(7_1)w) dt', 
Jt! JtX 

for every \ti,t?\ C [0, oo) and every test function ip G C°°(Td). Moreover, it satisfies 
the energy relation 

(4.7) 
2llUWllL2 f\\Vu\\2Lzdt>+ f\\u\\%dt> 

Jo Jo 

'I Jo 
<§||«,n|l2* + */ \Hhdt1, 

for every t € [0, oo). 

REMARK 4.1. The notion of weak solution given above is stronger in two ways 
than the notion of weak solution in the sense of distributions. Recall that u is a 
weak solution of the CGL equation in the sense of distributions when it satisfies 
the equation one obtains formally by integrating (4.1) over [0, oo) x Td against a 
test function w = w(t,x) G C^°([0, oo) x Td) and integrating by parts so as to put 
all the derivatives onto the test function. It can be seen directly that if u satisfies 
(4.6) then it satisfies the distribution form of the CGL equation for test functions in 
the factored form w = (f>(t)tp*(x) where <j> £ Cc°°([0,oo) and ip G C°°(Td). Indeed, 
set ti = 0 in (4.6), multiply by dt4>{t2) and integrate t<i over [0, oo), and integrate 
by parts to put the spatial derivatives onto ip*. As linear combinations of factored 
test functions are dense in C£°([0, oo) x Td), it is clear that (4.6) alone implies that 
u is a weak solution of the CGL equation in the sense of distributions. In addition 
to (4.6), the weak solutions given in Theorem 4.1 are required to satisfy the energy 
relation (4.7). 

REMARK 4.2. The strategy of the proof follows that introduced by Leray in the 
context of the Navier-Stokes equations, as well as to that of many other existence 
proofs for weak solutions of other equations. For this reason, the proof will be given 
in sufficient detail so as to clearly illustrate this strategy. Roughly, the idea is to 
construct a sequence of solutions to equations that approximate (4.6), then show the 
sequence is relatively compact in a topology that is strong enough to allow us pass 
from the approximate equation to the limit (4.6) for any converging subsequence. 
This involves striking a balance between the facts that compactness is easier to 
establish for weaker topologies, while convergence is easier to prove in stronger 
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topologies. Uniqueness can never be asserted by such a compactness argument, 
but often requires the knowledge of additional regularity of the solution. Since 
we do not limit ourselves to any particular spatial dimension, or to any particular 
nonlinearity, the results of this section are equally applicable to the supercritical, 
critical, and subcritical CGL equations. 

PROOF. The proof proceeds in four distinct steps. 

STEP 1. Construct a family of approximate solutions ue constructed by any 
method that yields a consistent weak formulation and an energy relation—for exam- 
ple, the Fourier-Galerkin method. Let Pe denote the L2-orthogonal projection onto 
the span of all Fourier modes of wave vectors £ with |£| < 1/e. Define uf — Ptu

[n 

and let ue = uc(t) be the unique solution of the ordinary differential initial-value 
problem 

(4 8) dtue = Rue + (l + iv)Aue-(l + ifi)Pe(\ue\2^-Vui), 

ue(0) = uj," € PeL
2(Td) c C°°(Td). 

The regularized initial data u[n(x) converges to uin strongly in L2(Td) as e tends to 
zero and is chosen so that ||i4n||i2 < lluin||L2- 

Furthermore, these solutions will satisfy the regularized version of the weak 
form (4.6) given by 

r*2 

0 = (Pue(t2)) - (PMh)) -R f2 <V*Ue> dt' 

+ [2 ((l+iis)Vip*-Vue)dt'+ /,a((l + tAt)V£*|u£|
2(7-1)ue)dt,> 

for every [tut2] C [0,oo) and ip e C°°(Td). Here ipe = Petp will converge to V> in 
C°° as e tends to zero. Moreover, these solutions will satisfy the regularized version 
the energy relation (4.7) as the equality 

5KWI&+ / ||Vue|£adt'+ / \\uc\\%dt' 
Jo Jo (4.10) 

for every t £ [0,00). 

/o 

HL.in,|2    +Rf   u      „5X^dt, _ 'I JO 
L2-ri\. 1    ||"£||L2' 

Step 1 follows from the standard Picard local existence theory for ordinary 
differential equations applied to (4.8) as posed in the finite dimensional space 
PeL

2(Td), and the fact that (4.10) provides a global L2 bound on the solutions, 
ensuring that they are global. Hence, we omit all details of the proof and proceed 
under the premise of Step 1. 

STEP 2. Show that the sequence ue is a relatively compact set (has compact 
closure) in 

(4.11)    C([0,oo),w-L2(Td)) Aw-l£c([0><x),J£r1(Td)) Aw-L^([0,oo))L
2^(Td)). 

REMARK 4.3. Here the notation "A" indicates the intersection equipped with 
the weak topology induced by the inclusion maps; this means that a sequence in the 
intersection is convergent if and only if it converges in each space separately. The 
sense of convergence for these spaces individually is as follows. We have vn —> v in 
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w-i1
2
oc([0,cx)),F1(Td)) when for every T > 0 and every V G I&c([0,oo))ff1(Td)) 

we have 

(4.12) /   (i/,*vn + Vi/>* • Vvn) dt -► f   (iP*v + Vtß*-Vv)dt. 
Jo Jo 

Similarly, we have vn -> v in w-L2Jc([0, oo),Z,27(Td)) when for every T > 0 and 

every V € L{£°* ([0, oo), LW (Td)) we have 

(4.13) /   (il>*vn)dt-^ [   (rv)dt, 
Jo Jo 

where (27)* = 27/(27 - 1). Finally, we have vn -» u in C([0,oo),w-£2(Td)) when 
for every ip G Z2(Td) we have 

(4.14) (^«n(t))-(^«(*)). 

uniformly on compact subsets of [0,00). 

PROOF OF STEP 2. Equation (4.10), along with Hu^H^ < ||uin||L2, implies 
that 

(4.15) §IM*)I& < \\W"\\l, +R f \\uefL2dt', 
Jo 

from which the Gronwall Lemma then gives 

(4.16) \\ue(t)\\2L2<\\uin\\%e2Rt- 

Inserting this into the right side of the regularized energy relation (4.10) yields the 
explicit bound, uniform in e: 

(4.17) HkWIli* + / \\VuefL2dt'+ f \W\\%dt' < i||win 

Jo Jo 

This bound establishes that the sequence {ue} is contained in compact sets of both 
w-L2

oc([0, 00), Hx(Td)) and w-£2
o

T
c([0,00), L2~<(Td)), because norm bounded sets are 

relatively compact in weak-* topologies, which are the same as the weak topologies 
on these reflexive spaces. For the same reason, the uniform bound (4.16) also shows 
that {ue(t)} is a relatively compact set in w-L2(Td) for every t>0. 

In order to complete Step 2 it must be shown that {ue} is a relatively compact 
set in C([0,00), w-i2(Td)). Compactness requires more than just boundedness 
here because of the strong topology over t. We appeal to the Arzela-Ascoli theorem 
[7, 72] which asserts that {ue} is a relatively compact set in C([0, oo),w-L2(Td)) 
if and only if 

(i) {ue(t)} is a relatively compact set in w-L2(Td) for every t > 0; 
(ii) {ue} is equicontinuous in C([0, oo),w-L2(Td)). 

As was noted at the end of the last paragraph, condition (i) is satisfied. In order 
to establish (ii), we must show for every tp G L2(Td) 

(ii') {(ip*ue)} is equicontinuous in C([0, 00)). 
This is done by first using the regularized weak form (4.9) of the CGL equation to 
establish (ii') for ip in C°° and then using a density argument to extend (ii') to the 
general case of ip in L2(Td) (see [25]). □ 

STEP 3. Show the sequence {u€} is relatively compact in L2
OC([0, oo),L2(Trf)) 

and L2
o

7
c
-1([0, oo),L27_1(Td)) considered with their usual strong topologies. 

„2Rt 
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REMARK 4.4. This step is necessary because Step 2 allows us to assert the 
existence of a weakly convergent subsequence of {ue}, say with a limit u, from 
which we may conclude only that 

(4.18) /    ||u||£2di<liminf /    \\ucfL2dt. 
Jo e_>0   Jo 

However, the argument that recovers (4.7) from (4.10) will need 

(4.19) /    \\ufL2 dt = lim /    \\utfL2dt, 
Jo e"~>0 Jo 

which requires strong L2 convergence. Similarly, the argument that recovers the 
nonlinear term in (4.6) from that in (4.9) will require strong L2T_1

 convergence. 

PROOF OF STEP 3. The crucial point is to use the results of Step 2 along with 
the following embedding lemma, which is essentially due to Leray. 

LEMMA 4.2.  The injection 

(4.20) C([0,oo),w-i2(Td)) A w-L2
oc([0,oo),H\Td)) - L2

oc([0,°°),£2(Td)) 

is continuous. 

This lemma is proved by demonstrating that sequences that converge to zero 
in both C([0,oo),w-L2(Td)) and w-L?oc([0,oo),.ff1(Td)) will also converge in the 
space i2

oc([0, oo), L2(Td)). The proof is fairly direct, so we refer to [25] for details. 
The key tool used is the Rellich Theorem, which states that H1 ^-> L2 compactly. 

Given the lemma, the L2 portion of the assertion of Step 3 is argued as follows. 
Step 2 states that {u€} is a relatively compact set in both C([0, oo),w-L2(Td)) 
and w-Zqoc([0, oo),H1(Td)), and because the continuous image of a compact set 
is compact, it follows that {u€} is a relatively compact set in L2

oc([0,oo),L2(Td)). 
Therefore, any subsequence of {ue} that converges in both C([0, oo), w-L2(Td)) and 
w-L2

oc([0, oo), #1(Td)) will be strongly convergent in ii2
oc([0, oo), L2{Td)). 

The I/27-1 portion of the assertion of Step 3 is a direct consequence of the L2 

portion. We consider two cases. First, if -y < 3/2 (so that 27 — 1 < 2) then the 
injection 

(4.21) L2
oc([0,^),L2(Td))-L2J-\[0,oo),L2^(Td)), 

is continuous, so that strong convergence in L2
OC([0, oo),L2(Td)) also gives strong 

convergence in L2^T1([0, oo),i27_1(Td)), as was asserted. Second, if 7 > 3/2 (so 
that 27 — 1 > 2) then the strong convergence in L2

OC([0, oo),L2(Td)) and the weak 
convergence in L^c([0,00), L2T(Td)) combine in a standard interpolation argument 
to yield the result [25]. D 

STEP 4. Go to the limit. That is, the weak solution u in Theorem J^.l is identi- 
fied as the limit of a convergent subsequence of{ue}. The fact that this subsequence 
converges in the various function spaces is used to verify the weak form (4.6) and 
energy relation (4.7). 

PROOF OF STEP 4. Step 2 ensures that there is a subsequence of {uc}, which 
we also refer to as {uc}, that simultaneously converges to a limit u in the spaces 
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C{[0,oo),w-L2(Td)), w-Lfoc([0,oo),J3rl(Td)) and w-L%c{[0,oo),L2^{Td)). Thus, as 
was asserted in (4.5), 

(4.22)    u e C([0,^),w-L2(Td))nLlc([0,^),H\Td))nL^c([0,oo),L^(Td)). 

Step 3 then implies the strong convergence of ue to u in both Lfoc([0, oo), L2(Td)) 
and L^~ ([0, oo), i27_1(Td)). All that remains is to show that the limit u satisfies 
the weak form of the CGL equation (4.6) as well as the energy relation (4.7). Toward 
this end we check convergence of each term in the respective regularized versions, 
(4.9) and (4.10). 

First consider the regularized weak form of the CGL equation (4.9) for an 
arbitrary test function tp G C°°(Td) and interval [ti,t2] C [0, oo): 

(4.23) 

0 = (1>*ue(h)) ~ <tf>*u£(ti)> - R [ ' (Vut) dt' 
Jti 

+   f 2 ((1 + iv)Vll>* ■ VU6) dt' +   f2 ((1 + ^)CIUe|2(7_1)Ue) dt' . 
Jt! Jti 

The convergence of ue to u in C([0, oo), w-Z,2(Td)) means (see (4.14)) that (i/;*ue(t)) 
converges to {tp*u(t)) uniformly over [ti, i2], whereby 

(4.24) (rueih)) - <tf*u(*i)>,        {Vuz{t2)) - (pu(t2)), 

(4.25) f ' (ip*ue) dt' -> [* {ij)*u) dt'. 
Jt! Jt! 

When combined with (4.25), the convergence of uc in w-Lfoc([0,oo),i?1(Td)) (see 
(4.12)) then yields 

(4.26) / '((I + iu)Vip* ■ Vue) dt' -> f \(1 + iv)Vtp* ■ V«) dt'. 
Jtx Jtx 

In order to pass to the limit in the nonlinear term of (4.23) we shall exploit 
the generally useful fact that if {vn} is a weakly convergent sequence in a Ba- 
nach space X and {/„} is a strongly convergent sequence in the dual space X* 
then the sequence {fn(vn)} is convergent in C. Here, the strong convergence 
of ue in L2J~1([0,oo),L2j~1(Td)) implies the weak convergence of \ue\

2^~^ue in 
£1

1
oc([0,oo),L1(Td)) and, hence, in the Banach space L1([t1,t2] x Td)). The fact 

that ipe converges to ip uniformly over Td implies that it converges strongly in 
L°°([ti,t2] x Td)), which is the dual of L^i.fc] x Td)). It follows that 

(4.27) f * ((1 + ifi)i>*e\ue\
2^-Vue) dt' -> I 2 ((1 + in)1>*\u\2{-~i-Vu) dt'. 

Jt\ Jti 

By combining (4.25)-(4.27), one can pass to the limit in each term of (4.23) and 
conclude that u satisfies the weak form of the CGL equation (4.6). 

To recover the energy relation (4.7) consider its regularized version (4.10): 

IKWI&+ / ||V«£||^A/+ / \\ue\\%dt' 
(4.28) Jo Jo 

f Jo 
liki^+Ä/ \K\\2L2df. 
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First examining the right side, the strong convergence of the initial data in L2(Td) 
implies 

(4-29) \\<C ~+ IKIlis, 
while the strong convergence of ue in Lfoc([0, oo), L2(Td)) implies 

(4-3°) / IKWlidt'-* f\\u\\2L2dt'. 
Jo Jo 

The right side of (4.28) is therefore convergent as e tends to zero. Turning to the 
left side of (4.28), the convergence of ue in C([0,oo),w-L2(Td)), together with the 
general fact that the norm of the weak limit of a sequence is a lower bound for the 
limit inferior of the norms, yields 

(4.31) IK^II^^linnnflKWH2.,. 

Similarly, the convergence in w-Lfoc([0,oo),H1(Td)) and w-L2
o

7
c([0,oo),L2T(Td)) 

implies 

(4-32) / \Hm dt' < liminf f \\u€fH1 dt', 
Jo £-»u   Jo 

(4-33) f \\u\\% dt' < hminf f \\ue\\% dt'. 
Jo e^°   Jo 

Taken together, (4.30) and (4.32) give 

(4-34) j \\VufL2 dt' < limjnf f \\VuefL2 dt'. 

By combining (4.31), (4.33) and (4.34), one obtains a lower bound on the on the 
limit inferior of (4.28). The energy relation (4.7) is thereby satisfied and Theorem 
4.1 is proved. □ 

REMARK 4.5. The energy inequality (4.7) in Theorem 4.1 can be strengthened 
slightly. Indeed, it is readily seen that the approximate solutions defined by (4.8) 
of Step 1 will satisfy the energy relation 

5lM*2)||'3+ /2 \\VuefLadt+ f2\\uc\\%dt 
Jtx Jti 

^\K(ti)\\2L2+R f2\\ue\\l2dt, 
Jti 

for every [tltt2] C [0, oo). The convergence of u€ to u in Lfoc([0, oo), L2(Td)) implies 
||we||i2 converges to \\u\\L2 in Lfoc([0, oo)), whereby, upon also employing the Cantor 
diagonal method, one can pass to a subsequence of ue such that 

(4.36) IM*)||L2 -> IN*)||L2        for almost every t e [0, oo). 

Call the set of points for which the limit holds E. When tt is restricted to lie in E 
one can argue starting from (4.35) as in (4.28-4.34) to show that u satisfies 

§IN*)I&+ ft2\\Vu\\2L2dt+ ft2\\u\\%dt 
(4.37) Jtl Jtl 

<^Hh)\\2
L2+R f2\\u\\l2dt, 

Jti 
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for every [*i, ^2] C [0,oo) with t\ € E. 

REMARK 4.6. Replacing Td with Rd and C°°(Td) with the compactly sup- 
ported test functions C^°(Rd) everywhere in the statement of Theorem 4.1 gives 
the analogous Ed result. The strategy for its proof is embodied in the same four 
steps used above for the periodic case. Indeed, Step 2 and Step 4 have only su- 
perficial differences from those above. The Fourier-Galerkin method used in Step 1 
to construct approximate classical solutions breaks down over the whole space, but 
can be replaced by so-called smoothing approximations. Specifically, a contraction 
mapping argument such as in [36], can be used to construct smooth solutions of 
the initial-value problem 

dtue = Ruc + (1 + iv)Au£ - (1 + in)je * (\je * Me|
2(7_1)j£ * ue), 

ue(0,x)=v}e
n(x)=je*uin(x), 

where the regularization is achieved through convolution with a smooth, nonnega- 
tive mollifier je. Finally, details of Step 3 must be modified to reflect differences in 
the Rellich Theorem for unbounded domains. These technical changes are straight- 
forward, and so are omitted. 

REMARK 4.7. One can show the existence of global weak solutions for the 
defocusing (fiv > 0) NLS equation (1.2) with any a > 0 for finite-energy initial 
data using similar arguments, but using the conservation laws of mass and energy 
in place of the dissipation relation (4.7) to obtain the weak compactness of Step 2. 

5. Local Classical Solutions 

The solutions found in the last section are too weak to obtain proofs of their 
uniqueness or regularity. In this section we establish the local existence, uniqueness, 
and regularity results for classical solutions of the generalized complex Ginzburg- 
Landau equation (1.1). Our objective here is to provide the basic results necessary 
to justify the formal manipulations necessary to establish the existence of global 
solutions in Section 7. More general results might be derived by adapting the 
important new techniques developed by Bourgain [8, 9] for the NLS equation over 
Trf, however our needs here are less demanding. Indeed, our proofs mostly use 
standard techniques [32, 43, 70, 80] and some detail will be omitted. 

Local existence and uniqueness of classical solutions of the generalized complex 
Ginzburg-Landau equation will be established by using the contraction mapping 
theorem. In the first part of this section we will describe—first as an abstract 
result, then applied to the CGL equation—the setting necessary to obtain a so- 
called mild solution from continuous initial data, and elevate it to a classical solution 
by a bootstrapping procedure. In the second part of this section the contraction 
mapping argument is reexamined in order to extend the class of initial data that 
evolve into local classical solutions. 

Consider the evolution of u = u(t) in a Banach space X to be governed by the 
abstract initial-value problem 

(5.1) dtu = Lu + N(«),        ti(0) = uineX. 

Here the linear operator L is assumed to be the infinitesimal generator of a strongly 
continuous semigroup S(t) over X (so that the linear problem with N = 0 is well- 
posed, see [70]). The perturbation N is usually a nonlinear map over X. 
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The well-posedness of the above initial-value problem can be established by a 
contraction mapping argument after formally recasting (5.1) in its so-called mild 
formulation 

(5.2) u{t) = S{t)uin + f S(t- t')N(u(t')) dt'. 
Jo 

In order to employ the contraction mapping theorem we shall assume that the 
perturbation N is locally Lipschitz as a map from X into itself. More specifically, 
this means 

(i) \\N{u)\\x < Cbd(|M|x) for every «eX, 

(ii) \\N(Ul) - iV(u2)||x < CLip(|K||x, ||u2||x) ||«i - «2||x 
for every U\, u-i G X, 

where Cbd(-) and CuP(-,-) are nondecreasing functions of their arguments. We 
remark that N and L can always be chosen to satisfy iV(0) = 0 in which case 
condition (ii) implies (i). Given such a perturbation N, one can prove the following 
basic result [70, page 184]. 

THEOREM 5.1 (Basic Local Existence). For every p > 0 there exists a time 
T(p) > 0 such that for every initial data um G X with ||um||x < p there exists a 
unique u G C([0, T],X) satisfying the mild formulation (5.2). In addition, the map 
from um to u is a locally Lipschitz function from X to C([0, T], X). 

Such a u is called a mild solution for the initial-value problem (5.1); it provides 
the starting point for an analysis demonstrating that it is in fact a classical solution. 

REMARK 5.1. If u G C([0,T],X) is a mild solution of (5.1) then a direct cal- 
culation shows that it is also a weak solution of (5.1) in the sense that 

M«(*2)>x - (V>K*l)>x 

= [t2(L*ip\u(t))xdt+ [t2(mwt)))%dt, 

for every 0 < ti < t2 < T and ip £ V{L*). Here ( • | • )x is the usual bilinear 
duality between X and its dual space X*, while L* is the usual dual adjoint of L 
with domain V(L*) dense in X*. 

We now apply this general theory to the initial-value problem for the spatially 
periodic generalized complex Ginzburg-Landau equation. In that case we choose 

(5.4) Lu = (l + iu)Au + Ru,        N(u) = -(1 + ip,)\u\2<7u. 

The associated semigroup S(t) acting on u G X can be written as a convolution, 
S(t)u — Gt*u, with its Green function Gt = Gt(x) for t > 0 given by 

Gt(x) = Y^ 9t(x + n), 

(5'5) "*  i i   w g'{x) = (4*(i + w etpriäT7^ + R( 

The integral equation (5.2) recast in terms of this Green function takes the form 

(5.6) u{t) = Gt*um+ f Gt-v * N{u(t')) dt'. 
Jo 
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In order to apply the local existence theorem one only need identify the space X 
and verify the conditions (i) and (ii). 

For t > 0 the Green function (5.5) satisfies the i1-estimate 

(5.7) ||Gt||L1< V)  /   \gt(x + n)\dx= f   \gt(x)\ dx = (1 + u2)d'Aem , 

from which it follows that S(t) is bounded over Lp(Td) for every 1 < p < oo with 

(5.8) \\S(t)u\\LP = \\Gt * u\\LP < \\Gt\\L1 \\u\\LP < (1 + v2fIA em \\u\\ \LP ■ 

Moreover, it can be shown [32] that S(t) is a strongly continuous semigroup over 
C(Td) and over Lp(Td) for every 1 < p < oo. 

REMARK 5.2. The bounded operators S(t) defined by S(0) = I and S(t)u = 
Gt*ufort>0 form a semigroup over L°°(Td) that is strongly continuous for every 
t > 0 but only weak-* continuous at t = 0. (A sequence {vn} converges to v in the 
weak-* topology on L°°(Td) if it does so integrated against arbitrary functions in 

We first appeal to the local existence theorem with X = C(Td). The perturba- 
tion N given by (5.4) is clearly locally Lipschitz continuous as a map from C(Td) 
into itself. A direct application of the local existence theorem then yields a unique 
mild solution u = u(t) of the CGL equation over a time interval [0, T] that depends 
only on the L°° norm of uin. This solution is the limit of a sequence {u^} of 
successive iterates of (5.6), say that defined by 

u(°>(t) = Gt*uin, 

u^n+1\t) = Gt * uin + f Gt-V * N(u^(t')) dt', 
Jo 

that converge in C([0,T],C(Td)) for some T chosen sufficiently small that the se- 
quence contracts. 

Additional regularity must be demonstrated in order to elevate these mild so- 
lutions to classical solutions, specifically they ought to be C2 in space and C1 in 
time, so that the derivatives appearing in the equation are classical. This is done 
using the following standard bootstrapping argument. We use the regularity of Gt 

for t > 0 to estimate the gradient of the successive iterates (5.9) in the i°° norm to 
show that the sequence {u(n)} converges in C((0,T\,C1(Td)). This is accomplished 
as follows. Take the gradient of the integral equation (5.9), 

(5.10) Wn+1)(i) = VGt * uin + f VGt^t> * JV(u(n)(0)dt'. 
Jo 

and estimate 

(5.11) 

l|Wn+1)WllL~ < ||VGt||L1 ||«in||LOO + /"lIVGt-t'llii ||JV(«<n>(0)||L~df. 
Jo 
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Then, use the Z^-estimate 

||VGt||L1 < V   f  \Wgt(x + n)\dx 

(5.12) -Jjd 

I pRt 
\Vgt(x)\dx = Cd(l + v2)d/4^ 

where Cd > 0 is a constant depending only on the dimension d, to find that 
PRt 

||Vn("+1)(i)||^ < Cd (1 + v2)d" ~n ll^-IL- 
(5.13) Vt 

ft    R(t-t') 
+ Cd(l + u2)^ jo -j== \\N{vW{t))\\L- dt'• 

This shows that each Vu(n) lies in C((0, T], C(Td)). By invoking the Lipschitz conti- 
nuity of TV, a similar estimate shows that the sequence is Cauchy in C((0, T], C(Td)), 
so that u £ C^O.T^C^T*)). If uin e C^T*), it is possible to rewrite the integral 
equation for Vu without putting any derivatives on Gt, namely 

(5.14) V«(t) = Gt * Vuin + / Gt-v * (DN(u(t'))Vu(t')) dt', 
Jo 

where DN(u) represents the derivative of N(u) with respect to u, which, when 
N(u) is given by (5.4), acts on an arbitrary function w by 

(5.15) ■        DN{u)w = -(l + ifj,)((a + l)\u\2aw + a\u\2a-2u2w*). 

Consequently, estimates analogous to (5.13) will not exhibit a singularity at t — 0 
and hence yield awe C([0, T], C1 (Td)). A repetition of the above regularity argu- 
ment starting from (5.14) rather than (5.6) then shows that u is in C((0, T], C2(Td)). 
Moreover, because the CGL equation relates the first time derivative to the second 
space derivative, the solution must also be in C1((0,T],C(Td)) and is therefore a 
classical solution of the CGL equation so long as it is a mild solution. Summarizing, 
we have proved the following result. 

THEOREM 5.2 (Local Classical Solutions for C° Initial Data). For every p > 
0 there exists a time T(p) > 0 such that for initial data um G C(Td) with ||uin||i,oo < 
p there exists a unique 

(5.16) u e C([0,T],C(Td)) r\C({0,T],C2(Td)) nC1((0,T],C(Td)), 

satisfying the CGL initial-value problem. In addition, the map from uin to u is 
a locally Lipschitz function from C(Td) to C([0,T],C(Td)). Moreover, for initial 
data uin G C2(Td) one has u e C([0,T],C2(Td)) r\C1([0,T],C{Td)). 

In this generality one can not expect these solutions to be in C((0,T], C3(Td)) 
because unbounded singularities will be introduced at zeros of u upon further dif- 
ferentiation of (5.15). However, additional regularity can be gain in some cases. 
For example, when a is a positive integer the nonlinearity is a polynomial in u 
and u* and one can freely differentiate (5.15) without introducing any singulari- 
ties. Whence, continuing with the bootstrapping argument, it can be shown that 
for every t in (0, T] the solution has at least one more spatial derivative than it 
had initially. But then repeating this argument implies that the solution is in 
C((0,T],C°°(Td)). Moreover, because the equation relates temporal derivatives to 
spatial derivatives, the solution must possess all temporal derivatives too and is 
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therefore a smooth (C°°) solution of the CGL equation (1.1) so long as it is a mild 
solution. More precisely, we have proved the following result. 

THEOREM 5.3 (Local Smooth Solutions). Let a > 0 be an integer. Then for 
every p > 0 there exists a time T(p) > 0 such that for every initial data uln G C(Td) 
with ||win||i,oo < p there exists a unique 

(5.17) u G C([0, T], C{Td)) n C°°((0, T] x Td), 

satisfying the CGL initial-value problem. Moreover, given smooth initial data um G 
C°°(Td) then u E C°°([0,T] x Td). 

REMARK 5.3. The above result justifies the formal manipulations we will carry 
out in Section 8, thereby enabling us to focus our attention on the establishment 
of global uniform Sobolev bounds. Moreover, in Section 6 we will extend Theorem 
5.3 to show that when a is a positive integer these solutions are real analytic. 

Even when a is not a positive integer, we can still advance the bootstrapping 
argument so long as the differentiation of (5.15) does not introduce unbounded 
singularities at the zeros of u. The lowest degree of homogeneity for the factors 
u and u* appearing in a term of the (n + l)st derivative of \u\2au will be 2a — n, 
and this can be controlled whenever o > n/2. In that case the bootstrapping 
argument will gain an additional n spatial derivatives, showing that the solution is 
in C((0,T], Cn+2(Td)). This observation then leads to the following. 

THEOREM 5.4 (Local Ck Solutions). Let a > n/2 for some positive integer n. 
Then for every p > 0 there exists a time T{p) > 0 such that for every initial data 
um E C(Td) with ||Mm||z,oo < p there exists a unique 

(5.18) u G C*([0,T],C(Td)) n C((0,T],Cn+2(Td)) n ^((0,T],Cn(Td)), 

satisfying the CGL initial-value problem. Moreover, for um G Cra+2(Td) one has 
u G C([0,T],Cn+2(Jd)) n ^([O,T),Cn{Td)). 

REMARK 5.4. Of course, we can continue to trade two spatial derivatives for 
one time derivative. If n = 2k is even this leads to u G Cfc+1([0,T],C(Td)), while 
if n = 2k + 1 is odd one finds u G Ck+1([0,T],C1(Td)). 

REMARK 5.5. Theorem 5.4 will be applied in Section 7 with n = 1 in order to 
justify some of the formal manipulations there, enabling us to focus attention on 
the question of global existence. 

REMARK 5.6. Each of the above results have a version for initial data um in 
L°°(Td). By Remark 5.2 the semigroup S(t) acting on L°°(Td) is generally not 
strongly continuous at t = 0 but rather is weak-* continuous. The corresponding 
concession must be made regarding u in the conclusions of the L°° versions of the 
above theorems. For example, in the L°° version of Theorem 5.2 one must replace 
(5.15) with 

(5.19) u G C([0,T],w*-i°°(Td)) H C((0,T],C2{Td)) n Cx((0,T],C(Td)), 

where w*-L°°(Td) denotes L°°(Td) endowed with its weak-* topology. Outside of 
that consideration, the proofs of the L°° versions are virtually identical to those 
given above [25]. 
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The basic existence argument given above can be refined to greatly enlarge the 
class of initial data that evolve into classical solutions for positive times. We recall 
the mild formulation (5.2), 

(5.20) u(t) = S{t)uin + f S(t- t')N{u{t')) dt'. 
Jo 

In this formulation it is natural to distinguish three spaces. One aims at proving 
that for initial data in some space X the solution is in a "better" space Y on some 
interval (0, T\.   In general, the nonlinearity maps Y into a third space we shall 
denote by Z. 

For suitable choices of X, Y and Z the semigroup will be strongly continuous 
on X and also map X and Z back into the "better" space Y with a singularity at 
t = 0, so that near t = 0 one has nonnegative constants a and ß such that 

(5.21) \\S(t)w\\Y<ct-a\\w\\x    for every w eX, 

(5.22) \\S(t)w\\Y < ct~ß \\w\\z    for every weZ. 

Again, we will assume that TV is locally Lipschitz, now as a map from Y to Z. 
Without loss of generality one can assume that N(0) = 0, and for our convenience 
we will only consider the case where the Lipschitz condition can be written as 

(5.23) \\N(Ul) - N(u2)\\z < c (|K||^ + |H|^) ||Ul - U2||Y 

for some a > 0. The a above will be identified with the a of the CGL nonlinearity 
(5.4). This covers many applications, including the CGL equation. Modifications 
that embrace more general nonlinearities are not hard [43, 70]. 

THEOREM 5.5 (Extended Local Existence). Given the above estimates (5.21), 
(5.22) and (5.23) where the exponents a, ß and a satisfy 

(5-24) 0 < ß < 1, 

(5.25) 0 < (2<T + l)a < 1, 

(5.26) ß + 2aa < 1, 

for every p > 0 there exists a time T(p) > 0 such that for every initial data uin e X 
with ||uln||x < P there exists a unique 

(5-27) ueC([0,T],X)nC((0,T],Y) 

satisfying the mild formulation (5.20). In addition, the map from u[n to u is a 
locally Lipschitz function from X to C([0, T], X). 

PROOF. In order to indicate how to set up the contraction mapping argument, 
we first estimate the fixed point equation (5.20) in the Y norm, 

(5.28) ||«(t)||Y < ct~a |K1X + c j\t - t')-ß \\u{t')\\Y°+ldt', 
Jo 

or 
(5.29) 

e \\u(t)\\Y < c\n + cta J\t-t')-ßt'~^+1)a (t'a Ht')\\Y)2a+1 dt' 

sup (V
Q
K*')||Y)

2<7+
V (\t-if)-^-{2a+1)ada. 

t'e[o,t] v 'Jo 
<c||um||x + c 

t'< 
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This suggests that we might be able to prove contractivity in the space E([0,T]), 
defined as the completion of C([0, T], Y) in the norm 

(5.30) \\M\E-   
SU

P *
Q
IH*)IIY- 

t€[0,T] 

Indeed, (5.29) shows that provided 

(5.31) ta [\t - t')-ß t'~(2a+l)a dt'^0   as t -H. 0, 
Jo 

an assumption that is directly seen to be equivalent to (5.24-5.26), there exists a 
T > 0 such that the right side of the fixed point equation (5.20) maps sufficiently 
large balls with respect to the E norm into themselves. Invoking the Lipschitz 
condition (5.23), one can show in a similar way that this mapping contracts under 
the same assumption (5.31) for some T > 0. Then by the contraction mapping 
theorem, there exists a unique solution u G E([0,T]) C C((0,T],Y) to the fixed 
point problem (5.20). 

Finally one can show that u G C([0,T],X). To this end we only need to 
check the continuity of u at t = 0. First subtracting um from both sides of the 
mild formulation (5.20), a direct estimate in X, assuming a continuous embedding 
Z ■—> X, gives 

(5.32) 
\\u(t) - uin\\x < \\S(t)u™ - W

in||x + c Jl t'-{2a+1)a (t'a |KOIIY)2ff+1 dt' 

<\\S(t)uin-u™\\x + c\\u\\l°+1 fr 
Jo 

(2.+l)«dt, 

The first term on the right converges to zero due to the strong X continuity of 
the linear semigroup. Since ||U||E is bounded, the second term converges to zero 
provided that (2<r + l)a < 1, a condition already contained in (5.31). D 

REMARK 5.7. Strictly speaking, here we have proved existence in a smaller 
space, namely E([0,T]), than that asserted in (5.27). 

Let us now apply Theorem 5.5 to the CGL equation where, as before, N and L 
are given by (5.4) and the associated linear semigroup by (5.5). We first consider 
the case where the initial data is in Lp, i.e. X = LP(Td). We also take Z = LP(Td) 
and let Y = Lr(Td) where r is still to be determined. It takes some relatively 
straightforward applications of Holder and Young inequalities to verify that the 
Lipschitz condition (5.23) is satisfied whenever 

(5.33) r>(2a + l)p. 

In order to compute the exponent a of (5.21), the exponent of the "penalty" in- 
curred by using S(t) as a smoothing operator from Lp to Lr, we estimate 

(5.34) \\Gt*w\\Lr < \\Gt\\Lq \\w\\LP < HGtll^i« \\Gt\\]-J/q \\w\\LP 

where 
-,      1      1      1 (5.35 1 + - = - + - • 

r     p     q 

By using the L1 estimate (5.7) and the L°° estimate 

(5-36) ||G*||L- < (^+^/2{
a + &[(l + ^]d/2}, 
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for positive absolute constants a and b, one finds that for small t 

(5.37) l|Gt||L1 =O(t0),        \\Gt\\L„=0(t-d/2). 

This used with (5.34) and (5.35) gives 

-tä-h w\\ (5.38) \\S(t)w\\Lr<ct  2^   .   ||U/||Lp) 

i.e. a — ß = |(i - i). Then Theorem 5.5, first applied in the marginal case 
r = (2a + l)p, asserts the existence of a time T > 0 and a unique local solution 

(5.39) u G C([0, T], Lp(Td)) n C((0, T], i7(Td)) 

subject to the constraint (2a + l)a < 1, i.e. ad < p. 
Since u(t) G Lr(Td) for all i > 0, one can re-apply the argument to show that 

(5.40) u£C((0,T],Lr™(Td))    where rm = (2a + l)mp 

for every m G N. Finally, for some rm > (a + \)d we can take X = Z = LTm(Td) 
and Y = C(Td) endowed with the supremum norm to obtain u G C((0,T],C(Td)). 
An application of Theorem 5.2 then yields the following. 

THEOREM 5.6 (Local Classical Solutions for Lp Initial Data). If p satisfies 

(5.41) l<p<oo,        and       ad<p, 

then for every p > 0 there exists a time T(p) > 0 such that for every initial data 
um G Lp(Td) with ||um||LP < p there exists a unique 

(5.42) u G C([0,T],Lp(Jd)) r\C((0,T],C2(Td)) nC1((0,r|)C(T'')), 

satisfying the CGL initial-value problem. In addition, the map from um to u is a 
locally Lipschitz function from Lp(Td) to C([0, T], Lp(Td)). 

REMARK 5.8. For p > 2 the uniqueness of such classical solutions can be ex- 
tended to hold within the class of weak solutions of Theorem 4.1. In other words, 
so long as a weak solution of the CGL equation is classical then it is unique. What 
is striking here though is that in subcritical cases (ad < 2) Theorem 5.6 asserts 
the existence of solutions with Lp initial data for some p < 2—solutions which 
therefore lie outside the class of weak solutions of Theorem 4.1. In fact, as we will 
show below, for the subcritical case a = d = 1 one can use the same technique to 
establish the existence of solutions for initial data in classes of distributions Hq(T) 
for -\<q<Q. 

REMARK 5.9. This result does more than extend to IP the class of initial data 
that evolve into classical solutions for positive times. More importantly, it estimates 
the time interval over which any classical solution will exist in terms of its Lp norm. 
This means that in order to prove that any classical solution is global in time it 
suffices to control its Lp norm, where p satisfies (5.41). In Section 7 we present such 
temporally global a priori Lp bounds for an interval of v values depending only on 
a and d, but not /i. In that case one has global classical solutions (Theorem 7.1). 

REMARK 5.10. The proof given here differs from that in [80] in that the space 
E([0, T}) used here for the contraction mapping argument is larger than the space 
used there, but can be abstracted from [80] with minor modifications. Essentially 
the same methods lead to similar results for the CGL equation over Rd. More 
sophisticated techniques lead to similar results even in the dissipationless case of 
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the NLS equation, both over M.d [10, 24, 79] and over T where Bourgain [8, 9] has 
developed an L2(T) theory for a < 2. 

REMARK 5.11. An important special case is when p = 2a + 2, in which case 
the above theorem yields local classical solutions whenever 

2 
(5.43) d < 2 + - . 

This condition coincides with condition (3.7) for the existence and uniqueness of 
local solutions for the NLS equation in H1^). In Section 7 we present temporally 
global a priori L2a+2 bounds for a region of the /xzv-plane depending on a, but 
not d. In that case, whenever (5.43) is satisfied one has global classical solutions 
(Theorem 7.2). 

In the following, we will use Theorem 5.5 in its full generality to prove existence 
of a local solution starting from Hq initial data. The Sobolev spaces Hq(Td) can be 
defined for any q&R. To do so we will use to(£) to denote the Fourier coefficients 
of a function w G L2(Td), so that 

(5.44) w(x)=   T   tZKOe**,        w{£) = f  e~*x w{x) dx. 

€efz< Jjd 

The Hq norm of a function w can then be defined [2] as 

(5.45) \H\Hq=[   E  (l + KI2)'|ä(OI2 

\£€27rZd 

The existence result we are going to prove is relatively technical and will not 
be used in any of the subsequent sections, so that it may be skipped in a first 
reading. The motivation for this further inquiry comes from the observation that 
in the CGL equation |w|2ff scales dimensionally like A so that by formally trading 
powers for derivatives in condition (5.56), one transforms Theorem 5.6 into the 
following conjecture. Given uin G Hq(Td) where q > f - £, there exists a unique 
local classical solution. We will show under certain restrictions that this is indeed 
the case [56]. 

We first remark that it is very problematic to conduct the argument entirely 
in Hq spaces. The difficulty lies in obtaining a Lipschitz estimate (5.23), which is 
easily accomplished only when Y = Z = Hq(Td) is an algebra, i.e. when q > d/2. 
(See [2] for a review of Sobolev algebras.) In this case the basic local existence 
result, Theorem 5.1, immediately assures the existence of a local mild solution. 
This approach however does clearly not exhaust the conjectured range of admissible 
values for q. 

Secondly, we observe that the only interesting case is q < 0. Namely, when 
q> | _ I and q > o, one can always find a p > ad so that the Sobolev embedding 
jjq ^ U> holds, i.e. that ->\~% Therefore in this case local classical solutions 
are already guaranteed by Theorem 5.5. 

Assume therefore that uin G Hq(Td) = X for q < 0. Take the two other spaces 
as in the W argument, i.e. Y = Lr(Td) and Z = LP(Td). While ß = f (£ - ±) and 
the restriction r > (2a + l)p are as before, it still remains to find the exponent a 
of the "penalty" for using S(t) as a smoothing operator from Hq to Lr. This can 
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be done by going via the intermediate space L2, i.e. by using (5.38) to infer that 
for r > 2, 

(5.46) \\S(2t)w\\Lr < cri(2"r) ||S(t)u>||L3. 

The convolution S(t)w = Gt * w is best estimated by deriving bounds on its Fourier 
transform. Specifically, we have 

|2 \\Gt*M?„= £ Iö(0«(OIS 

\w\\m 

(5.47) **" 
< sup {(i+i£i2n?(oi2} £ (i+iei2)'R0i2, 

where w(£) denotes the Fourier coefficients of w and the Fourier coefficients of Gt 

are given by 

(5.48) g(0 = eRt e-(1+i»W2t. 

The supremum in (5.47) is easily estimated by simple optimization with respect to 
|£|2, resulting in 

(5.49) ||Gt*H|22<(_|y9
e2(*+i)t 

For sufficiently small t one has altogether 

(5.50) \\S(t)w\\Lr < Ct-2<2-r)-^ ||«;||H, . 

Again, we take the marginal case of the Lipschitz condition, r — (2a + l)p. Then 
condition ß + 2aa < 1 of Theorem 5.5 is satisfied if and only if 

(5.51) q>-0-~. 
I     a 

We still need to check the other two conditions of that theorem. Condition (5.25) 
imposes an upper bound on r, namely 

(552) rc 2(2a + l)d 
{b-bl) r< (2a+l)(d-2q)-4- 

Similarly, (5.24) imposes a lower bound on r, 

(5.53) r>ad. 

Note first that given (5.51), the upper and lower bounds on r can be satisfied 
simultaneously. For technical reasons, we also have two additional lower bounds on 
r. In the derivation of (5.50) it was necessary to assume that r > 2, and we must 
also require p > 1, i.e. r > 2a + 1. These combined with (5.52) translate into 

(5.54) q>—,   2 

2cr + l 

d      d + 2 
and 

(^ «>2      2a +1 

respectively. Then finally Theorem 5.5 yields a unique mild solution u G C((0, T], Y) 
for some T > 0. Moreover, since u(t) G Lr(Td) for all t G (0,T], further regularity 
can be achieved by a direct application of Theorem 5.6. One thus has the following. 
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THEOREM 5.7 (Local Classical Solutions for Hq Initial Data). Provided q sat- 
isfies (5.54), (5.55) and 

,      x d     1 
(5.56) a > - - - 

then for every p > 0 there exists a time T(p) > 0 such that for every initial data 
uin £ Hq(Td) with ||uin||ff« < p there exists a unique 

(5.57) ueC([0,T},Hi(Td))nC((0,T},C2(Td))r\C1((0,T],C(Td)), 

satisfying the CGL initial-value problem.  In addition, the map from um to u is a 
locally Lipschitz function from #«(Td) to C([0,T],#«(Td)). 

REMARK 5.12. We believe conditions (5.54) and (5.55) are technical and can 
be removed by more sophisticated techniques. Moreover, by following [10], the use 
of Besov spaces should allow one to obtain the marginal case when (5.56) is satisfied 
as an equality. Note also that provided a > \ and ad > 1—thus in particular when 
a is an integer—condition (5.56) dominates and we have proved local existence for 
the conjectured class of initial data. 

REMARK 5.13. The results in this section extend to Rd with only minor mod- 
ifications in their proofs. 

6. Analyticity of Solutions 

Let us now discuss Gevrey class regularity which is a stronger notion than the 
C°° regularity we have encountered before. It not only asserts that all derivatives 
of the solution u are bounded, but also that these bounds depend on the order of 
the derivatives in some prescribed way. Gevrey [34] used this notion as a setting 
in which to extend Cauchy-Kowalevski existence arguments to classes of functions 
that are not necessarily analytic (for a review of the analytic case see e.g. [45]). In 
fact, they are special cases of the quasianalytic classes which had been introduced 
earlier by Hadamard [41]. La Vallee Poussin [52] showed that, among the quasiana- 
lytic functions, the Gevrey classes are characterized by an exponential decay of their 
Fourier coefficients (see also [49]). In turn, this characterization has recently proved 
useful for showing that the solutions of various nonlinear partial differential equa- 
tions are analytic. Foias and Temam [30] developed this technique in the context 
of the two-dimensional incompressible Navier-Stokes equations, thereby simplifying 
earlier work of Kahane [47] that had been more in the style of Gevrey. Doelman 
and Titi [22] subsequently applied the technique to the cubic CGL equation, and 
Ferrari and Titi [27] extended the results to a large class of analytic nonlinear 
parabolic equations. In particular, the authors of the last reference have exploited 
the fact that certain subclasses are normed algebras, thus making the estimation 
of polynomial nonlinearities a triviality. This is the strategy we will adopt because 
of its brevity and elegance. 

A function w £ C°°(Td) is said to be of Gevrey class s for some s > 0 if there 
exist constants p > 0 and M < oo such that for every x £ Td and every a £ Nd 

one has 

(6.1) \d"w(x)\ < M (J^   • 
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Here we employ the usual multi-index notation in which 

2(T+1 2(7+1 d 

(6.2) \a\ = £ aj ,        a\ = J] aj!,        0° = J[ d% . 
j=l J = l .7 = 1 

The set of all functions of Gevrey class s is a vector space, denoted Gs(Td). It is 
closed under multiplication and differentiation. Moreover, the composition of two 
functions of Gevrey class s is again of class s. 

It is classical that G1^) is the space of real analytic functions Cw(Td); a 
proof can be found, for example, in [45, page 65]. For 0 < s < 1 the class Gs(Td) 
is subclass of the analytic functions, while for 1 < s < oo it contains the analytic 
functions. In fact, one has a hierarchy of spaces such that 0 < Si < S2 < oo implies 
the proper containments 

(6.3) GSl (Td) c GS2 (Td) c C°° (Td). 

Moreover, the union of the Gs(Td) does not exhaust C°°(Td) because there are 
quasianalytic functions that are not members of a Gevrey class [52]. 

In what follows it will be more convenient to characterize Gevrey classes in 
terms of the fractional Sobolev spaces Hr(Td) (as defined on page 28 for every 
r € K) with r > 0, rather than uniform bounds such as (6.1). 

LEMMA 6.1. Given s > 0 and r > 0. Then w G Gs(Td) if and only if there are 
constants p, M G (0, oo) that may depend on r, s and w such that for every n G N 
one has 

l 
2 

2\r \t\2n •^"■-'■>  I -.,/"■ (6.4)       UVHItf-= |   2. (i + ICITIcrROr|   <M,pn 

The proof is achieved by a direct application of the Sobolev embedding theorem 
[2] and shall be left to the reader. 

This lemma enables us to characterize functions in Gs in terms of the decay 
of their Fourier coefficients, a result of the type first due to La Vallee Poussin 
[52, 59], although this attribution has been obscured in the recent literature. The 
construction here uses the operator A = \/—A that, like —A itself, is nonnegative 
and self-adjoint so that arbitrary powers can be defined by spectral theory. For 
each s £ (0, oo) we define a family, parameterized by r, of normed spaces 

(6.5) V(eTAl/s: Hr(Td)) = {w e Hr(Td) : He1"^'«;!^,. < oo} . 

The functions in any such space have Fourier coefficients that decay faster than 
exp(—T^I

1
/

5
). The next theorem recovers the Gevrey class Gs(Td) as the union of 

all such classes. We believe the proof is new. 

THEOREM 6.2. For any s > 0 and r > 0, 

(6.6) Gs(Td) = (J V{eTAl/s: Hr{Td)). 
T>0 

REMARK 6.1. The use of the more general Hr rather than simply I? as the 
base space does not complicate the structure of the proof, but it is advantageous 
for the arguments that will follow. 
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PROOF. Let w G V(erAl/s: Hr(Td)) for some r > 0 and let p = T/S. Then 

\2s „ „     /pn|£|n/s\2s 

!|v»Hi^ = (^)'Di+i€iar( .      n! WW 

(6.7) <(ffj2(l + \t\2Ye2^1/Sm)\2 

I \2s 
n- \      II   rA1'5     ||2 
pnJ       II llif 

By setting M = ||eTj4l/su;||ffr we obtain (6.4), whereby w G Gs(Td). 
On the other hand, let w G G5(Td). For an arbitrary r > 0 one has 

||eTAl,'»||^ = E(1 + l«l2)re2T|C|1/'l^)la 

(6.8) oo   /„ \TO 

m=0 '        £ 

Now let p and M be such that (6.4) is satisfied. By interpolating (6.4) between 
n — 0 and any integer n such that m/s < 2n, the inner sum appearing in (6.8) can 
be bounded as 

m 

(6.9) £(1 + |£|2r |# ROI2 < M2^ . 

This bound is best if we choose n = nm = [m/(2s)] + 1, where [•] denotes the 
"greatest integer less than" function. Upon making this choice and applying the 
result in (6.8), one arrives at the bound 

m m 

(oo   ||."*'-„t < £ fiif M*<^ = * Y. (* Y>=!£.. v       }      ll 11 if - z^    m /," ^ \ o /        m! 
m=0 ^ m=0   N r  ' 

By making use of the Stirling formula [1] in the form 

e        I 
(6.11) lim -{n\)n =1, 

n—>oo n 

the limit of the mth root of the mth term in the last series of (6.10) can be evaluated 
as 

l 
,„10, ,.      2r (nm!)"">       2r nm      2r  1        r 
(6.12) hm  — —r- = —  hm  — — — — = — . 

m^oo   O.     i     ,\ — P   m—>oo   m 0    IS SO r       (m'.)m r r r 

Hence, by the Hadamard root test, the series in (6.10) converges for every r < ps, 

whence w G T>(erAl/s: Hr{Td)). D 

REMARK 6.2. The above proof gives a sharp relationship between the r of 
(6.5) and the p of (6.4). Had we been less careful in our choice of the nm used in 
(6.10) then this relationship would have been missed. 

REMARK 6.3. The theorem also holds over Rd. The proof can proceed in the 
same way, using Fourier integrals in place of Fourier sums. 
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One reason Gevrey classes are useful in the context of nonlinear partial differ- 
ential equations is that each Gs is closed under multiplication. It would be particu- 
larly useful if this property extended to each of the approximating (normed!) spaces 
V(eTAl/": Hr(Td)). The following theorem states that under certain conditions this 
is indeed the case. 

THEOREM 6.3. If s > 1, r > 0, andr> d/2 then V{erA}ls: Hr(Td)) is a Ba- 
nach algebra. This means that it is closed under multiplication and that there exists 
a finite constant C(r, d) such that any two functions v and w in T>(eTÄ : Hr(Td)) 
satisfy the inequality 

(6.13) ||e^1/s(^)||ffr < C(r,d) \\eTAl"v\\Hr \\eTAl"w\\Hr. 

The proof is a direct extension of the usual proof that Hr(Td) is a Banach 
algebra when r > d/2 [2], a result that is recovered above by setting r = 0. A 
proof of this theorem for the case when s = 1 is given in [27]; this proof is easily 
generalized for any s > 1. 

The spaces V(erAl/s: Hr(Td)) are naturally suited for the application to par- 
abolic equations: r will be identified with time so that T>(eTÄ °: Hr(Td)) evolves 
from being identical to Hr at r = 0 to being a subset of Gevrey class s in an 
arbitrarily short time. So if one can show that for some T > 0 the solutions to the 
equation with ST initial data are in V{etA}ls: Hr{Td)) for every t € (0,T] then 
one has proved Gevrey regularity of class s over that interval. 

Let us now proceed to show that the solution u of the CGL equation is of 
Gevrey class 1—in other words, is real analytic. To do this we employ the time 
dependent norm ||w||t = ||e*Aiy||L2. As the L2 norm of u is already controlled by 
(7.2), it is sufficient to derive a bound on the seminorm ||ylru||t. A direct calculation 
gives 

1 d '\Aru(t)\\2t = Re( f Ar+1etAuAretAu*dx 

(6.14) 

2dt"       Wllt \J 

+ Re ( f AretAdtu AretAu* dx 

= \\Ar+ll2uft + R \\Aru\\2 - \\Ar+1u\\2 

- Re[(l + iß) I' AretA{\u\2au) AretAu* dx" 

The first term on the right is easily estimated by using 

(6.15) ||41/2«Hi2 = (v,Av)L2 < \\v\\L2 \\Av\\L2 < \\\v\\2L2 + \\AvfL2, 

with v — AretAu. By using the Cauchy-Schwarz inequality on the integral in the 
last term of (6.14), one finds that it is bounded by 

(6.16) ||Ar(u"+1(uT)||t ll^lt < c\\Aru\\2/+2 . 

It is here that we use the fact that V(etA: Hr(Td)) is an algebra. Then finally 

(6-17) ^ll^r«(*)ll? <(R+\) \\Aru(t)\\2t + c\\Aru(t)\\?+2 • 

This differential inequality is easily integrated and shows that ||ylru(i)||t remains 
finite on some interval [0, T]. Given that a is an integer, the local existence theorems 
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of the last section guarantee that u{t) £ Hr{Td) for any r and t > 0 as long as it 
exists. Hence by initializing (6.17) with ||u(£)||#>- = ||^4ru(i)||o for some r > d/2 
and every such t one can conclude the following. 

THEOREM 6.4. Provided that a is a positive integer, a local classical solution 
is real analytic in x at any positive t as long as it exists. 

REMARK 6.4. In order to achieve global bounds with the method presented 
here, it is necessary to have a priori Hr control for some r > d/2. The method used 
originally by Doelman and Titi [22] requires only a priori H1 control independent 
of d. However, that method requires a separate and fairly involved estimate on 
the nonlinear term because V(etA: üf1(Td)) is not an algebra for d > 1. See 
Theorem 8.4 for the statement of the global result. 

7.  Global Classical Solutions 

The task of this section is to show that there are regions of the /i^-plane where 
we can elevate the local classical solutions found in Section 5 to global classical 
solutions. In these regions the CGL equation defines a dynamical system and we 
can investigate the properties of its global attractor. The values of /J, and v for 
which we establish this regularity will depend on the spatial dimension d and the 
degree of nonlinearity a. The results of the last sections were very general—for 
example, we have the same local existence and regularity results for either sign of 
the real part of the coefficient of the nonlinear term—and assert substantially little 
more than the fact that the problem is well-posed. The estimates and results in this 
section, however, will depend much more delicately on the structure and dynamics 
of the CGL equation. They rely not only on the signs of the dissipative terms, but 
on the relative signs of the coefficients of the dispersive terms as well. 

As was pointed out in the final remarks of Section 5, it suffices to obtain 
global control of any Lp norm where p > ad. Such bounds can be obtained by 
computing the time evolution of the Lp norm, say, and then perform estimates on 
the various terms in order to obtain closed differential inequalities. This shall be 
first demonstrated for the L2 norm which is simplest to control. A direct calculation 
and subsequent application of the Holder inequality yields 

Id 
2dt 

(7-1) r / f ^CT+i 
< 

f \u\2 dx = R j \u\2 dx- j \u\2a+2 dx - f \Vu\2 dx 

R f\u\2dx- ( f\u\2dx\ 

In the appendix it is shown that for a > 0 this differential inequality implies the 
L2 norm of u satisfies 

R \2T 

(7.2) H*)||L2< 

This estimate is independent of the initial data um and decays to R}l2a as t —> 
oo. Hence for times bounded strictly away from 0, the L2 norm of u is bounded 
uniformly in both time and initial condition. Whenever ad < 2, Theorem 5.6 then 
implies that the CGL equation has global classical solutions for all initial data in 
L2(Td). For ad > 2, one must control more than the L2 norm. 
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Directly computing the evolution of the Lp norm gives 

~ f\u\pdx = R [\u\pdx- [\u\2a+pdx 
(7.3) Pdtj J J 

+ Re( f\u\p-2u*Audx\ - v Im( f \u\p-2u*Audx) . 

The net contribution of the last two terms on the right side will be nonpositive for 
p > 2 provided 

(7.4) M < h/EEl. 
J lu    p-2 

This fact can be established many ways—either using Sobolev bounds as in [3], 
quadratic forms as in [25], or, as will be done here, as a consequence of Lemma 7.3. 
Upon supposing (7.4) is satisfied, the last two terms on the right of (7.3) can be 
neglected while the remaining terms can be treated through an application of a 
Holder inequality analogous to the one for the I? estimate (7.1) thereby yielding 
the inequality 

P+2a 

(7.5) -jt f\u\pdx<R j\u\pdx-(f\u\pdx\   P    . 

The appendix again gives a uniform bound, identical to (7.2), 
_i_ 

(7.6) \Ht)\\Lp</r       R       V<T 

The existence of global classical solutions is then guaranteed by Theorem 5.6 in 
the subcritical case {ad < 2)—as mentioned before—by takings = 2. In the critical 
case (ad = 2) one can still satisfy ad < p and (7.4) simultaneously by choosing p 
sufficiently close to 2. In the supercritical case (ad > 2) however, the best we can 
do is to choose p sufficiently close to ad, making (7.4) a restriction on the possible 
values of u for which the existence of global classical solutions can be established. 
This is summarized in the following. 

THEOREM 7.1. For a > 0, the generalized CGL equation with C2 initial data 
has unique global classical solutions provided either that ad < 2 or that ad > 2 and 
v satisfies 

(7.7) M<^EI. 
1   ' ad-2 

Thus, in the supercritical case the CGL equation has global classical solutions 
only when v lies in the strip around the ^-axis of the /«/-plane given by (7.7) while 
fj, may take on any parameter value. 

REMARK 7.1. When global classical solutions exist, estimate (7.6) shows that 
the attractor is confined to the closed ball of radius R1/^2") in Lp provided p satisfies 
(7.4). Furthermore, estimate (7.6) is independent of the initial condition. This 
means that in an arbitrarily short time all solutions enter some ball of finite radius. 

REMARK 7.2. The basic differential inequalities (7.1) on the L2 norm of u and 
(7.5) on the IP norm are sharp for the spatially homogeneous solutions (2.10) of 
the CGL equation. Moreover, their proofs use essentially the boundedness of the 
domain Td and do not extend to Rd. However, a bound on the IP norm of u over 
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Rd that is exponentially growing in time can be obtained provided (7.4) is satisfied 
by neglecting the last three terms on the right of (7.3). Such a bound is enough to 
infer that Theorem 7.1, as stated, holds over Rd. 

An alternative to directly controlling the IP norm is to rather first directly 
control the H1 norm and then control Lp through Sobolev estimates. This is 
however subject to the constraint 

{oo for d — 1 or 2, 

™-    ford>3. 
d-2 

Given that we are also constrained by ad < p, this restricts us to those cases where 

(7.9) d < 2 + - , 

which is incidentally the condition for local well-posedness of the underlying NLS 
problem, equation (3.7). 

An estimate on the H1 norm can be derived in a very similar way. As the L2 

norm is already controlled by (7.2), it suffices to control the L2 norm of Vu. To do 
so we assume a > \ so that Theorem 5.4 gives enough regularity of the solution to 
take the gradient of the CGL equation. A direct calculation then shows 

-- f \Vu\2 dx = R f \Vu\2 dx -  f\Au\2dx 

+ Re( / \u\2au*Audx\ + /xlm(  / \u\2au*Audx 

The last two terms on the right have the same form as those on the right side of 
(7.3) upon identifying p with 2a + 2 and v with -/x. Upon treating them in the 
same way, their net contribution will be nonpositive provided (compare with (7.4)) 

(7.11) M < v 

a 
In that case, these terms can be neglected, and an elementary interpolation in- 
equality applied to the second term (i.e. simply integrate by parts and use the 
Cauchy-Schwarz inequality) leads to 

(f\Vu\2dx 

dx 
(7.12) ~ [\Vu\2dx<R f \Vu\2 dx --^—jr- 

2 dt J J / I 

Upon using the L2 bound for u provided by (7.2), this differential inequality gives 
uniform upper bounds on the L2 norm of V« by following the procedure in the ap- 
pendix. Indeed, even in this case the differential inequality (7.12) can be integrated 
exactly to obtain 

(7.13) \\Vu{t)\\%<H°,Rt)(jz^rt) °  ' 

where $ is given in terms of the hypergeometric function F (e.g. see [1]) by 

(7-14) *^ = F(WT£i°-e-*>>*y 
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The function $(a,Rt) is monotonically decreasing in t and one can easily find that 
$(tf,0) = 2(1 + a) and $(CT,OO) = 2. Thus (7.13) provides a uniform bound on 
||Vu||L2 analogous to the IP estimate, equation (7.6). Then Theorem 5.6 shows the 
existence of global classical solutions in a strip around the f-axis of the parameter 
plane (7.11) similar to the strip around the ju-axis (7.7) from Theorem 7.1. In the 
case when p = 2 + 2a, these strips are completely symmetric, and both subject to 
the restriction d < 2 + 2/cr. 

However, for no p > 2 does the union of these strips extend to all of the 
modulationally stable region of the underlying NLS equation where the energy 
functional is positive definite and hence no finite-time singularities can occur. As 
the CGL equation is a dissipative perturbation of the NLS equation (disregarding 
for the moment the linear growth proportional to R), we expect to have regularity 
at least in this region. And indeed, a "perturbation" of the NLS energy functional, 

(7.15) F= f\Vu\2 ß 2 

\2 + ^-\u\2°+2 dx, 
<7+ 1 

where ß > 0 is to be chosen later, will help to considerably improve the region 
for which global existence of classical solutions can be shown. The technical reason 
why this particular combination yields better results than separate estimates on the 
H1 and L2+2a norms is that the problematic terms in the H1 and L2+2a estimates 
have the same functional dependence on the solution u and therefore taking the 
linear combination (7.15) and optimization in ß provides for partial cancelation of 
these terms. This is reflected in the following result, the present form of which 
is due to Ginibre [37] and slightly improves upon the region of validity given in 
[3, 25]. 

THEOREM 7.2. For cr>\ and d < 2 + 2/a, the generalized CGL equation with 
C2 initial data has unique global classical solutions if the dispersive parameters lie 
in the region of the ßv-plane, bounded by hyperbolae, 

(7.16) -1±^<^TT. 

This region of the /w-plane completely contains the first and third quadrants 
where the underlying NLS equation is modulationally stable, the strips found from 
the previous separate H1 and L2+2a bounds (this by the very form of F). In 
addition, it contains the whole CGL modulationally stable region 1 + fiu > 0 and 
a bit more depending on the degree of nonlinearity. Indeed, for d — 1,2 it reduces 
to the modulationally stable region in the limit of a high degree of nonlinearity 
(<7 —> oo). However, part of the strip (7.7) obtained from a direct Lp bound lies 
outside this region when p > 2 + 2a. This is summarized in Table 7.1 for integer 
values of a. 

Figure 7.1 illustrates the supercritical case d = 3, a — 1; the corresponding 
picture for any case where 2 < ad < 2 + 2a is similar. The inner pair of hyperbolae 
bounds the modulationally stable region 1 + \iv > 0 while the outer pair limits 
the region where global classical solutions can be obtained from Theorem 7.2. The 
little unshaded strip outside the hyperbolic boundaries indicates the region where 
global classical solutions that can still be obtained by using the direct V result, 
Theorem 7.1. 

REMARK 7.3. So far we have allowed for non-integer values of a which is suf- 
ficient to obtain global classical solutions that are C2 in the spatial variables. For 
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d=l 

a = l 

no restriction no restriction 

CT>3 

,  .     2^/o:r^l 
\u\ < or 

a — z 

1 + ßv      y/2a + l 
|/i — v\ ~~        a 

d = 2 no restriction 

\v\ < \/3    or 

1 + \xv      \ß_ 
-   2 \\i-v\ 

.  .      sf2o~=\ 
\v\ < —    or 

a — 1 

1 + vv < v/2(T + 1 

|/i — i/| _        a 

d = 3 

|i/| < v^   or 

1 + W 

\n-v\ 
<\/3 

M< 
V5 

\v\ < 
2y?Za - 1 

3(7-2 

d>4 M< 
ly/d-1 
d-2 

\v\ < 
y/2d-l 

d-1 
\v\ < 

2Vad- 1 
ad-2 

TABLE 7.1. Sufficient restrictions for the existence of global clas- 
sical solutions to the complex Ginzburg-Landau equation. The 
bounds on \u\ and the "no restriction" entries are a result of The- 
orem 7.1 while the hyperbolic boundaries arise from Theorem 7.2. 
The case where d = 3 and a = 1 is illustrated in Figure 7.1. 

a > n/2 one can even get Cn+2 solutions from Theorem 5.4, but for global smooth 
(i.e. C°°) solutions a needs to be integer. This case will the the focus of Section 8 
where we derive explicit global bounds for all spatial derivatives. 

In order to prove the results of this section, it is useful to have the following 
bounds on nonlinear functionals that occur throughout the proofs. They were first 
used by Ginibre [37] to obtain the improved hyperbolic boundaries (7.16). 

LEMMA 7.3. For p > 2 and a function u e H2(Td) n L2p"2(Td) the following 

inequalities hold: 

(7.17) 

(7.18) 

Re 

Im 

(/i»rv 
f\u\p-2u* 

Audxj   < 

AM dx I   < 

p 

P-2 

P 

u\p~2u*Audx 

u\p~2u*Audx 



THE COMPLEX GINZBURG-LANDAU EQUATION AS A MODEL PROBLEM   179 

r 

blow-up? 

. - y              \ -       J 

V 

modulational 

stability 

modulational 

stability 

(         ^ 

i     blow-up? 

1        . j 
-6-4-202468 

FIGURE 7.1. Parameter plane for the supercritical complex Ginz- 
burg-Landau equation (shown here is the case d = 3, a = 1). 
Global existence of smooth solutions is established in the unshaded 
region only. The inner hyperbolae are the boundaries of the mod- 
ulationally stable region 1 + \iv > 0. The region within the outer 
pair of hyperbolae is a result of Theorem 7.1 while the small un- 
shaded strip outside this region is a result of Theorem 7.2. In the 
subcritical and critical case (ad < 2) this strip extends to the whole 
parameter plane. 

(7.19) 

PROOF. Examine the identity, obtained through integration by parts, 

2 j \u\p~2u*Audx = -p f \u\p~2\Vu\2 dx 

- (p - 2) / \u\p-4u*2Vu -Vudx. 

For any nonconstant u the first term on the right side is negative while the second 
term is smaller in magnitude by a factor no greater than (p — 2)/p, whereby it 
follows that 

(7.20) / \u\p-2u*Au dx = -   f \u\p-2u* Au dx exp(i6). 

for some 6 in \6\ < ir/2 such that |sin0| < (p — 2)/p, or equivalently, such that 
cos0 > 2sjp — 1/p. By (7.20), these trigonometric bounds on 6 translate into the 
bounds (7.17) and (7.18). D 

This result is more than enough to provide the missing links in the deriva- 
tions of the differential inequalities (7.5) and (7.12) and it also enables us to prove 
Theorem 7.2. 
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PROOF OF THEOREM 7.2. We compute the time evolution of F by taking the 
appropriate linear combination of (7.3) with p = 2a + 2 and (7.10): 

(7.21) 
ldF 
2~dt 

= R f |Vu|2 + ß2\u\2°+2 dx- f \Au\2 + ß2\u\4°+2 dx 

+ (1 + ß2) Re( / \u\2au*Audx) + (ft - ß2u) Im( f \u\2au*Audx 

The benefits of this linear combination are immediately obvious, noting that when 
\i and v have the same sign, one can always find a ß that makes the coefficient of 
the last term zero. In order to obtain an optimal result, we bound the last two 
terms by Lemma 7.3. In addition to that, one can use a fraction n of the negative 
definite term to help control the last two terms. This is best done through the 
estimate 

(7.22) - I \Au\2 + ß2\u\4l7+2 dx < -2/3   f \u\2au*Au dx 

Altogether, one obtains the differential inequality 

(7.23) 

ldF =R f |Vu|2 + ß2\u\2°+2 dx - (1 - K) f \Au\2 + ß2\u\4°+2 dx 
2 dt 

/ .   , /9/T -I- 1 _ n     \      I' 
Tu*Audx 2Kß+(l + ß2)^±±-\»-ß2v\    a 

cr + 1        ' a + 1 /w. 
The last term can be neglected provided it is possible to choose ß such that its 
coefficient is nonnegative. This is always the case if i±v > 0. On the other hand, 
when fiv < 0 we can without loss of generality consider the case where ß > 0 and 
v < 0. Taking K = 1, this results in the condition 

(7.24) 2/3+ (1 +/?2)^p - ^-ß2v)^- > 0. 
<T + 1 a + 1 

Optimization in ß then results in the restriction to the hyperbolic parameter region 
(7.16). As we have used up all of the negative definite term, one obtains a bound 
on F that is exponentially growing in time, sufficient for Theorem 5.6 to assert the 
existence of global classical solutions. D 

REMARK 7.4. For those /x and v for which (7.16) holds as a strict inequality, 
we can keep K < 1 and obtain uniform bounds on the Hl and L2cr+2 norms by 
closing the differential inequality (7.23) as follows: 

(7.25) 

F2 <    1 + 0 + &£?) (/' v°|2 ix) + ("2 + (?Ti?) (/ wf'+'ix. 
< (l + T^W) /1«|2 <fc /1A»|2 + ßM1"*2 dx. 

In the second step we have used integration by parts and Cauchy-Schwarz on the 
first and the Cauchy-Schwarz inequality on the second term. Hence, provided ß can 
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be chosen so that (7.24) holds as a strict inequality, F will satisfy the differential 
inequality 

(7,6) »f <(, + 1)BP-(1-.)      <" + 1>2 F2 

W + W + Pj^te 

Upon again using the L2 bound provided by (7.2), this differential inequality may 
be integrated as in the appendix to obtain the uniform bound 

(727) (cx + l)2 + /?2/       R — 
[<   '' (1-K)(<7+1) \i-e-fR* 

This bound has the same scaling in R as t —> oo as the H1 bound (7.13). Note that 
ß and K are subject to the constraint that the coefficient of the last term of (7.23) 
be nonnegative and, hence, are not independent. The task of optimizing the choice 
of ß and K in the prefactor of (7.27) is fairly complicated and gives little additional 
information. However, we conclude by observing that this prefactor blows up as 
K approaches unity, which will be the case as (pi, v) approaches the hyperbolic 
boundaries of the region (7.16). 

8.  Global Sobolev Bounds 

This section is devoted to the derivation of global bounds on all spatial deriva- 
tives of the global smooth solutions found in the last section. As a consequence 
we will infer that the CGL equation possesses a compact global attractor when 
considered as a dynamical system over Hl(Td). It will be assumed throughout that 
a is a positive integer, so that the local existence of C°° solutions is ensured by 
Theorem 5.3, i.e. that the global classical solutions are in fact C°°((0, oo) x Td). 
This does not yet give us uniform global bounds on norms of the derivatives (al- 
though some bounds might be derived by a subtle analysis of the bootstrapping 
arguments of Section 5). Here we explain how to directly control the norms of the 
Sobolev spaces Hn(Td) and how to use those bounds to obtain global estimates on 
the analytic regularity of the solution. 

Bartuccelli et al. [3] first estimated the Hn norms of solutions to the cubic 
CGL equation by constructing a "ladder"—a sequence of nonlinear functionals, 
each of which controls successively higher derivatives of u, and that are connected 
by differential inequalities. The method was subsequently applied to the generalized 
CGL equation [25] and the two-dimensional incompressible Navier-Stokes equation 
[23]. Recent work has shown that it is possible to find a differential inequality that 
yields global Hn control directly from any of the global Lp estimates of Section 7, 
i.e. for any n without the need for intermediate rungs and functionals [4]. This 
form of the estimate is presented below. 

As the L2 norm of u is already controlled by (7.2), it is sufficient to estimate 
the L2 norm of V"u. Here Vnu is considered to be a symmetric n-tensor and 

(8.1) |Vnu|2 = Vnu*-V"u, 

where the dot denotes the usual tensor inner product which acts on a symmetric 
fc-tensor and a symmetric /-tensor by contracting over min{fc, 1} indices to give a 
symmetric \k — Z|-tensor. 
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A direct calculation shows that 

(8.2)                                                 f                                                    v 
-Re((l + »/i) / Vn(|u|2<7u)-Wdz). 

The second term on the right is easily estimated using the Sobolev inequality 
n                 1 

(8.3)                                l|V"u||L2 < ||Vn+1u||™2
+1 \\uW2?1 ■ 

More work is required to achieve a bound on the nonlinear term. The estimate we 
will use is 

(8.4) (vn{\u\2au)-Vnu*dx 
2ap 

< «||Vn+1u|£2 +c(6) \\VnufL2 \\u\\pL;
ad . 

In this formula (which will be proved later as Lemma 8.3) we can choose 6 > 0 and 
p > ad to suit our purpose. In particular, by setting 6 = |1 + i/f|_1 we can cancel 
the first term with half of the dissipative term of equation (8.2) to obtain 

j / 2ap   \ ,,„„    |,2(n+l)/n 

fs<Vl _||Vn7/ll2    < I 97? + rll7/ll p~ad III Vnii\\2 " '^2  
^     ' dl L2       I LP       / L2 II   ||2/™ 

One can use the a priori L2 bound (7.2) to control the denominator of the last 
term. It is then clear that global IP control with p > ad—note that this is precisely 
the condition for local regularity from Lp data—is sufficient to achieve global Hn 

control for any n. Explicit bounds can be obtained by following the procedure in 
the appendix, although in general it will not be possible to integrate the differential 
inequality exactly. Hence we state the result in its simplest form. 

THEOREM 8.1. For all positive integers d, a and n and for every p > ad, 
when \i and v lie in the region of the parameter plane where uniform LP bounds on 
solutions of the CGL equation with IP initial data exist, these solutions are global 
and smooth for all positive times with their Hn norm bounded uniformly for all 
initial data and t —*■ oo, satisfying the differential inequality (8.5). 

REMARK 8.1. Estimate (8.5) does not give the best scaling in all cases, al- 
though known improvements are slight. For a more detailed discussion see [4]. 

REMARK 8.2. Nonlinear dissipation enters estimate (8.5) only implicitly via 
the L? and possibly the LP bound. The explicit dependence on the sign of the 
nonlinear term has been lost in step (8.4). This in particular shows that by the 
same method global Hn bounds, although not necessarily uniform in time, can be 
obtained for equations of the type 

(8.6) dtu = Ru + (1 + iv) Au-i^i\u\2<ru. 

REMARK 8.3. Theorem 8.1 shows that the CGL equation possesses a compact 
global attractor when considered as a dynamical system over any Hn(Td). (For 
purposes of comparison, it is natural to consider both the NLS and CGL equa- 
tions as dynamical systems over iJ1(Td).) Indeed, because Hn+1(Td) is compactly 
embedded in Hn(Td), the existence of an absorbing ball in Hn+1(Td), which is in- 
ferred from (8.5) and necessarily contains the attractor, implies the compactness of 
this ball in Hn(Td). Furthermore, by the general theory developed by Mallet-Paret 
[58] and Mane [60] the attractor has finite Hausdorff dimension and can be locally 
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embedded in finite dimensional manifolds. This theory is reviewed in [42]. Explicit 
upper bounds for the Hausdorff dimension of the attractor were derived for d = 1 
by Doering, Gibbon, Holm and Nicolaenko [24], for d = 1, 2 by Ghidaglia and 
Heron [35] and for d = 3 by Bartuccelli et al. [3]. The techniques are based on the 
estimation of global Lyapunov exponents which are discussed in [13, 14, 78]. 

REMARK 8.4. In some cases the attractor can be globally embedded in an in- 
ertial manifold, a notion introduced by Foias, Sell and Temam [29]. An inertial 
manifold is a finite dimensional, exponentially attracting, positively invariant mani- 
fold that contains the global attractor—for a general discussion see [29, 15, 16] and 
references therein. For d = 1,2 the CGL equation is known to possess an inertial 
manifold while for d > 3 this is still an open question. Moreover, its dimension is 
bounded by the attractor dimension from below, while upper bounds can be proved 
following [16, 24]. This procedure relies on finding a large enough gap in the spec- 
trum of the Laplacian, leading to a much larger estimate on the dimension of the 
manifold when d = 2 and failing for d = 3 as there are no arbitrarily large gaps 
in the spectrum. By contrast, it is not clear whether the Navier-Stokes equations 
in two spatial dimensions possess an inertial manifold. This question remains an 
active area of research. 

To prove estimate (8.4), we first derive a preliminary estimate in which we 
impose that the Gagliardo-Nirenberg inequalities be used at their margin of validity, 
thus rendering the estimate independent of the dimension d. This result will then 
be used in two different ways to complete the proof. 

LEMMA 8.2. For all positive integers d, a and n the following inequality holds: 

II    II2CT (8.7) [\7n(\u\2rTu)-Vnu*dx <c(n,q)\\Vnu\ 

where 

(8.8) i + i-i. q     r 1 <q,r< oo 

REMARK 8.5. The advantage of this result, derived in [69, 4], in comparison 
with earlier estimates [3, 25] is that it permits a free choice of r while keeping the 
estimate independent of d. 

PROOF. By moving the absolute value inside the integral, performing a Leibniz 
expansion on V™(|W|

2CT
U), and then using the triangle inequality, one obtains 

(8.9) Vn{\u\2°u)-Vnu*dx  <    J2    ^ /|V"u| ff |Va'u|da:. 

\a\=n 

Here we have again employed the multi-index notation in which a! and \a\ are 
defined as in (6.2). For a given multi-index a with |a| = n define 6j and qj by 

(8.10) 6j = —,        - = 0j^- + (l-Oj)—. J J       n qj       
J2q     K        3>2ar 

These satisfy 

(8.11) EV^ = I.    r+E1 = 1 + i = i- 
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/' 

(8.12) 

Then the corresponding term on the right side of (8.9) can be estimated with a 
Holder inequality followed by a Gagliardo-Nirenberg interpolation on each of the 
factors: 

2(7+1 2(7 + 1 

|V"u| I] \Vaiu\dx<\\\7nu\\L2q n ||Va'u||L„ 
j=l j=l 

2(7+1 

< \\Xlnn,\\ TT   r   \Wnii\\6j     Ik/ll1-^ — IIV   U\\L
2
I   11   CJ II V   "Hi2« II

U
IIL

2
<"" 

J'=l 

= c||V u\\L2q\\u\\L2<Tr. 

Finally, by setting this into (8.9), we obtain the stated result. □ 

This result will now be used to establish estimate (8.4), thereby completing the 
proof of Theorem 8.1. 

LEMMA 8.3. For all positive integers d, a and n and for every p > ad and 
every 6 > 0, one has the estimate 

(8.13) [\7n(\u\2au)-Vnu*dx 

2ap 

< s ||V"+1<2 + c(s) || vnu\\L2 NIE; p—crd 

PROOF. Estimate the right side of (8.7) with a Gagliardo-Nirenberg inequality, 
followed by Young's inequality: 

(8.14) 
/vn(M 2o- u) ■ Vnu* dx < ci IIV n

+1"i||d2r 
V"u 

,2-d/r 
\\L

2
° 

4(7 

< 6 ||Vn+1u||i2 + c2(6) \\VnufL2 IMI *J 2-d/r 

For the inequalities to be valid, we must have 2-d/r > 0. By settingp = 2crr, we 
obtain the statement of Lemma 8.3. 

If d = 1 however, the condition r > 1 from Lemma 8.2 would restrict the 
possible choices of p even further, so that for \ < r < 1 we must complement the 
proof with a different interpolation in order to obtain the result in its full generality. 
Thus we estimate 

/ 
dn(\u\2<Ju)dnu*dx < c3 \\d

nu\\it \\dnu\\^A> ||«||£L 2(1-A) 1,2(7 

2A 

(8.15) 
;2(I-A) 

<c4(iiö"+1
wirL2||<;;.y 

x(\\dn+1u\\bL2\\u\\1-2l)
2a, 

where a and b are Gagliardo-Nirenberg exponents computed in the usual way. By 
the choice of A = \/r - 1, this equation reduces exactly to (8.14) so that the proof 
can proceed as before. '-' 

REMARK 8.6. The suggestive grouping of terms in equation (8.15) does not 
show a lower order term that has to be included in the estimate of \\u\\Li« because 
u is not a mean-zero function. However, in this case it is possible to absorb the 
extra term into the constant c4. For details see [4]. 
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REMARK 8.7. The ladder inequalities introduced in [3] and generalized in [25] 
use functionals of the form 

(8.16) Fn,m= f  \Vnu\2m + an,m\u\2mn^+1Ux, 

the choice of which is motivated by the observation that \u\2a scales dimensionally 
like A in the CGL equation. Terms like Vnu and |u|n<Tu have the same weight 
under this dimensional scaling. This however does not give any advantage over the 
direct approach as presented here. 

REMARK 8.8. We remark that although the implications of Theorem 8.1 add 
nothing so far as the existence of global smooth solutions is concerned, the explicit 
estimates that have been derived are useful. Some of these estimates are discussed 
in detail in references [3, 4]. 

Finally we will use the global Sobolev bounds of this section to initialize the 
local Gevrey class estimate of Section 6.   Recall that the differential inequality 
(6.17) shows that for every t for which u(t) G Hr(Td) there exists a positive finite 
time Tmax such that for every T G [0, Tmax] 

(8.17) \\Aru(t + T)\\T < 2 \\Aru(t)\\0 < 2 \\u(t)\\Hr. 

We know from Theorem 8.1 that \\U\\H^ is bounded uniformly over all initial data. 
One therefore has the following. 

THEOREM 8.4. For positive integers d, a and for every r > d/2 and p > ad, 
when p, and v lie in the region of the parameter plane where uniform IP bounds on 
solutions of the CGL equation with IP initial data exist, these solutions are global 
and real analytic for all positive times. Furthermore, there is a Tmax such that the 
T>(eTA: Hr(Td)) norm of u(t) is bounded uniformly over all initial data, for every 
T G [0, Tmax] and for every time t>T. 

Theorem 8.4 implies that the Fourier modes of a solution to the CGL equation 
decay exponentially with the wavenumber £ with a rate of decay which is uniform 
over large times. Doelman [21] first observed that the Fourier coefficients decay 
faster than any algebraic order. The exponential decay rate was established later 
in [22] by using methods similar to the ones presented in Section 6. This is con- 
sistent with numerical observations as well as with theoretical results concerning 
notions of finite-dimensionality which indicate that CGL dynamics is relatively low 
dimensional. 

From the computational viewpoint the exponential decay of the Fourier coeffi- 
cients means that simple Fourier-Galerkin truncation works well. The CGL dynam- 
ics is captured by a manageable number of Fourier modes [22, 26]. Furthermore, 
more sophisticated nonlinear Galerkin methods offer no advantage over Fourier- 
Galerkin truncation [46], a fact that is intrinsically linked to analytic regularity 
and the exponential decay of the Fourier coefficients. 

A general question of current interest is whether the solution of a dynamical 
system can be determined by the time history of a finite set of data. The notion 
of determining modes was introduced by Foias and Prodi [28] in the context of the 
two dimensional incompressible Navier-Stokes equations. A set of Fourier modes 
is called determining if the knowledge of the time history of the corresponding 
Fourier coefficients completely specifies the solution. In other words, if the deter- 
mining modes of any two solutions agree then the solutions are identical.   This 
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idea was subsequently extended to more general determining degrees of freedom— 
for example, the solution evaluated at nodes or averaged over cells [31, 11]. It is 
important to note that the dynamics of the full equation is not necessarily repre- 
sented by the restricted dynamics on a set of determining modes. Hence, a low 
number of determining degrees of freedom has no direct implication for computa- 
tional considerations. However, when an inertial manifold exists (as for CGL when 
d = 1,2), a finite number of Fourier modes usually serve as its coordinates. The 
infinite dimensional dynamics of the remaining Fourier modes is therefore slaved by 
the dynamics of a finite dimensional set. In such cases one can generally establish 
bounds on the number of determining degrees of freedom in terms of the dimension 
of the inertial manifold [11]. Such bounds can be far from optimal. Indeed, the 
CGL equation can exhibit a very low number of determining degrees of freedom. 
Kukavica [50] showed that for d = a = 1 the periodic CGL has sets of determining 
nodes consisting of only two points. His proof readily extends to the case where 
a is any positive integer. Analytic regularity is a key ingredient in the argument. 
There is now a considerable effort to extend and sharpen these results. 

Appendix. On the Integration of Differential Inequalities 

Throughout Sections 7 and 8 we infer uniform bounds for any nonnegative 
quantity F(t) that satisfies a differential inequality of the general form 

(A.1) a-^<a{t)F-b{t)F^, 

where s > 0 a,nd b(t) > 0. Following Bernoulli, introduce the variable Y = F~s 

into (A.l) and obtain the linear differential inequality 

dY 
(A.2) "-->-sa{t)Y + sb(t). 

Now multiply this equation by exp(/t, sa(t") dt") to obtain 

(A.3) jt (Y exp ( f s a{t") dt") \ > s b(t) exp ( f s a(t") dt" 

Integration of (A.3) between 0 and t results in 

(A.4)   Y(t) > y(0) expf- I sa{t')dA + f sb{t') ™p(-fi sa{t")dt"\dt'. 

The uniform upper bounds on F(t) follow directly by neglecting the Y(0) term, 
which effectively means taking the supremum over all initial conditions F(0): 

(A.5) F(t) <([ sb(t') exp(- f sa{t")dt"\dA 

This bound is satisfied by any nonnegative quantity F(t) that satisfies the differ- 
ential inequality (A.l), no matter what its initial value happens to be. 
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1    Introduction 

The complex Ginzburg-Landau equation is a generic amplitude or modulation equa- 
tion to describe many physical systems with dissipation near the onset of instability, 
see [NW69, DES71] and [NPL93] for a recent review. In typical situations, such 
as the Rayleigh-Benard or the Taylor-Couette problem in hydrodynamics, one is 
concerned with a translationally invariant problem where the wavelength of the 
dominating pattern is much smaller than the size of the physical domain. In such 
situations it is advantageous to study the system on an infinite physical domain; 
this leads to new phenomena like sideband instabilities which have their counterpart 
in mathematical difficulties due to continuous spectra and noncompactness. 

The main idea of the Ginzburg-Landau formalism is to describe slow spatial 
and temporal modulations of a basic periodic pattern by the solutions of a simple 
partial differential equation for the amplitude function A; this PDE for A is called 
the amplitude or modulation equation. It is our aim to present an introduction to 
this theory by considering the most simple example giving rise to this sort of pattern 
formation. Consider the following parabolic PDE, which is a mixture of the Swift- 
Hohenberg, the Korteweg-de Vries, and the Kuramoto-Shivashinsky equation: 

ut = -(1 + dlfu + (a + ßd2
x)ux + e2u + f(u) + g(u)ux    for t > 0, a; € M.  (1.1) 
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Here u — u(t, x) G Mt is the state variable, and / and g are smooth functions with 
/(u) = f2u

2 + f3u
s + 0{u4) and g{u) = gm + g2u

2 + C(|u|3) for u -> 0. The 
parameter s is small and e2 measures the distance from criticality. Linearizing 
at u = 0 shows that the periodic patterns e%kx are damped for |1 - k2\ > e and 
they are unstable in the other case with growth rates less than e2. The aim of 
the Ginzburg-Landau approximation is to describe the nonlinear evolution of these 
weakly unstable periodic patterns. For this purpose solutions are sought in the 
form 

U\(t,x) = eA(T, X)ei(wt+:c) +c.c,    with T = e2t and X = e{x + cgt), 

where A is the slowly varying amplitude of the pattern, T is the slow time scale, and 
X the large spatial scale. Formal multiple scaling calculations, which are explained 
in Section 2, show that the associated modulation equation for A is the complex 
Ginzburg-Landau equation 

dTA = ad\A + bA - c\A\2A, (1.2) 

where the coefficients a, b, c G (D can be calculated explicitly from (1.1). 
In Section 3 we discuss the question whether the function u(t,x) = U\{t) is 

really an approximation of a true solution u of (1.1). The theory involves two 
major steps. First, we show that a suitable approximate solution ««[/] has a 
small residual 

Res(u) = dtu — L(dx)v, — Af(e, u) 

in a suitable function space. In the next step, a differential equation for the error 
R — u — v, is established in the form 

dtR = L{dx)R + DuN{s, u)R + M(e, ü, R) + Res(ü), (1.3) 

where M = ö(||i?||2). From (1.3) the error has to be controlled by using some 
kind of Gronwall inequality. 

The second step goes through in a straight forward way for cases where the 
nonlinearity starts with cubic terms. However, the case of quadratic nonlinearities 
needs a more refined theory involving the structure of Fourier mode interaction. To 
this end we define mode projections to split u into uc + us where us contains stable 
modes and uc the critical modes: 

uc = Pcu,    where J:{Pcu){k) = Xc{k){J:u){k), k G M, 

where T is the Fourier transform and Xc(k) = 1 for |1 — |fc|| < 1/4 and 0 elsewhere. 
In order to handle the case of quadratic nonlinearities it is essential to use the 
fact that the quadratic interactions of critical modes lead to stable modes, i.e. 
Pc(Pcu ■ Pcv) = 0. The main result is contained in Theorem 3.6, and it states 
that for each solution A = A(T) of (1.2) existing for t G [0,T0] and each d > 0 
there are EQ,D > 0 such that for all e € (0,£o) the following is true: the solution 
u(t) = <St

£(w0) of (1.1) with ||uo - E/A(0)|| < de5/4 exists for t G [0,T0/e
2] and 

satisfies 
\\u{t)-U\{t)\\<De^ 
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on this interval. 

The whole mathematical theory of modulation problems depends very subtle 
on the choice of the underlying function spaces. In Section 3 of this paper we use 
i?1(JR) as the basic phase space for (1.1) in order to present the theory as simple 
as possible. Other choices are spaces of bounded continuous functions or L°°(1R), 
which were used in [CoE90, KSM92, Sch94a, Co94], and function spaces, which 
contain analytic functions having a bounded holomorphic extension into a complex 
strip around the real axis (see [vHa91]). As Fourier transform methods play an 
essential role it is also convenient to characterize the functions through its Fourier 
transform, e.g., in [Eck93] the functions u with Tu G Ll{]R) f~l L°°(M) were used. 

We prefer the spaces iJ"u(iR) which were introduced in [Sch94b, Sch94c, MS94]; 
they consist of the uniformly local Sobolev spaces Hn(M) = Wn'2(M) and contain 
all kind of bounded functions such as periodic or quasiperiodic spatial patterns as 
well as travelling fronts. Moreover, they are based on I? and, hence, the important 
tool of Fourier transformation is still available. Another nice property is that the 
global existence of solutions in these spaces can be shown for many classical dissi- 
pative system by the weighted energy estimates. This theory is recalled in Section 
4.1. Moreover, we give a global existence proof for (1.2) with Rec > 0 in Theorem 
4.1 and derive explicit bounds for an absorbing ball in Hju{M). 

Furthermore, Section 4 contains a brief account of further research which leads 
to a more detailed study of the system. In Section 4.2 we discuss the attractivity 
of the set of modulated periodic patterns. It was first observed in [Eck93], that 
the dynamics of the system is such that all small solutions develop after a certain 
time the structure of a modulated periodic pattern. This property is very similar 
to the attractivity of finite dimensional center manifolds; of course, in this case the 
existence of an invariant manifold is not known and seems very unlikely. 

The approximation property derived in Section 3 and the attractivity property 
allow us to follow all small solutions u for all t G [0, oo) by approximate solutions 
of Ginzburg-Landau type. However, every approximate solutions is only valid over 
a long but finite time interval; after that interval the error between the present 
approximation and the true solution may become large, but the attractivity tells 
us, that there is another modulated periodic pattern which is close to u. Using this 
new modulated pattern as a starting point for the Ginzburg-Landau approximation 
we again obtain an interval of good approximation. Thus, it is possible to construct 
a pseudo-orbit for (1.2) which shadows the true solution u for all t > 0. In [Sch94c] 
it was shown that the jumps in the pseudo-orbit can be controlled and are less than 
Ce1/4 in the ^-independent Ginzburg-Landau equation. 

A recent result in [MS94] concerns the existence of an attractor A£ for (1.1) and 
of an attractor Ag for (1.2) in the space H}U(]R). Note that these attractors cannot 
be compact, as they are translationally invariant, nevertheless they are attractors 
in the norm topology of H}U(]R). The existence theory is based on ideas of [Fei93]. 
Moreover, it is possible to compare the attractor Ae with Ag in a certain scaled 
way. 

In this brief introduction many results in the field of modulation equations 
are not touched; here we mention a few of them in order to show the richness 
of the theory.  Hyperbolic problems also show modulational effects and the most 
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famous example is the nonlinear Schrödinger equation which describes the nonlinear 
evolution of the amplitude of a small wave packet in dispersive hyperbolic systems. 
See [CaE87] for formal derivations and [Kal89, KSM92, Sch94e] for a proof of the 
approximation property. 

Generalizations of the above theory are available also for vector-valued prob- 
lems and for systems on cylindrical domains one unbounded spatial direction. The 
stationary or time-periodic Navier-Stokes equation on an infinitely long cylinder 
was treated in [IMD89, IM91] and the stationary part of the Ginzburg-Landau 
equation was obtained. In [Sch94b, Bol94] the full parabolic system was treated 
and the Ginzburg-Landau equation was shown to produce valid approximations 
for the Navier-Stokes equations. Recall that the theory of modulation equations 
was originally invented to analyze exactly these problems in hydrodynamics, see 

[NW69, DES71]. 
Modulation equations can also be treated on domains with two unbounded 

spatial directions. In these systems one typically observes an competition between 
roll-like structures and hexagonal patterns; we refer to [NPL93] for a physical 
review on this topic. In [Sch94d] the Newell-Whitehead equation was studied as a 
modulation equation in the sense described above. However, it turns out, that it 
generally fails to describe the dynamics of the original problem on a suitably long 
time scale. 

This negative example gives new motivation for the mathematical study of the 
connections between weakly nonlinear systems and their modulation equations. Not 
every equation derived formally is equally well suitable to describe the full system. 
The mathematical justification is one tool which helps us to decide which modula- 
tion equation is useful. In building up a catalogue of qualifying and disqualifying 
properties of modulation equations it will be possible to support the process of 
modelling the effects in pattern forming systems; thus, we can replace expensive 
physical or numerical experiments, which by now are the standard tools to test the 
validity of modulation equations. 

2    The formal derivation 

In this work we focus our attention to one of the simplest model problems which 
can be treated with the Ginzburg-Landau formalism: 

Ut = _(i + dlfu +{a + ßd2
x)ux + e2u + f{u) + g{u)ux    for t > 0, x € M.  (2.1) 

Here u = u(t, x)£ Si is the state variable, and / and g are smooth functions with 
f(u) = f2u

2 + f3u
3 + 0(u4) and g(u) = gm + g2u

2 + £>(\u\3) for u -> 0. The 
parameter e is considered to be small, such that e2 measures the distance from 
the onset of instability. Note that the parameter a can be changed easily by going 
into a moving frame: define u{t, x) = u{t, x - ct), then w satisfies (2.1) but with a 
replaced by a + c. We will make use of this fact below. 

The basic solution is u = 0 and its stability can be studied by analyzing the 

linearization 
vt = -(l+ dlfv + (a + ßd2

x)vx + e2v. 
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As this problem is independent of x and t it can be solved by exponential solutions 
in the form v(t, x) = e

xt+lkx^ where fc 6 M and 

A(fc) = -(1 - fc2)2 + (a - ßk2)ik + e2. 

The exponential growth rate is given by the real part of A and we immediately see 
that growing solutions correspond to |fc| G (\/l — e, \/l + e). The most unstable 
wave number is where the maximum of Re A is attained, in our case k = ±1. 

The imaginary part u(k) = IraX(k) gives the phase velocity of the spatially 
periodic pattern elkx. For fc = 1 we find w(l) = a — ß. For modulated patterns, 
which can be understood as wave packets with slightly varying wave number, the 
group velocity cg is important; it is defined as cg — du)/dk. For the critical mode 
k ■— 1 we find cg = a—iß. As the only stable wave numbers are in a e-neighborhood 
of fc = ±1 we let k = 1 + eK. Now, the solutions can be expanded as follows: 

VU  x\ _ gAt+ifcx _ eH(a^ß)t+x]+ie[(a-3ß)Kt+Kx]+e2ll-(4+i3ß)K2}t+0(e3)t^ 

Hence, by choosing the frame speed such that the group velocity is 0 (i.e. a = 3/3), 
the solution is given as the basic periodic pattern el(20t+x) modulated on the slow 
time scale T = e2t and on the large spatial scale X = ex: 

V(t, X) = ell-(4+*ß)K*+0(e)]TeiKX^      where ß = ei(2/W+x) _ 

For fixed £o we will use the special notation Eto to indicate the time-independent 
function e

i(-2ßt°+x\ 
In a weakly unstable nonlinear theory it can be expected that the dynamics is 

dominated by the critical modes from linear theory. The interaction of these modes 
is driven by the nonlinear terms and occurs through modulations on the slow time 
scale T = e2t and the large spatial scale X = ex. From now on we always assume 
that the group velocity of the critical pattern is zero, i.e. a = 3/3. Hence we are led 
to the ansatz 

u(t,x) = U%(t,x)+ö(e™+1),    with 
UT(t,x) = eA(T,X)E + eA(T,X)E + j:Z2Zt-n£nAn,iEl. { ' ] 

Here A is the amplitude function for the basic periodic pattern E = e
l(x+2ßt). The 

amplitudes Anj = AUt-i are the amplitudes of the powers of the basic pattern 
generated through the nonlinear interactions. 

The Ginzburg-Landau formalism proceeds now as follows: we insert the ansatz 
(2.2) into the basic underlying equation (2.1) and equate the coefficients of the 
powers of £™Em to zero. After finitely many steps we obtain a closed problem, 
which allows us to determine the amplitude A. Moreover, we may increase m 
and obtain a hierarchy of equations from which allows correction terms can be 
constructed. 

In order to show how this procedure works we rewrite (2.1) in the form 

Cu=N{e,u) =e2u + N2{u,u)+Nz{u,u,u) + ö(\\{u,ux)\\4), 

where Cu = ut - L{dx)u = ut + (1 + <92)2u + /3(3 + d2)ux, > 
ßf2(u, v) = f2uv + ^-{uxv + uvx), 

' Afs(u,v,w) = f^uvw + ^-(uvwx +uvxw + uxvw). 
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The nonlinear terms A4 are written as symmetric fc-linear forms. By elementary 
calculations we obtain the following result. 

Lemma 2.1 
Let m G 2L and B = B(T, X) with T = e2 and X = ex. IfB is sufficiently smooth, 
then 

£[B{eH,ex)Em] =Em{[2ßim - \0{m)]B + ei\'0(m)Bx 

+s2[BT + ±\Z(m)Bxx]-e3l\£\m)d%B-e*±\W(m)dj(B}, 

where \0{k) = -(1 - k2)2 + ß{3 - k2)ik, k e M. 

Note that 2ßim - A0(m) = 0 if and only if m = ±1; this fact will be important for 
constructing the hierarchy in Anj. 

Inserting (2.2) into the nonlinear terms we find 

M2(UT, U%) = e2 (f2 [A2E2 + 2\A\2 + äV
2
] + 9l [iA2E2 - aV2]) 

+e3Ef=-3"AE' + 0(e4); 

Mi{UA, UA, UA) = e3 ((/3 + ig2)A
3E3 + (3/3 + ig2)\A\2AE + c.c.) + 0(e4), 

where n3/ = (2/2 + igi)(AA2fi +~ÄA2,2). /.From C(AE) = 0(e2) it is obvious that 
all terms of order e vanish. Comparing the terms corresponding to £2Efc yields 
(2ißk - \o{k))A2tk — n2Äk which results in 

(0i-(-l))A2,o = 2/2|^|2+5i-0, 
(2iß - 2iß)A2,! = h ■ 0 + <?i • 0, (2.5) 

(4i/3 - (-9 - 2iß))A2,2 = (/2 + igi)A2.  ' 

(An>i with I < 0 is always given by the complex conjugate of An<-i-) 
We are now ready to derive the associated Ginzburg-Landau equation by com- 

paring the coefficients of e3E: 

AT+*mAxx+iK(l)A2,i + (2iß-Ml))A3,i 
= A + (2/2 + igi){AA2,o + AA2>2) + (3/3 + ig2)\A\2A. 

Using A0(l) = 2iß, cg = X'0(l) = 0, and the previously obtained expressions for 
A2)i the result reads: 

AT = (4 + 3iß)Axx + A + c\A\2A, 

where c = (2/2 + i9l)(2f2 + %$$) + 3/3 + ig2. 

Of course, we can write out all the equations corresponding to enEl. For I ^ ±1 
we obtain an algebraic equation for Anj in terms of A and all the lower order 
functions A— with n < n.   For I = ±1 and n > 4 we obtain a linear partial 

71,1 

differential equation of the form 

&rAn-2,i = (4 + 3iß)d2
xAn-%1 + (1 + 2c\A\2)An^l + cA2An-2^ + pA{T, X), 
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Here PA depends only on A and A~~ (and their derivatives) where either I ^ ±1 

and n <n — 1 or I — ±1 and n < n — 2. 
Therefore, we are able to calculate arbitrarily high correction terms An>k, as 

long as A is sufficiently smooth. Studying the exact interactions of derivatives and 
powers in e we arrive at the following result. 

Corollary 2.2 
Assume that A : [0,TQ] X M —» <D has bounded continuous partial derivatives 
dj'd^A for all i,j>0 with 2i + j < m > 2. Then, the above construction yields 
an approximate solution u — U™ such that 

fles(S) =Cu- N{e, Ü) = ö{sm+1) 

uniformly for (t, x) € [0, T0/e
2] x M. 

Thus, we have found approximate solutions in the sense that the residual for 
the original problem is as small as we like. It remains to show that small residuals 
also imply small errors, which is done using the boundedness of the associated 
linearized semigroup. Using the ansatz u = U™ + emR we can derive a differential 

equation for the scaled error R. As U™ has size of order e the error scaling em 

will satisfy 1 < m < m + 1. If we are able to show that R remains of order 1 for 
t € [0, To/e2], the desired result is established. We ask for a time scale of order 
1/e2, which is absolutely necessary to make any sense out of the result. Recall that 
the modulations of A appear on an order 1 time scale in the slow time T. To see 
this effect in the approximate solution {7™ it is necessary to follow the solution in 
the unsealed time t over an interval of length To/e2. 

3    Error estimates 

As mentioned above we can find approximate solutions UA such that the residual 
is arbitrary small. The error r between this approximation and a suitable true 
solution u should be small. Letting r = u — UA = £nR we obtain for the error the 
equation 

CR = e-n (Af(e, UA + enR) - N{e, UA) - Res(£^)) 

= DuM(s,UA{t,x))R + M{s,UA(t,x),R) - e-nRes{UA), 

where M(e,u,R) = e-n(Af{e,u + enR) - M{e,u) - DuAf(e,ü)enR) = 0{en\R\2) 
uniformly for e G (0,1]. The main difficulty lies in the size of the linear part 
DuM(e, UA), since it allows for an exponential growth rate of the error. As UA = 
0(e) we have DUM{£,UA) = 0(sk), where k = 1 in the general case and k = 2 
whenever A/2 vanishes. The latter case is also called the cubic case, as the nonlin- 
earity starts with cubic terms. We first treat this cubic case, which is much easier 
than the general quadratic case. 

In order to build a mathematically basis for this theory we introduce a function 
space Z in which the solutions u of (2.1), the approximate solutions UA, and the 
error in (3.1) will be considered. Associated to this is a function space Y for the 
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solutions A of the Ginzburg-Landau equation (2.6). We consider the mapping 
A H-> UA as a mapping from the Ginzburg-Landau space Y into the phase space Z. 

We choose the function spaces Z = Hl{R) and Y = H^R) © iH^R), where 
we continue to distinguish Z and Y, as Z contains functions depending on the 
unsealed spatial variable x G R whereas Y contains functions on the slow spatial 
variable X G R. For convenience we also use the abbreviations Zm — Hm(R) and 
Y™ = fjm^ 0 iHm{R). We use the scaling mapping We : Yn -> Zn;A{-) t-> 
A(e ■) and the lift Y3A^>U\= s{(WeA)E + (W^E-1) G Z, which satisfies the 
estimates 

||C/i||co<2ep||co,     \\UA\\z<2ell2\\A\\Y. 

(We continue to use Cj for the space of functions on R which have j bounded 
continuous derivatives, where || • \\CJ is the sum of the supremum norms of these 
derivatives.) The i71-estimate does not contain the coefficient s due to the fact 
that the scaling of the spatial variable X = ex diminishes the decay rate in U\. 

An important feature of the theory is to control the dominating linear operator 
C = 8t- L{dx) with L(dx) = -(1 + d2

xf + /3(3 + d2
x)dx. In the chosen spaces the 

following result holds: 

Lemma 3.1 
The densely defined, closed linear operator L{dx) : ZA C Z° -> Z° generates a 
holomorphic semigroup S(t) = eL(dx)t, t > 0, which satisfies, for all m > n > 0, 
the estimates 

||5(t)||z»^z» < 1,    fort>0; 
\\S(t)\\z^Zm < Cm_n(l +t-(m-n)/-4),    fort> 0. 

Proof: The result follows easily by Fourier transform T. Letting u = Tu the trans- 
formed equation reads ut = X0(k)u which has the solution u(t, k) = eAo(fc)tu(0, k). 
Using the fact that the norm in Zm is equivalent to ||(1 + k2)m/2u{k)\\zo, the result 
is easily established from (1 + fc2)(m~n)/2 |eA0(fc)t| < (1 + fc2)(m-n)/2e-(i-fe2)2t < x 

for m = n and < Cm_„(l +1~(m~n)/4) for m > n. □ 

The boundedness of the linearized flow at criticality (e = 0) is one of the essential 
features in showing that approximate solutions U™ are close to true solutions; it 
allows us to turn small residuals onto small errors. We can now rewrite the nonlinear 
evolution problem (2.1) as integral equation 

u{t) = S(i)u(0) + f S(t- r)M(e, u(r)) dr. 
Jo 

Here M(e, ■) is a smooth mapping from Z into Z° = L2(R). By standard semilinear 
parabolic theory (cf. [Hen81]) we obtain a local, continuous semigroup <St

e on Z, that 
is, u(t) = <Sf(u(0)) solves (2.1). Note that the longtime existence of the solutions is 
not clear, since standard theories involving Gronwall estimates guarantee existence 
of Sl(u0) only for t G [0,cmin{l/e2,1/p}] for all u0 with ||w0|U < P- 

Similarly, the Ginzburg-Landau equation can be treated in order to obtain the 
local semigroup QT on Y, such that A{T) = GT(A0) solves (2.6).   The question 
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of justification of the Ginzburg-Landau formalism is now concerned with estimat- 
ing the difference between the true solution u(t) — Sf{U\ ) and the approximate 
solution u(t) = U\(t) = e({WegE2t(A0))E + c.c). 

3.1    The case of a cubic nonlinearity 

Since the case with the cubic nonlinearity serves as an introductory part we make 
the further assumption that the nonlinearity in (2.1) is given solely by /(«), that 
is g = 0. This leads to the simplification that TV is a smooth mapping from Z into 
itself rather than the larger space Z°. 

Theorem 3.2 
(Cubic nonlinearity) 
Let f2 = /"(0)/2 = 0 and g = 0. Let A(0) G H4(1R) = Y4 c Y be such that A G 
C°([0, T0], Y

4) for some T0 > 0. Then, for every d>0 there exist e0 > 0.and D > 0 
such that for all e G (0, SQ) the following statement holds: Let u(t) = <Sf (u(0)) be 
a solution of (2.1) such that ||w(0) — ^(O)IU ^ ds3/2, then u exists on the whole 
interval [0, To/e2] and the estimate 

\\u(t) - U\{t)\\z < De3/2,    for all t G [0,T0/e
2], (3.2) 

is satisfied. 

Remark: Note that u(t) = U\(t), and hence u, are of order e in L°°(JR) and of 
order e1/2 in Z. Thus, the error of order e3/2 is relatively small. 

Here we have assumed more smoothness on the initial condition A(0) than is 
actually needed. We will improve on this when we consider the case of general 
nonlinearities. 

Proof: We want to show that the error u(t) — U\(t) remains of order d?(e3/2) over 
the time interval [0,T0/£

2]. However, substituting U\ into (2.1) leaves the residual 
terms of order e3, e.g. e3/3^43E3. Integrating such a term over [0,T0/e

2], leads to 
an error 0(e). To avoid this difficulty we follow the ideas of [KSM92] and use the 
improved approximation u(t) = U\ which is given by 

U\{t, x) = eAE + £3(A3i3E
3 + I3jlE) + c.c, 

where A3<3 = /3/(64+24i/3)A3 and A3ii = 0. As the coefficient A3)1 will not appear 
in the residual up to order e4 we may set it equal to zero rather than taking the 
correct value A3ii. 

From the construction and the considerations in Section 2 we find that all 
residual terms of order e-7 with j = 1,2,3 cancel. The remaining terms are at least 
of order e4 and are functions of d%

TdxA with 4i + k < 4. From the assumption 
A(0) G Y4 we know that A G C°([0,To],y4) nC1([0,T0],y

2). Thus, the residual 
can be estimated by 

||Res(C/3(i))|U<Cp£
7/2, 

where again a factor e1/2 is lost by scaling. 
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The true solution will be written as u(t) = ü{t) + e3/2R, such that R satisfies 

\\R(0)\\z<d + e-V2\\Ü3
A(0)-U1

A(0)\\z = d + ö(e)<2d 

for e G (0, ei] for some ex > 0. Moreover, R satisfies the differential equation 

CR = DuN(s, UA(t))R + M(e, UA(t),R(t)) + pe(t), (3.3) 

where pe{t) = -£-3/2Res(^(<)) with \\pe(t)\\z < e2Cp for t G [0,To/e
2] ande < £l. 

The linear operator DUM : Z -> Z is given by R ^ (e2 + f(U\))R and can be 
estimated by 

\\DuAf(e,Ü3
A)\\z->z < 2||e2 + /'(^l)||Ci < C.e2   for e < e1. 

The factor e2 in this estimate is essential for the following theory; it is due to 
the fact that the nonlinearity is cubic, that is /'(«) = 0{u2). In addition, the 
nonlinearity M allows for a good estimate, since the second derivative D2

UM is still 
of order £>(||t^||e°) = 0(e). In particular, for each D > 0 there is a constant 
C2(D) suchthat 

\\M{s,ÜA{t),R)\\z < eb/2C2{D)   for all R with ||Ä||Z < D and all e < ex. 

The error satisfies the integral equation 

R(t) = S(t)R(0) + f S(t-T)\DuM(e,ÜA(T)R(T)+M(e,ÜA(T),R(T))+pe(T) 
Jo L 

Using Lemma 3.1 and the estimates derived above and assuming that the solution 
R does not leave the ball of radius D in Z, we obtain 

\\R(t)\\z < 2rf + /o ||S(t-r)||z^z \\\DuN\\z^z\\R{r)\\z + \\M+Pe\\z 

]d,T 

dr 

dr. 

<2d + f* C[cl£
2||ü(r)||z + e5'2C2{D) + e2Cp 

<2d + CT0 [£
1/2C2(£>) + Cp] + /o Ce2C7i||Ä(T)" 

Gronwall's inequality yields 

||Ä(*)||z < {2d + CT0[e
l'2C2{D) + Cp])ecc^t = a(e,D)ecc^2t < a(e,D)ecc>T°. 

We now choose the radius D of the ball in Z to be equal to 2a(0,0)ecc,lT°, and 
then, e0 is chosen such that a(e,D) < 2a(0,0). Now, R(t) cannot leave the ball 
of radius D for t G [0, T0/e

2] and estimate (3.2) is established. Obviously, the 
solution R exists and is unique by standard local existence results. This proves 
that u{t) = UA(t) + e3/2R(t) exists on the whole interval [0,T0/e

2]. □ 

3.2    The case of quadratic nonlinear it ies 

We now want to study the general case where N is not restricted to start with cubic 
terms. The problem with the previous approach is that the derivative DuAf{e, UA{t)) 



THE COMPLEX GINZBURG-LANDAU EQUATION AS A MODULATION EQN. 201 

is only of order e; this would only allow for estimates on a time interval [0, T0/s] 
which is too small to see interesting modulations. 

The new idea for handling quadratic nonlinearities is to use the mode structures 
more explicitly By quadratic interaction of the modes En and Em we generate the 
modes E( with I £ {n + m,n — m, —n + m, —n — m}. In particular, the critical 
modes with n = ±1 generate, through quadratic interactions, only modes E' with 
I G {-2,0,2}, but all these modes are uncritical, that is they are exponentially 
damped. Thus, we split the solutions and the error into two parts, one consisting 
of modes close to k = ±1 and the other contains all the remaining modes. This 
splitting is affected by mode projections defined in Fourier space. We let %(&) = 
1 for k E Ic — [-5/4, -3/4] U [3/4,5/4] and zero elsewhere, and we define the 
projections 

Pc : Z -> Z;u H-> jF-^x-Ffu)], Ps : Z -> Z;u i-> u - Pcu. 

We shortly write u = uc + us with uc = Pcu the critical part and us = Psu the 
stable part. Obviously, these projections commute with the differential operator 
L(dx) and the following results hold. 

Lemma 3.3 
a) For all m > n > 0 and allt>0 we have 

\\P.S{t)\\z^zm < CTO_n(l +1"(—«)/4)e-*/6;     ||pc||z„^zm < Cm.n. 

b) For all u,v G Z we have Pc[(Pcu) • {Pcv)} = 0, where u-v £ Z means ordinary 
pointwise multiplication. 

Remarks: 
1. The first estimate shows that the stable modes are strictly exponentially 

damped. 
2. The second estimate in a) means that the critical mode projection is a 

smoothing operator: the functions in PCZ are in fact holomorphic functions. 
3. The last assertion exactly is the manifestation of the fact that quadratic 

interactions of critical modes are not critical any more. 

Proof: For part (a) we proceed as in Lemma 3.1 but now the supremum of the 
multiplier (l+A;2)(rn~~™)/2e~(1~': ) * is only taken over the relevant intervals, namely 
Ic = [-5/4, -3/4] U [3/4,5/5] and IS = R\ Ic, respectively. 

Part (b) follows immediately from the fact that the product in z-space is trans- 
formed to a convolution in Fourier space. Hence T{Pcu ■ Pcv) has its support in 
Ic + Ic= [-5/2, -3/2] U [-1/2,1/2] U [3/2,5/2], and Ic n (Ic + Ic) = 0 implies the 
result. D 

Since we are now able to study the critical components separately from the 
stable ones we can use the damping in the stable components to compensate for 
lower powers in e in the error equation. In order to estimate u(t) - U\(t) we 
introduce an intermediate approximation 

Ü\(t) = e(PoWU)E + e2(P0WEA2,2)E2 + 6-(P0WeA2fi) + c.c. 
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where We is the scaling operator We : Yn -> Zn;A ^ A(e-), and P0 : Z° -> 
^n;u ,_> ^-^xo^w] is a mode projection corresponding to the zero mode, namely 
Xo(A;) = 1 for |fc| < 1/12 and 0 elsewhere. The amplitudes A2,2 and A2fi are given 
in (2.5); note that A2,i is not included as it will not contribute to the relevant 
terms. 

The estimation of the residual consists in giving rigorous bounds on the terms 
which where left over after equating the lowest order terms to zero. These remaining 
terms possess only formally the magnitude en and have to be controlled in our 
function space Z°. To this end it is necessary to use the smoothing properties of 
the solutions A of the Ginzburg-Landau equation: starting with A(0) € Y = Y* = 
H^{M) implies 

P(r)||y»+i + ||drA(T)||yn-i<Cn(H-T-n/2),    for Te (0,7b]. (3.4) 

Moreover, we have to control the scaling properties of WEA, which can only be 
measured by taking derivatives: dx{WeA) = eWe(dxA) is one order smaller than 
WeA itself. Additionally it is important that the scaling concentrates the modes in 
Fourier space around the wave number zero, such that application of the projection 
P0 does not change a scaled function too much. 

Lemma 3.4 
For each n e 1N0 there exist constants Cn such that 

\m A-P0WeA\\Zn<Cns
n^2\\A\\Yn,    llW^llzn^e-^JVpily«,    (3.5) 

1=0 

yn, 

forallA£Yn. 

Proof: The first result is obtained by Fourier transform: 

\\W£A - P0W£A\\%n <CfR\(l + |fc|")(l - Xo(fc)H(^4)(t)f dk 

<C$R\2{\2Ten{l+\±\n)(TA)£)\2dk 
= C(12)2"e2"-1 Jm |(1 + \K\n){FA)(K)\2 dK < C(12)2"e2"-1P|| 

where 1-xoW = ° for lfcl ^ V12 was used essentially The second estimate follows 
easily as each spatial derivative of the scaled function produces a factor s. □ 

The treatment of the quadratic nonlinearity follows the analysis in [Sch94a]; 
however, we use different function spaces, and we relax the smoothness assumption 
on A(0). As seen above, it is necessary to use spatial derivatives in order to gain 
smallness which is expressed in powers of e. But at the same time the finite smooth- 
ness of A(T) for T = 0 will generate temporal singularities in the residual through 
the terms d\A(T). The residual estimate given below provides exact control on 
the temporal singularities and the associated powers of e. 

Theorem 3.5 
Let A = A{T) e C°([0, T0],Y), U\, and U\ as above. Then, the following estimates 
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hold: 
\\U2

A{t)-U\{t)\\Zn <C„e3/2(l + i(1-")/2), 

e\\PcV\(t)\\z« + \\PsUj(t)\\z« < Cne3/2, 

ell^c^WHc« + \\PsU%(t)\\c» < Cne2, 

\\PcReS{Ü2
A{t))\\zn<Cne^{l + t)-\ 

||P8Res(C^(t))||Zn < Cn£
5/2(i + i-i/2). 

(3.6) 

(3.7) 

Proof: For the first estimate we consider U\ which is denned as XJ\ but without 
the projections PQ. Then, 

\\U% - U\\\z~ < Ce2(\\W£A2,2\\zn + \\WeA2fi\\z~) 

<<7e3/2(l + Er=i£"[1 + (e^)"('"1)/2])  < Ce3/2(l + i(1-n)/2), 

where (3.4) and the second estimate in (3.5) was used. The difference U\ — U\ 
can now be controlled by the first estimate in (3.5) and (3.4), and then our first 
estimate is established. The bounds on U\ follow immediately from 

\\PoWeA\\Zn < \\P0\\zo^Zn\\W£A\\zo <Cne-l'2\\A\\za. 

and ||WEJ4||CO — ||^4||c°- The first estimate in (3.6) is a consequence of (3.5), (3.4), 
and the explicit representations of U\ and U\. This proves (3.6). 

For the estimate of the residual we write U\ = eu\ + e2u2, where ||uj||ci < C, 
\\uj\\z < Ce-1/2, and Tux has support in [-13/12,-11/12] U [11/12,13/12] and 
similarly Tu2 has support in the three intervals of radius 1/12 centered around 
—2,0, and 2. The residual has the expansion 

Res(I72) = dtD\ - L{dx)Ü\ -M{e, Ü\) = ReSl + ö{e7'2) 

with Resi = edtu\ + e2dtu2 — eLu\ — e2Lu2 — e2N2{ui,ui) 

-£3(«1 +W2(U1,U2) + Nz(ui,Ui,Ui))   =   YM=-3
S

1> 

where 6-i = 6i and supp.7-7); C [Z —1/4, Z +1/4]. The special splitting of the residual 
according to the modes in Fourier space allows for an easy distinction between the 
stable and the critical part, namely PcResi = 6-\ + 8\. (This was the reason why 
the support of xo was chosen as [—1/12,1/12].) 

We immediately see ||^3||z° < Ce5/2. To estimate 62 we proceed as follows: 

S2 = e2dt{P0W£A2!2)E
2 - L(dx)[{P0WeA2t2)E

2} - s2ßf2(P0WeAE,P0WeAE) 

e4P0WedTA2,2 + e2((4iß - \0{2))P0WEA2i2 - M2(e)A2<2) 

f2(P0WeA)2 + giP0WEA(iP0WEA + eP0(WedxA))]B2, 

B2 

where M2(e) :Yl -» Z°;ß« E"2(A0(2) - L{dx)) [(P0WeP)E2]. Using the defini- 
tion of A2<2 from (2.5) and (3.5) we find 

llfcllzo < Ce7/2/^H + e2\\M2(e)\\Y^zoC 
+£2|/2+^i|||(Po^A)2-Po(W£A)2||zo+£

3|5l|||(P0W
/^)(Po^öxA)||zo. 



dk 
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The fourth term is of order e5'2 uniformly for t G [0, T0/e
2]. The third term can be 

estimated with (3.5) and 

\\(P0B)2 - P0(B
2)\\zo < ||(P0P)2 - B2\\zo + \\B2 - P0(B

2)\\zo 
< \\P0B + B\\co\\P0B - B\\zo + \\P0(B

2) - B2\\zo; 

and we again obtain C(e5/2). The linear operator M2(e) is controlled via Fourier 
transform: 

||M2(e)B|||0 =/« (Ao(2)-Ao(2 + *))^(.FiJ)(*/e) 

< fR C\k\/e{TB){k/e)\2dk = C2e\\dxB\ 

Exactly the same procedure can be used to estimate 60 and the desired first estimate 

in (3.7) is shown. 
The estimation of the critical part is a little more tiresome but follows the same 

scheme: 

6, = e3{P0WEdTA)E - e3(-X'^l)PoW£d
2

xA/2 + P0WeA)E + e[M1(e)A]E 

-e3 hj^2{P0WeAE, P0W£A2,oE°) + M2(P0WeA2,2E
2, PQ^AE"

1
) 

+ W3(P0WEAE, P0W£AE, P^ÄE"1), 

where Mi (e)P=E-1(A0(l)+|A^(l)^-i(a:c))[(PoW£P)E]. Inserting the Ginzburg- 

Landau equation to eliminate the leading linear part we obtain a nonlinear term 
which is close to the other nonlinear terms, such that the difference can be esti- 
mated as above, but now with the bound Ce7'2. For the operator Mi{e) :Yn -> Z° 
we proceed as follows 

||M1(e)B|||o=/, (Ao(l + k) - Ao(l) - A{,(l)fc - A£(l)£ )^{TB){k/e) 

C\k\P/e{TB){k/e)\2dk = C2e2^l\\dlB\\2YO < C2e2^\ 

2 
dk 

P||yp, 

where p — 1,2, or 3. Thus, we find 

£3/2     £5/2 £3/2 

eWlM^AWMzo < Cemmie1/2, -j=, -^} < C—, 

and the second estimate in (3.7) is established by noting e7/2 < T0£
3/2/(l +1) on 

the relevant time interval. D 

Theorem 3.6 
(General nonlinearity) 
Let A0 G H^IR) = Y be such that A{T) = GT(A0) satisfies A G C°([0,To],Y) for 
some T0 > 0. Then, for every d>0 there exist e0 > 0 and C > 0 such that for all 
s G (0, eo) the following statement holds: 

Let u{t) = <St
e(u(0)) be a solution of (2.1) such that ||u(0) - U\(t)\\z < de5' , 

then u{t) = S£
t(u{<$)) exists on the whole interval [0,T0/e2] and the estimate 

\\PMt)-U2
A{t)]\\z < Ce5'4        \\PsHt)-Ü%(t)]\\z < C(e5/2+e5/4e^% (3.8) 

for all t G [0, T0/e2], is satisfied. 
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Remarks: Note that the initial condition u(0) is only close to the first order 
approximation C^(0), but the result states closeness of the solution to the second 
order approximation such that the error in the stable part is even one order smaller. 
This is a first result in the direction of attractivity, which means errors are damped 
out. 

It is clear from the proof below that the result of the theorem can be changed 
in such a way that e5/4 can be replaced by sß', with ß G (1,3/2), or e3/2log(l/e). 

Proof: We write the solution u — u(t) of the full system in the form 

u = euc + e2us + e5/4Rc + e9/4Rs, (3.9) 

where uc = e"1PcU\, us = e~2PsU\, Rc = PCRC, and Rs — PSRS. By construction 
we know that uc and v,s are uniformly bounded in Cx(iR) for t G [0, To/e2], thus we 
will estimate them henceforth by C. 

Using Theorem 3.5 it is sufficient to show that Rs and Rc are bounded uniformly 
in e G (0, £o] and t < To/e2 in the appropriate norms. We define 

£(e, uc, ua, Rc, Rs) = N(e, U2
A + e3/2Rc + e5/2Rs) - Af{e, V\) - Res(C^), 

and note the expansion 

||£(e, üc, üa, Rc, Rs) - e13/4(i?c + eRa) - 2e9/4M2(üc + eüs, Rc + eRs) 
-e5/2M2(Rc + eRs,Rc + eRs) + Res(Ul)\\°z    (3.10) 

< C0e
13/4[\\uc + eüs\\2cl + e^CtfiWRc + eR.\\z)] \\RC + eR,\\z, 

where CV is some continuous functions from [0, oo) into itself. Inserting (3.9) into 
(2.1) and projecting onto the critical and stable part we obtain the coupled system 

dtRc = L(dx)Rc + K,c{e,Uc,us,Rc,Rs), CwW 
dtRs = L(dx)Rs + ICs(e,uc,us,Rc,Rs), 

where Kc = s^^PJC and Ks = £-9/4P5/C. 
Note that M2{u,c) = f2uv + g\{uxv + uvx)/2 can be estimated in two ways, 

namely 
\\cN2(u,v)\\zo <Cmin{||u||ci||t;||z,||u||z||u||z}. 

We will always use the C1-norm for üCjS but the Z-norm for the errors Rc,s- 
Using (3.10), Lemma 3.3(b) and Theorem 3.5 we obtain the following estimates 

||/CC(.. .)||z° < Ce2 (\\RC\\Z + \\Rs\\z + e^C^WRc+eRsWz)) + e1/4/(l + *), 

\\ICS(. ■ Ollzo < c(\\Rc + eRs\\z + e^CKiWRc + eRs\\z) + e1/4(l + t~V2)). 

The first estimate relies heavily on the cancellations PCM2 (uc, Rc) = PCM2 (Rc, Rc) = 
0. 

We now rewrite (3.11) with the variations of constants formula using the semi- 
group S(t) which satisfies the estimates in Lemma 3.3(a).   By the assumption 
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on the initial condition and the first estimate in (3.6) (with n — 1) we know 
\\RC{0) + eRs{Q)\\z < C. Assuming \\Rc{t) + eRs(t)\\ < D for [0,*i], we obtain 

\\Rc{t)\\z <C + Ce*fT=0 [\\Rc(r)\\z + \\Rs{r)\\z + el'4CK{D) + f£] dr, 

\\Rs(t)\\z < Ce-t/ys + Cfl0(l + (t-T)-^)e-(t-^[\\Rc(r) + eRs{r)\\z 

+ e1/4Cc(D)+e1/4(l + r-1/2)}dT. 

The stable part Rs may have an initial condition of order 1/e. 
We introduce the functions rCtS(t) = max{ ||i?c,s('?")||^  : T G [0,<] } and obtain 

from the second inequality ||i2s(t)|| < 

Cp-t/6   ,r rc\,(t_ T^l/4)p-(t-r)/6dT[rJt)   , (ft   ,  g-lßCr-fD)] + Ce1!4. 
e 

e-t/6 + Cj(l + (t- r)-1/4)e-(t-r)/6dr [rc(i) + £Ts w + £ißcK{D)} + Ce1 

Thus, we obtain rs(t) < Ce^^/e + 6C[rc{t) + ers(t) + e1/4CK(D)} + Ce1'4 which, 
for £ < 1/(12C) leads to 

\\Rs{t)\\z < ra(t) < 2Ce-*/6/£ + 12Crc(t) + \2Cel'4{CK{D) + 1). 

This result can be inserted into the first estimate to give 

rc{t) <C + Ce2 J* [rc{r) + e^^/e + e^C^D^dr + Ce1/4/„' 1/(1 + r)dr 

< Ce2 fQ rc(r) dr + C*[e + e^faC^D) + 1 + T0 + log(T0/£
2))], 

for all t e [0,T0/e2]. The classical Gronwall estimate yields on the same time 
interval 

rc(t) < ac(e,D)    and   rs{t) < Cse~t/6/e + as(e, D), 

where the continuous functions acs do not depend on D when e is set equal to 0. 
Now, we choose D = 2ac(0,0) + 2as(0,0) + 2CS, then, there is a e0 such that 

for all e 6 (0,£o] we have ac(e,D) + Cs + eas(e,D) < D. Hence, the solutions 
Rc(t) +sRs(t), t £ [0, T0/s

2] cannot leave the ball of radius D in Z, and the desired 
estimates follow. □ 

We may refine the above by giving estimates in smoother spaces. 

Corollary 3.7 
The estimate (3.8) can be generalized to 

\\u(t)-Ü2
A(t)\\z^<Cn(l + t-"/4)s5/4, 

\\U2
A(t)-U\(t)\\Zn+1<Cn(l + t-n/2)e^ [-    ' 

where n G IN is arbitrary. 

Proof: This result is obtained the same way as in the proof of Theorem 3.6, we 
only have to estimate Rc and Rs in Zn+1. Having the boundedness of RCtS in Z, it 
is classical linear regularity theory for parabolic PDEs (cf. [Hen81]) to derive the 
estimates 

\\Rc(t)\\z^ + \\Rs(t)\\z^ < C (l +t-n'4[||Ac(0)||Z + ||Ä8(0)||z]) • 
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Recall that the nonlinearity M is arbitrarily smooth and Res(U\(t)) is bounded in 
each Zn. Using the first estimate in (3.6) the assertion is established. D 

In general, it is possible to use V%{t),n>2 as an approximate solution; then, 
the corresponding residual is smaller: ||Res([/2(£))IU° = 0(en). In such situations 
it is possible to use the ansatz 

u = euc + e2us + sn~3/4Rc + en+1/4Rs, 

with smaller coefficients in front of the errors i?CjS. Employing the above theory it 
is possible to derive rigorous error estimates of the form 

ll«W -U2(t)\\z < Cen~3/4,    for t e [0,T0/e
2], 

where ||«(0) - J7S(0))||Z < den~3/4 is assumed. 

4    Further results 

4.1    Absorbing balls in uniformly local function spaces 

To develop the theory further it is necessary to switch to more appropriate func- 
tion spaces which have nicer properties. First of all, we should mention that it 
is of practical interest to include bounded functions into the analysis rather than 
functions in Hl{H), which have to decay at infinity. In particular, periodic (or 
quasiperiodic) functions and travelling fronts are the center of many research stud- 
ies in the theory of pattern formation on unbounded domains. But there is also a 
major mathematical reason to use different function spaces, namely the fact that 
the Ginzburg-Landau equation 

dTA = adxA + bA-c\A\2A,    a,b,c e <Z7, Re a > 0, (4.1) 

does not have an absorbing ball in Hl(M). This can be seen by considering the 
real case with a, b, c > 0 and starting with any real initial condition A0 G H1 (M) 
and A0(X) e (0, \/bfc). Then, from the maximum principle we conclude 0 < 
A(T, X) < ^/bjc, and moreover, A(T, X) -> y/b/c for T -> oo and X fixed. It can 
be shown that \\A(T, -)\\Yo > CVT for large T. 

Following [MS94] we introduce function spaces Zn and Yn which will replace the 
old spaces Zn and Yn. The new spaces contain all suitably smooth and bounded 
functions and are based on L2 theory such that Fourier transform methods are still 
available. First we choose a positive weight function p e C2(M, (0, oo)) which is 
bounded, has a finite integral f1Rp(x)dx, and satisfies \p'(x)\ < p(x) for all x. As 
a consequence we obtain p(x + y) < e^p(x) for all x, y. (We may fix p once and 
for all to p(x) = l/cosh(a:) or p(x) = 2/(2 + x2).) Next we let 

Llu{lR) = {u £ Lloc{M) : \\u\\L2   <oo}, with ||u||£2   = sup /  p(y + x)u{x)2dx, 
'■"       yeJRJM 
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and define the translation operator Ty : ZjJM) -> LlJjR)\u ^u{- + y). Our 
final space of uniformly local L2 functions is given as 

Llu(lR) = {u€Llu(lR) : ||T„u-«||L?iU->0asy^0}. 

Note that different weight functions lead to the same uniform space with equivalent 
norms. For n £ IV we define the associated Sobolev spaces Hfu by requiring 
that the first n distributional derivatives lie in L2

lu{M). The condition that the 
translations Ty are continuous is needed to guarantee that the spaces H£U{1R), 

n£lN, are dense in Lf^lR), see [MS94] Lemma 3.1. 
We now define the corresponding phase spaces Zn = H^JM) for the functions u 

and the phase space Yn = H^U{M) ® iH^u(M) for the Ginzburg-Landau equation. 
As a first result we derive an upper bound for the radius of an absorbing set for 
(4.1). We use weighted energy norms similar to [CoE90, Co94], however we provide 
explicit bounds in terms of the coefficients a, b, c. 

Theorem 4.1 
Let ar = Re a, br = Re b, and cr = Re c be positive. Then, all solutions A = A{T, •) 

of (4.1) with A(0, ■) € Y1 exist for all T > 0 and satisfy 

||A(T)|||o < e-^P(0)|||o + (1 - e-^Ao, 

limsup||dxA(T)a   < I±^(2(l + a + «5Ao) + i±f <52A0), 
T->oo r \ 

where a = 2br + \a\2/ar, A0 = Cpa/cr, 6 = Cpmax{0,2|c| - 4cr}, and Cp is a 
constant depending only on the weight p. 

Proof: We proceed as for standard energy estimates but use weighted norms. 
Partial integration then involves a derivative of the weight function p which can be 
estimated by p due to our assumption. 

£ JM p\A\2dX = 2Re Jm PAAT dX = 2Re JM PA{aAxx +bA- c\A\2A) dX 

= 2Re {-aJm(p'A + pÄx)AxdX} + 2 fmp(br\A\2 - cr\A\4)dX. 

<-arfMtP\Ax\*dX + fMlp(a\A\*->y\A\*)dX, 

where a = 2br + \a\2/ar and 7 = 2cr. Here we have used \p'{X)\ < p{X) for all 

X e M and 

2Rea f p'AAxdX <2\a\ f p\A\\Ax\dX <ar Ip\Ax\2dX +^- Ip\A\2dX. 

With a\A\2 - 7|A|4 < a(a - 7\A\2)/l we obtain £ Jmp\A\2 < jMp{a2h - 
a\A\2) dX, and an application of Gronwall's inequality yields 

jRp{X)\A{T,X)\2dX < e~«T Jmp(X)\A(0,X)\2dX + (1 - e-T)f fRp(X) dX 

<e-aT\\A(0)\\9o + (l-e-<*T)*Cp. 
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Since this estimate is also true when p is replaced by the translated weight Tvp, the 
first estimate is proved. 

For the first derivative we proceed similarly and obtain 

-^ J^p\Ax\2dX< -arJ^p\Axx\2dX+J p(a\Ax\2+2(\c\-2cr)\A\2\Ax\2)dX. 

(4.2) 
In order to shorten the following formulae we introduce the abbreviations ej(T)- = 
\\A(T, -)||?, and rj(T) = (fRp\&>xA(T, X)\2dXy/2 for j = 0,1, and 2. From par- 
tial integration we find r\ < rQ(rx +r2) and a trivial variant of Sobolev's embedding 
theorem yields \\A\\2e0 < Cpe0(eü + ei). With these stipulations (4.2) takes the form 

■£rrl ^ ~ar4 ~{ß+ l)r? + (ß + 1 + a + 6e0(e0 + ei))r0(ri + r2) 
<-(/?+ IK2 + s(t)n+s2(t)/(4ar) < -ßr2 + (l + l/ar)s

2(t)/4, 

where ß > 0 is arbitrary, 6 = 2Cpmax{0, \c\ - 2cr}, and s(t) = (ß + 1 + a + 
6e0(e0 + ei))r0. Applying GronwalPs inequality and using the same estimate for 
all translated weights we obtain 

e?(T) < e-^(0) + ^/0
re-^-)(^l+a^^W+eoWe^r)])2^ 

<e-^ef(0) + ^/0
Te^-)([/3+l+a+^(r)]2+^e2(T)e2(r)j(ir_ 

Note that ß is still arbitrary in the above estimate. We may now use Lemma 4.2 
below and hmsup^^ e2

0(T) < A0 in order to see that e^T) is also bounded and 
satisfies 

02(T) < ^(ß+l+a + SA0)
2 

T-OO
1
 "ll   '~ ß-^62A0 

limsupei(T) < 
2ar 

Setting ß = 1 + a + 6A0 + ±±^2A0 we obtain the desired result. D 

Lemma 4.2 
Let ß,i> e C°{R,1R) be bounded functions with v(t) > 0 for all t.  Assume that 
ß>V = limsup^^ v{t) and that the continuous function p e C°(M, 1R) satisfies 

p(t) < p(0)e-ßt + f e-13^ [/x(r) + I/(T)P(T)] dr, 
Jo 

for all £ > 0. Then, p is bounded on [0, oo) and satisfies 

Mm sup p(t) < -—- limsup p{r). 
4—>oo p — V     T—>oo 

Proof: We let w{t) = p(0)e"^* + /„* e-0(t-r)[ß + up] dr, then p{t) < w(t), w(0) = 
p(0), and 

d 
— W = -ßw + ß + l/p< (-/? + v)W + /X. 
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From Gronwall's inequality we find w(t) < p(0)ea^ + /„* ea^a^p(r) dr, where 

o(t) = fQ(y(r) - ß)dr. Let ~ß = limsupT_+00/i(r) and take e > 0 with y + e < ß. 
Then, there is a time t0 such that /x(t) < Jl + £ and u{t) < v + e for t > t0. 
With fi{t),v{t) < M for t G [0,t0] we find for i > t0 the estimate a(t) - a(£0) < 
-(/3-z7-e)(t-to) and 

W(t) =  U0)e^) + tf ea(to)-a(r)M(T) dT)e«(t)-«(to) + £ e*)-«(^(r) dr 

< (p(o) + t0M)eM*«e-('3^-£)(t-i0) + Ji e-W-'-M-^dTQi + e). 

Thus, we have limsup^«, w(t) < (£ + e)/(ß -v-e), and since p(t) < w(t) and 
e > 0 was arbitrary the result follows. D 

In the uniformly local functions spaces H?U(M) the method of Fourier transform 
is still available, namely in the form of the so-called multiplier theory. An operator 
M . jjQu _> Lfu is called a multiplier if it is defined by multiplying the Fourier 
transform u = Tu by a function fa G L°°(2R, <F) and then doing an inverse Fourier 
transform. Using the following lemma, which is proved in [Sch94b], allows us to 
study the mapping properties of M : u i-> T^ifhFu). Natural applicationsjire 
convolution operators Mu{x) = SR m{x - y)u{y) dy with m integrable, where m = 

Tm. 

Lemma 4.3 TT„ 
Let q,s G Wo and Ws_,(fc) = (1 + fc2)^/2a(fc) G C2(iR, <F). Then M : H^ -+ 
JJS ■ Uh^ jr-i (ffrFu) is well defined with the estimate 

\\Mu\\H?u < C(q,s)\\ws-q\\cZ(iR,<F)\\u\\Hlu, 

where C(q, s) does not depend on fh. 

Using this result it is trivial to see that the operator G(T) = eaTdx defines a 
holomorphic semigroup on each Yn and similarly S(t) = etL^ defines a holomor- 
phic semigroup on each Zn. Moreover, the analogues of the estimates in Lemma 

3.1 hold: 

\\G(T)\\9n^m < Cn-m(l + T-^y%    \\S{t)\\^z~ * Cn-m(l + t-^'% 

where n < m. 
In fact, all the theory of Section 3 can be carried through in these spaces with 

only one modification, namely the definition of the mode projections PS,PC, and 
P0. According to Lemma 4.3 we have to use smooth cut-off functions in order 
to define the mode separation: we choose x e C2(iR,[0,l]) with x(fc) = 1 for 
|fc| < 1/5 and 0 for |fc| > 1/4. The critical part is now separated using Ec, which 
is defined via Ecu = T~l{xJFu), where Xc{k) = x(k + 1) + x(-l - *)• This 
operator Ec is a bounded operator from Z° into Zn for each n G W0, however, it 
is no longer a projection. Since Ec deletes all Fourier modes outside the interval 
[-5/4, -3/4] U [3/4,5/4] while other modes are kept or diminished, the operator 
Ec is called a mode filter. In addition, we define Esu = u- Ecu and the splitting 
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u = uc + us with uc — Ecu. Moreover, we need the mode filter E0 which is given 
via E0u = J"~1(x(3fc)^ru) and extracts the Fourier modes concentrated around 0. 

When all PCJSI0 are replaced by -ECjS)0, respectively, all the results of Section 3 
can be worked out completely similar as in the L2-case. We refer to [Sch94c, MS94] 
for the details and give here an overview on some further results. 

4.2    The attractivity of the set of modulated patterns 

Here we treat the question why modulated waves are of such an importance. The 
Ginzburg-Landau equation is formally derived to describe the evolution of the lin- 
early unstable modes. In weakly nonlinear theory one expects that these modes 
dominate the dynamics of the full problem under arbitrary initial conditions. In the 
last section error estimates are shown under the assumption that the initial condi- 
tions already possess the scaled mode structure. It is our aim to explain why after 
the time t\ = Ti/e2 all solutions of the full problem develop this mode structure 
and, henceforth, can be described by the solutions of the associated Ginzburg- 
Landau equation. 

The first result in this direction was obtained in [Eck93]. For our choice of 
function spaces the result is given in [Sch94c]. We note here that all the results 
given below are only established for the case that the Ginzburg-Landau equation 
(4.1) has real coefficients, a, 6, c G M. However, it is clear that all statements and 
proofs can easily be translated into the present context of the complex Ginzburg- 
Landau equation. 

Since multiple scaling analysis is only a local theory this attractivity can only 
be expected for initial conditions in a small neighborhood of the trivial solution. 

Theorem 4.4 
(Attractivity of the set of modulated patterns) 
Fix C\ > 0, then there exists C0 > 0,e0> 0, and 2\ > 0, such that the following is 
true. For all e G (0,e0) and u0 £ Z with |K||gi < CXE the solution u(t) = <St

e(u0) 

exists for t G [0,Ti/e2] and there is an A0 G Y1 with 

\\M?i < Co and \\S^/e2(u0)-e(WeA0BTl/£2+W£A0B-l/e2)\\^ < C0s
5/i. (4.4) 

Note that ETl/e2 can be replaced by the function E0 as the constant factor e%20Tl/e 

can be compensated into A0. Thus, we may consider the set of modulated patterns, 

MP = {e(VMoE0 + V^Ä0EÖ1) : ||A0||?1 < Co}, 

as a small very flat ellipsoid in the phase space Z1, and MP attracts all solution 
starting in the ball of radius Cxe around 0 G Z1, at least up to an error of order 
£3/2. 

Using the result from above it is possible to apply the approximation theory of 
the previous section. In particular, the assumptions of Theorem 3.6 are fulfilled 
when u(0) = S^,£2{uo) and A(0) = A0 is chosen and T0 > 0 is any time such that 

A(T) = GT(A0](exists for T G [0,T0]. 
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The development of the mode structure is essentially a linear effect, and for 
illustrative purposes we establish below the linear analogue of Theorem 4.4. We 
find that the time scale £>(l/e2) is necessary for the solutions u(t) to develop the 
scaled mode structure. For the nonlinear theory it is then necessary to show that the 
solutions of the nonlinear problem exist over the desired time interval t G [0, Ti/e2]. 
For general problems with quadratic nonlinearity, solutions of order e exists only 
on the time scale 1/e, but again the fact can be used that quadratic interactions of 
critical modes generate damped modes. The time Ti has to be chosen sufficiently 
small to avoid blow-up of solutions, which may occur in the case when Re c < 0 in 
(4.1) (see below for the longtime existence in the case Rec > 0). 

The key step for isolating the Ginzburg-Landau mode A G Y^from a general 
function u G Z is to find an approximate inverse of the mapping Yn 9 A H-> U\ G 

Zn. We let 

§{e,t)u=-W-1EQ[vEt1]. 

Using the counterpart of Lemma 3.4 in H£U(M) (see [Sch94c]) we have 

u = e(We{$(e,t)u)Et + W£{^{e,t)u)^1) + G(e2). 

The operator $(e,t) : Zn -> Yn has a norm of order e_n_1, and a function u 
may be called to have mode structure when e||$(e,i)u||pn « \\u\\~n. The following 
lemma shows that the linear part develops the desired mode structure for times 
t > Tj/e2 with T1>0. 

Lemma 4.5 
Let S(t) = eL^)l, t > 0, then for each n G N there is a constant suci that 

\me,t)s(t)\\^9n < ^(i + £n{tJ+tn/2)). 

Hence for each Tx > 0 the operator e$(e,t)S{t) : Z° -> Yn is bounded indepen- 
dently ofe for all t G [Ti/e2, oo). 

Proof: Letting A = $(e,t)S(t)u we find that the Fourier transform of A is given 
by TA{K) = m(e, t, K)(Jf"u)(l + eK), where 

m(e, t, K) = x(3(l + £K))e^1+sK^Xo(1))t. 

Here the old wave number k is replaced by 1 +sK due to the shift from Et and the 
spatial scaling. The factor 1/e is compensated by transforming the Fourier integral 
from k to K. Hence, The operator $(e, t)S(t) can be written as the composition of 
M{e,t)N(e,t) where N(e,t)u = ^W^iuE^1) and M is defined by the multiplier 
associated to the function m(e, t, K). Using Lemma 4.3 we find 

\\M{e,t)\\y^yn < ||m(£,t,-)||C2 <C„(l + l/[e"(t"/4 + t"/2)]). 

Moreover \\N(e,t)\\~0^0 < C/e, and the result is established. □ 

From the estimate in the lemma we see that for small t the smoothing of 
$(e, t)S(t) occurs through the fourth order operator L{dx) which leads to the weak 
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singularity t~nli. However, this smoothing does not generate the properly scaled 
modes. The mode scaling is only enforced by the quadratic part of A0(l + eK) and 
thus is associated to the stronger singularity t~n/2. 

4.3    Shadowing by pseudo-orbits 

Finally we consider the case where the Ginzburg-Landau equation is stable, i.e., 
cr = Rec > 0 in (4.1). From Theorem 4.1 we know that the solutions of the 
Ginzburg-Landau equation stay inside an absorbing ball or converge exponentially 
to it. Hence, we may use the approximation property as well as the attractivity to 
control any solution of the original problem (2.1) for arbitrarily long time intervals. 
The idea is to make a first step to find the mode structure u(ti) = U^ (ti) + 0(e2) 
where Ai(e2ti) = $(e,t\)u(ti), then the solution can be described over a time 
interval [*i,ii + Ti/e2] by the Ginzburg-Landau approximation U\x(t), where A\ 
solves the Ginzburg-Landau equation with the above initial condition. At the end 
of this interval the error between the true solution and the approximation might be 
large; however, from the attractivity we know that the true solution u(t2) is close to 
a different modulated pattern U\ from which the approximation theory may start 
on the next interval. The exponential attractivity of the absorbing ball controls the 
size of the solution A and guarantees that A stays bounded for all T > 0. 

In this way we can shadow the true orbit u(t) = <St
e(u0) for all i > 0 by a 

sequence of solutions of the Ginzburg-Landau equation. 

Definition 4.6 
Let Ti > 0 and K > 0. A function A £ L°°((0, oo), Y1) is called a (71, K)-pseudo- 
orbit in Y1 for (4.1) if for all n £ IN the relations 

A{(n - l)Ti +r) = gT(A((n - 1)T)) for all r G [0,Ti), 
P(„Ti-0)-oTl(^((n-l)Ti))||?1<K 

hold, where QT is the semigroup associated with (4.1) and A{T—0) = limT^x A(T). 

The following result is Theorem 3 of [Sch94c]. 

Theorem 4.7 
(Shadowing by pseudo-orbits) 
Let Rec > 0 in (4.1); then for all Ti > 0 there exist positive constants e0, C, and 
T0 such that for all e G (0, £o] the following is true: 

For all initial conditions u0 with ||wo||g-i - £ tne solution u(t) = St{uo) ex- 
ists for all time and there is a (Ti,Cel/A)-pseudo-orhit A for (4.1) which satisfies 
11-^(0) j| v < C and approximates u{t) as follows: 

\\u(t + T0/e2) - U\{t)\\^ < Ce5/4    for all t > 0. 

This shadowing technique can be used to show that in fact all solutions starting 
in a small but e-independent neighborhood U of 0 in Zl exist for all time and are 
finally absorbed into a ball of radius Ce. This result is interesting in so far as it 
devices a new way to construct absorbing sets, namely by studying the dynamics 
rather than applying energy estimates which would result in bounds of order e1/2, 
see the discussion in [MS94]. 
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Theorem 4.8 
(Locally absorbing set) 
Let (4.1) be the modulation equations associated to (2.1) such that cr > 0. Then 
there exist positive constants e0, S0, and C such that for all e £ (0,e0] all so- 
lutions u(t) = St(u0) of (2.1) with ||uo||ga ^ ^o exists for all t > 0 and satisfy 
limsup^^Hu^llg-! <Ce. 

4.4    Comparison of attractors 

Using the weighted energy estimates which are introduced in the proof of Theorem 
4.1 it is not only possible to construct absorbing balls for the semigroups QT on Y1 

and SI on Z1, but we are also able to find attractors in the following sense. We 
refer to [MS94] for the following two results. 

Theorem 4.9 
(Existence of an attractor) 
Let QT be the nonlinear semigroup of the Ginzburg-Landau equation (4.1) with 
cr > 0 posed in Y1. Then, there is a non-empty closed bounded set Ag C Y1 with 
the following properties: 

(i) Ag attracts bounded sets in Y1, i.e., for any bounded B C Y1, we have 

dist-l{GT{B),Ag) = sup inf  \\QT{b) - a\\9l -► 0 for T -► oo, Y beBaGAe 

(ii) Ag is time and translation invariant, i.e., QT{AQ) = TyAg = Ag for all T > 
0, y e M. 
(Hi) A is localized compact in the sense that Ag is bounded in Y1 and compact 

when the weighted norm \\A\\P = {JRp(\A\2 + \A'\2)dX)      is used in Y1. 

The proof of this theorem is based on ideas in [Fei93]. Note that the attractor Ag 
is nontrivial as it contains all the attractors Ag which are obtained by restricting 
(4.1) ti the space of functions with period £. 

Similarly there exists attractors Ae for the semigroups <St
e. The question is now 

as to how well the attractors Ae can be described by the attractor of the limit 
problem which is the Ginzburg-Landau equation. A first result is given in the 
following theorem. 

Theorem 4.10 
(Comparison of attractors) 
For every CT > 0 there exist C,eo>0 such that for all e G (0, e0] the estimates 

dist?1 ($(e, 0)^E, Ag) < a   and dist^ {ESA
£, {0}) < Ce5/4, 

hold. 

This result means that Ae is upper semicontinuous towards the attractor Ag of 
the Ginzburg-Landau equation in the sense that 

disty($(e, 0).4e, Ag) + -Aistz(EsA
£, {0}) ^0     for e -> 0. 
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Thus, the solutions u in the attractor A£ have relatively small stable parts us — Esu 
and the critical part uc is given approximately by a Ginzburg-Landau mode U\(0) 
where A is in the limit attractor Ag. In this way we have obtained an upper bound 
on the richness of the attractor A6. It is an unsolved problem to show the opposite 
direction, namely that Ae is also as rich as the attractor Ag, which means a lower 
bound on the complexity of the attractor. In mathematical terms this means lower 
semicontinuity in the sense disty(Ag, $(e, 0)A6) —> 0 for s —► 0. 
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1.  Introduction 

In this talk I will discuss informally mathematical questions related to turbu- 
lence. The equations of motion of incompressible fluids are described as follows: 
Let x £ Rn denote a point in space, n = 2 or 3 and let t > 0 denote time. One 
associates to the velocity u(x,t) € Rn a first order differential operator, Dt: 

Dt = dt + u(x,t)-V. 

Dt is the so-called material derivative; its characteristics - solutions of the ODE 

dyi. , „    . 

are called particle trajectories. The Navier-Stokes equations are 

Dtu + Vp = (/Au + /, 

V • u = 0. 

The number v > 0 is the kinematic viscosity of the fluid. If one sets v = 0 in 
the equation above one obtains the Euler equations of ideal fluids. The scalar 
function p(x, t) represents pressure; its mathematical role is to maintain the con- 
straint of incompressibility V • u = 0. The functions / represent body forces. 
The fluid occupies a region G C R" and appropriate boundary conditions are 
prescribed. A great variety of physical situations are described by the nature 
of body forces and boundary conditions. Two examples, Taylor-Couette and 
Rayleigh-Benard turbulence can serve as a guide to posing questions regarding 
turbulence. In the Taylor - Couette setting fluid is placed in the space between 
two concentric vertical cylinders and one of the cylinders is rotated, entraining 
the fluid. In the Rayleigh - Benard setting fluid is placed in a closed container 
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and heated from below. The external conditions are encoded in non-dimensional 
parameters: Reynolds number, Rayleigh number. They represent a measure of 
the strength of the externally supplied energy (determined for instance by how 
fast the cylinders are rotated or how much the fluid is heated). The term non- 
dimensional refers to scale invariance. The experimenters prepare an experiment 
at given values of the control parameters. The experiment ([1], [2]) is allowed 
to run for a sufficiently long time in order to make sure that one registers the 
time asymptotic regime. The information (one point measurements or rarely 
two point measurements) is recorded and processed, taking time averages. New 
values of the control parameters are selected and the process is repeated. As 
the non-dimensional control parameters are increased the behavior of the fluid 
changes, very roughly speaking from simple to complex. At the high end of 
the parameter scale we find incompressible turbulence. The appropriate math- 
ematical turbulence problem is thus: study the long time behavior of solutions 
to Navier-Stokes equations at a fixed Reynolds number (fixed v > 0, boundary 
conditions and body forces /). Record it using appropriate measures or averages. 
Then increase the Reynolds number (for instance, decrease viscosity, keeping all 
other conditions the same) and study the large Reynolds number limit. 

2. Dynamical Systems Paradigm 

The finite dimensional dynamical system paradigm ([3]) has predictions ([4]) 
regarding the transition to turbulence that have been verified experimentally. 
Consider the case of two dimensional, spatially periodic Navier-Stokes equations 
with time independent forces. At a fixed Reynolds number the Navier-Stokes 
equations are solved by a nonlinear semigroup S(t) in a Hilbert space H, the 
space of divergence-free square integrable velocities. The norm | • \H is the square 
root of the total kinetic energy and S{t)uQ represents the velocity at time t. The 
semigroup is dissipative: there exists a compact set in H such that all trajectories 
S(t)uo belong to it for large enough t. The semigroup has a global attractor A: 
a compact invariant (S(t)(Ä) = A) set that contains all omega limit sets. All 
Borel measures which are invariant under S(t) are supported in A- This set has 
finite fractal dimension ([5]). The dimension is related to the Reynolds number 
([6]) as predicted by the argument of Landau ([7]) concerning the number of 
degrees of freedom of turbulence. The existence of a finite dimensional attractor 
and the time analyticity of solutions are used in results that are valid beyond 
the transition to turbulence. Here are two examples. 

Consider the set of global solutions 

Q = {u0 e H; S(t)u0 extends to teR}. 

The global attractor can be described by 

A = {UQ € Q; S(t)uo is bounded fort 6 R} . 
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Consider now the set of those global solutions that grow at most exponentially 
backward in time 

.,      f n v log\S(t)u0\H \ 
M = <u0eQ; hm sup      &l   , /    '     < oo \ . 

{ t->-oo \t\ ) 

One can prove ([8]) that M is weakly dense in H. The dynamics oriM\A can be 
related to the inviscid Eulerian dynamics: rescaling appropriately velocity and 
time, one obtains the Euler equations as the infinite negative time limit. Thus, 
for velocities selected from the rich invariant set M. \A, quasi-Eulerian dynamics 
describe the past and finite dimensional dynamics on the Navier-Stokes attractor 
.4, the future. 

One of the most common ways to analyze temporal data, such as the tem- 
perature 6{t) recorded at a given location in the Rayleigh-Benard convection 
experiment is to compute the power spectrum, 

p<w>=Äi /   e~iu]te{t)dt 
Jo 

The mathematical justification of this operation is based on classical work on 
stochastic signals, going back to Wiener, Khintchin and Kolmogorov. At finite 
Rayleigh and Reynolds numbers though, the signal is not a random process, 
rather it is the output of a finite dimensional dynamical system. Using the prop- 
erties of solutions of Navier-Stokes equations one can still make mathematical 
sense of the procedure. Moreover one can prove that the power spectrum must 
decay at least exponentially at high frequencies ([9]). Specifically, the power 
spectrum of the temporal data obtained by evaluating a solution at some fixed 
location is a well defined positive Borel measure P{du>) and satisfies 

J — c 

eT^P(du) < oo. 

The positive constant T = r (A) depends only on the attractor, in other words 
only on the control parameters. 

The dynamical systems paradigm is applicable, under the assumption of reg- 
ularity, to the three dimensional Navier-Stokes equations in a bounded do- 
main, at fixed Reynolds number. Even if one is willing to accept this as- 
sumption (a reasonable position, because finite time singularities in the Navier- 
Stokes equations are not physical), the finite dimensional dynamical system 
picture is incomplete: there are no (known) inertial manifolds. A finite di- 
mensional Lipschitz manifold X in the phase space H is an inertial manifold 
if it is forward invariant {S{t)T C J) and attracts exponentially all trajecto- 
ries, distH(S(t)uo,X) < Cexp(-kjt). Such manifolds are known to exist for 
dissipative systems other than the Navier-Stokes one ([10], [11]), but not for 
Navier-Stokes. 
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3. Dissipation 

One of the most common, imporant and accessible effects of turbulence is bulk 
dissipation. Torque in Taylor-Couette flow, drag in flow past an obstacle, and 
heat transfer in Rayleigh-Benard convection are examples of bulk dissipation 
quantities. These are one-point quantities (that is, numbers, not functions) 
that depend on the key parameters (Reynolds number, Rayleigh number) in a 
reproducible manner: they obey empirical laws obtained in physical experiments 

([1]. [2])- 
I will describe a method ([12], [13], [14]) to estimate rigorously such quantities 

directly from the equations of motion. I will use a simplified Taylor-Couette 
setting to illustrate this method. Let us consider the incompressible Navier- 
Stokes equations 

(1) dtu + u • Vw + Vp = Aw 

V-w = 0 

in a 2-D strip, with boundary conditions 

u(x + £,y,t) =u(x,y,t) 

u(x, 0, i) = 0; u(x, l,t) —Hex 

The Reynolds number Re is a large positive number, x is the direction of the x 

T 
~dt 

axis and £ > 0 represents the aspect ratio. Consider 

1   fT 

< ||u||2>=limsupT^00- /    ||u(i)|| 

where ||u||2 — D(u) is the bulk dissipation: 

||w||2= I   f \Vu\2dxdy. 
Jo Jo 

The problem is to estimate < ||M||
2
 > on solutions as a function of Re as 

Re —► oo. 

The inhomogeneous boundary conditions together with the finiteness of the ki- 
netic energy and of the dissipation determine an affine set U in function space. 
We consider any time independent function b eW ("the background") and asso- 
ciate to it a corresponding linear operator Cb- In the Taylor-Couette case this 
operator is computed as follows: 

£b = A + 2Sb 

where 
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P is the Leray-Hodge projector on divergence-free vectors in L2 and A the Stokes 
operator P(-A). Let A(b) denote the bottom of the spectrum of Cb in L

2. 

THEOREM 1. Assume that beU satisfies P(b■ V6) = 0 and X(b) > 0. Then, 
every solution u[t) in U satisfies 

<H*)II2>< IN2. 
The interpretation of this result is the following. Take any steady solution 

of the inviscid (Euler) equation P (6 ■ Vb) = 0 with the correct boundary con- 
ditions (6 G 14) and compute its quadratic form stability as if it were a steady 
solution of the Navier-Stokes equation with half the given viscosity (| in our non- 
dimensional setting; this is related to the fact that the nonlinearity is quadratic). 
If the solution is stable (A(6) > 0) then its bulk dissipation is an upper bound 
for the long time average bulk dissipation of any solution of the viscous problem. 

Examples of such functions are obtained by choosing flat shear flow back- 
grounds with sharp boundary layers. Choosing the size of the boundary layer 
of the order of Re"1 ensures that A(6) > 0. The requirement that the back- 
ground must satisfy the steady Euler equations can be dropped; then the bulk 
dissipation is bounded by a more complicated expression ([13]). 

Using Theorem 1 one can prove that 

< ll«WI|2 >< CRe3. 

Moreover, C can be estimated explicitly and the results agree with the phys- 
ical experiment ([2], [12], [13], [14]). In order to improve the estimate one is 
naturally lead to variational problems with spectral side conditions. A set of 
backgrounds X is chosen, such that if b G X then P(6 • Vb) = 0. The set of shear 
backgrounds 

X = [b G U;b =(Re^} ),#)) = 0,^(1) = l} 

is a natural and simple example. In X one considers the subset 

Cx = {b G X; \(b) > 0} . 

The minimization problem is to compute 

This problem leads to new, nonlinear Orr-Sommerfeld-like equations ([13]). Bi- 
furcations in the boundary of the sets Cx as the control parameters are varied 
can be responsible for sudden transitions in the scaling law of the bulk quan- 
tity. This can happen as a consequence of the finite size (discrete spectrum) 
of the domain. If the condition of divergence-free is dropped, the problem sim- 
plifies considerably. Then there are no sudden transitions and the constrained 
Euler-Lagrange equations lead to a nonlinear eigenvalue problem for a cubic 
steady one dimensional Schrodinger equation. This can be solved explicitly, at 
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each Reynolds number and the asymptotic behavior, as the Reynolds number is 
increased can be computed explicitly. The outcome is an improvement in the 
prefactor C but the power law remains the same. This law is consistent with the 
Kolmogorov dissipation law (see next section) which, however was not envisioned 
to apply in such boundary-dominated situations. The fundamental question re- 
mains: does the presence of boundaries alter the Kolmogorov dissipation law? In 
particular, does the logarithmic wall friction law rigorously represent the infinite 
Reynolds number asymptotics? All our preliminary results, including in addition 
to Taylor-Couette turbulence, Rayleigh-Benard convection and channel flow are 
consistent with the asymptotic predictions of the Kolmogorov dissipation law. 

4.  Stochastic PDE Paradigm 

The idea to describe turbulence in terms of statistical rather than deteministic 
solutions is not new [15]. Contemporary theories ([16], [17]) use tools of statis- 
tical physics, but the contact with the Navier-Stokes equations is not complete. 
The mathematical existence theory for statistical solutions of the Navier-Stokes 
equations ([18], [19], [20]) is developed to a similar extent as is the existence 
theory for deterministic solutions. The temporal power spectrum of wind tun- 
nel data provides strong experimental verification of one of the beacons in the 
subject of turbulence, the Kolmogorov theory ([21]). Grounded in dimensional 
analysis, this theory proposes the existence of universal scaling behavior in fully 
developed turbulence. According to the Kolmogorov dissipation law, the energy 

dissipation rate 

e = v(\Vu{x,t)\2) 

is a positive constant that is bounded independently of viscosity. The braces 
< •••> represent ensemble average (functional integration). Kolmogorov 
assumed homogeneity and isotropy (invariance with respect to translations and 
rotations of the underlying probability distributions). In addition, the Kolmo- 
gorov theory assumes that there exists an interval, the so-called inertial range, 
which extends from a small length (the Kolmogorov dissipation scale r]), to a 
large one (the integral scale p) such that, for r G [?7,^],the variation 

s{r) = (\u(x + y) - u{x)\2Y 

of velocity across a distance r — \y | can be determined from dimensional analysis: 

s(r) ~ (er)'5 . 

This is the Kolmogorov two-thirds law (two-thirds because one has s2~(er)3). 
It is one of the most important predictions of this theory. It implies that 
the energy spectrum behaves approximately like a -| power in a range of wave 
numbers. There exists experimental numerical and theoretical evidence that 
seems to indicate the possibility of small departures from simple scaling. More 
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precisely, the equal time generalized structure functions (see below) scale with 
distance like powers 

\y\Vm 
< \u(x + y,t) - u(x,t)\m >£~ U 0-?f) 

where the value of the exponents Cm is close to § but depends on m. The Cm 
must be nonincreasing in m because of the Holder inequality. 

I will describe here the results of ([14], [22]) regarding the scaling of velocity 
structure functions for the Navier-Stokes equations. We consider ensembles of 
solutions of the Navier-Stokes equations in the whole 3-D space. We assume that 
there exist uniform bounds for the velocities in the ensembles 

sup \u(x,t)\ < U    (*) 
x,t 

This assumption implies regularity of the solutions.   We will consider driving 
body forces / which are bounded uniformly. 

sup \f(x,t)\ < B    (**) 
x,t 

The forces are deterministic. We assume also: 

/      s[p\y)fL<cU    (***) 
J\V\<P       \y\ 

where s[p' is defined below. 

These are the standing assumptions. There are no assumptions of homogene- 
ity or isotropy. 

We define the averaging procedure Mp by 

Mp(h{x,t)) = AV sup lim sup --—- /     / h(x,t)dxdt 
x0dR\       T-oo T (471^) J0    JBp(xo) 

AV means ensemble average and supa.o is a supremum over all Euclidean balls 
Bp with center XQ and radius p. 

We set 

and 

We denote 

If 

e(p)=vMz(\Vu{x,t)\2), 

s<£\y) = [Mp (\u(x + y,t) - u(x,t)\m)}™ . 

v 

^)'"<4»fe)<^)u 
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holds on an interval 

R,e~T+^ < — < 1 
P 

then we say that we have m-scaling.    This definition implies that the local 

Reynolds number |y|sf (v) ranges between c and CRe in the scaling region. 

Here are the main results. 

THEOREM 2. Assume (*),(**),(** *)• Then 

fU3 U2 

e0t)<c(-+BU + v-p 

Note that the dissipation is bounded uniformly as v -> 0. Thus, the Kol- 
mogorov dissipation law is true as an upper bound. A lower bound is much 
more difficult to obtain; as far as I know it is still an open problem. 

We show that structure functions for the pressure are bounded in terms of 
structure functions for the velocity. Once the pressure is controlled then the re- 
sult follows via local energy inequalities. We relate the second structure function 

to the first: 

THEOREM 3. Assume (*), (**), (* * *). Then 

s{
2
p\y)<cU^Re^ 

In particular, if 1 and 2-scaling occur then 

Ci>C2>|. 

This is seen as a result deduced in the neighborhood of the dissipation scale. 
Without the postulate that scaling persists down to lengths where the corre- 
sponding local Reynolds number is order one we can not assert a direct relation 

between Ci and C2- 
It is widely believed that <3 = |- The evidence is both numerical and the- 

oretical. The traditional theoretical arguments are based on the assumption of 
homogeneity and isotropy ([15]). A conjecture of Onsager corresponds to the 
statement that Cß > | implies e = 0; a mathematical formulation and a proof of 
this conjecture ([23]) offer additional arguments in support of C3 = §■ Here is a 

brief description of the result in ([23]). Denote first 

/• 
(a; - y)u(y)dy 

a standard mollification of u. Then denote by 

re{u, u){x) = / 4>c(y) (Syu{x) ® Syu{x)) dy 

where 
6yu(x) = u(x - y) - u{x). 
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The following identity holds pointwise: 

(u<g>u)e = ue <8>-ue +re(u,u) — (u — uc) <g> (u — ue). 

THEOREM 4. If u is a weak solution of Euler's equation which belongs to the 
space L3((ö,T);ß3'°°) for some a > \ then 

H-,*)||L2 = |K,o)||L2 

for 0 < * < T. 

The proof uses the well-known facts about Besov spaces: 

\\u — U
JIL

3
 < Ce"lliill«01'00, II c||ij      _ ||      ||o3 , 

\\6yu\\L3<C\y\a\\u\\B«,~, 

„ d 

and 

It follows that 

i .""elk3 < Cea  1
||W||K

Q
'
O
°, 

de 3 

WVu^s^Ce^WuW 

l|re(«,«)|L§ <Ce2a\\ufBa,-. 

The proof follows from the identity and from 

1 d 
\\u ■e\\h =     Tr((u®u)e(Vue))dx 

2dt' 

by the ususal incompressible cancellation and by straightforward Holder inequal- 
ities. One has to mollify in time but that is not a problem. 

Corrections to the Kolmogorov-Obukhov exponent of ( = | are referred to 
by the name of intermittency. They are believed to be connected to the exis- 
tence of statistically significant large variations in the velocity gradients, over 
small regions in physical space. We have some mathematical evidence for this 
connection: 

THEOREM 5. Assume (*),(**),(***), and 4-scaling. If 

UMR (\Vu{x + y,t)-Wu(x,t)\2)  > ce(£)>0 

for some y satisfying 

< C(Re) \y\ /^D^-/3 
p 

then 

iß' 
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Thus, if the gradient can be decorrelated by translations over very small dis- 
tances then intermittency sets in. Note that ß = f is the value of the exponent 
of the Kolmogorov length. If £3 = | and if (4 makes sense, then it must be 
equal or less than |. If ß = § then our result is consistent with (4 = \, i.e, with 
the K41 theory. If ß > f however, then the preceding result gives sufficient and 
testable conditions for intermittency corrections. 

5. The inviscid limit 

Here we consider the inviscid limit, that is we fix time and let the control 
parameter tend to infinity. Let us focus on the Navier-Stokes equation. The first 
question is: what are the limiting equations? In realistic closed systems where 
the boundary effects are important, unstable boundary layers drive the system: 
the limit is not well understood. In the case of no boundaries (periodic solutions 
or solutions decaying at infinity) the issue becomes one of smoothness and rates 
of convergence. Indeed in n = 2, if the initial data are very smooth then the 
limit is the Euler equation and the difference between Navier-Stokes solutions and 
corresponding Euler solutions is optimally small {0{v)). However, if the initial 
data are not that smooth, for instance in the case of vortex patches, then the 
situation changes. Vortex patches are solutions whose vorticity (antisymmetric 
part of the gradient) is a step function. They are the building blocks for the phase 
space of an important statistical theory ([24], [25]). When one leaves the realm 
of smooth initial data the inviscid limit becomes more complicated: internal 
transition layers form because the smoothing effect present in the Navier-Stokes 
solution is absent in the Eulerian solution. In the case of vortex patches with 
smooth boundaries, the inviscid limit is still the Euler equations, but there is a 
definite price to pay for rougher data: the difference between solutions (in L2) 
is only 0{y/v) ([26]). This drop in rate of convergence actually occurs - there 
exist exact solutions providing lower bounds. The question of the inviscid limit 
for the whole phase space of the statistical theory of [24] and [25] is open. If the 
initial data are more singular then even the classical notion of weak solutions 
for the Euler equations might need revision ([27]) except when the vorticity is 
of one sign ([28]). 

In the case of three spatial dimensions and smooth initial data, the inviscid 
limit is the Euler equation as long as the corresponding solution to the Euler 
equation is smooth ([29],[30]) This might be a true limitation, because of the 
possibility of finite time blow-up. The blow-up problem for the Euler (v = 0) 
equations is the following: do smooth data (for instance / = 0, and smooth, 
rapidly decaying initial velocity) guarantee smooth solutions for all time? The 
answer is known to be yes only for n = 2, not known for n = 3. 

The three dimensional incompressible Euler equations are equivalent to the 
requirement that two vector fields ft and Dt commute: 
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[A,fi] = o. 

Both vector fields are associated to divergence free vectors. The first one, Dt is 
associated to the velocity field u = u(x, t): 

Dt=dt+u(x,t)-V 

The second vector field, Q, is associated to the vorticity to = u>(x, t): 

n = uj(x,t)-v. 

The integral curves of Q are vortex lines. The commutation relation is equivalent 
to the stretching equation 

Dtu> = ui ■ Vu. 

Many incompressible inviscid hydrodynamical models are obtained from the 
commutation relation by specifying a coupling relation between the coefficients 
u and u! of Dt and Q. In many cases this coupling has the form 

u = K. * u>. 

The 3D Euler coupling kernel K. is given by the Biot-Savart law 

r-(Euler)/ N, ilk 

where y = A, e^ is the signature of the permutation (1,2,3) >-> (i,j,k) and 
repeated indices are summed. Note that the singularity at the origin is of the 
order 2 = n — 1. A natural analogue of the three dimensional Euler coupling in 
two dimensions is ([14], [33], [32]) 

IC^GASE\y) = s' 
13 \v\ 

This defines the quasi-geostrophic active scalar equation (QGASE). Its coupling 
kernel has the analogous singularity strength 1 = n—1. The QGASE is physically 
significant in its own right: it is a model for temperature in a quasi-geostrophic 
(Coriolis forces balance pressure gradients) approximation of atmospheric flow. 
We will discuss simultaneously the 3D Euler equations and QGASE. The nota- 
tion is purposely ambivalent. Because the QGASE systems are 2D they can be 
described by the time evolution of scalars, functions 6(x,t) that obey 

(dt + u ■ V) 6 = 0 

where u is obtained from CJ as above and 6 is related to to by 

w = ^6. 

(V1- denotes the gradient rotated counter-clockwise by 90 degrees). The integral 
lines of fi are material i.e., they are carried by the flow. The QGASE analogues 
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of vortex lines are iso-6 lines. Their length element is \u>\. They stretch according 
to 

Dt\to\ = a\u)\. 

It is well-known ([31] for the 3D incompressible Euler equations, but the result 
holds for QGASE as well) that 

rT 
\\u (■, t)\\ L™ (dx)dt = oo 

/o 

is a necessary and sufficient condition for blow-up. 
It is also easy to prove that the singularities cannot occur without small scales 

developing ([14]) in w. By that I mean that that large spatial gradients of its 
magnitude must develop, at a fast enough rate. This is related, perhaps, to 
intermittency (see previous section). 

The stretching rate alpha is given by 

a[x) = {Vu{x))Z{x)-Z(x) 

and the direction field £ by 

MaOl 
The region {x :  \u)(x)\ > 0} is material.  Both a and £ are defined in it.  The 
stretching rate a has a remarkable integral representation 

dy 

'|y|n' 

Here n is the dimension of space (3 for Euler equations, 2 for QGASE) and 

^(Euler) ^ £{x + y)f ax)) = {(y . £(x)) Det ^ ax + y)A{x))) 

and 

^(QGASE) (d) ax + y)j e(a;)) = ((.. ^{xM{x + y). ^{x))). 

Note that the geometric factors D vanish not only in the spherical average, but 
also if the vectors £(x + y) and £(x) are parallel or anti-parallel. More precisely, 
if cos<?!> = £(x) • £(x + y) then \D\ < | sin</>|. The geometric factors vanish also if 
y is parallel to £(x). 

Based on these properties we prove ([32], [36]) that if the direction field £ is 
smooth in regions of high \co\ then blow up does not occur. 

Let u be the velocity of either a three dimensional incompressible Euler so- 
lution with smooth and localized initial data or of a two dimensional QGASE 
solution with smooth and localized initial data. Assume that the corresponding 
solution is smooth on a time interval 0 < t < T. The velocity field u = u(x, t) is 
used to define particle trajectories X(q,t), solutions of 

o(i)=P. V. JD(y,E,(x + y),{.(z))\u{x + y)\- 
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X(q,0) = q. 

If Wo is a set we denote by Wt its image at time t 

Wt = X(t,W0) 

Br(W) denotes the neighborhood of W formed with points situated at Euclidean 
distance not larger than r from W. We say that a set Wo is smoothly directed if 
there exists p > 0 and r, 0 < r < | such that the following three conditions are 
satisfied. First, for every q G W0*, 

WS H«e W0; \w0(q)\ ± 0}. 

and all t G [0,T), the function £(•,£) has a Lipschitz extension (denoted by the 
same letter) to the Euclidean ball of radius 4p centered at X(q,t) and 

M = Urn sup   /   \\VZ(;t)\\2L~(B4p(X(q,t)))dt < °°- 

Secondly, 
sup    \w{x,t)\<m   sup   |w(a;,i)| 

B3r(Wt) Br(Wt) 

holds for all t G [0, T) with m > 0 constant. And finally, 

sup    |u(a;,£)| < U 
B4p(Wt) 

holds for alltG [0,T). 
The first assumption means that the direction field £ is well behaved in a 

fixed neighborhood of a bunch of trajectories. The second assumption states 
that this neighborhood is large enough to capture the local intensification of |o;|. 
In other words, the competing and significantly stronger blow up trajectories, if 
they exist, do not come near this bunch. Our regularity result is 

THEOREM 6. Assume W0 is smoothly directed. Then there exists r > 0 and 
r such that 

sup   |w(x,t)| <T    sup    |u>(a:,£o)| 
Br{Wt) Bp(WtQ) 

holds for any 0 < t0 < T and 0 < t — t0 < r. 

The numerical evidence for QGASE ([32]) supports strongly two statements: 
first that sharp fronts do form in finite time (sharp means large gradients of 6, 
i.e. large \w\; based on the present computations, blow up cannot be predicted). 
Secondly that there is a marked difference in the rate of development of these 
sharp fronts caused by the nature of £. There exist initial data for which £ 
develops only antiparallel, regularly directed singularities. The formation of 
fronts is then depleted. For other initial data, a saddle point in 6 provides a 
Lipschitz singularity in the £ direction field. This is the source of much more 
intense gradient growth. Qualitatively similar numerical results were obtained 
also for the Euler equations ([37]). 
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Now I will address briefly the role of viscosity. In the three dimensional 
incompressible Navier-Stokes equations there exist suitable weak solutions (this 
is a technical term) that satisfy 

<K^t)||vc(x,i)|2>< £ 

where v > 0 is the viscosity, T is given in terms of the initial data and < • • • > is 
an appropriate space and time average ([35], [34]). Consequently, typical regions 
of high vorticity have Lipschitz £. 

Moreover, if one assumes 
Assumption (A) 
There exist constants 0 > 0 and p > 0 such that 

\y\ 
p 

holds if both \w(x, i)| > fi and \u(x + y, t)\ > 0, and 0 < t < T. 
{P^?xMx + y) is the projection of f (a: + y) orthogonal to £(x)), then ([34]): 

THEOREM 7. Under the assumption (A) the solution of the initial value prob- 
lem for the Navier-Stokes equation is smooth (C°°) on the time interval [0, T]. 

Based on these theoretical considerations and on the numerical evidence on 
active scalars ([32]) and on Euler equations ([37]) we speculate that blow up 
occurs in the Euler equations and that this event occurs in the neighborhood 
of a singular object in physical space (such as a vortex tube pair with a conical 
singularity). We continue to speculate that for the Navier-Stokes equation these 
events are not blow-up events but trigger topological change and large dissipation 
events; their presence is felt at the dissipation scales and is perhaps the source 
of small scale intermittency. 
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Introduction 

The inertial scales of three-dimensional fully developed turbulence, 

which mediate between the energy-containing range and the dissipa- 

tion range, are a main focus of turbulence theory. They exhibit the 

well-known Kolmogorov spectrum, E(k) = constant-es/j-a, where 

E(k) is the energy spectrum (energy as a function of the wave num- 

ber k) and e is the rate of energy dissipation per unit mass. Most 

derivations of this spectrum rely on the idea of an energy cascade: 

energy is fed into the system at large scales, it is dissipated at small 

scales, and in the inertial range the energy flow is not only irreversible 

but also far from a Gibbsian thermal equilibrium. Thermal equilib- 

rium for the equation of fluid mechanics is, on the other hand, iden- 

tified with an "equipartition" ensemble, in which the mean energy 

per Fourier mode is constant, and the resulting spectrum is propor- 

tional to A;2 — a very different spectrum indeed. This general picture 

has survived in the literature (see e.g. [28]) even though the idea of 

a unidirectional cascade contradicts experiment [29], closely related 

fields (e.g. plasma turbulence [19], superfluid turbulence [17]) do not 

exhibit such a chasm between equilibrium and non-equilibrium phe- 

nomena, recent analyses of two-dimensional turbulence make ample 

use of equilibrium ideas, and the "equipartition" ensemble is of doubt- 

ful relevance to fluid mechanics. Indeed, turbulence, as it is usually 

described, is the only major example of an irreversible system with 

many degrees of freedom which cannot be connected in a significant 

way to an appropriate equilibrium process (e.g., via a fluctuation- 

dissipation theorem). It has already been argued in detail, e.g. in 

[10], that the "equipartition" (or "Hopf) equilibrium is an artifact 

produced by divergent spectral approximations and has no relevance 

to fluid mechanics, and this argument will not be repeated here. We 

shall emphasize instead the contrary point of view, according to which 

turbulence can indeed be usefully studied as a small-to-moderate per- 

turbation of a Gibbsian thermal equilibrium in vortex (or "magnet") 

variables. The idea is sensible because it is plausible that the small 

scales of turbulence have intrinsic time scales much smaller than the 

time scale of overall decay, and there is enough time for equilibrium 
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to be reached. The emphasis here is on the motivation and on the 

plausibility of the framework presented rather than on detailed cal- 

culations, especially when the latter are already available in print. 

Note that except possibly in the next section, "equilibrium" means 

"Gibbsian equilibrium" and not "statistical steady state". 

Example of a cascade through an equilibrium spectrum 

In subsequent sections we shall present models whose spectrum is 

determined by an equilbrium ensemble and which also exhibit an en- 

ergy transfer between large and small scales. The usual belief is that 

equilibrium and turbulent energy transfer are mutually exclusive, un- 

less "equilibrium" means "statistical steady state". In the present 

section we present a simple example of a system where an irreversible 

energy cascade proceeds across a spectrum whose form is determined 

by what can be reasonably viewed as "thermal equilibrium" considera- 

tions, and where in addition there is a relation between the amplitude 

of the energy spectrum and a rate of energy dissipation. More elab- 

orate examples of systems with similar behavior are available in [12]. 

In no way do we imply that there is never a difference between sta- 

tistical steady states and Gibbsian thermal equilibrium- only that it 

is possible for the spectral distribution of the energy to be similar in 

both cases. 

Consider the unit square D = {x,y | 0 < x < 1, 0 < y < 1}; 

we are going to implement on Da discrete version of the baker's 

transformation (see e.g. [30]): x' = 2x — [2a;], y' = \{x + [2x]), 

where [x] denotes the largest integer < x. This transformation is well 

known to be ergodic and mixing, and thus not an absurd example of 

the growth in disorder typical of turbulence. 

To discretize the transformation, divide D into boxes D^ = {x, y \ 

ih < x < (i + l)h, jh <y < (j + l)h}, where h — £, n = 2m for some 

integer m, and i, j takes the values 0,1,..., (n — 1). Furthermore, 

consider the discrete function <f> = {4>ij}, fcj = 0 or 1 on each D^. 
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The discrete baker's transformation (i,j) -> (i',f) is defined by 

x = ih , y = jh , 

x' = 2x-[2x],    y' = \{y + [2x\) , (1) 

i' = x'/h , f = y'/h . 

One can readily check that this transformation maps two pairs (i,j) 

on one (i',f) if i' is odd and no pairs if i' is even. To construct 

the image <j>' of <j> under the transformation, consider for i' odd the 

sum s of the <j>itj at the preimages of (i',f), and set fcj' = 0 if 

8 = 0, &/j« = 1 if s > 1. Then, if s < 1 set <?V+i,j' = 0, if 

s = 2 set (f>i>+i,j> = 1. This construction preserves f <f)dxdy (and 

indeed, / (j)qdxdy for all g). The use of an integer- valued function 0 

is designed to eliminate any entropy increase due to smoothing. It is 

easily seen that, given an initial <f> with few "holes", the first few steps 

of the transformation (1) approximate well the first few steps of the 

continuous baker's transformation. However, the sequence of discrete 

maps of (j> is periodic with period 2m. 

Start with initial data (f> with few "holes", for example, with a 

function <j> which equals 1 in some £h x Ih square, I integer, £ < n. 

This (j) and its discrete baker's transforms can be expanded in Fourier 

or, even better, Haar series. For the first few steps, the "energy" 

moves to smaller and smaller scales, as in simple models of turbulent 

cascades. In the next m steps the energy comes back; the time aver- 

age of the energy per scale is a constant independent of scale. One 

can readily find initial data for which the energy starts out roughly 

equidistributed among scales and remains so. We shall not bother to 

define a temperature and an entropy for this system and shall iden- 

tify the "equidistribution" ensemble with a thermal equilibrium; for 

details, see [12]; the energy spectrum has the form E(k) = Ak1, with 

7 = 0, and its amplitude A depends on the mean amplitude of the 

initial data. 

Now add an irreversible energy cascade to this model: Start with 

"smooth" initial data, for example 4>%j = I for i,j < I, I = [-/ßn], 

where ß — E^/n2 < 1 is the fraction of sites where fcj = 1. Re- 

move energy at small scales by setting 4>ij to 0 whenever faj = 1 and 
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<ki±i,j = 0, <f>i,j±i = 0 (i.e., whenever there is an isolated 1). Feed 

energy at large scales by filling in the missing 1 's whenever the initial 

data would have been recovered if it were not for the removal, i.e., 

once every 2m steps. Define a rate of energy dissipation e as the ra- 

tio of the number of l's removed per q steps divided by q (the limit 

q —> oo is reached in 2m steps). It is easy to see that the form of the 

spectrum is unchanged, and that for small ß, A = 2e + o(ß), i.e., 

E(k) = 2ek~1. (The dependence of A on e is more interesting near 

ß = \, but this is not the place to discuss it.) One can reverse the 

usual argument and say that here (and possibly in turbulence theory) 

there is a relation between E and e not because energy dissipation 

creates the spectrum but conversely, because the more energy there 

is in the "equilibrium" scales, more of it can be dissipated. Note that 

the dissipation mechanism described for the baker's transformation 

is in fact a faithful representation of the effect of the scales omitted 

by the discretization. The recurrent behavior of the system is not 

without parallel in vortex dynamics [34]. 

Equilibria of vortex filaments 

We now consider thermal equilibria of vortex filaments and their 

relevance in turbulence theory. The steps are 

(i) analysis of the equilibrium configurations of a single vortex 

filament, 

(ii) analysis of a many-vortex collection, including numerical re- 

sults and an analytical description based on a low fugacity, 

i.e., sparse system theory of Kosterlitz-Thouless type, and 

(iii) a brief mention of the modifications needed to accommodate 

an energy cascade. 

The passage from a many-vortex system to a continuum is well ana- 

lyzed in other contexts (for a review, see [31]) but not in the statistical 

context, and is probably the weakest link in what remains a specula- 

tive chain. The main points in the chain are: there exist stable equi- 

libria that attract vortex systems embedded in a three-dimensional in- 

compressible flow; these vortex equilibria have Kolmogorov-like spec- 

tra (and higher moments); appropriate irreversible (but not one-way) 
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cascades live in the vicinity of these equilibria. 

First, a common misapprehension should be dispelled: the vortices 

and vortex filaments we are dealing with can be used to represent 

an arbitrary incompressible flow, under wide conditions well studied 

in numerical analysis; they are not the coherent, organized vortices 

one sees in some turbulent flows. A coherent, organized vortex is a 

collective mode of this many-vortex system. The vortex representa- 

tion is general and requires no ä priori assumptions about the role 

of organized structures in turbulence. A similar situation holds in 

two-dimensional vortex-based analyses (reviewed e.g. in [10],[18]). 

A single vortex filament 

The construction in this section is amply described elsewhere, see 

e.g. [8],[10]. Consider a single long vortex filament, with some small, 

finite, constant cross-section. It is immaterial whether the filament is 

open (a topological cylinder) or closed (a topological doughnut). The 

energy of a compactly-supported vorticity field £ = £(x) is given by 

the integral 

where |x| is the length of the vector x. To specialize this integral 

to the case of a filament, suppose the filament center-line can be 

approximately mapped on a connected set of N bonds of a cubic 

lattice; then E is approximated by 

where t j is a vector centered at the center of the lattice bond occupied 

by the z-th piece of the filament, parallel to that bond, pointing in the 

same direction as £ in the bond, with |tj| = circulation of the vortex 

divided by y/EH, \i — j\ is the straight-line distance between segments 

i and j, and // is that portion of the integral in (2) which corresponds 

to x,x' in the same bond. The parameter n can be interpreted as 

a chemical potential. The vortex filament has many configurations. 

Assign to each the probability Z~x exp(—ßE^), where Z is the ap- 

propriate normalization factor, ß = l/T, and T is the temperature. 
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As in two space dimensions, T can be positive or negative;. T < 0 is 

"beyond infinity" rather than below 0; negative temperatures occur 

whenever the maxima of the entropy and of the energy fail to coin- 

cide. In the limit N —>• oo, the vortex filament is in one of three 

states: For ß > 0 it is balled up into a crumpled ball, for ß < 0 it 

is a straight line, and for ß = 0 all configurations are equally likely 

and one has a "polymer" — a self-avoiding equal probability random 

walk. The heuristics of this situation are simple: ß > 0 favors low 

energy states, and low energy for a vortex is obtained by folding it 

and allowing the velocity fields induced by its several pieces to cancel; 

the converse holds for ß < 0. In the boundary case ß = 0 the en- 

ergy spectra has the form E(k) ~ k~y. For an infinitely thin vortex 

7 = D', the vector-vector correlation exponent for a polymer, which 

has been calculated in several ways; a plausible conjecture by Akao 

[1] yields D' = 2 — ^, where a is the Flory exponent for a polymer, 

a = .59 and thus 7 = .3. (A related conjecture has been offered by 

Shenoy [6]). For a filament with a finite, non-uniform cross-section, a 

heuristic analysis yields 7 = 5/3, a Kolmogorov-like result (note that 

this Kolmogorov-like result is found at equilibrium). 

Consider now a smooth physical vortex with some finite cross- 

section. It can be modeled as a finite collection of segments, at a 

negative ß. If the vortex is imbedded in a random flow it will pre- 

sumably stretch; if its energy is conserved one can see that \ß\ will 

decrease until ß = 0 is reached, assuming one can represent the evo- 

lution of the vortex as a succession of equilibrium states. Energy 

conservation forbids the crossing of the boundary ß = 0, which is 

therefore attracting. We thus have a simple near-equilibrium cartoon 

of the effect of vortex stretching and of the reason for the appearance 

of a Kolmogorov spectrum. In two space dimensions, by contrast, 

there is no stretching, the temperature of a vortex system is invariant 

(assuming adiabatic walls), and there is no universal spectrum. Note 

that here, just as in two dimensions, ß = 0 is the boundary between 

classical and non-classical (e.g., quantum) hydrodynamics. 
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A collection of vortex filaments 

We now consider many filaments. The significant parameters in 

the problem are ß = 1/T, as before, and /z, the "chemical potential", 

defined in equation (3). The equilibria of many-vortex systems have 

been studied numerically (see e.g [2],[11],22]), and they exhibit a phase 

transition line that is no longer on the it axis (ß = 0) in the (ß,fi) 

plane. As before, smooth vortex filaments live on the small ß side of 

this line (which includes the half plane ß < 0, since negative tempera- 

tures are "hotter" than positive temperatures), and vortex stretching 

draws them to the transition line. The analysis of this attraction 

provides an interesting interpretation of intermittency [7],[10]. 

To understand the situation analytically, we proceed via a Kosterlitz- 

Thouless (KT) "dielectric" analysis [23],[24], which is a two-term ex- 

pansion in powers of the fugacity y = e~ßlx, and applies to sparse (but 

no longer one-filament) systems. This methodology is ambiguous [14] 

and to simplify the presentation here we shall pick its easiest variant 

[13]; the KT analysis has the great advantage of leading naturally to 

irreversible extensions of the equilibrium theory. 

First, following [13],[27],[32], we simplify the vorticity field and rep- 

resent it as a sparse collection of circular vortex loops. Recent work, 

in particular by Buttke [4],[5], shows that any vorticity field can be 

approximated by such a union of circular loops (also known as "mag- 

nets", or "elements of impulse" or "velicity"), but the representation 

is not unique (creating problems when entropy is calculated) and the 

loops are generally not independent (creating problems for the argu- 

ment that follows here). The loop representation thus constitutes a 

substantative simplification [11]. 

Assume now that in some part of the (/?, //) plane, to be deter- 

mined, large loops "polarize" smaller loops, i.e., orient them in a spe- 

cific way, creating a "dielectric" medium [21]. In the simplest form 

of a Kosterlitz-Thouless argument, one assumes that there exists a 

dielectric constant e and that the response of the system of loops to 

an imposed velocity, as well as its energy, is reduced by e. (In a more 

detailed theory, e is a function of scale.) When ß > 0, the Gibbs fac- 

tor favors lower energies, and thus arranges smaller loops to oppose 
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the flow; then e > 1. It is customary to work in terms of the param- 

eter K = ß/e. From general statistical mechanical principles, one 

can calculate the susceptibility of a vortex loop (the mean amount by 

which it reduces an imposed velocity u, divided by |u|), as well as the 

density of loops of each radius r, and by adding up the contribution 

of all loops one obtains for K the integral equation 

r6exp(-KE(r,n))dr , (4) 

where E = E(r, fi) is the energy of a loop of radius r, which depends 

on fi. 8 is the thickness of a loop, assumed small but finite. The 

integral equation is nonlinear even in this linear theory because the 

effective energy depends on K. The integral equation (4) defines 

a function K = K(ß,ß), as well as a set of renormalization group 

transformations which do not concern us here. The (ß,ß) plane is 

divided into a region where K is real and positive, a region where K 

(which must be real) is not defined, divided by a "transition curve". 

A small imaginative leap identifies the region where K is well de- 

fined with the "folded" region of the one-vortex theory. Indeed, polar- 

ization and vortex folding are similar; one can observe the reduction 

of the effective velocity by vortex folding and bending in standard 

vortex computations. Similarly, the region where K is ill-defined is 

the region in which vortex lines are smooth and the representation by 

small, independent loops is inapplicable; the boundary between them 

is the phase transition line. In superfluid theory, the "folded region" 

is the region in which there is a superflow, and the "unfolded region" 

is the normal fluid region. 

To make the theory concrete, consider the case of very thin vortex 

filaments, 6 « 1. The integral equation (4) reduces [13] to 
/■OO 

K-1 = ß-1 + a /    r6 exp(-c2Kßr)dr , (5) 

where c\, c2 are known constants, and \x can be calculated from (2) 

once 8 is known. Following an argument due to Hald [20], equation 

(5) can be rewritten in the form 
/■OO 

T = ß-l = f(K) , f(K) = K~l -Cl r6 exp(-c2Knr)dr . 

(6) 
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(Note that the integral can be evaluated exactly.) The function f(K), 

plotted in Figure 1 for cx = c2 = fi = 1,6 = 0, is convex in K and 

has a single maximum, Tmax, reached at a point K = Kmax. For 

T > Tmax, equation (5) has no real solution. The chemical potential 

H as a function of ßmax = 1/Tmax is plotted in Figure 2. Note that 

ß < 0 is to the right of ß > 0, being "hotter". This phase transition 

line is qualitatively similar to the computed phase transition line, 

see e.g. [2],[11],[22]. The trajectory of a vortex system undergoing 

stretching is also marked in Figure 2. One can deduce from (5) an 

inertial range spectrum and an inertial exponent, which is not exact, 

not surprisingly in view of the crudeness of the model. 

A further conceptual difficulty has to be faced here: arguments 

of the type presented above are familiar in the context of superfluid 

vortex systems, where vortices are generated by thermal fluctuations 

and can reconnect by quantum mechanisms. We are applying these 

arguments to classical systems, where vortices are generated by vor- 

tex stretching and reconnect through either singularity formation or 

viscous effects. In neither case is it obvious that thermal equilibrium 

is reached, since potential barriers must be forded in the former case 

and topological constraints overcome in the latter. One must assert 

without proof a "generalized ergodic principle" [26], to the effect that 

whatever the obstacles, equilibrium is reached in a reasonable time. 

One obtains from all this not only a qualitative description of 

equilibrium vortex distributions, but also a recipe for simplifying 

this description. Suppose a homogeneous vortex system near an at- 

tracting equilibrium is described (for example, on a computer) by 

means of a large number of vortex loops. Suppose one deletes all 

loops below some scale d. To compensate for this removal, one has 

to endow the system with a dielectric constant, e = ß/K, where 

K~l = ß"1 + ci //r6exp(-c2Kfir)dr, cx,c2 are known, fi can be 

found from (2), ß = 1/Tmax and K = Kmax can be found on the tran- 

sition curve by identifying the maximum of f{K). This is a renormal- 

ization of the system. 

Note that if ß —> oo the system becomes sparse; as one can see 

from Figure 2, the transition curve is asymptotic to ß = 0, and one 
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recovers the one-vortex description of the previous section. At ß = 0 

the Gibbs factors are all unity, the polarizability of a loop is zero, and 

small loops can be removed with no penalty. One recovers the hairpin 

removal of reference [9]. 

The modification needed to handle inhomogeneous systems, as well 

as practical applications of these constructions, will be discussed in 

[16]. 

Irreversibility in vortex systems 

The use of KT-like theory is not without problems, but it does 

provide an elegant transition to the study of "nearby" irreversible 

process, and in particular energy cascades. It is quite easy to add to 

the KT formalism terms that describe a finite rate of relaxation to 

equilibrium for vortex loops of scale r in the presence of a varying 

imposed velocity. The "dielectric function" acquires a delay, and as is 

well known, the imaginary part of the Fourier transform of the delay 

function represents energy loss (the Kramers-Kronig formalism, see 

e.g. [25]). As is already known from superfluid calculations [3],[33], 

the energy loss is largest near the phase transition line, as it should 

be from the discussion above. This remark, to be amplified elsewhere 

[15], connects the equilibrium vortex model with the irreversible as- 

pects of turbulence. 

Conclusions 

An alternate approach to turbulence theory has been outlined. 

It can be viewed as a generalization to three dimensions of two- 

dimensional vortex equilibrium theory started by Onsager and so ably 

developed since. It provides a simple explanation for the universal- 

ity of the Kolmogorov spectrum and for the origins of intermittency. 

The general premise can be restated in fairly anodyne terms: Since 

some kind of perturbation theory seems to be unavoidable in turbu- 

lence theory, one should start with a "ground state" that is as close as 

possible to the final truth. Vortex equilibria near the vortex critical 

line may well offer the natural starting point, as they already present 

many of the features of the Kolmogorov theory. 
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Fig. 1.   f(K) vs. K in equation (6). 
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Fig. 2  Phase transition line in simple KT model. 
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HOMOGENIZATION AND RENORMALIZATION: 

THE MATHEMATICS OF MULTI-SCALE RANDOM MEDIA 

AND TURBULENT DIFFUSION 

Marco Avellaneda1 

This lecture describes some mathematical methods developed in recent years 
to study the macroscopic behavior of heterogeneous media and diffusion in turbu- 
lent fluids. This area of Applied Mathematics comprises a diversity of beautiful 
ideas. These include the averaging of partial differential equations, or homogeniza- 
tion theory, probabilistic techniques using Brownian motion, and recursive scaling 
methods, known as renormalization group techniques, which originated in High- 
Energy Physics and in Statistical Physics for the study of phase-transitions. My 
goal is to describe these ideas "at work" on a classical problem, the advection- 
diffusion of a passive scalar in a multiple-scale, random velocity field, showcasing 
the inter-relation between these methods, as well as their scope and limitations. The 
applicability of homogenization and renormalization methods extends well beyond 
the topics of this talk to many other areas of Applied Mathematics. 

I present an outline of what follows. In the first section, I briefly describe ho- 
mogenization theory and its application to computing the effective conductivity of 
a heterogeneous medium. The second section deals with the effective diffusivity of a 
passive scalar undergoing advection-diffusion in an incompressible flow. In Section 
3, I discuss the method of iterated homogenization — a mathematical approach to 
evaluate iteratively the effective properties of multi-scale, self-similar media. The 
rest of the paper focuses on advection-diffusion exclusively, concentrating on the 
phenomenon of anomalous diffusion due to "infrared-divergent" velocity fields. Af- 
ter formulating the renormalization problem in Section 4, I present two examples 
in which renormalization can be carried out in full mathematical rigor. These ex- 
amples illustrate the use of scaling techniques combined with homogenization in 
the same problem. In particular, the mathematical relation between decimation of 
high-wavenumber components and homogenization is analyzed. Section 7 discusses 
the renormalization group. Finally, in Section 8, I propose an approximate solution 
to the (open) problem of characterizing the large-scale statistics of a passive scalar 
evolving in an isotropic, incompressible, infrared-divergent velocity field. 

1. Homogenization Theory. I begin by a brief review of the classical prob- 
lem of computing the effective conductivity of a composite material. To fix ideas, 
consider a heterogeneous material made from two different conductors with con- 
ductivities o\ and 02 and volume fractions }\ and /2, respectively. Mathematically, 
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its "microscopic" conductivity is described by the function 

CT(X) = ox Xi(x) + 02 X2(x), (1) 

where Xi(x) anc' X2M axe the characteristic functions of the regions of space 
occupied by each of the two constituents. The partial differential equation satisfied 
by an electric potential <f> inside this composite is 

V-(<r(x))- V#x)) =0. (2) 

The characteristic composite dimension, L, is assumed to be large with respect 
to the "microscale", I. Let us introduce the small parameter e = l/L, where 
L represents the dimensions of the composite. Then, defining the macroscopic 
coordinate x' = ex, we rewrite (2) as 

V-(a(x'/e))V^(x')) =0, (3) 

with 
&(x') EEe^x'/e). 

Let us also make an auxiliary assumption: that the conductivity o(x) is periodic in 
R3 with period 1 in each direction, so that the heterogeneous material is "micro- 
scopically periodic"2. The macroscopic behavior of the composite is then described 
by the equation satisfied by ^o(x') = Ume^0 &(*')> wnich turns out to be3 

V-(ae//- V^o(x')) =0. (4) 

This equation and, in particular, the value of oeff, can be derived using the 
homogenization method or method of multiple-scale asymptotics [BLP], [SA], [B]. 
Let us expand formally the potential as a series 

&(x')) = <Mx') + e^V.x'A) +62^2)(x',x'/e) + ... (5) 

This is a perturbation series in e, in which the successive terms depend on the 
"macroscopic" variable x' as well as on the "microscopic" variable x = x'/e. To 
calculate the unknown terms in the expansion, replace x'/e by x in (3) and (5), and 
the operator V by Vx> + e'1 Vx. Then substitute (5) into (3) and, treating x' and 
x as independent variables, expand equation (3) in powers of e. This results in a 
hierarchy of partial differential equations that completely determine the functions 
4>W for all k ([BLP]). 

It can be shown that the effective conductivity, oeff, is given by4 

oeff = ((e + VX(x)))t • a(x) • ( e + VX(x)) ) . (6) 

2The validity of this assumption will be discussed below. 
3Strictly speaking, we must supplement (3) with boundary conditions on the boundary of the 

conductor. It can be shown that the form of the homogenized equation is independent of these 

conditions. 
4 For simplicity, we assume that the composite is macroscopically isotropic, so that crcff is a 

scalar. In general, the effective conductivity would be a tensor ocjj^j. 
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where e is a unit vector and the "potential' x(x) is a periodic solution of the the 
PDE 

Ve-(e + VX(x)) = 0 (7) 

The brackets (•) in (6) represent averaging over the period cell of CT(X). Equation 
(7) is known as the cell problem associated with the homogenization problem (3). 
The effective conductivity characterizes the conduction properties of the composite 
on a macroscopic scale. 

Homogenization theory is not restricted to periodic media. Kozlov [Ko] and 
Papanicolaou and Varadhan [PV] established the existence of a homogenized limit 
for equation (3) for very general stationary ergodic random conductivities CT(X) as 
e -» 0, using the ansatz (5). This theory requires however that the conductivity be 
bounded away from 0 and oo, i.e., that 

0 < A < cr(x)  < 1/A (8) 

for some constant A 6 (0,1], uniformly in x. In this more general setting, the 
effective conductivity is obtained by solving (6) in a suitable Hilbert space and 
evaluating (7). (The brackets in (7) represent then statistical averaging.) 

2. Advection-diffusion. Let us consider a different but related physical problem: 
the mixing of a passive scalar in an incompressible, steady flow. Typically, this 
scalar represents the volumetric concentration of a solute substance dispersing in 
the fluid under the action of the flow and of molecular diffusion5. 

The equations for the concentration C(x, i) and the velocity V(x) are 

dC{x, t) 
dt 

and 

+ V(x) • VC(x, t) = Z?AC(x, t) (9a) 

V • V(x) = 0. (9b) 

For simplicity, we assume that the velocity field V is smooth and periodic in R3 and 
that it has average zero over the period: ( V ) =0. To compute the effective, large- 
scale diffusion rate, we make, as before, a change of variables x' = ex, t' = e21 
and rewrite equation (9a) as 

dC^; t,] + -y(x'/e)V<7£(x', 0 = £AC£(x', t') (10) 
at' e 

where 

C£(x'/) = e-3C(x'/e,t'/e2). 

In the case of periodic velocity fields, the homogenization of equation (10) is 
essentially equivalent to the problem of Section 1, with a minor modification.  To 

5For a background on this problem see, for instance, Monin and Yaglom [MY]. 
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see this, notice that, since V is incompressible and has mean zero, it has a smooth, 
periodic vector-potential satisfying 

V x A{x) = V(x). 

Define an antisymmetric matrix Hij(x) by setting 

#12 = M ,      H13 = -Ai ,     H23 = Ä!,      etc. 

Using this matrix, the rescaled equation (10) can be rewritten as a divergence-form 
parabolic PDE with a tensor-valued, non-symmetric "conductivity". Specifically, 

Ce satisfies 

dC^'^ =v [(DI + H(x'/e))- VC£(x',(')] 
dt' 

where I is the identity matrix and H = JTy. Using the homogenization method 
(i.e. expansion (5)), it can be shown [BLP] that Ce(x', t') converges to the solution 
of the diffusion equation 

ac0(xV') =JP   ACo(x/>0> 
at' 

with effective diffusivity, Deff, given by6 

^//   =   Ö[1   +   (|VX(X)|2)], (11) 

where x(x) is a periodic solution of the "cell-problem" 

V-[(DI+H(x))-(VX(x) + e)]=0. (12) 

Generalizing this result to the setting of random velocities V is important for 
physical applications. However, the adaptation of homogenization methods to 
advection-diffusion in random velocity fields is a more delicate matter. This is 
due to the fact that the natural stationary field is the velocity V and not the vec- 
tor potential A. To apply the homogenization method with random velocities one 
must make additional hypotheses. If the vector potential is uniformly bounded and 
stationary - and thus a coercivity relation of type (7) holds for the "conductivity" 
DI + H - the theory of Kozlov and Papanicolaou and Varadhan can be directly 
applied to show that the tracer obeys a macroscopic diffusion equation. A general- 
ization of this result, obtained with Andy Majda [AMI], shows that the scalar will 
satisfy an effective diffusion equation provided that the velocity admits a station- 
ary, square-integrable vector potential. (See also Oelschlager [0]). The significance 
of the result is that it is, in a sense, sharp. (The condition is also necessary.) 

6We assume, for simplicity, that the system is macroscopically isotropic so that the effective 

diffusivity is a scalar. 
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A random vector field V has a stationary vector potential if and only if 

/ 
£(k)j3 
|k|2 

R3 

dAk < oo, (13) 

where R (k) is the spectral measure of V. 

Intuitively, if condition (13) is satisfied, the "correlation length" of the stationary 
vector potential A determines the "microscopic" scale in the problem. Homogeniza- 
tion theory then tells us that the system behaves diffusively at distances which are 
large compared to the correlation length. 

However, the assumption of stationarity of the vector-potential is not always 
suitable from a physical viewpoint. I will show that new phenomena arise if this 
condition (13) fails, i.e. if A has larger and larger fluctuations as |x| -> oo. In 
the latter case, the correlation length of the vector potential is infinite and, as we 
shall see, the macroscopic motion is no longer diffusive. This puts the problem 
beyond the reach of "classical" homogenization theory and new methods must be 
introduced. 

3. Iterated Homogenization and Rigorous Decimation Procedures. Ho- 
mogenization theory can be applied to study multiple-scale heterogeneous media 
and flows. This is an important application of the theory, which I regard as a "pre- 
cursor" of the physicists' renormalization theory discussed in §7. Many situations 
in Physics lead to the consideration of self-similar or fractal media. Thee include 
the analysis of phase transitions and of turbulent mixing in flows with many active 
energetic scales. 

Suppose that the microscopic conductivity of a material can be expressed in the 
form 

ffe(x)=ä(xe,xe2,...,X£JV), (14) 

where e is a small parameter and the function ä is defined in (R3)^ and is periodic 
of period 1 in each variable. A "medium" with this conductivity is composed of 
"elements" of different characteristic lengths, each being much larger or smaller 
than the other. Homogenization theory tells us (cf. [BLP]) that the solution of 
the cell problem associated to (14) can be done recursively, by solving independent 
partial differential equations at each scale. This is done as if xe1 , xe2 ,... ,xeN 

were independent variables. To illustrate this idea, let 

a£(x) = ä(xe,xe2). (15) 

represent the conductivity of a "two-scale" material. Accordingly, in order to cal- 
culate its effective conductivity as e -» 0, we should first homogenize the shorter 
scale xe, treating the longer one, xe2, as a parameter. The result is a "partially 
homogenized" conductivity 

rU) (x)=<7*(xe2), 
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where er* is obtained by solving a cell problem of type (6), with xe as the in- 
dependent variable and xe2 in held fixed, and averaging over the corresponding 
period cell. In a second stage, we should homogenize cr^x), using again a cell 
problem. The result of these two successive homogenizations is exactly the effective 
conductivity of the two-scale material (15) as e -^ 0. 

As an application of this idea, consider now a self-similar material with conduc- 
tivity (14). By this, I mean a material for which the spatial fluctuations in the 
conductivity are identical from one scale to the next after dilatation by a factor of 
e. Using iterated homogenization, we see that the effective conductivity of such a 
material can be obtained (in the limit e -> 0) by iterating a map: i.e., 

crW =ilo(lo ...fi(a0) 

= nW(a0), (16) 

where a0 is an initially given conductivity and a H- ft(cr) is the result of a "single- 
step" homogenization. This operation is identical at every scale due to the self- 
similarity. When the map n is known, we can calculate the effective conductivity 
by doing successive iterations. If the number of scales N is large or infinite, the 
problem reduces to the analysis of the fixed points of ft ([Mi], [A]). 

It is worthwhile to emphasize that the principle of iterated homogenization hinges 
on the large separation of scales imposed in the microstructure by assuming that e 
is a small parameter. This assumption leads to nice mathematical results but may 
not always be justified in practice. 

This idea can also be used to evaluate the effective diffusivity for advection- 
diffusion with velocities with multiple scales. For instance, consider a velocity field 

of the form 

V£(x) = £/3"e"V0(x6"), (17) 
n=l 

where V0 is a given incompressible periodic vector field and e and ß G (0,1) are 
parameters. The effective diffusivity for (17) can be calculated exactly in the limit 
e -> 0 as follows. First, we observe that the corresponding F-matrix is given by 

N 

H(x)= £/3nH0(xe"), (18) 
n=l 

where H0 is the H-matrix for the basic field V0. The smallest spatial scale corre- 
sponds to the term with n = 1. Iterated homogenization allows us to "average out" 
the combined effects of molecular diffusion and this first advective scale indepen- 
dently of the larger scales (n > 2). Let us define the map 

F{D) =  homogenized diffusivity for the operator      D A + V0 ■ V. 

The effect of "decimating" the smallest spatial scale is a modified diffusion coeffi- 

cient £>i given by 

Di =ßF(j). 
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We can continue "decimating" the successive scales n = 2, 3.... A simple cal- 
culation shows that the diffusivity Dj, obtained after eliminating the jth scale, 
satisfies 

Dj=FF(^). (19) 

Supplementing this relation with the initial condition D0 = D, we obtain a recur- 
sion relation from which the effective diffusivity D^ can be expressed in terms of 
D and the "one-step map" F (the analogue of ft for advection-diffusion). 

Consider now what happens if iV" = oo in (17). It is easy to show that, for 
ß < 1, the diffusion coefficient DN approaches a finite limit as N —> oo. On the 
other hand, if ß > 1, the velocity is well-defined for each value of e < l/ß, but 
DN diverges as N -> oo. For instance, if ß = 1, the iteration scheme (19) is 

DN = Fo Fo ... o F(D) 

= F<"> (D). 

Recall, from (10), that the homogenized diffusivity satisfies Deff = F(D) > D 
for all D. Therefore, the map F increases the diffusivity with each step. Thus, 
DN increases without bound as N -> oo. This is an indication that the effective 
diffusion coefficient corresponding to advection-diffusion by the velocity 

£ enV0(xen) 
l 

is infinite7. It is noteworthy that the velocity field (17) has a uniformly bounded 
vector potential if ß < 1, for all e > 0 and all N. On the other hand, if ß > 1, 
the vector potential of (17) diverges as N -> oo. 

4. Anomalous Diffusion and the Renormalization Problem. Advection- 
diffusion in flows for which the large-scale behavior of the passive scalar is su- 
perdiffusive, i.e. for which the effective diffusion coefficient is infinite, have been 
the object of much investigation. Recent progress has been made in understand- 
ing this phenomenon from a rigorous standpoint, although a complete theory is 
still missing. Anomalous diffusion in incompressible flows can arise only when the 
vector-potential is non-stationary, i.e. when 

/ 
R3 

^(k)j3 ePk = oo. (20) 

The large-scale analysis of the advection-diffusion equation (9a) for velocities 
satisfying (20) can be formulated as follows. First, let 8 > 0 be a small parameter 

It is an "indication" rather than a proof, because I took the limit e —» 0 first and then the 
limit N —> oo, rather than the other way around. The same conclusion and caveat apply for 
ß >  1. 
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representing the ratio between the velocity correlation length and the macroscopic 
scale. We make the change of coordinates x' = cSx, so that x' represents distance 
measured in the macroscopic scale. Let us also define a macroscopic time-scale t' 
by setting t' = p2{5) t, where p2(8) is a yet unspecified function of S.s 

Unlike the cases treated before, the macroscopic time-scale is expected to be dif- 
ferent than in homogenization theory, to account for the infinite diffusion coefficient 
when p = 5.  We shall see that this time-scale depends on the singularity of the 

function -nnr at |k| = 0. 

Define the large-scale concentration field 

Cs(x!t')=S-iC(x!5-1,t'p-2). (21) 

The renormalization problem ([AM2]) consists in i) finding a scaling function p{5) 

such that 
lim C7*(x',t') = C0(x',t') (22) 
*->o 

defines a non-trivial function, different both from zero and from the initial datum, 
and ii) to characterize the limiting function C0(x' ,t'), by means of an an appro- 
priate evolution equation. 

An important difference between systems with stationary vector potentials, sat- 
isfying (13), and the present ones is that, in the former, the limiting function 
C0(x' t') is always non-random, due to the "self-averaging" property of vector- 
potentials with finite correlation length [PV]. In contrast, for infrared-divergent 
flows satisfying (20), the limiting function C0 is expected to be a random process, 
with a distribution determined by a macroscopic equation of motion. 

5. Simple Shear Flows with Infrared Divergences. The simplest mathemat- 
ical model to study anomalous diffusion is a simple shear flow [AM3] 

V(x1,x2) = (U(x2),0), 

where 

U{x2) = Ü     f     \k\^-^2coskx3N{k)dk. (23) 

IJfeKfco 

The function N(k) in the integrand represents one-dimensional Gaussian white 
noise. Thus, U(x2) is a Gaussian field with spectral function 

I 0,     \k\ > k0. 

«The parameter 5 plays the same role as e in Sections 1 and 2; e will be used to denote another 

quantity (cf. (23) ). 
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The integral / R(k)/\k\2 dk converges if e < 0 and diverges for e > 0. The param- 
eter e varies in the range -co < e < 2.9 It controls the degree of divergence of 
the integral (20) since , for e > 0, 

j    W-*i\k\2dk « «r2£   5«i, 
<5<|fc|<fc0 

and the stream-function, ip(x2), (the 2D analogue of the vector potential) for this 
flow satisfies 

V>(s2) «  \x2\2i      \x2\ » 1. 

Let us derive the macroscopic evolution equation for this system. Due to the 
anisotropy of the random shear flow, it is convenient to define Cs in a slightly 
different way than (21), namely, 

Csix'^x'^t') = S-'p-1 C(si/*,4/p, «'/Pa- 

using equation (9a), we find that the PDE satisfied by Cs is 

DUs2,2)^Cs{x[2x^n       d^Csix^x^) 
(24) 

A choice must now be made for the scaling function p(S). We choose 

p(*)=*2/(2+«) (25) 

for reasons that will become immediately clear. Using this value of p, we can rewrite 
equation (24) as 

dCS(X[,x'2,t') -e,2-lu(x,lj)dCs(x'1,X>2,t')    _ 
dt, +P U[x2/p) —    _ 

f     d
2Cs{x[,x'2,f)       d2Cs{x[^2,t') 

[P d(x[)2 + d(xtf J- (26) 

We observe that the random field 

p^-'U{x'2lp) 

converges in distribution as p -> 0 to the Gaussian field 

+00 

U0{x'2) = Ü   j \k\^-^'2 cos kx'2N{k)dk. 

9The upper bound e < 2 is imposed so as to have a velocity with finite "energy" ( \V( x )|2 ) . 
In [AM 3], a wider range 0 < e < 4 is studied by introducing a natural infrared cutoff for the 
velocity statistics. 
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This is a generalized (distribution-valued) random field, in the sense of Gel'fand 
and Vilenkin [GV]. Therefore, formally, 

lim Cs(x\,x2,t') = Csix'^x^t'), 
5—v 0 

where Co satisfies the stochastic PDE 

The reader may wonder what is the meaning of a partial differential equation in 
which one of the coefficients is a random distribution*. Nevertheless, it can be proved 
rigorously that, in spite of the presence of the singular coefficient U0{ x'2), equation 
(27) has a well-defined solution which can be expressed as an expectation over a 
Wiener paths and, moreover, that this equation characterizes the limit of Cs as 
6 -> 0. The solvability of (27) justifies the choice of the scaling function and is 
really the essence of the renormalization. The key element needed to solve (27) is 

the fact that 

/ 
o 

U0(ß(s))ds 

is a well-defined random variable with finite moments. 

As an application of this result, let us calculate the averaged Green function, 
which describes the evolution of the statistical mean of the random function C0. 
This is done by solving (27) and averaging over velocity statistics10. Accordingly, 

we find that 

( Co (x[ ,4 ,*')) =  / / p(x'i - »i »4 - Va . *') dn« (W >y2 )dyi dy2 ' 

where Cinit represents the initial condition and where the Fourier transform of 

P (x[ , x'2 , t') is given by 

P(h,k2,t') = exp{-D(k2)
2t'}x 

0     0 K      J 

In this last equation, the expectation is taken with respect to Brownian Motion, 
ß(s) ,0 < s < 1, and the function Fe which appears in the exponent is given by 

Ft(y)=   J  W1-^* 
— oo 

[C£^#      for^l 

lCi%)      for£ = l, 

i°The higher-order moments of Co can be computed in a similar fashion . 
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where C€ and C\ are numerical constants and 8{y) is the Dirac function. The 
function (28) is very far from being a Gaussian propagator exp (- Deff |k|2 t'). It 
has the form 

P(k!,k2,t') = *[jr<1-«/a>(Jfc1)
3(t')1+€/a] • exp{-D(k2)

2t'}. 

This Green function does not correspond to a "closed" evolution equation for the 
average scalar. (On the other hand, the unaveraged scalar follows a stochastic 
PDE.) 

Recently, Majda obtained a complete characterization of the distribution of the 
concentration in the case of time-dependent random shear flows ([Mai]). 

6. "Nearly Stratified" Flows: Rigorous Assessment of the Influence of 
High-Wavenumber Components on Macroscopic Scales. The previous re- 
sult can be extended to a wider class of flows with infrared divergences. These 
"nearly stratified" flows are no longer simple shear flows, but have the same type of 
spectrum for |k| < 1. Since this is the spectral region which "controls" the diffu- 
sive/superdiffusive behavior, we expect qualitatively the same results as for the sim- 
ple shear flows11. However, unlike in the previous example, the high-wavenumber 
components of the flow also "participate" in the renormalization [AM4]. 

The nearly stratified flows have the form 

V(x1,x2 ) = (U(x2) + Ü1(x1,x2) ,Ü2(Xl,x2)) (29) 

where U is defined in (23) and Ü = (Üj. ,Ü2) is an incompressible vector field 
which satsifies condition (13). Notice that the associated Lagrangian trajectories 
are non-trivial and the advection-diffusion equation cannot be solved by separa- 
tion of variables. My goal in this section is to point out that the effect of the 
high-wavenumber component *7(x) on the on the macroscopic scale is simply to 
renormalize the transverse diffusion coefficient. 

This can be seen intuitively by considering the Lagrangian formulation of the 
problem [AM4]. A Lagrangian particle moving with the flow (29), with molecular 
diffusivity D, will perform a normal random walk in the z2-direction at large scales, 
and behave superdiffusively in the li-direction. These two phenomena occur at 
different time scales. In fact, the diffusive motion is achieved at distances which are 
large compared to the (finite) correlation length of Ü2 {xx,x2 ), but still relatively 
short. Because of this, the superdiffusive behavior in the Xi-direction, which is 
determined by the infinitesimal region of the spectrum near |k| = 0 and hence 
by very large wavelength fluctuations, is like in Section 5. The system behaves as 
if the Lagrangian particle component x2(t), was distributed as Brownian Motion 
independent of U(x2), with an enhanced diffusivity. The macroscopic time-scale 
p(5) which characterizes superdiffusion in the xx direction, is unchanged. 

In the language of the renormalization group theory, the high wavenumber components are 
"irrelevant" insofar as the critical exponents are concerned. 
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The macroscopic evolution equation for the function C0 for "nearly stratified" 

flows turns out to be 

*>( w). + „m)**(ffifl - m„ ^'g^1'1. (»I 
where Dx„ is a homogenized transverse diffusivity (see [AM4]. Thus, the system 
behaves as if there was a "separation of scales" between the "infrared-divergent" 
component (J7(x2),0) and the "infrared-convergent" component, (Ui{xl,x2), 
Ü2{xi ,12 ))• The situation is actually more subtle and shows a notable difference 
between iterated homogenization and renormalization. In fact, Dx

ff depends on 
the random velocity Ufa) as well. Thus, equation (30) does not arise from an 
iterated homogenization as presented in §3 - the «longer" scales are still weakly 
coupled to the shorter ones and play a role in determining the effective diffusivity. 

To be more specific about this last point, I exhibit this interaction explicitly. It 
is proved in [AM4] that the transverse effective diffusivity in (30) is obtained by 

solving the "cell problem" 

DAX(xi,x2) + (Ufa) + U1(x1,x2)) j£- + 

Ü2(x1,x2)
d-^f^ = -Ü2(x1,x2), (31) 

and that • 
Dx

ff = D.[l+(\VXn}. 

Notice that Ufa) is present in equation (31). 

The renormalization for nearly-stratified flows has been instrumental for ana- 
lyzing more complicated systems. For instance, Avellaneda, Elliott and Apelian 
([AEA]) used it to explain the scaling behavior of random advection with zero 
diffusion in the presence of a mean flow (i.e. ( V ) ^ 0). 

7. Renormalization Group Analysis: a Non-Rigorous Decimation Pro- 
cedure. In this section, I return to the renormalization problem formulated in §4 
for isotropic infrared-divergent velocities. The degree of infrared divergence can be 
quantified using the exponent e, as in the shear-flow models. We shall consider an 
incompressible, isotropic, Gaussian, d-dimensional random velocity field V(x) with 

spectrum ^ ,n. 
R(k) = V2 |k|<a-d-e>., |k|<fco, (32) 

where the parameter range is 0 < e < 2. 

It is easy to see that for any number 0 < 6 < 1, such a velocity can be repre- 

sented as an infinite series 

oo 

Vfa) =£ö"(1-)yn(xö") (33) 
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where the Vn are independent, identically distributed Gaussian velocities with the 
same band-limited spectrum 

Re(k) = V |k|(2-d-*), öifco <|k| < k0. 

Notice that the velocity (33) is analogous to the ones studied in §3. Because the sin- 
gularity of the ratio R(k\ )/|k|2 is the key feature in this problem, we are naturally 
led to considering multi-scale, self-similar flows. However, an important difference 
between this problem and iterated homogenization theory is the absence of "sepa- 
ration of scales". Notice also that, since 6 < 1, the H-matrix associated with the 
velocity in (33) is a divergent series 

oo 

H(x)=53fl-"Hn(xfl»), (34) 
o 

where Hn is the H-matrix of V„. 

The renormalization group analysis ([FNS], [R], [AN]) is a non-rigorous approach 
to study this problem, which is based on successive decimations. The idea is to guess 
the scaling exponent (or, equivalently, p(5)) by analyzing recursively the effects of 
successive scales on the evolution of C0. I shall focus on the renormalization group 
analysis of the effective diffusivity DN of the "truncated" velocity 

N 

£V(1"e)Mx0n). (35) 
o 

This coefficient can be viewed (in the context of the renormalization group analy- 
sis) as describing the effect of the top N scales on the macroscopic concentration 
field. Renormalization group theory makes the hypothesis that each scale influences 
the longer ones primarily as a "homogenized" coefficient, i. e. through a map. 
This should be understood as an "approximate homogenization", because i) 6 is 
not an infinitesimal quantity and ii) we have shown in the previous section that 
the renormalized diffusivity corresponding to high-wavenumber components is not 
independent of the larger scales (n > N). Such hypothesis leads to a recurrence 
relation for the successive diffusivities D1,D2,..., DN etc. Let us make this relation 
explicit by introducing the map 

F(D) = "homogenized" diffusivity of the operator     DA + Vi -V.       (36) 

Like in (19), the recurrence relation has the form 

Dn = O-ntF(Dn-10
ne),     0<n<N (37a) 

or, 

Xn = Dn0
ne,      \n = F{6<\n_l). (37b) 

To analyze this relation, we use the fact that F(D) is a monotone increasing function 
satisfying F(D) /D > 1 and that F(D) / £> -> 1 as £> ->• oo, as well as the fact 
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that 0 < 1. It Mows that the function A -> F(0<\) has a unique fixed point, 

A*. We conclude from (37b) that 

DN<x\*0~eN, N»l. (38) 

This gives an estimate of the contribution of the high-wavenumber components 
(Ikl > fco 0») to the diffusivity, suggesting that the effective diffusmty is infinite 
ü V-* oo and diverges in a precise way as the infrared cutoff in (35) is removed 
Refalhng that diffusivity has dimensions of 1? /T and that ^ fco has dimensions of 
L, (38) suggests the space-time scaling for the macroscopic concentration 

L2   ocTl/(l-e/4)) T»l, (39a) 

or, in terms of the time-scaling function p(6) of the renormalization problem, 

p(Ä) = *1-€/4- (39b) 

These scahng relations are in excellent agreement with Monte-Carlo simulations 

using Lagrangian particles [AG]. 

8 An Approximate Evolution Equation for C0 in the case of Isotropie, 
Infrared-Divergent Velocity Fields. The renormalization problem for isotropic 
velocity fields wifh spectra (32) is still a mathematically open P^J^^ 
have used renormahzation group analysis as well as; diagrammatic methodsor 
renormahzed perturbation theories ([Kr], [KB]), to derive approximate the evo- 
"equations for the mean statistics ( Q>{* ,f) )12. These.procedures areaU 
consistent with the scaling (39b) but differ in the form of the effective equations, . 
faball speculate on the form of the evolution equation for the unaveraged concen- 
tration, assuming that (39b) is the correct scaling. 

The PDE satisfied by the function Cs{x' ,*') defined in (21) is 

^(*J2 + {§/p
2) V(S-' x') • V C*(x', t') = (6/p)2 D A C,(x', *'). 

dt' 

Substituting the scaling function ,(*) from (39b), we obtain the PDE 

dCttf,?) +st/2-iv[8-ix').VCstf,t) =S^2DACs(x',t'). (40) 
dt' 

This leads to the following observations: first, the random field 

j«/2-i VIS'1 x') (41) 

»Majda [Ma2] obtained exact solutions for the first-order moment of Co for time-dependent 
veloc^es tth Jt time-decorrelation.  This is a different problem that the one for steady fields 

th^A*=a and Majda [AMB] put to test the vahdity o^^ p^rbajn^he. 
,d of the renormalization group by comparing the.r pred.ct.on8 >n the context of exactly 

ries an 
renormalizable models. 
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converges in distribution to a Gaussian random field Vb(x') with spectrum 

Ro(k) = V2\k\^-d^, k£Rd. 

Note that since 0 < e < 2, the function R{k) is not integrable and hence Vo(x') 
is a distribution-valued random field. Second, 6e/2 D ACs{x! ,<') converges weakly 
to zero in the Hilbert space I? (Rd,L2( < ■ >)). We are thus led to the formal 
conclusion that the large-scale concentration should satisfy the first-order stochastic 
PDE 

agy} + Vb(x') • VCo(x' ,O=0. (42) 

However, this reasoning leads to serious difficulties: first, due to the absence of any 
smoothing in the right-hand side of (42), the meaning of advection by a distribution- 
valued random function is unclear14. The vector field Vo is far from satisfying 
the usual requirements for well-posedness of the initial-value problem (classically, 
Lipschitz continuity is required). Thus, equation (42) is essentially meaningless15. 
Furthermore, the passage to the limit in (40) requires evaluating the limit of the 
product of the singular field 5£/2_1 V(J-1x') with VC{(x',t'). The regularity of 
the gradient of the solution is not expected to be sufficient to justify the above 
procedure. A more sophisticated renormalization is needed to make sense of the 
limit of (40) as 8 -> 0. Since numerical experiments leave little doubts as to the 
validity of the scaling (39b), I will use heuristic ideas to guess the form of the 
effective evolution equation. 

As indicated by the examples of Sections 5 and 6, the large-scale evolution is 
determined by dissipation from the high-wavenumber components (with |k| > 
constant) in conjunction with the advection-dominated transport from the infrared 
portion of the spectrum (|k| < 1). The renormalization group analysis suggests 
that the diffusivity "contributed" by Fourier modes with |k| > K should be 

D(K) OC ne/2. 

Naively, we could implement this idea by introducing a fractional Laplacian16, 

-|k|2-£/2 = -(-A)1-e/4, on the right-hand side of (42). The corresponding 
evolution equation would then be 

9C0^'° +^O(X')- VCO(X',0 = -7(M(-A)1-£/4C0(x',O,        (43) 

where j( k0) is a non-universal constant depending on the high-wavenumber cutoff 
k0 in (32). Although equation (43) is consistent with the symmetry and scaling 
of the problem (it is invariant under the scaling transformation associated with 

Herein lies the difference between the renormalization for isotropic velocities and the exam- 
ples of Sections 5 and 6. 

15This applies to ( is the range 0 < e < 2. In Avellaneda and Majda [AM2], it is shown that 
(42) is the correct renormalization for the regime 2 < i < 4, which I don't discuss here. 

The fractional  Laplacian  is the infinitesimal  generator of the so-called  Levy processes in 
Probability Theory. 
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^ _ Ji-£/4), it presents a serious drawback. In fact, it can be shown that (43) 
leads to infinite second-order moments for Lagrangian mean-square displacements 
due to the "fat tails" of the Levy distribution: under (43), we have 

/ 
|xf(Co(x',t')>ddx'  =oo. 

This divergence is inconsistent with numerical simulations. (Some authors have 
proposed heuristic ^normalizations associated with "Levy flights" corresponding 
to modified Levy operators [SK]). 

An approximation that does not lead to this last problem can be obtained by 
making an analogy with the effective equation for nearly stratified flows (30). Ac- 

cordingly, consider the equation 

^x''y,'*Vy0(y')-Vx,ä,(x',y',O = -7(fco)(-Ay0
1"£/4Co(x',y',0 

dt' (44) 

with initial condition 

Ö>(x' ,y' ,f = 0) = Cin«(x')    x' € Rd, y' 6 Rd. 

In this equation, I use an additional variable, y', to model the action of the high- 
wavenumber components on the large-scale concentration. This represents a "weak- 
coupling" approximation for the interaction between advection and dissipation at 
large scales. The "macroscopic concentration" is defined as 

Co(x',t') = Co(x',0/). (45) 

Equation (44) mimics the equation for the concentration in nearly-stratified flows 
(30), with the effective transverse diffusivity D±ff replaced by the operator 
- liko) \ky\-t/2. It is not hard to show that this approximation produces finite 
mean-square displacements for Lagrangian particles. I do not claim that equa- 
tions (44) and (45) represent an exact solution. They can be viewed as a "closure" 
for calculating the statistics of the large-scale concetration. As other approximate 
solutions, this one has only heuristic value. For instance, in this approximation, 
the Fourier transform of the averaged Green function is 

l    l 

P(k/) = E{«p[ -V>V"(1-'4) |k|! J jF.m.) - Y(/) )<(.<(.' ] }, 

(46) 
where E represents expectation value over over the d-dimensional Levy process 
Y(s) and F€(y') is a homogeneous function. The higher-order moments of C0{ x', t') 
can be calculated easily as well. The implications if this approximation will be in- 

vestigated elsewhere. 

In conclusion, I have attempted to show the relationship between homogeniza- 
tion theory, a rigorous method for averaging partial differential equations, and the 
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renormalization group, a heuristic method designed to investigate scaling behavior 
in self-similar systems. There are important connections between these two ap- 
proaches. However, the assumption of scale separation invoked in homogenization 
is not adequate for treating the most general problems of transport and diffusion 
in self-similar random media. The problem of advection-diffusion in a random ve- 
locity field showcases the difficulties which arise when the velocity has self-similar 
characteristics and a singular spectrum. Approximate effective equations based on 
exact solutions for model problems can be derived. However, the systematic un- 
derstanding of anomalous scaling phenomena remains an open problem in Applied 
Mathematics. 
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