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PREFACE 

This report illustrates certain generic issues involved in aggregating and 

disaggregating models of combat. It was written for RAND's Defense Planning and 

Technology Department using research support funds provided by RAND's federally 

funded research and development centers for national security studies: Project AIR 

FORCE, sponsored by the United States Air Force; the Arroyo Center, sponsored by the 

United States Army; and the National Defense Research Institute, sponsored by the 

Office of the Secretary of Defense, the Joint Staff, and the defense agencies. Comments 

are welcome and should be addressed to the author at RAND, 1700 Main Street, Santa 

Monica, CA 90407, or by electronic mail to pdavis@rand.org. 
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SUMMART 

Validity of Aggregation. In this report I illustrate some generic subtleties of 

aggregation and disaggregation in combat models by starting with an analytically 

tractable model at one level of detail and then attempting to derive an aggregate model. 

In particular, suppose that a Lanchester square law is valid for ground combat in each 

of a number of individual sectors. What equations then describe events at a higher, 

more aggregate, level? What factors determine whether a closed aggregate-level model 

exists (i.e., a reasonably accurate model dependent only on aggregate-level variables 

and with any coefficients being independent of time)? The answer is that what matters 

is "outside" the "detailed model" altogether, notably (1) higher-level strategy, (2) 

command and control, and (3) the relative durations of several time scales for battle and 

maneuver. These factors have major effects on whether a valid aggregate-level model 

exists and, if it does, what values its coefficients should have. 

The 3:1 Rule. A bonus of this analysis is a clarification of when the famous 3:1 

rule applies. If it applies at the sector level, then it may or may not apply at a more 

aggregate level. Indeed, in a theater with multiple corps sectors (e.g., the old Central 

Region of Europe), the theater-level break-even ratio will typically be more like 1.5:1 

than 3:1. By contrast, it is possible for the same 3:1 rule to apply at several lower levels 

(e.g., corps, division, brigade, and even battalion).   In mobile combat in which there is 

no particular defense advantage, the theater-level break-even force ratio may be about 

0.8 or 0.9. 

Maneuver, Tempo Control, and Reequilibration. One of the major factors 

determining outcomes at lower levels is the relative ability of the sides to control where 

and when to have decisive engagements. If a side can readily break off battle, collect 

forces, and reengage, then temporary concentrations by the opponent will be less 

significant. Conversely, the side can itself choose to have decisive engagements under 

favorable circumstances. These considerations are very important quantitatively and 

help explain why operational commanders have long tended to focus more on maneuver 

than, say, on the advantages of static defenses so often praised by analysts. They also 

illustrate again the disadvantages of military strategies that constrain the defender to 

fight in particular places and times (e.g., the old NATO forward-defense strategy). Such 

defenses are quite feasible, but they require more forces. 
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Aggregation and Disaggregation in Distributed Simulation. Although the 

specific analysis presented here is narrow, it suggests a broader conclusion of particular 

interest for distributed simulation, including distributed interactive simulation (DIS). A 

recurring question is whether it is legitimate and desirable to disaggregate and 

reaggregate processes during the course of a given simulation run (e.g., decomposing a 

battle into a higher resolution view, noting the results, reaggregating to a higher level, 

and later disaggregating again). Extrapolating from the example worked out in detail 

here, it seems that such temporary disaggregation would be most defensible if the real- 

world forces are able to reequilibrate at the aggregate level in between the events the 

simulation describes at a disaggregated level. A simple example might be a division 

fighting a battle, maneuvering to a different position, taking up new positions, and 

fighting again. Typically, this sequence would include reequilibration such as 

combining partly degraded units, balancing across subunits, and assigning new 

functions. Thus, it might be legitimate to use a disaggregated description for the battles 

and an aggregate description for the maneuver. By contrast, if the same unit 

underwent two periods of intensive battle separated by only a few hours (division level) 

or a day (corps level), the unit's initial state at the time of the second battle might be 

much the same as at the end of the first battle, in which case aggregating and 

disaggregating would sacrifice important information. 

Families of Models. The simplified analysis of this report also motivates a 

number of other generic principles. In particular, and contrary to current trends in 

developing families of models, it is desirable to work top-down rather than bottom-up 

(or, more accurately, to work both top-down and bottom-up rather than only the latter). 

The reason is fundamental: The allegedly detailed models are only selectively detailed. 

In particular, they typically do not contain the information most critical in developing 

valid aggregate expressions. By contrast, top- or aggregate-level issues such as strategy 

often set context and critical boundary conditions for events at the detailed level. 

Validation. This has implications for testing as well. Efforts to validate 

aggregate-level models should focus on the treatment of strategy, command-control, 

constraints, time scales, and uncertainties rather than on efforts to calibrate aggregate 

results against those predicted by a detailed model in which these factors are not even 

well represented. Interestingly, this is why comparing with historically based and 

insightful commercial board games of combat can sometimes be more useful to 

validation than comparisons with high resolution models. Detailed models, however, 

can be very useful in selectively calibrating specific parameters of higher-level models. 
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Further, they are essential in understanding cause-effect relationships and determining 

which aggregate-level variables are important. Although I do not discuss such matters 

in this report, detailed models can also help generate statistical distributions that 

should be used to inform the calibration of deterministic or stochastic aggregate models. 

Ultimately, then, developing sound families of models requires giving proper respect to 

both higher- and lower-level perspectives of the same problem. 



1.  INTRODUCTION 

This report illustrates a number of basic principles about aggregation and 

disaggregation in combat modeling by working through the mathematics and 

phenomenology of a concrete example in which simplified ground combat takes place in 

a number of sectors and subsectors within a theater.1 Even with the simplifications, 

the model is rich enough to demonstrate the importance to combat modeling, in this era 

of distributed simulation and model families, of approaching aggregation and 

disaggregation with care. There is need for a strong dose of theory and mathematics 

rather than the usual dash to programming. It is also unwise to rely solely upon 

intuition, because aggregation and disaggregation relationships are often much more 

complicated than original intuition would have it (Davis and Hillestad.1993; Horrigan, 

1992). 

I assume in most of what follows that combatail is dictated by the Lanchester 

square law. I do this merely for simplicity and analytical tractability, despite 

appreciating well the limitations of the description.2 I then discuss whether an 

aggregate law, Lanchester or otherwise, applies at the next level up (i.e., a level with 

more aggregation and less detail). The answer is that "it depends." Discussing these 

issues for the simple case suggests broader principles for building model families, 

principles involving the treatment in models of strategies, command and control, and 

time scales. 

A bonus of the discussion is an explanation of how the famous (or infamous) 3:1 

rule does and does not apply at different levels of combat. This is particularly 

interesting in modern times, because American army forces are likely to be engaged in 

counteroffensive operations. Will they really need 3:1 force ratios to succeed? 

h would like to thank Lou Moore, James Dewar, and Robert Howe for reviews of the 
manuscript in its draft form. I also thank those who responded to an earlier version presented on 
the World Wide Web in ELECSIM 1995, the Electronic Conference on Scalability in Training 
Simulation sponsored by the Society for Computer Simulation. 

Srhe appendix provides background on Lanchester equations and the related issue of how 
one "scores" forces. 



2.  THE MICROSCOPIC MODEL: THE LANCHESTER SQUARE LAW ON COMBAT 
SECTORS 

DEFINITIONS AND STRUCTURE 

Let us assume that ground combat occurs in N essentially independent sectors. 

The attacker and defender in sector i are characterized by strengths At and Dt (see also 

the appendix). Both sides have reserves, which constitute fractions Jo andfd of their 

total capabilities A and D. Figure la depicts this schematically for a notional theater 

with rough terrain and largely isolated lines of communications (LOCs). Although the 

Figure la—A Theater with a Network of Independent LOCs 

major LOCs are connected by some minor roads, flanking operations can be prevented 

with small forces so that the major battles are conducted on the principal LOCs, the 

"sectors." Figure lb shows a once-standard piston-model representation of a theater 

with contiguous sectors. In such a case (e.g., the old NATO Central Region), the simple 

treatment requires the assumption that both sides fall back as necessary to avoid 

overexposing flanks. The battles in the various sectors are then assumed to be 

independent frontal attacks characterized by close combat between opposing ground 

forces. Thus, the battles described involve classic close-combat attrition warfare 
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Figurelb—A Piston-Model Representation of a Theater 

without the complications of air forces and long-range fires. And, because we use 

scalar strengths, we ignore unit structure and the interactions of various weapons 

types. 

In what follows we consider a number of special cases of Increasing complexity. 

The initial examples imagine very simple static battles in which the forces in given 

sectors "slug it out." Later examples consider concentration and intra-battle 

reinforcement and maneuver. Although we could readily add a movement model and 

show forward lines of troops (FLOTs) advancing over time, it would add nothing to the 

present discussion. 

THE LANCHESTBR SQUARE LAW 

General Version of the Lanchester Square Law 

Let us now assume that the "detailed" model of combat is given by the Lanchester 

square law for a given sector of combat. On each sector i of intense combat, attrition of 

attacker and defender forces is given by: 

dA       „ ^       dD. 

dt *-d"l 
dt (1) 

where the coefficients K^and K^are sector-dependent constants reflecting the lethality 
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of shooters and the vulnerability of targets. The usual rationale for this formulation is 

that the rate of kills should be proportional to the number of shooters and, for aimed 

fire, should not depend on the number of targets. 

It is often more revealing to work with the fractional loss rates defined below: 

ALRi^^—   ;   DLR,^—'■— (2) 
A A 

A particularly useful variable is the ratio of fractional loss rates RLR in the i01 

sector. If Fj is force ratio, A/Dj, then 

DLR,     K„ Fj 

The ratio of loss rates is a measure of who is winning the slugfest. At a value of 1, both 

sides' forces are shrinking at the same rate and one can say that the battle is at the 

break-even point.   The attacker, of course, seeks an RLR much less than 1. This 

expression illustrates why (1) is called the Lanchester square law: RLR varies as the 

inverse square of the force ratio. 

For convenience. Table 1 summarizes in one place the principal variables used 

not only in this section, but in what follows as well. 

Special Case: The 3:1 Rule 

The famous 3:1 rule in ground combat is represented in Lanchester equations by 

requiring that the ratio of loss rates be 1 at a force ratio of 3:1 (see also the appendix). 

That is, a force ratio of 3 implies a break-even situation. For the square law this means 

that the ratio of kill coefficients Kd/Ke» must be 9, in which case 

9 
RLRj = —j (square law and 3:1 rule) (4) 

Fi 

The basis of the 3:1 law (see the appendix) is the notion that the defender has a 

substantial, factor-of-three, advantage if he has prepared positions and good defensive 

terrain, which reduce his vulnerability and increase the vulnerability of the attacker 

(e.g., by channelization) (Dupuy, 1987). The square law is assuredly not a statement of 
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Symbol 
A,D 
At.Di 
ALR 
DLR 
F 
F* 
AJd 
Fi 

mam»    m 

m 
N 

"main 

Pd'Pa 
RLR 

Ji  

Other 

Table 1 

Variables Used in Mathematical Analysis 

Definition 
Attacker and defender strengths 
Attacker and defender strengths on sector i 
Attacker loss rate, [dA/dQ/A 
Defender loss rate, [dD/d$/D 
Overall force ratio, A/D 
Break-even force ratio: force ratio at which RLR=1 
Fractions of attacker and defender forces in reserve 
Force ratio on sector i 
Force ratio on main sectors and other sectors 
Attrition coefficients: rates at which each side kills opponent 
Average force levels on each main sector 
Reduced-intensity factor for non-main sectors 
Number of sectors 
Number of main sectors 
Attacker and defender concentration factors 
Ratio of loss rates, ALR/DLR 
Time required to commit reserves 
Time for defender to counterconcentrate by redeploying  

general truth. For example, it does not apply to meeting engagements or mobile warfare 

more generally. Later, we shall consider cases where the defender has no such 

advantage. 
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3.  DERIVING AGGREGATE MODELS FOR CASES WITHOUT REINFORCEMENT OR 
REDEPLOYMENT OF FORCES 

DERIVING AGGREGATE EXPRESSIONS 

General Expressions 

The challenge in what follows is to derive closed expressions for the aggregate, 

theater-level, variables A and D, that is, expressions in which dA/dt and dD/dt are 

functions of A and D, but not microscopic variables such as the sector-level force 

strengths or the reserve fractions. These expressions will depend on various statistical 

averages over microscopic phenomena. 

In general we can write 

dA    4,dA       „, , ~ . 
dt    ^ dt 

which define the functions Qd and Qa in terms of the sum over sector-level attritions. 

They may be functions of time. That is, we cannot assume them to be constant as 

desired for an aggregate-level formulation. The aggregate-level ratio of loss rates RLR 

can now be expressed as follows: 

BTD_ALR    (dA/dt)/A     (dA/dt) 1 
KLK = = =  

DLR    (dD ldt)ID    (dD I dt) F 

(6) 

n (A n t\ i 
RLR = 

Qd(A,D,t) 1 

a,(A,D,t) F 

Special Case: Lanchester Square Law and Uniform Distribution of Forces 

In developing aggregate expressions it is usually helpful to begin with idealized 

situations because the resulting expressions may form a baseline on which to build. 

That is, the aggregated equations of interest may be similar to those of the idealized 
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situation, with the differences appearing as one or two understandable and well- 

localized correction factors. Knowing the desired form makes derivations much easier. 

With this in mind, let us first consider the case in which the two sides spread 

their on-line forces evenly across the front (no concentrating or massing), where they 

engage in combat described by the Lanchester square law. Let us further assume that 

the circumstances on the various sectors are the same so that the coefficients K^and 

K,,, are in fact sector independent. We then have from (1) and (5) that 

dA    ^ dA,      A „ _ 
-7" = 2-i~T= ~2-,^dDi ~ ~NKdD, square law, no massing 
at    77 at 

(7) 
i=i «*»        ,=i 

where Dx is the defender force level on the first (or any) sector. But NDX is then 

defender's on-line (or in-sector) force level [1-fJ/D. Thus, 

dA _ 
~ = —Qa — ~(1 ~~ fd)K*D square law, no massing (8) 

By virtue of symmetry we can write an equivalent expression for 0aand use (6) to 

express the ratio of loss rates. We obtain 

Qd={d-fd)Kd}D     Qa={(l-fa)Ka}A 

RLR = QL— = \^~fd)Kd]  * square law, no massing (9) 

QaF    \(l-fa)KaJF2 

In this particular case the functional form of the aggregate model happens to be a 

Lanchester square law also—i.e., it is identical in form to the detailed model. Note, 

however, that the coefficients of the model (i.e., the parameters that multiply the 

variables A, D, or F) depend not only on the coefficients of the detailed model (K,, and 

Ko), but also on some strategic features of the microscopic problem: the reserve 

fractions fa andfd. If one side has a larger fraction of its forces on line than the other, it 

has an aggregate advantage, because results depend on the number of shooters. 

In the special case in which the 3:1 rule applies, we merely replace Ka/K« by 9. 

A MORE TYPICAL CASE WITH CONCENTRATION EFFECTS 

Deriving Basic Expressions 

There have been historical instances of uniform attacks across a front, but 

attackers usually concentrate forces and effort on some sectors while fighting a holding 
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battle on others. Indeed, concentration of force is a central feature of maneuver 

warfare. 

Assume now that the attacker concentrates on N^^ of the JV sectors, conducting 

low-intensity feints on the other sectors to tie down defenders without suffering 

excessive attrition himself. Assume also that the coefficients K^and K^each have two 

values, one for all main sectors and one for all of the other sectors. That is, 

Kdi = Kdon main sectors and Kdi = mdKdon other sectors 

(10) 
Kai = Kaon main sectors and Kai = maKaon other sectors 

As before, let us now see about deriving aggregate equations. Since there are two 

kinds of sectors, main and other, we obtain the equations below. The first equation is 

straightforward except that we have to renumber the sectors so that the main sectors 

are 1, 2,...NmUn, regardless of whether they are contiguous. 

^=-0   =Nf^-+     f     ^L 
* tt dt   I=„t+1 dt (11) 

Qä={NmainDmain + md(N-Nmain)Dother}Kd 

Comparing with (9) we would like to restructure this so that there is a factor 

multiplying [\-JJ\KJ). That would allow us to express 0das Qd for the uniform case, but 

for a correction factor. It also seems as though the term involving the main sectors 

should logically be proportional to A^/JV, so we may want to make that explicit as well. 

With this in mind, we can manipulate (11) as follows. 

a Dmain        ^main   ,   md(N - N^JD^ 

d-/jf   N <1-/,)D 
\(l-fd)KdD (12) 

Upon inspection we see that the first term is the fraction of the defender's forward 

forces that are on main sectors. It is written as a product of two factors, the ratio of the 

actual average strength per main sector to the amount one would expect if the 

defender's forward forces were spread evenly, and the fraction of sectors that are main 

sectors. We can express the first as a concentration factor pd. From physical 
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considerations we realize that the second term must then be expressible in terms of the 

remaining forward defense forces. We then have 

Qä={pä^ + md(l-Pd^j\a-fd)KdD (13) 

where 

_   XD^   _ND(onmain)/Nmnin= Djonmain)   N 

"    (l-fd)D D( forward) D(forward) A  .„ l    ' 

As is clear from the rightmost expression, the concentration factor pd can vary from 1 to 

Nnatn/N. 

It follows by symmetry that 

AM. 
'a — ~ 
-j    = mam 
Jra (1-/JA 

(15) 

Qa={po^ + mXl-Pa^)}a-f0)KaA 

It follows that we have again derived valid aggregate equations, even though the 

distribution of forces is not uniform.3 

We can also solve for the ratio of loss rates RLR, obtaining 

RLR = 

PdNmain   , [i       PdNnu,in 1 

AT dl N    J 

Pa^main   |  m fl       Pa**main "I 

A- aL N    J 

(i-/jA:a F2 

Once again, the aggregate equations happen to have the same form as the 

detailed equations (Lanchester square). The coefficients are defined in terms of the 

coefficients of the detailed model and some gross features of the microscopic problem- 

It is common to hear the claim that an aggregate model of a process is only valid if events 
at the microsopic level are uniform. That is quite wrong, as this example illustrates. However, a 
sound aggregation must retain information about microscopic configuration. For dramatic 
examples of configuration effects in aggregation, see Horrigan (1992). 
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in this case, the reserve fractions, the reduced-Intensity factors n^ and m„, the 

concentration factors pd and pa, and the fraction of sectors on which concentration 

occurs, N^/N.4 

Although it is plausible that we could estimate reserve fractions from doctrine, 

how are we going to estimate the concentration factors and the fraction of sectors on 

which concentration occurs? We have an aggregate equation, but we do not know how 

to evaluate or even estimate the coefficients. Furthermore, it is not apparent that there 

will be good "representative values" of the coefficients, because there may be a great 

deal of variation across battles. Different attacking generals may use different 

strategies; some defenders may be more clever about anticipating the points of attack; 

and so on. 

From the mathematics alone, then, we can justify an aggregate formulation, but 

in the absence of more information—and, in particular, a deeper understanding of the 

military phenomenology—we have no basis for believing that the coefficients are reliably 

predictable. 

A Reasonable Approximation: Low-Intensity Feints on Non-Main Sectors 

For the purposes of this report, and to a reasonable approximation to any case, 

let us assume that nia«! and mj«l (or, at least, that the factors containing them are 

small). We then have 

Qä-<X-fä)PäKdD   Qa~(\-fa)PaKa 

RLR 
<\-fd)PdKd  1 (17) 

a-fa)paKaF
2 

To eliminate some of the variables (or to substitute variables that are more useful) 

we need to use additional information. Another expression for RLR in this case follows 

from physical considerations. If the only attrition is in main sectors, then the ratio of 

loss rates for the theater is the exchange ratio [dAmatl/dti/(dDmaln/dtj in the mam sectors 

divided by F (not Fmaln). But [dAmaln/dti/{dDmaln/dti is (Ka/KJ/F^. It therefore follows 

that 

4In some formulations it is more appropriate to focus on the fraction of the militarily useful 
geographical front on which there are main thrusts. The main-thrust sectors may have differing 
widths, averaging w. The relevant fraction, then, is g=wNmatn/L rather than N^/N. The 
formulations are equivalent if the sectors have equal width. 
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RLR~*±-±—±- (18) 

Comparing (17) and (18) we see a simple expression for Fmaln: 

Fmain~7^J7)F (19) 

Solving for the Break-Even Force Ratio F* 

One of the basic questions to be asked at the aggregate level is what force ratio 

constitutes break-even. Or, to put it differently, what is the force ratio F* at which RLR 

is 1? From (18) we can relate F* to the main-sector force ratio Fmabl at the break-even 

point by setting F=F* and RLR= 1. We obtain 

K F  . (F*) (20) 

Thus, F* is inversely proportional to F^F*). We can use (18) and (19) to find another 
expression for F*. 

!_**    PäQ-fä) 
KaPad-fa)F*2 

F*= IZäPäQ-fä) (21) 

For many purposes it is more convenient to have an expression that depends not 

on pa, but on other variables that are arguably more natural for the attacker as he sets 

strategy, notably Fo0yer and Nmün/N. 

Accordingly, consider that the attacker's force strength is the strength on main 

sectors plus the force on other sectors plus the force in reserves. However, the force 

strengths on the main sectors and other sectors can be expressed as main-sector and 

other-sector force ratios times the defender strengths. With this and some algebra we 
can derive an expression for FmUn: 
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A = ^,,(1 - fd)D(P^) + F0,J(1 - fd)D{\ - ^jf*-)] + faA 
N N 

(l-/c)F= (PäKnaiä\+F       (i       Pd^main \ 
(\-fd) "B*|V      JV      y        <"teA #      ' 

F-' (1^  M^ 
TV 

If we require that F=F* at i?LR=l, and use (18), we have a quadratic equation for 

F* that can be solved analytically. 

JwO - A, ^*) +1*^(1 - A, %0P + 4ft A %LÖZZI 
F* = *        V * *„       N   (1-/,) 

2a-fa) (23) 

a-/,) 
Only the positive root is physically meaningful, since F* must be positive and the 

negative root is negative (the square root is always larger than the first term).5 

From (20), (21), and (23) we then have three expressions for F*if m«l. 
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(24) 

The first expression makes it clear that a low break-even point implies, at that 

force ratio, a large main-sector force ratio, as one would expect intuitively. Figure 2 

5For large values of K,,/^ the second term within the square root normally dominates the 
calculation. Thus, we see that F* goes roughly as the square root of Nmaln/N. 
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shows the results graphically for three different assumptions about J^/K^ The 3:1, 2:1 

and 1:1 rules correspond to K^/K^Q, 4, and 1, respectively. Note that if the 3:1 rule 

applies, then when the attacker has the break-even force ratio, he will have a main- 

sector force ratio of about 6. 

The last of the expressions in (24) is the most useful because it poses the issue in 

terms of strategy variables. Thus, we can use military reasoning rather than approach 

the problem as one of pure mathematics. 

■3:1 Rule 
■2:1 Rule 
■1:1  Rule 

1 2 3 

Break-Even Force Ratio P 

Figure 2—Main-Sector Force Ratio at the Break-Even Force Ratio 

The way to view the factors in the third expression is perhaps as follows. An 

attacker must decide how to concentrate his force. To do this he probably estimates pd 

(it will be 1 if his concentration is a surprise and the defender has not preferentially 

defended the main sectors) and/d (which might be about 1/4 to 1/3 if the defender has 

a forward defense). He may establish a minimum value of F*^ taking the view that any 

lower value would endanger his operation by making counterattacks too feasible.6 He 

6Some of the principal reasons for maintaining a reserve force are "outside the model." At 
any level of combat, a side with no reserves is exceedingly vulnerable to a random penetration of 
his line. By constrainingX and/d to be non-zero, perhaps on the order of 1 /3, we are 
compensating realistically for inadequacies of the deterministic Lanchester equations. A better 
model might have stochastic attrition coefficients that are functions of the reserve fracUon. 
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may specify a minimum value of Ja, below which he would be endangering the operation 

by having too few reserves. Finally, he can derive the value of Nmain/N that will achieve 

the break-even force ratio (Davis, 1990). He may choose, of course, to concentrate 

further to win decisively on the main sectors. However, if N^^/N is too small to be 

strategically significant—i.e., if a breakthrough on so small a portion of the front would 

leave too much of the defender's army unscathed and too much of his territory 

unconquered, then he could reduce further the values of F^^andfa, and reconsider his 

estimates of pd andfd, which might initially have been conservative. There is no clear- 

cut optimizing algorithm, because there is no general utility function to optimize.7 

Illustrative Results Assuming the 3:1 Rule 

Canonical View. Figure 3 shows a relatively canonical view of the problem 

assuming the 3:1 rule. It assumes the defender has not anticipated the attack and that 

the defender and attacker have 1/3 and 1/4 in reserve, respectively. We see that the 

break-even force ratio depends on the fraction of the sectors on which the attacker 

concentrates (and on the force ratio maintained on other sectors) in a straightforward 

way. 

KVK.=9 Pd=1 
fd=.33  f.=.25 

a a. 

S o 
LL 

§ 
III 

a 
0) 

other 

ID   0.00 

0 0.25        0.5 0.75 1 

Nmair/N 

Figure 3—Break-Even Ratio Versus Force Ratio and Nmaln/N for Canonical Case 

7The Soviet army long used "correlation of force" calculations comparable to those 
discussed here to make operational decisions about concentration. See, e.g., Hines (1990) or RDA 
(1990). Presumably, the Russian army is continuing the tradition. 



15- 

We see immediately that 

• Even if the Lanchester square law and 3:1 rule are exact at the sector level, 

there is no unique analog at the aggregate level. The coefficients (e.g., F*) 

depend on issues of strategy, particularly Nn^/N. 

• On the other hand, the attacker will probably need an overall force ratio of at 

least 1.5—if one can argue that a successful attack will need to cover at 

least, say, 15% of the frontage. 

Figure 3 is only one of many possible charts that could be drawn varying different 

combinations of the parameters. Table 2 shows a range of cases taking nominal, 

defender-conservative, and two attacker-conservative perspectives.   The nominal and 

defender-conservative cases take the view that the main attack might be on as little as 

15%-20% of the front. Further, the attacker might tolerate a 2:1 ratio against him in 

other sectors [F^.^0.5), especially if he could be confident that the defender was not 

particularly mobile and aggressive. The first attacker-conservative case considers a 

somewhat larger main frontage, larger reserves, and a less adverse ratio on the other 

sectors. The last estimate is not unreasonably conservative either; in it the attacker 

reasons that the defender would surely do some anticipatory counterconcentration on 

the basis of intelligence on massive troop movements. Even a modest 

counterconcentration (a pd value of 1.5) changes the break-even point substantially. 

Table 2 

Representative Bounding Cases Assuming a 3:1 Defender Advantage 

Pd /d fa Nnam/N ■»other F* Description 
1 
1 

0.33 
0.33 

0.33 
0.17 

0.20 
0.15 

0.667 
0.5 

1.6 
1.2 

Nominal 
Defense 

1 0.33 0.25 0.3 0.67 1.8 
conservative 
Attacker 

1.5 0.33 0.25 0.3 0.67 2.1 
conservative (1) 
Attacker 
conservative (2) 

Summary on the 3:1 Rule and Aggregation. In summary, if the 3:1 rule applies at 

the sector level, which assumes the defender has major advantages from terrain and 

preparations, then the defender can tolerate only a much smaller aggregate, theater- 

level, force ratio—something nominally on the order of 1.5. The attacker will seek a 

larger number, perhaps out of concern that the defender will observe his large-scale 
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maneuvers and do at least some counterconcentration before battle commences. From 

the attacker's viewpoint, a break-even force ratio of about 2 might seem reasonable. To 

win decisively, an even larger force ratio might be needed.8 The requirement would, 

however, be much lower if the attacker were qualitatively much more capable than the 

defender (e.g., better morale, training, support forces, air forces, and experience with 

maneuver). This was the case for the U.S. attack on Iraqi forces in 1991. 

This is as far as we can go in the abstract; real-world details matter. For 

example, in Operation Desert Storm the United States had total information dominance; 

U.S. generals knew with certainty that the Iraqis had not detected the concentration 

and mounted a counterconcentration (Pd=l). Nor coidd the Iraqis have done so readily, 

because of U.S. air supremacy and the lethality of U.S. air forces. Under these 

circumstances, even a much smaller U.S.-led coalition army could have safely 

concentrated on a narrow front, broken through, and begun encircling operations to 

"bag" defender forces.9 

ALTERNATIVES TO THE 3:1 RULE 

Revised Break-Even Curves 

Most of the equations derived above are expressed in terms of Ka/K,,, rather than 

assuming the 3:1 rule. What happens, then, if we do not assume the rule? Suppose, 

for example, that battle is conducted in relatively open terrain with a great deal of 

tactical maneuver. There might be some advantage to the defender, but not much. 

Indeed, the attacker might have the advantage by virtue of having the initiative and 

associated tactical surprise and momentum. In any case, Figure 4 illustrates the 

consequences of assuming a 1:1 rule rather than a 3:1 rule. This curve is particularly 

important for the United States in thinking about maneuver warfare. 

To illustrate how this can be used, suppose that the attacker wanted to 

concentrate on at least 30% of the frontage and to maintain a force ratio of .83:1 on 

8In the mid-to-late 1980s there was rancorous debate about the adequacy of NATO's 
conventional defense posture in the Central Region. The theater force ratio was variously 
estimated in the range of 1.5 to 2.2. From the current analysis, one can see why there was a 
debate. Ultimately, the wartime balance of forces would have depended critically on NATO's 
response to warning indicators and on whether the Warsaw Pact had improved the readiness of 
its lowest-quality reserves before beginning mobilization per se (Davis, 1990). 

9This conclusion is more general than that of the current report, which assumes the 
approximate validity of Lanchester equations. 
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"other" sectors. The break-even force ratio would then be about 0.84 (it would be higher 

if the attacker had the same reserve fraction as the defender). 

1.40 * u. 
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Figure 4—Break-Even Force Ratio Versus Concentration for 
No Defender Advantage (If No 3:1 Rule Applies) 

Minimizing Losses 

So far, the discussion has focused on break-even force ratios. But what if the 

attacker wants to have a decisive victory with minimum losses? From (18) and (19) we 

see that RIJi goes roughly as the inverse square of the force ratio, but that assumes a 

constant value of pa. By combining (18) and (22) we obtain an expression for RLR that 

depends instead on the strategy variables F^and (N^/JV). We obtain 

RLR-^ 
Pd 

N. 

K„   (1 fa) p2 _p 
N 

(!-/„)' N 

(25) 

which, for typical values of the parameters, has the approximate form 

RLR = 
F'-C2F    F 

~ 4(1 +is.) E-2 V p/ (26) 
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where Q is small. We see, then, that RLR actually varies faster than inversely with F, 

for constant attacker strategy as defined by N^^/N and F,,^. 

Using (25) for the case shown above, with the break-even point being about 0.83, 

it turns out that the attacker would need a force ratio of 1.3 for a ratio of loss rates of 

1/4, or a force ratio of about 2 for a ratio of loss rates of 1/9. Although estimates of 

force ratio should reflect qualitative differences in fighting capability, not just equipment 

counts, this conclusion should nonetheless be sobering for those estimating the 

capabilities the United States might need in future major regional contingencies. 
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4. GENERALIZING: EFFECTS ON AGGREGATION OF REINFORCEMENT AND 
MANEUVER 

REINFORCEMENT AND REDEPLOYMENT 

A key assumption of the previous cases is that only the forces initially present in 

the main sectors conduct the battle. But what about reinforcement and redeployment? 

What if the sides commit their reserves? What if the defender redeploys forces from 

other sectors? What if the attacker also redeploys forces?10 

One way to investigate such issues is to develop a simulation model. For current 

purposes, however, let us instead make some points more qualitatively by looking at the 

analytics. Repeating (20), we have again that 

f L   (l- Dj    "*»" 1 +   \\p      (\-n      ""'"Vl2 i A    d n   ^main ^    f»^ ^d    Pd   N  HfFother(l    pd   N  )] ^^   N   (i_^ 

a-/,) 
(27) 

Now let us account for reinforcement and redeployment as follows. Assume that: 

• The defender commits his reserves to the main sectors at an even rate over a 

period T,. 

• The defender counter concentrates his entire force at an even rate over a 

period T2[T2>Ti). That is, over a time T2 he increases the concentration factor 

on main sectors at a constant rate until all his forces are on main sectors. 

• The attacker follows the defender, maintaining a constant force ratio on non- 

main sectors. Thus, the attacker also commits his reserves to main sectors 

over a period T, and redeploys additional forces, eventually all of his forces, 

to the main sectors over a period T2 

10These issues are critical in understanding the differences among defensive strategies 
and, as part ofthat, appreciating how much more demanding static forward defense strategies are 
in terms of the force levels needed for success. See, for example, Davis (1990) and Huber (1990). 
The former paper emphasizes the distinctions between static forward defenses with few reserves 
and strategies with larger fractions in operational reserve. The latter gives relatively more 
emphasis to redeployment among sectors, which Huber calls mobile defense. Huber and Helling 
(1995) summarize extensive recent work in Germany to estimate "stable theater-level force ratios" 
in a multipolar security environment. 
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•      We express T2 as a multiple of Tj. 

Figure 5 shows the consequences of such assumptions graphically for an 

aggressive-attacker case. Although real-world changes would be more complex 

dynamically (e.g., attrition would affect force levels over time, reserves might be initially 

committed at a higher rate, and the defender might concentrate faster than indicated), 

this approximate treatment illustrates the basic features. In the example, both sides 

commit their reserves in time Tj as shown, and the defender proceeds to 

counterconcentrate over time (the x axis only goes to 2 Tj, however, so some of the 

counterconcentration is incomplete). 

6 00 K"^9 P"=1 

F.=.17 fd=.33 
N™/N=.2 

5.00      T2=4Ti 
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v'(t\ <*^^        ^ 
0.10 Read on righfaxis 
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Time (multiples of Ti) 

Figure 5—Time Dependence of Reserve and Concentration Factors 

EFFECTS OF TIME SCALE 

As Pd(Ö./d(Ö and/Jfl change, so also does F*ft). If we use the time-dependent 

versions of these variables in (20) we can generate Figure 6. 
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Figure 6—Approximate Average Value of F* over the Course of Battle as a 
Function of Battle Duration Relative to Reserve-Commitment Times 

The conclusion here is that if the battle is short relative T,, then the break-even 

ratio is essentially the same as in the earlier section that ignored intra-battle 

reinforcement and maneuver (i.e., around 1.5 or so). However, if the battle is not so 

intense (lower attrition rates and longer duration), then the average value of the break- 

even ratio rises sharply, reflecting the fact that much of the battle will be fought under 

circumstances much less congenial to the attacker than intended. Indeed, if the battle 

lasts long enough, the sides will concentrate all their forces on the main sectors and the 

value of the original concentration will be greatly reduced—unless, of course, the 

attacker reconcentrates on a set of new main sectors (or the defender does similarly and 

goes on the attack).l* 

11Note that T, should be considered to be a stochastic variable, which would mean that the 
effective coefficients of any theater-level model would be stochastic. There are many other 
examples of where stochastic considerations should be made explicit. For example, the 
probability distribution for sector-level combat is probably distinctly bimodal if the force ratio is 
3:1. Thus, the situation at the "break-even force ratio" is not well described as "break-even" in 
the sense that the sides would stalemate. Instead, it is better described as implying a 50-50 
chance of winning or losing. This is discussed, for example, in Huber (1990) and Huber and 
Helling (1995), based on detailed simulations by Hans Hoffmann and others at the University of 
the Bundeswehr. 
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EFFECTS OF AGGREGATION SCALE: PHYSICAL SCALE AND COMMAND 
STRUCTURE 

These observations are reasonable in the abstract, but how do they apply to real- 

world combat? Roughly speaking, the key point is that forces within isolated sectors 

with independent generals may be able to call in theater reserves quickly, but they will 

not be able to draw upon forces from other sectors. That is, in most theater conflicts, T2 

is large compared with T\, probably much larger even than shown (e.g., T2 could easily 

be 10 times greater than Tx because of factors such as terrain, logistics, disagreements 

between sector commanders, coalition problems when different nations' forces are on 

different sectors, or confused intelligence). As a result, a break-even 3:1 ratio at the 

sector level translates into something more like half that at the theater level. 

By contrast, if one were to try to do the same analysis with subsectors, one would 

conclude that intra-subsector maneuver would probably happen quickly relative to the 

duration of the sector's battle. Not necessarily, but plausibly. Thus, if the Lanchester 

equation and 3:1 rule applied at the subsector level (e.g., battalion-level battle), they 

would probably apply also at the sector level if the higher-level defensive command 

could reallocate forces within its control on a short time scale compared with the 

duration of the lower-level battle. An important subtlety here is that the relevant 

duration of lower-level battle includes the times associated with movement, 

reconnaissance, engagement and disengagement, and full-out battle. A given full-out 

battle may be remarkably short in modem warfare (e.g., ten minutes). If the defender is 

good at maneuver, however, and able to engage and disengage readily, he can drag out 

the duration of battle to improve his opportunity to "reequilibrate" forces. This ability to 

control tempo and the point of key battles by maneuver has even more leverage than 

that of prepared defenses, which helps to explain why field officers have long been much 

less enamored of static defenses than have analysts. 

The conclusion here is that strategy variables (e.g., N^^/N) and relative time 

scales determine the aggregation coefficients. These vary a lot from one level of combat 

to another. 
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5. IMPLICATIONS FOR TEMPORARY DISAGGREGATION IN 
SIMULATIONS.INCLUDING DISTRIBUTED INTERACTIVE SIMULATION 

One of the motivations for this report was to illuminate a problem arising in 

distributed simulation, the problem of connecting models of different resolution 

meaningfully (Davis, 1995). Crossing levels of resolution is notoriously difficult (see 

Davis and Hillestad, 1992, 1993), but it is even more difficult to do so frequently in the 

course of a simulation—sometimes disaggregating and then reaggregating—as when, for 

example, an aggregate object must do battle with an item-level object, after which the 

war proceeds. 

Is it reasonable to do such disaggregation and reaggregation? Based on the 

foregoing, a key criterion would appear to be whether the real-world aggregate-level 

object would "reequilibrate" after one of its components had been in battle. If not, there 

could be important correlations from one battle to the next and the procedure of 

disaggregating, aggregating, and disaggregating would be improper. But if the 

reequilibration is realistic, then the procedure may be reasonable—although other kinds 

of errors can be introduced if, for example, the disaggregation procedure always 

assumes the same standard formation and tactics. 
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6.  CONCLUSIONS AND SUMMARY 

This report has demonstrated many of the challenges in aggregating and 

disaggregating descriptions of combat processes by working through an analytically 

tractable model that assumes the Lanchester square law for ground combat in an 

individual sector such as that controlled by a corps or, in relatively rough terrain, a 

division. Even though this assumption is certainly not rigorous, it is nonetheless useful 

for the purposes here and leads to the following conclusions. 

AGGREGATING FROM A SECTOR LEVEL 

Given a Lanchester law at the individual sector level, there may or may not be a 

valid aggregate model at the theater level. If the attacker and defender apply forces 

uniformly across sectors and maintain constant reserve fractions, an aggregate model 

exists and is itself Lanchesterian. If the attacker concentrates forces on a fraction of the 

sectors, conducting mere holding actions on the others, an aggregate model with 

constant coefficients is still valid so long as there is no change in the reserve fractions 

or the allocation of forces across sectors. Again the model is Lanchesterian. In this 

case, however, the key coefficient governing the ratio of loss rates is a complex function 

of the attacker's strategy and the defender's anticipation of the attacker's strategy (a 

function of information and decisionmaking). If the break-even force ratio at the sector 

level is 3:1, then the break-even force ratio at the theater level is about 1.5, 1.2, or 2.1 

for canonical, defense-conservative, and attacker-conservative assumptions, 

respectively. 

EFFECTS OF INTRA-BATTLE REINFORCEMENT 

If in the course of battle the sides commit their reserves and redeploy forces from 

other sectors to the main sectors, there is no exact aggregate model with constant 

coefficients except in extreme cases. What matters are the ratios of several time scales: 

the duration of battle, the time to reinforce with theater reserves, and the time to 

redeploy from other sectors. The reinforcement and redeployment times depend not 

only on physical distances, roads, and movement rates, but also on intelligence, 

decision times, logistics, and the effects of air power. If, for example, the sector-level 

battle is intense enough or decisions slow enough, then the intra-battle maneuver and 

reinforcement will be too late and sector outcomes will depend on the initial sector-level 

force ratios, thereby favoring the attacker. By contrast, if the defender in a main sector 
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can diagnose events quickly and control the pace of events, perhaps by virtue of 

multiple prepared lines or giving up space for time, then this will not be so and the 

value of the initial concentration will be less. 

BREAK-EVEN FORCE RATIOS AT DIFFERENT SCALES (DIFFERENT LEVELS OF 
COMBAT) 

While the importance of the relative time scales may seem obvious, these scales 

are seldom discussed explicitly, even though it has been mysterious to many observers 

over the years why the 3:1 rule is applied at some levels of combat but not others. As 

discussed above, if the 3:1 rule is valid at a sector level, the corresponding rule at a 

theater level may be more like 1.5:1. On the other hand, it is plausible for a 3:1 rule to 

apply not only at the sector level, but at the subsector level as well. Thus, the same 

rule might apply to battalion- and division-level battles. The general principle is that if 

a 3:1 rule applies at a given level, then it will also apply reasonably well at the next- 

higher level if the higher level's defensive resources can be reallocated in a much shorter 

time than the duration of lower-level battles (or if the attacker is unable to enforce 

concentration systematically). If defending forces can break off battles quickly, this 

increases the effective duration of the low-level battles, thereby allowing more time for 

"reequilibration." This gives "active" and "mobile" defense concepts advantages over 

purely static defenses, although static defenses can often exploit fortifications better. 

IMPLICATIONS OF MOBILE COMBAT 

In mobile warfare the defender has less advantage. In this case, the sector-level 

break-even force ratio is 1:1 and the break-even force ratio at the aggregate level may be 

on the order of 0.8—that is, even an outnumbered side can win. The risks of doing so 

are considerable, however, because holding actions are more difficult. Battles may be 

more intense and their durations correspondingly shorter. As a result, concentration of 

force can be decisive—again, unless defending commanders are deft at breaking off 

battle when outnumbered and maneuvering quickly to reinforce troubled units. Such 

maneuver issues are especially important today, because the United States is more 

likely than not to be engaging in mobile warfare rather than a rigid prepared defense of 

a fixed line. 

DISAGGREGATION AND REAGGREGATION WITHIN COMBAT SIMULATION RUNS 

Using the insights about aggregation relationships, it is possible to draw 

conclusions about temporary disaggregation in the course of a simulated battle (e.g., in 
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a distributed simulation). By and large, disaggregating from a theater level in which the 

independent variables are total attacker and defender force levels is arbitrary and 

unnatural: It amounts to assuming a particular attack strategy for the entire 

campaign. Such an assumption cannot then be forgotten as one reaggregates, because 

in the real world theater-level strategies are highly correlated over time (i.e., if the main 

attack is through the Ardennes on X>+1, the Ardennes is probably still a main sector on 

Df2). By contrast, it is not unreasonable to disaggregate temporarily from a sector-level 

description to a representative subsector-level depiction, and then reaggregate, if the 

time scales are such that one would expect forces in the sector to "reequilibrate" before 

the next time period requiring a disaggregated description. 

GENERIC PRINCIPLES 

The purpose of the analysis is more to illustrate methods of aggregation and 

disaggregation than to work through the implications of the Lanchester square law. 

Among the more important principles illustrated are the following: 

• Even approximate mathematical analysis can clarify aggregation and 

disaggregation issues by suggesting functional forms and likely sensitivities. 

• However, aggregation typically depends sensitively on assumptions outside 

the detailed model, notably assumptions about higher-level strategy, 

command-control, maneuver, and time scales. These cannot generally be 

determined in advance, making uncertainty analysis necessary at the 

aggregate level. 

• The often dominating role of these higher-level factors is the reason that 

aggregate models (even board games) can often be quite respectable without 

being derived in detail from, or calibrated against, detailed models. 

• Aggregation may also depend sensitively on other assumptions outside the 

detailed model, assumptions so implicit as to be largely forgotten. The 

"detailed" models may, for example, be deterministic because of implicitly 

assumed tactics such as maintaining reserves that hedge against the 

consequences of random events. These assumptions must be reflected as 

constraints when aggregating or using automated methods such as neural 

nets or mathematical programming to find "optimal" tactics. 

• Temporary disaggregation within simulated campaigns may or may not be 

reasonable, depending on the objectives of the simulation and, importantly. 
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the time scales involved. By and large, temporary disaggregation is 

defensible if, in the real world, forces would "reequilibrate" at the aggregate 

level between periods in which the simulation disaggregates. The 

reequilibration concept is general, not restricted to ground-force maneuver. 

The "reequilibration" may involve, e.g., alertness, allocation of fires, 

redeployment of command and control assets, or maneuver of aircraft and 

ships. 

•      Validation of aggregation/disaggregation relationships should focus on the 

treatment of strategy, command-control, constraints, time scales, and 

uncertainties. It should not pivot around whether the aggregate model has 

been fully calibrated against a detailed model, because in many cases such 

calibration is impossible without mischievous assumptions. On the other 

hand, experiments with detailed models can often reveal issues and 

sensitivities that would be missed in even a moderately careful mathematical 

analysis. Further, they may be a good basis for calibrating some parameters 

of the aggregate model, even though other parameters are outside the model. 

A corollary of the last point is that in developing families of models, it may be 

better to start with more aggregate concepts and develop consistent disaggregated 

representations and only partial calibrations than to attempt to work exclusively from 

the bottom up. This may be a radical concept to those wedded to bottom-up 

approaches. It is contrary to much current discussion, especially by some enthusiasts 

of distributed interactive simulation who happen to be more acquainted with training 

and distributed technology than with modeling. 

At the same time, work with high-resolution models can be extremely important 

in clarifying underlying cause-effect relationships, defining the form of aggregate-level 

models, and calibrating specific parameters within them. As in this report, it is 

important to work from both directions and to fully appreciate what each level's 

perspective brings to the problem. 
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APPENDIX 

LANCHESTER EQUATIONS AND SCORING SYSTEMS 

GENERAL DISCUSSION 

Lanchester equations are differential equations describing the time dependence of 

attacker and defender strengths A and D as a function of time, with the function 

depending only on A and D.12 One partly generalized version of the Lanchester 

equations has the following form 

f-^   f-^" (A.1) 

in which the attrition rates and exponents are time-independent parameters. 

Sometimes the equations are extended to include constant reinforcement-rate terms. 

Most authors doing analytical work (as distinct from computer simulations) have 

focused on one of two special cases: the "square law" corresponds to s=u=l and r^t=0\ 

the "linear law" corresponds to r=s=^u=l. 

dA/dt = -KdD    dDldt = -KaA      square law (A.2) 

dAldt = -KdAD    dDldt = -KaAD    linear law (A3) 

It is usually said that the square law applies to "aimed fire" (e.g., tank versus 

tank) and the linear law to "unaimed fire" (e.g., artillery barraging an area without 

precise knowledge of target locations). Alternatively, it is sometimes said that the key 

feature of the square law is that it describes concentration of fire. 

Although the simple Lanchester equations with constant coefficients remain 

useful for demonstrating some features of combat (e.g., the value of concentrating effort 

12For extensive discussion of Lanchester equations see the treatises by Taylor (1980, 1983) 
and more recent work by Lepingwell (1987), Homer-Dixon (1987) and Epstein (1990). all of which 
describe the shortcomings of Lanchester theory. See also Wise (1991), which discusses effects of 
maneuver and command-control, and Helmbold (1993, 1994), which discuss alternative 
formulations useful for examining empirical data and appreciating some of the more subtle 
implications of the formulation. The Lanchester equations were discovered simultaneously and 
independently by the Russian scientist Osipov. 
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and the associated penalty for breaking up one's forces), especially when it is desirable 

to do so analytically, they are a poor basis for describing most combat situations. 

Computer simulations may use Lanchester expressions "locally" (i.e., for attrition 

estimates within a given time interval), but the coefficients of those equations change 

from time step to time step as conditions of terrain, defender preparations, and many 

other factors change. Good computer simulations recognize that the losing side may 

choose to break off battle rather than be annihilated. Some use equations in which the 

exponents are much smaller than called for in the square law and in which there are 

some differences in exponent between attacker and defender (e.g., to reflect the different 

mix of aimed and unaimed fire that might result from the defender having better cover 

and the attacker relying more heavily on artillery preparation).13 Most computer 

simulations deal separately with different classes of weapon-on-weapon interactions 

and treat maneuver as fundamental, not an annoying complication. Unfortunately, 

such computer simulations are then more complicated to understand and discuss. 

Hence, Lanchester equations continue to have a place in explaining simple points. 

For readers interested in understanding the relationship between Lanchester 

equations and "physics-level calculations," a recent study may be illuminating 

(Hillestad, Owen, and Blumenthal, 1993). It illustrates how a Lanchester square law 

can—in simple cases—be a reasonable approximation of events when the opponents 

approach each other frontally. The authors began with item-level simulations with 

individual shooters (e.g., tanks) and kill-per-shot probabilities dependent on range. 

They assumed flat, featureless, terrain. Even in this case, moving to and understanding 

the Lanchester representation was nontrivial and, in practice, was informed by theory 

and experimentation with the higher-resolution simulations. 

ESTIMATING THE STRENGTHS OR SCORES USED WITHIN LANCHESTER 
FORMULATIONS 

Lanchester equations assume that the sides' strengths can be characterized by 

scalar quantities that are usually called scores. In practice, estimating appropriate 

scores can be very troublesome, especially when the sides each have a mix of equipment 

and especially when the opponents have different equipment, organization, and 

doctrine. The most important considerations are accounting for the number of items of 

relevant equipment and gross features of context (type terrain, type battle, and whether 

13See, e.g., Allen (1992, p. 41) for the expressions used in RAND's RSAS and JICM models. 
(dA/dii/A goes as 1/P93; (dD/dt)/D goes as P64; the ratio of fractional loss rates goes as 1/F1-6. 
These were based on loose fits to historical data as well as approximate theoretical arguments. 
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there is a serious mismatch of capabilities). Early scoring methods, known as static 

methods, did not reflect context, but a newer situational scoring method does so, albeit 

in a way dependent on expert judgment for correction factors (Allen, 1992). The 

situational scoring method is used by RAND in the RSAS and JICM theater-level 

models. It has been used in Germany for NATO-sponsored work on multipolar stability 

concepts (Huber and Helling, 1995). 

Another subtle problem in using scores involves the treatment of qualitative 

factors (e.g., the effects of terrain or the differences in competence between equally sized 

and equipped forces of different nations). Lanchester intended that A and D measure 

numbers of entities (e.g., people or tanks). Applying Lanchester laws to force strength 

(i.e., scores reflecting both numbers and qualitative features of combatant entities) 

requires great care to avoid logical inconsistencies (Lepingwell, 1987; Homer-Dixon, 

1987).14 It is mathematically cleaner to treat qualitative effects by modifying the 

attrition coefficients rather than the scores. In this report I assume that appropriate 

scores can be constructed. 

THE 3:1 RULE 

The 3:1 rule in ground combat has been discussed for centuries, but it is difficult 

to find authoritative sources justifying it in any detail. For discussion and some 

citations, see Mearsheimer (1989). For rejoinders see Epstein (1989) and Dupuy (1989). 

My own view (consistent, I believe, with Mearsheimer's intended message) is that for 

modern mechanized combat the 3:1 rule applies approximately, when applied to scores 

such as WEI/WUV or equivalent-division scores determined largely by the number of 

pieces of major equipment such as tanks. It applies only to equally competent 

opponents when one of them is fighting from prepared positions in good defensive 

terrain and the other is conducting a frontal attack. In other situations, the defender 

advantage is normally less. Dupuy (1987) deals with this by assessing a "combat 

power," which is something like a WEI/WUV score modified by a series of correction 

factors for terrain, defensive preparations, surprise effects, and so on. After making 

such corrections, Dupuy treats break-even as a ratio of 1:1—in "combat power." Models 

like RAND's RSAS or JICM treat the same effects in somewhat different ways. 

14For example, models such as the RSAS and JICM that use qualitatively adjusted scores 
to compute attrition must calibrate the scores so that the results are the same as if the situation- 
dependent effects had been included in the attrition coefficients. Further, they must keep 
separate track of the unadjusted and adjusted force levels, because the ratios of loss rates are 
different for these quantities. See Allen (1992, p. 41). 



-33- 

BIBLIOGRAPHY 

Allen, Patrick (1992), Situational Force Scoring: Accounting for Combined Arms Effects in 
Aggregate Combat Models, RAND, N-3423-NA, Santa Monica, CA. 

Davis, Paul K., and Richard Hillestad (eds.) (1992), Proceedings of Conference on 
Variable-Resolution Modeling, Washington, D.C., 5-6 Mag 1992, RAND, CF-103- 
DARPA, Santa Monica, CA. 

Davis, Paul K., and Richard J. Hillestad (1993), "Families of Models That Cross Levels of 
Resolution: Issues for Design, Calibration, and Management," in Proceedings offne 
1993 Winter Simulation Conference, December, 1993, Society for Computer 
Simulation, San Diego, CA. 

Davis, Paul K. (1990), "Central Region Stability in a Deep-Cuts Regime," in Reiner 
Huber (ed.), Military Stability: Prerequisites and Analysis Requirements for 
Conventional Stability in Europe, Nomos-Verlagsgesellschaft, Baden-Baden, Germany. 

Davis, Paul K. (1995), "Distributed Interactive Simulation in the Evolution of Warfare 
Modeling," Proceedings of the IEEE, Vol.83, No.8, August. 

Dupuy, Trevor N. (1987), Understanding War, Paragon House Publishers, New York. 

Dupuy, Trevor N. (1989), "Combat Data and the 3:1 Rule," International Security, Vol. 
14, No. 1. 

Epstein, Joshua M. (1990), Conventional Force Reductions: A Dynamic Assessment, 
Brookings Institution, Washington, D.C. 

Epstein, Joshua M. (1989), "The 3:1 Rule, the Adaptive Dynamic Model, and the Future 
of Security Studies," International Security, Vol. 13, No.4. 

Helmbold, Robert (1993), "Combat Analysis," Phalanx, Vol. 26, No.3, September, 
Military Operations Research Society, Alexandria, VA. 

Helmbold, Robert (1994), "Combat Analysis," Phalanx, Vol. 27, No.4, December, Military 
Operations Research Society, Alexandria, VA.. 

Hillestad, Richard J., John G. Owen, and Donald Blumenthal (1993), Experiments in 
Variable-Resolution Combat Modeling, RAND, N-3631-DARPA, included in Davis and 
Hillestad (1992). 

Hines, John (1990), The Soviet Correlation of Forces Method," in Huber (1990). 

Hoffmann, Hans, Robert Schnurer, and Andreas Tolk (1995), On the Impact of 
Stochastic Modeling in a Rule Oriented Combat Simulation Model on Division/Corps 
Level, technical report, University of the Bundeswehr, Munich, Neubiberg. To be 
included also in the proceedings of the NATO-sponsored "Symposium on Coping with 
Uncertainty in Defence Decision Making," held at The Hague, 16-18 January, 1995. 



34- 

Homer-Dixon, Thomas (1987), "A Common Misapplication of the Lanchester Square 
Law," International Security, Vol. 12, No. 1, Summer. 

Horrigan, Timothy (1992), "The 'Configuration Problem' and Challenges for Aggregation," 
in Davis and Hillestad (1992). 

Huber, Reiner (ed.) (1990), Military Stability: Prerequisites and Analysis Requirements for 
Conventional Stability in Europe, Nomos-Verlagsgesellschaft, Baden-Baden, Germany. 

Huber, Reiner, and Otto Schindler (1993), "Military Stability of Multipolar Power 
Systems: An Analytical Concept for Its Assessment, Exemplified for the Case of 
Poland, Byelarus, the Ukraine and Russia," in Reiner Huber and Rudolf Avenhaus 
(eds.), International Stability in a Multipolar World: Issues and Models for Analysis, 
Nomos-Verlagsgesellschaft, Baden-Baden, Germany. 

Huber, Reiner, and Klaus Helling (1995), "Military Stability and Uncertainty About 
Intentions, Risk Attitudes, Operational Objectives, and Combat Performance of 
Regional Actors," University of the Bundeswehr, Fakultät fur Informatik, Institut für 
Angewandte Systemforschung und Operations Research, Neubiberg, Germany. 

Lepingwell, John W.R. (1987), "The Laws of Combat? Lanchester Reexamined," 
International Security, Vol. 12, No. 1. 

Mearsheimer, John (1989), "Assessing the Conventional Balance: The 3:1 Rule and Its 
Critics," International Security, Vol. 13, No. 4. 

RDA (1990), Battle Command Training Program (BCTP) Opposing FOrce (OPPOR) 
Command and Staff Handbook, Book 2, Chapter 5. R&D Associates/Logicon, Los 
Angeles, CA. 

Taylor, James G. (1980), Force on Force Attrition Modeling, Military Operations Research 
Society of America, Alexandria, VA (originally published for the society by Ketron 
Inc.). 

Taylor, James G. (1983), Lanchester Models of Warfare, Ketron Inc., Arlington, VA. 

Wise, Ben (1991), "Lanchester Equations for Automated Planning," Phalanx, Vol. 24, No. 
1, March. Military Operations Research Society, Alexandria, VA. 


