
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY/

NATIONAL COMPUTER SECURITY CENTER

18th NATIONAL INFORMATION SYSTEMS
SECURITY CONFERENCE

(formerly the National Computer Security Conference)

19951228 004
October 10-13, 1995

Baltimore Convention Center

Baltimore, Maryland

f M7 k 111 ll '

/ /

I >?' f I
| -3fe:ltfWS*-***t'l-'^iii' MRÖää5£*!^*&W

f. i ,« I I I

J._J_

00^33^
l4gpS9T®4 m.

'*< l*L,*rt'K$faWr_X*..yt!
lud

s \

. V ;K 1

PROCEEDINGS
VOLUME I

! I i?'?:

Making Security Real

OFFICE OF THE UNDER SECRETARY OF DEFENSE (ACQUISITION & TECHNOLOGY)
DEFENSE TECHNICAL INFORMATION CENTER

8725 JOHN J KINGMAN RD STE 0944
FT BELVOIR VA 22060-6218

IN REPLY
REFER TO

DTIC-OMI

SUBJECT: Distribution Statements on Technical Documents

TO:
NATIONAL COMPUTER SECURITY CENTER
FORT GEORGE G. MEADE, MD 20755-6000

1. Reference: DoD Directive 5230.24, Distribution Statements on Technical Documents,
18 Mar 87.

2. The Defense Technical Information Center received the enclosed report (referenced
below) which is not marked in accordance with the above reference.

18TH NISSC
0CT 10-13 1995
V0LS I & II

3. We request the appropriate distribution statement be assigned and the report returned
to DTIC within 5 working days.

4. Approved distribution statements are listed on the reverse of this letter. If you have
any questions regarding these statements, call DTIC's Input Support Branch,
(703) 767-9092, 9088 or 9086 (DSN use prefix 427).

FOR THE ADMINISTRATOR:

1 End CRYSTAL RILEY
Chief, Input Support Branch

FL-171
Dec 95

DoD Directive 5230.24, "Distribution Statements on Technical Documents," 18 Mar 87, contains seven
distribution statements, as described briefly below. Technical Documents that are sent to DTIC must be
assigned one of the following distribution statements:

DISTRIBUTION STATEMENT A:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

□ DISTRIBUTION STATEMENT B:

DISTRIBUTION AUTHORIZED TO U. S. GOVERNMENT AGENCIES ONLY; (FILL IN REASON); (DATE
STATEMENT APPLIED). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED TO (INSERT
CONTROLLING DoD OFFICE).

□ DISTRIBUTION STATEMENT C:

DISTRIBUTION AUTHORIZED TO U. S. GOVERNMENT AGENCIES AND THEIR CONTRACTORS;
(FILL IN REASON); (DATE STATEMENT APPLIED). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE
REFERRED TO (INSERT CONTROLLING DoD OFFICE).

□ DISTRIBUTION STATEMENT D:

DISTRIBUTION AUTHORIZED TO DoD AND DoD CONTRACTORS ONLY; (FILL IN REASON); (DATE
STATEMENT APPLIED). OTHER REQUESTS SHALL BE REFERRED TO (INSERT CONTROLLING DoD
OFFICE).

□ DISTRIBUTION STATEMENT E:

DISTRIBUTION AUTHORIZED TO DoD COMPONENTS ONLY; (FILL IN REASON); (DATE
STATEMENT APPLIED). OTHER REQUESTS SHALL BE REFERRED TO (INSERT CONTROLLING DoD
OFFICE).

□ DISTRIBUTION STATEMENT F:

FURTHER DISSEMINATION ONLY AS DIRECTED BY (INSERT CONTROLLING DoD OFFICE AND
DATE), OR HIGHER DoD AUTHORITY.

Q DISTRIBUTION STATEMENT X:

DISTRIBUTION AUTHORIZED TO U. S. GOVERNMENT AGENCIES AND PRIVATE INDIVIDUALS OR
ENTERPRISES ELIGIBLE TO OBTAIN EXPORT-CONTROLLED TECHNICAL DATA IN ACCORDANCE WITH
DoD DIRECTIVE 5230.25 (DATE STATEMENT APPLIED). CONTROLLING DoD OFFICE IS (INSERT).

(Reason) (Controlling DoD Office Name)

National Computer Security Center FANX III 9800 Savage Road FT Meade MD
(Assigning Office) ~, ~> (Controlling DoD Office Address (City/State/Zip)20755-6000

 MARY CRQH ^W &^~ 2J~ JXPC <? 5 7T~- 31 (Signature & Typed JJame) (Date Statement Assigned)

Welcome

The National Computer Security Center (NCSC) and the Computer Systems
Laboratory (CSL) are pleased to welcome you to the Eighteenth National
Information Systems Security Conference. The new conference name reminds us
that information systems, not just computers, must be secure. This year's program,
with its theme "Making Security Real," is designed to help you plan for effective
use of information security technology and to create security solutions. We believe
the conference will stimulate a copious information exchange and promote a solid
understanding of today's information security issues and protection strategies.

The conference program addresses a wide range of interests from technical
research and development projects to user oriented management and administration
topics. This year, the program focuses on developing and implementing secure
networks, technologies, applications, and policies. Papers and panel sessions
address a broad spectrum of network security subjects including: security
architecture, internet security, firewalls, multilevel security (MLS) products, and
security management. Because the National Information Infrastructure (Nil), and
its present backbone—the Internet-are topics of increasing interest, the challenges
they present are the subject of many presentations. As in the past, a number of
tutorials introduce attendees to a variety of information security topics and project
areas. As a new feature this year, we have invited the vendor award recipients to
provide product information displays as part of the award ceremony.

We feel assured that the professional contacts that you make at this conference,
the presentations, and these Proceedings will offer you insights and ideas you can
apply to your own security planning efforts. We encourage you to share the ideas
and information you acquire this week with your peers, your management, and your
customers. We also encourage you to share with us your success-based security
techniques. It is through sharing that we will continue to enhance the security of
our information systems and networks and build a strong foundation to make
security real.

SHUKRI A. WAKID/ ^_^^ JOHN C. DAVIS
Acting Director ^~ "" J Director

Computer Systems Laboratory ^rational Computer Security Center

BfIS CpALSK' ISSHSCT1D ß

18th National Information Systems Security Conference
Co-Chairs

Stephen F. Barnett, National Computer Security Center
Irene Gilbert Perry, National Institute of Standards and Technology

Program Directors
Jack Holleran, National Computer Security Center

Dennis Gilbert, National Institute of Standards and Technology

Program Council
Edward Borodkin, National Computer Security Center

Christopher Bythewood, National Computer Security Center
Dr. Gary Smith, Area Systems, Inc.

Administration
Stacey Duany, National Computer Security Center

Tammie Grice, National Institute of Standards and Technology
Mary Groh, National Computer Security Center

Barbara Keller, National Security Agency
Kathy Kilmer, National Institute of Standards and Technology

Carol O'Brien, National Computer Security Center
Phyllis Pierce, National Computer Security Center

Pat Purkey, National Security Agency
Sara Torrence, National Institute of Standards and Technology

Conference Referees
Dr. Marshall D. Abrams The MITRE Corporation
Rowland Albert National Security Agency
James P. Anderson J. P. Anderson Company
Devolyn Arnold National Security Agency
Al Arsenault National Security Agency
Steve Barnett National Computer Security Center
Dr. Matt Bishop University of California, Davis
Earl Boebert Sandia National Laboratory
Edward Borodkin National Computer Security Center
Dr. Dennis Branstad Trusted Information Systems, Inc.
Dr. Martha Branstad Trusted Information Systems, Inc.

11

Conference
Dr. Blaine Burnham
Christopher Bythewood
Dr. William Caelli
Dr. John Campbell
Dr. Jon David
Dr. Dorothy E. Denning
Donna Dodson
Ellen Flahavin
Daniel Gambel
Virgil Gibson
Dennis Gilbert
Dr. Grace Hammonds
Ronda R. Henning
Dr. Harold Highland, F.I.C.S, F.A.C.M.
Jack Holleran
Hillary H. Hosmer
Dennis Huamän
Dr. Sushil Jajodia
Carl Landwehr
Robert Lau
Dr. T. M. P. Lee
Special Agent John F. Lewis
Steve Lipner
Teresa Lunt
Dr. John McLean
Sally Meglathery
Rebecca Mercuri
William H. Murray
Dr. Peter Neumann
Donn B. Parker
Dr. Charles Pfleeger
Loreto Remorca
Dr. Ravi Sandhu
Marvin Schaefer
Dr. E. Eugene Schultz
Dr. Gary Smith
Dr. Eugene Spafford
James T. Tippett
Ken vanWyk
Roy Wood
Paul Woodie

Accesion For

NTIS CRA&!
DTIC TAB
Unannounced
Justification

By
Distribution/

£Us

RefereeS (continued)
National Security Agency

National Computer Security Center
Queensland University of Technology, Australia

National Security Agency
The Fortress

Georgetown University
National Institute of Standards and Technology
National Institute of Standards and Technology

General Research
Northrup Grumman

National Institute of Standards and Technology
AGCS

Harris Corporation
Computers & Security

National Computer Security Center
Data Security

Fidelity
George Mason University

Naval Research Laboratory
National Security Agency

Independent Consultant
United States Secret Service

Trusted Information Systems, Inc.
Advanced Research Projects Agency

Naval Research Laboratory
Estee Louder

University of Pennsylvania
Deloitte & Touche

Stanford Research Institute, International
Stanford Research Institute, International

Trusted Information Systems, LTD
Secure Solutions

George Mason University
Area Systems, Inc.

Stanford Research Institute, International
Area Systems, Inc.

Coast Laboratory, Purdue University
National Security Agency

Defense Information Systems Agency
National Security Agency
National Security Agency

Availability Codes

Dist

ft-1

Avail and/or
Special

ill

Awards Ceremony
2:00 p.m. Thursday October 12
Convention Center, Room 310

The National Institute of Standards and Technology (NIST) and the National
Computer Security Center (NCSC) will honor those vendors who have successfully developed
products meeting the standards of the respective organizations. Immediately following the
ceremony, honored vendors will have the opportunity to display these products.

The NCSC recognizes vendors who contribute to the availability of trusted products
and thus expand the range of solutions from which customers may select to secure their data.
The products are placed on the Evaluated Products List (EPL) following a successful evaluation
against the Trusted Computer Systems Evaluation Criteria including its interpretations:
Trusted Database Interpretation, Trusted Network Interpretation, and Trusted Subsystem
Interpretation. Vendors who have completed the evaluation process will receive a formal
certificate of completion from the Director, NCSC marking the addition to the EPL. Certificates
will also be presented to those vendors that have placed a new release of a trusted product on
the EPL by participation in the Ratings Maintenance Program. Additionally, vendors will receive
honorable mention for being in the final stages of an evaluation as evidenced by transition into
the Formal Evaluation phase. The success of the Trusted Product Evaluation Program is made
possible by the commitment of the vendor community.

The Computer Security Division at NIST provides validation services to test vendor
implementations for conformance to security standards. NIST currently maintains validation
services for three Federal Information Processing Standards (FIPS): FIPS 46-2, Data Encryption
Standard (DES); FIPS 113, Computer Data Authentication; and FIPS 171, Key Management
Using ANSI X9.17. During this award ceremony, NIST presents "Certificate of Appreciation"
awards to those vendors who have successfully validated their implementation of these
standards.

With the reaffirmation of the Data Encryption Standard as FIPS 46-2 in 1993, DES
can now be implemented in software, as well as hardware and firmware. To successfully
validate an implementation for conformance to FIPS 46-2, a vendor must run the Monte Carlo
test as described in NBS (NIST) Special Publication 500-20. The Monte Carlo test consists of
performing eight million encryptions and four million decryptions, with two encryptions and one
decryption making a single test.

Vendors test their implementations for conformance to FIPS 113 and its American
National Standards Institute (ANSI) counterpart, ANSI X9.9, Financial Institution Message
Authentication (Wholesale). This is done using an electronic bulletin board system. Interactive
validation requirements are specified in NBS (NIST) Special Publication 500-156, Message
Authentication Code (MAC) Validation System: Requirements and Procedures. The test suite is
composed of a series of challenges and responses in which the vendor is requested to either
compute or verify a MAC on given data using a specified key which was randomly generated.

Conformance to FIPS 171 is also tested using an interactive electronic bulletin board
testing suite. FIPS 171 adopts ANSI X9.17, Financial Institution Key Management (Wholesale).
ANSI X9.17 is a key management standard for DES-based applications. The tests are defined in
a document entitled NIST Key Management Validation System Point-to-Point (FTP)
Requirements. The test suite consists of a sequence of scenarios in which protocol messages
are exchanged under specified conditions.

We congratulate all who have earned these awards.

IV

18th National Information Systems Security Conference

Welcome Letter i

Conference Committee & Referees ii

Award Ceremony iv

Table of Contents v

Authors Cross Reference xv

Refereed Papers
TECHNICAL CHALLENGES, TRACK A

Enforcement of Complex Security Policies with BE AC 1
I-Lung Kao, Randy Chow, University of Florida

The Controlled Application Set Paradigm for Trusted Systems 11
Daniel F. Sterne, Trusted Information Systems, Inc.;
Glenn S. Benson, European Computer-Industry Research Centre

Information Domains Metapolicy 27
Gene Hilborn, Computer Sciences Corporation

Maintaining Secrecy and Integrity in Multilevel Databases: A Practical Approach 37
Sushil Jajodia, George Mason University;
Don Marks, Department of Defense;
Elisa Bertino, Universita di Milano

TOP: A Practical Trusted ODBMS 50
Marvin Schaefer, Area Systems, Inc.;
Valeria A. Lyons, Paul A. Martel, Antoun Kanawati, ONTOS, Inc.

Great Unsolved Problems in Applied Computer Security 63
Mark G. Graff, Sun Microsystems

Addressing INFOSEC Analysis Problems using Rule-Based Technology 73
Richard B. Neely, Ph.D., James W. Freeman, Ph.D., CTA Incorporated

Identification of Subjects and Objects in a Trusted Extensible Client Server Architecture 83
Terry C. Vickers Benzel, E. John Sebes, Homayoon Tajalli, Trusted Information Systems, Inc.

The New Alliance: Gaining on Security Integrity Assurance 100
Rene H. Sanchez, Rockwell Space Operations Company
Donald L. Evans, UNISYS

An Unusual B3-Complaint Discretionary Access Control Policy 113
Jeremy Epstein, Gary Grossman, Albert Donaldson, Cordant, Inc.

GENSER Message Multi-Level Secure Classifications and Categories 123
Mary Lou Hoffert, NCPII Development Team, NCTAMS LANT and NCTS Washington

A Standard Audit Trail Format 136
Matt Bishop, University of California, Davis

TCP/IP (Lack of) Security 146
Jesper M. Johansson, University of Minnesota

AINT Misbehaving—A Taxomony of Anti-Intrusion Techniques 163

v

Lawrence R. Halme, R. Kenneth Bauer, Area Systems, Inc.

Simulating Concurrent Intrusions for Testing Intrusion Detection Systems: Parallelizing Intrusions.... 173
Mandy Chung, Nicholas Puketza, Ronald A. Olsson, Biswanath Mukherjee, University of California, Davis

Maintaining Privacy in Electronic Transactions I84

Benjamin Cox, Carnegie Mellon University

A Software Architecture to Support Misuse Intrusion Detection 194
Sandeep Kumar, Eugene H. Spafford, The COAST Project, Purdue University

SOLUTIONS, TRACK B

Providing Accurate Data Labels to the Analyst - The Secure C4I Workstation 205
Ingrid Dampier, Christine Corbett, TRW Integrated Engineering Division

Controlling Network Communication with Domain and Type Enforcement 211
David L. Sherman, Daniel F. Sterne, Lee Badger, Sandra L. Murphy,
Kenneth M. Walker, Sheila A. Haghighat, Trusted Information Systems, Inc.

Integrating COTS Applications on Compartmented Mode Workstations 221
Susan A. Heath, The Boeing Company

Project WINMDLL: Using a COTS Solution to Connect LANs of Different Compartments 228
Al Nessel, Curt Sawyer, Defense Intelligence Agency

On Guards ... En Garde 236

Lawrence M. Sudduth, Secure Computing and Communications, Inc.

Securing Local Area and Metropolitan Area Networks: A Practical Approach 249
Prof. Vijay Varadharajan, University of Western Sydney, Nepean, Australia

Using Network Traffic Analysis as a Security Tool 262
Peter Troxell, Curry Bartlett, Nicholas Gill, Digital Equipment Corporation

SAGE: Approach to Rapid Development of Trusted Guard Applications 271
Karen Goertzel, Wang Federal, Inc.

Experiences with Implementing Messaging Security in MSMail 3.2 281
James E. Zmuda, Russell Housley, Spyrus

Can Computers and Epidemiology Get Along? Health Problems in Computers 291
Guillermo M. Mallen-Fullerton MS, UniversidadNacional Autonoma de Mexico;
Dr. Florencia Vargas-Vorackova PhD, Instituto Nacional de la Nutricidn;
Dr. Enrique Daltabuit-Godas PhD, Universidad Nacional Autönoma de Mexico

Disaster Recovery Planning Case Study: The South African 1994 Election 300
Walter Cooke, CISSP, W. J. Cooke and Associates Ltd.

VHA's Approach to Contingency Plan Development 308
Gail Belles, Medical Information Security Service,

National Center for Information, VA Medical Center

CRITERIA AND ASSURANCE, TRACK C

Functional Security Criteria for Distributed Systems 310
Janet Cugini, National Institute of Standards and Technology;
Rob Dobry, National Security Agency;
Virgil Gligor, University of Maryland;
Terry Mayfield, Institute of Defense Analyses

VI

A Perspective of Evaluation in the UK Versus the US 322
Alan Borrett, Member of UK ITSEC Scheme

ECMA's Approach for IT Security Evaluations 335
Alexander Herrigel, R3 Security Engineering AG, Switzerland;
Roger French, Digital Equipment Corporation;
Haruki Tabuchi, Fujitsu Ltd, Japan;

The European Computer Manufacturers Association

Rating Network Components 344
Gloria Serrao, National Security Agency

Analysis Requirements for Low Assurance Evaluations 356
James L. Arnold Jr., National Security Agency

Measuring Correctness and Effectiveness: A New Approach Using Process Evaluation 366
Klaus Keus, Klaus-Werner Schröder, Bundesamt fur Sicherheit in der Informationstechnik, Bonn, Germany

Reengineering the Certification and Accreditation Process: Security is Free 374
Sean G. Mahon, Boeing Information Services

MANAGEMENT AND ADMINISTRATION, TRACK D

Critical Factors of Key Escrow Encryption Systems 384
Dorothy E. Denning, Georgetown University

Evaluating the Strength of Ciphers 395
John C. Higgins, Brigham Young University

Community Response to CMM-Based Security Engineering Process Improvement 404
Marcia W. Zior, National Security Agency

Measuring Security: What Can We Learn from Other Fields? 414
Deborah J. Bodeau, The MITRE Corporation

Security and Software Reuse • 424
George W. Rogers, Jr., Jerry C. Crabb, The Analysis Corporation

The Use of Generic Architectures in System Integration 431
Dan Gambel, General Research Corporation;
Judith Hemenway, Northrop Grumman Data Systems and Services Division

An Open Trusted Enterprise Network Architecture 447
Gary Grossman, Jeremy Epstein, Cordant, Inc.;
Roger Schell, Novell, Inc.

Component Architectures for Trusted Netware 455
Jeremy Epstein, Gary Grossman, Cordant, Inc.
Roger Schell, Novell, Inc.

Social Engineering: The Only Real Test of Information Systems Security Plans 464
Ira S. Winkler, Science Applications International Corporation

Contingency Planning: What to Do when Bad Things Happen to Good Systems 470
Jay J. Kahn, Marshall D. Abrams, The MITRE Corporation

What Every Information Systems Security Professional Should Know
About Electronic Records Management 480

Julie Smith McEwen, CISSP, IITResearch Institute

Vll

THE INTERNET AND BEYOND, TRACK E

Computer Forensics: An Approach to Evidence in Cyberspace 487
Special Agent Mark M. Pollitt, Federal Bureau of Investigation

Software Piracy: Prevention, Detection, and Liability Avoidance 492
Melissa J. Shaw, Batelle

Authorship Analysis: Identifying the Author of a Program 514
Ivan Krsul, Eugene H. Spafford, The COAST Project, Purdue University

Emerging Law Regarding Computers, Communications, and Software 525
J. Stewart Bradish, University of Maryland

Internet Snifter Attacks 534
E. Eugene Schultz, Ph.D., SRI International
Thomas A. Longstaff, Ph.D., Carnegie Mellon University

Information Warfare: A Front Line Perspective 543
Lieutenant Mark D. Tibbs, U.S. Air Force

Defending a Computer System using Autonomous Agents 549
Mark Crosbie, Eugene H. Spafford, COAST Laboratory, Purdue University

Special Unrefereed Papers
The Table of Contents for the 1st through the 17th National Computer

Security Conferences 559
Jack Holleran, National Computer Security Center
Darlene Affeldt, National Security Agency

A Retrospective on the Criteria Movement 582
Willis H. Ware, Rand Corporation

Conference Report: 17th National Computer Security Conference 589
Dennis Gilbert, National Institute of Standards and Technology

Panel Summaries

TECHNICAL CHALLENGES, TRACK A
INFOSEC Research and Technology, Facing the Challenge:

Secure Network Technology for the 21st Century 601
Joe Moorcones, Chair, National Security Agency

Panelists
Tom Zmurko, National Security Agency
Dave Muzzy, National Security Agency
Bill Ruppert, National Security Agency
Blaine Burnham, National Security Agency

Security on the I-WAY (High Speed ATM Networks) 602
Ken Rowe, Chair, University of Illinois Urbana-Champaign

Panelists
Kern Ahlers, Caterpillar, Inc.
Jay Dombroski, San Diego Supercomputing Center
Ian Foster, Argonne National Laboratory
Judy Warren, Cornell Theory Center

Vlll

Secure Database Systems: Where are We? 605

John R. Campbell, Chair, National Security Agency
Viewpoints

Statement 607

Richard Allen, Oracle Corporation
Secure Database Systems - Where Are We? 609

Dick O'Brien, Secure Computing Corporation
Directions for Database Security 611

Thomas Winkler-Parenty, Sybase Inc.
Database Security for DoD and Commerce--New Challenges 613

Bob Hedges, Informix Software Inc.

Security in Infinite Networks 617
Ruth Nelson, Chair, Information System Security

Viewpoints
Managing Insecurity in Infinite Networks 619

Ruth Nelson, Information System Security
Security Policies for Infinite Networks 621

Hilary H. Hosmer, Data Security, Inc.
The VIP Security Paradigm 626

Dave Bailey, Galaxy Computer Services
Closing the Gaps: Network Behavior Assessment 628

Kim Claffy, San Diego Super Computer Center
Security for Infinite Networks 630

Steven M. Bellovin, AT&T Bell Laboratory

Cryptographic Application Program Interface 631
Amy Reiss, Chair, National Security Agency

Panelists
John Linn, Panelist, Open Vision
Piers McMahon, ICL Ltd.
Dr. Burton Kaliski, RSA Labs

The Future of Formal Methods for Security 634
Peter G. Neumann, Chair, SRI International

Viewpoints
Formal Methods and NASA 635

Ricky W. Butler, NASA Langley Research Center
Algorithmic Verification 636

Robert Kurshan, AT&T Bell Laboratories
Formal Methods: Changing Directions 637

Bill Legato, National Security Agency

SOLUTIONS, TRACK B

Building a MLS System: A Real Life Adventure 638
Stephen Kougoures, Chair, National Security Agency

Panelists
Gloria Fitzergald, National Security Agency
Devloyn Arnold, National Security Agency
Daphne Willard, National Security Agency
Cindy Hash, National Security Agency

IX

Information Systems Security Research Joint Technology Office (Secure Virtual Office) 641
John C. Davis, Chair, National Computer Securtiy Center

Panelists
Dr. Howard Frank, Advanced Research Projects Agency
Gregory Giovanis, Defense Information Systems Agency
Teresa Lunt, Advanced Research Projects Agency
Robert Meushaw, National Security Agency

Developing an Incident Handling Capability 643
Marianne Swanson, Chair, National Institute of Standards and Technology

Viewpoints
Mark Graff, Sun Corporation
Sandy Sparks, Department of Energy's Computer Incident Advisory Capability
Sharon Sandstrom, GE Information Services

An Assurance Framework or Can Process Replace Evaluation? 644
R. Kenneth Heist, Chair, National Security Agency

Panelists
William J. Marshall, National Security Agency
John J. Adams, National Security Agency
Stephen M. LaFountain, National Security Agency
Dallas L. Pearson, National Security Agency

Network Rating Model 647
Olga Lambros, Chair, National Security Agency

Viewpoints
Network Rating Model -Overview 650

Emily D, Joyce, National Security Agency
Capability Maturity Models and their Role in the Network Rating Model 652

Dr. Bruce George, National Security Agency
Quantifying Computer Security ~ The Air Force C4 Systems Security
Posture Model and Associated Metrics 655

Joe Filer, Trident Data Systems, Inc.
Metrics: Their Role in the Network Rating Model 656

Colin Bowers, National Security Agency

CRITERIA AND ASSURANCE, TRACK C

The TMach Experiment - Phase 1 659
Ellen Colvin Flahavin, Chair, National Institute of Standards and Technology

Viewpoints
Helmut Kurth, IABG
Julian Straw, Logica/(SISL)
Nigel Rogers, CESG
Martha Branstad, Trusted Information Systems, Inc.

Common Criteria Editorial Board 662
Lynne Ambuel, Chair, National Security Agency

Panelists
Stephen M. LaFountain, National Security Agency
Eugene Troy, National Institute of Standards and Technology
Aaron Cohen, CSE (Canada)
Yvon Klein, SCSSI (France)
Chris Ketley, CESG (UK)
Ulrich van Essen, GISA (Germany)

x

The New OMB Circular A-130, Appendix III -663

Barbara Guttman, Chair, National Institute of Standards and Technology
Panelists

Scott Charney, Department of Justice
Ed Roback, National Institute of Standards and Technology
Ed Springer, Office of Management and Budget

Perspectives on Internet Security Evaluation and Assurance 664

Bruce Aldridge, Chair, NIST
Panelists

Karin Taylor, Communications Security Establishment, Canada
Marcus Ranum, Information Works
Marvin Schaefer, ARCA Systems, Inc.
Ron Ross, Institute of Defense Analyses

Trusted Products - How Are They Used? 665

Laura M. King, Chair, National Security Agency

Trust Technology Assessment Program 666

Thomas Anderson, Chair, National Security Agency
Panelist

Ellen Colvin Flahavin, National Institute of Standards and Technology

The Development of Generally-Accepted System Security Principles 667
Will Ozier, Chair, ZS&4 GSSP Committee

Panelists
Marianne Swanson, National Institute of Standards and Technology
Kristen Noakes-Fry, Noakes-Fry Associates
Hal Tipton, HFTAssociates
Nigel Hickson, Department of Trade and Industry

MANAGEMENT AND ADMINISTRATION, TRACK D

Linking Information Systems Security and Continuous Process Improvement:
A Win-Win Organizational Strategy 668

Dennis Gilbert, Chair, National Institute of Standards and Technology
Viewpoints

Richard Belville, Richard Belville andAssociates 672
Chris Bythewood, National Computer Security Center 674
Richard Koenig, (7SQ2
Corey Schou, Idaho State University 677
Ralph Spencer Poore, Coopers & Lybrand L.L.P. 678

INFOSEC Security Market, A Small Business Perspective 679
James P. Litchko, Chair, Trusted Information Systems, Inc.

Panelists
Jean Wu, Information Systems Management, Inc,
Teresa Acevedo, A & NAssociates
Loreto Remorca, Secure Solutions, Inc.

xx

Will Encryption Keep Out the Hackers? 681
Dorothy E. Denning, Chair, Georgetown University

Panelists
Michael R. Higgins, DISA/CISS
Stephen T. Kent, BBN Communications Corporation
Eugene Spafford, The COAST Project, Purdue University

Viewpoint
Will Encryption Keep Out the Hackers? 682

Steven M. Bellovin, AT&T Bell Laboratories

Commercial World: Requirements vs. Solutions / Corporate Security Challenges 683
Dennis Huamän, Chair

Panelists
Richard Lee
Brian O'Higgins
Stanley Jarocki

National Information Infrastructure Security Initiatives, Part 1 685
Electronic Commerce, Electronic Messaging (E-Mail) and Information Security, Overview of Panel
Thomas Burke, Co-Chair, GSA
F. Deane Erwin, Co-Chair, NIISIPMO

Panelists
Tom Clarke, Defense Information Systems Agency
G. Martin Wagner, ECA-PMO

Viewpoints
Governmentwide E-MAIL VISION 686

Jack Finley, GSA
Federal Electronic Commerce Program 687
Security Infrastructure Program Management Office 690

National Information Infrastructure Security Initiatives, Part II 693
Stephen Walker, Chair, Trusted Information Systems, Inc.

Viewpoints
Richard Rothwell, USPS Electronic Commerce Services 694
Jim Bidzos, RSA Data Security, Inc 695
Nick Piazzola, National Security Agency 695
Wynn Redden, Communications Security Establishment, Canadian Government 696

INFOSEC, Prepare to Meet the New Millennium! 697
Dr. Charles Abzug, Chair, Institute for Computer and Information Sciences

Panelists
Marshall D. Abrams,, The MITRE Corporation
Kevin T. Deeley, Federal Bureau of Investigation
Patricia Edfors, Department of Justice
Lynn McNulty, McNulty and Associates
Donn B. Parker, SRI International
Dr. Marv Schaefer, Area Systems

Viewpoint
Information Security Infrastructure for the New Millennium 699

Dr. Roger R. Schell, Novell, Inc.

Xll

►
THE INTERNET AND BEYOND, TRACK E

Legal Hacking - What is Computer Crime on the Internet? 703
Christine Axsmith, Chair, Orkand Corporation

Panelists
Scott Charney, Department of Justice,
Barbara Fräser, CERT, Carnegie Mellon University
Dr. Lance Hoffman, George Washington University
Marc Rotenberg, Electronic Privacy Information Center

Law Enforcement Panel on Computer Forensics 705
Special Agent Mark M. Pollitt, Chair, Federal Bureau of Investigation

Panelists
Special Agent Stephen D. McFall, Federal Bureau of Investigation
Special Agent Howard Schmidt United States Air Force Office of Special Investigations
Duncan Monkhouse, Royal Canadian Mounted Police

Viewpoint
Department of Maryland State Police Computer Crimes Unit 706

Sergeant Barry E. Leese, Maryland State Police

Internet Security: Current Threats and Practical Solutions708
John Wack, Chair, National Institute of Standards and Technology

Viewpoints
Trends in Internet Attacks and Unauthorized Access 708

David Curry, Purdue University
Business Needs and Concerns with Internet Firewalls 708

John Pescatore, International Data Group
WWW Security: Current Problems and Solutions, Future Trends 709

Robert Bagwill, National Institute of Standards and Technology
Network Attacks Analysis: Stopping the Cycle of Internet Security Attacks, Alerts, and Patches. 709

Dr. Matt Bishop, University of California, Davis

The Internet Series
Internet Security 710

Jon David, The Fortress
Viewpoints

Weaknesses and Vulnerabilibilities of the Internet 712
Padgett Peterson, Martin Marietta

Internet Security Tools 716
Steven M. Bellovin, AT&T Bell Laboratories

Network Security Tools: Implementations and Implications 718
Paul Ferguson, U.S. Sprint

Publication of Vulnerabilities and Tools 727
Sarah Gordon, Command Software Systems, Inc.

Information Warfare: Its Impact upon Information Security 728
Wayne Madsen, Chair, Computer Sciences Corporation

Panelists
Martin R. Hill, Office of the Assistant Secretary of Defense, (sI/IW
David Banisar, Electronic Privacy Information Center
John Stanton, Technology Transfer Journal

Viewpoints
Information Warfare: Its Origins and Challenges for Information Security 730

John Hamlet, Deacon House

Xlll

THE TUTORIAL TRACK, TRACK F

Tutorial Series on Trusted Systems and Operational Security 735
Dr. Gary Smith, ARCA Systems, Inc.

Presenters:
Karen Ferraiolo, Mike Weidner, Stan Wisseman, Jack Wool, ARCA Systems, Inc.
R. Quane, A. Strameela, National Cryptologic School
Dr. Harold Highland, Computers & Security
Dr. John Campbell, National Security Agency
Joel Sachs, The Sachs Group

Internet 101: Introduction to the Insecurity of the Internet 737
Dr. Harold Highland, FICS, Chair, Computers & Security

Panelists
Dr. Jon David, The Fortress
Dr. Bertil Fortrie, Internet Security News
Sarah Gordon, Command Software
Padgett Peterson, Martin Marietta

A Brief Database Security Tutorial: Or the less than Civil War between Ease-Of-Use and Security,
the Battle between Grant and Lee's Privilege, Roles and Rollbacks, MAC DAC and FACT,
even Distribution and Replication Maybe 740

John R. Campbell, Chair, National Security Agency

From Training Standards to Courseware: AnlNFOSEC Success Story 758
Dr. Vic Maconachy, Chair, National Security Agency

Panelists
Dr. Corey Schou, Idaho State University
Dr. John Cordani, Eastern Michigan University
Dr. Timothy Mucklow, U.S. Air Force
Lt. Ken Loker, U. S. Navy
Ron Mayfield, General Services Administration

MISSI Series 759
Brooke Jenkins, Chair, National Security Agency

Panelists
M. Fleming, National Security Agency
S. Saydjari National Security Agency
Todd Inskeep National Security Agency
Carol Friedhoffer National Security Agency
Al Arsenault National Security Agency

A Tutorial: The Internet, World Wide Web, and Beyond 760
Jeff Harrison, Chair, National Institute of Standards and Technology

xiv

18th National Information Systems Security Conference
Author Cross Reference List

Abrams, Marshall D 470
Abzug Charlie 697
Ahlers, Kern 602
Aldridge, Bruce 664
Allen, Richard 607
Ambuel, Lynne 662
Anderson, Thomas 666
Arnold, James L., Jr 356
Axsmith, Christine 703
Badger, Lee 211
Bagwill, Robert 709
Bailey, Dave 626
Bartlett, Curry 262
Bauer, R. Kenneth 163
Belles, Gail 308
Bellovin, Steven M 630,682,716
Belville, Richard 672
Benson, Glenn S 11
Benzel, Terry C. Vickers 83
Bertino, Elisa 37
Bidzos, Jim 695
Bishop, Matt 136, 709
Bodeau, Deborah J 414
Borrett, Alan 322
Bowers, Colin 656
Bradish, J. Stewart 525
Burke, Thomas 685
Butler, Ricky W 635
Bythewood, Chris 674
Campbell, JohnR 605, 740
Chow, Randy 1
Chung, Mandy 173
Claffy,Kim 628
Cooke, Walter 300
Corbett, Christine 205
Cox, Benjamin 184
Crabb, Jerry C 424
Crosbie, Mark 549
Cugini, Janet 310
Curry, David 708
Daltabuit-Godas, Enrique 291
Dampier, Ingrid 205

David, Jon 710
Davis, John C 641
Denning, Dorothy E 384,681
Dobry, Rob 310
Dombroski, Jay 602
Donaldson, Albert 113
Epstein, Jeremy 113, 447, 455
Erwin, F. Deane 685
Evans, Donald E 100
Ferguson, Paul 718
Filer, Joe 655
Finley, Jack 686
Flahavin, Ellen Colvin 659
Foster, Ian 602
Freeman, James W 73
French, Roger 335
Gambel, Dan 431
George, Bruce 652
Gilbert, Dennis ...559, 668
Gill, Nicholas 262
Gligor, Virgil 310
Goertzel, Karen 271
Gordon, Sarah 727
Graff, Mark G 63
Grossman, Gary 113, 447, 455
Guttman, Barbara 663
Haghighat, Sheila A 211
Halme, Lawrence R 163
Hamlet, John 730
Harrison, Jeff 760
Heath, Susan A 221
Hedges, Bob 613
Heist, R Kenneth 644
Hemenway, Judith 431
Herrigel, Alexander 335
Higgins, John C 395
Highland, Harold 737
Hilborn, Gene 27
Hoffert, Mary Lou 123
Holleran, Jack 559
Hosmer, Hilary H 621
Housley, Russell 281

xv

Huamän, Dennis 683
Jajodia, Sushil 37
Jenkins, Brooke 759
Johansson, JesperM 146
Joyce, Emily D 650
Kahn, Jay J 470
Kaliski, Burton 631
Kanawati, Antoun 50
Kao, I-Lung 1
Keus, Klaus 366
King, Laura M 666
Koenig, Richard 675
Kougoures, Stephen 638
Krsul, Ivan 514
Kumar, Sandeep 194
Kurshan, Robert 636
Lambros, Olga 647
Leese, Barry E 706
Legato, Bill 637
Linn, John 631
Litchko, James P 679
Longstaff, Thomas A 534
Lyons, Valeria A 50
Maconachy, W. V 758
Madsen, Wayne 728
Mahon, Sean G 374
Mallen-Fullerton, Guillermo M 291
Marks, Don 37
Martel, Paul A 50
Mayfield, Terry 310
McEwen, Julie Smith 480
McMahon, Piers 631
Moorcones, Joe 601
Mukherjee, Biswanath 173
Murphy, Sandra L 211
Neely, Richard B 73
Nelson, Ruth 617, 619
Nessel, Al 228
Neumann, Peter G 634
O'Brien, Dick 609
Olsson, Ronald 173
Ozier,Will 667

Pescatore, John 708
Peterson, Padgett 712
Piazzola, Nick 695
Pollitt, Mark M 487, 705
Poore, Ralph Spencer 678
Puketza, Nicholas 173
Redden, Wynn 696
Reiss, Amy 631
Rogers, George W., Jr 424
Rothwell, Richard 694
Rowe, Ken 602
Sanchez, Rene H 100
Sawyer, Curt 228
Schaefer, Marvin 50
Schell, Roger R 447,455,669
Schou, Corey 677
Schröder, Klaus-Werner 366
Schultz, E. Eugene 534
Sebes, E. John 83
Serrao, Gloria 344
Shaw, Melissa J 492
Sherman, David L 211
Smith, Gary 735
Spafford, Eugene H 194, 514, 549
Sterne, Daniel F 11,211
Sudduth, Lawrence M 236
Swanson, Marianne 643
Tabuchi, Haruki 335
Tajalli, Homayoon 83
Tibbs,MarkD 543
Troxell, Peter 262
Varadharajan, Vijay 249
Vargas-Vorackova, Florencia 291
Wack, John 708
Walker, Kenneth M 211
Walker, Stephen 693
Ware, Willis H 582
Warren, Judy 602
Winkler, Ira S 464
Winkler-Parenty, Thomas 611
Zior, Marcia W 404
Zmuda, James E 281

xvi

Enforcement of Complex Security Policies with BE AC

I-Lung Kao* and Randy Chow

Department of Computer and Information Sciences and Engineering
University of Florida

Gainesville, Florida 32611
{kao, chow} @cis. ufl.edu

Abstract

Many computer applications in the commercial
world need complex security policies which are
hardly enforced by the military multilevel security
model because their enforcement must violate the ba-
sic properties of the mathematical structure that the
model is based on. Nor can these policies be modeled
by a discretionary security model like the HRU's ac-
cess control matrix since the accessing character-
istics of these applications demand some degree of
mandatory control. This paper presents an effec-
tive access control model called BEAC to enforce
these complex security policies. The power of this
model is demonstrated by its capability of express-
ing a rich set of access patterns from subjects to
objects in an elegant and uniform way. Moreover,
frequently-desired multilevel exceptions are system-
atically categorized and it is shown many security
policies required by computer applications in com-
mercial sectors are actually examples of these mul-
tilevel exceptions. Then it is demonstrated that all
these multilevel exceptions and other commercial se-
curity policies can be effectively enforced by an ex-
tension of the BEAC model.

1 Introduction

1.1 Security policies and access control
models

From the view point of access authorization, all
system entities in a computing environment can be
classified either as active subjects or passive objects.
An access control model specifies how security at-
tributes can be assigned to the interacting subjects
and objects, and how these attributes are used in

'currently with IBM, Austin, Texas

evaluating access permission according to some pre-
scribed rules. Given an access control model, an
user of the system can define his security policies
which specify how accesses from subjects to ob-
jects are to be regulated. An access control model
provide a mechanism to enforce security policies.
It is usually desirable to enforce as many security
policies as possible with one uniform access control
model.

Access control models are usually divided into
two categories: mandatory access control and dis-
cretionary access control [20]. Both are formulated
to allow or deny particular access modes by sub-
jects to objects. The two categories of models differ
mainly in how access authorizations can be modi-
fied. With a mandatory model, authorization mod-
ifications can only be made by an organization's
security authorities by changing the security at-
tributes of subjects and objects. In a discretionary
model, a subject may be given some degree of free-
dom to pass the whole or part of its access privileges
for an object to another subject.

Most mandatory access control models are
lattice-based models, in the sense that each sub-
ject and object is associated with a security class,
and the set of all security classes forms a lattice.
All the classes in a lattice are partially ordered by a
dominance relation. A model's access control rules
reflect the security goal of the model and ensure
that a subject can only have some mode of access
(read or write) to an object when the security class
of the subject dominates or is dominated by that
of the object. The most well-known mandatory
lattice-based models are the Bell-LaPadula multi-
level model [1] for data confidentiality and the Biba
multilevel model [2] for data integrity. In addition
to security classes (hierarchical levels), it is often
necessary to incorporate the need-to-know rule in
the model for many commercial and military ap-
plications. The need-to-know rule is usually im-

plemented by a non-hierarchical component for the
security attributes of subjects and objects, usually
called categories. The categories, representing the
natural characteristics of subjects and objects, also
form a lattice with set containment as a basis of the
dominance relation.

A discretionary access control model basically
enumerates all the subjects and objects in a system
and regulates the access to an object based on the
identity of a subject or the groups to which it be-
longs [20]. It can be best represented by the HRU's
access control matrix [12] with a row for each sub-
ject and a column for each object. Each entry of the
matrix describes what access rights each subject has
for each object. In this model, no semantics of in-
formation in the objects are considered, thus the se-
curity sensitivity of an object cannot be expressed.
For performance reasons, an access control matrix
is implemented by either a row-based mechanism
(capability lists) or a column-based mechanism (ac-
cess control lists), and both have their own pros and
cons [9].

1.2 Needs for a new model

Because of its flexibility and adaptability to the
needs of the real world's applications, category has
been implemented as a basic mechanism for ac-
cess control in some security systems (e.g., [10]).
However, even with categories, conventional multi-
level security models still cannot adequately enforce
some security requirements needed by many appli-
cations. The most visible examples are different
exceptions of multilevel information flow such as
transitivity, aggregation, and separation (of duty)
exceptions [11, 17] which all violate the basic prop-
erties of lattice, but are definitely required by many
practical applications. Other security requirements
that multilevel security models cannot satisfy are
easily found. To incorporate these security require-
ments, system administrators are often forced to
resort to less graceful and complicated methods to
satisfy each requirement individually (e.g., [16, 22]).
Thus, the difficulty of maintaining a secure com-
puting environment satisfying all specific security
requirements is increased considerably. These se-
curity requirements cannot be enforced by a dis-
cretionary access control model either, since the ac-
cessing characteristics of these applications demand
some degree of mandatory control. Therefore, there
is a need for a uniform and simple security model
for enforcing security policies where both manda-
tory multilevel', security and discretionary security
models are inadequate.

With the above reasoning, the paper proposes a
powerful access control model based on boolean ex-
pressions of categories. The model can implement a
very rich set of regulated access patterns from sub-
jects to objects in a natural and elegant way. Fur-
thermore, it is shown that this model has a greater
modeling power than conventional multilevel secu-
rity models. We also systematically categorize the
multilevel information flow exceptions in terms of
access control. The model is then extended to in-
corporate the concept of states which must be sup-
ported in order to enforce these exceptions, and it is
demonstrated how these multilevel exceptions and
other complex security policies can be enforced by
using the extended model.

2 A Model Based on Boolean Ex-
pressions

2.1 The basic model

Like most access control models, the proposed
model divides all the entities in a system into sub-
jects and objects. The security attribute of each
subject is a category set which generally specifies
the accessing characteristics of a subject. Unlike
those in multilevel security models, the categories
used here do not need to form a lattice. A cate-
gory can also be created and assigned to a subject
to enforce a desired security policy. The security
attribute of each object is a boolean expression of
categories, which basically is composed of categories
assembled by any operators allowed in boolean al-
gebra ("*" means AND, "+" means OR, and a bar
over a category, e.g. c, means negation), and is
called an Access Control Expression in this paper,
abbreviated as ACE. When a subject tries to access
an object, the access is granted if the A CE of the ob-
ject is evaluated TRUE using the subject's category
set. The evaluation process of an ACE is described
as follows: Any category in the object's ACE has a
default value of 0. If an category c in the ACE also
appear in the category set of the accessing subject,
c is converted to TRUE in the ACE. The ACE is
then evaluated according to the normal evaluation
procedure in boolean algebra, and results in either
TRUE or FALSE.

To define the model in a more formal way, if
the category set of a subject S is represented by
CAT(S) = {A} and the access control expression
for accessing an object O in some mode M by
ACE(0)M =< E >, then the exclusive access con-
trol rule of this model is stated as "the access of S

to O in mode M is granted if E{A) = TRUE, where
E(A) means evaluating E with A as the input, and
is denied if E(A) = FALSE."

The rules defined above apply to any access
mode, such as read, write, or execute, etc., and an
ACE can be independently defined for each access
mode of an object. Whereas multiple access modes
(thus multiple ACEs) might be defined for an ob-
ject, for the reason of simplicity we will assume only
one ACE with each object (thus one access mode
only or one ACE applied to all access modes) in
following discussions unless stated otherwise.

For example, if the category set of a subject 5; is
{a, 6, c} and the ACE of an object Oj is < a * c >,
Si is not allowed to access Oj since the category c
in CATjSj) makes ACE(Oj) false (a*c = TRUE *
TRUE = TRUE * FALSE = FALSE). However, 5< is
allowed to access another object Ok whose ACE is
< b + d.(- e > since the existence of b in ACT(St)
makes ACE{Ok) TRUE.

Taking an example of the government, a sub-
ject Si which represents an employee in the De-
partment of Defense could have a category set
{NorthKorea, Nuclear .Weapon}, which implies
that Si has access privileges to the objects catego-
rized as NortfiKorea, Nuclear-Weapon, or both.
Another subject 52 which represents an employee
in the Department of States has a category set
{NortfiKorea, China), which implies that the re-
sponsibility of 52 requires him to have access rights
to the objects categorized as Northnorea, China,
or both. Now if an object Oi representing a secret
document file has an ACE = < NorthKorea >,
then it can be accessed by both Si and 52 be-
cause Northnorea exists in both category sets of
Si and 52- Another object whose ACE = <
Nuclear.Weapon > can be accessed by 52 (because
the default value of Nuclear.Weapon is FALSE) but
cannot by Si (because the Nuclear.Weapon in 52
makes this ACE FALSE).

The "wildcard" character, represented by the
symbol '$', is also used in an ACE to represent
any category except those already appearing in the
ACE. Utilizing the wildcard character is very ef-
fective in achieving some desired access pattern
precisely. For instance, an object whose ACE =
< a*6*$ > can be accessed only by a subject whose
category set contains only a and b and nothing else.
Note that the value of the wildcat character is al-
ways determined after the value-substitutions of all
other categories in an ACE.

As a general rule for achieving desired access re-
strictions, the existence of a category "c" in an ob-
ject's ACE implies that a subject needs to have a

"c" in its category set in order to access the object,
and a "c" in an object's ACE implies that the ob-
ject can only be accessed by a subject which does
not have a "c" in its category set. Moreover, two
categories appearing as "ci*Cj" in an object's ACE
indicates that a subject must have both "c" and
"CJ" in its category set to access the object, and
two categories appearing as "c,- + Cj" in the ACE
means that any subject which has either "c" or
"CJ" can access the object.

For simplicity in description, this booelean
expression based access control model is named
BE AC.

2.2 Modeling power

The modeling capability of the BE AC model is
quite powerful . Firstly, it offers a flexible and ele-
gant mechanism of access control. Both authorized
and prohibitive access control can be expressed ex-
plicitly at the same time by one mechanism. The
use of boolean expressions is more natural to en-
force the security requirements of some real appli-
cations, especially in commercial sectors, than us-
ing the set containment relation in multilevel secu-
rity models. The wildcard category used to gener-
alize access patterns sometimes or to restrict them
at other times is as powerful as using the wildcard
character "*" in UNIX shell commands. The desir-
ability of prohibitive rights and wildcard in specify-
ing access rights is debatable [6]. However, the flex-
ibility these mechanisms provide is useful for some
special purposes as shown in the following.

Figure 1 shows how a complete set of access con-
trol among subjects to an object can be provided
by the use of boolean expressions. Assume a sys-
tem consisting of three subjects Si, S2, and 53 with
{a}, {&}, and {a, b], respectively, as their category
sets (e.g., Si and 52 are two different employees,
and S3 is their manager), and one object called O
(e.g., a document). Because any subject is either
allowed or denied access to O, the total number of
all possible access patterns of these three subjects
to O is eight. By specifying the ACE of O appropri-
ately, it can be seen in the figure that any of these
eight access patterns can be precisely enforced by
the BE AC model.

For a comparison with multilevel security mod-
els, it has been shown [13] that the BE AC model
is powerful enough to enforce all the security poli-
cies that multilevel security models with levels and
categories can enforce. That is, all the security poli-
cies for accessing objects previously enforced by a
multilevel model can be exactly preserved using the

Subject Category Set

Si (a)

SJ { b)

S.i lib)

ACE of 0 Si S2 S3

<a> X X

 X X

<a + b> X X X

<u* b> X

<T> X

<¥> X

<"a+"b> X X

<7«"b>

Figure 1: Eight access patterns of 3 subjects. An
"X" in the entry means that subject 5,- can access
object O with the corresponding ACE.

BE AC model, by appropriately converting the lev-
els and categories of all entities used in the multi-
level model to the categories sets and A CEs used in
BE AC.

On the other hand, it is interesting to show that
there exists some security policies that can be en-
forced by the BE AC model but cannot by the multi-
level access control model with categories. Suppose
a system contains two subjects, Si and S?, and two
objects 0\ and O2, and a security policy is applied
to them such that the allowable and disallowed ac-
cesses to objects by subjects are shown in Figure
2. Both subjects can write information to both ob-
jects, but only Si can read information from 0\ and
only S2 can read information from Oi- An appli-
cation which needs this policy is that Si acts as a
processing filter for 0\ such that any information
written to 0\ must be read and processed by Si
before it can be written to other objects again. S2
plays the same role to C*2- Another application is
that 0\ is the mailbox of Si and O2 is the mail-
box of S2. Any subject may send messages to any
mailbox but only the owner of a mailbox may read
information from it.

First we show how this security policy can be
enforced by the BE AC model. Si and S2 have cat-
egory sets {a} and {6}, respectively, according to
their natural characteristics. 0\ can be written by
both Si and S2 but can be read only by Si, thus
0\ 's A CE for write access is < a + b > and its A CE
for read access is < a *b >. O2 can be written by
both Si and S2 but can be read only by S2, thus
02's ACEiov write access is also < a + b > and its
ACE for read access is < a*b >.

However, it is infeasible to to model the same
security policy in Figure 2 using the multilevel ac-
cess control with categories. Since Si can both
read and write 0\, class(Si) = class(Oi). Sim-

Figure 2: An access control policy which can be
enforced by the BE AC model but cannot by the
multilevel security model with categories.

ilarly, class(S2) = class(02). Moreover, since
S2 can only write but not read 0\, the category
set of Oi must properly contain the category set
of S2 (if data confidentiality is the security con-
cern), i.e., class(0\) D class(S2), which implies
class(Si) D class(S2). However, with the same rea-
soning, the category set of O2 must properly contain
the category set of Si, i.e., class(C>2) D class(Si),
which implies class(S2) 3 class(Si) — a contra-
diction. Therefore, this security policy cannot be
possibly enforced by the multilevel access control
model with only categories.

As an observation from the example above, we
can conclude that any security policy, that is rep-
resented by an information flow graph with cycles
consisting read and write edges among more than
two system entities (e.g., 0\ —► Si —► O2 —* S2 —*•
0\ in Figure 2), cannot be enforced by a lattice-
based access control model.

A Classification of State Depen-
dent Security Policies

Complex access control policies are characterized
by state-dependent security requirements. Autho-
rization of access to objects by a subject depends
on the subject's past access history and its interac-
tion with other subjects and objects. For examples,
a subject S is not allowed to access object 0\ if it
has already read object O2, or subject Si or sub-
ject S2 can write object O3, but they together can
not write O3. We will categorize a class of state-
dependent access control control policies in terms
of exceptions to normal information flow. Informa-
tion flow is a different view from authorization con-
trol, but also need to be implemented by an access
control model.

3.1 Multilevel information flow excep-
tions

An information flow model usually characterizes
all system entities with different security classes and
governs how information can flow between classes
[15]. Traditional information flow models are built
on a structure of lattice with components compos-
ing all the security classes, and information can only
flow between components of the lattice in the direc-
tion as the properties used to construct the lattice
permit [7, 8]. However, there exist some applica-
tions whose security requirements do need informa-
tion flow which violates some properties of lattice.
We will elaborate these information flow exceptions
and use them as motivations for an extension of the
BE A C model.

Information flow in a lattice-based model is tran-
sitive, i.e., if information is allowed to flow from
class A to class B, and from B to class C, then
it is allowed to flow from A to C directly. How-
ever, some applications exist where this transitive
property is not desired. If we define the informa-
tion flow relation "-»" on pairs of security classes
to represent the allowable direction of flow and "■/*"
to represent the prohibited direction of flow, then
transitivity exception is formalized as A —>■ B and
B -+ C, but A -f* C.

Another exception of information flow which may
be desired by some applications is aggregation ex-
ception [17, 18]. In a lattice-based model, if A -»• C
and B —► C, then the aggregate of information from
A and B, represented asAUß, usually can flow to
C. If this property is not desired, then we have
an aggregation exception, which is formalized as
A -* C and B -> C, but AUB -/+ C. This exception
can be interpreted in two ways. One is that C can
not sink information from the aggregate of A and B
(e.g., information from A and B are combined and
mixed by sharing a common pipe or FIFO with C),
and the other is that after C sinks information from
either A of B, it can not sink any information from
the other class.

The dual problem of aggregation exception is
the separation exception. Separation of duty is
one of the most important ingredients in secu-
rity policies and models concerning data integrity
[3, 5, 14, 19, 21]. With respect to information flow,
it can be described as that information cannot flow
from a single class, either A or B, to another class
C but only the aggregate of information from A and
B can, which in practice can be interpreted as once
information transfers from either A or B to C, the
other must also transfer information to C. The in-

formation flowed to C from the first entity will not
be valid or meaningful to C until information flow
from the second entity happens. This requirement
cannot be satisfied by a lattice-based information
flow model alone, so we call it separation exception,
formalized as A U B -> C, but A ■/* C and B -f* C.

These exceptions place more constraints on infor-
mation flow among different classes than permitted
by a lattice-based multilevel model. We will show
in sections 4 and 5 that the BE AC model can be
extended to enforce these exceptions, but first we
formalize flow exceptions in terms of access control.

3.2 Refining flow exceptions in access
control

Although the three exceptions mentioned above
originate from information flow policies, they can
be redefined in terms of access control. In access
control, the main operations for information trans-
fer between entities are read and write. So A -* B
means subject A writes information to object B or
subject B reads information from object A. Fur-
thermore, an access control model is usually chosen
for either data confidentiality or data integrity pur-
pose. Therefore these information flow exceptions
are classified according to how subjects and objects
interact and the security purpose in the scope of ac-
cess control (as shown in Figure 3). The following
details each exception and justifies its significance
with possible applications.

Let's first look at what transitivity exception
looks like in access control. Transitivity exception
in formation flow (A ->■ B and B -* C, but A -f* C)
can be described in access control as a relation
among two subjects and two objects in two different
ways. The first concerning with integrity (Figure 3
[i]) is that subject Si can write object Oi, Oi can
be read by subject 52, and S2 can write object O2,
but Si can not write 02 directly. This actually sim-
ulates the concept of "well-formed transaction" for
the commercial integrity policy [5]. The other way
which concerns confidentiality (Figure 3 [ii]) is that
object Oi can be read by subject Si, Si can write
object 02, and 02 can be read by subject S2, but Oi
can not be read by 52 directly. An example of this
exception is that raw data (Oi) can not be read by
some user (52) directly without being converted to
a specific format (Oi) by some formatting software

(Si).
Aggregation exception can also be redefined in

terms of access control according to whether the
security concern is data integrity or data confiden-
tiality. If data integrity is the concern (Figure 3

Transitivity Exception Aggregation Exception Separation Exception

w si Q [iii]
SI S2

[v]
SI S2

wj \ O O O O
01 □ \

\ / \ / Integrity
(write)

RX * S2(j
w\ ©/w w\ * / w

w| ,-
02|~"r

Ü
03

Ö
03

tu] oi r~i [iv] [vi]
Rl \ 01 02

1 1 1 1
01 02

1 1 1 1

Confidentiality
S1Ö ''

\ / \ T (read)
02 y /R R1 '''
S20

R \© / R

Ö
S3

R \ */ R

Ö
S3

Figure 3: A taxonomy of information flow exceptions redefined in terms of access control. The meanings of
symbols: "R"— read, "W" — write, "©" — exclusive or, "*" — and.

[iii]), then either subject S\ or subject S2 can write
object 03, but they together can not write 03. The
interpretation is that after O3 is written by Si, it
cannot be written by 52 any more, and vice versa.
Any application which requires an object to be writ-
ten by only one subject, but not a specific one, falls
into this category of exception (e.g., an electronic
check can only be prepared by only one accountant,
and after it is prepared, no other accountants can
touch it, to prevent against malicious modification).
If data confidentiality is the concern (Figure 3 [iv]),
then subject S3 can read either object 0\ or object
02, but 53 can not read the aggregate of both ob-
jects. This can be interpreted as that after 53 reads
01, it can not read 02 any more, and vice versa. A
well-known example which generalizes this excep-
tion is the Chinese Wall security policy [4] in which
a market analyst cannot access information from
more than one company within the same interest

Since the original concern of separation exception
is data integrity, many practical examples can be
found in the literature discussing integrity policies
and models (a simple one is that a check must be
prepared and signed by two different accountants,
to achieve separation of duty). It is described (Fig-
ure 3 [v]) as two subjects Si and S2 accessing the
object Ö3. After a subject (e.g., Si) writes 03,
only the other (S2) is allowed to write that object.
If data confidentiality is the concern (Figure 3 [vi]),

separation exception means that initially subject S3
is allowed to read both objects Oi and 02, but once
after S3 reads one object (e.g., Oi), it can only read
the other object (02). An example similar to the
one mentioned in [11] is that a user of a dial-up
database may only read service charge information
after he has viewed a stage of database information
subscribed before he is allowed to view the next
stage.

The BE A C model can be readily used to enforce
the transitivity exceptions, by arranging categories
sets of subjects and ACEs of objects appropriately
[13]. However, to enforce aggregation and separa-
tion exceptions, the access privileges of a subject to
an object needs to be affected either by the access
of the other subject to the object or by the subject's
earlier own access to other objects. It implies that
some state information needs to be associated with
subjects and objects such that the access privileges
of subjects to objects will vary in different states.
In the next section, we will extend the BE AC model
to implement the state concept of the security at-
tributes of subjects and objects.

4 The Extended BE AC Model

4.1 Analogy to the lock-key concept

BE AC has a great similarity with the lock-key
concept used in discretionary access control [8]. The

lock-key concept is very intuitive in that a subject
holding a key k{ which can be used to open a lock lj
can access the object "locked" by lj. In the BE AC
model, each category in an CAT virtually corre-
sponds to a key, so the CAT of a subject corre-
sponds to a set of different keys. On the other
hand, the ACE of an object for one access mode
corresponds to a "lock combination". An ACE =
< a*b> represents a complex lock which can only
be opened with presence of both keys a and 6 si-
multaneously. An ACE = < a + b > represents a
generalized lock which can be opened by either key
a or key 6. An ACE - < ä > means a lock which
remains open initially but the existence of key a in
the CAT of a subject will lock it. More vividly, one
ACE of an object represents a combination of locks
on the door to the room where the object is located,
and a subject must have all the necessary keys to
open the door, in order to access the object in the
access mode associated with that ACE.

4.2 Adding states by classifying cate-
gories

Motivated by the fact that access privileges of
subjects to objects need to be restricted or ex-
panded in order to enforce some complex security
policies such as aggregation and separation excep-
tions, the security attributes of a subject and/or an
object must be changed dynamically, as a result of
access operations, yet in a controllable way. To fa-
cilitate this requirement, categories in the CAT of
a subject are divided into two different classes. The
first class is called reusable category, which perma-
nently belongs to a subject once it is assigned to
the subject, until a system security administrator
explicitly removes it from the CAT of the subject
through privileged commands. It is analogue to a
reusable key which can be used by a subject to open
a lock (an ACE) as many times as the subject would
like to. The second class of categories is one-time
category, which is dynamically assigned to a sub-
ject when the subject needs it. As its name im-
plies, a one-time category can be used by a subject
only once, and regardless whether it makes an ACE
TRUE or FALSE, it is deleted from the CAT of the
subject after its first use. (It can be imagined that
a key is stuck on the door immediately after it is
inserted into the lock hole, whether or not it can
help to open the complex lock. A common mailbox
in an apartment is one such example.) A category
c is "used" only when a subject whose CAT con-
tains c tries to access an object in a mode whose
associated ACE also contains c. In other words,

a one-time category will not be removed from the
CAT of an accessing subject if it does not appear
in the ACE associated with that access mode. To
differentiate these two classes of categories, a hat
put on a category in a CAT is used to indicate a
one-time category, e.g., c.

The other way of changing a subject's privilege
to an object by BE AC is to classify the categories
composing the ACE of an object into two different
classes. A persistent category is a category whose
value remains TRUE once it is converted to TRUE.
Contrasting with the lock-key concept, a persistent
category corresponds to a lock which remains open
once it is opened. A non-persistent category (lock),
on the other hand, needs to be value-substituted
(opened) each time the ACE is evaluated. Simi-
larly, a c in an ACE indicates that c is a persistent
category.
. It should be noticed that changing an object's se-
curity attribute has a greater effect than just chang-
ing a subject's security attribute, because the access
privileges of all other related subjects will possi-
bly be expanded or restricted. It should be used
very carefully such that only the exact access con-
trol desired is achieved. To safeguard this, a more
conservative approach is employed. It is assumed
that whenever a new access control requirement
is desired on an object, a new boolean expression
is generated just for that requirement and is then
ANDed with the original ACE (so the new gener-
ated boolean expression has no interference with the
original ACE). To enforce a state-dependent com-
plex security policy, both classifications of security
attributes mentioned above are often required, as
demonstrated subsequently.

5 Policy Enforcement with BE AC

5.1 Enforcing multilevel exceptions

In Section 3, multilevel information flow excep-
tions are categorized in terms of access control and
justified by the security requirements of different
applications. For brevity, only the enforcement of
two exceptions by the BE AC model is demonstrated
here. The other four exceptions can be similarly re-
alized [13].

For clarity, all the security policies in this section
use the conventions as follows:
• Si, S2,S3, ■ • • : each represents a subject.
• 0\, O2,03, • • • : each represents an object.
• CAT(Si) : the category set of subject S;.
• ACE(OJ)M • the access control expression of ob-

ject Oj for access mode M.
• A,B,C,- ■ ■ : each represents a set of categories.
• Pt Q,r! • • ' : eacn represents a reusable category
in the category set of a subject or a non-persistent
category in the ACE of an object.
• Pi 9> 'S " " - : eacn represents a one-time category
in the category set of a subject or a persistent cat-
egory in the ACE of an object.
• E,F,G,--- '■ each represents a boolean expression.

aggregation exception - integrity
The original security attributes of subjects and

objects are assumed to be:
CAT(Si) = {A},
CAT(S2) = {B},

ACE(Oa)w=<E>,
where A and B are two category sets which each
makes E TRUE (note that A and B are not nec-
essarily distinct). If we desire to enforce an aggre-
gation exception between S\ and S2 to O3, we can
change their security attributes as:

CAT(Si) = {A,p},
CAT(S2) = {B,q),
ACE(03)w=<E*(p + q)>,

where both p and q are newly created and do not
exist in any of A, B, E. Since persistent categories
p and q are complemented in the new ACE, they
actually simulate a lock which is open to any sub-
ject unless the subject has both keys p and q (so
changing the A CE of 03 this way will not affect the
access privileges of other subjects). Initially O3 can
be written by either Si or S2 because a single p or q
still can make the whole ,4Ci?TRUE. After Si, for
example, writes O3, the value of p in ACE(03)w
will remain TRUE, which makes the ACE equivalent
to < E * q >. When S2 then tries to write O3, the
ACE will be evaluated FALSE due to the category
q in CAT{S2), so its access attempt will be denied.

separation exception - confidentiality
The original security attributes of subjects and

objects are assumed to be:
ACE(Oi)R=<E>,
ACE(02)R =< F >,
CAT(S3) = {A},

where A is a category set which makes both E and
F TRUE If a separation exception is to be enforced
between 0\ and 02 for the read accesses by S3, their
security attributes will be changed to:

ACE(Oi)R=<E*(p + r)>,
ACE(02)R =< F * (q + r) >,
CAT(S3) = {A,p,q,r},

where p, q and r are all new. The purpose of com-
plementing r in the ACEs of Oi and 02 is not to

affect other subjects' privileges to these objects be-
cause of such an aggregation exception enforcement.
Any other subject which originally has access to Oi
or 02 still can access it since r does not exist in its
category set. However,1 r is added to CAT(S3) so
that the r in either ACE{Oi)R or ACE(02)R does
not open any door to S3. Initially S3 can read either
0\ or 02. After S3 read Oi, for example, it will lose
p and make itself unable to read Oi again since cat-
egory p is non-persistent in ACE(OI)R. Therefore
S3 can then only be allowed to read 02.

5.2 Specifying a sequence of accesses

We now demonstrate another advantage of this
model, i.e., its ability of assigning a fixed ordering
to multiple subjects for their accesses to an object,
in a straightforward way. For simplicity, the effect
of modifying the ACEoi an object upon access priv-
ileges of other unrelated subjects is not considered
below. It can be eliminated, if necessary, by using
the technique of adding a complemented category
(r) to the ACEs of objects and a non-complemented
category (r) to the category sets of subjects involved
in policy enforcement, as shown above.

Assume that three subjects Si, S2, and S3 can
access an object O4 in some mode M, so their se-
curity attributes are:

CAT(Si) = {A},

CAT(S2) = {B},

CAT(S3) = {C},

ACE(04)M-<E>,

where A, B, and C all make E TRUE. If we desire
to specify an access ordering to O4 by three sub-
jects as Si —► S2 —*■ S3, their security attributes are
changed to:

CAT(Si) = {A,p},

CAT(S2) = {B,q},

CAT(S3) = {C,r},

ACE(OA)M =< E * (p + p * q + q * r) >,
where categories p, q, and r are all new. It can
be easily verified that at first only Si is allowed
to access O4. After Si's access, the ACE of O4
becomes < E*(p + q + q*r) >, which allows only
S2 to access O4. Then, after S2's access, the ACE
of O4 becomes < E*(p + q + r)>, which only allows
access to O4 by S3.

The approach can be generalized to order ac-
cesses to an object by an arbitrary number of sub-
jects.

Figure 4: A complex security policy requiring both
access ordering and aggregation exception for in-
tegrity.

5.3 Combination of enforcement tech-
niques

Some complex security policies may require both
exception and ordering. The following shows an ex-
ample of the BE A C model using these techniques
combined. Again, the effect of modifying the ACE
of an object upon accesses of other unrelated sub-
jects is not considered but could be eliminated using
the technique mentioned earlier.

Assume there is a business application whose se-
curity requirement demands both access ordering
and aggregation exception, as shown in Figure 4.
An object O5 (an electronic check) needs to be writ-
ten by Si (a clerk) first, and then written by either
52 or 53 (two managers) but not both, and finally
written by 54 (another clerk). Assume their original
security attributes are:

CAT(Si) = {A},
CAT(S2) = {Bi},
CAT(S3) = {S2},
CAT(S4) = {C},
ACE(06)w =< E >,

where A, Blt B2, and C all make E TRUE. To en-
force the security policy, we need to use the tech-
nique of specifying an ordering among Si, [S2 + S3]
(to treat them as one entity), and 54 and the
method of achieving aggregation exception for data
integrity between 52 and 53. Therefore, the secu-
rity attributes become:

CAT(Si) = {A,p},
CAT(S2) = {Bi,q,s},
CAT(S3) = {B2,q,t},
CAT(S4) = {C,f),

ACE(05)M =< E*(p + p*q*(s + i) + q*r) >,
where new categories p, q, r, s, and t do not appear
in any of A, Si, B2, C, or E. Initially only Si
can write O5, and after Si writes, ACE(OS)M =<

E*(p + q*(s + i) + q*r) >, which only allows either
S2 or S3 to write 05. If S2 writes, ACE(05)M =<
E*(p+q*i+r) >, then only S4 can write O5.

6 Conclusions

Using the language of Boolean Algebra to achieve
exact access patterns from subjects to objects is
more precise and nature in meeting security require-
ments of many practical applications. The BE AC
model proposed in this paper provides a system-
atic mechanism of modeling human-defined security
policies by adequately assigning security attributes
to both subjects and objects and using a simple ac-
cess control rule to achieve the desired policy.

Furthermore, this model is extended from a
stateless model to a more powerful version in which
states are associated with subjects and objects sim-
ply by dividing their security attributes into two
classes and render different meanings to different
classes in access authorization. The overhead of
implementing states on system entities by this way
can be reduced to the minimum. As demonstrated
in this paper, the modeling power of the extended
model is surprisingly great. Many security require-
ments which cannot be adequately enforced by ei-
ther conventional mandatory or discretionary secu-
rity model, such as multilevel information flow ex-
ceptions, can be effectively enforced by the model.

While most multilevel security models assume
only read and write operations on objects, the
BE A C model does not specify any restriction on the
set of access modes to an object and allows a single
,4 Ci?for each access mode, thus providing a finer de-
gree of access control. Independent control on each
access mode is more flexible and desirable in current
object-oriented systems, where a number of more
abstract access operations can be defined on an ob-
ject. Moreover, no predetermined security objec-
tive (confidentiality or integrity) is imposed in this
model. Instead it just offers a practical mechanism
for satisfying particular security policies. Informa-
tion confidentiality or integrity may be achieved as
just a property of the security policy to be enforced.
This strategy is believed to be more consistent with
the philosophy of separating policy and mechanism
in the construction of modern security systems.

References

[1] David E. Bell and Leonard J. LaPadula,
"Computer Security Model: Unified Exposition

and Multics Interpretation," Technical Report
ESDTR-75-306, The MITRE Corporation, Bed-
ford, MA, June 1975.

[2] Kenneth J. Biba, "Integrity Considerations for
Secure Computer Systems," Technical Report
ESDTR-76-372, The MITRE Corporation, Bed-
ford, MA, April 1977.

[3] Lee Badger, "A Model for Specifying Multi-
Granularity Integrity Policies," Proceedings of
the IEEE Symposium on Security and Privacy,
Oakland, CA, May 1989, pp. 269 - 277.

[4] David F. C. Brewer and Michael J. Nash, "The
Chinese Wall Security Policy," Proceedings of
the IEEE Symposium on Security and Privacy,
Oakland, CA, May 1989, pp. 206 - 214.

[5] David D. Clark and David R. Wilson, "A Com-
parison of Commercial and Military Computer
Security Policies," Proceedings of the IEEE
Symposium on Security and Privacy, Oakland,
CA, April 1987, pp. 184 - 194.

[6] F. Cuppens, "A Logical Analysis of Authorized
and Prohibited Information Flows," Proceedings
of the IEEE Symposium on Research in Security
and Privacy, Oakland, CA, May 1993, pp. 100
- 109.

[7] Dorothy E. Denning, "A Lattice Model of Se-
cure Information Flow," Communications of the
ACM, Vol 19, No. 5, May 1976, pp. 236 - 243.

[8] Dorothy E. Denning, Cryptography and Data
Security, Addison-Wesley, 1983.

[9] Deborah D. Downs, et al., "Issues in Dis-
cretionary Access Control," Proceedings of the
1985 IEEE Symposium on Security and Privacy,
Oakland, CA, April 1985, pp. 208 - 218.

[10] Todd Fine and Spencer E. Minear "Assuring
Distributed Trusted Mach," Proceedings of the
IEEE Symposium on Research in Security and
Privacy, Oakland, CA, May 1993, pp. 206 - 218.

[11] Simon N. Foley, "A Taxonomy for Information
Flow Policies and Models," Proceedings of the
IEEE Symposium on Research in Security and
Privacy, Oakland, CA, May 1991, pp. 98 - 108.

[12] Michael A. Harrison, et al., "Protection in Op-
erating Systems," Communications of the ACM,
Vol. 19, No. 8, August 1976, pp.461 - 471.

[13] I-Lung Kao and Randy Chow, "Enforcing
Complex Security Policies with Boolean Ex-
pression Based Access Control," Technical Re-
port UF-CIS-TR95-007, University of Florida,
February 1995.

[14] Paul A. Karger, "Implementing Commercial
Data Integrity with Secure Capabilities," Pro-
ceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, May 1988, pp. 130
- 139.

[15] Carl E. Landwehr, "Formal Models for Com-
puter Security," Computing Surveys, Vol. 13, No.
3, September 1981, pp. 247 - 278.

[16] Theodore M. P. Lee, "Using Mandatory In-
tegrity to Enforce Commercial Security," Pro-
ceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, April 1988, pp. 140
- 146.

[17] Teresa F. Lunt, "Aggregation and Inference:
Facts and Fallacies," Proceedings of the IEEE
Symposium on Security and Privacy, Oakland,
CA, May 1989, pp. 102 - 109.

[18] Catherine Meadows, "Extending the Brewer-
Nash Model to a Multilevel Context," Proceed-
ings of the IEEE Symposium on Research in Se-
curity and Privacy, Oakland, CA, May 1990, pp.
95 - 102.

[19] Michael J. Nash and Keith R. Poland, "Some
Conundrums Concerning Separation of Duty,"
Proceedings of the IEEE Symposium on Re-
search in Security and Privacy, Oakland, CA,
May 1990, pp. 201-207.

[20] National Computer Security Center, "Depart-
ment of Defense Trusted Computer System
Evaluation Criteria," DoD 5200.28-STD, De-
cember 1985.

[21] Ravi Sandhu, "Transaction Control Expres-
sions for Separation of Duties," Proceedings of
the 4ih Aerospace Computer Security Applica-
tion Conference, 1988, pp. 282 - 286.

[22] William R. Shockley, "Implementing The
Clark/Wilson Integrity Policy Using Current
Technology," Proceedings of the 11th National
Computer Security Conference, Baltimore, MD,
October 1988, pp. 29 - 37.

10

THE CONTROLLED APPLICATION SET PARADIGM
FOR TRUSTED SYSTEMS *

Daniel F. Sterne
Trusted Information Systems, Inc.

3060 Washington Road
Glenwood, Maryland 21738

sterne@tis.com

Glenn S. Benson
European Computer-Industry Research Centre

Arabellastrasse 17
D-81925 Munich, Germany

benson@ecrc.de

Abstract

A fundamental assertion underlying the TCSEC
•paradigm is that all necessary automated security con-
trols for a computer system can be provided by an oper-
ating system, in particular the components that consti-
tute a conventional TCB. We challenge this assertion
and explain why ordinary application processes out-
side an operating system can leak sensitive informa-
tion, undermine an operating system's accountability
mechanisms, and destroy information integrity.

We propose an alternative paradigm that more ac-
curately identifies sources of security risk within a
trusted system and can lead to improved security. The
paradigm is based on the premise that every software
component that can manipulate sensitive information,
even if it has no special access control privileges, is po-
tentially security relevant and must be controlled and
protected by automated mechanisms. The paradigm
repositions the trusted system security perimeter so
that it encompasses not only an operating system TCB
but the Controlled Application Set (CAS), a collection
of components that have been screened and are pre-
sumed to be benign. The paradigm allows unscreened
components to be present on a system but requires
that they be prevented from manipulating sensitive in-
formation. A practical approach to assurance is out-
lined based on the notion of balanced assurance. Ex-
amples illustrate the applicability of the paradigm to
systems providing confidentiality, accountability, and
integrity.

1 Introduction

A fundamental assertion underlying the Trusted
Computer Systems Evaluation Criteria (TCSEC) [10]
is that all necessary automated security controls for
many computer systems can be provided by their oper-
ating systems (OS), in particular the OS components
that constitute a Trusted Computing Base (TCB). Ac-
cording to the TCSEC paradigm, if applications pro-
cesses that have no special access control privileges
are properly constrained by an OS TCB, they may
safely execute software of unknown assurance while
accessing sensitive information, i.e., information that
merits special protection against unauthorized disclo-
sure or modification. In particular, constraints based
on a lattice are said to "confine" these untrusted
subjects, thereby preventing them from causing secu-
rity compromises. In this view, a robust application-
independent TCB is like a "silver bullet" that protects
sensitive information from errors and malicious code
in the applications programs that manipulate it. In
theory, if an OS TCB has been designed and imple-
mented properly, the rest of the software in a system
could be built by an adversary without undue risk of
compromise.1

The TCSEC conceptual architecture for a trusted
system is shown in Figure 1. In the Figure, TCB com-
ponents are shaded with a dark texture. The foun-
dation of the TCB is the access control component
or reference validation mechanism, shown as the bot-
tom layer of the system. Other TCB components for
identification and authentication (I&A), audit collec-
tion and storage, and other supporting functions are
shown as a vertical column on the left. The TCB
restricts access to both sensitive and non-sensitive in-
formation, represented by the cross-hatched and un-
shaded information storage containers below the sys-

•Fundedby ARPA contract DABT63-92-C-0020 - Approved
for Public Release - Distribution Unlimited.

lPottinger [21] attributes this assertion to Roger Schell.

11

*k ♦ ' ä ■♦ Ä
Security —-
Perimeter

Human
Interface

—Security
Perimeter

Figure 1: TCSEC Architecture and Security Perimeter

tem. Untrusted subjects, that is, subjects whose be-
havior is not security relevant, are shown atop the
TCB's access control layer. (A component is secu-
rity relevant if a system's ability to satisfy its security
requirements depends on the component's behavior.)
The human interface is shown above these subjects
as a dotted line. As suggested by the arrows near
the bottom, users direct untrusted subjects to ma-
nipulate both sensitive and non-sensitive information.
Users may also interact directly with the TCB via the
trusted path.

The TCSEC asserts that "the bounds of the TCB
equate to the 'security perimeter' " (p. 67). The secu-
rity perimeter is depicted in Figure 1 as a wide black
border positioned between the TCB and untrusted
subjects. Components below or to the left of the se-
curity perimeter are within the security perimeter and
are security relevant; those above or to the right are
outside the perimeter and are not security relevant.
The portion of the security perimeter that converges

with the human interface in the upper left represents
the trusted path.

A premise of this paper is that the confidential-
ity, accountability, and integrity protection needed
by many organizations cannot be enforced unilater-
ally by application-independent components inside the
perimeter. To provide the protection needed, the secu-
rity perimeter must be repositioned outward, thereby
acknowledging the security relevance of many ordi-
nary application programs that the TCSEC paradigm
treats as untrusted. This repositioning challenges the
fundamental accuracy of the TCSEC paradigm as a
guide for identifying and addressing sources of security
risk within trusted systems. Such accuracy is critical
because the TCSEC paradigm is the principal frame-
work for conceptualizing, building, evaluating, and op-
erating trusted systems.

This paper is organized as follows. Section 2 ex-
plains why the security perimeter must be repositioned
if trusted systems are to provide better security. Sec-

12

tion 3 describes the Controlled Application Set (CAS)
paradigm, comprising a proposed trust principle, a
conceptual architecture, and an approach to assur-
ance. Section 4 illustrates the applicability of the ap-
proach via examples dealing with confidentiality, ac-
countability, and integrity. Sections 5 and 6 provide
further discussion, including related work. Section 7
presents a summary and conclusion.

2 Why the Security Perimeter Must
Be Repositioned

Under the TCSEC paradigm, TCBs allow un-
trusted software to manipulate sensitive information.
As a consequence, even high-assurance TCBs fall short
of meeting the computer security needs of many orga-
nizations in various ways, including the following:

• Leakage: Unless an OS TCB is completely free
of covert storage and timing channels, it cannot
by itself prevent sensitive information from be-
ing leaked to unauthorized users. Although pa-
per designs for channel-free architectures based
on exotic storage devices and other highly spe-
cialized techniques have been proposed in the re-
search literature [22], building channel-free TCBs
that are cost effective and provide acceptable sys-
tem performance and functionality is beyond the
state-of-the-art. Furthermore, there are no es-
tablished techniques for systematically finding all
covert channels in a TCB, let alone eliminating
them. Moreover, as processor and I/O speeds
increase, covert timing channel bandwidths will
grow. Consequently, leakage vulnerabilities in
TCBs are unlikely to diminish in the near term,
if ever.

• Accountability: One of the control objectives and
fundamental security requirements cited in the
TCSEC is accountability, described as ensuring
"that actions affecting security can be traced
to the responsible party" [10]. Unfortunately,
any program containing malicious logic can eas-
ily confuse the accountability mechanisms of an
OS TCB. Suppose there are two subjects running
such programs, each associated with a different
user. Furthermore, suppose the subject running
in the name of Smith forwards Smith's compu-
tational requests to the subject running in the
name of Jones. If Jones's subject carries out the
requests on Smith's behalf, the TCB's audit trail

will erroneously identify Jones as the "responsi-
ble party." To remedy this problem, the TCB
could attempt to audit the forwarding of all such
requests. This would require identifying all overt
and covert means by which information can flow
between different users' subjects, including sub-
jects at the same security classification. This is a
task at least as difficult as attempting to iden-
tify all covert downgrade channels in a multi-
level secure (MLS) system. Worse yet, the TCB
would have to monitor the content of all infor-
mation exchanged between different users' sub-
jects and distinguish illicit attempts to circum-
vent auditing from legitimate communication be-
tween users, clearly an impossible task.

• Integrity: An organization rarely defines the value
of information solely in terms of confidentiality.
To be useful to the organization, the informa-
tion in addition must be accurate to some de-
gree; information that is completely erroneous
is of negligible value to an organization, even
if rigorously protected from improper disclosure.
Hence, nondisclosure requirements rarely exist
apart from integrity requirements. An OS TCB
by itself, however, cannot preserve the integrity of
information because every program that a TCB
allows to modify information is capable of cor-
rupting it.

Although the TCSEC glossary defines the TCB as
the "totality of mechanisms within a computer sys-
tem ... responsible for enforcing a security policy,"
the examples above illustrate that an OS TCB can-
not by itself provide the confidentiality, accountability,
or integrity that many organizations need. Systems
whose security relies on the TCSEC paradigm fall
short because the security properties that are mean-
ingful to system owners, such as leakage prevention
and correct data_ transformations, cannot be enforced
at the security perimeter depicted in Figure 1. Only
by repositioning the perimeter outward so that it in-
cludes many additional application-dependent compo-
nents can these properties be enforced.

3 The Controlled Application
(CAS) Paradigm

Set

The examples above suggest that meaningful sys-
tem security requires cooperative interactions between
an OS TCB and a collection of trustworthy applica-
tions. We use the term "application" broadly here

13

to mean any entity outside the TCB, including site-
specific programs, operating system utilities, database
management systems, and servers providing kernel-
like services [11]. Based on this observation, we next
propose an alternative paradigm for trusted systems.
The key elements of the paradigm are a new trust
principle, a conceptual architecture, and a practical
approach to assurance.

3.1 Trust Principle

We propose the following as a general principle:

Any application that can manipulate sensi-
tive information is potentially security rele-
vant.

It follows from this principle that any application
that can manipulate sensitive information must be
controlled, requires some degree of assurance that it
will exhibit only benign behavior, and must be pro-
tected from tampering.

We use the term manipulate as a shorthand to refer
to access modes that are sensitive with respect to the
security objective of interest. When confidentiality is
the objective, assurance is needed for any application
that can read sensitive information. When integrity is
the objective, assurance is needed for any application
that can write sensitive (high-integrity) information;
under some circumstances, assurance may be unnec-
essary for applications that can read it. These distinc-
tions are illustrated further in a later section.

Depending on an organization's security objectives
and policies, benign behavior may mean, among other
things, that an application will

• not exploit covert channels;

• not subvert accountability mechanisms, e.g., will
refrain from performing services on behalf of one
user in the name of another; or

• prevent certain kinds of information modifica-
tions identified a priori as harmful to integrity.

3.2 The CAS Conceptual Architecture

Figure 2 depicts the idealized CAS conceptual ar-
chitecture, which repositions the trusted system se-
curity perimeter so that it encompasses not only an
OS TCB but the Controlled Application Set (CAS),
a collection of applications for which some assurance

of benign behavior has been obtained via an unspeci-
fied screening process.2 TCB components, the human
interface, and sensitive and non-sensitive information
containers are shown as in Figure 1. CAS subjects,
which are bound to CAS programs, are shown atop the
TCB's access control layer. As suggested by the ar-
rows in the Figure, users must use CAS subjects when
manipulating sensitive information. In some systems,
they may also be allowed to use CAS subjects to ma-
nipulate non-sensitive information, as shown.

The presence of the CAS forces a much larger part
of the security perimeter to converge with the human
interface. We envision this as widening the trusted
path portion of the perimeter sideways from the left,
rather than elevating the access control portion from
the bottom. In this idealization, the CAS is not simply
a layer on top of the TCB's access control component
- it is the layer; it leaves no room for other non-CAS
layers to be interposed between the user and sensitive
information because such layers would be capable of
causing the security problems noted earlier. In a later
section, we discuss relaxing this constraint.

Other programs that have not been approved for
inclusion in the CAS, including user-developed pro-
grams, may also reside on the system. However, any
subject that executes a non-CAS program cannot be
trusted. Untrusted subjects are shown in Figure 2 to
the right of the CAS. To prevent such subjects from
causing leaks and losses of accountability or integrity,
we require that the TCB prevent them from manipu-
lating sensitive information; they can manipulate only
non-sensitive information, as shown. Such subjects are
incapable of affecting the security of the system and
can legitimately remain outside the security perime-
ter.

Untrusted subjects may be able to interact with
CAS subjects in a constrained manner via sharable
objects. In general, non-sensitive objects can be used
for this purpose. Though not shown in the figure,
sensitive objects can also be shared in some cases, as
illustrated in Section 4.2.

Since the CAS is security relevant, CAS modifi-
cations and extensions must be carefully controlled.
This has significant operational implications for sys-
tems in which users provide, develop, or enhance
some of the programs they use. Consider a TCSEC-

2To minimize terminological confusion, we have chosen not
to refer to the CAS as an element of a larger TCB. Using the
term TCB to refer to all components inside the repositioned se-
curity perimeter, while technically correct, conflicts with com-
mon usage. Common usage, as exemplified by the National
Computer Security Center's (NCSC) Evaluated Products List,
is that the prototypical TCB is an application-independent OS.

14

A $ Ä $
Security ->
Perimeter

*

Controlled
Application
Set
Subjects

Untrusted
Subjects

Human
Interface

-Security
Perimeter

Figure 2: Controlled Application Set (CAS) Architecture and Security Perimeter

compliant MLS system serving both cleared and un-
cleared users, where the former are accustomed to us-
ing their own programs to view, format, or edit classi-
fied information. In the CAS paradigm, cleared users
would lose this ability. Unless installed in the CAS,
user-developed programs will be able to manipulate
only non-sensitive information. Techniques for lessen-
ing the potential operational burden associated with
this restriction are discussed in Section 3.5.

3.3 The Role of the TCB

In the CAS paradigm, the TCB no longer com-
prises the "totality of protection mechanisms" respon-
sible for security [10] because the totality now includes
the CAS. Instead, the TCB acts as the base for these
protection mechanisms, as implied by the phrase for
which it stands: Trusted Computing Base. In this
role, the TCB must extend to the CAS many of the
facilities it uses to protect and support its own inter-

nal components. This constitutes a significant shift in
its trust responsibilities.

The TCB by itself or in combination with partic-
ular components of the CAS must meet the following
requirements:

Tamper Protection — The CAS must be protected
from tampering. CAS subjects must run in a do-
main separate from those of non-CAS subjects.
The CAS must not be modified without the ex-
plicit approval and participation of an authorized
individual.

Non-Bypassability — The CAS must be non-
bypassable. Every action that manipulates sen-
sitive information must be accomplished via the
CAS.

Trusted Path - As in the TCSEC, the TCB must
support a trusted path between itself and users
that can be invoked whenever a positive TCB-to-

15

user connection is required. In addition, the TCB
must be able to transfer control from itself to the
CAS at the request of a user so that a trusted path
can be established between the CAS and the user
and maintained continuously for the duration of
any session in which sensitive information is ma-
nipulated.

Access to CAS Subjects and Programs —
CAS subjects must only be created on behalf
of users who are authorized to manipulate sen-
sitive information. Non-CAS subjects may exe-
cute CAS programs during non-sensitive sessions;
these subjects, however, will not be granted any
additional access rights to objects or the trusted
path as a result.

Functionally Correct Services — The TCB must
store, retrieve, and transform information in a
manner that does not lessen the integrity of the
information.

This last requirement stems from the use of the
TCB as a base for other security mechanisms. If a
TCB does not provide correct storage and retrieval
services, no CAS component can be relied on to behave
according to its security specification, source code, or
documentation. A multiuser server process, for exam-
ple, cannot be relied upon to provide user account-
ability if the TCB cannot store the server's audit logs
correctly. Although the TCSEC imposes no require-
ments of this kind, they are de facto requirements for
any useful operating system or security kernel.

For high-assurance systems, an additional require-
ment should be satisfied.

Multiple CAS Domains - The TCB must pro-
vide multiple execution domains for the CAS and
restrict interactions among these domains as ap-
propriate to the organization's security policy and
assurance concerns.

This final requirement serves several purposes.
First, it is a reinterpretation of the mandatory ac-
cess control (MAC) requirements of the TCSEC in the
following sense. Every subject controlled by a MAC-
enforcing TCB runs in an execution domain implied
by its MAC label [26]. Allowable interactions between
the subjects operating in different MAC domains and
objects are described by the read-down, write-up prop-
erties of the Bell-La Padula model [4]. The intended
effect of restricting domain interactions in this way is
that information cannot be transferred to less sensitive
domains.

Second, it allows CAS domains to be arranged in
different configurations to support other security poli-
cies, particularly policies concerned with integrity and
role-based restrictions. For example, the configuration
may form an "inverted " lattice [5] or may nest the
domains so that one or more domains are subsets of
others, thereby supporting the construction of CAS
layers like TCB subsets [28]. Alternatively, the con-
figuration may be nonuniform [6] in accordance with
application-specific security policies [35].

Third, it supports the notion of least privilege [24]
for the CAS. Since a CAS may be enormous, tech-
niques for managing complexity are necessary if a CAS
is to be of even modest assurance. An important
technique is to organize the CAS as a collection of
small tightly constrained domains in which CAS sub-
jects are allowed to access only the objects essential
to their assigned functions [17, 18]. This idea under-
lies a common interpretation of one of the TCSEC B3
requirements, namely, that a TCB's protection mecha-
nism "shall play a central role in enforcing the internal
structuring of the TCB."

3.4 A Practical Approach to Assurance

The obvious assurance issue confronting this ap-
proach is that a CAS may be extensive, encompassing
millions of lines of software. As a consequence, de-
veloping CAS components according to the TCSEC
and relying on the NCSC to evaluate them is infeasi-
ble. Fortunately, more pragmatic and modest assur-
ance and evaluation practices will be entirely adequate
in many cases.

3.4.1 Balancing Assurance and Risk

The CAS paradigm is based on the "balanced as-
surance" philosophy [15, 16], which asserts that the
degree of assurance needed for a trusted component
should be proportionate to the security risks the com-
ponent poses. Since CAS components are protected
and constrained by the TCB, CAS assurance risks can
arguably be lower than those of the TCB; hence, less
extensive assurance measures may be needed. This
is particularly true for trusted systems in which the
TCB enforces MAC constraints on the CAS. Accord-
ingly, the level of assurance for many CAS components
can and should be significantly lower than that of the
TCB.

By contrast, the TCSEC paradigm treats CAS
components as completely untrusted, requires no as-
surance for them whatsoever, and requires no support
for them in the TCB. Hence, insisting on even minimal

16

CAS assurance and support cannot lessen the overall
security of a trusted system and will in many cases
significantly improve it.

Finer-grained assurance balancing may also be
practical and beneficial. If information sensitivities
or user authorization levels on a system vary greatly,
CAS assurance requirements may need to vary on a
component-by-component basis. An organization may
deem that for some CAS components, or perhaps an
entire CAS, very little assurance is required. On the
other hand, for information that is extremely sensitive
with respect to modification or disclosure, the organi-
zation may require that access to it occur only through
a few extremely high-assurance CAS components.

3.4.2 Accountability of Origin

A common misconception in the TCSEC community
is that one can trust an NCSC-evaluated TCB because
evaluators have examined it thoroughly and forced the
vendor to remove any security defects that might have
originally been present. In fact, evaluators can only
"spot check" a small fraction of a TCB's code and
have little hope of finding such defects, particularly
malicious code. Thompson [34] has pointed out that
malicious code can be easily disguised from code in-
spectors and testers. As a result, even if evaluators
could carefully inspect every line of code in an eval-
uated TCB, they still could not vouch for its purity
with confidence. Inevitably, evaluators and customers
have no choice but to trust that TCB vendors have not
hidden malicious code in their products. They may be
willing to trust them in this respect because they be-
lieve that vendors can be held accountable and that
vendors have a vested interest in assuring the trust-
worthiness of their products.

In actuality, the NCSC evaluation process focuses
on assessing that 1) the vendor is competent and em-
ploys suitable software development methods, and 2)
the product meets minimum quality standards. A
successful evaluation may increase confidence that a
TCB will carry out certain functions correctly and
uniformly (e.g., mediation) but cannot provide strong
assurance that a TCB or other component is free of
malicious code. Inevitably, one must trust the source
of such components and can do so judiciously only if
some organization or individual can be held account-
able. In the CAS paradigm, accountability of ori-
gin is the most fundamental basis for trusting a CAS
component; under no circumstances should a program
for which there is no accountability (e.g., a program
of unknown or highly questionable origin) be intro-
duced into the CAS. The security benefits such re-

strictions provide are acknowledged in DoD's "Yellow
Book" [33], which allows trusted systems to be used
over a greater risk range if all applications are devel-
oped by cleared personnel.

3.4.3 Life Cycle Assurances

Beyond accountability of origin, an organization may
require any of a broad range of life cycle and other
assurance measures, including those cited in the
TCSEC. To ensure that CAS sources are not only
accountable but trustworthy and competent, an or-
ganization may impose personnel security (screening)
or training requirements on CAS developers. Alter-
natively, it may be satisfied to obtain CAS compo-
nents from certain reputable vendors. Quality control
techniques may range from very stringent formal pro-
cesses to highly informal procedures. Formal processes
may involve independent verification and validation
(IV&V), certification, or other forms of third-party
oversight. They may additionally require construction
of mathematical models, structured design reviews,
extensive preoperation field testing, formal configura-
tion management, trusted distribution, or trustwor-
thy development environments. An informal process
might simply require that a competent user vouch for
each component installed in the CAS.

3.5 Supporting a Site-Extensible CAS

For a very high-assurance CAS, e.g., a CAS used
to control a nuclear reactor or protect the information
assets of a large financial institution, CAS change con-
trol procedures may be very restrictive. For a lower-
assurance CAS, the owning organization may allow
some of its members to modify or extend the CAS.

To improve system usability for these cases, a TCB
together with the CAS should provide an "install"
function that allows authorized users to promote new
programs into specified CAS domains while the system
is in operation. This function must only be available
through the trusted path facility so that it can only
be invoked with the explicit approval of a human be-
ing. It must not be possible for a program to invoke
it automatically and invisibly. Moreover, its use must
be auditable, so that installation of faulty components
can be traced to the responsible party. Accountabil-
ity of CAS changes can be further enhanced if nec-
essary by other techniques, including use of one-time
password authenticators. Organizations may choose
to disable the install function altogether or selectively
for particular CAS domains.

17

ft $ *k $ *
Security —
Perimeter

Non-
Sensitive
Subjects

Human
Interface

-Security
Perimeter

OS
TCB

Confi- m
dential Ü
■-«_ 'M

M
Unclass
Sensitive
Info

Non-
Sensitive
Info

Figure 3: CAS Example - Confidentiality and Accountability

4 Examples

We now outline the way the CAS paradigm can be
applied to a variety of systems.

4.1 Confidentiality and Accountability

This section discusses a hypothetical system trusted
to enforce aspects of the U.S. laws, rules, and practices
governing the protection of classified information. For
brevity, we will focus on the mandatory rather than
discretionary aspects of this policy.

In this example, the responsibilities of the trusted
system include preventing electronic leakage of classi-
fied information to individuals who are authorized to
use the system but are not sufficiently cleared. The
system is also responsible for providing an audit log
that lists the names of the users who have attempted
to access or create classified information objects. As
described above, an OS TCB by itself cannot address

these confidentiality and accountability requirements.

The CAS architecture for this system is shown in
Figure 3. The system is based on an OS TCB that
satisfies at least the B2 evaluation class requirements.
The TCB has been extended to support a CAS and in
particular provides multiple CAS execution domains.
The system processes information of four different sen-
sitivity levels: secret, confidential, unclassified sensi-
tive, and non-sensitive. CAS subjects execute in the
execution domains shown in the Figure as three cross-
hatched rectangles labeled secret subjects, confiden-
tial subjects, and unclassified sensitive subjects. As
suggested by the directional arrows near the bottom,
these subjects are constrained by MAC. Nevertheless,
they are trusted to not exploit the TCB's covert chan-
nels and not confuse the TCB's accountability mech-
anisms.

Non-CAS subjects execute in a domain in which
only non-sensitive information can be accessed; they
are represented in Figure 3 by the unshaded rectangle

18

to the right of the CAS, outside the security perime-
ter. Because they cannot access sensitive information,
these subjects are incapable of leaking it or obscuring
the identities of individuals who attempt to access it.

Among the users of this system are uncleared indi-
viduals. To mitigate the risk that a malicious program
may leak secret information to an uncleared user, the
organization that owns this system has imposed re-
strictions on the set of programs that can be installed
in the CAS secret domain. Only commercial off-the-
shelf (COTS) packages from approved vendors may
be installed in this domain and only by a system ad-
ministrator after approval by a configuration control
board (CCB). Approval of a vendor may be based on
the vendor's reputation, history, ownership, person-
nel security and software development practices, or
other factors. User-developed programs may also be
installed in the CAS secret domain by an administra-
tor but only if supplied by a secret-cleared user and
only after a CCB review of the source code. These re-
strictions are modest, yet they prevent users in secret
sessions from inadvertently executing hostile programs
planted by uncleared users. This significantly reduces
the risks associated with covert channels in the TCB.

The organization allows users authorized for access
to confidential and unclassified sensitive information
to install programs in the corresponding CAS domains
without participation of a system administrator. The
primary security requirement for programs installed
in the unclassified sensitive domain is that they not
undermine the TCB's accountability mechanisms. In-
stalling a program into either of these two domains is
an auditable event and causes a copy of the program to
be archived. These CAS mechanisms and procedures
have negligible impact on users yet provide account-
ability protection that a TCB alone cannot.

There are no restrictions or special procedures asso-
ciated with programs that execute in the non-sensitive
domain.

4.2 Integrity and Accountability

In this section, we apply the CAS paradigm to
a system trusted to enforce aspects of an integrity-
oriented security policy [29] like that described by the
Clark-Wilson integrity model [7]. These aspects are:
1) preventing unauthorized individuals from modify-
ing sensitive information, 2) preventing authorized in-
dividuals from modifying such information in an unau-
thorized manner, and 3) recording in an audit log se-
lected details about information modifications, e.g.,
user identifiers and the dollar amounts used in finan-
cial transactions. The system is shown in Figure 4.

Although this system's components perform differ-
ent functions from those in the previous example, the
essential security architecture is identical. As in the
previous example, the TCB provides multiple domains
for a CAS, but here the domain enforcement mecha-
nism is programmable and supports a variety of do-
main configurations [6, 30]. The system protects the
integrity of three kinds of sensitive information: salary
and leave tables used by a payroll application, manu-
facturing specifications in the form of Computer Aided
Design (CAD) drawings, and purchase orders. Autho-
rization to modify these kinds of information is based
on role assignment (job title) rather than clearance.
The organization's policies and procedures state that
only payroll clerks, senior engineers, and purchase offi-
cers, respectively, are authorized to modify these kinds
of information and only via designated programs.

The system enforces these restrictions by associat-
ing a different CAS execution domain with each role,
restricting the set of programs that can be executed in
each domain, and allowing individuals to create sub-
jects only in the domains for which they are autho-
rized. The CAS programs that run in these domains
are constrained by the TCB and can only modify the
types of information appropriate for their associated
roles. For example, programs that run in the Pay-
roll Clerk domain can modify salary and leave ta-
bles but not CAD drawings. Each CAS program is
trusted, however, to preserve information integrity by
constraining the kinds of modifications that can be
made, particularly to prevent fraud. For example, the
payroll program prevents payroll clerks from modify-
ing their own salaries or entering salaries above specific
numerical thresholds.

Various kinds of uncontrolled information having
no security relevance to the organization may also be
kept on the system. The organization places no re-
strictions on the origin or behavior of programs used
to modify them. The domain in which non-sensitive
information alone can be modified is shown in Figure 4
as an unshaded rectangle outside the security perime-
ter. Since the security objective here is integrity, the
CAS paradigm permits subjects outside the security
perimeter to be given read-only access to sensitive in-
formation selectively, as depicted by the directional
arrows in Figure 4. Information flow restrictions on in-
teractions between subjects in different CAS domains
may also be appropriate. Those shown here are il-
lustrative only; where integrity is concerned, each or-
ganization must impose its own restrictions based on
application-specific policies and assurance concerns.

The salary and leave tables on this system are an

19

*k $ *k $
Security -<
Perimeter

*

Non-
Sensitive
Subjects

«^

Bulletin
Boards,
Notes,
Drafts,
etc.

-—Human
Interface

-Security
Perimeter

Figure 4: CAS Example - Integrity and Accountability

attractive target for electronic fraud. By preventing
unauthorized individuals from modifying these tables,
the TCB greatly reduces electronic fraud risks. Never-
theless, the organization considers it critical that the
programs used to modify these tables be of very high
assurance. Consequently, it has configured the sys-
tem so that only a system administrator can install
programs into the payroll clerk domain. The admin-
istrator is authorized to do this only after approval
by the CCB. Assurance requirements for programs in
other CAS domains are less stringent; these programs
can be installed or revised more easily.

4.S Low Assurance Systems

The previous examples illustrated the applica-
bility of the CAS paradigm to multiuser systems
built on high-assurance TCBs. This section applies
the paradigm to a personal computer (PC) system
equipped with a low-assurance TCB that provides no

features beyond those minimally required to support
a CAS. This example reduces the CAS paradigm to
its essence and reveals the most fundamental respon-
sibilities of a TCB.

The security architecture for the system is shown
in Figure 5. The security objective is a form of in-
tegrity, namely protecting tax returns, home finances
databases, term papers, and other sensitive infor-
mation from modification or deletion by computer
viruses. A variety of non-sensitive information is also
stored on the PC. This information is useful but does
not merit special protection, e.g., copies of postings
from network news groups.

The CAS consists of software that the PC owner has
decided to trust to be free of viruses, including shrink-
wrapped products from certain vendors and programs
that have been scanned for viruses or digitally signed
by their authors [23]. The owner would also like to
run other (non-CAS) software without having to trust
it in this manner. Non-CAS software includes free-

20

Security -
Perimeter

Human
Interface

-Security
Perimeter

Figure 5: CAS Example - Personal Computer

ware of unknown origin and complex network appli-
cations that can automatically download and execute
code from Internet hosts without explicit approval of
the user (e.g., Mosaic, MIME agents).

The TCB for this system provides a single domain
for the CAS and another for non-CAS components.
At the beginning of each session, the user activates
the trusted path to the TCB and then designates the
session as a CAS domain session, a non-CAS domain
session, or a TCB session. During a CAS session, the
TCB allows only CAS programs to run but grants ac-
cess to both sensitive and non-sensitive files. During
a non-CAS session, the TCB allows any program to
run, but grants access only to non-sensitive files. In
this way, if viruses are present in unscreened programs,
the TCB prevents them from damaging files the owner
has designated as sensitive. During a TCB session,
the user can install programs into the CAS or remove
them.

The mandatory and discretionary multiuser access
controls, I&A, audit, and other features the TCSEC

requires for TCBs have little relevance to this system.
By contrast, the CAS paradigm focuses attention on
the system's fundamental security risks and requires
only the TCB features that are essential to mitigating
them.

5 Discussion

5.1 Covert Channel Strategies

The TCSEC paradigm allows arbitrary programs
to access sensitive information and any covert chan-
nels that are present within the TCB. TCB develop-
ers are supposed to mitigate associated leakage risks
by identifying and eliminating covert channels, reduc-
ing their capacity, and auditing their use. Unfortu-
nately, the effectiveness of these techniques has been
limited, even when the level of effort applied has been
substantial. Furthermore, these techniques often im-
pair system performance or curtail system function-

21

ality. The CAS paradigm suggests an entirely differ-
ent strategy: deny software of unknown origin or as-
surance the ability to access sensitive information or
leak it. This strategy mitigates covert channel risks
by reducing the likelihood that an attempt to exploit
covert channels will occur or be successful, regardless
of the number, capacity, or auditability of the channels
present. It cannot be cost effective to require, as the
TCSEC paradigm does for high-assurance TCBs, Her-
culean efforts to identify, reduce, audit, or eliminate
covert channels while providing neither motivation nor
mechanism for restricting access to the channels that
remain.

5.2 Approximating the Idealized Archi-
tecture

The objective of the idealized CAS architecture
is to place all security-relevant components within a
trusted system under the control of the owning organi-
zation. Some real-world systems may only be able to
approximate the idealized CAS architecture and may
not be able to achieve this objective fully. The CAS
paradigm is intended to allow for deviations from the
ideal and provide insight about the additional risks
that may be incurred. Next, we explore the rami-
fications of relaxing the interface between CAS and
non-CAS components.

5.2.1 Adding an API

In the idealized architecture, non-CAS subjects do not
exist within sensitive sessions. Moreover, because the
CAS does not export a callable3 application program
interface (API), non-sensitive sharable objects provide
the only interface between these CAS and non-CAS
subjects. This interface is highly constrained and is
intended to allow only limited importing and export-
ing of data across the security perimeter. In an MLS
system, for example, CAS subjects may be able to read
system-low objects created by non-CAS subjects.

The motivation for constraining this interface is to
protect sensitive information from being manipulated,
even indirectly, by non-CAS programs. To the extent
that the interface exported by the CAS becomes more
powerful and less constrained, the CAS cedes control
over its own sensitive operations to programs that can-
not be trusted, even if they're executed by an autho-
rized individual.

In fact, these rules are overly restrictive. Under
some circumstances, a CAS can export a highly con-

3 We include here a variety of system call mechanisms, in-
cluding system traps and interprocess communications.

strained callable interface to non-CAS entities that
provides no greater power or security risk than the
shared-object interface just described. Suppose the
CAS in an MLS system were designed to allow a thin
layer of non-CAS programs to be interposed between
itself and an authorized user during sensitive sessions.
If the API exported by the CAS to the non-CAS layer
consists of a single callable service that reads non-
sensitive files (i.e., reads down), the API conveys no
greater risk than the shared file interface. However, if
the API also allows reading files at the sensitivity level
of the session, the non-CAS layer would be capable of
leaking the sensitive information stored in them. In
short, providing an API for non-CAS components on
top of the CAS is neither inherently insecure nor is it
precluded from the paradigm. However, unless such
APIs are extremely limited, they can easily introduce
vulnerabilities. It is for this reason that they are not
depicted in the idealized CAS architecture.

5.2.2 Interpreters in the CAS

Although an OS TCB must prevent CAS subjects
from directly executing non-CAS programs, it cannot
prevent CAS subjects from indirectly executing them
by acting as an interpreter. If a CAS subject acts
as an interpreter, it can blur the execution domain
boundaries between CAS subjects and untrusted sub-
jects and among CAS subjects in different domains.
If the interpreter's command language is sufficiently
powerful and it interprets a data file planted by an
adversary or incompetent user, it may be subverted.
For this reason, there are no interpreters in the ideal-
ized CAS architecture.

The fact that the distinction between an interpreter
and other kinds of programs is not always clear may
make it difficult in some cases to determine whether
the CAS is free of interpreters. Many useful programs
change their behavior according to tables, macros, or
initialization files provided by users and are meant to
be tailored by them. On the other hand, there are
many conspicuous examples of data-driven systems
whose behavior is highly predictable and not subject
to security-relevant user tailoring and its accompany-
ing vulnerabilities. The risk that an automated teller
machine (ATM) will be reprogrammed from its user
interface, for example, is very small. It is entirely
feasible to keep many systems, particularly turnkey
systems, virtually free of interpreter-related security
risks.

The CAS paradigm is intended to address high-
assurance CAS domains that need to be free of inter-
preters and lower assurance CAS domains that may in-

22

elude interpreters under certain circumstances. Prag-
matic measures for mitigating interpreter risks are
listed below in order of decreasing potential assurance
and increasing flexibility.

• Avoid execution of any program whose behavior
cannot be predicted with certainty, particularly
programs whose behavior is meant to be tailored
by individual users.

• Avoid user-tailorable programs except those that
require all tailoring or interpretation instructions
to have been installed previously in the CAS; in
principle, these have the same assurance as CAS
executables.

• Install user-tailorable programs only in domains
that can read only high-integrity information [5],
that is, information that can be produced only by
individuals and programs that can be trusted.

• Install user-tailorable programs only in low-risk
domains. Allow only individuals trained to avoid
potential vulnerabilities to use these programs.

6 Related Work

This paper is an improved version of an earlier pa-
per presented and used as the subject of a panel ses-
sion at a recent workshop [31, 32]. Revisions to ad-
dress issues raised at the workshop include refinements
(e.g., regarding the CAS interface and APIs), clarifi-
cations, and additional discussion and examples.

The CAS paradigm clarifies, integrates, and ex-
tends a number of important ideas in the research
literature and restates them in a new context. CAS
components and our treatment of sensitive and non-
sensitive information generalize the Clark-Wilson in-
tegrity model's Transformation Procedure (TP), Con-
strained Data Item (CDI), and Unconstrained Data
Item [7, 8]. For example, a Clark-Wilson TP "must
be certified to be valid", i.e., a TP must transform
"CDIs from one valid state to another." The CAS
paradigm, however, allows security functional require-
ments for CAS components to vary according to the
security objective sought and allows assurance pro-
cedures to range from formal certification to highly
informal processes. Clark and Wilson assert that the
confidentiality needs of the military and the integrity
needs of the commercial sector are so disparate that
they require fundamentally different conceptual mod-
els and mechanisms. Instead, we propose a single,
unifying paradigm that addresses both. Lee [13] and

Shockley [27] propose implementing TPs as partially
trusted subjects whose accesses are constrained ac-
cording to Clark-Wilson access control tuples by a
lattice-enforcing TCB. Although this technique fore-
shadows the role and use of a TCB within the CAS
architecture, neither proponent suggests that the tech-
nique is necessary for or applicable to confidentiality;
neither acknowledges that application programs in an
MLS environment are security relevant.

The CAS architecture builds on previous ap-
proaches for layering security mechanisms. Popek and
Kline [20] outline an architecture containing multiple
"levels of kernels." Shockley and Schell suggest orga-
nizing complex TCBs into collections of simpler TCB
subsets [28]. Neumann's analysis of hierarchical sys-
tem architectures for safety, security, and other critical
requirements has explored related design and assur-
ance ideas [17, 18]. The CAS architecture allows a
CAS or a TCB to be organized internally as a col-
lection of TCB-subset-like layers. Nevertheless, there
are important differences between the CAS architec-
ture and the TCB subset approach. In particular, the
latter is wed to the TCSEC paradigm and suffers from
all of the drawbacks associated with it. Because the
TCB subset approach defines security relevance solely
in terms of access control, it treats subjects having no
special access control privileges as completely innocu-
ous. Consequently, under the TCB subset approach,
there is no reason to restrict the interface exported by
any TCB subset; in fact, such restrictions would seem
objectionable. In contrast, because the CAS paradigm
treats subjects that have no special access privileges
as potentially harmful, it requires that the interface
exported by the CAS to non-CAS subjects be highly
restricted; interfaces between layers within the CAS,
however, need not.

Fundamental to the CAS paradigm is the balanced
assurance philosophy, which arose during the SeaView
project [15, 16] and is closely associated with the de-
velopment of TCB subsets. Other influences on the
CAS paradigm include the LOCK system's type en-
forcement mechanism [6, 35, 19] and other efforts
to analyze and automate support for integrity poli-
cies [14, 30, 2, 3, 25]; the Military Message System [12],
which demonstrated that the trustworthiness of ap-
plications can be crucial even for DoD confidentiality
policies; Controlled Execution UNIX4 [1], a precursor
of the CAS architecture that prevents any program
that has not been specially installed from being exe-

*UNIX is a registered trademark in the United States and
other countries, licensed exclusively through X/Open Company
Ltd.

23

cuted; and Trusted Mach5 [36], whose multiuser server
processes clarify the limits of centralized accountabil-
ity mechanisms.

7 Conclusion

A fundamental assertion underlying the TCSEC
paradigm is that all necessary automated security con-
trols for many computer systems can be provided
by their operating systems, in particular the compo-
nents that constitute an OS TCB. This assertion does
not hold up in practice because ordinary application
processes possessing no special access control privi-
leges can leak sensitive information, undermine an OS
TCB's accountability mechanisms, and destroy infor-
mation integrity. Hence, the security properties ulti-

mately needed by many organizations cannot be en-
forced by an OS TCB alone and necessarily depend
on the benign behavior of application programs.

We have proposed an alternative paradigm based
on the notion of a Controlled Application Set (CAS).
The CAS paradigm builds on TCSEC principles but
identifies and addresses important sources of security
risk within trusted systems that are effectively ignored
by the TCSEC. For this reason, we believe it can
lead to practical improvements in the security of real
systems. In addition, as illustrated by the examples
above, the CAS paradigm is applicable to a wide range
of systems of low and high assurance concerned with a
variety of security objectives, including confidentiality,
accountability, and integrity.

The CAS paradigm originates from the premise
that every software component that can manipulate
sensitive information, even if tightly constrained by
a TCB, is potentially security relevant. A key impli-
cation is that the amount of software on which the
security of a trusted system depends will appear in
many cases to be much larger than it would under
the TCSEC paradigm. The CAS paradigm is an at-
tempt to identify practical techniques for increasing
confidence that very large collections of software will
behave securely.

The CAS paradigm departs from the TCSEC
paradigm in many ways; these have broad implica-
tions for trusted systems theory and practice. It
charges organizations that own and operate trusted
systems with responsibility for controlling the appli-
cations used to manipulate sensitive information and,
more importantly, provides them with automated en-

B Trusted Mach is a registered trademark of Trusted Infor-
mation Systems, Inc.

forcement mechanisms to prevent other applications
from being used for that purpose.

The CAS conceptual architecture and security
perimeter provide a new theoretical context for the
construction and evaluation of trusted systems. In this
context, an OS TCB must be designed and evaluated
not as the totality of security protection mechanisms
but as the base for it. An OS TCB must satisfy or sup-
port new requirements, including ensuring that CAS
components are tamperproof, non-bypassable, and ac-
cessible to users via the trusted path; exporting mul-
tiple execution domains so that the CAS can be orga-
nized in accordance with the principle of least privi-
lege; and providing the CAS with functionally correct
storage and retrieval services. On the other hand, the
paradigm diminishes the importance of covert chan-
nel elimination, reduction, and auditing requirements
and compensates by reducing the likelihood that a ma-
licious agent will be given an opportunity to exploit
whatever covert channels are present.

The CAS paradigm relies on balancing assurance
requirements pragmatically against risks. Since an
OS TCB will address many security risks, the level of
assurance needed for CAS components need only be
commensurate with the residual risks that remain; in
many cases, CAS components may merit significantly
less assurance than TCB components. For some CAS
components (e.g., COTS products), assurance of be-
nign behavior will be based largely on accountability
of origin instead of quality-control spot checks of its
behavior or its development history.

Our current research involves building TCBs and
prototype extensions that provide much of the support
needed for a CAS [2, 3, 25]. We intend to pursue val-
idating the ideas described in this paper through con-
tinued prototyping and discussions with practitioners
and policy makers in the computer security commu-
nity.

References

[1] L. Badger, H. Tajalli, D. Dalva, and D. Sterne.
Controlled Execution UNIX. In Proc. 17th Na-
tional Computer Security Conference, pages 254-
263, Baltimore, MD, October 1994.

[2] L. Badger, D. F. Sterne, D. L. Sherman,
K. M. Walker, and S. A. Haghighat. "Practical Do-
main and Type Enforcement for UNIX." In Proc.
1995 IEEE Symposium on Security and Privacy,

Oakland, CA, June 1995.

24

[3] L. Badger, D. F. Sterne, D. L. Sherman,
K. M. Walker, and S. A. Haghighat. "A Domain
and Type Enforcement UNIX Prototype." In Pro-
ceedings of the 5th USENIX UNIX Security Sym-
posium, Salt Lake City, UT, June 1995.

[4] D. Bell and L. LaPadula. Secure Computer Sys-
tem Unified Exposition and Multics Interpretation.
Technical Report MTR-2997, MITRE Corp., Bed-
ford, MA, July 1975.

[5] K. Biba. Integrity Considerations for Secure
Computer Systems. Technical Report TR-3153,
MITRE Corp., Bedford, MA, April 1977.

[6] W. E. Boebert and R. Y. Kain. A Practical Alter-
native to Hierarchical Integrity Policies. In Proc.
8th National Computer Security Conference, pages
18-27, Gaithersburg, MD, September 1985.

[7] D. Clark and D. Wilson. A Comparison of Com-
mercial and Military Computer Security Policies.
In Proc. 1987 IEEE Symposium on Security and
Privacy, pages 184-194, Oakland, CA, April 1987.

[8] D. Clark and D. Wilson. Evolution of a Model for
Computer Integrity. In Proc. ll**1 National Com-
puter Security Conference, Baltimore, MD, Octo-
ber 1988.

[9] H. Custer. Inside Windows NT. Microsoft Press,
Redmond, Washington, 1993.

[10] Department of Defense. Department of De-
fense Trusted Computer System Evaluation Cri-
teria, December 1985. DoD 5200.28-STD.

[11] D. Golub, et al. UNIX as an Application Pro-
gram. Proceedings of the Summer 1990 USENIX
Conference, pp. 87-96, June 1990.

[12] C.E. Landwehr, C.L. Heitmeyer, and J.A.
McLean. A Security Model for Military Message
Systems. ACM Trans, on Computer Systems, Vol.
2, No. 3, August 1984, pages 198-222.

[13] T.M.P. Lee. Using Mandatory Integrity to En-
force Commercial Security. In Proc. 1988 IEEE
Symposium on Security and Privacy, pages 140-
146, Oakland, CA, April 1988.

[14] S.B. Lipner. Non-discretionary Controls For
Commercial Applications. In Proc. 1982 IEEE
Symposium on Security and Privacy, pages 2-10,
Oakland, CA, April 1982.

[15] T.F. Lunt, et al. Element-Level Classification
with Al Assurance. Computers and Security, 7(1),
February 1988.

[16] T.F. Lunt, et al. A Near-Term Design for the
SeaView Multilevel Database System. In Proc.
1988 IEEE Symposium on Security and Privacy,
pages 234-244, Oakland, CA, April 1988.

[17] P.G. Neumann. On Hierarchical Design of Com-
puter Systems for Critical Applications. IEEE
Transactions on Software Engineering, (9):905-
920, September 1986.

[18] P.G. Neumann. On the Design of Dependable
Computer Systems for Critical Applications. Tech-
nical Report SRI-CSL-90-10, SRI International,
Menlo Park, CA, October 1990.

[19] R. O'Brien and C. Rogers. Developing Applica-
tions on LOCK. In Proc. 14th National Computer
Security Conference, pages 147-156, Washington,
DC, October 1991.

[20] G. Popek and C. Kline. The Design of a Ver-
ified Protection System. In Proc. 1974 Interna-
tional Workshop on Protection in Operating Sys-
tems, pages 183-196, Rocquencourt, France, Au-
gust 1974.

[21] G. Pottinger. Proof Requirements in the Orange
Book: Origins, Implementation, and Implications.
Mathematical Sciences Institute, Cornell Univer-
sity, Ithaca, NY, February 1994.

[22] N.E. Proctor and P.G. Neumann. Architectural
Implications of Covert Channels. In Proc. 15th
National Computer Security Conference, pages 28-
43, Baltimore, MD, October 1992.

[23] A.D. Rubin. Trusted Software Distribution Over
the Internet. In Proc. Symposium on Network
and Distributed System Security, pages 47-53, San
Diego, CA, February 1995.

[24] J. Saltzer and M. Schroeder. The Protection of
Information in Computer Systems. Proc. IEEE,
63(9), March 1975.

[25] D.L. Sherman, D.F. Sterne, L. Badger, S.L. Mur-
phy, K.M. Walker, S.A. Haghighat. Controlling
Network Communication With Domain and Type
Enforcement. In Proc. the 18th National Informa-
tion Systems Security Conference, Baltimore, MD,
October 1995.

25

[26] L.J. Shirley and R.R. Schell. Mechanism Suffi-
ciency Validation By Assignment. In Proc. 1981
Symposium on Security and Privacy, pages 26-32,
Oakland, CA, April 1981.

[27] W.R. Shockley. Implementing the Clark/Wilson
Integrity Policy Using Current Technology. In
Proc. the 11th National Computer Security Con-
ference, Baltimore, MD, October 1988.

[28] W.R. Shockley and R.R. Schell. TCB Subsets For
Incremental Evaluation. In Proc. Third Aerospace
Computer Security Conference, pages 131-139, Or-
lando, FL, December 1987.

[29] D.F. Sterne. On The Buzzword "Security Policy."
In Proc. 1991 IEEE Symposium on Security and
Privacy, Oakland, CA, May 1991.

[30] D.F. Sterne. A TCB Subset for Integrity and
Role-Based Policies. In Proc. 15th National Com-
puter Security Conference, pages 690-696, Balti-
more, MD, October 1992.

[31] D.F. Sterne, G.S. Benson, and H. Tajalli. Re-
drawing the Security Perimeter of A Trusted Sys-
tem. In Proc. Computer Security Foundations
Workshop VII, pages 162-174, Franconia, NH,
June 1994.

[32] D.F. Sterne, G.S. Benson, C. Landwehr, L. La-
Padula, and R. Sandhu. Panel Session: Recon-
sidering the Role of the Reference Monitor. In
Proc. Computer Security Foundations Workshop
VII, pages 175-176, Franconia, NH, June 1994.

[33] Guidance for Applying the Department of De-
fense Trusted Computer System Evaluation Cri-
teria in Specific Environments. Technical Report
CSC-STD-003-85, DoD, June 1985.

[34] Ken Thompson. Reflections on Trusting Trust.
CACM, 27(8), August 1984.

[35] D.J. Thomsen. Role-Based Application Design
and Enforcement. In Proc. of the Fourth IFIP
Workshop on Database Security, Halifax, England,
September 1990.

[36] Trusted Mach System Architecture, Technical Re-
port TIS TMACH Edoc-0001-93B, Trusted Infor-
mation Systems, Inc, Glenwood, MD, May 1993.

26

INFORMATION DOMAINS METAPOLICY

Gene Hilborn

Computer Sciences Corporation

7471 Candlewood Road

Hanover, MD 21076

Abstract

The metapolicy inherent in the concept of information
domains, as used in the emerging Department of
Defense Information Systems Security Policy (DISSP)
[1], and underlying the Defense Goal Security
Architecture [8] is modeled and analyzed. The access
control and information transfer metapolicy of the
DISSP is formalized as a set of rules that apply
axiomatically to all information domain security
policies. The relationship between mandatory access
control (MAC) and discretionary access control (DAC)
system security policies and information domain
security policies is analyzed. An information system
that enforces a MAC policy is shown to be a highly-
structured, special case of the general multiple
information domain policy system. Inferences are
drawn for the use and limitations of existing
MAC/DAC-based systems for implementation of
multiple information domain policies. The type of
future system features needed to support the full
potential of information domain-based multiple
security policies is discussed.

1 Introduction

1.1 Background

Multilevel secure systems were developed as a solution
to the conflict between computer resource sharing of
multiple users and protection of classified information
at multiple levels from unauthorized access. The
structure of information labeling and user clearances
was formulated as an hierarchy or more generally, a
partial ordering, or a lattice. An automated information
system enforcing a mandatory access control (MAC)
policy based on such labeling of information objects
and users or subjects acting on their behalf has become
the dominant paradigm for "serious" information
security, and thoroughly embedded in the technical
guidance of the Trusted Computer System Evaluation
Criteria (TCSEC) [2]. A single system under this
paradigm is considered to enforce a single coherent
system policy. The single policy may have subpolicy
components such as MAC and DAC (discretionary
access control), that make up a single, coherent policy.
The Trusted Network Interpretation (TNI) [3] and
Trusted Database Interpretation (TDI) [4] further

extend the paradigm to various modes of system and
policy composition, but do not depart from the single,
global policy and system paradigm.

The still evolving Common Criteria [5] contains no
rigid policy construct. However, no protection profiles
with other than the dominant paradigm have been
developed.

Deficiencies in the dominant paradigm have been
identified by multiple workers. Hosmer [6]
summarized these deficiencies of the single policy
paradigm as: its inflexibility to change; the difficulties
with data interchange between systems under policy
authorities or domains; its unrealistic model of the real
world's multiple, sometimes conflicting policy
domains; and, its poor performance when manual
security guards are introduced to deal with interdomain
transfers. As an approach to solving these deficiencies,
Hosmer advocated building a "Multipolicy Machine"
that enforces multiple, sometimes conflicting security
policies through automated metapolicy-enforcing
conflict-resolution mechanisms [6], The problem with
this approach is that it is so general and unstructured it
is doubtful that the many standardization issues can be
resolved in order to reduce it to practice. Bell [7] has
developed a framework that abstractly describes such
multiple policies, conflicts, and resolutions.

1.2 Information Domains

A new approach to information system policy
formulation and subsequent automation was recently
initiated in the U.S. Department of Defense (DoD) [1]
based on the construct of "information domains." The
information domain approach is a significant departure
from traditional DoD information system security
policies expressed by DAC and lattice-based MAC
policies. These (DAC and MAC) policies also form
the access control basis for existing evaluated trusted
products and systems in accordance with the TCSEC,
and its interpretations under the TNI and TDI. While
recent, and not widely known or understood, the
information domain policy formulation is also a key
underpinning of the Department of Defense (DoD)
Goal Security Architecture (DGSA) [8]. As important
as the information domain policy approach is as a
foundation of the DGSA, it has not been rigorously

27

formulated or modeled in published work, and has not
yet formed the basis of any available trusted products.

While the use of the information domain approach
originated as US DoD policy, it is potentially more
applicable to commercial environments than are the
traditional lattice-based MAC policies, which have not
been widely accepted in the commercial market.

1.3 Goals and Limitations of the Paper

The goals of this paper are to:

• Stimulate wider exploration and analysis of the
information domain policy idea,

• Provide a mathematically formalized basis for
statement of information domain security policies,

• Examine the relationship of information domain
policies to traditional MAC and DAC system
policies.

• Explore implications for existing and future trusted
products and systems.

The formalization of information domain metapolicy is
done using sets and functions to express a set of rules
about objects, accesses, and interdomain information
transfer. This process provides a basis for consistent
policy formation, and illuminates the power and
limitations of the information domain construct.

The scope of the paper is limited to information access
aspects of the DISSP [1]. Other aspects of the DISSP,
such as protection and strength of mechanisms are not
formalized or analyzed. The DGSA [8] is discussed
only as it interprets the DISSP information domain
metapolicy.

2 Informal Definitions

According to [1], an information domain combines the
following:

• A set of information objects, identifiable as
belonging to the domain

• A set of (human) members of the domain

• An information domain security policy that
includes:

the requirements for membership

the rules of access by members to information
objects of the domain

the rules of import and export of information
from/to other information domains

the required protection of the information
objects of the domain

To promote consistency, interoperability, and trusted
products that support multiple information domains,
constraints are imposed on the nature of information
domain security policies. The Department of Defense
Information Systems Security Policy [1] states an
overall DoD policy explicit on the minimum
constraints imposed by the information domain idea
itself and additional policy that the DoD imposes on
each of the information domains under its jurisdiction.

The following informally summarizes the author's
interpretation of additional information domain policies
which are considered to be inherent in the information
domain idea, independent of other policy.

a.

c.

d.

e.

g-

All information objects in an information domain
have identical security attributes.

All members of an information domain need not
have equal access to its information objects.

A given member has identical access rights to all
information objects in an information domain.

No information object belongs to more than one
information domain.

Individuals may be members of more than one
information domain.

Transfer of information between domains occurs
only in accordance with the policies of both the
exporting and importing domain.

Transfer of information between information
domains can be accomplished only by a member
of both the exporting and importing domains.

Protections requirements for an information
domain are stated independently of any other
information domains.

It is implicitly assumed that:

i. Only the members of an information domain have
access to its information objects.

(a) and (c) are interpreted in the DGSA [8] to be
equivalent.

3 Information Domain Metapolicy

3.1 Information Domain Definition

An information domain D is defined as a triple of
information objects, members, and a policy.
Symbolically,

D = (0,M,P).

28

Strictly speaking, this formulation is static, which
means that any change in the sets of members or
objects would change the information domain. Real
information domains need to provide for the admission
and exit of members, and the creation and deletion of
information objects, with persistence of the named
information domain. A more elaborate formulation
would incorporate a dynamic structure for members
and objects of an information domain, e.g., by defining
an equivalence class. This potential refinement is
omitted in the present formulation.

3.2 Single Information Domain Metapolicy

Let A represent the set of access modes possible for
the information objects in a domain, (e.g., read, delete,
append, modify, etc.). Many security models describe
a current security state by an access function that maps
object-subject pairs to subsets of A. This kind of
access function is an access state function. At any one
time an access state function represents the existing or
granted accesses of subjects to objects. The potential
or allowable accesses of subjects to objects can also be
modeled as a function mapping object-subject pairs to
subsets of A. Such a mapping is an access rights
function. The difference between an access state
function and an access rights function is that the later is
a static expression of policy, and represents all
allowable accesses, whether or not they are in current
use. The access rights function, a for information
domain D assigns a subset of A to each (information
object, member pair). Symbolically,

a:OxM^>2A,

where 2A denotes the set of all subsets of A.

The constraint on policy that all information objects in
a domain have identical security attributes can be
expressed concisely in terms of member access as
follows:

Rule 1 (Object-Independent Access): For an
information domain D = (O, M, P), the policy P
restricts the access rights function a such that for
any me M, and any two objects ox e O and
o2 eO,

a(ol,m) = a(o2,m).

Thus the structure of access rights permitted by the
security policy of an information domain is very
simple. If the access rights function is expressed as a
matrix with members identified with rows and
information objects identified with columns, then all
columns must be equal. The access rights within an
information domain can also be described by subsets of
the members who have the same access rights, without
reference to information objects. Since the access
rights function a is independent of objects, it can be

replaced by a member access rights function, £ with
M as its domain of definition:

£(m) = a(o,m),

where o is an arbitrary object in O.

3.3 Multiple Information Domain Metapolicy

Let DUD2,...,DN, where Dt =(Oi,Mi,Pi), bea
finite set of information domains. O and M are the
total sets of information objects and members,
respectively, and 0, and M, are subsets of O and M,
respectively.

That each information object belongs to a single
information domain is expressed as follows:

Rule 2 (Information Object-Isolation): For
distinct information domains, DUDZ,...,DN ,
where £>, = (Ö,, M,, P,,), for all 1 < i < N and
l<j<N,if i±j then

0,0 0; =0.

Since information objects are containers of
information, Rule 2 says nothing about the information
content of the objects, which could well be duplicated
across information domains.

Since Rule 2 categorizes every information object as
belonging to a single, distinct information domain,
there can be no such thing as a "multidomain
information object" (meaning an information object
that is marked as belonging to multiple information
domains). However, this constraint does not prohibit
the simultaneous access by a member of multiple
information domains to objects in those different
information domains. Such a simultaneous access
could be used, for example, to construct a display that
has the "look and feel" of a "virtual multidomain
information object."

The following constraint formalizes the idea that only
the members of an information domain may have
access to its objects.

Rule 3 (Member-Only Access): For distinct
information domains, D{,D2,...,DN , where
D, = (O;, M,, P,) with member access rights
function f,-, 1 < i < N, and any meM,

£((m)*0=> meM,.

In describing access rights in a multiple information
domain context, the access mode set A is the
collection of all the access types needed in the various
information domains under discussion, even though
some types may not be used in a particular information
domain. For an information domain whose policy
defines conditions for the export of information to

29

another information domain, A contains an export
mode of access, symbolized E. Similarly, an
information domain that permits the import of
information from another information domain, A
contains an import mode /. The description of export
in terms of information rather than the export of
information objects is consistent with the simplified
static model of information domains, each having a
fixed number of information objects. The right to
transfer information is modeled by an E access (which
includes read) for an information object in the
originating domain and an I access (which includes
modify or append) to an information object in the
destination domain.

The security policy of an information domain
establishes conditions for import and export, such as
which members have the right to export to which other
information domains. The domain's security policy
could also establish other import/export conditions
provided they do not violate Rule 1.

Let the members M, of information domain Z), who
are permitted by the policy P, to export from £>, to £> •

be denoted by M,(£;). Similarly, let the members of
M, who are permitted by Pt to import to Dt from Dj

be denoted by Af,-(/-).

When the transfer of information directly from
information domain Dx to a different information
domain D2 is allowed by their combined policies, Dx

is said to be adjacent to D2, symbolized " D{ > D2 "
Adjacency is directed; £>] > D2 does not imply
D2> D{. The use of the term "directly" means that no
other information domain is required for the transfer.
Symbolically,

£>, > D2 o M,(£2)nM2(/,) *0.

It follows from Rule 3 that M} (E2) is a subset of Ml,
and that A/2(/j) is a subset of M2. Therefore
M, (E2) n M2(/]) is a subset of M{r\M2. The
necessary and sufficient conditions for direct
information transfers can therefore be stated as follows:

Rule 4 (Inter-information domain transfers):
Information domain Dj is adjacent to information
domain D2, if and only if there is at least one
member of both information domains, who is
permitted by the policy of D{ to export
information to D2, and is permitted by the policy
of D2 to import information from D}.

An information domain with no adjacency to any other
information domain is isolated.

It is possible for the policy of an information domain to
vest members with import or export authority, but for
the information domain to be isolated because no
member also has compatible import or export authority
in another domain.

Even when information domains are non-adjacent,
transfer of information can be accomplished indirectly
by using one or a chain of intermediary information
domains that form a directed graph chain of adjacent
information domains. When no such chain exists in
either direction, two information domains are pairwise
isolated.

Suppose for example, the members of information
domains D{ and D2 with no members in common
decide they want to make controlled transfers of
information from £>, to D2, and they want to continue
to have no members in common, they can create a third
shared information domain D3, such that Dx > D3 and
D3 > D2 To satisfy Rule 4, there is at least one
member of D{ who can export to D3 and one member
of D2 who can import from £>3, i.e.,

and

Mi(£3)nM3(/,)*0

M3(£2)nM2(/3)*0.

An example adjacency graph of four information
domains is illustrated in Figure 1. In this example, Dx

and £>2 are not adjacent, but information may be
transferred indirectly via D3. D4 is pairwise isolated
from each of the others, and therefore isolated.

Figure 1. Information domain adjacency graph.

3.4 Information System Security Policies

Information domain security policies have been
abstractly formulated in terms of information objects
and member access rather than in terms of system
behavior. Information systems can support one or
more information domains. The question then arises of
what is the distinction and relationship between
information system security policies and information
domain security policies.

30

For an automated information system supporting a
single information domain, an information domain
security policy that is automated by the system is the
same as the system security policy. For a system
supporting multiple information domains, the security
policies of all the supported information domains must
be supported (enforced). Such a system is more
properly called "multipolicy" secure than "multilevel"
secure, since a multilevel secure system enforces a
single security policy with certain rules of access based
on object and subject "levels." "Multipolicy secure"
(MPS) is also more appropriate than "multilevel
secure" (MLS) because there is no requirement for
information domains to have any particular relationship
as "levels" with a partial ordering or lattice. As will be
illustrated in the next section, a system that is MLS is
a special case of system that is MPS . In summary, the
system security policy of a multiple information
domain system is the combined enforcement of all the
policies of the individual information domains
supported.

4 MAC and Information Domains

4.1 MAC Security Policies

Mandatory Access Control (MAC) policies are
characterized as follows. There is a set L of N
distinct sensitivity levels:

L = {Ll,L1,...,LN}.

There is a set of information objects O, and a set of
subjects M. The abstraction "subject" typically
represents a user or processing on a user's behalf at a
given level. There is an assignment a of sensitivity
level to each information object oeO:

There is an assignment X of sensitivity level to each
subject meM:

X:M->L.

There is an access mode set A that contains modes
R— representing read-equivalent access (e.g., view,
copy-from), and W— representing write-equivalent
access (e.g., modify, append, clear). The first principle
of MAC is that the access rights function
a: O x M -> 2A can always be expressed through a
function of the object and subject sensitivity levels.
There is a function / such that

where

a(o,m) = f(co(o),X(m)),

f:LxL->2A.

rights function, can not be an information domain.
However it is possible to find a set of N embedded
information domains Dl,D2,...,DN that together
comprise the same access policy.

The second principle of MAC is that if any information
may flow between an object and a subject at different
levels, it may only flow "upward." "Upward" is
expressed in terms of a partial ordering > on L. The
partial ordering operator > satisfies the three axioms of
idempotency, reflexivity, and transitivity. When x >y,
x is said to dominate y. When x>y and x #y, x is said
to strictly dominate y, as indicated by x>y.

The MAC policy that is least restrictive on information
flow between levels is "read-down/write-up," (also
called simple-security/*-property in the Bell and
LaPadula model [10]. For read-down/write-up,

a(o,m)- {W},co(o)>X(m)

{R,W},co(o) = X(m)

{R},X(m)>co(o)

0 otherwise.

Since a is not independent of information objects, it
does not satisfy Rule 1 for information domains.
Therefore (0,M,P), where P specifies such an access

A strictly dominated write-up is sometimes
unacceptable from either a policy viewpoint or an
implementation viewpoint. An example of a policy
issue is the integrity requirement to protect high-level
information from corruption by low-level subjects, who
are not allowed to see any modifications they are
making. An example of an implementation issue is the
infeasibility of performing write without read
operations on some types of information objects. To
address these difficulties, many MLS systems
implement a read-down/write-equal variant of MAC
policy. This variant of MAC simply restricts the
access rights function by eliminating the strictly
dominated write-up access. Thus for read-down/write-
equal,

a{o,m)= {R,W},co(o) = X(m)

{R},X{m)>(0(o)

®, otherwise.

An example of an MLS system enforcing a read-
down/write-equal policy is the Compartmented Mode
Workstation [11].

When the access rights function is restricted to also
eliminate read-down, the MAC policy reduces to read-
equal/write-equal or level-isolation. For level
isolation,

a(o,m)= {R,W},co(o) = X(m)

®, otherwise.

For the level-isolation variant, no partial ordering
among the sensitivity levels is required. An example

31

of an MLS system implementing a level-isolation
policy is the Multinet Gateway [12].

4.2 Multiple Information Domain Policies
Corresponding to a Single MAC Policy

To demonstrate how single MAC policy is re-stated in
terms of a set of information domains and their
policies, define N sets of information objects as
follows:

0, ={o€0:co(o) = Li},

for l<i<N.

Since the levels are distinct, these sets of information
objects are disjoint and therefore satisfy Rule 2 for
information domains. The members of these
information domains are to be identified with MAC
subjects.

Next, segment the MAC access rights function a into
N information domain member access functions f,-:

oc(o,m) = C,\(m),oe 01

£2(m),oe 02

member access rights f(- defined above. Each of these
information domains has three kinds of members
within M, . The Mi (+) members are those who have
an associated level (e.g., "clearance" or login level) that
strictly dominates Lt, and who have read-only access
to the information objects 0,-. The M, (0) members are
those who have an associated level equal to Lt, and
who have read and write access to the information
objects 0,-. The M,,(-) members are those who have
an associated level that is strictly dominated by L,, and
who have write-only access to the information objects
ot.
For a read-down/write-equal MAC policy, the
members of information domain Dt are

M(=M,(+)uM,(0).

Let

£(/n)= {/?},meM,.(+)

(Ä,1V},meM,.(0)

^N(m),oeON

Since £,• is dependent only on subjects/members, there
is an access rights function a, equal to f ,• for each i
that satisfies Rule 1 for information domains, and
expresses the access policy of each information
domain.

Define the following subsets of M:

M,(+) = {meM:A(m)>L,}

Mi(0) = {meM:X(m) = Li}

Mi{-) = {meM:Li>X(m)}.

The corresponding information domains
Dt = (0,, Mt, P() for 1 < i < N are information
domains with two kinds of members. The Mt{+)
members are those who have an associated level
("clearance") that strictly dominates L,, and who have
read-only access to the information objects 0,. The
M,(0) members are those who have an associated
clearance level that is the same as L,, and who have
read and write access to the information objects 0,-.

For a level-isolation MAC policy, the members of
information domain Dt are

M,.=M,(0).

For each 1 < i < N, these three sets are disjoint.

For a read-down/write-up MAC policy, the members of
information domain Dt are

Mi = Mi (+) u Mi (0) u M; (-), for 1 < i < N.

Let

Let

£(m)= {R},msMi(+)

{R,W},meMi(0)

{W},meMi(-)

It follows that for each 1 < i < N, Dt■= (O,,, M,, Pt) is
an information domain where policy Pt permits

£i(m) = {R,W},m£Mi(0)

Di = (0,, M,, P;) is an information domain with all the
members having an associated clearance level of L(,
and all having read and write access rights to the
information objects L,.

The information-access relation of the information
domain members to the information objects is
illustrated in Figure 2 for each of the information
domains imbedded in each of above three variants of
MAC. An arrow from object to subject indicates read
access is permitted; an arrow from subject to object
indicates write access is permitted; and an arrow

32

pointing both ways indicates read and write are both
permitted.

Mi

Oi -*—*►

Mi(+)

Mi(0)

Mi(-)

(a) Read-Down/Write-Up

Mi

s Mi(+)

Oi ■+—► Mi(0)

(a) Read-Down/Write-Equal

Mi

Oi *—fr» M(0)

(c) Level Isolation

Figure 2. Access of members to information objects
in information domains embedded in MAC policies.

4.3 Adjacency of MAC-Based Information
Domains

Since only read and write equivalent accesses were
defined to characterize MAC policies, "export" access
is considered to be read-equivalent, and "import"
access is considered to be write-equivalent. The
members of £>, who are permitted to export to Dj are

those who are permitted to read in Di. Similarly, the
members of D, who are permitted to import from D;

are those who are permitted to write in Dt.
Symbolically,

Mi(Ej) = {meMi\Re£i(m)},

and

Mi(Ij) = {meMi\Wet;i(m)}.

For the read-equal/write-equal MAC policy variant, all
the composing information domains are isolated. For
read-down/write-equal, read-equal/write-up, and read-
down/write-up the information domains are adjacent
whenever the corresponding levels have a (strict)
dominance relationship, i.e.,

Dt>Dj <=>Lj >L,.

What differs between the information domains
embedded in variants of MAC that have adjacencies is
who can perform the transfer of information between
the information domains. When the MAC policy
permits read-down/write-up, then any member m
whose clearance level is bracketed by the levels of the
exporting and importing information domains will be a
member of both and allowed to perform transfers:

and

Lj>X(m).

On the other hand, for a read-down/write-equal MAC
policy, the member clearance level must equal that of
the importing information domain and strictly
dominate that of the exporting information domain:

and

A(m) = L,-

Lj>X(m).

A system that implements a MAC policy is thus
capable of supporting multiple embedded information
domains, provided the information domains are either
isolated, or related through a partially ordered set of
sensitivity labels. For other than isolation MAC
policy, the adjacency graph of the set of embedded
information domains is isomorphic to the partial
ordering graph of the sensitivity levels.

An adjacency graph for four information domains in a
lattice relationship is illustrated in Figure 3. In the
illustrated set of information domains, L4 is the Zero
element (dominated by all) of the lattice, L$ is the Unit
element (dominates all) of the lattice, and Z^ and l^
are in between with no dominance relationship between
them.

w
Figure 3. Lattice-related information domain

adjacency graph.

33

4.4 Uses and Limitations of MAC Based
Systems

As demonstrated above, MAC is a special case of the
kinds of relationships that can exist between
information domains. A system that enforces a label-
based MAC policy (e.g., TCSEC Bl and higher
systems) is capable of supporting multiple information
domains when these information domains are either
isolated or can be related by a partial ordering or
lattice.

While most MAC trusted products nominally enforce
either a read-down/write-up or a read-down/write-equal
MAC policy with members of the level set each
composed of a hierarchical level and a set of non-
hierarchical categories. However such systems can
also be effectively set up to enforce isolation of N
information domains as follows. Let each information
domain correspond to a non-hierarchical category, and
define or use only a single hierarchical level whose
name is unimportant. In addition to the N information
domains corresponding to the N non-hierarchical
categories, define a system-low (no categories) public
information domain, and system-high (all categories)
information domain. The public information domain
provides such public information as executable
software for general use. The system-high information
domain is for system security administrative use, e.g.,
auditing.

There can be highly useful multiple information
domains that are not expressible as imbedded in any
MAC policy, and therefore not supported by an
existing MAC system. A very simple and yet clearly
useful example is where two information domains Dl

and D2 have no members in common, but need to
make controlled transfers of information to one another
(e.g., two businesses or two government agencies with
different missions and people). Members the two
information domains agree to create two new
information domains each D3 and D4 that each have
members from both D{ and D2. Some members of
Dy may export to D3 and members of D2 may import
from D3. Members of D2 may export to D4 and
members of Dx may import from D4. The
information objects of D3 could be a mail queue that
holds information released from Dx and destined only
to D2. Similarly, the information objects of £>4 could
be a mail queue that holds information released from
D2 and destined only to Dj. The adjacency graph
(Figure 4) is cyclic, and could not therefore correspond
to any MAC policy, since a cyclic graph is not
isometric to a any partial ordering.

Figure 4. Cyclic information domain adjacency
graph.

5 DAC and information Domains

5.1 DAC Security Policies

Discretionary access control (DAC) policies [2] permit
assignment of access rights of system users to
information objects on a system at the discretion of the
"owner" of each information object. In general the
accesses rights permitted by the owner of an
information object may be changed at any time. The
corresponding access rights matrix can be interpreted
in information domain terms as either highly dynamic
and object dependent, or as "weak" (in that every entry
equals the total access modes set A because all
accesses are permitted under some owner decisions).

5.2 DAC and Information Domains

Since DAC is a much less rigid concept than MAC,
there are several different mappings that can be made
between DAC and information domain policies,
depending on the DAC-interpretation adopted.

Under a "weak" interpretation, a system that
implements a DAC policy, can support only a single
information domain, where all the users are its
members, who have (potentially) equal access rights to
all information objects. In this interpretation, the
individual owner-assignments and revocations of
access permission are not relevant from an information
domain policy viewpoint. They are a functional
convenience to the members of the information domain
to manage their activities.

Alternately, a dynamic interpretation could be made
where there are as many information domains on a
system as information objects. The members of a
single information domain are all those who have any
access assigned by the owner. Since the owner can
change these permissions at-will, the membership
changes with each such change. Each such change
changes a column of the access rights matrix.

On the other hand, a system DAC policy can have
associated procedural rules or other mechanism so that
it is neither weak nor dynamic. For example, if the
only owner of information objects is a security
administrator, the administrator can use the DAC
mechanism to group information objects and users into
multiple information domains. If an access control list

34

(ACL) mechanism is used, then the objects in a single
information domain are all those with the same ACL.
(An ACL is equivalent to a column of the access rights
matrix.) To satisfy Rule 1, the information objects of a
single information domain are those with identical
ACLs. All the users who are assigned one or more
access modes in that ACL are its members. While such
a "strong" DAC policy could enforce any information
domain access control policy, it may not be acceptable
for other reasons such as the protection weakness
inherent in the all-powerful nature of the administrator
across all information domains.

In a system that provides MAC and typically "weak"
DAC enforcement mechanisms, the MAC mechanism
can be used to establish rigid information domain
boundaries (within the limitations of MAC), and the
DAC mechanism can be used to provide a convenience
for system users to manage their information within
each information domain, independently of the formal
information domain security policy.

6 Interconnected MPS Systems

All information systems supporting the same
information domain must be compliant to its security
policy, including access controls and protection
mechanisms. These systems may or may not be
directly or indirectly connected. Establishing
interconnections or security association between these
systems can provide a mechanism for information
transfer only within the same information domain and
therefore in accordance with the same policy. The idea
of "connective association" includes both continuous or
interactive connection or discrete, staged, or
connectionless information transfer.

If the ability to enforce interdomain transfer policy in
accordance with Rule 4 is enforced by some form of
reference monitor, then presumably such transfers can
occur only within a single information system. Under
this assumption (which is a requirement of the DGSA
[8]), it follows that transfer of information between
information domains in accordance with both domain
policies can only occur on a system that enforces both
policies. Thus by connective associations, information
domains can extend across multiple systems in any
combination of systems and information domains,
provided (a) each information domain's security policy
is enforced by the supporting systems, and (b) transfer
of information between domains occurs only on
systems that support both the exporting and importing
domains.

A significant difficulty that accompanies the traditional
one-system/one-policy paradigm is the celebrated
"composition problem"[13, 14]. The traditional
composition problem formulation merges system
boundaries. Interconnection of two systems where
each enforces a policy of its own is viewed as creating
a composite system with functionality allowed by the

interconnection, and security properties that enforce a
composite single policy [13]. The information domain
formulation essentially "sidesteps" this aspect of the
composition problem. If all connected systems support
information domains as constrained by information
domain metapolicy, their connection raises no new
policy "composition" issue. There is no need to
redefine or merge system boundaries; each system
maintains its identity. Of course there are other
significant composition issues, to be solved such as
assurance, strength of mechanism, and accreditation.

7 General MPS Systems

While MAC-enforcing MLS systems can support
special kinds of multiple information domain policies,
with significant levels of assurance, there are currently
no trusted products that support more general
multipolicy systems with an information domain
metapolicy. The DGSA [8] advocates creation of
information systems that deal with this problem by
extending the reference monitor idea to that of
separation of policy enforcement mechanisms from
policy decision mechanisms. Such an approach
extends the separation kernel idea of Rushby [15] by
creating a security context for each information domain
where its policy is enforced.

The separation of policy decisions and policy
enforcement is roughly as follows: Associate an
information domain identifier with each information
object. Associate a set of information domain
memberships with each user or user-subject. Associate
a subset of current information domain identifiers with
each active subject (e.g., process) operating on behalf
of a user. Each attempted access between subject and
object is mediated by an enforcement mechanism that
in turn calls on a policy decision mechanism that
returns an access decision based on the access policy of
the information domain identified with the object and
the information domain or domains identified with the
subject.

Potentially, each information domain policy could be
changed independently of each other and of the
enforcement mechanism. Before it becomes practical
to "plug-in" a policy for each information domain in a
multipolicy machine, a standardized scheme of
encoding information domain identities and policies is
needed.

8 Summary and Conclusions

The information domain metapolicy described provides
a consistent framework for the coexistence of a set of
different security policies in multipolicy systems. This
framework is intermediate between the rigid structure
of a mandatory access control policy based on lattice or
partial ordering, and an arbitrary collection of multiple
policies with no basis for consistent interaction or
shared enforcement support mechanisms and systems.

35

The metapolicy provides a consistent basis for transfer
of information between information domains in mutual
accordance with their policies, without any requirement
for hierarchical or partial ordering relationships.

The access control aspects of the information domain
concept inherent in the emerging DoD information
systems security policy [1] were reduced to a set of
four axiomatic metapolicy rules. This formalization
provides a basis for consistent multiple information
domain policy formation as well as insight into the
power and limitations of this security policy
framework.

The formalism introduced enabled demonstration of
how MAC policies can be expressed as a special case
of multiple information domain policies. The mapping
of DAC policies to information domains metapolicy is
less fixed, as there are many types of DAC. The only
clear mapping of a system policy supporting only
"weak" DAC is to a single information domain. When
a system supports both DAC and MAC the MAC
mechanism can be used to establish the limited kinds of
information domains, and the DAC mechanism can be
considered to be unrelated to information domain
policies.

While there are currently no general multipolicy trusted
products, the information domain approach provides a
metapolicy framework in which such products could be
built. Moreover it provides the basis for confident
system interconnection that sidesteps the access policy
composition problem.

References

1. Department of Defense Information Systems
Security Policy, DISSP-SP.l, 22 February 1993.

2. Department of Defense Trusted Computer System
Evaluation Criteria, DoD 5200.28-STD,
December 1985.

3. National Computer Security Center, Trusted
Network Interpretation of the Trusted Computer
System Evaluation Criteria (TNI), NCSC-TG-005,
July 1987.

4. National Computer Security Center, Trusted
Database Management Interpretation of the
Trusted Computer System Evaluation Criteria
(TDI), NCSC-TG-021, Version 1, April 1991.

5. Common Criteria for Information Technology
Security Evaluation, CCEB-94/082, Version 0.9,
October 1994.

6. Hosmer, Hillary H., "The Multipolicy Paradigm,"
Proceedings of the 15th National Computer
Security Conference, October 1992, Baltimore,
MD, pp. 409-422.

7. Bell, D. Elliott, "Modeling the 'Multipolicy
Machine'," Proceedings of the New Security
Paradigms Workshop, August, 1994, pp. 2-9.

8. Department of Defense (DoD) Goal Security
Architecture (DGSA), Center for Information
System Security Program, Version 1.0, 1 August
1993.

9. Security Requirements for Automated Information
Systems (AISs), DoDD 5200.28, March 21, 1988.

10. Bell, D. E. and LaPadula, L. J., Secure Computer
Systems: Unified Exposition and Multics
Interpretation, MTR-2997 Rev. 1, MITRE Corp.,
Bedford, Mass., March 1976

11. National Computer Security Center, Final
Evaluation Report SecureWare, Incorporated
Compartmented Mode Workstation Plus, CSC-
EPL-91/002, 30 January 1991.

12. Freeman, J., Neely, R., and Dinolt, G., "An
Internet System Security Policy and Formal
Model," Proceedings of the 11th National
Computer Security Conference, 1988, pp. 10-19.

13. Tinto, Mario, The design and Evaluation of
INFOSEC Systems: The Computer Security
Contribution to the Composition Discussion,
National Computer Security Center C Technical
Report 32-92, June 1992.

14.

15.

King, Guy., "The Composition Problem: An
Analysis," Proceedings of the 17th National
Computer Security Conference, October 1994,
Baltimore, MD, pp. 292-297.

Rushby, John, "A Trusted Computing Base for
Embedded Systems," Proceedings of the 7th
DOD/NBS Computer Security Symposium, pp.
294-311.

36

Maintaining Secrecy and Integrity in Multilevel
Databases: A Practical Approach

Sushil Jajodia* Don Marks^ Elisa Bertino*

Abstract. In a multilevel database, certain integrity constraints create a secrecy problem since
they cannot be evaluated without access to data at higher classifications than the classification of
the data to be modified. We present a practical approach for enforcing such constraints without
sacrificing the secrecy requirements. Our approach requires that the such constraints be rewritten
as a collection of level-valid constraints. Level-valid constraints meet the secrecy requirement since
their evaluation does not require access to any data that is classified higher than the classification of
data to be modified. Moreover, they meet the integrity requirements since any database state that
satisfies the level-valid constraints satisfies the original constraints as well. The cost associated with
this approach is that trusted processes must be relied upon to make occasional modifications.

1 Introduction

Consistency is an important property of a database. One way to achieve consistency is to associate
with each database a set of integrity constraints. Database management system (DBMS) has the
responsibility to ensure that these integrity constraints are satisfied by the database state at all
times. A multilevel secure (MLS) DBMS has the additional responsibility of preventing improper
disclosure5 of information either by direct or indirect means. Direct violations are eliminated by
enforcing "no read up" and "no write down" requirements on all subjects. Indirect means of illegal
information leakages such as those via covert channels (signaling or timing channels) are more
difficult to prevent.

It is well-known that there are inherent conflicts in MLS databases between the secrecy require-
ments and certain types of integrity constraints [Den86]. In particular, it is not possible to enforce
certain integrity constraints without violating the secrecy requirements. To illustrate, consider a
database consisting of two relations as follows: EMP(ename, mname, salary) that contains for
each employee his name, the name of his manager, and his salary and MGR(mname, salary) that
contains the name and salary of each manager. Suppose that the EMP relation is considered Low,
while the MGR relation is considered High. Say MLS DBMS must enforce the integrity constraint
I that requires that an employee cannot have higher salary than that of any manager. We call I a
multilevel-valid constraint since to verify if the Low data can be modified, both High and Low data
need to be accessed.

Every time a new tuple is to be inserted to the EMP relation, constraint / needs to be checked.
Unfortunately, this simple integrity constraint presents a dilemma to the MLS DBMS. Since the
tuple is being inserted into a Low relation, the transaction T performing the insertion must be
considered a Low transaction, in which case T will not have read access to High MGR relation
according to the simple security restriction on T. As a consequence, DBMS will not be able to
enforce the integrity constraint. Even if we were to assume that MLS DBMS gives T the read access
to the salaries in the High MGR relation, MLS DBMS still cannot force T to abort whenever the

•Department of Information & Software Systems Engineering and Center for Secure Information Systems, George
Mason University, Fairfax, VA 22030-4444, U.S.A. The work of S. Jajodia was partially supported by National Security
Agency under grant MDA904-94-C-6118 snd by National Science Foundation under grants IRI-9303416 and INT-
9412507.

t Office of the INFOSEC Computer Science, Department of Defense, Ft. Meade, MD 20755, U.S.A.
*Dipartimento di Scienze deU'Informazione, Universitä di Milano, 20135 Milano, Italy
Sin this paper, we address only mandatory access controls

© 1995Sushil Jajodia and Elisa Bertino

37

insertion by T fails to satisfy the given integrity constraint I. This is because doing so would open
up a signaling channel which could easily be exploited by Trojan horses.

Since the enforcement of multilevel-valid constraints involves a trade- off between secrecy and
integrity, the usual approach is to accept one or another. If secrecy is strictly enforced, multilevel-
valid constraints cannot be enforced. On the other hand, if the multilevel-valid constraints are
enforced, then signaling channels can be used to subvert the secrecy policy.

In this paper, we show how it is sometimes possible to maintain secrecy while enforcing integrity
at the same time. The approach taken will be to translate the original multilevel-valid constraint
whose satisfaction requires MLS DBMS to access both High and Low data into a collection of level-
valid constraints; each level-valid constraint has a fixed security level associated with it and can be
evaluated by referencing only data at or below that level. Such constraints will specify conditions
where a process may modify the database without compromising either the secrecy or the integrity
of the data. Secrecy will not be violated since a level-valid constraint, by design, references data at
or below the level of the constraint. Integrity will be preserved since the level-valid constraints are
derived from the multilevel-valid constraints in such a way that any allowable database state (i.e., a
state satisfying the level-valid constraints) will automatically satisfy the multilevel-valid constraint.

Of course, all this will not come for free. There may exist database states which are allowable
under the original multilevel-valid constraints, but not under the derived level- valid constraints.
Processes allowed to modify the database in a way that meets the original multilevel-valid constraints,
but not the appropriate level-valid constraint, will have to be trusted. Thus, our approach can be
viewed as a compromise between the two extremes. That is, both secrecy and integrity will be
guaranteed to hold if we occasionally rely on trusted processes to make modification to the database
state.

2 Terminology

The "multilevel secure" model classifies data at various levels, such as U (unclassified), C (confiden-
tial, the lowest), S (secret) or TS (top secret, the highest), and users are cleared to similar levels.
Usually, we will simply use the designations "High" and "Low" to indicate the relative level of clear-
ances or classifications for the two levels of data being compared. The security policy consists of
two requirements, "no read up" and "no write down". A C user is allowed to read only U and C
data, an S user may read U, C, or S data, a TS user may read any data. In the BLP model, a TS
user may only write TS data, an S user may write S or TS data, while a U user may write data at
any level.

While humans must be trusted not to read High classified data and then pass that along to lower
cleared people, computer processes cannot be so trusted. The restriction on writes by C, S, and TS
users therefore addresses the problem of a "Trojan horse", a process that performs unauthorized
functions. For example, a High cleared process, possibly unknown to the High users, might read
information and then write that information into a Low classified area, passing the information to
the lower cleared users. This would violate a basic tenet of secure systems that information cannot
be passed to lower users without specific authorization (i.e. "downgrading").

It may be possible for a High process to communicate High information by means other than
simply writing into a file visible to the Low users. Such means are called "covert channels" and are
just as objectionable as direct writing. Occasionally High cleared processes have legitimate reasons
for transmitting information to lower cleared users. Processes allowed to do such writing down are
said to be "trusted." The term trusted therefore implies more than simply guaranteeing that the
write down is authorized, it guarantees that the intended write down is all that is done (i.e., the
code does not contain any trojan horses).

38

3 Related Work

Although the issue of conflict between the multilevel security and database integrity requirements has
been raised by several researchers [Den86, AD87, MJ88, Bur90], no one has developed an approach
for enforcing multilevel-valid constraints in a secure manner.

Recently, Thuraisingham [Thu91], Smith and Winslett [SW92], and Qian [Qia94a, Qia94b] have
addressed the integrity related problems that arise when key-based functional and referential in-
tegrity requirements are enforced in multilevel relations (i.e., problems related to polyinstantiation).
At the heart of their work is a model that differentiates between the data a user sees and data that a
user believes. Qian calls these accessibility and believability, respectively. This distinction has been
exploited to help resolve ambiguity in polyinstantiated relations.

However, it is not clear how this distinction can help solve the integrity related problems such
as the one described in the introduction. It does not make much sense to have two tuples for each
employee, one at High level that contains the correct salary and the other at the Low level with
possibly an incorrect salary.

4 Formalization of Our Approach

Assume we are given a valid database state D of a multilevel secure database containing data at
classification levels h,h,...,ln- The classification level of a data item t is denoted by L(t). Assume
further that the data in this database must satisfy integrity constraints. An integrity constraint
is an assertion (or a predicate) on the database state. A database state D is valid if all integrity
constraints hold in D.

Given a valid database state D, an integrity constraint I, and a data item t, we are interested
in determining if I holds in D Ut. (For simplicity, we have chosen to drop {} around t.) We call t a
prospective data item to be added to the database. Similarly, when a data item t must be deleted,
we are interested in determining if I holds in D-t. (Modification of data items can be formalized
similarly.)

In addition to the integrity constraints, we have a security policy which must be satisfied. The
security policy specifies that the constraint must be evaluated without regard to data at higher
classifications than the classification of the data to be inserted.

Note that the example in the introduction does not meet the security policy since data items
classified High may determine if tuples classified Low are valid.

A constraint is said to be level-valid at level / if it can be verified as true or false using only data
at level / or below. A constraint that is not level-valid is called a multilevel-valid constraint.

Suppose we have a constraint / that is multilevel-valid. To enforce both the constraint and the
security policy, we wish to replace I by a collection of level-valid constraints

such that

1. each I\ in I' is a level-valid constraint at level lj, and

2. if D satisfies all level-valid constraints in /', then D also satisfies I.

Hence replacement of constraints that are not level-valid by constraints that are level-valid sat-
isfies both the integrity and the secrecy requirements.

39

Let V denote the set of all valid database states under /, i.e., V = {D : D satisfies /}, and let
V be the set of valid database states that satisfy the level-valid constraints in /', i.e., V - {D : D

satisfies /'}.
If V = V, then the original multilevel constraint has been exactly translated into a set of level-

valid constraints. The more likely situation only guarantees that V C V.

Since there are many possibilities for V and, therefore, V, we may wish to compare the goodness
of a replacement of an / by an /'. An example of an appropriate measure would be to compute the

ratio

card(V) - card(V)
cardiy)

Such a measure would become zero if all database states could be determined from data at or
below the subject's level, and become one if no valid database states could be so determined.

5 Basic Idea

Example 1 To illustrate the basic idea, we consider once again the example given in the introduc-
tion. We replace I which is not level-valid by specifying two level-valid constraints as follows:

IHigh: A High user would be allowed to insert a manager tuple if the new salary is not the lowest
salary in the MGR relation.

/LOW: A Low user would be allowed to insert an employee tuple so long as the inserted salary is not
the highest in the EMP relation.

With the assumption that the database originally satisfies the constraint I, after the addition of
either a High or a Low tuple, the database will continue to satisfy the original constraint. Further-
more, both these constraints will permit insertions into MGR and EMP relations without checking
data at another level. Thus, enforcement of these two level-valid constraints would guarantee that

1. a prospective tuple to be inserted by a High user carries no new information observable by a
Low user, and

2. a prospective tuple to be inserted by a Low user retrieves no High information.

Note that there are two problems with our approach that we need to address. First, how do
we insert tuples into an empty database state and, second, how do we insert tuples pertaining
to the "lowest paid manager" or the "highest paid employee"? We will require trusted database
administrator (DBA) processes to perform these operations since integrity checking will have to be
suppressed during these operations. This is discussed more fully in Section 8.

Note that I1 = {/High,4ow} is the not the only possible replacement for /. Indeed, 7High is
needlessly restrictive since a High subject can read Low data without violating secrecy. Thus, a
better possibility would be to use I" = {/High> ^Low} where

7Hi h: A High user would be allowed to insert a manager tuple if the new salary is higher than the
highest employee salary.

Like 7High, the new condition /High does not violate the secrecy requirement since High subjects
are permitted to read Low data. However, /High is clearly superior to /High since under /' only
the tuples pertaining to the "highest paid employee" would have to be inserted by a trusted DBA

40

process. There are no restrictions on the "lowest paid manager" and these tuples can be inserted by
untrusted subjects.

It is possible to further simply the constraints so that only the single prospective tuple needs to
be checked, not all the tuples in the Low relation. This is accomplished by specifying a fixed upper
bound, say x, for the employee salaries. Obviously, this upper bound will become the lower bound
for the manager salaries. The new level-valid integrity constraints are as follows:

/"High: A High user would be allowed to insert a manager salary if the new salary is greater than x.

/"LOW: A LOW user would be allowed to insert an employee salary so long as the inserted salary is
less than or equal to x.

Although it is tricky to arrive at an appropriate value of x, the last set of integrity constraints
has an additional benefit. The cost of checking if an insertion satisfies /"High or /"LOW is much
lower than that of any one of the preceding constraints. Indeed, [BBC80, BB81] advocates using
this strategy to reduce the cost of enforcing integrity constraints, where it is also shown that a large
class of constraints can be enforced using similar tactics. D

Example 2 Suppose that we modify example 1 so that we have only one relation: EMP(name,salary,
position) containing names, salaries, and positions of the employees. There are three positions, ap-
prentice, manager, executive. The constraints are:

1. all apprentice salaries are less than any manager's salary, and

2. all manager salaries are less than any executive's salary.

The classification levels are: 1) apprentice records are classified confidential (C), 2) manager
records are classified secret (S), and 3) executive records are classified top secret (TS).

Subjects at one level are not allowed to read information at a higher level, nor are they allowed
to write at any other level.

Whenever a subject at the apprentice level attempts to write a new (apprentice) tuple with a
salary, the database must decide if this is allowed. As noted above, if the multilevel-valid constraint
is initially satisfied, then the following level-valid constraint:

Ic: New apprentice salary must be less than the highest existing apprentice salary.

is sufficient to guarantee that a new tuple does not invalidate the original constraint.

The highest cleared category, executive, needs only to be concerned with inserting salaries higher
than the highest paid manager. This is similar to the relation between manager and employee in
preceding example and is accomplished by requiring the following level-valid constraint:

ITS' New executive salary must be higher than the highest existing manager salary.

which would guarantee that any executive salary meets the original multilevel-valid requirement.

Finally, if a user attempts to insert a new manager tuple there are two checks must be performed:
the salary value must be higher than any apprentice, but lower than any executive. The constraint

New manager salary must be less than the highest existing manager salary.

is not sufficient since it is to possible that the new manager salary is lower than the highest paid
apprentice. Since this is also not allowed, an additional constraint must be added to the preceding
constraint as follows:

41

7s: New manager salary must be less than the highest existing manager salary, but greater than the
highest paid apprentice.

which is sufficient. D

Thus, in general, there are several ways to replace a multilevel-valid constraint by a collection
of level-valid constraint. A wise replacement will not only accurately reflect the policy with respect
to secrecy and integrity, but minimize the number of valid database states that are attainable from
updates by trusted subjects only.

The previous examples have illustrated integrity constraints which are affected only by insert
operations. The following example illustrates integrity constraints which are affected by delete
operations also. It is important to note that constraints that are enforced during an insert operation
may be different from the constraints that are enforced during a delete operation.

Example 3 Suppose that we modify the relation of example 2 by adding a new column, called
'proj#', recording for each employee the project the employee is working on. Thus, the relation
EMP has the following schema EMP(name, salary,position,proj#). Classification levels of tuples
in the extended EMP relation are the same as in example 2.

Suppose that the following constraint must be enforced:

The average salary for employees working on project P200 must be greater than 5000.

Suppose that a subject at the apprentice level attempts to delete a tuple of an apprentice working
on project P200. Since employees in any position can work in project P200, evaluation of this
multilevel-valid constraint would require evaluating the average on data items that are classified at
confidential levels as well as at higher levels. Note, however, that, if this multilevel-valid constraint
is initially satisfied, the following level-valid constraint

Ic: The new average salary over all apprentice tuples with project value = 'P200' (i.e., not including
the salary of the tuple to be deleted) must be greater or equal to the old average salary over
all apprentices tuples with project value = 'P200' (i.e., including the salary of the tuple to be
deleted).

is sufficient to guarantee that the delete operation does not invalidate the multilevel-valid constraint.

Similarly, if a subject at secret level tries to delete a manager, the following level-valid constraint
would be sufficient to ensure the validity of the original multilevel-valid constraint:

Is'. The new average salary over all apprentice and manager tuples with project value = 'P200' (i.e.,
not including the salary of the manager tuple to be deleted) must be greater or equal to the
old average salary over all apprentices and manager tuples with project value = 'P200' (i.e.,
including the manager salary of the tuple to be deleted).

Note that although constraint 7s involves tuples from two levels, it is still a level-valid constraint
since it can be evaluated over tuples that are classified either secret or confidential.

6 Theoretical Basis

6.1 General approach

The discussion to this point has been either very general or concerned with a specific example. We
will now show how these approaches are related. That is, we will develop a method of translating

42

multilevel- valid constraints into a set of level-valid constraints. We will develop the method con-
sidering the features of a conventional (single-level) DBMS. As this is done, however, we will distill
the critical features and generalize the method to apply to more arbitrary functions.

6.2 Notation

The first necessary step that is to define a formalism for specifying constraints. Constraints are
generally formed by comparing characteristics of two sets of data (i.e. employee salaries and manager
salaries). This can be formalized in the following definitton.

Definition 1 A constraint is an expression of the form

f,(qi(R)) e /2(«2(Ä))

where /;, /2 are functions resulting in a numerical value or a set of specific string values; qi,q2 are
queries which operate on the relation R to produce a restricted relation or view; and 0 represents one
of the standard comparators: >;<;<;>;=; or the existential operator "exists in". The constraint
will be true for any valid database state.

In later discussions, Q will denote 0 or =, so if 0 =<, then Q =<.

Example 4 In our notation, the constraint "all apprentice salaries are less than any manager's
salary" becomes:

MAX(select salary from EMP where position = 'apprentice') < MIN(select salary from
EMP where position = 'manager').

G

This formalism allows sophisticated, complex relationships to be expressed. The views q\,q2

are general and the functions f,,f2 are not limited to those predefined by the system. In fact, the
functions could be arbitrary procedures implemented by triggers. For simplicity, however, we will
limit our discussions to the standard database aggregate functions, SUM, COUNT, MAX, and MIN.

Note that this formalism incorporates much of the characterization of constraints that are usually
expressed in a language which is like relational calculus [Sto75, BBC80, BB81, BM88, GW93] but
in a different notation. As an example, [BM88] uses a tuple-based notation utilizing a precondition
(the selection criteria for data to be evaluated), and condition (the evaluation function itself), as well
as the aforementioned aggregate functions, which Although both systems are capable of expressing
the required constraints, our method does not require the new terminology and notation found in
[BM88]. For example we can allow aggregate values as /i, f2 in our notation; a precondition which
we implement as views q\, q2; and a test condition which we implement as 0.

Gupta and Widom [GW93] approach also uses distinctly different notation, namely first order
logic (which can, of course, be translated into more familiar SQL) and is stated as a condition
for failure to meet the constraint. Their notation requires that the selection/projection clauses
(implemented as views in our notation) be combined into a single formula. Testing is then done
only for existence conditions, the aggregate functions are not allowed. Such existence conditions are
not sufficient to test for the aggregate functions COUNT or SUM, hence our proposed notation is
more flexible and allows us to address additional constraints. The function and view based notation
presented here is based upon the familiar SQL and is much more intuitive than any of the previously
proposed notations. It maintains separation of important concepts, allows for multiple aggregate

43

functions and is not restricted to using base relations or conjunctions of simple selects as are the
previous studies.

To illustrate how constraints are specified in our proposed format, we consider the following
example taken from [BM88].

Example 5 Let us consider a database consisting of the following relations:

EMPLOYEE(emp#, name, salary, address, proj#, dno)

PROJECT(proj#, name, mgr#, budget, location)

MANAGER(mgr#, name, age, salary, address)

The following integrity constraints may be defined on these relations:

Ii: The project budget must be greater or equal to zero.

72: For projects located in Italy there can be at most two managers.

I3: The average salary for the employees working on project 'P200' must be greater than $5,000.

74: The sum of the salaries for the employees working on a project must be less than the project
budget.

I5: Each employee must work in an existing project.

In our notation, these constraints can be expressed as follows:

h: pi "exists in" {select proj# from PROJECT} AND {select budget from PROJECT where proj#

= Pi} = 0.

I2: COUNT{select mgr# from PROJECT where location - 'Italy'} < 2.

J3: AVE{select salary from EMPLOYEE where proj# = T200'} > $5,000.

I4: Pi "exists in" {select proj# from PROJECT} AND SUM{select salary from EMPLOYEE where
proj# = pi} < {select budget from PROJECT where proj# = pi}

J5: e,- "exists in" {select emp# from EMPLOYEE} AND {select proj# from EMPLOYEE where
emp# = a} "exists in" {select proj# from PROJECT}

One difficulty, however, that is found in this notation but addressed in both [BM88] and [GW93],
is expressing constraints that hold, not on the set, but on each member of some set. This is handled
by formulating two constraints, connected by a conjunction, as illustrated by h, I4, I5 above.

This extended form of constraint is formalized by the following definition.

Definition 2 A complex constraint is an expression of the form

Id AND ICj

where either both Id and ICj are simple constraints as defined in Definition 1, or Id is a simple
constraint and ICj is a complex constraint.

44

6.3 Ordering

The critical feature of this notation is the fact that if both sides of an integrity constraint yield
numerical values, it provides us with a way to order the relations using the comparator 0 (in cases
where either fi(R) or /2(A) yields string values, 0 must be "=" or "exists in"). The fact that the
relations are ordered allow us to derive some simple tests for determining if a tuple may be added
to (or deleted from, or modified in) the database.

The first necessary observation is that 0 is transitive.

Lemma 1 0 is transitive. That is, if A 0 B and B 0 C, then A 0 C. More generally, if either (i)
A fi B and B 0 C or (ii) A 0 B and B fi C holds, then A 0 C holds.

The following lemma gives two tests for a prospective tuple, which, if both are satisfied, guarantee
the continued satisfaction of an existing constraint.

Lemma 2 Given a constraint /1 (31(A)) 0 fi(32(A)), which is known to be satisfied by the current
state of the database, then if there exists a tuple t satisfying the following two conditions:

1. fi(qi(RUt)) fi fi(qi(R)), and

2- /a(«2(Ä)) fi /2(«2(ÄUt)),

then the database will still satisfy the constraint after t is added.

Proof: Since fi(qi(RUt)) fi /1 (31(A)) and /1 (31(A)) 0 /2(?2(-R)), from the Lemma 1 it follows
that fi(qi(Rl)t)) fi /2(32(-R)), This last expression when combined with /2(32(-R)) fi h(l2(RiJt))
yields fi(qi(Rl)t)) 0 /2(32(ÄU/)), which is a statement that the database, after the addition of
tuple t, satisfies the constraint. Q

The preceding lemma specifies two conditions, one for each expression in the constraint. We can
therefore define two sets of valid tuples, one for each condition. Those tuples in both sets may be
added to the relation and still satisfy the original constraint.

Fortunately, in many cases of practical interest, a substantial number of tuples are in both sets.
It is even common for a tuple to influence only one of the conditions in Lemma 2. For example, if
/2(Ä) is equal to a constant, then it is true that h{qi{R)) = /2(32(ÄU2)), regardless of what tuple
t is added to the database. In such cases, tuples only influence one condition, so the conjunction
does not present a serious problem. The constraint in example 4 illustrates one such constraint.

Example 6 Consider the constraint given is example 4. ^From Lemma 2, it follows that we need
to satisfy the following two conditions:

1. MAX{select salary from EMPöt where position — 'apprentice'} < MAXjselect salary from
EMP where position = 'apprentice'}, and

2. MlN{select salary from EMP where position = 'manager'} < MIN{select salary from EMPö
t where position = 'manager'}

Apprentice tuples with salaries less than or equal to the present maximum will satisfy (1), indeed,
they will not change it. All apprentice tuples will also satisfy (2) since it is unchanged by their
addition, regardless of their salary. The addition of an apprentice tuple therefore only requires
evaluation of one level-valid constraint:

45

7C: If t.position = 'apprentice', then t.salary < MAX{select salary from EMP where position =

'apprentice'}.

D

For those situations where all tuples with some characteristic (such as position = 'apprentice')
satisfy one of the lemma 2 conditions, regardless of other characteristics, only one view needs to be
considered. This allows the constraint to be simplified for performance reasons even without con-
sidering classification constraints. As [GW93] pointed out, such performance benefits are especially
valuable in distributed databases. If the apprentice and manager tuples are kept at distinct physical
locations, the constraint can still be verified without requiring a distributed join.

Example 7 Consider the relation from example 2 with the new constraint "all apprentice salaries
must be less than the average salary," i.e., MAX{select salary from EMP where position = 'apprentice'}
< AVE{select salary from EMP}.

Here the conditions from lemma 2 are:
MAX{select salary from EMP U t where position = 'apprentice'} < MAX{select salary from

EMP where position = 'apprentice'} AND AVEjselect salary from EMP} AVE {select salary

from EM PUt}.
Here each new tuple affects both conditions. Apprentice tuples satisfy the first condition if the

new salary is less than the existing maximum apprentice salary. The second condition specifies that
the new salary must be greater than the existing average over all the tuples. Note that the addition
of a very low apprentice salary may reduce the average salary below an already existing apprentice
salary. The range of salaries satisfying both conditions may be very small. D

A lemma, similar to Lemma 2, holds for the delete operation.

Lemma 3 Given a constraint fi{qi(R)) © /2(?2(-R)), which is known to be satisfied by the current
state of the database, then if there exists a tuple t satisfying the following two conditions:

1. h(qi(R-t)) fi fi(qi(R)), and

2. f2(q2(R)) n /2(«2(Ä-0).

then the database will still satisfy the constraint after t is deleted.

The proof of the above lemma is similar to that of Lemma 2 and thus we omit it.

7 Level-valid Constraints

The preceding discussion would be sufficient to simplify constraints to a single view if all the data
was classified at a single level. The functions and views used at a specific level need not be the same
as those used in the multilevel-valid constraint. They do not even have to bound the multilevel
functions, but they must increase or decrease appropriately in order to maintain the relationship
(0) in the multilevel-valid constraint. For example, consider the level-valid constraints /"High and
/"LOW in Example 1. These level-valid constraints do not mention a range at all; however, these
replacements work since they guarantee continued satisfaction of the multilevel-valid constraint.
This is made more precise in the following theorem.

For this theorem, we define functions f3 and f4 and views q3 and qA operating only on data at
level / or below that allow us to express conditions satisfying the original multilevel-valid constraint.
The notation R\ is used to denote the subset of data in relation R classified at or below level /.

46

Theorem 1 Given a multilevel-valid constraint fi(qi(R)) 0 f2(q2(R)), which is satisfied by the
current state of the database R, if there exist functions /3,/4 and views q3,q4 such that

(a) /i(«i(ÄUi))-/i(«i(Ä)) n/3(gs(Ä/U<))-/3(«3(Äi)), and

(b) f2(q2(R)) ~ A(ft(ÄU<)) 0 /4(«4(Ä/)) - /4(«4(Ä/ U*))

hold for all tuples i. In addition, for tuples <; at level / or below,

(c) /s(«s(ÄiUt|)) J2 /3(?3(Ä|)), and

(d) /4(«4(Ä/))n/4(«4(Ä/U<,))-

Then /i(gi(ÄU*j)) 0 f2(q2(R U </)). That is, the constraint is still satisfied after the tuple t is
added.

Proof: We only consider the case when fi produces a numeric value (other cases follow similarly).
Rearranging (a) gives /i(«i(ÄU*)) 0 h{qi{R))-{h{qz{Ri))-fz{qz{Ri^t))). Since O Q /3(g3(i?,)-
fz(qz(Ri U<;)) from (c)> adding these gives /^(ÄUt;)) 0 fi(qi(R)). A similar argument, utilizing
(b) and (d) yields f2(q2(R)) ^ ^(ÄUfj)). So, by lemma 2, the constraint is still satisfied after
adding the new tuple. D

Once the functions /3,/4
and views g3,g4 are found, the constraint may be checked without

reference to High classified information. To the Low user, the constraints appear to be conditions
(c) and (d) of the theorem. Conditions (a) and (b) are used in the design stage to find suitable
functions and views, but are not visible to Low users. While the relation R\ must be restricted to
contain only data at level / or below, the tuple t, being added to the database, need not be further
restricted since it already contains only data at level / or below.

To simplify the functions, we will usually choose /i = /3, f2 = /4, qi = g3, and q2 = g4, but this
is not required.

A similar theorem holds with respect to delete operation.

8 Reaching Database States that do not satisfy Level-valid
Constraints

It is still somewhat unclear how the initial consistent database state is to be reached, and how to
reach those valid database states that fall outside the level-valid constraints (i.e., database states
that are in V - V). That is, we have developed a technique that allows us to reach many database
states without referring to High data, but we must have some technique allowing us to reach all
database states.

These additional techniques will require checking High data to ensure that the original multilevel-
valid constraint is still satisfied, even if the level-valid one is not. Such procedures must therefore
be trusted. However, being trusted may not be enough, since the database has now implemented
the more specific constraints, which must be bypassed. Trusted subjects have the authority to
downgrade information, but may not have authority to actually bypass general database integrity
restrictions, format Generally a DBMS gives the ability to deal with constraints only to the DBA.
The additional database states can therefore only be reached through a trusted DBA.

8.1 Initial state

If a constraint depends upon data in the database, as we are considering, how are the initial tuples
loaded? Constraints such as we are considering require a substantial amount of data in the database

47

in order to be evaluated properly. Otherwise, many legitimate tuples will require special DBA
treatment as they extend the limits of the datasets used in the constraints. In several commercial
systems, the database may be initialized using a COPY command, loading large quantities of data.
During the initial loading, the constraints are disabled, that is, the data is assumed to already be
verified as meeting these constraints. This procedure is useful if valid data already exist in some
other DBMS or file management scheme. If valid data does not exist, it may be necessary to estimate
the values in the constraints using fixed values instead of values derived from views (see the last set
of level-valid constraints in Example 1). After inserting some of the data the constraint could be
changed to a form dependent upon a view of that data.

8.2 Remaining States

Now suppose that a tuple has failed to meet the constraint at its level, but needs to be inserted
anyway? We can assume that some user has been granted both trusted status and DBA privileges.
This trusted DBA must then disable the constraint at the tuple's level, and disable other inserts at
that level, while they insert the new tuple. Some products (e.g., Oracle) provides this capability,
so the DBA can disable the individual constraint while the tuple is inserted. A similar capability
to disable triggers is desirable when dealing with systems utilizing that method of implementation
(i.e. Sybase). Some systems, such as Ingres, only provide the capability to disable all constraints,
not single ones. An alternative in this case would be for the DBA to 1) delete the rule, insert the
tuple and re-insert the rule or 2) suspend all rules, insert the tuple and reactivate the rules. Such
problems indicate the importance of minimizing the number of times that trusted processes must
be used to insert tuples. The alternative to using the level-valid constraints as developed here is to
perform this process for every addition, not just those that are not allowed by level-valid constraints.

9 Conclusions

We have shown that there is a large class of multilevel-valid integrity constraints that can be trans-
formed into multiple level-valid constraints whose satisfaction is sufficient to ensure that the original
multilevel-valid constraint is also satisfied. The level-valid constraints, by definition, are free from
signaling channels. The price for this is that certain modifications that are valid under the original
constraint, may not be valid under the level-valid constraints. It is possible make such modifications
if we rely on trusted processes to do so.

As part of our current work, we are investigating methods that automatically generate a suitable
set of level-valid constraints for certain multilevel-valid constraints such as aggregation. We are also
investigating how given a set of integrity constraints, triggers may be automatically generated for the
support and repair of integrity constraints in a secure way. By repair it is meant that some actions
are executed to restore the database correctness with respect to the violated integrity constraint.

References

[AD87] S. G. Akl and D. E. Denning. Checking classification constraints for consistency and
completeness. In Proc. of the IEEE Symp. Security and Privacy, pages 196-201, 1987.

[BB81] Philip A. Bernstein and Barbara T. Blaustein. A simplification algorithm for integrity
assertions and concrete views. In Proc. of IEEE Int'l. Computer Software & Applications

Conf., pages 90-99, 1981.

48

[BBC80] Philip A. Bernstein, Barbara T. Blaustein, and Edmund M. Clarke. Fast maintenance of
semantic integrity assertions using redundant aggregate data. In Proc. of Int. Conf. on
Very Large Data Bases, pages 126-136, October 1980.

[BM88] E. Bertino and D. Musto. Correctness of semantic integrity checking in database manage-
ment systems. Ada Informatica, 26:25-57, 1988.

[Bur90] Rae K. Burns. Integrity and secrecy: Fundamental conflicts in database environment. In
Proc. 3rd RADC Database Security Workshop, pages 37-40, June 1990.

[Den86] Dorothy E. Denning. A preliminary note on the inference problem in multilevel secure
database systems. In Proc. National Computer Security Center Workshop on Database
Security, June 1986.

[GW93] Ashish Gupta and Jennifer Widom. Local verification of global integrity constraints in
distributed databases. In Proc. of the ACM SIGMOD Int'l. Conf. on Management of
Data, pages 49-58, 1993.

[MJ88] Catherine Meadows and Sushil Jajodia. Integrity versus security in multi-level secure
databases. In Carl E. Landwehr, editor, Database Security, Status and Prospects, pages
89-101, Amsterdam, 1988. North-Holland.

[Qia94a] Xiaolei Qian. Inference channel-free integrity constraints in multilevel relational databases.
In Proc. IEEE Symposium on Security and Privacy, pages 158-167, May 1994.

[Qia94b] Xiaolei Qian. A model-theoretic semantics of the multilevel relational model. In Lecture
Notes in Computer Science, pages 201-214, Berlin, 1994. Springer-Verlag.

[Sto75] Michael Stonebraker. Implementation of integrity constraints and views by query modifi-
cation. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 65-78, 1975.

[SW92] Ken Smith and Marianne Winslett. Entity modeling in the MLS relational model. In Proc.
of Int. Conf. on Very Large Data Bases, pages 199-210, 1992.

[Thu91] B. M. Thuraisingham. A nonmonotonic typed multilevel logic for multilevel secure
database/knowledge-base management systems. In Proc. IEEE Workshop on Computer
Security Foundations, pages 127-138, 1991.

49

TOP: A Practical Trusted ODBMS

Marvin Schaefera

Valerie A. Lyonsb Paul A. Martelb Antoun Kanawatib

aArca Systems, Inc., 10320 Little Patuxent Parkway, Suite 1005, Columbia, MD 21044-3312, USA
bONTOS, Inc., Three Burlington Woods, Burlington, MA 01803, USA.

Abstract
The Trusted ONTOS Prototype (TOP) is a new research initiative into secure object
database management. TOP presents a set of features from object data management, C++
application development, confidentiality, and integrity to provide the balance of usability,
safety, and flexibility that ONTOS users have learned to enjoy over the last decade.
Although several paper studies have been conducted by others, we and our sponsors have
concluded that the time is right to produce a prototype that can be used as a testbed. TOP
should help to assess confidentiality/integrity tradeoffs, efficacy, and performance issues.
In addition, it will be possible to gauge the relative size and complexity of TOP's
client/server TCB. This paper presents an overview of TOP's access control policy, fea-
tures, and philosophy.

1. INTRODUCTION

Objects are everywhere. The need has surfaced for trusted systems. To move with the
trend toward object technology, the passive object paradigm of relational database man-
agement has also shifted to the look and feel of genuine object databases (ODBMS).
However, active objects present access control challenges different from those addressed
under the Bell-LaPadula model. In studies produced to date, the exclusive focus on confi-
dentiality has generally eschewed the spirit of object data management. From these studies
[2,3,4,7] it became clear that the emphasis on finding a high-assurance mechanism to con-
trol access has begun to overshadow the goal of providing useful multilevel access to object
databases. ONTOS, as a principal vendor of ODBMS, has recognized the need to conduct
security research1 in the context of contemporary object technology.
1.1 Objectives: A Usable Bl Client/Server ODBMS
As a research effort, the TOP developers were given the opportunity to choose a set of
features from object data management [8], C++ application development, confidentiality,
and integrity to provide the balance of usability, safety, and flexibility that ONTOS users
have learned to enjoy.
Defining assurance for a Bl object data management system has been a continuing chal-
lenge during the project. Neither the TCSEC nor the TDI sheds direct light on either the
security issues or acceptable means of their resolution. Over the last five years, there has
been increasingly active research into defining access control in ODBMS. Readers of the
current literature easily become aware of lack of consensus among the researchers on many
of the most fundamental issues (e.g., inheritance, the object model itself). Many trusted

^This project is funded by Rome Laboratory under Contract No. F30602-93-C-0123

50

ODBMS researchers have worked from the perspective of the relational model, which has
had the undesirable effect of missing the major issues of the common object programming
models (C++, Smalltalk). TOP explores the implications of a de facto object model (C++)
on security concerns, and attempts to resolve conflicts between the model and confidential-
ity requirements2.
The Bl level was chosen deliberately to provide the TOP team with the freedom to experi-
ment in the design of a first-time-ever TCB without having to be concerned with: TCB
minimality, least privilege, least common mechanism, or covert channels, as would be re-
quired for higher TCSEC levels. We believe that this is proper; the lack of worked exam-
ples provides us with no advance insight into either the challenges that will be encountered
in a real system, or into the tradeoffs needed for their resolution. We have concluded that
the prototype, once implemented and used, will give us valuable information about the po-
tential for achieving B2 or higher assurance in trusted ODBMS architectures.
We and our sponsors decided that we would benefit more by undertaking a proof-of-con-
cept prototype development that we would by conducting a theoretical study. We intend
our results to provide new knowledge in the theory and design of trusted ODBMSs, and an
empirical validation of such theories and designs.
Designing and maintaining a good database has become an art form in and of itself. The
subtleties of security policy, particularly arcane concepts like the *-property and its conse-
quences often serve to befuddle users and through confusion make things harder than they
need to be. TOP strives to minimize constraints and to encourage natural interaction be-
tween user and application. The philosophy in TOP has not been the dismissal of prudent
confidentiality concerns in favor of database integrity or vice-versa. It has instead been to
recognize that the reason for the existence of the *-property is to control untrusted, poten-
tially malicious, application code. We believe this can only be done by shutting out un-
trusted code at critical junctures where confidentiality and integrity objectives are in poten-
tial conflict. This is achieved through a private multilevel dialogue between just the cleared
user and the TCB3.
Here are our priorities:
• A well thought-out marriage of confidentiality and integrity. Everyone

knows what is meant by confidentiality; by 'integrity' we mean that the user be pro-
vided with tools and functionality to produce and maintain a consistent representation
by an object database of some aspect of the real world. This means that the user need
be provided the ability to get it right, to keep it right, and to know if it is right.

• A sound means of resolving conflicts between confidentiality and in-
tegrity objectives. Since the best knowledge of the relationships between the data
and the real world resides with the user, we believe that the resolution of confidential-
ity/integrity conflicts can best be resolved by trusted dialogue between the informed,
cleared user and the TCB. We propose an environment where the DBA and the cleared

2For example; under confidentiality requirements, the class graph (schema) need not be fully visible at all levels; a
coherent multilevel object model, on the other hand, would seem to require that the subclass relations of the class
graph be identical at all levels. In TOP, the class graphs of each visibility level are not necessarily isomorphic to
each other (compromise towards security), and multiple inheritance is not supported due to the complications it
introduces into multilevel type analysis, and the definition and implementation of uniqueness concerns. Also, the
choice of C++ has forced TOP to address the daily issues of programming: multilevel source code (C++ header files
are the schema descriptions), program object code is not stored in the database and methods bodies may vary
among the different levels of an object.
3Security policies include authorized users to reconcile those conflicts that cannot be handled through an
automated policy; for example: downgrading data, simultaneous cooperating object updates at multiple levels, and

any other apparent violation of the * -property. Because of the need for an isolated trusted path that can be
invoked during a session by either the user or by the TCB, TOP assumes the existence of a B3 trusted path.

51

users cooperate to resolve data conflicts, and provide true multilevel transactions for
that purpose.

• User views that accommodate clearance and need-to-know. Objects and
relationships should be presented to users consistent with the security profile of the
application environment. Views, including multilevel views, can provide the applica-
tion with timely presentations of data that are suitable and safe for presentation to un-
trusted code.

• Cover stories, not accidental polyinstantiation. The database should repre-
sent reality except in those cases where an 'alternate reality' is required by sufficiently
cleared users. The confidentiality policy ought not to be allowed to corrupt a database
solely because of the over-restrictiveness of the * -property.

• Truly object-based, not relational-based, policy model and implementa-
tion. Work done by many previous researchers has extrapolated from the well-
known relational security models. We, on the other hand, have revisited the implica-
tions of the model from the perspective of the object-oriented environment, to produce
a fresh outlook for ODBMS security. Furthermore, the choice of C++ is now becom-
ing even more widely accepted as a application programming interface, and our imple-
mentation will be as faithful to this regime as is practicable.

1.2 Overview
In the remainder of this paper we present the access control policy, beginning with an
overview and progressing into details of the operations of creation, viewing, modification
and deleting multilevel objects. An example is provided to illustrate novel features of our
work. The paper concludes with a description of the project plan and status.

2. POLICY OVERVIEW

TOP is intended to satisfy the mandatory and discretionary policy requirements for Bl, as
specified in the TCSEC. TOP bases its mediation on a combination of factors that include:
the user's clearance, the environment from which the user logs in, the user's login level,
and the security attributes of TOP objects being accessed. In principle, TOP objects may
all be multilevel, and may also be subject to discretionary access controls.
2.1 MAC: View of Level-Dominated Data
TOP Users are represented by untrusted clients that are labeled with the user's login level.
The client is provided with a view of TOP objects (viz. schema, properties and proce-
dures). The view is derived from single level 'slices' of TOP objects (i.e., the /-instantia-
tions) whose level, /, is dominated by the client's level. Such views are consistent with the
simple security and discretionary security conditions of Bell-LaPadula.
For the time being, TOP's policy model is restricted to hierarchical levels and does not
encompass the complete lattice model. This is because of the evolving semantics of the l-
view as an alternative to automatic polyinstantiation. The rationale behind our postponing a
generalized lattice is given in Section 3.3, below, where we describe scooping and its uses.
Complications also arise because TOP allows schema-level cover stories4.

2.1.1 Update at Level
TOP treats all clients as untrusted subjects. In normal operation, this is quite adequate for
retrieving and updating data. Creation and modification of data is performed at the level of

4Assume the reader has permissions <top, {A,B}>, and is reading an object X. Assume that X is instantiated only
at confidential, (A}> and confidential, (B}>. The user may view both instantiations under the mandatory access
control policy; however, it is possible that the schema corresoponding to the two compartments may be
different. Thus, the state and the precise type of the object can be ambiguous when compartments are used.

52

the client, and is consistent with the *-property and discretionary security conditions of
Bell-LaPadula. TOP stores the data persistently as a faithful image of the client's view
from its level. Unlike trusted RDBMSs, untrusted updates of this form do not cause
polyinstantiation. Accidental polyinstantiation occurs in trusted RDBMSs as a consequence
of the *-property and multilevel operation. In fact, as we show below, TOP's semantics
precludes the possibility for accidental polyinstantiation to occur.
2.1.2 Trusted Updates to Strictly Dominated Levels (Downgrades)
TOP supports multilevel updates through a trusted dialogue between an authorized, appro-
priately cleared user and the TOP TCB. The classes of update supported are: downgrade,
update of multiple levels of data at the same time, and cover story (intentional polyinstan-
tiation). The mechanism used to support the dialogue is a fully-isolated B3 Trusted Path
that is invoked either by the user or by the TOP TCB.
2.2 Discretionary Access Control
We plan for TOP to provide DAC controls to support roles for DBA and SSO along with
mode-based access controls to the granularity of individual users and groups. At present
there is no agreement within the community over issues of the scope of DAC in object
contexts and over acceptable mechanisms for its assured implementation. We plan to de-
sign a DAC mechanism to provide DAC over named objects, including databases, object
instantiations, and procedures.
2.3 Integrity: DBA-Provided Base Types
Most customers consider the preservation of database integrity a higher priority than control
over disclosure. Integrity determines the continuing utility of the data and its interrelation-
ships. Database operations are traditionally based on the notion of transactions. A transac-
tion is a set of operations that read and/or write persistent objects and satisfies the ACID
properties (atomicity, consistency, isolation, and durability). Briefly, atomicity means that
the transaction is either executed in its entirety or not executed at all; consistency means that
the transaction maps a database from one consistent state to another, isolation means that
the transaction does not read intermediate results of other non-committed transactions; and,
durability means that once a transaction is committed, its effects are guaranteed to endure
despite system failures. Scheduling of transactions, i.e., locking of data, needs to be ac-
complished such that the user application is notified of the success or failure of each trans-
action. This notification, unfortunately, could lead to illegal information flows and conflict
with confidentiality policy requirements.
Modem DBMSs implement DBA-defined integrity checks that dynamically monitor data
creation and update. Since the use of bad data will propagate additional bad data, we want
to ensure that each transaction reflects the user's intention at the time of the commit.
In multilevel data management there is a potential for conflict between confidentiality and
integrity concerns. This conflict comes about as follows: In the presence of multilevel in-
tegrity constraints, updates to low data may be constrained by more sensitive values. If the
multilevel integrity constraint is known at low, it may be possible for an interloper to derive
or infer specific information at high through probing. Existing literature has identified
multilevel integrity problems regarding conflicting data values; referencing non-existing
values; deleting referenced values; and, accidental or policy-induced polyinstantiation of
data. TOP is designed to address these problems as well as others.
2.3.1 Multilevel Integrity Constraints
Triggers are one way in which ONTOS supports single-level integrity constraints. Because
of TOP's support for multilevel objects, even single-level integrity constraints may involve
a comparison of the multilevel values that had been instantiated. Validation of an update,
therefore, may run afoul of an integrity constraint, independent of the level at which the
client is acting. Notification of the client would not be permissible if some of the con-

53

strained data were classified at a higher level than the client. In such cases, TOP invokes
the B3 Trusted Path to notify an appropriately cleared person of the violation. The person
may well be the user on behalf of whom the client is operating. She would be notified if
her workstation were located in an sufficiently cleared area, and if she were cleared suffi-
ciently to receive notification. Such notification would be safe, since the Trusted Path
mechanism is isolated from untrusted domains and the communication is between a cleared
human and the TOP TCB. If it is not possible to notify the user directly, TOP will notify
the DBA. The cleared user may then take appropriate action with respect to the update as a
multilevel transaction.
2.3.2 Polyinstantiation Control Specific to Object Instantiation

Trusted RDBMS s can get badly corrupted from rigid adherence to the *-property: an un-
trusted subject is forced to write data at its own level, and cannot even lock data at lower
levels [8]. In contemporary trusted RDBMS architectures, updates to existing low data
cannot be performed from a higher level without the possibility of a Trojan Horse com-
promise, since there is no assured means for the user to verify that only the intended infor-
mation flow transfers from high to low. The only viable workaround has been to log out
of the higher level and perform the update after logging back in at the lower level. This
jeopardizes the ACID properties of the transaction: since all the data in a multilevel transac-
tion cannot be not locked during a manually-implemented5 multilevel transaction, data can
become damaged by other users' transactions and conversely.
When accidental polyinstantiation does occur, there can be far-reaching deleterious effects.
For example, aggregate functions would likely return unpredictable values. These in turn,
can, if used as the basis for decisions or future updates, imperil the correctness of the entire
database.
But, sometimes polyinstantiation is necessary, although this is only when the intention is to
deceive. In that case, the deception is called a 'cover story', the truth is instantiated at a
higher level6, and the user needs to be able to accomplish this operation without sacrificing
any of the ACID properties.
As shown below, TOP addresses this problem directly.

3. INSIDE TOP

The TOP access control policy model [9] is derived from the Bell-LaPadula family of
models. In the initial prototype, however, we have chosen not to deal with the full lattice
of compartments and are using only hierarchical levels. This has been done to simplify
definitions needed for deriving views of multilevel objects. This allows us to uniquely
identify the nearest level dominated by a specified level and eliminate complications caused
by dominated non-comparable compartments. The section on views shows a motivation
for this simplifying decision. Future treatments of TOP will address the general case.
3.1 Multilevel Schema and Property Visibility Levels
Every TOP object is derived from a type specified in the database schema. Types contain a
set of properties and procedures (attributes). These are either explicitly defined in the type,
or inherited from a supertype. A type is a subtype when it inherits attributes from a parent
type, which is called the supertype. Inheritance is a means of organizing database types
into a meaningful framework. Each of the attributes is assigned an explicit visibility level
below which it is invisible. A sensitivity label that dominates the visibility level is assigned

'it would appear to a system as though distinct single-level untrusted logical subjects were independently
involved in separate transactions. An alternative, such as that in replicated RDBMS architectures like that of
SINTRA places responsibility for the complete multilevel transaction on multiple untrusted single-level DBMS
servers.
6Readers of spy stories may be aware of onion-like layers of cover stories upon cover stories.

54

at the point of instantiation rather than globally over the type so as to afford maximum
flexibility and control over information access. In order to provide multilevel views of
schema and objects, we have chosen to define the visibility level of the type to be equal to
the greatest lower bound of its non-inherited attributes.
Inherited attributes are assigned an induced visibility level equal to the visibility level of the
type or of the attribute, whichever is higher. TOP supports multilevel inheritance. The
visibility of the inherited attributes is governed by a rule that is explained following the dis-
cussion on /-instantiations.
Multiple inheritance, though supported in C++, is not supported by TOP.
3.2 Example
An example will be presented here in order to illustrate various issues on multilevel
schema, views, polyinstantiation, and deletion. A typical scenario involving this database
is that once a drug has finished its testing phase and has been released, the information re-
garding the test results has varying degrees of sensitivity. The label on the drug is a kind
of cover story, while the actual test results (possibly indicating adverse effects) may need to
be classified as top secret. The number of lawsuits involving this drug may direct the need
to desensitize some of the information, or at least update the counter_indications labeling.
In this example, we use a hypothetical schema from a database at a pharmaceutical com-
pany. The part of the schema we will look at consists of two class definitions: Drug and
Status. The table below shows the properties of these two classes, along with the sen-
sitivity labeling for each property.

Drug Stat us

c++ Name C++ Name
U int USP code C char* stat code
U char* drug_name U char* labeling

c Status* status s char* report_name

u char* indications s char* observations

u char* counter indications T char* testing_results

S int num lawsuits

In the table, Name and C++ Type are self-explanatory. Label denotes the^ visibility label of
the property, and is the minimum sensitivity level at which the property can be viewed.
Drug, status is a direct reference7 to an instantiation of Status. Note that the very
fact that a reference exists between any Drug and a Status object is itself classified to at
least C. This does not interfere with the ability for some Status. labeling values to
be accessed at the U level from a Status object, as will be shown.

3.3 Multilevel Object and Identity
TOP objects are generalizations of ONTOS objects, and are likewise differentiated by ob-
ject identity. Object identity is implemented within the TOP TCB through object identifiers
(OED); each client references objects through tokens provided uniquely to it by the TOP
TCB. TOP object instantiations contain multilevel instantiations of some or all of the ob-
ject's properties. A client that is authorized to 'see' an object instantiation does so through
a view defined at the client's login level, /. This is called the /-view of the object instantia-
tion.

7In ONTOS DB notation, this would be an OC_Ref erence.

55

3.3.1 l-Instantiation
If it exists, the instantiation of an object denoted by the OID and defined at level / is called
the /-instantiation of the object. The /-instantiation contains only the data explicitly written
at level /. In a multilevel ODBMS, object identity remains unique, but the OID may be as-
sociated with distinct /-instantiations of the object that have been defined and entered into
the persistent store at specific sensitivity (classification) levels. The complete object is the

full set of /-instantiations that share a common OID. The l-complete object is the set of /-
instantiations of the complete object dominated by /.
Associated with each /-instantiation is a semantic vector. The semantic vector is used by
TOP to control and protect the contents of properties in the /-instantiation, as well as to
provide a means for defining the l-view of the object. It also provides the user with the
means to enable and maintain cover stories.
3.3.1.1 l-Instantiation Example
Consider an instance of Drug with the following values for its U-instantiation: USP_code
= DDT7110; drug_name = Marvuval; counter__indicat ions = "Do not use while
sleeping". The value of indications was not specified, so the default specified for the
property is used. For the C-instantiation we have: indication = boredom; status =
5. The symbol 5 is used to represent a token which itself references an instance of
Status. For the S-instantiation we have: indications = acne;
counter_indications = "Do not use while thirsty".

For the U-instantiation of Status, labeling = "Take 2 with water." The C-instantia-
tion has stat_code = "Pending investigation." The S-instantiation has labeling =
"Take 2 with water at bedtime"; report_name = "c:\marvuvalrpt"; observations =
"Patients develop spurious body parts."; num_lawsuits = 40. The T-instantiation has
test ing_results = "Repeated tests have shown a random tendency for mutations."

Drug ^^^Status

ODDT7110 ^^V U
•> "Take 2 with water"

0 ■^""""^ I
0"Do not use while c

s

T

Q "Pending investigation"

sleeping
0 boredom

5 "c:Vnarvuval.rpt"
Q "Take 2 with water at bedtime."
0 "Patient develop spurious body

parts"
040

J s 0 "Repeated tests have shown a
random tendency for mutations."

In this figure, the amorphous shape on the left represents a C-instantiation of the object
Drug. The arrow represents a reference to the complete Status object, and shows all of
the instantiations in St atus. Note that the C-user cannot see the S and T instantiations
of this object. The C-user will be presented with a view of these objects based on her
client's level, as explained below.
3.3.2 l-View and Semantic Vector
Users do not directly access /-instantiations. Instead, an /-view is dynamically created for
the user at the time the object is retrieved. The derivation is based on the elements in the
semantic vectors of the /-complete object.

56

Here's how it works: If the /-complete object is not empty, then either there exists an /-in-
stantiation or there does not.
If there is an /-instantiation, then the semantic vector also exists. The /-view is built by it-
erating through the values of the /-instantiation's semantic vector. For each property de-
fined at /, the value of the property will be determined as follows:
• if the semantic vector element is static, the value in the /-instantiation is used.
• if the semantic vector element is scooped, the value is dynamically determined by the

corresponding element in the nearest dominated /-instantiation8.
• if the semantic vector element is initializedjcooped, the value is defined by the schema

for the type.
If there is not an /-instantiation, then the semantic vector does not exist. The /-view is con-
structed in two steps, as shown below.
3.3.2.1 MAC simplification (temporary)
• property values will be scooped directly from the nearest dominated /-instantiation.
• property values introduced at / and not contained in the nearest dominated /-instantiation

are treated as though their semantic vector element was initialized_scooped, and will
acquire default values.

Note that when scooping is used, the property value comes from a dominated /-instantia-
tion. TOP uses scooping as a means of ensuring that high-level clients have access to the
most current view of data updated at lower levels.
This represents another departure from trusted RDBMS s that support polyinstantiation. In
such systems, if a high-level user performs an update, then subsequent updates to lower
instantiations of the tuple will be automatically masked by the polyinstantiation. It takes
explicit action by the TOP user to enable this form of polyinstantiation, as it can only occur
for those properties whose corresponding semantic vector element has been set to static.
Scooping requires the identification of a well-defined source for property values. The
complete compartment lattice may potentially contain ambiguities. For example, if a Secret
<A, B> property is scooped and distinct values existed at Secret <A> and also at Secret
, the scooping would not be well-defined. Several alternatives are being considered
for resolution of this problem.
A client operating at level / always retrieves an /-view (unless specifying otherwise). Any
object referenced by this /-view is retrieved as the /-view of the referent. Since all /-in-
stantiations of an object are associated with the same OID, the level of the referent need not
be equal to the level at which the reference was originally bound.
3.3.2.2 Semantic Vector Example
Continuing from the example above, the semantic vector for the object indicates that nearly
all of the specified values are static; all others are scooped. However, since indication
is specified in the C-instantiation, the semantic vector value is either initialized_scooped (if
the C-instantiation had been created prior to the U-instantiation) or static (if the user in-
tended to create a cover story).
3.3.2.3 l-View Example
In the above example the C-user will be presented with a view of Status consisting of
labeling = "Take 2 with water"; and stat_code = "Pending investigation."
Interestingly, if an T-user were to follow the reference from the T-view of the Drug object,
he would be presented with the T-view of Status, even though the reference was origi-

8The TOP TCB ensures that a value always exists when the semantic vector denotes scooping.

57

nally written at C. This is because all objects are accessed through a token that references
the complete object, rather than a specific /-instantiation of the object.
3.3.3 Multilevel Inheritance Principle
In the schema the explicit definition of an attribute within a type is assigned a visibility label
that dominates the level of the type. A property may appear in an /-instantiation only if the
level of the /-instantiation dominates the visibility level of the attribute. This has the follow-
ing implication on multilevel inheritance: A property in an /-instantiation has as its type ei-
ther
• the type of the object if the attribute is defined explicitly and / dominates the visibility

level of the attribute, or
• the type of the nearest supertype of the object such that / dominates the level of the su-

pertype.
This means that distinct /-instantiations within an object instantiation may have different in-
heritance hierarchies9. This causes 'cover stories' for supertype, because the visibility of a
supertype in the inheritance hierarchy is constrained by the effective visibility labels of its
attributes.
Previous attempts at multilevel object models have been constrained by the requirement that
the inheritance hierarchy's sensitivity levels be monotonically non-decreasing from the base
type.[l, 6] TOP's approach provides greater flexibility and, therefore, greater richness in
semantic expression, with no loss of confidentiality. In particular, this philosophy permits
different views of the hierarchy to exist according to a user's clearance. This makes the hi-
erarchy yet another 'property' subject to access control. In effect, the feature introduces
schema-level cover stories that can further help to control inferences that may have been
based on knowledge of the hierarchy.
For example, consider the following classes:

Missile

NuclearMissile ModelFoo

RegularMissile ModelBar

If the schema is allowed to remain invariant over different visibilities, then we've also ex-
posed the fact that ModelFoo and ModelBar are distinct in some fashion more generalized
than can be justified by the model differences10. Therefore, it seems reasonable that for
those subjects who do not need to know about such distinctions, the schema view should
not reveal them. Instead ModelFoo and ModelBar would appear as direct subclasses of
Missile.
3.3.4 Procedures
Morgenstern and others have introduced the possibility of having classified procedures
('methods' in the original paper), with the additional potential for several distinctly classi-
fied instances of a single procedure to coexist. It is planned that TOP will support the

9This concept was hypothesized as necessary in [1], although it ran contrary to earlier models' constraints [5,6].
1&This is assuming that all mnemonic information is removed from the class names, the method names, and the
property names. That alone is a significant sacrifice in usability.

58

specification of multi-instantiated procedures as part of the multilevel schema. Based on
the client security level, TOP would bind the proper instantiation to the client domain.
3.4 Updating the Database
Making changes to a database is significantly more complex than viewing its data. The is-
sues of concern are preserving confidentiality and integrity while users are concurrently
accessing the data through untrusted clients. While these problems are present in trusted
relational DBMS, they are more challenging in ODBMS because users are not limited to the
use of an interactive query facility such as SQL. Application developers write their own.
C++ programs to perform customized transactions.
3.4.1 Creation
When a client, logged in at level /, creates a new object instantiation, the TOP TCB creates
an OID and generates a semantic vector. The client furnishes the initial values for populat-
ing the /-instantiation. If authorized, the client may set elements of the semantic vector.
Otherwise, they take on initial values as follows:
• static if / is the visibility level of the property
• initialized_scooped if the visibility level is strictly dominated by /.
3.4.2 Modification
In TOP, updates are subject to DAC, MAC, and integrity constraints that are type-specific
and they are further controlled by the semantic vector. There are several cases:
• The client acting at level /, presents modifications to property values that are visible in

an /-view of an existing object. If the corresponding /-instantiation does exist and the
only modified properties are not scooped (they are, therefore, either static or initial-
ized_scooped), the update is performed to the /-instantiation. This case is completely
compliant with the *-property. All properties to be scooped by this level will continue
to be scooped, independent of this update.

• The client acting at level /, presents modifications to property values that are visible in
an /-view of an existing object. If the corresponding /-instantiation does not exist and
the modified properties are not visible in the nearest dominated /-instantiation, the /-in-
stantiation is created and these property values will be placed appropriately according to
the settings of the semantic vector, as in the case above.

• The client acting at level /, presents modifications to property values that are visible in
an /-view of an existing object. It is possible that all the visibility levels for these prop-
erty values are lower than / and that they are not yet instantiated at this level. The user
may create an /-instantiation dominated by / containing these values. The user can do
this with the B3 Trusted Path. A side effect will be that the semantic vector elements
corresponding to these properties will be changed from initialized_scooped to scooped.

• In this case, some property value visible below / is updated. This may be because the
user intends to create a cover story or it may be because the user wants to modify the
property at its level. To create the cover story, the user needs to modify the corre-
sponding element of the semantic vector of the /-instantiation to static. To modify data
at a lower level, the B3 Trusted Path must be invoked in order to circumvent the re-
strictions caused by the * -property. Both operations may be performed through the
Trusted Path: the user may concurrently introduce a lower level cover story and update
at multiple levels within the object instantiation.

• A client operating at level / may reference any object for which there exists an /-view.
The reference to this object may reside in the /-instantiation of any other object (as de-
fined in the schema).

59

3.4.2.1 Cover Story Creation Example
In order to polyinstantiate a property at level /, the corresponding component of the seman-
tic vector element needs to be set to static. The reader may have noted the presence of two
cover stories in the example: in the Drug object, counter_indications has a cover
story at C and a more accurate value at S. In the Status object, labeling has a cover
story at U and a different value at S. The cover story will be scooped by intermediate lev-
els, so the C-view of the Status object will include the cover story for labeling.

3.4.3 Deletion
Object deletion updates the state of the database. Therefore, like write, we cannot allow its
observation below the level at which the deleting subject is executing. Furthermore, if
there are instantiations above the deletion level, then the deletion is potentially a cover
story. Therefore, the effect cannot be automatically cascaded upwards.
The TOP motivation is as follows: to the untrusted user, object deletion, while operating at
a particular level, should be indistinguishable from a complete object deletion.
TOP's policy for object deletion is as follows: the level at which the object is deleted is
marked by a tombstone11. If there are no other instantiations for the object, the complete
object is deleted (safely). If other instantiations exist below the deletion level, they con-
tinue to remain visible at their respective levels. If other instantiations exist above the dele-
tion level, they also continue to be visible at their respective levels, and any values they
scooped from the deleted instantiation would be written upwards to maintain the coherences
of such views. Uninstantiated levels of the object appear deleted if their views end up be-
ing constructed from a tombstone.
During maintenance, and cover story/polyinstantiation reconciliation, it is possible to
"revive" an object (remove the tombstone, usually replacing it with a live /-instantiation).
Because of the need to maintain the appearance of complete object deletion, we need to
insure that any references that used to appear obsolete (pointing to a deleted object)
continue to appear obsolete; otherwise, untrusted subjects may infer the existence of higher
instantiations. To insure this, we annotate references, and the complete object at each level,
with incarnation numbers12. Thus, an obsolete reference continues to appear obsolete,
while a fresh references resolves, though both point to the same object.

3.5 Mediation: the Access Validation Monitor
The TOP TCB manages all labeling for its objects and is, thus, designed as a trusted sub-
ject TCB subset architecture. It is responsible for mediating all accesses between its sub-
jects (the untrusted clients) and its objects. As a client/server architecture, TOP maintains
its objects on the fully-trusted server. Mediation is performed through the interposition of
the Access Validation Monitor (AVM) between clients and the server. No path is provided
between client and server that does not involve the AVM. The AVM and the remainder of
the TOP TCB rely on the underlying Bl (or higher) OS/TCB subset to protect their in-
tegrity, to authenticate users and their clearances, to identify security attributes of clients
and to protect all audit data. It is assumed that the Bl OS/TCB provides a B3-equivalent
trusted path mechanism to support private communications between the user and the TOP
TCB. The diagram below depicts a logical configuration of the TOP architecture from the
user's perspective.

^Tombstones are not visible to the untrusted client, who can only observe obsolete references, and is incapable
of distinguishing them from complete object deletions.

^Incarnation numbers are not visible to the untrusted client.

60

Qient
Application

AVM

One of the critical functions of the AVM is OID obfuscation; that is: the minimization of in-
formation content of the client's perception of OID, and the minimization of the viability of
such information. For every transaction, the AVM produces a new mapping from real
OIDs to tokens that are handed out to the client application. The mappings are transient,
and vary per transaction. Thus, the information contained in such tokens is relatively short
lived (one transaction only), and because of the additional level of indirection, significant
OID data patterns are also hidden (sequence and ordering of OIDs, form of the OID, etc.).

4. STATUS AND PLANS

Following an initial investigative study, the TOP project began in earnest in the summer of
1994 and has completed its informal policy model and preliminary prototype design. This
policy model and design are undergoing further refinement and implementation of the
prototype has begun. An initial configuration is expected for late September 1995. It is
planned that a proof-of-concept demonstration on a multilevel database be constructed for
delivery to the sponsor in June of 1996. At the time this paper is being written, mecha-
nisms for implementing discretionary access control and audit are being considered and will
be reported on in the future.

5. CONCLUSIONS

In this paper, we have discussed the design and design philosophy behind TOP, a research
initiative into developing a foundation for a trusted ODBMS. We have explored many of
the numerous tradeoffs and considerations needed to support a marriage between
confidentiality and integrity, without sacrificing utility. Our differentiation from previous
work is manifested by the fact that ONTOS exists today and TOP is being implemented as
its next generation.
The authors wish to acknowledge the faith, support, and enthusiasm Joe Giordano has
given this project from its naissance. We extend our warmest thanks to ONTOS manage-
ment, and in particular to Sandra A. Wade for her visionary contributions, unflagging in-
spiration and support. We would also like to thank Don Marks for his benevolent assis-
tance, and Matt Morgenstern [5], Arnie Rosenthal, and Bill Herndon [1,6] and Win
Cuthbert for their insight and frankly-given opinions. Smooches to our seldom-seen
spouses and pets.

61

6. REFERENCES

[1] Herndon, W., "Can We Do Without Monotonically Non-decreasing Levels in Class
Hierarchies?", Unpublished Manuscript, The MITRE Corporation.

[2] Jajodia, S., and B. Kogan, "Integrating an Object-Oriented Data Model With Multilevel
Security", Proceedings of the 1990 IEEE Symposium on Security and Privacy,
Oakland, CA, October 1990.

[3] Lunt, T., "Multilevel Security for Object-Oriented Database Systems", Proceedings of
the 3rd IFIP WG 11.3 Workshop on Database Security, Monterey, CA, September
1989.

[4] Millen, J., and T. Lunt, "Security for Object-Oriented Database Systems", Proceedings
of the 1992 IEEE Computer Society Symposium on Security and Privacy, Oakland,
CA, May 1992.

[5] Morgenstern M., "A Security Model for Multilevel Objects with Bi-directional Re-
lationships", Proceedings of the 4th IFIP 11.3 Working Conference in Database
Security, Halifax, England, 1990.

[6] Rosenthal, A., W. Herndon, B. Thuraisingham, and R. Graubart, "Multilevel Security
for Object-Oriented Database Management Systems", Working Paper No. WP-
92B0000375, The MITRE Corporation, Bedford, MA, 1993.

[7] Sandhu, R., R. Thomas, and S. Jajodia, "A Secure Kernelized Architecture for
Multilevel Object-Oriented Databases", Proceedings of the IEEE Computer Security
Foundations Workshop IV, June 1991.

[8] Schaefer, M., Wade, S.A., Requirements in Security Policy: Preliminary Informal
Access Control Model, Final Technical Report, National Security Agency, Fort
George G. Meade, MD, and Rome Laboratory, Griffiss AFB, NY, 31 March 1994.

[9] Schaefer, M., Martel, P., Kanawati, A., Lyons, V., Multilevel Data Model for TOP, to
appear at IFIP, August 1995.

62

Great Unsolved Problems
in Applied Computer Security

What are the great unsolved problems in computer security?

The author proposes four—and announces a $1,000 prize
for the solution to any one of them. The competition, spon-
sored by FIRST (Forum of Incident and Response Teams),
is expected to be an annual event.

In this inaugural year, security experts are challenged to:

• Design a program able to detect the compromise of des-
ignated system files, including the program itself

• Develop a fast technique for writing log files to read/
write media such that the information, once written,
cannot subsequently be modified without detection

• Devise a method to compare the security of two similar
computer systems

• Provide a definitive answer to the question, "Who is
helped by the full disclosure of details about security
holes, and who is hurt?"

The author also explains how the competition will work and
how you can submit solutions to qualify for prize money.

Keywords: Security, intrusion, metrics, disclosure.

Mark G. Graff
Sun Microsystems

Voice: 415-688-9151
Fax: 415-329-8258

mark.graff@sun.com

63

Great Unsolved Problems
in Applied Computer Security

What are the great unsolved problems in computer security?

The author proposes four—and announces a $1,000 prize
for the solution to any one of them. The competition, spon-
sored by FIRST (Forum of Incident and Response Teams),
is expected to be an annual event.

In this inaugural year, security experts are challenged to:

• Design a program able to detect the compromise of des-
ignated system files, including the program itself

• Develop a fast technique for writing log files to read/
write media such that the information, once written,
cannot subsequently be modified without detection

• Devise a method to compare the security of two similar
computer systems

• Provide a definitive answer to the question, "Who is
helped by the full disclosure of details about security
holes, and who is hurt?"

The author also explains how the competition will work and
how you can submit solutions to qualify for prize money.

Keywords'. Security, intrusion, metrics, disclosure.

1.0 How the Competition Will Work

1.1 Challenge

Each year a member of the FIRST Steering Committee will issue the challenge, in the
form of a paper presented at the National Information Systems Security Conference. The
paper will specify each problem and lay out the allowable parameters of a solution.

1.2 Scope of the Problems

FIRST will select problems from a wide variety of topics such as intrusion detection, net-
work protection, implications of trust among network elements, and sociological elements

64

of security policy. Each problem will be scaled in such a way that a moderate effort by the
right individual or small team may suffice.

No grand theoretical advances in the state of the art are anticipated. No proprietary interest
in the solutions themselves may be retained. FIRST seeks only to foster incremental
progress along practical lines by the elimination of everyday obstacles to today's practitio-
ners.

1.3 Submissions

Solvers seeking recognition (and money) will submit their proposals as candidate papers
for the annual FIRST conference. A panel of experts appointed by the Steering Committee
will judge all submissions. Winners will be announced, and prizes awarded, at the FIRST
conference.

Each year FIRST will seek an appropriate venue for the publication of selected papers.
Submitting authors implicitly agree to such publication and must be prepared to cooperate
by meeting deadlines and conforming to editing guidelines. Papers that appear to deal
with proprietary topics, or seek to place limits on the distribution of the ideas expressed,
will be returned unread.

1.4 Awards

The full $1,000 prize will be awarded to any solver who either submits a complete solu-
tion, or proves that a problem as proposed is intractable.

Occasionally the judges will issue merit awards of lesser amounts to honor those whose
contributions, while falling short of the goal, have significantly advanced knowledge in
the field. The judges may also decide to split an award among multiple solvers.

Small awards will also be made to those whose suggestions for future topics are accepted.

1.5 Selection

The FIRST Steering Committee will select the problems, based on suggestions from
around the world. The goal will be to select challenges which are:

• Practical, difficult to solve, and urgently relevant

• Not already under study, or likely soon to be undertaken

• Of general interest to FIRST members

• Independent of any particular vendor

Problems not solved within a given year may be repeated.

65

1.6 Common Parameters

Certain parameters will be common to every solution. Software must:

• Run on, or be convertible to, a variety of operating systems, hardware platforms, and
file formats

• Require no licensed (third-party or vendor-specific) add-on packages

• Avoid (perhaps as a bonus) the use of any ITAR-restricted (non-exportable) software

• Be robust (i.e., crash-resistant)

• Make practical, appropriate demands on system or network resources

2.0 Problem 1995A: Immaculate Detection

2.1 Problem Statement

Design a program able to detect the compromise of designated system files, including the
program itself.

2.2 What's Wrong Now?

No one knows how much is lost today in productivity, time, and trust as a result of com-
puter system intrusions. But few doubt that the toll is significant—and rising.

Programs which detect intrusion by comparing the state of a system to a known-good
record are commonplace. Recent improvements in checksum and digital signature
schemes have made checking operations more robust. But the state of the art today (1995)
requires that the master copy of that system state record be itself protected from compro-
mise. This requirement, often satisfied with the use of a write-protected disk drive, com-
plicates the use of such tools and strongly limits their application.

Is this limitation necessary? Why can't a program be designed which can check itself for
tampering? That done, the way would be clear for "unobtrusive" intrusion detection soft-
ware which could run on a wide variety of hardware and software configurations.

2.3 Parameters

In addition to the common parameters the intrusion detection software must (or must be
designed to):

• Operate without the need for write-protected storage

• Operate at user-settable intervals, and be able to run in background or foreground, in
steady-state or continual operation

66

• Allow the system administrator to select the checksumming or digital signature algo-
rithms

For a full award, no manual participation—for example, an operator noticing that an
action signifying "all OK" was not taken—can be required.

For extra credit (but no more money) the program should:

• Be adaptive enough not to chatter on voluminously about minor and predictable
changes, such as the growth of a log file

• Be alert enough to notice anomalies such as a log file which shrinks unexpectedly.

2.4 Approaches

We suggest here two approaches to consider as rough guides (guesses).

2.4.1 Ringing the Changes

Consider the popular Tripwire package (andTAMU's Tiger, similarly). This soft-
ware meets about all of our specifications except the key one. Would it be feasible to cre-
ate the checksum database; checksum the database; checksum the checker; then check the
checker?

In other words, it may be that the problem can be reduced to a question of whether a par-
ticular executable can be produced which can detect its own variance from a predeter-
mined, built-in digital signature.

2.4.2 How Are You? I'm Fine

Another promising approach: using multiple instantiations of the checker software, or
cooperating pieces, to check on each other's integrity. The key idea here is that it may not
be possible to tamper undetectably and simultaneously with several cooperating pro-
cesses.

It might even prove workable to operate several such processes around a network, creating
a community of software somewhat similar to the Neighborhood Watch program found in
many U. S. communities. The TCP-based protocol used on some UNIX systems to syn-
chronize system clocks could be another useful analogue.

Stochastically variable intervals and search extents would seem to add robustness to this
model.

67

3.0 Problem 1995B: Indelible Ink

3.1 Problem Statement

Develop a fast technique for writing log files to read/write media such that the informa-
tion, once written, cannot be subsequently modified without detection.

3.2 What's Wrong Now?

Today, log files are one of the battlegrounds of system security. Intrusion detection tools
often rely on the ability to write audit and log information for later analysis. Intruders, in
hiding their tracks, often tamper with log files, to cloak or remove evidence of their activi-
ties. Both sides want control of the log files.

Intruders have the edge now, because on most standard systems log files are kept on read/
write media. It's hard not to. But how often is it necessary to change (not append to) log
files, once they are written?

The challenge is to develop a technique for log files that last—that is, the ability to log
information on read/write media in such a way that any subsequent modification of the log
file is immediately detected.

It's often critical to know when events happened, too, and in what sequence. Protection of
the system clock is beyond the scope of this problem, but it's imperative to protect the
sequence of the records (and any time stamp information) as carefully as the rest of the
logged data.

3.3 Parameters

In addition to the common parameters the logging software must (or be designed to):

• Be efficient (not impose a severe performance cost)

• Allow the system administrator to select the verification algorithms

• Be verifiable for correctness of operation

A bonus would be the ability to detect interruption of the process that is writing the log
file.

As another desirable feature the program could offer the ability to repair log files which
have been tampered with. This would seem to require either redundant record-keeping, or
special buffering by the process responsible for logging.

68

3.4 Approaches

Target system utilities such as UNIX's syslog or VMS's OPCOM. The external inter-
faces could remain the same, and the internal operations be modified to perform integrity
checks prior to appending each log entry.

Simple enough. But how can you protect against changes?

• Look into a "check digit" approach, associating a checksum with each log entries.

• It might be possible to come up with a scheme of redundant loggers or log entries such
that an attempt to introduce a variation between the two would raise an alarm.

• Information kept in two differing states should be harder to change undetectably at the
same time. (We don't mean one copy in Maryland and the other in New York. Try, for
example, one in process memory and one force-written to disk.)

• There's no reason redundant records must have the same format. Maybe keeping infor-
mation in different formats (say, one copy in plain text and one encrypted) would make
it harder to sneak through a change.

4.0 Problem 1995C: In Numbers There Is Safety

4.1 Problem Statement

Devise a method to compare the security of two similar computer systems.

4.2 What's Wrong Now?

To paraphrase Ernest Thompson, the master engineer who laid the first transatlantic cable,
"To measure is to know." When it comes to the relative security of two machines, we
know nothing.

Trying to improve the security of a system without being able to measure the result of
your changes is like pushing a rope. There's effort; there's apparent progress; but someday
you're likely to trip over the result.

We need to be able to compare the relative security of:

• Two similar systems, even if they come from different manufacturers

• The same system after a patch or other putative fix has been applied

• A system before and after a major software upgrade or configuration change has been
applied

Notice, too, that once there's a way to determine which of two systems is more secure, the
road is clear to useful spin-offs such as benchmarks and other metrics. These are going to
be terrific; but the comparison operator has to come first.

69

To keep it simple let's restrict the arena to software. Hardware, today, is not the problem.

4.3 Parameters

In addition to the common parameters the method must:

• Produce unambiguous and reproducible results

• Take into account the many different security environments, e.g., behind a firewall

• Not become outdated with the discovery of every new vulnerability

• Not itself represent a security risk (as a straightforward system canvas or vulnerability
inventory might)

• Allow the system administrator to select from among many comparison criteria

For partial credit the comparison could be restricted to a subset of threats.

4.4 Approaches

The parameters seem to imply the use of some outside agent. Perhaps the winning tech-
nique will:

• Be an extension of today's penetration studies and tiger teams

• Allow (and require) the creation of a secure, contractible network audit service

• Require the development of a technique for opaquely testing a system for a vulnerabil-
ity, using a program of assured integrity that cannot meaningfully be monitored during
operation, nor reverse engineered when static

5.0 Problem 1995D: Do What I Say and Nobody Will Get Hurt

5.1 Problem Statement

Provide a definitive answer to the question, "Who is helped by the full disclosure of
details about security holes, and who is hurt?"

5.2 What's Wrong Now?

The debate over "full disclosure" has of late filled all of the security newsgroups and mail-
ing lists with opinions. Is "security by obscurity" atcd? Doe? information want to be free?

Some system administrators argue that the disclosure of detailed information about secu-
rity holes puts ammunition into the guns of those who would break into systems—and that
releasing an exploitation script supplies a complete, loaded weapon.

70

Others counter that the advisory bulletins issued by FIRST response teams are useless,
because not enough information is supplied either to reproduce the problem or design and
test a fix. It's important to balance short-term versus long-term interests, too. Full disclo-
sure of exploitation details may cause immediate disruption; but it also tends to ensure that
the bugs so revealed, once killed, will stay dead. Some examples that buttress this reason-
ing are the "sendmail wizard" and "finger overflow" problems.

While the debate rages on, many systems are being broken into with the use of "fully dis-
closed" vulnerabilities, while perhaps as many are being trashed or tampered with because
the people charged with their protection are themselves being "protected" from knowing
how to fix them.

Let's try to get this settled. Everybody in the field has an opinion. What are the facts?

5.3 Parameters

Answering the question may sound easy. But we need numbers at least as much as we
need analysis.

For a full award, the following information must also be supplied, with justification:

• Close estimates of the vendor, vendor-dependent, and roll-your-own populations

• A characterization of the populations (sophistication, software they're running, plat-
form, etc.

• Weighted risk analysis, broken down by population (e.g., risks for vendors)

• An analysis of which times at which disclosures are most damaging

• An analysis of possible warning periods. Is two weeks better than two months?

• Proposals for a modus vivendi, a practical set of arrangements allowing these groups
with differing information needs to cooperate (or at least co-exist)

5.4 Approaches

We anticipate that one way solvers might try to get real numbers is to conduct a real-world
experiment, using standard double-blind protocols. Such investigators would assume sole
risk and responsibility if the experiment misfires. FIRST is specifically not encouraging an
industry-wide hoax.

6.0 How to Submit an Entry

FIRST maintains the unsolved-problems@first.org mail alias for interested parties. Use
this to get a copy of the contest rules, get more information about the problems, and
exchange ideas with other participants.

71

With a solution or partial solution in hand, submit your work as a paper to the upcoming
FIRST conference. The 1996 conference will take place in the San Francisco Bay area.

For information about how to prepare and submit a paper to the FIRST, watch for the
annual Call For Papers.

7.0 Acknowledgments

The author wishes to thank the members of the 1994-1995 Steering Committee for their
confidence and assistance, and also:

• Problem submitters Gene Spafford (of Purdue) and Danny Smith (AusCERT)

• Advisers Steve Weeber (CIAC) and Roman Galperin (Sun Microsystems)

72

ADDRESSING INFOSEC ANALYSIS PROBLEMS
USING RULE-BASED TECHNOLOGY

Richard B. Neely, Ph.D.
rneelyScos.eta.com

James W. Freeman, Ph.D.
j freeman&cos.eta.com

CTA INCORPORATED
7150 Campus Dr.

Colorado Springs CO 80920

Abstract

Obtaining the necessary understanding of
the security properties and vulnerabilities of
systems, which are becoming ever more
complex, requires significant analytic effort. A
security analysis team (either development or
evaluation) needs to navigate through large
amounts of documentation, partition significant
problem domains, and simulate or emulate a
system or particular components, to make
engineering based statements about a system's
security.

Current approaches, techniques and
supporting tools, including third-generation
based technologies are helpful, but are not
sufficient. Method specific techniques based on
CASE environments are often to narrow for
addressing the wide variety of security issues
faced by an analyst.

This paper discusses an approach to some
different types of security problems and our
experience in using a rule-based technology that
is not method specific and that has contributed
to improved understanding of the specific
problems. The use of the technology appears to
enable an analyst to address a wide-variety of
issues in the problem domains of the analyst
without forcing the analyst to become an expert
in the underlying rule-based technology.

1. Introduction

Systems are becoming increasingly
interconnected with more functionality. The
need for a security analyst to analyze,
understand, and explain a system's security

mechanisms and vulnerabilities is increasingly
challenged by a system's complexity. The
complexities and interrelationships of present
systems can easily overwhelm a security analyst
using current approaches and supporting
technology.

For example, within most current
approaches, an analysis team makes security
statements about a system's underlying security
architecture. That structure is often based on a
monolithic trusted computing base (TCB). The
analysis team then implieiüy extrapolates, with
some level of assurance, the structure to a
collection of security statements about the full
system. This has been a credible approach
when the TCB was relatively simple,
monolithic, and the step to the full system was
not large.

Increasing functionality and connectivity
adds complexity to networked and distributed
systems. The resulting underlying security
architecture, including a TCB, also becomes
complex and distributed. Also, the step to the
full system from the TCB often is either larger
than anticipated, in order to keep the TCB
manageable for understandability (particularly
for embedded systems), or else the resulting
TCB itself is significantly larger and more
complicated than desired. Such complex
systems are necessary in order for systems with
critical security requirements to exploit
advances in other system and software
engineering disciplines [1].

Each component within a distributed
system may have undergone a thorough
security analysis relative to the system

73

architecture. Nevertheless, residual vulnerabili-
ties in the high reliability components,
combined with potential exploitation by less
reliable components, could result in security
failures. These might include data compromise
via system output interfaces or loss of data or
system integrity. In other words, the system
structure itself must be considered in a security
analysis [2]. Using currently available
methods, a security analysis team would
probably be unable to say, with a reasonable
level of assurance, something definitive
concerning the security of the set of end-to-end
data flows for such a system. That would be
true, even though they used the best available
technology, including current methods and
supported by a CASE tool environment.

As has been described by Hirsch [3], a
security analyst needs to navigate through
large amounts of documentation with more
than an automatic page-turning capability. An
analyst needs to partition a general problem
into smaller problems and maintain or preserve
relationships among the parts. An analyst also
needs to apply appropriate metrics to
system/software entities. An analyst also needs
to reverse engineer available information to
either generate missing pieces or to double
check whether an entity is appropriately
derived from higher-level specifications. An
analyst performs a verification that establishes
a correspondence between higher-level and
lower-level specifications. Finally, an analyst,
by developing a simulation or emulation, can
obtain value by observing the behavior of a
system under controlled conditions.

What is needed, therefore, is a technology
or a well-integrated collection of supporting
technologies that enables an analyst to
accomplish the identified activities in an
efficient and effective manner. This paper
identifies an approach, our recent experience,
and near-term plans that address aspects of a
security analyst's navigating, partitioning,
reverse engineering, verifying, and simulating a

system to identify and demonstrate
vulnerabilities. The approach to INFOSEC
analysis problems uses rule-based techniques.

One problem that we have addressed in this
way is providing assurance for system security
related to end-to-end system flows—the
example mentioned above. This problem has
an important application within the security
analysis of MLS tactical systems.

A second problem we have addressed is
how to control disclosure of inferred
information from a relational data base system,
while still enabling the system's users to
accomplish their mission. An effective solution
can be expected to be quite complex, involving
examination of multiple criteria in parallel and
using expert system techniques.

It is important to observe that the second
problem is an INFOSEC problem that is
essentially unrelated to sensitivity labels. One
consequence of these two problems is that a
very flexible environment would be needed by
an analyst to solve both these problems
effectively, using the same environment for
both.

Following this introduction and problem
identification, this paper discusses the use of
rule-based environments (Section 2).
Following that discussion is a description of
our experiences and results in developing rule-
based techniques and tools to solve INFOSEC
problems (Section 3). Finally, we present the
conclusions that we have drawn on the basis of
those efforts (Section 4).

2. Problems and Solution Directions
2.1 Issues In Automated Analysis for
INFOSEC

INFOSEC analysis has mostly used manual
methods, with any appropriate software
development tools. Manual methods remain
common, though some limited support tools
have been developed. Manual analysis has
been acceptable in the past, but newer systems
are large and complex. For such systems,

74

manual methods are too expensive, unreliable,
and unrepeatable. Repeatability is at issue
because of multiple builds and development
blocks, for which analysis must be repeated.
As a result, some significant risk is often
accepted in systems. Further, the concern for
many systems is not that there is a high security
risk, but that, with current practice and
technology, the risk is unknown and not
definable in a measurable way. This is because
of the intractability of effective manual analysis.

To have an effective as well as cost-
effective automated analysis, a solution ought
to have the benefits of manual analysis (e.g.,
flexibility and an expert's base of knowledge)
without its shortcomings. Past approaches to
automating the analysis, while in some ways
are beneficial, are also inadequate. For
example, simple object-oriented approaches,
while providing some useful data modeling, do
not address process modeling. Consequently,
they do not go nearly far enough in providing
proximity between problem and solution
spaces.

One way to look at this is that one wants to
see the "big picture"—what's "really going
on," providing a framework for important
details, rather than seeing details in a way that
only obscures. That is the situation in the
game of chess. A beginner, or even
intermediate, player sees 64 squares on a
playing field and 16 chessmen; a chess master
sees a "position" made up, perhaps, of three or
four high-level units. The master's resulting
analysis of the game provides a deeper
understanding than the details can provide to
the novice.

This illustration applies specifically to
INFOSEC: a simplistically algorithmic ap-
proach can inhibit the solution of some
problems, because the problems are obscured
by complexity that is not fundamental to the
problems. A rule-based approach can allow an
analyst to logically integrate all aspects of a
system without the analyst's drowning in detail.

The big-picture view provides improved
understanding of a complex system, independ-
ent of whether rule-based automation (or any
automation) is considered. For example,
Bodeau's system-of-system perspective for risk
analysis would illuminate the risk analysis
problem addressed, even in the absence of the
ANSSR tool [4].

Past tools have used the extensive run-time
libraries associated with their implementation
languages, but these libraries do not provide an
adequate environment to facilitate reusability.
In developing INFOSEC tools in the past,
much design and implementation energy has
often been focused on the infrastructure, at the
expense of solving the problem. For example,
software tool development may consume as
much as 90% of the available resources in
providing support for a graphical user interface
(GUI) [5]. What is required is an environment
for automating INFOSEC analysis with an
infrastructure built in, that developed tools can
inherit.

2.2 A Solution: Rule-Based Automation
An examination of rule-based support for

INFOSEC analysis appears to indicate that this
is an approach that could solve some of the
analysis problems. Some rule-based environ-
ments do exist that have been shown to be
applicable.

2.2.1 Rule-Based Concepts
A rule-based environment provides

flexibility of data modeling beyond what is
provided by an object-oriented language. That
is because the underlying capability for data
description is more expressive (e.g., set theory
instead of standard programming language
types with narrow extensions).

Process modeling is also possible in a rule-
based environment Process modeling allows
specification of what is to be done (versus how
to do it): it allows expression in terms of rules,
which preserves the best aspects of manual
processing. An important aspect to preserve is

75

adaptability as analysis needs change. In
particular, process modeling is critical for
proximity of problem and solution spaces.

Further, a general rule-based environment
supports the separation of process and data,
which is critical for robustness, flexibility, and
extensibility.

2.2.2 Benefits of a Rule-Based Approach
for INFOSEC

An important area best supported by rule-
based approaches is logical integration, which
involves both information integration and
development tool integration. A rule-based
environment can provide a capability for both
aspects of logical integration. Data models can
be merged and rule-based methods devised to
relate differing sources of assurance [6]. These
include risk analysis, hardware security
characteristics, physical security, and
communications security (COMSEC)
characteristics.

A general rule-based environment is also
ideal for integrating a variety of tool-based
techniques for security analysis. Such
integration involves developing common data
models of information processed by each of the
techniques, and providing data capture release
interfaces with each. This allows many existing
capabilities to be used, rather than reinventing
them. Examples are CASE tools, configuration
management tools, configuration management
tools, and specialized security analysis tools,
such as Romulus (discussed below).

2.2.3 Lack of Generality in Some Rule-
Based Environments

To be useful for INFOSEC applications, a
rule-based environment must not limit the data
model or method. These must be open-ended,
so that the developer is able to specify them to
address the specific application problem. This
is not a specious point, for most rule-based
environments are designed with a built-in
method. Even an environment oriented toward
INFOSEC that has a built-in, non-extensible

method has limited value. As an example,
computer-aided software/system engineering
(CASE) environments are specific to software
or system engineering and not related to
INFOSEC analysis. Note that CASE tools are
not rule-based environments, but rather
specific rule-based tools.

An example of a rule-based tool designed
for security is Romulus, developed by ORA.
Romulus addresses a range of security
problems, and is effective within that range.
Even so, Romulus supports a built-in method
that is definitely narrower than the full range of
security problems. For example, it would be
very difficult (and perhaps ineffective) to apply
Romulus to the problems described in Section
3 (particularly the disclosure control problem),
or to any other problem that is unrelated to
security labels. This is because the method
implemented by Romulus is label based. The
method of Romulus is based on the concept of
"restrictiveness," and specifically the "Hookup
Theorem" [7]. The built-in theorem prover of
Romulus extends its usefulness, but that does
not have the flexibility of interfacing with an
arbitrary external theorem prover, such as
Computational Logic, Inc.'s, Nqthm (Boyer-
Moore Theorem Prover) [8]. Because of the
built-in method nature of Romulus, that would
not be possible without significant redesign.

A particular limitation of Romulus is that a
security model (or at least a limited family of
models) is built in, and therefore an inferred
policy is assumed. This policy is based on
label-based access, restrictiveness (upper
bound on the sensitivity of system output data),
and hookup (composition) of system
components. Even so, the Romulus view is
more general than many security approaches,
since it is able to deal with non-deterministic
systems, such as distributed system with
concurrent processing.

Despite the advantageous features of the
Romulus approach, with its techniques and tool
support, Romulus has a serious limitation. The

76

limitation is that it is method specific and is not
easily extensible to other methods. Further, the
tools do not possess lower-level support
interfaces, in an open-system architecture, that
would allow developers to produce and
integrate tools for other methods, without
pervasive redesign.

2.2.4 Applicable Rule-Based Environments
A general rule-based environment should

separate information representation and
processing from user interface support. For a
GUI, many high-level primitives should be
available without unduly constraining the final
nature of the interface. Thus, what is needed is
an environment that has a variety of processing
and user interfacing building blocks without
pre-defining actual methods or interfaces.
Because of the variety of security concepts that
it might be desirable to support, the
environment itself should not be sufficiently
security oriented that it prescribes aspects of
any particular security method.

Several rule-based environments exist that,
according to marketing information, appear to
have capabilities that meet the above criteria.
They are [9]:

• Level5 Object, from Information Builders,
Inc.;

• Nexpert Object, from Neuron Data;
• Kappa, from Intellicorp;
• ART*IM from Inference; and
• Virtual Software Factory (VSF), from

Integrated Software Development
Environment (ISDE) Metaware, Ltd. (in
the UK) [10].

According to the information available to us,
these environments have similar capabilities;
we are in the process of obtaining additional
information about them. Our experience is
entirely with VSF, and has demonstrated that
VSF has the required features to support
INFOSEC analysis (and a variety of other
applications). The technology focus of this
paper is demonstrated by our VSF experience.

The basis of the data modeling notation
within VSF is set theory, from which a wide
variety of object types can be defined. VSF
provides for several kinds of set definitions.
Rules defining a method are expressed as set
membership constraints and set membership
consequences. The constraints determine what
members may be asserted into or deleted from
particular sets in particular contexts. The
consequences cause automatic assertions and
deletions based on preliminary assertions and
deletions.

VSF provides capabilities for data capture
and for reporting that are independent from
data representations. A single, pervasive
knowledge base is maintained, and so every
data view into the knowledge base is always
consistent with every other. These capabilities
exist in both graphical and textual forms, both
of which may be used interactively and non-
interactively. Reports are generally non-
interactive only.

This section began with a description of
problems associated with manual INFOS EC
analysis methods, and with criteria for
automating INFOSEC analysis. Our
experience has shown us that a rule-based
analysis approach (particularly using VSF)
satisfies those criteria. Section 3 presents some
details of our experience in this area, and
substantiates the claim that our approach
indeed satisfies the criteria for automating
INFOSEC analysis.

3. Experience and Results In Solving
INFOSEC Problems With VSF

This section reports some of our actual
experience using VSF to address a variety of
INFOSEC problems. The benefit of reporting
this experience is that it provides an awareness
of some of the kinds of INFOSEC problems
that can be solved using a general rule-based
environment, and may encourage others to try
such an approach. In addition to reporting
success in certain areas, we feel that evidence

77

is provided that some INFOSEC problems can
be solved better with a rule-based approach
than with a more traditional approach. By
"better" we mean a solution that is complete,
more extensible, more understandable, and
possibly more efficient.

3.1 Data Flow Security Analysis
Within CTA's system security engineering

work on a major tactical MLS system, we have
encountered a concern regarding certification
of the system voiced by the security evaluation
team. The concern is that in order to avoid the
necessity of making the size of the software
portion of the trusted computing base (TCB)
extremely large (i.e., a sizable fraction of the
entire software of the system), an additional
source of system security assurance would be
needed. The goal of the assurance is to reduce
the risk of data compromise due to data flow
out of the MLS system.

The specific problem is that within the
system, a large proportion of components
handle data at multiple security levels and are
capable of writing high data to low destinations
(e.g., files), given their context within the
system architecture. Without further analysis,
all such components must be trusted not to do
so, and therefore are within the TCB. That
would be an untenable situation. It would
mean that the majority of the software within
the MLS system would be in the TCB, and
there are not sufficient resources available to
provide the necessary security analysis.

The additional source of assurance pro-
posed is to examine each end-to-end path to
determine, given the sensitivity of data entering
the path and allowed to leave the path, whether
a combination of components on the path
creates a risk of data compromise. The idea is
that a large number of multilevel components
might in that way be determined to be in no
position to compromise data with respect to
any end-to-end path, and so not to be within
the TCB. A problem with developing a tool
for such end-to-end analysis is that the MLS

system is very complex, with thousands of
components, and perhaps tens or hundreds of
thousands of distinct end-to-end paths. It
seemed that any third-generation solution
would be intractable, or at least would require
significant research effort for development.

We felt that certain of the capabilities of the
VSF environment could result in a solution that
would require tractable effort, would provide
reasonable performance, and would help
produce a more effective security analysis than
by manual means. Accordingly, we developed
a proof-of-concept tool to solve a simplified
version of the problem. Our expectation that
VSF would provide an appropriate solution
platform was based on several observations.
First, it seemed that VSF's ability to deal with
data models and to express rules that would
provide for apparently parallel analysis would
allow for a clear solution. Second, based on
our previous experience with software re-
engineering using VSF, we new that the
advertised high performance of VSF's
knowledge base was a reality. Finally, certain
aspects of a solution that would be
unacceptably complex to express algorithmi-
cally already existed within VSF as set
membership manipulations of various kinds.

An example of the latter is VSF's transitive
closure set definition to deal with data flow
paths. It is necessary to understand, in order to
follow this example, that the data modeling
paradigm of VSF uses standard mathematical
set theory. In order to define and manipulate
data flow paths, we treated each component of
the system as a node in a graph, and direct data
flow between a pair of components as an arc in
the graph. Then, within VSF, we represented
each component node as a member of a
primitive (unstructured) set, Component, each
data flow arc as a member of the Cartesian
product set Flow = Component x Component.
We were then able to define the set Path =
closure (Flow). Once the Component and
Flow sets were populated (thus defining the

78

system architecture), the set Path would
automatically represent all data flow paths
(end-to-end and otherwise).

It would be incredibly inefficient to fully
populate Path, to represent all the data flow
paths in the system, and indeed VSF does not
do so. It merely determines what particular
elements are in that set based on particular
knowledge base queries. This was significant
when a particular rule was developed to
determine the set of partial paths on which lay
ooth a multilevel component and a potential
upstream exploiter (i.e., a uni-level, untrusted
component processing classified data). In that
circumstance, exactly the appropriate members
of Path were extracted to populate that partial
path set. No other members of Path were ever
created.

The proof-of-concept tool was successful.
We were able to demonstrate the tool not only
to audiences related to the tactical MLS
system, but also to other groups. Because of
the clarity of the tool itself, people with no
familiarity with the MLS system were able to
understand the tool implementation easily.
That response was expressed in terms of its
GUI, its usability, and the ease of understand-
ing of its implementation in VSF

It is noteworthy that as we began to study
the security flow analysis problem, existing
statements of the problem were incomplete and
often confused. Indeed, it was not until we
began to formulate VSF rules to specify a
solution to the problem that we began to
understand the problem ourselves. This was
not unexpected, in that often a rigorous
analysis helps clarify a problem.

We expect that a full version of the tool,
capable of managing all aspects of a security
data flow analysis for the MLS system, would
be a success, based on the proof-of-concept
prototype. This is based on the prototype's
satisfying (within its limited scope) the
completeness, extensibility, understandability,
and efficiency properties (mentioned above).

While the prototype is not intended to be
complete, its ease of extensibility (based on the
addition of certain capabilities in the
knowledge base and in the user interface)
should assure ultimate completeness.
Responses to demonstrations and explanations
of the tool indicate that the understandability
property is satisfied. Full-size (or even nearly
full size) knowledge-base populations have not
been applied to the prototype, but our previous
experience with re-engineering using VSF
indicates the efficiency of a full version of the
tool applied to the entire MLS system.

In terms of the needs of a security analyst
described by Hirsch (as indicated in Section 1),
the developed tool primarily addresses the
verification and simulation needs. The tool, in
effect, simulates the flow of data through the
end-to-end paths across the system. It also
verifies whether pre-defined TCB membership
characteristics are consistent with other system
characteristics, including system architecture.
It is anticipated that a production version of the
tool, if developed, would support partitioning
the data flow problem to allow multiple
analysts to work on the problem concurrently.

3.2 Data Base Disclosure Control
There is a significant issue in developing

concepts and techniques to deal with
controlling disclosure of sensitive information
in relational data bases. Certain kinds of
sensitive information, when released in "small
doses," may not result in a security risk. At the
same time, larger amounts of the same
information may result in quite significant
security risks. This concept of risk based on
amount of data released is known as the
aggregation problem. When information is
released only indirectly via logical analysis of
the information permitted to be released, this is
known as an inference attack. Information
released via an inference attack is also an
example of aggregation if it is more sensitive
than any (quantity of) information that would

79

have been permitted directly. These concerns
are explained in detail in [11].

The approach to disclosure control that we
addressed is intended to shut down such
aggregation and inference channels in a way
that does not place unnecessary restrictions on
access to the data base. The approach,
developed by Motro, Marks, and Jajodia [12],
is to limit accesses only based on predefined
data base views, termed concepts. A numeric
threshold is defined for each concept, and data
base tuples that relate to each concept are
allowed to be released only up to the number
corresponding to the threshold. Any number
of such concepts may be defined. A "lifetime"
count is maintained for each concept, for each
user. This approach is far more precise than
the relatively naive concept of counting tuples
across a whole data base table, or by
comparing exact queries. The precision means
that the exact information to be protected is
indeed protected, but no more.

This disclosure control approach appeared
to us to be ideal for implementation using VSF.
One important characteristic of the approach is
that it is fundamentally parallel in concept.
Accordingly, the view taken in a VSF
implementation, which involves performing an
operation on all the elements of a defined set
(without regard to sequentiality or order),
would relate well to the problem space.
Further, because of VSF's capability for
supporting interfaces to arbitrary external
systems and forms of data, a VSF-based
disclosure control tool could be made to
interface with a relational data base
management system (RDBMS) without undue
effort.

For the prototype disclosure control tool
that we have implemented, we simulated a
RDBMS within VSF itself, rather than
interfacing to an external RDBMS. This was
because we did not have available a RDBMS
that would run on the platform (Intel 80486
running OS/2) on which we were developing

the tool. It was, in any case, instructive to see
the limited amount of code (rules) required for
that simulation—about a page. Given that the
authors are not very experienced with
development in VSF, that is probably not at all
the most efficient or compact possible
simulation of an RDBMS in VSF!

The resulting tool is generally a success
with respect to the same properties as
considered for the data flow analysis tool:
completeness, extensibility, understandability,
and efficiency. The tool performs precisely the
disclosure control function originally specified.
Extensions to that functionality have been
identified, and based on preliminary analysis,
we are convinced that corresponding
extensions to the tool will be easy to make.
This is primarily because of the automatically
abstract nature of data and method descriptions
in VSF. Demonstrations of the tool, including
to the customer, were successful. In particular,
the functionality as made visible by the easily
developed user interface that described the
results of the RDBMS queries was
understandable and fully acceptable. Further,
the behavior of the disclosure control
functionality was accepted as faithfully
implementing the disclosure control method.

Those to whom demonstrations and
explanations of the implementation of the tool
have been given—including the customer, who
has no background with VSF—have expressed
a reaction that the implementation itself is easy
to understand, in terms of the data modeling
and the rule-based method definition.

This tool also addresses Hirsch's
verification and simulation needs. The direct
need addressed is verification. What is being
verified is the disclosure control method itself
by implementing it and viewing the results. In
order to test the method effectively, it was also
necessary, in the circumstances, to simulate a
RDBMS. In retrospect, using a simulated
RDBMS was beneficial to verifying the method

80

because it allowed a more controlled execution
environment.

Our description of the disclosure control
method in terms of VSF rules clarified the
method itself, and, further, resulted in the
discovery of some ambiguities in the method as
originally described. It is likely that, after some
debugging, the ambiguities would have been
discovered as a result of a third-generation
implementation in a language like C or Ada. In
contrast, the ambiguities were immediately
manifest upon expressing the method in the
form of VSF rules.

3.3 Future Applications
We are at present planning two additional

INFOSEC applications of VSF. They are:
• implementation of a representation of

Hoare's process external traces that we
have used in past security analysis efforts
[13]; and

• security evaluation support, involving the
integration of specialized software
development and security analysis tools
(such as the Boyer-Moore theorem prover
[8]).

We now discuss briefly how we anticipate
dealing with the first of these using the VSF
environment.

In [13], we have described a security
analysis method, which we term Boundary
Row Analysis (BFA), which we have used
successfully for several security analysis
projects. The method is related to Hoare's
process external traces, and has been provided
with a useful notation by Moore at the Naval
Research Laboratory (NRL) [14]. Also related
to BFA is NRL's "assumptions and assertions"
security certification approach [15].

The concept of BFA is to view a system in
terms of multiple levels of refinement and in
terms of a data flow diagram at the same time.
At each represented level of refinement, a
logical history of information (treated as a
sequence of information units) entering and
leaving each component at each interface is

maintained. Security requirements are
expressed for each component (including the
system itself) in terms of the interface histories.
Verification methods are applied to show that
if all the security requirements of lower-level
components are satisfied, then the security
requirements of upper-level components are
satisfied.

Having had success with this approach
using the Gypsy Verification Environment, we
decided it would be valuable to implement the
approach within VSF. To date we have
implemented a portion of the BFA approach,
but do not have a fully operational tool.

4. Conclusions
This paper has outlined our experience in

applying an approach to INFOSEC analysis
problems using a rule-based technology and
environment, specifically that provided by the
Virtual Software Factory. We note that
developing a tool for each of the problems
discussed took approximately 3-4 man-weeks
of effort, which included the developer's
learning aspects about the underlying VSF
environment. It is important to note that the
tool developer not is certainly a VSF expert.
Considering the results stemming from a
variety of problems faced by an analyst,
developing tools using VSF, and applying the
tools to solve the problems, we feel that such
an approach can be effective. Customer
feedback via demonstrations has validated this
conclusion. Finally, we have identified some of
the directions planned in applying this
promising technology.

81

5. References
[1] J. N. Froscher, M. Kang, J. McDermott,

O. Costich, and C. E. Landwehr, "A
Practical Approach to High Assurance
Multilevel Secure Computing Service,"
Proceedings of the Tenth Computer
Security Applications Conference,
Orlando, Florida, December 1994,
pp. 2-11.

[2] R. B. Neely and J. W. Freeman, "Struc-
turing Systems for Formal Verification,"
Proceedings of the IEEE Symposium on
Security and Privacy, Oakland,
California, April 1985, pp. 2-13.

[3] S. J. Hirsch, "Software Analysis Require-
ments: An Abstract View," ENFOSEC
Standards and Evaluations Group, C62,
Office of INFOSEC Evaluation
Technologies, Computer Science
Division, National Security Agency, June
1992.

[4] D. J. Bodeau and F. N. Chase, "Modeling
Constructs for Describing a Complex
System-of-Systems," Proceedings of the
Ninth Computer Security Applications
Conference, Orlando, Florida, December
1993, pp. 140-148.

[5] ISDE Metaware, Inc., "Virtual Software
Factory Overview," 1992.

[6] R. B. Neely and J. W. Freeman, "Rigor-
ous Integration of Sources of Assur-
ance," Proceedings of the Conference on
Computer Assurance (COMPASS),
Washington, D. C, July 1986, pp. 100-
110.

[7] I. Sutherland, T. Korelsky,
D. McCullogh, D. Rosenthal, J. Seldin,
M. Lam, C. Eichenlaub, B. Esrig,
J. Hook, C. Klapper, G. Pottinger,
O. Rambow, and S. Perlo, Romulus: A
Computer Security Properties Modeling
Environment (Overview), RL-TR-91-36,
Vol. 1, ORA for Rome Laboratory,
April 1991.

[8] R. S. Boyer and J S. Moore, A
Computational Logic, New York,
Academic Press, 1979.

[9] Datapro Information Services Group,
"Information Builders, Inc., LEVEL5
OBJECT," Datapro Computer Systems
Analyst, McGraw-Hill, Delran, New
Jersey, 1995.

[10] ISDE Metaware, Inc., User Documenta-
tion for the VSF Methods Workbench,
VSF-MWB Version 3.9, 1994.

[11] T. F. Lunt, "Aggregation and Inference:
Facts and Fallacies," Proceedings of the
IEEE Symposium on Security and
Privacy, Oakland, California, May 1989,
pp. 102-109.

[12] A. Motro, D. Marks, and S. Jajodia,
"Aggregation in Relational Databases:
Controlled Disclosure of Sensitive
Information," Proceedings of ESORICS
94,1994.

[13] J. W. Freeman, R. B. Neely, and
M. A. Heckard, "A Validated Security
Policy Modeling Approach," Proceedings
of the Tenth Computer Security
Applications Conference, Orlando,
Florida, December 1994, pp. 189-200.

[14] A. Moore, "Specification and Verified
Decomposition of System Requirements
Using CSP," IEEE Transactions on
Software Engineering, Vol. 16, No. 9,
September 1990, pp. 932-948.

[15] C. N. Payne, J. N. Froscher, and
C. E. Landwehr, "Toward a Comprehen-
sive INFOSEC Certification Methodol-
ogy," Proceedings of the 16th National
Computer Security Conference,
Baltimore, Maryland, September 1993,
pp. 165-172.

82

IDENTIFICATION OF SUBJECTS AND OBJECTS IN A
TRUSTED EXTENSIBLE CLIENT SERVER

ARCHITECTURE

Terry C. Vickers Benzel
Trusted Information Systems, Inc.
11340 W. Olympic Blvd., Ste 265
Los Angeles, CA 90064
310/477-5828
tcvbQla.tis.com

E. John Sebes
Trusted Information Systems, Inc.
444 Castro Street, Ste 800
Mountain View, CA 94041
415/962-8885
ejsSba.tis.com

Homayoon Taj alii
Trusted Information Systems, Inc.
3060 Washington Road
Glenwood, Maryland 21738
301/854-6889
tjQtis.com

Abstract

Trusted Mach (TMach1) is a trusted operating system with a type extensible framework supporting a
client/sever architecture. The TCB implements the type framework and provides trusted system services
within it. The framework is extensible: untrusted client software can define and implement new types using
the same underlying microkernel mechanisms that the TCB uses to implement its types. To client software
there is no visible difference between objects implemented by the TCB and objects of untrusted application
servers. From a TCB modeling point of view, however, the difference between these two kinds of objects is
critical. The definition of the subjects and security-objects of the system extends the TCSEC paradigm to
encompass the system's extensibility. The paper presents an overview of TMach, a definition of its subjects
and security-objects and an account of the assurance of the system as related to the type-based client/server
architecture.

Keywords: Extensible, client server Trust, distributed systems, Mach, B3.

1 Introduction

Developers of the TCSEC recognized the importance of clearly identifying the set of subjects and objects
to be controlled by the TCB. This fundamental notion was derived from process-based architectures of the
trusted operating systems of the day, which were expected to consist of a monolithic security kernel and a
collection of trusted subjects. Subjects were closely tied to executing processes, and objects were containers
of information managed by the security kernel.

This foundational view of trusted systems is being updated by new and emerging client/server architectures
of microkernel-based systems. The microkernel basis allows multiple independent servers to implement
system services, while allowing the microkernel to implement only the most basic system mechanisms. The
microkernel/server architecture is inherently extensible, so that new servers can be added to implement new
services. Furthermore, these new services may be either system-level services or application-level services.

Modeling subjects and security-objects in the context of type extensible client/server architectures is a new
and critical aspect of modern trusted system development. The model must describe the security features
of the extensibility mechanisms. This report describes one approach to extending the TCSEC modeling
concepts to a trusted client/server system with secure extensibility that derives from the microkernel basis.

1.1 Basic Subject/Object Definition Then ...

In early trusted systems such as the Honeywell SCOMP and Multics systems, the TCB consisted of a trusted
kernel and a small collection of trusted processes. The security kernel created and managed all subjects,

trusted Mach and TMach are Registered Trademarks of Trusted Information Systems, Inc. (TIS)

83

which were simply processes executing on behalf of logged-on users. The security kernel also created and
managed all objects and enforced controls of access of them by subjects. Object were typically passive
containers of information, like memory segments and devices.

Subjects accessed objects only via the kernel, and the various kernel interfaces all rested on one mechanism—
a call instruction—which trapped to a kernel gate. Only by this mechanism could a process request that
the kernel perform for it some access to some object. Trusted processes used this same mechanism, the only
difference being that a trusted process might have some privilege which would cause the kernel to treat the
request differently than it would have if the request came from an untrusted process.

Subjects could communicate with one another by using shared security-objects (managed by the kernel)
such as shared memory segments, semaphores, etc. Each different mode of inter-subject communication
was modeled as a separate kind of security-object. These inter-process communication (IPC) objects were
storage objects just as were more persistent objects (e.g., directories and files), but were designed for more
efficiency in IPC.

These architectures mapped well with security models such as the Bell and LaPadula model and definitions
of subjects and objects corresponded closely with the definitions in the TCSEC.

1.2 ... And Basic Subject/Object Definition Now

In a microkernel-based trusted system, only the most basic system functions are implemented by software
executing in the privileged hardware state. The remaining trusted system functionality is implemented by a
collection of servers each of which executes as a process2. Many microkernels, including the Mach microkernel
which is the basis of TMach, do not provide sufficient functionality to implement subjects or security-objects.
The server TCB (the portion of the TCB exclusive of the microkernel) uses the microkernel's basic services
to construct subjects and security-objects.

This extensibility approach is enabled by the separation of the traditional kernel TCB into a microkernel
and servers. Extensibility can be structured by a type mechanism. In a type-based client/server system,
each server defines an abstract data type with a specific set of operations (or methods) defined for objects
of that type. Each server is the manager for all objects of the type(s) it manages. In order to use a service
based on some type, a client contacts the server that manages that type and sends requests to the server;
each request is for an operation on some object of that type. Within such a type framework, extensibility
takes the form of the definition of a new type and the addition of a server to manage objects of that type.
As a result of using this framework, clients interact with new servers in the same way that they interact
with existing system servers3.

Such a type-based approach to server extensibility provides a convenient framework within which to model
the subjects and objects of a trusted system. The TCB is separated into a microkernel and a set of trusted
servers which manage some fixed set of types. Adding new types and new servers must be modeled in such
a way that the extension, while adding untrusted type manager servers, nevertheless does not change the
subject/object model which defines the basic approach to the security of the system. In other words, new
types of objects (managed by untrusted servers) can not be new kinds of security-objects.

There are a number of subject/object modeling issues that must be addressed within a microkernel/server
architecture with type-based extensibility.

Trusted Servers are not subjects. The TCB servers are analogous to a kernel's process subsystem which im-
plements subjects by associating processes with user IDs defined by an authentication subsystem. Therefore,
the definition of subjects must carefully distinguish subject processes from the TCB process that implement

2In this context, we use the term process in a general way, to denote a domain of execution that is protected by the kernel yet
is separate from the kernel's privileged domain.

3This form of type extensibility is increasingly referred to as "object-oriented" [9]. The underlying concept of object oriented
design is that software is modeled as collections of cooperating objects. Object managers provide services in response to messages
from clients or from other object managers. In order for trusted systems technology to keep up with this new approach it will be
necessary for trusted systems design to be extended to meet this evolution in software design, development and analysis.

84

subjects.

TCB servers implement security-objects. When microkernel resources alone do not constitute security-
objects, the server TCB must build on microkernel resources to construct security-objects. The microkernel
provides primitive storage abstractions (e.g., memory and devices) which servers use to implement system
objects such as files. Therefore the definition of security-objects must be enhanced to account for security-
objects being managed not by the kernel but by TCB servers.

Both kernel and trusted servers offer the TCB interface. The servers use the kernel interface to implement
objects. However, the kernel interface is not hidden by the interface that the TCB servers offer. Because
kernel services are available to subjects, subjects can use the kernel services in exactly the same ways as
TCB servers, i.e., to implement objects. In other words, subjects can be non-TCB servers and can manage
objects. However, the set of kernel services available to subjects is restricted to a subset which has been
determined to be non-security-critical. Other, privileged, kernel operations are restricted for the use of the
TCB servers, and cannot be directly accessed by untrusted servers. Instead, untrusted servers call on the
TCB to gain TCB-mediated access to resources governed by kernel privileges.

Microkernel provides basic TCB interface mechanism. The existence of TCB servers also effects the basic
interface between subjects and the TCB. As in a kernelized system, subject processes trap into the micro-
kernel. Then, rather than always servicing the request in the kernel—as is done in a kernelized system—the
microkernel redirects some service requests to the appropriate component of the server TCB. Among these
server-implemented requests are both subjects' requests for access to security-objects and also subjects'
requests for access to subjects.

1.3 Where Do We Go From Here?

Each of these differences requires extensions to the traditional notions of subject, object and subject-TCB
interactions. This paper describes one effort at such extension, performed as part of the development of
Trusted Mach (TMach), a trusted system which has used TCSEC principles in the development of an
extensible, type-based system.

This paper will first present an overview of the TMach system in Section 2. Then Section 3 presents the
various issues pertaining to the application of TCSEC principles to TMach, including specific issues which
motivate extending the TCSEC definitions to encompass microkernel-based client/server systems. Having
laid this groundwork, Section 4 will then present an account of the way TMach addresses these issues by
defining subjects and objects in a manner consistent with the TCSEC, and yet inclusive of the extensibility
that is enabled by the microkernel-based, client/server architecture of TMach.

In making this presentation, subject-TCB interactions will be presented both from the point of view of
subject-object interactions and subject-subject interactions. There are fundamental distinctions between
these different views of TCB-interface usage, and these distinctions drive the different roles of three related
but critically different system abstractions: the kernel's port abstraction, the server TCB's IPC objects, and
a new kind of named object—the connection point—which is critical to modeling extensions of sets of types
of objects. Each of these three will be described, including the role of each in TMach's provision of secure
communication.

After the central presentation, Section 5 provides an analysis of the security of the TMach system given these
new definitions and describes the benefits achieved from this new point of view. Section 6 then discusses
extensions of TMach to a distributed system and points out the how the definitions of IPC objects contribute
to ensuring security in a distributed system. Finally, Section 7 presents summaries and conclusions.

2 TMach System Overview

Trusted Mach is a microkernel-based system with a client/server architecture, which has been developed
using an object-oriented design methodology. TMach is aimed at the B3 level of trust as specified in the

85

TCSEC and at the F-B3/E5 levels of the ITSEC. TMach is a trusted server software layer that runs on the
Mach microkernel. The TMach servers use the Mach microkernel to implement security objects and subjects,
to implement controls on the access of objects by subjects, and to implement mechanisms for supporting
policies such as subject identification and authentication.

The TMach system uses a paradigm for computation known as a client/server architecture. In the paradigm,
server processes provide services that are required by other processes, called clients, which request services
from servers. The client/server interaction is via a form of message-passing. A client requests a service
by sending a message to the server. The server performs the computation necessary for the request, and
sends back to the client a reply message which contains the results of the computation. For example, when a
TMach client requires access to data in a directory, the client sends a message to a TMach server component,
which obtains the requested data and sends it in the reply message. The use of message passing as the means
of client/server communication also facilitates distribution of processing.

The message-passing communication is provided by the Mach microkernel, which is the basis of the TMach
TCB. The microkernel provides the primitive services that the server TCB uses to construct subjects,
security-objects, the services based on interactions between them, and the access controls on those inter-
actions. This kernel/server architecture is illustrated in Figure 1. We first describe the kernel's primitive
services and then describe the various illustrated server components built on the kernel. We then discuss the
security mechanisms of the kernel and how the servers use them to implement subjects and security-objects.

2.1 Kernel Primitives

The microkernel provides an active process-like system abstraction, three passive container-like system ab-
stractions, and one primal mechanism—the port—that is interface to all abstractions and the microkernel
services provided through them. These five kinds of abstractions, or kernel-objects, are: multi-threaded
processes called tasks; threads of execution within tasks; regions of memory called memory-objects; devices;
and message queues.

For each of these five kinds of kernel-object there is a descriptor called a port. Ports have capabilities called
port rights. Possession of a send right to a port allows the possessing task to send messages over the port.
In the case of ports which are descriptors for tasks, threads, memory objects, or devices, the microkernel
receives each message and interprets it as a service request on the kernel-object to which the port refers.
In the case of ports which are descriptors for message queues, the microkernel enqueues each sent message,
which may later be dequeued by a task which holds the receive right for the port.

Ports, and messages sent on them, are the fundamental interface between tasks and the microkernel. Most
microkernel interface functions are operations on one kind of kernel-object, and these operations are per-
formed using the port that is the descriptor for the object. In many cases, the operation is implemented
as a message sent by the task on the descriptor port. For example, there is an interface for mapping a
memory-object, and this interface is implemented as a message sent on the port that is the descriptor for
the memory-object. The message-send operation is implemented via a trap mechanism.

Just as the port is the kernel's fundamental mechanism, part of the port mechanism is the kernel's primary
protection mechanism. Ports are used by name (actually an integer), but each task has a port name space
which is mapped by the microkernel in a manner analogous to virtual memory. A task may attempt to use
a port name, but the attempt will only be valid if the port name maps to an actual port. There will only
be a valid mapping if the task has obtained a right to the port. A task can only acquire a port right if the
right was contained in a message that the task received.4 Such acquisition occurs as a result of the following
sequence of events. Initially there is a port A which is a descriptor for a message queue. Task R has the
receive right for port A, and task S has a send right for port A. There is also a port B which task S has
a send right for. Then task T sends a message over port A, and includes a port right for port B; task R

4Actually, this is a simplification—there are a few other ways that tasks can acquire port rights—but a useful one since the
other methods also either involve the microkernel directly (a task can request that the microkernel create a new port and give
the task a port right for it) or also involve the use of other port rights (if a task acquires rights to a port that is a descriptor for
another task, the first task can get port rights from the second task).

86

UNTRUSTED CODE

APPLICATION TCB LAYER

Trusted Admin Utilities

Trusted Shell Utilities

Tape Server Printer Server

Audit Server

File Server

TMACH KERNEL

Figure 1: Trusted Mach Kernel/Server Architecture

87

receives the message, and the kernel updates R's port name space to have an entry for port B; task R now
has a send right for port B.

Because of the microkernel's port name mapping, the port mechanism has two powerful but simple conse-
quences. First, control over a task's set of ports is equivalent to control over the task's access to system
resources. Second, possession of a right to any one port has the potential use of gaining other port rights,
if any other tasks have a right to the same initial port and are cooperative in using it to send messages
containing other port rights.

2.2 TMach Server TCB

As shown in Figure 1, the server TCB is comprised of a number of trusted servers and some utilities. In
addition to using the kernel abstractions to build higher level abstractions, the TMach TCB servers also use
the abstractions to protect themselves from each other and from non-TCB code.

Access mediation in the TMach system is centralized in the Root Name Server (RNS). All named entities
are items in the TMach name space. The RNS manages the name space and holds all security-relevant
information about the named items. The RNS makes all mediation decisions based on the TMach system
security policy. While all the security-relevant information about an item is held by the RNS, the specific
semantics of an item are implemented, and the contents held, by a different server called an item manager.
There are several types of named items in the TMach system. Currently TMach provides trusted item
managers or servers for directories, files, and various multilevel devices. In addition to item mangers, audit
and authentication services are each provided by a separate server. The other TCB servers shown in the
architecture diagram provide specific services related to privileged kernel operations: the host control server
for management of hardware configuration; the device server for management of physical devices; and the
subject server for creation of tasks with arbitrary security ID's. .

In addition, the TCB contains entities which are not actually servers but collections of programs with
a common purpose. Specifically the Trusted Shell Utilities (TSH) and the Trusted Administrator Shell
Utilities (TASH) are collections of programs used to configure and administer the TMach system.

The final layer in the TMach architecture is composed of the Non-TCB software. This layer provides
the user-level interface, also called the operating system (OS) personalities. These non-TCB servers use
the personality-neutral TCB servers to provide their own OS-specific services. Currently two specific OS
personalities (POSIX and DOS/Windows) are being designed for the TMach system, but any number of
other personalities are possible.

2.3 Kernel Security Features

The microkernel does not provide sufficient functionality for kernel-objects to be security-objects and sub-
jects. None of the kernel-objects has any security attributes (e.g. ACL, sensitivity label, integrity class),
so there is no basis for access control. With respect to security-objects, it is entirely up to the server TCB
to build on kernel-objects, both by using them to construct higher-level abstractions which include security
attributes and by using these attributes to implement access controls. The server TCB uses the kernel
privilege of physical device access to securely store object data including security attributes.

With respect to subjects, however, the task kernel-object has two features which assist the server TCB in
basing subjects on tasks. These two features of Mach tasks are process isolation and the security identifier.
The Mach task is a familiar process-like abstraction, each task having a distinct virtual address space.
The kernel uses privileged hardware features to implement virtual memory and to prevent any task from
tampering with other tasks' virtual memory. In addition, each Mach task has its own protected port name
space. As a result of using the familiar mechanisms that underly subject definition, Mach implements process
isolation and extends the notion to include the management not only of memory but of ports, which are the
critical access mechanism for all system resources.

The security identifier (or secID for short) is the second microkernel mechanism that supports the server

88

TCB's implementation of subjects. The secID is an attribute of each task. The microkernel provides the
secID as an uninterpreted value which is intended for server-level use.5 Servers can interpret secIDs in
whatever manner is useful at the server level. The microkernel merely maintains an immutable task-to-
secID mapping, which is set during task creation by the creating task for the created task. In addition to
this task-secID association, the microkernel performs one other function which relates secIDs to messages
that are enqueued on message queues: when a task sends a message on a port for a message queue, the kernel
stores the sender's secID along with the message; then, when a task receives the message, it can determine
the secID of the sender.

This sender-secID tagging is critical for security in any Mach system. In Mach, all non-kernel computation
takes place in tasks, and all interaction between tasks is accomplished by means of ports. Therefore, ports
are the means of interaction between subject tasks and the tasks that comprise the server TCB. As a result,
sender-secID tagging enables the server TCB to establish the identity of subjects, as described further below.

2.4 Subject/Object Abstractions

TMach subjects are based on Mach tasks. A subject task is created by the TMach server TCB when a
logged in authenticated user requests creation of a session6. The server TCB calls on the microkernel to
create the task and specifies the secID. The value of the secID is a token that represents the various security
attributes of the subject: a user identity, groups, sensitivity level, etc. The ability to thus specify the secID
of a child task stems from a kernel privilege7 which is held solely by the server TCB. Because subject tasks
lack this privilege, any child tasks inherit the secID from the parent task. Thus, for each session, there is a
task or group of tasks all with the same secID corresponding to the user.

The secID is used by the TMach server TCB to mediate and enforce access control decisions. This usage is
based on the kernel's service of tagging each message with the secID of the sending task. Mach messaging
is the interface between any task and the kernel, and between any task and other tasks, including the tasks
that comprise the server TCB. Thus, any subject task request of the TCB is a message tagged with the

subject's secID.

TMach security-objects are implemented by the TMach server TCB, using Mach devices, message queues,
and memory-objects. Each TMach security-object has a name and a type. The name represents an item
in the TMach name space, which is implemented by the Root Name Server (RNS). The RNS maintains a
mapping between each item and its type, and each type and its item manager.

All named security objects are items of a type managed by a TCB server which acts as a trusted item manager
for the type. Each TCB-managed type is a specific kind of security-object. Within the TMach hierarchical
name space, all internal nodes are directory security-objects. Each external, or "leaf", node is an item of one
of several types. File security-objects provide general purpose storage. Symbolic link security-objects provide
pointers within the name space. Type security-objects are items which describe a type associated with some
other items. There are various types of device security-objects which are implemented by the server TCB's
use of device kernel-objects coupled with server-implemented access controls. There may also be other types,
types which are not managed by the TCB. Every item of any non-TCB-managed type is a security-object
called a connection point. Finally, there is one kind of TMach security-object which is unnamed: the IPC
object. The core of this paper is Section 4's description of connection points, IPC objects, subjects and
non-TCB item managers.

In order to gain access to a named security-object, a subject sends a request message to the server TCB.
The RNS is the destination of all such messages. The RNS performs all access mediation and is the sole
source of access to every security object. The request includes the name of an item and the access mode

5The kernel itself uses secIDs in one way, to enforce access-control decisions on memory-objects, in the same manner that
server-level item managers do (see below). This checks does not involve interpretation of the secID, but rather is a check on
equivalence of secIDs.

6 A user can create multiple sessions each potentially of a different security level.
7Kernel privileges are represented as ports. For a task to successfully call a privileged kernel interface, the task must have a

port right for the port representing the privilege appropriate to the interface.

89

requested. The RNS "resolves" the name, i.e., determines which specific item is named and retrieves from
stable storage the attributes of the item, among these attributes are security attributes, e.g., a label and an
ACL, that are half of the input to the access mediation function. The other half are the security attributes
of the subject requesting access. These are obtained from the secID tag on the request message. The RNS
extracts the message secID, expands it to the corresponding full set of attributes and uses these subject
attributes to decide whether to grant access in the requested mode.

If access is approved, the RNS creates a message queue. The port of the message queue is used as a descriptor
for the subject's access to the requested object. The message queue itself is used as the communication
medium between the subject task and the item manager. The RNS gives the port's receive right to the item
manager and gives a send right to the subject task. As a result, the subject task and item manager can then
interact in client and server roles, because the the subject task (client) can send operation requests to item
manger (server).

Trusted item managers have a security function that is also dependent on the secID functionality of the kernel.
After access to an item is granted, the item manager receives operation requests on the item descriptor port.
However, because rights to the port can be passed among tasks, the item manager checks the operation
request message and honors it only if it originated from the subject to which the RNS granted access. This
check is a comparison of the secID of the original access requester and the secID tag of the operation request
message. A similar check is made between the access mode required for the operation and the mode of access
granted by the RNS: when the RNS sends the item descriptor port right to the manager it also includes the
requester's secID and access mode.

Therefore, item managers enforce the rules that a user task with a send right to an item descriptor port can
only use that port to access an object if the task has the securitylD prescribed by the RNS, and only if the
requested operation's access mode was granted by the RNS. The RNS's mediation and the item managers'
enforcement are the central mechanisms of access control in TMach.

Note that multiple tasks can share a secID. As described above, a user's original task can spawn child tasks
with the same secID and hence the same single sensitivity label. All of these tasks form a task group. When
access is granted to one task in a task group other tasks in the task group can use the access: the original
accesser can send an item descriptor port right to another task in the task group, the other task can use the
port to send an operation request message, and the item manager will honor the request because it has the
correct secID. Thus, TMach's subject is the task group. Because each session is assigned a distinct secID,
each session's task group is a distinct subject.

This feature of TMach's subject definition and access control mechanisms allows for a potentially powerful
multi-programming approach to application development. Client applications can use multiple co-operating
tasks, rather than being required to either have the entire application reside in one address space, or have
separate tasks get separate access to shared objects.

3 Issues in Applying TCSEC

Having presented a basic picture of the subjects and objects of TMach, it should be clear that a new view is
required to provide a more complete and detailed picture. The new view of modeling subjects and objects
in TMach is an extension of the TCSEC view of subjects and objects as embodied by many of the early
systems, which many view as definitive implementations of the TCSEC concepts pertaining to modeling
of subjects and objects. We have extended the TCSEC view to include a trusted system that has been
designed for type extensibility mechanisms which allow the system to be extend without changing the TCB
and its interface. Before describing this extended view and completing the picture of TMach subjects and
objects, there are a few important distinctions to be made. These distinctions are between the various kinds
of interfaces in TMach.

In a kernelized TCB, the main kind of interface is the kernel's interface to subjects. This interaction is also
present in TMach, as the microkernel's interface to tasks, both to subject tasks and to TCB tasks. However,
because of the microkernel/server distinction, the TCB interface consists not only of the kernel interface,

90

but also of the interface between subjects and the server TCB. The server TCB interface is message-based,
using the microkernel mechanism of message queues that can be shared by tasks, e.g., a subject task and a
TCB server task.

This same message mechanism is also used for a third major interface, the interface between a subject and
another subject. The principle distinction of the subject-subject interface is that the server TCB mediates
connections between subjects.

Because the server TCB mediates subjects' use of the kernel's communication mechanism, subjects' interface
to one another is via a server TCB interface for requesting access to a communication medium to another
subject. This request, being the same sort of request as that to access objects—and having the same kind of
mediation—is in essence a request by a subject to access a subject. However, to avoid modeling a subject as
an object, there is a new security-object, the IPC object which represents the set of resources of one subject
that another subject can access. From a high-level conceptual view each IPC object is the passive portion
of a subject. The next section gives more details on the use of IPC objects to model access of one subject
to another subject's resources.

In an extensible client/server system, perhaps the most significant modeling concepts center around modeling
subject-subject communication. Connection points are used to model such interaction in an extensible
system. The relationship between the two kinds of security objects, connection points and IPC objects,
is the main topic of the remainder of this paper. A key concept in this relationship is the communicating
group. A communicating group is a group of subjects that can communicate among one another. Each subject
initially is alone in a communicating group, but through TCB-mediated access requests the subject can get in
communication with another subject. As a result the two subjects become part of one communicating group.
If either or both subjects were previously in communication with other subjects (i.e., were part of a larger
communicating group), then all of these other subjects are also part of the newly merged communicating
group. This transitive group membership is intended to model the fact that when one subject communicates
with two other subjects, each of those other two is potentially in communication with the other via port
rights that the first subject could pass to the other two.

The next section uses these concepts to present a new view of subjects and objects that can account for
subject-subject interactions, specifically those which are interactions between a client subject and a server
subject which implements objects that are not security objects. This situation arises when the system is
extended with new types of objects and managers for them. Because all processing occurs in the framework
of client requests to object managers, it is possible to develop a model of subject/object interaction which
can be extended to include interactions between untrusted applications and objects. Constructing such a
model of communication has allowed us to extend the abstract concepts of subject and object closer to the
application level. We believe that this communication model will allow application designers to close the
gap between minimal TCB security primitives and more complex application needs, and to do so in a way
which can be shown to be secure.

4 A New Point of View

Given the basic definition of subjects and objects in TMach, the overall picture must be rounded out by
consideration of two related questions, which concern the areas of TMach that are modeled most differently
from early TCBs. These questions are: How are subject-subject interactions modeled? How are subject-
object interactions modeled, when the object is an item that is not managed by the TCB? These questions
are closely related, because the only means of interaction between subjects is via non-TCB-managed items.

Before describing the details of subject-subject interaction, however, we must first understand the initial
state of a subject, and the TCB's controls over transitions from the initial state.

91

4.1 Initial State

Initially, a TMach subject is simply a task which cannot contact any other subjects and is not accessing any
security-object8. There are two types of action an initial subject can take in order to use any other system
resources than the ones it was created with. First, a subject can always make microkernel calls. Secondly,
a subject can contact the server TCB via the kernel's message-passing service.

By contacting the microkernel, the subject can gain more primitive resources. However, doing so only
adds to the primitive resources that comprise the subject. These additions are examples of the subject's
modification of its own IPC object. However such IPC object access does not permit any new object access
or subject contact. The following are examples of a subject modifying its IPC object: a subject can call
on the microkernel to create other tasks or threads which become part of the same subject; a subject can
call on the microkernel to create memory-objects, which adds to the virtual address space of the subject; a
subject can call on the microkernel to create message queues, though with no other subjects with rights to
the messages queues these are little more than extensions to the subject's address space; finally, a subject
could call on the microkernel to access a device, but such requests would be disallowed because device access
requires a privilege that the server TCB holds and does not give away to subjects.

Other than these kernel interactions, any subject activity must come about as a result of requests to the
server TCB. Each subject initially has only one port right, a send right to a port for a message queue.9 The
TMach Root Name Server holds a receive right for this port. Therefore the port can be used by the subject
to send request messages to the TCB. As described in Section 2, the Root Name Server (RNS) is the sole
point of access for all objects, and a successful access request results in the client acquiring a send right to a
descriptor port for the requested object. Because all system resources are accessed by subjects in the form
of security-objects (with the above-described exception of kernel resources which only augment the subject
itself), these object descriptor ports are the sole means of access to resources.

Object access is only possible via the RNS. Therefore, the RNS, together with the managers of the objects to
which the RNS has granted access to a subject, has the ability to control accesses by that subject. However,
correct control depends on the correct management by the trusted system servers of the ports to which a
subject is given rights. The rules for correct control can be simply stated. First, there is a rule of correct
access granting: for the ports over which the RNS receives messages, the RNS only handles object request
messages, and only replies with object descriptor ports when access control checks were successful. No
other requests are honored, and no other ports are given to subjects 10. Second, there is a rule for correct
continuing access: trusted object managers only use item descriptor ports for providing access to the single
object that the port is the descriptor for, and access is only provided if the requester is the same subject
that originally opened the object.

Thus far, we can see that a subject may open objects and get descriptor ports, but that these ports are only
useful for communicating with the TCB, i.e., the trusted servers that manage the security objects which
the subject is accessing. Using the above mechanisms for communication with the RNS and trusted object
managers, a subject never acquires any port rights that will allow it to communicate with another subject.
However, the TCB does provide a way for subjects to contact one another. Such contact involves an object
that is of a type that is not managed by the TCB. Because TMach's type system is extensible, it is possible
for a subject to define a new type and to become the manager for that type. Then, when another subject
requests access to an object of the new type, two port-related actions occur: the requesting subject receives
the usual send right to the descriptor port; and an untrusted object manager receives the receive right to
the descriptor port. There is a critical distinction in this mechanism in that the object manager is a subject
(rather than a TCB component), the object manager and requester are two subjects in communication with
each other via the port to which they share rights.

8Actually the subject is created with access to its own internal state which is modeled as an IPC object.
9Actually, a task does have other port rights (such as for the port that is the descriptor for the task itself), but these do not

effect the subjects' ability to contact other subjects.
10The RNS is also an object manager for some types, e.g., directories. In this context, we distinguish between the RNS— the

central point of access and mediation— from the object manager for directories. The object manager components of the RNS are
treated in exactly the same way as object managers that are separate servers.

92

4.2 Connection Points

However, this subject-subject communication raises some issues that must be addressed. Recall that each
TCB-managed item is of a type that corresponds to one kind of security-object, e.g., a file item is a file
security-object. However, what kind of security-object is an item of a non-TCB-managed type? A TMach
system could be extended to have several non-TCB-managed types, e.g., mailbox, calendar, database. How-
ever, none of these types is a new kind of security-object. From the application point of view of the system,
an item of some new type (e.g., calendar) is not fundamentally different from an item of system type, e.g.,
file. From the TCB definition point of view, however, there is a critical difference: an untrusted item man-
ager cannot be relied upon to correctly implement the rule for correct continuing access described above in
Section 2.4.

For example, there could be two non-TCB-managed items of the same type, one with an ACL that only
allows reading and writing by one user, and another object with an ACL that only allows reading and writing
by another user. When a client opens the first item for write, the RNS will check the ACL to ensure that
writing is only allowed by the authorized user, and only then is the untrusted item manager involved. When
a client opens the second item for read, a similar procedure is followed. However, the when the second client
does a read request, the untrusted item manager is free to return data that was previously written on the
first item, to which the second client is denied access by the ACL.

Clearly, such misbehavior is not desirable for a useful item manager that operates as expected in the type-
based client/server framework. However, the critical point for TCB definition is that the TCB must assume
that such misbehavior is possible.

At this point, we are now ready to address the question of modeling subject-object interactions for non-
TCB-managed items. For purposes of TCB subject/object definition, all items of all non-TCB-managed
types are considered to be security-objects of one kind: connection point. Each connection point object is
simply an item which can be opened by a subject for the purpose of communicating with another subject.
For each non-TCB-managed type, all items ofthat type are connection point security-objects, but each is a
different name for the capability to contact the same subject, the type's item manager.

Connection points are different in one important way from all other named objects. All named security
objects including connection points have in common data such as ACL, label, modification date and time.
In addition each other security object of TCB managed type has type specific data; for example, a file has file
contents; a type object contains data about operations and access mode. However, connection point objects
contain no further data. Connection points are security objects which model items that are not managed by
the TCB. Thus, from a modeling point of view there is nothing more to be said about these objects. Yet,
from an application point of view these type specific contents of the object are managed by the untrusted
item manager.

4.3 IPC Objects

Now that we have described the mechanism for subject-subject communication (non-TCB-managed items)
and also explained its consequences for modeling objects (connection points), we can complete the account of
TMach's subject and object definitions by considering how to model these subject-subject interactions. The
TCSEC paradigm does not allow for direct subject-subject interactions. Rather, subject-subject interactions
are modeled by means of some intervening object. Therefore, in TMach, subject-subject interactions are
modeled in terms of a kind of security-object called an IPC object.

As mentioned in Section 3, the IPC object is used to model the passive part of a subject, its state, which
another subject can access. More specifically, an IPC object is the sum of the states of all the tasks that
comprise a subject. The state of each task is the set of microkernel-objects it can use: memory objects,
message queues, threads, and tasks; each of these is represented by a port to which the task has a right.
In addition to ports, the other part of a tasks' state is its virtual address space, which allows a task to
access memory directly without using a port as a descriptor.11 Therefore, in terms of kernel mechanisms,

"Memory is the exception to the rule that all kernel resources are accessed via a port. Once a memory object has been mapped

93

the content of an IPC object is a set of memory regions and a set of port rights, each of which is a descriptor
for a kernel-object accessible to some task in the subject to which the IPC object corresponds. With regard
to subjects, each IPC object represents the whole of one subject's operational environment—essentially its
virtual address space and port name space—that can be effected by another subject.

Because IPC objects are security-objects of TMach, the definition of security-objects must include an account
of the mechanisms and modes of access to IPC objects. All other kinds of TMach security-objects are accessed
initially by opening the named item that corresponds to the security-object; subsequent access is via the
client/item-manager interface of the type of the item. Creation and deletion are also accomplished via item
open and management interfaces.

IPC objects, however, use different mechanisms than named security-objects. All IPC object operations
(create, access, delete) are side-effects of other operations. No IPC-object operations are undertaken by
reference to the IPC-object itself; in fact, there is no name by which to reference an IPC-object. An IPC
object is created each time a subject is created. The IPC object is destroyed along with subject, i.e., with
the destruction of the last task of the subject. There is only one access mode for IPC objects: all accesses
permit arbitrary use and modification of the IPC object.

Although such arbitrary access is possible in principle, the access is in fact constrained by the subject
associated with the accessed IPC object. If the accessed subject is willing to pass all its port rights to the
accessing subject, then complete access will be possible. On the other hand, if the accessed subject passes no
further port rights, then access will be limited to sharing the message queue represented by the port right,
the sharing of which was established during an open of a connection point.

There are two ways that access to an IPC object is granted. In the first case, each subject is granted access
to its associated IPC object when the subject is created. Subsequently, the subject can access the IPC object
in a variety of ways, by accessing memory or any kernel-objects to which a subject's tasks have access, or by
creating kernel-objects, or by destroying any kernel-objects to which the subject's tasks tasks have access.

The second method of IPC object access occurs when a task of one subject acquires a port right to a port
for which another task (of another subject) already has a port right. The canonical example occurs during
an open operation on a connection point. As described in Section 4.1, rights to the same port are given to
both the opening client and the item manager associated with the connection point. Thus the subject M
(of which the item manager task is a part) acquires access to the IPC object associated with the subject of
which the client task is a part, similarly for the client's subject and M's IPC object.

Given this initial access, each subject has the discretion to expand the amount of accessible resources by
passing further port rights in addition to the single initially shared port. Because the initial port sharing
is mediated by the TCB, and because any subsequent additional port sharing is discretionary, we can see
that IPC objects model the two salient features of inter-subject interaction in TMach: first, any established
communication has the potential to be expanded beyond the original shared port; second, every original
port sharing is mediated by the TCB, and mediated according to a policy that includes for the possibility
of such expansion.

This expansion of access is related to the transitive nature of IPC object access. We have already seen that
the canonical method of IPC object access is via an open of a connection point, when the client and manager
obtain access to each other's IPC objects. All other IPC object accesses also occur during connection point
opening, and these other kinds of access are transitive. To understand the transitive nature of IPC object
access, recall that an item manager can have potentially several clients. Each client, furthermore, may be
in contact with other managers, and so forth.

The complete network of inter-communicating subjects forms a communicating group. Each time a con-
nection point access is approved by the TCB, the communicating group of the client is merged with the
communicating group of the manager. The client's and manager's subjects gains access to each other's IPC

into a task's virtual address space (an operation that uses the memory object's descriptor port), the task has the usual sort of
virtual memory-mapped access to the region of memory associated with the memory object. Direct memory access is of course
necessary in practice, but can be considered an optimization of memory object read and write operations which require use of the
memory object's descriptor port.

94

object; but every subject in client's communicating group gains transitive access to the IPC object of every
subject in the manager's communicating group, and vice versa. As a result, every subject in the merged
communicating group has access to the IPC object of every other subject. This transitive closure of access
models the potential of every task to share all its port rights with every task it communicates with, and for
those tasks to further pass on the port rights.

With regard to security, the critical point is that each IPC object access occurs during communicating group
merger or subject creation, which is performed by the TCB only after passing access control checks for a
connection point. Mandatory security is maintained by ensuring that a subject can only join a communicating
group comprised of subjects of the same level. Therefore the relationship between IPC objects and connection
points can be summarized as follows: for each non-TCB managed type, all items of that type are connection
point security objects, each a different name for the capability to access both the type's item manager's IPC
object and all the IPC objects of the subject in the item manager's communicating group.

5 Security Considerations

The above sections have described the subjects and security-objects of TMach and the server TCB's use
of kernel mechanisms to implement them. This section concerns the assurance that the system enforces its
security policy. Formal assurance is addressed by a formal model [6] of the system's entities and rules of
operation. After summarizing the model entities, this section addresses design assurance by describing how
TMach implements unbypassable security mechanisms within a microkernel-based client/server architecture.
Next we address architectural assurance by discussing how this architecture has benefits that enhance the
assurance of the system's implementation of the security mechanisms.

The TMach subject is a set of tasks of one session, which therefore have the same mandatory and discretionary
security attributes. The server TCB encodes these attributes in a token which is stored by the microkernel
in each task's security ID attribute. TMach implements several kinds of named security-objects. The names
are derived from a hierarchical name space. Each item in the name space has type. Some types are managed
by the TCB: directories, files, symbolic links, types and various types of devices. One kind of security-
object models each of these types. One other kind of security-object, the connection point, models all other
types, i.e., those that are not managed by the TCB. A subject's access to all named security objects is
mediated based on the subject's security attributes (encoded in the security ID which the kernel affixes to
every subject's requests) and the object's security attributes (maintained by the Root Name Server). The
remaining security-object, the IPC object, models the interactions between subjects that result from clients
accessing items of non-TCB-managed types. IPC object access is a side-effect of connection-point access.

5.1 Unbypassable

The unbypassability of the TMach TCB is built up from hardware mechanisms, kernel services implemented
using those mechanisms, and server TCB access control functionality built on kernel services. Because only
TCB software runs in the most privileged hardware state, it has sole access to hardware resources and
services, including sole control of physical memory. The kernel uses these hardware mechanisms to protect
itself and to implement the virtual memory mapping and port name mapping mechanisms that protect tasks
from one another.

The RNS is the server TCB component that mediates access. The RNS runs not in the kernel's privileged
hardware state, but in a task. Therefore, in addition to the demonstration of the kernel's unbypassability
due to hardware use, there must be a higher-level demonstration of the RNS's unbypassability, i.e., that
subjects may obtain access to resources only after appropriate mediation by the RNS. Each TMach subject
has a well-defined initial set of resources and available services, this initial state ensuring that additional
resources may only be obtained after RNS mediation.

A subject's use of microkernel interfaces is also an issues with unbypassability. As described in Section 4,
subjects initially have only two capabilities: communication with the kernel via the hardware trap mechanism

95

and use of the kernel port mechanism to communicate with the RNS. Therefore, a subject initially can contact
no other task than the RNS. Subsequently, subjects obtain resources only after RNS mediation. Subjects
can, nevertheless, contact the microkernel without going through the RNS. However, microkernel services
cannot be used to access objects without RNS involvement. Demonstration of this point corresponds to the
services of the kernel. A subject can manipulate its IPC object (create child tasks with the same security
ID, manipulate its threads, or create new threads, use existing or create new ports and memory objects)
but these operations effect the state of the subject, but do not effect any other resources mediated by the
RNS. The remaining kernel service is for devices, but the direct access to devices is controlled by a kernel
privilege which the TMach TCB reserves for its own use. In TMach, subjects do not have this privilege and
hence cannot obtain device access from the kernel.

The microkernel provides three privileges, each represented by a port. In order for privilege operations to
succeed the caller must have ports rights to the appropriate port. The first privilege is to devices, represented
by the device port; next is host control represented by the host control port; and the third is the ability to
create tasks with arbitrary security ids, which is represented by the host security port.

Because of TMach's multi-server architecture, communication between the servers is also a critical part of
the basic security mechanisms. TCB servers must be able to accurately identify one another. For example,
item managers enforce access decisions communicated by the RNS, so item managers must be able to ensure
that such access directives genuinely come from the RNS. The microkernel's port mechanism provides such
identification. During bootstrap, TCB server tasks are created with rights to ports shared only by TCB
servers. By only using these ports and by never passing rights to them, TCB servers ensure the authenticity
of other servers.

The kernel's secID service is also the foundation of access control. Subjects can only contact the server TCB
via the kernel's IPC service. Therefore, all subject requests are tagged with secIDs by the kernel, and the
TCB servers use the secID for access control. The other key mechanism for access control is the server TCB's
storage of item security attributes, and of type specific information specifying for each operation what access
mode(s) are required. These security-critical data are TCB internal data inaccessible to subjects.

All these fundamental mechanisms extend simply when the system is extended with untrusted item managers.
As with all items, the server TCB maintains object security attributes, whether or not the item manager
is trusted. Operations on items of non-TCB type are treated by the TCB as always requiring read-write
access, because access to non-TCB-managed items is really access to the subject that is the item manager.
Access to the subject allows arbitrary communication with that subject, so RW access modes are needed to
ensure that only subjects of the same label can communicate.

Of course, an untrusted item manager may correctly implement a type and operations on its objects. Each
item may be correctly implemented as a distinct object with its own distinct content. The TCB cannot
assume this, and this is the reason for treating non-TCB-managed item access as subject access rather
than object access. However, if an untrusted item manager does correctly implement the access control
mechanisms that trusted item managers do, then its objects will be appear to applications to be very similar
to the objects of the TCB.

5.2 Benefits

The TMach system design is based on extensive use of layering, modularity, abstraction and data hiding.
Layering increases assurance by dividing the system into a collection of layers, from the most primitive layers
to the highest or least primitive layers. Within each of the abstract layers of the system architecture (i.e,
kernel, servers, OS personalities), each of the layers is further subdivided. Modularity increases assurance
by grouping together like functions into design and implementation units. As with layering, there are several
levels of refinement of modularity in TMach. First there are the layers of the system as a whole (non-TCB,
Server TCB, microkernel TCB) then each of these is further decomposed into subsystems and these are
decomposed into individual modules. The layering and modularity along with the object oriented design
of TMach provides abstraction and data hiding by providing progressive levels of interfaces and services.
The principle of least privilege also plays an important role in TMach. At the lowest layer each module

96

in TMach is designed to perform its intended function and no more. Further, modules and layers control
the export of privileges and services to only those needed by higher layers which can be shown to be safely
exported. Finally, through the use of domain separation between trusted servers and between servers and
the microkernel, the concept of least privilege is enforced throughout the system. All of these combine to
provide increased assurance that the system enforces its security policy.

The TMach architecture, with its extensible type-based client/server design, presents many advantages. As
we have seen, the basic abstractions of subjects and objects have been carefully constructed to provide
extensibility. Because of the extensive use of layering, modularity, abstraction and data hiding within the
context of an extensible type-based model of operation, an untrusted server for some new type of item can
be introduced without effecting the basic definition of subjects, objects and the rules for secure interactions
between them.

Along with extensibility comes flexibility. All access mediation in TMach is performed by the RNS, and all
mediation computation is performed by one module that compares subject and object security attributes.
As a result it is possible to replace the RNS's mediation module with some other mediation module which
performs different or additional security policy mediation. The particular security policy enforced by the
RNS is independent of the client/server design and the basic rules guiding subject-object and subject-subject
interactions.

Finally it is important to note that Mach, and correspondingly TMach, has been designed with portability
as a goal. The Mach microkernel encapsulates all machine dependencies into a few specific subsystems.
The microkernel is a machine dependent base which isolates non-kernel software from the idiosyncrasies
of differing hardware bases. Only these specific microkernel subsystems require modifications for a new
hardware base. This approach is essential for meeting the goal of portability. TMach server software has no
knowledge of hardware features other than those provided by the the microkernel and, therefore, need not
be modified when TMach is ported to new hardware. Because the security objects are constructed by the
server TCB layer, rather than the microkernel, security object abstractions are also portable.

Flexibility and extensibility have benefits for re-evaluation. Conscious attention to transportability and
expandability in a trusted system context will in itself make re-evaluation easier and provide greater assurance
in the trustworthiness of the system by forcing a modular design with narrow, well defined interfaces

6 Application to a Distributed System

TMach's subject/object definition is easily adapted to fit a distributed trusted system. The Mach microkernel
itself was designed for distributed functionality, with an approach ideal for high-assurance systems. The
microkernel itself is minimal, and manages only local hardware-based resources; distribution functionality
is handled by a separate component that runs in a server rather than being part of the microkernel. This
additional server provides a distributed service with the same interface and functionality as the microkernel's
IPC service based on ports and message queues. This distributed IPC server allows for messages to be sent
between tasks on different hosts in a distributed system. Message senders and receivers use exactly the same
port mechanism as with local IPC, and in fact they need not be aware whether other tasks are local or
remote. This property is referred to as the transparency of IPC in a distributed environment.

Because the port is the interface to all Mach microkernel services, distributing the port mechanism is all
that is required to distribute all microkernel services. Likewise, because all of TMach's named security-
objects are accessed via item descriptor ports, distributed IPC also suffices to provide distributed access to
named objects. As for subjects, access to subjects is via IPC objects, which consist of a set of ports; again,
distributing the port services suffices to provide distributed access to IPC objects.

Other than ports, secIDs are the other security-relevant mechanism relevant to distribution. Because access
control depends on interpretation of secIDs, each host in a distributed system must interpret each secID
the same way. This can be accomplished by cooperation between the Subject Servers—the Subject Server
is the TMach component that handles the mapping of secIDs to security attributes—of the various TMach
nodes in a distributed system. Correct message secIDs also depend on remotely originating messages being

97

locally delivered with the secID of the actual remote sender, rather the secID of the distributed IPC server.
Therefore, the distributed IPC server is the sole holder of a kernel privilege that allows it to set the message
secID of messages it sends.

Server-to-server cooperation is based on communication via distributed IPC. Distributed IPC enables inter-
host cooperation between various servers. For example, the set of Root Name Servers can cooperate to
provide a global name space, and item managers can cooperate to provide object replication for high avail-
ability, fault tolerance, and locality. The Triad project is currently developing a distributed TMach system
that combines these features with support for real-time applications.

7 Conclusions

This paper has presented an overview of the TMach system and a number of issues pertaining to the
application of TCSEC principles to TMach, including specific issues which motivate extending the TCSEC
definitions to encompass microkernel-based client/server systems. Having laid this groundwork, we then
presented an account of the manner in which TMach addresses the issues by defining subjects and objects in
a manner consistent with the TCSEC, and yet inclusive of the extensibility that is enabled by the microkernel-
based, client/server architecture of TMach.

Modeling subjects and security-objects in the context of type extensible client/server architectures is a new
and critical aspect of modern trusted system development. The model must describe the security features
of the extensibility mechanisms. This report described one approach to extending the TCSEC modeling
concepts to a trusted client/server system with secure extensibility that derives from the microkernel basis

As was discussed in Section 5.2, extending TCSEC modeling concepts to encompass a type-based client/server
extensible system like TMach has many advantages. The primary advantage is a secure approach to adding
application specific extensions through the use of new non-TCB servers. This approach rests its security
on the modeling of subject to subject communication. While some of the modeling concepts may introduce
a degree of complexity, we believe that the increased assurance to be gained from type based extensibility
easily offsets this complexity.

As trusted client server architectures become more prevalent we believe that there will be increased need for
abstract security modeling concepts which can encompass type based extensibility.

References

[i Trusted Mach System Architecture, TIS TMach Edoc-0001-93B, Trusted Information Systems, Inc., 24
May 1993.

Accatta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., and Young, M., Mach: A
New Kernel Foundation for UNIX, Proceedings of USENIX, July 1986.

Trusted Mach Philosophy of Protection—DRAFT. Document No. TIS TMACH Edoc-0003-94A

Department of Defense Trusted Computer System Evaluation Criteria. Technical Report DOD 5200.28-
STD, DoD, December 1985.

Information Technology Security Evaluation Criteria, technical Report 1.2, Department of Trade and
Industry, June 1991.

A Mathematical Model of TMach. Technical Report TIS TMACH Edoc-0017-93A, Trusted Information
Systems, Inc., December 1993.

Trusted Mach System Architecture. Technical Report TIS TMACH Edoc-0001-94A, Trusted Informa-
tion Systems, Inc., August 1994.

D. E. Bell and L. J. LaPadula. Secure Computer Systems: Unified Exposition and Multics Interpreta-
tion. Technical Report MTR-2997 Rev. 1, MITRE Corporation, Bedford, MA, 1976.

98

[9] Booch, Grady. Object Oriented Design With Applications. The Benjamin/Cummings Publishing Com-
pany, Inc., Redwood City, CA, 1991.

99

THE NEW ALLIANCE: GAINING ON SECURITY INTEGRITY
ASSURANCE

By

Rene' H. Sanchez
Rockwell Space Operations Company

AIS Security Engineering and Operations
600 Gemini, R11A

Houston, Texas 77058
713-282-4589 FAX: 713-282-4922

E-mail: rhsanche @ rsoc.rockweII.com

and

Donald L. Evans
UNISYS,

Government Systems Group, Space Systems Division
Mission Operations Directorate AIS Security Engineering Team

600 Gemini, U06b
Houston, Texas 77058

713-282-4050 Fax 713-282-4575
EMAIL: dlevans@rsoc.rockweIl.com

Introduction
As the complexity of today's distributed computing environments continues to evolve
independently, with respect to geographical and technological barriers, the demand for a
dynamic, synergistically integrated, and comprehensive automated information systems
(AIS) security control methodologies increases. Such business environments have
introduced significant opportunity for- process reengineering, interdisciplinary synergism,
increased productivity, profitability, and continuous improvement. With each
introduction of a new information technology (IT), there exist the potential for an
increased number of threats and vulnerabilities which together comprise total risk. This
is the level of risk that a management team must consider as an added cost of doing
business. These costs may therefore be realized in the form of systems failure and loss of
critical data. And with respect to mission and/or life critical systems, these costs may be
too great to recover. It is in this context that management enterprise teams continue to
place greater demands for products and systems which are dynamic, synergistically
integrated, and equipped with high integrity AIS.

This paper describes the business approach employed at the National Aeronautics and
Space Administration's Johnson Space Center Mission Operations Directorate (NASA
JSC MOD) for bridging the gaps between the three key area product development support

100

functions: configuration management, AIS security, and quality assurance organization.
This approach forms an enterprise-wide alliance needed for assuring the integrity,
reliability, and continuity of secure IT products and services. Although the development
and maintenance concepts for high-integrity unclassified systems are specifically
addressed, the processes described are equally applicable to classified systems.

MOD AIS Security Program Challenges
Change is not easy whenever an enterprise considers reengineering its business processes.
This kind of competitive business initiative typically envolves redesigning and retooling
value added systems for new economies. The AIS Security Program at the NASA JSC
MOD is charged with directing and managing the busness of information security for life
and mission critical systems associated with Space Shuttle and Space Station operations
facilities.
These systems encompass:

• some 3,600 personnel,
• 1,682 large mainframes, mini mainframes, distributed systems,
• five types operating systems,
• and a variety of network and communication protocols.

Much of these are legacy systems and are being pulled along by new technology making
change very difficult to manage in this complex environment. The speed at which new
emerging information technology is introduced to market, has also made it difficult to
maintain an automated information systems (AIS) security control architecture baseline.
Continued budget considerations have become a recognized element in managing this
change. The MOD AIS Security Program has dealt with these complicated challenges
head-on so as to comply with OMB Circular 130-A and the Johnson Space Center (JSC)
Automated Information Systems Security Manual 2410.11. To this end, several
interesting findings have resulted during the development and implementation processes
used for accrediting NASA JSC MOD data processing installations (DPI).

Security Control Architecture and Complimentary Tools
The Security Control Architecture (SCA) has been in development since 1992 and is the
product of a lot of in depth contemplation, research, and hard work by members of the
MOD Automated Information Systems Security Engineering Team (ASET) and Rockwell
Space Operations Company (RSOC) Security Engineering and Operations team. The
SCA was implemented as the tool of choice for accrediting NASA JSC MOD DPIs in
response to NASA's budgetary constraints. The scope and intent of the SCA document is
to develop a comprehensive security control baseline architecture for a target DPI. The
security control baseline architecture considers all functional platforms of a target DPI
including: host mainframes, workstation(s), servers, bridges/routers/gateways, front-end
processors/cluster controllers, network analyzers, and physical security.

The Automated Information Systems Security Reference Structure (ASRS) was created to
document all information technology (IT) security terms and definitions in one reference
structure. A complete volume of standard operating procedures have been developed and
approved for use to support the DPI accreditation process at NASA JSC MOD.

101

Security Integrity Engineering Process
In today's computing world, distributed processing technologies change faster than most
operational platforms can be baselined. As they evolve with an ever-increasing speed,
companies and agencies are challenged with an opportunity to maintain stability for
growth and strategic competitiveness. Management must consider that sensitive business
systems increasingly demand higher levels of integrity in system and data availability.
Within this framework reliability, through product assurance and security assurance
constructs, provides a common enterprise objective. Accordingly, the scope of an
enterprise-wide product assurance partnership must be expanded to all three functional
areas as a single, logical, integrated entity with fully matrixed management (i.e., both
horizontal and vertical management control). The process in which requirements for new
information technology are infused into the enterprise and managed becomes the pivotal
business success factor that must be defined, disseminated, and understood by the key
functional support organizations.

New Alliance Partnership Model (NAPM)
It has become critically essential for enterprise management to gain an understanding of
the interdependencies and complimentary pursuits that exist between the Quality
Assurance (QA), Configuration Management (CM), and the AIS Security Engineering
organizational support functions. With this knowledge, it is equally important to identify
and examine a synergistic approach for realizing additional economies(cost
savings/avoidances) throughout the system development life-cycle with continuous
improvement techniques.

Implementation of product assurance and secure information technology development is a
management decision that must be judiciously exercised and integrated as part of a
system control architecture. In this model, AIS security management is qualified as the
functional point of control and authority for coordinating and guiding the development,
implementation, maintenance, and proceduralization of information security into a
unique, integrated management team. The SCA is the approved strategic methodology
used to produce a composite system of security controls, requirements, and safeguards
planned or implemented within an ÄIS environment to ensure the integrity, availability,
and confidentiality. This is one approach that will allow for integration and cooperative
input from the CM, AIS Security Engineering, and QA management groups. Each of
these product assurance functional support groups must understand and embrace common
corporate product assurance objectives, synergize resources, and emerge as a partnership
pursuant of corporate political strife dedicated to providing a harmonization of systems
integrity, availability, and confidentiality.

The harmonization effort evolves as an enterprise-wide New Alliance Partnership Model
(NAPM) in which:

QA provides an enhanced product assurance visibility by ensuring that the intended
features and requirements, including but not limited to security, are present in the

102

delivered software. QA allows program management and the customer to follow the
evolution of a capability from request through requirement and design, to a fielded
product. This provides management with an enhanced capability as well as a forum, for
identifying and minimizing misinterpretations and omissions which may lead to
vulnerabilities in a delivered system. The formal specifications required by QA increase
the chance that the desired capabilities will be developed. The formal documentation of
corrective actions from reviews (of specifications, designs, etc.) lessens the chance that
critical issues may go undetected.

CM provides management with the assurance that changes to an existing AIS are
performed in an identifiable and controlled environment and that these changes do not
adversely affect the integrity or availability properties of secure products, systems, and
services. CM provides additional security assurance levels in that all additions, deletions,
or changes made to a system do not compromise it's integrity, availability, or
confidentiality. CM is achieved through proceduralization and unbiased verification
ensuring that changes to an AIS and/or all supporting documentation are updated
properly, concentrating on four components: identification, change control, status
accounting, and auditing.

AIS security provides additional controls and protection mechanisms based upon system
specifications, confidentiality objectives, legislative requirements and mandates, or
perceived levels of protection. AIS security primarily addresses the concerns associated
with unauthorized access to, disclosure, modification, or destruction of sensitive or
proprietary information, and denial of IT service. AIS security may be built into, or
added onto, existing IT or developed IT products, systems, and services.

Organizational management provides the empowerment and guidance for the economies
of scale.

A seminal case study is presented as proof of concept for gaining security integrity
assurance. It identifies the interdependencies and synergy that exist between the CM, AIS
Security Engineering, and QA functional management activities. It describes how IT, as a
principle change driver, is forcing the need for a QA, CM, and AIS security forum to
evolve if the enterprise is to be successful in providing high-integrity systems.

The security control architecture (SCA) is the authorized mechanism used for baselining
DPI system security architectures at the NASA JSC MOD and serves as the means for
accrediting both operations and development environments. Such DPI system security
architectures would include the Mission Control Center (MCC) as it exemplifies a
life/mission critical system with both types of environments. Many challenges were
encountered throughout the process of institutionalizing the SCA tool. For the intended
purposes of this paper, focus has been placed on how AIS security features are input to
the baseline security architecture, implemented, and tested and validated. Additionally,
the process used for managing software and hardware change while maintaining the
integrity and availability of life/mission critical systems was another very important point

103

of interest. Finally, a status for the NAPM implementation process has been provided.
The process has not been an easy one, nor one without challenges. It is not yet complete;
however, NAPM has proven to be an effective approach to managing the integrity and
availability of high-integrity unclassified systems and may also be applied to classified
systems.

MCC Support Request (SR) Process
The Security Engineering and Operations (SE&O) organization, the AIS security
functional team member at NASA JSC MOD, is responsible for facilitating and
maintaining all SCA activities for each MOD DPI at JSC. The MOD is responsible for
planning, directing, managing, and implementing all mission operations activities
including developing and operating all ground facilities. The support request (SR) is the
authorizing document with initiates change within all NASA JSC MOD DPIs. SE&O is
an integral member of this process from start to end. Both the MCC DPI computer
security official (CSO) and the designated SE&O representative have the opportunity to
review each MCC SR submitted by sustaining engineering, provide any applicable AIS
security requirements as prescribed in the center security manual (JSCM 2410.11), review
test scripts, and participate in the testing and verification of AIS security features.

The DPI CSO is tasked to review all SR's initiated in his/her operations center to input
AIS security requirements. This is achieved by completing an AIS Security Checklist and
attaching the checklist to the SR as a bonafide addendum set of requirements which are
given full consideration by the responsible engineering support organizations. The AIS
Security Checklist is a comprehensive form that was designed to communicate AIS
Security requirements to all responsible hardware and software engineering organizations.

AIS Security Checklist Process
When NASA Facility Management requests an enhancement, removal, and/or otherwise
change to the baseline configuration of the DPI, the SOC Configuration Management
(CM) functional support team member is notified. This team member is responsible for
maintaining the baseline configuration for all MOD Space Shuttle and Space Station
support systems. The CM functional support team member is provided an approved SR
to officially begin the process of implementing change the baseline configuration. An
initial distribution of this acknowledgment is made, by the CM functional support team,
to other key organizations including the AIS Security functional support group (SE&O).
SE&O uses this opportunity to perform an impact analysis and provide AIS security
requirements via the AIS Security Checklist (ASC) where needed.

The DPI CSO evaluates the SR for security impact and qualitatively determines and
identifies the AIS security impact level to be either none, minor, and major. If
significant minor or major DPI changes are identified from an AIS security standpoint,
AIS security requirements, as per JSCM 2410.11, are then stated and delineated on the
ASC. Upon completion of the DPI CSO evaluation, the ASC is then attached to an SR as
an addendum set of AIS security requirements and becomes an integral component of the
engineering requirements set. Additionally, the cognizant DPI CSO will indicate on the

104

ASC whether the new AIS security requirements will drive hardware and/or software
support activity when an SR is approved for implementation. The cognizant DPI CSO
will determine, based on the security impact level and how the baseline Security Control
Architecture, AIS Security Procedures, and Disaster Recovery Plan are impacted. Finally,
the cognizant DPI CSO may also request specific interest in being present for the
implementation and testing phases of an SR and/or to be notified of SR close-out activity.

The SR (engineering requirements set) is then received by the DPI Operations Center's
lead engineer for Rough Order Magnitude (ROM) costing analysis by the hardware and
software engineering support teams. This effort is facilitated and coordinated by the lead
engineer(s). It is important to recognize that this activity is one of several hinge pins
which determine the success or failure of achieving a closed loop process. The
communication process between the hardware and software engineering support teams
and the AIS Security team member must be assured. Without buy-in from the key
software and hardware support organizations, there is little expectation of findingö an
acceptable level of integrity assurance. When all ROMs for related cost are input into a
roll-up total cost figure, then the subject SR is presented to the NASA DPI facility
manager for approval and implementation.

The subject requirements are then disseminated to the responsible hardware and software
support engineering management team for action. Once the engineering requirements set
are communicated to, received by, and understood by the responsible hardware and
software support engineering team members, internal task orders are generated to
document the affected work group(s) and in general terms what work is to be
accomplished.

Hardware and software support engineering work group(s) use internal task orders as
input to develop more detail implementation instructions and test script procedures.
Detail hardware and software implementation instructions are coordinated and formalized
in design reviews. All documentation generated in support of an SR is evaluated and
considered by all engineering disciplines during this period. During this feedback period,
the AIS Security team member may identify a deficiency and notify the respective
hardware and/or software engineering support group(s) of the correction or modification.
When a final detail set of implementation instructions and test script procedures are
refined to an acceptable state, the implementation and testing phases of an SR begins.
The cognizant DPI CSO will be notified of this activity if he/she has expressed interest,
on the ASC, to be present. Otherwise, the QA team member has third party
responsibilities for witnessing all implementation and test verification activities. The QA
team member is also tasked to notify the AIS Security organization of any unsuccessful
implementation or test script procedures for closed loop purposes.

The process aforementioned is ideal and facilitates the integrated and cooperative input
from the CM, AIS Security, and QA management groups. However, each of these key
functional support groups must understand and embrace common corporate product
assurance objectives, synergize resources, and emerge as a partnership pursuant of

105

corporate political strife dedicated to providing a harmonization of systems integrity,
availability, and confidentiality. At a closer look, some real-world experiences with
developing, producing, and maintaining high integrity IT systems may offer insight to the
issues that undermine the effectiveness of corporate product assurance initiatives. One
such example has been provided to understand the challenges of assuring the integrity of
life/mission critical IT systems is the MCC at NASA JSC.

The ASC Experience
A modified ASC was first introduced to the SE&O sometime in mid 1992 as a working
document. The ASC has not been well understood by the engineering community on the
whole since that time. However, much has been learned through process improvement
initiatives targeted at facilitating improved communications between the key functional
support and hardware and software engineering organizations. These initiatives were
orchestrated through management involvement.

In terms of what was not understood about the ASC process, given the number of
participants, it seems that each respective team member in the ASC process had a
perception of how it all worked. In mid 1994, the SE&O management team formed a
process improvement team to determine how a closed-loop ASC process should function.
After extensive research, it was determined that several process disconnects and gaps
existed causing serious uncertainty and doubt as to whether AIS Security requirements
were actually considered in the SR process. As the process improvement team identified
each functional support player in the ASC system, an open-loop process unfurled.
Interviews were arranged soon thereafter with each process management team member to
gain a more accurate perspective of the ASC system. Additional opportunity was
introduced with every interview the AIS Security team facilitated.

Configuration Management
The interview process began with the CM team member who is chartered to maintain the
baseline configuration and associated supporting documentation. The process
improvement team learned that CMs scope and sphere of influence could not provide at
any level of certainty that the ASC was in fact being considered and treated as a bonafide
engineering requirements set. Further, CM management was unable to produce any
evidence that AIS Security countermeasures had been implemented and/or tested from a
documentation standpoint. Essentially, the CM functional support team was managing a
repository of documentation, authorization paper trail, and engineering drawings which it
received as input and used it to maintain the associated baseline hardware and software
configuration. During these discussions, the process improvement team learned that the
CM team operated with certain seeded beliefs that the engineering support organizations,
QA organizations, and SE&O organization had accountability for evidencing the
implementation and testing of AIS security countermeasures.

In part, the CM management team is correct; however, can not ignore how its
involvement with the original assignment of an SR. The CM group does not authorize
any system change without sufficient documentation from all the engineering support

106

organizations and QA evidencing the implementation and testing of each engineering
requirement as stated on an SR. The CM team maintains a standing rule of notifying the
SE&O team whenever they have expressed interest on the ASC to close-out AIS security
requirements stated on an SR. However, such close-out requests are few in number and
the majority of SR's that have AIS security requirements have had no mechanism for
assuring closure by the associated engineering support groups. The CM functional
support organization is a pivotal control point in the ASC system. Without the
functional support from such groups like the SE&O, QA, and engineering support
organizations, the ASC system will not be fully effective until closure mechanisms are
established between these groups. Otherwise, it becomes an increasingly more difficult
task for a cognizant DPI CSO to assure that AIS security countermeasures identified in a
respective DPI SCA are in fact implemented, tested successfully, and functioning
properly.

Hardware Engineering
In other interviews with the hardware engineering support group, the • SE&O team
received another interesting data point. The SE&O organization realized that in fact it's
own organization was responsible for a critical system disconnect. The SE&O
organization had not been effective in providing an AIS security feedback mechanism for
responding to implementation and test script procedures reviews. The SE&O made
several attempts to close this loop; however, due to a variety of internal political issues
being driven by the changing environments of the time were unsuccessful. This
disconnect could have been, in part, minimized through more management training. As
indicated on the ASC, when the cognizant DPI CSO had identified hardware security
impact and testing requirements, the cognizant hardware engineer responded by sending
an implementation and test script package for AIS Security technical evaluation and
feedback. The internal hardware support team documentation was also determined to
require several minor decision point modifications for facilitating a more fluid feedback
process.

Software Engineering
Interviews with the software engineering support group were equally productive and
valuable. In light of how NASA, JSC, and specificall7y MOD operational systems have
undergone major IT system reconfigurations, the SE&O organization considers the
software engineering type SR activity as the area which presented the highest level of
uncertainty from an AIS security perspective. Prior to these interviews, the SE&O had
very little insight, due to political and changing environments, for what software
engineering support personnel did with the ASC. It was soon determined that there was
no existing feedback communication means between the SE&O and the software
engineering management team. It was like the SE&O had been sending three years worth
of AIS Security resource into a void. The team learned that the ASC had not been well
understood by the software support group since it's implementation. This was one of the
most significant gaps identified by the process improvement team during its analysis.

107

The SE&O support group developed the ASC and introduced it to the SR process as the
official process for establishing AIS security engineering requirements input. It was
originally intended to serve as a bonafide addendum and part of the entire SR engineering
requirements set. Well, what was learned did not quite meet this intent. Upon further
discussions, the problems continue to unravel.

These discussions identified a real need to establish formal lines of communication with
key area support management. Through this dialogue and mutual understanding, the
software engineering team formed an internal process analysis team to gain a better
understanding for how AIS security requirements were responded to internally from a
management standpoint. This effort was also chartered determine how AIS security
requirements were articulated, implemented, tested, and documented. In other words, the
SE&O team was interested in a documentation trail and very interested as to how the SR
engineering requirements set was being communicated downward for implementation.
Specifically, how were SR high-level requirements translated and communicated
internally to document the affected work group(s) and in general terms articulate what
work was to be accomplished. In effect, the teams reached an impasse and continue to
work the issue.

The SE&O organization had been even less effective in providing an AIS security
feedback mechanism for responding to implementation and test script procedures reviews
to the software engineering. As with the hardware engineering group, the SE&O made
several attempts to close the gap with the software management team. However, once
again the business of providing high integrity systems was clouded with a variety of
internal political issues being driven by the changing environments. In the case of the
software engineering support team, the SE&O organization had not received a single
implementation and test script procedure for AIS security requirements review and
evaluation during the past three years. Ideally, when a cognizant DPI CSO indicates
Software AIS security impact and testing requirements on a ASC, the cognizant software
engineer should respond by sending an implementation and test script package for a
technical review and evaluation. And much like the hardware engineering support team
the effects of this gap may have been minimize with more AIS Security awareness
training. This experience was uncomfortable although a beneficial realization.

Quality Assurance
Another key player in the NAPM approach for assuring security integrity is the QA
functional support organization. The QA support team is a pivotal control point in the
ASC system. Discussions with the SE&O process improvement team were no less
insightful. The team learned that QA personnel were very knowledgeable with the
execution of SR engineering requirements sets and associated implementation and test
script procedures. However, they did not recognize the ASC as a bonafide addendum to
the engineering requirements set and failed to understand its significance. The QA
support team, specifically the software QA function, was not in the loop to know the
significance of the ASC. How had AIS security requirements been articulated,
implemented, tested, and documented up to this point? AIS security requirements issues

108

had not been included in any of the established QA life cycle event checklist documents.
What had the engineering support leads been providing the CM support function as
documented evidence that all SR AIS security requirements had in fact been satisfied?
Further, what collected evidence had been used to assure the security posture of a given
DPI up to this point? The process improvement team had identified another gap in the
ASC system and this one pertained to closure, the documented evidence of successfully
implemented and fully tested AIS security countermeasures. This was of major
significance, in that SE&O support team function had struggled for years to find that
closure mechanism which could evidence the implementation and testing of AIS security
countermeasures. Without such evidence of closure, the SCA approach for accrediting
DPIs could also be weakened.

NAPM In Practice
At the outset of this initiative, there were serious uncertainties and doubts as to whether
the AIS Security requirements set had actually being considered in the SR process. The
SE&O team's attempt to hone in on a documentation trail had evidenced an open-loop
communication process. Discussions with the QA team and others had validated a
breakdown in communications between the CM, AIS Security Engineering, Hardware
and Software Engineering, and QA as to the intent of the ASC. By gaining concurrence
from the QA team that in fact the AIS security engineering requirements set was not
being recognized as a bonafide addendum to the SR process, it was clear that the NAPM
approach offered a qualified solution for improvement.

The NAPM approach for providing integrity assurance to mission and/or life critical
systems presented significant opportunity. The NAPM purports to gain an understanding
of the interdependencies and complimentary pursuits that exist between the CM, AIS
Security and QA, organizational support functions. To these ends the SE&O support
team applied the NAPM alternative to identify the synergy for realizing new economies
throughout the hardware and software system life-cycle through continuous improvement
techniques.

The SE&O process improvement team promulgated several ASC system gaps which
share common themes, specifically in training and communication. Based on the
collected input from the organizational support functions it was determined that AIS
security requirements were not being communicated downward for implementation by the
affected work group(s).

Prior to the introduction of the ASC system, CM management was unable to point to any
evidence that AIS Security countermeasures had been implemented and/or tested from a
documentation standpoint. The CM organization, SE&O organization, QA organizations,
and engineering support organizations have a collaborative level of accountability for
evidencing the implementation and testing of AIS security countermeasures. Based on
this collective input, the CM support team uses it to maintain each DPI's hardware and
software baseline configuration. Today, the CM group does not authorize any system
change without this level of collaborative and collective documentation from the

109

participating functional support team who evidences the successful implementation and
testing of each engineering requirement stated on an SR. The CM team continues to
maintain the standing rule of notifying the SE&O team whenever close-out has been
expressed on the ASC. This feedback mechanism has proven to be very effective for
bringing closure to stated AIS security requirements. This kind of closure increases the
confidence level in which a DPI CSO assures that AIS security countermeasures have
been successfully implemented, tested, and functioning properly.

The SE&O organization worked intently with the hardware engineering support
management team to refine the AIS security feedback process. The SE&O provided
additional ASC training so as to detail the instructions for providing AIS security
feedback during implementation and test script procedures reviews. The SE&O and
hardware engineering management teams had successfully closed the open-loop through
improved understandings of how to use the ASC and with minor modifications to the
internal hardware engineering documentation. The functional relationship between these
two team members has shown marked improvement in terms of effectiveness and
cooperation. The ASC has become an excellent communication tool between these
support functions regardless of political and changing environments of the time. After all
improvement measures had been implemented, AIS Security technical evaluations of
implementation and test script reviews began to feedback in unprecedented numbers. It
should be noted that this process step continues to improve and refine itself through the
increased communication and cooperation between the SE&O and hardware engineering
support organizations.

The SE&O team has continued to build on its success of establishing communication
lines to software engineering management team so as to refine the AIS security feedback
process. The SE&O organization continues to facilitate meetings in support of this end.
A considerable amount of progress has been accomplished through this effort. And much
like the hardware engineering support team, additional AIS Security awareness and ASC
training was provided so as to detail the instructions for providing AIS security feedback
during implementation and test script procedures reviews. This experience was
uncomfortable although a beneficial realization. The process improvement team
continues to identify opportunities and solutions with the Software Engineering support
team.

After several productive meetings, the software QA management team agreed that the
AIS security requirement set identified on the ASE should be viewed as part of the SR
requirements set. Up to this point, AIS security requirements issues had not been
included in any of the established software QA life cycle event checklist documents. The
QA support team agreed to modify their checklists to include additional QA steps to
assure that AIS security requirements are responded to in future events. This type of
corroborating evidence and other collected documentation have significantly contributed
to assuring the security posture of a given DPI. The ASC system is now the official
communication tool for bringing change to the software QA support function. The ASC
has also been instrumental in providing evidence of closure to the CM support team that

110

AIS security countermeasures have been successfully implemented and fully tested. If
however, the implementation and testing of the prescribed countermeasures are
unsuccessful, the QA team is still tasked to notify the AIS security organization for
resolution.

Summary
Change is not easy. Change has not been easy. Change will not be easy. In this case
study, the members of each respective management support team have championed the
process improvement initiatives and the corrective actions taken thus far. It is important
to emphasized that employee empowerment of this type must be supported by top
management because security integrity engineering and the implementation of an
integrated product assurance and secure information technology development process
such as a control architecture is a proactive management decision.

As management continues to learn more about the interdependencies and common
pursuits that exist between the Configuration Management, Automated Information
System Security Engineering, and Quality Assurance organizational functions, it will
realize additional opportunity for economies through continuous process improvement
techniques.

Information technology has been and will continue to be a major change driver that
establishes a need for a functional organizational support forum dedicated to delivering
high-integrity products and services. Each of the product assurance functional support
organizations must understand and embrace common corporate product assurance
objectives, synergize resources, and emerge as a partnership independently pursuant of
corporate political strife and dedicated to providing a harmonization of systems integrity,
availability, and confidentiality.

The New Alliance Partnership Model is a viable solution that has been put to the test and
proven in a highly dynamic operational environment of ever-changing distributed
processing technologies. The NAPM supports the integration process and requires that
direct lines of communication be bridged between key functional support organizations so
as to input and feedback closure information.

The Automated Information System Security Checklist is an excellent tool for assuring
AIS security feedback to key hardware and software engineering support functions when
reviewing SR implementation and test script procedures for AIS security impacts. The
ASC has become an excellent communication tool between these support functions
regardless of political and changing environments of the time. The ASC functions as a
key communication tool for facilitating the initiation, implementation, testing, and
documentation of any AIS security requirements set. In this case, the CM team is an
integral key player in the closure of AIS security requirements which are stated on an SR.
The ASC system is not fully effective until closure mechanisms are established between
the functional support groups like the CM, SE&O, QA, and engineering support
organizations. The security control architecture methodology used for baselining and

111

maintaining an accreditable data processing installation is highly dependent on the
delivery of documented evidence supporting the successful implementation and testing of
AIS security countermeasures.

In conclusion, business enterprises must always be assured of a capability to maintain an
AIS Security Control Architecture baseline to maintain stability for growth and strategic
competitiveness.

112

AN UNUSUAL B3-COMPLIANT DISCRETIONARY ACCESS
CONTROL POLICY'

Jeremy Epstein, Gary Grossman, and Albert Donaldson
Cordant, Inc.2

ABSTRACT

There are many possible identity-based discretionary access control (DAC) policies.
This paper describes an unusual DAC policy: rather than associating access control
information with the objects (e.g., files) in the system, access control decisions are based
on pattern matching against a centralized database. This policy has certain advantages
and disadvantages compared to more common (e.g., UNIX) access control policies,
which are explained. While not an original goal of the design, the policy meets the
TCSEC B3 functional criteria for DAC.

1. Introduction
There are many possible discretionary access control (DAC) policies. Among the more common are
permission bits3 (e.g., UNIX, older VMS versions) and access control lists (e.g., Multics, newer versions of
DEC VMS and Novell NetWare). In each of these, access control information is associated with the
objects in the system, typically files. In most cases, every object has its own access control information,
which is stored with the object4.

Our system architecture imposed several constraints that made such an approach impractical. Because our
system is based on a personal computer DOS (e.g., MS-DOS) file system, there is no way to effectively
store access control information with the file, because there is no empty space in the File Allocation Table
(FAT) entry. For compatibility reasons, we did not want to modify the file system structure. We also
wanted an easy way to cause changes made by an administrator at a central server to apply to all
workstations in a network. Because our workstations interact with the server in an asymmetrical client-
server manner, we could not rely on notifying workstations of access control changes, but rather need to
allow them to download access control information at appropriate points.

For the past several years, Cordant has developed and marketed a product line under the brand name
Assure®5 which meets each of these objectives. For product line compatibility, we wanted to use that
product as a starting point. However, there were several problems with that product. While it has all the
necessary features to meet the Trusted Computer System Evaluation Criteria [TCSEC] Class C2 criteria,
it can not meet the Class C2 assurance criteria because it lacks a Trusted Computing Base (TCB).
Secondly, and more importantly from the perspective of this paper, the Assure policy is not fully defined:

'Copyright © 1995 Cordant, Inc.
211400 Commerce Park Drive, Reston Virginia. Mr. Epstein: 703-758-7367; jepstein@cordant.com. Mr.
Grossman: 703-758-7363; ggross@cordant. com. Mr. Donaldson: 703-758-7000 x7227; al@escom. com.
Permission bits are arguably an access control list with a fixed number of entries and specific uses for each entry.
4Sometimes, as in the case of certain UNIX systems based on Secure Ware or AT&T System V MLS technology,
the complete access control information is stored in a database, with each object only containing a tag to indicate
the database entry to be used. Nonetheless, each object contains some level of access control information.
5Assure is a registered trademark of Cordant, Inc.

113

there are subtle cases where the results of an access control decision are indeterminate, given a particular
configuration6.

The remainder of this paper describes our file system object7 access control policy, which is implemented in
a forthcoming product, Assure EC™8. The paper is organized as follows: Section 2 summarizes the
network architecture of which the Assure EC workstation is a part. Section 3 describes the access control
policy. Section 4 describes some of the interesting aspects of the policy, including how it meets the B3
criteria. Section 5 concludes the paper.

2. Network and Component Architectures

The Assure EC workstation is part of Novell's Trusted NetWare network architecture. Trusted NetWare is
being evaluated against the Trusted Network Interpretation [TNI] as a Class C2 network. There are two
types of active components in Trusted NetWare: workstations and servers. Both types of active
components have NTCB partitions. Workstations must be at least "I" components, and servers must be at
least "IAD" components. Workstations and servers communicate in a client-server architecture, where
clients make requests of servers, but servers never send requests to clients. Servers provide facilities that
can be used by both trusted and untrusted software running on workstations. These facilities include
storage of files, configuration information, and audit data.

The initial evaluation includes one server (Novell NetWare) and one workstation (Cordant Assure EC),
both running on generic IBM PC computers. The Assure EC workstation is an "ID" component. The
Cordant workstation relies on the NetWare server for storage of TCB configuration data and audit data.

Further information on the network architecture can be found in [NetArch]; a description of the component
architectures can be found in [CompArch].

3. The DAC Policy
The DAC policy enforced by Cordant's Assure EC product is based on pattern matching of file names.
Administrators define file path name patterns, and the file rights associated with those patterns using a
menu driven application. When a user logs in, the workstation TCB looks up the patterns associated with
the user and all groups of which the user is a member. The combination of user and group patterns is then
used for making access control decisions for the duration of the login session.

3.1. DOS File and Path Naming

DOS provides a hierarchical file system. File names consist of a base name, consisting of one to eight
characters, a period, and an optional extension, consisting of one to three characters. The period that
separates the base name and extension can be omitted if there is no extension. The base name and
extension can include letters, numbers, and a variety of special characters, and are case insensitive. Table
1 shows valid and invalid file names.

Table 1: Valid and Invalid File Names
File Name Explanation

foo.bar Valid; same as FOO.bar, FoO.Bar, etc.

6Of course they are not random, but the results cannot be determined by a user or administrator, since they rely on
internal ordering of data structures, which cannot be determined using human interfaces.
7The forthcoming product has other types of objects besides file system objects, each of which has its own DAC
policy. However, those policies are relatively uninteresting, and are not explained further in this paper.
8 Assure EC is a trademark of Cordant, Inc.

114

abcdefghijk.
abc.def.ghi
abc def.ghi
abc?def
abc.

Invalid; too many characters in base name9

Invalid; only one extension allowed
Valid; underscore can be used as a separator
Invalid' ? is not a valid character in a file name
Invalid; * is not a valid character in a file name

A full path name consists of a drive letter (which identifies a particular logical disk drive), followed by a
colon a backslash, and a series of file names separated by backslashes. The special file names . (dot)
and "'.." (dot-dot) which represent the current directory and parent directory, respectively, are not valid in
full path names. Table 2 shows several valid and invalid full path names.

Table 2: Valid and Invalid Full Path Names

Path Name
\foo.bar
c:\foo.bar
d:\foo\bar
c:\\foo\bar
c:\foo\..\bar
c:\foo\bar\

Explanation

Invalid; doesn't have drive letter
Valid
Valid
Invalid; can't have multiple sequential backslashes
Invalid; can't have dot or dot-dot in path name
Invalid; can't have trailing backslash

3.2. File Name Patterns

File name patterns are not DOS file names. Rather, they are used by the Assure EC product for assigning
rights. A pattern is defined as a DOS full path name, with the following changes:

• The drive letter may be replaced by a question mark.

. The base name and/or extension in the final component of the path (i.e., after the last backslash) may
be replaced by a string that terminates with a "*" (star).

Table 3 shows some valid and invalid file name patterns.

Table 3: Valid and Invalid Patterns

Pattern
c:\foo\bar
c:\foo\bar.a*
?:\foo\abc*.bar
*:\foo\bar
?:\foo\bar.??
?:\fbo\abc*def*

Explanation

Valid
Valid
Valid
Invalid; "*" cannot appear as drive letter
Invalid;"?" cannot appear except as drive letter
Invalid; the "*" (if used) must terminate the base name

Note that certain patterns are invalid as DOS file names. For example, abc* is a valid pattern, but not a

valid file name10.

3.3. File and Directory Rights

Associated with each pattern in the access control database can be zero or more file and directory rights.
Table 4 describes the meaning of the right if associated with a file or directory.

9Long names may be truncated by applications, but DOS itself will refuse a name of this form.
i°A name such as abc* can be used as a wildcard to a command (e.g., "copy abc*"), but the star is not part of the
file name.

115

Table 4: File and Directory Rights
Right Meaning for Files Meaning for Directories

Read File can be read Unused
Write File can be written Unused
Scan File name can be seen Directory name can be seen
Delete File can be deleted Directory can be deleted
Rename File can be renamed Directory can be renamed
Create File can be created Directory can be created

Note that because patterns are not associated with objects, it is possible to express the ability to create
objects before they exist. That is, it is possible to say that a user can create \FOO\BAR without making
any statement about the user's rights to \FOO, or about that user's ability to create \FOO\XYZ. This is
different from other systems, such as UNIX, where the ability to create a file (or subdirectory) in a
directory means that any name can be used, so long as it does not already exist.

3.4. Path Records

A path record consists of three parts: a pattern, a (possibly empty) set of file and directory rights, and
(optionally) an encryption key. If the encryption key is present, all files and directories that match the
pattern are DES [FIPS46] encrypted in electronic codebook [FIPS81] mode using the key provided. File
encryption is invisible to the application software: files are automatically decrypted as they are read, and
encrypted as they are written. If there is no encryption key, then the files are not encrypted.

3.5. Pattern Ordering

Users are associated with zero or more groups. Path records can be associated with users, with groups, or
both. When a user logs in, the TCB consults a database to find out the groups that user belongs to. It then
finds the path records associated with the user and all groups of which the user is a member. The resulting
list is sorted as follows:

• User-specific path records are divided into those with patterns containing wildcards ("?" and/or "*")
and those not containing wildcards. Each list is then sorted by length from longest to shortest pattern.
In the case of the wildcarded list, the characters "*" and "?" sort after all other characters in the
lexicographic order. This results in each list being sorted in order of decreasing specificity.

• Group-specific path records containing identical patterns are merged, with file rights ORed together.
The resulting list is then sorted identically to user-specific path records.

The four lists are then concatenated in the order user non-wildcarded, user wildcarded, group non-
wildcarded, group wildcarded. The result, known as the consolidated access list (CAL), is the access
rights for the session.

Table 5 shows some sample user path records and group path records.

Table 5: User and Group Path Records
User/
Group

Pattern Rights

Alice C:\DOS Scan,Read, Write
Alice C:\DOS*.EXE Scan,Read,Rename
Alice 7ADOS\SORT.EXE Scan,Read,Write,Delete
Bob ?:\FOO Scan,Read,Write,Delete
Bob ?:\DOS Scan,Read,Rename
Mgmt 7* * Scan,Read

116

Mgmt ?:\DOS Scan,Delete,Create

All ?:\DOS Scan,Read

All ?:\WINDOWS Scan,Read

All ?:\WINDOWS*.INI Scan,Read,Write,Create

Given that Alice is a member of groups Mgmt and All, and Bob is a member of group All, Table 6 shows
the CAL for each user.

Table 6: Consolidated Access Lists

User Pattern Rights Origin Comments

Alice C:\DOS Scan,Read,Write Alice User-specific, no wildcard

7ADOS\SORT.EXE Scan,Read,Write,Delete Alice User-specific, wildcarded

C:\DOSV.EXE Scan,Read,Rename Alice Shorter than previous pattern

?:\WINDOWS*.INI Scan,Read,Write,Create All Longest group pattern

?:\WINDOWS Scan,Read All Next longest group pattern

?:\DOS Scan, Read, Create, Delete Mgmt +
All

Identical pattern in Mgmt and
All, so rights ORed

7* * Scan, Read Mgmt "*" sorts after all other
characters

Bob ?:\DOS Scan, Read,Rename Bob User-specific, wildcarded

?:\FOO Scan, Read, Write, Delete Bob FOO sorts after DOS

?:\WINDOWS*.INI Scan,Read,Write,Create All Longest group pattern

7AWINDOWS Scan,Read All Next longest group pattern

?:\DOS Scan, Read All Bob is not in Mgmt, so only
gets rights from All

Note that the C:\DOS and ?:\DOS patterns are not merged for Alice, because they are not identical.

3.6. Run-Time Pattern Matching

To access files or directories stored on the local disk11, application software creates the full path name
being accessed (i.e., the path name is canonicalized). The full path name is then transmitted to the TCB,
which compares the full path name to the list of patterns to determine the access rights available to the user.

The pattern matching algorithm compares the full path name to each of the records in the CAL. If the full
path name is a superstring of the pattern in the path record, or matches an expansion of the wildcards in the
pattern (where "?" matches a single character drive name, and "*" matches any sequence of characters in
the file name), then it is considered to have matched, and the rights associated with the path record are the
rights available to the user. Only the first path record to match is used; any subsequent rights (greater or
lesser) are ignored. If the end of the CAL is reached without any match, then the user has no access to the
requested path name.

Table 7 shows some patterns matched against the CALs shown in table 6, and the resulting rights available
to the user.

User

Alice

Table 7: Pattern Matching

Path Requested
C:\DOS\SORT.EXE

Pattern Matched

C:\DOS

Rights Granted
Scan,Read, Write

"Application software can also access files and directories stored in NetWare servers. That access control policy
is under the control of the NetWare server, and is not further discussed here.

117

Alice C:\WP\WP.EXE ?-* * Scan,Read
Alice D:\DOS\PRINT.EXE ?:\DOS Scan,Read,Create,Delete
Bob C:\WINDOWS\WIN.INI ?:\WINDOWS*.INI Scan,Read,Write,Create
Bob C:\WINDOWS\FOO.BAR ?:\WINDOWS Scan,Read
Bob D:\FOO\HELLO.TXT ?:\FOO Scan,Read,Write,Delete
Bob D:\WP\WP.EXE None None

Note that Alice's rights are constrained by the pattern C:\DOS. Although she has Rename rights to
C:\DOS*.EXE, Delete rights to ?:\DOS\SORT.EXE, and Create rights to ?:\DOS (by virtue of her group
membership in Mgmf), she can never gain any of these when accessing files in C:\DOS, which is a non-
wildcarded pattern and therefore matches first. Changing the pattern C:\DOS to ?:\DOS or C:\DOS*.*
would make it wildcarded, and therefore yield different results.

4. Policy Discussion
In this section we discuss several interesting (and sometimes surprising) aspects of the DAC policy.

4.1. Unusual Ordering

Note that the combination of CAL ordering and the pattern matching capability has several somewhat
surprising results:

• The strings \ and *.* are not the same, although they will match the same values. However, \ is a non-
wildcarded pattern, and hence will appear in the CAL before *.*, which is a wildcarded pattern
(presuming that both apply to the same user, or both apply to groups).

• The policy denies all rights not explicitly granted. This is easy to reverse, by adding a path record
including the pattern ?:*.* to a group that the desired user(s) are member(s) of. Note that adding this
path record for a user would cause any path records associated with groups to be ignored, since user
patterns are matched before group patterns.

4.2. Encryption Facilities

Any path record can include an encryption key. If present, files matching that path record are
automatically decrypted when read and encrypted when written. This allows applications to run
unchanged.

Because encryption keys are associated with patterns, and not with particular files, it is possible to
configure the product so that some people see the encrypted file contents, while others have the files
automatically decrypted when reading. Figure 1 shows some examples of this feature. If Bob has a pattern
for C:\DATA that includes an encryption key, then access by Bob to anything in C:\DATA will
automatically be encrypted and decrypted as necessary. An Operator could be given the ability to back up
data without decrypting what is being backed up by giving them the Read rights to C:\DATA, but without
an encryption key. Then Operator would only have access to the encrypted version of the file.

118

Alice

'C:\DATAV.TXT RW
C:\DATA*.DOC RW

Operator Bob

^1 (C:\DATA R) (C:\DATA RW Kl)

C:\DATA\FILE1.TXT C:\DATA\FILE2.TXT C:\DATAFILE3.DOC

Dynamic encrypt/decrypt with key Kl
Dynamic encrypt/decrypt with key K2
No encryption/decryption

Figure 1: Transparent File Encryption

A problem with this scheme occurs if Alice has rights for the pattern C:\DATA*.TXT without an
associated encryption key. Then Alice will see any existing files that match the pattern without being
automatically decrypted, and any files she creates will not be encrypted. Similarly, if Alice has rights for
the pattern CADATAV.DOC using a encryption key K2, rather than key Kl used by Bob for the pattern
C:\DATA, they will be unable to share files, since files that Alice creates will appear to be garbage to Bob,
and files that Bob creates will appear as garbage to Alice.

Another problem occurs if two groups are set up with different keys for the same pattern. If Mgmt has
been rights for the pattern C:\DATA using encryption key K3, and All has rights for the pattern C:\DATA
using encryption key K4, then it is non-deterministic whether key K3 or K4 will be used for users who are
members of bothMgw? and All.

These are both inherent aspects of the design. Administrators are cautioned not to use multiple encryption
keys for potentially overlapping paths, lest they encounter the problems described here.

4.3. The B3 DAC Criteria

Products evaluated as TNI "D" components can be rated as C2+, rather than C2, if they meet the TCSEC
Class B3 DAC feature requirements. If a product receives a C2+ rating, it can be integrated with other
components rated B3 or Al to produce a system which as a whole is rated B3 or Al However, if the
product only receives a C2 rating, then combining it with other components rated B3 or Al will yield at
most a system rated B2. Hence, it is useful from an integration standpoint to produce C2+ components,
rather than C2 components.

The TCSEC B3 DAC criteria require the ability to allow or deny access to users or groups. Section
3.3.1.1 of the TCSEC (and TNI) state:

These access controls shall be capable of specifying, for each named object, a list of named
individuals and a list of groups of named individuals with their respective modes of access to that
object. Furthermore, for each such named object, it shall be possible to specify a list of named
individuals and a list of groups of named individuals for which no access to the object is given.

Because the Assure EC DAC policy allows specifying null rights, and uses a first match capability, it can
be used to meet this requirement. The ability to allow rights on a user or group basis is clearly present.
Showing the ability to deny rights to a user or group is slightly more complex. For example, to deny Alice

119

all rights to a file, the administrator can assign Alice a pattern with no rights. Because user patterns match
before group patterns, and non-wildcarded patterns before wildcarded patterns, the explicit pattern will
override any other rights granted to Alice. To deny group Mgmt all rights to a file, the administrator can
assign Mgmt a pattern with no rights. However, if any user has been given rights to the file, or to a pattern
that matches the file, then they will still gain access to the file by virtue of their individual assignment,
regardless of the group membership. The wording of the TCSEC and TNI is not clear, but precedent
indicates that there is no requirement that group rights override individual user rights.

4.4. ACL or Capability?

At several points in our design, we debated whether the path records are capabilities or access control lists
(ACLs). Using a matrix of subjects and objects (as in [HRU]), where subjects are listed down the side and
objects across the top, systems have capabilities if they store data by row (i.e., with the subject), and ACLs
if they store data by column (i.e., with the object).

However, our path records do not meet the conventional view of a capability. In traditional capability
systems, untrusted software is permitted to hold the capability, which is cryptographically sealed. Users
may pass the capability, and thereby pass access rights. Additionally, capabilities are valid until explicitly
revoked by an administrator.

In the Assure EC system, users do not have access to path records, and cannot pass their rights from one
user to another. While path records are relatively permanent, the calculation of the CAL is performed on a
per-session basis, and access to a path cannot be revoked until the end of the session. Thus, we believe that
our path records are neither fish nor fowl: they have some of the characteristics of capabilities, but also
have certain aspects of ACLs.

4.5. Central Database Usage

In a traditional stand-alone computer, all security configuration databases are kept in that computer. In a
distributed system, it is desirable to have access to configuration databases from anywhere in the system.
This is particularly true in a network with many personal computers. It would be undesirable for an
administrator to have to visit each workstation in order to change the access rights available to a user. In a
peer-to-peer network, changes could be propagated from one client to another. However, this technique is
not feasible in a client-server architecture.

The Assure EC product stores its administrative information (e.g., path records) in a central repository,
known as the NetWare Directory Services (NDS) Directory Information Base (DIB). Each workstation
downloads the relevant information whenever a user logs in. Thus, changes to path records normally occur
when a user logs in12. That is, if a change occurs in the central database during a session, users who are
already logged in to Assure EC workstations are not affected. Rather, the changes take effect the next time
a user logs in, when the databases are downloaded from the DIB.

Because path records are not tied to a particular workstation, and the Jjath records are stored centrally, all
workstations in an administrative domain must be configured identically. That is, if user Alice is given
rights to \DOS, then she will have those rights to \DOS on any workstation for which she is an authorized
user. If administrators maintain consistency of configuration (which is a good idea in large networks), then
the common paths will not cause problems either of granting too much or too little access. However, if
each workstation in an organization has a different file organization, administrators will have a difficult
time setting up the desired patterns and rights.

12If the workstation NTCB is unable to contact a server to download new information, it uses the cached
information from the most recent download. This allows workstations to be used when disconnected from a
network.

120

4.6. Administrative Control of Policy

In the Assure EC product, only administrators can create or modify the access control information. There
are two reasons for this restriction.

First, because access control information is kept in the NDS DIB (see above), it would require that any
user who has the ability to modify access control information would need to have access to modify the DIB.
Since all paths are kept in a single storage location in the DIB, any user who can write that data can modify
all path rights. Thus, for Alice to give Bob access rights, she would have to modify Bob' information in the
DIB, and could give Bob rights to anything she wanted.

Second, even if there were an effective way to control access to the information stored in the DIB, users can
only see the workstation they are using, and not all of the workstations that the access controls apply to.
That is, if Alice could give Bob rights to directory \MEMOS, then Bob would gain access to \MEMOS on
all workstations he can use, not just to the copy of MVIEMOS on the local workstation. Since Alice may be
unaware of what is in MVIEMOS on workstations other than the one she is using, it would be undesirable for
her to give away such access. This is unlike more traditional systems, where access controls only apply to
a single computer.

4.7. Looking Down the Tree

Suppose user Alice has Read and Scan rights to directory \DOS, and no rights to anything else in the
system. If Alice attempts to get a list of files in \, she will see \DOS, and nothing else. This occurs because
the scan operator is defined as requiring access to the objects whose names are returned (i.e., \DOS), and
not to the directory being scanned (i.e., \). If Alice attempts to change her current directory to \DOS, the
operation will be successful. This is an entirely consistent view to the user.

However, if Alice attempts to change to her current directory to \, that request will fail, because Alice has
no rights to \, and changing directories requires that the user have at least one right. Thus, Alice will have
a surprising result: she can see \DOS, and can change to \DOS, but cannot change to \.

This is not an unknown feature. Multics offers a similar feature, where users may be able to go directly to
a destination directory without having access to intermediate directories. Novell NetWare has a similar
feature, but handles it differently: a user implicitly has Scan rights to all directories along the path to every
file that he/she has any rights to. That is, the presence of Read rights to file \A\B\C\D implicitly gives the
user Scan rights to \A, \B, and \C.

5. Conclusions
There are many possible DAC policies. We have explained one such policy that offers some unusual
features:

• The ability to coherently and efficiently manage access rights associated with a set of workstations
from a central point.

• The ability to meet the B3 DAC criteria, and thereby participate in a B3 or Al network.

6. Acknowledgments
The work described in this paper reflects many contributions. Marv Schaefer helped us see many of the
weaknesses and undefined areas in the DAC policy enforced by our current product. Jon Dellaria, Dave
Bixler, Mike Newman, and Bruce McKinstry all helped us to understand the subtleties of the existing
security policy, and advised us on potential flaws. Anonymous reviewer #51 also had many useful
comments that helped improve this paper.

121

7. References
[CompArch] "Component Architectures for Trusted NetWare", Jeremy Epstein, Gary Grossman, and

Roger Schell, in Proceedings of the 18th National Information Systems Security
Conference, Baltimore MD, October 1995.

[FIPS46] Data Encryption Standard (DES), Federal Information Processing Standards Publication
(FIPS PUB) 46-1, 1988.

[FIPS81] DES Modes of Operation, Federal Information Processing Standards Publication (FIPS
PUB) 81.

[HRU] "Protection in Operating Systems", Michael Harrison, Walter Ruzzo, and Jeffrey Ullman,
Communications of the ACM, August 1976, Volume 19 No 8.

[NetArch] "An Open Trusted Enterprise Network Architecture", Gary Grossman, Jeremy Epstein,
and Roger Schell, in Proceedings of the 18th National Information Systems Security
Conference, Baltimore MD, October 1995.

[TCSEC] Department of Defense Trusted Computer System Evaluation Criteria, National
Computer Security Center, December 1985.

[TNI] Trusted Network Interpretation of the Trusted Computer System Evaluation Criteria,
Version 1, National Computer Security Center, July, 1987.

122

GENSER MESSAGE MULTI-LEVEL SECURE (MLS)
CLASSIFICATIONS AND CATEGORIES

Speaker
Mary Lou Hoffert

Authors
NCPII Development Team

Organizational Affiliation
NCTAMS LANT - Software Technology Department

NCTS Washington - Systems Development Directorate

Phone Numbers
Voice - 804-444-4638

DSN - 564-4638
FAX - 804-444-1427

Internet Address
Joelle_Griffith_at_NCTAMSLANT@NCTCGW.NAVY.MIL

Point of Contact
Joelle Griffith

US Government Program Sponsor
Naval Computer and Telecommunications Command

ABSTRACT

This paper proposes a labeling schema for a Multi-Level Secure (MLS) system processing and
routing General Service (GENSER) messages for the DoD, Allied and NATO communities. It
assumes an automated system integrating a dedicated application and trusted Commercial Off-
The-Shelf (COTS) software products evaluated by the National Security Agency (NSA) at the
Bl level. It further assumes that the application described would pass Defense Message System
(DMS) security testing. It has attempted to provide a generic schema that could be employed
DoD wide to facilitate intercommunication of MLS systems with no need for intermediary
mapping translations. The discussion concentrates on GENSER message processing, but is
expandable to DSSCS systems.

123

GENSER MESSAGE
SECURITY LEVELS (CLASSIFICATIONS & CATEGORIES)

KEYWORDS

Allied
AUTODIN
Bl
category
classifications
CMW
Compartmented Mode Workstation
CONFIDENTIAL
default category
Defense Special Security Communications System
DoD
DoD Directive 5200.28
dominance
DSSCS
Encrypted For Transmission Only (EFTO)
For Official Use Only (FOUO)
format line
GENSER
hierarchical
JANAP 128

MLS
multi-level secure
NATO
NSA
object
Orange Book
RESTRICTED
SECRET
security levels
sensitivity label
SIOP ESI
SOP
SPECAT
special access programs
Standard Operating Procedures
TOP SECRET
trusted
UNCLASSIFIED
Unclassified EFTO
window

124

GENSER MESSAGE
SECURITY LEVELS (CLASSIFICATIONS & CATEGORIES)

Table 1 - Multi-Level Secure (MLS) Matrix

Trusted
Operating

System
Levels

Classification Categories

0 I 2 3 4

./

(Default)

GENSER GENSER
SIOP_ESI

GENSER
SPECAT

GENSER
NATO

DSSCS

255 MAX

70 TOP_SECRET non-message
data

message data message data message data message data

60 SECRET non-message
data

message data message data message data

50 CONFIDENTIAL non-message
data

message data message data message data

40 RESTRICTED message data

30 UNCLASSIFIED non-message
data

message data message data

1. Table 1 above identifies the security levels that a General Service (GENSER) message
processing system will handle. Security level refers to two elements in combination, the
classification and the category, and is held by the trusted operating system in the sensitivity
label.

- Classifications are hierarchical in nature and correlate to personnel security clearances,
e.g. Top Secret.

- Categories are non-hierarchical and are derived from special access programs that
impose additional control requirements. For example, access to Top Secret SIOP-ESI requires a
Top Secret clearance plus formal authorization for SIOP-ESI access.

~ Sensitivity labels are based on the classification and categories defined. This label is an
additional piece of information that is attached to every object which the operating system
controls.

The column "Trusted Operating System Levels" in the matrix shows hierarchical sensitivity
levels within the trusted operating system. Notice that security levels are defined against
operating system levels such that there is flexibility for the addition of security levels should
that be necessary in the future. For example, "255" is the highest level in the trusted operating
system, but the highest classification level is mapped to "70".

125

GENSER MESSAGE
SECURITY LEVELS (CLASSIFICATIONS & CATEGORIES)

Table 1 shows the classifications, categories, and logical data combinations defined for a Bl
multi-level secure operating system. In the matrix "message data" indicates the classification
and category combinations that apply to JANAP 128 messages. Those that apply to other
information (e.g., reference tables) and used during message processing/handling are indicated
by "non-message data". The default category ("./") would be applied to this information since
the information is not derived from a message. Blank cells in the matrix are illogical
combinations that would never be used for data storage or user access, i.e. UNCLASSIFIED
SIOP-ESI is not a legal message classification.

2. It is important to note that the hierarchical relationship of classifications enforces dominance
of a higher level over a lower level, i.e. SECRET dominates CONFIDENTIAL, RESTRICTED,
and UNCLASSIFIED. System users with access of SECRET also have rights to
CONFIDENTIAL, RESTRICTED, and UNCLASSIFIED data within the categories included in
the users' access. The default category is always available for the levels to which a user has
access and so is not specifically included as part of the access or log-in. The non-default
categories are exclusive and not hierarchical. That is, system access to GENSER_SIOP_ESI
does not provide access to GENSER-NATO data. Several examples are shown in Table 2.

Table 2 - Data Access Allowed

Trusted Operating System Access Message Data Access Allowed Non-Message Data Access Allowed

SECRET// none SECRET//

CONFIDENTIAL//

UNCLASSIFIED//

SECRET/GENSER/ SECRET/GENSER/

CONFIDENTIAL /GENSER/

UNCLASSIFIED /GENSER/

SECRET//

CONFIDENTIAL//

UNCLASSIFIED//

SECRET /GENSER, GENSER_NATO/ SECRET /GENSER, GENSER_NATO/

CONFIDENTIAL /GENSER, GENSER_NATO/

RESTRICTED /GENSER_NATO/

UNCLASSIFIED /GENSER, GENSER_NATO/

SECRET//

CONFIDENTIAL//

none

UNCLASSIFIED//

3. In a trusted windows environment using a Compartmen+ed Mode Workstation (CMW)
product, a window will reflect the security level at which the user logged in. The user will be
able to display messages of security levels at or below the log-in security level. When a
message is brought into a trusted window, the sensitivity label of the message itself will not be
displayed. The security level of the process that initiated the trusted window will continue to

126

GENSER MESSAGE
SECURITY LEVELS (CLASSIFICATIONS & CATEGORIES)

be shown as the window label. This should not be interpreted as a problem since the sensitivity
label of the window will match or dominate the security level of the message.

As a matter of operational policy, users will have varying levels of clearances. A number
of users, commensurate with site operational requirements, will be granted special access
authorizations. The security level defined for each user will identify the classification level and
also the categories authorized. Standard Operating Procedures (SOP) must be established for
the translation of personnel security clearances to the trusted operating system access.

For example, the following clearances and accesses would translate to the trusted operating
system access (log-on) as shown in Table 3.

Table 3 - Clearance/Access Translation

Security Clearance Special Access Authorizations Trusted Operating System Access

Top Secret none TOP_SECRET//

(Personnel with TS clearance and no special access authorizations who
require access to only non-message data.)

Top Secret none TOP_SECRET /GENSER/

(Personnel with TS clearance and no special access authorizations who
require access to message data and non-message data.)

Top Secret SIOP-ESI, SPECAT, NATO TOP SECRET/GENSER, GENSER_SIOP_ESI, GENSER_SPECAT,
GENSER_NATO/

(Personnel with TS clearance and SIOP-ESI, SPECAT, and NATO special
access authorizations who require access to message data and non-message
data.)

Top Secret NATO TOP_SECRET /GENSER, GENSER_NATO/

(Personnel with TS clearance and NATO special access authorization who
require access to message data and non-message data.)

Top Secret NATO TOP_SECRET /GENSER_NATO/

(Personnel with TS clearance and NATO special access authorization who
require access to NATO message data, but not US message data, and to non-
message data.)

Users assigned to correct messages may have Top Secret clearances and accesses of SIOP
ESI, SPECAT, and NATO. Working in a secure area where Top Secret data could be openly
displayed, users may sign on as:

TOP_SECRET /GENSER, GENSER_SIOP_ESI, GENSER_SPECAT, GENSER_NATO/

127

GENSER MESSAGE
SECURITY LEVELS (CLASSIFICATIONS & CATEGORIES)

creating a window on the computer screen in which any message within the system could be
edited. Alternatively, the same personnel working in a general service area not cleared for Top
Secret materials and in which they would want to limit displays to Secret data and below, may
sign on as:

SECRET /GENSER, GENSER_NATO/

creating a window on the computer screen in which only messages of Secret classification or
lower, with or without NATO designation, could be accessed. That is, within this window
neither a Top Secret message nor a Secret SPECAT message could be displayed. So, it is the
trusted operating system access level assigned to personnel that determines the highest level at
which they may log in to the system and it is the log-in that determines the levels at which they
can access data during a particular session.

It would also be possible for users to create the two windows described above on the same
computer screen. The trusted operating system would prevent copying of data from the higher
level screen to the lower level screen - enforcing the read down/write up rule of trusted
processing.

4. Application software will provide the processing necessary to determine JANAP 128
message classification. This includes validation of security information in Format Lines 2, 4,
and 12 of the message and cross-check of Format Lines 2, 4, and 12. Additionally, special
handling caveats in Format Line 4 (AAAAA or BBBBB) and Format Line 12 (SPECAT
SIOP-ESI or SPECAT) are identified and validated if present. A trusted process, a distinct
segment of software certified to raise and lower system privileges, will evaluate aggregate data
and assign a sensitivity label that reflects the message security level.

5. In AUTODIN, Unclassified EFTO (Encrypted for Transmission Only) messages are
handled through the use of the classification designator "E". These messages, although
Unclassified, are considered sensitive and therefore they are transmitted over encrypted circuits
only. Messages containing the classification designator "E", just as those containing the
designator "U", will be assigned the UNCLASSIFIED/GENSER/ sensitivity label by the multi-
level secure operating system. This is not considered a problem if all circuits connecting
directly or indirectly to the message processing system are encrypted beyond the
communications center.

6. The security level scheme depicted in the matrix of Table 1 is designed to accommodate
potential interfaces with non-DoD/non-US multi-level secure messaging systems. The General
Service (GENSER) category is defined to provide a mechanism for segregating NATO message
traffic from other traffic (US and Allied).

128

GENSER MESSAGE
SECURITY LEVELS (CLASSIFICATIONS & CATEGORIES)

7. The classification Restricted, used in AUTODIN and indicated by the classification
designator "R", is not authorized for US originators. It may be used by an Allied or a NATO
originator.

The handling of NATO Restricted and Restricted (indicates Allied originator) is different.
NATO Restricted is handled as Unclassified For Official Use Only (FOUO). Restricted, from
an Allied nation, is handled as Confidential.

In the processing system a message with the "R" classification designator will be assigned
a sensitivity label as shown below:

Table 4 - Restricted Translation

Format Line 2 Format Line 12 Trusted Operating System
Sensitivity Label

R RESTRICTED CONFIDENTIAL /GENSER/

R ALLIED RESTRICTED CONFIDENTIAL /GENSER/

R NATO RESTRICTED RESTRICTED /GENSER_NATO/

8. The Defense Special Security Communications System "DSSCS" category will not be used
in a message processing system handling only AUTODIN GENSER information. The category
is provided to accommodate potential interfaces to DSSCS systems or allow employment of the
security level scheme in a DSSCS system.

9. Banners on a printed message will be provided by the trusted operating system. These
banners will reflect the process sensitivity label identifying the classification and category, in
that order. It is important to note that it is the process label and not the data label that will be
printed. An application printer service, a trusted process, will evaluate all printing requests
initiated from within the application and set the operating system print request to the same level
as the data to be printed, ensuring consistent banners. Standard Operating Procedures (SOP)
must be established for printing data directly from the operating system.

It should be recognized that DoD Directive 5200.28, Security Requirements for Automated
Information Systems (AISs), enclosure 3, paragraph A.5. prescribes the following: "Automated
markings on output must not be relied on to be accurate, unless the security features and
assurances of the AIS meet the requirements for a minimum security class Bl as specified in
DoD 5200.28-STD [the Orange Book]." This MLS scheme is designed for a Bl, NSA-
certified, operating system.

129

GENSER MESSAGE
SECURITY LEVELS (CLASSIFICATIONS & CATEGORIES)

With the MLS schema presented, current classification markings would translate to
sensitivity labels as follows:

Table 5 - Banner Translation

JANAP 128 Message
Classification

Trusted Operating System Banner

COSMIC TOP SECRET TOPSECRET /GENSER_NATO/

SECRET SECRET/GENSER/

130

GENSER MESSAGE
SECURITY LEVELS (CLASSIFICATIONS & CATEGORIES)

A hardcopy of a message would have the following pages:

TOP_SECRET /GENSERJNATO/
xx
xx
xx
xx

Request id: User-23 Printer: Printer-10

Wed Marl 09:10:12 1995

XX
xx

The sensitivity label of the user is:
TOP_SECRET /GENSER_NATO/

Unless manually reviewed and downgraded
The system has labeled this data:

TOP SECRET /GENSER NATO/

xx
xx
xx
xx

TOP SECRET /GENSER NATO/

Figure 1 - Banner Page of Printout

131

GENSER MESSAGE
SECURITY LEVELS (CLASSIFICATIONS & CATEGORIES)

TOP SECRET /GENSER NATO/

data data data data data data
data data data data data data
data data data data data data
data data data data data data
data data data data data data
data data data data data data
data data data data data data

TOP SECRET /GENSER NATO/

Figure 2 - Data Page of Printout

TOP_SECRET /GENSER_NATO/
xx
xx
xx
xx

The sensitivity label of the user is:
TOP_SECRET /GENSER_NATO/

Unless manually reviewed and downgraded
The system has labeled this data:

TOPSECRET /GENSER_NATO/

XX
xx
xx
xx

TOP SECRET /GENSER NATO/

Figure 3 - Final Page of Printout

132

I I NCTS \ NCTS Washington

GENSER Message
Multi-Level Secure (MLS)

Classifications
and

Categories
IS LANT I I Presented by

NCTAMS LANT
Mary Lou Hoffert

8(14-445-1818

NCTAMS]

r CONCEPTS

• Multi-Level Secure (MLS)

• Sensitivity Labels

• Trusted Processes and Processing

Jl

r ISSUES

• Applying MLS to
GENSER Message Processing

• Impact of Automated Processing

• US vs NATO Classifications Jl

r Table 1 Multi-Level Secure (MLS) Matrix

OptnthK
C'lauitluiuin c"""*"

0 1 2 3 <
(Dd.ul!)

GENSER GENSER
SIOPEST

GENSER
SPECAT

GENSER
NATO

DSSCS

MS MAX

70 'KIP SErRET
ni™"" 7. nre«mjc TuT "Z8'

*> SILCKI-T
iLllll dlllil

manage ■"„tir
50 CONFIDENTIAL iwn-mcni^e

"ST" menage "ST
40 RES11UCTEU mewage

ft> UNCLASSIFIED „,..„_«. TT message

133

ITS SENSITIVITY LABEL r ACCESS

SECRET/GENSER,GENSER_NATO/

UNCLASSIFIED//

TOP SECRET/GENSER SIOP ESI/

• Data Access

• Clearance/Access Translation

• User/Process Access

Jl

r Table 2 - Data Access Allowed

Truth*! OpTatingSyrfmi Acce* ML-M^ Dub Aoxw Alhmed
AlkmwJ

SECRET// SECRET//

aiMTCENHAI//

lINOASSmED/

SECRET /GEhKER/ SECRET/GENSER/

a)>DTDENnAL/CEhKER'

lIf*lASSIFIED/CENSER/

SECRET//

CnNFIEENTIAU/

I'NaASSIFIED'/

SECRET /GEfCEK, a5JSTK_NATCV SECRET /GENSER, CiENSER_NATO'

a)NFICEMnAL/GEWiLR. CENSER_NATfy

RESTRICTED /CENSERJJATO'

UNaASStFIED/CENSER. CENSER_NATO'

SECRET//

a>M!CENriAI//

irNCLASSBTEDV

c Table 3 - Clearance/Access Translation

ci*™'.'! Au[wi»t"".
T,,,,^,,-,,,,^,,»*.™

T ""' TOPJilXkET//

Tu], ümri *""*

S^IsarrSKSKSisrÄ
T.>|i Scml NATO

S^^r~z::-rsr:;:s

134

r
Table 4 - Restricted Translation

Format Line 2 Format Line 12 Trusted Operating System
Sensitivity Label

R RESTRICTED CONFIDENTIAL /CENSER»

R ALLIED RESTRICTED CONFIDENTIAL /CENSER/

R NATO RESTRICTED RESTRICTED /GENSER_NATCY

Jl

I tin

Compart men ted Mode Workstation — Screen Display

NCPiiSwit« '^h^^^^i^^ä

f»<H IKLKHyitye

1 CnnWHMtATIW OOmufclTY PLAN M«I «m.iCBrjWI :
« nfrfXK TB ™ «.ttit a

mini ■"! <.
, AM} OtlCH CMTITTEV TO BE DCBXGNATED A u

Printed Banners

nm«_> n».iturt»»nMAT<«

;:s:::

Kaiialid: Un»lJ NH MlM-IO

wraKiET «BHrajuKv

r CONCLUSION

• Leading Edge of Technology

• Accommodate Automated Processing

• Standard Nomenclature Benefits

J

135

A STANDARD AUDIT TRAIL FORMAT

Matt Bishop

Department of Computer Science
University of California at Davis

Davis, CA 95616-8562

Introduction

The central role of audit trails, or (more properly) logs, in security monitoring needs little
description, for it is too well known for any to doubt it. Auditing, or the analysis of logs, is a cen-
tral part of security not only in computer system security but also in analyzing financial and other
non-technical systems. As part of this process, it is often necessary to reconcile logs from differ-
ent sources.

Consider for example intrusion detection over a network. In this scenario, an intrusion detec-
tion system (IDS) monitors several hosts on a network, and from their logs it determines which
actions are attempts to violate security (misuse detection) or which actions are not expected
(anomaly detection). As some attacks involve the exploitation of concurrent commands, the log
records may involve more than one user, process, and system. Further, should the system security
officer decide to trace the connection back through other systems, he must be able to correlate the
logs of the many different heterogeneous systems through whom the attacker may have come.

All this speaks of many needs, such as synchronization of time among hosts, a method for cor-
relation of host-specific information, and a standard logging format. Such a format has several
benefits. First, it makes analysis of the logs by a central engine simpler, because that engine need
not know the types of systems generating the logs. Secondly, it enables logs generated for very
different purposes to be reconciled. Suppose a credit card transaction is made over the Internet.
The financial transaction will be logged at the (electronic) bank, and the connection (and presum-
ably information about the transaction) at the purchaser's system. Should the purchaser claim
fraud (e.g., he denies the transaction), the investigators would need to reconcile the system log
with that of the financial institution to verify the legitimacy of the transaction. Third, it allows
interoperability of audit systems on a very large scale, much the way a standard byte ordering
allows interoperation of networked systems.

A standard log format robust enough to meet the needs of heterogeneity, transportability
across various network protocols, and flexibility sufficient to meet a variety of needs in very dif-
ferent environments must satisfy two basic properties: extensibility and portability. Accepting
existing log formats as standard violates one or more of these goals. For example, each of
[4] [5] [7] [8] are specific to a particular type of operating system, although the format described in
[8] is meant to be general enough for third-party vendors to use. The format in [9] is specifically
designed for the detection of misuse or intrusion in UNIX systems [6] and not for other situations
such as financial transaction processing. Finally, the proposed POSIX standard [10] does not
define a log format, but an application programming interface for accessing the log files a system
produces. As the problem posed here includes moving the log files across networks and among
heterogeneous platforms, use of such an interface in this context is inappropriate.

Extensibility implies that neither the names nor the number of the fields of the log record are

136

fixed. As the use of logs increases, investigators will become more sophisticated and demand
additional information from the systems. Thus if the type of information that can be placed in the
log record is limited to those quantities defined by the designers of the system, adding new fields
requires a revision of the definition of an audit record as well as all ancillary software. Further, as
designers become more sophisticated in what their systems will log, they will define new fields to
aid in tracking specific security problems. All this speaks to allowing user-definable fields as well
as common, predefined fields.

Portability implies that the log can be processed on any system. Thus, issues of byte ordering,
character representation, and floating-point format must be either avoided or standardized. As log
records may be sent over electronic mail, the format should be portable enough to pass through
the SMTP protocol. This suggests that the best representation would involve printable ASCII
characters only; note that canonicalizing the standard format to this requirement eliminates issues
of byte ordering and floating-point representation, because numbers would be represented as
ASCII strings, and the standard system conversion functions would translate these into numbers
when required. Finally, given this approach, the record cannot be of fixed length, because differ-
ent machines will have different precisions, and mandating that the ASCII representation of num-
bers be of a fixed length would potentially cause a loss of precision in some cases.

The next section presents our proposed format. In section 3, we show how and where the
translation should be done, and in section 4 we demonstrate how log records from several dispar-
ate systems would be put into this format. Section 5 concludes with some observations and sug-
gestions for future work.

Proposed Standard

We select as our goal the definition of a standard log record format. We explicitly do not
attempt to standardize the events or fields (also called attributes) that are to be recorded; as argued
in [3], that is more properly a function of policy and not of information interchange. Users of this
format will have to use common field names when interoperating, and these common names could
form the basis for another standard.

A log record consists of several fields all of which refer to the same event. We separate fields
with afield separator, which by default will be '#'. (To include the separator in a field, repeat it;
thus, "##" stands for a single '#' character.) Each field consists of an attribute, which is repre-
sented by a string of 1 or more characters not including '#' or '=', and a value, which consists of a
string of characters; the two are separated by an '='. So, for example, the fields of a log record for
a UNIX command may look like
#time=234627364#log=mab#role=root#UID=384#file=/bin#su#devno=3#inode=2343#

For the reasons stated above, log records cannot be of fixed length; they therefore require a
start and a stop symbol. These symbols are pseudo-fields containing the characters are "S" and
"E"; note that these are not legal fields as they have no '=' in them. For simplicity, the special field
"#N#" represents the juxtaposition "#E#S#". Thus, the above log record would be
#S#time=2346273 64#log=mab#role=root#UID=384#file=/bin#su#devno=3#inode=2343#E#

The SMTP protocol is quite restrictive; it requires that all characters be printable ASCII, and
no line be more than 80 characters long. Hence, characters may, and nonprinting characters must,
be represented by their value expressed in hexadecimal and surrounded by the nonprinting delim-
iter 'V. For example, if the value of attribute "controlchar" is "ESC-[H", where ESC is the escape
character, the field would be

137

Figure 1. Summary of standard log format.

#S# start log record #Fc# change field separator to c
#E# end log record #Cc# change nonprinting delimiter to c
#N# next log record (same as #E#S#) #I# ignore next field
default field separator \ default nonprinting delimiter

\hex value\ represents the character with ASCII value hex value
attribute=value set the value of attribute to value

#controlchar=\lb\[H#

This means that a 'V character must be escaped, so the sequence "\\" represents a single 'V. Fur-
ther, a mechanism for including newlines in the middle of a log record will allow the record to be
broken into lines of less than 80 characters; for this purpose, we define the pseudo-field "#I#" as
marking the next field to be ignored. (Incidentally, this also allows comments to be interpolated.)
To expand on our log record above:
#S#login_id=bishop#role=root#UID=384#file=/bin/su#devno=3#inode=2343#I#
#return=l#errorcode=26#host=toad\79\#E#

As one last feature, we note that the field separator and the nonprinting delimiter may occur often
in the value of fields on some systems. Hence, we provide a way to change both. The distin-
guished symbol "#F%#" changes the field separator to '%' and the symbol "#C$#" changes the
nonprinting delimiter to '$'. Note that any character may be used, not just'%' and '$'. Also note
these are illegal fields as there is no '=' in them. For example,
#S#F%#C$%login_id=bishop%role=root%UID=3 84%file=c:\bin\load%I%
%return=l%errorcode=26%host=toad79%E%

Note that these symbols are not considered part of the log record in which they occur; rather, the
chosen field separator and nonprinting delimiter characters remain in effect until changed. Figure
1 summarizes these character sequences.

Note that we do not specify any particular attributes as standard. This is to allow the designers
of audit tools to name fields as they wish; so long as they are consistent across platforms being
audited, the precise names of the attributes do not matter. However, many systems log the same
categories of information (such as user name, command, date, and process number). Section 4
describes several such attributes, and names and representations are suggested.

Note also that this format eliminates the problem of the undefined value. In a system in which
some attributes are required, the log must be able to specify that the value for the attribute cannot
be determined. Here, one of two approaches may be taken. First, define a distinguished value to
represent the undefined value; this is the approach other log formats use. Second, simply omit the
attribute from the record. If it is not present, then it is clearly not defined. This approach elimi-
nates the need for a distinguished value to mean undefined.

Use of the Format

Because each system uses its own internal representation of log files, and its own auditing
tools are crafted to use that format, it is not necessary that the log records be put into the standard
format. The need for a standard format arises when tools recognizing only that format are used, or
when the logs generated by that system must be combined with logs from other, different types of,

138

/~ A
/log generatorY^ log filter f

^^analvsis^\
x~ ■—

log
processor

J*r^^ engine)

)

f ^ ^X f log generator y^.

^v_—y
N

• log filter
\ __*.

1 V y

Figure 2. Architecture using log filters to generate the standard format. The native system logs
(generated by the log generators) are translated into the standard format by the log filters and then
sent to the log processor on the analysis host. That program changes the standard format into the
internal representation used by the analysis engine.

systems.

Hence the recommended architecture for generating this log format is to build a filter tool that
will take as input the raw log records as produced by the system, and will generate as output the
standard log format. With this approach, at the analysis engine one need write all log input pro-
grams to use only the standardized format. Figure 2 summarizes this approach.

We note that one could use the POSIX standard interfaces to define the manner in which the
filter should access log records. In this case, the API would be the same for all POSIX-compliant
machines and the processing of the information would vary. We note however that the POSIX
interface suffers from some limits, specifically a failure to include some relevant information such
as session identification mechanisms, and that few vendors provide POSIX-compliant interfaces.

This approach avoids the need.to modify the kernel locally if new information becomes avail-
able. For example, suppose initially the log only records the user time of a process, and a later
revision adds system time spent executing on behalf of the process to the log. The filter will now
need to be changed to add this information into the standard format log, but the operating system
need not be modified (beyond the upgrade).

As an aside, we note that the filter may reside on the system being monitored (in which case
the records will be sent in standard format) or on the analysis engine (in which case the logs will
be sent in native format). The former seems preferable because it not only distributes the compu-
tation load but also handles network dependencies such as network byte order.

The next section presents several issues about representation of values to demonstrate com-
plexities that arise in using this format. We do so by examining log records for several systems.

A Comparison of The Standard Log Format with Other Formats

In this section, we describe several log record formats, and show how they can be mapped into
the standard audit format.

Basic Security Module

The Basic Security Module (BSM) [4] is an enhancement to SunOS system security. Each log
record is made up of a sequence of tokens and, like the standard format, the record size is not
fixed; there is a begin and an end token. Each record refers to an auditable event, which may be a
"kernel event" such as a system call or an "application event" such as a failure to authenticate suc-

139

cessfully to the login program.
BSM defines a token to be a token identification field followed by a series of information

fields. These tokens all relate to user identity (process, which includes real, effective, and original
UID and effective group ID as well as process ID; group list), file system information (pathname
and attributes), IPC usage (IPC token, IPC attributes), networking (IP port number, IP address),
and process and system call information (return value, arguments) as well as more general infor-
mation (text, data, opaque). By using this information, actions on the system can be traced.

The BSM logs use the same free-format idea as the standard log format; the only differences
are that the BSM information is stored in binary format when appropriate (for example, if num-
bers are involved) and the start and end tokens contain the length of the record. The standard log
format does not do this to allow the records to be generated on the fly, so that the entire record
need not be constructed in memory and then output. This means that scanning the standard log
format may involve some overhead, but the overhead is most likely negligible and is offset by the
elimination of the need to process ASCII strings into numbers.

An example BSM log record might look like this (when formatted using praudit):
header,35,AUE_EXIT,Wed Sep 18 11:35:28 1991, + 570000 msec,
process,bishop,root,root,daemon,123 4,
return,Error 0,5
trailer,35

Put into the standard log format, this looks like:
#S#event=AUE_EXIT#date=09181991@113528#usedtime=570000#logid=bishop#I#
#ruid=root#euid=root#egid=daemon#procid=1234#errno=0#retval=5#E#

Note that the same information is present, but the attributes are named rather than defined by loca-
tion in the log record. This is necessary as different systems and different policies will require dif-
ferent information to be stored, leading to much confusion if the fields are not identifiable by
attribute name rather than position. Basically, one cannot predict all attributes that will need to be
logged; hence, one cannot rely on position.

SunOS MLS Logs
SunOS MLS, the multilevel secure version of SunOS, produces logs very similar to those of

the BSM [8]. Log records are not fixed length, but there is no trailer token; the header token
includes a length, type, and time field. Associated with each event is a header token, a subject
token (giving the login, real, and effective UID and real GID of the process and the associated
user), return value information, labelling information (if the system uses labels), and other ancil-
lary information identical to that of the BSM. The average size of a log record is between 120 and
180 bytes; compression reduces this appreciably (by roughly a factor of 4 to 8, depending on the
record's contents).

A simplified example of a SunOS MLS log record is given in [8]:
header,120,AUE_UNLINK,Wed Sep 18 11:35:28 1991, + 570000 msec,
process,bishop,root,root,daemon,1234,
label,confidential,nuclear,crypto
pathname,/,/usr/holly,../matt/tmp/junkfile
return,Error 0,5
trailer,120

Put into the standard log format, this looks like:
#S#event=AUE_UNLINK#date=09181991@113528#usedtime=570000#I#

140

#logid=bishop#ruid=root#euid=root#rgid=daemon#procid=1234#I#
#seclevel=confidential#class=nuclear#class=crypto#I#
#rootdir=/#cwd=/usr/holly#pathname=../matt/tmp/junkfile#I#
#errno=0#retval=5#E#

Again, note the standard log format simply presents the information in another way. Also note that
if the attribute names are too long, one could define very short ones.

The basic differences between this format and the standard log format are twofold. First,
SunOS MLS log records include data in integer format; second, the types of information that can
be placed in those records is constrained and not easy to change. For example, if the same format
were used on a financial system, the format would need to be changed to include information
about the transaction itself. However, this format is quite good for its intended purpose (which is
to provide information for system security auditing).

VAX VMM Security Kernel

The VAX VMM security kernel is a virtual machine monitor which has extensive auditing
abilities designed to meet the requirements of the Al class of the Orange Book [7]. All logging is
done by the Audit Trail layer and each record contains an event identifier, the event status (result
of the event), auxiliary data (such as the name, type, and class of the object involved in the event,
and other event-specific information), the name of the caller (who caused the event), the date and
time of the event, the caller's type, access class, user's name, rights, and privileges. While some
events can be excluded from the log, the higher layers have the power to override exclusion (for
example, if a login fails, the event will be logged). Unfortunately, the paper gives no examples,
but the attributes here can clearly be captured by the standard log format.

Again, this format has some drawbacks as a standard log format: the attributes are fixed, and
the data in the logs is binary, so numbers (for example) are stored in a machine-dependent man-
ner. To be fair, it was intended only for use in the VAX security kernel, and for that purpose
appears to be quite good.

svr4++ UNIX Log File Format

This log format [9] is an ASCII format based on the logging format used in OSF/1. The
attributes entered in a log record are time, event type, process identifier, result, user and group
information, session identifier, labelling information for the process, information about the object
(name, type, security label, device and inode information) and miscellaneous data. Each log
record is a single line with comma-separated fields, and undefined fields (such as the security
label field when the process does not have a security label) are set to '?'.

This style of record approaches portability. It is in ASCII, which solves the problem of binary
data management. However, the fields it uses are tied directly to the nature of the policy which
suggested the creation of the log: misuse or anomaly detection. No extensibility is provided for
(the miscellaneous fields are labelled as being dependent on the operating system and the event).

Here is an example audit record in this format (it is spread over two lines for clarity):
16:36:01:28:09:92,6,Pl6195,s(0),1021:1021:1021,10 , S? ,? ,

(/home/snapp/creat.foo:f:"0644,1024,10":17080:66=184:411265:1818)

The equivalent record in the standard log format is:
#S#event=6#date=09281992@163601#logid=1021#ruid=1021#euid=1021#rgid=10#I#
#procid=16195#objname=/home/snapp/creat.foo#objtype=file#objmode=0644#I#
#objuid=1024#objgid=10#objdevid=1708 0#objc3maj=66#objdmin=184#I#

141

#objino=411265#objfsid=1818#E#

A few remarks are in order. First, had multiple objects been present, the attributes could be num-
bered objl..., obj2... and so forth to distinguish the object to which the fields referred to. Sec-
ondly, this log record assumes that the audit engine knows the internal representation of users (for
example, that user id 1021 refers to John Smith). Third, the label field and session id field are
omitted as the values in the svr4++ log record fields show the system did not provide those. This
makes the log more readable.

A Log for an Embedded Avionics System

The study of log records for an avionics system [5] may seem far from the point of this paper,
but as we claim the format is general enough for all purposes, this serves as one way to test our
claim. The log records subject identifier, action performed, 2 security-relevant parameters, object
identifier, the initial and resulting value of the object and the status of the operation, and then
information about resource usage, a time stamp, and the severity of the event and the status of the
logging. Again, the paper gives no examples, but clearly the standard format provides enough
flexibility to allow the records to be standardized.

RACF

RACF [1] is a security enhancement package for the IBM MVS operating system and VM
environment. It logs failed access attempts and the use of privileges to change security levels, and
can be set to log any RACF command, changes to the RACF database, attempts to access
resources guarded by RACF, and any access by privileged groups or users. The logged informa-
tion includes userid, name, owner of the resource, when the resource was created, and so forth.

RACF generates reports using four commands. LISTUSER lists information about RACF
users:
USER=EW125004 NAME=S.J.TURNER OWNER=SECADM CREATED=88.004

DEFAULT-GROUP=HUMRES PASSDATE=88.004 PASS-INTERVAL=30
ATTRIBUTES=ADSP
REVOKE DATE=NONE RESUME-DATE=NONE
LAST-ACCESS=88.020/14:15:10
CLASS AUTHORIZATIONS=NONE
NO-INSTALLATION-DATA
NO-MODEL-NAME
LOGON ALLOWED (DAYS) (TIME)

ANYDAY ANYTIME
GROUP=HUMRES AUTH=JOIN CONNECT-OWNER=SECADM C0NNECT-DATE=88.004

CONNECTS= 15 UACC=READ LAST-C0NNECT=88.018/16:45:06
CONNECT ATTRIBUTES=NONE
REVOKE DATE=NONE RESUME DATE=NONE

GROUP=PERSNL AUTH=JOIN CONNECT-OWNER=SECADM CONNECT-DATE:88.004
CONNECTS= 25 UACC=READ LAST-CONNECT=88.020/14:15:10

: CONNECT ATTRIBUTES=NONE
REVOKE DATE=NONE RESUME DATE=NONE

SECURITY-LEVEL=NONE SPECIFIED
CATEGORY AUTHORIZATION

NONE SPECIFIED

A standard log format representation of this might be:
#S#user=EW125004#name=S.J.TURNER#owner=SECADM#created=01041988#I#

142

#defgroups=HUMRES#passdate=01041988#passinterval=30#attributes=ADSP#I#
#lastaccess=012 01988@141510#logonok=anyday,anytime#groupl=HUMRES.#I#
#grouplauth=JOIN#grouplconnowner=SECADM##grouplconndate=0104995#I#
#grouplconncount=15#groupluacc=READ#groupllastconn=0118198801641506#I#
#group2=PERSNL#group2auth=JOIN#group2connowner=SECADM#I#
#group2conndate=0104995##group2conncount=25#group2uacc=READ#I#
#group21astconn=01201988@141510#E#

The other three log formats may be translated similarly. Note the difference in attribute names
which reflects the difference in security policy and system implementation.

CA-UNICENTER
CA-UNICENTER is a UNIX-based product providing many security features of a mainframe.

Its log messages cover logging in, logging out, and resource protection. Among the attributes
recorded are event, login name, host name, terminal identifier, resource name, result, and access
request. For example, the CA-UNICENTER record
CASF_E_465 Access violation by bishop to asset (Warn) /bin/su> from source con-
sole for access type write

would be

#S#event=CASF_E_465#loginid=bishop#mode=Warn#asset-name=/bin/su#I#
#termid=console#regaccess=write#E#

in the standard log format. Similarly, the record
CASF_E_466 Logging access by bishop to asset /bin/su from source console for
access type execute

would be translated to
#S#event=CASF_E_466#loginid=bishop#asset-name=/bin/su#termid=console#I#
#reqaccess=execute#E#

Summary
We have taken examples of log records from very different systems and shown how to put

them into the standard log format. This demonstrates that the log format can handle a variety of
systems and security policies, from intrusion detection to financial records.

We should note some commonalities between the attributes in the different examples. First,
user ID may be represented either by name or number, but the analysis engine must be able to
resolve either to a canonical name. The representation of date and time is as mmddyyyy@hhmmss
rather than as an internal number (such as the number of seconds since January 1, 1970) because
different systems use different numbers, so this was chosen to make the records easier to under-
stand. Of course, all systems must have synchronized clocks to make a comparison of times
meaningful.

Example Attack Record

In this section we suggest specific fields for system security; that is, what fields in the standard
log format would a security analyst trying to track an intruder find useful? A fully detailed analy-
sis would be beyond the scope of this paper, but a simple one follows.

Intruders enter systems through a variety of mechanisms, most involving network connections
or logins. (Note that an exception is piggybacking onto an active connection.) Hence, log fields
indicating the origin and type of connections are appropriate, as is the time and privilege of the
connection. For reference, each log entry should be numbered. For example:

143

#S#no=1231#date=09281992@163601#net=l#srv=smtpd#orig=123.45.67.89#port=25#E#
#S#no=224#date=10101997@123456#tty=console#usr=mab#role=mab#grp=fac#tryno=l#E#

The first line is an example of an SMTP connection originating from IP address 123.45.67.89 and
coming in over the first network (this is a multi-homed host), and the second a login by user
"mab" from the terminal "console"; the login was successful on the first try, and the user was put
into group "fac" and the role "mab".

Detection involves looking at commands executed; the axes here are for suspicious programs
(such as a user executing a program called "guess_anyones_password"), and normal programs
that deviate from their expected pattern of execution (such as a UNIX shell with 100 hours of
CPU time; shells virtually never have that much CPU time). Fields relevant here would be pro-
gram name, amount of execution time (system and user, as well as time of execution, termination,
suspension, and resumption), and files accessed. Some sample log entries are:
#S#no=123#name=/bin/sh#date=10101997@123456#act=begin#usr=mab#grp=fac#I#

#cwd=/u/mab#argl=X#pid=9876#E#
#S#no=124#name=sh#date=10101997@123457#pid=9876#act=open#mode=read#I#

#usrtime=0.01#systime=0.01#file=/u/mab/X#res=l#I#
#fdev=/dev/rrh0e#fino=123214#ftype=reg#fperm=0644#fuser=mab#I#
#fgrp=fac#atime=10081997@102300#ctime=080396@153451#I#
#mtime=10021997@023534#E#

In the first line, the program "/bin/sh" (process number 9876) has been started by user "mab", in
group "fac", and was given the argument "X". The second entry shows that "/bin/sh", with 0.01
seconds of user and system time on it so far, has tried to open file "/u/mab/X" for reading and has
succeeded. The file resides on device "/dev/rrhOe" with inode number 123214, has access permis-
sions "0644" (owner read and write, group and other read), and is owned by user "mab" and
group "fac". It was last accessed at 10:23:00 on 10/8/1997, last modified at 2:35:34 on 10/2/97,
and created at 15:34:51 on 8/3/96.
#S#no=139#name=/bin/sh#date=10101997iai25001#pid=9876#usrtime=21600#I#

#systime=0.01#act=susp#usr=root#E#
#S#no=160#name=/bin/sh#date=10101997@125223#pid=9876#usrtime=21600#I#

#systime=0.01act=term#usr=root#E#

These last two log entries show that process 9876, which is "/bin/sh", was suspended and subse-
quently terminated by user "root". At the time of suspension, it had 21600 seconds (6 hours) of
user time and 0.01 seconds of system time.

This is a very simple example of what a system administrator would look for. Note that in this
example the user time and system time are written out at each system call. Whether or not all
these fields could be present depends on the system on which the logging is done; but there is no
question their presence would indeed be useful.

Conclusion

This paper has presented a very flexible, portable, extensible standard log format. We have
demonstrated its use by applying it to several different formats of log records.

The key issue is, of course, what to log. As shown in [3], what to log depends on both the
implementation of system logging mechanisms and the needs of the security policy to be
enforced. This paper speaks to neither point; nor does it claim to.

The architecture of a distributed auditing system is beyond the scope of this paper, but the
essentials of one such system are described in [2]. That paper does not deal with reconciliation of

144

logs from heterogeneous systems, which is a very deep research question. This paper presents
work that is a step in the direction of a solution by eliminating the need to have the reconciliator
understand the vendors' log format. The next step is to investigate techniques to reconcile logs.

Acknowledgments: Thanks to Al Novissimo and Alan Paller of Computer Associates, Inc., for
providing information about CA-UNICENTER, to John Gregg and David Day of the UC Davis
Office of Internal Audit for useful discussions about non-computer oriented auditing involving the
analysis of computer systems and for a description of RACF, and to Biswaroop Guha, Christopher
Wee, James Hoagland, and Karl Levitt for useful discussions. This work was supported by an
award from the Lawrence Livermore National Laboratory to the University of California at Davis,
and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract no. W-7405-Eng-48

Basic Security Monitor and SunOS are registered trademarks of Sun Microsystems, Inc. CA-
UNICENTER is a registered trademark of Computer Associates, Inc. RACF is a registered trade-
mark of IBM. VAX is a registered trademark of Digital Equipment Corporation.

References

[1] Audit, Control, and Security Issues in RACF Environments, Technical Reference Series No.
37052, Ernst & Whinney; available from The EDP Auditors Foundation, Inc., Carol Stream,
IL(1992).

[2] D. Banning, G. Ellingwood, C. Franklin, C. Muckenhirn, and D. Price, "Auditing of Distrib-
uted Systems," 14th National Computer Security Conference Proceedings pp. 59-68 (1991).

[3] M. Bishop, "Goal-Oriented Auditing and Logging," unpublished.

[4] Installing, Administering, and Using the Basic Security Module, Sun Microsystems, Inc.,
Mountain View, CA (April 1992).

[5] K. N. Rao, "Security Audit for Embedded Avionics Systems," Proceedings of the Fifth
Annual Computer Security Applications Conference pp. 78-84 (Dec. 1989).

[6] D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," Communications of
the ACM 17(7) pp. 365-374 (1974).

[7] K. F. Seiden and J. P. Melanson, "The Auditing Facility for a VMM Security Kernel," Pro-
ceedings of the 1990 IEEE Symposium on Research in Security and Privacy pp. 262-277
(1992).

[8] W. Olin Sibert, "Auditing in a Distributed System: Secure SunOS Audit Trails," 11th
National Computer Security Conference pp. 81-91 (1988).

[9] Stephen E. Smaha, svr4++, A Common Audit Trail Interchange Format for Unix, Haystack
Laboratories, Inc., Austin, TX (Oct. 5, 1994).

[10] Standard for Information Technology Portable Operating System Interface (POSIX) Part I:
System Application Protgram Interface (API), Report 1003. le, (April 1994).

145

TCP/IP (Lack of) Security

Jesper M. Johansson

BMGT 727

Security of Information Systems

Dr. John Campbell

Abstract
This paper explores the security problems of the Transmission Control Protocol/Internet Protocol

(TCP/IP) protocol suite. The security problems of many of the most common features are

explained, and examples are given in many cases. The paper also takes a look at the changes to

the security aspects of IP which will change with the adoption of the revised version of this

protocol: IPv6. This protocol has solved some of the security problems inherent in IPv4, but

many problems, especially those that are inherent to other areas of the protocol, and those which

rely on source address authentication, remain. The paper concludes by a short examination of

what was perhaps the largest security breach in IP history, the Internet Worm. What the worm

actually did and did not do will be covered, as well as how it operated. This is an important

exercise, since it highlights some of the major security flaws in the protocol suite. It also

highlights the dangers of allowing the users of the system, as opposed to the system manager, to

dictate security policy.

Acknowledgment

I would like to thank my professors at the University of Maryland, and especially Drs. Campbell

and Alavi, for allowing me the opportunity to explore many of the areas of Information Systems

which I normally would never have delved into. When I started with the program I had no idea

how wide and exciting the area is. You have made me realize the excitement in studying the

leading edge of the field. It is due to your encouragement and advice that I have decided to make

the exploration of the mysteries of Information Systems my life work. As I commence my

doctorate studies at the University of Minnesota, I am forever grateful to you for your guidance

and encouragement.

146

Jesper M. Johansson TCP/IP (Lack of Security)

TCP/IP (Lack of) Security
The TCP/IP protocol suite is arguably the most commonly used protocol suite in the world today.
It comes as a standard feature on virtually all UNIX®1 systems. It forms the base of the largest
network in the world: The Internet. The Internet was developed using grants from the
Department of Defense's (DoD) Advanced Projects Research Agency (ARPA). The Internet,
and the TCP/IP protocol suite it is built on, were not designed to provide security features.
(They also were not designed to handle the number of hosts presently on them either, but more
about that later). Rather, they were designed to facilitate the dissemination of information.
Therefore, most security features were added as an afterthought, in higher level protocols.

This paper discusses the security aspects of TCP/IP. First, a relatively brief overview of the
Internet Protocol (IP) will be given. This discussion will also cover the layering of protocols, to
create the protocol stack. Next, the "auxiliary" protocols (the higher layers) will be presented,
along with the security features they provide, or, as in most cases, lack. We will then turn our
attention to hope for the future: Internet Protocol; The Next Generation, more commonly known
as IPng, or officially IPv6 (as opposed to IPv4, the current implementation). Lastly, we shall
delve into a case study on the dangers of trust: The Internet Worm of November 1988.

The Internet Protocol
The Internet Protocol (IP) was first developed along with the ARPANet, and has been included
in the release of most every UNLX implementation since Berkeley's version 4.2 (BSD4.2). The
Internet protocol provides the equivalent of the Open Systems Interconnect (OSI) networking
layer to the TCP/IP stack, with the exception that, in contrast to OSI, TCP/IP actually works.
TCP/IP is both topology and data link independent. This is one of the strong points, since the
protocol thus can be utilized on almost any network [KEEN94]. There are also numerous
derivative protocols of IP, such as IPX (used in Novell Corp's. LANs). IP, however, has
significant shortcomings, other than the security ones, which we shall discuss soon. First, we
will discuss some of the basics of IP though.

IP is a packet switched protocol. This means that it divides the message to be sent into packets,
which then could take different routes to the destination. The destination, and the source, is
identified through their IP-addresses An IP address is a 32-bit number, where the first few bits
define what size network the host is connected to. IP does not check whether a packet was
received or not. If a packet is undeliverable, or does not reach it's destination, it is simply
discarded. Higher level protocols deal with what to do when packets disappear. An IP packet
consist mainly of two parts: The header, and the datagram. The header specifies the source, the

Unix is a trademark of AT&T Bell Laboratories

147

Jesper M. Johansson TCP/IP (Lack of Security)

destination, and certain other information, as will be described later. The datagram carries the
actual message, in plaintext. There is no method for encryption currently available that works on

the IP level.

IP Shortcomings
The most notable shortcoming of IP is the fact that its address space is fairly limited. An Internet
address (see Table 1) is made up of a 32 bit number. That number is further subdivided into (1)
high-order bits, specifying the class of network; (2) the network portion, specifying actual
network within the class; and (3) the host portion, specifying the host within the network.

IP Address Formats

Class High-Order
Bits

Network
Portion

Host Portion Number of
Networks

Number of
Hosts

A 0 7 24 128 16,777,214

B 10 14 16 16,384 65,534

C 110 21 8 2,097,157 254

D
1110 Multicast

Group
Multicast

Group
- 268,435,456

E 1111 (Experimental
Use)

(Experimental
Use)

- ■"

Source: [CHEJ 589]

The class A networks have long been exhausted. The Class B networks were already in 1990
estimated to be exhausted by March of 1994 [BRAD95]. The Internet thus faces significant
growing pains. The theoretical limit on the number of hosts on the Internet would be just

under 4 billion. However, despite this limit, the routing tables necessary to implement a full
scale network with all these hosts would be humunguous, thus significantly slowing
performance. Therefore, an upgrade to the current IP protocol is being developed. This upgrade
is discussed at more length in the IPv6 section of this paper. It is estimated that, under the
current conditions, and rate of issuance, the address space will be exhausted between the years
2005 and 2011 [BRAD95]. However, this projection does not take into account any possible

significant shifts in the rate of usage.

Another weakness, which is more directly related to this paper, is the lack of security features in
IP. There are a number of optional fields in an IP header, two of which are the security label,

148

Jesper M. Johansson TCP/IP (Lack of Security)

and the strict an loose source routing fields. There are no other security features inherent in the
current version of IP.

The Security Label

The Security Label is most commonly used in military applications. The field allows a packet to
be labeled with the sensitivity of information it contains [CHES94]. These labels follow the
well-known "military model." However, most operating systems in use today make no use of
these labels. The most common current use for them is to restrict routing. For example, a packet
labeled Top Secret will not be transmitted over a router rated less than that, unless the packet is
properly encrypted, using Top Secret-rated keys.

Source Routing

Source routing is an option in IP which specifies the routing path that a packet should take. This
is not a security feature in IP. Rather it is a significant problem. Using this label, a person can
specify that a packet should take a certain route. Since the destination machine must use the
inverse ofthat route [BRADEN89], the attacker can impersonate any machine that the target
trusts, thus gaining access to the packets, as they pass by. It is generally recommended that
source routing is turned off, or that packets containing this option be rejected by the router.
There are very few legitimate uses for source routing.

Higher Level Protocols
There are a number of auxiliary, or higher-level, protocols which attach to IP. By itself, IP will
do nothing more than establish a connection to another computer. It is up the higher level
protocols to decide what to do with that connection. Many of these protocols suffer from the
lack of basic security features in IP. Most of them also provide some holes all of their own.
These protocols can do many different things, ranging from setting up and tearing down
connections to other computers (TCP), to sending mail from one computer to another (SMTP).

Connection Layer
TCP

The most well known of the higher level protocols is the Transport Control Protocol (TCP). This
protocol is so commonly mentioned in conjunction with IP, that most people probably think that
they are one and the same. This is far from the truth. TCP is not required to do much of the
work on the Internet. There are other protocols available to do some of the same things.

TCP is used to provide the user (whether a breathing human being or a process on a computer)
with a reliable virtual circuit to use for the communication. (Interestingly, TCP adds a
connection-oriented protocol to a packet switched network, a seeming paradox). Since IP is
packet switched, there is no guarantee that packets are in the right order when they arrive. TCP
takes care of this by ordering the packets according to their sequence numbers. Every byte sent

149

Jesper M. Johansson TCP/IP (Lack of Security)

carries such a number. This sequence number is also used as an acknowledgment number, sent
the other way, to signify the last successful packet sent. Every packet, except the first one sent,
will contain such an acknowledgment number. The initial sequence number (at least in a
Berkeley system) is incremented by a constant amount each second, and by half that amount,
each time a connection is initiated [BELL89]. Robert T. Morris pointed out that it is entirely
possible to predict that sequence number, thus fooling the attacked host into thinking that
someone else is connecting to it [MORR85]. A normal TCP connection sequence is shown in
Figure 1. The client would send a SYNchroniz'e message to the server, including an initial
sequence number (ISN). The server would respond with its own synchronization and an
acknowledgment of the clients ISN. The client would then acknowledge the server's ISN and
the data transfer could start. This is commonly known as the three-way handshake in TCP.

^V

.SYN(ISNc).
SYN(ISNs), ACK(ISNc)

ACK(ISNs).

 data

Figure 1: A normal TCP connect session

Figure 2 pictures an attack. First the attacker would have to select a host to use as a third party.
This is the host to be blamed for the attack. Preferably, this host should be a host trusted by the
victim. The attacker would flood that third party with connection requests. This would cause
that host to be unable to respond to communication from the victim. The attacker would then
initiate a TCP session to the victim, stating that s/he is in fact the trusted third party host. The
victim, believing that the address sent as the source, is in fact the source, would send the usual
acknowledgment to the third party. However, since the third party is busy, the packet would
simply be thrown away. Since no errors are generated, the victim still does not know that it is
under attack. The attacker would now, assuming that s/he can reasonably guess the ISN that the
victim sent to the trusted host, acknowledge this ISN. This establishes the connection. The
victim still thinks that the third party is in fact the one connected, and a normal session would
proceed. The attacker could now access anything at the victim's site that the third party has
access to. This type of attack, which is known as a sequence number attack, would essentially
circumvent the only real authentication feature in TCP: Source address authentication. This
authentication method is based on the fact that a host trusts other hosts based on the source
address that they supply it with. Many commands rely on this authentication feature, most
notably the Berkeley r-services (discussed later). This forms the basis of lesson one in
internetworking: Trust no-one. The only method of authentication today is the source address

150

Jesper M. Johansson TCP/IP (Lack of Security)

2 SYN(ISNa) SRC - T

attacker.edu |~ 4 ACK(ISNv), SRC = T

U 5 data

1 Flood this link
with connection
requests

3 Syn(ISNv), ACK(ISNa)

Figure 2: An attack via TCP

authentication. However, seeing how easy it is to spoof source addresses, one cannot be certain
that someone connecting is who s/he says s/he is. This point is driven home further in the
discussion of SMTP later. Note that, if the victim had blocked legitimate connections, such as
via a firewall, this method of breaking in will not work. However, firewalls will be the subject
of an entirely different paper. Another way to foil such an attack is to create more random (read
"not guessable") initial sequence numbers, like for example, random bits from RAM. However,
the TCP specification does not provide for this. Rather, it provides for the fact that the number
be changed at a rate of 250 hertz. Since the spoofer could probably predict the constant
increment to the ISN, if s/he could only measure the turnaround time from an initial probe, all
the guesswork is taken out of spoofing [BELL89].

UDP

The User Datagram Protocol (UDP) provides additional security problems. UDP is a transport
protocol that extends the service of IP to applications. As such, it has no guarantees of service.
When using UDP, there is no setup and tear-down of a circuit as with TCP. Rather, UDP simply
transmits the packet, and hopes that the host is responding. This makes it very suitable for
query/response applications, where there is no need to setup a virtual circuit. Since there is no
handshake, there is no way to authenticate the sender of a UDP packet. Therefore, the
application using UDP will have to provide some form of authentication service.

151

Jesper M. Johansson TCP/IP (Lack of Security)

ICMP

The Internet Control Message Protocol (ICMP) is used to inform hosts of different, and
ostensibly better, routes to other hosts. In addition to this, it also supports a program called ping
which is used by system administrators to monitor systems. The problem with ICMP messages
lie in that many older implementations do not use the service correctly [CHES94]. When a
message is received that some host was unreachable for a specific connection, these older
implementations will disable all connections to the other host. Thus, sending false ICMP
messages could prove a very effective denial of service attack. Also, an ICMP message can be
generated by a prospective attacker, informing the victim that the usual path to a specific host is
down, and that a different path should be taken instead. Packets could then be sent via the
attackers machine, where they can be conveniently read,, altered, or plain lost. In order to
safeguard against this, ICMP redirect messages should not be obeyed unless they come from a
router that is directly attached to the victims network [BELL89].

The Daemons
Daemons are programs which provide services on a UNIX machine. An example of a daemon is
fingerd which provides the finger service. This service is used to look up all kinds of useful
information about a user. Services such as these are usually used by crackers to obtain
information about users, that can later be used to determine login names and guess passwords.
Many of the attacks on these services center on a few files, such as /etc/passwd, /etc/hosts.equiv,
and $HOME/.rhosts. These files, respectively, provide information on: All of the users
authorized on a system, their authorization level, their encrypted password, etc; hosts trusted by
the current system; and hosts trusted by individual users. We will now discuss some of these
services in more detail.

SMTP

SMTP stands for Simple Mail Transfer Protocol. Virtually all system administrators, whether
connected to the Internet or not, state that e-mail is the most sought-after service there is. The
first problem when using SMTP and the Internet is not really a security problem: SMTP
supports 7-bit ASCII (American Standard Code for Information Interchange) communications.
This means that anyone using the Internet for communication in a language other than English
will have a problem: SMTP does not recognize any characters with an ASCII number above
127. This precludes it from using characters used commonly in languages such as French,
Spanish, German, and Swedish, not to mention the two-byte languages (Chinese, Japanese etc).
However, there are much more serious problems with SMTP.

The most apparent problems in SMTP is that there is absolutely no way to be sure of who sent a
message. As a matter of fact, the SMTP daemon does not even check that the domain or user
name that the message is purported to originate from exists! (The author has been able to send
messages to himself from both long since closed accounts, and fake domains). This bug (as it

152

Jesper M. Johansson TCP/IP (Lack of Security)

almost has to be called) is also present in many third party add-ons to SMTP. For Example,
Eudora, a very popular program used as a front end for a Post Office Protocol (POP) gateway on
a Macintosh, does not even bother to log in to the POP server before sending messages. It is thus
possible to send mail without even having an account, anywhere! There are many other
programs with similar features, and the same lack of any attempt at authentication.

However, while people who are even vaguely familiar with the Internet should be aware that
there is no guarantee that the message actually originates from the user it says, there are much
more serious flaws in SMTP. One such flaw has been extensively reported (see SPAF89,
EICH89, ROCH89 etc), and is contained in the sendmail implementation of SMTP. This
program is provided with most of the UNIX systems today, and has atrocious security history
[CHES94]. sendmail contains several tens of thousands-of lines of C code, mostly of the
spaghetti variety, and runs as root (UNIX for "with highest authority"). This is one of the
programs exploited by the infamous Internet Worm.

This sendmail bug has been described extensively in the literature, and during the Worm period
(November 2-5, 1988), several bug fixes for it were released, mostly by Keith Bostic of the
University of California at Berkeley. If any system administrators still run pre-worm versions of
sendmail, don't feel sorry for them, they really deserve to have their systems broken into as
punishment for being ignorant. Nevertheless, since this is the single most famous bug in the
TCP/IP protocol suite, we will take a closer look at it:

The bug consists of a feature that was left in from development, namely the ability to send the
sendmail daemon into debug mode. In this mode, the daemon accepts UNIX command line
commands, rather than SMTP commands. These command line commands, which are executed
at the same authorization level as sendmail, can have very profound effects. The attack involves
telneting to a machine, using the port that the machine normally uses to listen for an SMTP
connection. The attacker then types debug on the command line. This causes the daemon to go
into debug mode. The attacker can now send commands over to the victims machine in place of
normal communication. Two commands which are commonly used by attackers are:

|sed -e 'l,\A$/'d | /bin/sh ; exit 0" - Which strips off the mail header, and executes the rest of the
message with root privilege. This command sequence is often used in conjunction with a
message body such as: mail attacker@evil.gov </etc/passwd, which will mail the password file
to the attacker. The second common command sequence is:

rm -rf /& - which, for those who do not speak UNIX has a result similar to the DOS command
sequence: format c: [CHES92] [VENE92]

Other security problems with SMTP include the Multipurpose Internet Mail Extensions (MIME).
The MIME system is intelligent in the sense that it can automatically retrieve files from a server
for the user. However, the MIME system could just as easily retrieve a file that should not be

153

Jesper M. Johansson TCP/IP (Lack of Security)

retrieved, such as a new .rhosts file. A MIME system that blindly replaces the current version is
very dangerous indeed. [CHES94]

Telnet

Telnet is the service on a UNIX system which allows a user to remotely log in to a different
machine. It is arguably one of the most useful services on the Internet. For example, if a user
who has an account at the University of Washington, goes to Miami to participate in a
conference, that user does not have to pay for a long distance call to check her mail. She would
simply find a local access number, dial that number, and then telnet whichever account she
wanted to use. However, this process is dangerous. Since EP does not have an encryption
mechanism (yet. Please see the IPv6 section) the username and password have to travel in
plaintext over the network. An attacker grabbing packets could easily figure out passwords this
way. There are several ways to get around this, including using one-time passwords, and
encrypting telnet packets. Telnet can also be used to mount other attacks, most notably the
sendmail attack described above.

Finger

Finger is an extremely useful little program, which every user of the Internet seems to know how
to use. Finger will provide the user with information on another user, such as that person's
username, home directory, office and telephone, and a plan (usually something like: To graduate
from this place this century). All of this is information that a cracker can make great use of.
Imagine for example the situation where a cracker is looking for accounts to crack. He could
finger any user on host fullerton.edu called Smith. The fingerd on fullerton.edu would then
present that cracker with the information on all those users. The cracker could then launch a
dictionary attack on the passwords of all those users. Wietse Venema, of Eindhoven University
of Technology, stated that after a few days of cracking, 259 out of 1594 passwords were obtained
from a set of/etc/passwd files. The Internet worm is estimated to have had a success rate
upwards of 50% in some cases [SPAF91]. While this lessons teaches administrators to watch
their /etc/passwd files, it also teaches the lesson that, while the finger command is useful, it often
provides too much information. Coupled with very weak passwords, it could be extremely
dangerous. Another very famous bug in fingerd is the stack problem. This should also be
corrected on most systems by now, but again, it is very famous, and therefore deserves
mentioning. The fingerd program used a standard routine in C called gets(). This routine does
not do any checking that there is enough memory allocated to it. Thus, by causing it to write
more information to memory than it is technically allowed to, the behavior of the program can be
altered. E.g. by overflowing the stack memory in fingerd, the overflow will ge executed as root.
gets() is by no means the only C routine that does not do bounds checking. However, it proved
to be a crucial problem in the Worm incident [SPAF88]. Patches using a different routine were
quickly distributed, and there should not be any old versions of fingerd still in use [EICH89].
There are many other ways to obtain information on users, other than finger. One such service is
rpcinfo, which will be discussed next.

154

Jesper M. Johansson TCP/IP (Lack of Security)

RPC - NIS

The Remote Procedure Call protocol (RPC) was developed by Sun Microsystems in order to
make network programming slightly easier. RPC allows for replacement of many of the TCP/IP
tools, with easier to use RPC tools. RPC also supports the Data Encryption Standard (DES) in
the secure RPC implementation. RPC is, however, not immune to many of the TCP attacks, such
as the IP spoofing attack, where an attacker purports to be someone else. The authentication in
RPC is based on source addresses, and is thus really not worth much, since forging addresses is
trivial (as we saw in the SMTP discussion). There are many services running on top of RPC that
a cracker is likely to use. For example rpcinfo, can tell the cracker many things about your
system, such as what file system it is running, whether it is a Network Information Services
(NIS) host or server, which processes are running on it etc [FARM93]. This can be very useful
for an attacker. For example, NIS is used to distribute information from servers to clients. That
in and of itself does not raise many concerns, until one sees what type of information is
transmitted: Password files, host address tables, and public and private key databases used for
secure RPC. If an attacker can obtain this type of information, your systems processor ticks are
probably counted.

File Transfer Protocols

File transfer protocols enable users to transfer files between different computers. Most Internet
novices are familiar with the FTP (File Transfer Protocol), but there are two other worth
mentioning. The first is the Trivial File Transfer Protocol (TFTP), and the second is FSP (which
does not stand for anything).

FTP

FTP sets up a connection between two machines using two TCP connections one command
connection, and one data connection. FTP suffers from many of the ordinary security problems
inherent in other programs. For example, like the sendmail daemon, ftpd runs as root. Also, just
like with telnet, plain-text passwords are passed over unsecure links. However, the most
interesting security problem in FTP lies in its common usage as an anonymous service. A
recurring problem with FTP-sites is that they have had directories that are both readable and
writable to people accessing anonymously. These directories have often been turned into
repositories for pornographic material, or pirated software. Another problem is that many
utilities running on FTP servers are dependent on the existence of an accessible /etc/passwd file.
Many system administrators take one of two avenues to solving this problem. The first one is to
put a copy of their /etc/passwd file in the directory, which is really bad. The second one is to
include /etc as a directory in the FTP area, which is decidedly worse. Remember, if you were to
give a hacker a very appreciated gift, send him your /etc/passwd file. An important point to take
home here is to not include anything in the FTP area, that is not absolutely necessary there. A
number of sites also have so-called drop-directories in that area. These are directories which are

155

Jesper M. Johansson TCP/IP (Lack of Security)

writable but not readable. They are emptied of their contents periodically, and appropriate
material is then posted in the appropriate places in the archive.

TFTP

TFTP stands for Trivial File Transfer Protocol. It is commonly used to boot diskless
workstations. Unlike FTP, TFTP runs on top of the UDP protocol. The interesting thing is that
older TFTP implementations had no restrictions on the files that could be transferred. A cracker
could thus TFTP into your system, download the /etc/passwd file, and go to work on your
network. Sun Microsystems OS prior to release 4.0, for example, did not restrict TFTP. Another
really fruitful attack using TFTP would be to use it to put a new .rhosts file in a users home
directory. As will be explained momentarily, appropriate entries in such a file would allow a
cracker to log into your account without even supplying a password [GARF94]. Most experts in
the area of Internet security recommend that TFTP not be run at all.

FSP

There is a third file transfer protocol. However, it is so obscure that it is not even mentioned in
[GARF94]. It is the FSP, which does not stand for anything [CHES94]. It works similar to FTP
but over a UDP connection. Historically it has seldom been used for anything other than bad
purposes. Therefore, Cheswick and Bellovin warn administrators that if FSP traffic is being
discovered, it is probably bad.

The Berkeley Remote Services

The Berkeley remote services, more often known as the "r" commands were designed to allow
users and administrators to work on remote machines as if they were local. There are three
criteria for these services:

1 The call must originate from a privileged TCP port (usually those with a number below
1024). However, on systems without a concept of ports, such as PCs this restriction
cannot be enforced.

2 The calling machine must be listed in either the /etc/hosts.equiv or the $HOME/.rhosts
file. (This is why so much emphasis was put earlier on not letting people put these
files on other machines).

3 The caller's name must correspond to its IP address.

The practical use for these services are that users who use a lot of different machines can switch
between them without having to supply a password. Apparently the thought of having to type a
password is repugnant to many users. The option of allowing a user to create a .rhosts file raises
some important security concerns. Is it really prudent to let the users set the security policy for
the organization? In one survey, conducted on over 200 hosts, with over 40,000 accounts, close
to 10% of the accounts had .rhosts files. There were an average of 6 hosts in each. One had over
500 entries! It is hard to conceive of a situation where there are 500 different hosts that need to
be authorized to login to an account without passwords [FARM93].

156

Jesper M. Johansson TCP/IP (Lack of Security)

rlogin

rlogin is the r service which allows a user to remotely login to an account without supplying a
password. This service is very similar in performance to telnet, other than the lack of password
authentication.

rsh

This program lets a user mount a shell on a machine that trusts the user. The remote user can
execute a series of commands on the remote machine without actually being connected to it.

rexec

This program works similar to the rsh program, with the'exception that it does not present a nice
command interpreter as an interface. Basically it was designed to let a system administrator send
commands to a remote machine without actually having to log into that machine.

The services, and holes, covered above are only a few of the commonly used holes in the TCP/IP
suite. There are innumerable others that a security conscious system administrator needs to be
familiar with. Many people simply assume that all the data they have on machines connected to
the Internet is public. While this is not a very optimistic outlook on the world, it is probably
realistic. There are ways to protect your site, however. Some involve installing all security
related updates to system software as soon as they are released. Another involves installing a
firewall, essentially a dedicated machine that filters Internet traffic to enforce security policy.
While this is not cheap, it is an option that is very often resorted to by many organizations.
Beginning with the new version of the Internet Protocol, some of the services provided in these
add-on security options will be provided in the network protocol. These services will be
discussed next.

IP "the Next Generation"
IPng was the unofficial name given to the newest revision of the Internet protocol, obviously by
someone who had watched too much Star Trek. The protocol has now officially been named
IPv6, however, the old moniker seems to stick. Much of the information contained in this
section of the paper comes from Request For Comment (RFC) number 1752, the
Recommendation for the IP Next Generation Protocol. This RFC was issued by the IPng Area
Directors (IP AD) and was accepted by the Internet Engineering Steering Group (IESG). The
specific recommendations of interest from a security standpoint include:

• Support for an authentication header be required
• Support for a specific authentication algorithm be required
• Support for the Privacy Header be required

157

Jesper M. Johansson TCP/IP (Lack of Security)

• Support for a specific privacy algorithm be required
• An IPng framework for firewalls be developed.

IPv6 Addressing Scheme

The main reason that a new version of IP is considered is that the address space in the current
version is running out. As stated before, the current addressing scheme consists of a 4-byte
address. The new standard proposes to expand this addressing scheme to a 16-byte addressing
scheme. This would allow for approximately 3.403 x 1038 hosts. This should for all practical
purposes be sufficient for a long time to come. Despite the fact that the address space is four
times as long as the IPv4 addresses, the IPv6 header is only twice as long as the IPv4 header.
This supposedly maintains efficiency. A very crucial feature of IPv6, though is the ability to
append more headers, specifying various options, to the packet. The headers of interest from a
security standpoint are the hop limit option in the IP header, the authentication header, and the

privacy header.

Hop Limit Option

This option in the standard IPv6 header allows the sender to specify a maximum number of hops
(routers traversed) that the packet is allowed to take before it is discarded. This is of some
usefulness from a security standpoint. Suppose, for example that an attacker has taken over a
routing table that your packet is sent over, and diverted the packets to his account. If that
account is farther away, in terms of hops, than the account that the packet was really intended
for, it will be discarded before it reaches the attacker. If a connection oriented protocol is used,
the sender will be notified of the loss of the packet, and can then take appropriate measures.

Authentication Header

The authentication header is similar to the security label in IPv4. It allows a user to specify the
security level of the packet. However, it also includes an additional feature: Authentication
Data. This is an algorithm specific piece of information required to authenticate the source of
the packet and assure its integrity. This could conceivably be used for such measures as
public/private key systems, or digital signatures. This authentication header is a great addition to
the very meager security features available in IPv4. It will now be possible to use other methods
than source address authentication to authenticate users.

Privacy Header

The privacy header is even more important than the authentication header. The privacy header
allows for the encryption of data at the IP level. This header as well starts off with a Security
Association Identifier (SAID), which tells the receiver the security level of the data. However, it

158

Jesper M. Johansson TCP/IP (Lack of Security)

also carries a data field, in which encrypted data can be carried. An entire IPv6 datagram can be
carried in this field. The header also provides two additional fields, which can prove very useful
for various forms of encryption: The initialization vector, and the trailer. The initialization
vector can carry synchronization data for a block oriented encryption algorithm. The trailer can
carry padding necessary for a block oriented algorithm, or to provide authentication data for
algorithms that provide confidentiality without authentication.

IPv6 and Firewalls

The IPv6 also states that an "IPv6 framework for firewalls" be developed. This framework
should include information on how a firewall can use the IPv6 authentication header, as well as
detail on how IPv6 packets should be analyzed by a firewall. The concern is that many of the
firewall configurations in use today would not recognize IPv6 packets, and would thus most
likely discard them. Unfortunately, there is, as of yet, precious little information on how this
framework for firewalls will be constructed, and what information it will contain.

We now conclude the study of the Internet Protocol and its related protocols security features,
and turn our attention to a case study of Internet security. The case selected is the famous
Internet Worm Incident, which infected a significant number of machines, on a then significantly
smaller Internet, in November of 1988.

Case Study - The Internet Worm
The Internet Worm (or virus, as some authors prefer to call it) was released on the Internet on
November 2, 1988. The virus used a number of the features described above to infect machines
across the entire Internet. A common estimate of the number of machines infected was that 10%,
or 6,000 machines, fell prey to the worm. However, this estimate possesses very little, if any at
all, scientific merit. This is based on a guesstimate given by James D. Bruce, MIT EECS
Professor and Vice President for Information Systems, and Jeff Schiller, of the
Telecommunications Network Group, when pressured by the media as to how many machines
were infected. The guesstimate did not intend to represent the number of hosts on the Internet,
which were infected, but rather the number of hosts infected at MIT. Gene Spafford, in
[SPAF91] gives an estimate of 5% of the machines on the net infected. Regardless of the actual
number, the worm prompted many, much-needed modifications to the basic TCP/IP security
features, and the author should at least have praise for forcing those to happen. In this case
study, we will discuss three main things: What the worm did, how it did it, and what we
(hopefully) learned from the incident. A reader who is interested in a further discussion of the
worm is referred to [SPAF91], [EICH89] or any of the other numerous papers written on the
worm.

159

Jesper M. Johansson TCP/IP (Lack of Security)

What Did the Worm Do?

The most notable effect of the worm was that it used up significant processing time on the
affected hosts. This effectively constituted a denial of service attack. Some hosts, such as the
gateway machine at the University of Utah reported loads ten times higher than normal, due to
multiple infections. The worm also only attacked two types of machines: SUNs and VAXes.
These are, however, the single most common machines on the Internet, and the impact was thus
severe. The worm basically cracked accounts, in ways to be discussed later, and then launched
new attacks from there. In doing so it also spawned new processes (i.e. multiplied) thus
spreading rapidly.

More important than what the worm actually did, is what it did not do. For example, the worm
did not destroy, nor even attempt to destroy, any data on the host machine. If the author had
wanted to, he could have easily destroyed most of the data on the infected machines. However,
no attempt to do so was made. The worm also did not normally attempt to gain privileged
access. It almost never broke into a system as root. In these two ways it definitely differs from
normal cracker attacks, which often have destruction as their purpose. The worm also did not
leave any timebombs behind. Most viruses and worms on PCs leave processes to be executed at
a specific time, ranging from an annoying message or a song, to re-formatting of a hard-drive.
The author of the Internet worm never attempted to leave any such time-bombs behind.

How Did the Worm Operate?

This really boils down to what security holes the author utilized. There were four major features
exploited by the worm. These features contributed to its rapid spread.

The first feature of the worm exploited the sendmail bug, described above, in the following
manner: It initiated an SMTP connection to a remote site by simply telneting to the port that
SMTP normally uses for connections. The worm then sent the command debug to the daemon.
This sent sendmail into debug mode. The worm sent a program over, in the recipient field. This
program (which was a shell program) created a C program. This C program, in turn contacted
the attacking machine and downloaded a set of C object files. These files, which contained the
actual worm program, were linked and executed, thereby infecting another machine.

If the sendmail attack was unsuccessful, the worm could try to spawn a remote shell by invoking
the rsh service. This shell would then use the same infection steps as in the discussion of the
sendmail infection above.

The third way that the worm attacked was by using the bug described in the finger section above.
Basically, it involved rewriting a portion of the stack used by fingerd, to execute a command
line, which allowed the worm to connect to a remote shell. Not all of these break in attempts
were used. As soon as one succeeded, the worm started cracking passwords.

160

Jesper M. Johansson TCP/IP (Lack of Security)

Once the worm had achieved entry via one of the above features, it proceeded to utilize the
information on the infected host to infect other systems. It read the systems /etc/hosts.equiv file.
This file lists other systems which the host trusts. The worm used this file to find machine
names that would be likely targets. It also read the $HOME/.rhosts file. This file provides
user-specific information of the same form as the /etc/hosts.equiv file. In addition the program
read the entire /etc/passwd file of the infected system. It then used both a built-in dictionary, and
the system's own dictionary to launch a dictionary attack against all the accounts listed in that
file. Once it cracked passwords in this file, it searched the cracked accounts for personal
.forward files (these files are used to provide the SMTP daemon with systems to which it should
auto forward mail), in search of other machines to attack, Once it had found a password, it also
attempted to use it to connect to accounts given in the .rhosts, and .forward files. There were
many more features of the worm, some of which checked if other worms ran on a newly infected
machine, and others which changed process ID numbers. However, for the purposes of our
discussion here, the above features show how dangerous the holes discussed in this paper can be.
It is more important to discuss what we have learned from the worm.

Lessons To Be Learned

The first lesson to be learned is probably that connectivity really saved the network. One can
argue that connectivity was what allowed the worm to spread. However, connectivity also
allowed people in the know throughout the net to communicate, post bug fixes, and crack the
worm. In addition, a very important lesson was that bug fixes are critical. These fixes
sometimes were as simple as renaming a couple of files on the computer. Sometimes, they
involved a binary edit of a daemon. In any case, they were very important. The worm incident
also showed how important it is to have adequate security policies. It is absolutely unacceptable
to have 50% of your passwords broken by a relatively simple dictionary attack. There are
features available to enforce good password selection, and frequent change, and these should be
installed on any system. Also, it is up to each system administrator to decide how much security
policy is put in the users' hands. By allowing the Berkeley "r" services on a system, the
administration of security policy is effectively transferred from the administrator to the user.

Conclusion
This paper has presented several security issues related to the TCP/IP protocol suite. The main
lesson to be learned is that data on unprotected computers is apt to be read by anyone who
wishes to do so. We have also discussed several new features which will be present in the next
generation IP protocols. The next generation of the Internet protocol will certainly make the task
of managing security easier. However, since many of the problems discussed are contained in
the higher level protocols, IPv6 will not resolve those. By no means should this be construed as
an exhaustive discussion of TCP/IP security problems and features. Rather, it should be
considered a preliminary primer on some of the issues that the security conscious manager,

161

Jesper M. Johansson TCP/IP (Lack of Security)

implementing Internet connections for a business, need to concern him/herself with. There is
only one foolproof way to protect your system. It involves disconnecting all network cables,
putting the computer inside a vault, and post a 24-hour guard outside. For those who will not
consider such measures, the Internet presents active opportunities, both for contact with
customers, and for intra-company communication. However, the manager considering hooking a
system up to the Internet need to seriously consider the security aspects of doing so. Hopefully,
this paper has provided a few insights on what to look at.

162

AINT MISBEHAVING --
ATAXOMONYOF

ANTI-INTRUSION TECHNIQUES

Lawrence R. Halme
(halme@arca.ca.com)

R. Kenneth Bauer
(bauer@arca.ca.com)
Area Systems, lnc.f

2540 North First St., Suite 301
San Jose, CA 95131-1016

Abstract: This paper examines the basic underlying
principles of intrusion control and distills the universe
of anti-intrusion techniques into six high-level, mu-
tually supportive approaches. System and network
intrusions may be prevented, preempted, deflected,
deterred, detected, and/or autonomously countered.
This Anti-Intrusion Taxonomy (AINT) of anti-intru-
sion techniques considers less explored approaches
on the periphery of "intrusion detection" which are
independent of the availability of a rich audit trail, as
well as better known intrusion detection techniques.
Much like the Open Systems Reference Model sup-
ports understanding of communications protocols by
identifying their layer and purpose, the authors be-
lieve this anti-intrusion taxonomy and associated
methods and techniques help clarify the relationship
between anti-intrusion techniques described in the
literature and those implemented by commercially
available products. The taxonomy may be used to
assess computing environments which perhaps al-
ready support Intrusion Detection System (IDS)
implementations to help identify useful complemen-
tary intrusion defense approaches.

Keywords: Intrusion, detection, misuse, anomaly,
countermeasure, taxonomy.

1.0 Introduction

Efforts to combat computer system intrusions have
historically included preventive design, configuration,
and operation techniques to make intrusion difficult.
Acknowledging that by bowing to functionality con-
cerns and budgetary constraints these efforts will be
imperfect, the concept was suggested to detect intru-

fThis work was sponsored by the Air Force Information Warfare Center.

sions by analyzing collected audit data. The study of
anomaly detection was prefaced by the postulate that
it would be possible to distinguish between a mas-
querader and a legitimate user by identifying devia-
tion from historical system usage [AND80]. It was
hoped that an audit analysis approach would be use-
ful to identify not only crackers who had acquired
identification and authentication information to per-
mit masquerading as legitimate users, but also legiti-
mate users who were performing unauthorized activity
(misfeasors). Clandestine users able to bypass the
security mechanisms were another identified prob-
lem, but considered more difficult to detect since they
could influence system auditing.

Early hands-on experimentation confirmed that user
work patterns could be distinguished using existing
audit trails [HAL86]. Techniques were debated to
make auditing, which was originally designed prima-
rily for accounting purposes, more useful to security
analysis. A model was developed which theorized
much of the framework for a general-purpose intru-
sion detection system [DEN87]. Intrusion detection
researchers split into two camps — those seeking
attack signatures in the audit data which announce
known misuse (e.g., MIDAS [SEB88]), and those
seeking evidence of usage which is anomalous from
historical norms (e.g., IDES [LUN88a]).Thecomple-
mentary combination of these approaches into an
investigative tool with autonomous response to par-
ticularly threatening deviance was suggested
[HAL88]. Survey papers attestto the dramatic growth
in the number of research efforts investigating differ-
ent anomaly and misuse detection approaches
([LUN88b], [TIS90]).

163

The early Nineties saw test and commercial installa-
tion and operation of a number of IDS's including
SRI's IDES and NIDES, Haystack Laboratory Inc. *s
Haystack and Stalker, and the Air Force's Distributed
Intrusion Detection System (DIDS). Emphasis broad-
ened to include integration of audit sources from
multiple heterogeneous platforms, and platform port-
ability. Distributed intrusion detection is the focus of
work at the University of California at Davis
[HEBE92] and at the Air Force [DIDS91]. Intrusion
detection continues to be an active field of research.

Although much has been learned from these research-
driven efforts, their focus has been on developing
optimized techniques to detect intrusions. Less
thought has been given to creating an operational view
of complementary anti-intrusion approaches. Com-
puter and Internet misuse has become a frequent topic
of today's mainstream media, and the demand for anti-

motes multiple approach solutions.

2.0 Anti-Intrusion Approaches
Over the past fifteen years a great deal of emphasis
has been placed on detection as the most fruitful area
for research and development to combat intrusionary
activity (both from external crackers as well as insid-
ers abusing their privileges). Less considered have
been other complementary anti-intrusion techniques
which can play valuable roles. As work environments
become more interconnected and exposed, service
providers will need increasingly to rely on a wide range
of anti-intrusion techniques, not just IDS's. This pa-
per organizes these techniques (illustrated in Figure
1) into the Anti-Intrusion Taxonomy (AINT). The "fil-
tering" of successful intrusions is graphically depicted
by the narrowing of the successful intrusion attempt
band.

Preemption

External
Prevention

System Perimeter

Detection

Internal
Prevention

External
Deterrence

System
Resources

Counter-
measures

Internal
Deterrence Deflection

HWWWTW!

Faux

Environment

intrusion technology is exploding. However, intru-
sion detection products are as yet esoteric and not well
integrated to work together with complementary
approaches such as intrusion preventing firewalls. The
taxonomy we present in this paper seeks to give per-
spective and aid understanding. It provides the basis
for the formulation of a systematic and comprehen-
sive anti-intrusion approach categorization and pro-

Figure 1: Anti-Intrusion Approaches
The following text describes the six anti-intrusion
approaches. We also provide an analogous real-world
illustration of each approach as applied to combating
the possibility of having your wallet stolen walking
down an urban street. Sections follow which elabo-
rate how these approaches apply to computer systems
under the AINT.

164

Prevention precludes or severely handicaps the like-
lihood of a particular intrusion's success.

Hire hulking bodyguards and avoid bad neighbor-
hoods. A definitive approach when it works, but ex-
pensive and troublesome and unlikely to be
operationally 100% foolproof. Still leaves opportu-
nity for successful attack if bodyguards can be dis-
tracted or bribed.

Preemption strikes offensively against likely threat
agents prior to an intrusion attempt to lessen the like-
lihood of a particular intrusion occurring later.

Support vigilante patrols. Non-specific and may af-
fect innocents.

Deterrence deters the initiation or continuation of
an intrusion attempt by increasing the necessary ef-
fort for an attack to succeed, increasing the risk asso-
ciated with the attack, and/or devaluing the perceived
gain that would come with success.

Dress down andwalkwith excitable Chihuahua dog.
Many attackers will move on to richer looking easier
prey, but if it has been a lean night, a little annoying
yapping dog isn't going to stop a determined mugger.

Deflection leads an intruder to believe that he has
succeeded in an intrusion attempt, whereas instead
he has been attracted or shunted off to where harm is
minimized.

Carry two wallets so that when attacked, a decoy
wallet with canceled credit cards can be handed over.
Can learn more about how attackers operate, but prob-
ably only works for newbie muggers and it is incon-
venient having to carry two wallets.

Detection discriminates intrusion attempts and in-
trusion preparation from normal activity and alerts
the authorities.

Carry a whistle and blow to attract attention from
beat cop if attacked. Limited usefulness if attack is
too far from a donut shop for whistle to be heard, or
if car-alarm-syndrome causes authorities to ignore as
a false alarm. Also you may not detect in time that
your wallet was stolen if it is surreptitiously
pickpocketed.

Countermeasures actively and autonomously
counter an intrusion as it is being attempted.

Carry a can of mace, attach mouse trap to wallet, and
know karate to counter attack. Run the risk of being

sued by accidentally breaking the arm of Hari Krishna
solicitor offering flowers. With a booby trapped wallet,
a pickpocket can be autonomously countered with
necessary speed without conscious detection. How-
ever you, as an authorized user, might mistakenly get
your fingers snapped if you forget about the mouse-
trap.

3.0 Intrusion Prevention
Intrusion Prevention techniques (enforced internally
or externally to the system) seek to preclude or at least
severely handicap the likelihood of success of a par-
ticular intrusion. These techniques help ensure that a
system is so well conceived, designed, implemented,
configured, and operated that the opportunity for
intrusions is minimal. Because built-in prevention
seeks to make it impossible for an intrusion to occur
on the target system, it may be considered the stron-
gest anti-intrusion technique. Ideally, this approach
would prevent all intrusions, negating the need for
detection and consequent reaction techniques. Nev-
ertheless, in a real world system this technique alone
proves untenable and unlikely to be implemented
without some remaining exploitable faults and depen-
dence on configuration/maintenance. Add-on preven-
tion measures augmenting the defenses of an existing
system include vulnerability scanning tools and net-
work firewalls.

Correct Design / Implementation techniques rep-
resent classic INFOSEC mechanisms (e.g., identifi-
cation and authentication, mandatory and
discretionary access control, physical security), and
are appropriate to be developed into the target system
itself. These techniques are well explored, but may
be cumbersome and expensive, and care must be taken
that they are not poorly configured.

Vulnerability Scanning Tools examine system and
network configurations foroversights and vulnerabili-
ties. Static configuration scanners are programs and
scripts periodically run manually by the System Se-
curity Officer (SSO) to detect system vulnerabilities.
Dynamic configuration scanning tools perform much
the same function but run constantly as a low priority
task in the background. Configuration scanning tools
can monitor for a wide range of system irregularities
including: unauthorized software, unauthorized ac-
counts, unprotected logins, inappropriate resource

165

ownership, inappropriate access permissions, weak
passwords, and ghost nodes on a network. Other
vulnerability scanning tools can check for evidence
of previous intruder activity, susceptibility to known
attacks, and dormant viruses. Representative UNIX
configuration scanning tools include: Security Pro-
file Inspector (SPI), Internet Security Scanner (ISS),
Security Analysis Tool for Auditing Networks (SA-
TAN), COPS, and Tripwire [FIS94].

Firewalls examine and control the flow of informa-
tion and services between a protected subnetwork and/
or hosts and the outside world. They protect one net-
work from another by blocking specific traffic while
allowing other traffic. The most common use today
is connecting corporate and academic networks to the
Internet. Firewall designs have proven effective in
thwarting many intruder efforts. The decision as to
which traffic to allow is based upon the content of the
traffic itself. Typical decision criteria include traffic
direction, network address, port, protocol type, and
service type. The goal of the firewall is to provide
efficient and authorized access for users "inside" the
firewall to the outside world while controlling the
access of "outside" users to protected resources by
exporting limited and precisely controlled services.
Firewalls are best implemented on separate hardware
for performance and security reasons, and thus there
is expense of acquisition and maintenance.

4.0 Intrusion Preemption
Intrusion Preemption techniques strike offensively
prior to an intrusion attempt to lessen the likelihood
of a particular intrusion occurring later. This approach
includes such techniques as education of users, pro-
moting legislation to help eliminate an environment
conducive to intrusion, taking early action against a
user who appears increasingly to be straying from the
straight-and-narrow, and infiltrating the cracker com-
munity to learn more about techniques and motiva-
tion. Rather than the reactive defenses offered by
detection and countermeasures, preemption refers to
proactive action against the source of as yet
unlaunched intrusions. Unchecked use of these tech-
niques can pose civil liberty questions.

Banishment refers to producing a hostile environ-
ment intended to reduce the ranks of potential intrud-
ers prior to their attempt to launch an intrusion. Users

can be educated about security threats from technical
and nontechnical attacks, and provided directives on
how to handle specific social engineering informa-
tion requests. Support of legislation which deals
harshly with intruders is another example of this tech-
nique.

Vigilance seeks to preempt later intrusions by notic-
ing preliminary danger signs of impending undesired
activity. Examples of this technique include attempt-
ing to discern malicious intent and initial exploratory
stages of intrusionary activity, taking strong and early
action against users demonstrating a leaning toward
violating system policy, and offering to reward users
who spot vulnerabilities or unauthorized usage.

Infiltration refers to proactive efforts on the part of
the SSO to acquire attack information from under-
ground sources to supplement vendor bug reports and
Computer Emergency Response Team (CERT) warn-
ings. A more insidious infiltration would inundate
hacker bulletin board systems with false information
to confuse and discourage.

5.0 Intrusion Deterrence
Intrusion Deterrence seeks to make any likely reward
from an intrusion attempt appear more troublesome
than it is worth. Deterrents encourage an attacker to
move on to another system with a more promising
cost-benefit outlook. This approach includes devalu-
ating the apparent system worth through camouflage,
and raising the perceived risk of being caught by
displaying warnings, heightening paranoia of active
monitoring, and establishing obstacles against undes-
ired usage. Intrusion deterrents differ from intrusion
prevention mechanisms in that they are weaker re-
minder/discomfort mechanisms rather than serious
attempts to preclude an intrusion.

Camouflage seeks to hide and/or devalue system
targets and encompasses such straightforward policy
as minimizing advertising a system and its contents.
Configuring a dial-in line not to pick up for a number
of rings greater than most cracker demon dialing
software, and presenting only generic logic banners
are other examples of camouflage. A faceless, boring
system is not a prize trophy for a cracker. A disk entitled
"Thermonuclear War" intrigues more than one
deglamourized to "tnw." Camouflage may make a

166

system less usable and intuitive. It also may conflict
with the following deterrent techniques which seek
to emphasize active defenses. However, a system that
reveals efforts to secure it may beg an attacker to in-
vestigate why such effort was expended. Simple and
weak camouflage techniques may nonetheless prove
useful as deterrents to intrusion.

Warnings inform users that the security of a system
is taken seriously and emphasizing what the penal-
ties are if unauthorized activity is monitored. Sensi-
tive systems are often configured to display warnings
as part of their standard login banners. Users not
contemplating an intrusion should be little inconve-
nienced. Warnings are easily implemented and may
also be useful from a legal standpoint (especially in
the case of keystroke monitoring), but if the intruder
perceives all-bark-no-bite, this is a weak defense.
Warnings may even be counterproductive by piquing
the curious, and laying down a provocative gauntlet
to intruders out to prove their mettle. Particular user
warnings may also be implemented to trigger when
specific undesirable activity is detected. A concern
for activity-based user warnings is that the potential
intruder is alerted to what thresholds/signatures fire
the anti-intrusion mechanism.

Paranoia refers to increasing the impression (whether
true, exaggerated, or fallacious) that user activity is
being closely monitored by a vigilant SSO. Where
having nonstop watchful system administration in
place is not practical, it may be simulated. If the in-
truder is led to believe the risks of detection and pros-
ecution from an apparently attentive and motivated
SSO are greater than the possible reward, he may
instead move on to "easier pickings." Emulating the
"fake car alarm blinking light" mechanism is the sim-
plest technique to give the misleading impression of
constant live monitoring. A "scarecrow" process
performing semi-random standard system adminis-
trator activities may be sufficient to ward off casual
intruders who have not seriously cased the system.
The deterrent value of this technique is lost, however,
as soon as potential intruders learn that a Scarecrow
is present and learn ways to distinguish between the
Scarecrow and a real SSO. An enhancement to this is
to implement a "security camera" technique which
admittedly only randomly offers live-monitoring, but
gives no indication when the SSO is actually watch-

ing. A potential intruder in this case can never be sure
when he is actually being live-monitored, but is aware
that it may be at any time.

Obstacles seek to increase the ante of time and effort
an attacker must expend to succeed beyond what the
perceived reward warrants. Obstacles, especially on
gateway machines, seek to try the patience of an in-
truder thereby "ruining his fun" and providing incen-
tive to move on. Delaying command executions,
displaying false system warnings, apparent exhaus-
tion of resources, and similar obstacles serve to exas-
perate, but not advertise detection. Annoying tactics
may include showing interesting but dead-end lures
— dummy accounts or files on which the intruder
wastes valuable time and reveals attack skills, but
which award him nothing. Use of this technique risks
inconveniencing authorized users.

6.0 Intrusion Deflection

Intrusion Deflection dupes an intruder into believing
that he has succeeded in accessing system resources,
whereas instead he has been attracted or shunted to a
specially prepared, controlled environment for obser-
vation (i.e., a "playpen" or "jail"). Controlled moni-
toring of an unaware intruder spreading out his bag of
tricks is an excellent source of attack information
without undue risk to the "real" system [ST089]. Some
system enforced deflection techniques may be con-
sidered a special type of countermeasure, but the
concept also includes techniques which do not require
the protected system to have ever been accessed by
the intruder (e.g., "lightening-rod systems").

Quarantined Faux Systems are designed to lead
intruders (primarily the unfamiliar "outsider") to
believe that they are logged into the target system,
when they are actually locked into a separate "fish-
bowl" system. This deflection is accomplished by a
network front end system such as a router or firewall.
An effective quarantined faux system encourages an
intruder to remain long enough for a response team to
determine the intruder's identity and motive. How-
ever, dedicating a separate machine and the resources
to maintain this charade is expensive, and with dis-
tributed environments and the powerful statusing tools
available, this technique may be untenable.

Controlled Faux Accounts are designed to lead in-
truders to believe that they are executing within a

167

compromised standard account, when instead they are
locked into a special limited access account. In this
case, the deflection controls are built right into the
target environment operating system or application.
This technique eliminates the need for the separate
hardware resources required by a faux system, but
must rely on the target operating system security to
ensure isolation from protected system resources. The
constructed environment could contain various in-
ducements to engage and stall the intruder, and di-
vulge his intent. However, constructing and
maintaining a believable and unbreakable controlled
faux account is difficult.

Lightning Rod Systems / Accounts are similar to
the preceding faux techniques, but rather than the
intruder being unknowingly shunted to them, the
intruder is instead lured into pursuing a decoy con-
trolled environmentdirectly of his own volition. Light-
ning rod systems are placed "near" assets requiring
protection, are made attractive, and are fully instru-
mented for intrusion detection and back tracking (the
term "honey pot" has also been used to describe this
technique). They are distinct from the primary re-
sources being protected, and do not need to be con-
cerned about performance and functionality handicaps
to authorized users. A practical and convincing imple-
mentation of nontrivial lightningrods is problematic:
they are likely expensive to install and maintain, and
rely upon their true reason for existence remaining
secret.

7.0 Intrusion Detection
Intrusion Detection encompasses those techniques
that seek to discriminate intrusion attempts from
normal system usage and alert the SSO. Typically,
system audit data is processed for signatures of known
attacks, anomalous behavior, and/or specific out-
comes of interest. Intrusion detection, and particu-
larly profiling, is generally predicated upon the ability
to access and analyze audit data of sufficient quality
and quantity. If detection is accomplished in near real-
time, and the SSO is available, he could act to inter-
rupt the intrusion. Because of this necessity for a
human to be available to intervene, Intrusion Detec-
tion is not as strong an approach as Intrusion Coun-
termeasures as it is more likely that intrusion efforts
will complete before manual efforts can interrupt the

attack. Intru sion Detection may be accomplished after
the fact (as in postmortem audit analysis), in near-
real time (supporting SSO intervention or interaction
with the intruder, such as network trace-back to point
of origin), or in real time (in support of automated
countermeasures).

7.1 Anomaly Detection
Anomaly Detection compares observed activity
against expected normal usage profiles which may
be developed for users, groups of users, applications,
or system resource usage. Audit event records which
fall outside the definition of normal behavior are
considered anomalies.

Threshold Monitoring sets values for metrics de-
fining acceptable behavior (e.g., fewer than some
number of failed logins per time period). Thresholds
provide a clear, understandable definition of unac-
ceptable behavior and can utilize other facilities be-
sides system audit logs. Unfortunately it is often
difficult to characterize intrusionary behavior solely
in terms of thresholds corresponding to available audit
records. It is difficult to establish proper threshold
values and time intervals over which to check. Ap-
proximation can result in a high rate of false posi-
tives, or high rate of false negatives across a
non-uniform user population.

User Work Profiling maintains individual work
profiles to which the user is expected to adhere in the
future. As the user changes his activities his expected
work profile is updated. Some systems attempt the
interaction of short-term versus long-term profiles;
the former to capture recent changing work patterns,
the latter to provide perspective over longer periods
of usage. However it remains difficult to profile an
irregular and/or dynamic user base. Too broadly de-
fined profiles allow any activity to pass review.

Group Work Profiling assigns users to specific work
groups which demonstrate a common work pattern
and hence a common profile. A group profile is cal-
culated based upon the historic activities of the entire
group. Individual users in the group are expected to
adhere to the group profile. This method can greatly
reduce the number of profiles needing to be main-
tained. Also a single user is less able to "broaden" the
profile to which they are to conform. There is little

168

operational experience with choosing appropriate
groups (i.e., users with similar job titles may have quite
different work habits). Individual user profiles mim-
icked by creating groups of one may be a necessary
complication to address users who do not cleanly fit
into the defined groups.

Resource Profiling monitors system-wide use of such
resources as accounts, applications, storage media,
protocols, communications ports, etc., and develops
a historic usage profile. Continued system-wide re-
source usage—illustrating the user community's use
of systemresources as a whole—is expected to adhere
to the system resources profile. However, it may be
difficult to interpret the meaning of changes in over-
all system usage. Resource profiling is user-indepen-
dent, potentially allowing detection of collaborating
intruders.

Executable Profiling seeks to monitor executables'
use of system resources, especially those whose ac-
tivity cannot always be traced to a particular originat-
ing user. Viruses, Trojan horses, worms, trapdoors,
logic bombs and other such software attacks are ad-
dressed by profiling how system objects such as files
and printers are normally used, not only by users, but
also by other system subjects on the part of users. In
most conventional systems, for example, a virus in-
herits all of the privileges of the user executing the
infected software. The software is not limited by the
principle of least privilege to only those privileges
needed to properly execute. This openness in the
architecture permits viruses to surreptitiously change
and infect totally unrelated parts of the system. User-
independent executable profiling may also be able to
detect collaborating intruders.

Static Work Profiling updates usage profiles only
periodically at the behest of the SSO. This prevents
users from slowly broadening their profile by phas-
ing in abnormal or deviant activities which are then
considered normal and included in the user's adap-
tive profile calculation. Performing profile updates
may be at the granularity of the whole profile base or,
preferably, configurable to address individual sub-
jects. SSO controlled updates allow the comparison
of discrete user profiles to note differences between
user behavior or changes in user behavior. Unfortu-
nately these profiles must either be wide and insen-
sitive or frequently updated. Otherwise if user work

patterns change significantly, many false positives will
result — and we all recall the story of Peter and the
Wolf. This approach also requires diligence on the
part of the SSO who must update profiles in response
to false positives, and ensure changes represent le-
gitimate work habit changes.

Adaptive Work Profiling automatically manages
work profiles to reflect current (acceptable) activity.
The work profile is continuously updated to reflect
recent system usage. Profiling may be on user, group,
or application. Adaptive work profiling may allow
the SSO to specify whether flagged activity is: 1)
intrusionary, to be acted upon; 2) not intrusionary, and
appropriate as a profile update to reflect this new work
pattern, or 3) not intrusionary, but to be ignored as an
aberration whose next occurrence will again be of
interest. Activity which is not flagged as intrusionary
is normally automatically fed into a profile updating
mechanism. Ifthismechanismis automated, the SSO
will not be bothered, but work profiles may change
and continue to change without the S SO's knowledge
or approval.

Adaptive Rule Based Profiling differs from other
profiling techniques by capturing the historical us-
age patterns of a user, group, or application in the form
of rules. Transactions describing current behavior are
checked against the set of developed rules, and
changes from rule-predicted behavior flagged. As
opposed to misuse rule-based systems, no prior ex-
pert knowledge of security vulnerabilities of the
monitored system is required. "Normal usage" rules
are generated by the tool in its training period. How-
ever, training may be sluggish compared to straight
statistical profiling methods. Also, to be effective, a
vast number of rules must be maintained with inher-
ent performance issues. Management of tools adopt-
ing this technique require extensive training,
especially if site-specific rules are to be developed.

7.2 Misuse Detection
Misuse detection essentially checks for "activity that's
bad" with comparison to abstracted descriptions of
undesired activity. This approach attempts to draft
rules describingknownundesiredusage (based on past
penetrations or activity which is theorized would
exploit known weaknesses) rather than describing
historical "normal" usage. Rules may be written to

69

recognize a single auditable event that in and of itself
represents a threat to system security, or a sequence
of events that represent a prolonged penetration sce-
nario. The effectiveness of provided misuse detec-
tion rules is dependent upon how knowledgeable the
developers (or subsequently SSO's) are about vulner-
abilities. Misuse detection may be implemented by
developing expert system rules, model based reason-
ing or state transition analysis systems, or neural nets.

Expert Systems may be used to code misuse signa-
tures as if-then implication rules. Signature analysis
focuses on defining specific descriptions and instances
of attack-type behavior to flag. Signatures describe
an attribute of an attack or class of attacks, and may
require the recognition of sequences of events. A
misuse information database provides a quick-and-
dirty capability to address newly identified attacks
prior to overcoming the vulnerability on the target
system. Typically, misuse rules tend to be specific to
the target machine, and thus not very portable.

Model Based Reasoning attempts to combine mod-
els of misuse with evidential reasoning to support
conclusions about the occurrence of a misuse. This
technique seeks to model intrusions at a higher level
of abstraction than the auditrecords. In this technique,
SSO's develop intrusion descriptions at a high, intui-
tive level of abstraction in terms of sequences of events
that define the intrusion. This technique may be use-
ful for identifying intrusions which are closely related,
but whose audit trails patterns are different. It per-
mits the selective narrowing of the focus of the rel-
evant data, so a smaller part of the collected data needs
to be examined. As a rule-based approach it is still
based on being able to define and monitor known
intrusions, whereas new and unknown vulnerabili-
ties and attacks are the greatest threats.

State Transition Analysis creates a state transition
model of known penetrations. In the Initial State the
intruder has some prerequisite access to the system.
The intruder executes a series of actions which take
the target system through intermediate states and may
eventually result in a Compromised State. The model
specifies state variables, intruder actions, and defines
the meaning of a compromised state. Evidence is
preselected from the audit trail to assess the possibil-
ity that current system activity matches a modeled
sequence of intruder penetration activity (i.e., de-

scribed state transitions lead to a compromised state).
Based upon an ongoing set of partial matches, spe-
cific audit data may be sought for confirmation. The
higher level representation of intrusions allows this
technique to recognize variations of scenarios missed
by lower level approaches.

Neural Networks offer an alternative means of
maintaining a model of expected normal user behav-
ior. They may offer a more efficient, less complex,
and better performing model than mean and standard
deviation, time decayed models of system and user
behavior. Neural network techniques are still in the
research stage and their utility have yet to be proven.
They may be found to be more efficient and less
computationally intensive than conventional rule-
based systems. However, a lengthy, careful training
phase is required with skilled monitoring.

7.3 Hybrid Misuse / Anomaly Detection
Hybrid Detectors adopt some complementary com-
bination of the misuse and anomaly detection ap-
proaches run in parallel or serially. Activity which is
flagged as anomalous may not be noticed by a misuse
detector monitoring against descriptions of known
undesirable activity. For example, simple browsing
for files that include the string "nuclear" may not
threaten the security or integrity of the system but it
would be useful information for an SSO to review if
it was anomalous activity for a particular account.
Likewise, an administrator account may often dem-
onstrate access to sensitive files and have a profile to
permit this, but it would useful for this access to still
be checked against known misuse signatures. There
has been a fairly strong consensus in the anti-intru-
sion community that effective and mature intrusion
detection tools need to combine both misuse and
anomaly detection. There is increasing operational
field evidence that anomaly detection is useful, but
requires well briefed SSO's at each site to configure
and tune the detector against a high rate of false posi-
tives. Anomaly detection systems are not turnkey and
require sophisticated support at least until profiles
have stabilized.

170

7.4 Continuous System Health
Monitoring

Intrusions may be detected by the continuous active
monitoring of key "system health" factors such as
performance and an account's use of key system re-
sources. This technique is more flexible and sophis-
ticated than Static Configuration Checkers, as such a
tool would be run continuously as a background pro-
cess. It concentrates on identifying suspicious changes
in system-wide activity measures and system resource
usage. An example is to monitor network protocol
usage over time, looking for ports experiencing un-
expected traffic increases. Work needs to be done to
develop and tune system-wide measures, and to un-
derstand the significance of identified variations.

8.0 Intrusion Countermeasures
Intrusion Countermeasures empower a system with
the ability to take autonomous action to react to a
perceived intrusion attempt. This approach seeks to
address the limitation of intrusion detection mecha-
nisms which must rely on the constant attention of an
SSO. Most computing environments do not have the
resources to devote an SSO to full-time intrusion
detection monitoring, and certainly not for 24 hours
a day, seven days a week. Further, a human SSO will
not be able to react at machine processing speeds if
an attack is automated — the recent IP spoofing at-
tack attributed to Kevin Mitnick was largely auto-
mated and completed in less than eight minutes
[SHI95]. Entrusted with proper authorization, a sys-
tem will have much greater likelihood of interrupting
an intrusion in progress, but runs the risk of falsely
reacting against valid usage. What must be prevented
is the case where a user is doing something unusual
or suspicious, but for honest reasons, and is wrong-
fully burdened by a misfiring countermeasure. The
concern that a General Brassknuckles will be enraged
by being rudely locked out of the system because he
runs over the allowed page count for printouts, merely
reflects an avoidable, overly aggressive countermea-
sure configuration.

Two primary intrusion countermeasure techniques are
autonomously acting IDS's and alarmed system re-
sources. Although the former may be considered simply
giving intrusion detection techniques teeth, the latter
will react to suspicious actions on the system without
ever processing audit data to perform "detection."

Intrusion Countermeasure Equipment (ICE)1 re-
fer to mechanisms which not only detect but also
autonomously react to intrusions in close to real-time.
Such a tool would be entrusted with the ability to take
increasingly severe autonomous action if damaging
system activity is recognized, especially if no secu-
rity operator is available. The following ICE autono-
mous actions, in ascending order of severity, may be
envisioned:

Alert, Increase Support to SSO (Transparent):
• Note the variance in ICE console window
• Increase the amount of audit data collection on the

irregular user, perhaps down to the keystroke level
• Alert SSO at the ICE console with a local alarm
• Notify SSOs remotely (e.g., by beeper)

Seek to Confirm, Increase Available Information on
User:

• Reauthenticate user or remote system (i.e., to address
attacks originating from intruders capitalizing on an
unattended session, or spoofing packets on an authenti-
cated connection)

• Notify security personnel to get voice/visual confirma-
tion of the user's identity/intention

Minimize Potential Damage:
• Slow system response or add obstacles
• Only pretend to execute commands (e.g., buffer rather

than truly delete)

Arrest Continued Access:
• Lock local host account / Swallow offending packets
• Trace back network ID and lock out all associated

accounts back to entering host, perform housekeeping at
intermediary systems.

• Lock entire host system / Disconnect from network
• Disconnect network from all outside access

ICE offers a number of advantages over manually
reviewed IDS's. A system can be protected without
requiring an SSO to be constantly present, and able
and willing to make instant, on-the-spot complex
decisions. ICE offers non-distracted, unbiased,
around-the-clock response to even automated attacks.
Because ICE suffers from the same discrimination
and profile management issues as intrusion detection
mechanisms, but with potentially no human interven-
tion, care must be taken that service is not disrupted
at a critical time by engineered denial of service at-
tacks.

1 The anti-intrasion term "ICE" originated from science fiction author William
Gibson's seminal cyberpunk novel Newomancer, and was appropriated and
modified by [HAL88]. Mr. Gibson was reportedly amused by this instance of
life mimicking art.

171

Ala rmed Files /Accounts refer to seductively named
and strategically located "booby trap" resources which
lure an intruder into revealing his activities. Access-
ing an alarmed file or account unleashes immediate
action. Alarms can be silent (only notifying the SSO,
even remotely) or can prompt immediate retaliatory
action against the intruder. An ideal candidate for an
alarmed account is a default administrator account
with default password intact. This technique is low
cost and low tech, but care must be taken that autho-
rized users will not trip the alarm, especially through
accidental stumbling across it by some automatic
means (e.g., running a nonmalicious find).

9.0 Conclusion
This paper has established a comprehensive anti-in-
trusion taxonomy by working top-down at a theoreti-
cal level, and bottom-up by surveying implemented
approaches and those discussed in the referenced lit-
erature. Exercising the taxonomy against real life
analogies firmed and increased intuitive grasp of the
concepts. New anti-intrusion techniques will continue
to be developed in this rapidly evolving field of re-
search which may expand our taxonomy. This tax-
onomy will serve as a useful tool to catalog and assess
the anti-intrusion techniques used by a particular anti-
intrusion system implementation. It is hoped that our
technique will provide new insight to the anti-intru-
sion research community. The authors are active
workers in the field and would be pleased to corre-
spond regarding additions or modifications.

10.0 References
[AND80] J.P. Anderson. Computer Security Threat
Monitoring and Surveillance. James P.Anderson Co.,
Fort Washington, PA, 15 April 1980.

[HAL86] L. Halme and J. Van Home. "Automated
Analysis of Computer System Audit Trails for Secu-
rity Purposes," Proceedings of the 9th National
Computer Security Conference. Washington DC.
September 1986.

[DEN87] D. Denning. "An Intrusion Detection
Model," IEEE Transactions on Software Engineer-
ing, Vol. SE-13, No. 2. February 1987. pp. 222-232.

[SEB88] E. Sebring, E. Shellhouse, M. Hanna, and
R. Whitehurst. "Expert Systems in Intrusion Detec-

tion: A Case Study," Proceedings of the 11th Na-
tional Computer Security Conference. Washington
DC. October 1988.

[LUN88a] T. Lunt and R. Jagannathan. "APrototype
Real-Time Intrusion Detection Expert System,"
Proceedings of the 1987 IEEE Symposium on Secu-
rity and Privacy. Oakland CA. April 1988.

[HAL88] L. Halme and B. Kahn. "Building a Secu-
rity Monitor with Adaptive User Work Profiles,"
Proceedings of the 11th National Computer Security
Conference. Washington DC. October 1988.

[LUN88b] T Lunt. "Automated Audit Analysis and
Intrusion Detection: A Survey," Proceedings of the
11th National Computer Security Conference. Wash-
ington DC. October 1988.

[TIS90] N. McAuliffe, D. Wolcott, L. Schaefer, N.
Kelem, B. Hubbard, T. Haley. "Is Your Computer
Being Misused? A Survey of Current Intrusion De-
tection System Technology," Proceedings of the 6th
Annual Computer Security Applications Conference.
Tucson, AZ. December 1990.

[HEBE92] L. Heberlein, B. Mukherjee, K. Levitt.
"Internetwork Security Monitor: An Intrusion-Detec-
tion Systemfor Large-Scale Networks,"Proceedmg,s
of the 15 th National Computer Security Conference.
Washington DC. October 1992.

[DIDS91] S. Snapp, J. Brentano, G. Dias, T. Goan, L.
Heberlein, C. Ho, K. Levitt, B. Mukherjee, S. Smaha,
T. Grance, D. Teal, and D. Mansur. "DIDS (Distrib-
uted Intrusion Detection System) - Motivation, Ar-
chitecture, and an Early Prototype," Proceedings of
the 14th National Computer Security Conference.
October 1991.

[FIS94] W. Cheswick and S. Bellovin. Firewalls and
Internet Security Repelling the Wily Hacker, Addison-
Wesley, 1994.

[ST089] C. Stoll. The Cuckoos'Egg: Tracking a Spy
Through the Maze of Computer Espionage,
Doubleday, 1989.

[SHI95] T. Shimomura. The IP Spoofing Attack, in
Proceeding of the Third Workshop on Future Direc-
tions in Computer Misuse and Anomaly Detection,
eds. Matt Bishop, Karl Levitt, and Biswanath
Mukherjee. January 1995, appendix A-15.

172

Simulating Concurrent Intrusions
for Testing Intrusion Detection Systems:

Parallelizing Intrusions*

Mandy Chung Nicholas Puketza
Biswanath Mukherjee

Ronald A. Olsson

Department of Computer Science
University of California, Davis, CA 95616

{chungm, puketza, olsson, mukherje}@cs.ucdavis.edu

Abstract
For testing Intrusion Detection Systems (IDS), it is essen-
tial that we be able to simulate intrusions in different forms
(both sequential and parallelized) in order to comprehensively
test and evaluate the detection capability of an IDS. This pa-
per presents an algorithm for automatically transforming a se-
quential intrusive script into a set of parallel intrusive scripts
(form,ed by a group of parallel threads) which simulate a con-
current intrusion. The main goal of parallelizing an intrusion
is to distract an IDS's attention away from the intrusive ac-
tivity. We identify constraints on the execution order among
commands, and the way commands can be classified based on
the effect of their execution. Synchronization and communi-
cation mechanisms are used to guarantee that the execution
order among commands is preserved even under the paral-
lelized scenario. We show that, experimentally, our work con-
stitutes a major part of testing the ability of an IDS to detect
intrusions and is especially useful for the users and develop-
ers of IDSs. We show that an intrusion is less likely to be
detected if the suspicious activity is distributed over several
sessions. Finally, we discuss some aspects of parallelizing in-
trusive scripts, including some practical difficulties that are
open problems for future research.

Keywords: Intrusion Detection, Concurrency, Testing, Paral-
lelization, Synchronization, Data Flow Analysis, Dependence
Analysis.

1 Introduction
Intrusion detection provides a practical alternative ap-
proach to computer security besides designing a secure
system [6, 12]. Intrusion Detection Systems (IDS) have
been under investigation for many years [7, 14] and have
started to move from laboratories to the real world.
There is thus a need for sound methodologies and tools
for testing IDSs. This paper presents our continuing ef-

*This work has been supported by the National Security Agency
(NSA) INFOSEC University Research Program (URP).

fort on testing Intrusion Detection Systems [13].

We are researching methods for testing IDSs. In our
testing experiments, we simulate intrusive activity, and
then study the corresponding output from the IDS. We
have developed a software platform that can be used to
create scripts that simulate both normal and intrusive
activities. We have also developed mechanisms in the
platform to support concurrent intrusion simulations, in-
cluding mechanisms for synchronization and communica-
tion (message passing) among different processes.

A major challenge of our work is to be able to sim-
ulate intrusions in various forms so that we can test an
IDS's capability to detect intrusions comprehensively. A
single intrusion can be executed in many different ways.
For instance, an intruder may type in the intrusive com-
mands one by one from a single terminal, or an intruder
may code them up in a script. An advanced intruder
may partition (or parallelize) the commands and issue
them from different sources (e.g., different login sessions)
to reduce the noticeability of the intrusion by an IDS.
Similarly, multiple intruders may attempt to conceal an
intrusion attempt by distributing the suspicious behavior
amongst themselves.

Manually transforming a sequential intrusion into a
concurrent one is very tedious and time-consuming. Be-
sides, a single intrusion can typically occur in a number of
different concurrent forms. For this reason, we envision,
during the course of testing IDSs, the need for an auto-
mated approach to fragment a sequential intrusive script
into parallel scripts that cooperate with one another.

This paper presents an algorithm for parallelizing a
sequential intrusive script of Unix shell commands. Par-
allelizing an intrusive script has some similarities to par-
allelizing a program, which has been studied in depth
[2, 3, 4, 5, 8, 9, 11]. Our work adapts some basic tech-
niques used in program parallelization to fit in our con-
text, including data flow analysis, dependence analysis,

173

and control dependence to data dependence conversion.
Our algorithm is based on a dependency graph that rep-
resents the meaning of commands as well as their inter-
relations. A sequential intrusive script is first analyzed
to determine various kinds of dependencies among com-
mands which, in turn, enable us to determine their exe-
cution order. The sequential script is then transformed
into a parallel script, in which synchronization and data
communication mechanisms are employed to enforce the
dependence relations of commands. A parallel script is
formed from a group of parallel threads generated from
our algorithm. By assembling parallel threads in differ-
ent ways, various parallel forms of an intrusive script can
be generated. This paper emphasizes the parallelization
of intrusive scripts for testing IDSs; however, this ap-
proach can be employed for parallelizing arbitrary (non-
intrusive) scripts, perhaps for different goals and different
optimization.

The rest of this paper is organized as follows. Section
2 presents some example scenarios to illustrate the impor-
tance of an IDS to be able to detect concurrent intrusions,
which raises the motivation and the need for our work.
Section 3 presents some initial results from testing both
sequential and parallel intrusive scripts on an actual IDS
showing that intruders could escape detection by an IDS
by distributing their intrusive activity over several con-
current sessions. Section 4 describes the model for our
parallelization algorithm. Section 5 describes the steps
involved in the automated parallelization (or transforma-
tion) of an intrusive script and also presents an algorithm
for generating parallel threads. Section 6 discusses sev-
eral aspects of parallelizing intrusive scripts, including
some practical difficulties which we will deal with in the
future. Section 7 concludes the paper.

2 Scenarios

This section presents two intrusion scenarios —
password-guessing and password-cracking — demonstrat-
ing the fact that an intruder can possibly defeat an IDS's
detection mechanism by issuing the intrusive commands
from different sources concurrently (e.g., from different
login sessions).

In the first scenario, an intruder attempts to guess
the password of a user on a target machine. Obviously,
he/she can do this by attempting repeated logins with
different passwords until he/she successfully enters the
system or until he/she gives up after several attempts.
An IDS could probably detect this intrusion because a
number of failed login attempts from a source machine is
very noticeable. However, the guessing of passwords can
be distributed among several intruders so that a group of
passwords are tested simultaneously, perhaps from differ-
ent machines. An intruder may also be able to manage to
test several passwords concurrently through several open
login sessions, or perhaps by an automated script. First,

login host1 userl

cd crack

Figure 1: Dependence graph for a sequential password-
cracking intrusion.

in this concurrent intrusion, the intruder can test all pass-
words in a shorter period of time. Second, this concurrent
intrusion is less suspicious to an IDS than the sequential
one because the logins are issued from different sources.
Finally, if the target machine shares the password file
with some other machines 1, the intruder can also test
passwords on different machines simultaneously (rather
than on one target destination). It is extremely difficult
for an IDS to aggregate the activities issued from dif-
ferent sources to different destinations and to detect the
coordinated intrusion.

In the second scenario, an intruder who manages to
enter a target machine attempts to find any password
that can be easily cracked. The intruder first logs into
a target host hostl as userl and then creates a tempo-
rary directory called crack under his/her home directory.
He/she copies the password cracking program cracker.c
and the dictionary file cracker.in from another machine
srcHost and in a directory targetDir under srcUser home
directory by ftp. Running the program cracker compiled
from cracker.c will generate those cracked passwords into

1This is usually the case when Network Information Service
(NIS) is running, where the password file is shared among all NIS
clients.

174

"V
cd crack

1
ftp srcH srcU

I
cd targetDir

(9

1
5f cracker.c

sync 2 \

bye)

i
\

logout

login hi u7 login hi u8

cd crack

] wait 6)

sync 7 J

1

r
l ~u1

;x
ait

I

cd ~u1)

wait 1

cd crack

I
cd

IT
wait 7

rmdir crack

/ogouf I logout

an S-command or T-command

! a synchronization command

CD an R-command

j a command switches the current working space

Figure 2: Parallelized password-cracking intrusion.

an l-command

file cracker.out. After reviewing the output file, the in-
truder cleans up the working directory crack and leaves
the session.

Although the actions in this intrusion, described
above, seem to be necessarily performed serially in a sin-
gle session, they can still be divided and performed in
concurrent sessions by multiple coordinated intruders (or
intrusion scripts). To illustrate, consider the commands
executed in this intrusion and the dependence relations
among them. Figure 1 depicts the dependence graph for
this password-cracking intrusion. (In Figures 1 and 2,
we distinguish between commands of four different types:
S-command, R-command, T-command, and I-command,
which will be described in Section 4.) Figure 2 shows
one possible parallel version of this intrusion. It consists
of eight individual intrusive sessions running simultane-
ously. Each of these intrusive sessions carries minimal
activity as shown. That is, it is not possible to sepa-
rate into two or more threads the activity performed in
any one of these parallel threads. Concerning the bene-
fits of parallelizing this password-cracking intrusion, the
parallel version does not gain any considerable speedup.
On the contrary, the elapsed time of the intrusion may
be increased due to the overhead of synchronization be-

tween the various parallel threads. However, the speedup
is not the main goal of the intrusion parallelization oper-
ation. The main goal is to disguise the intrusive activity
performed by an intruder or a group of intruders. The
major benefit obtained from parallelizing the password-
cracking intrusion is to distribute the intrusive activity
among concurrent sessions so as to minimize the chance
of detection of the activity.

The two examples described above both involve the
interaction between the intruder and the shell. Another
form of intrusion could be due to a program that makes
system calls. Activities issued from either of them may
be collected by an audit trail on which the analysis of
many IDSs rely. In this paper, we focus on the former
form of intrusion involving shell-level commands.

3 Experimental Results

To escape detection by an IDS, intruders might try to
distribute their intrusive activity over several concurrent
sessions. The premise behind this strategy is that the IDS
will assign a higher warning value to one very intrusive
session than it will to several less intrusive sessions. We
conducted some experiments to test this premise.

175

The IDS that we tested is the Network Security Mon-
itor (NSM) [7]. The NSM monitors all of the packets
that travel on the local area network (LAN) to which the
NSM host computer is connected. The NSM can asso-
ciate each such packet with the corresponding computer-
to-computer connection. It assigns a warning value be-
tween 1 and 10 (higher is more suspicious) to each con-
nection based on the contents of the packets, and on the
likelihood of the connection occurring, given a record of
recent connections. We ran the NSM on a Sun Sparc
Station 2 workstation connected to the Computer Sci-
ence LAN segment at UC Davis (UCD).

3.1 Test Procedure
We first selected four intrusive activities:

1. transmitting the /etc/passwd file from one computer
to another;

2. password-cracking by comparing the entries in the
/etc/passwd file to a list of encrypted password
guesses;

3. password-guessing using a dictionary file; and

4. exploiting the loadmodule flaw to achieve super-user
status.

For each of these activities, we created a sequential script
to simulate the activity. Then, we manually created a
concurrent script set which collectively included all of the
commands from the sequential script. We activated the
NSM and ran the scripts. We then compared the warning
values for the sequential script with the warning values
for the concurrent script set. The results are displayed
in Figure 3. The NSM assigns a warning value to each
network connection. Several of the scripts and script sets
initiate more than one network connection, but for clarity
the figure shows only the maximum warning value for
all network connections associated with each script and
script set.

INTRUSION

DESCRIPTION

SCRIPT TYPE
s = sequential
c = concurrent

MAX
WARNING
VALUE

transmitting

passwd file

s 7.472

c 7.472

password-
cracking

s 3.160

c 3.160

password-
guessing

s 8.722

c 7.785

exploting

loadmodule flaw

s 7.472

c 4.972

Figure 3: NSM experimental results.

3.2 Analysis of Results
For the first intrusion simulation in Figure 3, the warn-
ing value for the concurrent script set is the same as the
warning value for the sequential script, and the warning
values are high. A possible explanation for this is that the
sequential script contains a very suspicious command or
set of commands which cannot be divided when the con-
current script set is created. As a result, at least one of
the threads in the concurrent script set is by itself just as
suspicious as the original sequential script. The warning
values for the second intrusion simulation are again equal,
but in this case the values are low. A likely explanation is
that the NSM was not configured to be sensitive to that
particular intrusion. So, neither the sequential script nor
the concurrent script set produced activity that appeared
suspicious to the NSM.

For each of the last two intrusion simulations in our
experiments, the warning value for the concurrent script
set is less than the warning value for the sequential script.
In both cases, it was possible to divide up a set of sus-
picious commands in the sequential script among two or
more threads in the concurrent script set.

Taken together, our experiments indicate that it is
possible for intruders to reduce the chance of detection
by an IDS by distributing their suspicious activities, al-
though this strategy is not always successful. In future
work we plan to investigate the effects of this strategy
on different IDSs. For example, the NSM monitors each
network connection independently. An IDS that, instead,
keeps track of all the activity associated with each user
may not be affected as much by this intruder strategy.

4 Model
Our work focuses on the automated parallelization (or
transformation) of an intrusive script that is used to sim-
ulate an intruder's activity. An intrusive script is written
in a simple programming language which allows us to
specify shell-level commands, such as shell language [15]
and Expect [10]. In addition, the language typically in-
cludes variables, procedure, and control-flow statements,
such as if-then-else and loop.

This section presents a model for an intrusive script
transformation which focuses on issuable shell-level com-
mands in an intrusive script. The model is divided into
two parts: shell-level commands and statements in an
intrusive script.

An intrusion is considered to be a sequence of shell-
level commands issued by an intruder. An intruder can
issue commands one by one from a single terminal, or
issue commands from more than one terminal. For ex-
ample, an intruder can create two login sessions from two
different windows on his/her workstation to a target host
at the same time. On the target host, the identity of
the user associated with these sessions can be different

176

(if the intruder manages to get two different accounts on
that system). In this paper, we refer to the commands
that are issued from a terminal as an intrusive session.
More specifically, a user can consecutively issue several
commands that create a new user session, such as rlogin,
telnet, and ftp, from a terminal in which a hierarchical
structure of open user sessions is built. An intrusive ses-
sion refers to the root session of this structure. A sequen-
tial intrusion involves only one intrusive session while a
concurrent intrusion typically involves multiple intrusive
sessions.

A shell-level command, like a procedure, can take pa-
rameters (e.g., from command line) and return a result
(e.g., to standard output). In addition, a command may
change two kinds of states in a computer system: the
file system state and the intrusive session state. The file
system state includes the existence and the content of
files in the file system. The intrusive session (IS) state
consists of all predefined and user-defined environment
variables, including the real user ID (uid), the effective
user ID (euid), the group ID (gid), the current working
directory (cwd), and the hostname. The current IS state
refers to the state of the active user session in an intrusive
session. We characterize a command C by the following:

• Input parameters and output result.

• A set of file system objects from which C reads.

• A set of file system objects to which C writes.

• A set of IS state attributes2 on which C depends.

• A set of IS state attributes which C changes.

Based on the above definition of a command, the depen-
dence constraints on the intrusive script transformation
are defined as follows:

Data dependence. Two commands are data depen-
dent if the input parameter of one command is deter-
mined by the output of another, or some file system ob-
jects written by one command are referenced (read or
written) by another and these file system objects are
not written by other commands between the execution
of these two commands.

Attribute dependence. Two commands are at-
tribute dependent if some IS state attributes changed by
one command are referenced (read or changed) by an-
other and these attributes are not changed by other com-
mands between the execution of these two commands.

An intrusive script typically consists of various con-
structs provided by the language. Control dependence is
another constraint to the parallelization problem due to
the presence of control-flow statements in the script (see
Section 5.2.1 for details).

We also classify commands into four different types
according to their effect on the IS state:

1. I-command (state Invariant) — A command that
does not affect the IS state. For example, Is, cp and
cat are I-commands. These commands only affect
the file system state, e.g., change the content of a
file or create a new file.

2. S-command (Session creation) — A command that
creates a new user session and changes the IS state,
but the IS state before executing this command can
be restored by an R-command. Examples of S-
commands are rlogin and ftp, which change the IS
state attributes, uid, euid, gid, cwd, and host, su is
slightly different from the above since it only changes
uid, euid, and gid.

3. R-command (state Restoration) — A command that
closes the current user session and restores a pre-
vious IS state. Specifically, an R-command reverts
the IS state to a state in which the corresponding
S-command began without requiring the knowledge
of those executed commands and their parameters,
or the value of the previous IS state. For exam-
ple, logout is an R-command corresponding to rlogin
whereas bye is an R-command corresponding to ftp.

4. T-command (state Transition) — A command that
changes the IS state, but no R-command corresponds
to it. For example, cd is a T-command that changes
the current working directory (cwd) and setenv is
another T-command that defines an environment
variable. Although the IS state before executing
a T-command can be restored via a series of T-
commands, cd and setenv are neither an S-command
nor an R-command since they require the knowledge
of the value of a previous IS state (for restoration)
and since they do not open or close a user session.

As we described earlier, a script can contain variables,
control-flow statements, and constructs for issuing shell-
level commands. Figure 4 shows a simple Expect script
that controls an rlogin session.

For simplicity, when parsing the script statically, we
refer to a statement that issues a shell-level command as
a "command" (e.g., lines 5, 7, 11, 13, and 14 in Figure
4), while we refer to other constructs provided by the
language as "statements" (e.g., lines 2, 3, and 10 above).
More precisely, the issuable commands (line number of
its referred statement) in Figure 4 are: rlogin (lines 5
and 7)3, whoami (line ll)4, Is -I (line 13), and logout
(line 14). Lines 10 and 11 together form a conditional
statement containing an issuable command whoami.

2 In order to distinguish between an environment variable and a
script variable, we refer to an environment variable as an attribute
of the IS state.

3Inputting password is considered to be part of the rlogin.
4Line 11 will be invoked only if rlogin to the host occurs as root.

177

1 # get target host and user from arguments

2 set host [lindex $argv 1]

3 set user [lindex $argv 1]

4 # spawn an rlogin process

5 spawn rlogin $host -1 $user

6 # expect the password prompt,

then send the password.

7 expect {"Password:" send "actualpassword\r"}

8 # expect the shell prompt,

then send shell-level commands

9 # The shell prompt is specified

in a regular expression.

10 if {$user == root} {

11 expect {-re " .*'/.!.*> I .*#" send "whoamiYr"}

12 }
13 expect {-re ".*'/.I .*>| .*#" send "Is -l\r"}

14 expect {-re ".*'/.!.*> I .*#" send "logout \r"}

Figure 4: A simple Expect script.

5 Automated Parallelization of an
Intrusive Script

Parallelization of a sequential intrusive script consists of
the following steps :

1. Parse an intrusive script and build a flow graph.

2. Convert the control dependence to data dependence.

3. Perform dependence analysis and build a data de-
pendence graph.

4. Create parallel threads for the intrusive script
and insert synchronization and data communication
commands to facilitate coordination between paral-
lel threads.

5. Perform optimization and transformation, if any.

6. Generate a parallel intrusive script.

A flow graph representing an intrusive script is differ-
ent from a flow graph representing a program [1]. We
define a basic block, in our context, as a sequence of
consecutive "statements" and one issuable "command".
Therefore, it is possible to have a basic block containing
a conditional statement or loop which contains no com-
mand. The intrusive script transformation procedure is
only interested in the issuable shell-level command con-
tained in a basic block. We assume that two basic blocks
are dependent only if the issuable commands in the basic
blocks are dependent (see Section 4). Information ob-
tained from the evaluation of other statements in a basic
block is only used within the basic block and is indepen-
dent of other basic blocks. That is, script variables used
or modified in a basic block are not referenced elsewhere.

In parallelizing an intrusive script, we must obey the
constraints of the underlying dependence structure of the
script. In our algorithm, a data dependence graph [8] is

used to represent the data dependence, attribute depen-
dence, and control dependence. Both data and attribute
dependence of commands can be represented in a data
dependence graph because the IS state attributes are an-
other form of data in an intrusive session. We can also
treat control and data dependence uniformly by apply-
ing a technique in parallelizing compilers introduced by
Allen and Kennedy [2] to convert control dependence into
data dependence. We also adapt the dependence analysis
[3, 5, 8, 9] used in program parallelization to determine
the dependence relations of all issuable commands in a
script.

In the following, when we refer to a command in a
dependence graph, we actually mean the basic block con-
taining this command. A node in a dependence graph
represents a basic block which contains one issuable com-
mand and other statements.

Section 5.1 presents an algorithm to generate paral-
lel threads in parallelizing an intrusive script, which does
not have branch, loop, and procedure. Section 5.2 ex-
tends the algorithm to handle conditional statements and
loops. It also discusses another dependence due to the
script variables used or modified in a basic block and ref-
erenced by another. Section 5.3 discusses the possible
optimization and transformation performed on the par-
allelized intrusive threads.

5.1 Parallelization Algorithm
This algorithm consists of two phases: parallel threads
generation phase and threads synchronization phase. Ap-
pendix A gives the pseudo-code for this algorithm.

5.1.1 Parallel Threads Generation Phase

We represent an intrusive script as a series of commands,
I = {Ci, C2,.. ■, Cn} since there is no branch, loop, and
procedure in the script. The IS state transition during
the execution of / is {s0, si,..., sn} where s0 is the initial
IS state determined by the input of I. This phase cre-
ates a parallel thread for each I-command in I. In order
to guarantee that an I-command executed in a parallel
thread has the same effect as in the sequential script,
the IS state Sj_i must be reached before the execution
of Ci begins. Specifically, s;_i is reached by executing
all S-commands and T-commands in {C\, C2, • • •, Cj-i}
serially.

The details of the algorithm are as follows. The al-
gorithm processes each command and uses a stack to
store those S-commands and I-commands whose execu-
tions reflect the current IS state. When processing an
I-command, the algorithm creates a new thread for per-
forming this command. We use a flow graph to represent
a sequence of commands executed in a parallel thread.
First, a flow graph is formed by creating a node for
each element (each command) in the stack; the bottom
one in the stack is the first command executed in the

178

thread while the top one is the last command. The algo-
rithm then appends a node representing the I-command
to the graph. When processing an S-command or a T-
command, this command is pushed onto the stack and
no thread is created. If it is an S-command, all new
threads containing this S-command are recorded so that
their open sessions can be closed appropriately. When
processing an R-command Cr, all recorded threads for
the S-command Cs that corresponds to Cr are appended
with Cr to close their current sessions. Precisely, Cs is the
top S-command in the stack. All subsequent commands
following Cs (including Cs) in the stack are popped (since
the open session created by Cs is closed by Cr).

After processing all commands in the script, the num-
ber of parallel threads generated is the number of I-
commands in the script. For example, Figure 1 is the
dependence graph for the sequential password-cracking
intrusion scenario discussed in Section 2, and it turns out
that this example has eight I-commands. Figure 2 shows
the eight parallel threads generated by this algorithm and
each thread performs only one of these eight I-commands.

5.1.2 Threads Synchronization Phase

After all parallel threads are generated, the dependence
relations among commands are enforced in this phase to
guarantee the execution order of the commands by insert-
ing synchronization and data communication mechanisms
[11].

A dependence graph G consists of nodes and directed
edges. A node represents a basic block containing a single
command. A directed edge (u, v) represents a dependence
relation between basic blocks u and v, i.e., the execution
of v can begin only after the execution of u terminates.
By performing breadth-first search on G, all commands
(nodes) are visited. While visiting a node containing an
I-command Cj, we insert a synchronization command to
each successor of d in G, Cj, to ensure that its execu-
tion begins only after C, terminates. If the input of Cj
depends on the output of d, the output of Ci is sent
to the thread containing Cj using data communication
commands.

As in the parallel threads generation phase, all S-
commands, T-commands, and R-commands may be du-
plicated in other threads whereas an I-command is ex-
ecuted in only one parallel thread. If d is either an
S-command, a T-command, or an R-command, the ex-
ecution order of d and its successors is guaranteed to
occur in sequential order.

5.2 Language Constructs
5.2.1 Conditional Statements

Conditional statements are very useful in simulating an
intrusion. As a simple example of control dependence in
an intrusion, consider an intruder who checks the per-
mission mode of a file named fileA and decides whether

to read fileA or to modify fileA. The first command per-
formed by the intruder is Is -/fileA to obtain the file access
information. According to the file access permissions of
fileA, if it is world-writeable, he/she then modifies the file
by vi; otherwise, if it is world-readable, he/she reads the
file by cat.

For simplicity, in the following example, we focus on
the issuable commands and ignore all other statements
within the if-statement.

if B then
commandl
command2

else
command3

endif
command4

Commandl, command2, and command3 are control
dependent on the boolean expression B since B deter-
mines which command is executed. (B may be obtained
from the output of a previous command.) The conversion
from control dependence to data dependence proceeds
by first replacing the if-statement at the source of the
dependence with an assignment statement to a boolean
variable. The converted if-statement is:

6 = B
commandl when b
command2 when b
command3 when not b
command4

All control dependent commands are tagged with a
"when b" or "when not b" clause depending on to which
arm of the original if-statement they belong. The opera-
tor when indicates that the expression on its left is exe-
cuted only if the boolean expression on its right is true.
A boolean variable b is used instead of B because state-
ments in either arm of the if-statement could have side
effects, i.e., these side effects could change B. After the
conversion, the control dependences of commandl, com-
mand2, and command3 become flow dependences gener-
ated by variable b and each command is contained in a
single basic block in the flow graph.

After the if-conversion, the parallel threads can be
generated as described in Section 5.1 but a slight modifi-
cation must be made to handle the tagged R-commands
as follows. When processing a tagged R-command with
operand b, Cr when b, all recorded threads containing
its corresponding S-command Cs are appended with this
tagged R-command. Consider those S-commands and
T-commands executed between Cs and Cr, i.e., {Cs =
d0, Cix,..., Cik} in the stack. First, for 0 < j < k, all
tagged Ci- whose operand is satisfied with the current b
value are popped from the stack because, if b is true, the

179

current user session is closed. Then, all remaining Cid in
the stack are modified to tag with a "when not b" clause
if it is not tagged, or to replace the "when c" clause with
a "when c and not 6" clause. Therefore, all remaining
d ■ in the stack are guaranteed to execute under correct
IS state.

The tagged commands now depend on the basic block
that evaluates b. All threads that contain the tagged
command may need to receive the b value from another
thread, which we refer to as variable dependence (to be
discussed in Section 5.2.3).

5.2.2 Loops

Recall from Section 2 that, in the sequential password-
guessing intrusion example, an intruder repeatedly at-
tempts to log into a target machine and guess a password
until he/she successfully enters the target machine or fin-
ishes guessing all passwords in his/her stock. This intru-
sion obviously contains a loop for testing passwords.5 In
this example, an iteration of the loop — logging in and
guessing a password — is independent of other guesses
and can be executed concurrently. Although loops in an
intrusive script may not be as commonly used as loops in
a program, this construct is considerably useful in simu-
lating certain types of intrusions.

We follow the terminology used in parallelizing com-
pilers proposed by Banerjee [3] to classify three parallel
loop forms.

• DO ALL is a loop that allows total parallel execution,
i.e., all iterations of the loop body are allowed to run
simultaneously.

• DOACROSS is a loop that allows partial overlap of
successive iterations during execution.

• DOSEQ is a sequential loop without parallelism.

After performing the loop dependence analysis, we
can identify the type of loops contained in the script.
Two kinds of DOALL loops are parallelizable. First, a
DO ALL loop that contains only I-commands is paral-
lelizable. Second, a DOALL loop is parallelizable if the
loop's body can be divided into three blocks such that the
first and the last blocks contain only I-commands while
the middle block starts with an S-command and ends
with an R-command corresponding to this S-command.
In other words, a parallelizable DOALL loop terminates
with a previous IS state right before its execution begins.
Because each iteration of the loop is independent on oth-
ers, a new thread is generated for executing an iteration
of the parallelizable loop. A special type of node is used
to represent this parallelizable DOALL loop in the depen-
dence graph so that the parallel threads generation phase
can recognize this loop and parallelize it accordingly.

5When the connection is closed (after the configured number of
incorrect login attempts), the intruder may need to issue a login
command again.

DOACROSS loops containing only I-commands (no
IS state change) can also be parallelized in a similar man-
ner but synchronization and data communication mech-
anisms must be appropriately inserted both at the end of
one iteration and before another iteration begins, just as
in processing dependent commands.

If a thread generated from the loop paralleliza-
tion procedure contains more than one I-command, this
thread can further be parallelized as if it is a sequential
intrusive script by recursively applying the algorithm on
it. Parallel threads may be required to transmit data due
to the loop parallelization because of DOACROSS loops.

Other kinds of loops are considered as non-
parallelizable. Among these non-parallelizable loops, a
loop containing only I-commands is treated as a single
basic block so that a single thread can be created to per-
form this loop's activity. However, a non-parallelizable
loop that contains commands other than I-commands will
inhibit the parallelization. That is, all commands follow-
ing this loop together with the loop is treated as a single
basic block in the dependence graph, and hence, it is the
last thread created in the parallelization. In particular,
a script that has this kind of loop but no I-command be-
fore it is non-parallelizable. In fact, under some situation,
further parallelization may be allowed even if the script
contains such non-parallelizable loops. For example, if
the execution of a loop restores the original IS state after
it terminates, it can be treated as a single basic block.
Duplication of the loop in each parallel thread generated
for commands that follow it may also be feasible in some
cases. However, the analysis involved to guarantee that
the execution of such a non-parallelizable loop in more
than one thread resulting in a correct and safe state is
very complicated and difficult.

5.2.3 Variable Dependence

So far, we have considered that information obtained in
a basic block is independent of other basic blocks. Two
basic blocks are dependent only if the issuable commands
in the basic blocks are dependent. Therefore, script vari-
ables used or modified in one basic block are not refer-
enced in the others. Under certain circumstances, such
as the operand introduced by the if-conversion, the algo-
rithm may need to handle the variable dependence across
basic blocks.

5.3 Optimization and Transformation
After generating parallel threads from the dependence
graph, several possible optimizations can be performed
on each thread. One possible optimization is to log in as
a different user in each thread. Consider the password-
cracking example presented in Section 2. Figure 2 shows
eight parallel threads generated from the dependence
graph shown in Figure 1 by the algorithm. As shown
in Figure 2, each thread can login as a different user un-

180

less userl is root in the sequential script (Figure 1). If
different users are used in parallel threads, we must en-
sure that all referenced files are accessible by all of these
users. This can be achieved either by setting the permis-
sion mode of these shared files explicitly by the users, or
by assigning one thread to change the permission modes
of these shared files.

Another possible optimization is to remove redundant
commands executed in a thread. For example, the last
parallel thread in Figure 2 removes the temporary di-
rectory crack; however, two redundant cd commands are
executed before rmdir. Obviously, they can be removed
from this thread without altering its intrusive behavior.

(a)

S
exit

(b)

Figure 5: Transformation example.

As the parallel threads generated contain minimal ac-
tivity, a login session in the sequential intrusion may be
broken down into multiple login sessions in the concur-
rent intrusion. For example, Figure 5(a) shows a subtree
of the dependence graph representing one part of the in-
trusion and Figure 5(b) shows the three parallel threads
generated to perform the activity in Figure 5(a). Al-
though these parallel threads perform individual root lo-
gin session independently, three root logins may be more
suspicious to an IDS than the one root login in the se-
quential intrusion. In this case, parallelization of this
subtree may not be beneficial. One possible transforma-
tion in this example is to combine the threads into one
thread to avoid creating suspicious login sessions. There-
fore, Figure 5(a) is used for that part of the intrusion
after the transformation.

The parallel intrusion generated by our current ap-
proach uses the same working space as the sequential in-

trusion. For instance, in Figure 1, all files created or
added by this sequential cracker intrusion are placed un-
der the directory ~userl/crack in machine hostl, and they
will be removed at the end of the intrusion. Although dif-
ferent parallel threads of the concurrent cracker intrusion
can log into different users and have their own working
space, they access and use the same working space as in
the sequential intrusion, e.g., the directory ~userl/crack.
With further analysis on the semantics of the script, it
might be desirable to transform the threads to use their
own working space if possible.

6 Discussion and Future Work
This section discusses several aspects of parallelizing an
intrusive script: various forms of parallel scripts gener-
ated by our algorithm, some practical difficulties, and
generalization of our algorithm.

We have presented an algorithm for parallelizing a
sequential intrusive script into one possible parallel in-
trusive script in Section 5. The intrusive activity is basi-
cally performed by several parallel threads concurrently.
Each parallel thread carries minimal intrusive activity. In
fact, other possible parallel intrusive scripts can easily be
generated by assembling parallel threads together in dif-
ferent ways to form different combined threads. Thus, an
intrusion can be systematically mutated from a sequen-
tial form into various different parallel forms, which can
be used in testing an IDS.

Parallelizing an intrusive script is difficult in practice
because of the rich set of shell-level commands, and var-
ious constructs supported by the script language. How-
ever, we will deal with these difficulties and search for
their possible solutions in the future. Five practical dif-
ficulties are discussed below.

Domain and range analysis of shell-level com-
mands. Our algorithm relies on the assumption that
we have the knowledge about the domain and range of ev-
ery Unix command. The domain of a command is the set
of file system objects it reads from and the set of IS state
attributes it uses, while the range is the set of file system
objects it writes to and the set of IS state attributes it
changes. However, they are difficult to obtain systemat-
ically. First, the domain and range of a command may
differ with different arguments. Sometimes, the meaning
of a command changes substantially with different op-
tion arguments, and so do the domain and range. For
instance, the command "cp a b" copies the file a to a file
b, whereas the command "cp -r a b" copies all files under
the directory tree rooted by a to a directory b if a is a
directory. In this example, the domain and range of these
two cp commands may be different due to the "-r" op-
tion. In addition, the user is able to redirect I/O to and
from files as well as redirect the output of one command
as input to another command using pipes. For example,
the command "Is -I > file" changes the file system state

181

while the command "Is -I" alone does not. In Unix, com-
mand aliases, hard links, and symbolic links are allowed
to be created. The command cp at one time may refer
to the program /bin/cp, but at another time, it may re-
fer to /bin/Is if the user has made an alias named cp of
this Is command. Similarly, references on a hard link or
a symbolic link made by a command may actually refer
to another file. Apart from standard Unix commands,
a user can also execute a user-defined command which
can be a program making system calls. To determine the
domain and range of such a program requires detailed
analysis of the program source.

Complexity of text editor commands. Our algo-
rithm cannot completely handle text editor commands
because of their complexity. For example, vi can edit dif-
ferent files before exiting the editor session. It can also
start a new user session via shell escape. Activities per-
formed within an editor session are very hard to analyze
from a script. We currently handle vi and emacs as I-
commands that only access and modify one file specified
as a parameter and do not have other side effect.

Side effect of additional open user sessions. S-
commands and T-commands may be duplicated in paral-
lel threads. The execution of the duplicated S-commands
on parallel threads opens additional user sessions which
may affect the current state of the computer system, such
as the list of users currently on the system, the number
of active processes, and the last login time of an attacked
account. In other words, execution of S-commands may
affect the output of some I-command in a script. Our
algorithm does not currently handle an intrusive script
containing an I-command which depends on the system
state. For example, one of the actions performed by an
intruder is to discover the last user who logs into machine
A. When an intruder has logged into A, the user whom
the intruder wants to find becomes the second last user
who logs into A. The command "last -2" can be used to
get this information in a sequential intrusive script, but
it is not necessarily correct when used in a parallel script.

Interprocedural Analysis. Our algorithm handles
control-flow constructs used in a script, such as if-then-
else and loops. Procedures are another construct that
complicates our dependence analysis. However, by an-
alyzing the effect of a procedure call, including which
parameters changed on return, what global variables are
used and modified, and other side effects, we can deter-
mine whether the procedure presents a constraint on an
intrusive script's parallelization. In some situations, a
procedure can be expanded in-line by substituting the
formal parameters with actual parameters, and renaming
local variables. However, in-line expansion is not appli-
cable to recursive procedures.

Suspension and resumption of open user sessions.
Currently, our algorithm does not handle commands that

suspend or resume a user session. We believe that these
commands are rarely used in intrusions. Our algorithm
can easily be extended to handle them. The command
that suspends a user session can be treated similar to an
R-command. Instead of just restoring a previous IS state,
those commands whose executions reflect the suspended
IS state are kept so that this suspended IS state can be
restored when this suspended user session is resumed.

Our algorithm described in this paper focuses on par-
allelizing a sequential intrusive script of Unix shell com-
mands. However, it can be generalized to apply to other
system platforms, e.g., VMS. The major difference in the
intrusive script transformation on different system plat-
forms is the definition of the intrusive session state on
which the dependence analysis depends, but same kinds
of analysis can be used. In the future, we will study the
dependence relations of commands on various platforms
and thus our work can be applied to testing other IDSs
that run on other system platforms.

7 Conclusion

In this paper, we have presented an automated mech-
anism for parallelization of intrusive scripts for testing
an IDS. Being able to simulate an intrusion in different
forms is very important for testing the ability of an IDS
to detect intrusions. Parallelizing an intrusive script has
some similarities with parallelizing a program; however,
they differ in some aspects mainly due to the shell-level
commands involved in a script and their additional con-
straints on parallelization. By modeling shell-level com-
mands and intrusive scripts, we can adapt the method-
ologies used in program parallelization for parallelizing
intrusive scripts.

The transformation of an intrusive script allows us to
generate other possible parallel forms so that an IDS can
be thoroughly tested. We conducted some experiments
on testing an IDS with both sequential and parallel in-
trusive scripts. The initial results showed that the de-
tection mechanism of an IDS could be defeated when an
intruder distributes the intrusive activity over concurrent
sessions. We believe that our work is especially useful to
the developers of IDSs in testing their products. Besides,
a system administrator can also evaluate and compare
the effectiveness of the detection mechanism of an IDS
with the help of the intrusive scripts transformation. We
expect that our work constitutes a major part in testing
IDSs.

In the future, we will deal with the practical problems
in parallelizing intrusive scripts that we have discussed.
We will also conduct some experiments on testing oper-
ational IDSs with both sequential and parallel intrusive
scripts to obtain further results. Finally, we would like
to mention that our work is used for testing IDSs rather
than for launching new intrusions.

182

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers:
Principles, Techniques, and Tools., Addison-Wesley,
1986.

[2] J.R. Allen, et al., "Conversion of Control Depen-
dence to Data Dependence", Proceedings of 10th An-
nual ACM Symposium on Principles of Program-
ming Languages, Austin, Texas, January 1983.

[3] U. Banerjee, Dependence Analysis for Supercomput-
ing, Kluwer Academic Publishers, Boston, Mass.,
1988.

[4] U. Banerjee, R. Eigenmann, A. Nicolau, and D.A.
Padua, "Automatic Program Parallelizaton", Pro-
ceedings of the IEEE, vol. 81, no. 2, pp. 211-43,
February 1993.

[5] M. Burker and R. Cytron, "Interprocedural Depen-
dence Analysis and Parallelization", Proceedings of
the ACM SIGPLAN '86 Symposium on Compiler
Construction, pp. 17-22, June 1984.

[6] D.E. Denning, "An Intrusion Detection Model",
IEEE Transactions on Software Engineering, vol.
SE-13, pp. 222-232, February 1987.

[7] L.T. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J.
Wood, and D. Wolber, "A Network Security Moni-
tor", Proc. 1990 Symposium on Research in Security
and Privacy, pp. 296-304, May 1990.

[8] D. J. Kuck, et al., "Dependence Graphs and Com-
piler Optimization", SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages, pp.
207-218, January 1981.

[9] Z. Li, P. Yew, and C. Zhu, "An Efficient Data Depen-
dence Analysis for Parallelizing Compilers", IEEE
Trans. Parallel and Distributed Systems, vol. 1, no.
1, pp. 26-34, January 1990.

[10] D. Libes, "Expect: Curing Those Uncontrollable
Fits of Interaction", Proceedings of the Summer 1990
USENIX Conference, June 1990.

[11] S. Midkiff and D. Padua, "Compiler algorithm for
Synchronization", IEEE Transactions on Comput-
ers, vol. C-36, no. 12, pp. 1485-1495, 1987.

[12] B. Mukherjee, L.T. Heberlein, and K.N. Levitt,
"Network Intrusion Detection", IEEE Network, vol.
8, no. 3, pp. 26-41, 1994.

[13] N. Puketza, B. Mukherjee, R.A. Olsson, and K.
Zhang, "Testing Intrusion Detection Systems: De-
sign Methodologies and Results from an Early Proto-
type", Proc. 17th National Computer Security Con-
ference, vol. 1, pp. 1-10, October 1994.

[14] S.E. Smaha, "Haystack: An Intrusion Dection Sys-
tem" , Proc. IEEE 4th Aerospace Computer Security
Applications Conference, December 1988.

[15] P. Wang, An Introduction to Berkeley Unix,
Wadsworth Publishing Company, Belmont, Califor-
nia.

A Appendix: Algorithm for Par-
allelizing Intrusive Scripts

Parallel Threads Generation Phase:

S = empty Stack /* S-commands stack */
M = 0 /* resulting parallel threads */
For each command d € an intrusion I do

if d is an S-command with uid = U then
o push(5, Ci); push(S',cd ~f7)

if d is a T-command then
o push(5, Ci)

if Ci is an I-command then
0 9 = gen-graph(5); append d to g
o M = M U {g}

if d is an R-command then
o find the S-command Cs in S that corresponds to Cj

(i.e., the top S-command in S — Cs)
o for each graph g containing Cs do

o append C»to g
o pop(5) until C$ is pop

gen_graph(5) generates a new thread containing all com-
mands in the stack S.

Threads Synchronization Phase:

Perform a BFS on the dependence graph G and perform
the following when visiting a node of command Cf.

if d is an I-command then
o find the graph g in M containing C%
o for each successor of C, in G, say Cj

o for each graph g' in M containing Cj
o if input of Cj depends on output of Ci then

o insert command in g after d
(to send data to Cj in g')

o insert command in g' before Cj
(to receive data from d in g)

o else
© insert sync command in g after d
o insert sync command in g' before Cj

183

MAINTAINING PRIVACY IN ELECTRONIC TRANSACTIONS

Benjamin Cox <thoth+@cmu. edu>

Information Networking Institute
Carnegie Mellon University

5000 Forbes Ave.
Pittsburgh, PA 15213-3890

Abstract

Electronic commerce presents a number of seemingly contradictory requirements. On the one hand, we
must be able to account for funds and comply with laws requiring disclosure of certain sorts of transaction
information (e.g., taxable transactions, transactions of more than $10,000). On the other hand, it is often
socially desirable to limit exposure of transaction information to protect the privacy of the participants.

In this paper, I address the following issues:

• I develop a new analysis technique for measuring the exposure of transaction
information.

• I analyze various privacy and disclosure configurations to determine which are
technically feasible and which are logically impossible.

• I apply this analysis to the proposed NetBill billing server protocol.

• I consider the use of intermediary agents to protect anonymity and the implications of
various arrangements of intermediaries.

New contributions include a new analysis technique and its associated notation, a system for generating
ad hoc pseudonyms to protect privacy, the application of message forwarding techniques to protecting
privacy in electronic commerce, and the application of these methods to the NetBill system.

1. Introduction

The time is ripe for commerce over the Internet. With the advent of the World Wide Web, merchants of many kinds
are seeing the advantages of making their wares available on the Internet. Along with the inrush of potential merchants
comes an inrush of electronic commerce technologies; the NetBill system being designed at Carnegie Mellon
University's Information Networking Institute is one of many systems in development. Others include a system of
anonymous credit cards being researched at AT&T Bell Labs, the ECash system of digital currency being developed
by DigiCash, the CyberCash system from CyberCash, Inc., the First Virtual Internet Payment System from First
Virtual Holdings Incorporated, and the NetCheque system being developed at ISI. A major goal of NetBill is to reduce
the transaction processing overhead to accommodate purchase prices on the order often cents per transaction. A main
design feature of NetBill is that it uses a central server as an exchange point between merchants and consumers, rather
than requiring merchants to have prearranged relationships with their customers.

NetBill's central-server approach has advantages and disadvantages. Some advantages are simplified
authentication authority, single-statement billing, and simplified access to account information. Disadvantages include
network and processor bottlenecks, and privacy concerns.

With a central billing server handling all details of transactions and providing authentication services to all
parties, it is very simple to compile dossiers on consumers and merchants unless precautions are taken. When large
compilations of personal information are readily available, the potential for abuse is great. Abuse could range from an
explosion of direct marketing campaigns to use of the information to target groups of people as potential victims for
criminal activity.

184

In this paper, I discuss mechanisms for hiding various pieces of the transaction information to maintain the
privacy of users, both consumers and merchants. New contributions include:

• a new analysis technique and its associated notation

• a system for generating ad hoc pseudonyms to protect privacy

• the application of message forwarding techniques to protecting privacy in electronic commerce, and

• the application of these methods to the NetBill system.

2. The Transaction Information Matrix

It is useful to develop a model showing what portion of transaction information is available to which involved parties.
This section presents a matrix notation indicating information disclosure.

2.1. Parties Involved and Available Information

For various reasons, we may wish to hide information from (or disclose information to) any of the following parties
(some of whom are directly involved in the transaction, and some of whom are not): the merchant, consumer, the
billing server, government authorities (such as tax authorities), any applicable auxiliary parties, and observers.

In a fully disclosed electronic transaction, information is available about the merchant's and the consumer's
identities, account numbers and network addresses; the items purchased; and the transaction's price and tax status.

2.2. The Matrix

Table 1 shows the basic matrix indicating information disclosure. A symbol in a matrix block indicates disclosure of
information to a specific party.

Table 1: Empty transaction information matrix.

Consumer's Merchant's
Items Amount

Tax
Status identity account address identity account address

Consumer

Merchant

Billing Server

Authorities

Auxiliaries

Observer

The following symbols are defined:

• X: The information is fully disclosed.

• N: The information is disclosed, but cannot be associated with a particular transaction. For example, this
symbol would be used if the billing server knows a given consumer spent $5 and a given merchant received
$5, but cannot be sure the two events are related.

• R: The information is disclosed to be within a given range, but the exact value is not disclosed.

• L: The information may not be disclosed, but must be when a valid warrant is presented by a law enforcement
agency.

• ?: It is not known whether a transaction actually occurred.

Adjacent symbols with no intervening punctuation represent combined disclosure types. For example, "RN"
means that the value is disclosed to be within a given range but cannot be associated with other values for the
transaction. Symbols separated by a comma represent alternatives. For example, "N, L" means that the value is

185

disclosed but cannot be associated with other values, yet can be fully disclosed to law enforcement agencies with a
warrant.

2.3. Properties of the Matrix

The matrix described above exhibits a number of interesting properties. They are:

• Anything disclosed to an observer is known by all other parties.

• Each of the participants has complete knowledge of his own identity, address, and account, and complete
knowledge of the items, amount, and tax status of the transaction.

• Detail information (such as account numbers) may easily be hidden from observers using standard
cryptographic techniques.

• Network addresses of participants may be difficult to hide; to achieve "R?" disclosure, we may use Chaum's
unconditional sender and recipient untraceability (see [4]), or forwarding-agent techniques (see section 4).
Furthermore, we may use resale agents (see section 6.3.1) to dissociate participants from one another to
achieve "RN?" status (the information is known to be within a given range for participants, but participants
cannot be matched to one another or to a specific transaction).

• Given a network address or account number, it may be possible to determine a participant's identity. This is
not explicitly shown in the matrix; it should be understood that the columns corresponding to the consumer
and merchant are related.

After considering these observations, the "most anonymous" transaction possible is similar to Table 2, with the
exception of the Authorities row, as explained below. The Auxiliaries row is treated as the Observer row, reflecting
the fact that the "most anonymous" transaction will not use auxiliary parties. We should always assume that the
observer may be ideally placed to obtain the information (e.g., located on the same Ethernet segment and able to snoop
packets), making the requirements for eliminating observable information as stringent as possible.

Table 2: Desired transaction information matrix.

Consumer's Merchant's
Items Amount

Tax
Status identity account address identity account address

Consumer X X X RN X X X

Merchant RN X X X X X X

Billing Server N N RN N N RN N

Authorities L L RN?,L L L RN?,L L L L

Auxiliaries RN? RN?

Observer RN? RN?

2.4. Law Enforcement Access

For a system which has no explicit provision for disclosure to law enforcement, the Authorities row is identical to the
Billing Server row, with "L" added to each entry. (In the table shown, law enforcement agencies with warrants have
access to all information.) If we arrange our system to support only minimum disclosure, it is unlikely to be adopted,
because of the potential for wire fraud or other illegal activities. Thus, we would like to provide the capability of
revealing full information to law enforcement agencies.

Law enforcement agencies not possessing a warrant will be denied all information (except that available to any
observer). We would like to provide law enforcement possessing a warrant with complete transaction information.
Thus, the ideal matrix has with an "L" alternative added to every column in the Authorities row, as in Table 2.

186

3. NetBill Transactions

NetBill provides a funds transfer mechanism over the Internet. Consumers and merchants are authenticated using
Kerberos (see [12]).

Consumers and merchants handle the initial parts of the transaction without intervention from the billing server,
then request a transfer of funds from the billing server, which completes the transaction. The merchant acts as a liaison
between the consumer and the billing server, thus simplifying the consumer's communications needs; messages
between the consumer and billing server are encrypted using a Kerberos session key so that the merchant cannot
eavesdrop, despite his liaison role. The arrangement of parties in the NetBill system is as shown in Figure 1. The
numbers shown correspond to the steps in the explanation of the protocol in the next section. We are concerned only
with the communications within the dotted-line box; communications between the NetBill transaction server and the
bank are not considered.

Consumer

-* ' ►
3 kr Merchant

* 5

Bank

Figure 1: The arrangement of parties in the NetBill system.

3.1. Analysis of the NetBill Transaction Protocol

This section analyzes information disclosure in the NetBill system as described in [7]and [11]. Table 3 shows the final
Transaction Information Matrix for NetBill transactions.

Table 3: Final Transaction Information Matrix for NetBill Transactions.

Consumer's Merchant's
Items Amount

Tax
Status identity account address identity account address

Consumer X X X X X X X X

Merchant X X X X X X X X X

Billing Server X X X X X X X X X

Authorities L L X?,L L L X?,L L L L

Auxiliaries X? X?

Observer X? X?

Before the NetBill transaction begins, the consumer and merchant each know their own address, the consumer
knows the merchant's address (this knowledge is assumed in order to begin communication), and the consumer knows
which goods he would like to purchase, along with the purchase price and tax status.

1. Consumer Requests a Service: A consumer makes a request to a merchant indicating the intent to purchase an item
for a specified price. In this phase, the consumer reveals his network address. Also, the merchant now knows what
goods will be purchased. Eavesdroppers know the addresses of both parties, but not the amount and nature of the
goods requested (which are encrypted). Because NetBill uses Kerberos authentication services, the merchant and
consumer now also know each other's identities. Additionally, the consumer includes his account number in the
request.

2. Merchant Forwards Encrypted Goods: The merchant encrypts the requested item with a key K and forwards the
goods to the consumer. The merchant creates an electronic invoice, and calculates a hash of the encrypted goods,
placing the result in its invoice. This phase does not affect the availability of transaction information.

187

3. Consumer Acknowledges Receipt of Goods: The consumer creates an electronic payment order (EPO), which is
filled in with such pieces of information as its identity, account number, and its own calculated hash of the encrypt-
ed goods. The EPO is sent back to the merchant to acknowledge the receipt of the encrypted goods. Because the
consumer's EPO is encrypted with a session key known only to the consumer and the billing server, this phase does
not affect the availability of transaction information.

4. Merchant Invokes NetBill Transaction: The merchant passes its invoice and the consumer's EPO to NetBill. Net-
Bill will examine the contents of both of these to determine whether the transaction is valid. Invoice and EPO com-
ponents such as price, item, parties and hash are used in verification. The merchant's invoice also contains the
decryption key K for NetBill to store. If the proposed transaction is deemed valid, NetBill will execute and log the
transaction. The merchant is notified of the transaction results and passes this information on to the consumer. With
this phase, NetBill knows all relevant information and, upon presentation of a warrant, will reveal it to law enforce-
ment authorities. In addition, the consumer's monthly statement will include the account numbers of all merchants
with whom he has done business.

5. Merchant Supplies Key: Upon notification of a successful transaction, the merchant returns the decryption key K
for the delivered goods to the consumer. This key will be maintained at both the merchant and NetBill locations in
case the consumer needs to re-request it. This phase does not affect the availability of transaction information.

Because electronic goods (such as documents or software) are delivered in encrypted form, they are unusable
until payment is made; the key is transmitted as part of the funds transfer request and forwarded to the consumer upon
successful completion, so it is impossible for the consumer to steal goods by aborting the transaction before payment.
([1] has a general discussion of this technique, known as certified delivery.)

4. Hiding Network Addresses

In distributed transactions, because of the need for the participating parties to exchange messages, it seems natural that
the parties must know each other's address. This is not necessarily the case, however. In [4], Chaum describes a
method of hiding addresses using broadcast messages and cooperating potential senders. This section introduces an
alternative method for parties to mask their addresses using forwarding agents.

4.1. Forwarding Agents

We assume the existence of message forwarding agents, whose addresses are well known. In order that agents may
know the final intended recipient, each participant must know some distinguishing characteristic of its peer. I call this
piece of information the participant's tag. We assume that forwarding agents know how to get messages to parties
based on their tags, either because they have access to a tag-to-address directory or because participants can poll tag
dropoff points periodically (as a person might poll a Post Office box).

In the following analysis, I will use A and B to represent the participants. I use G and H to represent single
forwarding agents, and F to represent the complete set of all available forwarding agents. M represents a message and
TA is a tag representing participant A. In all cases, A and B use end-to-end encryption so that none of their

communication is revealed to the forwarding agents.

4.1.1. Basic Single Agent
In order to send a message to a peer B whose address is not known, a participant A sends the message M with attached
tag TB to a forwarding agent G selected from the set F of available agents. G replaces TB with TA (to indicate the sender
of the message, as a return address) and forwards the message to B.

Is this secure? No, for several reasons. First, the agent G knows the addresses of both participants, and therefore
must be trusted not to reveal this information. (Indeed, it may be that agents know the addresses of all potential
participants. The important point here is that the agent knows that these two are communicating.) Second, to find its
peer's address, either party may send a message and then eavesdrop on the agent's outgoing messages looking for one
with its own tag as the return tag. Finally, a rogue participant may pose as the forwarding agent and convince the other
to send messages directly to himself, thus revealing the victim's address.

The next section shows how to overcome these problems.

188

4.1.2. Encrypted Single Agent
This arrangement is similar to the previous one, except that in addition to the end-to-end encryption employed by A
and B, each pair of parties encrypt their point-to-point communications with a different key. This may be accomplished
easily with any of various key exchange protocols such as the scheme presented by Diffie and Hellman in [6], or even
a Kerberos-based authentication step.

This shares the weakness of the previous arrangement that the forwarding agent must be trusted, but prevents the
parties from eavesdropping on the agent's communications with other parties or (if the system provides authentication)
posing as the agent. It may also seem that traffic analysis would still be possible; section 4.2 presents the relevant traffic
analysis issues.

4.1.3. Encrypted Multiple Agent
We can eliminate the necessity of trusting forwarding agents by using two or more forwarding agents. No single agent
knows more than one participant; only by collusion among all forwarding agents may both participants be discovered.

An originating party, A, selects two forwarding agents G and H from the set F of agents. A packages the message
to B as if it were using only H to forward the message, and then treats that as a message to be sent to H through G. G
does not know that the final recipient is B, and H does not know that the original sender was A. Again, messages are
encrypted with a different key for each pair of communicating parties, as in the Encrypted Single Agent arrangement.
This arrangement is similar to the use of "cascades" in [3].

This presents a trade-off between security and complexity: the more forwarding agents there are in a chain, the
more difficult it is for an adversary to gain the cooperation of all of them, but the more complexity is involved in
sending messages.

4.2. Foiling Traffic Analysis

An observer may try to obtain the network addresses of the participants in an electronic transaction using traffic
analysis. This section presents three common techniques and explains how they may be defeated.

4.2.1. Message Content Correlation
In the first kind of attack, the observer watches packets being transmitted across a network, and compare the contents
of those packets with each other. For example, if an observer wants to know with whom I am communicating, he can
observe the packets coming from my workstation and follow those packets around the network (by watching for
packets with the same content) until they reach their destination. This is the attack mentioned above, used to
demonstrate the need for encrypted channels. As stated above, it is important that communications are first encrypted
end-to-end, and then the encrypted messages are encrypted a second time with different keys on every point-to-point
link.

4.2.2. Message Length Correlation
This second type of attack is similar to the first, in that the properties of a message are compared to track individual
messages around the network. In this case, however, the length of the message is used, rather than its content (perhaps
because the contents of messages are encrypted, as suggested above). Thus, an adversary may track unusually long or
short packets around the network.

A simple way to ensure that packets cannot be tracked in this manner is to require all packets to be of a fixed
length (by padding short messages and segmenting longer messages, for example). If all packets are the same length,
an attacker has no way of determining which message emerging from a forwarding agent corresponds to which of the
messages received by that agent.

4.2.3. Message Timing Correlation
If an adversary cannot rely on the content or length of messages to track them around the network, he must rely on the
timing of messages to associate them with one another. When one workstation transmits a packet, the attacker can
eliminate as possible recipients all the workstations on the network which do not receive packets within a "reasonable"
time (the definition of which, naturally, depends on the nature and usage patterns of the network and other factors).

189

There are some fairly simple ways to reduce the effectiveness of this sort of attack; these may be used independently
or in combination.

First, forwarding agents may introduce a random delay before forwarding any message, thus reducing the
correlation between time of transmission and time of receipt. The main problem with this method, of course, is that
the longer the introduced delay, the slower the communication between end parties becomes (especially if
retransmission schemes are used to implement reliable transfer protocols). And if a small delay is used, much of the
timing correlation is preserved. Selecting a delay value is a design trade-off between speed of communications and
difficulty for the attacker.

Second, we may use distractor messages, introduced at various intervals; their recipients may detect and ignore
these messages, while other parties in the system cannot distinguish them from legitimate messages. In addition, we
may send messages along redundant paths, so that some of the messages may be dropped at random. If many senders
send many messages along multiple paths, the task of tracking them through the network becomes extremely complex,
because it is difficult to associate any given set of packets with a given source.

One example of this might be a system in which every participant transmits one packet during every fixed time
interval; those without a useful packet to send would send a "noise" packet. If every participant is transmitting all the
time, it becomes extremely difficult for an adversary to associate any packet with its source. If this method is combined
with the previous method, the adversary's task becomes truly staggering: even for a single participant, it becomes
impossible for an observer to be certain, after a single stage of forwarding agents, which packets contain legitimate
messages and which do not.

5. Pseudonyms

It is often to our advantage not to be completely anonymous, but rather to be identifiable as a consistent party about
whom full information is not available. The creators of many current anonymity schemes understand this, as is
evidenced by the existence of the "Persona" PEM public key certification authority run by RSA Data Security, Inc.
(see [9] for a description of the PEM public key certification hierarchy), as well as most anonymous-remailer systems,
which assign each user a fixed pseudonym.

In NetBill, in addition to authenticating a consumer's right to spend on an account, a consumer's identity is used
for two things: first, consumer-based price discounts, in which merchants may base their quoted prices on prearranged
contracts or volume discounts; second, "blacklisting," where merchants may refuse service to a consumer based on
past abuse (a history of disputed transactions, for example) or other factors.

However, we wish to prevent the sort of abuse that comes from using the same pseudonym with every merchant:
merchants can correlate purchase records and build profiles of consumers without knowing their real identities (it may
even be possible to deduce the real identities given enough information from enough merchants).

So, we need a pseudonym system that allows consumers to use a different pseudonym with each merchant. It
should not, however, allow a consumer to use more than one pseudonym with a given merchant; that would allow a
consumer to defeat blacklisting, or prevent merchants from offering consumer-based pricing schemes. And, as in any
pseudonym system, it should not be possible to determine the consumer's identity given the pseudonym, either by
direct mapping or by verification of repeated guesses.

If we form consumers' per-merchant pseudonyms by taking the secure digest of a combination of the consumer's
identity and the merchant's identity, along with a secret bit sequence known only to the pseudonym generator, (using
a secure message digest algorithm such as the MD5 algorithm described in [10], the Rabin-Karp algorithm described
in [8]), we achieve the goals as stated.

With this system, a consumer wishing to connect anonymously to a merchant would request a Kerberos ticket
from the Ticket Granting Server with the pseudonym as principal name. The consumer and merchant authenticate and
communicate using the pseudonym only.

Because the secure digest algorithm cannot be reversed to reveal the consumer's identity, this system succeeds
in preserving the anonymity of the consumer. Because the secure digest is deterministic and depends only on the
consumer's and merchant's identities and a fixed secret key, a consumer cannot use more than one pseudonym with a
given merchant. Finally, because of the low probability of collisions it is extremely unlikely that any two consumer-
merchant combinations will have the same pseudonym.

190

6. Integration Into NetBill

Comparing the Transaction Information Matrix for the proposed NetBill protocol (Table 3) to the desired matrix
(Table 2) reveals several areas for improvement. First, the consumer and merchant know each other's identities, from
the use of Kerberos authentication between them. Second, the consumer and merchant know each other's network
addresses, and external parties may associate pairs of communicating parties, because they communicate directly over
TCP/IP. Third, the NetBill server knows all information in the transaction, which is revealed by the consumer's EPO
and merchant's invoice. In this section, I apply techniques discussed earlier in the paper to these problems, improving
privacy properties of NetBill.

6.1. Eliminating Identity Information

By allowing consumers and merchants to use pseudonyms to authenticate to one another, we may protect their privacy
while retaining the desirable features of the Kerberos model (strong authentication and establishment of a shared
session key for communication) and of a consistent identity for a consumer-merchant pair (ability to implement special
pricing schemes and blacklisting).

6.2. Hiding Participants' Addresses

If we use the encrypted multiple forwarding agent scheme between the consumer and merchant, we can reduce
knowledge of the consumer's network address to "RN" for all involved parties and "RN?" for all uninvolved parties.
Additionally, we reduce knowledge of the merchant's network address to "RN" for the consumer and "RN?" for
uninvolved parties (it remains "X" for the NetBill server). Furthermore, if we use the encrypted multiple forwarding
agent scheme between the merchant and NetBill, the merchant's address becomes as well-hidden as the consumer's
("RN" for involved parties, "RN?" for uninvolved parties).

It seems that the additional network bandwidth required to use noise messages and redundant paths for this
purpose is too costly to be worth the additional benefit it provides, but they may be desirable for applications requiring
additional levels of security.

6.3. Minimizing Centralized Information

The billing server has complete knowledge of the transaction, including participants' identities and account numbers,
items purchased, amounts and tax status. In a digital cash system, the messages exchanged themselves represent
negotiable value, and may pass through many hands before being exchanged for actual currency, as described in [2].
Because NetBill is a funds-transfer system, however, it is very difficult to hide participants' identities and transaction
amounts from the server.

Hiding the nature of the items and tax status is very simple on the surface: we can simply remove those fields
from the invoice and payment order that the consumer and merchant send to NetBill in their transaction request.
However, NetBill uses the item catalog number to verify that the consumer and merchant agree on the item to be sold;
the item description and tax status are as simple for NetBill to obtain as they are for a potential consumer. Additionally,
it is convenient for consumers to have item catalog numbers on their NetBill statements at the end of a billing period;
it would not be acceptable to simply provide a list of amounts.

Nonetheless, it may still be possible to hide this information from NetBill by one of the following methods.
First, the consumer and merchant could simply agree not to tell NetBill what the items were. All NetBill verifies

is that the consumer and merchant agree on the item that is to be sold—that is, they both include the same product
number in their invoice or payment order. If they both agree to give the item a generic product number (for something
that is listed as, for example, "General Merchandise"), NetBill will approve the transaction and still have no way of
knowing what goods or services were actually transferred.

Second, the consumer may use a resale agent to hide many pieces of information from other parties.

191

6.3.1. Resale Agents
Resale agents can hide many pieces of information from many parties. In fact, they can be used in place of other
techniques described in this paper to hide some pieces of transaction information. For example, it is possible for a
consumer to hide his address to some extent from a merchant by using a resale agent. They are somewhat less effective,
however, because resale must be trusted by consumers, and because they introduce several obstacles to convenient
purchases.

To use a resale agent, a consumer prepares a list of goods or services he wishes to purchase, from various
merchants at various prices. He transmits this list to the resale agent, who individually purchases the items from the
merchants and resells them in one lump transaction to the consumer.

Clearly, the consumer cannot be associated with the merchants, except through the resale agent. (It is assumed
that enough people use resale agents that the mere fact a given consumer is using a given agent is not sufficient
information to link the consumer with the purchases.) If the transaction between the consumer and the resale agent is
a sufficiently large aggregate transaction, the transaction price will not be enough information to link the consumer
with individual purchases. If consumers, resale agents and merchants use anonymous forwarding agents to
communicate, the NetBill transaction matrix becomes Table 2 with no further modifications.

One difficulty with this arrangement is that the consumer must trust the resale agent not to give information away.
If the resale agent is corrupt, he can give away any or all of the consumer's sensitive information, requiring no
collusion with any other party. This problem may be addressed somewhat using techniques described earlier for hiding
information from merchants. However, knowledge of the specific items is still vulnerable. Although this information
may also be disclosed by the merchant, it is expected that a resale agent (who is a fourth party to the transaction) has
less interest in maintaining the privacy of the transaction. (In fact, it is possible to use multiple stages of resale agents
in a manner similar to the use of multiple forwarding agents, as described in section 4.1.3, in order to hide this
information from individual resale agents.)

Another trust issue between the consumer and a resale agent arises because of the order in which the transactions
take place. In purchasing through a resale agent, we have two alternatives.

In the first, the resale agent purchases all the requested goods before the consumer sends him payment. In this
arrangement, the resale agent must trust the consumer to pay for the requested goods. In the second, the consumer
sends payment for the goods before the agent purchases them. In this arrangement, the consumer must trust the agent
to purchase and deliver the requested goods (for which payment has already been rendered; we cannot use certified
delivery for this, because at the time payment was made, the resale agent was not in possession of the goods).

An alternative approach might be to use nested transactions. An advantage of this approach is that it would be
possible to tie the results of transaction between the consumer and resale agent to the result of the transaction between
the resale agent and the merchant, making it impossible to separate them. A disadvantage, however, is that the
implementation of this type of transactions requires that the nested transactions are associated with one another in the
logs, defeating the purpose of the resale agent.

It is worth noting that the use of resale agents without nested transactions requires no modifications to the NetBill
model; it requires only merchants who act as resale agents and consumers willing to use them. The choice between the
above policies belongs to the agent; consumers may exercise their preferences by choosing from among resale agents
using their preferred policy.

6.4. Analysis of the Revised NetBill Model

Using the techniques described in this paper, it is possible to modify the NetBill transaction model (shown in Table 3)
to more closely match the ideal disclosure shown in Table 2.

With these modifications, the billing server now has "N" for all entries, due to the use of resale agents to
dissociate consumers and merchants. The merchant no longer has the consumer's account number, simply by omitting
it from the negotiation. The merchant no longer has the consumer's identity, due to the use of pseudonyms. The
transaction uses message forwarding agents, which removes the consumer and merchant's knowledge of each other's
network addresses, and puts "N?" in the associated columns of the Auxiliaries row. The Authorities row still has "L"
access to all information, though law enforcement authorities will now have to present a warrant to auxiliary agents as
well as the billing server to obtain the full information. (Although each individual agent has only "N?" disclosure, all
agents could cooperate to give them "X?" disclosure, thus reassociating parties with one another.) The completed table
is shown in Table 4.

192

Table 4: Final Transaction Information Matrix for NetBill transactions with privacy enhancements.

Consumer's Merchant's
Items Amount

Tax
Status identity account address identity account address

Consumer X X X X RN X X X

Merchant RN X X X X X X

Billing Server N N N N N N N N N

Authorities L L RN?,L L L RN?,L L L L

Auxiliaries N? N?

Observer RN? RN?

The NetBill system is currently undergoing design revision for a trial in 1995. [5] is a detailed exposition of the
security choices made for the latest revision; it includes some of the techniques outlined in this paper.

Acknowledgements

There are several people without whom this paper could not have produced. I would d like to thank the NetBill project
group for cooperation regarding the design and implementation of NetBill. My reader, Marvin Sirbu, was very helpful
in discussions of many of the techniques described here. Finally, I'd like to extend my gratitude to my thesis advisor,
Doug Tygar, for advice and direction on the research as a whole, and for detailed technical discussions on the issues
presented here.

References

[1] Alireza Bahreman and Doug Tygar. Certified electronic mail. In Proceedings of the Internet Society Symposium
on Netvjork and Distributed System Security, pages 3-19, San Diego, CA, February 1994.

[2] DigiCash bv. Digicash: Numbers that are money. Product brochure. For information on DigiCash, send email to
info@digicash.nl.

[3] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the
ACM, 24(2):84-88, February 1981.

[4] David Chaum. Security without identification: Transaction systems to make Big Brother obsolete.
Communications of the ACM, 28(10):1030-1044, October 1985.

[5] Benjamin Cox, Doug Tygar and Marvin Sirbu. NetBill Security and Transaction Protocol. USENIX Workshop
on Electronic Commerce, July 1995.

[6] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, IT-22(6):644-654, November 1976.

[7] Vaishali Goradia, David Lowe, David McNeil, Alexander Somogyi, and Thomas Wagner. NetBill preliminary
design. Information Networking Institute internal report, June 1994.

[8] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms. IBM Journal of
Research and Development, 31(2):249-260, March 1987.

[9] S. Kent. RFC 1422: Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key
Management. Internet Activities Board, February 1993.

[10] R.L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. Internet Activities Board, April 1992.

[11] Marvin Sirbu and Doug Tygar. NetBill: An internet commerce system optimized for network delivered services.
In Proceedings of the 1995 IEEE Computer Communications Conference, March 1994.

[12] Jennifer G. Steiner, Clifford Neuman, and Jeffrey I. Schiller. Kerberos: An authentication service for open
network systems. In USENIX Winter Conference, pages 191-202, February 1988.

193

A Software Architecture to Support Misuse Intrusion Detection.H

Sandeep Kumar Eugene H. Spafford

The COAST Project
Department of Computer Sciences

Purdue University

West Lafayette, IN 47907-1398
{kumar,spaf}@cs. purdue.edu

Keywords: intrusion detection, misuse, anomaly.

June 16, 1995

Abstract
Misuse intrusion detection has traditionally been understood in the literature as the detection of
specific, precisely representable techniques of computer system abuse. Pattern matching is well
disposed to the representation and detection of such abuse. Each specific method of abuse can
be represented as a pattern and several such patterns can be matched simultaneously against
the audit logs generated by the operating system kernel. Using relatively high level patterns to
specify computer system abuse relieves the pattern writer from having to understand and encode
the intricacies of pattern matching into a misuse detector. Patterns represent a declarative way
of specifying what needs to be detected, instead of specifying how it should be detected. We
have devised a model of matching based on Colored Petri Nets specifically targeted for misuse
intrusion detection. In this paper we present a software architecture for structuring a pattern
matching solution to misuse intrusion detection. In the context of an object oriented language
used for the prototype implementation we describe the abstract classes encapsulating generic
functionality and the interrelationships between the classes.

1 Introduction

Intrusion detection is an important monitoring technique in computer security aimed at the detec-
tion of security breaches that cannot be easily prevented by access and information flow control
techniques. These breaches can be a result of software bugs, failure of the authentication module,
improper computer system administration, etc. Intrusion detection has historically been studied
as two sub-topics: anomaly detection and misuse detection. Anomaly detection is based on the
premise that many intrusions appear as anomalies on ordinary or specially devised computer sys-
tem performance metrics such as I/O activity, CPU usage, etc. By maintaining profiles of these
metrics for different subject classes, for example individual users, groups of users, or programs
and monitoring for large variations on them, many intrusions can be detected. Misuse intrusion
detection has traditionally been understood in the literature as the detection of specific, precisely
representable techniques of computer system abuse. For example, the detection of the Internet
worm attack by monitoring for its exploitation of the f ingerd and sendmail bugs [Spa89] would
fall under misuse detection.

Several approaches to misuse detection have been tried in the past. They include language
based approaches to represent and detect intrusions, such as ASAX [HCMM92]; developing an

'This work was funded by the Division of INFOSEC Computer Science, Department of Defense.

194

API1 for the same purpose, such as in Stalker [Sma95]; using expert systems to encode intrusions
such as in MIDAS [SSHW88], Haystack [Sma88], and NIDX [BK88]; and high level state machines
to encode and match signatures2 such as STAT [PK92] and USTAT [Ilg92]. We proposed using
a pattern matching approach to the representation and detection of intrusion signatures [KS94b].
This approach resulted from a study of a large number of common intrusions with the aim of
representing them as patterns to be matched against the audit trail [KS94a]. The signatures were
also classified into categories based on their theoretical tractability of detection [Kum95]. We
consider the following to be advantages unique to our model of pattern represention and matching.

■ Sequencing and other ordering constraints on events can be represented in a direct manner.
Systems that use expert system rules to encode misuse activity specify ordering constraints
by directly specifying temporal relationships between facts in rule antecedents. This makes
the Rete match procedure [For82] of determining the eligible production rules for firing,
inefficient. STAT [PK92] and USTAT [Ilg92] permit the specification of state transition
diagrams to represent misuse activity but their transition events may be high level actions
that need not correspond directly to system generated events. ASAX [HCMM92] is the closest
to our approach but it is less declarative. In specifying patterns in their rule based language
RUSSELL, one must explicitly encode the order of rules that are triggered at every step.
While ASAX tends to be a mechanism for general purpose audit trail analysis, our effort is a
combination of mechanism and policy. The features provided in our work are closely tied to
the intrusion characteristics we are trying to detect.

■ Our model provides for a fine grained specification of a successful match. The use of pattern
invariants (to be explained later) allows the pattern writer to encode patterns that do not
need to rely on primitives built into the matching procedure to manage the matching, for
example to clean up partial matches once it is determined that they will never match. This
frees the matching subsystem from having to provide a complete set of such primitives and,
in the process, couple the semantics of pattern matching with the semantics of the primitives.

Our method also has the following benefits but these are not necessarily a consequence of our
approach.
Portability. Intrusion signatures can be moved across sites without rewriting them to accom-

modate fine differences in each vendor's implementation of the audit trail. Because pattern
specifications are declarative, a standardized representation of patterns enables them to be
exchanged between users running variants of the same flavor of operating system, with syn-
tactically differing audit trail formats.

Declarative Specification. Patterns representing intrusion signatures can be specified by defin-
ing what needs to be matched, not how it is matched. That is, the pattern is not encoded by
the signature writer as code that explicity performs the matching. This cleanly separates the
matching from the specification of what needs to be matched.

In this paper we describe our implementation of the model that was presented in [KS94b]. We
have used C++ [Str91] as the programming language for the implementation of the prototype. The
prototype runs under the Solaris 2.3 operating system and uses the Sun BSM [Sun93] audit trail as
its input to detect intrusions. The programming techniques and language features we have used for
the implementation are applicable to other programming languages as well. Our implementation
is directed at providing a set of integrated classes that can be used in an application program to
implement a generic misuse intrusion detector. The implementation also suggests a possible way
of structuring classes encapsulating generic functionality and the interrelationships between the
classes to design any misuse detector. The paper also describes that structure.

application Programming Interface, i.e., a set of library function calls employed for representing and detecting

intrusions.
2We use the terms intrusion signature and intrusion pattern synonymously.

195

Our choice of the language was dictated by the free availability of quality implementations of
C++, our familiarity with it and the linguistic support provided in it to write modular programs.
The set of integrated classes we have developed can be programmed in many other object oriented
languages as well because no properties specific to C++ have been assumed or used. We only
exploit the language's encapsulation and data abstraction properties. We use the word dass in a
generic sense and the corresponding notion from many other languages can be substituted here.

2 Our Approach
The model of pattern representation and detection on which the implementation is based was
described in [KS94b]. Briefly, each intrusion signature is represented as a specialized graph in this
model. These graphs are an adaptation of Colored Petri Nets described by Jensen [Jen92] with
guards defining the context in which signatures are considered matched. Vertices in the graph
represent system states. The pattern represents the relationship among events and their context
that forms the crux of a successful intrusion or its attempt. Patterns may have pre-conditions and
post-actions associated with them. A pattern pre-condition is a logical expression that is evaluated
at the time the pattern springs into existence. It can also be used to set up state that may be used
later by the pattern. Post-actions are performed whenever the pattern is matched successfully. For
example, it might be desirable to raise the audit level of a user if he fails a certain number of login
attempts within a specified time duration. This can be expressed as a post-action. Patterns may
also include invariants to specify that another pattern cannot appear in the input stream while it
is being matched. If a pattern is regarded as a set of event sequences P that it matches, and an
invariant is regarded as another set of event sequences / that it matches, then a pattern with an
invariant specification corresponds to the set P A I. A pattern can have more than one invariant.
That corresponds to P A I\ A ••• A In. Invariants are needed to specify cases when it is no
longer useful to continue a pattern match. For example, a pattern that matches process startups
and records all file accesses by the process may require an invariant that specifies that matching
be discontinued once the process has exited. From the practical viewpoint of specifying intrusion
patterns, invariants usually result in more efficient matching rather than adding functionality to
the pattern specification.

As a concrete example of a pattern, consider the monitoring of Clarke-Wilson [CW89] integrity
triples in a computer system using the system generated audit trail. Clarke-Wilson triples are
devised to ensure the integrity of important data and specify that only authorized programs running
as specific user ids are permitted to write to files whose integrity must be preserved. This is similar
to the maintenance of the integrity of the password file on UNIX systems by allowing only some
programs, like chfn3 to alter it.

One pattern that might be used for this purpose is formed by a sequence of two sub-signatures:
(1) that matches the creation of a process and (2) that matches any process writing to a file. By
appropriately specifying that the created process is the same as the one that writes, and retrieving
the user id, the program name, and the file name from the context of the match, Clarke-Wilson
integrity triples can be monitored. See figure 1 for a pictorial representation of the signature.

The implementation of this model can be broken down into the following sub-problems:
1. The external representation of signatures. That is, how does the signature writer encode

signatures for use in matching.
2. The interface to the event source. In our example it would be the interface to the C2 audit

trail.
3. Dispatching the events (audit records) to the signatures and the matching algorithms used

for matching.

3chfn is used to change information about users which is stored in a well-known file, /etc/passwd.

196

A PROGRAM STARTS UP A PROCESS WRITES TO A FILE

PR = this program's name F = this file's name
PID = this process's pid PID' = this process's pid

Context: PID = PID'A Clarke-Wilson access triples do not permit PR run-
ning as user id PID to write to file F.

Figure 1: Monitoring Clarke-Wilson triples as a pattern match.

These issues are discussed in the next section. In addition to solving these requirements, our
implementation is designed to simplify the incorporation of the following:

. The ability to create signatures and to destroy them dynamically, as matching proceeds.

- The ability to partition and distribute signatures across different machines for improving
performance.

■ The ability to prioritize matching of some patterns over others.

• The ability to handle multiple event streams within the same detector without the need to
coalesce the event streams into a single event stream.

We describe our design in the next section and show how the library classes implement the
design.

3 Overall Architecture
The library consists of several classes, each encapsulating a logically different functionality. An
application program that uses the library includes appropriate header files and links in the library.

The external representation of signatures (sub-problem 1) is done using a straightforward rep-
resentation syntax that directly reflects the structure of their graph. These specifications can be
stored in a file or maintained as program strings. When a signature is instantiated in an application,
a library provided routine (a Server class member function) is called that compiles the signature
description to generate code that realizes the signature. This code is then dynamically linked to
the application program and pattern matching for that signature is initiated. The application also
instantiates a server for each type of event stream used for matching. Events are totally encapsu-
lated inside the server object (sub-problem 2) and are only used inside signature descriptions. As
signature descriptions are compiled they are added to the server queue. The server accesses and
dispatches events to the patterns on its queue in some policy specifiable order (sub-problem 3).

The application structure is explained below which gives an overall view of the application.
Section 3.2 looks at the structure of events. Section 3.3 explains the structure of the server itself
in detail and its relationship to the patterns that are instantiated by the application.

3.1 Application Structure
As an example application structure, consider matching the pattern described in figure 1. This
may look as shown below,
//file application.C

#include "C2_Server.h"

int mainO
{

C2_Server S;
C2_Pattern *pl = S.parse_file("CW"); //read signature from "CW

197

8 /* duplicate a thread of control if necessary. run() doesn't return */

9 S.runO;
10
11 return(l);
12 }

The application program makes use of a C2_Server object. The server object understands the
layout of events and the event types that can be legally used in a signature definition. C2_Server
also knows how to access events, in this case from the audit trail, and how to dispatch them to
the signatures that are registered with it. The server is also responsible for parsing signature
descriptions and can check it for correctness because it understands the data format of the events.
The call to the server member function parse_f ile reads, compiles, and registers a new pattern
with the server object. When the server object member function S.runO is called, it starts reading
events and dispatching them. This consumes one thread of control as S.runO never returns.
The server is responsible for implementing concurrency control among its member functions to
ensure that concurrent calls to its public member functions do not corrupt its internal state. Our
implementation uses the idea of monitors [Hoa74] to ensure this. The pattern description contained
in file CW looks as shown in listing 1 below. The pattern is written to match against the Sun BSM
[Sun93] audit trail,
//file patterns-ip

1 pattern CW "Clarke Wilson Monitoring Triples" priority 10
2 int PID, EUID; /* token local variables, may be initialized. */
3 str PROG, FILE;

PROG is a token local variable that stores the program name corresponding to the process id PID,
FILE stores the file name that PROG opens for writing. EUID stores the effective user id of PROG.
4 state start, after_exec, violation;
5 post_action {
6 printfC'CW violated for file °/.s, PID 7,d, EUID °/.d\n", FILE, PID, EUID);

7 >
The post action is code that is executed when the pattern is successfully matched.
8 neg invariant first_inv
9 state start_inv, final;
10

1

11 trans exit(EXIT)
12 <- start_inv;
13 -> final;
14 L { PID = this[PID];
15 end exit;
16 end first_inv;

The invariant specifies the removal of partial matches once a process has exited. What follows
is the pattern description. The pattern matches all EXECVE records to monitor the creation of all
processes in the system. Once a process creation is matched, the pattern further attempts to match
all possible ways in which the process could modify a file. These could be:

• Open a file to read and create it if it doesn't exist. Or, open a file to read and truncate it if
it exists and so on for all the other valid audit record types involving an open that might
change the file. These are handled in transition modi.

• Delete a file. This is handled in transition modl2.

17 trans exec(EXECVE) /* EXECVE is the event type of the transition */

198

18 <- start;
19 -> after_exec;
20 |_ { this[ERR] = 0 && PID = this[PID] && PROG = this[PROG] &&

21 EUID = this[EUID]; }

22 end exec;

23
24 trans modi(0PEN_RCI0PEN_RTCIOPEN.RTIOPEN.RWI0PEN_RWCI
25 OPEN.RWTCIOPEN_RWT|OPEN_WIOPEN_WCIOPEN.WTC|OPEN.WT)

26 <- after_exec;

27 -> violation;
28 |_ { this[ERR] = 0 && PID = this [PID] && FILE = this[OBJ] &&

29 disallowed(EUID, PROG, FILE); }

30 end modi;

31
32 trans modl2(UNLINK)

33 <- after_exec;
34 -> violation;
35 |_ { this[ERR] = 0 && PID = this [PID] && FILE = this[OBJ] &&

36 disallowed(EUID, PROG, FILE); }

37 end modi2;

38 end CW;
Listing 1: A Sample Pattern Description

If an application needed to match patterns against IP datagrams, it might have used an IP_Server
instead of C2_Server or concurrently with it within the same application program.

3.2 Event Structure
Each event in the event stream is converted to an instance of an event class. For handling a C2
audit trail this class might be named C2_Event. This class encapsulates all the attributes common
to C2 audit records. Derived classes of C2_Event can be used for specifying more specialized types
of audit records. For example, C2Event_EXECVE and C2Event_LINK can be derived to represent
audit records generated by the execve and link system calls. Each event object can identify its
type through its typeQ member function. This is used by the server to identify an event before
dispatching it to the appropriate patterns. All the data belonging to the event is made available
through its member functions. This encapsulates the organization of data in the event, which may
be system dependent in general. The description of all the event classes constitutes the backend of

the system and is one of the few system dependent layers.

3.3 Server Structure
For each event, the server looks at its type and consults a dynamically maintained table of patterns
that have requested events of that type. It then calls the Patproc procedure of each such pattern.
Patproc is a procedure associated with every pattern (its member function) that handles events for
it. This approach to handling events is similar to the approach taken in Microsoft Windows [Pet92].
Events that are referenced in a signature description are explicitly requested by the signatures for

dispatching when they are instantiated.
Events can be dispatched to patterns based on their priority. Patterns can be placed in queues

at the appropriate priority level, and patterns serviced in each queue in a round robin fashion.
This ordering of patterns by priority assumes that on the average, an event can be dispatched to
all the patterns requesting it in a time less than the mean time of generation of an event. If this
requirement is not met, patterns up to a certain level in priority may be perpetually starved. A

199

mechanism to age patterns in which patterns that have not been exercised by any event for a length
of time have their priority increased, can be added. Pictorially this may look like:

C
ROUND ROBIN

Highest Priority Patterns j— -\

ROUND ROBIN

c Lowest Priority Patterns

O O O t;-

Cto<*

N"l*ork,
a<*e<s

*%
X

7\

Our prototype does not currently implement the priority structure of dispatching events to patterns.
It treats every pattern to be of the same priority.

3.4 Summary
The use of an event stream with the detector requires the creation of two classes. One event
class that is the root class of all events provided in the event stream; the other, a server class
that parses pattern descriptions, instantiates them and manages them on its data structures. The
server class interacts with the event class by converting raw events into objects of this class and
dispatching them to patterns. The interrelationship between the various classes is shown in figure 2.
It shows how two event streams, namely IP datagrams and C2 audit records can be used together.
IP_EVENTS is the root class from which all the events corresponding to IP datagrams can be derived.
Similarly, C2_EVENTS is the root class for deriving C2 audit record objects. Signatures written to
match against IP datagrams are queued in an instance of IP_SERVER, while signatures that match
against the audit trail are queued in an instance of C2_SERVER. Class names bounded by dotted
boxes are abstract classes. The functions identified within these boxes are the pure virtual functions
of these classes.

EVENT i
inttype()

SERVER
L i

! (PREVENTS | I..C2JEVENTS 1

. > <
>- < > ..

JEvent_TCP Event_UDP C2event_EXEC
P_SERVER [C2_SERVER

z z
i. i PATTERN

void PatProc(Event *) l
1-

0- Q_
->■ M- ^ ■-■-,

Q.

' Ü (') [LP_.PATIERN| 1C2_PATTEBN|

Figure 2: Interrelationship between the various classes in the detector.

4 Design Choices
By far the most significant consideration guiding the design was the run-time efficiency of the
detector. For misuse detection using a C2 generated audit trail, one might reasonably expect

200

to process events (audit records) at the rate of 50K-500K/user/day [Sma95]. Furthermore, any
computer resource required for matching signatures reduces the availability of these resources for
general use. We therefore decided not to interpret the pattern automata by using table lookups to
determine the pattern structure, but instead to compile the pattern description into an automaton.
This also has the benefit of compile time optimizations of guard expressions present in the pattern.
As the generated code realizing the automaton did not need to be "user friendly," we tried to make
it more efficient by using functions as little as possible to avoid function call overhead in cases
where functions could not be inlined. This often meant that data structures manipulated by the
various pieces of the generated automaton were not encapsulated and were manipulated directly
by these pieces. This has not proved to be a problem as the routines that generate this "program"
are structured and the generated program logic can be deciphered by following the structure and
logic of the generating routine.

The overriding constraint of efficiency combined with the requirement to dynamically create
and destroy patterns meant that automaton descriptions be compiled and dynamically linked for
the purpose of matching. An additional benefit of the dynamic creation of patterns is that new
patterns can be created within an executing program based on the logic and execution flow of the
program. For example, it might be desirable to instantiate specific patterns for matching based on
the type and degree of observed suspicious activity. Such patterns may depend on the particular
user and other specifics of the suspicious activity.

Our design, which is based on the model of dispatching events to patterns lends itself naturally
for distribution. In a distributed design, the event sources (audit trails) may be generated on
different machines and their processing on another machine. That is, the patterns, the server and
the event sources may all reside on physically different machines. The server can then retrieve
events by using any of several well known techniques [BN84, Par90] and dispatch them to patterns.
Although our current implementation is single host based, a distributed implementation should be
straightforward.

5 Performance
The experiments described below were done on a Sun SPARCstation 5 with 32MB of memory
running Solaris 2.3 under light load. The audit file was generated separately by turning on auditing
and simulating exploitations by hand and under program control. Auditing was configured with
the default configuration which logs all events, both successful and failed. The pattern descriptions
were translated into C++ code and compiled separately. The running times shown in the graphs
below represent the reading of the audit file, conversion of each audit record into an object, and
dispatching the event to all the patterns that request that event. It does not include the time
for the matcher to load and begin execution, nor does it include the time to dynamically link the
patterns.

Signatures were written for vulnerability data drawn from COPS [FS91], CERT advisories
[CER] and the bugtraq and 81gm4 electronic mailing lists.

Figure 1 shows how much time it took to match each signature against an audit file of ap-
proximate size 400KB5. Each sample point in the figure is the mean value of 200 runs. The small
horizontal lines on either side of each point represents the standard deviation of the value over the
runs. The audit file contained 2514 events. The sample point (0, 5.17) in the figure represents that
the detector took 5.17s to create all the event objects and destroy them. The point (1, 5.45) means
that pattern numbered 1 (numbered arbitrarily) took 5.45s when exercised by the 2514 events.

"Both lists discuss computer security vulnerabilities, their exploitation and steps for prevention and
detection. Bugtraq is issued from bugtraq@crimelab.com and 81gm advisories can be retrieved from
fileservSbagpuss.demon.co.uk.

5K in this section means 1000.

201

Some patterns take very little time, just a little over what it took to run with no patterns. The
reason for this is that the type of events used in the pattern occurred so infrequently in the event
stream that the cost of exercising the pattern on those events was negligible when compared with
the creation and deletion of all the events in the audit trail. The mean time for the creation and
deletion of an audit trail event is then 5.17/2514 = 2.1ms. This is the fixed cost per event for the

system.
6 . 6

5.8

Time
(usr+sys)

in sees

5.6

5.4

5.2 xx ![X?X¥

Time
(usr+sys)

in sees

0 10 15 20

Figure 1: Time for matching each pattern for
a A00K audit file.

Figure 2: Time for matching multiple
patterns for a 400K audit file.

Figure 2 shows the time taken when more than one pattern was matched simultaneously in the
detector. The event stream and the pattern numbers are the same as in the previous simulation.
In the figure, the data point (3,5.74) shows that it took 5.74 to exercise the three patterns 1,2,3
together in the system. The fixed overhead cost of reading the audit file and converting each audit
record into an object is the same as above, the varying cost that takes the multiplicity of patterns
into account is:

variable cost/event/pattern « (5.91 - 5.17)/(2514 * 19) = 15/xa

This calculation uses the data point (19,5.91) which indicates that the detector took 5.91s to
exercise 19 patterns together against an audit trail that consisted of 2514 events.

Consider the extrapolation of these results to estimate the performance of the detector in a
more realistic setting. When running a set of programs in sequence that saturated the CPU, the
Sun auditing subsystem generated about 1MB every 10 minutes on the single user SPARCstation.
This translates to about 6MB per hour. This is about 2514 x 6/.4 « 38K events per hour. Consider
that there are 100 patterns in the detector. Then, for one hour of intense CPU activity, the detector
requires the following time to process the generated audit data:

Fixed overhead
Variable overhead
Total time

5.17/2514 x 38000s = 78.15s
15/J.S x 100 x 38000 = 57s

= 135.15s

Thus, for every hour of intense activity, the detector requires « 135s to match about 100
patterns. This fraction is 135/3600 x 100 = 3.75% « 4% of the hourly activity. These results
correspond to an unoptimized version of the detector.

202

6 Summary

This paper described a possible architecture for structuring a misuse intrusion detector based on
pattern matching. The structure is client-server based in which the server obtains events and
dispatches them to clients (patterns) which implement the matching procedure specific to their
structure. Implementing this structure as a library permits embedding this type of matching within
application programs. Our prototype allows the dynamic creation of patterns. These patterns are
translated from a description language into C++ code that realizes the pattern and dynamically
links that code into the application. The overhead of matching 100 signatures simultaneously
against an audit trail that was generated at the rate of 6MB per hour on a Sun SPARCstation 5
was calculated to be under 5%.

7 Acknowledgements

We would like to thank all members of the COAST laboratory for their valuable comments on this
paper, in particular Christoph Schuba for his extra effort and help with an earlier draft of this
paper.

This work was supported, in part, by a gift from Sun Microsystems, and by DoD contract
MDA904-93-C-4081: this support is gratefully acknowledged.

References

[BK88] David S. Bauer and Michael E. Koblentz. NIDX - An Expert System for Real-Time
Network Intrusion Detection. In Proceedings - Computer Networking Symposium, pages
98-106. IEEE, New York, NY, April 1988.

[BN84] Andrew D. Birrell and Bruce Jay Nelson. Implementing Remote Procedure Calls. ACM
Transactions on Computer Systems, 2(l):39-59, February 1984.

[CER] CERT Advisories. Available by anonymous ftp from cert.sei.cmu.edu:/pub/cert_advi-
sories.

[CW89] David D. Clark and David A. Wilson. Evolution of a Model for Computer Integrity.
Report of the Invitational Workshop on Data Integrity, September 1989.

[For82] Charles L. Forgy. RETE: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem. In Artificial Intelligence, volume 19. 1982.

[FS91] Daniel Farmer and Eugene Spafford. The COPS Security Checker System. Technical
Report CSD-TR-993, Purdue University, Department of Computer Sciences, Septem-
ber 1991.

[HCMM92] Naji Habra, B. Le Charlier, A. Mounji, and I. Mathieu. ASAX: Software Architec-
ture and Rule-based Language for Universal Audit Trail Analysis. In Proceedings of
ESORICS 92, Toulouse, France, November 1992.

[Hoa74] C. A. R. Hoare. Monitors: An Operating System Structuring Concept. Communica-
tions of the ACM, 17(10):549-557, 1974.

[Ilg92] Koral Ilgun. USTAT: A Real-Time Intrusion Detection System for UNIX. Master's
thesis, Computer Science Department, University of California, Santa Barbara, July
1992.

[Jen92] Kurt Jensen. Coloured Petri Nets - Basic Concepts I. Springer Verlag, 1992.

203

[KS94a] Sandeep Kumar and Eugene Spafford. A Taxonomy of Common Computer Security
Vulnerabilities based on their Method of Detection, (unpublished), June 1994.

[KS94b] Sandeep Kumar and Eugene H. Spafford. A Pattern Matching Model for Misuse In-
trusion Detection. In Proceedings of the 17th National Computer Security Conference,
pages 11-21, October 1994.

[Kum95] Sandeep Kumar. Classification and Detection of Computer Intrusions. PhD thesis,
Purdue University, Department of Computer Sciences, (to appear) 1995.

[Par90] Graham D. Parrington. Reliable Distributed Programming in C++: The Arjuna Ap-
proach. In USENIX 1990 C++ Conference Proceedings, pages 37-50, 1990.

[Pet92] Charles Petzold. Programming Windows 3.1. Microsoft Press, 1992.

[PK92] Phillip A. Porras and Richard A. Kemmerer. Penetration State Transition Analysis -
A Rule-Based Intrusion Detection Approach. In Eighth Annual Computer Security Ap-
plications Conference, pages 220-229. IEEE Computer Society press, IEEE Computer
Society press, November 30 - December 4 1992.

[Sma88] Stephen E. Smaha. Haystack: An Intrusion Detection System. In Fourth Aerospace
Computer Security Applications Conference, pages 37-44, Tracor Applied Science Inc.,
Austin, TX, Dec 1988.

[Sma95] Steve Smaha. Talk given at the third Computer Misuse and Anomaly Detection Work-
shop (CMAD III) in Sonoma, CA, January 1995.

[Spa89] Eugene Spafford. Crisis and Aftermath. Communications of the ACM, 32(6):678-687,
June 1989.

[SSHW88] M. Sebring, E. Shellhouse, M. Hanna, and R. Whitehurst. Expert Systems in Intrusion
Detection: A Case Study. In Proceedings of the 11th National Computer Security
Conference, October 1988.

[Str91] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Publishing
Company, 2nd edition, December 1991.

[Sun93] SunSoft, 2550 Garcia Avenue, Mountain View, CA 94043. Solaris SHIELD Basic
Security Module Revision A, October 1993. Part No: 801-5285-10.

204

PROVIDING ACCURATE DATA LABELS TO THE ANALYST
THE SECURE C4I WORKSTATION

by Ingrid Dampier and Christine Corbett

TRW Integrated Engineering Division
One Federal Systems Park Drive

Fairfax, Virginia 22033-4411
Voice- (703) 803-4950; Fax: (703) 803-5096

Abstract

TRW has undertaken extensive research to define and prototype the intelligence analyst
workstation of tomorrow. The objective of this research is to define an architecture that facilitates
COTS and non development software (NDS) integration in a secure environment, and to validate
the architecture in a prototype secure C4I workstation. The two overarching requirements for the
prototype were to preserve the considerable investments already made in existing, fielded systems;
and to demonstrate a system high mode of operations supported by trusted data labelling. The
resultant secure reuse architecture is an open system architecture that integrates the existing
fielded systems in a secure environment. We defined an architecture that uses a security isolation
layer that provides security enforcing software, thereby minimizing the impact of security on the
existing applications. Isolation of applications from security allows a system developer to take
full advantage of commercial and corporate investment in application software, while still
providing a secure operating environment that can be tailored to meet the specific requirements of
the end user.

This paper explains the derivation of the workstation requirements, the system design approach,
and the implementation considerations. The prototype uses the DIA-sponsored, compartmented-
mode-workstation operating system, supplemented with trusted software to ensure accurate data
labels are maintained, for both automatic and interactive processing. We conclude that the next
generation analyst workstation can support state-of-the-art products and security.

Defining the Requirement

The first step in defining the next-generation C4I workstation was to determine the operational
and security requirements of such a workstation. Operational requirements were readily derived
from systems being developed and supported by TRW, including user recommendations for
system enhancements. The primary capabilities required are automatic message processing, data
fusion and database maintenance/interaction, office automation, and decision support and analysis
tools tailored to the analyst's job. Numerous applications with these capabilities have been
developed, fielded and tested in the operational environment. The research goal was to provide an
architecture which supported the reuse of the applications best suited to the system mission,
without incurring the expense of redesign and development. Early in our analysis, we reached the

Copyright TRW, Inc. 1995 205

conclusion that the investment already expended in fielded systems needs to be, and can be,
respected and preserved. The C4Iworkstation of tomorrow needs to build on these systems and
applications.

Security requirements however, offer a unique challenge because advances in security technology
offer new system capabilities to protect sensitive information which can, and have, initiated a
change in the requirements for the analyst workstation. The generation of products such as
intelligence reports, database updates, and trend analysis represents the fusion of data from all
sources. All data on the system must be available to support both manual analysis and automatic
correlation decisions. In interactive analysis, the analyst must be able to see all the available data
to make accurate deductions. At the same time, the analyst must make decisions on the resultant
security classification of the product. These decisions require knowledge of the sensitivity level of
the data sources.

Historically, intelligence systems are developed and operated in the system high mode. All users
are cleared and briefed for all information on the system and all data is handled at system high.
Therefore, intelligence products drafted by an analyst to be at a lesser sensitivity are defaulted to
the system high classification and require downgrade procedures (often manual) to apply the
appropriate classification before distribution. Manual downgrade can be a formidable task, if not
supported by any maintenance of labels by the system. Without system provided labels,
downgrading activities must rely on the analyst understanding the data context as it is presented,
and some knowledge of the original sources. Given the increasing amounts of data being
processed by intelligence systems, manual intervention in downgrading can seriously bottleneck
the distribution of perishable data. Additionally, storage of classified materials incurs costs in
management, control, and handling procedures. New workstation requirements call for a
reduction in the amount of over classification so that the overhead of classified material handling
and downgrading can be reduced. If accurate data labeling can be maintained, the over
classification of data can be controlled.

The emerging requirement, therefore, is that systems maintain accurate classification of the data,
while allowing the analyst access to all data for which there is a need to know. Through the
appropriate application of evaluated trusted COTS operating systems and relational database
management systems, the requirement to provide trusted labels can be met. The compartmented
mode workstation (CMW) technology, sponsored by the DIA, provides a Bl compartmented
mode, trusted, X-windowed environment on a security enhanced UNIX operating system. The
CMW separates data based on classification label, including hierarchical level, compartments and
code words, releasibilities, and handling instructions. The CMW encodings database provides the
definition of rules, defined by the site, that control the aggregation of these labels, as well as the
human readable format of the labels.

The technological challenge of our research was to combine the new trusted CMW operating
environments with the current operational requirements. Existing, fielded analyst applications for
the most part do not acknowledge separation of data based on classification; all data is treated at
system high. These legacy applications are "label ignorant." The question to be answered was
what type of architecture and supporting software tools were required to integrate these single-

Copyright TRW, inc. 1995 20 6

level applications into an environment that did recognize accurate classification of data, without
redeveloping the applications.

System Design Approach

We developed a cost-effective method of implementing new systems through integration (i.e.,
reuse) of existing applications. The software reuse architecture shown in Figure 1 stresses
openness and expandability, allowing for replacement of applications with new applications, as
technology extends the capabilities offered to analysts through automated data processing. The
architecture provides isolation layers that insulate the application layer from the security policy
and database access implementations. These isolation layers protect the from product changes in
the data management and operating system layers. The data access isolation layer provides the
necessary integration software that allows applications to be "plugged" into the architecture by
providing data access translation to the databases. The security isolation layer (SIL) provides the
security mechanisms not found in the COTS/NDS applications, such as data labeling, and
interaction with the security mechanisms provided by the trusted CMW operating system.

The SIL is a set of trusted processes that implement the requirement to maintain the accurate
classification of the data. The SIL uses the CMW operating system security mechanisms as a
basis for its implementation. Trusted COTS database management systems, such as Trusted
ORACLE 7 and Secure SYBASE are being evaluated as candidate RDBMS for the recording of
the data classification labels with the data.

Operating System

Security Isolation Layer

Human Computer Interface

HCIJHCJ._|_ HCI_ I_HCI_ I y?L.1 HC[[HCI

Applications
i i

Data Access Isolation Layer

Data Management

Figure 1. Reuse Architecture

The CMW provides two labels: the sensitivity label (SL), and the information label (IL). The SL
is a static label that represents the maximum classification which a process or file can contain.
The IL represents the maximum sensitivity of the data contained within the process or file. These
labels are assigned by the CMW OS to the processes and to the data files. As data enters a
process, the process IL "floats" up to the level of the data file or process providing the data. As
additional data is read, the process IL continues to float so that it remains at the highest security

Copyright TRW, Inc. 1995 207

classification of all the data within the processing memory. Any data created by the process (i.e.,
written to disk) will be at the SL/IL of the process.

The CMW also provides for configurable privileges. Privileges are operating system rights to
bypass the operating system security policy. If an application requires privileges, it needs to be
"trusted" to not abuse that privilege. Such an application therefore needs to be designed,
evaluated and tested specifically to ensure that it does not violate the security policy. The
optimum secure reuse architecture would not require application software to run with privileges,
thereby removing the need for applications to be trusted. The SIL provides for the central
implementation of the security policy and manages the application processes so that they are not
responsible for security-relevant decisions.

For example, the application creates a database record based on the parsing of incoming data
(such as formatted text messages). The SL/IL of the resultant data file (or row in a RDBMS)
would be set by the SL/IL of the parsing application. Existing message parsing processes,
however, are "label ignorant." Therefore, the SIL determines a priori what the classification of
the new record should be, based on the classification of the source message, and initializes the
application at the appropriate SL/TL classification. Therefore, any data written by the application
will be at the appropriate SL/IL, as managed by the operating system. The parsing application
itself does not set or change the SL or IL. Our research shows that applications integrated in this
manner require limited, if any, privileges.

Implementation Considerations

Because there is a spectrum of analyst capabilities required by a workstation, it is to be expected
that the solutions also form a spectrum of complexity and cost. We developed a number of
implementation designs that support the reuse architecture. To determine which of the possible
SIL implementations should be used, we determined a criteria set to support a tradeoff analysis.

Use of Evaluated Products. Use of trusted products, particularly products that have been
evaluated by NCSC, have a two-fold advantage. First, the products provide security mechanisms
to support the application in meeting the federal criteria for trusted systems. These COTS-
provided mechanisms, (such as object reuse, auditing, account management, and label
management) reduce the amount of trusted applications software to be developed. Secondly, the
evaluation and accreditation of systems using evaluated COTS products will be aided and
expedited because a majority of the trusted computing base has been evaluated. Therefore,
system accreditation of the final integrated system will be centered on assuring that the
applications are correctly using the evaluated security mechanisms, without introducing new
security vulnerabilities or risk.

Modifications to the existing applications. Modifications to modern NDS applications for
which there is existing maintenance expertise available, including source code and current
documentation, are generally not difficult, or expensive, to make. However, not all NDS have
current expertise available, or current documentation. Therefore, it is important that the
modifications required, if any are minor. The implementations supporting the secure reuse

Copyright TRW, Inc. 1995 20 8

architecture are limited to the modifications normally expected when porting to a new UNIX
operating system.

Modifications to tailor COTS applications (trusted and untrusted) to the security architecture
should be avoided in a viable implementation choice. While vendors may be willing to make
modifications (for a cost), consideration must be given to supporting that modification. If the
requested modification is deemed commercially attractive by the vendor, it may become part of
the supported COTS product. However, it is rare all these conditions would be met within the
schedule of the system being integrated. Therefore, our implementations assume that COTS will
not be modified. All security relevant actions not provided by COTS will be handled in the SIL
and not by adding functionality to the COTS applications.

Interactive Processing. Much of the interactive environment of an analyst workstation can be
provided by untrusted COTS (e.g., office automation, geographic interaction tools, and
multimedia capabilities). Our SIL implementations integrate these COTS as single-level
applications that are not responsible for enforcing security. The SIL will interact with the trusted
computing base for the COTS, so that the COTS product would not require privileges or trust.
For example, our prototype encapsulates the COTS office automation (OA) product in an
environment that sets the process SL/IL based on input from the user on creation and save of the
OA files. When the analyst opens a new document, the SIL presents a template for the user to
specify the security level of the document to be created. The SIL then initiates the OA at that
level. Likewise, when the analyst opens an existing file, the SIL initiates the OA at the SL/IL of
that file.

When entering data into the document, the OS ensures the IL of the document floats up to the
highest security level of all the data being entered. This is determined by the SL/TL of the
documents from which data is moved with a cut and paste operation, or by the SL/IL of the
keyboard. The CMW OS has a mechanism by which the user can assign an SL/IL to the data
being entered via keyboard or pointer.

On save, the SIL again present a template for the user to specify the correct classification of the
data. Although the operating system, using the rules specified in the encodings file, aggregates
the data labels from source documents, the document can be more or less sensitive based on the
aggregation of the data content, or that the data selected for cut and paste was itself of lesser
sensitivity than the entire originating file. The SIL can also be used to implement sanitization,
either automatic (such as dirty word checks), or manual, including two person downgrade
operations.

Automatic Processing. Automatic processing, such as message parsing and distribution, is vital
to the analyst workstation. For automatic processing, the SIL implementation must provide for
the maintenance of the data labels. Similar to COTS integration, we assume that for the most
part, the NDS does not acknowledge data labels. We have several different SIL implementations
to support NDS integration. The application must be examined as to the type of processing it
performs, what data is used and what data is created.

Copyright TRW, Inc. 1995 209

First, the SIL can manage the labels at the point of entry/exit from untrusted applications. For
example, the parsing process reads a message from a labeled source. The message file (or row in
a RDBMS) has an SL/IL, previously applied by a trusted process that determined the message
classification, either based on the origin (or communications channel) of the input message, or on
message header/contents (embedded ASCII). Therefore, the SIL can initiate the parsing process
at this SL/IL. For applications where the SIL can determine a priori the SL/IL of the output, this
implementation is the most straightforward. We are working with several implementations of this
design, optimizing how and when the processes are initialized. Each implementation is designed
to work with the CMW OS mechanisms, to maximize the benefit of using a evaluated Bl product.

When the SIL cannot determine the SL/IL a priori (e.g., a correlation process), this
implementation can still be applied with some modification. The IL float does not always
accurately label data. For example, in the case of a correlation process, some data read by the
process may be rejected, i.e. this data cannot be correlated with the current object. The discarded
data may have caused the process IL to float in excess of the actual result.. In this case, the SIL
monitors the data as it is read by the process. The process returns information on which data
actually were used in the creation of a new (or modified) data item. The SIL then re-initializes the
process with only the relevant subset of data, allowing the SL/IL to be set by the OS process at
the highest security level of these data items.

Summary

Our research and prototyping efforts validate that secure systems can be developed cost
effectively. By reusing existing field proven applications coupled with an innovative integration
architecture, we can demonstrate that accurate data labels are maintained, for both automatic and
interactive processing. Our research continues to quantify the cost and document the
methodology. The next generation analyst workstation can support state of the art products and
security.

Copyright TRW, Inc. 1995 210

CONTROLLING NETWORK COMMUNICATION
WITH DOMAIN AND TYPE ENFORCEMENT1

David L. Sherman Daniel F. Sterne Lee Badger

Sandra L. Murphy Kenneth M. Walker Sheila A. Haghighat

Trusted Information Systems, Inc.
3060 Washington Road

Glenwood, Maryland 21738

Abstract

Today's operating systems cannot adequately control the processing of sensitive information
in a network environment. Widely used systems lack mechanisms strong enough to enforce
organizationwide restrictions on accessing sensitive information via network services. Manda-
tory access controls in trusted systems provide strength but lack flexibility needed to support
site-specific integrity and role-based security policies. We describe how Domain and Type En-
forcement (DTE), an operating system mechanism providing both strength and flexibility, has
been extended and integrated with network services in a UNIX-based prototype. The approach
provides uniformity across protocols, backward compatibility, and interoperability with existing
IP networks.

1 Introduction

Today's operating systems cannot adequately control the processing of sensitive information in
a network environment. One reason is that widely used operating systems like UNIX2 generally
lack access control mechanisms strong enough to enforce organizationwide restrictions on accessing
sensitive information, especially via network services. Instead, these mechanisms allow authorized
users great latitude to exchange information with other users, including users who are not equally
authorized. As a result, these mechanisms are conducive to accidental misuse and vulnerable to
manipulation by malicious programs. Mandatory access control (MAC) mechanisms in trusted
systems provide stronger protection [14, 3], but are viewed by many organizations as inflexible or
ill-suited for enforcing integrity and role-based security policies [6, 11]. Type enforcement[5, 20,
7, 12] is an access control mechanism that can provide both the strength and flexibility needed to
support these kinds of policies [15, 22]. Research on type enforcement published to date, however,
has focused on using it to protect information within a single isolated system; using it to secure
networked systems has remained an open research issue.

This paper describes how Domain and Type Enforcement (DTE), an enhanced version of type
enforcement, has been integrated with local area network (LAN) communication facilities in a
UNIX-based research prototype. The prototype can enforce organizationwide restrictions on access
to information in networked computer systems. These restrictions can be flexibly tailored to enforce
integrity and role-based security policies and, more generally, to support the principle of least

1Funded by ARPA contract DABT63-92-C-0020 - Approved for Public Release - Distribution Unlimited.
2UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open

Company Ltd.

211

privilege [19]. This effort is part of a research project described by Badger, et al [1, 13], to make DTE
practical and useful for near-term systems. The design goals for this effort include (a) conceptual
and implementation compatibility with DTE facilities that control access to file system objects, (b)
uniform protection across multiple transport protocols, (c) backward compatibility with existing
UNIX binaries that use network services, and (d) interoperability with existing IP-based LANs.
We do not discuss protecting information in transit over a network because the associated issues

are separable and cryptographic techniques for addressing them are relatively well understood [9].

This paper is organized as follows: Section 2 provides background on DTE. Section 3 describes
the conceptual model underlying our approach. Section 4 discusses our prototype. Section 5 is a

summary.

2 Domain and Type Enforcement

DTE [1] is an enhanced version of an access control scheme proposed originally by Boebert and

Kain [5]. In this scheme, an invariant attribute called a domain is associated with each subject;
another invariant attribute called a type is associated with each object. Subject-to-object mediation
decisions are made by comparing the subject's domain, the object's type, and the requested mode

of access to a table [5] or database [1, 21] that describes the site's access control rules.

Like DoD MAC, DTE provides strong, organizationwide access control because the attributes of
subjects and objects cannot be modified and because domains can be configured so that subjects
have little or no ability to choose the attributes of objects they create. Moreover, DTE access
control rules are protected from being modified by ordinary users and programs. DTE, however,
is more flexible than DoD MAC. DTE access control rules can be configured by a system architect
or security administrator to restrict access for a variety of purposes including least privilege [5],
reliability, and safety [18]. In particular, DTE can be configured to support site-specific integrity

and role-based policies [15, 22].

3 Conceptual Model

Our model for network controls encompasses three primary concepts: an interpretation of the
principle of least privilege [19] as applied to a network environment, mediation, and network object
abstractions.

3.1 Least Privilege in a Network Environment

To fully exploit DTE benefits, we envision DTE being used to confine each process to a domain in
which it has access only to those objects that are essential to its assigned function and has only the
required modes of access to those objects. In general, this implies that most systems will consist of
many different types and domains and will require many cross-domain interactions. Some domains
will provide access to a single type while others will provide access to multiple types. For brevity
throughout this section, we will describe the use of DTE in this manner as supporting the principle
of least privilege. It should be clear, however, that DTE can be used in this same manner to enforce
integrity and role-based policies and address other engineering objectives.

212

In a single-host system, supporting least privilege means, in part, preventing unnecessary access
to files, memory segments, and other locally stored objects. Consider two unrelated processes that
need to obtain information from a file produced by a third process, as shown in Figure 1A. Only the

Read-only.

Read/Write

Read-only

[Consumer | I Consumer |

Intended
Communication

Intended
Communication

(A) File system (B) Network IPC

Figure 1: Least privilege as applied to process interactions

producer needs write access to the file, while each of the consumers needs read-only access to the
file. Since the consumers are unrelated, neither needs the ability to write a file that the other can
read. Least privilege then implies being able to prevent the consumers from using the file system

to pass information directly to each other.

In a distributed system, the producer and the consumers might reside on different hosts and interact
via network-based interprocess communication (IPC), as shown in Figure IB. To support least
privilege in this context, we need a means of allowing the consumers to communicate with the
producer while preserving the ability to prevent the consumers from communicating directly with

each other.

We would like to allow an architect or administrator to selectively permit or deny IPC between
pairs of processes. As shown in Figure 2A, this can be accomplished by assigning processes to
different domains and assigning appropriate data types to the objects they access via network IPC.
In this figure the producer is in a domain that is distinct from each of the consumer domains. We
assume that the domains of consumers 1 and 2 are different from each other, since the consumers

are unrelated. The system architect can assign one type, Request, to the data that can be sent by
both of the consumer domains and received by the producer's domain, and another type, Response,
to the data that can be sent by the producer's domain and received by each of the consumer's
domains. If there is no single type that can be sent by one consumer and received by the other,
the consumers cannot directly communicate with each other.

Figure 2B shows a related example in which a server provides storage and retrieval services for
multiple clients, some of which only consume while others both produce and consume. Both kinds
of clients need to communicate bi-directionally with the server to use its services. Nevertheless,
only the producer/consumer clients should be able to update the information stored by the server;
pure consumers should not. Least privilege here implies being able to restrict the kinds of service
requests that clients can submit to servers. As indicated in Figure 2B, this can be accomplished by
associating types with different kinds of service requests and selectively incorporating into different

213

II Producer

j Request |Request j

Consumer
^ 1 JJ

Res ponsej JResponsej

Consumer
V 2 J

Update
Request

Retrieval
Request

(A) Controlling which pairs communicate (B) Controlling which kinds of requests can be made

Legend: ((Domain)) | Type |

Figure 2: Controlling IPC with DTE

client domains the right to send information of those types. This ensures that service requests can
be sent only by authorized clients and obviates the need for each server to authenticate and check
the authorization of its clients.

In summary, supporting least privilege in a network environment implies being able to control
which pairs of processes can communicate via IPC and which types of information each pair can
exchange.

3.2 DTE Message Mediation

The primary IPC services requiring mediation are the sending and receiving system calls, illus-
trated in Figure 3. In our conceptual model, network IPC services manipulate objects called typed

Sending
Subject

Mediation

Domain

Message Message

Type Type Mediation

Receiving
Subject

Domain

Figure 3: Mediation

messages, which are described in the next section. When a process sends data, it can send only
one type of data per system call. The process may explicitly specify the data type; otherwise, the

214

DTE mechanism will automatically derive a default type from the DTE rule base [1]. The DTE
mechanism determines whether or not the domain of the process is allowed to send the data type.
If allowed, the DTE mechanism attaches a type label (attribute) to the data and sends it to its

destination. Otherwise, an error indicator is returned to the requester.

When a process attempts to receive data, the DTE mechanism retrieves the type label attached to
the data and determines whether or not the domain of the process is allowed to receive that data
type. If the process is allowed, then the system returns the data to the process and, if requested,
the data type. If the requester is not allowed, an error is returned to the requester.

Just as an application can send only one type of data per system call, it can receive only one type
of data per call. If there is more than one type of data waiting to be retrieved from the system's
input buffer, the system will return only the first type of data. Another system call is required to

receive the next type of data.

We treat send and receive modes as being independent and uni-directional even though some
forms of IPC inherently include "back flows" of control information from the receiver to the sender
for flow control and reliable delivery. We intend DTE to be used primarily to improve integrity
and reliability. Reliable communication, especially across "lossy" channels, almost always requires
acknowledgment messages to ensure that data has been delivered. Consequently, our view is that
these "covert" flows are essential to our larger purposes and should not be eliminated. Nor should
send and receive operations be treated as equivalent simply because both can induce bi-directional
information flow. From the standpoint of least privilege, the distinction between sending and
receiving is essential.

3.3 DTE Network Objects

Next we consider the notion of message mediation in the context of two predominant styles of data
communication in IP networks: datagrams and streamsflO]. Datagram protocols preserve data
boundaries used by a sender. The data presented at a single sending system call is treated by
the system as a unit, referred to as a datagram. The receiver retrieves a single datagram in each
receiving system call. In contrast, stream protocols do not preserve the data boundaries used by
the sender. The communicating parties establish a connection to carry the stream of data between
them. The sending and receiving processes can independently choose, at each system call, the
number of bytes of data being relayed through the data stream. The objects in our model are
typed messages, which are represented differently in the two styles of protocols.

For datagram protocols, typed messages are datagrams. Each datagram has an associated type.
Although a datagram may become fragmented by lower layer protocols during transmission, the
receiving system will reconstruct the original datagram before presenting it to the receiving process

as a unit.

Since stream protocols do not preserve data boundaries, determining what constitutes a typed
message is less obvious. Further complicating the issue, we want to allow processes in different
domains to share streams, as is done in the common UNIX paradigm for communication illustrated
in Figure 4. This figure shows the connection used for a remote login to another host. The remote
command shell creates child processes, via the fork and exec system calls, to perform certain tasks.
The command shell shares the connection with its children but temporarily refrains from using it
until each child has terminated. In this example, let's assume that the user wishes to perform two

215

Remote Host

Figure 4: Connection sharing

unrelated tasks during a single remote login session: (1) using a spreadsheet to work on a project
budget and (2) using an editor to update a personal mail message. According to the principle
of least privilege, each of the processes should have access only to those objects essential to its
function. Consequently, each should execute in a different domain and have access to different
types of data. For backward compatibility, we would like to be able to use existing spreadsheet,
editor, and command shell programs. Restricting a connection to carrying a single type of data
during its lifetime would prohibit the spreadsheet and the editor in the example above from sharing

the connection with the command shell.

Supporting this common UNIX paradigm is one reason our model allows stream protocols to carry
more than one type of data. A second reason is to provide designers of network applications freedom
to choose appropriate IPC architectures. In particular, we did not want to force designers to use
separate connections for each type of data processed by each network application. A third reason is
to provide symmetry between datagram and stream-oriented services by allowing a communications
port of either kind to carry multiple types of information.

For stream protocols, our approach concatenates data from consecutive send operations as long as
the type of the data is the same. We refer to this concatenated type-homogeneous portion of the
stream as a substream. For stream protocols, the typed message is the substream. When the type
of data being sent via the stream changes, a new substream is started.

A single receive operation for a stream protocol can return data only from within a single substream.
Data from the next substream must be retrieved by a separate system call. Thus for stream
protocols, when data are of the same type, the boundaries used by the sender are not preserved
and the stream behaves exactly as it does for non-DTE systems. Whenever adjacent data from the
sender are of different types, the type boundary is preserved but has no effect other than requiring
the receiver to issue an additional receive call to cross the boundary.

3.4 Constrained Stream

A potential drawback of allowing a stream to carry multiple types of information is that a sender
may inadvertently send data that is not receivable in the intended receiver's domain. Moreover,
an incompatibility of this sort between the domains of the sender and receiver will not be detected

216

until the receiver makes its system call. To remedy this problem and allow earlier detection and

handling of errors, we have introduced the notion of a constrained stream.

When a connection is established for a constrained stream, both parties must agree upon the type
of data that will be transmitted during the lifetime of the connection. For a constrained stream,
additional mediation occurs during connection establishment. The DTE mechanism verifies that
each party has appropriate access to the type that it specifies for the connection and that the
constraints specified by the two parties match. By making certain that each party has appropriate
access to a jointly specified constraint type, the DTE mechanism verifies that communication is
allowed between the two processes before it completes the connection. It then restricts each party
to sending only the type of data that its peer has advertised and is allowed to receive. This allows
processes to discover any data type conflicts before any data is sent. Nevertheless, type attributes

are still carried with all data sent over a constrained connection.

Stream protocols typically allow processes at both ends of the connection to communicate bi-
directionally, effectively creating two streams of data. To allow the type of data being sent by a
process to be different from the type of data received by the process, a constrained stream in fact
requires the selection of two data types, one for each direction. The input type of each end must

match the output type of the other end.

4 A Network DTE Prototype

To investigate the practicality and usefulness of these abstractions, we have constructed a prototype
DTE system based on OSF/13 MK 4.0 UNIX. The DTE operating system runs as a server process

atop the Mach microkernel [1, 8].

The OSF/1 UNIX server provides the socket services of Berkeley Software Distribution (BSD)
UNIX [10] as the primary application interface for network and single-host IPC facilities. Although
computer security researchers have considered the characteristics of UNIX IPC previously, their
focus has been on issues associated with DoD MAC rather than DTE [16, 17]. Our DTE prototype
extends the UNIX socket interface with additional DTE semantics and services. These extensions
were carefully designed so that they apply as uniformly as possible to all supported protocols. For
local communication, the DTE prototype currently supports UNIX Datagram and UNIX Stream
protocols. For network communication, the prototype supports Transmission Control Protocol

(TCP) and User Datagram Protocol (UDP).

4.1 Backward Compatibility - Default Creation Type

To accommodate new and existing application images, the prototype provides two styles of IPC
system calls. New style calls allow new, DTE-aware programs to make full use of DTE features.
New style send calls require the calling program to specify the type of data being sent. New style

receive calls return the type of the data received.

Old style calls are binary compatible with existing programs that are not DTE-aware. Old style
send system calls do not allow the caller to specify the type of data being sent. Instead, a system
architect or DTE administrator may assign a default creation type to a domain. By default, the

3OSF and OSF/1 are trademarks of Open Software Foundation, Inc.

217

DTE mechanism associates this type with any data sent from that domain via an old style system
call. An old style send request will be rejected if no default type has been established.4

4.2 Interoperability - Labels and Non-DTE Hosts

We chose the IP option space as the place to convey type labels passed between hosts. This allows

the transport protocols (TCP, UDP) to share a common mechanism for carrying labels. Since they

do not carry any DTE information, these protocols did not have to be changed. Each IP packet

carries exactly one type of data; the packet's header carries the type label. When a single stream
carries more than one type of data, the DTE mechanism forces a new IP packet to be created
at the beginning of each substream. Since type labels are visible in the IP header, this approach
gives future network layer devices such as routers and firewalls an opportunity to make routing or

screening decisions based on DTE labels.

Communication with existing systems is enhanced by allowing the DTE administrator to limit
communication with non-DTE hosts. The administrator assigns a domain to each non-DTE host
or group of non-DTE hosts with which communication is permitted. The system treats each non-
DTE host as though all its processes were in the domain assigned to the host. Each assigned
domain must include a default creation type so that when an unlabeled packet arrives, a receiving
DTE system can attach the appropriate type to it. Access to incoming data from a non-DTE host
can then be mediated properly. When a process attempts to send data to a non-DTE system, the
DTE mechanism performs its normal mediation on the sending process and then makes certain
that the remote host's domain is allowed to receive the data. In this situation, the sending DTE
system performs the mediation that would ordinarily be done by a receiving DTE system. This
makes it possible to prevent certain types of data from being sent to specific non-DTE hosts. A
DTE system, however, cannot prevent processes on non-DTE hosts from collaborating with one
another to circumvent the intent of these restrictions; hence such facilities should be relied on only

in an appropriate context.

To ensure interoperability with non-DTE systems, the IP headers of packets sent to non-DTE hosts
contain no DTE attributes. Non-DTE hosts, of course, have no use for such information. More
importantly, in spite of the fact that the IP protocol standard directs hosts to ignore IP header
fields that are not applicable, we initially caused non-DTE systems on our LAN to crash by sending

type attributes to them.

4.3 Experience With the Prototype

Our experience with the prototype, although limited, has been very positive. All of the network
abstractions described above have been implemented without difficulty. Using experimental DTE-
aware applications, we've exercised fine-grained control over both datagram and stream-based IPC
and believe that the network DTE mechanisms we've developed can be equally applied to both

with significant ease. These mechanisms are integrated with the same DTE policy specification
language and mediation rule base as the mechanisms that control access to file system objects [1].
As a result, organizationwide constraints on interactions among processes and users can be enforced
consistently whether these interactions are attempted via a single-host file system or network IPC.

4The prototype provides additional mechanisms for establishing defaults. A discussion of them is beyond the

scope of this paper.

218

We have demonstrated backward compatibility with existing UNIX binaries by executing well-
known network communication utilities (e.g., rlogin, telnet, inetd) in custom-tailored domains.
We have also executed and confined sequences of file manipulation utilities (e.g., cat, more, grep)
that communicate via UNIX pipes, which are built, in turn, on top of DTE-controlled socket
services. We have demonstrated interoperability by keeping several DTE prototype systems used
for demonstrations and software development connected to our operational corporate LAN for
many months. Also attached to the LAN are over 200 other non-DTE systems including personal
computers, UNIX workstations, and file servers. While the DTE systems exchange DTE-labeled
IP packets among themselves, they also interoperate seamlessly with the non-DTE systems.

5 Summary

Access control mechanisms provided by UNIX and other operating systems often used in networks
allow users and their programs to extend access rights freely to other, potentially unauthorized,
users via network IPC and other services. For this reason, such systems cannot uniformly enforce
organizationwide restrictions on access to sensitive information. While DoD MAC provides stronger
protection, it is inflexible and not well-suited to enforcing site-specific security policies, particularly
those aimed at integrity and role-based access control.

We have described techniques for providing strong, flexible, organizationwide control over IPC
among networked computer systems. Our approach extends DTE, an enhanced version of type
enforcement, to datagram and stream protocols in a consistent and uniform manner. A UNIX-
based research prototype has been constructed and demonstrates that network IPC controls based
on these techniques can be integrated easily with DTE controls for file system objects. Moreover,
the prototype has proven to be backward compatible with existing UNIX network programs and
interoperable with existing IP-based LANs.

Our plans for follow-on work include developing larger demonstration applications to further val-
idate the usefulness of these techniques for supporting integrity and role-based policies. We are
pursuing integrating our prototype with the Trusted Mach5 TCB [23] as an untrusted server to
demonstrate that network DTE can be combined with high assurance DoD MAC. We also plan
to incorporate network DTE features and cryptography into an Internet firewall so that the fire-
wall can screen IP traffic according to DTE attributes and coordinate DTE policies with other

firewall-protected enclaves of DTE hosts.

References

[1] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, S. A. Haghighat, "Practical Domain and
Type Enforcement for UNIX," in Proceedings of the 1995 IEEE Symposium on Security and Privacy,
pp. 66-77, Oakland, CA, May 1995.

[2] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, "A Domain and Type Enforcement UNIX
Prototype," in Proceedings of the 5th USENIX UNIX Security Symposium, Salt Lake City, UT, June
1995.

[3] D. E. Bell and L. Lapadula, " Secure Computer System: Unified Exposition and Multics Interpretation,"
Tech. Report ESD-TR-75-306, Electronics Systems Division, AFSC, Hanscom AFB, Bedford MA, 1976.

6Trusted Mach and TMach are registered trademarks of Trusted Information Systems, Inc.

219

[4] K. J. Biba, "Integrity Considerations for Secure Computer Systems," Technical Report ESD-TR-76-372,
USAF Electronic Systems Division, Bedford, MA, 1977.

[5] W. E. Boebert and R. Y. Kain, "A Practical Alternative to Hierarchical Integrity Policies," in Proceed-
ings of the 8th National Computer Security Conference, pp. 18-27, Gaithersburg, MD, Sept. 1985.

[6] D.D. Clark and D. R. Wilson, "A Comparison of Commercial and Military Computer Security Policies,"
in Proceedings of the 1981 IEEE Symposium on Security and Privacy, p. 184, Oakland, CA, 1987.

[7] T. Fine and S. E. Minear, "Assuring Distributed Trusted Mach," in Proceedings of the 1993 IEEE

Computer Society Symposium on Security and Privacy, pp. 206-218, Oakland, CA, May 1993.

[8] D. Golub, et al., "UNIX as an Application Program," in Proceedings of the Summer 1990 USENIX

Conference, pp. 87-96, June 1990.

[9] J. Ioannidis and M. Blaze, "The Architecture and Implementation of Network-Layer Security Under
UNIX," in Fourth Usenix Security Symposium Proceedings, pp. 29-39, Santa Clara, CA, Oct. 1993.

[10] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman, 4.3 BSD UNIX Operating System,

Addison-Wesley, Reading, MA, 1989.

[11] S. B. Lipner, "Non-Discretionary Controls for Commercial Applications," in Proceedings of the 1982

IEEE Symposium on Security and Privacy, p. 2, Oakland, CA, 1982.

[12] S. E. Minear, "Controlling Mach Operations for Use in Secure and Safety-Critical Systems," Technical
report, Secure Computing Corporation, Roseville, MN, June 1994.

[13] S. L. Murphy, D. F. Sterne, L. Badger, and D. L. Sherman, "Distributed Access Control for Dedicated
Systems," TIS Technical Report 508, Trusted Information Systems, Inc., Glenwood, MD, Jan. 1995.

[14] National Computer Security Center, "Department of Defense Trusted Computer System Evaluation

Criteria," DoD 5200.28-STD, Dec. 1985.

[15] R. O'Brien and C. Rogers, "Developing Applications on LOCK," in Proceedings of the lJ,th National
Computer Security Conference, pp. 147-156, Washington, DC, Oct. 1991.

[16] T. J. Parenty, "The Incorporation of Multi-Level IPC into UNIX," in Proceedings of the 1989 IEEE
Symposium on Security and Privacy, pp. 94-99, Oakland, CA, 1989.

[17] S. G. Romero, C. Schaufler, N. Bolyard, "BSD IPC Model and Policy," in Proceedings of the 16th
National Computer Security Conference, pp. 97-106, Baltimore, MD, 1993.

[18] J. Rushby, "Kernels for Safety?" T. Anderson, editor, Safe and Secure Computing Systems, chapter 13,
pp. 210-220, Blackwell Scientific Publications, 1989.

[19] J. Saltzer and M. Schroeder. "The Protection of Information in Computer Systems," in Proceedings of

the IEEE, 63(9), March 1975.

[20] O. S. Saydjari, J. M. Beckman, and J. R. Leaman, "LOCK Trek: Navigating Uncharted Space," in
Proceedings of the 1989 IEEE Symposium on Security and Privacy, pp. 167-175, Oakland, CA, 1989.

[21] D. F. Sterne, "A TCB Subset for Integrity and Role-Based Access Control," in Proceedings of the 15th
National Computer Security Conference, pp. 680-696, Baltimore, MD, 1992.

[22] D. J. Thomsen, "Role-based Application Design and Enforcement," in Proceedings of the Fourth IFIP
Workshop on Database Security, Halifax, England, Sept. 1990.

[23] Trusted Mach, "Trusted Mach System Architecture," Technical Report TIS TMACH Edoc-0001-93B,
Trusted Information Systems, Inc., Glenwood, MD, May 1993.

220

INTEGRATING COTS APPLICATIONS
ON COMPARTMENTED MODE WORKSTATIONS

Susan A. Heath
The Boeing Company

7990 Boeing Court
Vienna, VA. 22182

703-821-6272
Heath@dockmaster.ncsc.mil

Abstract

Though UNIX has been around for 25 years, Commercial-Off-The-Shelf (COTS) applications for this
operating system were not widespread until five to ten years ago. With the growth of the use of UNIX
to support office environments, there has been a parallel growth in the number of COTS applications
designed specifically for this operating system. During this same timeframe, implementations of trusted
UNIX, specifically Compartmented Mode Workstations (CMWs) have grown substantially and are
now available from a number of different vendors. The combination of these two technologies often
results in significant challenges and sometimes surprising outcomes for systems integrators.

Keywords: Compartmented Mode Workstations, COTS applications, integration, untrusted
applications, UNDC

Introduction

This paper discusses some of the issues which must be addressed when integrating COTS applications
on a CMW implementation of the UNLX operating system. Because the operating systems discussed
are CMWs, they provide all Bl features and some B3 features as documented in the Department of
Defense Trusted Computer Security Evaluation Criteria [1] with additional features as documented in
the CMW requirements documentation [2]. This includes, of course, a trusted X Window.

The COTS applications addressed include Office Automation suites (word processor, spreadsheet,
graphics, and e-mail), desktop publishing packages, program management packages, and relational
database products. None of these applications were developed for use with a Trusted Computing Base
(TCB) and therefore, none provide any trusted features. With the exception of the database products,
which provide an unevaluated form of Discretionary Access Control (DAC), none of the applications
provide any form of security whatsoever.

One major issue in integrating applications onto a CMW operating system is to keep the applications
COTS. This means not modifying the products specifically to support the trusted environment unless
the vendor agrees to make the change a part of the COTS baseline product. This paper discusses how
COTS applications were configured to execute on a CMW without modifications to the applications.

The issues with COTS integration discussed fall into several basic categories which are discussed
below.

221

General Operation

In order to provide execution of an untrusted COTS application in a multilevel environment, the
application must be executed separately at each classification level required. This does not require
multiple copies of the source code, but does require the application to be executed separately at each
classification level even if the user is already executing the application at another classification level.

To facilitate this, application daemons must be started at multiple classification levels at boot. This is
accomplished by starting the application in one of the start up scripts with the appropriate environment
variables in place once for each classification level required. For those applications which do not
require daemons, the environment variables associated with the process must be configured in the
security database so that they will be set correctly when a user executes the application.

The determination of the correct environment variables is very important to maintain the
trustworthiness of the system. These include the classification level, owner, group, and privileges to be
assigned to the application. Even though the system operates in a multilevel environment, it may not
make sense to run certain applications at any other level than unclassified. An example of this is a
calendaring program in an environment where calendars are not classified. In this case, the application
must be constrained to the unclassified level only. In addition, the owner and group of a process are
very important in determining which users can access the process. For example, all programs which
must be executed by the system administrator should probably be in the sysadmin group to facilitate
this. The privileges associated with a process are extremely important and are discussed in detail in the
next section.

Privileges Required

In keeping with the least privilege principle, it would seem to be a particularly unsafe thing to provide
an untrusted COTS application with privileges which allow it to circumvent the trusted features of the
operating system. In general this is true and can be adhered to, but certain circumstances make this
impossible. One example of this is allowing access to the default colormap provided by the X Window
System.

In X, each window has an associated colormap that determines how the pixel values are translated into
colors. Since the colormap is a resource of the X server, when it is started, it creates and installs a
default colormap with two color cells. The rest of the cells can be allocated and used by any X
application. An application can create its own colormap or use the default one created by the X server.
To use a color other than the ones in the default colormap, an application must request that the X

server allocate a colormap cell with the desired red, green, and blue intensities in the colormap of
choice (either the default one or the one created by the application). The X server will return an index
that can be used as the pixel value corresponding to that color. Then when the application wants to
use that color, it simply specifies that pixel value [3].

If the application creates its own colormap, no special privileges are required because the colormap can
be created at the sensitivity level that the program is running at. However, in some CMW

222

implementations, the default colormap is an unclassified resource. Therefore, in order for an
application running at a higher sensitivity level to be able to write to the map, a privilege which allows
the program to "write down" is required. Unfortunately, this privilege allows an untrusted application
to override some of the mandatory access control rules and must be very carefully controlled.

The risk of providing the untrusted application with such a powerful privilege is mitigated by ensuring
that users cannot take advantage of this privilege in any way. This is discussed further in the section on
shell escapes.

Another area where special privileges must be given to an application is when the application needs to
access window resources for a window that it does not own. When an application is executed, it must
determine the attributes of the root window (the background window) to determine things such as
where to place itself since all windows opened are children of the root window. Unfortunately, the
root window is owned by the X Server. This results in the application receiving an access error.
Therefore, without special privileges, the application cannot acquire the necessary window information.
In this case, the application must be given a privilege which allows it access to X resources associated

with the root window.

Shell Escapes/Running the Application Directly from the Shell

In an attempt to provide user friendliness and compatible features with DOS counterparts, many
products provide some form of shell escape from within the product. These range from providing a
"Go To UMX" option on a menu to allowing the user to enter "! command" from within a document
or mail message. Shell escapes can be dangerous in a trusted environment because the potential exists
for the user to be able to take advantage of the privileges given to the application.

Simply "banging" out to the shell does not result in a user inheriting the privileges of the application
because the effective privileges at this point are the combination of the privileges given the user and the
privileges given the shell itself (hopefully none!) [4]. However, there are circumstances where a user
can gain access to privileges given the underlying applications. One such example is within e-mail.

Some applications allow user's to take advantage of a feature provided by sendmail by allowing them
to place the string "! command" within an e-mail message. The sendmail process will interpret the line
of a message beginning with "!" as a command and will execute it. This is very dangerous in the
trusted environment because sendmail is a trusted process and runs with several privileges. A user can
create a script to do many things which they would not normally have access to and then simply include
the name of the script with a "!" in front of it in an e-mail message. The script then gets executed by
sendmail with all of its privileges.

This problem is easily overcome by removing the capability within the applications e-mail feature and
within sendmail to interpret the command string within the message.

In addition to shell escapes, allowing users to run applications directly from the command line should
also be avoided if the application has been given any special privileges. This is because there is a great
risk that the user can take advantage of the privileges given the application. For example, most

223

applications will allow a user to enter a command to execute the application followed by a document
name. This results in the application coming up and bringing the user directly into the document. If the
application has been given the privilege to override MAC (as we have seen is necessary sometimes),
then the user could enter the command to execute the application followed by a document name which
is at a classification level higher than that for which the user has access. Since the process runs with the
privileges given the application unioned with the privileges associated with the user, the user will be
brought into the document if Discretionary Access Controls do not stop the access. This is potentially
a very serious situation and should be avoided at all costs.

Administration

The CMW system is designed to support a division of power. This means that the authority
traditionally associated with the root account (or uid=0) has been divided among several roles so that
no one person has complete control of the system. Simply having uid=0 does not provide the power it
does in untrusted UNIX. The account must have the appropriate privilege necessary to perform the
desired function. The roles are established through the use of command authorizations that can be
given to any account.

However, to an untrusted COTS application, a command authorization is meaningless and most
products check for uid=0 when product administration of any type is attempted. This means that
product administration must still be accomplished by an administrator logged on as root. This
completely overrides the intent of the division of power which was specifically designed into CMW
systems and sets a precedent of using the root account which may not be acceptable.

To maintain the division of authority inherent in the CMW system but also protect product
administration, the COTS product must have a means of allowing a uid or gid other than root access to
administration of the product. This is most easily accomplished by allowing the product to be
configurable such that other login ids (different from root) or group ids (such as sysadmin) can
accomplish system administration. However, some COTS applications do not offer this capability.

Print Servers

Many COTS applications use the concept of a print server to allow users to print documents in a multi-
user environment. The print server is a shared resource which performs the job of configuring the
document for printing and sending it to the print subsystem. It can be configured to start the first time
a user executes the application or to run as a daemon which gets started at boot. If it is started the first
time a user executes the application, it remains active until there are no users using the application and
eventually times out. While it is active, it is shared among all users currently executing the application.
When all users exit the application, it times out and is started again the first time another user enters the
application. Obviously if it is run as a daemon, it remains active until the system is shut down or it is
killed. Either configuration can cause problems in a trusted environment.

If the print server is started by the first user who executes the application, it is owned by that user. In
an untrusted environment, the executables associated with printing are owned by root and the setuid

224

bit is on. When these are executed, the process assumes the effective uid of root which allows it to
access the print server even though it is owned by another user.

In a trusted environment, without special privileges to allow the process to emulate the untrusted
UNIX environment, the set uid bit has no affect because uid^ does not have the same privilege it has
in untrusted UNIX. This results in only the first user being able to access the print server. No other
users can print anything until that user exits the application and the existing print server times out.
Obviously, this is unacceptable.

If the print server is started at boot, all users can access it, because it is a daemon, but technically it is
owned by root. This results in banner pages for all print jobs which have root as the user. While this is
not as drastic a situation as the one described above, it is still a less than optimal solution.

What is needed is a way to start a print server for each user so that all users can access it and the print
out banner pages reflect the correct user. This can be accomplished in several ways, the easiest of
which is to start the application with a variable which tells it to start a print server for each user. Some
applications have this feature as an alternative print scheme and some do not.

Directory Structure

The final area of COTS integration onto trusted UNIX to be discussed is that of directory structure.
Many applications require a directory for each user which is associated with the application. All files
associated with the application are stored here. This is convenient for all users because their
documents are stored underneath their home directory. Most applications will also automatically
create this directory in the user's home directory if it is not there when the user executes the
application. This creates a problem for some trusted UNIX file system implementations.

CMWs use a file system implementation consisting of single level and multilevel directories. A single
level directory is just that, a directory which has a single sensitivity level associated with it. In some
implementations, only files ofthat sensitivity level can be stored there unless the user has a privilege to
"write down" or "write up". The concept of a single level directory is illustrated in figure 1

unclassified file
unclassified

directory

confidential file
confidential

directory

secret file
secret

directory

Figure 1 - Single Level Directories

225

A multilevel directory on the other hand can store files of any sensitivity level defined on the system. A
multilevel directory is actually a parent directory with several hidden directories underneath, one for
each valid sensitivity level as illustrated in figure 2. It appears to the user and untrusted applications as
a single directory. When using an untrusted application in this environment, the directory structure
must be carefully analyzed to determine which directories need to be multilevel and which can be single
level.

unclassified file >.

.»
unclassified

file
Multilevel
directory

_ - * ■

confidential
file

CUIUIUCllllul iliC

secret file-"""^

"•* secret
file

hidden
directories

Figure 2 - Multilevel Directory Structure

In order for a user to be able to store files of varying sensitivities in the directory associated with the
application, it needs to be a multilevel directory. However, an untrusted application has no knowledge
of multilevel directories. When a user executes the application, if the needed directory is not there, the
application will create it. Assuming the user executed the application at unclassified, this directory will
be single level, unclassified which results in the user being unable to store classified files in the
directory. If the user executes the application for the first time at a higher level, there are other
problems which will be discussed later.

Getting around the problem of the application creating a single level unclassified directory is simple.
Whenever a new user account is created, the associated multilevel directory is also created. Then when
the application is executed, the directory is already there. Usually the operating system provides a
method to tailor the construction of the user directory tree and configuration files such that they are
automatically created whenever a new account is created.

However, there could still be a problem. When the application is executed, it may attempt to open the
user's home directory not just for read, but also for write, in case it needs to create the applications
directory. This is fine, when it is being executed at the unclassified level, but results in an access error
at higher sensitivity levels if the user's home directory is single level unclassified. So even though the
applications directory is already there and is multilevel, an access error will still be received when the
application is executed at any level above unclassified because the application attempts to open an
unclassified directory for write at a higher sensitivity level. If this is not a configurable item, which in
many cases it is, some other solution must be found.

There are several ways around this problem. First, all users could have multilevel directories for their
home directory. This is not a very good solution, however, because it results in the user actually
having multiple home directories (in the hidden directories underneath the home directory).

226

Configuration scripts (e.g. .cshrc) might have to be replicated and maintained at each level. Since
user's frequently tailor these files to their own liking, they would have to maintain multiple files. More
basic than that though, is that users who may not be very familiar with UNIX will have to understand
how the multilevel directory concept works in order for them to correctly use their home directory.
This is a difficult concept for even seasoned UNIX users to understand, much less a novice user. It
seems that this is not a good solution to the problem.

The other solution is change the $HOME variable to the multilevel application directory which was
created at account creation before executing the application. This could be done in a script and users
would not have to be aware of it. The application would be tricked into thinking that the user's home
directory was /usr/account/appname instead of /usr/account and open this directory for read and
write. Since it is a multilevel directory, no access error would be received. However, the application
would then proceed to create its directory underneath this one because it thinks it is in the user's home
directory. The applications directory would subsequently be created in each of the hidden directories
underneath /usr/account/app_name as the user executed the application at each of the authorized
sensitivity levels. This results in an extra layer in the user's directory tree (for /usr/account/app_name)
and different directories (/usr/account/app_name/app_dir) at each authorized sensitivity level where
one directory is really all that is needed.

Summary

There are many challenges when attempting to integrate untrusted COTS applications onto trusted
UNIX. These include giving privileges where necessary, eliminating risks associated with shell escapes
and running the application directly from the shell, administration, print server issues and directory
structure complications. However, while there are many implementation details which are challenging
when integrating untrusted COTS products onto trusted UNIX, there are few which cannot be
overcome by giving privileges in a guarded way or configuring the application a little differently than it
would be configured in an untrusted environment.

References

1. Department of Defense Trusted Computer Security Evaluation Criteria, DOD 5200.28-STD

2. Security Requirements for System High and Compartmented Mode Workstations, DDS-2600-
5502-87, John Woodward, November 1987

3. X Window System Programming, Nabajyoti Barkakati, SAMS, 1991

4. CMW+/386 Trusted Facility Manual, SecureWare, Inc. Part number 010-00088-00, Revision E,
April 1992

227

PROJECT WINMILL:
Using a COTS Solution to Connect LANs of Different Compartments

Mr. Al Nessel and Mr. Curt Sawyer
Defense Intelligence Agency

Advanced Technology Laboratory (SY-1C)
Building 6000, Boiling AFB

Washington, D.C. 20340

Executive Summary

The Trusted Windowed Information Networked Multilevel Interconnected Labeled
LAN (WINMILL) project provides a much desired capability, namely the connection
of two Local Area Networks (LANs) operating at different compartmented levels.
For convention, the two networks joined are a TS:A/B LAN and a TS:A/B/C LAN.
This new connectivity is another step towards the goal of one workstation accessing
all information sources.

The WINMILL system comprises one Network Information Service (NIS) server,
one Trusted Label Router (TLR), and some number of client workstations, all
installed on the "high" side (i.e., the TS:A/B/C LAN) in multiple sensitive compart-
mented information facilities (SCIF). Each component runs Sun Microsystem's
Trusted Solaris 1.1. Trusted Solaris is Sun's implementation of the Compart-
mented Mode Workstation (CMW) Requirements. It is currently under National
Computer Security Center (NCSC) evaluation for accreditation as a B1+ CMW.

WINMILL takes advantage of the security features inherent in Trusted Solaris.
Trusted Solaris allows users to operate at different session levels and appropriate
compartments depending on their clearances. MAXSDC is Sun's trusted network
implementation of DoDIIS Network Security for Information eXchange (DNSLX),
and it secures and limits network traffic between two classified but independent
networks.

The WINMILL architecture supports TS:A/B network traffic between the A/B/C
LAN and the A/B-LAN. Initially, this is tn3270 application traffic and SMTP e-
mail traffic. TS:A/B/C data is processed on the A/B/C LAN but is unable to reach
the A/B LAN.

Disclaimer

Project WINMILL is a specific application of CMW technology to solve a specific
problem. Limitations and restrictions described here are due to the project
restraints, not the CMW technology.

228

Purpose of the WINMILL System

Project WINMILL grew out of a simple requirement. Personnel on a small,
application-specific Top Secret Compartmented LAN (TS:A/B/C LAN) wanted to run
an additional application from the larger Top Secret Compartmented LAN (TS:A/B

LAN), and wanted to exchange e-mail with the users on that LAN. Since the two
LANs are physically separate ~ a security requirement since one processes an
additional compartment called "C" - this requirement might seem impossible to
fulfill.

With the use of Compartmented Mode Workstation technology, however, the
problem becomes quite simple. Users on the ABC side with this requirement could
receive CMWs, which would inherently separate the ABC and AB data. With the
addition of another CMW used as an IP security label-based router, the basic
problem is solved. The router, containing two ethernet cards, only permits A/B
traffic to flow out of the A/B/C LAN. All traffic can flow into the A/B/C LAN,
however, since its compartments dominate the A/B LAN. The final solution is a
little more complicated, but that is the basic idea.

System Description

a. System Name and Location

As further described in the System Architecture section that follows, the WINMILL
system has components physically connected on one large fiber optic ring. The
locations of the workstations are A/B/C SCIFed areas, while the TLR is in a
separately controlled machine room. Therefore, interconnection of the A/B and
A/B/C LANs physically takes place in the separately controlled machine room.

b. System Architecture

The WINMILL system architecture is depicted in Figure 1. This architecture
allows access to the A/B LAN from the A/B/C LAN. Procedures are discussed in
greater detail in this section. The architecture of WINMILL consists of hardware,
software, and communications elements, which are further described in the
following paragraphs.

(1) Hardware: Figure 1 depicts the hardware and communications architec-
ture of the WINMILL system. The NIS server is a Sun SPARCstation 2 64 MB
workstation with two 424 MB internal disks and has a 1.2 GB Database server
option with a 2.2 GB tape backup unit. The client workstations are also SPARCsta-
tion 2s but with only one 424 MB disk and 32 MB RAM. All are attached to the
A/B/C LAN via ethernet connections. The TLR is a SPARCstation 2 with 32 MB

229

RAM, 424 MB disk, and two ethernet adapters. The two adapters are configured to
allow the TLR to act as a router between different IP subnets. This is the critical
component in securing data transfer between the two LANs. It is important to note
that "postmaster" and "mainframe" represent A/B LAN systems that need to be
addressable to the TLR and Trusted Solaris machines. Their description is only
noted due to the significant role they play in providing e-mail and application
access.

(2) Software: The operating system on all WINMILL components is Trusted
Solaris 1.1. There is no additional system software required. Planned for the near
future is the integration of the System Acquisition Support Services (SASS)
software into WINMILL. SASS software will provide the same office automation
suite to the Trusted Solaris users that the DIA UNIX users now have. SASS
software integration has no impact on the WINMILL function, but will add office
automation services that will be useful to the analyst.

(3) Communications: The communications architecture for the WINMILL
system is based on MAXSLX between Trusted Solaris systems, and normal TCP/IP
between Trusted Solaris and non-Trusted Solaris systems.

For both the A/B and A/B/C LANs, the physical network is a fiber optic ring of
repeaters. An ethernet cable runs from the repeater to the workstation. Connectiv-
ity from the A/B/C LAN to the A/B LAN will be through the approved TLR only.
The TLR router will control authorized access to the A/B/C LAN and its resources.
Communication protocols used in WINMILL are MAXSLX and standard DoD
protocol sets (NFS, FTP, SMTP, TCP/IP). The A/B/C LAN is an IP subnet isolated
from the A/B LAN via the TLR.

The A/B/C LAN has other components besides WINMILL. It is a fully functional
operational LAN with several application systems present. These systems are
currently available to the other A/B/C LAN users and will be available to the
WINMILL system. These systems will remain at the TS:A/B/C level.

c. Systems Operations

WINMILL was designed to provide a fully functional LAN environment and not
inhibit the user from doing normal activities as performed on the A/B LAN. The
WINMILL environment consists of an NIS/office automation server which exports
the user's home directory, mailspool, applications, and auditing directory. Permis-
sions and accesses are strictly controlled by the Information Systems Security
Officer (ISSO) and Administrator (ADMIN) for the A/B/C LAN.

230

<D
a
cd

^. ^
C

°T—1

cd

S
C

^>
3

CO

PH
t—I

PQ
<Z>
CO
cd

u

GO
s-l H
<D *»-»
CO
Cd

a
■*-»

co
o

OH

£ c
<

o
HJ td

-t-»

u CO

^■»^ u
PQ O

<
£

T—i

T3T_H
!_i

0) GO <l)
■t«-G >

S3
^CO

CO

i—1

-d T—1 +—>
CO Ö

1/3

g r—H o
CO

• 1—1
I—1

U

i—1

T) T-H
■4—>

co e

S 1—1

O
00

•i-H

u

Figure 1,

231

The following scenario depicts the WINMILL setup and operations:

(1) Login, Authentication, and Session Level: A user will login to the
Trusted Solaris NIS domain with a unique UID and password. This domain
consists of the server or any of its clients. It does not apply to the TLR. (The TLB,
will not be part of the server/workstations' NIS domain; it will have separate login
accounts.) Once the user has logged into the domain, a session window prompts
him or her for the highest session level he or she wants to be able to work at for
which he or she is cleared. Normally, the user will select TS:A/B/C.

(2) User Environment: The user interfaces with the system through the
desktop manager. Icons represent all user functions available through the desktop
manager. The user simply clicks on the icon to invoke the application. What is
important to note here is the sensitivity label at which the application is invoked.
Under WINMILL, Trusted Solaris allows the user to invoke office automation
applications at any level from UNCLASSIFIED up to TS:A/B/C. Any resulting
document or file created will also be at that level. These documents will be stored
in a multilevel directory (MLD). This directory mechanism allows the user to
transparently drag-and-drop file icons onto the MLD icon and store the file at the
appropriate level. The user is reassured of the level he or she is operating at by the
sensitivity label banner associated with each window. The user can change the
sensitivity label through the Trusted Path Menu Selector. This mechanism
provides flexibility for the user to invoke applications or shell windows at the
various classifications at which he or she is allowed to operate.

(3) A/B/C LAN to A/B LAN Network Access: Trusted Solaris enforces a
policy that each workstation node must have in its /etc/host table and its
/etc/security/TNETRHDB file entries for all the hosts it can communicate with.
(There is no trusted implementation of Domain Name Service (DNS)). For each
entry in /etc/host, there exists a corresponding entry in the
/etc/security/TNETRHDB file, where the host is identified by a "MAXSDT or
"unlabeled" entry. A MAXSLX entry identifies the machine as another Trusted
Solaris workstation that is capable of receiving MAXSDX-labeled IP packets. An
unlabeled entry indicates that only normal IP packets can be sent to this machine.
In addition to these two entries, the machine has an entry for its classification level.
For example, the machines "mainframe" and "postmaster" are two essential nodes
WINMILL allows connectivity to. Both have entries that show they are unlabeled
and both are at the TS:A/B level. This prevents any user from accessing these
systems from a sensitivity-labeled window other than TS:A/B.

The TLR's tables are identical to the other WINMILL machines. The TLR, as
stated earlier, has two ethernet interfaces and routes unlabeled IP packets from the

232

A/B/C LAN to the A/B LAN. Both LANs are class B IP subnets,
static and does not require manual intervention.

The routing is

(4) A/B/C LAN Network: WINMILL addresses the communications between
the A/B/C LAN and A/B LAN from a Trusted Solaris workstation. Since other
A/B/C LAN system-high workstations (SHW) exist on the A/B/C LAN, it is worth
noting their interoperability with WINMILL. They will continue to access A/B/C-
specific applications running on system-high servers. They are not configured for
communicating with the A/B LAN. In fact, they are not able to communicate with
the WINMILL machines. The WINMILL machines, however, are able to access the
A/B/C-specific application servers, and can thus run the applications. (This
configuration is specific to this project, and not a limitation of the CMW technol-
ogy-)

(5) Summary of Functions: In summary, an analyst on a Trusted Solaris
workstation can: (See Figure 2.)

Address another Trusted Solaris machine from
the UNCLASSIFIED to the TS:A/B/C level.
Send and receive e-mail and enclosures at TS:A/B to any user on the
A/B LAN
Access the mainframe system at TS:A/B
Access A/B/C-specific applications at TS:A/B/C

Figure 2.

233

d. Upgrading and Downgrading Information

Trusted Solaris allows upgrading and downgrading of information. Upgrading of
information is allowed by the user. When the user upgrades information, a
message window appears notifying the user of the action. The user confirms the
action and proceeds with the upgrade. Currently only the ISSO can downgrade
information. The ISSO can process requests from the user and accept or deny
them, but the entire operation is controlled by the ISSO. This process is also
audited by WINMILL. (In the future, the ISSO may grant highly trusted users the
privaledge to downgrade information, but this situation is not part of the original
WINMILL project.)

Current Status of WINMILL

This project went from concept to operational test in about three months. The
operational testing of WINMILL was completed in February 1995. Deemed a
success by the customer and the security office, the project was put on hold pending
completion of the security documentation. In the Laboratory the immediate future
for WINMILL is the integration of as many of the SASS software products as
possible. SASS integration should be completed before the security documentation
for accreditation is completed.

Future Direction

This project filled a specific requirement while also finding a niche for CMW
technology. In addition to joining LANs of different compartments, LANs of
different levels could be joined, e.g., a SECRET to TOP SECRET, or a TOP
SECRET to a TOP SECRET SCI. The technology allows us to build these labeled
routers, but it is ultimately up to the security office as to when, or if, they are ever
implemented.

234

ACRONYM LIST

ADMIN System Administrator

CMW Compartmented Mode Workstation

COTS Commercial Off-The-Shelf

DNS Domain Name Service

DNSLX DoDIIS Network Security for Information eXchange

FTP File Transfer Protocol

ISSO Information Systems Security Officer

LAN Local Area Network

MAXSLX Sun's implementation of DNSLX

NCSC National Computer Security Center

NFS Network File System

NIS Network Information Service

SASS System Acquisition Support Services

SCIF Sensitive Compartmented Information Facility

SHW System High Workstation

SMTP Simple Mail Transport Protocol

TLR Trusted Label Router

TNETRHDB Trusted Network Remote Host Database

WINMILL Windowed Information Networked Multilevel Interconnected
Labeled LAN

235

On Guards ... En Garde
Lawrence M. Sudduth

Secure Computing and Communications, Inc.
P. O. Box 551

Great Falls, Virginia 22066-0551

Abstract: The information security issues associated with implementing a guard processor,
e.g., the interface between domains processing at disparate system-high sensitivity levels, are
discussed. A distinction is made between guard functionality which counters low-side
penetration threats, and that which attempts to prevent information spillage, especially in a
free-form messaging environment. The resistance of a guard to penetration attempts is directly
proportional to the Trusted Computing Base's assurance level. The potential for inadvertent
high information spillage can be reduced with the implementation of an automated filtering
application on the guard, in which the guard's mandatory security mechanisms ensure that
objects are filtered. The quality of the automated filtering mechanisms cannot approach that
offered by manual review or processing sensitivity labels provided by B-division (and better)
trusted multilevel secure systems, when these have been employed on the high side for data
object creation. In the absence of trusted object viewers, only text can be reviewed, manually
or otherwise. Establishing accountability for intentional information disclosure from high-side
originators to low-side recipients could prove to be difficult, if not impossible.

Guard (gärd)

—v. tr. 1. To protect from harm or danger, esp. by careful watching; keep secure. 2. To
watch over to prevent ... indiscretion. 3. To ... supervise entries and exits.

—n. 1. a. An individual or a group that stands watch or acts as a sentinel. 8. A device or
apparatus that prevents ... loss

Background

The increasing commercial availability of
unattended E-mail guards, and other guards
which purport to allow the secure exchange of
unformatted data objects without operator
intervention, has made life interesting for
computer security practitioners. The
marketers of these guards generally tout them
as the "answer" to the operational requirement
to exchange low information between a high
(system high) environment and a low
environment. Since the guard application is
often implemented on a trusted, multilevel
secure host, many believe that the guard

represents a solution to the security issues
related to the interconnection of the domains.
In point of fact, it does not. Rather, the guard
offers a platform upon which a mandatory
security policy can be enforced, and a
capability to filter data objects, to some extent
or other. Developing the security policy for the
guard to enforce, which addresses the
information security vulnerabilities associated
with system-high operations, remains
problematic.

Commercial guards target the widespread
operational requirement to exchange low
information, especially E-mail, between high—

© 1995 Secure C2 ®, Inc.

236

side and low-side users. They generally offer
extensive audit capabilities, some form of
activity journalization, and a guard application
with a palette of automated filters. At the very
least, the guard filters have a "dirty word"
identification capability. The presence of a
specific text string (the dirty word) within an
object causes that object to be enqueued for
human review or to be scratched. Some
guards also allow filtering of low-side input, to
reject input which does not meet
preestablished constraints.

Trusted Guards

Guards are employed at the interface between
computing environments or domains that
process at disparate sensitivity levels. Guard
functionality can be implemented procedurally,
or with hardware, firmware, or software.
Media transfer (the so-called sneaker net)
implements guard functionality; it often
represents the only approved channel
between domains. In order to counter the
vulnerabilities associated with multilevel
operations without a mandatory security policy
enforcement mechanism, the media involved
in the exchange often undergoes stringent
review procedures. Administrative and
procedural requirements associated with the
media-review attempt to ensure that a
mandatory security policy is enforced. Users
are prone to violating these requirements,
since they do not comprehend the technical
vulnerabilities which are being countered.
Media transfer can harbor all of the security
vulnerabilities associated with a network
connection, albeit at much lower bandwidth.

One of the primary requirements of guards is
that they be reliable enough to enforce the
applicable security policy with an acceptable
level of residual risk. The risk is often
multifaceted; an executable object which is
transferred from the low to the high side can
have far greater security consequences than
the information content of a low-side data
object being transferred to the high side. The
information content of a (putative low) data

object transferred from the high to the low side
also has security significance. The
requirement for reliability of guard operation is
often realized through the use of trusted
multilevel secure systems (i.e., division B
trusted computing bases), since these
systems provide mechanisms (and varying
levels of assurance) that a security policy will
always be enforced.

A well-defined information control objective is
a hallmark of most of the publicized guards
which have been developed within the
Department of Defense and the Intelligence
Community in the recent past [Def94]. If
designed for unattended operation, the guards
use rigorous, rule-based filtering on highly
formatted, input objects to validate or produce
objects which are eligible for low-side
processing. Upon successful completion of all
required filter events, as well as any
transliteration processing, the object's
sensitivity label is downgraded (i.e., the
mandatory access control label is regraded
from high to low) and the object is eligible for
transmission to the low domain. If the
information content of the high-side, input
objects cannot be modeled, an operator is
generally in the loop, i.e., manual review is
employed.

Some of the guards which have been
implemented within the classified processing
community run on separate physical machines
with high assurance levels.

The Worldwide Military Command and
Control System (WWMCCS) uses a formally
rated (B3) multilevel system (XTS-200
running on Honeywell minicomputers) as a
guard processor between the Top Secret
system-high WWMCCS environment and
certain Secret system-high environments.
The guard application allows automated
sanitization and downgrading of highly
formatted data files originating from a Top
Secret database, as well as other file
transfers, many with manual review
components. Since (doctrinally) a B1

237

system does not have the requisite level of
assurance to protect classified information
from a determined, technically qualified
penetrator with a Secret clearance, the B3
guard processor controls the interface
between the environments.

Other lower assurance guards have been
developed/implemented. Where fielded, the
accreditors have generally had to assume a
higher level of residual risk, although ancillary
protection mechanisms, such as shielding the
low side interface from all but predicted
communications with a trustable router, are
often employed.

The Radiant Mercury guard uses a formally
rated (B1) multilevel system (HP BLS on
Hewlett Packard workstations) to host a
guard application which transliterates and
reformats highly formatted input SCI
telegrams to output telegrams with lesser
handling requirements.

The Operations/ Intelligence Workstation
(OIW) uses a Sun CMW (SunOS, CMW
Version 1.0, which is nearing the completion
of its NCSC B1 evaluation) to implement a
"human in the loop" guard application. The
mandatory access control (MAC) policy of
the CMW is used to ensure that putatively
collateral information from the SCI high side,
is only transferred to the low side after being
reviewed and downgraded by a cognizant
human reviewer.

Electronic Mail Guards

Several E-mail guards are available today, or
will be available in short order, which enable
E-mail exchange between environments
operating at disparate sensitivity levels.
These guards can generally be divided into
two genera, which are unique in their concept
of operation. The easiest way to distinguish
the two from each other is by their marketing
claims.

The first genus, guardus consentrazzioni
Infosecum, is marketed as a tool to assist in
countering the perceived information security
(INFOSEC) threats. Potential ancillary
countermeasures are identified, and residual
risks are described. The second, g. c.
Marketing boldly heralds the operational
benefits and cost savings — statements which
are in and of themselves, indisputable. The
former class of guards are challenging to
implement and operate; this is less the case
with the latter class of guards. The sales pitch
for the g. c. Marketini, guards generally
includes some wording to the effect, "that the
sponsors must assume some level of risk."
This is certainly understated.

Risks Associated With Automated
Guards

In an ideal world, security practitioners would
only have to confront implementing guards
between trusted multilevel secure domains.
Data objects would have MAC labels which
accurately reflect information content. These
labels would be exported with the object so
that they could be used as part of guard
processing. Since the trustability of MAC
labels is associated with the assurance level
and accessibility of the infrastructure and other
issues, this is not a silver bullet to INFOSEC
concerns. Nonetheless, such an MLS enclave
can be connected to another enclave through
a guard. If a uniform threat and risk
environment existed in both enclaves, the
guard could be a trustable Internet Protocol
(IP) router. If these environmental
considerations do not hold true, the guard
must be implemented on an MLS platform with
the requisite assurance level to counter the
penetration threats from the low side.

In a generally benign environment, like an
enclave in which Secret- and Top Secret-
cleared users originate Confidential through
Unclassified information using B1 systems, the
quality of the labels generally does not
introduce significant residual risk. The guard
could import the label with the object, process

238

the information contained in the object as
required (to counter application-specific
vulnerabilities), regrade the object (e.g., from
Low-Unfiltered to Low-Filtered, since the
guard's MAC policy enforces the security
policy) and pass it low. The level of threat of
the destination environment should play a
large role in determining the trustability, or
assurance level, of the guard.

The operational requirement most often faced
today is to enable the interconnection of a high
and low PC LAN enclaves for low E-mail
exchange with an acceptable level of residual
risk. When interconnecting domains which
operate at different system-high levels, five
broad categories of risk exist: high information
can be transmitted low (spillage), low
executables can be transmitted high (Trojan
horse), the guard can be penetrated (enabling
the previous two), and high information can be
transmitted from the low side (disinformation
or security violation). The fifth general risk is
that user accountability for high information
spillage can be difficult to establish.

High Information Transmitted Low

The automated guard must capture messages
which contain high information, preventing
them from being transmitted to the low side.
To accomplish this task, data objects are
filtered on the guard during transit. Ideally,
guards are based on trusted MLS systems.
They have separate ports connected to the
high and low domain. Both of these ports (or
devices) are labeled to reflect the domain to
which the port is attached. If a min/max
capability exists as far as device labeling is
concerned, the minimum should equal the
maximum, since the domains are system-high
and -low respectively.

The port attached to the high side assigns a
high label to incoming data objects. The
TCB's mandatory security policy ensures that
this object can never be written to the low port
until its label is downgraded. In a perfectly
secure world, a cognizant individual would

review the message using an application
which is trusted to display the entire object
contents [McH85]. If the object met the review
criteria this individual would then exercise her
downgrade authority, and change the MAC
label on the object to low. The low object
would then be eligible for low processing, the
end result of which is that the message would
be transmitted to the low domain. The volume
of traffic which transits the guard, resource
constraints, and other issues can all contribute
to the decision to take the human (the only
entity qualified to cognizantly review free-form
text) out of the review cycle.

While each guard is unique, most operate as
follows. The message is imported, and
labeled high. Filters (running high) are used to
review the message. Upon completion of all
required filtering processing, the MAC label is
changed to low. The message is then sent to
the low domain.

While filtering is challenging for text files, it is
extremely difficult for other file types,
especially application data files which originate
on DOS/ MS-Windows™ PCs operated in the
Secret system-high mode, for example.
Several issues are provided for illustration; this
is not all-inclusive.

Even text-based, Windows-application data
files all have inordinately long prologue
sections, often one to four kilobytes in size.
The prologue is full of application-specific
information, which displays as control
characters when viewed with a disk sector
editor. Additional control information is
present throughout the file. Without a
mapping of the control information zones
and the potential legitimate values, this data
cannot be reviewed to determine if it
contains encrypted representations of high
information.

Windows applications generally support a
file format which allows edits to be appended
to the existing file. In MS Word®, for
example, "Fast Save" an option which is

239

enabled by default, produces files which are
up to 40% larger in size than files which are
written completely anew when they are
saved. Text and other data structures which
have been deleted from the original
document, is still present in the object, it is
just not displayed in the application. This is
especially noticeable with files which have
been repeatedly edited and saved. The old
version of the text is generally invisible within
the application, but is visible if reviewed with
a disk-sector editor, or even the MS-
Windows NOTEPAD applet.

Windows applications which support Object
Linking and Embedding (OLE) can produce
data files which are actually compound data
structures. OLE- and application-specific
control information which is present in these
files is almost incomprehensible to a
reviewer. This data cannot be reviewed to
determine if it contains encrypted
representations of high information.

Information contained within non-textual
files must be reviewed or filtered. The
availability of a trusted viewer for text-based
application data files is problematic. The
problems can be insurmountable for other
files including graphics, images, and
spreadsheets. Even viewing the sector
contents with a disk-sector editing utility will
not shed light on the information contained
in other than text files. Recent work [Kur92]
indicates that files can contain contents
which are invisible even to what is believed
to be a trusted viewing application.

As hard disk size increase, the minimum
physical space allocated to each file (the
cluster size) also increases. As cluster size
increases, the likelihood increases that the
slack space between the end-of-file and the
end-of-cluster contains remanent
information. The slack space can be as long
as eight kilobytes or more. If desktop
machines are C2 or higher TCBs, and object
reuse mechanisms are activated, this issue
can be ameliorated.

Some of the representative vulnerabilities
described above can be countered at the
desktop machine, such as by zeroing out file
slack space. The other vulnerabilities present
potentially significant challenges. As
unattended communications links are
implemented between high and low enclaves,
the predictability of the traffic (i.e., the content
of the link) and the bandwidth of the medium
contribute to the creation of an exploitable
storage channel. The requirement to ensure
that encrypted representations of high
information never leave the high environment
precludes the exchange of all but textual
information, which by definition, can be
reviewed by humans.

Low Executables Transmitted High

Mandatory access controls are required for
multilevel processing to preclude Trojan horse
attacks, among other reasons. When a high
and low environment are interconnected, via
magnetic media, telecommunications link, or
network connection, a mandatory policy must
be enforced to preclude the migration of low
executables to the high side. This is the only
way to prevent Trojan-horse attacks when
interconnecting system-high environments.
The executable code could be an object file,
an application data file with an embedded
macro, a script file, etc. As application macro
languages become more sophisticated, the
potential for covert attacks increases.

Guard Penetration

If the guard is to enforce a security policy, it
should be robust enough to withstand
subversion attempts. Is a CMW equal to this
task? Probably not. This is not to say that
CMWs are not secure. CMWs were designed
to facilitate the analysis of information
managed within separate compartments, by
TS-SCI cleared intelligence analysts, such
that the analyses produced were marked
appropriately for control and release. They

240

were not designed to withstand determined
penetration attacks [Ber90].

With the exception of one guard, the Trusted
Multilevel E-mail Guard® (TMEG®) from
Trusted Information Systems, Inc., the
commercially available message guards are
implemented on B1 Trusted Computing Base
(TCBs) or Compartmented Mode Workstations
(CMWs, B1+), at varying stages of National
Computer Security Center (NCSC) evaluation.
The robustness of these guards, i.e., their
resistance to penetration, is a function of the
underlying TCB [Dep85]. In light of this, the
guard should be protected from low-side
penetration attempts. Often this involves the
installation of a single purpose, "trustable"
router, to condition the link to the low side
network.

TMEG, implemented on the B2 TCB Trusted
Xenix, is the only E-mail guard which could
potentially not require additional architectural
measures to protect it from low-side
penetration attempts. A successor version of
this product will be hosted on the B3 TCB,
T-Mach. This successor product meets the
doctrinal outlook for acceptable risk [Com85]
in a closed environment processing Secret to
Unclassified information with an American
user population ranging from uncleared to
Secret-cleared. This product could be
installed without architectural safeguards,
external to the guard itself.

High Information Originating Low

Two different concerns relate to the ability of
the guard to transmit high information from the
low side to the high side. The first concern is
that cleared users with no access to classified
systems will avail themselves of the
communications channel to transmit high
messages to correspondents. This has been
an issue with telephony for some time. The
voice conversation is transient. Once it is
completed, it no longer exists, unless it was
intercepted and recorded. The issue is more
complicated with messaging, since media

records of the message (which can
legitimately exist on all of the intermediate
systems between the source and the guard)
increase the potential for compromise.

The second concern relates to disinformation
attacks. The sanctity of the address space in
E-mail systems is notoriously poor.
Impersonation has caused many amusing
anecdotes about why E-mail should not be
used for formal traffic. Nonetheless, E-mail is
being employed by users to assign and
respond to taskings, report information, etc.
While the decline in the amount of formal
communications (telegrams) when an E-mail
system is installed can be attributed to the off-
loading of informal traffic, this is not always the
case. This sets the stage for disinformation
attacks, that the guard should attempt to
counter.

Establishing User Accountability

One of the cornerstones of our (National
defense information) security policy is to
establish user accountability for their actions.
If accountability was not required, identification
and authentication to the individual level,
audit, and other security mechanisms would
not be required. As system-high
environments exchange information with low
environments, how can the user who
inadvertently, or even deliberately, transmits
high information to low users be held
accountable for their actions?

I maintain they cannot. Every publicized,
successful prosecution of an individual for
espionage relied on incontrovertible evidence
that the information was exchanged by the
accused to the recipient, generally an agent
handler employed by a hostile intelligence
service. Especially after viewing portions of a
celebrated murder trial, I fear this proof is not
possible in the operational scenario described
herein, in which electronic messaging is used
to transmit the information. Even if sufficient
accountability information is collected, and
securely stored, on the both the high-side and

241

the low-side message transport systems, the
high-side user's lawyer can claim an
inadvertent act occasioned by system-high
operations resulted in the information transfer.
The low-side recipient's lawyer can claim the
(low) environment security policy did not
prohibit the receipt of information by uncleared
individuals.

Since this issue is not the focal point of this
note, it will not be dwelt upon. New statutes
will attempt to resolve this conundrum, but
security practitioners could still be grudgingly
forced to be hostile witnesses for the defense,
instead of prosecution witnesses.

Commercial Guards

SecureWare, Inc. markets the Secret-
Unclassified Network Guard (SUNG). The
MISSI program office markets a solution set
for Fortezza encrypted E-mail from Secret to
Sensitive but Unclassified domains. The
TMEG product was previously mentioned. All
of these have one trait in common — they
attempt to meet a valid operational
requirement securely. Two products are
discussed below.

IM SUSPECT — Information Migration between
Secret and Unclassified Systems, Primarily
Enforced by Conventional Techniques

While the acronym is perhaps fitting, this E-
mail guard doesn't exist. It exists in spirit in a
number of installations where a security policy
is enforced which counters legitimate technical
threats. If the product did exist, it would only
allow the exchange of reviewed textual E-mail
messages, like Simple Mail Transport Protocol
(SMTP). Since the reviewer is charged with
ensuring that only proper information
exchange occurs, each data object is
reviewed with a trusted viewer in its entirety
prior to transmission.

Since E-mail is generally free-form text, it is
almost impossible to determine whether it is
classified unless the information is read by a

cognizant individual. The necessity to only
support textual E-mail from high to low is a
direct result of the inability of most users to
differentiate the control information in a
standard word processing document, from a
storage channel (e.g., encrypted
representations of high information). The
potential for detecting such signaling in a non-
textual file, like a spreadsheet or graphic file is
even greater, so these could not be
transmitted from high to low.

The problem associated with low objects
entering the high side is mainly trying to
identify penetration attempts. It is difficult to
distinguish between the embedded macro
within a Lotus® 1,2,3 spreadsheet, (which can
invoke almost any functionality) and the
legitimate mathematical operations of an
economics forecasting model. Script files are
text-based; if the script is invoked on the high
side, an insecurity may result. These are
relatively easy for a human to detect.

While E-mail exchange is possible in this
environment, it is resource intensive. E-mail
which does not meet the review criteria would
be rejected.

SMUG ENUF — Secret (Multilevel) Unclassified
Guard, for E-mail, News, and Unformatted Files

This "product" doesn't exist either, except in
the headlines and text of vendor literature
describing how Unclassified information can
be securely transmitted from a user in the
Secret system-high domain, to the recipient in
an Unclassified domain. Generally
implemented on a trusted MLS system (at
some stage in the NCSC evaluation), this
fictional guard facilitates the exchange of
SMTP) with Multimedia Internet Mail
Extensions (MIME) on TCP/IP. Messages and
attachments, originating on the high side, are
checked for strings like "Confidential" and
"Secret." If these are found, the E-mail is sent
back to the originator. If not found, the
message is regraded low and forwarded to the
Unclassified domain. Low messages are

242

parsed in the same manner; if the dirty words
are found, the hapless user gets to meet the
site security officer up close and personal.

A "more robust" solution has been identified
which makes use of (Fortezza) cryptography
applied to putatively low data objects in a
system high environment. One of the solution
sets proposed by the Multilevel Information
Systems Security Initiative Program Office, in
this scenario the guard (or Secure Network
Server) validates that the object is encrypted
properly, and then transmits the object low for
delivery. This provides a very secure channel
for potentially classified information to travel to
the low domain.

While both of these solutions enable the
comparatively easy exchange of E-mail
between the high and the low domains, these
solutions do not adequately address the
potential for inadvertent high information
migration to the low domain. To varying
degrees, the solution documentation alludes to
a level of residual risk which must be
assumed. Since identifying this risk as
potentially unacceptable would preclude a
sale, the marketers stress the operational
benefits of the solution.

What Policy can Allow Automated High-Low
Transfer with Acceptable Residual Risk?

There is no universally applicable answer to
this question. System high output must be
handled as required by the most sensitive
information processed or stored on the system
until it is reviewed [Com95]. The depth and
breadth of an automated review (conducted by
a guard by implementing filters) will be a
function of several parameters, including:

Must the guard address the legitimacy of
advisory markings contained within the
message text. Must it counter willful efforts
by a telegram author to conceal Secret
information in inappropriately marked
messages. Said another way, can the
reviewer believe that if the message

contains the string "UNCLASSIFIED" in
appropriate locations, then this accurately
reflects the author's belief of the message
information content? If not, manual
cognizant review will be required.

Does the guard have to address covert
storage channels from high to low? Must
data that potentially represents encrypted
Secret information be deleted from objects
before they are transferred from high to low?
If so, sophisticated filtering will probably be
required.

Does the guard have to address covert
signaling from high to low? Will it be
accessed interactively by high and low
users? If so, a B3 or higher system should
form the basis of the guard platform.

What is the projected service level? Could
the number of messages associated with
this level of service be legitimately reviewed
by a human? Notwithstanding the legitimate
technical vulnerabilities, if the number of
messages exceeds number that can be
reviewed, than an admittedly risky,
automated solution is required. Minimizing
the technical risks becomes the goal of the
guard architecture.

Cognizant humans should review an object to
change its handling requirements from that
required for system-high information. If the
resource/manpower costs for human review of
the messages are so high that this is not a
viable option, an alternative strategy must be
developed. Even if cost is not an issue,
review quality could be a factor, since even
the most conscientious reviewers eventually
become fatigued.

Ideal E-mail Guard Platform

What is the ideal automated guard for the
system high processing discussed herein?
The filtering applications should be hosted on
a trusted, multilevel secure system. The use
of a trusted multilevel system allows a

243

reasonable level of assurance that the filtering
functionality within the guard cannot be easily
bypassed. Stated another way, the features
of a multilevel system, especially mandatory
access controls, allow a security policy to be
established within the guard such that
message traffic which enters the guard on the
high side (from the Secret system-high
domain) can never leave the guard on the low
side (to the Unclassified domain) without a
regrading of the message sensitivity level.
This regrading will ideally occur as a result of
the telegram successfully meeting the criteria
of the review processes, but can also occur
based on the manual review of a human user
with the requisite privileges.

The ideal candidate for an E-mail guard host
platform is one which offers high assurance at
a low price. Since the assurance level of the
TCB is proportional to the assurance that the
messages were filtered prior to transmission,
in some respects, the higher the assurance
the better. If two domains with disparate risk
environments are interconnected, than a high
assurance trusted MLS solution is essential.

Guard Application Filters

The TCB will host a guard application which
can be viewed as a number of filters. The
guard software is designed and developed to
meet specifications. One of the specifications
should ensure usability. The best message
guard in the world is worthless if it can only be
managed and operated by computer scientists
or systems programmers.

Specifications are detailed descriptions of the
features required of a program that
programmers write code to produce.
Specifications implement requirements, which
relate the features and functions that a system
must have. These requirements, in turn, stem
from policies, which guide the actions of the
agency. Policies can be set at the national
level, such as Executive Orders, or at the
agency level, such as a DoD regulation. The
policies upon which the guard processor

requirements are based can be summarized
as, "Classified information must never be
handled as if Unclassified" and "Attacks
launched against the guard, especially by low-
side users, should never succeed."

For the sake of discussion, three fairly typical
constraints are provided for this hypothetical
example of guard operations.

The messaging application has transmitted
many messages correctly, i.e., in a manner
which has not lead to spillage of information.
Errors have, nonetheless, been observed.

The second constraint is that the manual
review of messages should only occur if
required by a filter, since the volume of
messages exceeds five thousand per day.

The third constraint is that the guard
application does not have to detect classified
information willfully inserted by the drafter
into a message destined to a low-side
recipient.

Several approaches can be taken in
developing requirements for this guard. These
approaches, which are based on the
functionality that the guard should implement,
can be broken down into three general areas:
looking for indicators of correctness in
message processing, looking for indicators of
mistakes in message processing; and
evaluating patterns and meanings of text
strings. The last general area of filter
mechanism attempts to accomplish actions
which are similar to those of a human
reviewer.

Correctness is an attribute of processing
which can be measured only if a metric for
correctness exists. For messaging, the metric
must be established with respect to messages
transmitted from the high side to the low side,
after which, the guard can examine messages
to determine if they appear to be correct.
These values can then be parsed, and
evaluated by the guard application.

244

A procedural requirement should be
established that messages intended for the
low side contain the string " (u) " or "UN "
as the first characters of the subject line in
the message header.

Likewise, users should be required to begin
and end the message text with the string,
"Unclassified."

A recipient of the message (a name/domain
pair) may not exist on the high side.
Messages intended for the low side should
be sent only to low-side addressees, to
reduce the impact of inadvertent message
transfer errors.

Similarly, filters can attempt to identify
messages that are incorrect, i.e., they lack the
necessary attribute of correctness. Filtering
on the inverse of the last three criteria allows
potentially incorrect messages to be identified.
Additional criteria can also be developed
which potentially indicate incorrectness such
as:

A message could contain any of a number of
dirty words, i.e., strings, the presence of
which could indicate classified information.
Such strings include: "secret", "NOFORN",

"OADR", "S E C R E T", "CONFIDENTIAL",

etc. A capability to identify clean words, like
"Secretariat", "Secretary", "LOADR" allow
the filter to be more efficacious.

A message could contain attachments other
that text. Since such attachments cannot be
reviewed in a trustworthy manner, they are
ineligible for a lesser handling requirement,
and may not leave the Secret system-high
domain.

Since message text cannot be modeled (i.e.,
message text cannot be predicted), the first
two types of guard mechanisms (correctness
and incorrectness attributes) have only limited
utility to filtering the actual text of the
message.

Nonetheless, structural characteristics of
messages, if pre-ordained, can be used for
developing rules for detecting some
anomalies. Anomalies are elements of a
message which do not meet a rule. The most
important feature of an anomaly is that it could
represent the spillage of information from one
message into another. Human reviewers will
have to determine if the anomaly represents a
mistake, or if the anomaly is simply a different
format from the required norm.

The rationale for focusing on structural
characteristics stems from the constraints
provided. Since the mechanism for message
transmission and the system-high
environment are viewed as benign, the focus
of the filters is on identifying random, non-
deterministic errors, which could result in
spillage. An example of such an error is four
lines from the text of one message being
appended to a paragraph in a different
message. These errors would be detectable
by the guard only if the error causes a format
rule to be violated.

Operational and security goals conflict directly
when determining such rules. If a rule is
violated, and the violation is not caused by a
message processing error, a type 1 (or false
positive) error occurs. A human is
inappropriately required to review a correct
message if a type 1 error occurs. Conversely,
incorrect telegrams which do not violate
structure rules represent type 2 errors, or false
negatives. Type 2 errors occur when a human
should review the message, but the
automated filters did not detect an incorrect
state of the message.

Operationally, minimizing type 1 errors is a
significant goal, since type 1 errors require
human intervention unnecessarily. From the
security perspective, minimizing type 2 errors
is the most significant goal. Effective rules
can minimize both types of errors. Potentially,
type 1 errors will increase as type 2 errors
decrease in the guard processing. This

245

results from being able to identify anomalies
only to the extent that format rules are
violated. Said another way, the more
precisely the message format is modeled, the
more false positives (telegrams which the
guard does not allow to pass, even though the
text is innocuous) will be detected. The
degree to which the format of message text
matches a predefined pattern is a function of
how well the message originators adhere to
preestablished norms, hence the problem.

The third class of mechanism, which includes
text and language analysis, best counter
information security vulnerabilities. Because
of its ability to only execute preexisting
instructions, the most difficult thing for a
computer guard to do is to act, or react, like a
person. Human behavior (in this case, the
actions a concerned, human reviewer takes
while reviewing messages) is infinitely
complex, and thus, almost impossible to
model. Conversely, if the desired behavior
can be modeled, it is normally possible to
automate.

Guard Functions

Since a human reviewer would not be charged
with validating the correctness of the
Unclassified marking (wouid not have to
second guess the author as to whether a
message is under-classified), what would a
reviewer do? This distinction is not trivial
since reviewers in guarded environments, like
the OIW, often must completely review data
objects for information content before the data
object is allowed to transit to the low side of
the guard.

Conscientious reviewers probably scan
messages, instead of reading them. While
scanning messages, reviewers would be
looking for any indication of potential spillage.
Finding an indication (such as a subject line
embedded in the second page of the message
text) the reviewer would then read the text to
determine if spillage had occurred. Scanning

would focus on identifying any of at least five
indicators of possible spillage:

1. Is the message legible, i.e., in English?
Said another way, do the words (i.e.,
character strings delineated by spaces
and/or punctuation marks) exist in the
agency's lexicon?

2. Does the message make sense? Does the
syntax (the way in which words are put
together to form phrases and sentences)
convey a message that is understandable?

3. Does the theme of the message change?
Is there an unanticipated change in the
subject of the message (e.g., a paragraph
about satellite perihelion within a message
reporting on unit readiness in Europe)?

4. Does the message contain markings or
words indicative of classified information?

5. Is the message complete, e.g., nothing
extra and nothing missing?

All of these activities would occur concurrently
as an operator reviewed the message.
Whether or not these activities, especially
items two and three, could be automated is
unclear. To legitimately get the human out of
the loop without a potentially unacceptable
high level of residual risk, all of these activities
should occur on a message guard reviewing
free-form text.

Of the five activities identified, only two (items
four and five) appear to be relatively easy to
automate. Items one and two could potentially
be automated, but the processing impact
could be significant. Determining the legibility
of a message (item one) can be automated
using dictionary look-up techniques. In a like
manner, the message syntax can be
evaluated (item two) using methods similar to
the Grammatik application, a PC-based
grammar and syntax parser. A specialized
form of such a parser has been described
[Lun87] in which a rule-based expert system

246

uses syntax and word relationships to classify
certain data items appropriately.

Evaluating for an inappropriate theme change
(item three) within a message could be
accomplished syntactically, keying on
geographical location or noun family. Natural
language analysis continues to progress (the
reader is invited to listen to the marketing spiel
about Oracle's® Context® application) but this
type of check will possibly always require a
human.

As discussed previously, message text can be
scanned for specific delimited strings (item
four) such as "(TS)", "CNWDI", "CLASSIFIED"

which indicate the potential presence of
classified information. The utility of this will
always be marginal.

If message format can be relied upon as a
metric for completeness, the fifth activity can
also be automated. This proposal to use
message format as a metric of completeness
is not rigorous. Scanning for known
structures, such as the presence of a period at
the end of a paragraph, or the string
"Unclassified" at the end of message text,
provides limited assurance, at best, that
incomplete messages (messages that are
missing required information or contain
extraneous information) are identified.
Notwithstanding these weaknesses, this is the
most practicable manner of enabling the
fulfillment of operational requirements. While
vulnerable to exploitation by Trojan horse
attacks, the likelihood of inadvertent errors in a
closed environment can be reduced by
structural filtering.

Filter Requirements

Structural similarities in message format can
be used as filters for anomaly detection,
especially if a unique format is administratively
required for low information-content
messages. Since the format can be modeled,
it can be filtered against, and thus identify

messages which should be reviewed by a
human.

What should the acceptable format be?

This will be site specific, but the following
illustrate some of the possibilities:

An unclassified line marking could be
required for all paragraphs.

If numbers are used for paragraphs, these
should be in order both serially and
alphabetically (i.e., paragraph 1 .A precedes
paragraph 1 .B., which is followed by
paragraph 2, etc.)

Additionally, paragraphs should end with a
period, a right parenthesis, or a colon,
followed by either a CR/LF, and CR/LF/LF.

At least 99% of the delimited strings
comprising the message text should appear
in the corporate dictionary if the message is
less than ten kilobytes in length. If the
message size is greater than ten kilobytes,
99.5% of the strings making up the
message text must be in the corporate
dictionary.

Specific specifications for a free-form text
guard with structural filtering include:

1. Spill for manual review all messages
without the string "(u) " as the first characters
of the subject line.

2. Spill for manual review all high-low
messages with a recipient that exists in the
Secret system-high domain.

3. Spill also for manual review all low-high
messages with an originator that exists in the
Secret system-high domain.

4. Spill for manual review a message which
contains text, the structure of which does not
meet format rules.

247

5. Spill for manual review all messages which
contain too many strings which are not in the
corporate word list.

6. Spill for manual review a message which
contains an occurrence of strings indicative of
classified information.

7. Spill for manual review a message which
contains invalid paragraph numbering. Validity
is defined in the message format rules.

8. Spill for manual review a message which
contains invalid paragraph ends. Validity is
defined in the message format rules.

10. Spill for manual review any message that
does not conclude with "Unclassified" as the
final string.

Summary

Only textual information can be transmitted
with minimizable security concerns between
domains processing at differing system-high
sensitivity levels, especially between those
with different risk profiles. Lexical and
syntactic parsing of message text could allow
a significant increase in assurance that text
transiting a guard processor from high to low
does not contain classified information. The
feasibility, processing impact, and increased
cost from development efforts relating to such
automated review make such parsing
questionable. Nonetheless, free-form text
messages can be filtered against
administratively established structural
characteristics to reduce the inadvertent
migration of information in a closed networking
environment.

A solution to the security vulnerabilities
associated with meeting multilevel messaging
requirements can only be found with the use
of trusted MLS systems at the point of origin of
the data. The exportability of labels from
these systems allows a mandatory security
policy to be enforced at the interface between

the domains without unnecessary human
intervention.

Reference

[Ber90] Jeffrey L. Berger, Jeffrey Picciotto, John P. L.
Woodward, and Paul T. Cummings.
Compartmented Mode Workstation: Prototype
Highlights. IEEE Transactions on Software
Engineering, 16(6):608-616,1990.

[Com85] Department of Defense. DoD Computer Security
Center. Computer Security Requirements -
Guidance for Applying the Department of Defense
Trusted Computer System Evaluation Criteria in
Specific Environments. June 1985. CSC-STD-003-
85.

[Dep85] Department of Defense. National Computer
Security Center. Department of Defense Trusted
Computer Systems Evaluation Criteria. December
1985. DoD 5200.28-STD.

[Def94] Defense Information Systems Agency. Message
Guard Assessment. Department of Defense
Multilevel Security Program Technical
Memorandum. June 1994. FOUO.

[Kur92] Charles Kurak and John McHugh. A Cautionary
Note on Image Downgrading. In Proceedings of
Eighth Annual Computer Security Applications
Conference, pages 153-159, San Antonio, TX,
December, 1992.

[Lun87] Teresa F. Lunt and Thomas A. Berson. An Expert
System to Classify and Sanitize Text. In
Proceedings of AIAA/ASIS/IEEE Third Aerospace
Computer Security Conference: Applying
Technology to Systems, pages 30-34, Orlando, FL,
December,, 1987.

[McH85] John McHugh. An EMACS Based Downgrader for
the SAT. In Proceedings of Eighth National
Computer Security Conference, pages 133-136,
October, 1985.

Definition of "guard," extracted from Microsoft Bookshelf© 1987
- 1992 Microsoft Corp. All Rights Reserved. The American
Heritage Dictionary and Electronic Thesaurus are licensed from
Houghton Mifflin Company. Copyright© 1986, 1987by
Houghton Mifflin Company. All rights reserved.

248

SECURING LOCAL AREA AND METROPOLITAN AREA
NETWORKS : A PRACTICAL APPROACH

Prof. Vijay Varadharajan
Dept. of Computing, Univ. of Western Sydney,

Nepean, Australia, email: vijay@st.nepean.uws.edu.au

June 6, 1995

Abstract

This paper considers the design and management of security services for connectionless services
in LANs and SMDS based interconnected LANs. First the security threats in such environments
are briefly outlined and the types of security services and mechanisms required to counteract these
threats are mentioned. The possible options for the placement of security functions in a LAN
architecture are discussed. The paper then describes the design and implementation of a secure
LAN prototype system. The applicability of the developed security layer to a SMDS network is
analysed. Then the design of a secure SMDS system is given.

1 Introduction

There is a growing interest in the development of broadband services and networks for commercial
use in both local area and wide area networks. Recently there is a real pragmatic drive for broadband
services, to meet the demand for increased bandwidth for remote sites inter-connection, and for image
and high speed data transfer. Broadband activity now has commercial services under a variety of
titles, some using ATM techniques such as Switched Multimegabit Data Transfer (SMDS) [1] and
Metropolitan Area Networks (MANs), and others such as Frame Relay [2].
It has been clearly established that there is a need for interconnection of Local Area Networks (LANs)
over a w ide area. The interconnection of LANs providing high speed information transfer is becom-
ing a strategic necessity for many enterprises to support their growing number of workgroup-based
and backbone-type LANs. As the importance of IT and global communications to an organization
increases, security and privacy issues are playing an increasingly significant role. In particular, with
the increasing use of broadband networks and the growth in the number of applications requiring
broadband services, network security issues are becoming critical to business and industry. In the
past the limitation to local site operation has provided some security features, but the use of external
networks and contractors, introduces new and greater risks.

This paper addresses the design and management of security services in local area network and wide
area networks comprising interconnected LANs via SMDS. SMDS and Frame relay represent the best
known ways of accessing multi-megabit backbones at present. We considered security for connection-
oriented Frame Relay service in [3]. A paper contasting SMDS and Frame Relay solutions is currently
in preparation. In this paper, we consider security for connectionless services. The paper is organized
as follows. Section 2 summarizes the security threats in a network enviornment and outlines the types
of security services and mechanisms the network architecture needs to support to counteract these
threats. Sections 3 and 4 address the provision and management of security services in a local area
network. Section 5 extends this to a SMDS wide area network and describes a secure SMDS service.
Finally Section 6 provides a brief summary.

249

2 Networked System Security

A typical networked system environment comprises networks, users (people), information storage
resources, computing resources, and peripherals. One may have various levels of interaction and
various degrees of sharing between these entities. At one level, we may have interaction between
different resources: such as host to host, host to peripheral, and host to storage resource. At another
level, one may have interactions between applications in different entities. At the outer level, we can
have interactions between users. Furthermore, the degree of interaction and sharing may also vary.
At one level, there may be just transfer of information (e.g. email, edi). At another level, one may
have sharing of computing resources (e.g. processors) and sharing of information storage resources
(e.g. disks). At the next level, one entity (e.g. an object) may act upon another entity (e.g. object)
to obtain a service from the latter. A still greater degree of cooperation occurs when entities jointly
work together to perform tasks. In each of these activities various attacks can occur and hence the
need for security measures become significant. Furthermore, in a wide are network, it is important to
consider the organizational structure and boundaries. This has impact on who has responsibility and
authority for which parts of the network and for what services. This is crucial for determining the
placement and operation of security functions, and the interactions between them.

In addressing the overall security of a network system, it is necessary to integrate computer system
security (COMPUSEC) and communication security (COMSEC) measures to protect information both
within the system and between systems. Neither one on its own can provide the required complete
protection of information in a networked environment. For instance, access controls to restrict users
gaining access to a resource within a system or on a network together with suitable flow constraints
to regulate the flow of information are essential. Trusted computer system mechanisms are needed to
ensure the enforcement of security controls and in the provision of the necessary assurance that the
correct operation of the security measures are maintained. Secure protocols are vital to the successful
operation of security measures. Security mechanisms like encryption algorithms form an essential part
of the overall solution.

2.1 Security Threats and Services

Unauthorized disclosure of information via eavesdropping and wiretapping is perhaps the most com-
mon threat that comes to one's mind when one thinks about network security attacks. Confidentiality
service is used to protect information from unauthorized disclosure. In a network environment, often
it is important that such a service is provided in an end-to-end manner, thereby ensuring that the
information is protected over the complete network path.
In a masquerading attack one entity pretends to be an other and attempts to gain privileges and
access to information and resources to which it is not authorized. User and origin authentication
services can be used to counteract such attacks. Mechanisms used to realize this service include the
use of challenge-response and cryptographic techniques in the implementation of secure authentication
protocols.
Another common attack is the unauthorized access to network resources. This can involve network
components such as printers or network resources such as operating systems, databases and applica-
tions. Access control service provides protection against unauthorized access and use of resources in
a network system.
The threat of unauthorized modification of information and resources causes integrity violation. Such
an attack may involve unauthorized insertion and deletion of information transferred over the network.
This attack often occurs in conjunction with other attacks such as replay whereby a message or part
of a message is repeated intentionally to produce an unauthorized effect. Integrity service provides for
the protection of information from unauthorized modification.
Repudiation of actions is another form of attack that can occur in a networked system. It occurs
when a sender (or a receiver) of a message denies having sent (or received) the information. The
non-repudiation security service that can be used to counteract such a threat provides proof of the

250

origin or delivery of information. Provision of such a service requires some form of digital signature
mechanism. Such a service also implies the existence of an agreed trusted third party whose primary
role is to arbitrate disputes resulting from non-repudiation.
Unauthorized denial of service attack by an entity involves the denial of a service to another entity
even though the latter is authorized to access that service. That is, an entity prevents other entities
from carrying out their legitimate functions. In a network, this form of attack may involve blocking
the access to the network by continuous deletion or generation of messages so that the target is either
depleted or saturated with meaningless messages. Denial of a service can be regarded as an extreme
case of information modification in which the information transfer is either blocked or drastically
delayed. The measures provided by confidentiality, integrity and authentication services can be used
to detect some, but not all, forms of denial-of-message-service attacks. For instance, they cannot detect
such attacks if they begin while the communication association is quiescent. In such a situation, the
receiving entity has no way of determining when the next information should arrive. In fact, it
will remain unaware of the attack until it attempts to send information itself. In many cases, the
entity attempting to send the information will detect the attack but it has no way of notifying the
other entity. A measure against such an attack is to have periodic exchange of information between
entities to ensure that an open path exists between them- The greater the frequency of such a request
response mechanism, the shorter the time period during which the denial-of-service attack will remain
undetected. However the disadvantage is that this reduces the effective bandwidth of the network.
The security audit service is somewhat orthogonal to all the security services described above in that
it is not directly involved in the prevention of security violations but assists in their detection.

2.2 Security Management

Key to provision of a security service is its management. A network security architecture needs to
support the management of these services and how changes in policy and its enforcement can take
place. For instance, in the case of confidentiality and integrity services, it is necessary to manage the
keys used in the encryption and decryption processes. In the case of access control service, we need
to manage the access control information such as access control lists and the access rules. Similarly in
the case of authentication, authentication information, e.g. passwords and keys, needs to be managed.
In the case of auditing, the management of audit trails and audit analysis is necessary.
In networked systems, it is likely that there is no single authority that controls the entire environment.
For instance, in an organization there may be several security managers responsible for a subset
of users, objects and operations. This does not mean that it is not possible to control security
in a distributed environment centrally. However even central security authorities end up trusting
that the authorities responsible for local systems have implemented appropriate security. There may
be several authorities performing different aspects of these security management functions : access
control authorities, authentication authorities, key management authorities and audit management
authorities. In practice several of these functions may be handled by a single authority.

3 LAN Security

LAN has certain specific characteristics which makes the need for security measures even more signif-
icant. For instance, typically data is transmitted on a media that is shared by every attached system.
Therefore any system attached to a LAN can transmit to any other system on the LAN. Similarly
information can be intercepted by any attached system. Even worse, a system can change the informa-
tion in a Protocol Data Unit (PDU) before it is received at the intended destination. This is especially
significant in LANs employing a ring topology, where every system must receive and retransmit every
PDU in order for the LAN to function properly. Also because every PDU is transmitted to every
other system on the LAN, it is difficult to identify the source of a given data transmission. Hence one
system can claim to be another system. Hence the threats of masquerading, unauthorized disclosure
and modification are further aggravated in a LAN environment.

251

Therefore it is clear that there is a need for security measures in a LAN environment. The question now
arises as to where in the protocol stack should the security services be provided. For the application
information to be protected, it is important that certain security services need to be provided at the
application layer. This will offer protection at the highest possible level in the stack. In addition
to this, there may be a case for providing protection at a lower level in the stack. The higher layer
security service will not protect the header information of the lower layers, as only the service data
unit of the higher layers's PDU is protected. So for instance if data integrity of header information is
required, then a data integrity service at the appropriate lower layer will be required. Also there may
be PDUs that originate and terminate at the lower layers, which will not be protected by a higher
layer security service. Perhaps the most compelling reason may be that the security services at a lower
layer offers a uniform, common protection for all applications from threats that are intrinsic to LANs.
In this sense, security at a lower layer such as the data link layer can be seen as a "door lock" which
acts as a first barrier, irrespective of any additional security that may or may not be provided at the
application level.

3.1 Security Layer for LAN

Let us now consider the possible options for the placement of security within a LAN architecture.
Security can be provided at the Medium Access Control (MAC) layer, or in between the MAC and
the Logical Link Control (LLC) layer, or at the LLC layer or above the LLC layer.

• The integration of security within the MAC layer will impact a number of existing products and
established standards. Furthermore, given that a common interface for different MAC standards
is emerging, it is logical not to integrate security within the MAC layer but to place it above it.
However note that with such an approach, it is not possible to address the threat of traffic flow
anlaysis in an adequate manner.

• The simplicity of the interface and the protocol is the major attraction for placing the security
layer between the MAC and the LLC sublayers. The security layer can be made transparent to
the MAC and LLC layers with no changes to their external interfaces.

• Integration into the LLC provides several advantages. It provides the possibility for providing
security services for both connectionless-mode and connection-oriented service operations. The
connection-oriented mode is not possible if the security layer is placed between MAC and LLC.

Connection-oriented mode does offer certain advantages with respect to key management. The
first is that the key granularity can be based upon the connection, and not simply between
the two peer entities which would be the case in the connectionless operation. This would
allow different keys to be used for different connections, providing better security in some cases.
Also the protocol can discard the key after a connection terminates, as the key is based on the
connection. The connectionless scheme would require a cache to store all recently used keys as
there is no concept of connection. Some other criteria would be required to disccard and replace
keys.

The second advantage arises due to the fact that most encryption algorithms use some form of
chaining to counteract the dictionary attack wh«ch makes use of repetitions in the ciphertext.
With the connection-oriented service, cryptographic chaining of multiple PDUs can be provided,
thereby reducing the overhead of re-initializing the cryptographic algorithm after each PDU.

Furthermore, connection-oriented integrity service is distinctly a different service compared its
connectionless counterpart, in that it ensures that the data units arrive in sequence and that all
the data units over the connection have arrived. Note that the connectionless integrity is only
concerned with integrity of a single PDU. The provision of the connection-oriented integrity in
LLC is somewhat similar to providing a connection-oriented LLC over a connectionless-integrity
layer between LLC and MAC. In this case, the sequence numbers as well as the data would

252

be protected against modification. However a problem would remain in the case of integrity
protection against truncation.

Finally, with the security integrated into the LLC, the granularity of security decisions and
enforcements can be at the granularity of the Link Service Access Points (LSAP) instead of

MAC addresses.

Hence there are several reasons why the provision of security within the LLC layer may be attractive.
The major issue however is the need to change the implementations of the existing LLCs. The
connection-oriented security services would require changing the way that the PDUs are processed.
The existing equipment would need to be modified and migration to a secure version made more
difficult. In fact, it is for this reason that the IEEE 802.10 Standards group has chosen to recommend
the placement of security services in between the MAC and the LLC layers.

3.2 Secure Data Exchange Layer

The IEEE 802.10 group has introduced a security layer called the Secure Data Exchange Layer (SDE)
between the LLC and the MAC layers. It is argued that a LAN layer 2 exhibits similarities to a Wide
Area Network (WAN) layer 3 [4], and should therefore provide the services recommended by ISO for
layer 3. To counteract the LAN security threats mentioned above, one would need at least the following
security services : access control, data origin authentication, data integrity and confidentiality. The
SDE layer is completely transparent to the surrounding layers and no changes are required to their
internal protocol mechanisms or external interfaces. The transparency of the SDE layer is intended
to make secure systems compatible with non-secure systems.

A Secure Management Information Base (SMIB) can be used to store security attributes for each
association maintained within the LAN. It is part of the Management Information Base (MIB). The
attributes include security keys, flags and identifiers needed by the SDE protocol in the implementa-
tion of the security mechanisms. The SMIB can be implemented as a table of entries, one for each
communicating pair of hosts. It allows the security management applications to control the operation
of the SDE layer. There are three types of objects that can be managed : end system, SAP and asso-
ciation objects. The system objects are global and apply to the entire SDE regardless of the security
associations. The SAP objects are applied to an SDE SAP, and the association objects only apply to
a particular association.

The SDE layer implements security by manipulating the transmitted packets on the LLC-MAC layer
boundary according to the security attributes stored in the SMIB. These manipualtions are completely
transparent to the upper protocol layers in that neither the format nor the semantics of the packet
are modified. Any LLC packet passing through the SDE layer is protected and passed onto the MAC
layer. Similarly, the received packets pass through the SDE layer before entering the LLC layer.

4 A LAN Security System

The provision of security services is dependent upon the perceived security threats and the trust
assumptions made about the LAN environment. Consider for instance a backbone LAN connected to
several sub-LANs. This is a typical configuration in large organizations who tend to organize their
LAN in subnetworks which form logically connected groups, e.g. on a departmental basis. In general,
we may have WANs interconnecting the LANs.

Case 1 : It may be that the intra-departmental traffic is trusted while inter-departmental communi-
cation needs to be protected. If this is the case, then it may be adequate to provide subnetwork to
subnetwork security. This can be achieved by implementing the security layer in an internetworking
component such as a bridge or a router. These secure bridges and routers effectively act as firewalls.
The data transmitted by an end system is processed by the security layer of the local bridge or the

253

router. On reception, the remote bridge or router unwraps the security functions and passes the
information to its end systems over its local LAN. Hence the information is only protected between
the internetworking components. Such an approach gives an easier migration path from a non-secure
LAN to a secure LAN.

Case 2 : If the local LANs within the subnetwork are not trusted, then the security services must
be implemented at the end systems themselves. In this case, every time an application entity sends
data to another remote application entity, the data has to be pass through the security layer. The
information remains protected until it is processed again by the security layer of the remote end

system.

4.1 A Secure LAN Prototype

Let us now briefly consider a protoype LAN security system that we have designed and implemented1.
The LAN configuration is as shown in Figure 1. The bus/tree topology has been adopted for the
prototype, using as branches the bridges and as leaves the end systems of the network. Local LANs
are assumed to be trusted and the objective is to protect the information over the backbone LAN.
This corresponds to Case 1 above. Hence the security layer was implemented at the bridges and not
at the end systems in this prototype. Each bridge provided security services to the end systems in its
subnet, when they establish an association with the end systems in other subnets. The security layer
offered the all the SDE (IEEE 802.10) security services.

Figure 1 : Secure LAN Prototype Configuration

Ethernet
SMC

Bridge A

Ethernet

EZZ3 H 3 /jr---, \

Bridge B

Ethernet

i
i
l

m;

— *=

/ \ \ L \ H

The prototype system comprised two Secure Bridges (SB) supporting a subnet each and a Security
Management Centre (SMC). The SMC is involved in activities such as the initialization and updating
of information in the secure bridges, the authentication between the secure bridges, and the addition
and removal of end systems in the network. In general, we may have one such Security Management
Centre per backbone LAN. This would then require peer-to-peer protocols between the SMCs.

'The author headed the Distributed Systems Security Group at HPLabs.,U.K., where this prototype was designed
and built.

254

The security attributes such as secure associations and keys are stored in Secure Management Infor-
mation Bases (SMIBs). The SMC initializes and updates security attributes in a secure way. The
network configurations and the associated security policy are specified in configuration files. The
SMC has a user interface for the Network Security Manager (NSM) to control the security policy. For
instance, using this interface, the NSM can inform the SMC and the SBs of the configuration of the
LAN, manage the LAN access control policy, determine the status of the SBs on the LAN, and control
network security auditing.

4.1.1 Security Management Components and Interfaces

The prototype was supported by SNMP based messaging thereby allowing the NSM to set up and
delete secure associations, manage router and end system configurations, and key exchanges. It had
the following management components and interfaces (See Figure 2).

• A Key Management Process (KMP) which provides mechanisms and services to execute a dis-
tributed key exchange for a security association.

• Security Management Application Entities (SDE-AE and KMAE) : These customize the SNMP
GET and SET client primitives. Each of these ask the SNMP Manager to issue an SNMP message
activating one of the possible remote management operations. The SDE-AE performs creation,
removal and display of a security association, configuration of security attributes (router and end
systems). A Key Management Appplication Entity (KMAE) generates each message belonging
to the KMP. It requests the SNMP Manager to activate a distributed key distribution session,
assigning new keys to the selected association.

• Security Management Centre Interface (SMC-IF) provides the network system manager with an
interface for executing the security management operations.

• SMC-SMIB has two logical components : SDE-SMIB and KMP-SMIB. It stores security man-
agement information such as network addresses, the security association map of the network
and information about the status of local SDE-SMIBs in the bridges, as well as protected files
storing keys that are used to encrypt an decrypt management messages to and from bridges.

• The SDE-SMIB and KMP-SMIB parts of the SMIB support the security architectural model by
operating interfaces between management applications, such as the SMIB-HANDLER and the
KMAE, and the operational layers KMP and SDE. A SMIB-HANDLER responsible for writing
and reading security objects stored in parts of SMC-SMIB.

• SNMP Manager implements the protocol mechanisms that assure the reliable transmission of
SNMP application messages over the end-to-end transport protocol.

• SNMP Agent responsible for the controlled reception of SNMP application messages from the
SNMP Manager of the bridges.

• SNMP Handler is an SNMP agent application managing the key management objects in the
KMP-SMIB after a key management message has been processed successfully by the Agent.

A Secure bridge has the following management components :

• KMAE to handle a distributed key management session.

• SNMP Manager : responsible for the reliable transmission of key distribution messages generated
by the KMAE.

255

• SNMP Handler : On the receiving side manages both the KMP-SMIB and the SDE-SMIB after
a successful SNMP message. The SNMP Handler reads and writes all station and security
association objects to the SDE-SMIB as requested by the Network Security Manager of the

SMC.

• Local SMIB (LSMIB) has two logical components, namely KM-SMIB and SDE-SMIB. KM-SMIB
is similar to the KMP-SMIB in the SMC. SDE-SMIB contains security objects characterizing
the secure bridge as well as the security associations between bridges.

• SDE layer performs the security controls and operations on transferred packets which are deter-
mined by the security attributes.contained in the LSMIB.

Initialization Procedure

The SMIB at the SMC segmented by the KMP, creating one LSMIB for each bridge on the network.
LSMIB of the bridge contains all the security attributes requested by the SDE layer of the bridge, in
order to support the security services for the end systems in its subnet. Each LSMIB is encrypted
by the KMP under the master key of the bridge to which it belongs and is stored in a file. When a
bridge is ready to join the network this file is read by the bridge as part of the installation procedure.
The network system manager NSM can change the security policy by modifying the contents of the
configuration files and reactivating the SMC. TheLSMIBs in the bridges will then be suitably updated.

The key management protocols designed for the LAN Security prototype are also applicable to SMDS
Security discussed in Section 5. They are desrcibed in a separate paper which is in preparation. (If
required, this could be provided in an Appendix.).

Figure 2 : Security Management Components

4.2 Security Services

Before considering the security services offered by the LAN system, it is important to note that the
svstem has three tvpes of keys, namely Secure Bridge (SB) Master Key (SBK), SMC Master Key

256

(SMK), and Session Key (SK). Each SBK is unique and is only known to the SB concerned and its
SMC. This key is used in the communication between the SB and the SMC. SMK is used to encrypt
the master keys of the SBs that are stored at the SMC. Encrypting this information prevents an
attacker from compromising the security of the LAN by obtaining the copy of the information stored
at the SMC. SMK is only known to the SMC and the Network Security Manager (NSM). Session Keys
(SKs) are used to encrypt communications between pairs of nodes which are protected by the SBs. A
different session key is used for each pair of nodes which communicate. Session keys are distributed
by the SMC and are only known to the SMC and the SBs involved in the communication. The session
key is unique with respect to a given session. The key management protocols in Section 6 will describe
how these keys are distributed between the communicating entities.

Figure 3 : SDE Packet Structure

LLC PDU

DSAP SSAF Control DATA

Encrypted (May include expansion and/or cryublo information)

SDE PDU

3
Octets

SDE
Designator

SAID User
Defined

4 var up to 20

The following security services are offered by the LAN security system

Access Control : The access policy determines whether a system Nl connected to a secure
bridge Bl can can communicate* with a system N2 connected to a secure bridge B2. It is the
system management's responsibility to set up associations and the security layer's responsibility
is to enforce the access control policy. The system management establishes which associations are
valid according to security policy and these are specified in the SMIB. This is then be used by the
key management process in determining whether an association between certain specific entities is
allowed to have appropriate keys thereby providing access control. Initialization and modification
of access control information are done by interacting with the SMC. The communications between
the SB and the SMC are protected using SB's key.

Authentication : The session keys shared by the SBs are used in authenticating one bridge
to another. Key updating is done by interacting with the SMC. In particular, if a bridge does
not have a shared key for another bridge, then it requests the SMC to establish such a key.
The SMC first checks its access control information to decide whether such a communication
is allowed. If so, it generates the keys and distributes them to the source and the destination
bridges. There may be cases where the SMC may decide it is necessary to change or revoke the
keys for a particular pair of bridges. In this case, the SMC will initiate the key change procedure.
The communications between the bridges and the SMC are protected using keys of the SBs.

257

• Confidentiality : Confidentiality service is provided using encryption mechanisms implemented
in the bridge. In general, one can use either a symmetric key or a public key approach. From a
computational point of view, a symmetric key based system is more suitable for data transfer,
and hence this has been used. The prototype implemented the DES algorithm. Each bridge's
LSMIB contains a list of symmetric keys of all the other bridges and the SMC. These keys are
used to provide connectionless data confidentiality between two bridges and between a bridge
and the SMC, by encrypting the LLC PDU under the appropriate session key (See Figure 3).

• Integrity : Once again, a symmetric key based scheme has been used to provide this service.
The packet is first hashed and then the resulting hashed (smaller) packet is encrypted using the
receiver's key (e.g. the key of the receiving node or the Security Centre) to produce a checksum
ICV. The ICV is appended to the PDU and is integrity protected by encrypting it under the
session key of the association (See Figure 3). The bridge or the SMC at the receiving end can
then calculate the checksum and see if it matches with the received one. This would not only
ensure message integrity but also provide origin authentication as the sending end system's key
has been used. A public key approach, would provide non-repudiation in addition to message
origin authentication and integrity. In practice, other parameters within the message such as a
sequence number are included to provide timeliness.

• Auditing : Auditing of packets and associated information such as the source and destination
end systems are done by the bridge. The securiy audit data can then be tranferred to the SMC
which then analyzes the data and takes appropriate actions.

5 SMDS Security

5.1 SMDS

SMDS is a connectionless public packet switched service which is currently defined to operate at 1.544
Mbps (DS1) or 44.736 Mbps (DS3). Access to a network supporting SMDS is through a Subscriber
Network Interface (SNI) over which operates the SMDS Interface Protocol (SIP). The SIP is currently
based on the connectionless data part of the Distributed Queue Dual Bus (DQDB) MAC protocol
defined in the IEEE 802.6 Standard.

The philosophy behind SMDS is that it should be a transparent LAN extender in that it provides
"LAN type" performance over wider geographical areas either through LAN/SMDS routers or direct
connection. The SIP provides a connectionless service by creating a SIP level 3 Packet Data Unit
(PDU) which contains the datagram to be transported and a MAC layer source and destination
address. SIP level 3 PDUs are segmented into 53 byte SIP level 2 PDUs which are sent through the
network supporting SMDS to an SMDS end point. At the SMDS destination, SIP level 2 PDUs are
reassembled into SIP level 3 PDUs, from which the data is extracted and forwarded to upper layer

protocols.
SMDS provides an address filtering mechanism which offers a limited security service, allowing cus-
tomers to subscribe to a set of addresses from which messages can be received and sent. At subscription
time, an access class will be chosen by the subscriber depending on perceived rquirements. This pro-
vides a lower average bandwidth than the full DS3 at a lower cost. This feature is used to control the
amount of bandwidth which subscribers have access to.

5.2 SMDS Security

The communication environment supported by the SMDS is similar to the LAN's layer 2 environment.
If we compare an SMDS network to a LAN, then every Customer Premise Equipment (CPE) can be
thought to be equivalent to a LAN host, having its own access path to the common transfer media.
Each CPE is uniquely identified on the SMDS network by an E164 address, just like each host has a

258

unique MAC address on a LAN. In fact, the security problems associated with the SMDS network are
very similar to the ones that arise on a LAN (layer 2).

At the first instance, we considered the provision of the four security services confidentilaity, connec-
tionless integrity, authentication and access control. Since security services provide different features
depending on the level at which they are implemented, the first issue is to decide the level at which the
security layer must be provided in the SMDS interface. Drawing on the similarities between SMDS
and LAN, one approach could be to place the SMDS security layer between the SIP and the IP layers.
This provides security services over the SNI-to-SNI path, and can be applied to an end system, router
or bridge accessing the SMDS through SMDS intermediary addresses.

Figure 4 shows an example of an internetworking scenario. On the one side, we have a LAN host
(system A) accessing the SMDS network through an SMDS router which interconnects to a a CPE
(system B). The security layer can reside on top of the SIP, on both the interfaces accessing the SMDS
network which in turn interfaces directly to the IP layer. This is just one possible scenario. This
approach can be extended to any SMDS configuration.

5.3 SMDS Security Prototype based on SDE

Given the similaries in security requirements between SMDS and LANs, we decided to apply the SDE
layer to SMDS. We developed a prototype system with the following configuration (See Figure 5):
two SMDS CPEs comprising end systems B and C, an SMDS router connecting the SMDS network
to a LAN and another end system A. The end systems A, B and C communicate with each other
via the SMDS network. A SMC residing at the LAN manages the secure communication between
the router and the SMDS CPEs. The SDE layer has been embedded in the SNIs of all the devices
accessing the SMDS - router, end systems B and C. On these interfaces, the security layer can be
either active or partially active or inactive, depending on the customers requirements. For example,
system B may require all the four security services, whereas end system C may only need a subset of
them, or even no security at all. Moreover, each subscriber may require different security service sets
for its communicating entities.

Once again all the security information required by the SDE protocol is stored in the SMIBs of the
router and the end systems. All local SMIBs are managed by the SMC in a manner similar to that
described earlier.

While the control of security associations on which the security layer is based is devolved to the
manager station, individual entities do have the right to activate and deactivate the security layer.
In this way, a degree of flexibility is provided without compromising the privacy, consistency and
correctness of the security attributes.

When for instance system B and the router ask for a secure communication path, the SMC sets the
attributes according to the request updates both SMIBs with the new association entry. The two
entities can then start communicating in a secure way over the SMDS public network by activating
the SDE layer which is embedded in their SNIs. The private keys shared by these entities are protected
and stored in the SMIB entry, and are managed by the SMC. When necessary, the SMC generates
new private session keys for the communicating pair, distributes them to the requesting entities in a
protected way (by applying cryptographic mechanisms) and updates the keys currently in use (stored
in the SMIB). Mechanisms allowing synchronization of the new key between the two entities is also
provided.

5.3.1 Security Management Components and Interfaces

The SMC components and interfaces, are exactly the same as those described in Section 4.1.1 for
the LAN Security system. Management components of the secure SMDS router/end system are very
similar to those in the secure bridge. These comprise the following :

259

Figure 4 : SDE in an Internetworking Environment

Higher
Layers

IP

LLC

MAC

 _ End-to-End Transport Protocol
TCP/UDPT^ """.* ::"~r ~ ^

Internetworking Protocol

LLC Protocol

Internetworking Protocol

LLC Protocol

IP

LLC

'SDL

MAC SIP

End
System

A

Router
SMDS

Figure 5 : Secure SMDS Prototype

SDE Protocol

Higher
Layers

TCP/UDP

IP

LLC
SDE

SIP

End
System

B
SNI

«fS SDE Layer

Ethernet

SMDS Router

Security
Manager

• KMAE : It handles the distributed key management session.

• SNMP Manager: It is responsible for the reliable transmission of key distribution messages
generated by the KMAE.

260

• SNMP Handler: On the receiving side it manages both the KMP-SMIB and the SDE-SMIB
after a successful SNMP message. The SNMP Handler reads and writes all station and security
association objects to the SDE-SMIB as requested by the Network Security Manager of the SMC.

• Local SMIB : It has two logical components, namely KM-SMIB and SDE-SMIB. KM-SMIB is
similar to the KMP-SMIB in the SMC. SDE-SMIB contains security objects characterizing the
secure SMDS router/end system as well as the security associations in which the end system or
the CPEs attached to the router are involved.

• SDE layer: It performs the security controls and operations on transferred packets which are
determined by the security attributes contained in the LSMIB.

6 Summary

In this'paper, we have considered the design and management of security services for connectionless
services in LANs and SMDS based interconnected LANs. First the paper described the security
threats in such environments and outlined the types of security services and mechanisms required to
counteract these threats. It discussed the possible options for the placement of security functions
in a LAN architecture. The paper then considered the design and implementation of a secure LAN
prototype. The applicability of the developed security layer to a SMDS network was discussed and
the provision of such a security layer in secure SMDS system was described.
The key management protocol that was designed and implemented in the LAN and SMDS security
system prototypes is described in another paper which is in preparation. The protocol is based on
symmetric key cryptosystems. It is also possible to use public key based key management protocols.
We have analysed these protocols using an extended BAN logic [6]

Acknowledgements : The author would like to thank his collegues at Hewlett-Packard who have
been involved in the implementation of the systems described in this paper. This includes Jackie
Balfour, Paola Fulchignoni, Panos Katsavos, Giovanni Marotta and Tony Wiley. The author would
also like to thank the anonymous referees for their valuable comments.

References

[1] Bellcore : "Generic Security Requirements in support of Switched Multi-Megabit Data Service",
Bellcore Technical Reference TR-TSV-000772, May 1991.

[2] IETF : Frame Relay Specification with Extensions, Internet RFC 1294.

[3] Vijay Varadharajan, Panos Katsavos, "Security for Frame Relay", Proc of the International
Conference on Computer Communications, 1993, USA.

[4] International Organization for Standardization (ISO), ISO 7498 : Part 2 - Information Processing
Systems - Open System Interconnection - Basic Reference Model - Security Architecture, 1988.

[5] IEEE 802.10, Standard for Interoperable Local Area Network Security (SILS) : Secure Data
Exchange Layer (SDE), 1991.

[6] Mike Burrows, Martin Abadi, Roger Needham, "A Logic of Authentication" ACM Operating
Systems Review, 23(5), Dec.1989.

[7] Vijay Varadharajan, Claudio Calvelli, "An Analysis of a Key Distribution Protocol for the Secure
LAN and SMDS Prototypes", In preparation.

261

USING NETWORK TRAFFIC ANALYSIS AS A SECURITY TOOL

Peter Troxell, Curry Bartlett, Nicholas Gill
Digital Equipment Corporation

1430 Oak Court
Beavercreek, OH 45430

Contract
This work was partially funded under contract number F33600-92-D-0132 by the Air Force
Materials Command 88th Communications Group and the Air Force Information Warfare Center.
The viewpoints expressed here are of the authors and not necessarily those of the government.

Abstract
This paper presents a method of protecting an organization's computers by monitoring the
network traffic. By then performing a traffic analysis on the connects between systems, security
personnel can detect questionable activities for further follow-up. This methodology is designed
to be complimentary to the use of network firewalls since it is analyzing authorized traffic for
unauthorized content. The Network Security Analysis Tool (NSAT) was developed for the U. S.
Air Force by Digital Equipment Corporation to perform traffic analysis as part of a centralized
security administration environment. NSAT and its use in an operational environment will be the
basis for this paper.

Introduction
One of the key mechanisms for protecting an organization's computer resources from
unauthorized users is the notion of a network firewall. The primary concept of a firewall is to stop
intruders at the front door by mediating what traffic is allowed to pass into the organization
protected by the firewall. Likewise, the firewall controls what information can pass from within
the organization to the external network. There remains a basic problem with firewalls: regardless
of how they are setup, some traffic (i.e. mail) flows between the internal network and the external
network. While most of this traffic is innocuous, some of it can contain material that is not
suitable for transmission into or out of the organization. This material could be trade secrets being
sent outside of the company, or attempted intrusions from hitherto safe hosts.

To counter the threat of unauthorized messages, the network traffic could be monitored to
determine suspicious activities that require further investigation. This monitoring consists of
keeping track of which systems are talking to each other and what ports the communication took
place on. In addition, timestamps of the starting and ending times of the transmission along with
the number of bytes sent are stored. This information can then be used to check if there has been

262

any other communications between these systems (historical perspective) or to see if there is a
pattern of similar connections indicating some type of probing. In either case the system addresses
and timestamps will allow further investigation by using the audit and other system information at
the end node.

An example of how this would work in a non-firewall configuration follows:

1. Site policy states that the computers are to be used for official purposes only, i.e. no games.

2. The traffic analysis indicates that a large number of connects from outside the company are
being made to port 4000 on machine A.

3. Telnetting to port 4000 on machine A gives you a welcome message for a Multi-User
Dungeon (MUD) game.

4. Since MUD games clearly violate the organization's usage policy, the system manager is
located and the game shut down. Disciplinary actions could then be initiated as necessary.

NSAT
As part of the Security Tools Enhancement Project (STEP), sponsored by the Air Force Materials
Command 88th Communications Group and the Air Force Information Warfare Center, the
Network Security Analysis Tool (NSAT) was developed to collect network packets and analyze
them in a security context. The analysis can consist of either performing traffic analysis on the
packets collected or session reconstruction. Using traffic analysis you can determine which
machines is talking to each other, what ports are being used by each, and the length of the session
in time and number of packets.

NSAT runs on Digital Equipment Corporation's VAX and AXP processors running the
OpenVMS operating system. Two computers are used to support the NSAT network
configuration as seen in Figure 1. The first computer (NSAT Collector) supports collection of the
network packets which are periodically passed to the second computer (NSAT Processor) for
analysis and storage. NSAT supports the collection and analysis based on either the DECnet,
LAT, or TCP/IP address, the protocol used, or the fact that the packet contained a certain
character string.

NSAT Collector

MINI I=I|
NSAT Processor

Figure 1: NSAT Network Configuration

263

Packet collection can be either the entire packet for cases where you want to do session
reconstruction or just the protocol headers (no body) when you want to perform traffic analysis
and do not need the contents.

Privacy Concerns

One of the design issues was to insure that the privacy of the network citizens would not be
violated. While performing the traffic analysis, only the packet headers are retained in the
collection file. These headers are retained long enough to build a connection record that details
the length of the session to include wall clock time and number of packets. After processing into
the connection records the packet header file is deleted.

Although recently resolved, using the keyword search capability did raise concerns centering
around privacy: the keyword search program is effectively reading the contents of every packet on
the network. Even though an individual would not be viewing the contents of any packets except
those that contained the keyword, we were concerned with a possible invasion of privacy. Recent
legislation now permits system managers to perform this type of monitoring. As an additional
measure, all systems are recommended to have a banner that indicates that users are subject to
monitoring.

Another concern was that the software would be obtained by unauthorized parties and used
against others. To counter this threat NSAT makes use of Digital's License Management Facility
(LMF). LMF is a mechanism in which software is not allowed to execute unless it has a valid
license on file. The use of licenses allows us to control what features of the software are to be
enabled such as Session Reconstruction. In addition, we can tie the license to a particular
machine so that even if the software and the license are placed on another machine, the software
will refuse to work! Lastly, the licenses can be made to expire so that time limits can be set for
how long it can be used. Our methodology is to issue licenses that enable the traffic analysis
portion as a rule. When in the course of an investigation of crime, law enforcement needs to do
session reconstruction, we will supply the appropriate license with an expiration date matching
that of the expiration date of their court ordered wiretap.

NSAT Collector

The NSAT Collector process runs on a dedicated workstation which is connected to the network
in a strategic location. The choice of location for placing the collector is the single most important
decision in the setup for traffic monitoring. Most sites will want to monitor the traffic that is
entering and leaving their network so the location for the collector should be as close to the
network feed as possible so that it can view the network packets as they travel to their
destinations.

The NSAT Collector can be configured using a command line interface which facilitates ease of
use from remote locations and batch command files. NSAT support the targeting of up to twenty

264

addresses in each of the DECnet, LAT, TCP/IP protocol suites. In addition, NSAT can target a
packet for collection based on it containing a keyword. These features are discussed below:

• DECnet Addresses: /decnet=(address, address,...)

The address is in the standard DECnet address format of area.number. An example using
DECnet addressing is:

nsat monitor/decnet=(16.150,16.143)

• LAT Addresses: /lat=(address, address,...)

The address is the physical address of the LAT device not its LAT service name. Because of
this the flat option can be used to target any network devices that you have the physical
address of its network interface. The address is input in its hexadecimal notation minus any
hyphens. For example the targeting of address 08-00-d2-fc-45-21 would be:

nsat monitor/lat=(0800d2fc4521)

• TCP/IP Addresses: /tcp=(address, address,...)

The address is entered in its standard dotted decimal notation. Entire subnets can be selected
by substituting 255 for the host portions of the address. For example to target all hosts who
live in 16.40.x.x, the wildcarded address would be 16.20.255.255. For example:

nsat monitor/tcp=(20.40.5.16,245.15.255.255)

In some cases it may be desirable to target only traffic destined outside of the LAN. To
accomplish this the NSAT Collector supports intra-area rejection as follows: Given three
areas A, B, and C (A and B being local, C being external), traffic between A and B can be
rejected whilst collecting only traffic that consists of the external connects (A=>C, B=>C,
C=>A, C=>B). Using the /reject option, up to 10 subnets can be selected to have just their
external traffic targeted. For example:

nsat monitor/reject=(120.60.5.0,40.1.0.0)

• Protocol Number: /protocol=number

Instead of, or in addition to, being able to target packets based on a particular address, the
NSAT Collector can collect all packets pertaining to a particular protocol suite. This is
initiated by using the hexadecimal protocol number of the protocol you want to target. Up to
one hundred different protocols can be selected at one time for collection. To collect all
packets that use the Novell protocol the NSAT command would be:

nsat monitor/protocol=8137 (Novell)
nsat monitor/protocol=6003 (DECnet)
nsat monitor/protocol=6004 (LAT)
nsat monitor/protocol=0800 (IP)

• Keyword Searches /target="string"

265

The NSAT Collector provides a keyword search tool that allows targeting of packets that
contain an occurrence of the string. The string can be any combination of characters up to 32
characters in length.

All of the above options can be used at one time allowing the NSAT Collector to be configured
for complex environments. To target the TCP/IP address 35.18.1.121, the DECnet address
25.153, and the LAT device 08-00-de-fc-22-13 you would do the following:

nsat monitor/tcp=35.18.1.121
nsat monitor/decnet=25.153
nsat monitorAat=0800defc2213

NSAT Processor

All actions performed after the NSAT Collector has collected the network packets that meet its
selection criteria are the responsibility of the NSAT Processor. In an operational environment
even the collector itself is controlled by the processor! Components of the processor software are
contained on both the collection and processing computers.

On the computer that contains the NSAT Collection software, there is a Batch procedure that
runs the NSAT Collector. This procedure is initially responsible for starting the collection process
and configuring it according to local specifications. Periodically the Batch procedure will restart
and cause the collection process to start dumping the raw packets to a new file. The name of the
file is changed to represent the originating system along with the starting and ending date/time
combinations contained in the file. The old file is then transferred to the computer containing the
NSAT Processor software and the local file deleted. In the case of a failure in the transfer the file
is held until the next cycle and the transfer reattempted along with the new file. Because of the
size of the raw files it is imperative that transfer errors be corrected within a few cycles otherwise
the disk will fill up and collection data lost.

The software on the processor computer takes the raw data files produced by the collector and
reduces them into a manageable form called the compressed file. Each connection contained in the
raw file consist of many records each representing a single packet. In the compressed file, each
connection is represented by a single record containing the start of the connection, type of
connection performed, status flags, total data packets transferred, and where possible the total
bytes transferred. The format for a TCP/IP connection is shown in Table 1 with corresponding
information being used for the other supported protocols, namely DECnet and LAT. It is
expected that this approach for collecting information will work well with other network
protocols.

The compressed file is then used to update the profile database which contains historical
information about which computers are communicating with each other. By querying the profile
database, security personnel can determine the type of activity originated or received by a given
network address over a period of time. The historical information is presented to the granularity
of a day which would then be used to limit the searches of the compressed files for more detailed
information on the connection in question.

266

Two additional databases are used by the NSAT Processor to provide address to name
translations. The Address database contains the information to identify the system type, and point-
of-contact, date last seen, along with the name of the system corresponding to a given address.
There is a record in the Address database for every address that has been seen by NSAT. This is
true even if the Address does not have a corresponding entry in the namespace. Corresponding to
the Address database is the Networks database which contains information to identify the owners
of the network portion of the addresses we have seen. Both databases will support versioning so
that the historical perspective on who owned a particular address can be obtained. This is useful
when investigating problems that occurred weeks, or months ago and the owners and/or locations
of the system has changed.

Table 1 - Compressed Record Format

Field Type Description

protocol byte Protocol Number
sport word Source Port Number
dport word Destination Port Number
source long Source Address
destination long Destination Address
start time long Time Communications Started
sequence word Sequence Number
end time long Time Communications Ended
pkt cnt long Number of Packets
sflag char[6] Start Flags Seen
eflag char[6] End Flags Seen
saddr char[6] Source Ethernet Address
daddr char[6] Destination Ethernet Address
file seq long File Sequence Number

The NSAT report generation capability allows the analyst to review the types of activity being
performed from a source address, a destination address, or by a type of connection. Address to
name translation is performed by searching the Address database for the address and if found
using the name found in the database. When a name is not found in the database the network
portion of the address is used to locate the corresponding record in the Network database and the
network name used. While using local databases for name lookups may lead to a discrepancy with
what the current name of the systems is, testing has shown that it is significantly faster that
querying the namespace and/or Network Information Center for the information. For those users
who prefer to do the lookups each time there is an option to the report generator to instruct it to
update the Address and Network database at run time rather than periodically as is typically the

case.

Information gleaned from the NSAT report can be used to create a rulebase which can be used by
administrative personnel for manual detection of hacking events. By examining the patterns of
connections and the ports to which they are made, it is possible to detect suspicious activity. Even
the time of the connection can play a role in detecting abnormal usage!

267

Once it has been determined that a network address is attempting to hack into a site, NSAT
provides the ability to determine which addresses on the network have been touched by the
activity. By using the report generator, a report of all addresses that have had connection with a
particular address can be produced. The report will provide an excellent starting point for
assessing how effective the attack has been, and which system managers need to be contacted via
the POC information in the Address database.

Intelligence information from various sources can be used to flag records in the Address and/or
Profile databases. Records can be flagged as being normal, anomalous, suspicious, attempted
intrusion, successful intrusion, or mixed depending on which best represents the findings of an
incident assessment. Sources of information include: host audit trails (including data gathered with
the companion tool - Facility Security Services), network traffic analysis, system managers,
CERT, and criminal investigators.

The NSAT Collector provides a string detection capability that can be used to detect
unauthorized data transfers or malicious code. Once the appropriate identification string has been
worked out for a given piece of code or data, it is possible to detect a network connection over
which the targeted information is being moved. The Profile database has a field to keep track of
which addresses have been seen transferring targeted information.

Operational Use
NSAT is being used in an operational environment at Wright Patterson Air Force Base to test its
effectiveness outside of the controlled development environment. The base houses two Air Force
labs, a higher-education training facility, and is the headquarters for a major command. Because of
the nature of the work performed by these organizations, their computers tend to be of interest to
those outside of the MILNET community.

The base's network is comprised of eight class B networks (e.g. 150.20.*.*) and one class C
network (e.g. 150.21.2.*) which contain over 8,000 computers ranging from personal computers
to super-computers. The NSAT Collector is placed at the base's connection to the MILNET and
is configured to keep track of all connections to off-base computers. This is accomplished by
instructing the collector to monitor the TCP/IP protocol suite and reject any connection between
the nine networks. This will leave just those connections to computers that are off-base. As a rule
all computers connected to the MILNET carry a banner indicating that users are subject to
monitoring.

Every three hours the connection information is sent to the NSAT Processor for data reduction
and analysis where the traffic patterns are analyzed. The raw file averages about 225MB in size
and reduces to a compressed file about 6MB in size. Once compressed, the raw packet file is
deleted and the compressed file will have two summary reports generated for review by the
security staff.

The first report is called the suspect list and is a report of attempts or successful connections from
hosts that we have designated suspect. These are hosts that for one reason or another have caused

268

us some concern in the past. Some of them are known to be distributing pornographic pictures
while others are addresses from which attempts have been made on systems located at the base.
Most of these addresses have been blocked at the router controlling access between the base and
the MILNET but they are monitored anyway to determine if they are still active.

Being a military base there is naturally some concern on connections to base computers from
foreign addresses. Although the maximum classification of data on systems connected to the
MILNET is Sensitive-but-Unclassified, there is some concern over data aggregation and
technology transfer that warrants looking into the information that flows out of the base. While
we are not naive enough to believe that attempts to gain information will be limited to foreign
addresses, attention is paid to where information is going. To keep track of the foreign
connections a report is produced detailing the connections between base computers and those
located outside the United States. This is accomplished by examining the hostname associated
with each Internet Address to determine if it is a foreign address.

A member of the Base Command, Control, Communications, Computer Systems Security Office
(BC4SSO) reviews the reports for any items of interest. Should a connection to a particular
computer interest the security personnel, either from a report or via a report from a system
manager, historical reports on the connections for a particular computer can be generated.
Another investigative technique that is used is that connections to non-standard ports are
investigated along with any suspicious connections to standard ports by telnetting to the port and
analyzing the characters returned. This will usually allow for the determination of the type of
protocol being used and a second connection made using the appropriate tool, i.e. Mosaic.

Whenever an incident is detected, the BC4SSO personnel work closely with the Air Force Office
of Special Investigations Computer Crime Investigators (AFOSI/CCI) who are responsible for
investigating computer crimes. A good working relationship has developed between the two
organizations in that information on incidents flows in both directions. When the OSI gets
notification of an incident from one of its sources the BC4SSO office is notified and assists the
OSI as necessary. Likewise, when the BC4SSO office detects an incident they notify the OSI and
again, assist as necessary. The STEP project team lends technical expertise to both groups to
assist in the interpretation of the NSAT findings, to develop new tools to aid in detecting and
investigating computer crime and other computer security expertise as needed.

Futures
Work is continuing on the NSAT to enhance its collection and analytical capabilities. During the
development and testing of NSAT it was observed that an appreciable amount of our investigative
time was spent locating WWW and Gopher sites. These were discovered when we were checking
out connections to non-standard TCP/IP ports. When telnetting to these ports, we received the
tell-tale return strings indicating that port was offering either WWW or Gopher services. In the
next release we would like to enhance the protocol detection capability to indicate whether
WWW or Gopher was operating on a specific port in addition to the standard TCP/IP protocols.

Connections to other types of networks other than Ethernet need to be examined. Work currently
underway includes enhanced support for FDDI networks. Because of the increase in network

269

bandwidth (lOOMbit/sec versus lOMbit/sec), additional work must be performed to optimize the
code in the collector so packets are not lost. In addition to FDDI, the use of ATM (Asynchronous
Transfer Mode) needs to be investigated.

The software contained in the NSAT Processor needs to be expanded to process the DECnet and
LAT protocols. Currently the processor only compresses the TCP/IP protocol packets although
all three protocols can be collected. Once the other protocols are stored in the compressed
database, similar queries to those for TCP/IP can be made to determine what computers are
exchanging information and where they are located.

Additional work also needs to be done on the analytical software to relieve the amount of human
intervention required to interpret the connection reports. As was mentioned above, NSAT
currently produces lists of connections that meet the selection criteria such as address. Reports
such as longest connect time, most packets, and most connects along with being able to sort the
report by protocol rather than address would make the task of analyzing the output easier. Checks
for systematic probing by looking for similar connects to network neighbors would also be a plus!
In the long term it may be possible to place an expert system within the NSAT Processor to
handle the looking for the run-of-the-mill attacks.

Conclusion
As we have shown in this paper, network traffic analysis, using tools such as NSAT, can be a
beneficial aid to improving the security of an organization. By being able to identify the
connections on a network and keeping a historical perspective on those connections, security
personnel can rapidly detect and respond to security incidents. In many cases, security personnel
can be responding to incidents before system managers have even detected them using their host-
based detection capabilities such as audit trails!

In the operational testing of the tool at Wright Patterson Air Force Base, one person was able to
monitor all traffic going on and off the base to identify suspicious activities. This was
accomplished by making use of the automated reports and selective queries against the historical
data to ascertain abnormal patterns. With continued work on the analytical portion of the tool it is
expected that the amount of work required of this individual would decrease thus freeing them for
other duties.

Traffic analysis is not meant to be a replacement for securing individual hosts or protecting
networks using firewalls. Rather it is another tool to be used as part of an integration effort to
provide a centralized security administration environment to help secure an organization of any
size from a continuing threat.

270

SAGE: Approach to Rapid Development
of Trusted Guard Applications

Karen Goertzel, Manager of International Programs
Secure Systems and Services Operation
Wang Federal, Inc.
7900 Westpark Drive — MS-700
McLean, VA 22102-4299 USA

INTRODUCTION

As providers of trusted guard solutions for the
US Defense Information Systems Agency, the
Naval Research Laboratories, the Federal Bu-
reau of Investigation, the Internal Revenue
Service, and several foreign government agen-
cies, developers in Wang Federal's Secure
Systems and Services Operation (SSSO) real-
ized that most secure guard applications share
the same essential architecture, and a signifi-
cant amount of common functionality.

With trusted guard requirements appearing in
more and more procurements, both in the US
and abroad, SSSO developers asked them-
selves whether, rather than having to design
and implement a custom-built application
from scratch to satisfy each new guard re-
quirement, they couldn't develop a single
standard "guard" framework that would sat-
isfy the vast majority of guard requirements,
and which would need only incremental cus-
tomization to satisfy them.

Having made this "discovery", the SSSO de-
velopers undertook to specify the detailed re-
quirements for just such a "generic" (or stan-
dard) guard framework. At the core of this
standard guard framework is a transaction
control and execution environment designed
specifically to automate the enforcement of
security policies associated with trusted guard,
gateway, and firewall applications. In addi-
tion, the SSSO developers determined that
many common guard functions could be
implemented by standard code that would
change very little if at all from one guard ap-

plication to the next. These standard functions
include:

• transaction control and management;

• discrete input and output functions for each
data path;

• pre-processing of data for each transaction;

• content validation of data for each transac-
tion before transfer through the guard;

• post-processing of data for each
transaction;

• configuration of the guard software through
a GUI-based tool;

• auditing of guard events and viewing audit
logs through a GUI-based tool;

• status monitoring of guard processes
through a GUI-based tool.

The customizable elements of the common
guard framework are the security policy itself,
plus any application-specific mechanisms re-
quired to enforce that policy. The guard also
supports controlled violations of system secu-
rity policy but strictly limits such violations to
processes isolated in the underlying comput-
ing platform. This isolation of security viola-
tions ensures that the guard application runs
without privileges, easing both the accredita-
tion and the portability of the application.

271

The guard framework is modular, with dis-
crete functions communicating among them-
selves via system calls and APIs, enabling
the easy integration of third-party software
modules to implement capabilities required
by the specific guard application. For ex-
ample, the pre- and post-processing func-
tions of the guard framework could be eas-
ily extended to support specific digital sig-
nature and encryption algorithms or an EDI
message-handling capability. Similarly, the
context validation function could be ex-
tended to use a third-party natural language
processor for parsing text messages, and/or
an expert systems engine for defining and
enforcing complex security policies.

In addition, the guard framework provides a
full set of extensible application programmatic
interfaces (APIs) to support services in the un-
derlying Trusted Computing Base or untrusted
computing platform, enabling the implementa-
tion of various communications protocols,
etc., as needed by the specific guard applica-
tion. By making it easy to link in third party
source and/or object modules, the guard
framework enables the rapid implementation
of sophisticated guard applications with a
minimum of custom development required.
Thus, a SAGE-based guard will comprise
bound units provided by Wang Federal com-
bined with application-specific components
provided by the guard developer/integrator.

STANDARD AUTOMATED GUARD ENVIRONMENT

Having defined what a standard guard
framework should be capable of, SSSO's
developers set about designing the specified
framework, which they called the Standard
Automated Guard Environment (SAGE™).
They determined that the SAGE should be
portable between computing platforms —
including high-assurance platforms, com-
partmented-mode workstations, and Class
C2-level systems — though Version 1.0
would run on Wang Federal's own XTS-300
Class B3-level trusted computing system.

The XTS-300 was an obvious choice for the
first SAGE implementation. It was a trusted
computer system with which the SSSO devel-
opers were intimately familiar, it had been
used and accredited in a number of trusted
guard deployments by US and foreign govern-
ment agencies, and it was the chosen imple-
mentation platform for the Defense Informa-
tion Systems Agency's standard Command
and Control Guard (C2G). The XTS-300's B3
security level poised the system to satisfy the
vast majority of government requirements,
which specify high assurance platforms for se-
cure guard applications. In addition to these
considerations, the XTS-300 adds the benefit

of a strictly controlled high-assurance com-
puting environment that rigorously protects
the integrity of applications developed to run
on it, and greatly simplifies the accreditation
of those applications. Like any other applica-
tion, a SAGE-based guard will take advantage
of the integrity protections provided by the
underlying TCB.

On the XTS-300, for example, the SAGE
guard can exploit the unique high-assurance
integrity mechanisms of the B3 STOP™ oper-
ating system to protect the integrity of ex-
ecutables and intermediate files used by the
guard, and to isolate guard objects (files and
processes) based on their Mandatory and Dis-
cretionary Access attributes. In addition, the
XTS-300 provides strong, highly granular
type enforcement, which supports the kind of
robust yet flexible Discretionary Access poli-
cies required for civilian and commercial
guard and firewall implementations. Of
course, on other platforms — like all software
applications — the SAGE guard can be pro-
tected only to the extent the underlying TCB
is designed to protect the integrity and enforce
MAC and DAC policies.

272

SSSO developers drew on the client-server
computing model and the POSIX concept of a
layered computing architecture. SAGE func-
tions are implemented in terms of a Standard
Client, for which one exists for each guard
transaction, with many transactions running
simultaneously within a single guard
instantiation. The Client interacts with the
Transaction Manager to control the flow of
transactions through the guard, while calling
the individual Standard Servers to perform
each phase of guard transaction processing.

The SAGE layered architecture (Figure 1) is
divided into a platform-specific section and a
platform-independent (i.e., application-spe-

cific) section. These sections are isolated
from one another by "abstraction layers" of
APIs. The highest level of abstraction, the
SAGE Application Layer (SAL), comprises
standard guard functions plus the security
policy to be enforced, and any additional ser-
vices required to enforce that policy (e.g.,
"dirty word" scanning, digital signature
mechanism). The SAL calls the Platform Ab-
straction Layer (PAL) Programmatic Interface
(PPI), a set of APIs that map application-level
functions to the underlying PAL. The PAL
then provides a second set of APIs that map
the standard platform interfaces to the actual
implementations of services provided by the
underlying computing platform.

5AL<^

PAL Programmatic Interface (PPI)

P latform-Independent Layer
-^ ^ ^ ^ ^ ^ ^ ^

Platform-Pependent Layer Programmatic Interface

PAL« / ^ y >(r ^ ^ ^ ^ ^
P latform-Pependent Layer

~3p ^ ^ S ■© ^

Figure 1. SAGE Architecture

273

The SAGE abstraction layers contribute
greatly to the portability of SAGE and SAGE-
developed guards. While platform specifics
may vary from computer to computer, the
SAGE application layer APIs and abstract in-
terfaces remain isolated from such platform-
specific considerations. From their point of
view, the underlying system services remain
constant from platform to platform. Put an-
other way, from the SAL's point of view, the
PAL represents an unchanging set of standard
operating system, communications, and secu-
rity services that a S AGE-based guard can rely
on regardless of how the underlying platform
implements these services. Figure 1 depicts
the architecture of the SAGE, and indicates
which of the SAGE modules allow for appli-
cation-specific extensions/customization.

The SAL
The SAL provides the SAGE-based guard
with its platform-independent application
functionality. The SAL is implemented as to-
tally unprivileged ANSI C code that is fully
portable across multiple platforms. The lack
of privileges required by the SAL code not
only simplify accreditation of SAGE-based
applications, it contributes to the SAGE
guard's portability because the guard will not
have to be reprogrammed at the application
layer to violate the security policy of the un-
derlying trusted computing base or untrusted
platform. Instead, SAGE is designed to iso-
late privileged functions to the platform itself,
and provides APIs that enable the guard appli-
cation to take advantage of the underlying
privileged functions to perform security func-
tions such as controlled policy violations, i.e.,
by making a PPI call to a facility in the under-
lying platform that is already privileged to
perform such violations. In addition, in the
ATG implementation (wherein the XTS-300
Monitor is privileged to perform such viola-
tions), SAGE ensures that when such viola-
tions are requested by the ATG, necessary
flow checks are performed, and the violation
is logged and audited (if security policy viola-
tion events have been configured for audit).

The SAL Standard Client and Standard Serv-
ers communicate indirectly amongst each
other by passing messages through the PAL.
Because it is unprivileged, the SAL cannot
violate the Discretionary or Mandatory Access
policies of the underlying host system. Any
security policy violations required by SAL
guard processing are implemented via APIs
from the SAL to the PAL, and from the PAL
to a facility in the underlying platform that is
privileged to perform such violations. In the
XTS-300 implementation of SAGE, this facil-
ity is the Monitor.

The SAL comprises the following software
modules, all of which are delivered with the
Application Template Guard (ATG) in SAGE
Version 1.0.

• Client Initiator—The Client Initiator deter-
mines when a new transaction is ready to
be processed, which causes a Standard Cli-
ent to be initiated to process that transac-
tion. For each guard application, the Client
Initiator is customized to include an appli-
cation-specific mechanism to "trigger" its
determination that a transaction is ready to
be processed by polling a directory on the
source system (i.e., the host from which
data will be transferred into the guard).

• Standard Client—The Standard Client con-
trols the flow of a particular transaction
through the guard, and sequences the trans-
action through the Standard Servers listed
in the SAGE configuration file.

• Standard Servers—These stateless dae-
mons are called by the Standard Client, and
in turn call various SAGE Common Sup-
port Routines, PAL PPI routines, and appli-
cation-specific routines to perform their
specific functions. These servers include
the Input, Pre-processing, Content Valida-
tion, Post Processing, Output, and Termina-
tion Servers. Each Standard Server is
modular and fully extensible, allowing de-
velopers to easily "plug in" application-
unique functions. For example, the Content

274

Validation Server may be extended to call a
standard COTS natural language processor
to parse complex messages, thus enabling
the Server to determine whether those mes-
sages meet or violate the defined security
policy being enforced.

Similarly, the Pre- and Post-Processing
Servers may be extended to call a govern-
ment-furnished encryption mechanism to
decrypt and re-encrypt data after they are
processed by the Content Validation Server.
Though the actual communication
mechanism(s) used to transport data to and
from the SAGE is implemented in the Plat-
form Abstraction Layer (PAL), one of the
functions of the Input and Output Servers is
to call on the PAL to provide the service re-
quired to transfer data into and out of the
guard environment.

Log Manager—The Log Manager provides
a common audit collection service to the
Standard Servers and the Standard Client.
The SAGE Log Manager can be configured
to collect a security-administrator-defined
subset of SAGE log events and pass those
events to the SAGE log file; the Log man-
ager may also be programmed to pass the
events to the PAL for writing to the system
audit file. In the latter case, the applica-
tion-level guard events are combined with
system-level audit events to provide full au-
diting of all guard-related, security-relevant
activities. SAGE also provides a Log
Viewer, which enables the administrator to
see a detailed display of guard log records.

Transaction Manager— The Transaction
Manager is the SAGE server responsible
for maintaining transaction state informa-
tion and the inter-process data space used
by the customized application components
(ie, the Standard Servers). The Transaction
Manager supports the stateless operation of
the Standard Servers by providing transac-
tion identification, and by monitoring and
managing the state of every transaction as it
is processed through the guard.

• X-Windows-based ConfigurationTools and
Guard Status Monitor— The SAGE pro-
vides an X-Windows-based Status Monitor
for observing guard functions in process, as
well as a set of X-Windows based system
configuration tools, eg, for defining the list
of Standard Servers to be called by the
Standard Client and the guard events to be
logged by the Log Manager.

The PAL
The SAGE PAL comprises:

• Platform-Dependent Layer Programmatic
Interface—library of software functions
providing a standard programmatic inter-
face to platform-specific implementations
of system services (i.e., operating system,
communications, and security services).
The peculiarities of different platforms are
hidden beneath this Programmatic Inter-
face, thus ensuring the platform indepen-
dence of S AGE-based guard applications.

• Platform-Dependent Layer—performs the
actual low-level transaction routing and
process management. In the XTS-300
implementation of SAGE, these functions

. are performed via privileged processes (i.e.,
daemons). The PDL is a library of plat-
form-dependent interface routines used by
both PAL and SAL processes. It includes
the Monitor, which is responsible for guard
start-up, shut-down, and for routing and re-
laying of messages between the Standard
Clients and the Standard Servers after au-
thenticating and validating those Clients
and Servers. The Monitor ensures that a
Server communicates only with a Client at
the same classification level unless an ex-
plicit re-grade is requested of the Regrader
daemon. The Regrader receives messages
from the enforcement modules of the Stan-
dard Servers requesting it to perform any
violations of TCB security policy required
to enforce guard securi ty policy (e.g.,
downgrading or upgrading). Only the
Regrader is privileged to perform TCB
policy violations.

275

TRANSACTION FLOW THROUGH A SAGE-BASED GUARD

The SAGE guard model is based on a client-
server model with platform-specific communi-
cation mediation. All communication takes
place via messages sent between the PAL and
the Standard Client and Standard Servers. No
direct communication occurs between the Cli-
ent and the Servers.

A transaction is processed through a SAGE
guard in a number of steps that are scheduled
and managed by the SAGE Standard Client,
which interacts with the SAGE Transaction
Manager to track of the progress of the Stan-
dard Client's particular transaction. The
SAGE Transaction Manager acts as a database
server of sorts, storing all transactions' ID to-
kens, as well as other information about the
transactions (including the current security
level of each transaction, i.e., its Mandatory or
Discretionary Access level), plus buffer spaces
of fixed size to be used as work spaces or
"scratch pads" by the transactions.

Step One: Transaction Initialization
The guard "idles" in a steady-state condition
until a trigger event occurs. The Client Initia-
tor recognizes this event and requests a trans-
action-id from the Transaction Manager via
the PAL-level Monitor. The Client Initiator
then requests the launch of a Standard Client
process, passing it the transaction-id. The
mechanism the Client Initiator uses to recog-
nize the trigger event and depends on the re-
quirements of the specific guard application.
For example, the event might be a call from an
external process, or it might be the mounting
by the SAGE guard of two NFS file systems,
one on a remote "low side" host and one on a
remote "high side" host. In any case, the logic
for Client Initiator trigger recognition is
implemented in the application-specific por-
tion of the Client Initiator.

From this point, the Standard Client takes con-
trol of the flow of Server invocations required
to process the transaction. The Servers to be

invoked are listed in the SAGE configuration
file. If any Server returns a failure, the Stan-
dard Client logs the failure and calls the Ter-
mination Server to unregister the transaction
and perform any application-specific house-
keeping. If all Servers succeed, the Standard
Client logs the success, passes the transaction
out of the guard to the destination point, and
calls the Termination Server to unregister the
transaction and perform any application-spe-
cific housekeeping.

Step Two: Input Processing
Input processing is handled by the Input
Server. Input processing brings the data into
the Guard for processing, ie, security policy
enforcement processing. In the one-way Ap-
plication Template Guard delivered with
SAGE Version 1.0, the Input Server ensures
that data transferred from the originating sys-
tem are stored in a high-integrity interim di-
rectory on the XTS-300. While they reside in
this directory, the data are available to the pro-
cesses that implement subsequent guard pro-
cessing steps when those processes call appli-
cation-specific logic. How data are handled as
they transit the guard in other SAGE imple-
mentations is an application-specific detail.

Step Three: Pre-processing
Pre-processing provides the logic for such ap-
plication-specific functions as transaction for-
mat processing (i.e., processing that confirms
that the guard is working with well-formed
data records). Pre-processing can be custom-
ized to perform functions such as:

• parse packet headers to validate header
structure;

• extract identification information from
packet headers;

• compute digital signatures or recompute
checksums;

276

• extract identifiers, sensitivity labels, date/
time stamps, etc, to be maintained by the
Transaction Manager to ensure their correct
reapplication to the data after content vali-
dation;

• generate messages caused by failed pre-
processing (to be forwarded to the Stan-
dard Client);

• audit security events according to defined
audit collection criteria.

Step Four: Content Validation
The Content Validation Server will the heart
of most more comples guard implementa-
tions. This process can be customized to
validate transaction content against the ap-
plication-specific security policy. Content
validation provides the logic for applica-
tion-specific functions, such as checking of
data content against application-specific se-
curity policy rules, for calling the TCB-level
function(s) permitted to violate system secu-
rity policy, i.e., to enable downgrading, and
for enforcement of guard policy rules in on-
ward processing of the data by subsequent
guard standard servers.

Step Five: Post-processing
Post-processing provides the mechanism for
outbound transaction format processing; it ap-
plies any necessary data formatting expected
by the target system. The Post-processing
Server contains the standard template that can
be customized to construct the logic for such
application-specific functions as affixing a

digital signature and/or encrypting the out-
bound data. In the ATG, this server re-grades
the file from low to high.

Step Six: Output Processing
Output processing provides the mechanism for
transferring the data from within the guard to
the destination location. In the ATG imple-
mentation, this data transfer occurs from the
SAGE host directory to the target directory on
the destination system.

Step Seven: TerminationProcessing
Termination processing standard logic pro-
vides a template for constructing the applica-
tion-specific logic for terminating processing
for each transaction. For example, termina-
tion processing might be customized to per-
form the following functions:

• retrieve from the Transaction Manager the
identifier, sensitivity label, time/date stamp,
etc, extracted by Pre-processing; reapply to
the data;

• delete transaction-related data (e.g., data
being transferred through the guard,
scratch-pad data) from the SAGE host di-
rectory upon success or failure of the trans-
action;

• generate acknowledgement/non-
acknowledgement message for forwarding
back to originating system;

• audit security events according to user-de-
fined audit collection criteria.

SAGE DELIVERABLES AND ACCREDITATION PHILOSOPHY

In implementing their SAGE design, SSSO
never lost sight of their original intent: to
create a transaction processing environment
and toolkit of functions and APIs from
which guard applications could be easily as-
sembled and customized. As a result, the
first release of SAGE includes just these

components: a transaction execution and
control environment based on the client-
server model, a series of C-language librar-
ies of basic guard functions and interfaces,
and a library of C-language APIs to lower-
layer (PAL) services (in Release 1.0 these
are XTS-300 services). As noted, Release

277

1.0 of the SAGE Application Development
Environment runs on the XTS-300 running
STOP 4.0.3 or later as well as the STOP
Software Development Environment.

As delivered, the Release 1.0 SAGE Applica-
tion Development Environment includes:

• executables for PAL routines, compiled and
linked for the XTS-300:

- command to manage guard execution

- XTS-300-dependent Monitor, RCE, and
Regrader functions

- other daemons required to support plat-
form-dependent functions

• executables for SAL routines, compiled and
linked for the XTS-300:

- basic routines

- Client Initiator

- Standard Server routines

- Log Manager and X-Windows-based
Log Viewer

- Transaction Manager and X-Windows-
based Status Monitor

- Standard Client;

• executables for the administration utilities;

• object code for the customizable SAL and
PAL configuration files and X-Windows-
based configuration tools;

• object code libraries for non-application-
specific portions of the Client Initiator and
Standard Server routines;

• source code templates and makefiles for ap-
plication-specific portions of the Standard
Servers and Client Initiator routines;

• SAGE Application Layer (SAL) header file
and function library;

• PAL Programmatic Interface (PPI) header
file and function library;

• tools to compile the application-specific
components of the Client Initiator and Stan-
dard Servers, and to link these components
with the non-application-specific binaries
to create the customized application-spe-
cific Client Initiator and Standard Servers;

• tools for building the SAGE-derived guard
installation media.

SAGE Version 1.0 on Wang Federal's XTS-
300 uses the inherent process isolation proper-
ties of the TCB to protect the integrity of
SAGE guard executables. SAGE isolates its
privileged code to a very limited, controlled
subset within the Platform Abstraction Layer,
dramatically reducing the amount of security-
aware application code, and easing accredita-
tion of SAGE-based guard applications.

Having weathered their share of system secu-
rity accreditations, the SSSO developers knew
they had to write SAGE in platform-indepen-
dent ANSI C according to strict coding stan-
dards, and follow DOD-STD-2167A develop-
ment methods in all accreditation documenta-
tion, to ensure consistent, portable, easy-to-ac-
credit code.

The SAGE Development Environment in-
cludes a generic set of user documentation (ie,
Software Release Bulletin, User's Guide, and
Security Administrator's Guide). This docu-
mentation is delivered in hard copy and on
electronic media, and is designed to be cus-
tomized by the guard developer to reflect ap-
plication-specific implementation details. The
SAGE Development Envrionment also comes
with a SAGE Application Programmer's Ref-
erence Manual. As with the SAGE software
itself, all SAGE documentation is maintained
by SSSO under strict configuration manage-
ment control in anticipation of accreditation

278

requirements. In addition to the generic
SAGE system documentation, Wang
Federalwill make any proprietary SAGE de-

velopment documentation available to quali-
fied accrediting agencies as required.

USING SAGE

SAGE provides the programmer with a well-
structured framework within which he can
build trusted guard applications more quickly
and easily than were he to develop those ap-
plications "from scratch". The Standard
Server Framework provides not only the entry
and exit points to and from each of the stan-
dard servers, it provides the transaction man-
agement logic for handling of each transaction
from initialization to termination. The Stan-
dard Server Framework (Figure 2) simplifies
the definition of the security policy. Depend-
ing on the policy, the programmer will deter-
mine which standard servers should be in-
voked, and what each standard server should
do. In many cases, defining what a standard
server should do will require the integration of
custom-built or third-party source or object
modules with, or calls to system services
from, the standard servers.

For example, a guard with a security policy
that included receiving and decrypting PGP

encrypted files, then re-encrypting those
files before forwarding them out of the
guard, could be rapidly implemented in one
of two ways: (1) by compiling the PGP
source code with the SAGE Pre-processing
and Post-processing servers, or (2) by writ-
ing calls from the Pre-processing and Post-
processing servers to a library containing
existing object code for PGP. In the latter
case, each call would include arguments
providing the encryption key or seed and the
address of space to which the resulting data
should be returned for onward handling by
the standard server. At compile time, these
PGP libraries would be linked into the
SAGE, and become part of the resulting
guard executable. In this way, numerous
existing software functions, such as (but not
limited to) packet header parsing, file con-
tent format checking, "dirty word" scan-
ning, virus checking, etc., can be easily
linked into the appropriate standard server
module of the SAGE.

|
app_server_initialization

STANDARD
SERVER app_server_<name>

FRAMEWORK

1 app_server_termination

SAGE Application Layer /
PAL Programmatic Interface

Platform Dependent Layer

Figure 2. Standard Server Architecture

279

Similarly, were guard policy to require the use
of a system-level service, such as the interface
to a Fortezza device, the Pre-processing and
Post-processing servers could make the neces-
sary system calls to that system-level inter-
face, including arguments defining the address
spaces to which the results of the decryption
and encryption requests should be returned.

SAGE's support servers (e.g., Audit server)
may also be integrated in this way with third-
party software, either through this kind of call-
level interface and runtime linking, or through
data-level integration. This is already done, to
some extent, in SAGE's log files may be "fed"

into the system audit collection mechanism of
the underlying operating system (in the case of
SAGE Version 1.0, the operating system is
STOP on the XTS-300), thus providing a
single, integrated audit trail for application
and system-level guard-related events. How-
ever, this integration of system and application
audit files need not end here. The SAGE log
file could be further defined to a third-party
audit analysis tool such as Haystack Labs'
Stalker, and SAGE's log collection mecha-
nism programmed to automatically copy the
SAGE guard log files into the Stalker audit
database for analysis and reporting.

SAGE USERS

While SSSO originally developed SAGE to
simplify their own guard application develop-
ment efforts, it soon became apparent that
SAGE, because of its easy configurability,
customizability, and portability, would be a
useful tool for other application development
shops. Thus, SSSO set about defining the in-
tended SAGE user, and determined that three
types of users can take advantage of SAGE:

• Integration or MIS staffs tasked to imple-
ment a trusted guard application for an end
user—Using the SAGE Application Devel-
opment Environment, Guard, developers
are relieved of the necessity of mastering
low-level, platform-specific details, and can
instead concentrate on high-level issues of
guard policy implementation, writing un-
privileged, application-specific routines,
and binding those routines with the appro-
priate standard SAGE modules. Thus, the
SAGE development environment makes it
possible to produce high-quality trusted
guard applications based on a uniform
transaction model. The result of using
SAGE is a guard development effort that is
much more cost-effective than building a
custom guard "from scratch".

• End user organizations, which can use
the features of the XTS-300-based "Ap-
plication Template Guard" — one of the
components of the SAGE deliverable —
with only minimal configuration—The
ATG is a simple, SAGE-derived, low-to-
high, non-accredited guard constructed
for execution on the XTS-300. The ATG
provides the electronic equivalent of an
"air gap" between two systems. Using
the ATG with the XTS-300 system docu-
mentation, an end-user can configure a
working guard on an XTS-300 without
any additional programming.

• Integrator and value-added reseller orga-
nization marketing personnel, who can
use the ATG as a demonstration tool—
Since the ATG is a complete functioning
guard with all support tools in place, it
can be used immediately for demonstra-
tion purposes. The XTS-300 SAGE ATG
Manual provides user-level documenta-
tion of an acceptance test suite that can
be used to demonstrate the performance
and features of a simple one-way SAGE-
derived guard "out of the box".

280

Experiences with implementing messaging security in MSMail 3.2

Abstract: Our experience with incorporating the MSP (Message Security Protocol)

library with the MSMail 3.2 User Agent provides a baseline to judge the complexity of

incorporating Messaging Security into other User Agents. MSMail 3.2 is a "layered" and

"extensible" User Agent making it particularly adaptable and hence suitable for adding

security services. We trade-off the different approaches to adding messaging security to

MSMail, leading to the design approach adopted for SPEX/Mail. We relate those

elements of infrastructure that are required above and beyond the existing Mail delivery

system in order to support secure messaging. An extensible directory service is needed for

certificate distribution. Because the proprietary directory systems provided with many

mail packages may not be extensible, we have chosen to create our own "adjunct" to the

current "address book" functionality of MSMail in the form of the "autograph book".

Infrastructure is also needed to provide for the distribution of Key and Certificate

Revocation Lists. We suggest the use of a Web Page on the NSA Web server as a focal

point for accessing the latest KRL and CRL files. We review our experiences with

performance and interoperability. We review how applicable what we have learned about

adding messaging security to MSMail might be to other mail packages, and even other

completely different applications. We conclude by reviewing our premise that the

experience of implementing messaging security for MSMail has left us with an

appreciation for how security may be added to other applications.

Author(s): James E. Zmuda

Russell Housley

Organizational Affiliation: Spyrus

Phone Number: (408) 432-8180

Internet Address: jzmuda@spyrus.com

Point of Contact: James E. Zmuda

281

Title: Experiences with implementing messaging security in MSMail 3.2

ABSTRACT

Our experience with incorporating the MSP (Message Security Protocol) library
with the MSMail 3.2 User Agent provides a baseline to judge the complexity of
incorporating Messaging Security into other User Agents. MSMail 3.2 is a
"layered" and "extensible" User Agent making it particularly adaptable and hence
suitable for adding security services. We trade-off the different approaches to
adding messaging security to MSMail, leading to the design approach adopted for
SPEX/Mail. We relate those elements of infrastructure that are required above and
beyond the existing Mail delivery system in order to support secure messaging. An
extensible directory service is needed for certificate distribution. Because the
proprietary directory systems provided with many mail packages may not be
extensible, we have chosen to create our own "adjunct" to the current "address
book" functionality of MSMail in the form of the "autograph book". Infrastructure
is also needed to provide for the distribution of Key and Certificate Revocation
Lists. We suggest the use of a Web Page on the NS A Web server as a focal point
for accessing the latest KRL and CRL files. We review our experiences with
performance and interoperability. We review how applicable what we have
learned about adding messaging security to MSMail might be to other mail
packages, and even other completely different applications. We conclude by
reviewing our premise that the experience of implementing messaging security for
MSMail has left us with an appreciation for how security may be added to other
applications.

Introduction

It's been said that E-mail is the "ethernet of the 90's", i.e. that E-mail is the "lingua franca", or enabling
network technology that will allow the Internet to achieve it's real potential of linking everyone to
everyone else. I personally think E-mail is a great boon, and routinely use it to solicit technical advice
from the "netmind". I have even trusted it enough to order goods and services through E-mail messages
where I routinely include my credit card number.

Well, I've had the misfortune of having that credit card number compromised.

In recent memory there have been a number of incidents that have underlined for the community as a
whole that commerce on the Internet is not quite ready for prime-time. E.G., the alleged pilfering of
credit account information by Mr. Mitnick, etc...

It's my position here that messaging security services can be used to protect against a number of threats to
the safety of the Internet.

It's my intention further to show how easy (or hard) it was to add messaging security to a popular E-mail
User Agent, namely Microsoft's MSMail 3.2 for Windows User Agent.

In section one we will review the architectural alternatives for adding messaging security to the MSMail
3.2 package. We will conclude with what we consider to be the best compromise between security and
efficiency. We also examine how to satisfy the goal of a User interface as faithful to the original MSMail
user interface as possible.

In the next section we discuss those elements of infrastructure that are particularly important to secure
messaging, but are not necessarily part of the support structure provided by many E-mail packages,

282

including MSMail 3.2. The most important of these is an extensible directory service that could be used
to store and provide for the distribution of MOSAIC certificates. We see that in the near-term before an
extensible directory service is available, we will have to provide a directory, or address book adjunct
which provides for the storage of certificates. We also discuss how to provide for the distribution of
revocation lists.

We talk about experiences with performance and interoperability. In particular, we review the happy
coincidence that the Fortezza MSP mail format includes a structured message format from the start,
meaning that Fortezza-compliant mailers will provide more than security, that they may also provide
interoperability as well. (This is unheard of...a security service actually increasing interoperability!)

We then review how applicable what we have learned about adding messaging security to MSMail might
be to other mail packages, and even other completely different applications that could benefit from the
security services provided by the off-line, or store-and-forward security model of MSP.

We conclude by reviewing our premise that the experience of implementing messaging security for
MSMail has left us with an appreciation for how security may be added to other applications in the most
convenient fashion.

But first, we start with a word about why MSP at all. Why not, for example PEM?

Why MSP?

Today, there are three popular approaches to securing electronic mail: 1988 CCITT X.411
Recommendation, RFC 1421, and Message Security Protocol (MSP). Each approach offers similar
security services, but there are significant differences. This section summarizes the analysis that was
performed to select one of the electronic mail security approaches for SPEX/mail.

DESCRIPTIONS OF THE THREE APPROACHES

The 1988 CCITT X.411 Recommendation provides message content security for X.400-based messaging
systems. As such, the security parameters are carried in the message envelope, and the entire message
content, which may contain several body parts, is protected uniformly. This approach permits the
protection to be added by the User Agent (UA) or by the Mail Transfer Agent (MTA). However, each
MTA in the delivery path must be capable of parsing the envelope which includes the security parameters.

RFC 1421, commonly called Privacy Enhanced Mail or PEM, provides security enhancements for SMTP-
based messaging systems. PEM provides security of message contents; the security parameters are placed
at the front of the protected content, not in the envelope. The syntax is parallel to the syntax used to
encapsulate a message content that is forwarded. The content can be a text message or a MIME message.
The content and security parameters are encoded to permit accommodate a 7-bit data path provided by
SMTP. This approach requires that the protection be applied by the UA, but places no restrictions on the
MTA.

The Message Security Protocol (MSP) provides security enhancements for either X.400-based messaging
systems or SMTP-based messaging systems. MSP provides security of message contents; the security
parameters are placed at the front of the protected content, not in the envelope. MSP defines a new
content type which includes security parameters and which encapsulates any other content. The concept
of the signed receipt is unique to MSP. This approach requires that the protection be applied by the UA,
but places no restrictions on the MTA.

283

COMPARISON OF THE APPROACHES

The 1988 X.411 approach is invasive to MT As. Each MTA in the message transfer system must be able
to parse the security parameters included in the message envelope. Neither the PEM approach nor the
MSP approach requires any MTA changes since no security parameters are added to the message
envelope.

The 1988 X.411 approach has some impact on the UA which must apply the protection or communicate to
the MTA which protections should be applied. The PEM approach has about the same impact on the UA;
the UA must select which security services are desired. The MSP approach has the most impact on the
UA; in addition to selecting which security services are desired, the UA must be able to process signed
receipts.

All three approaches are content independent.

Since the 1988 X.411 approach includes the security parameters in the message envelope, MT As can use
this information to provide additional services to the user. For example, when the final MTA delivers the
message to the destination UA, it can send a protected message to the originating UA indicating that the
message was successfully delivered. Neither the PEM approach nor the MSP approach can offer similar
services since the security parameters are purposely hidden from the MT As.

PEM and MSP both provide confidentiality, data origin authentication, and non-repudiation with proof of
origin. In addition, MSP also provides rule-based access control and non-repudiation with proof of
delivery. MSP carries a security label for rule-based access control decision support, and the MSP signed
receipt provides non-repudiation with proof of delivery.

PEM and MSP provide confidentiality in slightly different ways. Both protocols encrypt the message
content using a symmetric cryptographic algorithm and protect the symmetric key for each message
recipient. PEM encrypts the message key in the public key of each recipient. On the other hand, MSP
uses each recipient's public key to derive a token protection key; then the message key, a message integrity
check value, the security label, and other protocol control information are encrypted using the token
protection key. The PEM approach simply provides confidentiality, but the MSP approach bundles
integrity, data origin authentication, and rule-based access control with the confidentiality mechanism.

SELECTION

An informal survey indicated that the signed receipt capability offered by MSP is very important to
message system users. This is the primary reason that SPEX/mail implements MSP. The selection of
MSP also permits SPEX/mail to secure communications between Microsoft Mail 3.2 sites interconnected
by Internet and the Microsoft SMTP Gateway.

Alternatives for adding Secure Messaging to MSMail

The MSMail 3.2 User Agent is not an elaborate mail program. It represents a trend away from large
monolithic feature-rich programs toward more smaller programs to provide the same features. This is
why the MSMail 3.2 User Agent is constructed in an extensible fashion. The basic features responsible
for this extensibility are the support for new message types and the layering of the MSMail 3.0 User
Agent.

LAYERING

The basis for the layering in the MSMail User Agent is the API/SPI interface. The API/SPI (for
Application Programming Interface/Service Provider Interface) is the interface at which the three services
of the Microsoft Messaging Application Program Interface (or MAPI, actually Simple MAPI in MSMail

284

3.2), namely the Name Service (or "Address Book"), Message Store, and Message Transport, are provided
and consumed.

This layering means that applications can be mail enabled simply by adding calls to Simple MAPI. Thus
the Mail package doesn't need to provide for handling all types of uses of E-mail. < Scheduling, for
example, is handled through a separate program, Schedule+.

This layering also means that new and completely different mail transport systems can be supported
simply by creating a "provider" that supports the Service Provider Interface. This means that the same
Mail-enabled applications, and indeed the MSMail 3.2 User Agent look and feel can be used with
completely "foreign" mail systems. CompuServe, for example, supplies a provider that allows MSMail to
be used to send and receive CompuServe mail.

Figure 1 illustrates the layering of the MSMail 3.2 system.

L
L

Mail-enabled applications
J

Mail pump

Message store API

Client Server

Figure 1 - Layering in MSMail 3.2

ADDING NEW MESSAGE TYPES

The second element that makes the MSMail 3.2 User Agent extensible is the support for extending the
types of messages that can be processed. This is known as "adding custom message types". At the
occurrence of any event dealing with a mail message, e.g. a Create event, or a Read event, etc...MSMail
will determine the program to pass this event to based on the type of the message being operated upon.

This is the established interface for providing for new types of messages. For example, if a MSMail 3.2
site wanted to add its own E-mail meeting notice form, all that would be required is to add a line to the
MSMail initialization file, MSMAIL.INI, that lists the newly created message type and the name of the
executable file to invoke upon receiving any messaging events for that message type.

This is illustrated in figure 2.

285

Message ID and
command information
via PARAMBLK

Message ID and
command information
via command line or DDE

MSMAILEXE APPEXECDLL " J* w

^~
"^^"-^ A

^^

MAPI.DLL (

I
z>

zz*

Message Store

Figure 2 - Adding new message types

ALTERNATIVES FOR ADDING SECURITY SERVICES

Thus it can be seen that there are at least two ways in which to add security services to MSMail 3.2.

First, a new provider could be constructed such that the existing applications would be able to request
services through the same MAPI calls that are currently used to provide for the three basic services of
Name Service, Message Store, and Message Transport. This provider could then in turn call the
underlying MAPI service provider after having manipulated the messages to provide for the security
services requested on a transmit operation, or to undo the security services present in the case of a receive
operation.

The second way would be to implement the security services in a separate application that is invoked
whenever a message of the appropriate type is received. The APIs for doing this are more or less well
defined depending on how tightly integrated you want the message to be. Doing loosely integrated
message types is relatively easy: use the message store API to create a message with whatever fields you
want, use your favorite programming environment to display it, and create an INI file entry to put it on the
mail menu. The drawbacks to this approach are that you don't get all the nice behavior of standard mail
message viewers (MDI child of Mail main window, sequencing through the folder message list, etc.), and
that you can't reuse code from the standard message viewers (double-clicking on recipients to view details
and such). Solving those problems requires you to write C++ code and get intimate with a lot more of the
mail program. Schedule+ actually uses both approaches: their main program has its own viewers for its
own message types, but they've also written a viewer DLL for the mail program that presents schedule
messages in a tightly integrated way.

SPEX/MAIL'S METHOD OF ADDING SECURITY SERVICES

In our design we have chosen to use the second method of adding new messaging extensions, namely by
adding a new "custom" message type. This is the "approved" method of adding new message types to
MSMail 3.2. Figure 3 depicts the architecture of SPEX/Mail as an MSMail 3.2 "custom message type"
extension.

286

APPEXEC

MS MAIL
END

USER

message encryption,
signature, and

validation

SPEX/ UA

MS Mail requests,
secure messages

MAPI

secure messages

MESSAGE
STORE

SPEX / MSP

SPEX / MCC

certificates

CERTIFICATE
CACHE

Figure 3 - SPEX/Mail architecture

One of the benefits of this approach are that information is only decrypted while a message is being
actively read or processed on the users workstation. Mail messages are always stored, even in the users
local folders, in encrypted form. This maximizes security, however, at the expense of some efficiency.

This approach also provides for an independent executable, which can be utilized for handling the display
and creation of secure messages for both the E-mail environment, and other applications. As one
example, we shall see later that our SPEX/Mail "viewer" may provide the basis for a secure web browser.

Throughout the design our goal has been to maintain fidelity to the original MSMail 3.2 User Interface.

LAYERING WITHIN SPEXMAIL

Layering has been used within the design of SPEX/Mail. This layering accomplishes the same ends that
it does in MSMail: it provides the flexibility of swapping out various components. Within SPEX/Mail the
main layers are:

• SPEX/msp - This is our MSP 3.0 compliant MSP library
• SPEX/mcc - This is our Mosaic Certificate Cache to provide for the efficient validation and

handling of user certificates
• MIME 1.0 compliant user agent layer (with Fortezza MIME extensions) - For encoding MSP

messages so they can be processed by "SMTP" mailers.
• SPEX/Mail "Autograph Book™" - Our informal local cache mapping E-mail addresses to user

certificates. We see in the next section why this is needed.

With this layering, we have isolated the bulk of SPEX/Mail processing from the details of cryptographic
algorithms and certificate formats.

287

INFRASTRUCTURE TO SUPPORT SECURE MAIL

Secure messaging, even more than traditional messaging, relies upon an up-to-date universal directory
service. While a directory service may be helpful when sending an ordinary mail message, e.g. helping
the user map a person's name to an appropriate E-mail address, clearly a directory service is not essential
to accomplishing this task. All that's really needed to accomplish this mapping is a business card. On the
other hand in order to send a user an encrypted message, the originator needs to know the recipients
certificate. Each certificate is approximately 500 bytes. This isn't the sort ofthing that will fit on a
business card. Clearly some sort of electronic directory service needs to be accessible for secure
messaging to work.

Unfortunately, just the sort of directory service that SPEX/Mail needs is not, generally speaking, available
in conjunction with proprietary mail packages like Microsoft's. This is because we need an extensible
directory that will accommodate a new, very large attribute, namely the certificate.

What this means is that we had to put together an "adjunct" to the MSMail Name Service, which we call
the "Autograph Book™".

In the Autograph Book™ we maintain a mapping between E-mail addresses and certificates.

These mappings are established in the normal course of processing received messages. The act of
receiving a signed or encrypted message from someone else initiates an update of the Autograph Book™
entry for that person. This occurs only when the new certificate is different than the old, and then the
update only takes place if the user confirms the update. Since it is not possible to send an encrypted
message without first obtaining a certificate, the initial phase of communicating with a new party is to
exchange signed-only messages with each other. This initializes the Autograph Book™ on both sides
with all the information necessary for operation.

Figure 4 depicts the "Autograph Book" being used to map E-mail names to Common Names from the
certificate.

Autograph Book

gbuhje fGoidpn BuNe)
j in Zmuda (J im Zmuda)

ST"I
iiikiiititl

Wm$M.
■jssuujstsmjj

■:-:-:-:JxfiR|PE::$:$

B&VK& CeräfteoM» j Simdji&patw*?
■s.^mm;** ViiiiUititatux

Figure 4 - Autograph Book

The Autograph Book is, of course, only a temporary solution. When an extensible directory service is
available, another approach should be taken to providing an E-mail address to certificate mapping.

288

The lack of an extensible directory service also means that a new way has to be found for distributing the
Revocation lists that any public key certificate-based authentication scheme needs. Initially, we see
MSMail system administrators obtaining the latest CRL and KRL files and distributing them as file
attachments in a signed-only message to those under his administration. We suggest the use of a Web
Page on the NSA Web server as a focal point for accessing the latest KRL and CRL files. These can then
be forwarded by local system administrators via E-mail. At the User Agent the normal signature
verification processing during message reception and running a program locally to verify the structural
validity of CRL and KRL updates will provide integrity assurance.

EXPERIENCE WITH PERFORMANCE AND INTEROPERABILITY

Of course one of the first issues that will concern anyone employing security is the impact it will have on
the usability and performance of their system. As we've noted previously we have tried to maintain
fidelity to the original Microsoft MSMail 3.2 user interface. In the area of performance our experience
has been that the initial login process to the card is the most time consuming aspect of utilizing the
SPEX/Mail secure messaging system. The actual time overhead of the cryptographic processing, for the
most common message sizes (<1024 bytes) is negligible. Actually, due to the store and forward nature of
E-mail, all the cryptographic processing times are eclipsed by the time it takes for the mail itself to be
delivered.

As far as interoperability issues are concerned, we have actually been impressed with an apparent
contradiction that occurred after installing the SPEX/Mail package. Interoperability with other mail
packages actually improved. In particular, we have been able to successfully exchange messages with
Eudora, one of the most popular public-domain MIME mailers around.

This is because the government, in their wisdom, in the standard for Fortezza E-mail formats[7],
included not only a standard for how to carry the binary data that results from a Mosaic encryption, but
also specified the format for the message content itself, and insisted that it be a MIME-formatted message.
The result is that two Fortezza MIME compliant User Agents of any vintage should be able to exchange
secured structured E-mail (i.e. file attachments will work between two different mail packages).

APPLICABILITY TO OTHER SYSTEMS

The next thing to examine is the applicability of our experience to other E-mail packages, and other
applications. In particular, we have been examining the effort that would be required to provide
messaging security on other mail packages. We have concluded that each system will pose additional
challenges. In particular, MSMail seems to be unique in ease of extensibility in the PC environment.

Interestingly, the notion of extending the use of Messaging security to other applications has underlined
for us the wisdom of adopting the MIME formats for MSP secured E-mail. In particular, another
extensible application that may be augmented with the off-line or store-and-forward security services of
MSP is a Web Browser. In particular, since Web browsers support the recognition of MIME content
types, the addition of security to a web browser will consist of adding a line to the INI file to invoke a
program like SPEX/Mail on reception of a "multipart/X-MSP" content type.

CONCLUSION

We now have an appreciation for the ease of adding one kind of security to non-secure applications. The
effort is determined more by the existing architecture of the application being modified than by anything
else.

289

References

[1] SPEX/MSP API Message Security Protocol Application Program Interface, Document
Number D940403, Version 1.03, 24 August 1994.

[2] MOSAIC Certificate Cache Application Program Interface, Version 0.1,14 April 1994.

[3] Secure Data Network System (SDNS) Message Security Protocol (MSP), Specification
SDN.701, Revision 3.0, 21 March 1994.

[4] MSP Appendix MOSAIC Algorithms, 23 March 1994.

[5] MSP Appendix DMS/MSP/MOSAIC Requirements, 23 March 1994.

[6] MOSAIC Certificate Labeling Format Specification, Version 1.01, 7 July 1993.

[7] "MOSAIC Simple Mail Transport Protocol Message Format Specification", dated April 20th,
1994. Prepared by the MOSAIC program, NSA.

[8] MSMail 3.2 SDK reference, Microsoft Developers Network CD-ROM number 7, Winter 1994.

290

CAN COMPUTERS AND EPIDEMIOLOGY GET ALONG?

HEALTH PROBLEMS IN COMPUTERS

Guillermo M. Mallen-Fullerton MS
Universidad Iberoamericana/Universidad Nacional Autonoma de Mexico

Cerrada Providencia 43
10200 Mexico D. F.

mallen @servidor.unam.mx

Dr. Florencia Vargas-Vorackova PhD
Instituto Nacional de la Nutriciön

Vasco de Quiroga 15
14000 Mexico D. F.

florvar@servidor.unam.mx

Dr. Enrique Daltabuit-Godas PhD
Universidad Nacional Autonoma de Mexico

Direction General de Servicios de Cömputo Academico
Ciudad Universitaria

Mexico D. F.
enrique@condor.dgsca.unam.mx

Abstract

Computer viruses are producing severe damage to many organizations and individuals.
The decisions on which measures should be taken to solve the problem are usually made
on a subjective basis instead of the cost-benefit ratio of each different alternative.
Epidemiological studies provide the basic information to make similar decisions in health.

In this paper we present the results of a project developed by several Mexican
organizations to adapt the epidemiological techniques used in medicine to computer
viruses.

First we describe the computer viruses problem from a broad perspective, then, a brief
description of the basic epidemiological ideas is presented. Finally we have several
considerations to be applied in computer virus epidemiological studies and the
experience gained up to this moment in the research project that is under development.

Introduction

From a theoretical viewpoint, the existence of computer viruses was pointed out by von
Neumann in the forties in his book Theory and Organization of Complicated Automata,
however, from the practical viewpoint, computer viruses are much more recent.

The first lab computer virus was made by Fred Cohen in 1983 as part of a computer
security seminar. In that seminar, Dr. Len Adelman coined the term virus we use today.

291

The term virus is applied to routines or programs designed to spread themselves from
one computer to another. We will discuss a computer virus definition later in this paper.

In 1984 a couple of viruses were made in a non-research environment. One was
created in Bresscia, Italy, and the other in Pittsburgh, PA, being the first to be found "in
the wild." From this moment, users started to have a new problem.

The bulk of the computer viruses exists in small computers, however, there are viruses
that work in UNIX systems, like the Internet Worm1 made by Robert Morris Jr. in 1988,
and in the mainframe world, like the Christmas Virus of IBM mainframes.

At the beginning, computer viruses were received by users with fear. Most of the
common viruses made in this early period were not particularly damaging, and some
produced attractive visual effects, like the ping pong virus of 1987-88. Many users
changed their minds, regarding computer viruses as innocent jokes.

There are, of course, many viruses designed as jokes, but many other viruses are
specially destructive and there is evidence of an attempt, made by a well known
Mexican hacker, and an opposition political party, to introduce a virus in the computers
used to count votes in the 1994 presidential election in Mexico, probably to sabotage it.
Evidently the extent of the potential damage caused by computer viruses goes far
beyond the end user.

Today, we have about 5400 different viruses registered in different catalogs2, and it
takes a couple of years to double the number of viruses to be found in the wild. There
are virtually no users that have not suffered at least one computer virus incident. To
solve the problem, a multimillion dollar industry provides different programs designed to
detect and remove3 computer viruses from the most popular computers.

It is common to see several similar antiviral programs in the same computer despite
their poor combined effectiveness4, and the decision on which security measures to
use, is frequently made on the price of the product or how well known it is, instead of a
serious evaluation of the importance of the problem and the true effectiveness of the
product when used in the real world.

There are very few studies to measure the real magnitude of the problem. Many authors
rely on the number of different viruses cataloged or the number of virus incidents
reported*, which for many purposes is of relative value, as the total damage caused by
a particular virus could be very different from another, some viruses are very common
while others are rarely seen in the wild and most encounters with common viruses are
not reported.

It is our perception that too much money is spent to solve the problem as a result of ill
planned security measures. The real cost-benefit ratio of the different alternatives
should guide the decisions, but virtually nobody has a measure of the actual costs and
benefits of different technologies and policies operating in the real world.

292

The first step should be to really know, how big the problem is, what enhances it, and
which is the true effectiveness of the most common alternatives available to solve it.

A joint effort between the National University of Mexico and the Iberoamericana
University, with the assistance of other institutions, was made to answer these
questions. We decided to study the epidemiology of computer viruses in both
universities. As a first step, we developed a strict methodology to insure unbiased
results and solid conclusions.

To establish a solid ground, we must have a good definition of computer viruses.

Fred Cohen proposes a mathematical definition of computer viruses in his PhD thesis
that goes beyond the scope of this work. He also gives an informal version of the
mathematical definition in his book "A Short Course on Computer Viruses":

". . . What makes one of those sequences of symbols [routines] an
element of the 'viral set' (V) is that when the machine interprets that
sequence of symbols (v), it causes some other element of that viral set (v')
to appear somewhere else in the system ..."

When Cohen's formal definition is used to prove theorems and test some theoretical
properties of computer viruses, it works fine, however, in practice it presents some
problems. For instance, a disk copy program used to produce a copy of a diskette
containing the program itself, would be a virus, while for any practical purpose, it is not.

To solve this problem, Alan Solomon proposes the term "real viruses," but fails to
provide a strict definition of it. The idea is to regard a virus as a program or routine
designed to spread itself to other programs and computers. For many practical
purposes, including our epidemiology study, this is enough.

Epidemiology

The word epidemiology comes from ep/-about, demos-population, and /ogros-study. It is
currently recognized as "the study of the distribution and determinants of diseases and
injuries in human populations." This definition assumes that human disease and injury
does not occur randomly, and that both have causal factors that are susceptible of
prevention6.

At its beginnings, epidemiology was focused toward the study of infections. Awareness
of epidemics of non-infectious problems such as lead intoxication and scurvy expanded
the focus of epidemiology to all kind of diseases.

The study of distribution evaluates who, where and when is or gets sick. This kind of
information is known as descriptive epidemiology, and provides the framework for
hypothesis generation7. The study of determinants identifies causes and/or risk factors

293

of diseases. This kind of evaluation, known as analytic epidemiology, implies hypothesis
testing in order to associate an exposure to a given disease.

Knowledge of disease distribution and determinants requires frequency quantification.
Two measures of disease frequency are used in epidemiology, namely prevalence and
incidence. The former reflects the proportion of diseased in a given population at a
given point in time, and the latter reflects the number of new cases of a disease that
occur in a given population during a given period. Both prevalence and incidence are
related6. A very infectious disease can determine a high incidence, but if recovery/death
occurs in a short period, its prevalence will tend to be low (e.g. influenza). On the
contrary, if a disease is not contagious, but has a longstanding course, its prevalence
will tend to be high (e.g. cancer).

When two or more measures of frequency are compared, disease related or causal
factors can be identified. In this context, a factor that is associated to a higher incidence
of a disease is known as cause or risk factor5.

In an epidemiology study, the methods used to identify a virus and the environmental
conditions in which it can replicate and act are two good criteria to classify viruses.
Therefore, in computer systems, it is important to differentiate boot sector viruses,
(which migrate only in diskettes), from program viruses, (which can migrate both in
diskettes and through a net), and from multipartite viruses (that belong to both groups).
It is also important to distinguish the polymorphic viruses, which are difficult to detect
and eliminate and can have an important impact in the prevalence of viruses.

As to the methods used in epidemiology, several strategies that can be used to answer
questions8. According to the presence or absence of a comparison group, studies can
be either comparative or descriptive, respectively. Comparative studies are mandatory
for hypothesis testing. Descriptive studies, are used for exploratory purposes and lead
to hypothesis generation.

According to the degree of the investigator's manipulation, studies can be classified as
observational, quasi-experimental and experimental. In observational studies, the
investigator observes the occurrence of events. In quasi-experimental studies, the
investigator observes and manipulates the observation scheme. In experimental
studies, the investigator observes, and manipulates (controls) both the observation
scheme and the intervention, which will affect the occurrence of events.

According to the presence or absence of follow-up, studies can be longitudinal or cross-
sectional. Longitudinal studies follow subjects along the time. Cross-sectional studies,
limit observations to a given point in time.

A study about the prevalence of virus infection in a given laboratory in a university
exemplifies a descriptive observational cross-sectional study. A study about the
incidence of virus infection in the same laboratory would exemplify a descriptive quasi-
experimental longitudinal study. A study about the incidence of virus infection in two

294

uninfected laboratories to identify risk factors for infection would be a comparative
quasi-experimental longitudinal prospective study. The implementation of measures
(such as resident anti-virus programs) that are intended to reduce differentially the
incidence of infection would be an example of a comparative experimental longitudinal
prospective study.

Methods such as random sampling and allocation, are used to avoid selection bias.
Single- and double-blind evaluations are used to minimize evaluation bias. In single-
blind studies, receptors do not know the type of intervention administered. In double-
blind studies, the type of intervention administered is unknown for both receptors and
evaluators. This lack of knowledge is intended to maintain the evaluation process similar
in all comparison groups.

Depending on the goals to be achieved, there are many different epidemiological
studies that can be made on a population of computers. When little or nothing is known
about the population to be studied, a cross-sectional descriptive study to learn the
prevalence of the different known viruses is the first step. In some instances, it is also
possible to make several studies of this kind at the same time, providing the basis for a
comparative study.

A Study on Computer Viruses Prevalence

Since the main goal is to detect known viruses, a good, up to date scanner must be
selected. When the number of computers to be tested is large, speed should be an
important factor to consider.

As normally the existence of viruses in computers can be regarded as an indication of
lack of care, the study must be single blind, that is, the researcher should start the study
by surprise and with some plausible pretext, like an investigation of the software
versions currently used to estimate the update and training costs. This is specially
important when it is not possible to test all computers in a few minutes, as the news of
the investigation would spread fast and many users could clean their computers.

A diskette with the required programs should be prepared in advance for each computer
to be evaluated. Care must be taken to insure that the diskette is not infected before the
study and a clean boot is performed. It should be a bootable diskette containing at least
the scanner. In addition is convenient to have a program that checks the OS kernel in
RAM to be sure that the machine was booted from the diskette, the scanner output can
be redirected to a file, to allow easy extraction of prevalence data. Automated operation
is very convenient and helps to avoid mistakes.

Timing of the investigation is important. In many organizations a massive clean of all the
computers is performed periodically. The best moment to check the machines is just
before the cleaning, yielding a maximum prevalence. With the help of mathematical
models of the growth of the number of infected machines is possible to estimate the

295

average number of infected computers. This figure is important to assess the cost of the
problem. The other factor used to calculate this cost is the probability of damage for
each particular virus. Often this probability is well documented and has a solid basis as
usually it is derived from reverse engineering of each virus.

The characteristics of the population of computers should be documented. It is
important to know their configuration, connection to a file server, antiviral programs
installed and their frequency of use, version of the OS and other basic software, etc.
Also, is critical to have a profile of users and operating procedures.

It is possible to separate several populations of computers, based on differences of their
users, antiviral software used, operating procedures, etc. It is possible to make
statistical tests of hypotheses to find significative differences in prevalence. Analyzing
the profile of populations with different prevalence, ideas can be found to solve the
problem, i. e.: in two populations the same brand of antiviral software is used, but in one
of them a daily batch scanning is performed while in the other the resident module is
used, pointing to the selection of a better strategy.

In the recent years the computer viruses problem grew fast due, on one hand, to the
growth in the number of PC's installed, and in the other, to the existence of an
increasing hacker community.

The Natas virus is making very important damage since the end of 1993. Commercial
scanners did not detect all the variations of this virus until mid 1994. Furthermore, it was
practically a local problem, as it was not found frequently in other countries, and there
was not a single organized group to study and solve the problem in Mexico. The cost for
the country was enormous.

It is well known that universities have a high prevalence of viruses because the same
computers are used by many students during each day. The National University of
Mexico (UNAM), with approximately 14,000 PC's had recently a very bad time fighting
the Natas virus. As a result, a small computer virus research group was created with the
cooperation of the Iberoamericana University (UIA).

Soon clearly several research lines were required: one disassembling viruses, another
studying the theoretical aspects of computer viruses, and a third one looking for the best
ways to solve the problem based on the knowledge developed by the former.

A striking difference on the extent of the problem in different areas of both universities,
where in some student labs there were practically no viruses while in others there were
plenty, made obvious that epidemiological studies were necessary. To avoid the
"reinvention of the wheel" an epidemiologist from the National Nutrition Institute was
incorporated to the group. The cooperation of the Electronic and Informatcs Technology
Center, who provides maintenance to the UNAMs PC's was also very important.

296

A pilot study was started in three different student labs in the UNAM and another three
in the UIA to test the software developed for the project and look for unexpected
problems. From the six labs, only two had viruses, one with all the machines infected
with Natas and the other with a zoo. Several adjustments were made to the software to
accommodate all the cases: standalone PC's with hard disk, networked PC's with and
without hard disk.

During march, three student labs in the UNAM and five in the UIA were studied. The
main results are presented in table 1.

As can be seen, there are many labs without viruses at the time of the study, while in
others there are moderate number of infected machines and in one, the problem is
severe. The first striking result is that the labs with a file server and workstations without
a hard disk are clean. This is consistent with the fact that the ten more common viruses
in Mexico infect the Master Boot Record of hard disks, which does not exist in this case.

Another issue is the profile of the students using the labs. The UNAM labs are used by
senior high school students and have a moderate number of infected machines. The
UIA 4 lab is used by computer science students and has a severe virus problem and the
UIA 5 lab belongs to the mechanical and electrical engineering school and has no
apparent problem. A possible hypothesis to explain these differences is the behavior of
the students: senior high students tend to copy many game programs, the mechanical
and electrical engineering students use just a few programs and have no need to copy
programs or exchange floppy disks with other machines while the computer science
students have a heavy program and diskette exchange that goes far beyond the
university as many students work in companies and government. A different study must
be made to confirm this hypothesis or to find another explanation.

The UIA 4 lab has been sampled several times with similar results. We are planning to
install special software to detect the moment in which each computer is infected along
with other useful data.

In every case the infection detected was Natas virus. There may be other infections
masked by Natas because the scanner we used detects only the last infection in the

Table 1. Infections in different labs.

Lab Stand PC with PC with net TSR Periodic %
Alone PCs net & HD & no HD Antivirus scanning infected

UNAM1 13 11 0 no yes 4.2
UNAM 2 79 0 0 yes yes 2.5
UNAM 3 27 0 0 yes yes 3.7
UIA1 0 0 60 yes yes 0
UIA 2 0 0 30 yes yes 0
UIA 3 0 0 80 yes yes 0
UIA 4 13 0 0 no yes 54
UIA 5 15 0 0 yes yes 0

297

case of Master Boot Record viruses.

We have several other plans designed to detect new viruses early enough to restrict
their spread and minimize damage. It is possible to set up bait computers in the
appropriate points, where an infection is more likely. This requires the knowledge of the
environmental factors that produce a high incidence of infections that will be the result of
other epidemiological studies.

Currently there is no national antivirus policy in Mexico. We expect to convince the
government to finance epidemiological studies. We are confident that it is possible to
reduce the computer virus problem at a very reasonable cost using some simple
measures that may be different from those proposed by computer specialists and
antiviral software vendors.

298

1 A worm is just a particular case of a virus as it spreads itself like any other virus. It has, however, the
particularity that it does not modify any other program.
2 Almost every antivirus manufacturer has a virus catalog listing the viruses that can be detected and/or
eliminated. There are other catalogs, like the Hamburg University Virus Catalog and the Patricia
Hoffman's Virus Catalog. The number of viruses listed in each catalog is usually different, but there is a
consensus: we had about 5400 viruses in mid 1995.
3 Some antivirus products claim that they "immunize" programs. Only in the case of a few viruses it is
possible to really immunize programs. Usually the word immunization is used by antivirus developpers to
say that a checksum is calculated for each program in order to detect any change in it. This is just
another way to detect a virus and not a real immunization.
4 There is a large redundancy in the viruses that are detected and/or removed by the serious products.
Very new viruses are not detected by any product. Using more than one product often yields no better
protection.
5 Some examples are: McAfee, John, Computer Viruses, Worms, Data Diddlers, Killer Programs, and
Other Threats to Your System St. Martin Press, New York 1989; Tippet, Peter "Is the virus Problem
Growing Exponentially?" and Kephart, Jeffrey O. et al "How Prevalent are Computer Viruses?" in the
Proceedings of the Fifth International Computer Virus and Security Conference, New York, march

1992.
6 Hennekens CH, Buring JE. Epidemiology in Medicine. Little, Brown & Co. U. S. A. 1987
7 Mausner JS, Bahn AK. Epidemiology. An Introductory Text. W. B. Saunders Co. U. S. A. 1974
s Hulley SB, Cummings SR. Designing Clinical Research ■ An Epidemiologie Approach. Williams &
Wilkins. U. S. A. 1988.

299

Disaster Recovery Planning Case Study: The South African 1994 Election

Walter Cooke, CISSP

W. J. Cooke & Associates Ltd.
3216 Albert Street

Halifax, NS B3K 3M9
Canada

cooke @ uncle.com
http://fox.nstn.ca/~cooke/

Abstract: By all measures, the April 1994 South African Election was a historic event. It was
dubbed the "mother of all elections" by the South African Ambassador to Canada. The Disaster
Recovery Planning (DRP) work for the IT portion of the election is a case study containing both
brilliant and bozo decisions, executed under impossible time constraints and the constant threat of
civil war. This case study explores the actions of the author who was the consultant responsible for
computer security and DRP, the IT team responsible for development of the electoral computer
applications, and the IEC staff as a whole. The analysis of their actions may help you prepare
robust Disaster Recovery Plans in the future.

The author also describes the election atmosphere, and the experiences which made the DRP work
challenging from a personal perspective. Against all odds, the first democratic election in South
Africa was deemed free and fair, and a very tired team of workers returned home to ponder this
once in a lifetime event, mindful that the outcome could have been very different.

INTRODUCTION

In April of 1994, everything - work, play, love, and hate - moves to a beat in Johannesburg. Hate,
of course, has the loudest, most visible rhythm. There is sporadic gunfire from ANC HQ, where
the guards get antsy at 2:30AM and empty their clips if they see a suspicious car coming down the
street. We use ear plugs to block out this rhythm and find sleep. Bus drivers rhythmically toot their
horns while flashing cryptic hand signals to tell potential passengers which township they're
headed for. People walk with an amble that speaks volumes about the new sensation of being able
to move freely around Jo'burg. Some white men swagger like cowboys, with sidearms strapped
to their hips. In South Africa's population of 37.5 million, the 28 million blacks have never voted
before, and about half of the population is unemployed. The writing is on the wall: "Vote Left and
nothing will be right; vote Right and nothing will be left."

By all measures, the 1994 South African Election was a historic event. It was dubbed the "Mother
of all Elections" by the South African Ambassador to Canada. The Independent Electoral
Commission (IEC) was set up by the South African transitional government, and given the
responsibility for running a free and fair electoral process. The IEC was directed by a team of 17
commissioners, appointed from a number of countries, with a mandate to help facilitate and
oversee the electoral process. "South Africa was the largest non-military democratic development
mission Canada has undertaken," reported Ron Gould, Assistant Chief Electoral Officer to
Canada, and former appointed Commissioner to the Independent Electoral Commission of South

300

Africa. But "it was well into January [1994] before the TEC was really in place, with an impossible
mandate to carry out an election on April 27th. I arranged to bring in a group of Canadian experts
in election readiness planning, in voter education, in training of election officials, in voting by the
disabled and prisoners, in public electoral inquiries, in communications, and three election
computer specialists. This group worked directly for and with officials of the IEC and, in my
view, without them there would have been no South African Election" said Gould.

As a "pigmentationally-challenged" computer security consultant coming from the relatively
peaceful dominion of Canada, working for the IEC was both a professionally and a personally
challenging experience. My primary task was to build and implement a Disaster Recovery Plan
(DRP) for the Information Technology (IT) infrastructure that the election process would depend
upon. However, general INFOSEC and physical security practices were also needed to stop a full
scale disaster from occurring. Both the technical challenges and the culture shock of working in
South Africa often stood in my way. The struggle between white supporters of apartheid and the
black majority was a daily threat that appeared ready to explode and rip the country apart. The
sometimes violent struggle for power between the major political parties seemed impossible to
reconcile. Also, computer security professionals do not build and implement a DRP when they are
already in the middle of a disaster. But if you spoke with anyone who worked at the IEC, they
would probably tell you the election was a series of daily disasters from beginning to end.

BACKGROUND

Never have so few done so much for so many in so little time. The IT application development
group has twenty people. By comparison, the Monitoring Department next door has over 10,000
workers. After an unexpectedly move from the Johannesburg World Trade Centre to a downtown
office tower, there are no desks or chairs. The software engineers literally program on their knees
for the first week and a half. With phones constantly ringing and people buzzing around, there is
an air of barely controlled chaos. Most of the IT people are local consultants. A few of us are
specialists from elsewhere. Lunch in the IEC cafeteria is like a United Nations get together, with
conversations in a dozen languages and many of the African women beautifully decked out in
traditional attire. The colours are a wonderful sight for winter-weary Canadian eyes. Pagers and
cellular phones ring to the city's rhythm. People are red-eyed and frazzled. Bomb threats and
evacuations are commonplace. The lack of experienced and trained personnel is the most difficult
hurdle to overcome. Most people working for the IEC have never voted before, let alone any
experience running elections.

301

We see some of the country's linguistic diversity reflected in the Telkom (South Africa's
telecommunications provider) multilingual internetwork sign-on screen:

00000 o o
0 00 0 0 0 000 00 00
0 00000 0 0000
O 0000 0 00 O 0 0 0 0
O 0 000 O 0000
0 00' 0 O 0 000 0 0 0

 EASY ACCESS

AFRIKAANS : SLEUTEL NUI IN.
ENGLISH : ENTER NUI FOR SERVICES.
ISIXHOSA : FAKA UNUI UKUFUMANA

UNCEDO.
ISIZULU : NGENISA UNUI UKUTHOLA

USIZO.
SEPEDI : TSENYA NUI GO HUMANA

DITIRELO.
SESOTHO : KENYA NUI HO FUMANA

DITSHEBEDISO.

NUI? 901040OZ3U

These are only six of South Africa's 14 main language groups, plus 24 sizable "home languages"
such as Dutch, French, Tamil, and Portuguese. The electoral education process was a mammoth
effort. All of the different ethnic groups throughout the country were told why you might want to
participate in a democratic election, what voting means, and how you go about voting. This
presented a challenge for some of the "Operation Access" education teams who had to help
illiterate tribesmen and women who had never held a pencil in their hands before.

THE INFORMATION TECHNOLOGY

Contrasting this grass roots electoral work, the computer technology used in the election is "rocket
science." In less than 10 weeks, South Africa is wired from coast to coast. A high speed TCP/IP
network, running over CISCO routers links 41 remote sites. Only one vendor is able to provide an
entirely integrated software product suite - Microsoft. This is a critical success factor in getting all
of the software components to work together. The network is driven by 25 Windows NT
Advanced server-based machines, three of which run multi-processor Pentium-based
configurations. The database servers, running Microsoft's SQL Server 4.2.1 provide information
to more than 1000 concurrent users. The PCs run Windows for Workgroup 3.11 and Microsoft
Office. To support the election process over 400 software modules (screens and reports) are built
using Microsoft Access 2.0, Visual Basic 3.0, and REGIS (mapping software), running as client-
server applications.

Why would anyone chose a "rocket science" solution using a client-server based architecture for
such a mission critical application as an electoral system? The solution was forced on us by a
number of constraints: budget, the available computer technology in South Africa, and the lack of
large numbers of IT personnel to do the work.

The electoral applications include Personnel Registration and Tracking for 300,000 IEC workers,
Geographic Information Systems containing textual and graphic information on provinces, election

302

districts, and polling stations, Inventory Management Systems, Incident and Event Tracking, and
an Adjudication System that contains cases, types, parties involved, and judgments on the 400
courts set up throughout the country to handle legal challenges. The database tables are distributed
between the central database and local databases. Network and Database Management Training is
provided to the key technology staff scattered through each province. This includes doing secure
backups and the emergency restoration of the servers.

Each Windows NT server has a CD-ROM drive and a copy of the latest versions of the OS,
network drivers, middleware, applications, master databases, and system documentation, all on
one CD-ROM. Rather than fighting with boot disks and backup tapes during a hardware recovery
contingency, or a disaster recovery process, the CD-ROM can simply be booted from the server to
get up and rolling with the latest basic working system. A new CD-ROM is pressed every few
days and sent to the System Administrators for updating their site.

DEVELOPING THE PLAN

Preparing a Disaster Recovery Plan for a project of this size would usually involved a preliminary
Threat Risk Analysis (TRA). Our TRA takes about fifteen minutes. It is not a matter of whether a
threat is probably, but how long before it happens. Fires, floods, loss of power and
communications, bombings, terrorism, assassination of staff, civil war, theft, destruction, and loss
of data integrity - just about every threat scenario we can imagine is very likely to happen, or
already has several times. The only things we discount are nuclear and biological weapons. We
figure the warring parties have lots of low-tech machetes, bombs, and AK-47s but nothing big.
Because of the extremely high threat probabilities, it is recommended that additional security work
both precede and support the DRP effort.

One of our most curious discussions centers around the protection of sensitive electoral
information. The confidentiality of voting returns is normally paramount to ensure complete
fairness in a regular election. But with over 300,000 people working for the IEC (many of whom
actively support the ANC, NP, or IFP political parties), it is assumed that there will be leaks while
the votes are being tallied and before the results are officially announced. So the worst scenario
would be to have incorrect information leaked. For example, if someone took bad data and
extrapolated a majority win for the far right white Afrikaner party, this leak would start a civil war
in a matter of minutes. So it is decided that if we do have leaks, we must leak correct information.
In this case, integrity is far more important than confidentiality of data.

Getting safely around Johannesburg requires anecdotal knowledge that is handed on from person
to person. From reading the local newspapers, I have a good idea of what parts of the city are
dangerous. Several of us, wanting to see more of the city, have maps with circles around the no-go
sections, and particular intersections with gangs who kill passing drivers and pedestrians. One
curious feature is the daily running of the gauntlet from hotel to IEC HQ which is about six blocks
away. Having a security background, I feel that I know the drill: don't travel at the same time each
day, don't take the same route every day, and don't attract attention. Wrong. This city has a rhythm
that must be obeyed. The regular people on the street are friendly, curious, and helpful to strangers.
You go with the crowd, and you go when they go. As it turns out, everyone in Jo'burg goes to
work at the same time, using the same streets, and they stick together for protection, like a school
of fish. If you go one street east or west of the standard route, you may be in dangerous territory.
If you try to move around the streets at other times of day, many streets are deserted, or those you
meet are not anyone who you want to hang out with. At three o'clock the stores close, and

303

everyone heads for home. After hours, you can't help but stick out when you're the only white
face on the street. From this I learned that physical security must adapt to the culture that it
functions in.

Security sweeps the IEC building with dogs every morning, searching for explosives.
Unfortunately, the dogs are also trained to react to the smell of sugar (an ingredient in some types
of explosives), and so they also find every candy bar wrapper in the building. "Airport security"
measures are used to control everyone entering the headquarters IEC building. Everything coming
in is X-rayed. Visitors are politely requested to check their sidearms at the front desk. Access to
the basement parking garage is cut off, to prevent a copy-cat New York World Trade Center truck
bombing.

Certain political and operational logistic decisions that have already been made dictate what security
strategies may or may not be employed. For example, we discuss having armed soldiers at the
front door as a terrorist deterrent. However, uniformed soldiers would give the impression that the
same old repressive apartheid police state is running this election. Instead, security decides to use
plain clothed soldiers inside. I question this decision with the head of physical security. After all,
isn't intimidation a useful deterrent for keeping the hostile elements at bay? Who wants to be a
sitting duck?

To direct the IEC operations during an emergency, a "War Room" is built inside the IEC HQ
building. However, one security officer has already told me that given 2 hours notice the Zulu
supporters of the IFP can raise 100,000 protesters to march on Johannesburg. If they have two
days to organize, they can besiege the city with 500,000 marchers. I suggest that if the building is
over-run by 100,000 angry Zulu protesters, their war room may not be in the world's safest place.
The head of the army force protecting the IEC facilities offers to "stop every train and bus coming
to the city." This would keep most of the protesters out in the homelands, but would also interdict
tens of thousands of innocent black workers trying to commute to their jobs in Johannesburg.

To ensure the continuity of the most critical operational IT systems, a hot backup site with a server
and LAN is created at a secret location in the Mid Rand. Telecommunications deploy a satellite
backup system to ensure that the Provincial offices can communicate if the IEC nerve center is
destroyed or has to be moved. Mobile satellite units are sent to army helicopter bases, to be flown
to alternate communications sites if terrorists knock out an IEC office. We now feel more secure
with three systems (microwave, satellite, and VHF radio) to backup the regular fiber and copper
network. The engineers tell us that building a 93 million Rand network for the election has been
like gathering cobwebs to make something of substance.

In less than 8 weeks the Application Development Division constructs a robust information
system that provides the user community with a central repository of all election related
information. The system is designed around four abstract classes of information objects: Persons,
Events, Locations, Things, and thus becomes know as PELTIS. Insiders acknowledging the
incredible feat of the software engineers that seems to be nothing short of magic, affectionately dub
the system HOCUS PELTIS.

My fellow IT workers see the Disaster Recovery Plan taking shape and nervously ask about their
safety. I try to reassure them by saying that everything is fine; it's now only two weeks before the
election. If the far right Afrikaner army really wanted to stop the election, they would have started
assassinating us by now. For some reason this comment does not reassure anyone. Later, an

304

officer from the Canadian Consulate arrives, asking that I fill out a personal data form to assist in
the evacuation of Canadian workers. This leaves my fellow South African workers wondering
what emergency is unfolding, of which they are unaware.

In retrospect, the stress level of your fellow workers must be closely monitored and honestly
respected. Off-handed, cynical jokes will backfire and cause more stress, not less. The morale of
your fellow workers can be easily crushed with a single, unthinking remark. Similarly, events that
can cause fear, uncertainty, and doubt ("FUD factors") should be managed to minimize their
impact. FUD factors can be handled by quietly dealing with them off-line, in private, away from
the regular workplace. This can be difficult when many groups are working in close proximity; a
separate security office or a quiet comer is preferable to being the center of attention. Confining
security and DRP work to a secured office is also preferable for another reason: the work you are
doing may be of interest to those working against you. What happens if a member of your disaster
recovery team is the person who causes the disaster? What if a member of the immediate staff is
actively involved in sabotaging the enterprise you are working to protect?

While this scenario may seem remote, experience in this election says otherwise. During the
months leading up to the election, two of the IEC directors overseeing procurement of computer
equipment and services acted in an incompetent and obstructionist manner. The Director of
Application Development, finding herself blocked at every junction, finally took her frustrations to
the highest level of management at the EC. For political reasons, nothing was done to replace the
two managers, who continued to stall and avoid making decisions. The Director of Application
Development, knowing that tens of thousands of IEC workers were depending on operational IT
systems, adopted a strategy of "it is easier to beg forgiveness than to get permission." She cut the
managers out of the loop, and managed the IT effort without their direct involvement. After the
election concluded, it was discovered that the two obstructionist managers spent their time running
phony companies to fraudulently bill the IEC for hundreds of thousands of Rand in hardware,
software, and services that were never delivered. It is frightening to think that greed would drive
anyone to endanger the safety of an entire country and its process towards democratic freedom.
(The two managers are currently pondering this in a South African prison.)

At T-minus 10 days, the Director of Application Development asks everyone to move to 12 hour
shifts. This passes without any reaction, possibly because it only formalizes what everyone has
been doing for weeks anyway. A collection is taken up for a tombstone and funeral expenses of
another IEC Operation Access worker who was assassinated while working in KwaZulu/Natal.
People are very tired, and morale is slipping badly. The Director delivers a brilliant pep talk after
having a gripe session to let everyone express their fears and help restore their resolve to carry on.
We learn that another 250,000 person Inkatha Freedom Party (IFP) march on our headquarters
and the ANC's is scheduled for the week before election day. We discuss plans for moving to a
backup site if the building is over-run. The building's backup generators are tested.

I leam from Patrick, a waiter at my hotel, that the staff are staying there over night, rather than
going home to Soweto. They fear for their lives if they meet the IFP marchers on Monday
morning, and they may not be able to enter the city if it is ringed with soldiers and razor wire.
After his shift, Patrick tells me stories about life in Jo'burg under apartheid. Western Transvaal
bomb number 36 explodes by a community hall at Makokskraal near Ventersdorp. A returning
field engineer describes the local graffiti: "Welcome to Tanzania - Any problems, dial AK-47."

305

Monday at 4 AM there is a ten foot high wall of razor wire strung across the intersection outside
the hotel, stopping traffic from approaching ANC HQ two blocks away. Johannesburg pedestrians
seldom run, but at sunrise there are hundreds of people running to find passage through the wire
barricades and shelter from the anticipated two hundred thousand strong wall of approaching Zulu
protesters.

A siege mentality has gripped everyone, but every day we try to set up inclusive activities to get the
team spirit up and help everyone cope with the constant stress. When people begin to buckle under
the strain, they withdraw into themselves, become depressed, and stop communicating. Some
people sleep at their desks rather than drive home at night. Some are afraid to go to the ATM
machine to get money, and so they feel that they can't participate in group outings. To counter
stress, guilt, fatigue, and help everyone stay well, we keep a stock of goodies, full coffee pots, and
a carbohydrate-loaded cafeteria open. At the end of the evening, we try to get everyone to stop and
go to the restaurant down the street for a group pizza. We ensure we always have extra money,
food, taxis, and people to act as "gophers" for others who can't take breaks away from the office.
Some people have worked for over 50 days without a single day off.

On Tuesday, a miracle happens. The IFP agrees to participate in the election! There is a palpable
sigh of relief; hope is visible on everyone's face. We're happy because this event reduces the
probability of attacks on IEC buildings by 50%. Unfortunately, the Vryheidsfront Afrikaner army
are still busy shooting and bombing. Now all that remains to be done is update the constitution,
change our mathematical model of the electoral counting process interpreted from the constitution,
and add IFP stickers to the 70 million preprinted ballots, all in the next six days!

At four days before the election, our focus shifts to report writing and away from programming.
Few of the user areas can articulate what they want to see on election day or which database fields
are most important. We play "what if and imagine what reports they might like. Access 2.0
allows a programmer to complete about 10 good reports a day. A multimedia expert arrives to
design the graphics presentation system for displaying the televised election results. I'm in a mad
rush to complete the Disaster Recovery Plan so it can be tested.

The most complex application is the Seat Allocation System - a set of programs that take the raw
number of votes that are won by each party and convert them to seats in the legislatures. Unlike the
Canadian system - a constituency based and "winner take all" system, the South African system
is based on proportional representation where the electorate votes for a party list. Each party
submits an ordered list of candidates names in advance of the election. Seats "are awarded in
proportion to the number of votes cast to that party. There are 19 parties running in this election.
The actual conversion of votes to seats involves some 34 complex equations to get the final result.

The transitional government has set out the Constitutional rules for counting ballots and rolling up
the scores. However, the transitional Constitution can be interpreted in several ways, depending
upon your point of view. The Seat Allocation System as it stands will tend to quickly round off
and exclude the members of the smaller political parties. Our test results are validated, but the
Director asks if this is what they really want to have happen when the votes are tallied. Nelson
Mandela asks that the Constitution be interpreted in such a way as to be as inclusive as possible.
He wants the roll up process to include any possible minority parties in the final result. Work
resumes on a formal mathematical model of the constitution, and twenty-four hours later we have
a new working scheme that is inclusive and avoids excluding the smaller parties as the results are

306

rolled up. This must be one of the few times that an information system has directly influenced the
Constitution of a country.

Sunday, Johannesburg is rocked by a car bomb that kills 10 and injures hundreds. The explosion
sets off a screaming din of car and store alarms. ANC headquarters is badly damaged. IEC
headquarters goes to high alert. A bomb explodes next to a provincial IEC office, but work
continues after the cleanup. Apparently this is the sixth attempt to destroy this particular office -
the first five bombs failed to explode. However, the men responsible for the car bomb in
Johannesburg are found, and they quickly sing like canaries. This leads the army to a barn where
fifty of the bomber's colleagues are discovered busily preparing more bombs.

A bomb explodes outside of the hotel where many of the foreign workers are staying, apparently
meant to scare us off and bring the election machinery to a halt. Another bomb explodes in the
departure lounge of the Johannesburg international airport, killing several people. Election day
arrives and passes, as reports on voting statistics and discrepancies are produced. Part-way through
the televised counting process, the tallied votes for several of the parties suddenly jumps by several
thousand. The Director's phone rings, and a TV reporter asks if it is true that the electoral
computer system has been hacked and the votes altered. A frantic investigation reveals that a data
entry clerk has either posted some of the entries wrong, or bungled an attempt to alter the results.

By the end of voting, the monitoring database has collected over 44,000 incident reports. These
include everything from shootings and polling stations being burned down, to minor fights in the
often mile-long lineups to vote. This database was a vital damage control system that allowed
incidents to be instantly communicated via e-MAIL to quick response units. These teams then
defused critical situations before they got out of hand. The database also allowed managers to
allocate security and observer resources to the areas that had the highest rates of serious incidents
and voting irregularities. Several days after voting is completed, the ANC have over 60% of the
votes. We run our new mathematical model of the constitution that determines the list of
candidates for Parliament. It's finally done.

CONCLUSION

Apartheid ended not with a bang, but instead with a cheer of freedom. Against all odds, the first
democratic election in South Africa was deemed free and fair, and a very tired team of workers
returned home to ponder this historic event, mindful that the outcome could have been very
different. It was a once in a lifetime experience, seeing the end of apartheid, but would we do it all
again? Highly trained athletes have come to expect victory or defeat with the narrowest of margins.
IT's part in this election almost failed, and only succeeded by the narrowest of margins because of
the team's strength, courage, and determination to succeed against overwhelming odds. This was
our heart-felt victory. And like the athlete, who wouldn't push their limits for those kinds of
feelings?

The author would like to acknowledge the assistance ofRobyn Kail, an Ottawa-based consultant,
who provided background information on the IEC electoral computer systems and IT's role in the
South African election. Ms. Kail was the Director of Application Development at the IEC.

307

VHA's APPROACH TO CONTINGENCY PLAN DEVELOPMENT

Gail Belles, Deputy Director
Medical Information Security Service

National Center for Information Security
VA Medical Center, Building 203B

Martinsburg, WV 25420

The Veterans Health Administration (VHA) is the largest centrally-directed health
care system in the United States. VHA handles over 1 million inpatient visits and over
24 million outpatient visits annually. The automated hospital information system used
in VHA supports 171 medical centers, 362 outpatient clinics, 129 nursing homes, and
35 domiciliaries. Over the past 12 years VHA has developed a growing dependence
on their automated hospital information systems, and the data and information that has
accumulated in these national databases.

There are a number of Federal laws, regulations, and directives that address the
requirement for protecting Federal information processing resources throughout all
departments of the Federal government. Medical Information Security Service (MISS)
utilizes these directives to develop policy and guidance to assist all VHA medical care
facilities in developing procedures to protect their automated information assets.
Assistance provided includes generic policy development, manual and automated risk
analysis tools, contingency plan development and testing, and training of users at all
levels in the organization. Extensive guidance, procedures, and training modules are
continuously being developed and disseminated throughout VHA to assist medical care
facilities with their disaster recovery and contingency planning efforts.

The contingency plan development and testing process can be very time-
consuming, but if done correctly, can be the key to protecting an organization from
major loss of critical operations. The ability to plan for untoward events before they
occur has proven invaluable to VHA when dealing with the impacts of several major
disasters that included severe damage from hurricanes and earthquakes.

A tutorial has been developed to provide participants with a thorough
understanding of the process used by VHA to develop, implement and test contingency
plans in the medical care setting. Specific guidance provided in the tutorial will enable
participants to develop contingency plans or address specific areas in their plans that
may have been overlooked. The session includes a presentation and discussion of
major incidents that required activation of contingency plans as well as a discussion of
the impacts on businesses that were not prepared to deal with catastrophic events
because of the absence of critical operational information. Participants will be exposed
to a wide range of issues that need to be considered when developing viable disaster
recovery and contingency plans.

308

Tutorial Outline

1. Real-life disasters and their impacts

2. Contingency planning defined

3. Goals of contingency planning

a. Protect human life
b. Minimize risk
c. Recover critical operations
d. Define recovery strategies

4. Defining policy/responsibilities

5. Components of the contingency plan: an overview of the components is provided,
followed by a focused discussion of each of these components.

a. Disaster avoidance
b. Assessing threats and consequences
c. Application analysis
d. Service/Section data collection forms
e. Critical functions work flow
f. Personnel inventory
g. Service inventory
h. Space requirements/inventory
i. Office evacuation
j. Recovery strategy

6. Testing and maintenance of the plan

309

FUNCTIONAL SECURITY CRITERIA
FOR

DISTRIBUTED SYSTEMS

Janet Cugini, Rob Dobry, Virgil Gligor, Terry Mayfielcf

Abstract

The National Security Agency (NSA) with the cooperation of the National Institute
of Standards and Technology (NIST) formed a technical group to create security
requirements for distributed systems. These include requirements for data
confidentiality, data integrity, cryptography, distributed identification and
authentication, as well as for access control, auditing, system management,
trusted path, and trusted recovery for distributed systems. These requirements
are being reviewed for incorporation within the Common Criteria, which is a joint
effort of the United States (NSA and NIST), Canada, France, Great Britain, and
Germany to come up with a single criteria for security requirements.
Keywords: protection profiles, security targets, assignment, refinement,
augmentation, cryptography, key management, distributed system, secure
distributed system, realm, trusted channel, security perimeter, interconnection
policies, simple subject, compound subject, delegation chain, restricted delegation
chain, AND-chained identities, message origin authentication, mutual
authentication.

1.0 Background

The Federal Criteria for Information Technology Security [FEDCRIT] was a major initiative of both
the NSA and NIST to revise the Trusted Computer System Evaluation Criteria [TCSEC] which
is commonly known as the "Orange Book." The Federal Criteria became available for public
review in January of 1993. The focus of the Federal Criteria was the same as the Orange Book,
that is, to define security requirements for multi-user operating systems. It was decided to limit
the applicability of the Federal Criteria to multi-user operating systems because of the extent of
change the Federal Criteria incorporated and because we wanted to allow the public to comment
on what we had developed thus far. However, most of the reviewers of the Federal Criteria
expressed their disappointment with the fact that no aspects of secure networking were included.
Therefore, a task group consisting of the authors was formed to specify the requirements for
secure distributed systems in order to bring the criteria in line with today's distributed system
technology.

In the meantime, an effort was started to harmonize the Federal Criteria, the European's
Information Technology Security Evaluation Criteria [ITSEC] , and the Canadian's Trusted
Computer Product Evaluation Criteria [CTCPEC] into one Common Criteria [COMCRIT], and the
sponsoring countries for this Common Criteria agreed that requirements for secure distributed

The author's addresses are:
Janet Cugini: NIST, Gaithersburg MD 20899, cugini@csmes.ncsl.nist.gov
Rob Dobry: NSA, Ft. Meade MD 20755, dobry@dockmaster.ncsl.mil
Virgil Gligor: University of MD, College Park MD, gligor@eng.umd.edu
Terry Mayfield: IDA, Alexandria VA 22311, mayfield@ida.org

310

systems should be incorporated into this work.

This paper presents an overview of the functional requirements for secure distributed systems that
were developed by the authors and by a task force consisting of experts in the field of secure
distributed systems. This work has been submitted for incorporation into the Common Criteria.
As the Common Criteria is still being written, this paper will not focus on how these new secure
distributed system requirements are presented and stated in the Common Criteria. Instead it
focuses on the functional requirements for secure distributed systems that were developed without
implying any particular Common Criteria commitment to or organization and wording for these
distributed requirements. In order to understand the context for our distributed system work, a
quick overview of the Common Criteria framework is also presented.

2.0 Common Criteria Framework Overview

The secure distributed system requirements that were developed fits into the overall framework
of the Common Criteria. The Common Criteria specifies how security requirements can be
incorporated into protection profiles and/or security targets. A Protection Profile is a statement
of the functional and assurance security criteria that help to counter a set of threats. Protection
profiles can be shared by IT product producers, consumers and evaluators, and can be developed
by consumers, vendors, or a single organization. Protection profiles can be tailored to meet the
needs of a specific environment. These profiles are product independent, i.e., one protection
profile can be used for the creation of many products. After protection profiles are created, they
can be evaluated by an independent body to ensure technical soundness. Security targets can
be thought of as an extension of a protection profile in that a security target shows how a
particular product meets a specified set of security requirements. Security targets can be created
without the prior existence of a protection profile, and in that case all the security requirements
that would have been found in the protection profile will have to be stated in the security target
along with the instantiation of these requirements for the particular product. The security target
is an integral part of a product's evaluation, and becomes the basis for how a product gets
evaluated.

Both protection profiles and security targets are made up of elements of functional and assurance
components. Components are sets of indivisible security requirements. These components
vary based on the scope, granularity, strength, and coverage of the requirements, therefore one
can select the specific component he/she needs to counter the specified threats that are listed
with the component. Each component also includes a list of the functional dependencies of the
component requirements on other components. The protection profile/security target writer must
select requirements that are compatible on the basis of these dependencies.

When creating a profile, operations can be performed on the functional and assurance
component requirements so that they can be tailored to meet the needs of a particular
environment. For the functional components, the assignment and refinement operations are
defined. The assignment operation allows one to specify values for any parametric requirements
or templates, and the refinement operation allows one to give additional specifications to or
interpretations of requirements. The refinement operation is important since experience with the
Orange Book has shown that many requirements are very abstract and do not properly express
an organization's needs. For the assurance components, the augmentation operation is defined.
Augmentation allows for the selection of a component at one assurance level and the addition
of a higher level component element to augment the lower level requirements.

311

The distributed system requirements were written to conform with this basic framework. As with
the other components, the various components that deal with distributed systems can be selected
as needed to counter the specified threats as long as they are consistent with the stated
dependencies. The distributed system requirements can be used for both protection profile and
security target specifications, and as with the other requirements can be tailored to meet the
needs of a particular environment.

3.0 Secure Distributed Systems

We define a distributed system as being a collection of nodes that are connected by
communication links to one or more networks that participate in the routing of messages within
these networks. This definition for a distributed system differs from the definition of a network in
that the existence of autonomous computers is handled transparently by the distributed system,
as opposed to the explicit network addressing that is used to control message transfer in and
among networks. Also, unlike a network, a distributed operating system can reside throughout the
system as opposed to residing on one network server. This allows applications to be shared
regardless on which node they reside. A secure distributed system consists of a set of trusted
hosts and/or realms that are connected via trusted communications channels that are subject to
consistent security policies. A secure distributed system contains one or more security perimeters
that are subject to interconnection policies, or constraints, placed on one or several of these
security perimeters.

Authentication
Server

Trusted Channel

Security Perimeter

..-*■-..

Realm B

Realm A

Figure 1. A Secure Distributed System

Figure 1 shows an example of a secure distributed system. As shown in Figure 1, there are two
sets of trusted hosts. These sets of trusted hosts are grouped into realms. A realm (also known
in the literature as a domain or a cell) is the basic unit of operation and administration, i.e., it
consists of a group of users, systems, and resources that typically have a common purpose and
share common services. The trusted hosts are connected to one another via trusted
communication channels. A trusted channel is an information transfer path in which the set of
all possible senders can be known to the receivers, the set of all possible receivers can be known
to the senders, or both. It allows two or more subjects to communicate. A trusted channel for
both inter- and intra-realm communication can provide one or more of the following:

312

• data confidentiality, which enables the sender to know who can read the
message it sent,

• data integrity, which enables a receiver to know that the message it received
is unmodified and, therefore, also enables the receiver to know who originally
created the message,

• authentication, which enables both the sender and receiver to find out who
is at the other end of the channel, and/or

• availability, which enables the sender and receiver to use the system at any given
time. Thus the sender is ensured that his message will be received.

As indicated by the thick lines in Figure 1, surrounding each realm is a security perimeter, which
is the interface between the network, the hosts, and the gateways and other realms. A security
perimeter represents a partition of a secure distributed system that delimits the scope of
administrative control, application resources, and the scope of security policies being enforced
by a single, centralized administrative organization. Figure 1 simplifies the connection between
the two distinct realms by showing the connection point as being one router (which may perform
packet filtering or other types of access control), but it is possible for each realm to have its own
gateway and for there to be multiple choke points between any two realms. Interconnection
policies, or constraints, consist of a set of rules that define whether trusted channels may be
established between the trusted hosts within a realm and/or among different realms. It also
defines the types of trusted channels (e.g., for confidentiality only, integrity and availability,
authentication only, etc.) that can be established subject to these interconnection policies. Figure
1 also shows an authentication server. An authentication server or authority is a trusted agent
that acts as a source for certified user/realm identities. A secure distributed system may also
contain other trusted servers, such as an audit server, a registration server, a time server, and/or
a key escrow authority which would have the responsibility for archiving keys. Also, a realm may
contain within it some additional security perimeters and different levels of protection on the
trusted channels since not all hosts within the realm may be equally trusted by the other hosts
in the realm.

The functional requirements for distributed systems are based on the premise that only the trusted
security functions of the hosts and the channels have to be evaluated in order to determine the
distributed system's protection characteristics. Therefore, as shown in Figure 1, the requirements
for a secure distributed system include the components of centralized-system products (trusted
hosts and applications), the trusted channels, security perimeters (which may include routers,
gateways, and/or firewalls), and the interconnection constraints.

It is important to note that the secure distributed system requirements we have written do not
represent what is commonly known as a security service (i.e., a service which may be invoked
directly or indirectly by functions within a system to ensure the adequate security of the system
or of data transfers between components of the system or with other systems). There are several
reasons for this:

• The requirements that are stated in the criteria must be applicable to the trusted
security functions of operating systems as well as for distributed systems.
However, most operating system services, including directory, file, inter-process
communication, and synchronization services, share similar security functions
and requirements (e.g., access control policy, reference mediation). Therefore, per
service requirement specifications would lead to significant requirement

313

redundancy.
• A service-based requirement specification would inevitably lead to the current

"layer wars" in the communication area, since many seemingly similar security
requirements appear in several layers of the communication protocols.
Controversy as to which service and/or layer is more suitable for a specific
security function was avoided by specifying generic requirements that can be
used, instantiated, and/or refined in different service and layer contexts as the
need arises.
Requirement specifications for security functions, rather than for system services,
appears to be generally accepted by the security community. This is evidenced
by the fact that the Orange Book and its interpretations (the Trusted Network
Interpretation [TNI], the Data Base Interpretation [DBI]), as well as the other
trusted operating system criteria (Federal Criteria, CTCPEC, and ITSEC), are not
created from a security service point of view, and its format is widely accepted.

It is also important to note that the functional requirements for secure distributed systems, as well
as for the other functional requirements in the Common Criteria, are application independent. For
example, the requirements for centralized or distributed data base systems, secure mail
applications, document signature verification, etc., are not explicitly addressed. However, the
functional requirements that are in the criteria are intended to be consistent with, and support,
these applications without addressing the requirements for these specific applications themselves.

Also, many of these security requirements are written at a level where they must be instantiated
(using the refinement operation) to meet the specific protection requirements for a particular
organization. In other words, some of the requirements are written as templates. For example,
for distributed systems that require cryptography, there is a cryptographic functional requirement
that states that the cryptographic algorithm should be selected in accordance with international,
national, and organizational standards. This requirement does not state or mandate the use of
any particular encryption algorithm. Rather, it is the responsibility of the organization writing the
protection profile and/or security target to select the encryption algorithm based on the level of
threat it wishes to counter and on international, national, and organizational standards. Likewise,
the criteria does not mandate the use of public or private keys or of discretionary or mandatory
access control. This gives the protection profile writer a great amount of flexibility in selecting
requirements that meet the needs of his/her organization.

This paper focuses on the following functional requirements areas for secure distributed systems:
data confidentiality, data integrity, cryptography, and distributed identification and authentication.
These areas in particular contain many of the unique requirements for secure distributed systems,
and this paper highlights the requirements that were written for these functions. Note that secure
distributed system requirements must also be added to other functional areas (access control,
auditing, system management, trusted path, trusted recovery, etc.) and to the various levels of
assurance.

3.1 Data Confidentiality

The goal of data confidentiality is to ensure that sensitive data are not disclosed in an
unauthorized manner while being transmitted between trusted hosts via trusted communication
channels. Whenever the communication media is unprotected, encryption may be required for
data confidentiality. The use of encryption is governed by the requirements of the data
confidentiality policy, its supporting mechanisms, and the strength of the confidentiality protection

314

deemed necessary.

The requirements for data confidentiality are grouped into three areas: policy definition and
enforcement, channel separation and protection, and cryptographic protection. The policy
definition and enforcement requirements state that an organization's data confidentiality policy for
data being transmitted across a communications channel should be defined and enforced. When
physical and administrative means provide insufficient channel protection, all sensitive data items
can be encrypted before transmission to provide the necessary protection. If data protection is
based on encryption, the data confidentiality policy defines the mode of encryption and the
encryption algorithm to be used. For a greater degree of protection, any data item, structure, or
protocol control information that is exempt from this data confidentiality policy can be separated
through the use of system privileges. Also, for some organizations, the establishment of
thresholds for data confidentiality is important. That is, the leakage of sensitive data via channel
bypass data (e.g., protocol control information) should not exceed a policy-specified threshold
(i.e., the allowable bypass rate), and this threshold can be specified and enforced for all the
communication protocols and channels supported by the distributed system.

Channel separation and protection requirements state that the distributed system must have the
capability to protect the confidentiality of individual messages (e.g, requests, replies, commands)
and selected control fields (e.g., sender and receiver identities, timestamps). Also, the degree
to which channels are protected by physical and administrative means as opposed to how they
are protected via encryption should be stated. Physical protection has to ensure that the
compromise of data confidentiality is not feasible as a consequence of tampering with, or damage
to, communication processors and media. Protecting the confidentiality of individual messages
also involves how these messages are routed; It may be desirable to restrict the routing (the
network links) of the channel data to secure communication media (e.g., network links that are
physically protected). Another degree of protection can be provided by having separate
communication channels for selected policy attributes.

Whenever physical and administrative means provide insufficient channel protection,
cryptographic protection may be required. As stated, an organization chooses a cryptographic
algorithm based upon national, international, and organizational standards, it may also be
important for an organization to utilize different cryptographic algorithms for different protocols
(e.g, mail or interprocess communication data), and for different policy attributes. Data
confidentiality can also be enforced on specific types of communication, such as sensitive but
unclassified data.

3.2 Data Integrity

The goal of data integrity is to ensure that message data are not modified in an undetectable
manner while being transmitted between the trusted hosts of a distributed system via
communication channels. Satisfying this goal also ensures that the source that created the
message originally is unmodified and, therefore, becomes known to the message recipient.

Whenever the communication media is unprotected, cryptography (e.g., checksums and/or digital
signatures) can provide for data integrity. The use of encryption is governed by the requirements
of the data integrity policy, its supporting mechanisms, and the strength of the integrity protection
deemed necessary.

315

The requirements for data integrity are grouped into three areas: policy definition and
enforcement, channel separation and protection, and cryptographic protection. The policy
definition and enforcement requirements state that an integrity policy for data being transmitted
across a communications channel must be defined and enforced. This policy defines the scope
of integrity protection, selects the integrity check functions to be used, and identifies any replay
detection functions (e.g., functions based on sliding time windows and replay buffers, sequence
numbers, random numbers, or combinations thereof) for messages or message streams.
Cryptographic checksums and digital signatures can be used to ensure that the integrity policy
is preserved over the lifetime of the secret key. In particular, without the knowledge of secret or
private keys, it must be computationally infeasible to derive a signature or checksum for a
plaintext message, and to derive a plaintext message from a signature or checksum. Also, for
some organizations, the establishment of thresholds for data integrity is important. That is, for
each protected channel and protocol, the risk that any illegitimate (e.g, modified or replayed)
message or message stream is accepted as legitimate by a recipient after the integrity check
functions and replay detections functions have been employed should be less than a specified
threshold. Integrity check functions allow for the detection of any:

• modification and/or substitution of a message data item or of a stream,
• change in the order of a message data item or stream, and
• change in the number of message data items or streams.

Replay detection functions allow for the detection of the replays of old messages, message
streams, or any parts thereof.

In the area of channel separation and protection, the distributed system must have the capability
to protect the integrity of individual messages (e.g, requests, replies, commands) and selected
control fields (e.g., sender and receiver identities, timestamps). As with data confidentiality, the
degree to which channels are protected by physical and/or administrative means as opposed to
how they are protected via encryption should be described. Physical protection has to ensure
that the compromise of data integrity is not feasible as a consequence of tampering with, or
damage to, communication processors and media.

As stated, cryptographic protection (e.g., checksums and/or digital signatures) may be utilized
whenever physical and administrative means provide insufficient channel protection. Also,
organizations may wish to configure their systems so that the data integrity functions use different
checksums or signatures for different protocols (e.g., mail or interprocess communication data)
or for specific types of data (e.g., sensitive but unclassified data). For a greater level of
protection, organizations may also selectively allow for or mandate the use of encryption by, for
example, assigning system privileges to different subject policy attributes.

3.3 Cryptographic Functions

As with the requirements for data confidentiality and integrity above, whenever the physical
protection of the communication channels in a distributed system is inadequate or the
communication channel cannot be protected by administrative means, cryptography is one way
of providing the necessary means to implement channel separation and data protection. The
requirements for cryptographic protection specify both policy and mechanism. Cryptographic
policies are generally more extensive than access control policies. This is the case because
cryptographic policies refer both to the cryptographic policies designed into the system (e.g., key
management policies including those of key generation, installation, distribution, import/export,

316

activation, maintenance, destruction, escrow, and use), and to the cryptographic function
configuration (e.g., 40 bit DES keys instead of 56 bit keys for some applications or products) and
selection (e.g., cryptographic algorithm "A" must be used instead of algorithm "B" for top secret
data). Cryptographic policies must also be defined relative to the data confidentiality and integrity
policies stated above. For example, if the data confidentiality and integrity policies establish a
threshold "T" for breaches of data confidentiality and integrity, the threshold established by the
cryptographic function for key secrecy cannot be lower than "T." That is, there are policy
dependencies between the cryptographic policies and the policies for data confidentiality and/or
data integrity. The goals of the cryptographic functional requirements are:

• the specification of a cryptographic function of appropriate strength and of
algorithms to support it,

• the protection of the cryptographic domain, and
• the secure management of keys within a product.

The first goal is important because crypto-analytic attacks that attempt to discover secret keys
used by these functions can be mounted against most functions of a product both by external
intruders and by legitimate users. The cryptographic requirements are also important because,
as shown in the previous sections, they can be relied upon by several other components, such
as data confidentiality, data integrity, and also by distributed identification and authentication,
which are all the basis for trusted channel support in both centralized and distributed system
products.

The second goal is important because the security of the cryptographic functions can only be
provided if the cryptographic domain is resistant to external interference and tampering. The
cryptographic domain executes the cryptographic algorithms in hardware, microcode, and/or
software. It uses the secret key in plaintext form and maintains the key configuration options,
initialization data, and key storage. Breaches in the cryptographic domain would be particularly
dangerous since they can potentially affect the security of all system users and trusted hosts
beyond the boundaries of a single product.

The third goal is important because the management of secure keys often provides the weakest
link in the chain of cryptographic function mechanisms and use. The generation of poor-quality
keys, inadequate key distribution, ineffective administrative procedures for key installation, weak
key protection in storage, lack of limited key lifetime enforcement, and incorrect separation of
keys, can lead to real security breaches.

The requirements for secure cryptographic functions are grouped into three areas: secure
cryptographic function definition, cryptographic domain protection, and secure key management.2

The requirements for secure cryptographic functions state that the cryptographic function, and the
secret or private key space and lifetime, should be chosen so that the risk of unauthorized key
discovery is within the limit determined by the system security policy. During the lifetime of the
cryptographically protected data, an exhaustive search that discovers the secret or private key
that was used should be computationally infeasible. The cryptographic function also ensures that

2 The requirements for the physical security of the cryptographic domain and for the operational assurance for
key installation are compatible with the Federal Information Processing Standard (FIPS) for Security Requirements for
Cryptographic Modules [FIPS140-1], and the reader should refer to this FiPS for requirements in these areas.

317

the mapping from ciphertext to plaintext is such that, given an element of ciphertext, the
computation of the corresponding element of plaintext, and vice versa, is infeasible. As stated
in the data confidentiality and integrity components, the cryptographic algorithms that are
selected should be in accordance with international, national, and industry standards.

Minimally, the cryptographic domain of each host must be protected by the trusted computing
base (TCB) of that host. By definition, a TCB is isolated and non-circumventable (tamperproof).
For a greater degree of protection, the cryptographic domain of each host can be a logically
separate and distinct subset of the TCB domain of that host. An organization can also choose a
more stringent physical requirement for a separate cryptographic domain to ensure that a
compromise of the secret or private keys is not possible as a consequence of physical tampering
with, or damage to, the host and/or cryptographic domain.

Keys must also be managed securely. Therefore, organizations can select among the
requirements for key generation, installation, and distribution. The key generation process
ensures that the secret key being generated is unpredictable. Key installation should be
performed using a protected function (e.g., a trusted path such as a smartcard-based trusted
path). When a key is distributed, the key should only be distributed to authenticated subjects.
The key distribution process maintains the key's protection, establishes that the key is not an
unauthorized replay, and establishes the set of subjects that is able to use the key. Also, key
management controls the appearance of plaintext key values and the archiving of keys. Plaintext
key values must only appear within the cryptographic domain, and must never be accessible
outside of this domain. When a key is not in use, the key should be archived in encrypted form
and stored in a physical location where it is protected from unauthorized disclosure, modification,
substitution, or use. For a greater level of protection, separate, independent keys can be defined
for each type of cryptographic function. For example, an organization may require one key for
the encryption and decryption of data and a separate key for authentication.

For an organization with a key escrow policy, this policy must be defined and enforced. A key
escrow policy must state:

• the type of keys to be escrowed,
• the global identifiers used for key identification,
• the binding of the key to the subjects using that key,
• the escrow period,
• the escrow authority, and
• the procedures for accessing the encrypted key within the escrow facility.

3.4 Distributed Identification and Authentication

The role of the identification function in a secure distributed system is to assign a unique,
unambiguous name or identifier to all subjects (e.g., users, realms, communication channels) that
perform any action that should be mediated within the system. For example, there should be a
capability of associating unique user identifies with all auditable actions taken by an individual.
The role of the authentication function is to attribute responsibility for an action to an identified
subject. All users are required to identify and authenticate themselves before beginning any
actions that must be mediated. These actions are typically invoked by requests on a channel.
For example, user authentication involves the verification of the user identity claimed during a
login request on a login channel. For other types of channels, the authentication function simply

318

determines the identity of the subjects at one or both ends of a channel.

The requirements for distributed identification and authentication fall into five areas: channel
identification, channel authentication, user authentication, cross-realm authentication trust, and
channel authentication policy. The requirements for channel identification state that all types of
simple subjects that must be authenticated on the channel should be identified. A simple subject
can be a process, a group of users, a host, a communication channel, a realm, a service, or a
program. These simple subjects are authenticated based on the distributed system's security
policy. The identification of each of these subjects should be:

• complete: all users and subjects, including privileged subjects, must be identified,
and,

• unambiguous: every user and every subject must have a different identity, and
this identity cannot be reused.

A secure distributed system can also allow communication between compound subjects. A
compound subject is a concatenation of one or more subjects. These can include delegation
chains, restricted delegation chains, and conjunctions of subjects (AND-chained identities), as
required by the system security policy. A delegation chain is a list of subjects that are acting on
behalf of one particular subject. When a subject becomes part of a delegation chain, the subject
decides whether it should enable or disable the delegation of its identity. A restricted delegation
chain gives each subject the capability of restricting the delegation of its authority to another
subject by restricting its delegation to only a subset of its policy attributes. With any type of
delegation chain, the distributed system must be able to preserve the distinction between the
identity of the original subject and that of its delegates. The distributed system must be able to
confirm that each subject accepted this delegation and the delegation of some or all of its policy
attributes. An AND-chained identity can be used to identify subjects as they pass from one realm
to another. Each subject in either delegation chains or AND-chained identities are required to be
authenticated individually.

For channel authentication, when a subject receives a message it should be able to ascertain the
channel on which the messages arrives, and the direction of the message on the channel. The
distributed system can also perform message-origin authentication on the channel, that is,
whenever a subject receives a message on a channel, it can ascertain which subject originally
created that message. The distributed system can also have the capability to perform mutual
authentication on a channel, that is, whenever two subjects exchange messages with each other,
each recipient can know that the received message was originally created by the other subject
as part of that message exchange. Both message origin and mutual authentication establish that
these channel messages are not replays of messages that had originated earlier. The validity
of channel authentication can be limited to the duration of the channel key lifetime or to specific
intervals of validity.

User authentication functions protect the authentication data that verifies the identity of individual
users (for example, passwords, seeds, and secret keys) to prevent one user from masquerading
as another. The exposure of this data should be minimized to decrease the possibility of
unauthorized disclosure, modification, deletion, substitution, or use. If sharing of authentication
data among trusted hosts is required, then, as shown in Figure 1, this sharing can be minimized
by the utilization of authentication authorities that act as trusted third parties so that data can be
shared on a pair-wise private basis. Through the use of authentication authorities, user
authentication functions can support single user login regardless of the number of realms or per

319

realm hosts in the distributed system.

If a distributed system is partitioned into one or more separate administrative realms,
authentication paths among the authorities of multiple realms should be defined and enforced in
accordance with the defined policy for inter-realm authentication. In that case, subjects have to
be able to discover the identity of the trusted authorities. In a multi-realm distributed system that
has traveling users, a traveling user should be able to authenticate him/herself (that is, should be
able to login) in a foreign realm in accordance with the inter-realm authentication policy.

In addition, all security policies supported by the authentication functions should be defined and
enforced. Each policy should specify:

• the types of subject and types of authentication supported (for example,
types of channel and user authentication),

• the time and duration of channel authentication (for example, login session,
RPC bind, call, and packet authentication) and the revocation conditions, and

• the validity and renewability of authentication data.

4.0 Future Work

The total task force report detailing the security requirements for distributed systems that were
developed is scheduled to be released as a NIST Internal Report (IR) in the fall of 1995. The
Common Criteria, which is scheduled to be released in January of 1996, will address secure
distributed system requirements for both the functional and assurance areas. Future plans call
for work on the mutual recognition of evaluations for products/systems that are created using the
Common Criteria.

320

References

[COMCRIT] Common Criteria for Information Technology Security Evaluations, Rationale,
Parts 1, 2, and 3, Version 0.6, April 1994.

[CTCPEC] Canadian Trusted Computer Product Evaluation Criteria, Communications Security
Establishment, Version 3.0e, January 1993.

[DBI] Trusted Data Base Management Systems Interpretation of the Trusted Computer
Systems Evaluation Criteria, NCSC-TG-21, Version 1, April 1991.

[FEDCRIT] Federal Criteria for Information Technology Security, Volumes I and II, NIST/NSA,
Version 1, December 1992.

[FIPS140] Security Requirements for Cryptographic Modules, FIPS PUB 140-1, Draft 1993
May 24, NIST.

[ITSEC] Information Technology Security Evaluation Criteria, Commission of the European
Community, Version 1.2, June 1991.

[TCSEC] Department of Defense, Trusted Computer Security Evaluation Criteria, DOD
5200.28-STD, 1985.

[TNI] Trusted Network Interpretation of the Trusted Computer Systems Evaluation
Criteria, NCSC-TG-005, Version 1, July 1987.

321

A PERSPECTIVE OF EVALUATION IN
THE UK VERSUS THE US

Alan Borrett
Member of UK ITSEC Scheme,
P.O. Box 152, Cheltenham, Glos.

01242/221491 Ext. 4557.

This paper identifies differences between TPEP evaluations and those which are
carried out under the auspices of the UK ITSEC Scheme, together with aspects

that the author personally likes about each evaluation process and
recommendations for how they may be more closely aligned. It Is hoped that it
will be of value to vendors entering evaluations in the UK and US, and to those

Involved in Common Methodology.

6 June, 1995.

Product evaluations in the United Kingdom (UK) and the United States (US) are the way they are
because of a number of factors: criteria; evaluation process requirements, such as quality and
consistency; evaluation resourcing. This paper is written from the perspective of a former UK
Information Technology Security Evaluation and Certification (ITSEC) Scheme certifier who has also
worked as a Trusted Product Evaluation Program (TPEP) evaluator for some time. It contrasts
differences between TPEP and the UK ITSEC Scheme, identifies aspects of each which the other may
benefit from, and presents proposals for bringing the two evaluation processes closer together. It is
hoped that this paper will be of value to vendors who will be supporting evaluations in both countries
and as such will need to be party to the full implications, and for those involved in the production of
Common Methodology.

Historical Perspective

UK evaluation criteria has evolved from criteria which was developed for system evaluations. UK
system criteria was subsumed by Information Technology Security Evaluation Criteria [ITSEC],
which is equally applicable to systems and products. ITSEC is supported by the Information
Technology Security Evaluation Manual [ITSEM]. A series of UK computer security advice and
ITSEC and ITSEM interpretation documentation exists in the form of UK security publications
[UKSP01 to UKSP05 and UKSP07]. In advance of the UK system criteria and contrary to the UK
system approach, the US developed evaluation criteria for products (Trusted Computer System

322

Evaluation Criteria [TCSEC]). The TCSEC was subsequently interpreted for specific technology and
environments in the form of the accompanying "Rainbow" series of documents.

Criteria

Evaluation criteria has largely been responsible for divergence between the US and UK approaches to
evaluation. Furthermore, criteria combined with process has resulted in evaluators performing
security analysis and testing in the US, while in UK ITSEC Scheme evaluations, the onus for security
analysis and testing is placed on the developer, and UK evaluators independently review and audit the
work of the developer and report their findings according to the requirements of criteria and
methodology. Effectiveness is another area where the US and UK evaluation processes differ.
Effectiveness analysis is implied in TCSEC, was carried out when the TCSEC was established, and is
performed by evaluators during pre-evaluation and to some extent during the initial stages of design
analysis. Progression to evaluation only occurs when the evaluators are content that the product
appears to be effective. In contrast, ITSEC effectiveness is performed during the evaluation stage. In
UK evaluations, effectiveness is covered under Evaluation (Phase 2). There is probably little scope
for ITSEC and TCSEC criteria differences to be reconciled prior to Common Criteria.

Criteria - Testing Assurance

In the UK, the onus to carry out testing (with the exception of penetration testing) to a suitable level
rests with the vendor or developer. Evaluators are required to witness the developer's testing, repeat
some tests for themselves, and perform penetration tests and tests which search for errors. After
evaluation of the developer's test plan, UK evaluators could recommend that the developer perform
additional tests.

In the UK, the claims made in the Security Target become the target of ITSEC penetration testing
strategy. For E4 to E6, the vendor has to supply a justification of sufficient test coverage. Penetration
testing is applied between El and E6 inclusive. The degree of testing performed in UK evaluations is
related to the assurance level: testing against the Security Target (for El to E6), the detailed design
(for E3 to E6) and the source code (for E3 to E6). This amounts to module, integration and system
testing being required at E3 and above. UK evaluators repeat some of the vendor's functional tests.
Product testing is usually carried out at the Commercial Licensed Evaluation Facility (CLEF) site and
system testing at the development or operational site. CLEF quality procedures comply with the
National Accreditation Measurement Assessment Services [NAM10 and NAM11] requirements for
test laboratories. The Certification Body provides input to the tests to be performed by the evaluators.

The US defines functional testing as aiming to show that the implementation meets the specification
and penetration testing as an unconditional search for errors. The onus is on the vendor to produce a
functional test suite. At B1 and below only functional testing is carried out; the US does not
deliberately search for side effects but if any are found (with the exception of covert channels) they
must be removed; the theory being that penetration testing flaws would be too prevalent at Bl and
below, owing to minimal architectural assurance being available. All TCB external interfaces are

323

tested (both program and otherwise) together with procedures to bring the system into and maintain a
trusted state. Internal TCB interfaces and the trusted subject interfaces are not tested but the US is
moving towards testing them because it eases the task of subsequent application evaluation. Both
positive and negative testing is carried out and common trouble areas exploited; negative testing is
subjective. In order to get the most from testing assurance, the entire set of test suites is expected to
have been successfully run by the vendor. In addition to carrying out new tests, the evaluators repeat
the vendor's entire set of test suites. Testing is performed on a configuration which is representative
of the product which has undergone security analysis as configured by the evaluation team. This
usually takes place at the vendor's site on the vendor's equipment.

The author suggests that there is room for meeting half-way on testing: North American evaluators
should increase their test coverage and Europeans should reexamine test requirements, possibly not
introducing penetration testing until E2, with module and system level testing possibly sufficing.
Common Methodology should define the testing responsibility of developers and evaluators.

Criteria - Covert Channel Analysis

The UK consider covert channels to be a minor threat in practice owing to the difficulty of
introducing malicious code into systems. The UK believes that two types exist: those which require
malicious code and or co-operation with the sender and those which do not require co-operation. The
type of covert channel of concern should be threat-related. ITSEC evaluations always address covert
channels under effectiveness analysis and a determination is made based on the grounds claimed in
the Security Target. This translates into covert channel issues being considered from El to E6 and for
covert channel analysis to be covered more thoroughly at E3 and above.

The TCSEC definition of a covert channel only applies when there is a MAC policy. Covert channels
are flaws which result from the sharing of resources and can never be completely avoided. TCSEC
defines two types of covert channels: storage and timing channels. Arbitrary bandwidth limitation
requirements are followed. The requirements for storage channels are more stringent than those for
timing channels. This also leads to vendors attempting to classify covert channels as timing channels
rather than storage channels. Trusted Product Evaluation Program (TPEP) can tolerate some covert
channels but flaws have to be fixed. This invariably leads to vendors attempting to categorise flaws as
covert channels. TPEP determines the acceptability of a covert channel based on its bandwidth but
due regard is given to the type of information that is transmitted in non-TPEP evaluations; for
example, in an Information Security (INFOSEC) system evaluation, a cryptovariable could be
transmitted over a channel of low bandwidth. The developer is required to calculate the theoretical
maximum bandwidth of all exploitable covert channels. The calculation of bandwidth is an estimate.
The following factors are taken into account: sample size, modulation rate, performance
measurements, input/output speed, etc. US product evaluations at B2 and beyond, take into account
multi-instantiations of covert channels.

324

Criteria - Architecture

In UK evaluations, evaluation is carried out against the Security Target. Should the Security Target
include the underlying operating system and hardware, it is included within the scope of the
evaluation, otherwise assertions are documented. The UK normally only look at hardware in the
event that Security Enforcing Functions are specifically implemented in it, or by virtue of it being
special purpose (not commercial off-the-shelf). Developers may include statements about platform
independence in their Security Target; this will normally lead to caveats in the Certification Report. In
other words, ITSEC excludes some architectural differences. Source code is a required ITSEC
deliverable for E3 and above evaluations: beginning at E3, source code is used in correctness analysis
when evaluators are required to sample code for traceability to design and test coverage analysis, and
from a quality perspective, for adherence to vendor coding standards; source code is used in
effectiveness analysis at E4 and above. TCSEC requires architectural evaluation down to the
hardware level. By way of example, an application evaluation demands that the underlying software
be included in the evaluation. US evaluators sample undefined opcodes and search for obvious flaws.
For Bl and below evaluations, specifications are required for the hardware components and how the
hardware components are bonded together. Evaluators assume that the specifications are accurate.
The operating system together with the hardware are evaluated in combination. For higher-level
TCSEC evaluations, architectural conformance standards are required. More emphasis is placed on
undefined opcodes, trusted distribution and conformance testing. Code correspondence to design,
adherence to coding standards and in-line commenting is less important than modularity, complexity,
coupling, cohesion and redundancy at B2.

The bottom line is that the US appears to do much more hardware analysis and hardware testing than
the UK. The UK appears to do more in the way of source code analysis for mid-range assurance
levels.

Criteria - Developer Environment Assurance

The UK places importance on the developmental assurance aspects of products by third party
evaluation. This covers physical security, clearances of developmental staff, integrity of
developmental computers and quality and developmental procedures, to name but a few. ITSEC
demands that Configuration Control and Trusted Distribution be in place for El to E6 inclusive, with
the rigour increasing with assurance level. Developmental assurance aspects are not specifically
considered by the US during evaluation. The onus is placed on evaluator verification of the product
by design analysis and testing and the integrity of the developmental environment is not a
consideration. Aspects of UK development environment assurance requirements can become visible
during RAMP. TCSEC does not require Configuration Control and Trusted Distribution until B2 and
Al respectively.

It would be reasonably inexpensive for US vendors to adhere to developmental assurance
requirements. In most cases, the existing procedures which vendors have in place to protect their own
proprietary interests are sufficient to meet UK developmental assurance requirements.

325

Criteria - Developer Documentation Requirements

In ITSEC evaluations there is a relationship between the level of detail required of design
documentation and the assurance level. This ranges from "starting to describe" to "explaining". UK
evaluators ensure that traceability exists through the various levels of Target of Evaluation (TOE)
representation. The onus is on the developer to provide traceability evidence. UK ITSEC
documentation for trusted products comprises: security target; security policy model; effectiveness
documentation, such as suitability analysis, binding analysis, strength of mechanism analysis,
vulnerability analysis (both constructional and operational) and ease of use analysis; architectural
detail; detailed design; testing; configuration control. TPEP evaluation teams study detailed
architectural design documentation and establish traceability between design and functional tests.
Vendors provide traceability between high-level design and test matrix documentation and the
respective detailed design and test documentation. US trusted product documentation comprises:
security policy; security policy model; philosophy of protection; TCB interfaces; architectural design;
detailed design; test scenarios and evidence; details of configuration management; proposals for
RAMP.

Visualising a correspondence between those documents required by ITSEC and those required by
TCSEC is not straightforward at the more abstract levels of documentation. It is thought that the
terms of reference of the US Philosophy of Protection could be extended to include effectiveness
aspects.These aspects should be resolved within Common Criteria.

Evaluation Process

The UK Evaluation Methodology defines the work of evaluator, certifier and developer. The
evaluation process comprises four phases: 1) Phase 0 - Pre-Evaluation Consultancy (e.g. deliverables
list and advice); 2) Phase 1- Preparation (e.g. evaluation work programme and detailed
deliverables list); 3) Phase 2 - Evaluation (e.g. analysis of design and testing); 4) Phase 3 -
Certification (including the final Evaluation Technical Report and Certification Report). The UK does
not differentiate between the way in which system and product evaluations are carried out: both are
performed against the same criteria and to the same methodology. The UK ITSEC Scheme allows for
a rich mix of products to be evaluated: aside from traditional products such as operating systems,
database products and personal computer security products, the UK has also evaluated commercial
communications devices (although their sale to the private sector is prevented if the encryption
element employs a government algorithm). The UK work to a documentation set which defines
procedures for the Scheme. In addition, it will shortly adhere to a quality manual. Consistency
between UK ITSEC Scheme evaluations is primarily the responsibility of the Certifier; although the
UK's National Physics Laboratory also plays a part in accrediting CLEFs to perform evaluations and
subsequently carrying out periodic and random audits of their work. Also, CLEFs work to a quality
system which is in keeping with that of their parent company. Two certifiers and a member of the
Certification Body responsible for evaluation methodology, review critical documents such as
evaluation work programmes, evaluation technical reports and certification reports.

326

The new TPEP process [TPEPRO] comprises two stages: Advice and Evaluation. Advice is the term
given to what was formally swept up by the Vendor Assistance Phase; Advice is normally complete
by the time that the Initial Product Technical Report is produced. In the spirit that evaluators provide
independent assurance that a product achieves its security features and assurance attributes, it would
probably not be too difficult to produce an amalgamated evaluation process: Phase 0 and 1 of the UK
approach would approximately equate to Advice under TPEP and all for intent and purpose, Phase 2
and Phase 3 would equate to TPEP's Evaluation. However, as the underlying evaluation philosophy is
different, it is not easy to see how this aspect can be easily reconciled.

If confusion is to be avoided, it will be necessary for the US and UK to use the same evaluation
terminology. Common Evaluation Methodology should address evaluation process alignment.
European evaluators should be obliged to express and defend their understanding of how security is
enforced within products; North American evaluators will have to work to a documented evaluation
methodology and quality system.

Evaluation Process: IPTR

The concept of an Intensive Preliminary Technical Review (IPTR) does not exist in the UK. UK
evaluators review a vendor's ITSEC deliverables for ITSEC compliance and raise problem reports on
any shortcomings. An IPTR is conducted by the US to determine a vendor's readiness for evaluation.
A move into Evaluation is commenced should the IPTR prove to be satisfactory. The IPTR precedes
design analysis and testing.

In a commercial evaluation environment such as that in place in the UK, it is not deemed necessary
for evaluators to produce documentation which justifies a vendor's readiness for evaluation. It is not
apparent that the cost of UK IPTRs, which in turn would be passed to evaluation sponsors, would
result in much benefit to the UK. Additionally, an IPTR in a commercial scheme could give rise to
embarrassment for the government body responsible for approving it, should it subsequently be
proven that the developer was not ready for evaluation. The author believes this to be one area where
a divergence in evaluation process is not detrimental to reciprocity.

Evaluation Process: IPAR

Upon completion of design analysis, US evaluators describe their understanding of the security
design of a product in a document entitled an "Initial Product Assessment Report" (IPAR). The IPAR
is updated at the end of the evaluation and becomes the Final Evaluation Report. The IPAR has
traditionally been written by evaluators; however, vendors can be invited to supply specialised
sections and the evaluation team is required to defend it. It is on the basis of a successful IPAR and
IPAR Trusted Review Board (TRB), that US evaluators are permitted to pursue testing.

The concept of evaluators having to convince a TRB that they understand how security works in a
product does not exist in the UK. The introduction of IPAR production in the UK would introduce an
additional overhead for evaluators and certifiers: evaluators and senior evaluators respectively, would

327

be responsible for writing and reviewing it; certifiers would also find themselves with an additional
document for review.

The author is very much in favour of an IPAR and at the risk of placing an extra burden on UK
evaluators and certifiers, suggest that it be adopted in the UK. It may be possible for CLEFs'
Evaluation Work Programmes to be extended to include the content of a US IPAR. The IPAR should
then be reviewed by a UK TRB.

Evaluation Process: TRBs

Government oversight of evaluations differs between the UK and US. Evaluation oversight in the UK
is essentially a peer review process: CLEF evaluators work to quality schemes imposed by their
parent company and the Certification Body; the work of evaluators is reviewed by other evaluators
within the same CLEF and the Certification Body. The concept of a Technical Review Board (TRB)
does not exist in the UK. TPEP consistency is maintained by the Technical Review Board. The TRB
accepts presentations by the evaluators of their IPAR (which is intended to convey evaluators'
understanding of how security is enforced by the product), the evaluation team's test proposals and
the Final Evaluation Report. Satisfactory TRBs are required before the evaluation can proceed to the
next stage. In addition to ascertaining the knowledge that evaluators have of the product which they
are evaluating, the TRB also serves as a training forum for new evaluators. Assuming that European
TRBs will be necessary, their composition should comprise senior evaluators and the certifier. In
order that senior evaluators provide the best added value to a TRB, they would have to retain a
working evaluation presence. Conflicts between evaluation confidentiality and TRB work would have
to be carefully thought through. At the risk of placing an undue overhead on North American TRBs,
an alternative to a European TRB would be for European products to be presented at North American
TRBs. This may be a more cost effective option in the short term, however, timing of TRBs could be
critical, an undue overhead could be placed on the extant TRB process and travelling costs could
mean that it would only be marginally cheaper.

If North American confidence is to be had in European evaluation processes and vice versa, the
author believes that TRBs are likely to be the linch-pin of any reciprocity agreement. In any event,
there would be some mileage to be had by US TRB members serving on selected UK TRBs and vice
versa.

Evaluation Process: Evaluator. Certifier and Vendor Consistency

Joint Technical Reviews are held for evaluators in the UK; they are of a day's duration and it is
optional whether evaluators attend. UK evaluators are obliged to attend evaluator training modules.
These address how evaluators should work and how the criteria and methodology should be applied
to evaluations; lessons learnt from past evaluations are also presented. UK evaluators are graded
according to the courses they have attended and the evaluation experience they have attained. A
common electronic information processing and storage system does not exist between CLEFs, the
Certification Body and Scheme vendors. Consequently, information exchange for the better part takes

328

place in hard-copy format. In the UK, a combination of ITSEC, ITSEM and the Scheme has meant
that government oversight has taken on a quality perspective, with delegation for understanding
security principles and concepts to the CLEFs.

The US places importance on technical computer security within the US evaluation community. It has
a thorough INFOSEC training programme. The majority of courses have three components to them:
lectured material supplemented by detailed handouts; class exercises; formal examinations. Class
exercises really get the message across and the examination is intended to assess how much material
students have absorbed. Annual evaluation and twice-yearly vendor workshops assist in maintaining
evaluation and developer consistency in the US. Each workshop is of several days duration. Evaluator
attendance is mandatory at evaluation workshops. The National Security Agency (NSA) runs in-
house evaluator training which lasts an hour a week; it is left up to evaluators whether they attend.
Electronic information exchange for all TPEP participants exits in the form of Dockmaster. The
Dockmaster Interpretations forum provides a mechanism for evaluation teams to discuss and obtain
comments from other evaluators on the interpretation of TCSEC, while still observing proprietary
protocol. Dockmaster also contains product evaluation history information.

It is felt that European evaluators and certifiers will have to convince the US that they are technically
security aware as well as quality aware. This could be best achieved by certifiers working as
evaluators for a time and a formal education system being in place for both evaluators and certifiers.
Europe should develop evaluator and vendor workshops along the lines of the US; it should be
mandatory that all evaluators attend. Training modules should cover the likes of formal methods,
networking security, database security, operating system security, communications protocols,
UNDCTM security, security architectures and compartmented mode workstation security. European
certifiers should receive training on the products that they are responsible for certifying as a matter of
course.

Evaluation Process: Evaluation Tools

UK ITSEC evaluations do not demand that UK supported tools be used. A suitable tool, fit for
purpose, is required. For high assurance products the US maintains endorsed tools: Gypsy
Verification Environment; Formal Development Methodology; Hierarchical Development
Methodology. These are contained on the Endorsed Tools List (ETL). The UK has encouraged Z and
CSP for formal specifications and MALPAS and SPADE as source code verification tools.

Reciprocity will probably dictate that the US ETL include appropriate European tools. North
America and Europe should seek to develop a harmonised approach to the grading or rating of
evaluation tools. North America and Europe should seek to jointly operate and maintain a list of
evaluation tools.

329

Evaluation Process: Sources of Vulnerability Information

The UK maintains a database of both public-domain vulnerabilities and those which have arisen from
CLEF evaluations. It is the responsibility of the Certification Body to ensure that CLEFs have
pertinent vulnerability information pertaining to products under evaluation. This combined with the
vendor's vulnerability analysis helps to ensure credibility of the commercial Scheme. The US derives
product vulnerability information from the following sources: previous evaluations; public
vulnerabilities; design analysis. However, an organised collection of vulnerability sources does not
exist for TPEP.

Interchange of vulnerability information between Europe and North America should be envisaged.
This may have a bearing on the type of database which is used. The sharing of both product and
system vulnerability information should be pursued; however, the sensitivity of system vulnerability
information may impose some constraints.

Evaluation Process: Maintenance of Evaluated Status

During UK evaluations, the design and implementation are labelled according to their effect upon the
security policy of the product or security target, according to the following: security-enforcing,
security-relevant, non-security relevant. The TCB would comprise security-enforcing and security-
relevant; it may be possible to make security-relevant changes without calling into question the
certified status. In the case of non-security-relevant changes, the change to the target of evaluation
could be effected without affecting the status of the certificate.

The US has Rating Maintenance Phase (RAMP) in which changes are categorised on a scale of A to
H. A complete re-evaluation is required for H whilst for A the vendor merely has to mail the analysis
to the evaluators. US developers combine products produced by different vendors. Combinations of
products are not currently evaluated by TPEP, however, specific combinations are analysed. When it
comes to re-evaluation, NSA reuses evaluation results by using as many of the previous evaluation
team as possible to carry out the re-evaluation.

The UK approach to classifying the composition of a product's internals according to their effect on
its security policy, should be adopted in the US because it assists in re-evaluations. The UK should
allow some security responsibility to be given back to the vendor by instigating a UK RAMP scheme;
it would seem sensible to adopt the US scale of A to H for changes. [Note: the UK are currently
investigating a UK ratings maintenance system.]

Liability

In addition to technical differences which have arisen from criteria, process and oversight, there are
legal liability issues to be resolved. For instance, German law demands that someone be liable for
failures in certified products. The US makes specific explicit disclaimers to the effect that it assumes
no responsibility and therefore the customer is at risk. The imminent mutual recognition of

330

certification results agreement between the UK and Germany has ramifications for any future mutual
recognition agreement between the US and UK; it could be inferred that the UK would be held
accountable for any deficiencies which are subsequently found in US evaluated products which
appear in the UK Certified Product List [UKSP06]; alternatively, the liability issue may pass to the
US, which at this point in time, is protected from litigation by virtue of being a US government body.

The political implications of legal liability for Europe and North America merits further
investigation. In the interim, it may suffice to place an appropriate caveat alongside any US evaluated
products which appear in UK Certified Product List publications.

Quality of Evaluations

Even though the UK require that all techniques and lessons learnt from evaluations be documented at
the end of an evaluation and made available to the UK evaluation community, it is felt that CLEFs
prepare this information from a position of non-disclosure of information which is of proprietary
interest to them. There is concern in the US that UK evaluations, by virtue of their commercial nature,
do not encourage the sharing of evaluation techniques amongst the evaluation community. This arises
from it not being in the best interest of specific CLEFs to share information with their
competitors.This issue does not feature in the US because all evaluators are funded from federal
resources. There is no doubt that US evaluations have become more efficient over time owing to an
unimpeded interchange of evaluation information. It is difficult to see how a similar free-flow of
benefits to the UK evaluation community can be achieved. The effect of this matter on reciprocity
requires further investigation.

Common Methodology

The European Community has invested heavily in evaluation methodology. The intent has been to
achieve repeatability and reproducibility of evaluation results, and since all European evaluations are
funded by a sponsor, to ensure that the quality of evaluation is not degraded by commercial pressures.
Evaluation methodology has created a quality platform and basis for consistency, and defined the role
of evaluator and developer, together with that of those responsible for overseeing evaluations. This in
turn has meant that there is now no scope for evaluators to compensate for the work of developers, for
example, by carrying out source code analysis to make up for deficiencies in design documentation.
UK evaluators would be obliged to report the problem and suspend that aspect of the evaluation
affected by the problem, until the developer carried out remedial action. It is felt that documented
Common Methodology will be required for reciprocity. An appropriate forum for criteria
interpretations may be Common Methodology. Common Methodology should therefore be jointly
maintained between Europe and North America. Some thought should be given to the role of the
European Commission (EC) in methodology. As part of the wider context, North America will have
to develop adherence to a formally documented evaluation methodology. North America and Europe
should actively seek to harmonise their evaluation approaches to a common methodology. North
America and Europe should seek to jointly operate and maintain such an evaluation methodology.

331

us UK

Evaluation
Consistency

Maintenance
of Evaluation
Status

Funding

Training

Criteria

Evaluation
Readiness

Evaluator
Responsibility

Evaluation
Tools

Technical Review Boards
Dockmaster
Thorough Compusec Training
Evaluation Workshops
Initial Product Assessment Report

Adherence to Methodology
Methodology Training

RAMP Re-evaluation

Government Resourced Sponsor Resourced

Comprehensive Compusec Courses
Weekly in-house
Evaluator and Vendor Workshops
(All evaluators are expected to attend
Evaluation Workshops)

A Couple of Weeks of Methodology

Joint Technical Reviews
(Representatives of the Evaluation and
Certification Communities attend)

TCSEC
CMWREQandCMWEC

ITSEC

Intensive Preliminary Technical Review Contractual (Suspend evaluation if found
not to be ready)

Perform Security Analysis Audit and Review the Security Analysis of
the Developer

Dockmaster
Gypsy
HDM
FDM

Z (BALZAC)
MALPAS
SPADE

Summary of Process Differences

332

Glossary
Assurance: the confidence that may be held in the security provided by a Target of Evaluation.

Correctness: a property of a representation of a Target of Evaluation such that it accurately reflects
the stated security target for that system or product.

Covert Channel: the use of a mechanism not intended for communication to transfer information in
a way which violates security.
Developer: the person or organisation that manufactures a Target of Evaluation.

Effectiveness: a property of a Target of Evaluation representing how well it provides security in the
context of its actual or proposed operational use. [For information concerning the work that
evaluators and developers are expected to perform in respect of effectiveness analysis, the reader is
referred to Annex B of: Manual of Computer Security Evaluation, Part II, Standard Evaluation Work
Programmes, UKSP05, Issue 1.0, dated 14 December 1994.]

Evaluation: the assessment of an IT system or product against defined evaluation criteria.
Evaluator: the independent person or organisation that performs an evaluation.
Integrity: the prevention of the unauthorised modification of information.

Opcode: the instruction level equivalent in assembly language.

Penetration Testing: tests performed by an evaluator on the Target of Evaluation in order to confirm
whether or not known vulnerabilities are actually exploitable in practice.

Product: a package of IT software and/or hardware, providing functionality designed for use or
incorporation within a multiplicity of systems.

Security Enforcing: that which directly contributes to satisfying the security objectives of the Target
of Evaluation.
Security Mechanism: the logic or algorithm that implements a particular security enforcing or
security relevant function in hardware and software.
Security Policy: the rules and regulations governing the handling of information.
Security Relevant: that which is not security enforcing, but must function correctly for the Target of
Evaluation to enforce security.
Security Target: a specification of the security required of a Target of Evaluation, used as a baseline
for evaluation. The security target will specify the security enforcing functions of the Target of
Evaluation. It will also specify the security objectives, the threats to those objectives, and any specific
security mechanisms that will be employed.

System: a specific IT installation, with a particular purpose and operational environment.

Sponsor: the person or organisation that requests an evaluation.

Target of Evaluation: an IT system or product which is subjected to security evaluation.

Vulnerability: a security weakness in a Target of Evaluation (for example, due to failures in analysis,
design, implementation or operation).

333

References

ITSEC Information Technology Security Evaluation Criteria (ITSEC), Version 1.2, dated
June 1991.

ITSEM Information Technology Security Evaluation Manual (JTSEM), Version 1.0, dated
10 September 1993.

UKSP01 Description of the Scheme, Issue 2.0, dated April 1994.

UKSP02 The Licensing of Commercial Licensed Evaluation Facilities, Issue 2.0, dated 1
May 1995.

UKSP05 Manual of Computer Security Evaluations, UKSP 05 Part I, Procedures to be
followed by a CLEF in conducting evaluations under the Scheme, Issue 3.0, dated
1 October 1994.

UKSP05 Manual of Computer Security Evaluations, UKSP 05 Part II, Standard Evaluation
Work Programmes, Issue 1.0, dated 14 December 1994.

UKSP05 Manual of Computer Security Evaluations, UKSP 05 Part HI, Tools and
Techniques to be used by a CLEF in Conducting Security Evaluations under the
Scheme, Issue 1.0, dated 24 June 1994.

UKSP05 Manual of Computer Security Evaluations, UKSP 05 Part IV, Lessons Learnt from
Practical Evaluation Experience under ITSEC, Issue 1.0, dated 24 October 1994.

UKSP07 Certifiers' Guide, dated September 1993.

TCSEC DOD 5200.28-STD, Department of Defense Trusted Computer System Evaluation
Criteria, dated December 1985.

NAM10 M10 - NAMAS Accreditation Standard, General Criteria of Competence for
Calibration and Testing Laboratories; Edition 1, dated March 1989.

NAM11 Mil - NAMAS Regulations, Regulations to be met by Calibration and Testing
Laboratories; Edition 1, dated April 1989.

TPEPRO C71 Trusted Product Evaluation Program Process Document, dated 27 March
1995.

UKSP06 Certified Product List, dated April 1995.

TM - all trademarks are acknowledged.

334

ECMA's Approach for IT Security Evaluations

Alexander Herrigel

r3 security engineering ag, Switzerland, Email: herrigel@r3.ch

Roger French

Digital Equipment Corporation, U.S., Email: French@ateis.enet.dec.com

Haruki Tabuchi

Fujitsu Ltd, Japan, Email: Tabuchi@Saint.NM.Fujitsu.co.jp

European Computer Manufactures Association (ECMA), TC36/TG1

Abstract
The increasing globalization of the commercial market forces multinational companies to purchase, install
and run enterprise wide computer and telecom systems. Effective protection of these systems affects the
IT security strategy of the enterprise. IT security evaluation criteria have to be investigated and selected
for implementing an adequate protection. This paper presents ECMA's approach for IT security
evaluations. In contrast to other standards, it is the objective of the Commercial Oriented Functionality
Class (COFC) to specify only the minimum set of security functionalities for the commercial market to
reduce technical complexity, and to allow the cost- and time effective application. In addition, the
standard is based on today's commercial requirements and not on military and governmental
requirements which are quite different. COFC is considered as a baseline standard commercial
enterprises can measure against.

1. Introduction
The increasing globalization of the commercial market forces multinational companies to purchase, install
and run enterprise wide computer and telecom systems. Since these systems constitute the basis for
providing competitive services to the customers of the enterprise, different security aspects are of great
significance for the enterprises business and its continuity. In addition, information management is critical
to the competitive position of a company in a specific commercial market segment. The enterprise
systems and the processed information are subject to a number of threats from different sources:
Employees make mistakes, some have difficulties in system handling, a few commit fraud because of
personal or commercial reasons. Outsiders or unauthorized persons may target an enterprise for fraud,
vandalism or espionage. Effective protection of enterprise systems and information databases requires a
structured management approach to security. This approach affects different domains of the enterprise
such as people, computer or telecom equipment, communication networks, buildings, business and
facility planing etc.. Typically, the Corporate Security Policy triggers a Risk Assessment which results in
a Corporate IT Security Policy. Typically, a Corporate Security Policy requires a Risk Assessment
covering at least the following aspects:

What are the assets of the enterprise ?

What is the value of these assets ?

Who should have access to these assets ?

Which threats have to be encountered for these assets ?
What is the impact of failure ?

How is disaster recovery and restart organized and managed ?

What operational rules and which security enforcing procedures are needed to fulfill the
Corporate Security Policy ?

335

The risk assessment and a following risk acceptance result in a Corporate IT Security Policy which has to
be adopted by the enterprise management. Its realization affects the IT systems with respect to
application security, computer or telecom systems security and network security. The installed systems
must fulfill the imposed security requirements of the Corporate Security Policy. IT security evaluation
criteria have to be selected for implementing an adequate protection. The specified security evaluation
criteria form a decision base for purchasing a telecom or computer system from a specific manufacturer.
The evaluated systems must fulfill the imposed requirements and constraints of the Corporate Security
Policy. Typically, a specific operating system/hardware platform combination must support an adequate
set of security enforcing functions with respect to the Corporate Security Policy.

2. Related Work
A number of standards or quasi standards are available or under development, which can be applied to
evaluate a specific assurance level of security for a hardware / operating system combination. One is the
somewhat dated and US government/DoD-centric TCSEC, the "Orange Book" [1]. Others [2 - 6] like the
Information Technology Security Evaluation Criteria (ITSEC) [2], the Federal Criteria (FC) [5] or the
Common Criteria (CC) [6] have or are being recently developed, including the 800 page Common Criteria
which is a five government effort to provide a harmonized criteria for the U.S., Canada and the European
Union. There is also the ISO 3 part criteria (ISO/IEC JTC/SC27/WG3) and several industry specific
criteria. The CC and ISO standards are still under development. They need a complimentary evaluation
scheme and mutual evaluation recognition to be of practical value. Their evaluation process is based on
a methodology as outlined in the Information Technology Security Evaluation Manual (ITSEM) [3]. This
document is still 'under development1. In context with the complex Common Criteria (800 pages) major
ambiguities have to be removed. The standards are of general characters and do not reflect the
commercial interests. From a user and computer manufacturer perspective the standards have the
following limitations:

Endless disputes about the interpretation of the requirements.
The interpretation process with respect to ambiguous technical terms is often not public .

• Ambiguity.
• Software maintenance versus re-evaluation.

Different sets of criteria in different countries.
Many standards have been specified under the control of governmental agencies. Some
requirements, however, for governmental environments do not match with the requirements
for the commercial market3.
Some standards have a very high technical complexity and are not concise. The auditor and
management acceptance is, therefore, very limited in a commercial environment.

Since the products of the computer manufacturers must be developed with respect to time and cost to
market, the experienced evaluation process is often called the criteria creep.
In the meantime, ECMA, which was originally the European Computer Manufacturers Association and is
now a worldwide association having members from Europe, the U.S., and Japan, has tried to fill the gab
by providing a class of security functionalities, called the Commercial Oriented Functionality Class
(COFC) [7] which reflect the commercial needs but at the same time allow independence of choice of
assurance criteria and evaluation process. That means that the ECMA COFC can be used in conjunction
with the CC or ISO standard, but could also be used with any other appropriate assurance scale or
evaluation process. ECMA's objective was to reduce the technical complexity, keep the standard open for
later extension to other environments and make it easy adaptable to any given constraints or
requirements.

1 A methodology for the specification of complex digital systems is missing in chapter 7. In addition, it is
not obvious in which phase of the evaluation a specific tool or technique should be applied. Consistencies
issues and system redesigns are also not addressed.
2The set of confirmed interpretations is not visible outside the NSA.
Confidentiality, for example is less important for the financial market as for a governmental agency. In
addition, repudiation aspects are important for the financial market, but not for a military environment.

336

The COFC is a 12 page document that presents a minimum set of security functions, satisfying the need
of commercial companies who want to have their systems reasonable secure. Special emphasis was
given to precise and unambiguous description of the security enforcing functions. Companies are asking
what they need to be reasonably secure. Companies need a baseline standard to measure themselves
against. They may also need a document to point to that indicates that they took reasonable and prudent
precautions regarding the safety and security of their proprietary and personnel information.

3. ECMA's COFC Standard 205

3.1. General aspects
The ECMA COFC assumes a Corporate IT Security Policy of a commercial enterprise taking typical
environmental and organizational constraint into account. As in reality, the Corporate Security Policy is
based on a confidentiality policy, an integrity policy, an accountability policy and an availability policy.
These dedicated policies are enforced by an appropriate IT security architecture that provides a specific
set of security services and the associated security management. The security services and the security
management are based on a specific set of protocols and mechanisms (security enforcing functions)
which may be realized by non-cryptographic (access control) or by cryptographic means (symmetric
methods, public key methods). Due to consistency and ease of operation a specific key management
may be an integral part of the security management supporting specific security services and security
mechanisms. With respect to the various system services which are applied, the security management
system activates the adequate security enforcing functions. If cryptographic means are applied, the
associated keys and parameters are protected such that unauthorized persons can't have access to it.

r* A
Corporate Security Policy

Confidential)!
Policy

i Integrity
Policy

Accountability
Policy

Availability
Policy

IT Security

Network
Security

Operating System/Platform
i Security

Security
Services

Application:
Security

Security
Management

Security Mechanisms

Non-cryptograhic
Means

V!

Cryptographic
Means

Symmetric
Methods

Public Key
Methods

Figure 1: The different components of a Corporate Security Policy

Mechanisms and protocols as such are not specified in the standard with the exception of a password
mechanisms for the case, that this mechanism is applied. A model addressing access control and
accountability is shown in Annex A for a better understanding. Annex B gives a list of all used terms with
definitions adopted from other documents and their references. The ECMA Standard 205 is limited to
multi-user stand-alone systems, but open for extensions for example to interconnected systems.

337

3.1. The COFC standard
The objective of the Commercially Oriented Functionality Class (COFC) is the specification of widely
accepted security functionality class for the commercial market. The standard addresses only IT security.
Other security areas, like personal security, physical security, and procedural security are not covered.
The standard defines a basic functionality class for the commercial market. It addresses multi-user,
stand-alone IT systems and does not address networking or remote access. The standard is partitioned
into several sections namely Identification and Authentication, Access Control, Accountability and Audit,
Object Reuse, Accuracy, Reliability of Service, and Password specific requirements. On the basis of the
imposed commercial market requirements and a risk analysis, the following security enforcing functions
have been identified [7]:

Threat

Outsider attack-Unauthorized access to the
TOE.

Insider attack-Individual responsibility.

Automatic logon attacks.

Disclosure of authentication information.

Disclosure of information.

Manipulation of information (accidental or
intentional).

TOE failure.

Natural disasters.

Security Enforcing Functions

Identification and Authentication prior to all other
interactions.

Unique Identification and Authentication,
Accountability, and Audit.

Number of logon trials.

Authentication information protection,
Authentication information sharing, and
Authentication information aging.

Access Control, and Object Reuse.

Access Control, and Accuracy.

Recovery.

Data Backup.

It is beyond the scope of the paper to describe the COFC in detail. Instead some items are highlighted as
being essential for a commercial environment and not addressed in other standards:

Expiration of unused user identifiers.

Disable users temporarily.

Date of modification to objects.

Application controlled access rights program path.

Audit records to actions by authorized users.
Survive of accountability control information at restarts of TOE.

Alarm if unable to record audit trail.
Dynamic Control for events recorded during normal operation.

TOE software integrity.

Data integrity.
Status report of all customer specific security parameter.

Data Backup.

Default passwords.

For a commercial environment, these items are quite important, since a secure system and accounting
management can only be realized if adequate means for backup, recovery, audit, integrity, and accuracy
are supported. From our perspective, the dedicated mechanisms applied to implement these
mechanisms may differ for the various systems. These means should, therefore, not be standardized.

With respect to the other ongoing activities in the standardization process, we have compared the COFC
with other standards. Table 1 to Table 11 describe in detail the comparison with the CS1 and CS2
Protection Profile from the FC [5].

338

Table 1: Identification, Authentication and System Entry

Functional Requirements COFC CS1 CS2

Unique Identification and Authentication 6.1.1 3.11 3.1.1

Identification and Authentication prior to all other interactions 6.1.2 3.11 3.11

Associate Information to users 6.1.3 3.1.4

Logon message 6.1.4 3.2.1

Display last access info 3.2.5

Number of logon trials 6.1.5 3.1.3

Number of logon sessions 3.2.2

Expiration of unused user IDs 6.1.6

Session lock or terminate 3.2.6

Disable users temporarily 6.1.7

User status information 6.1.8 3.1.4

Policy attributes control 3.1.4/3.2.4

Authentication information protection 6.1.9 3.1.3 3.1.3

Authentication information sharing 6.1.10 3.1.5.a

Authentication information aging 6.1.11 3.1.5f

Protected mechanisms for Identification and Authentication 3.1.2

No error feedback for Identification and Authentication 3.1.3

System entry denial by time 3.2.3/4

Password mechanisms 7.1 3.1.5

Table 2: Password Specific Rt quirements

Functional Requirements COFC CS1 CS2

User-changeable, Password initialization 7.1.1.1 3.1.5.c

User-changeable, Password storing 7.1.1.2 3.1.5.b

Already associated password 6.1.10 3.1.5.a

Password aging 7.1.2 3.1.5.f

Expiration notification 7.1.3 3.1.5.g

Password reuse 7.1.4 3.1.5.h

Password complexity 7.1.5 3.1.5.i

Logging 7.1.6

Default passwords 7.1.7

Null password 3.1.5.d

Password generation algorithms 3.1.5-j

Password display suppression 3.1.5.c

Table 3: Access Control

Functional Requirements COFC CS1 CS2

Authenticated user identification 6.2.1 3.4 3.7

Individual user 6.2.2 3.3.2 3.5.2

User groups 6.2.3 3.3.1/2 3.5.1/2a

Objects 6.2.4 3.3.3 3.5.3

Types of access rights 6.2.5 3.3.1 3.5.1

Default access rights 6.2.6 3.3.2 3.5.3.C

Precedence of access rights 6.2.7 3.5.3.a/b

339

'Table 3 com.; Access Control

Date of modification

Verification of rights

Application controlled access rights

Object reuse

Multiple access control policies

Change while active

List of no access to object

List of names of all groups

List of membership of any group

6.2.8

6.2.9

6.2.10

6.5

implicit in
COFC

implicit in
COFC

3.3.3

3.3.4

3.5.3

3.5.4

3.5.1

3.5.2

3.5.2

3.5.2.b

3.5.2.C

Table 4: Accountability and Audit

Functional Requirements COFC CS1 CS2

Associate actions and users 6.3.1 3.4.2/3

Logging 6.3.2 3.4.2

Use of identification and authentication 6.3.2.1 3.2.2 3.4.2

Attempts to exercise access rights 6.3.2.2 3.2.3 3.4.3

Creation/deletion of object 6.3.2.3 3.4.4

Authorized user actions 6.3.2.4 3.2.2 3.4.2

Logged information 6.3.2.5 3.2.3 3.4.3

TOE restart 6.3.3 3.10

Copy audit trails 6.3.4 3.4.4

Alarm if unable to record 6.3.5 3.4.4

Select users 6.3.6 3.2.4 3.4.4

Dynamic control 6.3.7 3.4.4

Policy attributes 3.2.3 3.4.3

Tools 6.4.1 3.4.4

Select users 6.4.2 3.2.4 3.4.5

Automated copying/deletion 3.4.4

API 3.4.1

Table 5: TCB Protection and Easo-cf-1 CB-Uso

Functional Requirements

TCB address space

Noncircumventability

Default security parameters

Fail - safe

API

COFC CS1

3,5.1

3.5.2

CS2

3.8.1

3.8.2

3.12.1
3.12..2

3.12.3

Table 6: Accuracy

Functional Requirements COFC CS1 CS2

TOE software integrity 6.6.1 3.6 3.9

Data integrity 6.6.2

API 6.6.3

340

Table 7: Reliability of Service

Functional Requirements COFC CS1 CS2

Recovery 6.7.1 3.10

Data Backup 6.7.2 3.10

Table 8: Object Reuse and Reference Mediation

Functional Requirements COFC CS1 CS2

Object reuse 6.5 3.3.4 3.5.4

Reference mediation 6.2.9 3.4 3.7

Table 9: TCB initialization, Recovery and Self Chocking

Functional Requirements COFC CS1 CS2

Data recovery 6.7.2 3.10.1

System re-start state 6.7.1 3.10.2

HW/SW operation check 3.9

Power-On test 3.9

Integrity test programs 6.6.1/2 3.9

Table 10: Privilege Association with TCB Modules and TCB Trusted Path

Functional Requirements COFC CS1 CS2

Privilege Association 3.11

Trusted Path 3.3

Table 11: Security Management

Functional Requirements COFC CS1 CS2

Maintenance mode mechanism 3.6.1

Modify policy parameters 3.6.2

Session inactivity 3.6.1.1

Logon/session time 3.6.1.2

Unsuccessful logons 6.1.5 3.6.1.3

Manage user registration 6.1.7 3.6.3

Listing security attributes 6.6.3 3.6.3

Routine control of system, resources 3.6.4

Object access control Annex A 3.6.5

The following aspects have to be considered comparing the COFC with CS2:

3.

COFC does not specify any assurance criteria. Therefore, the protection of the security
management data (TCB) is not specified in COFC (Table 5).

One of the COFC main objectives is to specify a baseline standard which should be very easy
to adopt in a commercial environment with respect to time and cost to market. Requirements,
such as "Display last access info" (Table 1), are not supported by COFC since they have not
been identified for the baseline set.

From our perspective, the following issues, not supported by CS2 are very important for a
secure system in a commercial environment:
• Accuracy (Table 6).

• Audit records to actions by authorized users.

341

Survive of accountability control information at restarts of TOE.

Alarm if unable to record audit trail.
Dynamic Control for events recorded during normal operation.

4. Future Work
The COFC has been adopted as an ECMA standard by the General Assembly in December 1993. Since
January 1994, the responsible group TC36ATG1, is working on an enhanced COFC, called E-COFC, that
addresses the minimal set of security requirements for interconnected single-user and multi-user
systems.

Requirements from
the financial market

Requirements from
the lolücom market

 n
Requirements from,

the health care market

M

Commercial
User

Requirements

Secunty
Requirements

V
Derived minimum set of
Security Functionalities

Figure 2: ECMAs approach for the specification of IT Security Evaluation Criteria

The E-COFC will be based on some of the security functions as defined in the COFC. The target for
completion of a first draft version is January 1996. Presently, commercial requirements from different
user groups in different countries are being investigated. Based on the results of this work, a threat
analysis (communication, system, and user account compromise), and a technical system analysis
(different network based operating systems), will be made to form the basis for the E-COFC and its
validation (see Figure 2).

5. Conclusions
From our perspective, the COFC has the following advantages:

1.

2.

The standard is easy to understand since the specification of a minimum set of security
functionalities reduces the technical complexity. The derived set provides a reasonable
protection for commercial multi-user, stand-alone IT systems.
The standard is easy to adopt by different groups in a company, including the management
level due to compactness (12 pages) and clear language.

342

3. The standard is concise. An auditor or a CEO can hand it to the internal security or IT
management and ask simply, "Do we comply ?"

4. The standard is based on today's commercial requirements avoiding military and
governmental bias. Major efforts have to be undertaken to come up with a concise security
evaluation standard that fulfills the constraints for these three very different environments.
Today's operating commercial companies can't take the risk to wait such a long time.

5. The standard is independent of assurance criteria and evaluation methods. It is consistent with
TCSEC, ITSEC and MSFR concepts. The COFC can, therefore, be applied with an
appropriate assurance scale and methodology, which might be TCSEC, ITSEC, FC, CC or any
scale of assurance criteria and evaluation methods provided by any other organization, if
accepted by the user.
The COFC has been sent out as a contribution to the international standardization process.

7. The COFC is supported by computer manufactures from the U.S., from Japan, and from
Europe. This international basis provides the commercial user with the necessary assurance
that the mutual recognition of product evaluations is not limited.

8. The COFC provides the world-wide operating computer manufactures with a framework that is
easy to adopt. They can, therefore, develop their products on the basis of this standard and
fulfill the business requirements with respect totime and cost to market4.

ECMA will be promoting the COFC as a concise, easily understood standard that provides a necessary,
but not sufficient measure of commercial IT security. That promotion will start as early as late this
summer and will take place in Europe, in the U.S., and in Japan. In addition, the standard is submitted to
different expert groups as contribution to the international standardization process. Within ECMA,
TC36/TG1 is working on an enhanced COFC that addresses the minimum set of security requirements
for interconnected single-user and multi-user systems.

References

[1] "Trusted Computer Systems Evaluation Criteria", DoD 5200.28-STD, Department of
Defense, United States of America, December 1985.

[2] "Information Technology Security Evaluation Criteria (ITSEC) - Harmonized Criteria of
France, Germany, the Netherlands, and the United Kingdom ", Version 1.2, June 1991.

[3] "Information Technology Security Evaluation Manual (ITSEM)", Provisional
Harmonized Methodology, European Commission, Directorate-General XIII,
telecommunications, Information Market and Exploitation of Research, September
1993.

[4] "The Canadian Trusted Computer Product Evaluation Criteria", Canadian System
Security Center, Communications Security Establishment, Government of Canada,
Version 3.0e, January 1993.

[5] "Federal Criteria for Information Technology Security", Volume 1 and Volume 2,
December 1992, National Institute Of Standards and Technology & National Security
Agency.

[6] "Common Criteria for Information Technology Security Evaluation", Version 0.9,
CCEB-94/080- CCEB-94/085, 31.10.94.

[7] "Standard ECMA-205, Commercially Oriented Functionality Class for Security
Evaluation (COFC)", ECMA, December 1993.

4Product evaluations based on the Orange Book need between 3 and 5 years.

343

Rating Network Components

Gloria Serrao
ATTN: C71

9800 Savage Road
FortMeade.MD 20755-6000

(410) 859-4458
Serrao@DOCKMASTER.NCSC.MIL

The National Security Agency (NSA) Trusted Product Evaluation Program
(TPEP) evaluates the security of computer products based on the

Trusted Computer System Evaluation Criteria (TCSEC). As
network security increases in importance, the Trusted

Network Interpretation (TNI) ofthat criteria, and its guidance
for partitioning networks into components should be revisited.

This paper discusses the importance of a secure network
architecture and design, the relationships between security

policies, and analyzes what policies and assurances components
must have to be rated as individual component types.

1 June 1995

Background
The Trusted Network Interpretation (TNI) allows for network products to be evaluated as a

complete network system (Part 1 of the TNI) or as components (Appendix A of the TNI). Network
components, according to the TNI, are products that do not support all the policies required by the
Trusted Computer System Evaluation Criteria (TCSEC). Components are identified by the general
type of policy that they do support: Mandatory Access Control (M), Discretionary Access Control
(D), Identification and Authentication (I), and Audit (A). A component can provide any combination
of M, D, I, or/and A functionality. There are 16 possible policies (combinations of M, D, I, and A).
One of the 16 possibilities is that of no security policy (e.g., a network cable). This paper will address
only individual M, D, I, and A components and what is required to give a component one of these
ratings. In contrast to a stand-alone operating system which will contain all the functions necessary
to accomplish MAC, DAC, I&A and Audit, a network component may share portions of the required
functionality with other network components. For example, one component may be the Audit
component for the network with the other components providing support for that Audit component by
forwarding audit records to it for processing and review. This is a clear cut example, but what about
the I&A or DAC component that itself does not store the database information it uses to determine
correct identity (I&A) or correct access (DAC)? What portion of its functionality can a component
require other components to provide? Can a component be given a D rating if it provides the "major"
functionality required of a DAC component? This presents a difficult problem for evaluators who
must decide whether or not the portions of the security policy enforced within a component are
adequate for the desired rating. Evaluators must "step back" and view the component as a piece of an
overall network system. If the component itself does not provide adequate security policy
enforcement for the whole network, they must decide what items are lacking and how to sufficiently
describe them in a Network Security Architecture and Design (NS AD) document.

344

The Network Security Architecture and Design (NSAD)

The Network Security Architecture and Design (NSAD) document, as the title implies,
addresses both an overall network security architecture (policies and objectives) and describes how
the network should be built to comply with this architecture. The NSAD is a requirement stated in
the Design Documentation section of the TNI. It must be provided for all network and network
component products. It is described in Section 1.4.1 of the TNI as:

"The Network Security Architecture must address the security-relevant policies, objectives,
and protocols. The Network Security Design specifies the interfaces and services that must be
incorporated into the network so that it can be evaluated as a trusted entity. There may be mul-
tiple designs that conform to the same architecture but which are more or less incompatible and
non-interoperable (except through the Interconnection Rules). Security related mechanisms
that require cooperation among components are specified in the design in terms of their visible
interfaces; mechanisms which have no visible interfaces are not specified in this document but
are left as implementation decisions.".... "The NSAD must be sufficiently complete, unambigu-
ous, and free from obvious flaws to permit the construction or assembly of a trusted network
based on the structure it specifies." The NSAD must completely and unambiguously define the
security functionality of components as well as the interfaces between or among components.
The NSAD must be evaluated to determine that a network constructed to its specifications will,
in fact, be trusted, that is, it will be evaluatable under these Interpretations."

This short description does not adequately reflect the importance of an NSAD as a design
document during the evaluation of a component. Since a component must be evaluated as a small
piece of an overall network security policy, the overall policy must be defined as accurately as
possible and should reflect a major investment of the vendor's time and resources. The NSAD sets
down the foundational rules for a network, describes how the Network Trusted Computing Base
(NTCB) is partitioned and how all the trusted system requirements are satisfied. The NSAD must
describe a clear division between what security functionality is enforced in each NTCB partition;
including the partition (component) under evaluation. It must discuss what security-related
cooperation is needed between components. It must tell what is expected of anything connected to
the component and include known items that could undermine the component's security policy. It
must describe in detail what things must be present for the component's security policy to work
properly. For example, if a component provides C2+ (equivalent to B3) Discretionary Access
Control (DAC), the NSAD must describe a network level B3 DAC policy to include the ability to
deny access based on "a list of named individuals AND a list of groups of named individuals". Any
network or component that is evaluated must not only meet the TCSEC requirements and TNI
interpretation but must also conform to the NSAD. Conformance to the NSAD ensures that all the
pieces of the network can be combined and result in a network that enforces the overall network
security policy.

Evaluators and vendors of network components must be careful when using an NSAD to
describe what is required of other components. As an NSAD broadens in scope, the component under
evaluation becomes less functionally complete. For example: if a network component itself does not
provide audit records of administrator actions and does not include a way to identify the individual
taking the action, could it rely on one host to provide the I&A information and yet another host to cor-
relate the audit records with the individual identities? Can this reliance on two different hosts to meet
a requirement be documented in an NSAD so that the component meets the audit requirement?

345

Component
I&A Host

Audit Host

No, while it is true that these reliances must be documented in an NSAD, the component would not
meet the audit criteria merely based on its assumptions regarding the two hosts. The audit criteria
requires that an administrator be able to selectively audit actions based on user identities and this
could not happen at the component under evaluation.

Security Policy Relationships
It is important to understand the inter-relationships of the main security policies within a

generic network system. Although components are rated based on the general policy elements the
component supports, the following relationships should be considered when analyzing a component:

jr Audit ■■^■^

DAC MAC
I&A

Information supplied during identification and authentication of a user is used by the Trusted
Computing Base (TCB) to make Mandatory Access Control (MAC) and Discretionary Access
Control (DAC) decisions. Audit utilizes the I&A information combined with MAC and DAC access
checks to formulate audit records. When the TCB is provided a user name and password, it compares
it to the correct password and allowed classification level. If correct, the TCB associates this
identification information with all actions taken on behalf of a user. Given this inter-relationship
diagram, components that do not themselves meet the requirements for a given security policy (M, D,
I or A) must still provide necessary information to other components in the network so that all
policies can be met in the overall network architecture. The information that a component provides to
other components must be captured in the NSAD and should also be described in the Trusted Facility
Manual (TFM) for the product

How TCSEG Requirements are Reflected in Component Ratings

When the TNI addresses components individually (in Appendix A, Section 3), only MAC
components can meet levels of trust higher than C2. DAC and Audit are eligible to be C2+
components provided they meet the requirements for B3 DAC and Audit. Therefore, a C2 product
could contain C2+ DAC and Audit; but because the assurance requirements that accompany MAC are
not present, only a C2+ can be achieved. The C2+ designation indicates that although the features
meet requirements above C2, the features are not accompanied by B3 assurances such as system
architecture and penetration testing. This is easy to understand with a DAC component which may
indeed have high assurance but because DAC is inherently flawed, nothing has been accomplished.
B3 DAC is an oxymoron because access controls are based on user discretion and can be propagated
unwilling or unknowingly. For example, User A may create a file and grant User C no access. User
B, however, has read access and can read the file, copy it, and make it accessible to User C.

346

The TCSEC I&A requirements do change at Bl. However, the change is MAC related and
states that the I&A data must be used to ensure that the sensitivity level and authorizations are
properly associated with the user identification. When the TNI was written and the component
requirements revisited, this portion of the TCSEC I&A requirement was moved to the component
MAC requirements.

In practice, when components are evaluated as any combination that includes MAC (i.e., MA,
MI, DA, etc.) the MAC policy is examined first The maximum level of trust that can be given to a
component is that which imposes the highest requirement. MAC requirements encompass assurance
requirements which, in turn, apply to the I&A, DAC and Audit functions of the component.
Therefore, whatever rating the MAC portion receives is the resulting rating for the component. The
composition guidelines in Appendix A, Section A.2 "Composition Rules" of the TNI gives more
detailed guidance for combining component ratings. For example, when evaluators analyze a B3
MDI component, it will contain B3 assurances and will thus be able to be called a B3 MDI
component provided the D and I functionality meet the B3 requirements.

Analysis of Individual Component Ratings

Keeping in mind the importance of the NSAD and policy inter-relationships, what is required
of each individual component type at the various levels of trust? To analyze this and to point out
questions for the evaluator community, I have reviewed the applicable sections of TNI Part 1,
"Interpretations of the Trusted Computer System Evaluation Criteria", and TNI Appendix A, "The
Evaluation of Network Components". This criteria was reviewed specifically with regard to past
evaluation community discussion about whether or not a component needs to contain all elements of
the particular security policy (MAC, DAC, I&A, or Audit) in order to be rated for that individual
policy.

An early network component evaluation (an MI component) did not include a network
management workstation and, therefore, contained no storage databases for MAC and I&A
information. However, the MAC and I&A criteria call for storage of security levels and identities.
This evaluation proceeded based on a technical decision that stated "because of the distributed nature
of networks and their functionality, network components can rely on other components to provided
pieces of their functionality. This decision broke component security mechanisms (D,I, M and A)
down into subfunctions which are defined below. In order to meet the appropriate criteria,
components did not have to be solely responsible for meeting the entire security policy but may
perform only the appropriate subfunctions as defined and summarized below. Note that all
components must "enforce" audit; i.e., produce audit data for their own auditable actions.

Decision: the check being made and the logic of the algorithm used in the check.
Example: I&A decision compares password entered with correct user password

Enforcement: confidence that functionality will always be performed
Example: MAC enforcement ensures access for the subject to the object; no
other object, no other access

Audit Enforcement: ensures an audit record is generated whenever an auditable event
occurs

Storage: Storing the information used in (or resulting from) the check.
Example: for MAC, mapping of objects to labels and of subjects to labels

347

for I&A, mapping of ids to authentication data.
Table 1: Network Component Subfunctions

Type of NW Component Subfunction Required

I&A Decision, Enforcement, Audit Enforcement

MAC Decision, Enforcement, Audit Enforcement

DAC Decision, Enforcement, Audit Enforcement

Audit Decision, Enforcement, and Storage

Note that storage is not required for MAC, DAC or I&A components. This particular point,
as well as others, will be examined for each type of component.

T&A Components

TNI Part 1 (Network) Interpretation:
Individual accountability for security relevant actions is still the objective for I&A. However,

the TNI allows this accountability to be met by host identification instead of by I&A of an individual
user provided that the host identifier implies a list of specific users. This would allow I&A to be
performed by a host IP address for which the host contains a list of individual user names. I&A
information can be passed from one component to another. Each component does not need to
reauthenticate the I&A data provided the information is protected during transit.

TNI, Appendix A , Section A.3.4 (Component) Interpretation:
•I&A mechanisms can only meet C2 requirements and include the following requirements that are

applied without further interpretation: I&A, Object Reuse, Security Features User's Guide,
Security Testing, System Architecture, System Integrity and Test Documentation.

•I&A mechanisms do not include mechanisms to completely support any of the three other net-
work policies.

•Audit is specifically mentioned "the I-component shall produce audit data about any auditable
actions performed by the I-component"

•Because an I&A component does not maintain audit files or provide mechanisms for examining
them, only the mechanisms for exporting audit data must be defined in the Trusted Facility
Manual (TFM).

•The design documentation for an I&A component must contain a description of the protocol used
by the I-component to export authenticated subject identifiers to other components

Analysis:

A key phrase in Appendix A, Section 3 is "do not include mechanisms to completely support
any of the three other network policies. By using the word "completely" it is clear that while the I&A
component does not have to perform DAC, MAC and Audit (it alone is not responsible for the
completion of these policies) but it must be able to supply the required information to other network
components and state how this is accomplished in the NSAD and the Trusted Facility Manual (TFM).

The use of host addresses for I&A actually allows the authentication of a users identity to take
place on the host. Thus, the host must be a trusted host and the requirement for a trusted host would
need to be stated in the TFM. Based on the identifier passed to the network component from the host,
would the network component authenticate the identifier? If not, it is not appropriate to assign the

3 48

component an I&A rating because instead of performing I&A, the component is merely using an
identifier passed from another component in order to perform a MAC or DAC access check. In many
cases, a component will perform some type of authentication. For example, based on the identifier
provided, is this host a valid host? If the component does this, it is eligible for an I&A rating. A
component can also be an I&A component based on the I&A it performs for a console operator or
system administrator, provided the authentication data is protected and individual accountability and
auditing can be accomplished.

If storage is not required for a component to be an I&A component, the password file or other
mapping of identities to authentication data can be stored on another component. The other
component would then be trusted to supply a correct mapping. Part 1 of the TNI, Section 2.2.2.1
Identification and Authentication states:
"Furthermore, the TCB shall use a protected mechanism (e.g., passwords) to authenticate the user's
identity. The TCB shall protect authentication data so that it cannot be accessed by any unauthorized
user."
The requirement for protection of authentication data implies storage of that data. In addition, how
can an I&A component be tested without its authentication data? If an I&A component is not required
to store its authentication data, one could envision a network that has an I&A component but cannot
perform DAC and MAC checks. If a component is rated as an I&A component, shouldn't an
integrator expect it to perform I&A for his network without reliance on another trusted component to
store the database?

The "decision" that an I&A component performs is the comparison of the authentication data
entered with authentication data maintained. If it does not maintain the authentication itself can it
adequately "decide"?

Remembering that the I&A requirement is redefined for components and does not include the
association of an id with a clearance level, an I&A component does not need to do this association,
however, a M-component would.

Mandatory Access Control (MAC) Component

TNI Part 1 (Network) Interpretation:

A MAC policy and sensitivity labels must be present in the component MAC must be
exercised over all subjects and objects under its control. For a subject in one component to access an
object in another component, there must be the creation of a surrogate subject in the second
component which acts on behalf of the first subject. The label requirements are significant and
address how a component NTCB partition must assign a label to non-labeled data it receives. The
TNI expands the label requirement to address integrity of labels. The requirement for exportation of
labeled information states that sensitivity labels remain correctly associated with exported
information. The accurate representation of sensitivity labels throughout the network system must be
described in the network security policy. The MAC requirements span from Bl to Al. At B2, access
controls extend to "subjects external to the TCB and all objects directly or indirectly accessible by
these subjects". B2 requires device labels and subject sensitivity labels, as well as trusted path.

349

TNI, Appendix A , Section A.3.1 (Component) Interpretation:

•M-components can meet Bl, B2, B3 and Al requirements and are rated according to the highest
level for which all the requirements of a given class are met.

•The M-component shall produce audit data about any auditable actions performed by the M-
component and provide a mechanism for making the audit data available to an audit component.

•Requirements that apply to M components without further interpretation are: Configuration
Management (for B2 and above), Design Documentation, Label requirements (including device
labels, exportation, human-readable output, and integrity), MAC, Object Reuse, Security
Features User's Guide, System Integrity, Test Documentation, Trusted Distribution (Al),
Trusted Facility Management (B2 and above), Trusted Recovery (B3, Al).

•If a component does not support direct terminal input there is no Subject Sensitivity Label
requirement. Likewise, if an M-component does not support direct user input, there is no
Trusted Path requirement.

•Interpretation of the B2 and above requirement to define the user interface to the TCB is that user
interface means the interface between the reference monitor of the M-component and the
subjects external to the reference monitor shall be completely defined.

•To support Covert Channel Analysis, the M-component must provide a mechanism for making
audit data for any necessary covert channel audits available to other components.

•The mechanisms and protocols used to export audit data have to be provided in lieu of describing
how to examine and maintain audit files.

•The I&A requirements state that the TCSEC I&A requirements for establishing a user clearance
by mapping user ids to labels are reflected in M components. Thus M-components are
responsible for using I&A data to map user identities to labels.

Analysis:
Again, a MAC component need not provide complete support for the three other policies, but

is expected to provide appropriate support based on the NSAD. A MAC component can play a major
role in building a network from single level Local Area Networks (LANs) or from one or more
multiple level networks and one or more single level networks.

The MAC policy for a network must address how labels are transferred from one component
to another and what is required from each component for the association of the labels with
appropriate objects.

The Label requirement in Part I of the TNI points out that labels may include both secrecy and
integrity components. Thus far, TPEP evaluations of network products have not included evaluating
a mandatory integrity policy. Although evaluators may state that an integrity feature is present (e.g.,
checksums), they do not evaluate the feature with regard to strength or appropriateness. If a sponsor
proposed an NSAD with a mandatory integrity policy, evaluators would have no accompanying
requirements for evaluating the integrity policy since integrity is not a separate requirement under
the TCSEC. The use of cryptography seems an obvious solution for label integrity. Products in past
TPEP evaluations have typically met the label integrity requirement by storing labels in a specially
protected file and requiring that they be physically protected during transit over a network wire. The
use of cryptographic checksums on labels is also a viable solution.

The "decision" of a MAC component requires the mapping of a user id to a clearance level
since this requirement was moved from the I&A component requirements. Based on this added
requirement, a MAC component must store and maintain the I&A data that uses to map ids to labels.

350

A component that simply performs access checks based on subject and object labels is not a MAC
component because correct MAC relies on the correct association of ids to sensitivity labels.
Although it might be logical to state that another trusted component (an MI component perhaps) can
perform the I&A and associate identifiers with clearance levels, the TNI specifically states that to be
rated as an M component, the I&A mapping must take place in the M-component itself.

The audit requirements must be kept in mind even while designing and/or evaluating an M-
component. M-components are required to "produce audit data about any auditable actions
performed". Therefore, the required actions and the required formats for auditing must be in place for
an M-component. A cursory reading of the TNI could lead to the conclusion that an M-component
need not audit those events specifically enumerated in the Audit requirement (since it is not an Audit
component). The MAC requirement in Part I of the TNI does not state that all security relevant
events must be audited, however the Appendix A statement above and its use of the words "auditable
actions" logically means that all security relevant actions performed by the M-component must be
audited. In order to fit into an overall secure network, auditing of the M-components internal security
related actions is mandatory. The NSAD for the network should be reviewed to ensure that the M-
component audits are appropriately capturing security related events. The M-component protocol for
correlating and/or exporting audit records must be stated in the NSAD and TFM.

Protocols become of major importance in a MAC component. The sponsor of a component
under evaluation must specify how labels are done (e.g., in accordance with RFC 1108). In addition,
the component NSAD must address the common representation of security levels for the overall
network.

MAC controls must be enforced at the interface of the reference monitor for each NTCB
partition. MAC mechanisms, in contrast to DAC mechanisms in a network system, must be enforced
equally for the entire system. For example, a label assigned to file A will be associated with that file
when it is accessed anywhere on the network.

What about storage within a MAC component? Does a MAC component need to store the
database it uses for mapping objects to labels and subjects to labels? In Section 3.1.1.4 of the TNI,
the Interpretation section states "In a network, the responsibility of an NTCB partition encompasses
all mandatory access control functions in its component that would be required of a TCB in a stand-
alone system." This statement implies that the labeling information should be present in a MAC
component. How can you test an M-component without access to the data it uses for performing
security relevant decisions?

Discretionary Access Control (DAC) Component

TNI Part 1 (Network) Interpretation:

DAC mechanism(s) may be distributed over the partitioned NTCB. Network components that
contain only internal subjects (subjects that do not directly act on behalf of users) might not contain
DAC. Network identifiers (e.g., internet addressees) can be used as group identifiers as long as
specific individuals are implied by the group identifier. The DAC mechanism can be implemented at
the interface of the reference monitor or in subjects that are a part of the NTCB in the same or
different component

351

TNI, Appendix A , Section A.3.2 (Component) Interpretation:

• D-components do not necessarily include the mechanisms to completely support MAC, I&A or
Audit

• Can be rated C2 or C2+
• The D-component "shall produce audit data about any auditable actions performed by the D-
component" and make the audit data available to an audit collection component.

•Requirements that can be applied without further interpretation are: DAC, Object Reuse,
Security Features User's Guide, Security Testing, System Architecture, System Integrity and
Test Documentation.

• For design documentation, a component must meet the requirement as stated and include a
description of the protocol used to communicate user identities with other components. This
further interpretation is required because a DAC component does not maintain user I&A
information but in most cases must use some form of the I&A data for making DAC decisions.

Analysis:
The TNI allows for the DAC mechanism(s) to be distributed over the partitioned NTCB. This

means that a DAC mechanism can exist for files and directories of a host and also for objects such as
data packets on a router. DAC is enforced locally. Because of the distributed nature of DAC in a
network, a broad DAC policy must be described in the NSAD.

Although it is feasible to use a DAC component in a secure network, it relies on I&A data in
order to perform access checks. For DAC, I&A can be provided by another component and the
design documentation for the D-component must describe the protocol used to receive I&A
information from another network component.

DAC can be applied/changed by users. For example, an access control list (acl) assigned to a
file may be different when viewed from different systems on the network.

The DAC requirement states that "the enforcement mechanism (e.g., self/group/public
controls, access control lists) shall allow users to specify and control sharing of those objects by
named individuals or defined groups of individuals, or both, and shall provide controls to limit
propagation of access rights." This statement implies that the enforcement mechanism is a part of the
DAC component and would be defined by the security policy of the DAC component.

Audit Components

It is difficult to define what an audit component is fully responsible for providing without
reviewing the TCSEC which states that an audit component must create, maintain and protect an
audit trail of accesses to the objects it protects. It must record the use of I&A mechanisms, the
introduction of objects into a user's address space, deletion of objects, actions taken by computer
operators and administrators and other security related events. An audit component must provide
specific information (date and time, user, etc.) as a part of the audit record. The ADP system
administrator shall be able to selectively audit the actions of any one or more users based on
individual identity and/or object sensitivity level (sensitivity level applies to Bl).

TNI Part 1 (Network) Interpretation:

Auditing in a network may extend to TNI Part II Security Services and may include items
specific to networks (i.e., when a component goes down and subsequently rejoins the network).

352

It is an important function of auditing within a network to include all identification information with
audit trails so that they can be properly correlated from different hosts. The term "users address
space" is extended for object introduction and deletion events to include address spaces being
employed on behalf of a remote users (or host). Audit information must be stored in machine-
readable form. Of special note is the phrase in the Interpretation section which states "Furthermore, a
component of the network system may provide the required audit capability (e.g., storage, retrieval,
reduction, analysis) for other components " If this statement is taken as a definition of the required
audit capability, in order to get an A rating, a component must store the audit records, be able to
retrieve them, reduce them and provide for the analysis of the records. Following that the I&A and
DAC requirements allow host addresses as identifiers, audit on a network need not be for a specific
user provided the host can identify the individuals represented by the group address identifier.

TNI, Appendix A , Section A.3.5 (Component) Interpretation:

•Provide network support of the Audit Policy (per TCSEC)
•Do not include the mechanisms to completely support MAC, DAC and I&A
•Are rated as either C2 or C2+
•Audit component requirements that can be applied without further interpretation are: Audit,
Object Reuse, Security Features User's Guide, Security Testing, System Architecture, System
Integrity, Test Documentation and Trusted Facility Manual

•The design documentation for the A component must include a description of the protocol used
by the A component to import Audit data from other nodes.

Analysis:
Audit is a difficult requirement for a network component to meet unless its chief purpose is to

collect, store, and provide audit records for review. The audit requirements lead to the conclusion that
an Audit component itself must 1) create, maintain and protect audit records; 2) allow the system
administrator to choose which actions and what users are to be audited and 3) provide the storage,
retrieval, reduction and analysis functions for audit of the overall network. If any one of these various
functions are missing within a component, it cannot receive an A rating. For example, if a
component performs auditing, cuts audit records (and/or receives them from other components),
correlates audit records, protects the records while they are local, and allows for the selection of what
can be audited but does not store the audit records itself, it may not be considered an A component.
This can lead to a further definition of "storage". Does temporary storage count, for example, if the
component temporarily caches the audit data until it is uploaded to its permanent storage component?
Another example of an incomplete audit component, is one that performs audit, cuts audit records
(and/or receives them from other components), correlates audit records, stores and protects the
records but does not allow for the selection of what can be audited. In other words, this component
must utilize a separate pre- or post-processing tool. Strictly following the criteria, this component
would not be an Audit component because it does not allow "the ADP system administrator to
selectively audit the actions of any one or more users based on individual identity or object security
level." However, there is a TCSEC interpretation (Cl-CI-02-85) which states that "Audit reduction
tools, when supplied by the vendor, must be maintained under the same configuration control system
as the remainder of the system." This would allow an A component that merely maintains a pre or
post-processing tool under configuration management to be rated as an Audit component without
requiring in-depth analysis of the tool.

The words in Appendix A, Section A.3.5 "Audit only components are components which
provide network support of the audit policy..." seem to contradict other audit sections of the TNI and

353

the way in which the Audit criteria has in the past been levied on components. The words "network
support" are weak and could be construed to be a MAC component that produces audit records.
Actually, all of the audit functionality of a network is contained in an Audit component. Section
A.3.5.4 which discusses a representative application of A-components says that "The A-component
provides auditing functions for the network as a whole" and this is the more common and correct
definition.

Also in Appendix A, Section A.3.5.4, entitled "Representative Application of A
Components", there is a scenario that "the Auditor may access the A-component via another
component, in which case the A-component would be responsible for enforcing an access control
policy that defined which users (i.e., the auditor) could view the audit data." It is unclear whether "the
Auditor may access" means just a review of the audit records or whether the Auditor could select
what to audit via another component (e.g. terminal). It could be acceptable to simply review audit
records from another terminal, provided the Audit component enforced the required access control
policy, but if that other terminal (and its interface to the system administrator) is also the means to
allow the selection of what is to be audited, the terminal and application used would need to be placed
under configuration control, as stated in Interpretation Cl-CI-02-85. This is required because the
selection of what to audit cannot be performed at an untrusted interface.

Audit records must be supplied to the Audit component from a component of a level of trust at
least as high as the Audit component.

Athough the TNI requires that A components store their audit records, stepping back from the
TNI for a moment, one could easily envision the storage of audit records on another component
provided guidance is given with regard to the interface, what occurs when the storage component
goes down, and how many audit records could be lost. The design documentation for the Audit
component would need to describe the protocol for receiving audit records from the storage
component. Testing could still be a problem, but a test tool that emulates storage is feasible. In
contrast to I&A, MAC and DAC components who use their databases to implement immediate access
control decisions, audit information is used to analyze previous events.

Conclusions
1. The Network Security Architecture and Design document is the foundation for a secure

network. Components must conform to an NSAD and the NSAD should be evaluated to determine
that not only does the one component under evaluation fit into the architecture but to also decide if
there are other likely candidates for component evaluations within this architecture.

2. The inter-relationships between the I&A functions and the MAC and DAC functions must
be observed closely for components that are being evaluated as a M or D component. Evaluators
must question how a M or D component is being provided user identifiers. In addition, the
interrelationship between a M or D component and an A component must be examined in detail and
include protocols for transporting audit records.

3. For each type of network component, there are requirements of the TCSEC and TNI that
logically result in the storage and maintenance of data used by that component for security policy
enforcement. Therefore a component should not be given a rating for a security functionality (MAC,
DAC, I&A or Audit) for which it does not meet all the requirements. This includes the storage and
protection of data utilized. Specifically, with regard to databases containing information used in
access decisions, they should be considered a part of the component Trusted Computing Base (TCB)

354

and must be protected and controlled as such.

4. Although network functionality is distributed over a network, the TNI does not provide a
way to dissect the requirements levied on a M, D, I or A component. Appendix B of the TNI entitled
"Rationale Behind NTCB Partitions" states that there should be a clean decomposition of the overall
network security policy into policies for the individual components.

5. Because of the policy dependencies between all types of components, individual M, D, I or
A components are of limited value. Components that provide some combination of security
functionality are more valuable.

Recommendations
1. The Trusted Product Evaluation Program (TPEP) should assess the value of components

on the EPL and under evaluation to date. The TPEP should question whether or not they provide a
useful preliminary step for the eventual evaluation of a network. If they do serve as a preliminary
step, TPEP or some other organization should encourage vendors to develop other products to
complete the secure network.

2. NSADs should be used as building blocks in much the same way as components. NSADs
are sometimes proprietary and this limits their use by other vendors who may be able to design a
component conforming to the NSAD. NSADs could be generalized into targeted secure
architectures, components presented for evaluation to a targeted secure architecture could be
evaluated at a more rapid pace than components with a "new" NSAD.

3. Guidance should be provided to vendors for writing a comprehensive NSAD. Because this
document is important to a component evaluation, it should be reviewed early in an evaluation.
Under the current process, an NSAD should be reviewed before the Intensive Preliminary Technical
Review (IPTR).

4. As new network component products are proposed for TPEP evaluations, the technical
review should center on the proposed secure network architecture. Is it realistic? Does it really
provide a secure network? These questions should be asked together with questions about the
technical viability of the component The market review should determine whether customers' needs
are met by this product and whether the market for the product supports the allocation of evaluator
and vendor resources for the evaluation.

5. Those tasked with reviewing and refining the Common Criteria should consider how
secure network architectures (NSADs) and components will be addressed. They should use the
advent of a new criteria to address any TNI inconsistencies. Whether or not the TNI is too
constraining for today's type of network products should also be reviewed.

References
TCSEC DOD 5200.28-STD, Department of Defense Trusted Computer

System Evaluation Criteria, dated December 1985.

TNI NSCS-TG-005, Trusted Network Interpretation of the Trusted
Computer System Evaluation Criteria, Version 1, July 1987.

The Interpreted Trusted Computer System Evaluation Criteria Requirements, dated 12 January 1995.

355

ANALYSIS REQUIREMENTS FOR LOW
ASSURANCE EVALUATIONS

James L. Arnold Jr.
Attn: C41

9800 Savage Rd.
Ft. Meade, MD 20755-6000

A study was conducted by TCSEC product evaluators of the analysis-related objectives, require-
ments, and evaluation processes for TCSEC class C2 and Bl product evaluations. The level of
analysis conducted during these evaluations has changed over time. This report begins to identify
a level of analysis that may be more appropriate and concludes with a set of recommendations for
the future of analysis in C2 andBl product evaluations.

1. Observation

A criticism of C2 and B1 product evaluations, as they are performed by the Trusted Product Eval-
uation Program (TPEP), is that they take too long. This, in turn, is often attributed an analytically
overzealous evaluation community.

1.1. Inconsistent and changing level of analysis

Throughout the history of the TPEP, the level of analysis performed across the set of products
under evaluation has been inconsistent and generally increasing over time. There are a number of
reasons for this, not the least of which being the simple fact that "level of analysis" has not been
formally defined in quantifiable and useful terms. Without such a definition, some of the principle
characteristics of analysis, specifically breadth and depth, have been allowed to change with the
advance in state-of-the-art in trust technology and with the variances in product design and evalu-
ation team expertise and experience.

The growth in breadth of analysis has been realized in that each problem that has been identified
by evaluators is looked for in every subsequent product evaluation. The result has been an ever
growing list of problems which tend to broaden each subsequent analysis. Note that there is no
well defined list maintained or known by the TPEP. This so called list is embodied in community
knowledge which exists in a number of forms (e.g., individual minds, forum transactions, briefing
slides, conference proceedings, CERT advisories, and interpretations). The informal nature of this
list is a primary contributor to the inconsistency of its application.

The growth in depth of analysis has been realized more simply from the fact that many evaluation
teams do not know what is important in arguing that the relevant requirements are met. For exam-
ple, while it is clear that implementation details are necessary in understanding a class Al prod-
uct, it is not so clear in a C2 product. Evidence that a C2 product meets the requirements is
supposed to be based upon design documentation and testing, but what if the documentation does
not exist or what if the mechanism cannot be tested? Many evaluation teams spend energy analyz-
ing things outside the Trusted Computing Base (TCB). This is because either they do not under-

356

stand what is or should be in the TCB or they feel it necessary to perform analysis trying to make
those determinations. Evaluation teams also, in the lower evaluation classes, may not know what
constitutes an acceptable argument. It is not sufficient simply to assert that something meets the
requirements, and it is generally too much to provide implementation details. The currently unan-
swered question is where the "sufficient" line is drawn between these two extremes. Once this line
is known, vendors would need provide no further detail, and evaluation teams would not be
expected to look for further detail. Note that absence of documentation has historically resulted in
looking at too much detail. In the absence of a sufficient argument (e.g., provided by the vendor in
the design documentation), the team has had to build that argument themselves from less abstract
(e.g., implementation) details. A point hidden in this reasoning is that it is not the level of detail
that is necessarily key, but rather the questions that must be answered or arguments that must be
made as a result of analysis.

1.2. Evaluation team performance

As trust technology has become widely known, there has evolved pressure to perform evaluations
faster, if not better. This is not to say that there has not always been pressure for expediency. Ven-
dors have, in fact, always wanted faster evaluations, primarily because faster generally means that
a more current product can be brought to market, perhaps even at less cost to the vendor. Custom-
ers have also wanted faster evaluations, this desire being related closely to an understanding of
trust technology and a growing perceived need for trusted products. However, these pressures
have resulted in only minor improvements in the TPEP to date. More recently, this pressure has
grown and additional pressure has developed from direct competition in the form of evaluations
performed by other nations and the TPEP's own internal desire to provide better (e.g., more
timely and more useful) products to their customers. In order to produce a more timely product
without impacting overall assurance and without consuming more resources (e.g., overtime or
fewer concurrent evaluations), guidance must be produced that is capable of helping an evaluation
team do what is necessary and nothing more. Such guidance would also serve to help a vendor
understand exactly what need be produced and provided for an evaluation to succeed as well as to
guide the quality assurance checks (e.g., Technical Review Board (TRB)) in defining what should
be expected of an evaluation team.

1.3. "Common ground" understanding

While a well defined set of evaluation guidance would help vendors and evaluators understand
exactly what is necessary to successfully complete an expedient evaluation, it would also serve as
a very useful tool for users. Such guidance would provide users a better understanding of what
they are getting and the risks involved. This is especially important if the "level of analysis" for
future products is substantively changed from that of the past, assuming that users generally
understand what they are currently getting.

2. History

The changes in the level of analysis performed by evaluation teams for the TPEP have been very
gradual. Though attempts have been made to ensure consistency, they have been effective only in

357

preventing sudden and obvious change.

2.1. Evaluator differences

The level of analysis problem has existed in the TPEP since its beginning when its evaluators
were trying to figure out what to do. Evaluators, including TRB members, have been doing differ-
ent things that each perceives as the right thing based upon personal experiences and biases.
These differences have been allowed to gradually change the process, unchecked, largely because
of a lack of recognition of this evolution and any subsequent action (e.g, acceptance, correction,
direction).

There has been little done to prevent TRB members from gradually expanding the scope of analy-
sis, primarily by asking more and more questions. There has also been little done to prevent teams
from doing too much work. In fact, there has been incentive to do more. For example, a team that
suffers a bad TRB experience will likely over-prepare in a hope that the next experience would
not be so harrowing. Even though TRB recommendations often include items to reduce evidence
presented about non-security relevant or otherwise uninteresting details, those recommendations
are seldom enforced.

2.2. TRB and consistency

A very important TRB function is to ensure consistency, but it has been impossible to prevent the
expectations of that group from growing over time. A reason that evaluations have a reasonable
amount of consistency at any particular point in time is because the TRB group is small enough to
maintain a common expectation with the rate of growth in that expectation set being very slow.
Nonetheless the expectations are not easily captured in a form that an evaluation team can use to
ensure success without over-analysis.

2.3. Chief evaluator/senior evaluators and consistency

There have been a number of roles defined in the TPEP to help ensure consistency. The senior
evaluator roles were designed to allow a small set of individuals to monitor and interact with eval-
uation teams and to provide more immediate (as opposed to TRB milestones) guidance relating to
issues that need be resolved and analysis that need be performed. This function was never fully
realized largely because the assigned individuals lacked appropriate guidance and understanding
themselves and because this function was not properly prioritized to provide the necessary
resources.

The role of the chief evaluator has been more directly related to TRB oversight. It was quickly
realized that one individual could not provide adequate oversight for all evaluations, hence the
aforementioned introduction of senior evaluators. The chief evaluator could, however, monitor all
TRB activities to help ensure that the TRBs were being consistent and that their recommendations
actually reflect current evaluation expectations. Unfortunately, even this role has been unable to
halt the advance of expectations.

2.4. Time constraints on potential solutions

Since the TRB has the best understanding of what it expects during TRB milestones, it is also

358

most capable of commenting on each team's analysis relative to those expectations. As noted ear-
lier, TRBs often recommend that certain analyses presented are non-security relevant or are unin-
teresting and should therefore not have been performed and should not be included in the Final
Evaluation Report (FER). However, such comments are often disregarded simply because of the
level of effort that would be required to remedy the situation (i.e., determine and document
exactly the right things). The ideal situation would obviously be that this never happened, but
from a resource perspective it has generally been better to leave it alone rather than to fix it after
the fact. Due to the push to get each product evaluated quickly and a corresponding limitation of
resources (both on behalf of the evaluation team and the TRB members) to examine what might
have been wrong, evaluation teams have not learned from these occurrences.

2.5. Product evolution

It should be noted that part of the cause of the evolution of expectations has been due to the types
of products being evaluated. When the TCSEC was written, the authors apparently envisioned rel-
atively simple, stand-alone, monolithic type systems that would be locked away in a lab and
accessed via remote terminals. Those types of systems are no longer the rule, but rather have
become the exception. The systems of today are very complex, and the complexity is still grow-
ing. They include network interfaces, non-uniform and complex TCB interfaces, redundant object
types, multiple processors, intelligent devices, graphical user interfaces, desktop and laptop archi-
tectures, etc. With the growth of these types of products, it has seemed reasonable to the TPEP to
expand both breadth and depth of analysis to cover the new issues.

3. Intended use of products

Since some of the breadth of analyses performed in the TPEP today are obviously incorrect (e.g.,
non-security relevant parts), it is reasonable to assume that the depth of analysis may also be
incorrect. When evaluators and TRB members are asked why they perform or expect the analyses
that they do, they give responses ranging from "it's what everyone else is doing" to "it's the right
thing to do." The former is obviously unjustifiable, while the latter could have some merit. What
exactly is the right thing to do? The right thing should be based on the intent of the criteria and the
needs of the anticipated customers. The intent of the criteria has been largely characterized in the
text of the TCSEC, but the needs of the customers vary and are often confused with desires,
resulting in unreasonable expectations. For example, many customers are using B1 products
where B2 products should be used. In this and similar situations, customers expect more from
those products than the TPEP has determined (by evaluation) that the vendor provides.

3.1. Intended product environments

The intended uses and environments for C2 and Bl class products can, at least to a point, be
extracted from the text of the TCSEC and related guidelines. This information, while contained in
the requirements themselves to a small extent, is actually better provided in the text surrounding
the requirements (e.g., the objectives of the classes and the guidelines in the TCSEC appendices).

The TCSEC section "Structure of the Criteria" [TCSEC85, p.5] leads one to believe that there is
very little difference in assurance between C2 and Bl (division C and B1 are grouped in relation

359

to assurance) and that the more substantial difference is in function ("each division represents an
improvement in... protection of sensitive information"). These also explicitly state that the pri-
mary means of assurance for both C2 and Bl is testing. This, coupled with minor differences in
the C2 and Bl requirements, implies that a similar level of analysis should occur at C2 and Bl.

The various class and division objectives stated in the TCSEC [TCSEC85, pp.12,15,19,20,26]
further clarify the intended use of division C, specifically C2, products and the intended differ-
ences between C2 and Bl. The class Cl and C2 objectives make it clear that C2 products are
intended to protect against "accidental" disclosure and modification where all of the users are
cooperative. Note that an open network cannot meet the definition of "cooperative users" since
there are users who are unknown, inherently limiting the usefulness of such products.

The Division B objective statement [TCSEC85, p. 19] introduces the notion of reference monitor
and seems to state that even Bl products should implement that concept, and also to imply that
the concept need not be realized in C2 (or lower) products. Note that even though the reference
monitor concept is mentioned, the principle of simplicity cannot be realized in the context of the
requirements of Bl (or perhaps even B2). The class Bl and B2 objective statements [TCSEC85,
p.20,26] further expand on the differences between C2 and Bl and limit Bl with new assertions
regarding B2. Bl products must include some formalism in their design, e.g., the informal model.
Also, the fact that all flaws must be removed (as opposed to the "obvious" ones required at C2)
implies a corresponding search for those flaws. Note that, taken to an extreme, one could argue
that even identified covert channels need be addressed in the absence of a covert channel analysis
requirement. However, one could also conclude that the absence of a covert channel analysis
requirement until B2 is an implied exemption for lower class products. The class B2 objective
statement implies at Bl and lower, that not all subjects and objects in the ADP system need be
addressed, that the TCB interface need not be well-defined, and that the systems need not be par-
ticularly resistant to penetration.

From the TCSEC sections "The Trusted Computing Base" [TCSEC85, p.67] and "Assurance''
[TCSEC85, p.68] one can conclude that it is imperative that the TCB be identified, including its
interface and elements. It does seem that the certainty or accuracy of this determination should
improve as the evaluation class increases. It is clear that the policy enforcement mechanism can
be distributed in lower assurance products (e.g., C2 and Bl), and it is implied that wherever the
enforcement occurs it must be analyzed (i.e., evaluated).

From the TCSEC section "The Classes" [TCSEC85, pp.68-69] it seems straight-forward in assert-
ing that the differences between adjacent classes is intended to be substantial. Note that the only
essential difference between C2 and B1 products (as realized by TPEP) today is mandatory access
control (MAC). Given that prior statements have indicated that C2 and Bl products have similar
assurance (i.e., based primarily upon testing) and the fact that the C2 and Bl requirements are
very similar, except for the MAC related-ones, perhaps this functional difference is primarily
what was intended.
The TCSEC testing guidelines "Testing for Division C" and "Testing for Division B" [TCSEC85,
p.86] provide the first definitive indication that there should be an assurance difference between
C2 and Bl. That is, while the assurance for both classes is primarily derived from testing, the
energy devoted to testing the Bl product should be greater than that devoted to C2.

From the TCSEC section "Formal Product Evaluation" [TCSEC85, p.90] there is more emphasis

360

on testing as the basis of assurance, at least for lower class systems. It is interesting to note that
this section indicates that evaluated products may have known flaws. Note that this is contrary to
all historical TPEP practices. Furthermore, it is not clear what the consequences of such a practice
would be. For example, should such flaws be classified or remain unclassified?

Section 3.2 of the Yellow Book [YBTR85, pp. 15-16] implies that a Bl system could protect infor-
mation in a minimally hostile environment (e.g., confidential data and uncleared users). This is a
significant departure from the C2 notion of protection against accidents in a cooperative user
environment. These statements also assert that at least a Bl system should be used whenever
multi-level data is being processed. In this latter sense, the product is intended primarily to pre-
vent accidents, much like a C2 product.

When taken all together, it can be concluded that the intended, worst-case environments for C2
and Bl systems are subtly but significantly different. That is, a cooperative environment where
the product is expected to protect against accidents versus a minimally hostile environment where
the product is expected to protect against at least casual attacks.

Environments aside, differences in assurance can be derived from these conclusions. Both may
have an ill-defined TCB, but a Bl product must provide an informal model and a reference moni-
tor concept argument. Despite the lack of required TCB definition, the TCB interface and ele-
ments must be identified and evaluated for both. Both may have subject and/or objects that are
excluded from the protection of the security policy. Both are to be subjected to rather extensive
testing, but a B1 apparently should undergo more testing and must involve a search for flaws
beyond the obvious. Note that none of these statements alleviate TCSEC class-specific require-
ments.

3.2. Environments: past vs. present

Statements in the TCSEC and the Yellow Book further substantiate that the authors were prima-
rily concerned about monolithic, closed environment type products. While those may have been
predominant at the time, they are now the exception. The products of today are networked and
distributed as a rule, otherwise they are not useful in today's marketplace. As a result, the environ-
ments of trusted products are no longer friendly, cooperative, and generally benign. Rather, they
are exposed to a very broad set of personalities including defense employees, university students,
home users, foreign nationals, etc.

From this one could argue quite simply that the need for class C2 type products has significantly
diminished. Those products are for use in any existing closed environments, while criteria for a
discretionary protection system that is truly resistant to attack does not exist in the TCSEC.

3.3. Environments: intent versus practice

C2 and Bl products typically come with inherent assurance constraints. For example, they are
often security retrofits for older existing products, they are developed with a philosophy of "pene-
trate and patch", and they are not subjected to more rigorous or formal development processes.
Except in rare cases, a result is that no matter how many evaluation resources are applied, the
obtainable amount of assurance is relatively low (i.e., the point of diminishing returns is reached
rather quickly).

361

It is desired that evaluation teams not attempt to exceed the inherent assurance limitations. Alter-
natively, it would be worth considering whether it is cost effective to even perform such evalua-
tions in the first place. If such evaluations necessarily have low assurance and that low assurance
does not meet today's security needs, perhaps these evaluations should not be performed. There
are of course other details to consider, such as whether higher assurance products are available to
meet customer needs.

A further consideration is the true number of customers that operate in environments such as
those described by the Yellow Book as being appropriate for C2 and Bl class products. A sub-
stantial sector of the market (e.g., DIA) has decided that C2 and B1 class products are not suitable
for their closed, compartmented-mode environments, and have therefore defined their own evalu-
ation criteria (somewhere between classes Bl and B2, with some extra functions). Many other
customers operate C2 and Bl class products in open and potentially hostile environments clearly
not intended for these products. The number of customers that operate in truly benign, closed
environments is currently unknown to the TPEP, but it is estimated to be small and shrinking. This
situation is another reason that continuation of C2 and Bl class evaluation may be questioned.

4. Proposed appropriate evaluation approach

While it is obvious that some amount of analysis need occur to meaningfully evaluate a product,
that analysis must be appropriate to achieve the assurance goal. For C2 and Bl evaluations, the
analysis should be directed primarily toward the support of testing and secondarily to producing
statements that the relevant requirements are met.

It is important to understand that the pertinent analysis must be done by the evaluation team (as
opposed to the product vendor) since it is imperative that an "independent" check be made. Note
also that the C2 criteria imply a less structured evaluation approach, and it seems that the simple
act of defining the level of analysis exceeds the TCSEC expectations.

The following sections represent a simplistic view of the recommended information that must be
determined in C2 and B1 evaluations and recommendations regarding appropriate breadth and
depth of the relevant analyses.

4.1. Proposed simplistic evaluation requirements

In general, at the C2 level of trust an evaluation team must:

• Identify all protected subjects and objects. (Guidance should be produced which will help
evaluation teams and vendors understand what subjects and objects should be addressed in
terms of evaluation. This guidance should also identify or specify any relevant techniques for
this identification.)

• Identify and characterize the TCB interface. (Guidance should be produced which will help
evaluation teams and vendors understand how and to what extent the TCB interface must be
identified.)

• Determine how the TCB protects itself.
• Determine how the relevant requirements are met from the TCB characterization, above.

362

• Test assertions relating to the requirements (i.e., the vendor-prepared tests).

• Extend testing to increase confidence in security mechanisms (note that such extensions may
not be necessary if the vendor has a very comprehensive test suite) and to search for "obvi-
ous" flaws. Note that analysis cannot substitute for testing. (Guidance must be produced
which will help evaluation teams understand how much effort and what resources should used
in identifying "obvious" flaws.)

At the Bl level of trust an evaluation team must perform the functions identified for C2 above
and:

• Understand the informal model (prepared by the vendor) and map it to the TCB interface.

• Produce an explanation of how the reference monitor concept is realized, in addition to char-
acterizing the TCB.

• Perform limited penetration type testing to increase confidence in security mechanisms and to
search for flaws (e.g., known from other evaluations, including likely vulnerable areas, and
hypothesized by the evaluation team as a result of analysis). (Guidance must be produced
which will limit and make consistent such efforts.)

4.2. Breadth of analysis

The breadth of analysis for every evaluation class is the entire TCB. Specifically, at C2 and Bl the
focus should be on design rather than implementation, and a good characterization of the TCB
interface and how the TCB protects itself should suffice. However, at C2 and Bl that interface
may be less well defined and will almost certainly contain non-security relevant portions.

After the TCB has been identified, emphasis should be on the security relevant portions and on
known problem areas. Known problem areas shall be those known to the entire community as
opposed to individual knowledge. Anything that is documented on a community forum, or other
community information repository, should be considered known.

The evaluation team need also be able to argue why non-security relevant portions of the TCB are
not security relevant, as well as being able to argue that they have considered the entire TCB. A
simple assertion to that effect is not sufficient. Basically, something is not particularly security rel-
evant if it cannot be mapped to a TCSEC requirement, other than the system architecture require-
ment in the sense that it is trusted not to do something outside its design. In general, integrity and
function are not security relevant, except as specifically noted in the TCSEC (e.g., label integrity).

4.3. Depth of analyst

The question for depth of analysis is interesting versus uninteresting rather than one of security
relevance. Everything in the TCB is technically security relevant, even if it has no affect on the
security policy, because everything in the TCB could, by definition, bypass some or all of the
security mechanisms. The characterization of interesting will help bound the analysis necessary to
make a sufficient argument. For example, if one is basing arguments on design information, the
implementation details are generally uninteresting. If the design information is incomplete, how-
ever, the implementation details become interesting inasmuch as they are used to reverse engineer
the design and thereby make a sufficient argument.

363

The problem evaluators have today is one of determining whether a detail is interesting (i.e.,
important) or not for low assurance evaluations. Though there may not be a simple formula to dif-
ferentiate, some guidance can certainly be given:

• If something is demonstrable with a test, no deeper understanding is necessary. It simply need
be tested. It is entirely possible that very little beyond an interface characterization need exist
in order to make an adequate testing argument.

• If it does not matter whether or how something works, no deeper understanding is necessary.
There are numerous functions that fall into this category. For example, many functions such as
file locks are available in ADP systems, but have no bearing on the security policy.

• If something need work correctly in order for the system to work at all, no deeper analysis or
even testing is necessary. If it doesn't work, nothing will work.

• Many COTS product interfaces are uninteresting, largely due to the fact that they are not par-
ticularly security relevant (e.g., most CPU instructions).

The primary difference between C2 and B1 in terms of depth of analysis should be realized in the
area of TCB self protection. This is due largely to the statements identified above that lead one to
the conclusion that a Bl product is expected to resist some attacks while a C2 system need not
necessarily do so. Also, some extra attention should be applied to the TCB interface in determin-
ing what happens when unexpected actions occur. Hence, in a C2 evaluation the team need char-
acterize the TCB interface in terms of the security relevant functions and expected behavior
resulting from behaved use (i.e., non-malicious) and characterize the means by which the TCB
protects itself. In a Bl evaluation the team need characterize the TCB interface in terms of the
security relevant functions and expected behavior resulting from behaved and ill-behaved use
(e.g., wrong parameter type) and provide a detailed description of how the TCB protects itself,
including an explanation of how the reference monitor concept is realized.

In those cases where there is insufficient design documentation to complete an argument (e.g.,
characterize the TCB interface), the evaluation team must either derive the argument from a lower
abstraction or fail. Both are undesirable; therefore, the vendor should be required to produce the
appropriate evidence. Note that the TPEP guidelines "Form and Content of Vendor Design Docu-
mentation" and "Form and Content of Vendor Test Documentation" are intended to describe such
requirements for the current TPEP evaluation process.

5. Recommendations

Though the TPEP should consider whether C2 and Bl evaluations should be continued, the fol-
lowing recommendations are offered under the assumption that they will continue.

• The evaluation approach, including breadth and depth guidance, of section 4 above should be
considered by the TPEP and expanded with detail, guidelines, and examples to provide a
workable model for such evaluations.

• The TPEP should provide direct technical oversight to ensure that evaluators are performing
appropriate analyses in terms of breadth and depth (e.g., effective Senior Evaluators and Tech-
nical Leaders, direct technical oversight and guidance, and extended TRB involvement). The
people doing the oversight must be highly experienced and technically astute, unafraid to

364

speak up, and, as a group, in constant communication with each other. They must also be will-
ing to impose, or work within the confines of, community and management decisions.

The TPEP should ensure that appropriate time is spent at milestones to correct identified
errors so that they will not recur and become pervasive, as has happened in the past with level
of analysis. This necessarily means that some emphasis need be placed on fixing problems as
opposed to the current driving emphasis on completing individual evaluations as quickly as
possible. It is very likely that the cost to one project to fix identified problems will likely result
in a savings for subsequent projects.

The TPEP should produce worked examples of appropriate and inappropriate depth of analy-
sis.

The TPEP should seek to define a list of problem areas expected to be covered in breadth and
implement a procedure to keep it appropriate and current.

The TPEP should make sure that all of their guidance documents (e.g., subject/object and
TCB identification) provide appropriate and useful information that would help evaluators
and vendors understand the relevant differences between the various evaluation classes (e.g.,
Bl VS.B2).
Most importantly, the TPEP should contribute to and consider the Common Criteria to pro-
mote a smooth transition (perhaps by redirecting and tailoring current processes for align-
ment) and to ensure that the Common Criteria future will not include problems similar to
those identified here.

6. References

[TCSEC85] Department of Defense Trusted Computer System Evaluation Criteria, DoD, DOD
5200.28-STD, December 1995.

[YBTR85] Technical Rationale Behind CSC-STD-003-85: Computer Security Requirements,
DoDCSC, CSC-STD-004-85, June 1985.

365

MEASURING CORRECTNESS AND
EFFECTIVENESS : A NEW APPROACH USING

PROCESS EVALUATION

Klaus Keus
Klaus-Werner Schroder

Bundesamt für Sicherheit
in der Informationstechnik

Postfach 20 03 63
D-53133 Bonn

Germany

Abstract

Today, an Information Technology (IT) system or product can be evaluated against a number of well
known security evaluation criteria. Several governments have released such security criteria, and there
are some substantial differences in the application ofthat criteria. On the one hand, there is a tendency
to unify security evaluation criteria, on the other hand new techniques are looked for to enhance
security evaluations with respect to time and cost effort. There is a lot of discussion on how the
development methods could be taken into account to reduce the effort of security evaluations. Many
open problems remain to be solved in this area. Furthermore, conditions need to be defined on how to
identify development methods, and tools as well, possessing the potential power to generate IT
systems or products of high quality with respect to security needs.
Typically, security evaluations are carried out in a product (or system) oriented manner. Another type
of evaluation which is more process oriented is well known as a means of quality enhancement and
quality control. As a paradigm, a well known and evaluated process should lead to a high quality
process output. Thus, in this paper the approach is to look for connections between product oriented
evaluations and process oriented ones. The main goal of such an approach should be to reduce
evaluation efforts by incorporating results of a process evaluation into the evaluation scheme focussed
on the IT system or product under evaluation. For example, what results could be incorporated and
how this could be done differs from hardware to software. Furthermore, it seems to be not too difficult
to answer questions with respect to correctness aspects of a security evaluation. The aspect of
effectiveness is by far more complicated to handle. But, more research is needed on the subject.

* e-Mail: keus@bsi.de, kws@bsi.de

366

L Introduction

For more than ten years evaluations of Information Technology systems or products with respect
to their security properties have been carried out. Such evaluations were based on well known
security evaluation criteria [4]. The criteria have their origin in governmental security needs.
Nowadays, there is also a need to evaluate commercial off the shelf products with respect to
security features they provide. The goal of a security evaluation is to approve the trustworthiness
of a system's or product's proclaimed security properties. Two aspects of trustworthiness must be
considered, namely the aspects of correctness on one hand and of effectiveness on the other.
Therefore it is necessary to measure both aspects in terms of mature and well accepted criteria.
Different criteria could be used depending on the focus of an evaluation. There are two types of
evaluation criteria. One type is focussed on the special system or product under evaluation
(product oriented approach). The other type concentrates on the investigation of the development
and production process (process oriented approach). As a consequence, this paper poses the
question what the relation between these two different approaches should be.
In section 2 some basics of product evaluations are sketched. The goals of correctness evaluation
as well as of effectiveness evaluation are identified. A short comparison of product oriented and
process oriented evaluations is given in section 3. Process evaluation attracts more and more
attention in conventional areas of industry. Nevertheless, the quality ensuring measures which are
typical for product checking, are applied as well.
How could evaluations of a product or of a process be applied in the young field of information
technology? This is the question of section 4. It is revealed that hardware production and software
production differ totally from each other. To produce hardware all the well known methods and
production steps are applied that could easily undergo a process evaluation. With respect to
software production there are some problems and open questions. As far as software is concerned
the interactions between product oriented topics and process oriented topics of an evaluation
incorporating both aspects are rather unknown. Some remarks are given on how to treat
correctness. A perspective on effectiveness is given in section 6.

2, Basics of Product Evaluation

Security evaluations of IT systems or products are carried out in Europe and in North America.
The criteria used as a bases of such evaluations are the harmonized European criteria [1], the
Canadian criteria [2], and the US-american criteria [3].
An IT system or product to be evaluated should have well defined features to protect against
threats or to assert a certain security policy. The main goal of an evaluation is to get an
independent confirmation that the promised security properties hold. Prior to this confirmation
the IT system or product is to be checked on the basis of the criteria. Evaluation is a means to
increase confidence in the security achievements of Information Technology. It is well known
that trustworthiness splits off into the two aspects of correctness and effectiveness. Both aspects
have to be investigated.
Roughly speaking the aspect of correctness evaluates whether an IT system or product
corresponds to the design. As a consequence all the possible incorrect transformations of a top

367

level design into an implemented product can be recognized during correctness analysis. Thus,
proof of correctness may be viewed as a trial to minimize differences between design and
implementation (oscillating behaviour of a process). But, because of differing conditions in the
framework even comparable approaches may lead to incomparable differences. Another goal of
correctness analysis is to evaluate the development methodology with respect to error avoidance
or robustness. The statement resulting from the analysis should be that the implementation of the
IT system or product under consideration is correct with respect to the design.
The aspect of effectiveness should evaluate whether the means of a system or product,
respectively, are appropriate to prevent from threats, and to assert the security policy.
Effectiveness analysis is not part of all the security evaluation criteria mentioned above. Criteria
that know the notion of effectiveness clearly distinguish it from correctness. Moreover, although
effectiveness is based on correctness to a certain extent, effectiveness analysis is to be carried out
independent from, and in addition to, correctness analysis. A major goal of effectiveness analysis
is to detect weaknesses as well as shortcomings in the intended action of the IT system or product
which may be part of the design. Of course, correctness analysis would not detect them. As a
consequence, effectiveness analysis can reveal possible conditions under which the system may
not serve the security needs. As a result it should be stated that the design provides suitable
means to assert the security policy.
In combination both aspects lead to a statement that the protective action will be achieved by
suitable means which are correctly implemented (cf. fig. 1).
The definition of security goals is a precondition to an evaluation. In case of a product these goals
are called product rational (PR), in case of a systems the notion of a security policy (SP) is used.
All the investigations carried out to evaluate both aspects of effectiveness and correctness are
based on the PR/SP.

security properties

measures to assure
properties

measures to preclude
properties

analysis of
correctness

analysis of
effectiveness

Figure 1 : Product evaluation as a measure to assure security properties on the
one hand, and to preclude other properties which undermine security on the
other hand.

368

It is obvious that, in addition to attacks on an installed system, attacks to the development process
itself, are possible too. Therefore, it should be natural to include the development as well as the
production processes into an evaluation. One may think of systems strongly depending on a
secret of the developer to achieve the security objectives, but also, unrecognized alterations of the
system or product may lead to a lack of security. Therefore, security (as a combination of
confidentiality, integrity, and availability) of the developmental data should be made a point to be
evaluated, too.
Checking the developers security as a task of the evaluator suggests that there is a connection
between product evaluation and process evaluation, although these two types of evaluations
basically differ from each other. The differences arise especially in reguard to statements
concerning the product itself, taking into account that the final goal of process evaluation is to
give a statement on a product.

2, Basics of Process Evaluation

In contrast to product evaluation where the primary goal is to get confidence in the specific
security properties as derived from the implemented security functions of a single product process
evaluation addresses the more general demand for high quality products as stated by vendors as
well as by customers. In process evaluation the evaluator draws a conclusion from a single result,
e. g. based on a random sample, to the properties of products produced by the process under
consideration. There is a certain probability that the conclusion holds. It depends on the
procedures used which may be based on time, number, or other relevant measure.
Process evaluation has a long history. Some of the milestones may be of interest in order to get an
impression on the features :

• development of instructions on how to make a product (craft skills, quality maintaining)
• use of (mechanical) machines (reproduce within known tolerances, quality generating)
• introduction of checks during as well as at the end of a production process (confirmation to be

within the limits, quality maintaining)
• establishment of vocational / professional training (control increasing complexity, quality

generating)
• random samples as a means of quality control (reduction of cost and effort, quality

maintaining)
• increase of motivation and raising of people's awareness (total quality management, quality

generating)

Of course these items don't cover the whole range of quality measures. The primary goal of the
measures mentioned above seems to be a production process with inherent high quality. It is
hoped then that all products also show high quality properties. Whatever the functional properties
may be there is a well defined quality level.
There is much discussion on process evaluation. It seems to be a further means within the range
of quality measures. As stated such measures can be subdivided into two classes generating
quality on the one hand and maintaining it on the other. Of course they may be used in

369

combination. Process evaluation seems to be a means to identify quality generating steps of a
process (cf. fig. 2).
It should be remarked that a certificate of process evaluation is valid only within a restricted time
range. Therefore, re-evaluation of the process is necessary.

properties of pactical use

quality maintaining
measures

quality generating
measures

product checks process evaluation

Figure 2 : Process evaluation as a quality generating measure to assure practical
properties of products.

4. Information Technology : Hard- and Software

The simple comparison of figures 1 and 2 illustrates the fact that the evaluation of products and
the evaluation of processes use different methods. Although both procedures have the common
goal: "Improve the creation of assurance", the primary results are very difficult to compare.
The situation becomes more complicated with respect to the combination of hardware modules
and its specific tailored software modules (cf. fig. 3). Putting product evaluation opposit process
evaluation in information technology will reveal differences in the development and production
processes of hardware and software.
The development process and the production process of IT-hardware (e.g. integrated circuits) are
very similar to the production of other non-IT products. Differences exist concerning complexity
and accuracy. The design phase will be followed by the production phase. Based on the use of
CAD-tools the layout will be created, which will be tested with respect to well defined procedures
and rules before prototypes are produced and tested. All design based errors will be recognized by
such quality ensuring steps. However there exist unavoidable and production based errors, which
often have physical background based reasons. During the production process specific quality
ensuring procedures are used to satisfy given tolerance allowances. One goal of all these kinds of
quality activities is the proof of the correct implementation of the layout. As far as that is
concerned, the evaluation of the process will contribute in a positive way to the aspect of
correctness because of quality building activities and quality ensuring aspects.

370

Information Technology

Hardware Software

Security Evaluation

Figure 3 : Security evaluation of Information Technology links three aspects
together : hardware, software, and their interface.

It is important and necessary to have a clear and visible relation between the application
properties and the security properties of the IT-hardware products to use the evaluation results of
assurance correctness as input and part of the security evaluation for its application properties.
Further analysis is required to express and explain which steps of the process evaluation may
support and increase the evaluation based on products.
In respect to the fact neither having coordinated criteria for these aspects nor using coordinated
security evaluation criteria, initial experience has to be gained at low assurance levels to get the
first restricted statement and to have a chance for a first survey. It should be possible to expand
the experience based on single cases to more global statements.
The software development process including the design phase and its production process are
much more complicated than the more general production of IT-hardware. This is not very
surprising because of the young tradition in software development and the attendant restricted
experience. The main difference to IT-hardware is the fact that all relevant errors are based on
design. Software production is limited to the reproduction of digital copies using a prototype,
which is expressed by the notion of master copy, excluding the fact of differences between the
prototype and the final product. Production oriented errors (e.g. errors or mistakes between
copying, material based errors in the results) will be recognized during the process and will be
removed using quality building steps. Hence the main focus has to be taken in the design phase.
Unfortunately the notion of software design belongs to the class of poorly defined expressions. It
is not quite clear how to distinguish between design and implementation, especially in separating
the implementation phase from the production phase. The use of code generators and the reuse of
modules will reduce the clearness of their limits. As during the production of IT-hardware
components all the different phases of production have to be performed for each product, there is
one complete process for the production of software. The software product is built completely
different from the hardware product and its production differs completely from the production of
its prototype.

371

5. Result

Regardless of all the differences concerning the means and methods used, both approaches have
one common goal: the creation of trustworthiness to the product, including hardware and
software. As of at least today, the results are not comparable at a first glance, so the most
important aim is the combination of both procedures in one common concept towards a more
efficient solution. Arising questions are :
• Is there a way to built further statements on the foundation of a qualified and IT-security

specific evaluation of the process or at least to use the statements of the process evaluation
(quality maintaining and quality generating) as input for the process of product evaluation?

• Which kind of requirements concerning the security aspects may be transmitted to the
process?

• The required specifications for IT-security, do they need to be tailored and translated to the
specific requirements or to the specific notions of processes?

The first interesting and more promising approaches are available, see refs. [5] - [10]. But there is
still a need for more detailed and practical support and operation including aspects as to "who",
"when", "where", "how", "what" and "why".

6. Forward / Perspective

The link between the evaluation of assurance effectiveness based on the process evaluation and
its advantages is much more complicated than the correctness part. A basic requirement is the
improvement of the evaluation of assurance effectivness concerning its structure, e.g. based on a
metric using hierachical and rated evaluation steps, binded with tailored evaluation methods and
procedures or rated evaluation profundity. First approaches may be comparable to the solution for
the strengh of mechanisms in the ITSEC [1] or to the evaluation in the assurance correctness part.
Afterwords the analysing phase of the process evaluation will be started with respect to a suitable
combination of assurance effectivness.
The PR/SP as the basic scale of the evaluation of the assurance effectivness has to be integrated
into the process as the main starting and focus point, i.e. the PR/SP has to be respected during the
development and the production in a way that it has direct technical significant influence to the
effectivness of the product as part of the process. This approach requires the definition of a
concrete and strictly defined PR/SP, e.g. concrete operating environment or the definition of
concrete threat scenario etc. Hence it has to be followed by a strictly PR/SP-depending process,
e.g. defined by the use of specified tools, models, and SE-rules. Additional definitions for all the
single and all the detail phases and procedures, clear defined structures including the significant
definition of the complete process and its single phases, their interfaces, and their traceability
have to be given. Rules concerning the methods and procedures for validation and verification as
well as for the single processes and their interim results need to be defined. Questions will arise

Which kind of overlapping or differences will occur based on an object oriented approach
compared to the more general waterfall model?
If the evaluation of a process will include the parts of the assurance correctness along with
parts of the assurance effectiveness, which of the specific requirements will exist in respect to
the combination of both evaluation concepts as input for a single common solution?

372

as

Basic preventive conditions have to be defined as suitable SEU, equipment, organisation, models,
CM, PM, questions concerning the competence of developers etc. This requires a more global
structure based on the analysis of all the relations created by using all the different aspects
(dimensions) as parts of a more common metric in the sense of equivalence classes.

[1] Information Technology Security Evaluation Criteria (ITSEC), Version 1.2, June 1991

[2] The Canadian Trusted Computer Product Evaluation Criteria, (CTCPEC), Version 3.0e,
January 1993

[3] Common Criteria for Information Technology Security Evaluation, Draft Version 0.9,
October 94

[4] Trusted Computer System Evaluation Criteria, DOD 5200.28-STD, Department of Defense
(1985)

[5] Paulk M.C., Curtis B., Chrissis M.B., Webber C.V., Capability Maturity Model for Software
Version 1.1., February 1993 Software Engineering Institue

[6] Trusted Capability Maturity Model for Software, NSA / Software Engineering Institue

[7] Security Engineering Capability Maturity Model for Software, NSA / Area Systems Inc. /
Computer Scienes Corporation

[8] ISO 9000: Quality management and quality assurance standards

ISO 9000 / 3: Quality management and quality assurance standards; Part 3: Guidelines for
the application, supply and maintenance of software

ISO 9001: Quality systems - Model for quality assurance in design / development,
production, installation and servicing

[9] Haase, Messnarz Koch, Kugler & Decrins: Bootstrap: Fine-Tuning Process Assessment, in
IEEE Software, July 93

[10]Keus K., Kurth W., Loevenich D.: IT-Security: - a Quality Aspect! Quality Assurance in the
ITSEC-Evaluation Environment in Germany, in proceedings to the National Computer
Security Conference, 1993

373

Reengineering the Certification and Accreditation Process:
Security is Free.

Sean G. Mahon
Boeing Information Services

7990 Boeing Court
Vienna VA 22182-3999

Mahon@Dockmaster.NCSC.MIL

"If builders built buildings the way programmers wrote programs,
then the first woodpecker that came along would destroy
civilization."

-anonymous

Abstract
The purpose of this paper is twofold: first, to show that Certification and
Accreditation can be a value-added process that can help improve system
security. Second, to show that security, when it is considered part of the
system design, does not increase the cost of the system.

Key words:
Accreditation, Certification, process, quality

Most Departments (e.g. Defense, Treasury, Energy) and agencies of the US
Government require that their Automated Information Systems (AIS) that
process sensitive or classified information be certified and accredited. Yet,
most organizations try to avoid certification and accreditation. Studies
have shown that half of DoD Systems are not accredited or have had their
accreditation lapse without being reaccredited. (AISSD,1991) (Jaworski,
1994) Security in computer systems is viewed in the same vein, a
necessary evil, that is required by policy and generally gets in the way of
doing business.

This is exactly how quality assurance was viewed by General Motors and
Ford in the 1970s. W. Edward Deming, Phillip Crosby and most recently
Hammer and Champy have shown that those views are not valid in the
competitive environment of the 1990s.

There are two major assertions to this paper. First, that Certification and
Accreditation can be a value-added process that can help improve a
system instead of being a meaningless paper drill. Second, that security

374

when it is considered part of the system design does not increase the cost
of the system.

Returning to the automobile analogy, there was a massive shift in the
public's view of what constituted quality in automobiles in the late 1970s
and Detroit had to catch up with the Japanese auto makers. Today, the
countless viruses and internet attacks are reshaping the public's view of
what constitutes security in computer systems and networks. Philip
Crosby, in his book Quality is Free maintained that quality is free because
when you consider the cost of waste and rework due to the lack of quality,
effective quality control saved money. The lack of quality was more
costly to a company than having effective quality control. Quality pays for
itself. The book's title comes from a quote by Harold Geneen, formerly the
head of ITT:" Quality is free, it is not a gift, but it's free."

Similarly, the cost of responding to the lack of security in today's
information systems is increasing daily, and security has become
necessary to the survival of systems and networks. Today, the vast
majority of systems are not very secure and the costs of cleaning up viral
outbreaks and cracker attacks are mounting. Retrofitting security into
systems , (i.e. investing in firewalls) would not be necessary if security
were more than an afterthought in system design. A recent article on a
hacker attack in TIME magazine illustrates the changing environment.

"Across the country computer network security experts were calling the
entire Mitnick affair a watershed moment-not only for what it proves
about the hacker but for what it says about the systems he hacked. At a
time when American businesses are frantic to set up shop on the computer
networks, those networks-and the telecommunications systems that carry
their traffic are turning out to be terminally insecure."

The public attitude shift toward car quality in 1975, caught General
Motors, Ford and Chrysler flat footed. The operating system vendors such
as Microsoft and Novell, system integration firms, as well as the
Government can learn from their example and begin to practice good
security engineering in acquiring and maintaining their systems before the
lessons become more painful.

While the term "Reengineering" has been coined by Hammer and Champy,
the idea is not new. "Starting from zero" as a method of design was
preached by Walter Gropius of the Bauhaus school of Architecture in the
1920s (Wolfe 1982). Systems theorists have said for years that automating
bad manual systems result in bad automated systems. However, Hammer

375

and Champy, by defining these activities with the phrase"reengineering,"
have forced organizations to look at their current processes and see if they
are the shortest most efficient path to their corporate goals.

"Reengineering is the fundamental rethinking and radical redesign
of business processes to achieve dramatic improvements in
critical contemporary measure of performance, such as cost,
quality, service and speed." - (Hammer and Ghampy, 1994)

In order to reengineer anything you must have a goal that you are trying
to achieve. The goal of the C&A process should be to build and maintain
certified and accredited systems, with the requisite level of security, that
users can use to do their work. The last part of the goal is the most critical,
because when all is said and done, someone must use the system that you
certify and accredit to do their job every day. This should be the central
vision of the C&A process, not the DAA's risk exposure. What good is a
system with zero risk, if it makes life for the user so difficult that it
renders the system useless?

The C&A process defined:

"Steps - the processes are formed in a natural order"
- Hammer and Champy.

For the purposes of this paper, the C&A process that will be modeled is
based on a generic (Army Regulation 380-19) or type accreditation (Air
Force Regulation 205-16). Operational and site based accreditation are
focused on the delivered system, and are geared to uncover vulnerabilities
after installation, which is the most expensive point in the life cycle to
address them. The system security certification, as a process, should
parallel the system development cycle and be fully integrated into the
system test process. In this manner, the data needed to make an
assessment of the system's security, is developed along with the system.
The steps leading from system design to certification and then to the
accreditation decision should be a natural progression.

376

The Accreditation
"food chain"

Requirements

flow

down I Accreditor

T 1
Accreditation decision
Approval to Operate

System Security
Operational bnvironment

Certifier

i i
Program Manager

I I
System Integrator

♦*
Vendor

Assurances

are passed

up I

The Accreditation Food chain: Each entity in the chain receives products
from one level in the chain and passes on products to the next level. It is
convenient to start with the vendor, since it is the vendor that supplies the
basic components on which integrated systems are built, namely
hardware platforms and operating systems and other commercial off the
shelf packages. Requirements flow down the chain, assurance is passed
up the chain. If the C&A process is started in conjunction with the system
design process, and C&A requirements are flowed down the lowest level,
then the system should be almost be self certifying.

The vendor's product is used by a system integrator as a component in a
integrated system. This system (or a proposal to build this system) is
offered to a Government Program manager who will oversee the
integrator's efforts.

The Program Manager will have to find a certifier for the system and an
accreditor to assume risk and allow the system to operate, if these entities
have not been already designated.

377

Everyone in the food chain has a part of the C&A puzzle. In order for the
process to work, everyone must come to the table with their piece of the
puzzle.

The puzzle pieces:

The Vendor : Provides insight into the inner working of the COTS product.

The System integrator: Understands the System Architecture, how the
components fit together, how the system security policy is enforced
through the various system components.

Certifier: Evaluates the system security in regard to the operational
environment, quantifies residual risk for the accreditor

Program Management Office: Identifies/validates users needs, ensures
system meets functional requirements. Represents the voice of the user.

Accreditor: Makes decision to allow the system to operate.

How it should work:

The Program Management Officer (PMO), as part of the Request For
Proposal, asks bidders to state in their proposals how they intend to
support the certification and accreditation process.

Integrators bidding on the proposal, propose a set of assurance evidences
that they will supply to support system certification.

When the contract is awarded, the proposed assurance package is fine
tuned through technical exchange between integrator, PMO, certifier and
accreditor (or accreditor's representative). If all of the parties approve
the approach and meet regularly to discuss issues, the accreditor is no
longer asked to make a "leap of faith" at the time of the accreditation
decision.

Once the accreditation has been achieved, the same process should be
followed with each major change to the system. If certification
requirements are considered when changes are made, then the
recertification and accreditation will be merely review of the evidence
produced as a part of all the changes made to the system since the last
accreditation decision. This process would be similar to the RAMP

378

methodology that is used for evaluated products. A security analysis
would be conducted for each engineering change order, and evidence of
the certification maintenance would be retained for the certifier's review.

Adding value to the process
What vendors can do:

Vendors should be be proactive, and ask questions on product use and
C&A support the integrator will require. If your product is in NCSC
evaluation, have your vendor security analyst (VSA) talk with the
Integrator's security engineering staff to ensure that the system makes
best use of the product's security mechanisms and the product is being
correctly presented to the certifier.

Help your customers (Integrators, Government PMOs) understand the
security your product provides, especially if it is an evaluated product.
Many integrators and PMOs do not understand the value of having an
evaluated product and what the evaluation means and what it does not
mean. To most, it is simply a box to be checked off.

Try not to let your marketing staff stifle technical interchange between the
vendor and the integrator. Feedback from your customer can be used to
make your product better.

Adding value to the process
What System Integrators can do:

As the builders of the system the integrator can make the system
practically self-certifying by managing and packaging assurance evidence
for the certifier to review. Assurance evidence management (Area 1994)
practiced by the integrator will reduce the level of effort needed by the
certifier.

Adding value to the process
What Government Program Managers can do:

Verify the users requirements. Find out what trade off the users are
willing to accept. Users want and need some level of security in their
information systems, no one wants their documents altered or privacy
violated. The program manager must be the conduit of information
between the system integrator and the user, particularly in regards to
design tradeoffs. When all the system requirements are totaled up, there
may be no solution space left. It is then the hard lot of the PMO to work

379

with the user and the system developer in the realm of the possible, to
deliver the best fit solution.

Adding value to the process
What NSA and PISA can do:

Expand the education process so that system integrators and government
PMOs can understand the Trusted Product Evaluation Process (TPEP) and
what it means to have a product evaluated. The dialogue and vocabulary
is now well established between the TPEP product vendors and the NCSC
(C71) evaluators. Disseminate that knowledge.

Some suggestions on accomplishing this:
Have a Trail Boss course for acquiring trusted systems , to educate
government acquisition personnel in the issues involved in building
trusted systems. Open the VSA course to integrators and government PMO
personnel.

A Case study in reengineering C&A:

This case involves a large MLS system in DoD. After contract award,
disagreement arose over what assurances were required to certify the
system and who should provide them. The program manager and the
certifier found it difficult to express exactly the form and nature of the
assurance. The disagreement centered primarily on the operating systems
that were being used, which were in the very preliminary stages of NCSC
evaluation. Many meetings were held and correspondence flowed between
the Government program manager and integrator, integrator and vendor.
Eventually an approach to gaining the required assurances was hammered
out, however only after many resources were expended in non value
added activities such as writing and replying to contract correspondence.

Later in the system development process a multi-level e-mail feature was
to be added to the system. This time the integrator ensured that there was
concurrence from the certifier and the program manager as to what
assurance evidence was required for the multilevel e-mail product. These
requirements were flowed down to the vendor, where applicable. The
integrator and the vendor provided the certifier with a security design
briefing and security design documentation. A member of the certification
team witnessed the integration testing and leveraged that into better
security test coverage for the government acceptance test. The end result:
a better certification of the system, no expenditure of resources in non
value added activities, and there was no increase in price of product or

380

the level of effort for integrating the product in the system.

Rules for applying reengineering in the C&A process.

Rule 1: Security is cheaper, better, less intrusive and more effective when
you design and build it into a system instead of retrofitting.

Rule 2: Treat security as necessary functionality. Just as you must give a
user today a GUI interface and a WYSIWYG word processor, you must
provide some level of security, as a minimum I&A, file access control, and
data integrity.

Rule 3: For C&A "generic" or "type" accreditation is more cost effective
than operational or site based accreditation.
Operational and Site based accreditations are geared to identifying
vulnerabilities in systems after they are fielded, when it is most costly to
correct them. It makes more sense to put the onus of ensuring adequate
system security on those organizations responsible for the systems design
and acquisition, rather than the operational user. Certification should start
when the system design starts.

Rule 4: In system changes and maintenance, ensure that security and
C&A requirements are considered before implementing change.

Rule 5: Know thy accreditor. Bring him in early in the system design
process and keep him informed.

Rule 6: Assurance is where you find it.
If the system is built and maintained in accordance with sound system and
software engineering practices, there are security assurances already in
your processes. Process assurance is free. The certifier should have
insight into how the integrator is building the system.

Rule 7: Be flexible in your design, requirements and environments change
and specifications become outdated and irrelevant. Don't allow security
design tradeoffs, made earlier on, to paint you into a corner or tie you to
dead end technology.

Rule 8: Hope is not a method.
Your accreditation effort should not hinge on the hope that the accreditor

will accept unusually large risks on blind faith or a pile of documentation
you present as an end product. Second, do not allow yourself to think that
the new technology that is trumpeted in a glossy brochure is going to put a

381

end to your security problems. There are no silver bullets. Careful analysis
of the security requirements and the design constraints will more often
lead to a solution, than adding a security black box to the system.

Rule 9: Your security engineering staff cannot be everywhere at once.
Every member of your organization should be sensitive to security
concerns. This can only happen through training and good organizational
communications.

Summary

Meeting the goal of building and maintaining a certified, accredited and
usable system is not easy. Many systems today are caught in the current
Bermuda Triangle of government specifications and standards, e.g. GOSIP,
GUI, MLS, EPL, COTS, Ada, PCMCIA, X.everything, DMS, DSS, WYSIWYG.
There are no solutions that will meet all these standards and specifications.
Tradeoffs have to be made. The process and principles outlined in this
paper should assist all parties involved to find the best fit solution that
provides the balance between functionality and security. Second it should
help reduce the cost and resources involved in the C&A effort. There is not
enough empirical data to prove the assertions made here, but the initial
cases have shown much promise.

References

Area Systems and the National Security Agency (1994) Security
Engineering CMM Straw man.

Automated Information System Security Detachment (AISSD) US Army
"1991 Computer Security - Lessons Learned"

Bauer R. et al, "A Framework for Developing Accreditable MLS AIS"
(1991) Proceedings of the 14th National Computer Security

Conference.
Hammer M. and Champy J. (1993) Reenaineerina the Corporation,

New York: Harper Collins
Jaworski L., "The Network Memorandum of Agreement Process: Lessons

Learned"(1994) Proceedings of the 17th National Computer Security
Conference.

National Computer Security Center. (1985) Department of Defense
Trusted Computer System Evaluation Criteria
Washington D.C.: US Government Printing Office.

Sachs J. et al, What Color is your Assurance"(1994) Proceedings of the
17th National Computer Security Conference.

382

Wolfe T., (1981) From Bauhaus to our House, New York: Pocket Books

383
* U.S. GOVERNMENT PRINTING OFFICE: 1995 - 623 - 889 / 82287

i

