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Welcome

The National Computer Security Center (NCSC) and the Computer Systems
Laboratory (CSL) are pleased to welcome you to the Eighteenth National
Information Systems Security Conference. The new conference name reminds us
that information systems, not just computers, must be secure. This year’s program,
with its theme “Making Security Real,” is designed to help you plan for effective
use of information security technology and to create security solutions. We believe
the conference will stimulate a copious information exchange and promote a solid
understanding of today’s information security issues and protection strategies.

The conference program addresses a wide range of interests from technical
research and development projects to user oriented management and administration
topics. This year, the program focuses on developing and implementing secure
networks, technologies, applications, and policies. Papers and panel sessions
address a broad spectrum of network security subjects including: security
architecture, internet security, firewalls, multilevel security (MLS) products, and
security management. Because the National Information Infrastructure (NII), and
its present backbone--the Internet--are topics of increasing interest, the challenges
they present are the subject of many presentations. As in the past, a number of
tutorials introduce attendees to a variety of information security topics and project
areas. As a new feature this year, we have invited the vendor award recipients to
provide product information displays as part of the award ceremony.

We feel assured that the professional contacts that you make at this conference,
the presentations, and these Proceedings will offer you insights and ideas you can
apply to your own security planning efforts. We encourage you to share the ideas
and information you acquire this week with your peers, your management, and your
customers. We also encourage you to share with us your success-based security
techniques. It is through sharing that we will continue to enhance the security of
our information systems and networks and build a strong foundation to make
security real.

SHUKRI A. WAKID
Acting Director V“/

Computer Systems Laboratory

e

HN C. DAVIS
Director
ational Computer Security Center
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Awards Ceremony

2:00 p.m. Thursday October 12
Convention Center, Room 310

The National Institute of Standards and Technology (NIST) and the National
Computer Security Center (NCSC) will honor those vendors who have successfully developed
products meeting the standards of the respective organizations. Immediately following the
ceremony, honored vendors will have the opportunity to display these products.

The NCSC recognizes vendors who contribute to the availability of trusted products
and thus expand the range of solutions from which customers may select to secure their data.
The products are placed on the Evaluated Products List (EPL) following a successful evaluation
against the Trusted Computer Systems Evaluation Criteria including its interpretations:
Trusted Database Interpretation, Trusted Network Interpretation, and Trusted Subsystem
Interpretation. Vendors who have completed the evaluation process will receive a formal
certificate of completion from the Director, NCSC marking the addition to the EPL. Certificates
will also be presented to those vendors that have placed a new release of a trusted product on
the EPL by participation in the Ratings Maintenance Program. Additionally, vendors will receive
honorable mention for being in the final stages of an evaluation as evidenced by transition into
the Formal Evaluation phase. The success of the Trusted Product Evaluation Program is made
possible by the commitment of the vendor community.

The Computer Security Division at NIST provides validation services to test vendor
implementations for conformance to security standards. NIST currently maintains validation
services for three Federal Information Processing Standards (FIPS): FIPS 46-2, Data Encryption
Standard (DES); FIPS 113, Computer Data Authentication; and FIPS 171, Key Management
Using ANSI X9.17. During this award ceremony, NIST presents “Certificate of Appreciation”
awards to those vendors who have successfully validated their implementation of these
standards.

With the reaffirmation of the Data Encryption Standard as FIPS 46-2 in 1993, DES
can now be implemented in software, as well as hardware and firmware. To successfully
validate an implementation for conformance to FIPS 46-2, a vendor must run the Monte Carlo
test as described in NBS (NIST) Special Publication 500-20. The Monte Carlo test consists of
performing eight million encryptions and four million decryptions, with two encryptions and one
decryption making a single test.

Vendors test their implementations for conformance to FIPS 113 and its American
National Standards Institute (ANSI) counterpart, ANSI X9.9, Financial Institution Message
Authentication (Wholesale). This is done using an electronic bulletin board system. Interactive
validation requirements are specified in NBS (NIST) Special Publication 500-156, Message
Authentication Code (MAC) Validation System: Requirements and Procedures. The test suite is
composed of a series of challenges and responses in which the vendor is requested to either
compute or verify a MAC on given data using a specified key which was randomly generated.

Conformance to FIPS 171 is also tested using an interactive electronic bulletin board
testing suite. FIPS 171 adopts ANSI X9.17, Financial Institution Key Management (Wholesale).
ANSI X9.17 is a key management standard for DES-based applications. The tests are defined in
a document entitled NIST Key Management Validation System Point-to-Point (PTP)
Requirements. The test suite consists of a sequence of scenarios in which protocol messages
are exchanged under specified conditions.

We congratulate all who have earned these awards.
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Abstract

Many computer applications in the commercial
world need complex security policies which are
hardly enforced by the military multilevel security
model because their enforcement must violate the ba-
sic properties of the mathematical structure that the
model is based on. Nor can these policies be modeled
by a discretionary security model like the HRU’s ac-
cess conlrol matriz since the accessing character-
istics of these applications demand some degree of
mandatory control. This paper presents an effec-
tive access conirol model called BEAC to enforce
these complex security policies. The power of this
model is demonstrated by its capability of express-
ing a rich set of access patterns from subjects to
objects in an elegant and uniform way. Moreover,
frequently-desired multilevel exceptions are system-
atically categorized and it is shown many security
policies requifed by computer applications in com-
mercial sectors are actually examples of these mul-
tilevel exceptions. Then it is demonstrated that all
these multilevel exceptions and other commercial se-
curity policies can be effectively enforced by an ez-
tension of the BEAC model.

1 Introduction

1.1 Security policies and access control
models

From the view point of access authorization, all
system entities in a computing environment can be
classified either as active subjects or passive objects.
An access control model specifies how security at-
tributes can be assigned to the interacting subjects
and objects, and how these attributes are used in

*currently with IBM, Austin, Texas

evaluating access permission according to some pre-
scribed rules. Given an access control model, an
user of the system can define his security policies
which specify how accesses from subjects to ob-
jects are to be regulated. An access control model
provide a mechanism to enforce security policies.
It is usually desirable to enforce as many security
policies as possible with one uniform access control
model.

Access control models are usually divided into
two categories: mandatory access control and dis-
cretionary access control {20]. Both are formulated
to allow or deny particular access modes by sub-
jects to objects. The two categories of models differ
mainly in how access authorizations can be modi-
fied. With a mandatory model, authorization mod-
ifications can only be made by an organization’s
security authorities by changing the security at-
tributes of subjects and objects. In a discretionary
model, a subject may be given some degree of free-
dom to pass the whole or part of its access privileges
for an object to another subject.

Most mandatory access control models are
lattice-based models, in the sense that each sub-
ject and object is associated with a security class,
and the set of all security classes forms a lattice.
All the classes in a lattice are partially ordered by a
dominance relation. A model’s access control rules
reflect the security goal of the model and ensure
that a subject can only have some mode of access
(read or write) to an object when the security class
of the subject dominates or is dominated by that
of the object. The most well-known mandatory
lattice-based models are the Bell-LaPadula multi-
level model [1] for data confidentiality and the Biba
multilevel model [2] for data integrity. In addition
to security classes (hierarchical levels), it is often
necessary to incorporate the need-to-know rule in
the model for many commercial and military ap-
plications. The need-to-know rule is usually im-




plemented by a non-hierarchical component for the
security attributes of subjects and objects, usually
called categories. The categories, representing the
natural characteristics of subjects and objects, also
form a lattice with set containment as a basis of the
dominance relation.

A discretionary access control model basically
enumerates all the subjects and objects in a system
and regulates the access to an object based on the
identity of a subject or the groups to which it be-
longs [20]. It can be best represented by the HRU’s
access control matrix [12] with a row for each sub-
ject and a column for each object. Each entry of the
matrix describes what access rights each subject has
for each object. In this model, no semantics of in-
formation in the objects are considered, thus the se-
curity sensitivity of an object cannot be expressed.
For performance reasons, an access control matrix
is implemented by either a row-based mechanism
(capability lists) or a column-based mechanism (ac-
cess control lists), and both have their own pros and
cons [9].

1.2 Needs for a new model

Because of its flexibility and adaptability to the
needs of the real world’s applications, category has
been implemented as a basic mechanism for ac-
cess control in some security systems (e.g., [10]).
However, even with categories, conventional multi-
level security models still cannot adequately enforce
some security requirements needed by many appli-
cations. The most visible examples are different
exceptions of multilevel information flow such as
transitivity, aggregation, and separation (of duty)
exceptions [11, 17] which all violate the basic prop-
erties of lattice, but are definitely required by many
practical applications. Other security requirements
that multilevel security models cannot satisfy are
easily found. To incorporate these security require-
ments, system administrators are often forced to
resort to less graceful and complicated methods to
satisfy each requirement individually (e.g., [16, 22]).
Thus, the difficulty of maintaining a secure com-
puting environment satisfying all specific security
requirements is increased considerably. These se-
curity requirements cannot be enforced by a dis-
cretionary access control model either, since the ac-
cessing characteristics of these applications demand
some degree of mandatory control. Therefore, there
is a need for a uniform and simple security model
for enforcing security policies where both manda-
tory multilevelysecurity and discretionary security
models are inadequate.

With the above reasoning, the paper proposes a
powerful access control model based on boolean ex-
pressions of categories. The model can implement a
very rich set of regulated access patterns from sub-
jects to objects in a natural and elegant way. Fur-
thermore, it is shown that this model has a greater
modeling power than conventional multilevel secu-
rity models. We also systematically categorize the
multilevel information flow exceptions in terms of
access control. The model is then extended to in-
corporate the concept of states which must be sup-
ported in order to enforce these exceptions, and it is
demonstrated how these multilevel exceptions and
other complex security policies can be enforced by
using the extended model.

2 A Model Based on Boolean Ex-
pressions

2.1 The basic model

Like most access control models, the proposed
model divides all the entities in a system into sub-
jects and objects. The security attribute of each
subject is a category set which generally specifies
the accessing characteristics of a subject. Unlike
those in multilevel security models, the categories
used here do not need to form a lattice. A cate-
gory can also be created and assigned to a subject
to enforce a desired security policy. The security
attribute of each object is a boolean expression of
categories, which basically is composed of categories
assembled by any operators allowed in boolean al-
gebra (“¢” means AND, “4+” means OR, and a bar
over a category, e.g. €, means negation), and is
called an Access Control Ezpression in this paper,
abbreviated as ACE. When a subject tries to access
an object, the access is granted if the ACE of the ob-
ject is evaluated TRUE using the subject’s category
set. The evaluation process of an ACE is described
as follows: Any category in the object’s ACFE has a
default value of 0. If an category ¢ in the ACE also
appear in the category set of the accessing subject,
¢ is converted to TRUE in the ACE. The ACE is
then evaluated according to the normal evaluation
procedure in boolean algebra, and results in either
TRUE or FALSE.

To define the model in a more formal way, if
the category set of a subject S is represented by
CAT(S) = {A} and the access control expression
for accessing an object O in some mode M by
ACE(O)pm =< E >, then the exclusive access con-
trol rule of this model is stated as “the access of S




0 O in mode M is granted if E(A) = TRUE, where
E(A) means evaluating E with A as the input, and
is denied if E(A) = FALSE.”

The rules defined -above apply to any access
mode, such as read, write, or execute, etc., and an
ACE can be independently defined for each access
mode of an object. Whereas multiple access modes
(thus multiple ACEs) might be defined for an ob-
ject, for the reason of simplicity we will assume only
one ACE with each object (thus one access mode
only or one ACE applied to all access modes) in
following discussions unless stated otherwise.

_ For example, if the category set of a subject S; is
{a,b,c} and the ACE of an object Oj; is < a *¢ >,
S; 1s not allowed to access Oj since the category ¢
in CAT(S;) makes ACE(Q;) false (a*¢= TRUE *
TRUE = TRUE x FALSE = FALSE). However, S; is
allowed to access another object Oy whose ACE is
< b+d+ e > since the existence of b in ACT(S;)
makes ACE(Oy) TRUE.

Taking an example of the government, a sub-

- ject Sy which represents an employee in the De-
partment of Defense could have a category set
{Northgorea, Nuclear Weapon}, which implies

that S; has access privileges to the objects catego- '

rized as Northgorea, Nuclear-Weapon, or both.

Another subject S; which represents an employee

in the Department of States has a category set

" {Northgorea, China}, which implies that the re-
sponsibility of S3 requires him to have access rights
to the objects categorized as Northgorea, China,
or both. Now if an object O representing a secret
document file has an ACE = < Northgorea >,
then it can be accessed by both S; and Sz be-
cause Northgorea exists in both category sets of
Sy and S;. Another object whose ACE ='<
Nuclear_Weapon > can be accessed by Sz (because
the default value of Nuclear .Weapon is FALSE) but
cannot by S; (because the Nuclear_-Weapon in Sy
makes this ACE FALSE).

The “wildcard” character, represented by the
symbol ‘$, is also used in an ACE to represent
any category except those already appearing in the
ACE. Utilizing the wildcard character is very ef-
fective in achieving some desired access pattern
precisely. For instance, an object whose ACE =

- < axb*$ > can be accessed only by a subject whose
category set contains only a and b and nothing else.
Note that the value of the wildcat character is al-
ways determined after the value-substitutions of all
other categories in an ACE.

As a general rule for achieving desired access re-
strictions, the existence of a category “c” in an ob-
ject’s ACE implies that a subject needs to have a

“¢” in its category set in order to access the object,
and a “¢” in an object’s ACE implies that the ob-
ject can only be accessed by a subject which does
not have a “¢” in its category set. Moreover, two
categories appearing as “c; x¢;” in an object’s ACE
indicates that a subject must have both “c;” and
“c;” in its category set to access the object, and
two categories appearing as “c; + ¢;” in the ACE

)

means that any subject which has either “¢;” or

* “c;” can access the object.

For simplicity in description, this booelean
expression based access control model is named

BEAC.
2.2 Modeling power

The modeling capability of the BEAC model is
quite powerful . Firstly, it offers a flexible and ele-
gant mechanism of access control. Both authorized
:Emd prohibitive access control can be expressed ex-
plicitly at the same time by one mechanism. The
use of boolean expressions is more natural to en-
force the security requirements of some real appli-
cations, especially in commercial sectors, than us-
ing the set containment relation in multilevel secu-
rity models. The wildcard category used to gener-
alize access patterns sometimes or to restrict them
at other times is as powerful as using the wildcard
character “¥” in UNIX shell commands. The desir-
ability of prohibitive rights and wildcard in specify-
ing access rights is debatable [6]. However, the flex-
ibility these mechanisms provide is useful for some
special purposes as shown in the following.

Figure 1 shows how a complete set of access con-
trol among subjects to an object can be provided
by the use of boolean expressions. Assume a sys-
tem consisting of three subjects S1, Sz, and S with
{a}, {b}, and {a, b}, respectively, as their category
sets (e.g., S1 and S; are two different employees,
and Sg is their manager), and one object called O
(e.g., a document). Because any subject is either
allowed or denied access to O, the total number of
all possible access patterns of these three subjects
to O is eight. By specifying the ACE of O appropri-
ately, it can be seen in the figure that any of these
eight access patterns can be precisely enforced by
the BEAC model. :

For a comparison with multilevel security mod-
els, it has been shown [13] that the BEAC model
is powerful enough to enforce all the security poli-
cies that multilevel security models with levels and
categories can enforce. That is, all the security poli-
cies for accessing objects previously enforced by a
multilevel model can be exactly preserved using the




ACE of O S1 S2 S3
<i> X X
Subject { Category Set <b> X X
S {a) <a+b> X X
Sz {b) <u*b> X
Y {a.b) <> X
<b> X
<a+b> X
<a*b>

Figure 1: Eight access patterns of 3 subjects. An
“X” in the entry means that subject S; can access
object O with the corresponding ACE.

BEAC model, by appropriately converting the lev-
els and categories of all entities used in the multi-
level model to the categories sets and ACEs used in
BEAC.

On the other hand, it is interesting to show that
there exists some security policies that can be en-
forced by the BEAC'model but cannot by the multi-
level access control model with categories. Suppose
a system contains two subjects, S; and Sz, and two
objects O and Og, and a security policy is applied
to them such that the allowable and disallowed ac-
cesses to objects by subjects are shown in Figure
2. Both subjects can write information to both ob-
jects, but only S; can read information from Oy and
only S3 can read information from Os. An appli-
cation which needs this policy is that S; acts as a
processing filter for O; such that any information
written to O; must be read and processed by S
before it can be written to other objects again. S
plays the same role to O;. Another application is
that O is the mailbox of S; and O3 is the mail-
box of S;. Any subject may send messages to any
mailbox but only the owner of a mailbox may read
information from it.

First we show how this security policy can be
enforced by the BEAC model. §; and S have cat-
egory sets {a} and {b}, respectively, according to
their natural characteristics. O; can be written by
both S; and S3 but can be read only by Sj, thus
O1’s ACE for write access is < a+b > and its ACFE
for read access is < axb >. Oy can be written by
both S; and S but can be read only by So, thus
0>’s ACE for write access is also < a 4+ b > and its
ACE for read access is < axb >. /

However, it is infeasible to to model the same
security policy in Figure 2 using the multilevel ac-
cess control with categories. Since S; can both
read and write O, class(Sy) = class(0y). Sim-

Figure 2: An access control policy which can be
enforced by the BEAC model but cannot by the
multilevel security model with categories.

ilarly, class(S2) = class(O3). Moreover, since
Sy can only write but not read O;, the category
set of O; must properly contain the category set
of Sy (if data confidentiality is the security con-
cern), i.e., class(O1) D class(S2), which implies
class(S1) D class(Ss2). However, with the same rea-
soning, the category set of Oy must properly contain
the category set of Sy, i.e., class(O2) D class(Sy),
which implies class(S2) D class(S;) — a contra-
diction. Therefore, this security policy cannot be
possibly enforced by the multilevel access control
model with only categories.

As an observation from the example above, we
can conclude that any security policy, that is rep-
resented by an information flow graph with cycles
consisting read and write edges among more than
two system entities (e.g., 01 — S; — Oy — Sy —
O; in Figure 2), cannot be enforced by a lattice-
based access control model.

3 A Classification of State Depen-
dent Security Policies

Complex access control policies are characterized
by state-dependent security requirements. Autho-
rization of access to objects by a subject depends
on the subject’s past access history and its interac-
tion with other subjects and objects. For examples,
a subject S is not allowed to access object Oy if it
has already read object O,, or subject S; or sub-
ject Sy can write object Og, but they together can
not write O3. We will categorize a class of state-
dependent access control control policies in' terms
of exceptions to normal information flow. Informa-
tion flow is a different view from authorization con-
trol, but also need to be implemented by an access
control model.




3.1 Multilevel information flow excep-
tions

An information flow model usually characterizes
all system entities with different security classes and
governs how information can flow between classes
[15]. Traditional information flow models are built

on a structure of lattice with components compos-

ing all the security classes, and information can only
flow between components of the lattice in the direc-
tion as the properties used to construct the lattice
permit [7, 8]. However, there exist some applica-
tions whose security requirements do need informa-
tion flow which violates some properties of lattice.

We will elaborate these information flow exceptions’

and use them as motivations for an extension of the
BEAC model.

Information flow in a lattice-based model is tran-
sitive, i.e., if information is allowed to flow from
class A to class B, and from B to class C, then
it is allowed to flow from A to C directly. How-
ever, some applications exist where this transitive
property is not desired. If we define the informa-
tion flow relation “—” on pairs of security classes
to represent the allowable direction of flow and “/”
to represent the prohibited direction of flow, then
transitivity ezception is formalized as A — B and
B—C,but A4 C.

Another exception of information flow which may
be desired by some applications is aggregation ex-
ception [17, 18]. In a lattice-based model, if A — C
and B — C, then the aggregate of information from
A and B, represented as AU B, usually can flow to
C. 1If this property is not desired, then we have
an aggregation exception, which is formalized as
A — C and B — C, but AUB + C. This exception
can be interpreted in two ways. One is that C' can
not sink information from the aggregate of A and B
(e.g., information from A and B are combined and

mixed by sharing a common pipe or FIFO with C),

and the other is that after C sinks information from
either A of B, it can not sink any information from
the other class. _

The dual problem of aggregation exception is
the separation exception. Separation of duty is
one of the most important ingredients in secu-
rity policies and models concerning data integrity
3, 5, 14, 19, 21]. With respect to information flow,
" it can be described as that information cannot flow
from a single class, either A or B, to another class
C but only the aggregate of information from A and
B can, which in practice can be interpreted as once
information transfers from either A or B to C, the
other must also transfer information to C. The in-

formation flowed to C from the first entity will not
be valid or meaningful to C until information flow
from the second entity happens. This requirement
cannot be satisfied by a lattice-based information
flow model alone, so we call it separation exception,
formalized as AUB — C,but A A C and B A C.

These exceptions place more constraints on infor-
mation flow among different classes than permitted
by a lattice-based multilevel model. We will show
in sections 4 and 5 that the BEAC model can be
extended to enforce these exceptions, but first we
formalize flow exceptions in terms of access control.

3.2 Refining flow exceptions in access
control ‘

Although the three exceptions mentioned above
originate from information flow policies, they can
be redefined in terms of access control. In access
control, the main operations for information trans-
fer betwe'en entities are read and write. So A — B
means subject A writes information to object B or
subject B reads information from object A. Fur-
thermore, an access control model is usually chosen
for either data confidentiality or data integrity pur-
pose. Therefore these information flow exceptions
are classified according to how subjects and objects
interact and the security purpose in the scope of ac-
cess control (as shown in Figure 3). The following
details each exception and justifies its significance
with possible applications.

Let’s first look at what transitivity exception
looks like in access control. Transitivity exception
in formation flow (A — B and B — C, but A 4 C)
can be described in access control as a relation
among two subjects and two objects in two different
ways. The first concerning with integrity (Figure 3
[i]) is that subject S; can write object Oy, Oy can
be read by subject S2, and Sy can write object Og,
but S; can not write Oy directly. This actually sim-
ulates the concept of “well-formed transaction” for
the commercial integrity policy [5]. The other way
which concerns confidentiality (Figure 3 [ii]) is that
object O; can be read by subject Si, S; can write
object O3, and O, can be read by subject Sz, but Oy
can not be read by S directly. An example of this
exception is that raw data (O1) can not be read by
some user (S) directly without being converted to
a specific format (O2) by some formatting software
(S1).

Aggregation exception can also be redefined in
terms of access control according to whether the
security concern is data integrity or data confiden-
tiality. If data integrity is the concern (Figure 3
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Figure 3: A taxonomy of information flow exceptions redefined in terms of access control. The meanings of
symbols: “R”— read, “W” — write, “@” — exclusive or, “4” — and.

[iii]), then either subject S; or subject S, can write
object O3, but they together can not write Oz. The
interpretation is that after Os is written by Si, it
cannot be written by S» any more, and vice versa.
Any application which requires an object to be writ-
ten by only one subject, but not a specific one, falls
into this category of exception (e.g., an electronic
check can only be prepared by only one accountant,
and after it is prepared, no other accountants can
touch it, to prevent against malicious modification).
If data confidentiality is the concern (Figure 3 [iv]),
then subject S3 can read either object O; or object
0., but S3 can not read the aggregate of both ob-
jects. This can be interpreted as that after S3 reads
01, it can not read Os any more, and vice versa. A
well-known example which generalizes this excep-
tion is the Chinese Wall security policy [4] in which
a market analyst cannot access information from
more than one company within the same interest
class.

-Since the original concern of separation exception
- is data integrity, many practical examples can be
found in the literature discussing integrity policies
and models (a simple one is that a check must be
prepared and signed by two different accountants,
to achieve separation of duty). It is described (Fig-
ure 3 [v]) as two subjects S; and S; accessing the
object O3. After a subject (e.g., S1) writes Os,
only the other (S3) is allowed to write that object.
If data confidentiality is the concern (Figure 3 [vi]),

- separation exception means that initially subject S5

is allowed to read both objects O; and Os, but once
after S3 reads one object (e.g., O1), it can only read
the other object (O2). An example similar to the
one mentioned in [11] is that a user of a dial-up
database may only read service charge information
after he has viewed a stage of database information
subscribed before he is allowed to view the next
stage.

The BEAC model can be readily used to enforce
the transitivity exceptions, by arranging categories
sets of subjects and ACEs of objects appropriately
[13]. However, to enforce aggregation and separa-
tion exceptions, the access privileges of a subject to
an object needs to be affected either by the access
of the other subject to the object or by the subject’s
earlier own access to other objects. It implies that
some state information needs to be associated with
subjects and objects such that the access privileges
of subjects to objects will vary in different states.
In the next section, we will extend the BEAC model
to implement the state concept of the security at-
tributes of subjects and objects.

4 The Extended BEAC Model
4.1 Analogy to the lock-key concept

BEAC has a great similarity with the lock-key
concept used in discretionary access control [8]. The




lock-key concept is very intuitive in that a subject
holding a key k; which can be used to open a lock I;
can access the object “locked” by I;. In the BEAC
model, each category in an CAT virtually corre-
sponds to a key, so the CAT of a subject ‘corre-
sponds to a set of different keys. On the other
hand, the ACE of an object for one access mode
corresponds to a “lock combination”. An ACE =
< a*b > represents a complex lock which can only
be opened with presence of both keys a and b si-
multaneously. An ACE = < a+ b > represents a
generalized lock which can be opened by either key
a or key b. An ACE = < @ > means a lock which
remains open initially but the existence of key a in
the C AT of a subject will lock it. More vividly, one
ACE of an object represents a combination of locks
on the door to the room where the object is located,
and a subject must have all the necessary keys to
open the door, in order to access the object in the
access mode associated with that ACE.

4.2 Adding states by classifying cate-
gories

Motivated by the fact that access privileges of
subjects to objects need to be restricted or ex-
" panded in order to enforce some complex security
policies such as aggregation and separation excep-
tions, the security attributes of a subject and/or an
object must be changed dynamically, as a result of
access operations, yet in a controllable way. To fa-
cilitate this requirement, categories in the CAT of
a subject are divided into two different classes. The
first class is called reusable category, which perma-
nently belongs to a subject once it is assigned to
the subject, until a system security administrator
explicitly removes it from the CAT of the subject
through privileged commands. It is analogue to a
_reusable key which can be used by a subject to open
alock (an AC E) as many times as the subject would
like to. The second class of categories is one-time
category, which is dynamically assigned to a sub-
ject when the subject needs it. As its name im-
plies, a one-time category can be used by a subject
only once, and regardless whether it makes an ACE

TRUE or FALSE, it is deleted from the CAT of the

subject after its first use. (It can be imagined that
a key is stuck on the door immediately after it is
inserted into the lock hole, whether or not it can
help to open the complex lock. A common mailbox
in an apartment is one such example.) A category
¢ is “used” only when a subject whose CAT con-
tains c¢ tries to access an object in a mode whose
associated ACE also contains ¢. In other words,

a one-time category will not be removed from the
C AT of an accessing subject if it does not appear
in the ACE associated with that access mode. To
differentiate these two classes of categories, a hat
put on a category in a CAT is used to indicate a
one-time category, e.g., ¢. :

The other way of changing a subject’s privilege
to an object by BEAC is to classify the categories
composing the ACE of an object into two different
classes. A persistent category is a category whose
value remains TRUE once it is converted to TRUE.
Contrasting with the lock-key concept, a persistent
category corresponds to a lock which remains open
once it is opened. A non-persistent category (lock),
on the other hand, needs to be value-substituted
(opened) each time the ACE is evaluated. Simi-
larly, a ¢ in an ACE indicates that ¢ is a persistent
category.

It should be noticed that changing an object’s se-
curity attribute has a greater effect than just chang-
ing a subject’s security attribute, because the access
privileges of all other related subjects will possi-
bly be expanded or restricted. It should be used
very carefully such that only the exact access con-
trol desired is achieved. To safeguard this, a more
conservative approach is employed. It is assumed
that whenever a new access control requirement
is desired on an object, a new boolean expression
is generated just for that requirement and is then
ANDed with the original ACE (so the new gener-
ated boolean expression has no interference with the
original ACE). To enforce a state-dependent com-
plex security policy, both classifications of security
attributes mentioned above are often required, as
demonstrated subsequently.

5 Policy Enforcement with BEAC
5.1 Enforcing multilevel exceptions

In Section 3, multilevel information flow excep-
tions are categorized in terms of access control and
justified by the security requirements of different
applications. For brevity, only the enforcement of
two exceptions by the BEAC model is demonstrated
here. The other four exceptions can be similarly re-
alized [13].

For clarity, all the security policies in this section
use the conventions as follows:

e Sy,S53,83,- - : each represents a subject.
e 0;1,03,03,- - - : each represents an object.
e CAT(S;) : the category set of subject S;.

o ACE(O;)ar : the access control expression of ob-




ject Oj for access mode M. ,

e A, B,C,---: each represents a set of categories.
® p,q,r,-- - : each represents a reusable category
in the category set of a subject or a non-persistent
category in the ACE of an object.

e p, 4,7, -+ each represents a one-time category
in the category set of a subject or a persistent cat-
egory in the ACE of an object.

e E,F @G, : each represents a boolean expression.

aggregation exception - integrity

The original security attributes of subjects and
objects are assumed to be:

CAT(S:) = {A},

CAT(S;) = {B},

ACE(O3)w =< E >,
where A and B are two category sets which each
makes E TRUE (note that A and B are not nec-

essarily distinct). If we desire to enforce an aggre- -

gation exception between S; and Sy to O3, we can
change their security attributes as:

CAT(S1) ={4,p},

CAT(S:) ={B,¢}, _ _

ACE(O3)w =< E*(p+§) >,
where both p and ¢ are newly created and do not
exist in any of A, B, E. Since persistent categories
p and ¢ are complemented in the new ACE, they
actually simulate a lock which is open to any sub-
ject unless the subject has both keys p and ¢ (so
changing the ACE of Oz this way will not affect the
access privileges of other subjects). Initially Oz can
be written by either S; or Sz because a single p or ¢
still can make the whole ACFE TRUE. After S, for
example, writes Og, the value of p in ACE(O3)w
will remain TRUE, which makes the ACE equivalent
to < E+¢ >. When S, then tries to write Os, the
ACE will be evaluated FALSE due to the category
¢ in CAT(S3), so its access attempt will be denied.

separation exception - confidentiality

The original security attributes of subjects and
objects are assumed to be:

ACE(O1)r =< E >,

ACE(O2)r =< F >,

CAT(S;3) = {4},
where A is a category set which makes both E and
F TRUE If a separation exception is to be enforced
between O, and O for the read accesses by Ss, their
security attributes will be changed to:

ACE(O1)r =< Ex(p+T) >,

ACE(O2)r =< Fx(q¢+T7) >,

CAT(S3) = {A,ﬁ, g, T’},
where p, ¢ and r are all new. The purpose of com-
plementing = in the ACEs of O; and O3 is not to

affect other subjects’ privileges to these objects be-

* cause of such an aggregation exception enforcement.

Any other subject which originally has access to O,
or O, still can access it since r does not exist in its
category set. However,; r is added to CAT(S3) so
that the 7 in either ACE(O)gr or ACE(O3)r does
not open any door to Ss. Initially S3 can read either
O; or Oy. After Ss read Oy, for example, it will lose
p and make itself unable to read O, again since cat-
egory p is non-persistent in ACE(O1)r. Therefore
S3 can then only be allowed to read Os.

5.2 Specifying a sequence of accesses

We now demonstrate another advantage of this
model, i.e., its ability of assigning a fixed ordering
to multiple subjects for their accesses to an object,
in a straightforward way. For simplicity, the effect
of modifying the ACE of an object upon access priv-
ileges of other unrelated subjects is not considered
below. It can be eliminated, if necessary, by using
the technique of adding a complemented category
(7) to the ACEs of objects and a non-complemented
category (r) to the category sets of subjects involved
in policy enforcement, as shown above.

Assume that three subjects S1, Sy, and S3 can
access an object O4 in some mode M, so their se-
curity attributes are:

CAT(S;) = {A},

CAT(S;) = {B},

CAT(Ss) = {C},

ACE(O)m =< E >,
where A, B, and C all make F TRUE. If we desire
to specify an access ordering to O4 by three sub- .
jects as S; — S; — S3, their security attributes are
changed to:

CAT(Sy) = {A,p},

CAT(S,) = {B, §},

CAT(S3) = {C> 72}1

ACE(Oy)u =< Ex(p+pxq+q*r)>,
where categories p, ¢, and r are all new. It can
be easily verified that at first only S; is allowed
to access 0. After Si’s access, the ACE of Oy
becomes < E * (p + ¢ + § * 7) >, which allows only
Se to access O4. Then, after Sy’s access, the ACE
of O4 becomes < E'%(p+gq+r) >, which only allows
access to O4 by Ss.

The approach can be generalized to order ac-
cesses to an object by an arbitrary number of sub-
jects.




Figure 4: A complex security policy requiring both
access ordering and aggregation exception for in-
tegrity.

5.3 Combination of enforcement tech-
niques : ‘

Some complex security policies may require both
exception and ordering. The following shows an ex-
ample of the BEAC model using these techniques
combined. Again, the effect of modifying the ACE
of an object upon accesses of other unrelated sub-
jects is not considered but could be eliminated using
the technique mentioned earlier.

Assume there is a business application whose se-
curity requirement demands both access ordering
and aggregation exception, as shown in Figure 4.
An object Os (an electronic check) needs to be writ-
ten by S; (a clerk) first, and then written by either
S, or S (two managers) but not both, and finally
written by S; (another clerk). Assume their original
security attributes are:

CAT(S:) = {A},

CAT(S;) ={B1},

CAT(Ss) = {Bz},

CAT(S:) = {C},

ACE(Os)w =< E >,
where A, By, Bz, and C all make £ TRUE. To en-
force the security policy, we need to use the tech-
nique of specifying an ordering among Si, [S2 + S3]
(to treat them as one entity), and Ss and the
method of achieving aggregation exception for data
integrity between Sy and Ss. Therefore, the secu-
rity attributes become:

CAT(S:) = {4, p},

CAT(S2) = {B,4, s},

CAT(Ss) = {B»,§,t},

CAT(S4) = {C» f'}a .

ACE(Os)m =< Ex(p+p*xgx(E+1)+dxr)>,
where new categories p, ¢, 7, s, and t do not appear
in any of A, By, Bs, C, or E. Initially only S;
can write Os, and after S; writes, ACE(Os)y =<

Ex(p+qx (§+Z) +g+7) >, which only allows either
S or S3 to write Os. If Sy writes, ACE(Os)y =<
Ex(p+qg* t+r) >, then only Sy can write Os.

6 Conclusions

Using the language of Boolean Algebra to achieve
exact access patterns from subjects to objects is
more precise and nature in meeting security require-
ments of many practical applications. The BEAC
model proposed in this paper provides a system-
atic mechanism of modeling human-defined security
policies by adequately assigning security attributes
to both subjects and objects and using a simple ac-
cess control rule to achieve the desired policy.

Furthermore, this model is extended from a
stateless model to a more powerful version in which
states are associated with subjects and objects sim-
ply by dividing their security attributes into two
classes and render different meanings to different
classes in access authorization. The overhead of
implementing states on system entities by this way
can be reduced to the minimum. As demonstrated
in this paper, the modeling power of the extended
model is surprisingly great. Many security require-
ments which cannot be adequately enforced by ei-
ther conventional mandatory or discretionary secu-
rity model, such as multilevel information flow ex-
ceptions, can be effectively enforced by the model.

While most multilevel security models assume
only read and write operations on objects, the
BEAC model does not specify any restriction on the
set of access modes to an object and allows a single
ACE for each access mode, thus providing a finer de-
gree of access control. Independent control on each
access mode is more flexible and desirable in current
object-oriented systems, where a number of more
abstract access operations can be defined on an ob-
ject. Moreover, no predetermined security objec-
tive (confidentiality or integrity) is imposed in this
model. Instead it just offers a practical mechanism
for satisfying particular security policies. Informa- '
tion confidentiality or integrity may be achieved. as
just a property of the security policy to be enforced.
This strategy is believed to be more consistent with
the philosophy of separating policy and mechanism
in the construction of modern security systems.
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Abstract

A fundamental assertion underlying the TCSEC
paradigm is that all necessary automated security con-
trols for a computer system can be provided by an oper-
ating system, in particular the components that consti-
tute ¢ conventional TCB. We challenge this assertion
and ecplain why ordinary application processes oui-
side an operating system can leak sensitive informa-
tion, undermine an operating system’s accountability
mechanisms, and destroy information integrity.

We propose an alternative paradigm that more ac-
curately identifies sources of security risk within a
trusted system and can lead to improved security. The
paradigm is based on the premise that every software
component that can manipulate sensitive information,

" even if it has no special access control privileges, is po-
tentially security relevant and must be controlled and
protected by automated mechanisms. The paradigm
repositions the trusted system securily perimeter so
that it encompasses not only an operating system TCB
but the Controlled Application Set (CAS), a collection
of components that have been screened and are pre-
sumed to be benign. The paradigm allows unscreened
components to be present on a system but requires
that they be prevented from manipulating sensitive in-
formation. A practical approach to assurance is out-
lined based on the notion of balanced assurance. Ee-
amples illustrate the applicability of the paradigm to
systems providing confidentiality, accountability, and
integrity.
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1 Introduction

A fundamental assertion underlying the Trusted
Computer Systems Evaluation Criteria (TCSEC) [10]
is that all necessary automated security controls for
many computer systems can be provided by their oper-
ating systems (OS), in particular the OS components
that constitute a Trusted Computing Base (TCB). Ac-
cording to the TCSEC paradigm, if applications pro-
cesses that have no special access control privileges
are properly constrained by an OS TCB, they may

~ safely execute software of unknown assurance while

accessing sensitive information, i.e., information that
merits special protection against unauthorized disclo-
sure or modification. In particular, constraints based
on a lattice are said to “confine” these untrusted
subjects, thereby preventing them from causing secu-
rity compromises. In this view, a robust application-
independent TCB is like a “silver bullet” that protects
sensitive information from errors and malicious code
in the applications programs that manipulate it. In
theory, if an OS TCB has been designed and imple-
mented properly, the rest of the software in a system
could be built by an adversary without undue risk of
compromise.! ‘

The TCSEC conceptual architecture for a trusted
system is shown in Figure 1. In the Figure, TCB com-

-ponents are shaded with a dark texture. The foun-

dation of the TCB is the access control component
or reference validation mechanism, shown as the bot-
tom layer of the system. Other TCB components for
identification and authentication (I&A), audit collec-
tion and storage, and other supporting functions are
shown as a vertical column on the left. The TCB
restricts access to both sensitive and non-sensitive in-
formation, represented by the cross-hatched and un-
shaded information storage containers below the sys-

1Pottinger [21] attributes this assertion to Roger Schell.
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Figure 1: TCSEC Architecture and Security Perimeter

tem. Untrusted subjects, that is, subjects whose be-
havior is not security relevant, are shown atop the
TCB’s access control layer. (A component is secu-
rity relevant if a system’s ability to satisfy its security
requirements depends on the component’s behavior.)
The human interface is shown above these subjects
as a dotted line. As suggested by the arrows near
the bottom, users direct untrusted subjects to ma-
nipulate both sensitive and non-sensitive information.
Users may also interact directly with the TCB via the
trusted path.

The TCSEC asserts that “the bounds of the TCB
equate to the ‘security perimeter’” (p. 67). The secu-
rity perimeter is depicted in Figure 1 as a wide black
border positioned between the TCB and untrusted
subjects. Components below or to the left of the se-
curity perimeter are within the security perimeter and
are security relevant; those above or to the right are
outside the perimeter and are not security relevant.
The portion of the security perimeter that converges
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with the human interface in the upper left represents
the trusted path.

A premise of this paper is that the confidential-
ity, accountability, and integrity protection needed
by many organizations cannot be enforced unilater-
ally by application-independent components inside the
perimeter. To provide the protection needed, the secu-
rity perimeter must be repositioned outward, thereby
acknowledging the security relevance of many ordi-
nary application programs that the TCSEC paradigm
treats as untrusted. This repositioning challenges the
ftndamental accuracy of the TCSEC paradigm as a
guide for identifying and addressing sources of security
risk within trusted systems. Such accuracy is critical
because the TCSEC paradigm is the principal frame-
work for conceptualizing, building, evaluating, and op-
erating trusted systems.

This paper is organized as follows. Section 2 ex-
plains why the security perimeter must be repositioned
if trusted systems are to provide better security. Sec-




tion 3 describes the Controlled Application Set (CAS)
paradigm, comprising a proposed trust principle, a
conceptual architecture, and an approach to assur-
ance. Section 4 illustrates the applicability of the ap-
proach via examples dealing with confidentiality, ac-
countability, and integrity. Sections 5 and 6 provide
further discussion, including related work. Section 7
" presents a summary and conclusion.

2 Why the Security Perimeter Must
Be Repositioned

Under the TCSEC paradigm, TCBs allow un-
trusted software to manipulate sensitive information.
As a consequence, even high-assurance T'CBs fall short
of meeting the computer security needs of many orga-
nizations in various ways, including the following:

o Leakage: Unless an OS TCB is completely free
of covert storage and timing channels, it cannot
by itself prevent sensitive information from be-
ing leaked to unauthorized users. Although pa-
per designs for channel-free architectures based
on exotic storage devices and other highly spe-
cialized techniques have been proposed in the re-
search literature [22], building channel-free TCBs
that are cost effective and provide acceptable sys-
tem performance and functionality is beyond the
state-of-the-art. Furthermore, there are no es-
tablished techniques for systematically finding all

" covert channels in a TCB, let alone eliminating
them. Moreover, as processor and I/O speeds
increase, covert timing channel bandwidths will
grow. Consequently, leakage vulnerabilities in
TCBs are unlikely to diminish in the near term,
if ever.

e Accountability: One of the control objectives and
fundamental security requirements cited in the
TCSEC is accountability, described as ensuring
“that actions affecting security can be traced
to the responsible party” [10]. Unfortunately,
any program containing malicious logic can eas-
ily confuse the accountability mechanisms of an
OS TCB. Suppose there are two subjects running
such programs, each associated with a different
user. Furthermore, suppose the subject running
in the name of Smith forwards Smith’s compu-
tational requests to the subject running in the
name of Jones. If Jones’s subject carries out the
requests on Smith’s behalf, the TCB’s audit trail

will erroneously identify Jones as the “responsi-
ble party.” To remedy this problem, the TCB
could attempt to audit the forwarding of all such
requests. This would require identifying all overt
and covert means by which information can flow
between different users’ subjects, including sub-
jects at the same security classification. This is a
task at least as difficult as attempting to iden-
tify all covert downgrade channels in a multi-
level secure (MLS) system. Worse yet, the TCB
would have to monitor the content of all infor-
mation exchanged between different users’ sub-
jects and distinguish illicit attempts to circum-
vent auditing from legitimate communication be-
tween users, clearly an impossible task.

o Integrily: An organization rarely defines the value
of information solely in terms of confidentiality.
To be useful to the organization, the informa-
tion in addition must be accurate to some de-
gree; information that is completely erroneous
is of negligible value to an organization, even
if rigorously protected from improper disclosure.
Hence, nondisclosure requirements rarely exist
apart from integrity requirements. An OS TCB
by itself, however, cannot preserve the integrity of
information because every program that a TCB
allows to modify information is capable of cor-
rupting it.

Although the TCSEC glossary defines the TCB as
the “totality of mechanisms within a computer sys-
tem ...responsible for enforcing a security policy,”
the examples above illustrate that an OS TCB can-
not by itself provide the confidentiality, accountability,
or integrity that many organizations need. Systems
whose security relies on the TCSEC paradigm fall
short because the security properties that are mean-
ingful to system owners, such as leakage prevention
and correct data transformations, cannot be enforced
at the security perimeter depicted in Figure 1. Only
by repositioning the perimeter outward so that it in-
cludes many additional application-dependent compo-
nents can these properties be enforced.

3 The Controlled Application Set
(CAS) Paradigm ~

The examples above suggest that meaningful sys-
tem security requires cooperative interactions between
an OS TCB and a collection of trustworthy applica-
tions. We use the term “application” broadly here
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to mean any entity outside the TCB, including site-
specific programs, operating system utilities, database
management systems, and servers providing kernel-
like services [11]. Based on this observation, we next
propose an alternative paradigm for trusted systems.
The key elements of the paradigm are a new trust
principle, a conceptual architecture, and a practical
approach to assurance.

3.1 Trust Principle

We propose the following as a general principle:

Any application that can manipulate sensi-
tive information is potentially security rele-
vant. :

It follows from this principle that any application
that can manipulate sensitive information must be
controlled, requires some degree of assurance that it
will exhibit only benign behavior, and must be pro-
tected from tampering.

We use the term manipulate as a shorthand to refer
to access modes that are sensitive with respect to the
security objective of interest. When confidentiality is
the objective, assurance is needed for any application
that can read sensitive information. When integrity is
the objective, assurance is needed for any application
that can write sensitive (high-integrity) information;
under some circumstances, assurance may be unnec-
essary for applications that can read it. These distinc-
tions are illustrated further in a later section.

Depending on an organization’s security objectives
and policies, benign behavior may mean, among other
things, that an application will

e not exploit covert channels;

¢ not subvert accountability mechanisms, e.g., will
refrain from performing services on behalf of one
user in the name of another; or

e prevent certain kinds of information modifica-
tions identified a priori as harmful to integrity.

3.2 The CAS Conceptual Architecture

Figure 2 depicts the idealized CAS conceptual ar-
chitecture, which repositions the trusted system se-
curity perimeter so that it encompasses not only an
OS TCB but the Controlled Application Set (CAS),
a collection of applications for which some assurance
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of benign behavior has been obtained via an unspeci-
fied screening process.? TCB components, the human
interface, and sensitive and non-sensitive information
containers are shown as in Figure 1. CAS subjects,
which are bound to CAS programs, are shown atop the
TCB’s access control layer. As suggested by the ar-
rows in the Figure, users must use CAS subjects when
manipulating sensitive information. In some systems,
they may also be allowed to use CAS subjects to ma-
nipulate non-sensitive information, as shown.

The presence of the CAS forces a much larger part
of the security perimeter to converge with the human
interface. We envision this as widening the trusted
path portion of the perimeter sideways from the left,
rather than elevating the access control portion from
the bottom. In this idealization, the CAS is not simply
a layer on top of the TCB’s access control component
— it is the layer; it leaves no room for other non-CAS
layers to be interposed between the user and sensitive
information because such layers would be capable of
causing the security problems noted earlier. In a later
section, we discuss relaxing this constraint.

Other programs that have not been approved for
inclusion in the CAS, including user-developed pro-
grams, may also reside on the system. However, any
subject that executes a non-CAS program cannot be
trusted. Untrusted subjects are shown in Figure 2 to
the right of the CAS. To prevent such subjects from
causing leaks and losses of accountability or integrity,
we require that the TCB prevent them from manipu-
lating sensitive information; they can manipulate only
non-sensitive information, as shown. Such subjects are
incapable of affecting the security of the system and
can legitimately remain outside the security perime-
ter.- .
Untrusted subjects may be able to interact with
CAS subjects in a constrained manner via sharable
objects. In general, non-sensitive objects can be used
for this purpose. Though not shown in the figure,
sensitive objects can also be shared in some cases, as
illustrated in Section 4.2.

Since the CAS is security relevant, CAS modifi-
cations and extensions must be carefully controlled.
This has significant operational implications for sys-
tems in which users provide, develop, or enhance
some of the programs they use. Consider a TCSEC-

2To minimize terminological confusion, we have chosen not
to refer to the CAS as an element of a larger TCB. Using the
term TCB to refer to all components inside the repositioned se-
curity perimeter, while technically correct, conflicts with com-
mon usage. Common usage, as exemplified by the National
Computer Security Center’s (NCSC) Evaluated Products List,
is that the prototypical TCB is an application-independent OS.
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Figure 2: Controlled Application Set (CAS) Architecture and Security Perimeter
compliant MLS system serving both cleared and un- nal components. This constitutes a significant shift in
cleared users, where the former are accustomed to us- its trust responsibilities.
ing their own programs to view, format, or edit classi- The TCB by itself or in combination with partic-
fied information. In the CAS paradigm, cleared users ular components of the CAS must meet the following
would lose this ability. Unless installed in the CAS, requirements:
user-developed programs will be able to manipulate
only non-sensitive information. Techniques for lessen- Tamper Protection — The CAS must be protected
ing the potential operational burden associated with from tampering. CAS subjects must run in a do-
this restriction are discussed in Section 3.5. main separate from those of non-CAS subjects.
» The CAS must not be modified without the ex-
3.3 The Role of the TCB plicit approval and participation of an authorized
individual.

In the CAS paradigm, the TCB no longer com- Non-Bypassability — The CAS must be non-

prises the “totality of protection mechanisms” respon- bypassable. Every action that manipulates sen-
sible for security [10] because the totality now includes sitive information must be accomplished via the
the CAS. Instead, the TCB acts as the base for these CAS.

protection mechanisms, as implied by the phrase for

which it stands: Trusted Computing Base. In this Trusted Path — As in the TCSEC, the TCB must
role, the TCB must extend to the CAS many of the support a trusted path between itself and users
facilities it uses to protect and support its own inter- that can be invoked whenever a positive TCB-to-
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user connection is required. In addition, the TCB
must be able to transfer control from itself to the
CAS at the request of a user so that a trusted path
can be established between the CAS and the user
and maintained continuously for the duration of
any session in which sensitive information is ma-
nipulated.

Access to CAS Subjects and Programs —

CAS subjects must only be created on behalf
of users who are authorized to manipulate sen-
sitive information. Non-CAS subjects may exe-
cute CAS programs during non-sensitive sessions;
these subjects, however, will not be granted any
additional access rights to objects or the trusted
path as a result.

Functionally Correct Services — The TCB must
store, retrieve, and transform information in a
manner that does not lessen the integrity of the
information.

This last requirement stems from the use of the
TCB as a base for other security mechanisms. If a
TCB does not provide correct storage and retrieval
services, no CAS component can be relied on to behave
according to its security specification, source code, or
documentation. A multiuser server process, for exam-
ple, cannot be relied upon to provide user account-
ability if the TCB cannot store the server’s audit logs
correctly. Although the TCSEC imposes no require-
ments of this kind, they are de facto requirements for
any useful operating system or security kernel.

For high-assurance systems, an additional require-
ment should be satisfied.

Multiple CAS Domains — The TCB must pro-
vide multiple execution domains for the CAS and
restrict interactions among these domains as ap-
propriate to the organization’s security policy and
assurance concerns.

This final requirement serves several purposes.
First, it is a reinterpretation of the mandatory ac-
cess control (MAC) requirements of the TCSEC in the
following sense. Every subject controlled by a MAC-
enforcing TCB runs in an execution domain implied
by its MAC label [26]. Allowable interactions between
the subjects operating in different MAC domains and
objects are described by the read-down, write-up prop-
erties of the Bell-La Padula model [4]. The intended
effect of restricting domain interactions in this way is
that information cannot be transferred to less sensitive
domains.
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Second, it allows CAS domains to be arranged in
different configurations to support other security poli-
cies, particularly policies concerned with integrity and
role-based restrictions. For example, the configuration
may form an “inverted ” lattice [5] or may nest the
domains so that one or more domains are subsets of
others, thereby supporting the construction of CAS
layers like TCB subsets [28]. Alternatively, the con-
figuration may be nonuniform [6] in accordance with
application-specific security policies [35].

Third, it supports the notion of least privilege [24]
for the CAS. Since a CAS may be enormous, tech-
niques for managing complexity are necessary ifa CAS
is to be of even modest assurance. An important
technique is to organize the CAS as a collection of
small tightly constrained domains in which CAS sub-
jects are allowed to access only the objects essential
to their assigned functions [17, 18]. This idea under-
lies a common interpretation of one of the TCSEC B3
requirements, namely, that a TCB’s protection mecha-
nism “shall play a central role in enforcing the internal
structuring of the TCB.”

3.4 A Practical Approach to Assurance

The obvious assurance issue confronting this ap-
proach is that a CAS may be extensive, encompassing
millions of lines of software. As a consequence, de-
veloping CAS components according to the TCSEC
and relying on the NCSC to evaluate them is infeasi-
ble. Fortunately, more pragmatic and modest assur-
ance and evaluation practices will be entirely adequate
in many cases.

3.4.1 Balancing Assurance and Risk

The CAS paradigm is based on the “balanced as-
surance” philosophy [15, 16], which asserts that the
degree of assurance needed for a trusted component
should be proportionate to the security risks the com-
ponent poses. Since CAS components are protected
and constrained by the TCB, CAS assurance risks can
arguably be lower than those of the TCB; hence, less
extensive assurance measures may be needed. This
is particularly true for trusted systems in which the
TCB enforces MAC constraints on the CAS. Accord-
ingly, the level of assurance for many CAS components
can and should be significantly lower than that of the
TCB.

By contrast, the TCSEC paradigm treats CAS
components as completely untrusted, requires no as-
surance for them whatsoever, and requires no support
for them in the TCB. Hence, insisting on even minimal




CAS assurance and support cannot lessen the overall
security of a trusted system and will in many cases
significantly improve it.

Finer-grained assurance balancing may also be
practical and beneficial. If information sensitivities
or user authorization levels on a system vary greatly,
CAS assurance requirements may need to vary on a
component-by-component basis. An organization may
deem that for some CAS components, or perhaps an
entire CAS, very little assurance is required. On the
other hand, for information that is extremely sensitive
with respect to modification or disclosure, the organi-
zation may require that access to it occur only through
a few extremely high-assurance CAS components.

3.4.2 Accountability of Origin

A common misconception in the TCSEC community
is that one can trust an NCSC-evaluated TCB because
evaluators have examined it thoroughly and forced the
vendor to remove any security defects that might have
originally been present. In fact, evaluators can only
“spot check” a small fraction of a TCB’s code and
have little hope of finding such defects, particularly
malicious code. Thompson [34] has pointed out that
malicious code can be easily disguised from code in-
spectors and testers. As a result, even if evaluators
could carefully inspect every line of code in an eval-
uated TCB, they still could not vouch for its purity
with confidence. Inevitably, evaluators and customers
have no choice but to trust that TCB vendors have not
hidden malicious code in their products. They may be
willing to trust them in this respect because they be-
lieve that vendors can be held accountable and that
vendors have a vested interest in assuring the trust-
worthiness of their products.

In actuality, the NCSC evaluation process focuses
on assessing that 1) the vendor is competent and em-
ploys suitable software development methods, and 2)
the product meets minimum quality standards. A
successful evaluation may increase confidence that a
TCB will carry out certain functions correctly and
uniformly (e.g., mediation) but cannot provide strong
assurance that a TCB or other component is free of
malicious code. Inevitably, one must trust the source
of such components and can do so judiciously only if
some organization or individual can be held account-
able. In the CAS paradigm, accountability of ori-
gin is the most fundamental basis for trusting a CAS
component; under no circumstances should a program
for which there is no accountability (e.g., a program
of unknown or highly questionable origin) be intro-
duced into the CAS. The security benefits such re-

strictions provide are acknowledged in DoD’s “Yellow
Book” [33], which allows trusted systems to be used
over a greater risk range if all applications are devel-
oped by cleared personnel.

3.4.3 Life Cycle Assurances

Beyond accountability of origin, an organization may
require any of a broad range of life cycle and other
assurance measures, including those cited in the
TCSEC. To ensure that CAS sources are not only
accountable but trustworthy and competent, an or-
ganization may impose personnel security (screening)
or training requirements on CAS developers. Alter-
natively, it may be satisfied to obtain CAS compo-
nents from certain reputable vendors. Quality control
techniques may range from very stringent formal pro-
cesses to highly informal procedures. Formal processes
may involve independent verification and validation
(IV&V), certification, or other forms of third-party
oversight. They may additionally require construction
of mathematical models, structured design reviews,
extensive preoperation field testing, formal configura-
tion management, trusted distribution, or trustwor-
thy development environments. An informal process
might simply require that a competent user vouch for
each component installed in the CAS.

3.5 Supporting a Site-Extensible CAS

For a very high-assurance CAS, e.g., a CAS used
to control a nuclear reactor or protect the information
assets of a large financial institution, CAS change con-
trol procedures may be very restrictive. For a lower-
assurance CAS, the owning organization may allow
some of its members to modify or extend the CAS.

To improve system usability for these cases, a TCB
together with the CAS should provide an “install”
function that allows authorized users to promote new
programs into specified CAS domains while the system
is in operation. This function must only be available
through the trusted path facility so that it can only
be invoked with the explicit approval of @ human be-
ing. It must not be possible for a program to invoke
it automatically and invisibly. Moreover, its use must
be auditable, so that installation of faulty components
can be traced to the responsible party. Accountabil-
ity of CAS changes can be further enhanced if nec-
essary by other techniques, including use of one-time
password authenticators. Organizations may choose
to disable the install function altogether or selectively
for particular CAS domains.
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Figure 3: CAS Example - Confidentiality and Accountability

4 Examples

We now outline the way the CAS paradigm can be
applied to a variety of systems.

4.1 Confidentiality and Accountability

This section discusses a hypothetical system trusted
to enforce aspects of the U.S. laws, rules, and practices
governing the protection of classified information. For
brevity, we will focus on the mandatory rather than
discretionary aspects of this policy.

In this example, the responsibilities of the trusted
system include preventing electronic leakage of classi-
fied information to individuals who are authorized to
use the system but are not sufficiently cleared. The
system is also responsible for providing an audit log
that lists the names of the users who have attempted

to access or create classified information objects. As
described above, an OS TCB by itself cannot address
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these confidentiality and accountability requirements.

The CAS architecture for this system is shown in
Figure 3. The system is based on an OS TCB that
satisfies at least the B2 evaluation class requirements.
The TCB has been extended to support a CAS and in
particular provides multiple CAS execution domains.
The system processes information of four different sen-
sitivity levels: secret, confidential, unclassified sensi-
tive, and non-sensitive. CAS subjects execute in the
execution domains shown in the Figure as three cross-
hatched rectangles labeled secret subjects, confiden-
tial subjects, and unclassified sensitive subjects. As
suggested by the directional arrows near the bottom,
these subjects are constrained by MAC. Nevertheless,
they are trusted to not exploit the TCB’s covert chan-
nels and not confuse the TCB’s accountability mech-
anisms.

Non-CAS subjects execute in a domain in which
only non-sensitive information can be accessed; they
are represented in Figure 3 by the unshaded rectangle




to the right of the CAS, outside the security perime-
ter. Because they cannot access sensitive information,
these subjects are incapable of leaking it or obscuring
the identities of individuals who attempt to access it.

Among the users of this system are uncleared indi-
viduals. To mitigate the risk that a malicious program
may leak secret information to an uncleared user, the
organization that owns this system has imposed re-
strictions on the set of programs that can be installed
in the CAS secret domain. Only commercial off-the-
shelf (COTS) packages from approved vendors may
be installed in this domain and only by a system ad-
ministrator after approval by a configuration control
board (CCB). Approval of a vendor may be based on
the vendor’s reputation, history, ownership, person-
nel security and software development practices, or
other factors. User-developed programs may also be
installed in the CAS secret domain by an administra-
tor but only if supplied by a secret-cleared user and
only after a CCB review of the source code. These re-
strictions are modest, yet they prevent users in secret
sessions from inadvertently executing hostile programs
planted by uncleared users. This significantly reduces
the risks associated with covert channels in the TCB.

The organization allows users authorized for access
to confidential and unclassified sensitive information
to install programs in the corresponding CAS domains
without participation of a system administrator. The
primary security requirement for programs installed
in the unclassified sensitive domain is that they not
undermine the TCB’s accountability mechanisms. In-
stalling a program into either of these two domains is
an auditable event and causes a copy of the program to
be archived. These CAS mechanisms and procedures
have negligible impact on users yet provide account-
ability protection that a TCB alone cannot.

There are no restrictions or special procedures asso-
ciated with programs that execute in the non-sensitive
domain,

4.2 Integrity and Accountability

In this section, we apply the CAS paradigm to
a system trusted to enforce aspects of an integrity-
oriented security policy [29] like that described by the
Clark-Wilson integrity model [7]. These aspects are:
1) preventing unauthorized individuals from modify-
ing sensitive information, 2) preventing authorized in-
dividuals from modifying such information in an unau-
thorized manner, and 3) recording in an audit log se-
lected details about information modifications, e.g.,
user identifiers and the dollar amounts used in finan-
cial transactions. The system is shown in Figure 4.

Although this system’s components perform differ-
ent functions from those in the previous example, the
essential security architecture is identical. As in the
previous example, the TCB provides multiple domains
for a CAS, but here the domain enforcement mecha-
nism is programmable and supports a variety of do-
main configurations [6, 30]. The system protects the
integrity of three kinds of sensitive information: salary
and leave tables used by a payroll application, manu-
facturing specifications in the form of Computer Aided
Design (CAD) drawings, and purchase orders. Autho-
rization to modify these kinds of information is based
on role assignment (job title) rather than clearance.
The organization’s policies and procedures state that
only payroll clerks, senior engineers, and purchase offi-
cers, respectively, are authorized to modify these kinds
of information and only via designated programs.

The system enforces these restrictions by associat-
ing a different CAS execution domain with each role,
restricting the set of programs that can be executed in
each domain, and allowing individuals to create sub-
jects only in the domains for which they are autho-
rized. The CAS programs that run in these domains
are constrained by the TCB and can only modify the
types of information appropriate for their associated
roles. For example, programs that run in the Pay-
roll Clerk domain can modify salary and leave ta-
bles but not CAD drawings. Each CAS program is
trusted, however, to preserve information integrity by
constraining the kinds of modifications that can be
made, particularly to prevent fraud. For example, the
payroll program prevents payroll clerks from modify-
ing their own salaries or entering salaries above specific
numerical thresholds.

Various kinds of uncontrolled information having
no security relevance to the organization may also be
"kept on the system. The organization places no re-
strictions on the origin or behavior of programs used
to modify them. The domain in which non-sensitive
information alone can be modified is shown in Figure 4
as an unshaded rectangle outside the security perime-
ter. Since the security objective here is integrity, the
CAS paradigm permits subjects outside the security
perimeter to be given read-only access to sensitive in-
formation selectively, as depicted by the directional
arrows in Figure 4. Information flow restrictions on in-
teractions between subjects in different CAS domains
may also be appropriate. Those shown here are il-
lustrative only; where integrity is concerned, each or-
ganization must impose its own restrictions based on
application-specific policies and assurance concerns.

The salary and leave tables on this system are an

19




-

X

Security —
Perimeter

Y

I

DI

'-6¥§ sg %
=X .E....

CAS
Execution
Domains

V)

777
-

Untrusted
Execution
Domain

<—Human
Interface

Non-

2 o
© 5‘6 Sensitive
582 Subjects
°=298
SES
a.ow

@ —Security
Perimeter

Bulletin
Boards,
Notes,
Drafts,
etc.

|
0

Figure 4: CAS Example - Integrity and Accountability

attractive target for electronic fraud. By preventing
unauthorized individuals from modifying these tables,
the TCB greatly reduces electronic fraud risks. Never-
theless, the organization considers it critical that the
programs used to modify these tables be of very high
assurance. Consequently, it has configured the sys-
tem so that only a system administrator can install
programs into the payroll clerk domain. The admin-
istrator is authorized to do this only after approval
by the CCB. Assurance requirements for programs in
other CAS domains are less stringent; these programs
can be installed or revised more easily.

4.3 Low Assurance Systems

The previous examples illustrated the applica-
bility of the CAS paradigm to multiuser systems
built on high-assurance TCBs. This section applies
the paradigm to a personal computer (PC) system
equipped with a low-assurance TCB that provides no
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features beyond those minimally required to support
a CAS. This example reduces the CAS paradigm to
its essence and reveals the most fundamental respon-
sibilities of a TCB.

The security architecture for the system is shown
in Figure 5. The security objective is a form of in-
tegrity, namely protecting tax returns, home finances
databases, term papers, and other sensitive infor-
mation from modification or deletion by computer
viruses. A variety of non-sensitive information is also
stored on the PC. This information is useful but does
not merit special protection, e.g., copies of postings
from network news groups.

The CAS consists of software that the PC owner has
decided to trust to be free of viruses, including shrink-
wrapped products from certain vendors and programs
that have been scanned for viruses or digitally signed
by their authors [23]. The owner would also like to
run other (non-CAS) software without having to trust
it in this manner. Non-CAS software includes free-
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ware of unknown origin and complex network appli-
cations that can automatically download and execute
code from Internet hosts without explicit approval of
the user (e.g., Mosaic, MIME agents).

The TCB for this system provides a single domain
for the CAS and another for non-CAS components.
At the beginning of each session, the user activates
the trusted path to the TCB and then designates the
session as a CAS domain session, a non-CAS domain
session, or a TCB session. During a CAS session, the
TCB allows only CAS programs to run but grants ac-
cess to both sensitive and non-sensitive files. During
a non-CAS session, the TCB allows any program to
run, but grants access only to non-sensitive files. In
this way, if viruses are present in unscreened programs,
the TCB prevents them from damaging files the owner
has designated as sensitive. During a TCB session,
the user can install programs into the CAS or remove
them.

The mandatory and discretionary multiuser access
controls, I&A, audit, and other features the TCSEC
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requires for TCBs have little relevance to this system.
By contrast, the CAS paradigm focuses attention on
the system’s fundamental security risks and requires
onlythe TCB features that are essential to mitigating
them.

5 Discussion
5.1 Covert Channel Strategies

The TCSEC paradigm allows arbitrary programs
to access sensitive information and any covert chan-
nels that are present within the TCB. TCB develop-
ers are supposed to mitigate associated leakage risks
by identifying and eliminating covert channels, reduc-
ing their capacity, and auditing their use. Unfortu-
nately, the effectiveness of these techniques has been
limited, even when the level of effort applied has been
substantial. Furthermore, these techniques often im-
pair system performance or curtail system function-




ality. The CAS paradigm suggests an entirely differ-
ent strategy: deny software of unknown origin or as-
surance the ability to access sensitive information or

leak it. This strategy mitigates covert channel risks

by reducing the likelihood that an attempt to exploit
covert channels will occur or be successful, regardless
of the number, capacity, or auditability of the channels
present. It cannot be cost effective to require, as the
TCSEC paradigm does for high-assurance TCBs, Her-
culean efforts to identify, reduce, audit, or eliminate
covert channels while providing neither motivation nor
mechanism for restricting access to the channels that
remain.

5.2 Approximating the Idealized Archi-
tecture

The objective of the idealized CAS architecture
is to place all security-relevant components within a
trusted system under the control of the owning organi-
zation. Some real-world systems may only be able to
approximate the idealized CAS architecture and may
not be able to achieve this objective fully. The CAS
paradigm is intended to allow for deviations from the
ideal and provide insight about the additional risks
that may be incurred. Next, we explore the rami-
fications of relaxing the interface between CAS and
non-CAS components.

5.2.1 Adding an API

In the idealized architecture, non-CAS subjects do not
exist within sensitive sessions. Moreover, because the
CAS does not export a callable® application program
interface (API), non-sensitive sharable objects provide
the only interface between these CAS and non-CAS
subjects. This interface is highly constrained and is
intended to allow only limited importing and export-
ing of data across the security perimeter. In an MLS
system, for example, CAS subjects may be able to read
system-low objects created by non-CAS subjects.

The motivation for constraining this interface is to
protect sensitive information from being manipulated,
even indirectly, by non-CAS programs. To the extent
that the interface exported by the CAS becomes more
powerful and less constrained, the CAS cedes control
over its own sensitive operations to programs that can-
not be trusted, even if they’re executed by an autho-
rized individual.

In fact, these rules are overly restrictive. Under
some circumstances, a CAS can export a highly con-

3We include here a variety of system call mechanisms, in-
cluding system traps and interprocess communications.
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strained callable interface to non-CAS entities that
provides no greater power or security risk than the
shared-object interface just described. Suppose the
CAS in an MLS system were designed to allow a thin
layer of non-CAS programs to be interposed between
itself and an authorized user during sensitive sessions.
If the API exported by the CAS to the non-CAS layer
consists of a single callable service that reads non-
sensitive files (i.e., reads down), the API conveys no
greater risk than the shared file interface. However, if
the API also allows reading files at the sensitivity level
of the session, the non-CAS layer would be capable of
leaking the sensitive information stored in them. In
short, providing an API for non-CAS components on
top of the CAS is neither inherently insecure nor is it
precluded from the paradigm. However, unless such
APIs are extremely limited, they can easily introduce
vulnerabilities. It is for this reason that they are not
depicted in the idealized CAS architecture.

5.2.2 Interpreters in the CAS

Although an OS TCB must prevent CAS subjects
from directly executing non-CAS programs, it cannot
prevent CAS subjects from indirectly executing them
by acting as an interpreter. If a CAS subject acts
as an interpreter, it can blur the execution domain
boundaries between CAS subjects and untrusted sub-
jects and among CAS subjects in different domains.
If the interpreter’s command language is sufficiently
powerful and it interprets a data file planted by an
adversary or incompetent user, it may be subverted.
For this reason, there are no interpreters in the ideal-
ized CAS architecture.

The fact that the distinction between an interpreter
and other kinds of programs is not always clear may
make it difficult in some cases to determine whether
the CAS is free of interpreters. Many useful programs
change their behavior according to tables, macros, or
initialization files provided by users and are meant to
be tailored by them. On the other hand, there are
many conspicuous examples of data-driven systems
whose behavior is highly predictable and not subject
to security-relevant user tailoring and its accompany-
ing vulnerabilities. The risk that an automated teller
machine (ATM) will be reprogrammed from its user
interface, for example, is very small. It is entirely
feasible to keep many systems, particularly turnkey
systems, virtually free of interpreter-related security
risks.

The CAS paradigm is intended to address high-
assurance CAS domains that need to be free of inter-
preters and lower assurance CAS domains that may in-




clude interpreters under certain circumstances. Prag-
matic measures for mitigating interpreter risks are
listed below in order of decreasing potential assurance
and increasing flexibility.

e Avoid execution of any program whose behavior
cannot be predicted with certainty, particularly
programs whose behavior is meant to be tailored
by individual users.

e Avoid user-tailorable programs except those that
require all tailoring or interpretation instructions
to have been installed previously in the CAS; in
principle, these have the same assurance as CAS
executables.

o Install user-tailorable programs only in domains
that can read only high-integrity information [5],
that is, information that can be produced only by
individuals and programs that can be trusted.

o Install user-tailorable programs only in low-risk
domains. Allow only individuals trained to avoid
potential vulnerabilities to use these programs.

6 Related Work

This paper is an improved version of an earlier pa-
per presented and used as the subject of a panel ses-
sion at a recent workshop [31, 32]. Revisions to ad-
dress issues raised at the workshop include refinements
(e.g., regarding the CAS interface and APIs), clarifi-

" cations, and additional discussion and examples.

The CAS paradigm clarifies, integrates, and ex-
tends a number of important ideas in the research
literature and restates them in a new context. CAS
components and our treatment of sensitive and non-
sensitive information generalize the Clark-Wilson in-
tegrity model’s Transformation Procedure (TP), Con-
strained Data Item (CDI), and Unconstrained Data
Item [7, 8]. For example, a Clark-Wilson TP “must
be certified to be valid”, i.e., a TP must transform
“CDIs from one valid state to another.” The CAS
paradigm, however, allows security functional require-
ments for CAS components to vary according to the
security objective sought and allows assurance pro-
cedures to range from formal certification to highly
informal processes. Clark and Wilson assert that the
confidentiality needs of the military and the integrity
needs of the commercial sector are so disparate that
they require fundamentally different conceptual mod-
els and mechanisms. Instead, we propose a single,
unifying paradigm that addresses both. Lee [13] and
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Shockley [27] propose implementing TPs as partially
trusted subjects whose accesses are constrained ac- .
cording to Clark-Wilson access control tuples by a
lattice-enforcing TCB. Although this technique fore-
shadows the role and use of a TCB within the CAS
architecture, neither proponent suggests that the tech-
nique is necessary for or applicable to confidentiality;
neither acknowledges that application programs in an
MLS environment are security relevant.

The CAS architecture builds on previous ap-
proaches for layering security mechanisms. Popek and
Kline [20] outline an architecture containing multiple
“levels of kernels.” Shockley and Schell suggest orga-
nizing complex TCBs into collections of simpler TCB
subsets [28]. Neumann’s analysis of hierarchical sys-
tem architectures for safety, security, and other critical
requirements has explored related design and assur-
ance ideas [17, 18]. The CAS architecture allows a
CAS or a TCB to be organized internally as a col-
lection of TCB-subset-like layers. Nevertheless, there
are important differences between the CAS architec-
ture and the TCB subset approach. In particular, the
latter is wed to the TCSEC paradigm and suffers from
all of the drawbacks associated with it. Because the
TCB subset approach defines security relevance solely
in terms of access control, it treats subjects having no
special access control privileges as completely innocu-
ous. Consequently, under the TCB subset approach,
there is no reason to restrict the interface exported by
any TCB subset; in fact, such restrictions would seem
objectionable. In contrast, because the CAS paradigm
treats subjects that have no special access privileges
as potentially harmful, it requires that the interface
exported by the CAS to non-CAS subjects be highly
restricted; interfaces between layers within the CAS,
however, need not. '

Fundamental to the CAS paradigm is the balanced
assurance philosophy, which arose during the SeaView
project [15, 16] and is closely associated with the de-
velopment of TCB subsets. Other influences on the
CAS paradigm include the LOCK system’s type en-
forcement mechanism [6, 35, 19] and other efforts
to analyze and automate support for integrity poli-
cies [14, 30, 2, 3, 25]; the Military Message System [12],
which demonstrated that the trustworthiness of ap-
plications can be crucial even for DoD confidentiality
policies; Controlled Execution UNIX* [1], a precursor
of the CAS architecture that prevents any program
that has not been specially installed from being exe-

4UNIX is a registered trademark in the United States and
other countries, licensed exclusively through X/Open Company
Ltd.




cuted; and Trusted Mach® [36], whose multiuser server
processes clarify the limits of centralized accountabil-
ity mechanisms.

7 Conclusion

A fundamental assertion underlying the TCSEC
paradigm is that all necessary automated security con-
trols for many computer systems can be provided
by their operating systems, in particular the compo-
nents that constitute an OS TCB. This assertion does
not hold up in practice because ordinary application
processes possessing no special access control privi-
leges can leak sensitive information, undermine an OS
TCB’s accountability mechanisms, and destroy infor-
mation integrity. Hence, the security properties ulti-
mately needed by many organizations cannot be en-
forced by an OS TCB alone and necessarily depend
on the benign behavior of application programs.

We have proposed an alternative paradigm based
on the notion of a Controlled Application Set (CAS).
The CAS paradigm builds on TCSEC principles but
identifies and addresses important sources of security
risk within trusted systems that are effectively ignored
by the TCSEC. For this reason, we believe it can
lead to practical improvements in the security of real
systems. In addition, as illustrated by the examples
above, the CAS paradigm is applicable to a wide range
of systems of low and high assurance concerned with a
variety of security objectives, including confidentiality,
accountability, and integrity.

The CAS paradigm originates from the premise
that every software component that can manipulate
sensitive information, even if tightly constrained by
a TCB, is potentially security relevant. A key impli-
cation is that the amount of software on which the
security of a trusted system depends will appear in
many cases to be much larger than it would under
the TCSEC paradigm. The CAS paradigm is an at-
tempt to identify practical techniques for increasing
confidence that very large collections of software will
behave securely.

The CAS paradigm departs from the TCSEC
paradigm in many ways; these have broad implica-
tions for trusted systems theory and practice. It
charges organizations that own and operate trusted
systems with responsibility for controlling the appli-
cations used to manipulate sensitive information and,
more importantly, provides them with automated en-

5Trusted Mach is a registered trademark of Trusted Infor-
mation Systems, Inc.
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forcement mechanisms to prevent other applications
from being used for that purpose.

The CAS conceptual architecture and security
perimeter provide a new theoretical context for the
construction and evaluation of trusted systems. In this
context, an OS TCB must be designed and evaluated
not as the totality of security protection mechanisms
but as the base for it. An OS TCB must satisfy or sup-
port new requirements, including ensuring that CAS
components are tamperproof, non-bypassable, and ac-
cessible to users via the trusted path; exporting mul-
tiple execution domains so that the CAS can be orga-
nized in accordance with the principle of least privi-
lege; and providing the CAS with functionally correct
storage and retrieval services. On the other hand, the
paradigm diminishes the importance of covert chan-
nel elimination, reduction, and auditing requirements
and compensates by reducing the likelihood that a ma-
licious agent will be given an opportunity to exploit
whatever covert channels are present.

The CAS paradigm relies on balancing assurance
requirements pragmatically against risks. Since an
OS TCB will address many security risks, the level of
assurance needed for CAS components need only be
commensurate with the residual risks that remain; in
many cases, CAS components may merit significantly
less assurance than TCB components. For some CAS
components (e.g., COTS products), assurance of be-
nign behavior will be based largely on accountability
of origin instead of quality-control spot checks of its
behavior or its development history.

Our current research involves building TCBs and
prototype extensions that provide much of the support
needed for a CAS [2, 3, 25]. We intend to pursue val-
idating the ideas described in this paper through con-
tinued prototyping and discussions with practitioners
and policy makers in the computer security commu-
nity.
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Abstract

The metapolicy inherent in the concept of information
domains, as used in the emerging Department of
Defense Information Systems Security Policy (DISSP)
[1], and underlying the Defense Goal Security
Architecture [8] is modeled and analyzed. The access
control and information transfer metapolicy of the
DISSP is formalized as a set of rules that apply
axiomatically to all information domain security
policies. The relationship between mandatory access
control (MAC) and discretionary access control (DAC)
system security policies and information domain
security policies is analyzed. An information system
that enforces a MAC policy is shown to be a highly-
structured, special case of the general multiple
information domain policy system. Inferences are
drawn for the use and limitations of existing
MAC/DAC-based systems for implementation of
multiple information domain policies. The type of
future system features needed to support the full
potential of information domain-based multiple
security policies is discussed. :

1 _Introduction
1.1 Background

Multilevel secure systems were developed as a solution
to the conflict between computer resource sharing of
multiple users and protection of classified information
at multiple levels from unauthorized access. The
structure of information labeling and user clearances
was formulated as an hierarchy or more generally, a
partial ordering, or a lattice. An automated information
system enforcing a mandatory access control (MAC)
policy based on such labeling of information objects
and users or subjects acting on their behalf has become
the dominant paradigm for “serious” information
security, and thoroughly embedded in the technical
guidance of the Trusted Computer System Evaluation
Criteria (TCSEC) [2]. A single system under this
paradigm is considered to enforce a single coherent
system policy. The single policy may have subpolicy
components such as MAC and DAC (discretionary
access control), that make up a single, coherent policy.
The Trusted Network Interpretation (TNI) [3] and
Trusted Database Interpretation (TDI) [4] further
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extend the paradigm to various modes of system and
policy composition, but do not depart from the single,
global policy and system paradigm.

The still evolving Common Criteria [5] contains no
rigid policy construct. However, no protection profiles
with other than the dominant paradigm have been
developed.

Deficiencies in the dominant paradigm have been
identified by multiple workers. Hosmer [6]
summarized these deficiencies of the single policy
paradigm as: its inflexibility to change; the difficulties
with data interchange between systems under policy
authorities or domains; its unrealistic model of the real
world’s multiple, sometimes conflicting policy
domains; and, its poor performance when manual
security guards are introduced to deal with interdomain
transfers. As an approach to solving these deficiencies,
Hosmer advocated building a “Multipolicy Machine”
that enforces multiple, sometimes conflicting security
policies through automated metapolicy-enforcing
conflict-resolution mechanisms [6]. The problem with
this approach is that it is so general and unstructured it
is doubtful that the many standardization issues can be
resolved in order to reduce it to practice. Bell [7] has
developed a framework that abstractly describes such
multiple policies, conflicts, and resolutions.

1.2 Information Domains

A new approach to information system policy
formulation and subsequent automation was recently
initiated in the U.S. Department of Defense (DoD) [1]
based on the construct of “information domains.” The
information domain approach is a significant departure
from traditional DoD information system security
policies expressed by DAC and lattice-based MAC
policies. These (DAC and MAC) policies also form
the access control basis for existing evaluated trusted
products and systems in accordance with the TCSEC,
and its interpretations under the TNI and TDI. While
recent, and not widely known or understood, the
information domain policy formulation is also a key
underpinning of the Department of Defense (DoD)
Goal Security Architecture (DGSA) [8]. As important
as the information domain policy approach is as a
foundation of the DGSA, it has not been rigorously




formulated or modeled in published work, and has not
yet formed the basis of any available trusted products.

While the use of the information domain approach
originated as US DoD policy, it is potentially more
applicable to commercial environments than are the
traditional lattice-based MAC policies, which have not
been widely accepted in the commercial market.

1.3_Goals and Limitations of the Paper

The goals of this paper are to:

«  Stimulate wider exploration and analysis of the
information domain policy idea,

¢ Provide a mathematically formalized basis for
statement of information domain security policies,

«  Examine the relationship of information domain
policies to traditional MAC and DAC system
policies.

e Explore implications for existing and future trusted
products and systems.

The formalization of information domain metapolicy is
done using sets and functions to express a set of rules
about objects, accesses, and interdomain information
transfer. This process provides a basis for consistent
policy formation, and illuminates the power and
limitations of the information domain construct.

The scope of the paper is limited to information access
aspects of the DISSP [1]. Other aspects of the DISSP,
such as protection and strength of mechanisms are not
formalized or analyzed. The DGSA [8] is discussed
only as it interprets the DISSP information domain
metapolicy.

2 Informal Definitions

According to [1], an information domain combines the
following:

e A set of information objects, identifiable as
belonging to the domain

¢ A set of (human) members of the domain

¢« An information domain security policy that
includes:

- the requirements for membership

- the rules of access by members to information
objects of the domain

- the rules of import and export of information
from/to other information domains
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- the required protection of the information
objects of the domain

To promote consistency, interoperability, and trusted
products that support multiple information domains,
constraints are imposed on the nature of information
domain security policies. The Department of Defense
Information Systems Security Policy [1] states an
overall DoD policy explicit on the minimum
constraints imposed by the information domain idea
itself and additional policy that the DoD imposes on
each of the information domains under its jurisdiction.

The following informally summarizes the author’s
interpretation of additional information domain policies
which are considered to be inherent in the information
domain idea, independent of other policy.

a. All information objects in an information domain
have identical security attributes.

b. All members of an information domain need not
have equal access to its information objects.

¢. A given member has identical access rights to all
information objects in an information domain.

d. No information object belongs to more than one
information domain.

e. Individuals may be members of more than one
information domain.

f.  Transfer of information between domains occurs
only in accordance with the policies of both the
exporting and importing domain.

g. Transfer of information between information
domains can be accomplished only by a member
of both the exporting and importing domains.

h. Protections requirements for an information
domain are stated independently of any other
information domains.

It is implicitly assumed that:

i.  Only the members of an information domain have
access to its information objects.

(a) and (c) are interpreted in the DGSA [8] to be
equivalent.

3 Information Domain Metapolicy

3.1 Information Domain Definition

An information domain D is defined as a triple of
information objects, members, and a policy.
Symbolically,

D=(0O,M,P).




Strictly speaking, this formulation is static, which
means that any change in the sets of members or
objects would change the information domain. Real
information domains need to provide for the admission
and exit of members, and the creation and deletion of
information objects, with persistence of the named
information domain. A more elaborate formulation
would incorporate a dynamic structure for members
and objects of an information domain, e.g., by defining
an equivalence class. This potential refinement is
omitted in the present formulation.

3.2 Single Information Domain Metapolicy

Let A represent the set of access modes possible for
the information objects in a domain, (e.g., read, delete,
append, modify, etc.). Many security models describe
a current security state by an access function that maps
object-subject pairs to subsets of A. This kind of
access function is an access state function. At any one
time an access state function represents the existing or
granted accesses of subjects to objects. The potential
or allowable accesses of subjects to objects can also be
modeled as a function mapping object-subject pairs to
subsets of A. Such a mapping is an access rights
function. The difference between an access state
function and an access rights function is that the later is
a static expression of policy, and represents all
allowable accesses, whether or not they are in current
use. The access rights function, o for information
domain D assigns a subset of A to each (information
object, member pair). Symbolically,

wOXM— 24,

where 24 denotes the set of all subsets of A .

The constraint on policy that all information objects in
a domain have identical security attributes can be
expressed concisely in terms of member access as
follows: ‘

Rule 1 (Object-Independent Access): For an
information domain D = (0, M, P), the policy P
restricts the access rights function o such that for
any m € M, and any two objects o, € O and

0, €0,

ooy, m) = a(oy,m).

Thus the structure of access rights permitted by the
security policy of an information domain is very
simple. If the access rights function is expressed as a
matrix with members identified with rows and
information objects identified with columns, then ali
columns must be equal. The access rights within an
information domain can also be described by subsets of
the members who have the same access rights, without
reference to information objects. Since the access
rights function « is independent of objects, it can be
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replaced by a member access rights function, § with
M as its domain of definition:

g(m) = ao,m),

where o is an arbitrary objectin O.

3.3 Multiple Information Domain Metapolicy
Let D, D,,...,Dy, where D; =(0;,M;, P;), be a
finite set of information domains. O and M are the

total sets of information objects and members,
respectively, and O; and M; are subsets of O and M,

respectively.

That each information object belongs to a single
information domain is expressed as follows:

Rule 2 (Information Object-Isolation): For
distinct information domains, D;,D,,...,Dy ,
where D, =(0;,M;,P;),forall 1<i< N and
1<j<N,if i#j then

Since information objects are containers of
information, Rule 2 says nothing about the information
content of the objects, which could well be duplicated
across information domains.

Since Rule 2 categorizes every information object as
belonging to a single, distinct information domain,
there can be no such thing as a "multidomain
information object" (meaning an information object
that is marked as belonging to multiple information
domains). However, this constraint does not prohibit
the simultaneous access by a member of multiple
information domains to objects in those different
information domains. Such a simultaneous access
could be used, for example, to construct a display that
has the "look and feel" of a "virtual multidomain
information object.”

The following constraint formalizes the idea that only
the members of an information domain may have
access to its objects.

Rule 3 (Member-Only Access): For distinct
information domains, Dy, D,,...,Dy , where
D, =(0;, M;, P;) with member access rights
function §;, 1<i<N,andany me M,

{imy#d=meM,.

In describing access rights in a multiple information
domain context, the access mode set A is the
collection of all the access types needed in the various
information domains under discussion, even though
some types may not be used in a particular information
domain. For an information domain whose policy
defines conditions for the export of information to




another information domain, A contains an export
mode of access, symbolized E Similarly, an

information domain that permits the import of
information from another information domain, A
contains an import mode /. The description of export
in terms of information rather than the export of
information objects is consistent with the simplified
static model of information domains, each having a
fixed number of information objects. The right to
transfer information is modeled by an E access (which
includes read) for an information object in the
originating domain and an I access (which includes
modify or append) to an informaticn object in the
destination domain.

The security policy of an information domain
establishes conditions for import and export, such as
which members have the right to export to which other
information domains. The domain's security policy
could also establish other import/export conditions
provided they do not violate Rule 1.

Let the members M, of information domain D; who
are permitted by the policy P; to export from D; to D;
be denoted by M;(E;). Similarly, let the members of
M; who are permitted by P; to import to D; from D,
be denoted by M;(/;).
When the transfer of information directly from
information domain D, to a different information
domain D, is allowed by their combined policies, D,
is said to be adjacent to D,, symbolized " D, > D, "
Adjacency is directed; D, > D, does not imply
D, > D,. The use of the term "directly” means that no
other information domain is required for the transfer.
Symbolically,

D> D, & M{(E))nMy(1)# Q.

It follows from Rule 3 that M;(E,) is a subset of M,
and that M,(/;) is a subset of M,. Therefore
Ml (Ez)m MZ(II) is a subset of M1 M M2. The

necessary and sufficient conditions for direct
information transfers can therefore be stated as follows:

Rule 4 (Inter-information domain transfers):
Information domain D is adjacent to information

domain D,, if and only if there is at least one

member of both information domains, who is
permitted by the policy of D, to export

information to D,, and is permitted by the policy
of D, to import information from D;.

An information domain with no adjacency to any other
information domain is isolated.
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It is possible for the policy of an information domain to
vest members with import or export authority, but for
the information domain to be isolated because no
member also has compatible import or export authority
in another domain.

Even when information domains are non-adjacent,
transfer of information can be accomplished indirectly
by using one or a chain of intermediary information
domains that form a directed graph chain of adjacent
information domains. When no such chain exists in
either direction, two information domains are pairwise
isolated.

Suppose for example, the members of information
domains D, and D, with no members in common

decide they want to make controlled transfers of
information from D, to D,, and they want to continue

to have no members in common, they can create a third
shared information domain Dj, such that D; > D, and

D;> D, To satisfy Rule 4, there is at least one
member of D; who can export to D, and one member
of D, who can import from D;, ie.,

M{(E))NnM,(I)# D

and

My(E,))NM,(I)#D.
An example adjacency graph of four information
domains is illustrated in Figure 1. In this example, D;
and D, are not adjacent, but information may be
transferred indirectly via D;. D, is pairwise isolated
from each of the others, and therefore isolated.

Figure 1. Information domain adjacency graph.

ti "

Information domain security policies have been
abstractly formulated in terms of information objects
and member access rather than in terms of system
behavior. Information systems can support one or
more information domains. The question then arises of
what is the distinction and relationship between
information system security policies and information
domain security policies.




For an automated information system supporting a
single information domain, an information domain
security policy that is automated by the system is the
same as the system security policy. For a system
supporting multiple information domains, the security
policies of all the supported information domains must
be supported (enforced). Such a system is more
properly called "multipolicy" secure than "multilevel”
secure, since a multilevel secure system enforces a
single security policy with certain rules of access based
on object and subject "levels." "Multipolicy secure”
(MPS) is also more appropriate than "multilevel
secure" (MLS) because there is no requirement for
information domains to have any particular relationship
as "levels" with a partial ordering or lattice. As will be
illustrated in the next section, a system that is MLS is
a special case of system that is MPS . In summary, the
system security policy of a multiple information
domain system is the combined enforcement of all the
policies of the individual information domains
supported.

4 MAC and Information Domains

4.1 MAC Security Policies

Mandatory Access Control (MAC) policies are
characterized as follows. Thereisaset L of N
distinct sensitivity levels:

L={L,L,,...,Ly).

There is a set of information objects O, and a set of
subjects M. The abstraction “subject” typically
represents a user or processing on a user’s behalf at a
given level. There is an assignment @ of sensitivity
level to each information object o € O

®:0—- L.

There is an assignment A of sensitivity level to each
subject me M :

A:M— L.

There is an access mode set A that contains modes
R— representing read-equivalent access (e.g., view,
copy-from), and W — representing write-equivalent
access (e.g., modify, append, clear). The first principle
of MAC is that the access rights function

o:0x M — 2" can always be expressed through a
function of the object and subject sensitivity levels.
There is a function f such that

a(o,m) = f(w(0), A(m)),
where
fiLxL—2",

Since o is not independent of information objects, it
does not satisfy Rule 1 for information domains.
Therefore (0, M, P), where P specifies such an access
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rights function, can not be an information domain.
However it is possible to find a set of N embedded
information domains D,,D,,..., Dy that together

comprise the same access policy.

The second principle of MAC is that if any information
may flow between an object and a subject at different
levels, it may only flow “upward.” “Upward" is
expressed in terms of a partial ordering > on L. The
partial ordering operator > satisfies the three axioms of
idempotency, reflexivity, and transitivity. Whenx 2y,
x is said to dominate y. When x>y and x #y, x is said
to strictly dominate y, as indicated by x>y.

The MAC policy that is least restrictive on information
flow between levels is "read-down/write-up,” (also
called simple-security/*-property in the Bell and
LaPadula model [10]. For read-down/write-up,

{W}, @(0) > A(m)
{R, W}, @w(0)= A(m)
{R}, A(m) > w(o)

oo,m)=

@’ otherwise.

A strictly dominated write-up is sometimes
unacceptable from either a policy viewpoint or an
implementation viewpoint. An example of a policy
issue is the integrity requirement to protect high-level
information from corruption by low-level subjects, who
are not allowed to see any modifications they are
making. An example of an implementation issue is the
infeasibility of performing write without read
operations on some types of information objects. To
address these difficulties, many MLS systems
implement a read-down/write-equal variant of MAC
policy. This variant of MAC simply restricts the
access rights function by eliminating the strictly
dominated write-up access. Thus for read-down/write-
equal,

{R, W}, @(0)=A(m)
{R}, A(m)> (o)

o(o,m)=

7 , otherwise.

An example of an MLS system enforcing a read-
down/write-equal policy is the Compartmented Mode
Workstation [11].

When the access rights function is restricted to also
eliminate read-down, the MAC policy reduces to read-
equal/write-equal or level-isolation. For level
isolation,

alo,m) = {R,W}, w(0) = A(m)

g, otherwise.

For the level-isolation variant, no partial ordering
among the sensitivity levels is required. An example




of an MLS system implementing a level-isolation
policy is the Multinet Gateway [12].

4.2 Multiple Information Domain Policies
Corresponding to a Single MAC Policy

To demonstrate how single MAC policy is re-stated in
terms of a set of information domains and their
policies, define N sets of information objects as
follows:

0, ={oeO:0(0)=L},
for 1ISi<N.

Since the levels are distinct, these sets of information
objects are disjoint and therefore satisfy Rule 2 for
information domains. The members of these
information domains are to be identified with MAC
subjects.

Next, segment the MAC access rights function & into
N information domain member access functions &;:

$1(m),0e On
{2(m),0 € 02

a(o,m)=

{N(m),0 € ON

Since {; is dependent only on subjects/members, there
is an access rights function o; equal to {; for each i

that satisfies Rule 1 for information domains, and
expresses the access policy of each information
domain.

Define the following subsets of M:
M;(+)={meM:A(m)> L;}
M, (0)={meM:A(m)=L;}
M, (=)={meM:L, > A(m)}.

For each 1<i < N, these three sets are disjoint.

For a read-down/write-up MAC policy, the members of
information domain D; are

M, = M,(+)U M;(0)U M,(=), for 1Si<N.

Let

{R},me M;(+)
{R,W},me M,(0)
{(Whme M;(-).

Gi(m) =

It follows that for each 1<i< N, D, =(0;,M;, P;) is
an information domain where policy P; permits
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member access rights ; defined above. Each of these

information domains has three kinds of members
within M; . The M;(+) members are those who have

an associated level (e.g., "clearance" or login level) that
strictly dominates L;, and who have read-only access

to the information objects O;. The M;(0) members are
those who have an associated level equal to L;, and

who have read and write access to the information
objects O;. The M;(—) members are those who have

an associated level that is strictly dominated by L;, and
who have write-only access to the information objects
0,.

i

For a read-down/write-equal MAC policy, the
members of information domain D; are

M, = M,(+)U M,(0).

Let

Gi(m) = {R},me M;(+)

{R,W},m e M,(0)_

The corresponding information domains
D; =(0;,M;,P;) for 1<i< N are information
domains with two kinds of members. The M;(+)

members are those who have an associated level
("clearance") that strictly dominates L;, and who have

read-only access to the information objects O;. The
M;(0) members are those who have an associated

clearance level that is the same as L;, and who have
read and write access to the information objects 0.

For a level-isolation MAC policy, the members of
information domain D; are

M, = M,(0).

Let

Gi(m)= {R,W},me M,;(0)

D; =(0;, M;, P,) is an information domain with all the
members having an associated clearance level of L,

and all having read and write access rights to the
information objects L;.

The information-access relation of the information
domain members to the information objects is
illustrated in Figure 2 for each of the information
domains imbedded in each of above three variants of
MAC. An arrow from object to subject indicates read
access is permitted; an arrow from subject to object
indicates write access is permitted; and an arrow




pointing both ways indicates read and write are both
permitted.

Mi
Mi(+)

0O |ja—>»

\

(a) Read-Down/Write-Up

Mi(0)
Mi(-)

Mi
Mi(+)

vl

Oi [a—>

Mi(0)

(a) Read-Down/Write-Equal

Mi

0Oi ja—]

M{0)

(c) Level Isolation

Figure 2. Access of members to information objects
in information domains embedded in MAC policies.

4.3_Adjacency of MAC-Based Information
Domains

Since only read and write equivalent accesses were
defined to characterize MAC policies, "export" access
is considered to be read-equivalent, and "import"
access is considered to be write-equivalent . The
members of D; who are permitted to export to D; are
those who are permitted to read in D;. Similarly, the
members of D; who are permitted to import from D;
are those who are permitted to write in D,.
Symbolically,

M(E;)={me M;IRe {;(m)},
and .
M;(1;)={me M}IW € {;(m)}.

For the read-equal/write-equal MAC policy variant, all
the composing information domains are isolated. For
read-down/write-equal, read-equal/write-up, and read-
down/write-up the information domains are adjacent
whenever the corresponding levels have a (strict)
dominance relationship, i.e.,

D>D; e L;i>L.

What differs between the information domains
embedded in variants of MAC that have adjacencies is
who can perform the transfer of information between
the information domains. When the MAC policy
permits read-down/write-up, then any member m
whose clearance level is bracketed by the levels of the
exporting and importing information domains will be a
member of both and allowed to perform transfers:

A(m) 2 L;
and
L; 2 A(m).

On the other hand, for a read-down/write-equal MAC
policy, the member clearance level must equal that of
the importing information domain and strictly
dominate that of the exporting information domain:

Am)=1L,
and
L; > A(m).

A system that implements a MAC policy is thus
capable of supporting multiple embedded information
domains, provided the information domains are either
isolated, or related through a partially ordered set of
sensitivity labels. For other than isolation MAC
policy, the adjacency graph of the set of embedded
information domains is isomorphic to the partial
ordering graph of the sensitivity levels.

An adjacency graph for four information domains in a
lattice relationship is illustrated in Figure 3. In the
illustrated set of information domains, L, is the Zero

element (dominated by all) of the lattice, L, is the Unit
element (dominates all) of the lattice, and L; and L,

are in between with no dominance relationship between
them.

Figure 3. Lattice-related information domain
adjacency graph.
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4.4 Uses and Limitations of MAC Based
Systems

As demonstrated above, MAC is a special case of the
kinds of relationships that can exist between
information domains. A system that enforces a label-
based MAC policy (e.g., TCSEC B1 and higher
systems) is capable of supporting multiple information
domains when these information domains are either
isolated or can be related by a partial ordering or
lattice.

While most MAC trusted products nominally enforce
either a read-down/write-up or a read-down/write-equal
MAC policy with members of the level set each
composed of a hierarchical level and a set of non-
hierarchical categories. However such systems can
also be effectively set up to enforce isolation of N
information domains as follows. Let each information
domain correspond to a non-hierarchical category, and
define or use only a single hierarchical level whose
name is unimportant. In addition to the N information
domains corresponding to the N non-hierarchical
categories, define a system-low (no categories) public
information domain, and system-high (all categories)
information domain. The public information domain
provides such public information as executable
software for general use. The system-high information
domain is for system security administrative use, e.g.,
auditing.

There can be highly useful multiple information
domains that are not expressible as imbedded in any
MAC policy, and therefore not supported by an
existing MAC system. A very simple and yet clearly
useful example is where two information domains D

and D, have no members in common, but need to
make controlled transfers of information to one another
(e.g., two businesses or two government agencies with
different missions and people). Members the two
information domains agree to create two new
information domains each D; and D, that each have

members from both D; and D,. Some members of
D, may export to D; and members of D, may import
from D;. Members of D, may export to D, and
members of D, may import from D,. The
information objects of Dj; could be a mail queue that
holds information released from D, and destined only
to D,. Similarly, the information objects of D, could
be a mail queue that holds information released from
D, and destined only to D;. The adjacency graph
(Figure 4) is cyclic, and could not therefore correspond
to any MAC policy, since a cyclic graph is not
isometric to a any partial ordering.
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Figure 4. Cyclic information domain adjacency
graph.

5 DAC and Information Domains

5.1 DAC Security Policies

Discretionary access control (DAC) policies [2] permit
assignment of access rights of system users to
information objects on a system at the discretion of the
"owner" of each information object. In general the
accesses rights permitted by the owner of an
information object may be changed at any time. The
corresponding access rights matrix can be interpreted
in information domain terms as either highly dynamic
and object dependent, or as "weak" (in that every entry
equals the total access modes set A because all
accesses are permitted under some owner decisions).

5.2 DAC and Information Domains

Since DAC is a much less rigid concept than MAC,
there are several different mappings that can be made
between DAC and information domain policies,
depending on the DAC-interpretation adopted.

Under a "weak" interpretation, a system that
implements a DAC policy, can support only a single
information domain, where all the users are its
members, who have (potentially) equal access rights to
all information objects. In this interpretation, the
individual owner-assignments and revocations of
access permission are not relevant from an information
domain policy viewpoint. They are a functional
convenience to the members of the information domain
to manage their activities.

Alternately, a dynamic interpretation could be made
where there are as many information domains on a
system as information objects. The members of a
single information domain are all those who have any
access assigned by the owner. Since the owner can
change these permissions at-will, the membership
changes with each such change. Each such change
changes a column of the access rights matrix.

On the other hand, a system DAC policy can have
associated procedural rules or other mechanism so that
it is neither weak nor dynamic. For example, if the
only owner of information objects is a security
administrator, the administrator can use the DAC
mechanism to group information objects and users into
multiple information domains. If an access control list




(ACL) mechanism is used, then the objects in a single
information domain are all those with the same ACL.
(An ACL is equivalent to a column of the access rights
matrix.) To satisfy Rule 1, the information objects of a
single information domain are those with identical
ACLs. All the users who are assigned one or more
access modes in that ACL are its members. While such
a "strong" DAC policy could enforce any information
domain access control policy, it may not be acceptable
for other reasons such as the protection weakness
inherent in the all-powerful nature of the administrator
across all information domains.

In a system that provides MAC and typically "weak"
DAC enforcement mechanisms, the MAC mechanism
can be used to establish rigid information domain
boundaries (within the limitations of MAC), and the
DAC mechanism can be used to provide a convenience
for system users to manage their information within
each information domain, independently of the formal
information domain security policy.

6 Interconnected MPS Systems

All information systems supporting the same
information domain must be compliant to its security
policy, including access controls and protection
mechanisms. These systems may or may not be
directly or indirectly connected. Establishing
interconnections or security association between these
systems can provide a mechanism for information
transfer only within the same information domain and
therefore in accordance with the same policy. The idea
of "connective association” includes both continuous or
interactive connection or discrete, staged, or
connectionless information transfer.

If the ability to enforce interdomain transfer policy in
accordance with Rule 4 is enforced by some form of
reference monitor, then presumably such transfers can
occur only within a single information system. Under
this assumption (which is a requirement of the DGSA
[8D), it follows that transfer of information between
information domains in accordance with both domain
policies can only occur on a system that enforces both
policies. Thus by connective associations, information
domains can extend across multiple systems in any
combination of systems and information domains,
provided (a) each information domain’s security policy
is enforced by the supporting systems, and (b) transfer
of information between domains occurs only on
systems that support both the exporting and importing
domains.

A significant difficulty that accompanies the traditional
one-system/one-policy paradigm is the celebrated
“composition problem”[13, 14]. The traditional
composition problem formulation merges system
boundaries. Interconnection of two systems where
each enforces a policy of its own is viewed as creating
a composite system with functionality allowed by the
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interconnection, and security properties that enforce a
composite single policy [13]. The information domain
formulation essentially "sidesteps” this aspect of the
composition problem. If all connected systems support
information domains as constrained by information
domain metapolicy, their connection raises no new
policy “composition” issue. There is no need to
redefine or merge system boundaries; each system
maintains its identity. Of course there are other
significant composition issues, to be solved such as
assurance, strength of mechanism, and accreditation.

7_General MPS Systems

While MAC-enforcing MLS systems can support
special kinds of multiple information domain policies,
with significant levels of assurance, there are currently
no trusted products that support more general
multipolicy systems with an information domain
metapolicy. The DGSA [8] advocates creation of
information systems that deal with this problem by
extending the reference monitor idea to that of
separation of policy enforcement mechanisms from
policy decision mechanisms. Such an approach
extends the separation kernel idea of Rushby [15] by
creating a security context for each information domain
where its policy is enforced.

The separation of policy decisions and policy
enforcement is roughly as follows: Associate an
information domain identifier with each information
object. Associate a set of information domain
memberships with each user or user-subject. Associate
a subset of current information domain identifiers with
each active subject (e.g., process) operating on behalf
of a user. Each attempted access between subject and
object is mediated by an enforcement mechanism that
in turn calls on a policy decision mechanism that
returns an access decision based on the access policy of
the information domain identified with the object and
the information domain or domains identified with the
subject. '

Potentially, each information domain policy could be
changed independently of each other and of the
enforcement mechanism. Before it becomes practical
to "plug-in" a policy for each information domain in a
multipolicy machine, a standardized scheme of
encoding information domain identities and policies is
needed.

8 Summary and Conclusions

The information domain metapolicy described provides
a consistent framework for the coexistence of a set of
different security policies in multipolicy systems. This
framework is intermediate between the rigid structure
of a mandatory access control policy based on lattice or
partial ordering, and an arbitrary collection of multiple
policies with no basis for consistent interaction or
shared enforcement support mechanisms and systems.




The metapolicy provides a consistent basis for transfer

of information between information domains in mutual
accordance with their policies, without any requirement
for hierarchical or partial ordering relationships.

The access control aspects of the information domain
concept inherent in the emerging DoD information
systems security policy [1] were reduced to a set of
four axiomatic metapolicy rules. This formalization
provides a basis for consistent multiple information
domain policy formation as well as insight into the
power and limitations of this security policy
framework.

The formalism introduced enabled demonstration of
how MAC policies can be expressed as a special case
of multiple information domain policies. The mapping
of DAC policies to information domains metapolicy is .
less fixed, as there are many types of DAC. The only
clear mapping of a system policy supporting only
"weak" DAC is to a single information domain. When
a system supports both DAC and MAC the MAC
mechanism can be used to establish the limited kinds of
information domains, and the DAC mechanism can be
considered to be unrelated to information domain
policies.

While there are currently no general multipolicy trusted
products, the information domain approach provides a
metapolicy framework in which such products could be
built. Moreover it provides the basis for confident
system interconnection that sidesteps the access policy
composition problem.

References

1. Department of Defense Information Systems
Security Policy, DISSP-SP.1, 22 February 1993.

2. Department of Defense Trusted Computer System
Evaluation Criteria, DoD 5200.28-STD,
December 1985,

3. National Computer Security Center, Trusted
Network Interpretation of the Trusted Computer
System Evaluation Criteria (TNI), NCSC-TG-005,
July 1987.

4. National Computer Security Center, Trusted
Database Management Interpretation of the
Trusted Computer System Evaluation Criteria
(TDI), NCSC-TG-021, Version 1, April 1991.

36

10.

11.

12.

13.

14,

15.

Common Criteria for Information Technology
Security Evaluation, CCEB-94/082, Version 0.9,
October 1994.

Hosmer, Hillary H., "The Multipolicy Paradigm,"
Proceedings of the 15th National Computer
Security Conference, October 1992, Baltimore,
MD, pp. 409-422.

Bell, D. Elliott, “Modeling the ‘Multipolicy
Machine’,” Proceedings of the New Security
Paradigms Workshop, August, 1994, pp. 2-9.

Department of Defense (DoD) Goal Security
Architecture (DGSA), Center for Information
System Security Program, Version 1.0, 1 August
1993. :

Security Requirements for Automated Information
Systems (AlSs), DoDD 5200.28, March 21, 1988.

Bell, D. E. and LaPadula, L. J., Secure Computer
Systems: Unified Exposition and Multics
Interpretation, MTR-2997 Rev. 1, MITRE Corp.,
Bedford, Mass., March 1976

National Computer Security Center, Final
Evaluation Report SecureWare, Incorporated
Compartmented Mode Workstation Plus, CSC-
EPL-91/002, 30 January 1991.

Freeman, J., Neely, R., and Dinolt, G., “An
Internet System Security Policy and Formal
Model,” Proceedings of the 11th National
Computer Security Conference, 1988, pp. 10-19.

Tinto, Mario, The design and Evaluation of
INFOSEC Systems: The Computer Security
Contribution to the Composition Discussion,
National Computer Security Center C Technical
Report 32-92, June 1992.

King, Guy., "The Composition Problem: An
Analysis," Proceedings of the 17th National
Computer Security Conference, October 1994,
Baltimore, MD, pp. 292-297.

Rushby, John, "A Trusted Computing Base for
Embedded Systems," Proceedings of the 7th
DOD/NBS Computer Security Symposium, pp.
294-311,




Maintaining Secrecy and Integrity in Multilevel
Databases: A Practical Approach

Sushil Jajodia* Don Marks! Elisa Bertinot

Abstract. In a multilevel database, certain integrity constraints create a secrecy problem since
they cannot be evaluated without access to data at higher classifications than the classification of
the data to be modified. We present a practical approach for enforcing such constraints without
sacrificing the secrecy requirements. Our approach requires that the such constraints be rewritten
as a collection of level-valid constraints. Level-valid constraints meet the secrecy requirement since
their evaluation does not require access to any data that is classified higher than the classification of
data to be modified. Moreover, they meet the integrity requirements since any database state that
satisfies the level-valid constraints satisfies the original constraints as well. The cost associated with
this approach is that trusted processes must be relied upon to make occasional modifications.

1 Introduction

Consistency is an important property of a database. One way to achieve consistency is to associate
with each database a set of integrity constraints. Database management system (DBMS) has the
responsibility to ensure that these integrity constraints are satisfied by the database state at all
times. A multilevel secure (MLS) DBMS has the additional responsibility of preventing improper
disclosure! of information either by direct or indirect means. Direct violations are eliminated by
enforcing “no read up” and “no write down” requirements on all subjects. Indirect means of illegal
information leakages such as those via covert channels (signaling or timing channels) are more
difficult to prevent.

It is well-known that there are inherent conflicts in MLS databases between the secrecy require-
ments and certain types of integrity constraints [Den86]. In particular, it is not possible to enforce
certain integrity constraints without violating the secrecy requirements. To illustrate, consider a
database consisting of two relations as follows: EM P(ename, mname, salary) that contains for
each employee his name, the name of his manager, and his salary and MG R(mname, salary) that
contains the name and salary of each manager. Suppose that the EMP relation is considered Low,
while the MGR relation is considered High. Say MLS DBMS must enforce the integrity constraint
I that requires that an employee cannot have higher salary than that of any manager. We call I a
multilevel-valid constraint since to verify if the Low data can be modified, both High and Low data
need to be accessed.

Every time a new tuple is to be inserted to the EMP relation, constraint I needs to be checked.
Unfortunately, this simple integrity constraint presents a dilemma to the MLS DBMS. Since the
tuple is being inserted into a Low relation, the transaction T' performing the insertion must be
considered a Low transaction, in which case T will not have read access to High MGR relation
according to the simple security restriction on T. As a consequence, DBMS will not be able to
enforce the integrity constraint. Even if we were to assume that MLS DBMS gives T the read access
to the salaries in the High MGR relation, MLS DBMS still cannot force T' to abort whenever the
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insertion by T fails to satisfy the given integrity constraint I. This is because doing so would open
up a signaling channel which could easily be exploited by Trojan horses.

Since the enforcement of multilevel-valid constraints involves a trade- off between secrecy and
integrity, the usual approach is to accept one or another. If secrecy is strictly enforced, multilevel-
valid constraints cannot be enforced. On the other hand, if the multilevel-valid constraints are
enforced, then signaling channels can be used to subvert the secrecy policy.

In this paper, we show how it is sometimes possible to maintain secrecy while enforcing integrity
at the same time. The approach taken will be to translate the original multilevel-valid constraint
whose satisfaction requires MLS DBMS to access both High and Low data into a collection of level-
valid constraints; each level-valid constraint has a fixed security level associated with it and can be
evaluated by referencing only data at or below that level. Such constraints will specify conditions
where a process may modify the database without compromising either the secrecy or the integrity
of the data. Secrecy will not be violated since a level-valid constraint, by design, references data at
or below the level of the constraint. Integrity will be preserved since the level-valid constraints are
derived from the multilevel-valid constraints in such a way that any allowable database state (i.e., a
state satisfying the level-valid constraints) will automatically satisfy the multilevel-valid constraint.

Of course, all this will not come for free. There may exist database states which are allowable
under the original multilevel-valid constraints, but not under the derived level- valid constraints.
Processes allowed to modify the database in a way that meets the original multilevel-valid constraints,
but not the appropriate level-valid constraint, will have to be trusted. Thus, our approach can be
viewed as a compromise between the two extremes. That is, both secrecy and integrity will be
guaranteed to hold if we occasionally rely on trusted processes to make modification to the database

state.

2 Terminology

The “multilevel secure” model classifies data at various levels, such as U (unclassified), C (confiden-
tial, the lowest), S (secret) or TS (top secret, the highest), and users are cleared to similar levels.
Usually, we will simply use the designations “High” and “Low” to indicate the relative level of clear-
ances or classifications for the two levels of data being compared. The security policy consists of
two requirements, “no read up” and “no write down”. A C user is allowed to read only U and C
data, an S user may read U, C, or S data, a TS user may read any data. In the BLP model, a TS
user may only write TS data, an S user may write S or TS data, while a U user may write data at
any level.

While humans must be trusted not to read High classified data and then pass that along to lower
cleared people, computer processes cannot be so trusted. The restriction on writes by C, S, and TS
users therefore addresses the problem of a “Trojan horse”, a process that performs unauthorized
functions. For example, a High cleared process, possibly unknown to the High users, might read
information and then write that information into a Low classified area, passing the information to
the lower cleared users. This would violate a basic tenet of secure systems that information cannot
be passed to lower users without specific authorization (i.e. “downgrading”).

It may be possible for a High process to communicate High information by means other than
simply writing into a file visible to the Low users. Such means are called “covert channels” and are
just as objectionable as direct writing. Occasionally High cleared processes have legitimate reasons
for transmitting information to lower cleared users. Processes allowed to do such writing down are
said to be “trusted.” The term trusted therefore implies more than simply guaranteeing that the
write down is authorized, it guarantees that the intended write down is all that is done (i.e., the
code does not contain any trojan horses).
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3 Related Work

Although the issue of conflict between the multilevel security and database integrity requirements has
been raised by several researchers [Den86, AD87, MJ88, Bur90], no one has developed an approach
for enforcing multilevel-valid constraints in a secure manner.

Recently, Thuraisingham [Thu91], Smith and Winslett [SW92], and Qian [Qia94a, Qia94b] have
addressed the integrity related problems that arise when key-based functional and referential in-
tegrity requirements are enforced in multilevel relations (i.e., problems related to polyinstantiation).
At the heart of their work is a model that differentiates between the data a user sees and data that a
user believes. Qian calls these accessibility and believability, respectively. This distinction has been
exploited to help resolve ambiguity in polyinstantiated relations.

However, it is not clear how this distinction can help solve the integrity related problems such
as the one described in the introduction. It does not make much sense to have two tuples for each
employee, one at High level that contains the correct salary and the other at the Low level with
possibly an incorrect salary.

4 Formalization of Our Approach

Assume we are given a valid database state D of a multilevel secure database containing data at
classification levels Iy, lo, . . ., I,. The classification level of a data item ¢ is denoted by L(t). Assume
further that the data in this database must satisfy integrity constraints. An integrity constraint
is an assertion (or a predicate) on the database state. A database state D is valid if all integrity
constraints hold in D.

Given a valid database state D, an integrity constraint I, and a data item ¢, we are interested
in determining if I holds in DUt. (For simplicity, we have chosen to drop {} around t.) We call ¢ a
prospective data item to be added to the database. Similarly, when a data item ¢ must be deleted,
we are interested in determining if I holds in D —¢. (Modification of data items can be formalized
similarly.)

In addition to the integrity constraints, we have a security policy which must be satisfied. The
security policy specifies that the constraint must be evaluated without regard to data at higher
classifications than the classification of the data to be inserted.

Note that the example in the introduction does not meet the security policy since data items
classified High may determine if tuples classified Low are valid.

A constraint is said to be level-valid at level [ if it can be verified as true or false using only data
at level [ or below. A constraint that is not level-valid is called a multilevel-valid constraint.

Suppose we have a constraint I that is multilevel-valid. To enforce both the constraint and the
security policy, we wish to replace I by a collection of level-valid constraints

r'=A{L,,nL,,....I}
such that

1. each I; in I' is a level-valid constraint at level l;, and

2. if D satisfies all level-valid constraints in I’, then D also satisfies I.

Hence replacement of constraints that are not level-valid by constraints that are level-valid sat-
isfies both the integrity and the secrecy requirements.
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Let V denote the set of all valid database states under I, i.e., V = {D : D satisfies I}, and let
V' be the set of valid database states that satisfy the level-valid constraints in I, i.e., V' = {D: D
satisfies I'}. :

If V¥ = V', then the original multilevel constraint has been exactly translated into a set of level-
valid constraints. The more likely situation only guarantees that V' C V.

Since there are many possibilities for I’ and, therefore, V', we may wish to compare the goodness
of a replacement of an I by an I’. An example of an appropriate measure would be to compute the
ratio

card(V) — card(V’)
card(V)

Such a measure would become zero if all database states could be determined from data at or
below the subject’s level, and become one if no valid database states could be so determined.

5 Basic Idea

Example 1 To illustrate the basic idea, we consider once again the example given in the introduc-
tion. We replace I which is not level-valid by specifying two level-valid constraints as follows:

Tnign: A High user would be allowed to insert a manager tuple if the new salary is not the lowest
salary in the MGR relation.

ILow: A Low user would be allowed to insert an employee tuple so long as the inserted salary is not
the highest in the EMP relation.

With the assumption that the database originally satisfies the constraint I, after the addition of
either a High or a Low tuple, the database will continue to satisfy the original constraint. Further-
more, both these constraints will permit insertions into MGR and EMP relations without checking
data at another level. Thus, enforcement of these two level-valid constraints would guarantee that

1. a prospective tuple to be inserted by a High user carries no new information observable by a
Low user, and

2. a prospective tuple to be inserted by a Low user retrieves no High information.

Note that there are two problems with our approach that we need to address. First, how do
we insert tuples into an empty database state and, second, how do we insert tuples pertaining
to the “lowest paid manager” or the “highest paid employee”? We will require trusted database
administrator (DBA) processes to perform these operations since integrity checking will have to be
suppressed during these operations. This is discussed more fully in Section 8.

Note that I’ = {Imigh, Itow} is the not the only possible replacement for I. Indeed, Imigh is
needlessly restrictive since a High subject can read Low data without violating secrecy. Thus, a
better possibility would be to use I = {If{igh) Itow} where

I{ﬁgh: A High user would be allowed to insert a manager tuple if the new salary is higher than the
highest employee salary. '

Like Ixigh, the new condition I,’rligh does not violate the secrecy requirement since High subjects
are permitted to read Low data. However, I{{igh is clearly superior to Inigh since under I’ only
the tuples pertaining to the “highest paid employee” would have to be inserted by a trusted DBA
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process. There are no restrictions on the “lowest paid manager” and these tuples can be inserted by
untrusted subjects.

It is possible to further simply the constraints so that only the single prospective tuple needs to
be checked, not all the tuples in the Low relation. This is accomplished by specifying a fixed upper
bound, say z, for the employee salaries. Obvicusly, this upper bound will become the lower bound
for the manager salaries. The new level-valid integrity constraints are as follows:

I"High: A High user would be allowed to insert a manager salary if the new salary is greater than z.

I"Low: A Low user would be allowed to insert an employee salary so long as the inserted salary is
less than or equal to z.

Although it is tricky to arrive at an appropriate value of z, the last set of integrity constraints
has an additional benefit. The cost of checking if an insertion satisfies I"High of I”Low is much
lower than that of any one of the preceding constraints. Indeed, [BBC80, BB81] advocates using
this strategy to reduce the cost of enforcing integrity constraints, where it is also shown that a large
class of constraints can be enforced using similar tactics. a

Example 2 Suppose that we modify example 1 so that we have only one relation: EMP(name,salary,
position) containing names, salaries, and positions of the employees. There are three positions, ap-
prentice, manager, executive. The constraints are:

1. all apprentice salaries are less than any manager’s salary, and

2. all manager salaries are less than any executive’s salary.

The classification levels are: 1) apprentice records are classified confidential (C), 2) manager
records are classified secret (S), and 3) executive records are classified top secret (TS).

Subjects at one level are not allowed to read information at a higher level, nor are they allowed
to write at any other level. ‘

Whenever a subject at the apprentice level attempts to write a new (apprentice) tuple with a
salary, the database must decide if this is allowed. As noted above, if the multilevel-valid constraint
is initially satisfied, then the following level-valid constraint:

Ic: New apprentice salary must be less than the highest existing apprentice salary.

is sufficient to guarantee that a new tuple does not invalidate the original constraint.

The highest cleared category, executive, needs only to be concerned with inserting salaries higher
than the highest paid manager. This is similar to the relation between manager and employee in
preceding example and is accomplished by requiring the following level-valid constraint:

Its: New executive salary must be higher than the highest existing manager salary.

which would guarantee that any executive salary meets the original multilevel-valid requirement.

Finally, if a user attempts to insert a new manager tuple there are two checks must be performed:
the salary value must be higher than any apprentice, but lower than any executive. The constraint

New manager salary must be less than the highest existing manager salary.

is not sufficient since it is to possible that the new manager salary is lower than the highest paid
apprentice. Since this is also not allowed, an additional constraint must be added to the preceding
constraint as follows:
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Is: New manager salary must be less than the highest existing manager salary, but greater than the
highest paid apprentice.

which is sufficient. o

Thus, in general, there are several ways to replace a multilevel-valid constraint by a collection
of level-valid constraint. A wise replacement will not only accurately reflect the policy with respect
to secrecy and integrity, but minimize the number of valid database states that are attainable from
updates by trusted subjects only.

The previous examples have illustrated integrity constraints which are affected only by insert
operations. The following example illustrates integrity constraints which are affected by delete
operations also. It is important to note that constraints that are enforced during an insert operation
may be different from the constraints that are enforced during a delete operation.

Example 3 Suppose that we modify the relation of example 2 by adding a new column, called
‘proj#’, recording for each employee the project the employee is working on. Thus, the relation
EMP has the following schema EM P(name, salary, position, proj#). Classification levels of tuples
in the extended EMP relation are the same as in example 2.

Suppose that the following constraint must be enforced:
The average salary for employees working on project P200 must be greater than 5000.

Suppose that a subject at the apprentice level attempts to delete a tuple of an apprentice working
on project P200. Since employees in any position can work in project P200, evaluation of this
multilevel-valid constraint would require evaluating the average on data items that are classified at
confidential levels as well as at higher levels. Note, however, that, if this multilevel-valid constraint

is initially satisfied, the following level-valid constraint

Ic: The new average salary over all apprentice tuples with project value = ‘P200’ (i.e., not including
the salary of the tuple to be deleted) must be greater or equal to the old average salary over
all apprentices tuples with project value = ‘P200’ (i.e., including the salary of the tuple to be
deleted).

is sufficient to guarantee that the delete operation does not invalidate the multilevel-valid constraint.

Similarly, if a subject at secret level tries to delete a manager, the following level-valid constraint
would be sufficient to ensure the validity of the original multilevel-valid constraint:

Is: The new average salary over all apprentice and manager tuples with project value = ‘P200’ (i.e.,
not including the salary of the manager tuple to be deleted) must be greater or equal to the
old average salary over all apprentices and manager tuples with project value = ‘P200° (ie.,
including the manager salary of the tuple to be deleted).

Note that although constraint Is involves tuples from two levels, it is still a level-valid constraint
since it can be evaluated over tuples that are classified either secret or confidential.

6 Théoretical Basis

6.1 General approach

The discussion to this point has been either very general or concerned with a specific example. We
will now show how these approaches are related. That is, we will develop a method of translating
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multilevel- valid constraints into a set of level-valid constraints. We will develop the method con-
sidering the features of a conventional (single-level) DBMS. As this is done, however, we will distill
the critical features and generalize the method to apply to more arbitrary functions.

6.2 Notation

The first necessary step that is to define a formalism for specifying constraints. Constraints are
generally formed by comparing characteristics of two sets of data (i.e. employee salaries and manager
salaries). This can be formalized in the following definitton.

Definition 1 A constraint is an expression of the form

filai(R)) © fa(g2(R))

where fi, f2 are functions resulting in a numerical value or a set of specific string values; ¢, g2 are
queries which operate on the relation R to produce a restricted relation or view; and O represents one
of the standard comparators: >; <;<;>;=; or the existential operator “exists in”. The constraint
will be true for any valid database state.

In later discussions, § will denote © or =, so if © =<, then @ =<.

Example 4 In our notation, the constraint “all apprentice salaries are less than any manager’s
salary” becomes:

MAX(select salary from EMP where posilion = ‘apprentice’) < MIN(select salary from
EMP where position = ‘manager’).

(]

This formalism allows sophisticated, complex relationships to be expressed. The views ¢1,¢2
are general and the functions fi, f; are not limited to those predefined by the system. In fact, the
functions could be arbitrary procedures implemented by triggers. For simplicity, however, we will
limit our discussions to the standard database aggregate functions, SUM, COUNT, MAX, and MIN.

Note that this formalism incorporates much of the characterization of constraints that are usually
expressed in a language which is like relational calculus [Sto75, BBC80, BB81, BMS88, GW93] but
in a different notation. As an example, [BM88] uses a tuple-based notation utilizing a precondition
(the selection criteria for data to be evaluated), and condition (the evaluation function itself), as well
as the aforementioned aggregate functions. which Although both systems are capable of expressing
the required constraints, our method does not require the new terminology and notation found in
[BM88]. For example we can allow aggregate values as fi, f2 in our notation; a precondition which
we implement as views ¢1, g2; and a test condition which we implement as ©.

Gupta and Widom [GW93] approach also uses distinctly different notation, namely first order
logic (which can, of course, be translated into more familiar SQL) and is stated as a condition
for failure to meet the constraint. Their notation requires that the selection/projection clauses
(implemented as views in our notation) be combined into a single formula. Testing is then done
only for existence conditions, the aggregate functions are not allowed. Such existence conditions are
not sufficient to test for the aggregate functions COUNT or SUM, hence our proposed notation is
more flexible and allows us to address additional constraints. The function and view based notation
presented here is based upon the familiar SQL and is much more intuitive than any of the previously
proposed notations. It maintains separation of important concepts, allows for multiple aggregate
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functions and is not restricted to using base relations or conjunctions of simple selects as are the
previous studies.

To illustrate how constraints are specified in our proposed format, we consider the following
example taken from [BM88].

Example 5 Let us consider a database consisting of the following relations:

EM PLOY EE(emp#, name, salary, address, proj#, dno)
PROJECT(proj#,name, mgr#, budget, location)
M AN AGER(mgr#,name, age, salary, address)

The following integrity constraints may be defined on these relations:

I;: The project budget must be greater or equal to zero.
I,: For projects located in Italy there can be at most two managers.
I5: The average salary for the employees working on project ‘P200’ must be greater than $5.000.

I,: The sum of the salaries for the employees working on a project must be less than the project
budget.

Is: Each employee must work in an existing project.
In our notation, these constraints can be expressed as follows:
Ii: p; “exists in” {select proj# from PROJECT} AND {select budget from PROJECT where proj#
=pi}=0.
Is: COUNT{select mgr# from PROJECT where location = Ttaly’} < 2.
Is: AVE{select salary from EMPLOYEE where proj# = ‘P200’} > $5.000.

Is: p; “exists in” {select proj# from PROJECT} AND SUM {select salary from EMPLOYEE where
proj# = p;} < {select budget from PROJECT where proj# = p;}

Is: e; “exists in” {select emp# from EMPLOYEE} AND {select proj# from EMPLOYEE where
emp# = e;} “exists in” {select proj# from PROJECT}

‘o
One difficulty, however, that is found in this notation but addressed in both [BM88] and [GW93],

is expressing constraints that hold, not on the set, but on each member of some set. This is handled
by formulating two constraints, connected by a conjunction, as illustrated by Iy, Is, Is above.

This extended form of constraint is formalized by the following definition.

Definition 2 A complex constraint is an expression of the form

IC; AND IC;

where either both IC; and IC; are simple constraints as defined in Definition 1, or IC; is a simple
constraint and ICj is a complex constraint.
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6.3 Ordering

The critical feature of this notation is the fact that if both sides of an integrity constraint yield
numerical values, it provides us with a way to order the relations using the comparator © (in cases
where either fi(R) or f2(R) yields string values, © must be “=” or “exists in”). The fact that the
relations are ordered allow us to derive some simple tests for determining if a tuple may be added
to (or deleted from, or modified in) the database.

The first necessary observation is that O is transitive.

Lemma 1 O is transitive. That is, if A © B and B © C, then A © C. More generally, if either (i)
AQBand BO Cor (ii) A © B and B Q C holds, then A © C holds.

The following lemma gives two tests for a prospective tuple, which, if both are satisfied, guarantee
the continued satisfaction of an existing constraint.

Lemma 2 Given a constraint f1(g1(R)) © f2(g2(R)), which is known to be satisfied by the current
state of the database, then if there exists a tuple t satisfying the following two conditions:

1. filgr(RUY)) 2 fi(q1(R)), and
2. fa(g2(R)) Q fa(g2(RUT)),

then the database will still satisfy the constraint after ¢ is added.

Proof: Since fi(q1(RU1))  fi(q1(R)) and fi(q1(R)) © fa(g2(R)), from the Lemma 1 it follows
that f1(g1(RU?)) Q f2(g2(R)), This last expression when combined with f2(q2(R)) Q f2(q2(RU1))
yields fi(q1(RU1)) © fa(g2(RU)), which is a statement that the database, after the addition of
tuple t, satisfies the constraint. a

The preceding lemma specifies two conditions, one for each expression in the constraint. We can
therefore define two sets of valid tuples, one for each condition. Those tuples in both sets may be
added to the relation and still satisfy the original constraint.

Fortunately, in many cases of practical interest, a substantial number of tuples are in both sets.
It is even common for a tuple to influence only one of the conditions in Lemma 2. For example, if
f2(R) is equal to a constant, then it is true that fo(g2(R)) = fa(q2(RU1)), regardless of what tuple
t is added to the database. In such cases, tuples only influence one condition, so the conjunction
does not present a serious problem. The constraint in example 4 illustrates one such constraint.

Example 6 Consider the constraint given is example 4. ;From Lemma 2, it follows that we need
to satisfy the following two conditions:

1. MAX{select salary from EM P Ut where position = ‘apprentice’} < MAX{select salary from
EM P where position = ‘apprentice’}, and

2. MIN{select salary from EM P where position = ‘manager’} < MIN{select salary from EM PU
t where position = ‘manager’}

Apprentice tuples with salaries less than or equal to the present maximum will satisfy (1), indeed,
they will not change it. All apprentice tuples will also satisfy (2) since it is unchanged by their
addition, regardless of their salary. The addition of an apprentice tuple therefore only requires
evaluation of one level-valid constraint:
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Ic: If t.position = ‘apprentice’, then t.salary < MAX{select salary from EMP where position =
‘apprentice’}.

0

For those situations where all tuples with some characteristic (such as position = ‘apprentice’)
satisfy one of the lemma 2 conditions, regardless of other characteristics, only one view needs to be
considered. This allows the constraint to be simplified for performance reasons even without con-
sidering classification constraints. As [GW93] pointed out, such performance benefits are especially
valuable in distributed databases. If the apprentice and manager tuples are kept at distinct physical
locations, the constraint can still be verified without requiring a distributed join.

Example 7 Consider the relation from example 2 with the new constraint “all apprentice salaries
must be less than the average salary,” i.e., MAX{select salary from EMP where position = ‘apprentice’}
< AVE{select salary from EMP}.

Here the conditions from lemma 2 are:

MAX{select salary from EM P Ut where position = ‘apprentice’} < MAX{select salary from
EMP where position = ‘apprentice’} AND AVE{select salary from EMP} AVE {select salary
from EM P Ut}.

Here each new tuple affects both conditions. Apprentice tuples satisfy the first condition if the
new salary is less than the existing maximum apprentice salary. The second condition specifies that
the new salary must be greater than the existing average over all the tuples. Note that the addition
of a very low apprentice salary may reduce the average salary below an already existing apprentice
salary. The range of salaries satisfying both conditions may be very small. (]

A lemma, similar to Lemma 2, holds for the delete operation.

Lemma 3 Given a constraint fi(g1(R)) © f2(g2(R)), which is known to be satisfied by the current
state of the database, then if there exists a tuple t satisfying the following two conditions:

1 fi(@(R=1)) Q@ fi(q1(R)), and
2. foa(g2(R)) @ fa(q2(R 1)),
then the database will still satisfy the constraint after ¢ is deleted.

The proof of the above lemma is similar to that of Lemma 2 and thus we omit it.

1

7 Level-valid Constraints

The preceding discussion would be sufficient to simplify constraints to a single view if all the data
was classified at a single level. The functions and views used at a specific level need not be the same
as those used in the multilevel-valid constraint. They do not even have to bound the multilevel
functions, but they must increase or decrease appropriately in order to maintain the relationship
(©) in the multilevel-valid constraint. For example, consider the level-valid constraints I”gigh and
I"Low in Example 1. These level-valid constraints do not mention a range at all; however, these
replacements work since they guarantee continued satisfaction of the multilevel-valid constraint.
This is made more precise in the following theorem.

For this theorem, we define functions f3 and f4 and views g3 and ¢4 operating only on data at
level { or below that allow us to express conditions satisfying the original multilevel-valid constraint.
The notation R, is used to denote the subset of data in relation R classified at or below level 1.
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Theorem 1 Given a multilevel-valid constraint fi(q:1(R)) © f2(q2(R)) which is satisfied by the
current state of the database R, if there exist functions f3, f4 and views g3, g4 such that

(a) filar(RUT)) = fi(q1(R)) Q f3(g3(Ri Ut)) — fa(gs(R1)), and
(b) f2(q2(R)) — f2(g2(RU)) @ fa(ga(Rr)) — fa(qa(Rr U1))

hold for all tuples ¢. In addition, for tuples ¢; at level { or below,

(¢) fa(gs(RiUt)) Q fa(ga(Ri)), and
(d) fa(ga(R1)) Q@ fa(ga(RiUt)).

Then fi(g1(RU %)) © f2(g2(RU ). That is, the constraint is still satisfied after the tuple ¢ is
added.

Proof: We only consider the case when © produces a numeric value (other cases follow similarly).
Rearranging (a) gives fi(q1(RU?)) Q fi(q1(R))—(f3(gs(R:)) — fa(ga(R1Ut))). Since O Q f3(g3(Ri)—
f3(ga(R1Ut;)) from (c), adding these gives fi(q1(RU%)) © fi(q1(R)). A similar argument, utilizing
(b) and (d) yields f2(g2(R)) € fa(g2(RUt)). So, by lemma 2, the constraint is still satisfied after
adding the new tuple. ]

Once the functions fs, f4 and views g3, qs4 are found, the constraint may be checked without
reference to High classified information. To the Low user, the constraints appear to be conditions
(c) and (d) of the theorem. Conditions (a) and (b) are used in the design stage to find suitable
functions and views, but are not visible to Low users. While the relation R; must be restricted to
contain only data at level I or below, the tuple t, being added to the database, need not be further
restricted since it already contains only data at level [ or below.

To simplify the functions, we will usually choose fi = fs, f2 = fa,q1 = g3, and g2 = g4, but this
is not required.

A similar theorem holds with respect to delete operation.

8 Reaching Database States that do not satisfy Level-valid
Constraints

It is still somewhat unclear how the initial consistent database state is to be reached, and how to
reach those valid database states that fall outside the level-valid constraints (i.e., database states
that are in V — V'). That is, we have developed a technique that allows us to reach many database
states without referring to High data, but we must have some technique allowing us to reach all
database states.

These additional techniques will require checking High data to ensure that the original multilevel-
valid constraint is still satisfied, even if the level-valid one is not. Such procedures must therefore
be trusted. However, being trusted may not be enough, since the database has now implemented
the more specific constraints, which must be bypassed. Trusted subjects have the authority to
downgrade information, but may not have authority to actually bypass general database integrity
restrictions. format Generally a DBMS gives the ability to deal with constraints only to the DBA.
The additional database states can therefore only be reached through a trusted DBA.

8.1 Initial state

If a constraint depends upon data in the database, as we are considering, how are the initial tuples
loaded? Constraints such as we are considering require a substantial amount of data in the database

47




in order to be evaluated properly. Otherwise, many legitimate tuples will require special DBA
treatment as they extend the limits of the datasets used in the constraints. In several commercial
systems, the database may be initialized using a COPY command, loading large quantities of data.
During the initial loading, the constraints are disabled, that is, the data is assumed to already be
verified as meeting these constraints. This procedure is useful if valid data already exist in some
other DBMS or file management scheme. If valid data does not exist, it may be necessary to estimate
the values in the constraints using fixed values instead of values derived from views (see the last set
of level-valid constraints in Example 1). After inserting some of the data the constraint could be
changed to a form dependent upon a view of that data.

8.2 Remaining States

Now suppose that a tuple has failed to meet the constraint at its level, but needs to be inserted
anyway? We can assume that some user has been granted both trusted status and DBA privileges.
This trusted DBA must then disable the constraint at the tuple’s level, and disable other inserts at
that level, while they insert the new tuple. Some products (e.g., Oracle) provides this capability,
so the DBA can disable the individual constraint while the tuple is inserted. A similar capability
to disable triggers is desirable when dealing with systems utilizing that method of implementation
(i.e. Sybase). Some systems, such as Ingres, only provide the capability to disable all constraints,
not single ones. An alternative in this case would be for the DBA to 1) delete the rule, insert the
tuple and re-insert the rule or 2) suspend all rules, insert the tuple and reactivate the rules. Such
problems indicate the importance of minimizing the number of times that trusted processes must
be used to insert tuples. The alternative to using the level-valid constraints as developed here is to
perform this process for every addition, not just those that are not allowed by level-valid constraints.

9 Conclusions

We have shown that there is a large class of multilevel-valid integrity constraints that can be trans-
formed into multiple level-valid constraints whose satisfaction is sufficient to ensure that the original
multilevel-valid constraint is also satisfied. The level-valid constraints, by definition, are free from
signaling channels. The price for this is that certain modifications that are valid under the original
constraint, may not be valid under the level-valid constraints. It is possible make such modifications
if we rely on trusted processes to do so.

As part of our current work, we are investigating methods that automatically generate a suitable
set of level-valid constraints for certain multilevel-valid constraints such as aggregation. We are also
investigating how given a set of integrity constraints, triggers may be automatically generated for the
support and repair of integrity constraints in a secure way. By repair it is meant that some actions
are executed to restore the database correctness with respect to the violated integrity constraint.
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. Abstract

The Trusted ONTOS Prototype (TOP) is a new research initiative into secure object
database management. TOP presents a set of features from object data management, C++
application development, confidentiality, and integrity to provide the balance of usability,
safety, and flexibility that ONTOS users have learned to enjoy over the last decade.
Although several paper studies have been conducted by others, we and our sponsors have
concluded that the time is right to produce a prototype that can be used as a testbed. TOP
should help to assess confidentialitylintegrity tradeoffs, efficacy, and performance issues.
In addition, it will be possible to gauge the relative size and complexity of TOP’s
client/server TCB. This paper presents an overview of TOP’s access control policy, fea-
tures, and philosophy.

1. INTRODUCTION

Objects are everywhere. The need has surfaced for trusted systems. To move with the
trend toward object technology, the passive object paradigm of relational database man-
agement has also shifted to the look and feel of genuine object databases (ODBMS).
However, active objects present access control challenges different from those addressed
under the Bell-LaPadula model. In studies produced to date, the exclusive focus on confi-
dentiality has generally eschewed the spirit of object data management. From these studies
[2,3,4,7] it became clear that the emphasis on finding a high-assurance mechanism to con-
trol access has begun to overshadow the goal of providing useful multilevel access to object
databases. ONTOS, as a principal vendor of ODBMS, has recognized the need to conduct
security research! in the context of contemporary object technology.

1.1  Objectives: A Usable B1 Client/Server ODBMS

As a research effort, the TOP developers were given the opportunity to choose a set of
features from object data management [8], C++ application development, confidentiality,
and integrity to provide the balance of usability, safety, and flexibility that ONTOS users
have learned to enjoy.

Defining assurance for a B1 object data management system has been a continuing chal-
lenge during the project. Neither the TCSEC nor the TDI sheds direct light on either the
security issues or acceptable means of their resolution. Over the last five years, there has
been increasingly active research into defining access control in ODBMS. Readers of the
current literature easily become aware of lack of consensus among the researchers on many
of the most fundamental issues (e.g., inheritance, the object model itself). Many trusted

IThis project is funded by Rome Laboratory under Contract No. F30602-93-C-0123
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ODBMS researchers have worked from the perspective of the relational model, which has
had the undesirable effect of missing the major issues of the common object programming
models (C++, Smalltalk ). TOP explores the implications of a de facto object model (C++)
on security concerns, and attempts to resolve conflicts between the model and confidential-
ity requirements2.

The B1 level was chosen deliberately to provide the TOP team with the freedom to experi-
ment in the design of a first-time-ever TCB without having to be concerned with: TCB
minimality, least privilege, least common mechanism, or covert channels, as would be re-
quired for higher TCSEC levels. We believe that this is proper; the lack of worked exam-
ples provides us with no advance insight into either the challenges that will be encountered
in a real system, or into the tradeoffs needed for their resolution. We have concluded that
the prototype, once implemented and used, will give us valuable information about the po-
tential for achieving B2 or higher assurance in trusted ODBMS architectures.

We and our sponsors decided that we would benefit more by undertaking a proof-of-con-
cept prototype development that we would by conducting a theoretical study. We intend
our results to provide new knowledge in the theory and design of trusted ODBMSs, and an
empirical validation of such theories and designs.

Designing and maintaining a good database has become an art form in and of itself. The
subtleties of security policy, particularly arcane concepts like the *-property and its conse-
quences often serve to befuddle users and through confusion make things harder than they
need to be. TOP strives to minimize constraints and to encourage natural interaction be-
tween user and application. The philosophy in TOP has not been the dismissal of prudent
confidentiality concerns in favor of database integrity or vice-versa. It has instead been to

recognize that the reason for the existence of the *-property is to control untrusted, poten-
tially malicious, application code. We believe this can only be done by shutting out un-
trusted code at critical junctures where confidentiality and integrity objectives are in poten-
tial conflict. This is achieved through a private multilevel dialogue between just the cleared
user and the TCB3.

Here are our priorities:

« A well thought-out marriage of confidentiality and integrity. Everyone
knows what is meant by confidentiality; by ‘integrity’ we mean that the user be pro-
vided with tools and functionality to produce and maintain a consistent representation
by an object database of some aspect of the real world. This means that the user need
be provided the ability to get it right, to keep it right, and to know if it is right.

« A sound means of resolving conflicts between confidentiality and in-
tegrity objectives. Since the best knowledge of the relationships between the data
and the real world resides with the user, we believe that the resolution of confidential-
ity/integrity conflicts can best be resolved by trusted dialogue between the informed,
cleared user and the TCB. We propose an environment where the DBA and the cleared

ZFor example; under confidentiality requirements, the class graph (schema) need not be fully visible at all levels; a
coherent multilevel object model, on the other hand, would seem to require that the subclass relations of the class
graph be identical at all levels. In TOP, the class graphs of each visibility level are not necessarily isomorphic to
each other (compromise towards security), and multiple inheritance is not supported due to the complications it
introduces into multilevel type analysis, and the definition and implementation of uniqueness concerns. Also, the
choice of C++ has forced TOP to address the daily issues of programming: multilevel source code (C++ header files
are the schema descriptions), program object code is not stored in the database and methods bodies may vary
among the different levels of an object.

3Security policies include authorized users to reconcile those conflicts that cannot be handled through an
automated policy; for example: downgrading data, simultaneous codperating object updates at multiple levels, and

any other apparent violation of the * -property. Because of the need for an isolated trusted path that can be
invoked during a session by either the user or by the TCB, TOP assumes the existence of a B3 trusted path.
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users cooperate to resolve data conflicts, and provide true multilevel transactions for
that purpose.

« User views that accommodate clearance and need-to-know.  Objects and
relationships should be presented to users consistent with the security profile of the
application environment. Views, including multilevel views, can provide the applica-
tion with timely presentations of data that are suitable and safe for presentation to un-
trusted code.

« Cover stories, not accidental polyinstantiation. The database should repre-
sent reality except in those cases where an ‘alternate reality’ is required by sufficiently
cleared users. The confidentiality policy ought not to be allowed to corrupt a database

solely because of the over-restrictiveness of the % -property.

« Truly object-based, not relational-based, policy model and implementa-
tion. Work done by many previous researchers has extrapolated from the well-
known relational security models. We, on the other hand, have revisited the implica-
tions of the model from the perspective of the object-oriented environment, to produce
a fresh outlook for ODBMS security. Furthermore, the choice of C++ is now becom-
ing even more widely accepted as a application programming interface, and our imple-
mentation will be as faithful to this regime as is practicable.

1.2 Overview

In the remainder of this paper we present the access control policy, beginning with an
overview and progressing into details of the operations of creation, viewing, modification
and deleting multilevel objects. An example is provided to illustrate novel features of our
work. The paper concludes with a description of the project plan and status.

2. POLICY OVERVIEW

TOP is intended to satisfy the mandatory and discretionary policy requirements for B1, as
specified in the TCSEC. TOP bases its mediation on a combination of factors that include:
the user’s clearance, the environment from which the user logs in, the user’s login level,
and the security attributes of TOP objects being accessed. In principle, TOP objects may
all be multilevel, and may also be subject to discretionary access controls.

2.1 MAC: View of Level-Dominated Data

TOP Users are represented by untrusted clients that are labeled with the user’s login level.
The client is provided with a view of TOP objects (viz. schema, properties and proce-
dures). The view is derived from single level ‘slices’ of TOP objects (i.e., the [-instantia-
tions) whose level, /, is dominated by the client’s level. Such views are consistent with the
simple security and discretionary security conditions of Bell-LaPadula.

For the time being, TOP’s policy model is restricted to hierarchical levels and does not
encompass the complete lattice model. This is because of the evolving semantics of the /-
view as an alternative to automatic polyinstantiation. The rationale behind our postponing a
generalized lattice is given in Section 3.3, below, where we describe scooping and its uses.
Complications also arise because TOP allows schema-level cover stories 4.

2.1.1 Update at Level

TOP treats all clients as untrusted subjects. In normal operation, this is quite adequate for
retrieving and updating data. Creation and modification of data is performed at the level of

4Assume the reader has permissions <top, {A,B}>, and is reading an object X. Assume that X is instantiated only
at <confidential, {A}> and <confidential, {B}>. The user may view both instantiations under the mandatory access
control policy; however, it is possible that the schema corresoponding to the two compartments may be
different. Thus, the state and the precise type of the object can be ambiguous when compartments are used.
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the client, and is consistent with the *-property and discretionary security conditions of
Bell-LaPadula. TOP stores the data persistently as a faithful image of the client’s view
from its level. Unlike trusted RDBMSs, untrusted updates of this form do not cause
polyinstantiation. Accidental polyinstantiation occurs in trusted RDBMSs as a consequence

of the *-property and multilevel operation. In fact, as we show below, TOP’s semantics
precludes the possibility for accidental polyinstantiation to occur.

2.1.2 Trusted Updates to Strictly Dominated Levels (Downgrades)'

TOP supports multilevel updates through a trusted dialogue between an authorized, appro-
priately cleared user and the TOP TCB. The classes of update supported are: downgrade,
update of multiple levels of data at the same time, and cover story (intentional polyinstan-
tiation). The mechanism used to support the dialogue is a fully-isolated B3 Trusted Path
that is invoked either by the user or by the TOP TCB.

2.2  Discretionary Access Control

We plan for TOP to provide DAC controls to support rdles for DBA and SSO along with
mode-based access controls to the granularity of individual users and groups. At present
there is no agreement within the community over issues of the scope of DAC in object
contexts and over acceptable mechanisms for its assured implementation. We plan to de-
sign a DAC mechanism to provide DAC over named objects, including databases, object
instantiations, and procedures.

2.3  Integrity: DBA-Provided Base Types

Most customers consider the preservation of database integrity a higher priority than control
over disclosure. Integrity determines the continuing utility of the data and its interrelation-
ships. Database operations are traditionally based on the notion of transactions. A transac-
tion is a set of operations that read and/or write persistent objects and satisfies the ACID
properties (atomicity, consistency, isolation, and durability). Briefly, atomicity means that
the transaction is either executed in its entirety or not executed at all; consistency means that
the transaction maps a database from one consistent state to another; isolation means that
the transaction does not read intermediate results of other non-committed transactions; and,
durability means that once a transaction is committed, its effects are guaranteed to endure
despite system failures. Scheduling of transactions, i.e., locking of data, needs to be ac-
complished such that the user application is notified of the success or failure of each trans-
action. This notification, unfortunately, could lead to illegal information flows and conflict
with confidentiality policy requirements.

Modern DBMSs implement DBA-defined integrity checks that dynamically monitor data
creation and update. Since the use of bad data will propagate additional bad data, we want
to ensure that each transaction reflects the user’s intention at the time of the commit.

In multilevel data management there is a potential for conflict between confidentiality and
integrity concerns. This conflict comes about as follows: In the presence of multilevel in-
tegrity constraints, updates to low data may be constrained by more sensitive values. If the
multilevel integrity constraint is known at low, it may be possible for an interloper to derive
or infer specific information at high through probing.  Existing literature has identified
multilevel integrity problems regarding conflicting data values; referencing non-existing
values; deleting referenced values; and, accidental or policy-induced polyinstantiation of
data. TOP is designed to address these problems as well as others.

2.3.1 Multilevel Integrity Constraints

Triggers are one way in which ONTOS supports single-level integrity constraints. Because
of TOP’s support for multilevel objects, even single-level integrity constraints may involve
a comparison of the multilevel values that had been instantiated. Validation of an update,
therefore, may run afoul of an integrity constraint, independent of the level at which the
client is acting. Notification of the client would not be permissible if some of the con-
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strained data were classified at a higher level than the client. In such cases, TOP invokes
the B3 Trusted Path to notify an appropriately cleared person of the violation. The person
may well be the user on behalf of whom the client is operating. She would be notified if
her workstation were located in an sufficiently cleared area, and if she were cleared suffi-
ciently to receive notification. Such notification would be safe, since the Trusted Path
mechanism is isolated from untrusted domains and the communication is between a cleared
human and the TOP TCB. If it is not possible to notify the user directly, TOP will notify
the DBA. The cleared user may then take appropriate action with respect to the update as a
multilevel transaction. '

2.3.2 Polyinstantiation Control Specific to Object Instantiation

Trusted RDBMSs can get badly corrupted from rigid adherence to the % -property: an un-
trusted subject is forced to write data at its own level, and cannot even lock data at lower
levels [8]. In contemporary trusted RDBMS architectures, updates to existing low data
cannot be performed from a higher level without the possibility of a Trojan Horse com-
promise, since there is no assured means for the user to verify that only the intended infor-
mation flow transfers from high to low. The only viable workaround has been to log out
of the higher level and perform the update after logging back in at the lower level. This
jeopardizes the ACID properties of the transaction: since all the data in a multilevel transac-
tion cannot be not locked during a manually-implementedS multilevel transaction, data can
become damaged by other users’ transactions and conversely.

When accidental polyinstantiation does occur, there can be far-reaching deleterious effects.
For example, aggregate functions would likely return unpredictable values. These in turn,
can, if used as the basis for decisions or future updates, imperil the correctness of the entire
database.

But, sometimes polyinstantiation is necessary, although this is only when the intention is to
deceive. In that case, the deception is called a ‘cover story’, the truth is instantiated at a
higher levelS, and the user needs to be able to accomplish this operation without sacrificing
any of the ACID properties.

As shown below, TOP addresses this problem directly.

3. INSIDE TOP

The TOP access control policy model [9] is derived from the Bell-LaPadula family of
models. In the initial prototype, however, we have chosen not to deal with the full lattice
of compartments and are using only hierarchical levels. This has been done to simplify
definitions needed for deriving views of multilevel objects. This allows us to uniquely
identify the nearest level dominated by a specified level and eliminate complications caused
by dominated non-comparable compartments. The section on views shows a motivation
for this simplifying decision. Future treatments of TOP will address the general case.

3.1 Multilevel Schema and Property Visibility Levels

Every TOP object is derived from a type specified in the database schema. Types contain a
set of properties and procedures (attributes). These are either explicitly defined in the type,
or inherited from a supertype. A type is a subtype when it inherits attributes from a parent
type, which is called the supertype. Inheritance is a means of organizing database types
into a meaningful framework. Each of the attributes is assigned an explicit visibility level
below which it is invisible. A sensitivity label that dominates the visibility level is assigned

5Tt would appear to a system as though distinct single-level untrusted logical subjects were independently
involved in separate transactions. An alternative, such as that in replicated RDBMS architectures like that of
SINTRA places responsibility for the complete multilevel transaction on multiple untrusted single-level DBMS
servers.

SReaders of spy stories may be aware of onion-like layers of cover stories upon cover stories.
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at the point of instantiation rather than globally over the type so as to afford maximum
flexibility and control over information access. In order to provide multilevel views of
schema and objects, we have chosen to define the visibility level of the type to be equal to
the greatest lower bound of its non-inherited attributes.

Inherited attributes are assigned an induced visibility level equal to the visibility level of the
type or of the attribute, whichever is higher. TOP supports multilevel inheritance. The
visibility of the inherited attributes is governed by a rule that is explained following the dis-
cussion on [-instantiations.

Muliiple inheritance, though supported in C++, is not supported by TOP.

3.2 Example

An example will be presented here in order to illustrate various issues on multilevel
schema, views, polyinstantiation, and deletion. A typical scenario involving this database
is that once a drug has finished its testing phase and has been released, the information re-
garding the test results has varying degrees of sensitivity. The label on the drug is a kind
of cover story, while the actual test results (possibly indicating adverse effects) may need to
be classified as top secret. The number of lawsuits involving this drug may direct the need
to desensitize some of the information, or at least update the counter_indications labeling.

In this example, we use a hypothetical schema from a database at a pharmaceutical com-
pany. The part of the schema we will look at consists of two class definitions: Drug and

Status. The table below shows the properties of these two classes, along with the sen-
sitivity labeling for each property.

Drug Status

B C++_ Name C++ | Name

(U int _ USP_code C char* stat code

U char* drug_name U char* labeling

C Status* | status S char* report_name

u char* indications S char* observations

U char* counter_indications § T char* testing_results
- S int num_lawsuits

In the table, Name and C++ Type are self-explanatory. Label denotes the- visibility label of
the property, and is the minimum sensitivity level at which the property can be viewed.
Drug.status is a direct reference’ to an instantiation of Status. Note that the very
fact that a reference exists between any Drug and a Status object is itself classified to at
least C. This does not interfere with the ability for some Status.labeling values to
be accessed at the U level from a St atus object, as will be shown.

3.3  Multilevel Object and Identity

TOP objects are generalizations of ONTOS objects, and are likewise differentiated by ob-
ject identity. Object identity is implemented within the TOP TCB through object identifiers
(OID); each client references objects through tokens provided uniquely to it by the TOP
TCB. TOP object instantiations contain multilevel instantiations of some or all of the ob-
ject’s properties. A client that is authorized to ‘see” an object instantiation does so through
a view defined at the client’s login level, . This is called the /-view of the object instantia-
tion.

TIn ONTOS DB notation, this would be an OC_Reference.
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3.3.1 [-Instantiation

If it exists, the instantiation of an object denoted by the OID and defined at level / is called
the [-instantiation of the object. The /-instantiation contains only the data explicitly written
at level /. In a multilevel ODBMS, object identity remains unique, but the OID may be as-
sociated with distinct /-instantiations of the object that have been defined and entered into
the persistent store at specific sensitivity (classification) levels. The complete object is the

full set of l-instantiations that share a common OID. The [-complete object is the set of I~
instantiations of the complete object dominated by /.

Associated with each [-instantiation is a semantic vector. The semantic vector is used by
TOP to control and protect the contents of properties in the l-instantiation, as well as to
provide a means for defining the [-view of the object. It also provides the user with the
means to enable and maintain cover stories.

3.3.1.1 [-Instantiation Example

Consider an instance of Drug with the following values for its U-instantiation: USP_ code
=DDT7110; drug_name = Marvuval; counter_indications = “Do not use while
sleeping”. The value of indications was not specified, so the default specified for the
property is used. For the C-instantiation we have: indication = boredom; status =
5. The symbol 5 is used to represent a token which itself references an instance of
Status. For the S-instantiation we have: indications = acne;
counter indications =“Do not use while thirsty”.

For the U-instantiation of Status, labeling = “Take 2 with water.” The C-instantia-
tion has stat_code = “Pending investigation.” The S-instantiation has labeling =
“Take 2 with water at bedtime”; report name = “c:\marvuval.rpt”’; observations =

“Patients develop spurious body parts.”; num_lawsuits =40. The T-instantiation has
testing results = “Repeated tests have shown a random tendency for mutations.”

Drug Status

K “Take 2 with water”

0DDT7110
O Marvuval
0
0“Do not use while

sleeping
0 boredom

U

c IO“Pcnding investigation”

0 “cAmarvuval.rpt”

[0 “Take 2 with water at bedtime.”
s [0 “Patient develop spurious body
parts”

[0 40

0 “Repeated tests have shown a
1 | random tendency for mutations.”

In this figure, the amorphous shape on the left represents a C-instantiation of the object
Drug. The arrow represents a reference to the complete St at us object, and shows all of
the instantiations in Status. Note that the C-user cannot see the S and T instantiations
of this object. The C-user will be presented with a view of these objects based on her
client’s level, as explained below.

3.3.2 [-View and Semantic Vector

Users do not directly access /-instantiations. Instead, an l-view is dynamically created for
the user at the time the object is retrieved. The derivation is based on the elements in the
semantic vectors of the -complete object.
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Here’s how it works: If the /-complete object is not empty, then either there exists an [-in-
stantiation or there does not.

If there is an l-instantiation, then the semantic vector also exists. The [-view is built by it-
erating through the values of the /-instantiation’s semantic vector. For each property de-
fined at /, the value of the property will be determined as follows:

« if the semantic vector element is static, the value in the [-instantiation is used.

« if the semantic vector element is scooped, the value is dynamically determined by the
corresponding element in the nearest dominated /-instantiation8,

« if the semantic vector element is initialized_scooped, the value is defined by the schema
for the type.

If there is not an l-instantiation, then the semantic vector does not exist. The l-view is con-
structed in two steps, as shown below.

3.3.2.1 MAC simplification (temporary)
« property values will be scooped directly from the nearest dominated I-instantiation.

« property values introduced at / and not contained in the nearest dominated /-instantiation
are treated as though their semantic vector element was initialized_scooped, and will
acquire default values.

Note that when scooping is used, the property value comes from a dominated /-instantia-
tion. TOP uses scooping as a means of ensuring that high-level clients have access to the
most current view of data updated at lower levels.

This represents another departure from trusted RDBMSs  that support polyinstantiation. In
such systems, if a high-level user performs an update, then subsequent updates to lower
instantiations of the tuple will be automatically masked by the polyinstantiation. It takes
explicit action by the TOP user to enable this form of polyinstantiation, as it can only occur
for those properties whose corresponding semantic vector element has been set to static.

Scooping requires the identification of a well-defined source for property values. The
complete compartment lattice may potentially contain ambiguities. For example, if a Secret
<A, B> property is scooped and distinct values existed at Secret <A> and also at Secret
<B>, the scooping would not be well-defined. Several alternatives are being considered
for resolution of this problem.

A client operating at level / always retrieves an /-view (unless specifying otherwise). Any
object referenced by this [-view is retrieved as the /-view of the referent. Since all [-in-
stantiations of an object are associated with the same OID, the level of the referent need not
be equal to the level at which the reference was originally bound. :

3.3.2.2 Semantic Vector Example

Continuing from the example above, the semantic vector for the object indicates that nearly
all of the specified values are static; all others are scooped. However, since indication
is specified in the C-instantiation, the semantic vector value is either initialized_scooped (if
the C-instantiation had been created prior to the U-instantiation) or static (if the user in-
tended to create a cover story).

3.3.2.3 [-View Example _
In the above example the C-user will be presented with a view of Status consisting of
labeling = “Take 2 with water”; and stat code = “Pending investigation.”

Interestingly, if an T-user were to follow the reference from the T-view of the Drug object,
he would be presented with the T-view of Status, even though the reference was origi-

8The TOP TCB ensures that a value always exists when the semantic vector denotes scooping.
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nally written at C. This is because all objects are accessed through a token that references
the complete object, rather than a specific /-instantiation of the object.

3.3.3 Multilevel Inheritance Principle

In the schema the explicit definition of an attribute within a type is assigned a visibility label
that dominates the level of the type. A property may appear in an l-instantiation only if the
level of the l-instantiation dominates the visibility level of the attribute. This has the follow-
ing implication on multilevel inheritance: A property in an [-instantiation has as its type ei-
ther

« the type of the object if the attribute is defined explicitly and / dominates the visibility
level of the attribute, or

« the type of the nearest supertype of the object such that / dominates the level of the su-

pertype.
This means that distinct /-instantiations within an object instantiation may have different in-
heritance hierarchies?. This causes ‘cover stories’ for supertype, because the visibility of a
supertype in the inheritance hierarchy is constrained by the effective visibility labels of its
attributes.

Previous attempts at multilevel object models have been constrained by the requirement that
the inheritance hierarchy’s sensitivity levels be monotonically non-decreasing from the base
type.[1, 6] TOP’s approach provides greater flexibility and, therefore, greater richness in
semantic expression, with no loss of confidentiality. In particular, this philosophy permits
different views of the hierarchy to exist according to a user’s clearance. This makes the hi-
erarchy yet another ‘property’ subject to access control. In effect, the feature introduces
schema-level cover stories that can further help to control inferences that may have been
based on knowledge of the hierarchy.

For example, consider the following classes:

NuclearMissile ModelFoo

Missile

RegularMissile ModelBar

If the schema is allowed to remain invariant over different visibilities, then we’ve also ex-

posed the fact that ModelFoo and ModelBar are distinct in some fashion more generalized

than can be justified by the model differences!0. Therefore, it seems reasonable that for

those subjects who do not need to know about such distinctions, the schema view should

R}t rglveal them. Instead ModelFoo and ModelBar would appear as direct subclasses of
issile.

3.3.4 Procedures

Morgenstern and others have introduced the possibility of having classified procedures
(‘methods’ in the original paper), with the additional potential for several distinctly classi-
fied instances of a single procedure to co&xist. It is planned that TOP will support the

9This concept was hypothesized as necessary in [1], although it ran contrary to earlier models’ constraints [5,6].

10This is assuming that all mnemonic information is removed from the class names, the method names, and the
property names. That alone is a significant sacrifice in usability.
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specification of multi-instantiated procedures as part of the multilevel schema. Based on
the client security level, TOP would bind the proper instantiation to the client domain.

3.4  Updating the Database

Making changes to a database is significantly more complex than viewing its data. The is-
sues of concern are preserving confidentiality and integrity while users are concurrently
accessing the data through untrusted clients. While these problems are present in trusted
relational DBMS, they are more challenging in ODBMS because users are not limited to the
use of an interactive query facility such as SQL. Application developers write their own.
C++ programs to perform customized transactions.

3.4.1 Creation

When a client, logged in at level /, creates a new object instantiation, the TOP TCB creates
an OID and generates a semantic vector. The client furnishes the initial values for populat-
ing the [-instantiation. If authorized, the client may set elements of the semantic vector.
Otherwise, they take on initial values as follows:

+ static if / is the visibility level of the property
 initialized_scooped if the visibility level is strictly dominated by /.
3.4.2 Modification

In TOP, updates are subject to DAC, MAC, and integrity constraints that are type-specific
and they are further controlled by the semantic vector. There are several cases:

« The client acting at level [/, presents modifications to property values that are visible in
an [-view of an existing object. If the corresponding [-instantiation does exist and the
only modified properties are not scooped (they are, therefore, either static or initial-
ized_scooped), the update is performed to the /-instantiation. This case is completely
compliant with the *-property. All properties to be scooped by this level will continue
to be scooped, independent of this update.

» The client acting at level /, presents modifications to property values that are visible in
an [-view of an existing object. If the corresponding /-instantiation does not exist and
the modified properties are not visible in the nearest dominated I-instantiation, the l-in-
stantiation is created and these property values will be placed appropriately according to
the settings of the semantic vector, as in the case above.

» The client acting at level /, presents modifications to property values that are visible in
an [-view of an existing object. It is possible that all the visibility levels for these prop-
erty values are lower than / and that they are not yet instantiated at this level. The user
may create an /-instantiation dominated by / containing these values. The user can do
this with the B3 Trusted Path. A side effect will be that the semantic vector elements
corresponding to these properties will be changed from initialized_scooped to scooped.

+ In this case, some property value visible below / is updated. This may be because the
user intends to create a cover story or it may be because the user wants to modify the
property at its level. To create the cover story, the user needs to modify the corre-
sponding element of the semantic vector of the /-instantiation to static. To modify data
at a lower level, the B3 Trusted Path must be invoked in order to circumvent the re-
strictions caused by the * -property. Both operations may be performed through the
Trusted Path: the user may concurrently introduce a lower level cover story and update
at multiple levels within the object instantiation.

+ Aclient operating at level / may reference any object for which there exists an [-view.
The reference to this object may reside in the /-instantiation of any other object (as de-
fined in the schema).
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3.4.2.1 Cover Story Creation Example

In order to polyinstantiate a property at level /, the corresponding component of the seman-
tic vector element needs to be set to static. The reader may have noted the presence of two
cover stories in the example: in the Drug object, counter indications has a cover
story at C and a more accurate value at S. In the Status object, labeling has a cover
story at U and a different value at S. The cover story will be scooped by intermediate lev-

els, so the C-view of the Status object will include the cover story for 1abeling.

3.4.3 Deletion

Object deletion updates the state of the database. Therefore, like write, we cannot allow its
observation below the level at which the deleting subject is executing. Furthermore, if
there are instantiations above the deletion level, then the deletion is potentially a cover
story. Therefore, the effect cannot be automatically cascaded upwards.

The TOP motivation is as follows: to the untrusted user, object deletion, while operating at
a particular level, should be indistinguishable from a complete object deletion.

TOP’s policy for object deletion is as follows: the level at which the object is deleted is
marked by a tombstone!l. If there are no other instantiations for the object, the complete
object is deleted (safely). If other instantiations exist below the deletion level, they con-
tinue to remain visible at their respective levels. If other instantiations exist above the dele-
tion level, they also continue to be visible at their respective levels, and any values they
scooped from the deleted instantiation would be written upwards to maintain the coherences
of such views. Uninstantiated levels of the object appear deleted if their views end up be-
ing constructed from a tombstone.

During maintenance, and cover story/polyinstantiation reconciliation, it is possible to
“revive” an object (remove the tombstone, usually replacing it with a live [-instantiation).
Because of the need to maintain the appearance of complete object deletion, we need to
insure that any references that used to appear obsolete (pointing to a deleted object)
continue to appear obsolete; otherwise, untrusted subjects may infer the existence of higher
instantiations. To insure this, we annotate references, and the complete object at each level,
with incarnation numbers'2. Thus, an obsolete reference continues to appear obsolete,
while a fresh references resolves, though both point to the same object.

3.5 Mediation: the Access Validation Monitor

The TOP TCB manages all labeling for its objects and is, thus, designed as a trusted sub-
ject TCB subset architecture. It is responsible for mediating all accesses between its sub-
jects (the untrusted clients) and its objects. As a client/server architecture, TOP maintains
its objects on the fully-trusted server. Mediation is performed through the interposition of
the Access Validation Monitor (AVM) between clients and the server. No path is provided
between client and server that does not involve the AVM, “The AVM and the remainder of
the TOP TCB rely on the underlying B1 (or higher) OS/TCB subset to protect their in-
tegrity, to authenticate users and their clearances, to identify security attributes of clients
and to protect all audit data. It is assumed that the B1 OS/TCB provides a B3-equivalent
trusted path mechanism to support private communications between the user and the TOP
TCB. The diagram below depicts a logical configuration of the TOP architecture from the
user’s perspective.

1Tombstones are not visible to the untrusted client, who can only observe obsolete references, and is incapable
of distinguishing them from complete object deletions.

12[ncarnation numbers are not visible to the untrusted client.
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One of the critical functions of the AVM is OID obfuscation; that is: the minimization of in-
formation content of the client’s perception of OID, and the minimization of the viability of
such information. For every transaction, the AVM produces a new mapping from real
OIDs to tokens that are handed out to the client application. The mappings are transient,
and vary per transaction. Thus, the information contained in such tokens is relatively short
lived (one transaction only), and because of the additional level of indirection, significant
OID data patterns are also hidden (sequence and ordering of OIDs, form of the OID, etc.).

4, STATUS AND PLANS

Following an initial investigative study, the TOP project began in earnest in the summer of
1994 and has completed its informal policy model and preliminary prototype design. This
policy model and design are undergoing further refinement and implementation of the
prototype has begun. An initial configuration is expected for late September 1995. It is
planned that a proof-of-concept demonstration on a multilevel database be constructed for
delivery to the sponsor in June of 1996. At the time this paper is being written, mecha-
nisms for implementing discretionary access control and audit are being considered and will
be reported on in the future.

5. CONCLUSIONS

In this paper, we have discussed the design and design philosophy behind TOP, a research
initiative into developing a foundation for a trusted ODBMS. We have explored many of
the numerous tradeoffs and considerations needed to support a marriage between
confidentiality and integrity, without sacrificing utility. Our differentiation from previous
work is manifested by the fact that ONTOS exists today and TOP is being implemented as
its next generation.

The authors wish to acknowledge the faith, support, and enthusiasm Joe Giordano has
given this project from its naissance. We extend our warmest thanks to ONTOS manage-
ment, and in particular to Sandra A. Wade for her visionary contributions, unflagging in-
spiration and support. We would also like to thank Don Marks for his benevolent assis-
tance, and Matt Morgenstern [5], Arnie Rosenthal, and Bill Herndon [1,6] and Win
Cuthbert for their insight and frankly-given opinions. Smooches to our seldom-seen
spouses and pets.
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Great Unsolved Problems
in Applied Computer Security

What are the great unsolved problems in computer security?

The author proposes four—and announces a $1,000 prize
for the solution to any one of them. The competition, spon-
sored by FIRST (Forum of Incident and Response Teams),
is expected to be an annual event.

In this inaugural year, security experts are challenged to:

« Design a program able to detect the compromise of des-
ignated system files, including the program itself

e Develop a fast technique for writing log files to read/
write media such that the information, once written,
cannot subsequently be modified without detection

« Devise a method to compare the security of two similar
computer systems

 Provide a definitive answer to the question, “Who is
helped by the full disclosure of details about security
holes, and who is hurt?”

The author also explains how the competition will work and
how you can submit solutions to qualify for prize money.

Keywords: Security, intrusion, metrics, disclosure.
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Great Unsolved Problems
in Applied Computer Security

What are the great unsolved problems in computer security?

The author proposes four—and announces a $1,000 prize
for the solution to any one of them. The competition, spon-
sored by FIRST (Forum of Incident and Response Teams),
is expected to be an annual event.

In this inaugural year, security experts are challenged to:

» Design a program able to detect the compromise of des-
ignated system files, including the program itself

 Develop a fast technique for writing log files to read/
write media such that the information, once written,
cannot subsequently be modified without detection

¢ Devise a method to compare the security of two similar
computer systems

¢ Provide a definitive answer to the question, “Who is
helped by the full disclosure of details about security
holes, and who is hurt?”

The author also explains how the competition will work and
how you can submit solutions to qualify for prize money.

Keywords: Security, intrusion, metrics, disclosure.

1.0 How the Competition Will Work

1.1 Challenge

Each year a member of the FIRST Steering Committee will issue the challenge, in the
form of a paper presented at the National Information Systems Security Conference. The
paper will specify each problem and lay out the allowable parameters of a solution.

1.2 Scope of the Problems

FIRST will select problems from a wide variety of topics such as intrusion detection, net-
work protection, implications of trust among network elements, and sociological elements
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of security policy. Each problem will be scaled in such a way that a moderate effort by the
right individual or small team may suffice.

No grand theoretical advances in the state of the art are anticipated. No proprietary interest
in the solutions themselves may be retained. FIRST seeks only to foster incremental
progress along practical lines by the elimination of everyday obstacles to today’s practitio-
ners.

1.3 Submissions

Solvers seeking recognition (and money) will submit their proposals as candidate papers
for the annual FIRST conference. A panel of experts appointed by the Steering Committee
will judge all submissions. Winners will be announced, and prizes awarded, at the FIRST
conference.

Each year FIRST will seek an appropriate venue for the publication of selected papers.
Submitting authors implicitly agree to such publication and must be prepared to cooperate
by meeting deadlines and conforming to editing guidelines. Papers that appear to deal
with proprietary topics, or seek to place limits on the distribution of the ideas expressed,
will be returned unread.

1.4 Awards

The full $1,000 prize will be awarded to any solver who either submits a complete solu-
tion, or proves that a problem as proposed is intractable.

Occasionally the judges will issue merit awards of lesser amounts to honor those whose
contributions, while falling short of the goal, have significantly advanced knowledge in
the field. The judges may also decide to split an award among multiple solvers.

Small awards will also be made to those whose suggestions for future topics are accepted.

1.5 Selection

The FIRST Steering Committee will select the problems, based on suggestions from
around the world. The goal will be to select challenges which are:

e Practical, difficult to solve, and urgently relevant

 Not a