
COA1PRESSIYE STRENGTH OF 
LAMINA REINFORCED 

,].   G.   Davis,   1973 

I'uldis'hcd on demand by 
1XIVERSIT V   M I C R O I- I L M S 

fniVnji.'i Mirrolilms Limited, High Wycomb, England 
A AYm.v Cnnlmny.Anu Arbor, Mir hierin, V.S.A. 

V, 

m 

mw M 
DI^T:L?.üT:ON STATEMI-JNT A 

Arno-;';-.! TO: public release; 
Distribution Unlimited 

€/3 
[p2"l 



~Mto _ fj * .V; V. *'.:'■ 

-A« ^~" 

'■ *.■■» .<<W-; ;;. .■n,i; ;;<, ..-. : 

.;.;-'',, fftV^Sv:.Ci ^\  ••■S.^   *«•;■_ -,-■;. 

i$.&-&;.. ';■-;":>. _ • ^^«fry,\>A-:,■^^v$v•; 

•■•,->"J-. 

v.; ';'''1.l-i^v-.-' :- 

■•'■■: ■-.*":■■■ 

^^-••'*ii;"-^^ 

1   - 
5 - 

6 - 

-10 
-11 
-12 
-20 
-21 
-22 

-33 

***DTIC   DOES   NOT   HAVE   THIS   ITEM*** 
AD   NUMBER:   D423225 
CORPORATE   AUTHOR:   VIRGINIA   POLYTECHNIC   INST   AND   STATE   UNIV 
BLACKSBURG     DEPT   OF   ENGINEERING   SCIENCE   AND   MECHANICS 
UNCLASSIFIED   TITLE: COMPRESSIVE   STRENGTH   OF   LAMINA   REINFORCED 
AND   FIBER   REINFORCED   COMPOSITE   MATERIALS, 
PERSONAL   AUTHORS:   DAVIS,J.   G.    ,   JR.; 
REPORT   DATE: 
PAGINATION: 239P 
REPORT   CLASSIFICATION: 
SUPPLEMENTARY   NOTE: 
LIMITATIONS   (ALPHA): 
UNLIMITED.   AVAILABILITY: 
ANN   ARBOR,   MI .   48106. 
LIMITATION   CODES:       1      24 

,   1973 

UNCLASSIFIED 
DISSERTATION. 
APPROVED   FOR   PUBLIC   RELEASE;   DISTRIBUTION 

UNIVERSITY   MICROFILMS,   300   N.   ZEEB   RD., 

—   END Y     FOR   NEXT   ACCESSION 

END   OF   DISPLAY   LIST 

<<ENTER   NEXT   COMMAND)> 

END 



i t 

This   is an authorized facsimile and was  produced 
by microfilm-xerography  in  1972* by Xerox University 
Microfilms,  Ann Arbor,  Michigan,  U.S.A. 

Accesion For 

NTIS    CRA&i 
DTIC    TAB 
Unannounced 
Justification 

D 

By  
Di.st. ibution j 

Availability Codes 

Dist 

\H 

Avail and/or 
Special 

DTIC QUALITY INSPECTED 5 



73-26,264 

MVIS, Jr., John Grady, 1938-   
COMPRESSIVE STRENGTH OF LAMINA REINFORCED 
AM) FIBER REINFORCED COMPOSITE MATERIALS. 

Virginia Polytechnic Institute and State 
University, Ph.D., 1973 
Engineering Mechanics 

University Microfilms. A XEROX Company. Ann Arbor. Michigan 



COMPRESSIVE STRENGTH OF LAMINA REINFORCED 
AM) FIBER REINFORCED COMPOSITE MATERIALS 

by 

John C. Davis, Jr. 

Thesis submitted to the Graduate Faculty of the 

Virginia Polytechnic Institute and 

State University 

in candidacy for the degree of 

DOCTOR OF PHILOSOPHY 

in 

jineering Mechanics 

APPROVED: 
Chairman, Prof. R. A. Heller 

£ 
Prof. G.  W. ßöitt   - •+   f Prof.  C. B.  Ling / 

Prof.  K.  L. ReiMnider *«>f. B. M.  Barker 

Ifay 1973 

Blacksburg, Virginia 



ACKNOWLEDGEMENT 

The author is grateful to the National Aeronautics and Space 

Administration for the opportunity to write this thesis as part of his 

research assignment at the Lan.gley Research Center and to Professors 

R. A. Keller and G. W. Swift of the Engineering Science and Mechanics 

Department, Virginia Polytechnic Institute and State University for 

their encouragement and helpful guidance. The author is deeply indebted 

to Mr. R. A. Pride, who deferred or switched work assignments so that 

the author could complete this thesis in a reasonable time period. 

Acknowledgement is also noted for the assistance Mr. D. J. Baker pro- 

vided in debugging computer programs and the assistance that Mrs. S. 

K. Seward provided in making a thorough search of the literature.  The 

work of Mr. J. K. Kiss, who provided laboratory assistance, and Mrs. S. 

D. Humble, who typed the manuscript is appreciated and acknowledged. 

Special thanks and appreciation are due my wife and children, who not 

only perservered through a drawn-out education period, but encouraged me 

on to completion. 

11 



TABLE OF CONTENTS 

Page 

TITLE •  i 

ACKHOWLEDCEMENT    ii 

LIST OF SYMBOLS  V 

LIST OF FIGURES AND TABLES X 

I.  INTRODUCTION   1 

II.  REVIEW OF LITERATURE   3 

A. Chronological Review   3 

B. Summary  

III. ANALYTICAL MODEL  32 

IV.  INTERLAMINAR SHEAR    3* 

A. Displacements, Strains, and Stresses  3* 
B. Bending Moments, Normal and Shear Forces   37 
C. Equilibrium Equations  39 
D. Shear Stresses  , . 
E. Solution of Governing Equations   ° 
F. Initial and Boundary Conditions  ?5 

V. SHEAR INSTABILITY OF MULTILAYERED MEDIA   58 

VI.. EXPERIMENTAL INVESTIGATION  63 

A. Lamina Reinforced Composites  • • |3 

1. Laminate Fabrication   £3 
2. Matrix Specimens   ,j! 
3. Matrix-Reinforcement Bond Strength Specimens .... op 
1*. Compression Test of Laminate Specimens ....... ob 
5. Compression Test of Matrix Specimens   °7 
6. Torsion Test of Matrix Specimens  °° 
7. Bond Strength Test  

B. Fiber Reinforced Composites • • • • 
1. Fabrication of Tube Specimens • °° 

2. Compression Test .........   ?2 
3. Torsion Test  „ 
1». Combined Compression and Torsion Test .  I* 

71» 
VII. RESULTS AND DISCUSSION   

Ill 



iv 

Page 

. . . 7U A. Theory  _. 
1. Reinforcement/Matrix Stiffness Ratio   f« 
2. Shear Stress Distribution   j° 
3. Nonlinear Matrix Behavior ..'■••• '' 
k.  Load Increment Size  '? 
5. Boundary Conditions  jjr 

B. Experiment  o 
1. Matrix Compression Test  °± 
2. Matrix Shear Test  °* 
3. Matrix-Reinforcement Bond Strength Test  °* 
k.  Compression Test of Laminate Specimens   °2 
5. Compression Test of Fiber Reinforced Composites ... ob 
6. Torsion Test of Fiber Reinforced Composites   öö 
7. Combined Compression and Torsion Test of Fiber 

Reinforced Composites   °° 
C. Comparison of Experiment and Theory   90 

1. Laminate Specimens   * 
2. Fiber Reinforced Composite Test Results  !«■ 

VIII. CONCLUDING REMARKS  y 

IX. REFERENCES  95 

APPENDICES  101 

A. INTERLAMINAR SHEAR STRESS COMPUTER PROGRAM  101 

B. CLASSICAL BEAM THEORY DEFLECTION FOR CASE A AND CASE 
B BOUNDARY CONDITIONS   10U 

C. FIBER CURVATURE INVESTIGATION   lo8 

.... 227 
VITA  



a. 

v\ 

LIST OF SYMBOLS 

A constant of integration, see equation (B-6) 

th , 
A ,A cross sectional area of fiber, matrix or m  layer, 
f m 
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a amplitude of initial displacement, see equation (1*.63) 
o 

„ j8, empirical curve-fit parameters, see equation (2.17) 

constant in equation (2.19) 

parameters associated fibers and voids, respectively, see 

equation (2.13) 

B constant of integration, see equation (B-6) 

b width of beam 

C constant of integration, see equation (B-6) 

c one half the matrix thickness, see figure (B-2) 

C.B.T.       classical beam theory 

D constant of integration, see equation (B-6) 

A    d diameter of fiber and void, respectively 
f V th 

E E Young's modulus of fiber, matrix or m  layer, respectively 
f* m 

E tangent modulus of matrix 
mt 

£   v Young's modulus of the composite measured parallel and 

transverse to the fibers, respectively 

E Young's modulus of an Isotropie material 

F ,F compressive strength of fiber and matrix, respectively, 
f m 

see equation (2.13) 

F interface bond strength, see equation (2.13) 



vi 

¥ residual compresslve strength, see equation (2.13) 
K 

F ,F        "true" ultimate compressive strength in the fiber 

direction and ultimate composite strength in the 

transverse direction, respectively, (refer to equation 

(2.23) and reference 1*8) 

F first moment of area of the i  layer about the midplane, 

see equation (U.10) 

F ,F forces in the x and z direction, respectively 
x* z 

F constant of integration, see equation (B-6) 

G_,G shear modulus of fiber, catrix or m  layer, respectively 
f m 

G tangent shear modulus of matrix 
mt 

G interlaminar shear modulus defined in reference Ul 
z 

G shear modulus of a unidirectionally fiber reinforced 
LT 

composite measured parallel and perpendicular to the 

fibers 

G shear modulus of an Isotropie material 

G" apparent 6hear modulus, see equation (7-1) 

H matrices in the recurrence formulas, see equation (U.60) 

h distance from the midplane of the laminate to the outer 

surface of the (i-l)  layer 

h thickness of the reinforcement layer, see figure (B-2) 

I moment of inertia of the m  layer about the midplane 
m 
I moment of inertia of a laminated beam about the midplane 

IPK counter used in the interlaminar shear stress computer 

program 
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J number of finite intervals into which the beam is subdivided 

k constant, equation (2.1) 

k ratio of a uniformly applied transverse tensile stress to 

the maximum transverse tensile stress in the resin, see 

equation (2.23) 

y, parameter defined by equation (B-7) 

k parameter defined by equation (B-ll») 

k' shear correction term 

L length of laminate, see figure U.k 

bending moment in the mth layer (+ above, - below midplane) 

total moment of forces about the midplane of a laminate cr 

beam 

normal forces due to bending in the m  layer (+ above, 

- below midplane) 

number of fibers and voids, respectively 

n shear modulus ratio, see equation (2.7) 

n total number of layers above the midplane 

p applied compressive load at which instability occurs 
cr 

th , 
p applied compressive load on the m  layer 
m 
p external shear load 
x 
p external transverse load 
z 

p applied compressive load on a beam 
th 

p (p)        components of the transverse load vector at the p 

node point 

th 
p load vector at the p  node 
-P 

M±m 

K±m 

VBv 



viii 

PI value of the applied compressive load for layer number 

one 

PLo value of applied compressive load on layer number one that 

initiates nonlinear shear stress-strain behavior 

c transverse shear force in the m  layer (+ above, - below 
±m 

midplane) 

a vector in the recurrence formulas, see equation (l*.6l) 

coefficients of a submatrix that forms part of the finite 

difference equations, see equations (U.53) 

a submatrix that forms part of the finite difference 

equations, see equation (U.52) 

r radius of gyration of the fiber 

S coefficients of a submatrix that forms part of the finite 

difference equations, see equations (li.51*) 

c a submatrix that forms part of the finite difference equa- 

tions, see equation (U.52) 

s n + 1 

T coefficients of a submatrix that forms part of the finite 

difference equations, see equations (U.55) 

RiJ 

R 

T 
-P 

*±m 

a submatrix that forms part of the finite difference equa- 

tions, see equation (I*.52) 

the change in strain energy in going from the initial 

position to the buckled position 

displacement in the length direction of the m  layer 

(♦ above, - below midplane) 
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V .V .V      volume fraction of fiber, matrix, and void, respectively 
f* m* v 

th 
V volume fraction of the i  layer 

V ,V quantities defined by equations (2.16) and (2.15), 
f m 

respectively 

v displacement in the width direction of the multilayered 
±m 

beam 

W work done by the applied load in going from the initial 

position to the buckled position 

w initirl transverse displacement 
o 
w transverse displacement due to bending and shear loads 

w total transverse displacement 

x coordinate measured along the length direction of the beam 

V solution vector for the p  node point along the beam 
-P 
y coordinate measured in the width direction of the beam 

z coordinate measured in the depth direction of the beam 

ft  ft        theory-experiment correlation factor for matrix and fiber, 
fc mc 

respectively, used in equation (2.1U) 

ß ratio of maximum shear stress to average shear stress in 

a buckled column, see equation (2.18) 

fj ratio of maximum transverse tensile stress in the resin 

to the applied axial stress 

V Y      shear strain in the ±mth layer measured in the x-y and x-z 
'xy±m, xz±m 
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hear strain in th« 

see figure (5-1) 

Y shear strain in the 1th layer of a multilayered media, 



v limiting shear deformation on a plane oriented at U5° to 

the direction of the filaments, refer-to equation (2.12) 

6 moment arm for the applied axial force, see figure (U.U) 

6 displacement of the applied axial force in going from the 

initial position to the buckled position, see figure (5.U 

r   e  ,    strain in the imth layer parallel to the x, y, and z  axes, 
x±n* ytm* 

respectively 
ez±m 

e limiting strain, refer to equation (2.13) and reference 27 

6 the angle between the z  axis and the initial position of 

the cross section of the i  layer 

X Lagrange undetermined multiplier 

u  u_      Poisson's ratio associated with stresses applied parallel 
T-T'TL 

and perpendicular to the fibers, respectively, in a 

composite material 

Poisson's ratio for an Isotropie material 

stiffness parameter, refer to equation (2.21) and reference 

UO 

axial compressive stress in the fiber and matrix, respect- 
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axial compressive stress in the a composite material at 

failure, see equation (2.23) 

matrix compressive strength, see equation (2.1U) 

Cf°m 

°L 

°mc 
o matrix yield strength 
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matrix "characteristic stress", refer to equation (2.11) 

o 
y 

and reference 16 



o compresBive strength of a composite material 

o»,o-       compres8ive stress in the fiber and matrix, respectively, 
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corresponding to shear instability 

a axial stress in the ±m  layer due to bending and shearing 
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th 
,re6s in the a 

loads 

o normal stress acting on the upper surface of the m  layer 
m,m 
0  ,0  ,    normal stresses in the ±m"    layer measured parallel to the 

x, y, and z axes, respectively 

T value of shear stress corresponding to the first break in 

th 
the five segment stress-strain curves for the i  layer 

T shear stress in the m  layer measured in the x-z plane 
im 

th 
t average shear stress across the m  layer 
ave 

T interlaminar shear strength, see equation (2.17) 

T interlaminar shear strength, see equation (2.2M 
LT 
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th on the m  layer 

T shear stress measured in the x-z plane 
xz 

T   .T   ,  shear stresses in the mth layer and measured in the x-y, 
xy±m* xz±m' 
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x-z, and y-z planes, respectively 
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a multilayered beam, see figure B.2 
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i 
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* angle of misalignment between the reinforcement and the 
o 

load axis 
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I.  IHTRODUCTION 

For slightly over a decade, materials and structural engineers in 

the aerospace community have been focusing attention on fiber reinforced 

composite materials. This interest has largely been stimulated by the 

potential improvements in strength to density and stiffness to density 

ratios offered by the class of materials. Numerous papers, which deal 

with the behavior of such materials, have been prepared. While the 

state of the art in predicting the mechanical behavior of composites has 

moved forward at a rapid rate during the past decade, there are still 

some unresolved areas, notably analyses for predicting failure strength. 

The purpose of this thesis is to report the results of an investi- 

gation on the compressive strength of uniaxlal fiber reinforced and 

lamina reinforced composites when loaded parallel to the reinforcement. 

In the section which follows, a comprehensive review of previous re- 

search on the subject is presented. An analytical model which provides 

substantial insight into the response of unaxial composites under 

compressive load is postulated. Derivation of the governing equations, 

boundary and initial conditions, casting the governing differential 

equations into finite difference equations and a computer solution to 

the equations are discussed. Theoretical predictions are compared with 

results for boron-epoxy, glass-epoxy and aluminum-wax specimens tested 

in axial compression. 

Perhaps a few words on the physical arrangement of typical fiber 

reinforced composites are in order before proceeding to the next 



section. Figure 1.1 shows cross sections of composite materials that 

are currently receiving considerable attention in the aerospace commun- 

ity. Three of the composites have a resin (epoxy) type matrix whereas 

the fourth has a metal (aluminum) matrix. Each material is built-up 

from a series of layers or laminae. For the boron filament reinforced 

epoxy, each lamina consists of a single row of filaments. In the 

graphite composite, each ply consists of a row of yarns. In the glass 

fiber composite, each layer contains a number of rovings that have been 

laid side by side. Due to the irregular spacing of the fibers in the 

matrix, it is the opinion of the author that it would be impossible to 

postulate a simple mathematical or physical model that would be capable 

of completely explaining the material behavior. As previously indicated 

herein, it will be shown that it is possible to postulate a model which 

provides substantial insight into the material response to compressive 

load in the direction of the fibers. 



II.  REVIEW OF LITERATURE 

The behavior of unidirectionally fiber reinforced composite mater- 

ials when subjected to an axial compresslve loading parallel to the 

fibers has been investigated both analytically and experimentally during 

the past decade. Following is a chronological review of the literature 

which has proposed methods for predicting strength or modes of failure. 

A. Chronological Review 

In I960, Dow and Gruntfest (1) proposed two possible modes of 

failure. One was based on the premise that as the composite is com- 

pressed in the direction of the fibers, the high Poisson's ratio of the 

matrix relative to the fibers creates a tensile stress on the bond be- 

tween fibers and matrix which tends to produce internal separation 

failures between them. The second mode of failure was based on the 

argument that the compressive load Is carried by fibers which behave 

like columns supported within a continuous elastic foundation provided 

by the matrix and consequently strength is limited by the stability of 

the fibers. The latter mode has received substantial study in the 

ensuing years whereas the other mode has received only limited attention. 

Using analysis contained in reference (2), Dow and Gruntfest 

derived the formula 

where 

o ■ failure stress (buckling) in the fiber 



k ■ constant 

tf ■ Young*» modulus of the fiber 

E » Young's modulus of the matrix 

r. ■ radius of gyration of the fiber 

A. ■ cross sectional area of the fiber 

Equation (2.1) by itself did not permit direct calculation of af since 

the value of k was unknown. However, it did offer insight into some of 

the variables that influence compressive strength and it was used for 

this purpose in reference (1). 

Elkin (3) examined HOL rings that had been tested in compression to 

failure. He concluded that failure was a consequence of fiber buckling 

followed by shear and tension rupture of the matrix. Analysis for 

predicting compressive strength was not presented. 

Pried (U) in 1963 published the results of an experimental study on 

compressive strength. Axial compression tests were performed on 1/2 in. 

x 1/2 in. x 1 in. blocks of polyester resin reinforced with either a 

1/8 in. diameter drill rod, a 3 mm diameter pyrex glass rod or a single 

strand of E-glass roving. Each type of speciment failed at or near the 

yield strain of the unreinforced matrix. Fried reasoned that as the 

yield point of the matrix is approached, it begins to flow and thus 

ceases to support the fibers. Therefore, it was proposed that compres- 

sive strength could be predicted using the rule of mixtures and the 

following equation was presented. 

a ■ a ay fl ♦ Vf (Ef/EB - 1)1 (2.2) 



where 

'."* er  ■ yield strength of the matrix 

V. «volume fraction of fiber 

Realizing that his data had been obtained on very low volume fraction 

specimens, Fried suggested that the value computed from the rule of 

mixtures should serve as an upper bound. Equation (2.2) does not agree 

well with experimental data on high volume fraction specimens and does 

not take into account variables, other than volume fraction, matrix 

modulus and yield strength, which influence compressive strength. 

In spite of the deficiencies Just mentioned, Fried did make a 

valuable contribution to the subject by putting forth ideas which have 

since been used in micromechanics analyses of the subject. These ideas 

include: (1) The fibers behave as long slender columns which are 

supported laterally by the matrix. This thought appears to have been 

obtained independent of reference (1). (2) Compressive strength is 

influenced by the compressive yield strength and shear strength of the 

matrix. (3) An optimum fiber geometry and volume fraction exist. 

One year later, in 1961*, Fried and Kaminetsky (5) presented exper- 

imental results that substantiated several of the ideas postulated in 

reference (k).    Existence of an optimum fiber volume fraction was 

demonstrated. In addition, it was clearly shown that compressive 

strength increases with increasing resin yield strength for the range 

of values investigated. 

Hosen (6) was the first to propose an analysis that permitted 

estimation of compressive strength without requiring the use of 



empirical factors. He suggested that the composite material be repre- 

sented by a laminate consisting of alternating hard and soft laminae. 

The hard laminae represent fibers vhereas the matrix is simulated by 

the soft laminae. Thus, it was proposed that a two dimensional model 

be utilized to represent a three dimensional problem. Two modes of 

failure were postulated, extension instability and shear instability. 

For the extension mode, which is analogous to column buckling of a beam 

supported by an elastic foundation, adjacent fibers are assumed to 

buckle out of phase and thus subject the matrix to extension deforma- 

tions transverse to the fibers. For the shear mode, adjacent fibers 

are assumed to buckle in phase and subject the matrix to shearing de- 

formations. 

By using the energy approach, assuming linear elastic behavior 

for both fiber and matrix, and assuming the fiber to be much stiffer 

than the matrix, Fosen (6) developed the following equations for 

predicting compressive strength. For the extension mode 

1/2 

O - 2Yj J,VI I (2.3) •fa] 
and for the shear mode 

G 
m 

where 

a   m  compressive strength of the composite 

(2.U) 



G • shear modulus of the matrix 

and the remaining symbols have already been defined herein. The lover 

value predicted by equations (2.3) or (2.k)  gives the best estimate for 

compressive. strength. For nost materials of interest, equation (2.V) 

yields the lover prediction and consequently has received the most 

attention. 

Examination of equation (2.1») and subsequent comparison with ex- 

perimental data indicates the folloving deficiencies: 

1. Elastic properties of the fiber ore not taken into account. 

2. Effects of fiber geometry (diameter and straightness) are 

neglected. 

3. Honlinear behavior of most matrix materials is neglected. 

k.    Experimentally determined values of strength ore generally 

one-third to one-half the value predicted by equation (2.1*). 

Rosen realized item number 3 above and offered the suggestion that 

the shear modulus be varied linearly from its elastic value at an axial 

strain of one percent to zero at an axial strain of five percent. 

In addition to the analysis, reference (6) presented photoelastic 

stress patterns for gloss fibers in an epoxy matrix to illustrate that 

instability type failure could be expected vhen the material is sub- 

jected to compressive loading. 

Data and analysis appearing in reference (6) are also contained in 

reference (7). 

A correlation between compressive strength and behavior in trans- 

verse shear vas given by Fried (8). His results were obtained from 
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tests on orthogonal glass filament reinforced epoxy laminates. A 

linear relationship betveen compressive strength and interlaminar shear 

strength vas observed. Both types of strength vere shovn to decrease 

linearly with increasing void content. One would anticipate that an 

increase in resin shear strength and fiber to resin bond strength would 

be accompanied by an increase in interlaminar shear strength and con- 

sequently an increase in compressive strength. 

Further emphasis on composite failure by buckling of the filaments 

was presented by Ekvall (9). Failed specimens were examined and found 

to contain buckled filaments. Using analysis presented in reference 

(2), a comparison of the predicted and measured buckle length was made. 

Agreement was good. However, the problem of predicting compressive 

strength was not addressed in reference (9). 

Schuerch (10), apparently working independently, used the same 

model as Rosen (6) and arrived at the same results for composites that 

are not subjected to inelastic deformations prior to failure. To in- 

clude the effects of nonlinear behavior, Schuerch (10) proposed that the 

tangent shear modulus be used in equation (2.U). He assumed Isotropie 

behavior in the nonlinear portion of the stress-strain curve for the 

matrix material. That is 

ct - IÄT (2-5) 

where 

G. * tangent shear modulus for the matrix material 
mt 

E . * tangent modulus for the matrix material 
mt 



V     ■ Poisson's ratio for the matrix material 

Results of compression tests on two boron filament reinforced magnesium 

specimens are reported in reference (10). The measured strengths are in 

reasonable agreement with the predicted strengths based on tangent modu- 

li values. As Schuerch points out, it is perhaps fortuitous that ex- 

periment and theory were in agreement, especially when the failure 

strain of the composite was approximately four times the yield strain of 

the matrix. 

Data and analysis appearing in reference (10) are also contained 

in reference (11). 

Another approach for predicting compressive strength, which con- 

sists of treating the composite material as a beam column with low shear 

stiffness, was presented in reference (12). For columns which buckle 

elastically, the analysis can readily be found in many engineering 

texts.  (See for example, reference (2).) It was proposed in reference 

(12), that predictions for columns which fall inelastically be based on 

tangent shear moduli. Isotropie relationship between extensional and 

shear stiffnesses in the inelastic region was assumed. In an attempt 

to account for the effect of voids in the matrix material and the effect 

of filament misalignment; influence factors were incorporated in the 

analysis. The authors of reference (12) were apprehensive about apply- 

ing the analysis as the column aspect ratio approached zero. This is 

believed to be a consequence of focusing attention on the fiber diameter 

rather than the overall dimensions of the column. 
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Most of the experimentally determined compressive strengths re- 

ported in reference (12) vere obtained on NOL ring type specimens loaded 

in diametrical compression. Scatter in the measured strengths was such 

that comparison vith theory could only be made on a statistical basis. 

Perhaps the most important experimental data presented in reference 

(12) are the photographs of plexiglass reinforced rubber laminates under 

varying amounts of compressive load. These pictures clearly show that 

the reinforcing material, plexiglass, deforms laterally at loads below 

the maximum compressive load supported. In other words, there must have 

been some initial curvature in the plexiglass laminae which increased in 

magnitude as the compressive load was increased. Since lateral deform- 

ation of the reinforcing laminae is accompanied by shearing deformations 

in the matrix material, the shear stiffness of the composite would de- 

crease with increasing compressive load if the matrix material exhibits 

inelastic behavior in shear. It appears reasonable to assume that fiber 

reinforced materials would exhibit the same type behavior. Fiber colli- 

mation is usually better for large diameter fibers (.001* in.) than for 

small diameter fibers (.000!* in.). Consequently, one might expect an 

optimum fiber diameter to exist for a given material combination since 

compressive strength would increase with increasing fiber diameter until 

the fibers start to fail in bending. This phenomenon had been suggested 

by Fried (h)  and had been proven experimentally by Levenetz (13). 

Utilizing mechanics of incremental deformations, Biot (lV) develop- 

ed equations for predicting the stability of a multilayered media. The 

multilayered media could represent the model used by Rosen (6). In his 
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analysis, Blot assumed both media to be incompressible and the buckle 

vave length to be large compared to the thickness of either layer. The 

results of Blot's analysis can be written in the form 

1 - V, 

1 + n (1 - Vf)/Vf 

1 ♦ n2 ♦ 
n(l - 2Vf) 

2Vf(l - Vf). 

(2.6) 

vhere 

(2.7) 

If the ratio of fiber to matrix stiffnesses is large, the value of n 

approaches zero and equation (2.6) reduces to equation (2.U) which was 

derived by Rosen (6). It should be noted that for most materials com- 

binations of current interest, the bracketed term in equation (2.6) 

ranges from approximately 1.005 to I.0U5. Obviously, equation (2.6) has 

the same deficiencies as equation (2.1»). 

An indepth discussion of factors influencing the compressive 

strength of filament reinforced composites is given by Foye (15). Using 

the energy method of analysis and treating the composite as a macro- 

scopic, homogeneous, orthotropic material Foye showed that the compres- 

sive strength should equal the shear modulus of the composite. That is 

a . G (2.8) 

where 

G * shear modulus of the composite 
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Assuming the Reuss or "stiffnesses in series" model the shear stiffness 

of the composite is related to the constituent stiffnesses by the 

following equation. 

G 

° " (1 - Vf) *\ (0jGt) (2,9) 

Substituting equation (2.9) into (2.8) yields 

° " (1 - Vf) *\ i0jGg\ (2'10) 

As indicated by Foye, equation (2.10) reduces to equation (2.1*) when 

G » G . When equation (2.U) vas derived, the strain energy due to 
f   m 

shearing stresses in the filaments was neglected. For most materials 

currently of interest the second term in the denominator of equation 

(2.10) can be neglected. However, as the volume fraction approaches u- 

nity and/or the shear modulus of the fiber is of the same order of 

magnitude as that of the matrix the term becomes important. 

In addition to the analysis discussed to this point, reference (15) 

also focused attention on the effects of voids, fillers and whiskers on 

compressive strength. In general voids are expected to decrease 

strength whereas fillers and whiskers may be used to improve strength. 

In yet another attempt to bring experiment and theory closer to- 

gether, Dow. et al. (l6) suggested that a matrix "characteristic stress" 

be included in the analysis and the following equation for predicting 

strength was offered: 
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[w, 11/2 
(2.11) 

where 

O ■ matrix "characteristic stress" level 
y 

For elastic perfectly plastic materials, the characteristic stress was 

identified as the yield stress. Ho suggestion was offered for materials 

exhibiting other types of stress-strain behavior. Equation (2.11) can 

be derived from equation (2.U) when the following assumptions are made: 

1. The matrix material exhibits isotropic behavior and is incom- 

pressible after yielding. 

2. Axial strains in the matrix and fiber are equal. 

The major fallacies associated with using equation (2.11) is that 

most matrix materials currently of interest do not exhibit elastic 

perfectly plastic behavior, hence determining O remains unresolved, and 

the effect of residual tensile stresses in the matrix from curing the 

composite at elevated temperature is not taken into account. 

Two problems related to the compressive strength of a single wire 

embedded in a soft matrix material were studied by Hermann, Mason, and 

Chan (17). First the beam-column behavior of an initially crooked wire 

embedded in a matrix and subjected to a state of uniaxial stress was 

investigated. Second, the possibility of buckling, within the matrix, 

of a compressively loaded straight wire was considered. Three dimen- 

sional elasticity was used to predict the foundation (matrix) behavior 

in both cases. Two major conclusions were reached. One, if the ratio 
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of the shear moduli of the matrix and fiber is sufficiently low (plots 

were based on 0.00033) a substantial difference in the compression and 

tension stress strain curves can he expected. Second, again for low 

ratios of shear moduli, failure can be expected at stress levels well 

below the buckling stress of a straight fiber. When evaluating the 

significance of the conclusions and analysis put forth in reference (17), 

one should keep in mind that the ratio <»m/Gf for most materials of 

current interest is on the order of 0.01 or greater, two orders of 

magnitude greater than the values considered in reference (17). Also, 

the influence of surrounding fibers on the particular fiber being 

investigated was not taken into account. 

Results reported in reference (17) are also found in reference (18). 

Sadowsky, Pu, and Huasain (19) also investigated buckling of a 

single fiber embedded in an elastic matrix. The reaction of the matrix 

was calculated using three dimensional elasticity and the fiber was 

treated as a beam. Plots were presented for determining if the fiber 

will buckle due to thermal shrinkage which occurs in cooling the speci- 

men from the curing temperature to room temperature. It was shown 

mathematically that the buckle wave length is directly proportional to 

the fiber diameter. 

The results and analysis of a brief study on boron-polymer film 

layered composites was published by Crawford (20). Using the same model 

as Rosen (6) and Schuerch (10), but considering the reinforcement to 

have initial waviness, Crawford derived equations for predicting com- 

pressive strength, axial stiffness, tensile and shear stresses at the 
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reinforcement-matrix interface. Crawford obtained the same results as 

equation (2.3) reported herein for the extension node of buckling. The 

equation derived to predict the shear »ode of instability differed from 

equation (2.1») reported herein only by the term 1 ♦ ^WV which 

approximates unity for most composites of current interest. It it shown 

in reference (20) that axial stiffness can be reduced substantially 

below the value based on the assumption of straight fibers if sufficient 

waviness is present in the composite. Since the axial stiffness of most 

fiber reinforced composites can be predicted by the "rule of mixtures" 

it appears that one need not consider the effect of waviness on stiff- 

ness. In other words the waviness is not sufficient to appreciably de- 

crease the stiffness. Plots of tensile and shear stresses at the re- 

inforcement-matrix interface as a function of the waviness parameters 

were constructed using the material properties and geometry of one test 

specimen. It was shown that the stresses could reasonably be expected 

to be of sufficient magnitude to cause failure by delamination. 

Perhaps the most important point made in reference (20) was that 

initial waviness can create stresses which cause the composite to de- 

laminate at loads below those based on buckling analyses. However, 

this thought was not related to the behavior of filamentary composites 

in reference (20), possibly due to the brevity of the study. When 

studying reference (20), one will note that shearing deflections in the 

reinforcement have been neglected and several equations need minor 

corrections. 

Yue. et al. (21) modified the work of Dow, Rosen, and Haskin (16) 
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to include linearly strain hardening materials. However, their analysis 

contains an equation which appears to he incorrect. To he specific, a 

realtionship between longitudinal strain in the fiber and shear strain 

in the matrix is assumed. For fibers which remain straight prior to 

buckling, there can be no shearing stresses parallel and perpendicular 

to the fibers. Thus further discussion of reference (21) is not offer- 

ed herein. 

The results of performing axial compression tests on several dif- 

ferent resin systems reinforced with boron filaments were presented by 

Lager and June (22). They found that Rosen's analysis (6) could be 

correlated with the data if an influence coefficient of 0.63 were used. 

Their justification for using the influence coefficient was to account 

for the differences between a two dimensional model and a three dimen- 

sional test specimen. The authors of reference (22) indicated that the 

influence coefficient is not expected to be the same for all fiber 

reinforced composites. Obviously, this approach for predicting con- 

pressive strength contains the same shortcomings as reference (6). 

Chung and Testa (23) investigated the problem of predicting com- 

pressive strength for a soft plate (matrix) reinforced by strips of a 

stlffer (fibers) material. The spacing between fibers was assumed to 

be large compared to the plate thickness. In their study (23) beam 

theory was used to describe the behavior of the fibers whereas the 

matrix behavior was formulated as a generalized plane stress problem. 

The resulting analysis led to a set of highly intractable transcenden- 

tal equations. Two possible solutions were obtained, the extensional 
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mode and the shear mode of fiber buckling. If the wave length of the 

buckled fiber is large compared to the spacing betveen fibers and 

Poisson's ratio is set equal to zero, the equations developed by Chung 

and Testa (23) can be reduced to equations (2.3) and (2.U) reported 

herein. 

Heference (23) reported experimental data on specimens in vhich 

the reinforcement was a glass base sheet (a continuous filament voven 

glass fabric impregnated with a resin binder) separated by layers of 

epoxy resin. The comparison between theory and experiment was favorable 

for the «Mil amount of data presented. However, it should be noted 

that the material tested differs substantially from the type of uni- 

directionally fiber reinforced material normally considered for use in 

primary load carrying structures of aerospace vehicles. 

By utilizing the governing differential equations for nonlinear 

elasticity, Guz (2k)  was able to derive that the ccmpressive strength of 

a reinforced composite should equal the shear modulus of the material. 

Failure planes were predicted to be perpendicular to the fiber direction. 

Since the end result of reference (2U) is the same as that of references 

(6) and (15), the difference between predicted and measured strengths 

would be the same as that obtained using the earlier references. 

Skudra, et al. (25) proposed that failure in a composite subject 

to axial compression is by shearing along a plane oriented at 1*5° to the 

direction of loading. Using elementary principles of statics and energy 

methods, one can follow the derivation in reference (25) which leads to 

the equation 
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\ U + Mn.) + Er (i ♦ wLT) 
(2.12) 

for predicting ccmpressive strength. Symbols contained in equation 

(2.12) and not previously identified are as follows: 

E. , E_ *  Young's modulus of the composite measured parallel and 

transverse to the filaments, respectively. 

u , u_T ■ Poisson's ratio associated with a load applied parallel 

and transverse to the filaments, respectively. 

y  = Limiting shear deformation on a plane oriented at U50 to the 

direction of the filaments. 

The experimental results presented in reference (25) compare quite well 

with the values predicted by equation (2.12). The test specimens re- 

ported in reference (25) failed at stresses less than 20 ksi. However, 

very Foor agreement is obtained when one compares the analysis of 

reference (25) with test data for S-glass-epoxy presented in reference 

(26). To be specific, the predicted strength is 17 ksi whereas the 

measured strength is 207 ksi. Therefore, one must conclude that the 

analysis presented in reference (25) cannot be used to predict the 

compressive strength of most materials suitable for use in aerospace 

structures. 

Chamis (27) presented two equations for computing compressive 

strength. One is a modified rule of mixtures relationship whereas the 

other relates compressive strength to interlaminar shear strength in 

the same manner that Fried (8) proposed. The lower of the two values is 
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recc=er.ded for use ir. analysis.    Starting with the following equation: 

a - C [(V. d, n, a)ff y> V^  (E, U. 0, F, Cp)f§ a> Fß, FR]    (2.13) 

which is all encompassing, Chamis quickly reduced it to the form: 

a - a    [8   V   + ß. V, (E,/Ejl (2.1U) mc [_ mc m       fc f     f   m J 

Symbols appearing in equations (2.13) and (2.lit) and not previously 

identified are as follows: 

a . a " parameter associated with fibers and voids, respectively 
f v * 

d . d ■ diameter of fiber and void, respectively 
f* v 

n., n " number of fibers and voids, respectively 
f v 

F , F * compressive strength of fiber and matrix, respectively 
f  m 

J   * interface bond strength 
o 

FD = residual compressive strength 
R 

ß , ß  = Theory-experiment correlation factor for matrix and 
mc  f c 

fiber, respectively 

e ■ limiting strain 
P 

V - (1 - VJ(l - V ) 
tt      T     r 

(2.15) 

Vf - (1 - Vy) Vf (2.16) 

Chamis offered the following argument for reducing equation (2.13) to 

(2.ll*). The void content, bond strength and residual stress are depen- 

dent on the fiber surface treatment, matrix additives, hardeners, 
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temperature, and pressure used during fabrication and method of fabrica- 

tion. In other vords, the list of variables on which strength depends 

is quite long. By assuming that void size and distribution, filament 

spacing nonuniformity, interface bond strength, and residual stress are 

influenced by the particular fabrication process used Chamis reasoned 

that all of these variables could be grouped into theory-experiment 

correlation factors shown in equation (2.11*). 

In recognition of Fried's earlier work (8), Chamis presented the 

following equation: 

O - Vl2 ♦ a, (2.1T) 

where 

a , a « empirical curve-fit parameters 

T    ■ interlaminar shear strength 

One would expect that data over a limited range of fiber volume 

fraction could be fitted by equations (2.1U) and (2.17). However, these 

equations provide only limited insight into the variables which effect 

compressive strength and thus do not contribute significantly to the 

knowledge of failure mechanics of composites. 

Essentially, the same analysis that was presented in reference (2U) 

is contained in reference (28).  In addition, reference (28) presents 

experimental data on the compressive strength of fiberglass reinforced 

epoxy. Although the measured strengths are only about 20 percent of the 

predicted values, the authors claim the proposed theory explains quite 

well the nature of the failure for the material under investigation. 
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DeFerran and Harris (29) in a study of the compressive strength of 

steel wire reinforced polyester resin indicated that most of the analyses 

discussed previously herein are inadequate for predicting strength.  The 

experimental data reported in reference (29) is in agreement with calcu- 

lations based on the rule of mixtures using the tensile strength of the 

steel wire.  For specimens containing cold-drawn wire the yield strength 

was used whereas the ultimate strength wa3 used in calculations for 

specimens reinforced with annealed wire. 

It is perhaps fortuitous that the authors of reference (29) were 

able to obtain agreement between the rule of mixtures and experiment. 

There are data reported in the literature that obviously would not 

correlate. For example, Leventz (13) reported compressive strengths 

for both 0.005-inch diameter and O.OOOlt-inch diameter glass fiber re- 

inforced composites. Tensile strength for the 0.005-inch diameter fiber 

was reported to be slightly less than 60 percent of the value reported 

for the O.OOOlt-inch diameter fiber. Yet the compressive strength of the 

0.005-inch diameter fiber reinforced composite was approximately twice 

that of the composite reinforced with 0.000l*-inch diameter fibers. 

Results of compressive tests on S-glass-epoxy and boron-epoxy 

tubular specimens are presented in reference (30). By taking the limit 

as the column length to diameter ratio approaches zero, it was shown 

that the compressive strength should be given by the equation 

a - G/0 (2.18) 

where 
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8 * ratio of maximum shear stress to average shear stress in a 

buckled column 

Equation (2.18), like most of the equations previously derived for pre- 

dicting strength, provided estimates that substantially exceed the mea- 

sured values of strength.  It was shovn in reference (30) that the 

compressive strength and column buckling data correlated reasonably well 

with analysis when a value equal to one-half the measured shear modulus 

was utilized in the calculations. At the time reference (30) was pub- 

lished, the author had not developed the rationale for considering the 

shear modulus to decrease with increasing axial strain. Assuming the 

fibers to be initially curved provides the missing link and this will be 

explained in more detail later in this paper. 

Pinnel and Lawley (31) presented results of compression tests on 

aluminum reinforced with stainless-steel wires. The authors found that 

equation (2.11) reported herein correlated well with experimental re- 

sults when the "characteristic stress" was assumed to equal the "flow 

stress" of the aluminum matrix. Unfortunately, when one observes the 

axial stress-strain curve for the aluminum alloy reported in reference 

(31), it is found that the value given for the "flow stress" has no 

distinct characteristic.  In other words, it is doubtful that one could 

predict the "flow stress" without first knowing the compressive strength 

of the composite. 

Hayashi (32) proposed that a unidirectionally fiber reinforced 

composite loaded in compression parallel to the fibers fails when the 

shear instability limit of the matrix material is reached. Hayashi 
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reasoned that as the compressive Btress in the matrix approached the 

shear instability limit the matrix would cease to support the fibers. 

Fiber buckling vould immediately follow and consequently failure of the 

composite.  In an earlier paper (33), Hayashi like Biot (15), Guz (2U), 

and Guz (28) had shown that the shear instability limit equals the 

shear modulus. In reference (32), it was assumed that the shear modulus 

decreases as compressive stress is increased. The following equation 

was offered as an approximation of the relationship: 

. G 

mm   r ■ ''■ ♦ "'« a_."|(a, + l)/a 

m my 

where 

a, = an undefined constant 

By assuming equal strain in the matrix and fibers at failure and using 

the rule of mixtures Hayashi (32) concluded that compressive strength 

should be predicted by the expression 

a ' a* Vf + (1 - Vf) Om* (2.20) 

where o. is the fiber stress corresponding to matrix strain at the 
• 

shear instability limit, 0" . m 

A comparison between the analysis of reference (32) and experimental 

data reported in reference (22) is presented in reference (32). Accord- 

ing to Hayashi (32) the comparison is more reasonable than one would 

obtain using equations (2.3) or (2.1») reported herein. In.spite of this 
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optimistic opinion put forth by Hayashi, there appears to be some doubt 

as to the validity of the analysis. For example using the analysis and 

material properties presented in reference (32) to predict failure for 

a boron-epoxy composite containing 1»0 percent fibers by volume, one 

easily calculates the failure strain to equal approximately O.OU. 

Examination of test data for the same material, reference (22), indi- 

cates that axial strain at failure waa less than 0.01. This discrepancy 

was not addressed in reference (32). 

Starting with the governing equations for elasticity, Guz (31*), 

develops an expression for computing the shear buckling mode of failure 

for a fiber reinforced matrix material with uniformly spaced circular 

fibers.  In reference (35), Guz compares the results with prior studies 

reported in references (6) and (2U). For certain values of stiffness 

ratio and fiber volume fraction substantial differences are noted. 

However, the results are very limited and do not support general 

conclusions. 

The results of an investigation on specimen geometry and load 

introduction for unidirectional carbon fiber reinforced plastic are 

reported in reference (36). A suitable test specimen was identified 

for the material tested. Experimentally determined compressive strength 

values were approximately one quarter of the values computed by the 

analysis of reference (6). 

Evidence of shear buckling due to compressive loading of Al-CuAl2 

specimens is reported in reference (37). Experimentally determined 

strengths are compared with values predicted by the analysis of 
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reference (21). Since the analysis of reference (21) appears to contain 

an incorrect equation, the comparison will not be discussed herein. 

Results obtained from compression tests on steel wire reinforced 

epoxy and glass rod reinforced epoxy are reported and compared with 

existing theoretical predictions in reference (38). The data indicate 

substantial scatter in failure loads and does not appear to warrant 

definite conclusions. The author puts forth the idea that failure may 

be associated with transverse tensile stresses due to mismatch between 

Poisson's ratios for the fiber and matrix. 

Greszczuk provides a brief review of prior investigations on com- 

pressive strength and presents experimental data obtained on model 

composites in reference (39). The behavior of graphite rod and steel 

rod reinforced epoxy and urethane specimens were studied. The data 

obtained follow the same trends as predicted for microbuckling failure 

of the reinforcing rods. Small prebuckling deformations in the rods 

were shown to significantly reduce the compressive strength of the 

model. Greszczuk continued the study initiated in reference (39) and 

the results of further effort are reported in reference (U8) discussed 

herein. 

Results of tests and analyses on the compressive strength of boron- 

epoxy composites are reported in reference (UO). Of the several failure 

modes discussed, only filament fracture and layer instability appear to 

be related to material failure. Filament fracture is reported to have 

been observed in some specimens tested at room temperature and -&l°T 

and to have occured at a stress of 600 ksi in the composite. This 
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corresponds to a strain of 0.02 inch/inch. Layer instability, buckling 

of the outermost ply away from the remaining plies, was analyzed by 

treating the buckled ply as a beam with finite shear stiffness and the 

remaining plies as an elastic foundation. The subsequently derived 

equations are 

o ■ o. 5 (2 - « . e < i <2.2i> 

a  - Gs . C > 1 (2-22) 

where G denotes the "interlaminar shear modulus" as defined in refer- 
z 

ence (1*1) and £ denotes a stiffness parameter defined in reference (1*0). 

Based on the analyses presented in reference (1*0), one would expect the 

value of G in equation (2.22) to equal the shear modulus of the com- 
z 

posites. However, the value of Gz reported in reference (1*0) ranges 

from 1*U to 67 percent of the shear modulus. Experimentally determined 

values of compressive strength reported in reference (1*0), agree quite 

well with the predictions of equation (2.22). However, the analysis 

provides only limited insight into the parameters which influence com- 

pressive strength. 

Sednor and Watterson studied the compressive fatigue behavior of 

0° - 90° glass-epoxy laminates and the results are presented in refer- 

ence (1*2). They conclude, based on examination of numerous photomicro- 

graphs of failed specimens, that compressive failure is probably initia- 

ted by debonding at the matrix-fiber interface followed by buckling of 

the unsupported fiber. 

Prebuckling and postbuckling behavior of a single reinforcing fiber 
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surrounded by a matrix material was investigated analytically by Lavir 

ar-d Fung (1*3). The authors point out that buckling of the fiber is 

possible if it is not supported by the surrounding matrix (debonded). 

However, the authors also conclude that in common composite materials 

the buckling of fibers will have no significant effect on the overall 

behavior of the composite in the linear elastic range. Although, not 

discussed in detail, Lanir and Fung conclude that fiber buckling will 

significantly affect the behavior of the composite when loaded in the 

plastic range. 

Harris (MO provides a brief review of previous work on ccmpressive 

strength. Specifically the papers by Rosen, Yue, Lager and June, 

DeFerren and Harris, and Hayashi are noted. 

Photomicrographs of tungsten wire reinforced aluminum and stainless 

steel reinforced aluminum specimens that had been loaded to failure in 

axial compression are presented in reference (1»5). The photographs show 

that the mode of failure was microbuckling of the reinforcement. 

Additional evidence to support microbuckling as a possible mode 

of failure in metal matrix composites is presented in reference (U6) 

which reports the results of axial compression tests on tungsten fiber 

reinforced copper. The authors did not offer a comparison between 

theory and experiment. 

Yet another analysis of the buckling of a single fiber embedded 

in a matrix material is presented in reference (l*T). Experimental 

results obtained from photoelastie stress analysis are compared with 

predictions from finite element analysis. In general the comparison 
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ranges from fair to reasonable. No attempt is made to extrapolate the 

results to composite materials currently under investigation. 

Greszczuk (U8) conducted an experimental and theoretical investi- 

gation on aluminum lamina-epoxy, aluminum rod-epoxy, graphite rod-epoxy 

and graphite fiber-epoxy composites. Variables and initial imperfections 

studied include rod diameter, volume fraction, lamina thickness, number 

of rods contained in a specimen, bowed rods, misaligned rods, unbonded 

rods and fiber twist. 

Utilizing a low modulus resin (E « 2500 psi) Greszczuk showed that 

the failure mode for the lamina and rod reinforce composites is micro- 

buckling and that failure can be predicted by the analyses previously 

developed by Rosen (reference (6)). As the resin modulus was increased 

to 62,000 psi, Greszczuk reports the failure mode changed to compressive 

strength failure of the reinforcement. For specimens that failed by 

microbuckling, the compressive strength was shown to increase with 

increasing rod diameter. This effect may be associated with fewer 

initial imperfections in the specimens containing the larger diameter 

rods. It was also shown that the compressive strength of 0.078 in. 

diameter aluminum rod-epoxy specimens could be reduced by more than 

forty percent by bending the rod to an arc height of 0.020 in. over a 

2.5 in. span. The compressive strength of a graphite rod reinforced 

specimen, which had been fabricated in such a manner that the resin 

and rod were not bonded, was essentially equal to the value measured 

for specimens in which the rod and matrix were initially bonded. Thus 

Greszczuk concluded that, debonding of the rod and matrix occurred 



29 

prior to microbuckling in the latter group of specimens. 

Experimentally determined compressive strengths for the graphite 

fiber-epoxy specimens ranged from 56 to 62 ksi compared to a predicted 

value of 290 ksi for the mierobuckling mode of failure. As a result, 

other modes of failure were investigated. It had been shovn earlier, 

reference C»9), that an applied axial compressive stress induces tensile 

stresses in the transverse direction. After observing failed specimens, 

Greszczuk proceeded to compute a failure stress based on the maximum 

induced tensile stress in the transverse direction. Starting with the 

failure criterion developed by Norris, reference (50), the following 

equation for predicting failure was derived. 

O- r-= ££-£ TY72        (2.23) 

[4 + 2öt FLc <k0 FLC " VJ' 
F,_ and F. are defined as the ultimate composite strength in the 

transverse direction and the true ultimate compressive strength in the 

fiber direction, respectively,  ß and k are the ratios of maximum 

transverse tensile stress in the resin to the applied axial stress and 

uniformly applied transverse tensile stress to the maximum transverse 

tensile stress in the resin. The major difficulty in using equation 

(2.23) is determining the value of F.. Greszczuk assumed that the 

compressive and tensile strengths of the graphite fiber are equal and 

then used the rule of mixtures to compute F. . Values computed in this 

manner ranged from 10 percent below to 33 percent greater than experi- 

mentally determined values. 
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Reference (51) presents another derivation of the shear mode of 

instability for a fiber reinforced column loaded in axial compression. 

The results are in agreement with earlier derivations. 

Argon (51) argues that the earlier analysis of Rosen (6) should be 

considered as an upper bound since composites made by normal manufactur- 

ing techniques will always contain regions in which the reinforcing 

filaments are not parallel and aligned with the load axis. He further 

states that such regions will form a failure nucleus by kinking similar 

to that previously observed in metal crystals. The failure is reported 

to resemble in form the in-phase internal buckling of Rosen (6) but to 

occur at much lower stress, utilizing energy analyses developed in 

fundamental studies of metallurgy, Argon estimates the compressive 

strength, o, to be 

0 - TLT/*0 (2.2U) 

where TT(T1 denotes the interlaminar shear strength of the laminate and 
LT 

6 is the angle of misalignment between the reinforcement and the load 
o 
axis. The kinking mode of failure has been observed in boron-polymide- 

epoxy film laminates. However, with the exception of some recent 

studies (53) on PRD-U9 fiber-epoxy composites the failure mode has not 

been observed in most composites of current interest to the aerospace 

community. 

B. Summary 

Based on the references reviewed herein, it is readily apparent 

that a unified theory for the prediction of compressive strength for 



31 

fiber reinforced or laminate reinforced composites does not exist. 

However, several important points emerge from the survey. In general, 

the evidence tends to support three modes of failure, microbuckling of 

the reinforcement, delamination, and fiber-matrix separation followed 

by microbuckling of the fiber. Also, a direct relationship between 

compressive strength and interlaminar shear strength is noted for some 

materials. Study of these points lead to postulation of an analytical 

model which allows microbuckling and/or delamination as potential 

failure modes and provides an explanation for the relationship between 

interlaminar shear and compressive strength. The model is described in 

the next section of this paper. 



III. AKALYTICAL MODEL 

The model postulated herein is compared with the one utilized by 

Rosen (6) in figure 3.1. In each the composite is built-up from a series 

of hard and soft laminae. Rosen assumed that the laminae were initially 

straight and predicted two buckling modes. Positive and negative fea- 

tures of the Rosen model are listed in figure 3.1. First the advantages: 

Strength is related to the matrix properties and the resulting equations 

are simple to use. As for disadvantages, predicted values axe usually 

much larger than experimental measurements, fiber geometry is not taken 

into account and nonlinear behavior of the matrix is neglected. 

The present model permits the laminae to contain initial curvature. 

Under an increasing axial load, the laminae deflect until one of two 

failure modes is experienced. These are shear buckling or delamination. 

The extension mode of buckling has not been observed or predicted to 

occur in most materials of interest and hence is not discussed further. 

If the matrix material behaves in a nonlinear manner, one can see that 

the shear modulus of the composite and consequently the buckling stress 

of the composite will decrease as axial load is applied. One can also 

see that interlaminar shear stresses increase as the axial load is 

increased. 

Important features of the present model include:  (a) strength is 

related to constituent properties and geometry.  (Both the fiber and 

matrix material properties are taken into account. Filament size, 

initial curvature and collimation are reflected in the value of aQ and 

32 
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L .)  (b) An explanation for the relation between compressive strength 

and interlaminar shear strength is offered,  (c) A decrease in shear 

modulus with increasing applied axial load is explained,  (d) The equa- 

tions for computing buckling and delamination can be programmed on a 

computer to provide easy utilization by materials engineers. The major 

disadvantage of the model is that it contains only two dimensions where- 

as the filamentary composite is a three dimensional material. However, 

it is the opinion of the author that the model used herein will be 

adequate in many cases, as will be shown. In addition to providing 

useful information on filamentary composites, the model will obviously 

provide results on laminated media. 

Two approaches will be used to compute the stress distribution in 

the model. In the first, designated case A, the entire laminate is 

subdivided into the desired number of layers and the stresses and dis- 

placements in each layer are computed. Thus, case A takes into account 

the free boundaries of the model.  In the second, designated case B, a 

repeating element in the model is identified and then subdivided into 

layers. The repeating element consists of one fiber layer sandwiched 

between two half layers of matrix material. Continuity of displacements 

along the edges of the repeating element is imposed on the solution. 



IV. IHTERLAMINAR SHEAR 

Stresses and displacements in the analytical model were determined 

using the following method of analysis. First, the model was considered 

to be a multilayered beam. Then the equilibrium equations based on the 

assumptions of Timoshenko (5>0 were applied to each layer. Next, the 

resulting differential equations were expressed in finite difference 

form. Finally, the resulting set of algebraic equations were solved with 

the aid of a digital computer. This method of analysis had been used by 

Heller and Swift (55) (56) (5T) previously to investigate the behavior 

of laminated beams under transverse loading. 

Figure h.l  shows the laminated beam models used to represent the 

composite material. For case A, the composite is represented by a series 

of alternating fiber and matrix layers. For case B, a repeating element 

which consists of one fiber and two half layers of matrix is used to 

represent the composite. Both models are symmetric about the midplane 

and are initially deflected in the z direction. All layers within the 

beam are assumed to have the same initial deflection in the z direction 

and the same initial radius of curvature at any specified value of x. 

A. Displacements. Strains, and Stresses 

Utilizing the Timoshenko assumptions (51*). which state that each 

layer undergoes transverse deflection and that cross sections initially 

perpendicular to the neutral axis may rotate with respect to the neutral 

axis, and the notation of figure U.2, the displacement within each layer 

of a multilayered symmetric beam can be written as follows: 

31* 
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(a) Displacement in the length direction of the team is given by 

u±1 - ««^ - V 

u±2 - h2(^ - ex) ■♦ (t ± h2)(*2 - e2) (k.D 

«*»■<«* V(*. - 6m) * X (hi+1 " hiH*i " V 

where * ie the angle between the vertical axis and the final position 

of the deformed cross section of the ith layer, 61 is the angle between 

the vertical axis and the initial position of the cross section of the 

ith layer (the value of <|i. which represents the initial rotation of the 

ith layer), h. is the distance from the neutral axis (midplane of the 

laminate) to the outer surface of the (i-l)th layer, z is the transverse 

coordiante and the positive and negative subscripts refer to layers above 

and below the midplane, respectively. Note, compression of the beam due 

to the application of axial end loads was neglected as customarily done 

in all buckling problems and equations (U.l) represent only displacements 

due to bending and shearing of the cross section. 

(b) Displacements in the beam width direction are assumed to vanish 

for all layers since the moment of inertia ratio (iyy/*M) is Buch lar6er 

than unity. 

(c) Transverse displacements are the same for each layer 

xm 



36 

In addition the transverse displacement is composed of two parts, 

an initial displacement, w , and the displacement due to loading, w , 

v ■ v + v, C*.3) 
o   1 

Utilizing equations (k.l),  (1*.2), and (It.3) strains in the m  layer can 

be written as follows: 

«*. • %* -(z * hm)(*: - e:> * X(hi+i' hi)l*i"ep 

au^_    aw. 
Y   »_iE+_i= ^ . e +w- (1».5) 
xz±m   3z   3x   m   m   1 

e  a,c^ = YJ_ = Yi_"0 Ct.6) 
y±m   z±m  'yz±m  'xy±m 

Assuming that each layer is at least piecewise linearly elastic, (which 

say restrict the analysis to problems with monotonically increasing 

loads), the stress components can be written in terms of the strains. 

°x±m * Em ex±m 

xz±m   m xz±m 

a       * o*   *T*T    "0 
y±m   z±m   yz±m   xy±m 

The last of equations (1».7) does not satisfy the boundary conditions 

when a transverse loading is imposed on the laminated beam {o^ + 0). 

However, this will be ignored as is customarily done in plate and beam 
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analyses since o is usually small compared to other stresses in the 

laminate. Thus, all stress components except Ox±m and t%z±m are assumed 

to vanish. Hence the subscripts will he deleted and 

x±m   ±m xz±m   ±m 

will be used. In equations (U.7) 0^ and Em denote shear modulus and 

th , 
Young's modulus, respectively, for the m  layer. 

Again it is noted that compression or extension of the beam due tc 

application of axial end loads and the corresponding axial strains and 

stresses have been neglected. Thus o^ represents only longitudinal 

bending stress and does not include the applied axial stress. In the 

event total stresses or strains are required, they can readily be 

obtained using the principle of superposition. 

B. Bending Moments, Normal and Shear Forces 

Sext, expressions for the bending moment, normal, and shear forces 

on each layer are required. The bending moment due to longitudinal 

stresses in the mth layer about the midplane of the beam is given by 

""•'i z o-_ dz (k.8) 
zm 

Substituting equations (1*.7) and (U.U)-into (U.8), and performing the 

integration leads to 

»-1 
M     -'K (I    - F h )(*•  - 6') ± E F        X    (h       - h )(<^ - 6p ±m       m   m       m m     m       m mm   ^al      i*J.        i      i        A 

(••.9) 
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where I and F are defined by 
Q      IL 

** - T <£i - h*> 

b ,v2    .2* Fm * 2 (hm*l " V 

(J..10) 

The normal stress resultant due to the longitudinal bending stresses is 

defined by 

t m* 

K 

hm+l 
n  dz Ci.U) 
±m 

which becomes 

m-1 
H_ - E (F  -Ah )(r - e«) + E A     z  (h     - h )(*j - ep 

±m        m    m        m m      m       m mm    .M.       iT±        A      A        A 

(U.12) 

when stress and strain are expressed in terms of displacements and A^ 

denotes the cross sectional area of the mth layer. Due to symmetry 

♦B    —Bi 

H  »-N ♦a   —m 

The resultant shear force on the mth layer may be expressed by 

(Ji.13) 

"1.  " Q  * bk' I    T^ dz (h.lk) 
im     I    *"> 

Writing stress in terms of displacements and then integrating equation 
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(U.lU) yields 

"±n     m a m   m   1 

k' is a shear correction factor. In the past, there has been considerable 

disagreement as to the precise value of k', see for example references 

56, 59, and 60. In general, the value is close to unity and, following 

the precedent of Heller and Swift (56), k' * 1 will be used herein. 

C.  Equilibrium Equations 

Equilibrium of a segment of the multilayered beam is considered next. 

Figure U.3 shows the forces and bending moments acting on the beam 

segment. As a result of defining bending moments, M±m, by equation 

(1».8), different free body diagrams are used for summing moments and 

forces on the beam element. The standard practice of replacing the 

axial applied loads, P^ by a single load equal to the sum of the applied 

loads and acting along the midplane of the beam has been utilized. 

Boundary conditions at the layer interfaces require that the interlaoinar 

shear and normal stresses be equal 

m,m+l 

a      m a     .. 
B,B    B,Bn\L 

(«..16) 

where the first subscript denotes the interlaminar region at the top of 

the mth layer and the second subscript denotes the layer on which the 

stress is acting. .- . 



uo 

First consider equilibrium of the complete beam segment and sum 

forces in the horizontal direction: 

P cos w' - (P + dP) cos(w' ♦ w"dx) + Q sin I  - (Q + dQ) sin(<ji + ij'dx) 

+ b(T   - T    ) cos w'dx - b(o   - O    ) sin w'dx = 0 % n,n   -n,-n n,n   -n,-n 

(k.17) 

where ij) is defined by 

ii      n 

i«l x x i-1 

Collecting terms in equation (U.17), expressing the sine and cosine in 

terms of the small angles w' and ip, and dividing by the length of the 

beam segment, dx, leads to 

jU g ft + *'**) ♦ <*' * ^„.n^-n.-n5 " ^.n^n,^' 
(U.19) 

dx  dx 

For case A, T   and T    vanish and for case B they are equal. Thus 

the fourth term in equation (U.19) vanishes. The transverse normal 

stresses, On Q and o_n _Q, are assumed to be small compared to other 

stresses in the beam. Since they are multiplied by w«, which is small 

compared to unity, the last term in equation (U.19) is neglected. Since 

♦ « 1, the shear resultant Q can be considered to act perpendicular to 

the midplane of the beam and from elementary beam analysis one can readily 

deduce that 
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Q- Pw> (fc.20) 

for the two cases discussed herein. Substituting equation (U.20) into 

(U.19) leads to 

— [l + w'($ + <P'dx)] + Pw'X? + ijl'dx) + Pw'^1 ■ 0        (U.21) 
dx 

Hcting that both ip and w' are very small compared to unity, equation 

(i..£l) reduces to 

dx 

which agrees vitn classical plate and beam analyses (see for example 

reference 2). Equation (U.22) will be used in the subsequent derivations 

by considering P to be constant along the length of the beam. 

In order for the segment to be in equilibrium, the sum of the forces 

on the outer layers above and below the nidplane must also vanish. Fron 

figure U.3, it follows: 

Z     F - 0 = b(T   -T ^Jcosw'dx* t      (N + d» ) cos (w- 
i=m+l 

x       n>n   D'n*1 1^*1 

n n 
* v"dx) -  I  H cos w* + I      Qx sin lf^ 

i=m*l i«m+l 

-I (Q. + dQ ) sin (♦ ♦ ^dx) - *(o   - amja+1) sin w'dx - 0 
i=m+l 

(U.23) 
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-(m+1) -<B+1) 
r       F ■ 0 ■ b(t    , - T  ) cos w'dx +  Z   N cos w' 

.; „  x  U °K  -n,m+l   n,n' t    i 

- Z   (N. + dN ) cos(v' + v"dx) +  Z   Q sin i^ 
. i«-n   i i"-" 

-U+l) 
- Z   (Q. + dQi) sin (^ + i^dx) + b(o_n>_n 

i«-n 

- O   ,...,,) sin w'dx - 0 Ct.21») 
-m,-(m+l) 

Hoting that 

cos V* = 1 

coa(w' + v"dx) = 1 

sin *• = rt 

sindJ»* + t^dx) = <|»J + *^dx 

Collecting terms and dividing through by dx, equations (U.23) and (U.2U) 

reduce to 

b(T   -T _)+  Z  N! -  Z  (Q *! + Q!^ + dQ *•) 

-(m+l)     -(m+1) 

(U.25) 

♦ *°-n,-n - 0-n,-(»+l)) "' " °     ^ 
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Substituting equation (U.l6) into (U.26) and (U.27) and then subtracting 

(U.2T) from (U.26) leads to 

n 

1 n,n   -n,-n'    m,m+l   -m,-(m+l}    i=B+1 i 

- bf(0   ♦ 0   ) - (c __ + o „ , ., J] V » 0     (1».28) lx n,n   -n,-n    m,m+l   -m,-(m+l) 

Since transverse normal stresses are assumed to be negligible compared 

to other stresses in equation (U.28) and the last term is multiplied by 

w', the last term in the equation is neglected. Thus yielding 

n 
b(Tn,n + ^n.-n* " b(Tm,m*l + T-m,-(»n)' ' ' ^ "i 

)+ 2 t      HJ = 0 

(U.29) 

Introducing 

P  •= b(T  ' ♦ T     ) C».30) 
x    n,n  -n,-n 

to denote the total applied horizontal shear force per unit length of 

beam and combining equations (U.29),  C».30)  and (U.l6) yields 

n 
£ 

i*m+l mtBL       —m,—m      o      x , — ..n     1 

for expressing the interlaminar shear stresses acting on the 2m inner 

layers of the beam. 

In order for the beam segment to be in equilibrium, the sum of the 

moments acting on the 2m inner layers must also vanish. Referring to 
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figure U.3, summing moments about the right end of the beam segment leads 

to 

I M « 2 I (M4 ♦ dM± - Mt) - 2 t    Qj cos ^dx + bhm+1 (T^ + X.E).J^ 
1*1 i*l 

♦ P6 = C (^-32) 

where 6 is defined in figure h.k  and can be represented by 

6 * v(x) + V(x) dx - u(x + dx) (1<.33) 

Utilizing a Taylor series expansion for w(x + dx) in terms of w(x) and 

its derivatives, equation (U.33) takes the form 

6 « -v"(dx)2/2 C»*.3U) 

when higher order terns are neglected. Substituting equation (h.3k) 

into (l*-32), dividing by dx, and noting that cos ^ - 1 yields 

m 
2 t    (M' - Q.) ♦ bh ,(T   + T    ) - Ptf"dx/2 = 0 

j; v"i  Hi'    m+1 m,B   -m,-m 
(U.35) 

The last term in equation (U.35) is a higher order term than the remain- 

ing terms. Thus equation (U.35) becomes 

n 
2 Z    (M! - Q.) ♦ bh.jT   ♦ T    ) = 0 (U.36) 

i   i    m+1 m,m   -m,-m 
i=l 

Combining equations (1».36) and (U.31) leads to 
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Finally, equilibirum in the vertical direction requires that the 

sum of the forces in the vertical direction vanish. Referring to figure 

U.3, it follows: 

n 
2 t    [(Q. + dQ.) cosdj^ + iji'dij;) - Qi cos iJ^J + P sin w 

i»l 

- P sin (V  + v"dx)    + t>(on>n " a.D,-n
)  C0S "'^ 

+ b(T        - T )  sin w'dx =« 0 
n,n       -n,-n 

(fc.38) 

Noting that equations (U.25) are valid if ^ and V are interchanged, 

collecting terms and dividing by dx equation (U.38) becomes 

n 
Z 

i=l 
2 £  QJ - Pv» ♦ b(cntn - 0_n>_n) ♦ b(tn>n - T_nt.n) W « 0 

(U.39) 

Denoting the applied transverse load by 

P =b(o  -O   ) ("»."»c) z n,n   -n,-n 

and noting that the last term in equation (U.39) is a higher order term 

compared to the remaining terms in the equation leads to 

2EQ'-Pw"+P=0 C«-1»!) 
i-1 ± Z 

Substituting equations (U.9), (U-X2). and (U.15) into (■!...37) and (k.15) 

into (U. 1*1) provides a (n + l) set of linear, second order partial 
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differential equations. 

i-1 

tlx 
tEi(Ii - Fihi)(*I" »V + Vi £ (Vi - \nK - 6k); 

-    Z    k,GiV*i - 6i + Vl} * Vl V2 

i»l 

+^ <JL [E*(FI " AA,(<? "e;)+EiAi 3!(hk+i 

V(*k" 9k)] - ° {kM) 

n o 
I    k'G.A.v" ♦    I    k'G.A.dJ/! - 6!) + P./2 - Pw" = 0 (U.U3) 

1-1        *  * X      i-1        i ±    *        i 

Equations (U.U2) and (1.1*3) are the governing differential equations for 

the problem under consideration. Solving these equations, taking into 

account the appropriate boundary and initial conditions, permits one to 

compute the stress-displacement field for the laminate.  Equations 

(1*.1»2) and (U.U3) differ from equations (26) and (27) in reference (5M 

in that P, 6 , and w were not included in the earlier derivation. 

D. Shear Stresses 

Noting that T   and T     and expressing the moments M , and 
in,in    — in,—m **■ 

shears Q , in terms of displacements and substituting into equation 

(U.36), the folloving equation is obtained and may be used to compute 

the interlaminar shear stresses. 
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i-1 
T   - -A- j ? [E.(I. - F h )(*; - e»)  ♦ E F  I (h^ 
B,B  bhm*l i i-X  i i   i *  *   i       W 

- V(*k " 9k)] "  "   I"»o1Ai(*1 - e4 ♦ w^)] J (u.uu) 

Shear stresses vithin the mth layer are readily derived by considering 

equilibrium of the element shown in figure U.5. 

r 
T  ■ T    +| m  m,m  I 

h 

hm+l 3a 
S d* (*.*5) 

dz 

It is noted that the axial compressive stress resulting from the applied 

load is not shown in figure U.5 since it was shown earlier (see equation 

i-.22) that the axial force is constant along the length of the bear.. 

Thus the terms would cancel and have no effect on equation (U.U5). 

depressing o in equation (I4.U5) in terms of the displacements and then 

performing the integration yields 

2 

th 
continuing one step further, the average shear stress within the m 

layer is given by 

T  , ^  ,   1   dz ikM) 
ave *Wl 
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or in terms of the displacements and interlaminar shear stresses 

E 
T   - T   ♦ -f (h 41 - h )2(*" - 8") 
ave   E,m  3  m+1  m  m  m 

m-1 
Z 

i-1 
♦f (Vi-V.L (hi+i" hiH*i" 9i} (U-U8) 

E. Solution of Governing Equations 

A brief examination of equations C+.U2) and (U.U3) leads to the 

conclusion that the chances of obtaining a tractable closed form solution 

for a multilayered beam, particularly if the number of layers is large, 

are rather remote. One approach for overcoming this obstacle is to 

express the derivatives of *, 8, and v in terms of finite differences. 

The result is a (n + 1) set of algebraic equations for each node along 

the beam. For a beam with both ends fixed and subdivided into J 

intervals, the simultaneous solution of (J - 1) (n + 1) algebraic 

equations is required to determine the stress and displacement fields. 

The only practical method of solution is utilization of a computer. 

Transformation of the governing differential equations into algebraic 

equations and discussion of the analytical method and computer program 

used to obtain a solution follow. 

Defining 

■  ♦i«ti-ei  . (*.»*>. 

and writing the first and second derivatives at the pth mode along the 

beam in terms of finite differences 
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!(P) 
^(p ♦ 1) - »t(P - D 

2(Ax) 

♦J(P) 
^(p + 1) - 2»t(p)  + »t(P - 1) 

(Ax)' 

equations  (U.U2) and (U.U3) may be expressed in the following matrix 

form. 

H,,  *,*•••  *i.!sn   Si?  • "11    12 Is 

R21 R22 *   '   * B2s 

11    12 

S21 S22 * 

is 

2 s 

Tll T12 • 

T21 T22 • 

is 

2s 

*.i  B-9 •   •   • R
fiS!SSl 

SS2 *   '   •  Sss|rsl Ts2 * si s2 

["^(p-l} \*M 
$ (p-1) n P2(p) 

v(p-l) • 

♦l_(p) • 

♦B(p) • 

w(p) 

*x(p+l) 

PS(F) 

♦n(p*l) 

w(p+l) (k.51) 

where s = (n + 1). Utilizing abbreviated notation equation (fc.51) becomes 

rRisiTirv I=M &•& 
[^>!-P!-P] —p-1 

1 
-p 

Coefficients of the R, S, T, matrices and the load vector P are defined 

as follows: 



50 

i - i < n „ 
2E1(I1 - F^) ♦ 2hi+1(hi+1 - ht) vJ+i  EA 

k=i+l (l*.53a) 
ij (Ax)' 

i > J < n 

(I*.53b) 

RiJ " (Ax)2 

i < J < n 

ij 

2hi+l 
Ej(FJ - AjV + 2hi*l(hJU " V. _?.,Vk 

ISIS  (U.53c) 
(Ax)' 

1 < i < n 

i « s 

Rij=    Z   k'Vk/Ax 

k=l 

(•..53d) 

i = s 

1 < J < n 

RiJ = + W 
(l».53e) 

l ■ s 

J   «   8 

ij 

2   Z    k'G.A.   - P 
k=l        ** 

(Ax)2 

(U.53f) 
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1 < i < n 

ij -2(RiJ-k'GjV 
{U.5l»a) 

1 < i < n 

J > i 

SiJ * "2 RiJ 
(k.5«»b) 

1 < i < n 

i • s 

Sij"° 
(U.5l*c) 

i « s 

1 < i  < n 

SiJ = ° 
(l».5fcd) 

i ■ s 

J - ■■ 

ij 
-2 R 

U 
(k.Ske) 

1 < i < n 

1 < J < n 

T ' ■ R (U.55a) 
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X < i < n 

J - » 

T  ■ 
-HiJ 

(U.55b) 

i ■ ■ ' 

1 < J < ii 

T  ■ 
-RU 

(»>.55c) 

i "» 8 

J - s 

T  * RU 
(••55d) 

1 < i < n 

P±(P) " -Vl Px (k.56a) 

i - s 

Pt(p) ■ -P ♦ P v" 
z    o 

(U.56b) 

Inspection of equation (l».53f) indicates that the values of some 

coefficients are a function of the applied axial load, P. As a result, 

stresses and displacementz  due to large loads may have to be computed 

in smaller increments in order to avoid error in the analysis . The 

influence of load increment size vill be discussed later. 

Applying equations (U.52) to each node along the beam 
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lead« to the following set of matrix equations. 

^SjjTg 0 ° ° 

0 £3 £3 23 o o 

0 0 R^ S^ T^ 0 

0 ° ° £j-l 2j-l 2j-l ° 
0 0 0 0   £j  Sj  Tj 

pll ["41 
h *3 • • 
* sea • 
• . 
h AJ-I 

2**1 u.      — _£j_ 

(U.5T) 

When boundary conditions are taken into account, rotations and deflections 

at the end of the beam (Y and Y^) are prescribed for the cases under 

consideration and equation (U.57) becomes 

£L T„ 0 0 0 
*2 

R- S T, 0 0 

o h h h ° 
0 0 ^  S.. - T. 

0 0 0 

-l Sj-i AJ-I 

Y 1  L, 1 

Y P 
^3 -3 • • 

• • 
Y P 

*T PT 
— -J  *—   — 

(U.58) 

Equations (U.58) may be solved by utilizing the tridiagonal method 

of solution described in reference 6l and used earlier by Swift (57). 

The method of solution works in the following manner. Starting with the 

first of equations (U.58) and proceeding to the last, the values of Y^ 

are expressed in terms of Y.+,. 
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Iß - S?lEe " 22 h] 

Noting the following recurrence formulas, 

fit - Si - Si £1 li-i (U.60) 

and substituting into equations (U.59) leads to 

I3-H-1[P3-S2-T3Yit] 

„-1 
Ij-C^-^-l1 

(U.62) 

Tth Values of displacement and rotation (Y ) at the J  node can be calculated 

using the last of equations (1*.62). Then the remaining values of Y^, can 

be calculated by successive back substitution. 

The computer program, written earlier by Swift (57). was modified 
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to solve equations (U.58). In addition to making changes required to 

appropriately adjust the coefficient matrices (R, S, T), the program 

was altered to accept materials which exhibit nonlinear shear stress- 

strain behavior. A brief description of the computer program is given 

in Appendix A. 

F. Initial and Boundary Conditions 

Figure U.l shows sketches of the two problems studied. As indicated 

previously, case A represents an entire laminate and case B represents a 

typical repeating element contained in a laminate. For each case, an 

initial deflection of the form 

w »a {1 ♦ sin[(2ir/L)(x - L/U)]} C».63) 
o   o 

Q± *  0 

vas assumed. The transverse deflection, WQ, is symmetric about the 

midspan of the beam and has zero slope at the mldspan and both ends of 

the beam. Values of w" are evaluated at each node along the beam and 

used to compute the values of P^p) in equation (fc.56b). The choice of 

6 is based on the requirement that all layers have the same initial 

radius of curvature and that displacements in the x direction are 

continuous at the layer interfaces. In other words, prior to assembly 

of the laminate, each layer was assumed to undergo the transverse 

deflection represented by equation (U.63) and then all cross sections 

which were initially perpendicular to the neutral axis were rotated 
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back to the vertical position in order to impose continuity of the 

horizontal displacements. For both cases, the ends of the laminate 

were assumed to be fixed and thereby preventing any lateral deflection 

or rotation at the stations x » 0 and x » L. For case A, the upper and 

lower surfaces were assumed to be free of tractions. For case B, the 

upper and lower surfaces form the boundary of a repeating element and 

in order to satisfy compatibility horizontal displacement, u(x), was not 

permitted along these boundaries. An unknown surface traction, TQ n 

results from this constraint. 

Thus for case B, an additional equation and an additional unknown 

T   must be included in the analysis. The requirement that u(x) vanish 
n,n 

along the upper and lower surfaces provides the additional equation 

*lh2 + *3{h3 " h2) + '•• + *n(Vl " V " °       (U-65) 

F.eferring to equation (U.20) and noting the relationship between t^ Q and 

P , permits P to be treated as the unknown variable and equations C*.5D 

take the form 
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0  0 h2 d>3-h2) 

'«1 *»2 

0  0 

—i 

Tl. 
0 

T2» 0 

Tn, 0 

T« 0 

0 0 

♦jtp-l) 

*c(p-l) 

v(p-l) 

♦„<»> 
w(p) 

Px(p) 

♦D(p»l) 

v(p»l) 

p„(p) 

0 

(1».66) 

Equations (1*.66) were solved using  the procedure described for obtain- 

ing a solution to equations (U.51). 



V. SHEAR INSTABILITY OF MULTILAYERED MEDIA 

Figure 5.1 shows a segment of a multilayered medium under axial 

compression load. The medium is assumed to be composed of repeating 

elements vhich might be representative of a lamina or fiber reinforced 

composite material. The length to width ratio of each lamina in the 

multilayered material is assumed to be small and thus bending (Euler 

buckling) of the laminae is precluded. The magnitude of the applied end 

loads is such that a uniform axial strain is imposed on the material. 

The repeating element is assumed to be symmetric about its midplane and 

compatibility of displacements along the vertical boundaries is imposed 

in the following analysis. As a result, the average vertical displace- 

ment at the upper ends of the +nth and -nth laminae will equal the 

displacement at the midplane of the repeating element. Thus, for 

convenience, the applied axial loads are replaced by a single load 

acting at the midplane of the repeating element. 

The axial load which initiates shear buckling, may be calculated 

using an energy analysis, as indicated in reference 15- Referring to 

figure 5.1, it is noted that the work done by the external forces in 

going from the initial position to the buckled position is 

W - PS (5.D 

where 6 is the axial displacement of the midplane and the outer surfaces 

of the repeating element. 6  can be expressed in terms of the slope, 

w|, by 

6 - (1 - cos v£) dx (5.2) 

58 
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atd utilizing the relationship 

cos v« s X - v£2/2 (5.3) 

equation (5-1) becomes 

ICPwj2 dx/2 (5A) 

Since bending of the laminae is precluded, the change in strain energy 

in going from the initial position to the buckled position is due only 

to shearing stresses and is given by 

n 
U « I MA dx 

i-1 

(5.5) 

where T , Y , and A. denote shear stress, shear strain and cross 

sectional area of the ith layer. Expressing shear stress and shear 

strain ir. terms of displacement, v^ and rotations 4^ (refer to equations 

(1*.5) and (U.T)) and substituting into equation (5-5) yields 

n             2 
U - Z     G^ (4^ + V') dx 

i»l 

(5.6) 

Equating W and U leads to 

0    n             o 
Pw'Z « 2 E G A (*. ♦ v') 

1     i«l 

(5.7) 

Equation (5-7) plus the follwoing equation which imposes continuity of 

displacements along the vertical edges of the repeating element , are 

the governing equations for predicting shear instability. 



60 

I A.*. - 0 (5.8) 
i-1 x 

Next, determining the minimum value of P using the method of 

Lagrange multipliers 

i-+xlf-0 (5'10) 

where « represents the constraint equation (5.8). Substituting equations 

(5.7) and (5.8) into (5-9) and (5-10) and performing the differentiation 

leads to 

I O.A.(*. + w«) v- - I G A (♦ ♦ v>)2 = 0 
i«l i i J  x  x  i-1 

SV*i *wi)/wi2 * **i'" ° 

(5-11) 

(5.12) 

UG i A (<|> ♦ w')/w'2 + XA - 0 
n n n  11    ° 

Eliminating the Lagrange multiplier from equations (5-12) yields 

^(♦1**i)-G2(*2 + WX)"""'GBUn + Wi)'     (5'13) 
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Equation (5.13) indicates that P will be minimum when a state of 

uniform shear stress exists in the buckled element. The solution, 

equation (5.13), also satisfies equation (5.11). This can be shown 

by substituting equations (5.13) and (5.8) into (5-11). Utilizing 

equations (5.8) and (5.13) to determine the values of $. in terms of 

w' and then substituting the results into equation (5-7) yields 

2(A. ♦ A,+ •" ♦ A)2 

p  . _J2 -2 J^_ (5.H) 
cr 

ft*"-*) 

Denoting the average compressive stress by 

n 
I 

i»l 
o  - P /2 Z   A, (5-15) 
cr   cr' ._. i 

and the volume fraction of the i      lamina by 

V. - A./ I   A (5.16) 
1       x i-1   x 

and substituting into (5-11*) leads to 

C1G2 - °n 
*cr - VXG2 - Gn ♦ V2GlG3 ••• GB ♦ "'" ♦ Vft - G^ 

(5.1T) 

Equation (5.1?) was used to predict shear buckling in the computer 

program described in Appendix A. 

Perhaps it should be noted that the right side of equation (5.17) 

equals the predicted shear modulus of a multilayered material, based on 
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the "stiffness in series" model for the material. Thus equation (5.17) 

agrees with Foye's (15) results for the case, n ■ 2. 



VI.  EXPERIMENTAL INVESTIGATION 

Fabrication procedures and test methods utilized in the research 

program are described in this section of the thesis. Two types of com- 

posite specimens, lamina and fiber reinforced, were fabricated and test- 

ed. The lamina reinforced composites were designed to provide verifica- 

tion of the interlaminar shear analysis and the fiber reinforced compo- 

site specimens were designed to show a relationship between shear 

modulus and axial compressive stress. 

A. Lamina Reinforced Composites 

1. Laminate Fabrication 

Four specimens were fabricated using either 0.0^0-inch or 0.083-inch 

thick strips of 7075-T6 aluminum for the reinforcement and type "WI- 

Green Rigidax" compound for the matrix. Figure 6.1 shows two of the 

specimens. All specimens were nominally one-half inch thick and contained 

ten reinforcing laminae. At the ends of each specimen aluminum shims 

were used to maintain a uniform spacing between the reinforcing laminae 

and to provide the additional stiffness required to simulate a clamped 

end boundary condition during testing. 

The two larger specimens were fabricated using 0.083-inch thick 

strips of aluminum which had been hand-formed on a 6.0-inch diameter 

steel cylinder. After the strips were formed, they were assembled with 

the separating shims and a hole was drilled through each end to permit 

clamping with a machine screw and fastener. Next, the assembly was 

63 
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chemically cleaned and then disassembled. The specimen was then 

reassembled using a pattern of pins (drill bits) to align the re- 

inforcing laminae.  (See figure 6.2.) The pins were held in position 

by an aluminum plate which had been precision machined to provide the 

pattern.  In general, the pins passed through the laminate and extended 

into the plate approximately 1/8-inch. Minimal effort was required to 

insert the reinforcing laminae between adjacent rows of pins, since each 

lamina had been formed to approximately the same shape as the pin 

pattern. Next the assembly and plate were heated to 250°F in a circulat- 

ing-air oven and the cavities between the aluminum strips were filled 

with molten wax. After the specimen was allowed to cool to room temper- 

ature, it was removed from the supporting plate. The alignment pins 

remained in the specimen, as shown in figure 6.3. The pins were not 

located at points where peak interlaminar shear stresses were expected 

to occur. 

Fabrication of 'the two smaller specimens was similar with the ex- 

ception that a rectangular frame and only two transverse rows of pins 

were used to align the reinforcing laminae which had been hand formed 

on a U.5-inch diameter cylinder. Figure 6.3 shows the pins remaining 

in one of the specimens containing O.OUO-inch thick laminae. The ends 

of each specimen were machined flat and parallel and perpendicular to 

the length direction of the specimen in order that uniform loading of 

the ends could be approached. 

Table 6.1 lists the dimensions for each specimen. The x and z 

coordinates listed were determined with a CORDAX measuring machine which 
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is accurate to within ±1/1000 inch. Specimen length and width were 

teasured with a machinist scale. Specimen thickness was determined by 

subtracting the upper and lever z coordinates at each station along the 

x axis where measurements were taken. A comparison of the initial dis- 

placement pattern for each laminate with the displacement given by- 

equation (1».63) is shown in figure 6.1«. 

2.  Matrix Specimens 

Cylindrical and tubular shaped specimens were fabricated and used 

to determine compression and shear stress-strain curves, respectively, 

for the matrix material. The compression specimen was made by first 

filling a brass tube with molten wax and then machining off the brass 

tube after the wax had cooled to room temperature. Nominal dimensions 

for the compression specimen were 3.0 inches in length and a 1.0 inch 

diamter.  (See figure 6.5.) 

A matrix shear test specimen is shown in figure 6.6. The specimen 

was machined from a 9-inch long by 2-inch square casting of wax. 

Hominal dimensions for the finished specimen were:  6.000-inch length, 

1.750-inch square ends, 2.000-inch long, 1.500-inch outside diameter 

by 1.000-inch inside diameter test section. The test section to end 

grip transition portion of the specimen was tapered at an angle of 

approximately 20 degrees. 

3. Matrix-Reinforcement Bond Strength Specimens 

Figure 6.7 shows the type of specimen used to determine the bond 

strength between the aluminum reinforcement and the matrix material. 
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The specimen consists of two basic parts: a 0.50 inch thick by 2.000 

inch square aluminum block with a 15/16 inch diameter hole and a 0.750 

inch outside diameter by 0.062 inch thick aluminum tube. The aluminum 

tube passed through the hole in the block. The tube was located in the 

center of the hole and thus provided a uniform gap between the two 

parts. The gap was filled with molten wax. 

It. Compression Test of Laminate Specimens 

Figure 6.8 shows the test setup utilized for each laminated speci- 

men. Compressive load was applied to the specimen by the upper and 

lower platens of a 120,000 pound capacity hydraulic testing machine which 

had been calibrated to an accuracy of 0.1 percent full scale load with 

standards traceable to the National Bureau of Standards. Loading rates 

of 1*100 and 2100 pounds per minute were applied to the larger and 

smaller laminates, respectively. These loading rates correspond 

approximately to an axial strain rate of 0.001 per minute. 

Foil type strain gages were bonded to the edge of aluminum laminae 

number 3 and 5 at the specimen mid length. (See figure 6.9.) Strain 

gages were also bounded to the outer surface of aluminum laminae number 

1 and 10 at the specimen mid length and one inch either side of the 

mid length. (See figure 6.10.) No attempt was made to attach strain 

gages to the matrix laminae since an earlier effort to bond gages to 

wax castings had proved to be unsuccessful. The resistance of each gage 

was 120 ohms, ±0.3 percent. Gages factors ranged from 2.0U to 2.15 for 

all gages, but the value for each gage was known within ±0.5 percent. 

Each gage was connected to a single active arm Wheatstone bridge which 
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utilized a 3.00 volt power supply. The average circuit sensitivity vas 

1.58 volts.  Recording equipment capable of accurately detecting voltage 

changes as small as 0.0025 millivolts was used to read voltage changes 

in the Wheatstone bridge. Thus strain increments as small as 0.000002 

in./in. could be detected. 

Transverse and axial displacements were measured with linear direct 

current differential transformers (DCDT). Pull range displacement varied 

from ±0.050 to ±1.000 inches. The DCDT's with ±0.050-inch displacement 

range could accurately measure displacements as small as 0.000167-inch 

whereas the DCDT's with ±1.000 inch range were only accurate to approx- 

imately 0.001 inch. 

During the tests, load strain data from the four gages at the mid 

span of the specimen and load deflection data from four transformers 

along one side of the specimen were monitored on an oscilloscope at the 

test site. All data were recorded on magnetic tape in the Langley 

Research Center data processing facility.  In general, the data were 

recorded at one second intervals. 

5.  Compression Test of Matrix Specimens 

Figure 6.11 shows the test setup utilized to obtain compressive 

stress-strain data on the wax matrix material. The specimen was position- 

ed in an Instron testing machine and load was applied by lowering the 

upper platen at a constant rate of 0.01-inch per minute. Load was 

recorded as a function of time for subsequent use with platen displace- 

ment to develop stress-strain plots. 
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6. Torsion Test of Matrix Specimens 

Figure 6.12 shows the test setup utilized to obtain shear stress- 

strain data on the matrix material. The tests were performed in a 60,000 

inch-pound capacity hydraulic testing machine. The right end of the 

specimen was held stationary and the left end was rotated. Rotation at 

two stations along the specimen were measured using linear direct current 

transformers capable of accurately measuring displacements as small as 

0.000U-inch. Torque-deflection curves were monitored on an oscilloscope 

at the test site. Data were recorded at each 5-inch-pounds of load and 

stored on magnetic tape. 

7.  Bond Strength Test 

Figure 6.13 shows the bond strength test setup.  Compressive load 

was applied to the upper end of the tube. The load was reacted by 

shearing stress at the tube-wax interface. The tests were performed in 

an Instron Testing machine and using a constant head displacement rate 

of 0.002-inch per minute. Load was recorded as a function of time for 

subsequent use with platen displacement to develop load deflection plots. 

B. Fiber Reinforced Composites 

1. Fabrication of Tube Specimens 

Unidirectionally fiber reinforced tubular specimens for use in 

compression, torsion and combined compression-torsion tests were fabri- 

cated using the general procedure presented in reference 26 with minor 

modifications. Figure 6.lU shows a flow diagram of the fabrication 

process and a brief description follows. First, an aluminum tube which 
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serves as the mandrel is cut to the required length and several small 

holes are drilled through the wall near each end. Next, a Teflon heat 

shrinkable sleeve is positioned on the aluminum tute and heated until it 

fits tightly around the tube.  In the second step, plies of preimpregnated 

filaments are wrapped around the mandrel. The filaments are aligned 

parallel to the longitudinal axis. Each ply extends one revolution a- 

round the mandrel and contains a butt-type seam. Seams in the various 

layers are uniformly distributed around the circumference. After the 

required number of plies have been laid up, a release cloth and then 

bleeder plies are tightly wrapped over the pregpreg material. The 

bleeder Flies extend ever the holes in the aluminum tube. The fourth 

step consists of placing a Teflon sleeve over the bleeder plies and 

heating until it fits tightly.  The ends of the sleeve are sealed by 

clamping. The entire assembly is then placed in an autoclave for 

curing under pressure at elevated temperature. While in the autoclave, 

one end of the aluminum tube is plugged and the other is connected to 

a vacuum line. After the prepreg material has been cured, the composite 

tube is easily cut into sections and removed from the mandrel. 

Three types of composite material were used in the study. The 

fiber, matrix, and cure cycle for each material are listed in Table 

6.2. Ten ply tubes were fabricated using the U-mil boron-epoxy prepreg 

and the glass-epoxy prepreg. An 11-ply tube was fabricated from the 

5.6-mil boron-epoxy prepreg. One ply of MIL-TEX nylon peel ply number 

3921 cloth was used for the release ply on the l*-mil boron epoxy tube. 

TX-10l*0, a Teflon coated style lOU glass cloth, was used for the release 
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ply on the other tvo tubes. A nylon shrink tape, Bally Ribbon Mills 

pattern 7282, was used for bleeder plies on all tubes. Two bleeder 

plies were used on the 10-ply tubes and three bleeder plies were used 

on the 11-ply tube. 

Cross sectional views of each tube are shown in figure 6.15. The 

two boron filament reinforced tubes were photographed at the same 

magnification and the difference in size between filaments is apparent. 

The glass reinforced tube was photographed at a higher magnification in 

order to show individual filaments. Filament content for the It-mil 

boron-epoxy and 5.6-mil boron-epoxy tubes was determined using the point 

counting technique presented in reference 62. The respective values 

are 52 and 53 percent. Filament content for the glass tube was deter- 

mined using the procedure described in reference 63 and the value is 68 

percent. 

Each tube was cut into several specimens utilizing a diamond cut- 

ting wheel. The ends of each specimen were ground flat, square and 

perpendicular to the longitudinal axis of the specimen. Machined end 

plugs were bonded with Versamid lUO-Epon 828 resin (equal parts by 

weight) to each specimen. The end plugs were 1.75-inches square, 0.25- 

inch thick and had a 0.125-inch deep machined groove in which the 

specimen was inserted. The width of the groove was 0.015-inch greater 

than the tube wall thickness and the groove diameter was specified such 

that clearances of 0.005-inch and 0.010-inch were obtained on the inside 

and outside of the tube, respectively.  (See figure 6.l6.) Figures 

6.17 and 6.18 show boron-epoxy and S-glass epoxy specimens. The longer 



specimens were used in torsion and combined compression-torsion tests 

whereas the shorter specimens were tested in compression. 

Table 6.3 lists the dimensions for each fiber reinforced tubular 

specimen and the type of tests performed on it. Outside-diameter 

measurements were made with a micrometer whereas wall-thickness measure- 

ments were made with a moveable-dial-gage apparatus described in refer- 

ence 6k.    Specimen length was measured with a machinist scale. Six 

diameter measurements were made on each specimen, two at each end and 

two at the center. The maximum variation in diameter was less than one 

percent of the value reported in Table 6.3. Twelve wall-thickness 

measurements were made on each specimen, four at each end and four at 

the center. The maximum variation in wall thickness was less than U.5 

percent of the value reported in Table 6.3. 

2. Compression Test 

Figure 6.19 shows the compression test setup. The tests were 

performed in the same 120,000-pound capacity testing machine used to 

test the lamina reinforced specimens. Foil-type strain gages were used 

to measure axial strain at three locations, 90 degrees apart, around the 

circumference of the specimen. At least one compression specimen from 

each tube was also instrumented with a 1*5° degree foil gage rosette 

which measured strains parallel and ±1*5° with respect to the longitudinal 

axis. A constant load rate of approximately 5000 pounds per minute was 

maintained during all tests. 
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3'. Torsion Test 

Figure 6.20 shows the torsion test setup. The same testing machine 

that was used to test the matrix specimens was used for these tests. 

The right end of the specimen was held stationary and the left end was 

rotated by the testing machine. Strain data were obtained from two 

diametrically opposite rosettes which contained a 0 and ±1*5 degree 

oriented gage. All tests were conducted at a nominal load rate of 50 

inch-pounds per minute. 

h.    Combined Compression and Torsion Test 

Figure 6.21 shows the test setup for the combined compression and 

torsion test. This apparatus was used to generate torque-strain curves 

for the composite material while it was under compressive load. While 

each torque-strain curve was being generated, the compressive load was 

held constant at a predetermined value. The test specimen was mounted 

in series with an aluminum load cell which was rigidly attached to the 

upper platen of the compression testing machine. While not visible in 

the photograph, the load cell had a tubular cross section and the walls 

contained four equally spaced longitudinal slits. The slits were used 

to reduce torsional stiffness so that the magnitude of the applied 

torque could be detected by rotation of the lower end of the load cell. 

Rotation was measured by two DCDT's which were capable of detecting 

displacements as small as 0.00008U-inch. Typical calibration runs from 

0 to 150-inch-pounds, using 17 discrete load points, indicated 13 points 

would be within 0.375-inch-pounds of a straight line determined from a 

least squares fit of the data. The lower end of the specimen was 
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supported by a thrust bearing assembly. Torque was applied by attaching 

weights on two strings which were connected to the moment arms. 

Diametrically opposite strain rosettes were attached to the middle 

of the specimen. The rosettes contained aluminum foil-type gages 

aligned at 0 and ±U5 degrees with respect to the longitudinal axis. A 

single strain gage was mounted midway between the two rosettes. Torque 

was increased in increments, either by adding 0.5 or 1.0 pound weights. 

Strain gage and load data from the compression, torsion, and com- 

bined compression and torsion tests were recorded in the Langley 

Research Center data processing facility. Recording intervals varied 

from 0.25 to 5.0 seconds depending on the test circumstances. The higher 

rate was generally used when failure was expected. Selected data were 

displayed on oscilloscopes and monitored at the test site. 



VII. RESULTS AMD DISCUSSION 

Both theoretical and experimental results are presented herein. 

The theoretical results consist of data generated by the computer 

program described in Appendix B. The experimental results were obtained 

from tests on laminated beams and fiber reinforced tubular specimens. 

A. Theory 

The eight layer beam shown in figure 7.1 was used as a model 

laminate in generating the theoretical results. The beam is symmetrical 

about its center line, has an initial deflection represented by 

v * 0.02{1 + sin[0.5ir(x - 1)]} (7-1) 
o 

Oj - 0 (7.2) 

and the span to depth ratio equals h.    Six values of reinforcement to 

matrix stiffness ratio were investigated for both boundary conditions 

A and B described herein. In addition, the effect of nonlinear shear 

stress behavior in the matrix and load increment size were studied. 

Results obtained with case A and case B boundary conditions were 

compared. 

1. Reinforcement/Matrix Stiffness Ratio 

Table 7.1 lists rotations, interlaminar shear stresses, and shear 

resultant at x  = LA and transverse deflection at x = L/2 calculated 

7fc 
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by the computer program and classical beam theory (CBT) for the beam 

shown In figure 7.1. For all examples listed in table 7.1, end loads 

-It 
corresponding to a uniform axial strain of 6.1* x 10  were prescribed. 

In order to emphasize transverse shear deflection, shear modulus values 

for each layer were arbitrarily chosen to be one tenth the value calcu- 

lated using the assumptions of isotropic material behavior and Poisson's 

ratio equal to 0.3. 

Examination of the results, based on case A boundary conditions, 

indicates:  (1) For high values of the stiffness ratio \/^2>  10 to 

10 , the reinforcing laminae behave like separate columns and inter- 

laminar shear stresses are negligible except at the neutral axis. 

(2) As the ratio £,/£„ Becomes smaller, 10 to 1, the matrix laminae 

influence the reinforcing laminae behavior and interlaminar shear stress- 

es become more evenly distributed over the beam cross section. (3) The 

rotations at x • L/l» and transverse deflection at x ■ L/2 show the 

expected trends. To be specific, one would always expect a counter 

clockwise rotation at x = L/U in the reinforcing laminae. The data 

substantiates this, even for the case where the matrix and reinforcement 

laminae positions are interchanged (Ej/E- * 10 ). Total transverse 

displacement decreases as E,/E2 approaches unity and is always greater 

than the value calculated with classical beam theory. When comparing 

the displacements listed in table T.li the reader should recall that the 

initial displacement was U.C0 x 10 . Hence the difference between 

values calculated by the computer program and with CBT are significant. 

Examination of the results, based on case B boundary conditions, 
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indicates:  (l) Behavior of the reinforcing laminae is not affected by 

the matrix laminae, if E^Eg is greater than 10 .  (2) As the value of 

E./E„ becomes smaller, range of 10 to 1, the reinforcing laminae are 

influenced by the matrix and the interlaninar shear stresses become more 

evenly distributed over the beam cross section. (3) Rotations and trans- 

verse deflection indicated the expected trends. Rotation of the rein- 

forcement was in the counter clockwise direction and equal values of 

rotation in the clockwise direction were computed for the matrix laminae. 

Transverse displacement decreases as E /E2 approaches unity and always 

exceeds the value computed with classical beam theory. 

2. Shear Stress Distribution 

Figure 7.2 shows the variation in shear stress through the depth of 

the beam predicted by both the computer program and classical beam the- 

ory. The plots are based on the beam shown in figure 7.1, boundary 
•7 

conditions A and the fifth set of material properties (E1 » E2 = 10 ) 

listed in table 7.1. Both methods indicate that the maximum shear 

»tress is developed at the neutral axis. However, the computer program, 

predicts a peak shear stress approximately 15 percent below the classical 

beam theory value. Perhaps even more significant is the difference in 

the shape of the two curves over the central portion of the specimen. 

Classical beam theory indicates the shear stress varies from 75 to 100 

percent of its maximum value over the central half of the beam whereas; 

the computer program indicates the variation is approximately 10 percent. 

Confidence in the computer results is enhanced when it is noted that 

failure in short beam interlaminar shear specimens (ASTM Designation D 
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SS****) often occurs at locations as much as 20 percent of the beam depth 

above or below the neutral axis. Thus indicating that the shear stress 

distribution near the neutral axis may not vary as much as predicted by 

classical beam theory. 

Interlaminar shear stress at the midplane and at the first-second 

layer interface are plotted as a function of position along the beam in 

figure 7-3. Boundary conditions B and the fourth set of material proper- 

ties (E-|/Ep = 10) listed in table 7.1 vere used in the computations. 

Maximum stresses are predicted to occur at the quarter points. This 

result was anticipated since the slope of the deflected beam was maximum 

at the quarter points and transverse shear is directly proportional to 

the slope for the case under consideration. 

3. Nonlinear Matrix Behavior 

In order to illustrate the influence of nonlinear matrix behavior 

on shear stress distribution along the beam, the shear stress-strain 

curve shown in figure l.k  was postulated. The curve is divided into 

five linear segments and the initial shear modulus equals 3.85 x 10 

psi. Utilizing the stress-strain behavior indicated in figure J.k  for 

the matrix, but retaining the other material properties used to develop 

figure 7.3» interlaminar shear stress along the length of the beam is 

predicted to vary in the manner shown in figure 7.5. Interlaminar 

shear stress along the neutral axis is maximum at the quarter points, as 

previously indicated in figure 7.3. Interlaminar shear stress along the 

first-second layer interface is also maximum at the quarter points but 
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remains nearly constant for ±10 percent of the bean length on either 

side of the quarter points. The bluntness of the first-second layer 

interlaninax shear stress curve is a consequence of the nonlinear shear 

stress-strain behavior of the matrix and indicates that strain in the 

matrix has exceeded the proportional limit along approximately 60 per- 

cent of the beam. 

While performing the computations required to construct figure 7.5, 

it was found that the matrix laminae had to be subdivided in order to 

obtain accurate results from the computer program. Thus a six layer 

beam is shown in the sketch on figure 7-5. In the computer program, 

the value of shear modulus used in each computation is based on the 

average shear stress across each lamina. As a result, the matrix 

laminae were subdivided in order to prevent the computer program from 

over estimating the interlaminar shear stress values. Each matrix 

lamina adjacent to a reinforcement lamina was only 0.025 inches thick 

whereas the remaining matrix laminae were 0.100 inches thick. 

Figure 7.6 illustrates the effect of nonlinear shear behavior in 

the matrix on the shear instability load predicted by equation (5.17). 

The plot is based on the same material properties and laminae arrange- 

ment that were used to develop figure 7.5 and values of shear modulus 

corresponding to the average shear stress in each lamina at the beam 

■ th 
quarter point. Axial load was applied in 25 equal increments. The 1* 

increment terminates at 1*90 pounds, the point where nonlinear shear 

behavior is initiated. During the next three load increments, shear 

stress in all matrix laminae exceeds the proportional limit shown in 
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figure 7.1* and the shear instability load drops to approximately 10 

percent of its initial value. Throughout the remaining increments 

(figure 7.6), the change in shear instability is small. By utilizing 

smaller load increments and further subdividing the matrix laminae, the 

series of line segments shown in figure 7.5 could be replaced by a 

smooth curve. 

I». Load Increment Size 

A brief study of the influence of load increment size on the com- 

puter program results was performed. Utilizing the beam shown in figure 

7.1, boundary conditions A and the fourth set of material properties 

(IL/E « 10) listed in table 7.1, rotations, transverse deflection, shear 

stresses and shear resultant were computed using four different size 

load increments. The results are listed in table 7.2. The load incre- 

ments listed correspond to dividing the total load into 5, 10, 15 and 25 

increments, respectively. Comparison of the rotations for each layer, 

indicates a change of less than 0.U percent is obtained by decreasing 

the load increment size from Uo to 8 pounds. Transverse deflection is 

predicted to be constant over the range of load increments investigated. 

Changes in interlaminar shear stress and transverse shear resultant are 

insignificant compared to the accuracy of the analysis. Inspection of 

equation (fc.53f) leads to the conclusion that the results listed in 
n 

table 7.2 should be anticipated since the value of AP « Z   G A, . 
i»l    n 

Use of load increments which correspond to larger ratios of AP/2 £ G^ 

«re expected to show more variation in the results. 
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5. Boundary Conditions 

Table 7.3 shows the Influence of utilizing boundary conditions case 

A and case B on the computed displacements, rotations and interlaminar 

shear stresses. The objective of the study was to determine if the 

transverse displacement, laminar rotations and Interlaminar shear stress- 

es near the midplane of a thick laminate with free upper and lower sur- 

faces could be accurately ccmputed using a repeating element from the 

laminate with restrained upper and lower surfaces. 

The results listed under case A are based on a 19 ply laminate (10 

fiber or reinforcing laminae and 9 matrix laminae). Each lamina was 

U.000 inches long, 0.500 inch wide, 0.083 inch thick and had an initial 

transverse deflection at the midspan of 0.020 inch. End loadings which 

correspond to a uniform axial strain, O.OOfc in./in., were used in all 

computations. The rotations listed under case A are for the matrix 

lamina located at the midplane of the laminate and for the adjacent fiber 

lamina. Interlaminar shear stress for the two laminae Just described 

is also listed. 

Results listed under case B were computed for a single fiber lamina 

and the two adjoining half layers of matrix taken from the case A lami- 

nate. As indicated in table 7.3, the fiber lamina was subdivided for 

the purpose of analysis. A uniform axial strain, 0.00U in./in., was 

imposed in all computations. 

Examination of table 7.3 indicates: (1) For Ef/Em - 100 the 

results based on case A and case B boundary conditions are in reasonable 

agreement.  (2) For EjE = 10, the comparison is less satisfactory and 
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for E./E " 1 the two sets of boundary conditions provide significantly 

different results. (3) Rotations, displacement and interlaminar shear 

stress based on case B boundary conditions are always less than the 

corresponding values based on case A boundary conditions. 

Perhaps the use of a laminate with a lower length to depth ratio and 

a larger number of laminar would provide a more favorable comparison. 

This would tend to eliminate bending of the laminate about its neutral 

axis. Additional analysis is required to confirm this idea. Since most 

laminated specimens contain a small number of laminae (usually less than 

20), table 7.3 clearly shows that case A boundary conditions should be 

used in analysis of the test results. 

B. Experiment 

1. Matrix Compression Test 

Figure 7.7 shows compressive stress-strain curves determined for 

three specimens. Each curve is characterized by an initial linear seg- 

ment which is followed by a nonlinear region. The linear behavior 

terminates at a strain of approximately 0.003 in./in. The specimens did 

not fracture. However, loading was terminated at the maximum strain 

shown for each specimen since it was believed that additional loading 

would not produce data applicable to the present study. The three 

curves shown in figure 7.7 were averaged, from 0 to 1000 psi, and the 

result is shown in figure 7.8. Young's modulus for the matrix material, 

based on the initial slope of the stress-strain Curve in figure 7.8, 

is 169,500 psi. 
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2. Matrix Shear Test 

Torque-twist tests on two specimens (refer to figures 6.6 and 6.12) 

produced essentially identical results. Figure 7.9 shows the shear stress- 

strain curve for one of the specimens. The curve Is nonlinear and the 

■lope continually decreases with increasing stress. loading was termin- 

ated at the ■—■»-'"'"" stress level shown In figure 7.9 and the specimen 

showed no indication of failure. The initial portion of the curve, 

0 to 0.012 in./in., is shown in figure 7*10. A piecewise linear repre- 

sentation of the curve shown in figure 7.10 is presented in figure 7*11. 

The latter curve was used to represent the matrix shear stress-strain 

behavior in the computer program described in Appendix A. 

3. Matrlx-Belnforcement Bond Strength Test 

Three specimens (refer to figures 6.7 and 6.13) were tested to 

determine matrix-reinforcement bond strength and each test produced 

essentially Identical results. Figure 7.12 shows a plot of shear- 

stress as a function of testing machine head displacement. The curve 

Is linear up to approximately 1?0 psi and then the slope begins to 

decrease with additional load. At a stress level of approximately 290 

psi, the slope of the curve equals sero and Indicates that the tube was 

being pushed through the base block (refer to figure 6.13). Bond 

strengths for the three specimens ranged from 290 to 293 psi, less than 

one half of the shear strength of the matrix. 

It. Compression Test of Laminate Specimens 

Failure loads and amplitude coefficients, a , of the initial 
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deflection for each specimen axe listed in table T.h.    It should be 

noted that specimens 1 and 2 contained 0.083 inch laminae and were identical 

except for the respective values of a , whereas; specimens 3 and h 

contained O.OUO inch laminae and differed only in values of aQ. All 

specimens failed by delamination and noting the values of aQ, the failure 

loads appear to reflect the expected trend. That is, specimen 1 would 

be expected to fail at a lower load than specimen 2 and specimen 3 would 

be expected to fail at a lower load than specimen 1*. 

Figures 7.13 through 7.19 show failed laminate specimens. Figure 

7.13 is a photograph of specimen 1 after failure. A delamination along 

the outer matrix lamina on the convex side of the specimen is clearly 

visible. The delamination, or crack, sheared through the matrix laminae 

approximately half way between the specimen quarter point and midspan. 

The specimen contains other delaminations which are not readily apparent 

in the photograph but could be seen by placing a light underneath the 

specimen. Close examination of the photograph also reveals that the 

ends of the specimen rotated at failure and are no longer perpendicular 

to the longitudinal centerline of the specimen. Figure J.lh  shows a 

close-up view of the cracked matrix laminae. Specimen 2 failed in the 

same manner as specimen 1 and the outer matrix layer failed at 

approximately the same location. Figure 7.15 shows a close-up view of 

the failed matrix layer in specimen 2. 

After specimen 1 had been failed, the screws which clamped the ends 

were removed. At that point, the lamina fell apart. Figure 7.16 shows 

the individual lamina from specimen 1. The surfaces of both the aluminum 
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and matrix laminae are very smooth and indicate that the bond between 

laminae was weak. 

Figure 7-17 is a photograph of specimen U after failure. It also 

contains a delamination along the outer matrix lamina but the crack does 

not pass through the matrix. Figure 7-16 shows a close-up view of spe- 

cimen k  and additional deleminations are visible. After specimen h  had 

been failed, the screws which clamp the ends were also removed and it 

fell apart, as indicated in figure 7.19. The surfaces of the laminae 

free specimen k were smooth and also indicate a weak bond between lam- 

inae. The appearance of specimen 3 after failure was similar to that of 

specimen U. 

Figures 7.20 through 7.31 show load-strain and load-deflections 

plots obtained from tests on the laminate specimens. Figure 7.20 shows 

the strain gage data for specimen 1. Gages 1 and 1», (refer to figure 

6.8 for strain gage and DCDT locations) indicate a small amount of 

bending in the two outer laminae. Load-strain curves for gages 2 and 3 

do not Indicate bending of the laminate about its midplane. Also, 

gages 5 through 8 which were located at the quarter points do not indi- 

cate bending of the laminate. 

Load-transverse displacement plots for specimen 1 are shown in 

figure 7.21. The data, DCET's 1, 5, 6, and 10, indicated fixed end 

boundary conditions were not maintained throughout the test. However, 

displacements at the ends of the matrix laminae were small, less than 

0.0005 inch for the lower end and approximately 0.0012 for the upper 

end. The remaining DCDT's indicated nonlinear load deflection curves 
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and that the deflection is approximately symmetric with respect to the 

midspan of the specimen. All DCDT's positioned on the convex side of 

the specimen indicated larger displacements than the corresponding DCDT's 

on the concave side of the specimen. At the midspan, transverse dis- 

placement at failure on the convex side was approximately 1.3 times the 

displacement on the concave side. However, the difference was only about 

.00115 inch which is small compared to the width of the specimen. 

Figure 7.22 is a load-shortening plot for specimen 1. Except near 

the origin, the curve is linear. 

Figures 7.23 through 7.25 show similar strain gage data for speci- 

men 2. At an axial load of approximately 5000 pounds, irregular behavior 

vas observed. The specimen did not produce an audible sound at this 

load or other indications of failure. It is possible, although as yet 

unproven, that a malfunction in the data recording system was experienced. 

It is also noted that DCDT 7 (figure 7.2U) did not appear to be function- 

ing properly during the test. The irregular behavior was not detected 

in the load-shortening data shown in figure 7.25. While the strain gage 

and deflection data for specimen 2 has not been completely explained, 

it does indicate the same general trends as the data for specimen 1. 

Figures 7.26 through 7.31 present load-deflection and strain data 

for specimens 3 and U.    The data leads to the same conclusions stated 

about specimen 1. 
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5. Compression Test of Fiter Reinforced Composites 

Nine tubular specimens were tested to failure in axial compression. 

Table 6.3 lists the maximum stress supported by each specimen. Failure 

of specimens 1-1, 1-2, and 1-3, (11 ply •» mil boron filament reinforced 

epoxy) ranged from 277 to £97 ksi and average 286 ksi. The 10 ply 5.6 

mil boron filament reinforced epoxy tubes (specimens 2-1, 2-2 and 2-3) 

failed between 302 and 322 ksi with an average stress at failure equal 

to 3lU ksi. Two of the S-glass-epoxy specimens failed at stresses 

which differ by les3 than 10 percent whereas; the third specimen failed 

at about 70 percent of the average strength for the first two speci- 

mens. The low strength of the third specimen was not expected and per- 

haps is attributable to a short longitudinal crack which was not detected 

when the specimen was visually inspected prior to testing. 

Figures 7.32, 7.33 and 7-31» show failed compression specimens. 

Numerous longitudinal cracks and broken filaments are exhibited by all 

specimens. In addition, failure appears to have initiated in the cen- 

tral portion of the specimen. 

Load-strain plots for all nine specimens are presented in figures 

7.35 through 7-1*3. The figures which show three plots are based on data 

obtained from three strain gages located at 90 degree intervals around 

the circumference and at the midspan of the specimen. All three gages 

were aligned parallel to the longitudinal axis of the specimen and 

gages 1 and 2 were diametrically opposite. The data indicate that 

boron-epoxy specimens 1-1, 1-2, 2-2, and 2-3 may have failed by column 

buckling but does not indicate a mode of failure for glass-epoxy 
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specimen 3-1. Young's modulus values listed in table 6.3 for specimens 

1-1, 1-2, 2-2, 2-3, and 3-1 were determined using the initial slope of 

the load-strain curves. 

Figures 7.37, 7.38, 7.'»2 and 7.1»3 each show five load-strain plots. 

Gages 1, 2, and 3 formed a 0, ±1*5 degree rosette which was located at 

the quarter point along the length of the specimen. Cage 3 was aligned 

parallel to the longitudinal axis. Gages 1* and 5 were located at the 

midspan and 90 degrees and 180 degrees, respectively, around the cir- 

cumference from gage 3. Gages li and 5 were also aligned parallel to 

the longitudinal axis of the specimen. Data obtained from gages 3, '», 

and 5 on boron-epoxy specimens 1-3 and 2-1 (fig. 7.37 and 7-38) indi- 

cate that they may have failed by column buckling. However, gages 1 

and 2 indicate that the cross sectional shape of the specimens started 

to change prior to failure and thus indicate that cylinder buckling may 

have influenced failure. Figures 7•1*2 and 7.*»3 present data on glass- 

epoxy specimens 3-2 and 3-3. The results shown in figure J.U2  supports 

the possibility of failure by column and/or cylinder buckling. Data 

shown in figure 7.1*3, appears to only indicate failure by cylinder 

buckling. Young's modulus values listed in table 6.3 for specimens 1-3. 

2-2, 3-2 and 3-3 were determined using the initial slope of the load- 

strain curves obtained with gages 3, b  and 5. 

Based on the data presented in figures 7-35 through 7.^3, failure 

of the fiber reinforced compression specimens appears to have been 

initiated by column and/or cylinder buckling. 
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6. Torsion Test cf Fiber Reinforced Composites 

Specimens 1-U, 2-U, and 3-1» listed in table 6.3 were tested to 

failure in torsion. All specimens failed by cracking parallel to the 

longitudinal axis. Figures 7-UU and 7.U5 show failed specimens. Shear 

stress-strain curves determined from the tests are presented in figures 

7.U6 through 7.U8. All specimens exhibited nonlinear stress-strain be- 

havior. Failure of specimens 1-4, 2-U, and 3-U ranged from 9-55 to 

9.90 ksi. 

In addition to testing specimens 1-1», 2-1» and 3-1», specimens 1-6 

and 3-5 were tested in torsion after they had been subjected to com- 

bined compression and torsion tests. Shear stress at failure for each 

specimen is listed in table 6.3. A short crack was observed in speci- 

men 3-5, prior to torsion testing and failure occurred along the 

cracked area at approximately 80 percent of the strength measured for 

specimen 3-6. Figure 7-1*9 shows the stress-strain plot for specimen 

1-6 and it is nearly identical to the plot for specimen 1-1». 

7. Combined Compression and Torsion Test of Fiber Reinforced 

Composites 

In order to determine the effect of axial compressive stress on 

shear modulus for fiber reinforced composite materials, specimens 1-5, 

1-6, 3-5 and 3-6 were subjected to combined loading test. During these 

tests, shear stress-strain curves were developed as a function of applied 

axial compression stress. Figure 7-50 shows the plots for specimen 1-5- 

Close examination of the plots indicates that the slope (shear modulus) 

decreases with increasing values of compressive stress. Similar plots 
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were constructed for the remaining specimens and used to determine 

shear modulus as a function of ccnpressive stress. 

Figures 7.51 through 7.5^ summarize the results which are pre- 

sented in the form of apparent shear modulus-applied axial compression 

stress plots. The dashed line in each figure represents the relation- 

ship 

G»' « G - ac (7.1) 

which is readily derived using energy methods and i3 based on shear 

modulus being independent of the applied compressive stress. Except for 

low values of compressive stress, the experimentally determined values 

of G* for the boron-epoxy specimens (figures 7-51 and 7-52) do not agree 

with equation (7.1). The difference increases with increasing values of 

applied stress and thus indicates that shear modulus of the composite 

decreases with increasing applied stress. A curve, which intersects the 

abscissa at the highest compressive strength for boron-epoxy known to 

the author, has been drawn through the data. Based on the data shown, 

it appears reasonable to conclude that the maximum compressive strength 

of boron-epoxy is limited by shear instability (G# = 0). 

Results for the glass-epoxy specimens (figures 7-53 and 7-51») are 

inconclusive. Specimen 3-6 exhibited behavior which differed from the 

prediction of equation (7-1) whereas data on specimen 3-5 agrees with 

equation (7«l). The inconclusiveness is due perhaps to the low ratios 

of a  /G that could be investigated, since the axial stress had to be 
c 

kept below approximately lltO ksi to prevent failure of the specimens. 
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C. Comparison of Experiment and Theory 

1. Laminate Specimens 

Table 7.5 lists predicted values of transverse displacement and 

interlaminar shear stresses at the quarter points for the central matrix 

lamina and the outermost matrix laminae. Values of w listed in the 

table equal the difference between final and initial displacements and 

the experimental values represent the average of displacements measured 

on opposite edges of the specimen. Theoretical results for each laminate 

were calculated using the computer program described in appendix A, case 

A boundary conditions described herein and the experimentally determined 

failure load. 

Comparison of the midspan displacements shows reasonable agreement, 

the differences average less than 15 percent. Quarter point displace- 

ments are in excellent agreement for specimen 1 although they show 

significant differences for specimens 3 and h.    Specimen 3 shows less 

agreement, at the quarter points, than the other specimens and this is 

attributed to the difference between its initial displacement and the 

assumed initial displacement (refer to figure 6.U). In addition, the 

predicted displacements are based on fixed end boundary conditions which 

were not completely simulated. Taking these items into consideration 

the comparison between predicted and measured displacements appears to 

be satisfactory. 

Predicted values of interlaminar shear stress for the middle lamina 

in each specimen exceed the bond strength by as much as 75 percent. 

Agreement between the bond strength and predicted values of interlaminar 
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shear stress fcr the outermost matrix laminae is much better and the 

average difference is 15 percent.  In view of these data, observation 

of the failed specimens and the matrix to reinforcement bond strength 

test results, the following argument is offered. As the applied axial 

load increases, interlaminar shear stresses along the inner laminae 

increase until the maximum bond strength is attained. However failure 

does not occur at this Foint since the laminae are still in contact with 

each other and continue to transfer load across the interfaces.  In 

other words, the laminae exhibit behavior similar to the bond strength 

specimens (refer to figure 7.12). Application of additional load 

increases interlaminar shear stresses in the outer laminae until the 

bond-strength is attainea at the outermost interface. At this point, 

the outer reinforcement lamina on the convex side of the laminate 

buckles and failure occurrs. This leads to the conclusion that adequate 

correlation between experiment and the interlaminar shear analysis was 

achieved. 

2. Fiber Reinforced Composite Test Results 

A study was performed to determine if the interlaminar shear stress 

analysis presented herein could be used to predict the type of behavior 

exhibited by the combined compression and torsion tests. The k  mil 

boron-epoxy composite was modeled by the laminate shown in figure 7.55 

and case 3 boundary conditions were assumed for the analysis. The shear 

stress-strain curve for the epoxy was computed using the stiffness in 

series model and the experimentally determined shear stress-strain curve 

for specimen 1-6. The computed curve is shown in figure 7.56. The 
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interlaninar shear stress computer program used five linear segments 

to represent the curve shown in figure 7.56. 

Table 7.6 lists the computed results and the loading and curvature 

parameters (a , L) used in the analysis. The value of a was varied from 

.0005 to .0030 inch whereas; a value of .8 inch for L, which is equal to 

200 tines the fiber diaceter, was used in all computations. Values of 

matrix shear stress listed in the table represent the maximum value 

and the average value along the length of the model. The average shear 

stress and figure 7.56 were used to compute the values of G listed. 

Values of G._ listed in the table were calculated using the stiffness 

in series model and the tabulated value of G . The last column lists 
m 

values of apparent shear modulus (GrT-o ). Examination of the tabulated 

results indicate the following: (l) For aQ/L < 0.001875 and Oc < 1*68 

ksi, the average value of G is constant and the variation in G# is due 

only tc changes in o .  (2) At some value of o between 312 and 390 ksi 

and a /L * 0.001875, the value of G begins to decrease and thus causes 
o m 

changes in G".     (3) For a !h = 0.003750, G begins to decrease at a low- 
o m 

er value of a  , between 156 and 312 ksi. W  Increasing the value of 
c 

a /L would indicate failure by delimination since the maximum shear 
o 

strength is approximately 9700 psi. 

Figure 7.75 shows a plot of G* as a function of applied stress. 

Only values which differ from elementary theory (G_ * constant) have 

been identified by symbols since the remaining values are represented 

by the solid line. Dashed lines have been drawn through the points to 

only illustrate trends in the data, which indicate that small values of 
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initial deflection can have a significant effect on the apparent shear 

modulus, G». Based on the data shown two conclusions are drawn:  (l) 

Behavior similar to that determined experimentally on boron-epoxy 

(refer to figures 7-51 and 7.52) can be predicted using the interlaminar 

shear stress analysis developed herein.  (2) Only very small values of 

initial deflection are required to predict the indicated behavior. Con- 

cerning the latter conclusion, a brief study on initial displacement of 

the fibers in a boron-epoxy composite was conducted and the results are 

presented in appendix C. The results indicate that initial displacement 

values, a /L, used in the analysis are of the same order of magnitude as 

the measured deflectioru.  Thus, adequate correlation between the analy- 

sis and experiment appears to have been achieved. 



VIII.  CONCLUDING REMARKS 

A theoretical and experimental investigation on the compressive 

strength of lamina reinforced and fiber reinforced composite materials 

has been performed. An analytical model which replaces the fiber re- 

inforced composite with a laminate containing initially curved laminae 

has been proposed. By applying the Timoshenko beam equations to each 

layer in the laminate, an interlaainer shear stress analysis which can 

be used to predict the behavior of the laminate under compressive load- 

ing was developed. Experimental evidence that the shear modulus of 

boron-epoxy is a function cf axial compressive stress was obtained. In 

addition it was shown that the fibers in a boron-epoxy composite are not 

parallel and straight but contain initial curvature. Both the experi- 

mental and theoretical results indicate that failure of the borcn-epcxy 

composite is most likely due to shear instability. Adequate correlation 

between theory and experiment was obtained for both lamina reinforced 

and fiber reinforced test results. 

9u 
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APPENDIX A - INTERLAMIKAR SHEAE STRESS COMPUTER PROGRAM 

This appendix provides a brief description of the computer program 

used to calculate interlaminar shear stresses. Figure A-l shovs a 

flov diagram cf the program. First the problem is defined by reading 

in the beam geocetry, including the maximum amplitude of the initial 

deflection and the number of node points to be used, the boundary con- 

ditions and the material properties. Linear elastic behavior is assumed 

for extension ar.d  compression of each lamina but the shear stress-strain 

curve may be approximated by five linear segments. Next, the quantities 

that remain constant throughout the computation cycles are calculated. 

These include lamina thickness, cress sectional area, first moment of 

area, and the second moment of area. In addition, Euler buckling load 

and total applied axial load are computed and the counter, IPK, which is 

used to keep track of the number of computation cycles through the 

program, is set equal to zero. 

Initial displacements and rotations and their first and second 

derivatives at each node point along the beam are computed next and 

stored on tape for subsequent use in the program. The initial values of 

interlaminar shear stress at each node are set equal to zero. Next, 

the counters that are used in storing and keeping track of the R>, £, 

and T matrices for each node point along the beam are computed. 

Prior to computing the coefficients of the R, S, and T matrices, 

the average shear stress within each lamina is computed.  Then the 

appropriate values of shear modulus to be used in the subsequent 

calculations are computed utilizing the five segment stress-strain curves 
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read in at the beginning of the program. The values of R, £, and T are 

stored on tape. 

After the coefficient matrices have been generated, the recurrence 

matrices and the load vector, starting at node 2 and continuing through 

the node one station to the left of x = L, are computed and stored on 

tape. Then beginning one ncde away from the right end of the beam, the 

recurrence matrices and load vector are recalled frcm tape and values 

of the rotations and displacements, Y(n), are solved by back substitution. 

Each value of Y(n)  is stored on tape for subsequent use in computing 

first and second derivatives. 

Hext the counter, IPK, is increased by one and the first and second 

derivatives at each node along the beam are computed. Forward and 

backward difference routines are used to compute derivatives at the left 

and right ends of the beam, respectively. At all other node points, 

central differences are used. After the derivatives have been computed 

and stored, interlaninar shear stresses at each node are calculated and 

stored on tape. The transverse shear resultant at 51 node points along 

the beam is also computed and stored. 

Utilizing the shear modulus values that were used to generate the 

F, £, and T matrices, the value of axial load which will cause shear 

instability is computed using equation (5.17). If the shear stress-strain 

curves are nonlinear, the load which produces instability will decrease 

as the axial load increases. 

If IPK ?  1, the program proceeds to location@and the tapes storing 

displacements, rotations, derivatives, and interlaminar shear stresses 
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are updated using the principle of superposition. If IPK = 1, the 

average shear stress within each lamina at the bean quarter point is 

computed and compared with the value of shear stress corresponding to 

the first break in the five segment stress-strain curve of the lamina. 

If all ratios are less than unity, the program proceeds to location (T) 

and subsequent computation cycles are not required. 

If any ratio (xBAR /T.) is greater than unity, the maximum value is 

determined and linear interpolation is used to compute the value of 

axial load, PLO, which initiates nonlinear behavior. This value of load 

is used in the next computation cycle through the program. Next the 

size of the load increments for use in the load range PLO to PI are 

computed and the the program returns to location © on the flow chart. 

After location @ on the flow diagram has been reached and the 

tapes have been updated, the counter IPK is checked to determine if the 

maximum load, PI, has been reached. If not, the program returns to 

location @ on the flow diagram and another computation cycle is 

initiated. After the displacements, rotations and stresses due to the 

maximum load have been computed, the data are displayed in the form of 

plots and tables. 



APPENDIX B - CLASSICAL BEAM THEORY DEFLECTION 
FOR CASE A AND CASE B BOUNDARY CONDITIONS 

An equation for predicting the lateral deflection of an initially 

deformed beam under axial load is derived in this appendix. Free body 

diagrams of the beam are shown in figures B-l and B-2. For case A, the 

following assumptions are made: the ends are clamped, the upper and 

lower surfaces are free, the bean may be considered to be homogeneous 

with an apparent bending stiffness, El, and classical beam theory as- 

sumptions are applicable. The initial deflection, w is given by 

w «a U + sin[(2rr/L)(x - LA)]} (B-l) 
o   o 

and the total deflection, w, is given by 

w ■ w + w, (B-2) 
o   l 

From classical beam theory 

El w" = M (B-3) 

and summing moments, M, about the right end of the beam segment shown in 

figure B-l leads to 

M * -Pw + M ♦ OJL - x) (B-l») 

Noting that tt. and C^ are constants and differentiating equations (B-3) 

and (B-U) twice yields 

v£" + (P/EI)v£ = -{P/EI)v£ (B_5) 

The solution to equation (B-5) is 

w. » A sin k x ♦ B cos k x + ex + D + F sin [(2rr/L)(x - LA)] loo 

(B-6) 
lOU 
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k2 - P/EI (B-7) 
o 

Applying tjie boundary conditions fcr case A to evaluate the constants of 

integration in equation (B-6) leads to the desired equation 

w 2__ {1 + sin [(^/LK* " L/"*)]> <B"8> 
k^ L 

1- ~^— 
U*2 

Since axial load P, appears in the denominator of the first term on the 

2 
right side of equation (B-6), k = P/EI, lateral deflection will not 

increase linearly vith load and instability will occur as the load ap- 

proaches P , which is given by 
cr 

P  -ilis.  . (E-9) 
I2 

and is identical to the Euler buckling load for a fixed-end column. 

For case B, the follcving assumptions are made: the ends of the 

beam are clamped, the upper and lower surfaces are not permitted to 

translate in the horizontal direction, the reinforcing laminae is subject 

to bending deformation only, bending stresses in the matrix laminae are 

negligible compared to those in the reinforcement and the matrix is 

considered to only support shear stresses, classical beam theory assump- 

tions are applicable for the reinforcement. Summing moments about the 

right end of the beam segment shown in figure B-2, leads to 

x 
M - -Pv + >L + Q^L - x) + f T(h + 2c) dx (B-10) 
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Substituting equation (B-10) into (B-3) and noting 

T - G (1 ♦ h/2c) w! (B-ll) 

yields 

v£" + 
P   <h * 2c> Gm 
El     2c El 

UTT
2
 aQP 

w" = —0 sin 
1   L El 

[<?><"*>] (B-12) 

The solution to (B-12) is 

w - A sin kxx ♦ B cos kyt ♦ ex ♦ D ♦ F sin [(?)U-t>] (B-13) 

where 

*1 " ko "   2c El 
(B-lU) 

Applying the boundary conditions for case B to equation (B-10), leads to 

the desired equation 

w » a. 1 ♦ 

(Z-)2  - k2 K l'        *1 

1 ♦ sin [(?)(x - £>] (B-15) 

Equation (B-15), like equation (B-7). is nonlinear with respect to the 

2 
axial load. Instability for case B is seen to occur aa k^ approaches 

(2w/L)2. The buckling load is given by 

<c)2 G 
(B-16) „   U«2 El + 

(h + 2C)_G« p  ■ —= ♦ 
r«"   I2 2c 

If (h/L « 1), a condition met by most composites of current interest, 
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the first term in equation (B-l6) may be neglected and the buckling 

stress is given by 

G 
a = m— (B-17) 

1 - V 
m 

which is identical to the failure 3tress predicted by Rosen (6). 



APPENDIX C FiBSa CURVATURE INVESTIGATION 

The method used to determine the coordinates of fibers in a boron- 

epoxy composite ar.d the results obtained are discussed in this appendix. 

A 0.500 inch wide strip v\z  machined from the central portion of a 

6.00 inch vide by U.00 inch long 12 ply laminate. The fibers were aligned 

in the length direction of the strip. Next the strip was sliced into 

nominally 0.10 inch thick coupons.  (See figure C.l.) The thickness of 

each coupon was measured with a micrometer and then the coupon was 

mounted for viewing under a tool maker's microscope. Next the x and y 

coordinates of five arbitrarily selected fibers were measured. 

Table C.l and figure C.2 present the results obtained at £2 cross 

sections along the length cf tae strip. The z  coordinates listed in the 

table reflect the fact that 0.070 inch of material was removed by each 

cut across the strip and indicate that x and y coordinates were measured 

at approximately 0.170 inch intervals along the strip. Thus, successive 

stations were approximately 1*2.5 fiber diameters apart. Examination of 

the results indicates:  (l) Variation in the x coordinate was usually 

much larger than the variation of the y coordinate.  (2) Four of the 

fibers are skewed with respect to the z axis. (3) All fibers are 

essentially parallel to the x-z plane. (U) All fibers exhibit waviness 

along their length. Iten (2) does not appear to be as significant as 

the plots tend to indicate since the average angle, [{x^-x^/3.^26], 

between each fiber and the z axis is less than 0.2U degrees. Item (1*) 

is perhaps the most important since it can lead to development of shear 
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stresses when the fiber is compressed in the axial direction. Displace- 

ments ranging from 0.0006 to 0.0012 inch over a span of 0.3s* inch are 

readily seen. 

Due to the irregular vave shape along each fiber, no attecpt was 

made to express the displacement by a mathematical function. However, 

is segments of fibers are examined and equation U.63 is used to express 

the displacement, the values of a /L required to fit the deflection range 

approximately from 0.0009 to 0.001675 (0.0006/0.66 to 0.0012/0.68). 
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TABLE 6.1 - LAMINATE SPECIMEN DIMENSIONS 

L-i.    i    ' 
X / T 

7 I     I 
y  r. 

matrix 
reinforcement 

*r i ~n T i  n 
T=Z=C=Z=3=Z=C=CI 

I'll    J—CZ3Z. 
■i    1   JZ 

X, 

in. 

SPECIMEN ::O. 1 SPECIMEN ;:o. ■> 

in. in. in. 
V 
in. 

V 
in. in. 

-2.44 o.ccoo 1.5791 1.5794 -0.0000 1.5816 1.5616 

-2.25 -C.0C32 1.5737 1.5769 -Ö.0007 1.5765 1.5772 

-2.00 -C.COC5 1.5713 1.577? -C.0050 1.5722 1.5752 

-1.75 •-O.COU9 1.572; 1.577- -0.C010 i.5722 1.5712 

-I.50 +0.0019 1.5731. 1.5765 +0.0055 1.5793 1.5738 

-1.25 +0.0133 -.5893 I.576C +0.0151 1.5893 1.5712 

-1.00 +0.0270 1.60-0 I.576C +0.0272 1.601C 1.5738 

-0.75 +0.C121 1.6173 1.5752 +O.O389 1.6130 1.5711 

-0.50 +0.0548 1.625:. 1.5746 +0.0U97 1.6239 1.5742 

-O.25 +0.0611 1.6371 1-5733 +0.0578 1.6306 1.5726 

0.00 +O.O678 1.6397 1.5719 +C.O619 I.6328 1.5709 

0.25 ♦0.0655 1.6373 I.5719 +0.0601 1.6302 1.5701 

0.50 +0.0589 1.6295 1.5706 +0.0530 1.6231 1.5701 

O.75 +0.01*81 1.6174 1.569c +0.0121 1.6123 1.5702 

1.00 +0.0343 I.6034 1.5691 +0.0297 1.5998 1.5701 

1.25 +0.0194 1.5898 1.5701 +O.CI68 1.5879 1.5711 

1.50 ♦0.0061 1.5788 1.5727 +0.CO55 1.5777 1.5722 

1.75 -0.0027 1.5725 1.5752 -0.0017 1.5717 1.5731 

2.00 -O.CO56 1.5714 1.5770 -0.0041 1.5704   . 1.5745 

2.25 -O.OO2U 1.5747 1.5771 -O.OOI9 1.5754 1.5773 

2.1»U 0.0000 1.5821 1.5821 0.0000 1.5795 1.5795 
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TABLE 6.1 - CONCLUDED 

x, 

SPECIMEN :io.  3 SPECIMEN :;o. 1 

w w • , zv z   > t, 
in. in. in. in. in. in. in. 

-2.U2 0.0000 0.7689 0.76Ö9 0.0000 0.761*1 0.761*1 

-2.25 0.0011 0.7695 0.7681* -0.0012 0.7608 C.7620 

-2.00 0.001*0 Q.7713 0.7673 -0.001*1 0.7537 O.7626 

-1.75 0.0105 0.7770 0.7665 -O.COI6 0.760*. 0.7620 

-1.50 0.0201 0.7780 0.7579 +0.001.3 0.7678 0.7635 
-1.25 0.0327 0.e022 0.7695 +0.0137 O.7803 O.7666 
-1.00 0.0**56 0.8168 0.7712 +0.0260 0.7937 0.7677 

-0.75 0.0576 0.6295 0.7719 +0.C393 0.8071- 0.7681 

-0.50 0.0678 0.S3Ö1* 0.7706 +0.C512 0.8176 C.7666 

-0.25 0.0756 0.81.28 0.7672 +O.O606 0.8235 0.7629 
0.00 0.0788 0.61.11 0.7653 +O.C61.3 O.8266 0.7613 

0.25 0.0761* 0.61*20 0.7656 +0.061*1 0.821*2 0.7601 
0.50 0.0691* 0.6371 0.7677 +0.0578 O.8183 0.7605 

0.75 0.0591 0.6273 0.7682 +0.0500 O.8069 0.7569 
1.00 O.OU60 0.8136 C.7676 +0.0390 0.7921 0.7531 
1.25 0.0319 0.7992 0.7673 +0.0259 0.7781* 0.7525 
1.50 0.0187 0.7859 0.7672 ♦0.0139 0.7678 0.7539 
1.75 0.0081 0.7762 0.7681 +0.0051 0.7619 0.7566 
2.00 0.0016 0.7719 0.7703 -0.0001 0.7608 0.7609 
2.25 ■  0.0005 0.7711 0.7706 +0.0002 0.7616 0.7620 
2.U2 o.coco 0.7716 0.7716 -0.0000 0.761*0 0.761*0 
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TABLE 7.1* - LAMINATE SPECIMEN TEST RESULTS 

Specimen number Failure load, V 
lbf 

in. 

1 6100 • 03U9 

2 7000 .0311 

3 23lt0 .01*02 

U 3590 .0336 
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Figure 6.1 - Front view of lamina reinforced test specimens. 
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Figure 6.11 - Compression test of a matrix specimen. 
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Figure 6.13 - Bond strength test setup. 
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Figure T.U - Nonlinear shear stress-strain curve used to generate theo- 
retical results. 
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Figure 7.6 - Effect of nonlinear stress-strain behavior on shear in- 
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160 

u u 
H 
a 

u 

! 

£ «> n 

<3 



161 

1000 i- 

Compressive 
stress, 
psi 

.005 .010 

Strain, in./in. 

.015 

Figure 7.8 - Compressive stress-strain curve for matrix material. 
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Figure 7.10 - Shear stress-strain curve for matrix material (curve 
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Figure 7.12 - Shear stress-head displacement plot for aluminum-wax bond 
strength specimen. 
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Figure 7.22 - Load-shortening plot for laminate specimen 1. 
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Figure 7.25 - Load-shortening plot for laminate specimen 2. 
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Figure 7.28 - Load-shortening plot for laminate specimen 3. 
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Figure 7.31 - Load-shortening plot for laminate specimen 1». 
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Figure 7.32 - Failed boron-epoxy cccpression specimen (1» mil fiber). 
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Figure 7.33 - Failed boron-epoxy compression specimen (5.6 mil fiter). 
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Figure l.hk  - Failed boron-epoxy torsion specimen. 
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Figure T.I*5 - Failed glass-epoxy torsion specimen. 
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Figure 7.U6 - Shear stress-strain curve for boron-epoxy (fc.O mil filaments). 
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Figure 7.1»7 - Shear «tress-strain curve for boron-epoxy (5.6 mil filaments). 
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Figure 7.U8 - Sheer stress-strain curve for glass-epoxy. 



Figure 7.U9 - Shear atress-atrain curve for boron-epoxy (U.O mil filaments). 
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Tigure 7.51 - Effect of «*i«l coapressive strese on the shear modulus of 
boron-epoxy. 
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Figure 7.52 - Effect of axial compressive stress on the shear modulus of 
boron-epoxy. 
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Figure 7.53 - Effect of axial compressive stress on the shear modulus of 
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Figure A.1 - Flow diagram of interlaninar shear stress program. 
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Figure A.X - (Continued) 
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Figure B.l - Free body diagram of beam, case A boundary conditions. 
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Figure B.2 - Free body diagram of beam, case B boundary conditions. 
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COMPRESSIVE STREHGTH OF LAMIHA REIHFORCED 

AHD FIBER REIHFORCED COMPOSITE MATERIALS 

By 

John G. Davis, Jr. 

(ABSTRACT) 

Results are presented from a theoretical and experimental investi- 

gation on the compressive strength of lamina reinforced and fiber re- 

inforced composite materials when loaded parallel to the reinforcement. 

An analytical model which replaces the fiber reinforced composite with 

a laminate containing initially curved laminae has been proposed. By 

applying the Timoshenko beam equations to each layer of the laminate, 

an interlaminar shear stress analysis which can be used to predict the 

behavior of the laminate under compressive loading was developed. Two 

modes of failure are considered in the analysis, delamination and shear 

instability, and nonlinear shear stress-strain behavior of the laminae 

is included. 

Axial compression tests were performed on aluminum-wax laminates, 

boron-epoxy tubes and S-glass-epoxy tubes. In addition, torsion tests 

and combined compression and torsion tests were conducted on the fiber 

reinforced tubes. Coordinates of fibers in a boron-epoxy laminate were 

measured. Experimental results indicate that the aluminum-wax laminates 

failed by delamination and that failure of the boron-epoxy composite in 



compression is most likely due to shear instability. In addition it 

was shown that the shear modulus of boron-epoxy is a function of axial 

compressive stress and that the fibers in a boron-epoxy composite are 

not parallel but contain initial curvature. 

Adequate correlation between theory and experiment was obtained for 

both lamina and fiber reinforced test results. 
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