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1. INTRODUCTION

For slightly over a decade, materials and structural engineers in
the aerospace community have been focusing attention on fiber reinforced
composite materials. This interest has largely been stimulated by the
potentiel improvements in strength to density and stiffness to density
ratios offered by the class of materials. KNumerous papers, which deal
with the behavior of such materials, have been prepared. While the
state of the art in predicting the mechanical behavior of composites has
moved forward at a rapid rate during the past decade, there are still
gome unresolved ereas, notably anglyaes for predicting failure strength.

The purpose of this thesis is to report the results of an investi~
gation on the compressive strength of uniaxial fiber reinforced and
lamina reinforced composites when loaded parallel to the reinforcement.
In the section which follows, a comprehensive review of previous re-
gearch on the subject is presented. An analytical model which provides
substantial insight into the response of unaxial composites under
compreséive load is postulated. Derivation of the governing equations,
boundary and initial conditions, cesting the governing differential
' equations into finite difference equations and a computer solution to
the equations are discussed. Theoretical predictions are compared with
results for boron-epoxy, glass-epoxy and aluminum-wex specimens tested
in axial compression. ;

Perhaps a fev words on the physical arrangement of ﬁypical fiber
reinforced composites are in order before p?oceeding to thciﬁé;tf .»{“




section. Figure 1.1 shows cross sections of composite materials that
are currently receiving considerable attention in the aerospace commun-
ity. Three of the composites have & resin (epoxy) fype matrix whereas
the fourth has a metal {aluminum) matrix. Each material is bullt-up
from a series of layers or laminae. For the boron filament reinforced
epoxy, each lamina consists of a single row of filaments. In the
graphite composite, each ply consists of a row of yarns. In the glass
fiber composite, each layer contains a number of rovings that have been
laid side by side. Due to the irregular spacing of the fibers in the
matrix, it is the opinion of the author that it would be impossidble to
postulate a simple mathematical or physical model that would be capable
of completely explaining the materiel behavior. As previously indicated
herein, it will be shown that it is possible to postulate a model which
provides substantial insight into the material response ;o compressive

load in the direction of the fibers.
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II. REVIEW OF LITERATURE

The behavior of unidirectionally fiber reinforced composite mater-
ials when subjected to en axiel compressive loading parallel to the
fibers has been investigated both analytically and experimentally duriné
the past decade. Following is a chronological review of the literature

which has proposed methods for predicting strength or modes of failure.

A. Chronological Review
In 1960, Dow and Gruntfest (1) proposed two possible modes of

failure. One was based on the premise that as the composite is com-
pressed in the direction of the fibers, the high Poisson's ratio of the
matrix reletive to the fibers creates a tensile stress on the bond be-
tveen fibers and matrix which tends to produce internal separation
failures between them. The second mode of failure was based on the
argument that the compfessive load is carried by fibers which behave
like columns supported within a continuous elastic foundation provided
bty the matrix and consequently strength is lim{ted by the stability of
the fibers. The latter mode has received substantial study in the
ensuing years whereas the other mode has received only limited attention.
Using analysis contained in reference (2), Dov and Gruntfest

derived the formula

g

=k Egﬁm (rt/Af) (2.1)

vhere

o, = failure stress (buckling) in the fiber




k = constant
Bt = Young's modulus of the fiber
: Z- = Young's modulus of the matrix .

r, = radius of gyration of the fiber

4

At = cross sectional area of the fiber
Equation (2.1) by itself did not permit direct calculatién of 9, since
the value of k was unknown. However, it did offer insight intc some of
the varisbles that influence compressive strength and it was used for
this purpose in reference (1).

Elkin (3) examined NOL rings that had been tested in compression to
faflure. He concluded that failure was a consequence of fiber buckling
followed by shear and tension rupture of the matrix. Analysis for
predicting compressive strength was not presented.

Fried (4) in 1963 published the results of an experimental study on
compressive strength. Axial éompreuion tests vere performed on 1/2 in.
x 1/2 in. x 1 in. dlocks of polyester resin reinforced vith either a
1/8 in. diameter drill rod, a 3 mm diameter pyrex glass rod or a single
strand of E-glass roving. Each type of speciment failed at or near the
yield strain of the unreinforced matrix. Fried reasoned that as the
yield point of the matrix is approached, it begins to flow and thus
ceases to support the fibers. Therefore, it was proposed that compres-
sive strength could be predicted using the rule of mixtures md_the

following equation was presented.

o= (Jv [1 + Vt (Bf/Em - 1)] (2.2)




where
‘ OW = yield strength of the matrix

vt' “« yolume fraction of fiber

Realizing that his data had been obtained on very low volume ﬁaction
gpecimens, Fried suggested that the value computed from the rule of
mixtures should serve as an upper bound. Equation (2.2) does not agree
well with experimental data on high volume fraction specimens and does
pot take into account variables, other than volume fractionm, matrix
modulus and yield strength, vhich influence compressive strength.

In spite of the deficiencies just mentioned, Fried did make a
valuable contribution to the subject by putting forth ideas which have
since been used in micromechanics analyses of the subject. These ideas
include: (1) The fibers behave as long slender columns which are
supported laterally by the matrix. This thought appears tc have been
obtained independent of reference (1). (2) Compressive strength is
influenced by the compressive yield strength and shear strength of the
patrix. (3) An optimum fiber geometry and volume fraction exist.

One yeer later, in 196L, Fried and Kaminetsky (5) presented exper-
imental results that substantiated several of the ideas postulated in
reference (). Existence of an optimm fiber volume fraction vas
denonsti’ated. In addition, it va@ clearly showvn that compreséive
strength increases with increasing resin yleld strength for the range
of values investigated.

Rosen (6) wes the first to propose a.n analysis that pemittgd

estimation of compressive strength without requiring the use of




empirical factors. He suggested that the composite material be repre-
sented by a laminate consisting of alternating hard and soft laminae.
The hard laminae represent fibers whereas the matrix is similated by
the soft laminae. Thus, it was proposed that a two dimensional model
be utilized to represent a three dimensional problem. Two modes of
failure vere postulated, extension instabilit); and shear instability.
For the extension mode, which is analogous to co.umn buckling of a beam
supported by an elastic foundation, adjacent fibers are assumed to
buckle out of phase and thus subject the matrix to extension deforma-
tions transverse to the fibers. For the shear mode, adjacent fibers
are assumed to buckle in phase and subject the matrix to shearing de-
formations.

By using the energy approach, assuming linear elastic behavior
for both fibver and matrix, and usuxﬁu the fiber to be much stiffer
than the matrix, Rosen (€) developed the following equations for
predicting compressive strength. For the extension mode

1/2
o= M ' (2.3)
e 3‘1-st *

and for the shear mode

o= (2.5)

where

0 = compressive strength of the composite




G‘ = ghear modulus of the matrix

and the remaining symbols have already been defined herein. The 1&er
value predicted by equations (2.3) or (2.4) gives the best estimate for
compressive. strength. For most materials of interest, equation (2.4)
ylelds the lover prediction and consequently has received the most
attention.

Exanmination of equation (2.4) and subsequent comparison with ex-
perimental data indicates the following deficiencies:

1. Elastic properties of the fiber are not taken into account.

2. Effects of fiber geometry (diameter and dtraigﬁtness) are

neglected.

3. FKonlinear behavior of most matrix materials is neglected.

L. Experimentally determined values of strength are generally

one~third to one-half the value predicted by equntioh (2.4).

Rosen realized item number 3 above and offered the suggestion that
the shear modulus be varied linearly from its ela._atic value at an axial
strain of one percent to zero at an a.xinl strain of five percent.

In addition to the analysis, reference (6) presented photoelastic
stregse patterns for glass fibers in an epoxy matrix to illustrate that
instability type failure could be expected when the material is sub-
Jected to compressive loading.

- Data and analysis appearing in reference (6) are also contained in
reference (7). o
A correlation between compressive strength and behavior in trans-

verse shear was given by Fried (8). His results were obtained from




tests on orthogonal glase filament reinforced epoxy laminates. A
linear relationship between compressive strength and interlaminar sghear
strength was observed. Both types of strength were shown to decrease
linearly with increasing void content. One would anticipate that an
increase in resin shear strength and fiber to resin bond strength would
be accompanied by an increase in interlaminar shear strength and con-
sequently an increase in compressive strength.

Further emphasis on composite failure by buckling of the filaments
was presented by Ekvall (9). Failed specimens were examined and found
to contain buckled filaments. Using analysis presented in reference
(2), a comparison of the predicted and measured buckle length was made.
Agreement was good. However, the problem of predicting compressive
strength was not addressed in reference (9).

Schuerch (10), epparently working independently, used the same
model as Rosen (6) and arrived st the same results for composites that
are not subjected to inelastic deformations prior to failure. To in-~
clude the effects of nonlinear behavior, Schuerch (10) proposed that the
tangent shear modulus be used in equation (2.4). He assumed isotfopic
behavior in the nonlinear portion of the stress-strain curve for the

matrix material. That is

E
- mt
Coo *3(i+ 1 _ (2.5)

where

Gmt = tangent shear modulus for the matrix @nterial

E, = tangent modulus for the matrix material




y = Po}ason's ratio fdr the matrix material

Results of compression tests on two boron filament reinforced magnesium
specimens are reported in reference (10). The measured strengths are in
reasonsble agreement with the predicted strengths based on tangent modu-
11 values. As Schuerch points out, it is perhaps fortuitous that ex-
-perimznt and theory were in agreement, especially vhen the failure
strein of the composite was approximstely four times the yield strain of
the matrix.

Datea and analysis appearing in reference (10) are also contained
in reference (11).

Another approach for predicting compressive strength, vhich con-
sists of treating the composite material as a bean column with low shear
stiffness, wvas presented in reference (12). For columns which buckle
elastically, the analysis can readily be found in many engineering
texts. (See for example, reference (2).) It was proposed in reference
(12), that predictions for columns which fail inelastically be based on
tangent shear moduli. Isotropic relationship between extensional and
ghear stiffnesses in the inelastic region vas assumed. In an attempt
to account for the effect of voids in the matrix material and the effect
of filament misalignment; influence factors were incorporated in the
analysis. The aufhors of reference (12) vere apprehensive about apply-
ing the analysis as the column aspect ratio approached zero. This is
. believed to be a consequence of focusing attention on the fiber diameter

rather than the overall dimensions of the column.
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' Most of the experimentally determined compressive strengths re-
ported in reference (12) were obtained on FOL ring type specimens loaded
in diametrical compression. Scatter in the measured strengths was such
that comparison with theory could only be made on a statistical basis.

Perhaps the most important experimental data presented in reference
(12) are the photographs of plexiglass reinforced rubber laminates under
varying smounts of compressive load. These pictures clearly show that
the reinforcing material, plexiglass, deforms laterally at loads below
the maximum compressive load supported. In other words, there must have
’been some initial curvature in the plexiglass laminae which increased in
magnitude as the compressive load was increased. .Since lateral deform-
ation of the reinforcing laminae is accompanied by shearing deformations
in the matrix material, the shear stiffness of the composite. would de-
crease with increasing compressive load if the matrix material exhibits
inelastic behavior in shear. It appears reasonable to assume thst; fidber
reinforced materials would exhibit the seme ty'pé behavior. Fiber colli-
mation is usually better for large diameter fibers (.00% in.) than for
small diameter fibers (.0004 in.). Conmsequently, one might expect an
optimum fiver diameter to exist for a given material combination since
compressive strength would increase with increasing fiber diameter until
the fibers start to fail in bending. This phenomenon had been suggested
‘by Fried (4) and had been proven experimentally by Levenetz (13).

Utilizing mechenics of incremental deformations, Biot (14) develop-
ed equations for predicting the stability of a mlti;a&ered media. The

miltilayered media could represent the model used by Rosen (6). 1In his
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apalysis, Biot assumed both media to be incompressible and the buckle
wave length to be large compared to the thickness of either layer. The

results of Biot's analysis can be written in the form

G 1+4n(1- vf)/vr'
e — (2.6)
o - n(l - 2v,)
140% e TN
W1 -V,
where
Gm
p =B (2.1)
Ce

If the ratio of fiber to matrix stiffnesses is large, the valueléf n
approaches zero and equation (2.6) reduces to equation (2.4) which was
derived by Rosen (6). It should be noted that for most materials com-
binations of current interest,‘ the bracketed term in equation (2.6)
ranges from approximately 1.005 to 1.045. Obviously, equation (2.6) has
the seme deficiencies as equation (2.4). ‘

An indepth discussion of factors influencing the compressive
strength of filament reinforced composites is given by Foye (15). Using
the energy method of analysis and treating the composite as a macro-
gcopic, homogeneous, orthotropic material Foye showed that the compres-

sive strength should equal the shear modulus of the composite. That is
o=G (2.8)

vhere

G = shear modulus of the composite
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Assuming the Reuss or "stiffnesses in series" model the shear stiffness
of the composite is related to the constituent stiffnesses by the
following equation.
Gm
G = 1 - vt) +‘vr (Gm/Gf) - ‘ (2.9)

Substituting equation (2.9) into (2.8) yields

G

o= —2 (2.10)
(1- vf) +v, (cn/cf)

As indicated by Foye, equation (2.10) reduces to equation (2.4) when

f
gshearing stresses in the filaments was deglected. For most materials

G, > Gm' When equation (2.k) was derived, the strain energy due to

currently of interest the second term in the denominator of equation
(2.10) can be neglected. However, as the volume fraction approaches u-
nity and/or the shear modulus of the fiber is of the same order of
magnitude as that of the matrix the term becomes important.

In eddition to the analysis discussed to this point, reference (15)
also focused attention on the effects of voids, fillers and vhiskers on
compressive strength. In general voids are expected to ﬁecrease
strength vhereas fillers and whiskers may be used to improve strength.

In yet another attempt to bring experiment and theory closer to-
gether, Dow. et al. (16) suggested that a matrix characteristic stress"
be included in the analysis and the folloviné equation’for predicting

strength was offered:
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1/2

|V
g= 3(1—_xv—f)' (2.11)

where

9, = matrix "characteristic stress" level

For elastic perfectly plastic materials, the characterisgtic stress vas
identified as the yleld stress. No suggestion was offered for materials
exhibiting other types of stress-strain behavior. Equation (2.11) can
be derived from equation (2.4) when the following assumptions are made:

1. The matrix material exhibits isotropic behaviér and is incom~-

pressible after ylelding.

2. Axial strains in the matrix and fiber are equal.

The major fallacies associated with using equation (2.11) is that
post matrix materials currently of interest do not exhibit elastic
perfectly plastic dbehavior, hence determining cy remains unresolved, and
the effect of residﬁal tensile stresses in the matrix from curing the
composite at elevated temperature is not taken into account.

Two problems related to fhe compresaive strength of a single wire
embedded in & soft matrix material were studied by Hermann, Masom, and
Chan (17). First the beam-column behavior of an initially crooked wire
qﬁbedded in a matrix and subjected to a state of uniaxial stress vas
investigated. Second, the possibility of bu;:kling, within the matrix,
of a compressively loeded straight wire was congidered. Three dimen-
sional elasticity was used to predict the founda-ion (matrix) behavior

in both cases. Two major conclusions were reached. One, if the ratio ’
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of the shear moduli of the matrix and fiber is sufficiently low (plots
were based on 0.00033) a substantial difference in the compression and
tension stress strain curves can be expected. Second, again for low
ratios of shear moduli, failure can be expected at stress levels well
below the buckling stress of a straight fiber. When evaluating the
significence of the conclusions and analysis put forth in reference (17),
one should keep in mind that the ratio Gn/Gf for most materials of
current interest is on the order of 0.0l or greater, two ordérs of
magnitude greater than the values considered in reference (17). Also,
the influence of surrounding fibers on the particular fiber being
investigated was not taken into account.

Results reported in reference (17) are also found in reference (18).

Sadowsky, Pu, and Hussain (19) a:.Lso investigated buckling of &

- single fiber embedded in an elastié matrix. The reaction of the matrix
was calculated using three dimensional elasticity and fhe fiver was
treated as a8 beam, Plote were presented for determining if the fiber
will buckle due to thermal shrinkage which occurs in cooling the speci-
men from the curing temperature to room temperature. It was shown
mathematically that the buckle wave length is directly proportional to
the fiber diameter.

The results and analysis of a brief study on boron-polymer film
layered composites was published by Crawford (20). Using the same model
as Rosen (6) and Schuerch (10), but considering the reinforcement to
have initial weviness, Crawford derived equations for predictink com=-

pressive strength, axial stiffness, tensile and shear stresses at the
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reinforcement-matrix interface. Crawford obtained the same results as
equation (2.3) reported herein for the extension mode of buckling. The
equation derived to predict the shear mode of instability differed from
equation (2.4) reported herein only by the term 1 + (Eme/Efo) which
approximates unity for most composites of current interest. It is shown
in reference (20) that axial stiffness can be reduced substantially
below the value based on the assumption of straight fibvers if sufficient
) vsﬁness is present in the compqsite. Since the axial stiffness of most
fiber reinforced composites can be predicted by the "rule of mixtures”
it appears that one pneed not consider the effect of waviness on stiff-
pess. In other words the vaviness is not sufficient to appreciabdbly de-
crease the stiffness. Plots of tensile and shear stresses st the re-
inforcement-matrix interface es & function of the waviness parameteré
wvere constructed using the material properties and geometry of one test
spécimen. _ It was shown that the stresses could reasonably be expected
to be of sufficient magnitude to cause failure by delamination.

Perhaps the most important point made in reference (20) was that
initial waviness can create stresses which cauaé the composite to de-
laminate at loads below those based on buckling analyses. Howvever,
this ‘thought was not related to the behavior of filamentary composites
in reference (20), possibly due to the brevity of the study. When
studying reference (20), one will note that ghearing deflections in the
reinforcement have been neglected and several equatioﬁs need minor
corrections.

Yue, et al. (21) modified the vork of Dow, Rosen, end Haskin (16)
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to include linearly strain hardening materiale. However, their analysias
éontuina en equation which appears to be incorrect. To be spcocific, &
realtionship between longitudinal strain in the fiber and shear strain
in the matrix is assumed. For fibers which remain straight prior to
buckling, there can be no shearing stresses parallel and perpendicular
to the fibers. Thus further discussion of reference (21) is not offer-
ed herein.

The results of performing axial compressioq tests on several dif-
ferent resin systems reinforced with boron filaments were presented by
Lager and June (22). They found that Rosen's enalysis (6) could be
correlated with the data if an influence coefficient of 0.63 were used.
Their jJustification for using the infiluence coefficient was to nccount‘
for the differences between a two dimensional model and a three dimen~
sional test specimen. The authors of reference (22) indicated that the
influence coefficient is not expected to be the same for all fiber
reinforced composites. Obviously, this approach for predibting con-
pressive strength contains the same shortcomings as reference (6).

Chung and Testa (23) investigated the problem of predicting com-
pressive strength for a soft plate (matrix) reinforced by strips of a
stiffer (fibers) material. The spacing between fibers wvas agsumed to
be large compared to the plate thickness. In their study (23) beam
theory was used to describe the behavior of the fibers whereas the
matrix behavior was formulated as & generalized plane stress problem.
The resulting analysis led to a set of hiéhly i{ntracteble transcenden-

tal equations. Two possible solutions were obtained, the extensional
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mode aﬁd the shear mode of fiber buckling. If the wave length of the
buckled fiber is large compared to the spacing between fibers and
VPoiason's ratio is set equal to zero, the equations developed by Chung
and Testa (23) can be reduced to equations (2.3) and (2.4) reported
herein.

Reference (23) reported experimental data on specimens in which
the reinforcement was a glass base sheet (a continuous filament woven
glass fabric impregnated with a resin binder) separated by layers of
epoxy resin. The cccparison betveen theory and experiment was favorable
for the small amount of data presented. However, it should be noted
that the material tested differs substantially from the type of uni-~
directionally fiber reinforced material normally considered for use in
primary loed carrying structures of aerospace vehicles.

By utilizing the governing differential equations for nonlineer
elasticity, Guz (2L) was able to derive that the ccopressive strength of
a reinforced composite should equal the shear modulus of the materiai.
Failure planes were predicted to be perpendicular to the fiber direction.
Since the end result of reference {2h) is the same as that of references
(6) and (15), the difference between predicted and measured strengths
would be the same as that obtained using the earlier references.

Skudra, et al. (25) proposed that failure in a composite subject
to axial compression is by shearing alcng & plane oriented at L45° to the
direction of loading. Using elementary principles of statics and energy

methods, one cen follow the derivation in reference (25) which leads to

the equation
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g (2.12)
for predicting compressive strength. Symbols contained in equation
(2.12) and not previcusly identified are as follows:

EL' ET = Young's modulus of the composite measured parallel end

transverse to the filaments, respectively.
uLT’ uTL = Poisson's ratioc associated with a load applied parallel
and transverse to the filaments, respectively.
Y = Limiting shear deformation on & plane oriented at L5° to the
direction of the filaments.

The experimental results presented in reference (25) compare quite well
with the values predicted by equation (2.12). The test specimens re-
ported ir reference (25) failed et stresses less than 20 ksi. However,
very poor agreerwent is obtained when one compares the analysis of
reference (25) with test dats for S-glass-epoxy presenteﬁ in reference
(26). To be specific, the predicted strength is 1T ksi whereas the
measured strength is 207 ksi. Therefore, one must conclude that the
analysis presented in reference (25) cannot be used to predict the
cozpressive strength of most materials suitable for use in aerospace
structures.

Chemis (27) presented two equations for computing compressive
strength. One is a modified rule of mixtures reletionship whereas the
other relates compressive strength to interleminar shear strength in

the same manner that Fried (8) proposed. The lower of the two values is
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reccrmerced for use ir analysis. Starting with the following equation:

g=aq [(v. a4, n, &), Voo (B, wy G Fy )y o Fy FR] (2.13)

which is all encompassing, Chamis quickly reduced it to the form:

0 = 0[BT * BTy (2g/2,)] (2.14)
Symbols appearing in equations (2.13) and (2.14) and not previously
identified are as follows:
ar, a, = parameter associated with fibers and voids, respectively
d,, dv = diameter of fiber and void, respectively

£
nf, n, = number of fibers and voids, respectively

Ff, Fm = compressive strength of fiber and matrix, respec;ively
FB = interface bond strength

FR = residual compressive strength

Bmc’ ch = Theory-experiment correlation factor for matrix arnd

fiver, respectively

ep = limiting strain

"in = (1 - V')(l - vf) (2.15)
’v‘f = (; -v,) v, (2.16)

Chamis offered the following argument for reducing equetion (2.13) to
(2.14). The void content, bond strength and residuasl stress are depen-

dent on the fiber surface treatment, matrix additives, hardeners,
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texperature, and pressure used during fabrication and method of fabrica-
tion. In other words, the list of variables on which strength depends
is quite long. By assuming that void size and distribution, filament
spacing nonuniformity, interface bond strength, and residusel stress are
influenced by the particuler fabrication process used Chamis reasoned
that all of these variables could be grouped into theory-experiment
correlation factors shown in equation (2.14).

In recognition of Fried's earlier work (8), Chamis presented the

following equation:

o=aT, +a, (2.17)

where
'1' 32 s empirical curve-fit perameters

112 = interlaminar shear strength

One would expect that data over a limited range of fiber volume
fraction could be fitted by equations (2.1&) and (2.17). However, these
equations provide only limited insight into the variables which effect
compressive strength and thus do not contribute significantly to the
knowledge of failure mechanics of composites.

Essentially, the same analysis that was presented in reference (2L)
i contained in reference (28). In sddition, reference (28) presents
experimental data on the compressive strength of fiberglass reinforced
epoxy. Although the measured strengths are only ebout 20 percen§ of the

predicted values, the authors claim the proposed theory expleins quite

well the nature of the failure for the material uhder investigation.
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DeFerran and Harris (29) in a study of the compressive strength of
steel wire reinforced polyester resin indicated that most of the analyses
discussed previously herein are inadequate for predicting strength. The
experimer.tal data reported in referen;e (29) is in sgreement with calcu-
lations based on the rule of mixtures using the tensile strength of the
steel wire. For specimens containing cold-drawn wire the yleld strength
wvas used whereas the ultimate strength was used in calculatioqs for
specimens reinforced with annealed wire.

It is perhaps fortuitous that the authors of reference (29) were
able to obtain agreement between the rule of mixtures and experiment.
~ There Are data reported in the literature that obviously would not
correlate. For example, Leventz (13) reported compressive strengths
for both 0.005-inch diameter and 0.000L-inch diameter glass fiber re-
infcrced composites. Tensile strength for the 0.005-inch diameter fiber
was reported to be slightly less than 60 percent of the value reported
for the 0.000k-inch diameter fiber. Yet the compressive stfength of the
0.005-inch dismeter fiber reinforced composite was approximately twice
that of the composite reinforced with 0.0004-inch diameter fibers.

Results of compressive tests on S-glass-epoxy and boron-epoxy
tubular specimens are presented in reference (30). By taking the limit
as the column length to diameter ratio approaches zero, it was shown

that the compressive strength should be given by the equation
o=G/8 ‘ (2.18)

where
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B = ratio of maximum shear stress to average shear stress in a
buckled column

Equation (2.18), like most of the equations previously derived for pre-
dicting strength, provided estimates that substantially exceed the mea-
sured values of stfength. It was shown in reference (30) that the
compressive strength and column buckling deta correlated reasonably well
with analysis when a value equal to one-half the measured shear modulus
was utilized in the calculations. At the time reference (30) was pub-
lished, the author had not developed the rationale for considering the
shear modulus to decrease with increasing axial strain. Assuming the
fibers to be initially curved provides the missing link and this will be
explained in more detail later in this paper.

Pinnel and Lawley (31) presented results of compression tests on
aluminum reinforced with stainless-steel wires. The authors found that
equation (2.11) reported herein correiated well with experimental re-
sults when the "characteristic stress" was assumed to equal the "ficv
stress"” of the aluminum matrix. Unfortunately, when one observes the
axial stress-strain curve for the aluminum alloy reported in reference
(31), it is found that the value given for the "flow stress" has no
distinct characteristic. In other words, it is doubtful that one could
predict the "flow stress” without first knowing the compressive strength
of the composite.

Hayashi (32) proposed that a unidirectionally fiber reinforced
composite loaded in compression parallel to the fibers faiis vhen the

shear instability limit of the matrix material is reached. Hayashi
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reasoned that as the compressive stress in the matrix approached the

_ shear instability limit the matrix would cease to supportvthe fibers.
Fiber buckling would immedistely follow and consequently failure of the
composite. In an earlier peper (33), Hayashi like Biot (155, Guz (24},
ard Guz (28) had shown that the shear instability limit equals' the
shear modulus. In reference (32), it was assumed that the shear modulus
decreases as corpressive stress is increased. The following equation

was offered as an approximation of the relationship:

G .
m
)“3](33 + 1)/ay (229)

»
Gylop ) =

1+ (om/cw
where

a3 = an undefined constant

By assuming equal strein in the matrix and fibers at failure and using
the rule of mixtures Hayashi (32) concluded that compressive strength

should be predicted by the expression

L) . - L ]
o=0, v+ (1- Vf) o (2.20)

where or. is the fiber stress corresponding to matrix strain at the
shear instability limit, Umf.

A comparison between the analysis of reference (32) and experimental
data reported in reference (22) is presented in reference (32). Accord-

ing to Hayashi (32) the comparison is more reasonable than one would

obtain using équations (2.3) or (2.4) reported herein. In:spite of this
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cptimistic opinion put forth by Heyashi, there appears to be some doubt
as to the validity of the analysis. For example using the analysis and
material properties presented in reference (32) to predict failure rof
a boron-epoxy composite containing L0 percent fibers by volume, one
easily calculates the failure strain to equal approximately 0.0k,
Examipation of test data for the same material, reference (22), indi-
cates that axial strain at failure was less then 0.0l. This discrepancy
was not addressed in reference (32).

Starting with the governing equations for elasticity, Guz (34),
develops an expression for computing the shear buckling mode of failure
for a fiber reinforced matrix material with uniformly spaced circular
fibers. In reference {35), Guz compares the results with prior studies
reported in references (6) and (24). For certainkvalues of stiffness
ratio and fiber volume fraction substantial differences are noted.
Hovever, the results are very limited and do not support general
coﬁclusions.

The results of an investigation on specimen gecmetry and load
1ntroduétibn for unidirectional carbon fiber reinforced plastic are
reported in reference (36). A suitable test specimen was identified
for the material tested. Experimentally determined compressivé strength
values were approximately one quarter of the values computed by the
analysis of reference (6).

BEvidence of shear buckling due to compressive loading of Al—f;uAl2

- specimens is reported ih reference (37). Experimentally determinéd

strengths are compared with values predicted by the analysis of
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reference (21). Since the analysis of reference (21) appears to contain
an incorrect equation, the comparison will not be discussed herein.

Results obtained from compression tests on steel wire reinforced
epoxy and glass rod reinforced epoxy are reported and compared with
existing theoretical predictions in reference (38). The data indicate
substantial scatter in failure loads and AOes not appear to warrant
definite conclusions. The euthor puts forth the idea that failure may
be associsted with transverse tensile stresses due to mismatch between
Polsson's ratios for the fiber and matrix.

Greszczuk provides a brief review of prior investigations on com-
pressive strength and presents experimental data obtained on model
composites in reference (39). The behavior of graphite rod and steel
rod reinforced ecpoxy and urethane specimens were studied. The data
obtained follow the seme trends as predicted for microbuckling failure
of the reinforéing rods. Small prebuckling deformations in the rods
uere‘shoun to significantly reduce the compressive strength of the
model. Greszczuk continued the study initiated in reference (39) and
the results of further effort are reported in reference (L8) discussed
herein.

Results of tests and analyses on the compressive strength of boron-
epoxy composites are reported in reference (ko). Oé the several failure
modes discussed, only filament fracture and layer instability appear to
be related to meterial failure. Filament fracture is reported to have
been observed in some specimens tested at room temperature and -6T°F

and to have occured at a stress of 600 ksi in the composite. This
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corresponds to a strain of 0.02 inch/inch. Layer iqatability, buckling
of the outermost ply away from the remaining plies, was analyzed by
treating the buckled ply as a beam with finite shear stiffness and the
remaining plies as an elastic foundation. The subsequently derived

equations are

o=6 E(2-6) ,8<1 (2.21)

6=6, LE21 | (2.22)

where G denotes the "interlaminar shear modulus" as defined in refer-
ence (41) and £ denotes a stiffness parameter defined in reference (Lo).
Based on the analyses presented in reference (40), one would expect the
value of Gz in equation (2.22) to equal the shear modulus of the com-
tosites. However, the value of Gz reported in reference (40) ranges
from L4 to 67 percent of the shear modulus. Experimentaily determined
values of compressive strength reported in reference (LQ), agree quite
well with the predictions of equation (2.22). Hovever, the analysis
provides only limited insight into the parameters which influence com-
pressive strength.

Sednor and Watterson studied the compressive fatigue behavior of
0° - 90° glass-epoxy laminates and the results are presented in refer-
ence (42). They conclude, based on examination of numerous photomicro-
gfaphs of failed specimens, that compressive faiiure is probably initia-
ted by deﬁoﬁding at the matrix-fiber interface followed by buckling of
the unsupported fiber.

Prebuckling and postbuckling behavior of a single reinforcing fiber
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s:rrcurded by a matrix material was investigated analytically by Lavir
erd Fung (43). The authors point out that buckling of the fiver is
possible if it is not supported by the surrounding matrix (debonded).
Hoyever, the authors also conclude that in common composite materials
the buckling of fibers will have no significant effeét on the overall
behavior of the composite in the linear elastic range. Although, not
discussed in detail, Lanir and Fung conclude that fiber buckling will
significantly affect the behavior of the composite when loaded in the
plastic range.

Harris (44) provides a brief review of previous work on ccmpressive
strength. Specifically the papers by Rosen, Yue, Lager and June,
DeFerran and Harris, and Hayashi are noted.

Photomicrographs of tungsten vire reinforced aluminum and stainless
steel reinforced aluminum specimens that had been loaded to failure in
axial compression ere presented in reference (45). The photographs show
that the mode of failure was microbuckling of the reinforcement.

Additional evidence to support microbuckling as a possible mode
of failure in metal matrix composites is presented in reference (L6)
which reports thé results of axial compression tests on tungsten fiber
reinforced copper. The authors did not offer a comparison betwveen
theory and experiment.

Yet another analysis of the buckling of a single fiber embedded
in a matrix material is presented in reference (4T). Experimental
results obtained from photoelastic stress anaiysis are compared with

predictions from finite eiement analysis. In general the comparison
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ranges from fair to reasdnable. No attempt is made to extrapolate the
results to composite materials currently under investigation.

Greszczuk (48) conducted an experimental and theoretical investi-
gation on aluminum lamina-epoxy, aluminum rod-epoxy, grephite rod-epoxy
and grephite fiber-epoxy composites. Variables and initial imperfections
studied include rod diameter, volume fraction, lamina thickness, number
of rods contained in a specimen, bowed rods, misaligned rods, unbonded
rods end fiber twist,

Utilizing & low modulus resin (E = 2500 psi) Greszczuk shoved that
the failure mode for the lamina and rod reinforce composites is micro-
buckling and that failure can be predicted by the analyses previéusly
developed bty Rosen (reference {6)). As the resin modulus was increesed
to 62,600 psi, Greszczuk reports the failure mode chenged to compressive
stfength failure of the reinforcement. For specimens that failed by
microbuckling, the compressive strength was shown to increase with
increasing rod diameter. This effect may be essociated with fewver
initial imperfections in the specimens containing the larger diameter
rods. It was also shown that the compressive strength of 0.078 in.

" diameter sluminum rod-epoxy specimens could be reduced by more than
forty percent by bending the rod to an arc height of 0.020 in. over a
2.5 in. span. The compressive strength of a graphite rod reinforced
specimen, which had been febricated in such a manner that the resin
and rod were not bonded, vés essentially equal to the value measured
for spegimens in which the rod and matrix were inifially bonded. Thus

Greszczuk concluded that, debonding of the rod and matrix occurred
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zrior to microbuckling in the latter group of specimens.

Experimentally determined compressive strengths for the graphite
fiber-epoxy specimens ranééd from 56 to 62 ksi compared to a predicted
value of 290 ksi for the microbuckling mode of”f;ii;ré. As a result,
other modes of failure were investigatéé( It>ﬁad‘been shown earlier,
reference (L9), that an applied axial comp;essive stress induces tensile
stresses in the t;ansverse direction. After observing failed specimens,
Greszczuk proceeded to compute a faiiure stress based on the maximum
induced tensile stress in the transverse direction. Starting with the
failure criterion developed by Norris, reference (50), the following

equation for predicting failure was derived.

F,_F
Le Tt . (2.23)

o, =
L [z 1/2
[p + 28k Fy (kB Fp - F‘I‘t)]

Tt

FTt and FLc are defined as the ultimate composite strength in the
transverse direction and the true ultimate compressive strength in the
fiber direction, respectively. B and k are the ratios of maximum
transverse tensile stress in the resin to the applied axiel stress and
uniformly applied transverse tensile stress to the maximum transvérse
tensile stress in the resin. The major difficulty in using equation

(2.23) is determining the value of F Greszczuk assumed that the

Le'
compressive and tensile strengths of the graphite fiber are equal and

then used the rule of mixtures to compute FLc' Values computed in this
manner ranged from 10 percent below to 33 percent greater than experi-

mentally determined values.
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Reference (51) presents another derivation of the shear mode of
instability for a fiber reinforced éolumn lcaded in axial compression.
The results are in agreement with earlier derivaticns.

Argon (51) argues that the eﬁ.rlier analysis of Rosen (6) should be
considered as an upper bound since composites made by normal manufactur-
ing techhiques will alveys contain regions in which the reinforcing
filaments are not parallel and aligned with the locad axis. He further
states that such regions \dli form a failure nucleus by kinking similar
to that previously observed in metal crystals. The failure is reported
to resemble in form the in-phase internal buckling of Rosen (6) but to
occur at much lowver stress.‘ Utilizing energy analyses developed in
fundamental studies of metallurgy, Argon estimates the compressive

_strength, 0, to be

o= tm/¢° (2.24)

where Ty denbtes the interlaminar shear strength of the laminate and
¢° is the angle ¢f misalignment between the reinforcement and the load
axis. The kinking mode of fail}u'e has been observed in boron-polymide-
epoxy film laminates. However, with the exception of some recent
studies (53) on PRD-L9 fiber-epoxy composites the failure mode has not
been observed in most composites of current interest to the aerospace

community.

B. Sumary
Based on the references revieved herein, it is readily apparent

that a un;lfied theory for the prediction of compressive strength for
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fiver reinforced or laminate reinforced composites does not exist.
However, several important points emerge from the survey. In general,
the evidence tends to support three‘modes of failure, microbuckling of
‘thg reinforcement, delamination, and fiber-matrix separation followed
ty microbuckling of the fiber. Also, & direct relationship between
’ corpressive strength and interlaminar shear strength is noted for some
materials. Study of these points lead to poatulation éf an analytical
model which allows microbuckling and/or delamination as potential
failure modes and provides an explanation for the relationship between
jnterlaminar shear and compressive strength. The model is described in

the next section of this peper.




III. ANALYTICAL MODEL

The model postulated herein is compared with the one utilized by
Rosen (6) in figure 3.1. In each the composite is built-up from a series
of hard and soft laminae. Rosen assumed that the laminae were initially
straight and predicted two buckling modes. Positive and negative fea-
tures of the Rosen model are listed in figure 3.1. First the advantages:
Strength is related to the matrix properties and thelresultihg equations
are simple to use. As for disadvantages, predicted velues are usually
much larger then experimental measuremenis, fiber geometry is nct taken
into account and nonlinear behavior of the matrix is neglecied.

The present model permits the laminae to contain initiel curvature.
Under an increasing axial loed, the laminae deflect until one of two
feilure modes is experienced. These are shear buckling or delamination.
. The extension mode of buckling has not been observed or predicted to
occur in most materials of interest and hence is not discussed further.
If the matrix material behaves in a nonlineaf manner, one can see that
the shear modulus of the composite and consequently the buckling stress
of the composite will decrease as axial load is applied. One can alsc
see that interlaminar shear stresses increase as the axial loed is
" increased.

Important features of the present model include: (a) strength is
" ‘related to constituent properties and geometry. (Both the fiber and
matrix materiel properties are taken into account. Filament size,

initial curvature and collimation ere reflected in the value of a, and

32
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L .) (b) An explenation for the relation between compreésive strength
and interlaminar shear strength is offered. (c) A decreese in shear
modulus with iﬁcreasing applied axial load is explained. (d) The equa-
tions for computing buckling and delamination can be prograrmed on a
corputer to provide easy utilizetion by materials engineers. The major
disadvantage of the model is that it contains only tvo'dimensions where-
as the filementary composite is a three dimensional material. However,
it is the opinion of the author that the model used herein will be
edequate in many cases, as will be shown. In addition to providing
useful information on filamentary composites, the model will obviously
provide results on laminated media.

Two approaches will be used to compute the stress distribution in
*he model. In the first, designated case A, the entire leminsate is
subdivided into the desired pumber of layers and the stresses and dis-
placements in each layer are computed. Thus, case A tekes into account
the free boundaries of the model. In the second, designated case B, a
repeating element in the model is identified and then subdivided into
layeré. The repeating element consists of one fiver layer sandwiched
between two half layers of matrix meterial. Continuity 6r.displacements

along the edges of the repeating element is imposed on the solution.




IV. INTERLAMINAR SHEAR

Stresses and displacemeﬁts in the analytical model were determined
using the following method of analysis. First, the model was considered
to be a multilayered beam. Then the equilibrium equations based on the
assumptions of Timoshenko (54) were applied to each layer. Next, the
resulting differential eduations vere expressed in finite difference
form. Finelly, the resulting set of algebraic equations vere solved with
the aid of a digital computer. This method of analysis had been used by
Heller and Swift (55) (56) (57) previously to investigate tﬁe behavior
of laminated beams under transverse loading.

Figure L.l shows the laminated beam models used to represent‘the
corpesite material. For case A, the composite is represented by a series
¢S elternating fiber and matrix layers. For case B, a repeating element
which consists of one fibér and two half layers of matrix is used to
represent the composite. Both models are symmetric asbout the midplane
and are initially deflected in the z direction. All layers within the
beam are assumed to have the same initial deflection in the z direction

and the same initial radius of curvature at any specified value of x.

A. Displacements, Streins, and Stresses

Utilizing the Timoshenko assumptions (54), which state that each
layer undergoes transverse deflection and that cross sections initially
perpendiculer to the neutral axis may rotate with respect to the neutral
axis, and the notation of figure 4.2, the displacement within each layer

of a multilayered symmetric beam can be written as follows:

34




35

(a) Displacement in the length direction of the beam is given by"
U
u,, = by, - €)% (z £ n)(y, - 6,) (L.1)

m-1
u, = (z ¢ hm)(wm - em) + £ (n

-n )y, -86,)
41 TR RS

i+l
where wi ie the angle between the vertical axis and the final position
of the deformed crcss section of the ith layer, 61 is the angle between
the vertical axis and the initial position of the cross sectior of the
1th layer (the value of wi which represents the initial rotation of the
ith.layer), hy je the distance from the neutral axis (midplane of the
laminate) to the outer surfece of the (i-l)th layer, z is the transverse
coordiante and the positive and negative subscripts refer to layers above
$and below the midplane, respectively. Note, compression of the beam due
to the application of axial end loads was neglected as customarily done
in all buckling problems and equations (4.1) represent only displacements
due té bending end shearing of the cross section.

(v) Displacements in the beam width direction are assumed to venish
for all layers since the moment of inertia ratio (iyy/Izz) is much larger

than unity.

Vem = © (s.2)

(c) Transverse displacements are the same for each layer
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Ir addition the transverse displacement is composed of two parts,

an initial displacement, vo, and the displecement due to lcading, wl,

v v 4 (4.3)

Utilizing equations (k.1}, (4.2), and (4.3) strains in the nth layer can

ve written as follows:

Bum m-1
- = ' .8 U - Y
Ex:m = 9x (z 2 hm)(wm em) * 151 (hiﬂ. hi)(wi ei)
(L.b)
2u ow
*m 1
sztm: dz "a?’ m 6m+vi (4.5)
€yim = Czem = Vyzem T Vgm T 0 (4.6)

csuring that each layer is at least piecewise linearly elastic, (which
may restrict the enelysis to problems with monotonically increasing

loads), the stress components can be written in terms of the strains.

ax:m = Em exi’m

T (4.7)

xzim = Gm szim

aytm = azim = Tyztm" Txytm =0

The last of equations (h.’{) does not satisfy the boundary conditions
when a transverse loading is imposed on the laminated beam (0z # 0).

However, this will be ignored as is customarily done in plate and beam
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analyses since oz is usually small compared to other stresses in the
te. ‘ &
laminate. Thus, all stress components except oxtm and sz:m are assume

tc vanish. Hence the subscripts will be deleted and

will be used. In equations (L.T) Gm and Em denote shear modulus and
Young's modulus, respectively, for the mth layer.

Again it is noted that compression or extension of the beam due tc
application of axial end loads and the corresponding axiei strains and
stresses have been neglected. Thus O:m represents only longitudinel
bending stress and does not include the epplied axiel stress. In the
event tétal stresses or strains are required, they can readily be

cbtained using the principle of superposition.

B. Bending Méments, Norral and Shear Forces

Next, expressions for the bending moment, normal, and shear forces
on each layer are required. The bending moment due to longitudinal
stresses in the mth layer about the midplane of the beam is given by

Pl

Hm"bJ' z2 0, dz (4.8)
h
n

Substituting equations (4.7) and (k.L).into (4.8), and performing the

integration leéds to

m-1 :
M, = 1-.'m(1ln - Fm§m)(w;‘ - e;) tEF, 1}51 (b4, - hi)(Wi - 8;)

(k.9)
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where I and F_ are defined by
o A

(4.10) .

The normal stress resultant due to the longitudinal bending stresses is

defined by
Poel
sz =) I . am dz (k.11)
h
m
which becomes
m-1
- LA - ) - T _ 8
ltm = Em(Fm Amhm)(wm em) M EmAm ifl (hi*l l"li)(wi ei)

{L.12)

when stress and strain are expressed in terms of displacements and Am

denotes the cross sectional area of the mth layer. Due to symmetry

(k.13)

The resultant shear force on the mth layer may be expressed by

o1 )
= '
q,, = bk I Ty b (4.14)
. L

writing stress in terms of displacements and then integrating equation
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(4.1L) yields
Q = k' G A (Y -6+ v1) (L.15)
k' is a shear correction factor. In the past, there has beeﬁ considerable
disagreement as to thé precise value of k', see for example references

cg, 59, and 60. In general, the value is close to unity and, following

tke precedent of Heller and Swift (56), k' = 1 will be used herein.

C. Equilibrium Equations

Equilibrium of a segment of the multilayered bean is considered next.
Figure 4.3 shows the forces and bending moments acting on the beam
segment. As a result of defining bending moments, Mim’ by equation
(4.8), different free body diegrams are used for summing moments and
forces on the beam element. The standard practice of replacing the
axial applied loads, Pi' by a single load equal to the sum of the applied
loads and acting along the midplane of the beam has been utilized.
EBoundary conditions at the layer interfaces require that the interlaminer

shear and normal stresses be equal-

El;l = tn,m+ll
(4.16)
a =

m,m am,m+1

where the first subscript dénoteg the interlaminar region at the top of

the mth layer and the second subscript denotes the layer on which the

stress is acting.
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First consider equilibrium of the complete beam segment ﬁhd sum

forces in the horizontel direction:

P cos w' - (P + dP) cos(w' + vw"dx) + Q sin § - (Q + dQ) sin(y + ¥'dx)

+ biT - \J - - ' =
( a,n T-n,—n) cos w'dx b(on,n o—n,-n) sin w'dx = 0

(L.17)

where § is defined by

_ =n
v= L Q

n
/z Q (4.18)
i=1 i

AU

Collecting terms in equation (4.17), expressing the sine end cosine in
terms of the small angles w' and §, and dividing by the length of the

beem segment, dx, leads to

&P . 49 (7 4 Trax) + QT - - - .

™ ( + §rdx) + Q' + b(tn‘n T_n'_n) b(cxn’]n o-n'_n)w 0 {4.19)

For case A, T and T vanish and for case B they are equal. Thue
n,n -n,-n

the fourth term in equation (4.19) vanishes. The transverse normal
stresses, an’n and o_n’_n,‘are assumed to be small compared to other
stresses in the beam. Since they are multiplied by w', which is small
compered tc unity, the last term in equation (L4.19) is neglected. Since
¥ << 1, the shear resultant Q can be considered to act perpendicular to

the midplane of the beam and from elerentary beam analysis one can readily

deduce that
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Q= Pv' | (4.20)

for the two cases discussed herein, Substituting equation (4.,20) into

(4.19) leads to
Lew @+ Prax)] + PuF + §rax) + PPt = 0 (k.21)

lictirg thet both @ and w' are very small compared to unity, equation

(L.21) reduces to

aP
= =0 (k.22)

which agrees with classical plate ard beam analyses (see for example
reference 2). Equation {L.22) will be used in the subsequent derivaticns
by considering P to be constant along the length of the beam.

In order for the segment to be in equilibrium, the sum of the forces
on the outer layers sbove and below the midplane must also vanish. From

figure 4.3, it follows:

n n
- * L}
1=§+1 Fx =z=0= b(Tn,n Tm,m+l) cos w'dx + 1=£+1 (Ni + dNi) cos ‘v
n n
+wax) - L Ni cos w' + L Q1 sin wi
i=m+l i=m+l

n ’ :
- I (Q +4dQ,) sin (y, + yldx) -blg -0 ' .. ) sinw'dx =0
{=mtl i i i i n,n m,m+l ;

(k.23)
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-(m+1) -(m+1)
= - 1]
if-n F = 0 bh—m,m#l Tn.ﬂ) cos w'dx + 1£-n N, cos w'
~(m+1) : -(m+1)
- (Ni + dNi) cos(w' + w'ax) + L Qi sin ¥,
. i®en © imen
~(m+1)
- 1133‘_“ (q + 4Q,) sin (v + pyax) + b(o-n,-n
- o-m,-(mﬂ)) sin w'dx = 0 (4.24)

Noting that
cos w' T 1
cos(w' + w"dx) T 1
(4.25)
[ B4 [)
sin Wi Wi

sin(y] + ¥jax) = ¥} + yjdx

Collecting terms and dividing through by dx, equations (4.23) and (4.24)

reduce to
n n
bt o - rm’mﬂ) + 1=,§+1 N - ig;:ﬂ (Quug + Qpu, + 4Q,¥:)
- b(crn.n - °m,m+1) w' =0 (4.26)
-(m+1) ~{m+1) .
B (o) Tnea T (E M B (A A a9

*B(0, =0y (me1) ¥ %O (k.27)
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Substituting equation (4.16) into (%.26) and (4.27) and then subtracting

(k.27) from (L.26) leads to

n
b(‘t‘n,n * T‘no'n) - b(TmoMJ- * T‘ﬂ.'(m"l))+ 2 i=li#l Ni
- b[(on,n * c—n,-n) - (cm,m+1 M o-m,-(m+l))] v =0 (4.28)

Since transverse normal stresses are assumed to be negligible compared
to other stresses in equation (4.28) and the last term is multiplied by

w', the last term in the equation is neglected. Thus yielding

n
LICA ‘t_n'_n) LI LR t_m’_(mmh 2 1=§+1 m =0
(k.29)
Irtrcducing
P_= b(tn,ﬁ + T_n’_n) (4.30)

to denote the total applied horizontal shear force per unit length of

beam and combining equations (b.29), (4.30) and (4.16) yields

n
1
+ = + ' .
rm,n T-m,-m = b (Px 2 I ) (k.31)
for expressing the interlaminar shear stfesses acting on the 2m inner
layers of the beam.
In order for the beam segment to be in equilibrium, the sum»of the

moments acting on the 2m inner layers must also vanish. Referring to
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rigure 4.3, suzring moments about the right end of the beam segment leads

to
o m
ITM=2 T (M +aM -M)-2 L [4 dx + bh T . +1
o 105 _1) ey Qx} o8 ¥y w1 oz * Ten,-n'
+P6=C (4.32)
where & is defined in figure 4.4 and can be represented by
§ = wix) + w'(x) dax - w(x + dx) (4.33)

Utilizing a Taylor series expansion for w(x + ax) in terms of w(x) and

its derivatives, equation (L.33) takes the form
§ = ~w"(ax)?/2 (4.34)

vher. higher order terms are neglected. Substituting equation (L4.3k)

irte (4.32), dividing by dx, and noting that cos ¥, I 1 yields

m
v - " -
2 151 (Mi Qi) + bhm+1(1m,m + T-m,-m) P"dx/2 = 0 (4.35)
The last term in equation (4.35) is & higher order ternm then the remair-
ing terms. Thus equation (4.35) becomes

2 iﬁl (M - Q) +on (T, o+ T =0 (4.36)

Combining equations (4.36) and (4.31) leads to

m n
£ (M -Q)+h (P +2 I N)}=0 (4.37)
jgm1 14 ETE gy o ,
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Firally, equilibirum in the vertical direction requires that the
sum of the forces in the vertical direction vanish. Referring to figure

4.3, it follows:

n .
2 151 [(Qi + in) cos(wi + Widw) - Q cos wil + P sinw'

- P sin (w' + w"dx) + dlo -0 ) cos w'dx
n,n ~n,-n

+ b(Tn,n - T-n,—n) sin w'dx = O (4.38)

Noting that equations (4.25) ere valid if wi and w' are interchanged,

collecting terms and dividing by dx equation (4.38) becomes

n
[, " - - '
2 I Q- P +d(o) o '_n) + bt 1 ’_n) w' =0

i=1 sn -n sn -n
(L.39)
Denoting the applied transverse load by
‘= - b b
P, =vlo, , O p,-n’ (L.Lc)

and noting that the last term in equation {L.39) is & higher order term

compared to the rgmaining terms in the equation leads to

n .
2:Qi-1>w"+?=o (L.b1)
isl z .

Substituting equations (4.9), (k.12), and (k.15) into (h.»a'{) and (L4.15)

into (4.41) provides a (n + 1) set of linear, second order partial




differential equations.

n i-1
L [E(1, - Fsh )(v] - o)) +EF, I (b 4y = )W - 680)]
k=1

i=)
o
- L * - [}
1:1 k c.it.i(w1 o, + vl) *ho P /2
n [ i-1
+h z E(F, - Ah )" -6") +EA, L (h
e SUTIO R A 11774 i 1, k4l
" " .
- hk)(wk - ek)] = 0 (L.%2)
n n ‘
T k'GAW'+ I K'GA(y'-0)+P /2-P"=0 (4.L3)
121 40 i B 171Y i z

Fquaticns (L.42) and (L.L3) are the governing differential equations for
+he problem under consideration. Solving these equations, taking into
account the appropriate boundary and initial conditions, permits one to
compute the stress-displacement field for the larinate. Equatiocns
(L4.42) and (4.43) differ from equations (26) and {(27) in reference (54)

in that P, 61. and vy were not included in the earlier derivation.

D. Shear Stresses
Noting that Tm,m and T-m,-m and expressing the moments Mi’ and
shears Qi’ in terms of displacements and substituting into equation

(4.36), the following equation is obtained and may be used to compute

the interlaminar shear stresses.
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B Y ) ) T
T = I [E(I, - F,h)(y" - 6") ¢+ EF,
mam T Bh_ |y i TN TR T B !
m
- b )y - 60)] - 2 (k'G,A (v, - 8, + w!)] (L. Lk)
1=1

chear stresces within the mth layer are readily derived by considering
equilibrium of the element shown in tigure L.S.

h

mtl 30m
ESEJ*I 2 (4.15)
Z

It is noted that the axiasl compressive stress resulting from the applied
load is not shown in figure 4.5 since it was shown earlier (see equaticr
L.22) that the axial force is constant along the length of the beam.
~ris the terms would cancel and have no effect on equation (L.Ls).
Zxpressing 0, in equation {4.45) in terms of the displacements and then

performing the integration yields

h2
= _E"—l- - z_ "o a"
Tm Tm,m * Em I( 2 2 * hmhm-‘-l * hm.z) (wm em)
m-1
" " N
+ (b, -2) 151 (g, - BIGY - ei)i (.LE)

continuing one step further, the average shear stress within the mth

layer is given by

1 mtl
T = ——-—_——h—-I T_dz (l‘-l‘T)
m .
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or in terms of the displacements and interlaminar shear stresses

E
= m - 2 " _ a"
Tave T:,m * 3 (hm+1 hm) (wm em)
Em me-1l
- - " - "
+ = (b, - hy) 151 (by,; - B)(¥] - 8F) (1.148)

E. Solution of Governing Equations

A brief examination of equations (4..2) and (4.43) leads to the
conclusion that the chences of obtaining a tracteble closed form solution
for a multilayered beam, particularly if the number of layers is large,
are rather remote. One approach for overcoming this obstacle is to
express the derivatives ét ¥, 8, and v in terms of finite differences.
The result is a (n + 1) set of algebraic equations for each node along
the bear. For a beam with both ends fixed and subdivided into J
intervals, the simulteneous solution of (J - 1) (n +# 1) algebraic
equatibns is required to determine the stress and displacemgnt fieldé.
The only practical method of.solution is utilizetion of & computer.
Transformation of the governing differential equations into algebraic
equations and discussion of the analytical method and computer program
used to obtain a solution follow.

Defining

0 =¥y - & (b.49)

and writing the first and gsecond derivatives at the pth mode along the

veem in terms of finite differences
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¢, (p+ 1) - ¢,(p - 1)
2(8x)

¢;(p) -

¢, (p + 1) - 2¢,(p) + ¢,(p - 1)
2

¢ (p) =
: (8x)

equations (4.L2) and (4.43) may be expressed in the following matrix

form.
'Ru R« o s RglSyy Sppe - S, 1Ty Tpp - - - 1)) "¢l(p-ﬂ FPl(p-)]
Ry Ryp v v e 325=s21 Spp + + + SpglToy Toz * * -+ Tos o (p-1) |P,(¥)
. . N I . : . . . {w(p-1) _| -
- . : N P - |4, (p)
. . : .. . ! . e . {]e(P) .
Lasl Ry - - - assissl Sgp + + -~ Sggjler Te2 © " Tsz v(p) fs(p)-
¢, (p+1)
¢, (p*1)
L:,(p,l) (L.51)

vhere s = (n + 1). Utilizing abbreviated notation equation (k.51) becomes

1! - .
[gpigpi%] -!-p-l —[gp] (L.sz)

p4
Y

Ion
Coefficients of the R, S, T, matrices and the load vector P are defined

as follows:
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i= f n n
2151(11 - Fihi) + 2h1+1(h1+1 - hi) k=21:+1 EkAk
R = (h-53&)
1 (ax) -
i > J <n i n
2EJ(IJ - FJhJ) + e(hJ+l - hJ)k=§+lEka + zhiﬂ(hJH - hJ)k=§+l£kAk
Fy T (ax)2
{L.53b)
i<j<n o
2h EJ(FJ - AJhJ) + 2h1+1(h3+1 - hd)k=§+1Eka
R,, = (4.53¢)
1 (ax)?
1z¢ i f n
=5
i
Ria = kil k GkAk/Ax (k.53d)
i=s
1< J<n
Ry, = -k'G,A,/Ax (L.53e)
1 =8
J=38 a _
2 I k'GA -P
.

(L.53f)
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fun
1A
s
A
-

[
1A
['s
A
=]

(h.sha)

(L.5ub)

(k.Skc)

(k.5k44)

(L.5bke)

(b.55a)
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1<i<n
J=3s

Tyy ™ <Ry L (L.55b)
i=3s
ig J<n

Ty " -R“ (4.55¢)
i=s
=8

Ti.‘) = R“ (4.554)
1<i<n

P(p) = -b,,, P, (u.ss;)
i =vs

Pi(p) = -Pz +P vg {k4.560)

Inspection of equation (4.53f) indicates that the values of some
coefficients are a function of the applied axial load, P. As & result,
stresses and displacementz due to large loads maf have to be computed
in smeller increments in ordef to avoid error in the analysis. The
jnfluence of load increment size will be discussed later. »

Applyiné equations (4.52) to each node along the beam
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leads to the following set of matrix equations.

Pﬁe_s_egeo 00 . . . N4y (2, ]
0 By3§;1,00 . . . X B,
0 0 B S I,0 - . . N | R P (4.57)
ce 000 BBkl | |50
L - 0000 B 8§ E‘LL!"’I.J 52\,_‘

when boundary conditions are taken into acccunt, rotations and deflecticns
at the end of the bean (x_l and Zd«fl) are prescribed for the cases under

consideration and equation (4.57) becomes

- r
N n

52'_;2‘0 0 0 . . .0 1, B,

s . . . Y
By 832,00 | =3 =3
0 1‘-&5&2&0 . . . . =] . (4.58)
eoe o 000 By S gl ha Ba
. - s 000 B & |4 ] LE‘IJ

Equations ( L.58) may be solved by utilizing the tridisgonal method
of solution described in reference 61 and used earlier by swift (57).
The method of solution works in the following manner. Starting with the
first of equations (L.58) aﬁd proceeaing to the last, the values of Y

-t

~ are expressed in terms of !—14'1'




Y& (5 - I 1)

1y = (8 - By S5'T, 07N R, - By 55'8, - Iy, ) (4.59)

Lot (G - RIS - By LI R - Bl - B S LT
"B SR -L L

Noting the following recurrence formulas,

B8R EL L, (1.60)
-1
& 7 B Ky 1B - 9y (.62)

and substituting into equations (L.59) leads to

)
1L =E (B -1 1]

-1 )
Y= Ey (B -9 - 33 1]

. : (4.62)

-1 .
Lo mEL By -8 -G &)

-1
Xy = BB - 4]

Values of displacement and rotation (!3) at the Jth node can be calculated
using the last of equations (4.62). Then the remaining values of !i can
be calculated by successive back gubstitution.

The computer program, written earlier by Swift (57), ves modified
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to solve equations (4.58). In addition to meking ch;ngea required to
appropriately adjust the coefficient matrices (g. S, 2), the program
wvas altered to accept materials whiéh exhibit nonlinear shear stress-
strain behavior. A brief description of the computer program is given

in Appendix A.

F. Initiel and Boundary Conditions

Figure 4.1 shows sketches of the two problems studied. As indicated
previously, case A represents an entire laminate and case B represents a
typical repeating element contained in a laminate. For each case, an

initial deflection of the form

v, "8, {1 + sin((2n/L)(x ~ L/4)]1} (L4.63)

01 =0

was assumed. The trensverse deflection, "o‘ is symmetric about the
midspén of the beam and has zero slope at the midspan and both ends of
the beem. Values of vg are evalusted at each node albng the bear and.
used to compute the values of Pi(p) in equation (4.56b). The choice of
61 is based on the requirement that all layers-have the same initiel
radius of curvature and that displacements in the x direction are
continuous at the layer interfaces. In other words, prior to assembly
of the laminate, each layér was asssumed to undergo the transverse
deflection represented by equation (4.63) and then all cross sections

which were initially perpendicuiar to the neutral axis were rotated
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back to the vertical position in order to impose continuity of the
horizontal displacements., For both cases, the ends of the laminate
were assumed to be fixed and thereby preventing any lateral deflection
or rotation et the stations x = 0 and x = L, For case A, the upper and
lowe; surfaces were assumed to be free of tractions. For case B, the
upper and lower surfaces form the boundary of a repeating elerent and
in order to satisfy compatibility horizontal displacement, u{x), was not
permitted alopg these bounderies. An unknown surface traction, Tn,n
results from this constraint.

Thus for case B, an additionel equation and an additionsl unknown
In,n must be included in the analysis. The requirement that u(x) vanish

along the upper and lower surfaces provides the additional equetion

é,h, + ¢3_(h3 -b) 4.4 4511(11!"l - hn) =0 (L.65)

Beferring to equation (4.20) and noting the relationship between T and

Px' permits Px to be treated as the unknovn varisble and equaticns (4.51)

take the form




— | i -1r- o
R, R, Py ol S, 5 Sle hy/2 T T, T, 0 ¢ (p-1) P (p}
Ry Ry Ry o| S, Sz S5 h3/3 ; Tyy Top v o = Ty 0 On(p-l) Pz(;)
.. . .I. . . . |. . < . felp-1)

. . ‘ . .I . . . . ' . . . . ?l(P-l) -
Rnl Rn2 N R‘ns ¢ | snl s.n2 * sms hn*llzl Tnl n2 Tn: o ¢1(p)
R,y Ryo - Ry, ol 5,1 S Sgs 0 : T,y T2 cr. 0l P (p)

_o_ o 0 | hy (ha-hz) (hvl-hn) 0 | o 0 [+] ii . 0 i

¢.(p)
w(p)
P (p)
ol(rl)
on(pol)
vw(p*l)
Px(rl)
(k.66)

Equations (L.66) were solved using the procedure described for obtain-

ing a solution to equations (4.51).




V. SHEAR INSTABILITY OF MULTILAYERED MEDIA

Figure 5.1 shows a segment of a multilayered mediur under axial
compression load. The mediuq is assumed to be composed cf repeating
elements which might be representative of & lamina or fiber reinforced
composite material. The iength to width retio of each lamina in the
multileyered material is assumed to be emall and thus bending (Euler
buckling) of the laminae is precluded. The magnitude of the applied end
loaeds is such that a uniform axial strain is imposed on the material.
The repeating element is assumed to be symmetric about its midplane and
compatibility of displacements along the vertical boundaries is imposed
in the following analysis. As & result, the average vertical displace-
ment at the upper ends of the +ntb and -nth laminae will equal the
displacement at the midplane of the repeating element. Thus, for
convenience, the applied axiasl loads are replaced by a single loadb
acting et the midplane of the repeating element.

The axial load which initiates shear buckling, may be calculated
using an energy qnalysis, as indicated in reference 15. Referring to
figure 5.1, it is noted that the work done by the exte:nal forces in

going from the initial position to the buckled position is
¥ = P§ (5.1)

Qhere 8 is the axial displacement of the midplane and the outer surfaces
of the repeating element. § can be expressed in terms of the slope,
vi, by

6= (1 - coswj)ax (5.2)

58
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ard utilizirg the relationship

cos v} 21 vi2/% (5.3)
equation (5.1) becomes
. 2
W=Pw dx/2 (5.4)

Since bending of the laminae is precluded, the change in strain energy
in going from the initial position to the buckled position is due only
to shearing stresses and is given by
n
U= 121 T, VA dx (5.5)

where 11, Yi’ and Ai denote shear stress, shear strain and cross

sectional area of the ith leyer. Expressing shear siress and shear

c+rain ir terms of displacement, wl, end rotations oi (refer to equations

(4.5) ana (4.7)) and substituting into equation (5.5) yields

n
2
U= I GA (¢ +wv) dx (5.6)
1= i1 i 1
Equating W and U leads to
py? = 2 : G (0, + w)? (5.7)
i=1

Equation (5.7) plus the follwoing equation which imposes continuity of
displacements along the vertical edges of the repeating element, are

the governing equations for predicting shear instability.
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n
£ AD, =0 (5.8)
oy 44

Next, determining the minimum value of P using the method of

Legrange multipliers

a2 . (5.9).

9P

53: +A5—=0

39
+ 2 %, 0 (5.10)

®
8¢n

where & represents the constraint equation (5.8). Substituting equations

(5.7) and (5.8) into (5.9) and (5.10) and performing the differentiation

leads to
n n 2
1] v 1] -
‘ 151 GA (¢, +v]) w) - 121 GA (0, +v1)" =0 (5.11)
2 ,
LG A (o) + wid/w]™ + MA; = 0
. (5.12)

L]
o

. ' )
l‘Gn“\n(‘pn * ul)/vi M AA‘n

Eliminating the Lagrange multiplier from equations (5.12) yields

Gl(¢l + Vi) = <52(4>2 + wi) =" = ann + Vi)' (5.13)
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Equation (5.13) indicates that P will be minimum when a state of
uniform shear stress exists in the buckled element. The solution,
equation (5.13), also satisfies equation (5.11). This can be shown
by substituting equations (5.13) end (5.8) into (5.11). Utilizing
equations (5.8) and (5.13) to determine the values of ¢i ih terms of

vi and ther substituting the results into equation (5.7) yields

Z(Al + Az" .o ’An)2

For " TR A, A ) (5.14)
L, 24,8
G G G
1 4 n
Denoting the average compressive stress by
n
o_=P /2L A (5.15)
cr cr 1=1 i
th
and the volume fraction of the i lamina by
n
V,=A /L A (5.16)
i 1 {=1 i
and substituting into (5.14) leads to
. = °1G2 Gn - .
cr vlc2 Gn + V2G163 Gn + + VnGl Gn—l
(5.17)

Equation (5.17) was used to predict shear buckling in the computer
program described in Appendix A.
Perhaps it should be noted that the right side of equation (5.17)

equals the predicted shear modulus of a multilayered material, based on




62

the "stiffness in series" model for the material. Thus equation (5.17)

agrees with Foye's (15) results for the case, n = 2,




VI. EXPERIMENTAL INVESTIGATION

Fabrication procedures and test methods utilized in the research
progrem are described in this section of the thesis. Two types of com-
posite specimens, lamina and fiber reinforced, were fabricated and test-
ed. The lamins reinforced cémposites were designed to provide verifica-
tion of the interlaminar shear anslysis and the fiber reinforced compo-
site specimens were designed to show a relationship between shear

modulus and axial compressive stress.

A. Lamina Reinforced Cormposites

1. Lleminate Fabricaticn

Four specimens were fabricated using either 0.0ho—incp or 0.083-inch
thick strips of 7075-T6 eluminum for the reinforcement and type "WI-
Green Rigidax" compound for the matrix. Figure 6.1 shows two of the
specimers. All specimens were nominally orce-half inch thick and conteined
ten reinforcing laminae. At the ends of each specimeh aluminur shims
were used to rwaintain a uniform spacing between the reinfofcing laminae
and to provide the additional stiffness required to sirmlate & clarped
end boundary condition during testing.

The two larger specimens were fabricated using 0.083-inch thick
strips of aluminur which had been hand-formed on a 6.0-inch diameter
steel cylinder. After the strips were formed, they wvere assembled with
the separating shims and a hole was drilled through each end to permit

clémping with & mechine screw and fastener. Next, the assembly was
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chemically cleaned and then dis'assembled. The sﬁecimen was then
reassextled using a pattern of pins (drili bits) to align the re-
inforcing laminae. (See figure 6.2.) The pins were held in position
by an aluminum plate which hLad been precision machined to provide the
pattern. In general, the pins passed through the laminate and extended
into the plate approximately 1/8-inch. Minimal effort was required to
insert the reinforcing laminae between adjacent rows of pins, since each
lamina had been formed tc epprcximately the same shape as the pin
pattern. Next the assembly and plate were heated to 250°F in a circulat-
ing-air oven and the cavities between the alurinum strips were filled
with molten wax. After the specimen was allowed to cool to room temper-
ature, it was recoved from the suprorting plate. The alignment pins
reraired in the specimer, as shown in figure 6.3. The pins were not
Iccated at pcints where peek interlaminar shear stresses vere expected
to occur.

Fabrication of ‘the two smaller specimens was similer with the ex~
ception that a rectangular frarce and only two transverse rovs of pins
were used to align the reinforcing laminse which had been hand formed
on a b.5-inch diameter cylinder. Figure 6.3 shows the pins remaining
in one of the specimens containing 0.040-inch thick laminae. The ends
of each specimen were machined flat and parallél and perpendiculer to
the length direction pf the specimen in order that uniform loeding of
the ends could be approached.

» Table 6.1 lists the dimensions for each specimen. The x and 2

coordinates listed were determined with a CORDAX measuring machine whick
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is accurate to within 21/1000 inch.- Specimen length and width were
geasured vith a machinist scale. Specimen thickness was determined by
subtracting the upper and lower z coordinates at each station along the
x axis where measurements were taken. A comparison of the initial dis-~
placement pattern for each laminate with the displacement given by

equation (%.63) is shown in figure 6.4,

2. Matrix Specimens

Cylindricel and tubuler shaped specimens were febricated and used
to determine compression and shear stress-strain curves, respectively,
for the matrix material. The compression specimen was rade by first
filling a brass tube with molten wax and then machining off the brass
tibe after the wax had cooled to room temperasture. Nominal dimensions
for the compression specimen were 3.0 inches in length and & 1.0 inch
diamter. (See figure 6.5.)

A matrix shear test specimen is shown in figure 6.6. The specimen
was machined from & §-inch long by 2-inch square casting of wax.
Nominal dimensions for the finished specimen were: 6.000-inch length,
" 1.750-inch square ends, 2.000-inch long, 1.500-inch outside diameter
by 1.000-inch inside diameter test section. The test section to end
grip transition portion of the specimen was tapered at an angle of

approximately 20 degrees.

3. Matrix-Reinforcement Bond Strength Specimens

Figure 6.7 shows the type of specimen used to determine the bond

strength between the aluminum reinforcement and the matrix material.
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The specimer consists of two basic parts: & 0.50 inch thick by 2.000
inch square aluminum block with a 15/16 inch diameter hole and a 0.750
inch outside dia;éteffby 0;662 inch th;ck sluminum tube. The aluminum
tube passed through the hdle in the‘blocg. The tube was located in the
center of the hole and thus provided a uniform gép between the two

parts. The gap was filled with molten wax.

4, Compressior Test of Laminate Specirens

Figure 6.8 shows the test setup utilized for each laminated speci-
men. Compressive load was applied to the specimen by the upper and
lower platens of a 120,000 pound capacity hydreulic testing machine which
had been calibrated to an accurecy of 0.1 percent full scale load with
standards traceable to the National Bureau of Standards. Loading rates
of L100 and 2100 pounds per minute were applied to the larger and
smaller laminates, respectively. These loading rates correspénd
approximately to an axial straln rate of 0.001 per minute.

Foil type strain gages wvere bonded to the edge of aluminum lamineze
number 3 and 5 at the specimen mid length. (See figure €.9.) Strain.
geges were alsc bounded to the outer surface of aluminum leminse number
1 and 10 at the specimen mid length and one inch either side of the
mid length. (See figure 6.10.) No attempt wes made to attach strain
gages to the matrix laminae since an earlier effort to bond gages to
wax castings had proved to be unsuccessful. The resistance of each gage
was 120 ohms, #0.3 percent. Gages factors ranged from 2.0k to 2.15 for
all gages, but the value for each gage was knoﬁn within #0.5 percent.

Each gage was connected to a single active arm Wheatstone bridge which
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utilized a 3.00 volt pover supply. The average circuit sensitivity was
1.58 volts. Recording equipment cepeble of accurately detecting voltage
changes as small as 0.0025 millivolts was used to read voltage changes
in the Wheatstone bridgé. Thus strain increments as small as 0.000002
in./in. could be detected.

Transverse and axial digplacements were measured with linear direct
current differential transformers (DCDT). Full range displacement varied
from *0.050 to *1.000 inchés. The DéDT's with 20,050-inch displﬁcement
range could accurately measure displacements as small as 0.000167-inch
vwhereas the DCDT's with $1.000 inch range were only accurate to approx-
imately 0.001 inch.

During the tests, load strain data from the four gages at the mid
span of the.specimen and load deflection data from four transformers
along one side of the specimen vére monitored on an oscilloscope at the
test site. All dats were recorded on magnetic tape in the Langley
Pesearch Center data processing facility. In general, the date were

recorded at one seccnd intervals.

5. Compression Test of Matrix Specimens

Figure 6.11 shovs the test setup utilized to obtain compressive
stress-strain date on the wax matrix material. The specimen was position-
ed in an Instron testiné machine and loed was applied by lowering the
upper platen at a constant rate of 0.0l-inc$ per minute. Load was
recorded as a function of time for subéequent use with platen displace-

rent to develop stress-strain plots.




68

€. Torsicn Test of Matrix Specimens

Figure 6.12 shows the test setup utilized to obtain shear stress-
strain date on the matrix materiel. The tests were performed in a 60,000
1nch—pound capacity hydraulic testing machine. The right end of the
specimen was held stationary and the left end was rotated. Rotation at
two stations along the specimen were measured using linear direct current
transformers capetle of accurately measuring displacements as small as
0.0004-inch. Torque-deflection curves were monitored on an oscilloscope
at the test site. Data were recorded at each S-inch-pounds of load and

stored on magnetic tape.

7. Bond Strength Test

Figure 6.13 shows the bond strength test setup. Compressive load
was applied to the upper end of the tube. The load was reacted by
shearing stress at the tube-wax in£erface. The tests vere performed in
an Instron Testing machine and using a constant head displacement rate
of 0.002-inch per minute. Load vaé recorded as a‘function of time for

gubsequent use with platen displacement to develop load deflection plots.

B. Fiber Reinforced Composites

1. Fabrication of Tube Specimens

Unidirectionally fiber reinforéed tubular specimens for use in
. compression, torsion and combined compression-torsion tests were fabri-
cated using the general procedure presented in reference 26 with minor
modifications. Figure 6.1k shows a flov diegram of the fabrication

process and a brief description follows. First, an aluminum tube which
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serves as the mandrel is cut to the required length and several small
holes are drilled trhrough the wall near each end. Next, a Teflon heat
shrinkable sleeve is positioned on the aluminum tube and heated until it
fits tightly around the tube. In the second step, plies of preimpregnated
filaments are wrarred around the mandrel. The filaments are aligned
parallel to the longitudinel axis. Each ply extends one revolution a-
round the mandrel erd contains a butt-type seam. Seams in the various
layers are uniformly distributed around the circumference. After the
required number of plies have been laid up, a release cloth and then
bleeder plies are tigktly wrapped over the pregpreg material. The
bleeder plies exterc cver the holes in the aluminum tube. The fourth
step consists of placirg a Teflon sleeve over the bleeder plies and
heating until it fits tightly. The ends of the sleeve aré sealed by
clamping. The entire assembly is then placed in an autoclave for
curing under pressure at elevated temperature. While in the autoclave,
one end of the alurmirum tube is plugged and the other is connected to
a vacuum line. After the prepreg material has been cured, the composite
tube is easiiy cut irnto sections and removed from the gandrel.

Three types cf ccmposite material were used in the study. The
fiver, matrix, and cure cycle for each material are listedAin Table
6.2. Ten ply tubes were fabricated using the L-mil boron-epoxy prepreg
and the_glass-epoxy prepreg. An 1ll-ply tube was fabricated from the
5.6-mil boron-epoxy prepreg. One ply of MIL-TEX nylon‘peel ply number
3921 cloth was used for the release ply on the L-mil boron epoxy tube.

TX-1040, a Teflon coated style 104 glass cloth, was used for the release
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Ply on the other two tubes. A nylon shrink tape, Bally Ribbon Mills
pattern 7282, was used for bleeder plies on all tubes. Two bleeder
plies were used on the 10-ply tubes and three bleeder plies vere used
on the ll-ply tube.

Cross sectional views of each tube are shown in figure 6.15. The
two boron filement reinforced tubes were photbgraphed at the same
pmagnification and the difference in size between filaments is apperent.
The glass reinforced tubé was photographed at & higher magnification in
order to show individual filements. Filament content for the b-mil
boron-epoxy and 5.6-mil boron-epoxy tubes was determined using thé point
counting technique presented in reference 62. The respective values
are 52 end 53 percent. Filament content for the glass tube was deter-
mined using the procedure described in reference 63 and the value is 6§
percent.

Each tube was cut into several specimens utilizing a diamond cut-
ting wheel. The ends of each specimen were ground flat, square and
perpendicular to the longitudinal axis of the specimen. Machined end
plugs were bonded with Versemid 140-Fpon 828 resin (equal parts by
weight) to each specimen. The end plugs were 1l.75-inches square, 0.25~
inch thick and had a 0.125-inch deep machined groove in which the
specimen was inserted. The width of the groove was 0.015-inch greater
than the tube wall thickness and the groove diameter was specified such
that clearances of 0.005-inch and 0.010-inch were obtained on the inside
and outside of the tube, respectively. (See figure 6.16.) Figures

6.17 end 6.18 show boron-epoxy and S-glass epoxy specimens. The longer
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specimens were used in torsich and combined compression-torsion tests
whereas the shorter sfecimens were tested in compression.

Table 6.3 lists the dimensions for each fiber reinforced tubular
specimen and the type of tests performed on it. Outside-diameter
measurements were made with a micrometer whereas wall-thickness measure-
ments were made with & moveable-dial-gage apparatus described in refer-
ence 64. Specimen length wes measured with a machinist scale. Six
diameter measurements were made on each specimen, two at each end end
two at the center. The maximum variation in diameter was less than one
percent of the value reported in Table 6.3. Twelve wall-thickness
peasurements were made on each specimen, four at each end and four at
the center. .The maximum variatiorn in wall thickness was less than 4.5

.percent of the value reported in Table 6.3.

2. Compressicn Test

Figure 6.19 shows the compression test setup. The tests vere

-performed in the same l20,000—pound éapacity testing machine used to

test the lamina reinforced specimens. 'Foil-fype strain gages were used
to measure axial strain at three locations, 90 degrees apart, around the
circumrereﬁce of the specimen. At least one compression specimen from
each tube was also instrumented with a L5° degree foil gage rosette
vhich measured strains parallel and #45° with respect to the longitudinel
axis. A constant load rate of approximately 5000 pounds per m;nute was

meintained during all tests.
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"3, Torsion Test

Figure 6120 shows the torsion test setup. The same testing machine
that was used to test the matrix specimens was used for these tests.
The right end of the specimen was held stationary and the left end was
rotated by the testing machine. Strain date were obtained from two
diametrically opposite rosettes which contained a 0 end ks degrge
oriented gege. All tests were conducted at a nominal load rate of SO

inch-pounds per minute.

4. Combined Compression and Torsion Test

Figure 6.21 shows the test setup for the combined compression and
torsion test. This apparatus was used to generate torque-strain curves
for the coxposite material while it was under compressive load. While
each torque-strein curve was being generated, the compressive load was
held constant at a predetermined value. The test specimen was mounted
in series with an aluminum lcad cell which was rigidly attached to the
upper platen of the campression testing machine. While not visible in
the photograph, the load cell had a tubular cross section and the walls
contained four equally spaced longitudinal slits. The slits were used
to reduce torsional stiffness so that the magnitude of the applied
torque could be detected by rotatioﬁ of the lower end of the load cell.
Rotation was measured by two DCDT's which were capable of detecting
displacements as small as 0.000084-inch. Typical calibration runs from
0 to iSO—inch-pounds, using 17 discrete load po;nts, indicated 13 points
would be within 0.375-inch-pounds of a straight line determined from a

least squares fit of the data. The lower end of the specimen was
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supported by a thrust bearing assembly. Torqqe wvas applied by attaching
weights on two strings which were connected to the moment arms.
Diametricelly opposite strain rosettes were attached to the middle
of the specimen; The rosettes contained aluminum foil-type gages
aligned at O and *L5 degrees witk respect to the longitudinal axis. A
single strain gege was mounted midway between the two rosettes. Torque
was incressed in increments, either by adding 0.5 or 1.0 pound weights.
Strain gege and load data from the compression, torsion, and com-
bined compression and torsion tests were recorded in the Langley »
Research Center data processing facility. Recording intervals varied
from 0.25 to 5.0 seconds depending on the test circumstances. The higher
rate was generally used when failure was expected. Selected data were

displayed on oscilloscopes and monitored at the test site.




VII. RESULTS AND DISCUSSION

Both theoretical and experimental results are presented herein.
The theoretical results consist of data generated by the computer
program described in Appendix B. The experimental results were obtained

fram tests on laminated beams and fiber reinforced tubular specimens.

A. Theory
The eight layer beam shown in figure 7.l was used as a model

laminate in generating the theoretical results. The beem is symmetrical

about its center line, has an initial deflection represented by
v, = 0.02{1 + sin[0.5m(x - 1)]} (7.1)
=0 (7.2)

and the span to depth ratio equals L. Six values of reinforcement to
matrix stiffness ratio were investigated for becth boundary conditioms
A and B described herein. In addition, the effect of nonlinear shear
stress behavior in the matrix and load increment size were studied.
Results obtained with case A and case B boundary conditions were

compared.

1. Reinforcement/Matrix Stiffness Ratio
Table 7.1 lists rotations, interlaminar shear stresses, and shear

resultant at x = L/Lk and transverse deflection at x = L/2 calculsted

T
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by the computer program end classical beam theory (CBT) for the beam
shovn in figure 7.1. For all examples listed in table 7.1, end loads
corresponding to a uniform axial strain of 6.4 x lO-h were prescribed.
In order to emphasize transverse shear deflection, shear modulus values
for each layei were arbitrarily chosen to be one tenth the value calcu-
lated using the assumptions of isotropic material behavior and Poisson's
ratio equal to 0.3.

Examination of the results, based on case A boundary conditions,
indicates: (1) For high values of the stiffness ratio El/EZ’ 107 to

103

» the reinforcing laminae behave like separate columns and inter-
laminar shear stresses are negligible except at the neutral axis.

(2) As the ratio El/E2 becomes smsller, 10 to 1, the matrix laminae
influence the reinforcing laminae behavior and interlaminar shear stress-
es become more evenly distributed over the beam cross section. (3) The
rotations at x = L/L and transverse deflection at x = L/2 show the
expected trends. To be specific, one would always expect a counter
clockwise rotation at x = L/4 in the reinforcing laminase. The datﬁ
substantiates this, even for the case where the matrix and reinforcement
laminee positions are interchanged (E1/22 = 10‘5). Total transverse
displacement decreases as EI/E2 approaches unity and is always greater
than the value calculated with classical beam theory. When comparing
the displacements listed in table T.l, the reader should recall that the
initial displacement was 4.00 x 10.2. Hence the difference between
values calculated by the computer progrem and with CBT are significant.

Examinastion of the results, based on case B boundary conditions,
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indicates: (1) Behavior of the reinforcing laminae is not affected by
the matrix laminae, if El/ﬁ2 is greater than 103. (2) As the value of
El/Ea becomes smaller, range of 10 to 1, the reinforcing laminae are
influenced by the matrix and the interlaminar shear stresses become more
evenly distributed over the beam cross section. (3) Rotations and trans-
verse deflecticn indicated the expected trends. Rotation of the rein-
forcement was in the counter clockwise direction and equal values of
rotation in the clockwise direction were computed for the matrix laminae.

Transverse displacement decreases as El/EQ approaches unity and alvays

exceeds the value computed with claessical beam theory.

2. Shear Stress Distributiocn

Figure 7.2 shows the variation in shear stress through the depth of
the beam predicted by both the computer progrem and classical beam the-
ory. The plots are based on the beam shown in figure 7.1, boundary
conditions A and the fiftk set of material properties (El =E, = 107)
1isted in table 7.l. Both cethods indicate that the maximum shear
stress is developed at the neutral exis. However, the computer program,
predicts a peak shear stress approximately 15 percent below the clasgical
beam theory velue. Perhaps even more significant is the difference in
the shape of the two curves over the central portion of the specimen.
Classical beam theory indicates the shear stress varies from 75 to 100
percent of its maximum value over the central half of thé beam whereas;
the computer program indicates the variation is approximately 10 percent.

Confidence in the computer results is enhanced when it is noted that

failure in short beam interlaminer shear specimens (ASTM Designation D
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23Lk4) often occurs at locstions as much as 20 percent of the beem depth
above or below the neutral axis. Thus indicating that the shear stress
distribution near the neutral axis may not vary as much as predicted by
classical beam theory. '
Interlaminar shear stress at the midplane and at the first-second
leyer interface are piotted as &8 function of position along the beam in
figure 7.3. Boundary conditions B and the fourth set of material proper-
ties (El/E2 = 10) listed in table 7.1 were used in the computations.
Maximum stresses are predicted to occur at the quarter points. This
result was anticipated sirce the slope of the deflected beam was maximum
at the quarter pcints and transverse shear is directly proportionel to

the slope for the case under consideration.

3. Nonlineer Metrix Behavior

In order to‘illustrate the influence of nonlinear matrix behavior
on shear stress distribution along the beam, the shear stress-strain
curve shown in figure 7.k was postulated. The curve is divided into
five linear segments and the initial shear modulus equals 3.85 x 1ob
psi. Utilizing the stress-strain behavior indicated in figure 7.4 for
the matrix, but retaining the other materisl properties used to develcp
figure 7.3, interleminar shear stress along the length of the beam is
predicted to vary in the manner shown in figure 7.5. Interlaminar
shear stress along the neutral axis is maximum at tﬁe quarter points, as

previously indicated in figure 7.3. Interlaminar shear stress along the

first-second layer interface is also maximum at the quarter points but




78

remains nearly constant for 210 percent of the beam length on either
gside of the guarter points. The bluntness of the first-second layer
interlamin;r shear stress curve is & consequence of the nonlinear shear
stress-strain behavior of the matrix and indicates that strain in the
matrix has exceeded the proportional limit along approximately 60 per-
cent of the beam.

While performirng the computations required to construct figure 7.5,
it was found that the matrix laminae had to be subdivided in order to
obtain accurate results from the computer program. Thus a six layer
beam is shown in the sketch on figure 7.5. In the computer program,
the value of shear modulus used in each computation is based on the
average shear stress-across each lanina. As a result, the matrix
laminae were subdivided in order to prevent the computer program from
over estimating the interlaminar shear stress values. Each matrix
lamina adjacent to a reinforcement lamine was only 0.025 inches thick
vwhereas the remeining matrix lacinae were 0.100 inches thick.

Figure 7.6 illustrates the effect of nonlinear shear behavior in
the matrix on the shear instability load predicted by equation (5.17).
The plot is based on the same material properties and laminae arrange-
ment that were used to develop figure 7.5 and values of shear modulus
corfesponding to the averege shear stress in each lamina at the beam
quarter point. Axial loed was appl;ed in 25 equal increments. The lhth
- {increment terminates at 490 pounds, the point where nonlinear sheer
behavior is initiasted. During the next three loed increments, shear

stress in all matrix laminae exceeds the proportional limit shown in




79

tigufe T.4 and the shear instability load drops to approximately 10
percent of its initial value. Throughout the remaining increments
(figure 7.6), the change in shear instability is small. By utilizing
smaller load increments and further subdividing the matrix laminae, the
series of line segmenté shown in figure 7.5 could be replaced by a

smooth curve.

4. Load Increment Size

A brief study of the influence of load increment size on the com-
puter progrem results was performed. Utilizing the beam shown in figure
7.1, boundary conditions A and the fourth set of material properties
(EI/EQ = 10) listed in table 7.1, rotations, transverse deflection, shear
stresses and shear resultant were computed using four different size
lecad increments. The results are listéd in table 7.2. The load incre-
ments listed corréspond to dividing the total load into 5, 10, 15 end 25
increments, respectively. Comparison of the rotations for each layer,
indicates a change of less than 0.4 percent is obtained by decreasing
the load increment size from 4O to 8 pounds. Transverse deflection is
predicted to be constant over the range of loed increments investigated.
Changes in interlaminar shear stress and transverse shear resultant are
insignificant compared to the accuracy of the analysis. Inspection of
equation (4.53f) leads to the conclusion thet the results listed in

n

table 7.2 should be anticipated since the value of AP << I GiAi .
i=1 n
Use of load increments which correspond to larger ratios of AP/2 L GiAi
=1
are expected to show more variation in the results.




S. Boundary Conditions

Table 7.3 shows the influence of utilizing boundary conditions case
A and case B on the computed displacements, rotations and interlaminar
shear stresses. The objective of the study was to determine if the
transverse displacement, laminar rotations and interlamipar shear stress-
es peer the midplane of a thick laminate with free upper end l'm'ier sure
faces could be accurately ccmputed using a repeating element from the
laminate with restrained upéer and lower surfaces.

_The results listed under case A are based on a 19 ply laminate (10
fiber or reinforcing laminse and 9 matrix laminae). Each lamina was
4.000 inches long, 0.500 inch wide, 0.083 inch thick and had an initial
transverse deflection et the midspan of 0.020 inch. End loadings which
correspond to a uniform axial strain, 0.004 in./in., were used in all
computations. The rotations listed under case A are for the matrix
lamina located at the midplane of the laminate and for the adjacent fiber
lamine. Interleminar shear stress for the two laminae Just described
is also listed.

Results listea under case B were computed for & single fiber laxmina
and the two adjoining half layers of matrix taken from the case A lami-
pate. As indicated in table 7.3, the fiber lamina was subdivided for
the purpose of analysis. A uniform axial strainm, 0.004 1n./ix;., was
imposed in all computations.

Examination of tsble 7.3 indicates: (1) For Et/Em = 100 the
results based on cese A and case B boundary conditions are in reasonable

_agreement. (2) For Ef/Em = 10, the comparison is less satisfactory and
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for Et/Em = 1 the two sets of boundary conditions provide significantly
different results. (3) Rotations, displacement and interlaminer shear
stress based on case B boundary conditions are always less than the
corresponding values 5&9§d.6n case A boundary conditidns.

Perhaps the usé of a laminate with a lover length to depth ratio and
a llrggr pumber of laminar would provide a more favorable comparison.
This would tend to eliminate bending of the laminate asbout its neutral
axis, Additional enalysis is required to confirm this idea. Since most
leaminated specimens contain a small number of laminae (usually less than
20), table 7.3 clearly shows that case A boundary conditions should be

used in analysis of the test results.

B. Experiment

l. Matrix Compression Test

Figure 7.7 shows compressive stress-strain curves determined for
three specimens. Each curve is charactérized by an initial linear seg-
ment which is followed by a nonlinear region. The linear behavior
terminates at a strain of epproximately 0.003 in./in. The specimens did
not fracture. However, loading was terminat?d at the maximum strain
shown for gach specimen since it was believed that additional loading
would not produce data applicable to the present study. The three
curves shown in figure 7.7 were averaged, from 0 to 1000 psi, and the
reﬁult is shown in figure T.8. Young's modulus for the matrix material,
based on the initiél slope of the stress-strain curve in figu;e 7.8,

is 169,500 psi.




2. Matrix Shear Test

Torque-twist tests on two specimens (refer to figures 6.6 and 6.12)
produced- essentially identical results. Figure 7.9 shows the shear stress-
strain curve for one of the specimens. The curve is nonlinear and the
slope continually decreases vith increasing stress. lLosding was termin-
ated at the maximum stress level shown in figure 7.9 and the specimen
shoved no indication of failure. The initial portion of the curve,
0 to 0.012 in./in., is shown in figure T.10, A piecevise linear repre-
sentation of the curve shown in figure T.10 is presented in figure 7.11.
The latter curve was used to represent the matrix shear stress-strain

behavior in the computer program described im Appendix A.

3. Matrix-Reinforcement Bond Strength Test

Three specimens (refer to figures 6.7 and 6.13) wvere tested to
determine matrix-reinforcement bond strength and each test produced
essentially identical results. PFigure 7.12 shows a plot of shear-
stress as a function of testing machine head displacement. The curve
is linear up to approximately 150 psi and then the slope begins to
decrease vith sdditional load. At a stress level of approximately 290
pei, the slope of the curve eguals z.cro and indicates that the tudbe was
being pushed through the base block (refer to figure 6.13). Bond
strengths for the three specimens ranged from 290 to 293 psi, less than

one half of the shear strength of the matrix.

4, Compression Test of lLaminate Specimens
Failure loads and anmplitude coefficients, L of the initial
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deflection for each specimen are listed in table T.h. It should be
noted that specimens 1 and 2 contained 0.083 inch laminse and were identical
except for the respective values of L whereas; specimens 3 and U
contained 0.0L0 inch laminae and differed only in values of 8, All
specimens failed by delaminetion and noting the values of 8 the failure
loads appear to reflect the expected trend. That is, specimen 1 would
be expected to fail at a lower load than specimen 2 and specimen 3 would
be expected to fail at & lover lcad than specimen L,

Figures T7.13 through 7.19 show failed laminate specimens. Figure
T.13 is a pﬁotograph of specimen 1 after failure. A delamination along
the outer matrix lamina on the convex side of the specimen is clearly
visible. The delamination, or crack, sheared through the matrix laminae
approximately half way betweea the specimeh quarter point and midspan.
The specimen contains other delaminations which are not readily apparent
in the photograph but could be seen by placing a light underneasth the
ppecimen. Close examination of the photoy;ph also reveals that the
ends of the specimen rotated at failure and are no longer perpendicular
to the longitudinal centerline of the specimen. Figure 7.1k shows &
‘close-up view of the cracked matrix laminae. Specimen 2 failed in the.
same manner as specimen 1 and the outer matrix layer falled at
approximately the same location. Figure T.1l5 shows a close~up view of
" the falled matrix leyer in specimen 2.

After specimen 1 haed been failed, the screws which clamped the ends
. were removed. At that point, the lamira fell apart. Figure 7.16 shows

the individusl lamina from specimen 1. The surfaces of both the aluminum
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and matrix-leminae are very smooth and indicate that the bond between
laminae was weak.

Figure 7.17 is a photograph of épecimén 4 after failure. Iﬂ also
contains & delaminstion aleng the outer matrix lamina but the crack does
not pass through the metrix. Figure 7.18 ghows a close-up view of spe-
cimen b eni edditioral deleminations are visible. After specimen 4 had
been failed, the screws which clemp the ends were also removed and it
fell apart, ﬁs indicated in figure 7.19. The surfaces of the laminae
from specimen L were smcoth and also indicate a weak bond between lawm-
inse. The appearance of specimen 3 after failure was similar tc that of
specimen k.

Figures T.20 through T.31 show load-strain and load-deflections
plots obtained from tests on the laminate specimens. Figure 7.20 shows
the strain gage data for specimen 1. Gages 1 and 4, (refer to figure
6.8 for strain gage and DCDT locations) indicate a small amount of
bending in the twc outer larinae. Loéd—strain curves for gages 2'and 3
" do not indicate bending of the laminate about its midplane. Also,
gages 5 through 8 which were located at the quarter points do not indi-
cate bending of the laminate.

Load—tranavérse displacement plots for specimen 1 are shown in
figure 7.21. The data, DCIT's 1, 5, 6, and 10, indicated fixed end
boundary conditions were not mainteined throughout the test. However,
displacements at the ends of the matrix laminee were small, less than
0.0005 inch for the lower end anc approximately 0.0012 for the upper

end. The remeining DCDT's indicated nonlinear load deflection’ curves
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and that the deflection is eprroximately symmetric with respect to the
midspan of the specimen. All DCDT's positioned on the convex side of
the specimen indicated larger displacements than the corresponding ICDT's
on the concave side of the specimen. At the midspan, transverse dig-
Placement at failure on the convex side wae approximately 1.3 times the
displacement on the concave side. However, the difference was only about
.00115 inch which is small compared to the width of the specimen,

| Figure 7.22 is a load-shortering plot for specimen 1. Except rear
the origin, the curve is linear.

AFigurea 7.23 through 7.25 show similar strain gage data for speci-
men 2. At an axiel loed of appro#imately 5000 pounds, irreguler bekevior
wvas observed. The specimen did not Produce an audible sound at this
. loed or other indications of failure. It is possible, although as yet
unproven, that & malfuncticn in tke data recording system was experienced.
It is 8lso noted that DCDT T (figure 7.24) did not eppear to be function-
ing properly during the test. The irregular behavior was not detected
in the load-shortening data shown in figure T7.25. AHhile the strain gage
and deflection date for speciren 2 has not been completely explained,
it does indicate the same gereral trends as the data for specimen 1.

Figures 7.26 through 7.31 present load-deflection and strain data
for specimens 3 and 4. The data leads to the same conclusions stated

about specimen 1.
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5, Compression Test of Fiber Reinforced Composites

Nine tubular specimens were tested to failure in axial coxpression.
Table 6.3 lists the maximum stress supported by each specimen. Failure
of specimens 1-1, 1-2, and 1-3, (11 ply & mil boron filament reinforced
epoxy) ranged from 277 to 297 ksi and average 286 ksi. The 10 ply 5.6
mil boron filament reinforced epoxy tubes (specimens 2-1, 2-2 and 2-3)
failed between 302 and 322 ksi with an average stress at failure equal
to 31k ksi. Two of the S-glass-epoxy specimens failed at stresses
which differ by less than 10 percent whereas; the third specimen failed
at about TO percent of the averege strength for the first tvo speci-
mens. The low strength of the third specimen was not expected and per-
haps is attributable to a short.longitudinal crack which vas not detected
when the speéinen was visually 1nspeéted prior to testing.

Figures 7.32, 7.33 and T.34 shov failed compression specimens.
Numerous longitudinal cracks and broken filaments are exhibited by all
specimens. In addition, failure ﬁppears to have initiated in the cen-
tral portion of the specizen.

load-strain plots for all nine specimens are presented in figures
T.35 through 7.43. The figures which show three plots are based on data
obtained from three strain gages located at 90 degree intervals around
the circumference and at the midspan of the specimén. All three gages
were aligned parallel to the longitudinal axis of the specimen and
gages 1 and 2 were dismetrically opposite. The data indicate that
boron—eﬁoxy specimens 1-1, 1-2, 2-2, and 2-3 may have failed by column

buckling but does not indicate a mode of faeilure for glass—epoxy
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specimen 3-1. Young's modulus values listed in table 6.3 for specimens
1-1, 1-2, 2-2, 2-3, and 3-1 were determined using the initial slope of
the load-strein curves.

Figures 7.37, 7.38, 7.42 and 7.43 each show five load-strain plots.
Gages 1, 2, and 3 formed a 0, 45 degree rosette which was located at
the quarter point along the length of the specimen. Gage 3 was aligned
parallel to the longitudinal axis. Gages 4 and 5 were located at the
midspan and 90 degrees and 180 degrees, respectively, around the cir-
cumference from gage 3. Gages b and S were also aligned parallel to
the longitudinal axis of the specimen. Data obtained from gages 3, b,
and 5 on boron-epoxy specimens 1-3 and 2-1 (fig. 7.37 and 7.38) indi-
cate that they may have failed by column buckling. However, gages 1
and 2 indicate that the cross sectional shape of the specimens started
to change prior to failure and thus indicate that cylinder buckling may
have influenced failure. Figures 7.42 and 7.43 present data on glass-
epoxy specimens 3-2 and 3-3. The results shown in figure 7.42 supports
the éossibility of failure by column and/or cylinder buckling. Data
shown in figure 7.43, appears to only indicate failure by cylinder
buckling. Young's modulus values listed in table 6.3 for specimens 1-3,
2-2, 3-2 and 3-3 were determined using the initial slope of the load- ‘
strain curves obtained with gages 3, 4 and S.

Based on the data presented in figufes 7.35 through 7.43, failure
of the fibver reinforced corpression specimens appears to have been

initiated by column and/or cylinder buckling.
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6. Torsion Test ¢f Fiber Reinforced Ccmposites

Specimens 1-L, 2-4, and 3-L listed in table 6.3 were tested to
failure in torsion. All specimens failed by cracking paraliel-to the
longitudinal axis. Figures 7.4k end 7.45 show failed specimens. Shear
stress-strain curves determined from the tests are presented in figures
7.46 through T.k8. All specimens exhibited nonlinear stress-strain be-
havior.  Failure of specimers 1-k, 2-L, and 3-4 ranged from 9.55 to
9.90 ksi.

In addition to testing specimens 1-L, 2~k and 3-l, specimens 1-6
and 3-5 wvere tested in torsion after they had been subjected to com~
bined compression and torsion tests. Shear stress at failure for each
specimen is listed in table 6.3. A short crack was observed in speci-
men 3-5, prior to torsion testing and failure occurred along the
cracked area at approximetely 80 percent of the strength measured for
specimen 3-6. Figure 7.L9 shows the stress-strain plot for specimen

1-6 and it is nearly identical to the plot for specimen 1-k.

7. Combined Compression and Torsion Test of Fiber Reinforced
Composites ‘

In order to determine the effect of axial compressive stress on
shear modulus for fiber reinforced composite materials, specimens 1-5,
1-6, 3-5 and 3-6 were sublected to combined loading test. During these
tests, §hear stress-strain curves were developed as a anCtion of applied
axial compression stress. Figure 7.50 shows the plots for specimen 1-5.
Close examination of the plots indicates that the slope (shear modulus)

decreases with increasing values of compressive stress. Similar plots
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were constructed for the reﬁaining specimens and used ﬁo determine
shear modulus as a function of ccmpressive stress.

Figures 7.51 through 7.54 surmarize the results which are pre;
sented in the form of apperent sheér modulus-applied axial compression
stress plots. The dashed line in each figure represents the relation-
ship 7

G* =G - 9. (7.1)
which is readily derived using energy methods and is based on shear
modulus being independent of the applied compressive stress. Except for
low values of compressive stress, the experimentally determined values
of G* for the boron-epoxy specimens (figures 7.51 and 7.52) do not agree
with equation (7.1). The difference increases with increaging values of
applied stress and thus indicetes that shear modulus of the composite
decreases with increasing applied stress. A curve, which intersects the
abscissa at the highest compressive strength for boron-epoxy known to

 the author, has been drawn through the data. Based on the date shown,
it appears reasonable to conclude that the maximum compressive strength
of borou—efoxy is limited by shear instability (G* = 0).

Results for the glass—epoiy specimens (figures 7.53 and 7.54) ere
inconclusive. Specimen 3-6 exhibited behavior which differed from the
prediction of equation (7.1) vhereas data on specimen 3-5 agrees with
equation (7.1). The inconclusiveness is due perhaps to the low ratios
of Uc/G that could be investigated, since the axial stress had to be

kept below approximately 140 ksi to prevent failure of the specimens.
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C. Comparison of Experiment and Theory

1. Laminate Specimens

Taﬁle T.5 lists.predicted values‘of transverge displacement and
interlaminar shear stresces at the quarter pcints for the central matrix
lamina and the cutermost retrix laminse. Values of vy listed in the
table equal the difference between final and initisl displacements and
the experimentel values rerresent the average of displacements measured
on opposite edges of the specimer. Theoretical results for each laminate
were calculated using the ccoputer program described in appendix A, case
A boundary conditions described herein and the experimentally determined
failure load.

Comparison of the midspan displacerents shows feasonable ag.reement ,
the differences averege less then 15 percent. Quarter point displace-
ments are in excellent agreement for specimen 1 although they show
significant differences for specirens 3 and L. Specimen 3 shows less
sgreement, at the quarter pcints, than the other specimens and this is
attributed to the difference between its initial displacement and the .
assumed initial displacemert (refer to figure 6.4). In addition, the
predicted displacements are based on fixed end boundary conditions wvhich
wvere not completely simulated. Taking these items into consideration
the comparison between predicted and messured displacements appeers to
be satisfactory.

Predicted values of interlaminar shear stress for the middle lamina
in each specimen exceedbthe bond strength by es much as 75 percent.

Agréement between the bond strength and predicted values of interlaminar
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shear stress fcr the outermost matrix laminae is much better and the
average difference is 1¢ percent. 'In view of these data, observétion
of the feiled specimens and the matrix to reinforcement bond strength
test results, the following argumert is offered. As the applied axial
load increases, interlaxinar shear stresses alqng the inner laminae
increase until the maximum bond strength is attained. Hewever failure
does not occur At this point since the laminee are still in contact with
each other and continue to transfer load scross the interfaces. In
other words, the laminae exhibit behavior similar to the bond strength
specimens {refer to figure 7.12). Application of additional load
increases interlaminar sheer stresses in the outer laminae until the
bond-strength is attainec at the outermost interface. At this pcint,

_ the outer reinforcement lamina on the convex side of the laminate
buckles and failure occurrs. This leads tc the conclusion that adeguate

- correlation between experiment and the interlaminar shear analysis wes

achieved.

2. Fiber Reinforced Corposite Test Results

A study was performeé to determine if the interlaminar shear stress
analysis presented herein could be used to predict the type of behavior
exhibited by the combined cocpression ard torsion tests. The h mil
boron-eﬁoxy composite was modeled by the laminate shown in figure 7.55
and case B boundary conditions were assumed for the analysis.. The shear
stress-strain curve for the epoxy was computed using the stiffness in
series model and the experimentally determined shear stress-strain curve

for specimen 1-6. The computed curve is shown in figure 7.56. The
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interlaminar shear stress corputer program used five linear segments
to represent the curve shown in figure 7.56.

Table 7.6 lists the computed results and the loading and curvature
parameters (ao, L) used in the analysis. The value of a  vas varied from
.0005 to .0030 inch whereas; a velue of .8 inch for L, which is equal to
200 times the fiber diaceter, was used in all computgtionsf Velues of
matrix shear stress listed in the teble represent the maximum value
and the eaverage value eslong the length of the model. The average shear
stress and figure 7.56 were used to compute the values of Gm listed.
Values of GLT listed in the teble were calculated using the stiffress
in series mcdel and the tabulgted value of Gm' The last column lists
values of apparent shear ccdulus (GLT-GC). Examination of the tabulated
results indicate the following: (1) For aO/L < 0.001875 ard 9, < 468
ksi, the average value of Gm is constant and the variation in G* is due
only tc chenges in oc. (2) At some value of cc between 312 and 390 ksi
and aO/L ; 0.001875, the velue of Gm begins to decrease anc thus causes
changes in G*. (3) For aO/L = 0.003750, Gm begins to decrease at a low-
er value of cc, between 15€ and 312 ksi. (E) Increasing the value of
°o/L would indicate failure by delimination since the maximum shear
strength is approximately 9700 psi.

Figure 7.75 shows a plot of G* as a function of applied stress.
Only values which differ from elerentary theory (GLT = constant) have
been identified by symbols since the remainiqg values are represented
by the solid line. Dashed lines have been drawn through the points to

only illustrate trends in the data, which indicate that small values of
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initial deflection can have a significant effect' on the apparent shear
ﬁodulus, G*. Based on the data shown two conclusions are drawn: (1)
Behavior similar to that determined experimentally on boron-epoxy

(refer to figures 7.51 and 7.52) can be predicted using the interlaninar
shear stress analysis developed herein. (2) Only very small values of
jnitial deflection are required to predict the indicated behavior. Con-
cerning the latter conclusion, & brief study on initial displacement of
the fibers in a boron-epcoxy composite was conducted and the results are
presented in eppendix C. The results indicate that initisl displacement
values, aO/L, used in the analysis are of the same order of magnitude as
the measured deflections. Thus, adequate correlation between the analy-

sis and experiment appeers to have been achieved.




VIII. CONCLUDING REMARKS

A theoretical and experimental igvestigation on the compressive
strength of lamina reinforced and fiber reinforced composite materials
has been performed. An analytical mcdel which replaces the fiber re-
inforced compcsite with a lamirate conteining initially curved laminae
has been proposed. By aprlyirg the Timoshenko beam equations to each
layer in the laminste, an interlariner shear stress anal&sis which can
be used to predict the behavior of the laminate under compressive load-
ing vas developed. Experimental evidence that the shear modulus of
btoron-epoxy is & function c¢f axial compressive stress was obtained. In
addition it was shown that the fibers in a boron-epoxy composite are not
parallel and straight but contain initial curvature. Both the experi-
mental and theoreticel resuits 1ndiqate that failure of the borcn-epexy
composite is mosf likely due to shear instability. Adequate correlation
betveen theory and experiment was obtained for both lamina reinforced

end fiber reinforced test results.

L




10.

11.

IX. REFERENCES

Dow, N. F.; and Gruntfest, I. J.: Determination of Most-Needed,
Potentially Possible Improvements in Materials for Ballistic and
Space Vehicles. GCereral Electric Technical Information Series
R60SD389, June 196C.

Timoshenko, S.: Thecry of Elastic Stability. MecGraw-Hill Book
Company, Inc., 1936, pp. 111l.

Elkin, Robert A.: Coxpression testing of NOL Rings. Sympesium on
Standards for Filament-Wound Reinforced Plastics, ASTM Special
Technical Publicaticn Ko. 327, June 1962.

Fried, N.: The Compressive Strength of Parallel Filament Reinforced
Plastics - The Role of the Resirn. Proceedings 18tk Annual Tech-
nical ard Managenent Ccnference, Reinforced Plastics Div., Soc.
Plastics Ind., Inc., February 1963.

Fried, N.; and Kaminetsky, J.: The Influence of Material Variables
On the Compressive Properties of Parallel Filament Reinforced
Plestics. Proceedirgs 19th Annual Technical and Management Con-
ference, Reinfcrced Plestics Div., Soc. Plastics Ind., Inc.,
February 196k.

Rosen, B. W.: 'Mecherics of Composite Strengthening”, Fiter Compo-
site Materials, American Society of Metals, Metals Park, Orio,
October 193E.

Dow, Norris F.; end Pcsen, B. Walter: Evaluation of Filament-
Reinforced Composites fcr herospace Structural Applications.
NASA CR-207, April 1965.

Fried, N.: The Response of Orthogonal Filament Wound Materials to
Compressive Stress. Proceedings 20th Anniversary Technical
Conference, Reinforced Plastics Div., Soc. Plastics Ind., Inc.,
February 1965.

Ekvall, J. C.: Structural Behavior of Monofilament Composites.
6th AIAA Structures and Materials Conference, Palm Springs,
CaliZorniae, April 5-T, 19€5.

Schuerch, H.: Compressive Strength of Boron~Metal Composites. NASA
CR-202, April 1965.

Schuerch, H.: Prediction of Compressive Strength of Uniaxial Boron

Fiber-Metal Matrix Composite Materials. AIAA Journal. vol. L,
no. 1, Jenuary 1966, pp. 102-106. -

95




12.

13.

1k.

15.

16.

17.

18.

19.

20.

21.

22.

a3.

96

Anon: Micromechanics - Compressive Prorerties of Fiber Reinforced
Compcsites. AFMI~TR-237, May 1965.

Levenetz, Boris: Compressive Applications of Large Diameter Fiber
Reinforced Plastics. Proceedings 19th Annuel Technical and
Managerent Ccnference, Reinforced Plastics Div., Soc. Plastics
Ind., Irc., February 196L.

Biot, Maurice A.: Mechanics of Incremental Deformatiors. dJohn
wiley and Sonms, Inc., 1965, pp. 257.

Foye, R. L.: Compressive Strength of Unidirectional Composites.
ATAA Paper No. €€-1u3, Januery 1966.

Dow, Norris F.; Rosen, B. W.; and Hashin, Zvi: Studies of Mechanics
of Filamentary Corposites. NASA CR-L92, June 19€6.

Herrcann, L. R.; Meson, W. E.; end Chan, S. T. K.: Behavior of
Compressively Lcadecd Reinforcing Wires. Structural Engineering
Laboratory Report €7-2, University of Californis, Berkeley,
January 1967.

Herrmenn, Leonard R.; Mason, William E.; and Chan, S. T. K.:
Response of Reinfcrcing Wires to Compressive States of Stress.
Journal of Composite Materisls, vol. 1, July 1967, pp. 212-226.

Sadowsky, M. A.; Pu, S. L.; and Hussain, M. A.: Buckling of
Microfibers. Trensactions of the ASME, Journal of Applied
Mechanics, Decexber 1967, PE. 1011-1016.

Crewforé, R. F.: An Evaluation of Boron-Polymer Film Layer Compo-
sites for High-Performance Structures. NASA CR-111L, September
1968.

Yue, A. S.; Crossman, F. W.; Vidoz, A. E.; and Jacobson, M. I.:

Controlled Microstructures of Al-CuAl, Eutectic Composites and
Their Compressive Properties. Transactions of the Metallurgical
Society of AIME, vol. 2k2, December 1968, pp. 1968-2441.

Lager, John R.; and June, Reid R.: Compressive Strength of Boron-
Epoxy Composites. Journal of Composite Materials, vol. 3, Janu-

ary 1969, pp. bB8-5€.

Chung, Wen-Yi; end Tests, Rene B.: The Flastic Stability of Fibers
In A Composite Plete. Journal of Composite Materials, vol. 3,
January 1969, pp. 58-80.




2k,

25.

26.

27.

28.

30.

ST

Guz, 0. M.: Dletermination of the Theoretical Compressicr Strength
of Reinforced Materiels. (Fro Viznachennia Teoretichnoi Granitsi
Mitsnosti Na Stisk Armcvenikh Materialiv, Dopovidi Akademii Nauk
Ukrayns' Kecy BSR, Seriya A, Fiziko-Technichrni i Materatichni
Nauki, vol. 31, March 1969, pp. 236-238.) (Also available as
NASA TT F-13, 433.

Skudra, A. M.; Kelnsys, A. A.; and Bulavs, F. Ya.: Creep-Rupture
Strength ¢f Feinforced Plastics Under Uniaxial Compression.
(Akademiie Nauk Letviiskei SSR, Institiit Mekhaniki Polimerov,
Rige, Latvian SSE), Mekhanika Polimerov, vol. S, July-August 1969,
Pp. 621-628. (Alsc availabtle as NASA TT F-13, Lbl.)

Davis, John G., Jr.: Fabrication of Uniaxiel Filament-Reinfcrced
Epoxy Tubes For Structural Arrlicetions. Advanced Techtniques For
Materiesl Irvestigaticn and Febricetion, SAMPE vol. 1k, Soc.
Aerosp. Matl. Process Engr., c. 1968, paper II-2A-1.

Chanis, Christcs C.: Feilure (riteris For Filamentary Corposites.
FASA TN D-5367, August 1969.

Guz, A. N.; Kritsuk, A. A.; and Yemel'yanov, R. F.: Nature of the
Failure of A Unidirectional Fiterglass-Reinforced Plastic Urder
Compressiorn. {(Akadeciia Nauk Vkrainskci SSR, Institut Mekheniki,
Kiev, Ukrairien SSR.) Priklednaia Mekhaniske, vol. 5, September
1969, pp. 118-121. (Also available as NASA TT F-13, LL2.)

DeFerran, E. Morcunill; and Herris, B.: Compressive Strength of
Polyester Resin Feinfcrced With Steel Wires. Journal of Compo-
site Materials, vol. L, Janusry 1970, pp. 62-T1.

Davis, John G., Jr.: Cczpressive Instability and Axial Strength
of Uniaxial Filarect-Reinfcrced Epoxy Tubes. NASA TN D-5697,
March 1970.

Pinnel, M. R.; and Lawley, A.: Ccrrelation of Uniaxial Yielding
and Substructure in Alumipum-Steinless Steel Ccmposites. Metal-
lurgicel Transactiors, vol. 1, May 1970, pp. 1337-1348.

Hayashi, Tsuycshi: Corpressive Strength of Unidireciionally Fibre
Reinforced Composite Materials. Tth International Reirnforced
Plastics Conference, Octcber 20-22, 1970, pp. 11/1 - 11/3.

Hayashi, Tsuyoshi: On the Shear Instability of Structures Caused
by Compressive Load. AIAA Paper No. 65-770, lNovember 1965.

Guz, A. N.: On Setting Up e Stability Theory of Unidirectional
Fibrous Materials. Institute of Mechanics, Academy of Sciences
of the Ukrainian SSR. (Translated from Priklandnaya Mekhanika,
vol. 5, no. 2, February 1969, pp. 62-70.)




35.

36.

37.

38.

39.

4o.

b1,

L V-R
43.

Lk,

Ls.

TR

98

Guz, A. N.: Constructing A Theory for the Strength of Unidirection-
ally Reinforced Materials in Compression. Institute of lMechanics,
Acadenmy of Sciences of the Ukranian SSR, Kiev. (Translated from
Problemy Prochnosti, no. 3, March 1971, pp. 37-39.)

Ervins, P. D.: A Compressive Test Specimen for Unidirectional
Carbon Fibre Reinforced Flastics. Royal Aircraft Establishzent,
Farnborough, England, Current Paper No. 1132, January 1970.

Pattnaik, A.; and Lewley, A.: Deformation and Fracture in Al-CuAl
Eutectic Composites. Metellurgical Trensactions, vol. 2, June
1971, pp. 1529-1536.

2

Orringer, Oscar: Compressive Behavior of Fiber Composites. Air
Force Office of Scientific Research, ASRL TR 162-1, Octoter 1971.

Greszczuk, L. B.: Microbuckling of Unidirectional Composites.
AFML~-TR-T1=-231, Janueary 1972.

Suarez, J. A.; Whiteside, J. B.; and Hedcock, R. N.: The Irfluence
of Local Failure Mcies on Compressive Strength of Boron/Epcxy
Composites. Corposite Materials: Testing and Design. " ASTM STP
497, February 1972, pp. 237-256.

Hadcock, R. N.; Corvelli, N. J.; and Weingart, D.: Arelysis of a
Short Beam Shear Test Specimen. Composites Tecknicel Ncte
CTN-462-18, Grumman Aircreft Engineering Corporation, February
1968.

Sednor, Gerald; and Watterson, Rodney K.: Low Cycle Corrressive
Fatigue Failure of E Glass-Epcxy Comrosites. Air Force Office of
Scientific Research , ASRL TR-162-2, March 1972.

Lanir, Y.; ard Fung, Y. C. B.: Fiber Composite Columns Under
Compression. Journal cf Corposite Materials, vol. 6, July 1972,
pp. 387-L01.

Harris, Byran: The .Strength of Fibre Composites. Composites, vol.
3, no. k, July 1972, pp. 152-167.

Ruzauskas, E. J.; and Hay, D. Robert: Fracture Modes in Metal
Matrix Composites. Journal of Composite Materials, vol. 6,
July 1972, pp. Llk-k19,

Gorb, M. L.; Merek, B. A.; and Teodorovich, 0. K.: The Compressive
Strength of Copper Reinforced with Tungsten Fiber. Problery
Prochnosti, vol. 3, November 1971, pp. 95-97. (Strength of
Materials, vol. 3, no. 11, July 1972, pp. 1355-1357.)




L7,

L8.

k9.

50.

51.

52.

53.

Sk,

55.

56.

57.

58.

59.

99

Hackett, R. M.; Tarpy, T. S., Jr.; and Wood, J. L.: An Analysis of
Fiber Buckling. Pclymer Engineering end Science, vol. 12, no. &,
July 1972, pp. 272-276.

Greszczuk, L. B.: Failure Mechanics of Composites Subject to
Compressive Loading.. AFML TR-T2-107, August 1972.

Greszeczuk, L. B.: 'Interfiber Stresses in Filamentary Composites.
AIAA Journsl, vol. &4, no. 7, July 19T71. '

Rorris, C. B.: Strength of Orthotropic Materials Subjected to
Combired Stresses. Forest Products Laboratory Report, FPL,
1816, July 1950.

Keo, B. C.; and Pipkin, A. C.: Finite Buckling of Fiber-Reinforced
Columns, Acta Mechenica, vol. 13, mno. 304, 1972, pp. 265-280.

Argen, A. S.: Fracture of Corposites. Treatise on Material Science
aré Techrology, vol. 1, Academic Press., Inc., 1972, pp. T9-11lk,

Kulkarni, Satish V.; Fice, Joseph S.; and Rosen, B. Walter: An
Investigaticn of the Compressive Strength of PRD-III/Epoxy
Composites. NASA CR-112334, May 1973.

Timoshenko, S. P.: On the Transverse Vibrations of Bars of Uniform
Crcss-Section. Phil. Mag., vol. 43, 1922, pp. 125-131.

Heller, R. A.: Interlaminar Shear Stress in Sendwich Beams.
Experirenta) Meckanics, vol. 26, September 1969, pp. L13-418.

Heller, R. A.; and Swift, G. W.: Soluticms for the Multilayer
Timosherko Beem. [Lepartrernt cf Engr. Mech., Virginia Polytechnic
Institute Report lc. VPI-E-T1-12. Contract No. DAA-FOT—YO-C-OLL,

August 1971.

Swift, G. W.: The Sclution of N Simultaneous Second Order Coupled
Differential Equations by the Firite Difference Method. Dept. of
-Engr. Mech., Virginie Polytechnic Institute Report No. VPI-E-T1-3.
Contract No. DAA-FC7-70-C-Cuku, Februery 1971.

Mindlin, R. D.; and Deresiewicz, H.: Timoshenko's Shear Coefficient
For Flexural Vibrations of Beams. Proc. Second U.S. Natl. Congress
of Appl. Mech., 1954, pr. 175-178.

Reissner, E.: The Effect of Transverse Shear Deformation on the
Bending of Elestic Flates. J. Appl. Mech., vol. 12, 1945, pp.
AE9-TT. ' o a




60.

61.

62.

63.

6L.

100

Cowper, G. R.: The Shear Ccefficient in Timoshenko's Beam Theory.
Transactions of the ASME, Journal of Applied Mechanics, June
1966, pp. 335-3L0.

Zienkiewicz, 0. C.: The finite Element Method in Structural and
Continuum Mechanics. McGraw-Hill Publishing Co., Ltd., London,
1967, pp. 234-235.

Sands, A. G.; Clark, R. C.; and Kohn, E. J.: Microvoids in Glass-~
Filament-Wound Structures: Their Measurement, Minimization and
Correlaticn with Interlaminar Shear Strength. NRL Report 6498,
U.S. Navy, March 31, 1967.

Davis, John G., Jr.; and Zender, George W.: Compressive Behavior
of Pletes Fabricated from Glass Filaments and Epoxy Resin.
NASA TN D-3918, 1967.

Rumrler, Dorald R.; Dexter, H. Benson; Herth, George H., III; and
Buchanan, Reaymcnd A.: Mecranical Properties and Column Behavior
of Thin-Wall Beryliium Tubing. NASA TH D-4833, 19€8.




APPENDIX A - INTERLAMINAR SHEAR STRESS COMPUTER PROGEAM

Tﬁis aprendix provides a brief description of the computer program
used to calculate interlaminar shear stresses. Figure A-l shows a
flow diegram c¢f the program. First the problem is defined by readirg
iﬁ the beam gecretry, including the maximum amplitude of the initial
deflection enc the numbter of node points to be usea, the boundary con-
ditions and the material prcperties. Linear elastic behavior is assumed
for extensior and compressicn of each lamina but the shear stress-strain
curve may be epproximated by five linear segments. Next, the quahtities
that remain ccnstaﬁt throughout the computation cycles are calculated.
These include lamina thickness, crcss sectional area, first‘moment of
area, and the second moment of area. In addition, Euler buckling load
and total apriied exial loed are computed and the counter, IPK, which is
used to keep track of the number of computation'cycles through the
program, is set equel to zero.

Initisl éisplacements and rotaticns and their first and second
derivatives at each node point along the beam are computed next and
stored on tape for subsequent use in the program. The initial values of
interlaminar shear stress at each node are set equal to zero. Next,
the counters tkat are used in storing and keeping track of the R, S,
and T mstrices for each node point along the beam are computed.

Prior to cooputing the coefficients of the R, S, and T matrices,
the average shear stress within each lamina is computed. Then the
appropriate vaiues of sheer modulus to be used in the subsequent

calculations are computed utilizing the five segment stress-strain curves
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read in at the beginning of the program. The values of R, S, and T are
siored on tape.

After the coefficient matrices have been generated, the recurrence
matrices and the load vector, starting at node 2 and con;inuing through
the node cone station to the left of i = L, are computed and stored on
tape. Then beginning one ncde avay from the right end of the beam, the
recurrence matrices and load vector are recalled frcm tape and values
of the rotaticns and displacements, ¥(n), ere solved by back substitution.
Each value of ¥(n) is stored on tape for subsequené use in computing
first and second derivatives.,

Next the counter, IPK, is increased by one and the first and second
derivatives at each node along the beam are computed. Forward and
backward difference routines are used to compute derivatives at the left
and right ends of the beaﬁ, respectively. At all othgr node points,
éentral differences are used. After the derivatives have been computed
and stored, interlaminar shear stresses at each node are calculated and
stored on tape. The transverse shear resultact at 51 node points along
the beam is also computed and stored.

Utilizing the shear modulus values that were used to generate the
R, S, and T matrices, the value of axial loed which will ceuse shear
instability is computed using equetion (5.17). If the shear stress-strain
curves are ncnlinear, the load which produceé instability will decrease
as the axial load increases. ’

If IPK # 1, the program proceedé to location(:)and the tapes étoring‘

displacements, rctations, derivatives, and interlaminar shear stresses
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are updated using the principle of superposition. If IPK =1, the
average shear stress within each lamina at the beam quarter point is
computed and compared with the value of shear stress corresponding to
the first break in the five segment stress-strain curve of the lamina.
If all ratios are less than unity, the program proceeds to location (3)
end subsequent computation cycles are not required.

If any ratio (TBARi/Ti) is greeter than unity, the maximum value is
determined and lineer interpolaticn is used to compute the value of
axial load, PLO, which initiates nonlinear behavior. This value of load
is used in the next computation cycle through the program. Next the
size of the load increments for use in the load range PLO to Pl are
computed and the the progrem returns to location (:) on the flow chart.

After location (:) on the flow diagram has been reached and the
tapes have been updated, the counter IPK is checked to determire if the
maximum load, Pl, has been reached. If not, the program returns to
location (:) on the flow diagram and another computation cycle is
initiated. "After the displacements, rotations and stresses due tb the
maximum load have been computed, the data are displayed in the form of

plots and tables.




APPENDIX B - CLASSICAL BEAM THEORY DEFLECTION
FOR CASE A AND CASE B BOUNDARY CONDITIONS

An equation for predicting the lateral deflection of an initially
deformed beam under axial loed is derived in this appendix. Free Sody
diagrams of the beam are shown in figures B-1l and B-2. For case A, the
following essumptions are mede: the ends are clamped, the upper and
lower surfaces are free, the bear may be considered to be homogeneous
with an espparent bending stiffness, EI, and classical beam theory as-

sumptiors are applicable. The initial deflection, vo is given by

v, =8 {1 + sin{(en/L)(x - L/4)]} (B-1)

and the total deflection, w, is given by

y = wo * vl (B-2)
From classical beam theory
E1 v; =M (B-3)

and summing moments, M, atout the right end of the beam segment shown in

figure B-1 leads to
M= -Py + Ml + Ql(L - x) (B-b)

Noting that Ml and Ql are constants and differentiating equations (B-3)
and (B-b) twice yields '

v]" + (P/EI)v] = -(P/EI)v ; (B~5)

The solution to equation (B-5) is

= A sin kox + B cos kox + cx + D+ F sin [(2n/L)(x - L/b)}]
(8-6)

Y1

10k
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where

ks = P/EI (B~T)

"Applying the boundary conditions fcr case A to evaluate the constants of
integration in equaticn (B-6) leads to the desired equation
a
—_
. k2 L2
1 -

{1 + sin [{on/L)(x - L/W)]} (B-8)

(o]

&nz

Since axiel load P, appears in the derominator of the first term on the

right side of equaticn (B-Ej, ki

= P/EI, lateral deflection will not
increase linearly with load and instebility will occur as the load ep-

proaches Pcr’ wvhich is given by

2
o T EI

cr L2

P (B-9)

and is identical to the Euler buckling load for a fixed-end column.

For case B, the follcwing assumptions are made: the ends of the
beanm are clamped, the upper and lower surfaces are not permitted to
translate in the horizontal direction, the reinforcing laminse is sublect
to bending deformation only, bending stresses in the matrix laminae are
negligible compared to thecse in the reinforcement and the matrix is
‘considered to only support shear stresses, classicel beam theory assump-
tions are applicable for the reinforcement. Summing moments about the

right end of the beam segment shown in figure B-2, leads to

o <
M= -Pw +'M1+Q1(L-x) +j 7(h + 2¢) dx (B-10)
. (+]
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Substituting equation (B~10) into (B-3) and noting

. %‘1 + b/2c) v} (B-11)
yields
2 2
(h + 2¢)°C kn a P
R el B e et [(%“—)(x —{f)] (8-12)
EI

The solution to (B-12) is

v, = Asin k. x + Bcos k

1 5 (Erex D+F sin[(%'-)(x - i‘-)] (B-13)

where
2 (h + 2c)2 G‘z
K "k - E (B-14)

Applying the boundary conditions for case B to equation (B-10), leads to

the desired equation

vea 1+ 2 1 + sin [(%)(x - %)] (B-15)

Equation (B-15), like equation (B-7), is nonlinear with respect to the
axial load. Instability for case B is seen to occur as ki approaches

(2!/L)2. The buckling load is given by

2
2 (h +2¢)° G
p =i EL, L (B-16)
cr L2 2¢

1t (h/L <«< i), a condition met by most composites of current interest,
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the first term in equation (B-16) may be neglected and the buckling
stress is given by

G
o

1-Vv
m

g= {B-17)

which is identical to the failure stress predicted by Rosen (6).




APPFNDIX C FIBZR CURVATURE INVESTIGATION

The method usced to determine the coordinates of fibers in a boron-
epoxy cemposite and the results ob+ained are diszussed in this appendix.
A 0.500 inch wide strip wic machired from the central portion of a
6.00 inch wide by 4.0C inch long 12 ply laminate. The fibers were aligned
in the length directicn of the-strip. Next the strip was sliced into
nominelly 0.10 inch thick coupons. (See figure C.1.) The thickness of
each coupon was measured with & micrometer and then the coupon was
mounted for viewing under & tocl rmaker's zicroscope. Next the x end y
coordinates of five arbitrarily selected fibers vere measured.

Table C.1 and figure C.2 present tﬁe results obtained at 22 cross
sections along the length cf tne strip. The z coordinates listed in the
table reflect the fact that 0.070 inch of material was removed by each
cut across the stfip and indicate that x and y ccordinates éere measured
at approximately 0.17C inch intervais along the strip. Thus, successive
stations were approximately L2.5 fiber diameters spart. Exarination of
the results indicates: (1) Veriation in the x cocrdinate was usually
much larger tharn the veriation of the y coordinate. (2) Four of the
fibers are skeved with respect to the z axis. (3) All fibters are
essentially parallel to the x-z plane. (4) A1l fibers exhibit waviness
elong their length. Iten (2) does not eppear to be as significant as
the plots tend to indicate since the average angle, [(xza—xl)/3.6h26],
betveen each fiber and the z axis is less than 0.2l degrees. Item (k)

is perhaps the most important since it can lead to development of shear
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stresses when the fiter is compressed in the axial direction. Displace-
ments ranging from 0.0006 to 0.0012 inch over a span of 0.34% inch are
readily seen.

Due to the irregular wave shape alorg each fiber, no atterpt vas
made to express tke displacement by’a mathematical function. However,
is segments of fibers are examired and equation 4.63 is used to express
the displacerent, the values of ao/L required to fit the deflection range

approximately from 0.0009 to 0.001875 (0.0006/0.€E to 0.0012/0.68).
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TABLE 6.1 - LAMINATE SPECIMEN DIMENSIOLE

L~

matrix

%:‘
D B S e G
%
N Sy S S e e T —

—x =
SPECIMEN 5C. 1 CPECIMEN 0. 2
X, ZL’ :u’ t, ZL’ zu, t,
in in. in. in. in. in. in.
-2.Lk 0.0C00 1.579k 1.579& -0.0600 1.581F 1.581¢€
-2.25 ~C.0C32 1.8737 1.3769 ~3.0007 1.5765 1.5772
~2.06 -C.05€65 1.5713 1.577% -C.0%30 1.5722 1.5752
-1.7% +~0.00L9 1.5723 1.577< -0.C01G 1.5732 1.57L2
-1.50 +0.0019 1.578L 1.5765 +0.0055 1.5793 1.5735
-1.25 +0.0133 1.5693 1.576C +0.015% 1.5893 1.57Le
-1.00 +9.0270 1.603C 1.576C +0.0272 1.601¢ 1.573€
-0.75 +0.cL2z 1.€173 1.5752 +G.0389 1.6130 1.57k2
-0.50 +0.0548 1.625% 1.57k6 +0.0437 1.6239 1.5742
~0.25 +0.0641 1.6374 1.5733 +0.0578 1.€306 1.5728
0.00 40.0678 1.6397 1.5719 +0.0613 1.€328 1.5709
0.25 +0.0655 1.6273 1.9718 +0.0601 1.6302 1.5701
0.50 +0.0589 1.6293 1.570€ +0.0530 1.623 1.5701
0.75 +C.CL8L 1.617% 1.569C +0.0L21 1.€123 1.5702
1.00 +0.03L3 1.6034 2.5691 +0.0297 1.5998 1.5702
1.25 +0.019k 1.:89¢ 1.570% +0.C168 1.5879 1.571
1.50 +0.0061 1.5788 1.5727 +0.0055 1.5777 1.5722
1.75 ~0.0027 1.572% 1.5752 -0.0017 1.5717 1.573%
2.00 -0.C056 1.571k 1.2770 ~0.00L1 1.570b 1.5745
2.25 -0.0024 1.57L7 1.577% -0.0019 1.575L 1.577T3
2.4y 0.0000 1.5821 1.£821 0.0000 1.5795 1.5795
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' TABLE 6.1 - CONCLUDED

SPECIMEN 0 SPECIMEN %O.
X, Z., Z.s e Z,, Z s t,
in. ik, in. n ik i, in.

-2.k2 0.0C00 0.7689 0.7€89 0.0000 0.7641 0.76L1
-2.25 0.0011 0.7695 0.7€84 -0.0012 0.7608 €.7620
~2.00 0.00LG Q.7712 0.7673 -0.0042 0.7537 0.7628
~1.75 0.0105 0.7770 0.7665 ~0.C01€ 0.7€04L 0.7620
-1.50 0.0201 0.778C 0.7579 +0.00L3 0.7678 0.7635
-1.25 0.0327 0.8022 0.7€95 +0.0137 0.7803 0.7666
-1.00 0.0ks6 0.8168 0.7712 +0.0260 0.7937 0.7677
-0.75 0.0576 0.6295 0.7719 +0.0393 0.8C7% 0.7681
-0.50 0.0678 0.6384 0.7706 +0.0512 0.8178 C.7666
-0.25 0.075%6 0.5L28 0.7672 +0.0606 0.8235 0.7629
0.00 0.0788 0.6LL1 0.7653 +0.06L 0.82€6 0.7618
0.25 0.076k ¢.642¢ 0.7656 +0.06L1 0.82Lz 0.7601
0.50 0.069% 0.8371 0.767T +0.0578 0.8183 0.T€05
0.75 0.0591 0.8273 0.7682 +0.0500 0.68069 0.7569
1.00 0.0L60 0.8136 C.76716 +0.0390 0.7921 0.7531
1.25 0.0319 0.7592 0.7673 +0.0259 0.778% 0.7525
1.50 0.0187 0.7859 0.7672 +0.0139 0.767T8 0.7539
1.75 0.0081 0.7762 0.7681 +0.0051 0.7619 0.75€8
2.00 0.0016 0.7719 0.7703 -0.0001 0.7608 0.7605
2.25 - 0.0005 0.7711 0.7706 +0.0002 0.761€ 0.7620
2.b2 0.C0C0 0.7716 €.7716 -0.0000 0.76%0 0.76L0
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TABLE 7.4 - LAMINATE SPECIMEN TEST RESULTS

Specimen number Failure load, a.,
1b ¢ in.

1 6100 .03k9

2 T000 .0311

3 2340 .0402

L 3590 .'0336
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Normal to midplane

Figure 4.2 - Notation for multilayered beam.

Deflected
midplane

R




(a) Diagram for summing forces

Figure 4.3 - Equilibrium of beem element.
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sjuawow Jupwuing 10} weadeiq (q)

Figure 4.3 - Concluded.
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Tangent line to
N.A.at x

Beam segment

x ’ x + dx

Figure 4.} - Moment arm (§) for exial force.




130

T
\
_ ‘ T e

: X ]
O, e ) . 0
Txz , dx 8T vz
- p Txz * 7% dx
l m

m+l z " ®m,m-1

Midplane of laminate

Figure 4.5 - Free body diagram of an element from the mth layer in a
multilayered beanm.
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Matrix

Reinforcenent

Figure 6.1 - Front view of lamina reinforced test specimens.
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Figure 6.3 - Rear view of lamina reinforced test specimens.
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Figure 6.12 - Torsion test of & matrix specimen.
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Figure €.13 - Bond strength test setup.
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Figure 6.21 - Combined compression and torsion test of a boron-epoxy

tubular specimezi.
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Figure 7.4 - Nonlinear shear stress-strain curve used to generate theo-
retical results.
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Figure 7.6 - Effect of nonlinear stress-strain behavior on shear in-
stability load.




160

+TPTI948W XTIJUR JOJ BIAIND UFBIIB-852138 ATEsaIdWO) - L°L a3 Ty

ureyg == W/ UL G10°0 |tmm

0
-1 002
-1 o0o¥
1ed
~ 009 ‘gsoays
aassaxdwo)
¢ ‘ou *dadg
-1 008
¢ ‘ou *dadg

1 "ou *oadg -1 0001

- 0021




161

1000

800

600

Compressive
stress,

psi
400

200

0 .005 .010 ' .015
© Strain, in./in.

Figure 7.8 - Compressive stress-strain curve for matrix material.
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Figure 7.9 - Shear stress ‘strain curve for matrix material.
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Figure 7.10 - Shear stress-strain curve for matrix material (curve
terminated at 0.012 strain).
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curve for the matrix.
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Figure 7.12 - Shear stress-head displacement plot for aluminum-wax bond
strength specimen. :
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Figure 7.22 - Load-shortening plot for laminate specimen l.
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Figure T.32 - Failed boron-epoxy ccmpression specimen (4 mil fiber).
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Figure 7.33 - Failed boron-epoxy compression specimen (5.6 mil fiber).
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Figure 7.34 - Failed glass-epox& compression specimen.
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Figure 7.44 - Failed boron—epogq torsion specimen.
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Figure T.45 - Failed glass-epoxy torsion specimen.
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Figure T.46 - Shear atress-strain curve for boron-epoxy (4.0 mil filaments).
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Figure 7.47 - Shear stress-strain curve for boron-epoxy (5.6 mil filaments).
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Pigure 7.48 - Shear stress-strain curve for glass-epoxy.
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Figure T.49 - Shear stress-strain curve for boron-epoxy (4.0 mil filements).
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Figure 7.52 - Effect of axial compressive stress on the shear modulus of

boron-epoxy.
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Figure 7.53 - Effect of axial compressive stress on the shear modulus of
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Select the Appropriate Velue of Load Increment
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Figure A.l - Flow diagram of interlaminar shear stress progranm.
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COMPUTE
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Figure A.l - (Continued)
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Figure B.1 - Free body diagram of beam, c‘se A boundary conditions.
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- g

Figure B.2 - Free body diagram of beam, case B boundary conditions.
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COMPRESSIVE STRENGTH OF LAMIBA REINFORCED

AND FIBER REINFORCED COMPOSITE MATERIALS

By
Jobn G. Davis, Jr.

( ABSTRACT)

Results are presented from a theoreticel end experimental investi-
gation on the compressive strength of lamina reinforced and fiber re-
inforced composite materials when loaded parallel to the reinforcement.
An analytical model which replaces the fiber reinforced composite with
a laminate containing initially curved laminae has been proposed. By
appljing the Timoshenko beam equations to each layer of the laminate,
an interlaminar shear gtress anslysis wvhich can be used to predict the
behavior of the laminate under compressive loading was developed. Two
modes of failure are considered in ;he analysis, delamination and shear
instability, and nonlinear shear stress-strain behavior of the laminae
is included.

Axial compression tests vere performed on aluminum-wax laminates,
boron-epoxy tubes and S-glass-epoxy tubes. In addition, torsion tests
and combined compression and torsion tests were conducted on the fiber
reinforced tubes. Coordinates of fibers in a boron-epoxy laminate were
measured. Experimental results indicate that the aluminum-wax laminates

failed by delamination end that failure of the boron-epoxy composite in




compression is most likely due £o shear instability. In addition it
was shown that the shear modulus of boron-epoxy is a function of axial
compressive stress and thet the fibers in a boron-epoxy composite are
not parallel but contain initial curvature.

Adequate correlation between theory and experiment was obtained fof

beth lamina and fiber reinforced test results.
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