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Abstract 

In this paper, we further analyze, test, modify and improve the high order WENO 
(weighted essentially non-oscillatory) finite difference schemes of Liu, Osher and Chan 
[9]. It was shown by Liu et al. that WENO schemes constructed from the rth order 
(in L1 norm) ENO schemes are (r+l)ih order accurate. We propose a new way of 
measuring the smoothness of a numerical solution, emulating the idea of minimizing 
the total variation of the approximation, which results in a 5th order WENO scheme 
for the case r = 3, instead of the 4th order with the original smoothness measurement 
by Liu et al. This 5th order WENO scheme is as fast as the Ath order WENO scheme 
of Liu et al. and, both schemes are about twice as fast as the 4th order ENO schemes 
on vector supercomputers and as fast on serial and parallel computers. For Euler sys- 
tems of gas dynamics, we suggest to compute the weights from pressure and entropy 
instead of the characteristic values to simplify the costly characteristic procedure. The 
resulting WENO schemes are about twice as fast as the WENO schemes using the char- 
acteristic decompositions to compute weights, and work well for problems which do not 
contain strong shocks or strong reflected waves. We also prove that, for conservation 
laws with smooth solutions, all WENO schemes are convergent. Many numerical tests, 
including the ID steady state nozzle flow problem and 2D shock entropy wave inter- 
action problem, are presented to demonstrate the remarkable capability of the WENO 
schemes, especially the WENO scheme using the new smoothness measurement, in re- 
solving complicated shock and flow structures. We have also applied Yang's artificial 
compression method to the WENO schemes to sharpen contact discontinuities. 
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1    Introduction 

In this paper, we further analyze, test, modify and improve the WENO (weighted essentially 
non-oscillatory) finite difference schemes of Liu, Osher and Chan [9] for the approximation 
of hyperbolic conservation laws of the type: 

ut + divf(u) = 0 (1.1) 

or perhaps with a forcing term g(u, x, t) on the right hand side. Here u = {u\,..., um), f = 
(fi,...,fd),x= (xi,...,Xd) and t > 0. 

WENO schemes are based on ENO (essentially non-oscillatory) schemes, which were first 
introduced by Harten, Osher, Engquist and Chakravarthy [5] in the form of cell averages. 
The key idea of ENO schemes is to use the "smoothest" stencil among several candidates to 
approximate the fluxes at cell boundaries to a high order accuracy and at the same time to 
avoid spurious oscillations near shocks. The cell-averaged version of ENO schemes involves 
a procedure of reconstructing point values from cell averages and could become complicated 
and costly for multi-dimensional problems. Later, Shu and Osher [14, 15] developed the 
flux version of ENO schemes which does not require such a reconstruction procedure. We 
will formulate the WENO schemes based on this flux version of ENO schemes. The WENO 
schemes of Liu et al. [9] are based on the cell averaged version of ENO schemes. 

For applications involving shocks, second order schemes are usually adequate if only 
relatively simple structures are present in the smooth part of the solution (e.g. the shock 
tube problem). However, if a problem contains rich structures as well as shocks, (e.g. 
the shock entropy wave interaction problem in Example 4, Section 8.3), high order shock 
capturing schemes (order of at least three) are more efficient than low order schemes in 
terms of CPU time and memory requirements. 

ENO schemes are uniformly high order accurate right up to the shock and are very 
robust to use. However, they also have certain drawbacks. One problem is with the freely 
adaptive stencil, which could change even by a round-off error perturbation near zeroes of 
the solution and its derivatives. Also, this free adaptation of stencils is not necessary in 
regions where the solution is smooth. Another problem is that ENO schemes are not cost 
effective on vector supercomputers such as the CRAY C-90 because the stencil choosing 
step involves heavy usage of logical statements, which perform poorly on such machines. 
The first problem could reduce the accuracy of ENO schemes for certain functions [12], 
however this can be remedied by embedding certain parameters (e.g. threshold and biasing 
factor) into the stencil choosing step so that the preferred linearly stable stencil is used in 
regions away from discontinuities. See [1, 3, 13]. 

WENO scheme of Liu, Osher and Chan [9] is another way to overcome these drawbacks 
while keeping the robustness and high order accuracy of ENO schemes.  The idea is the 
following:  instead of approximating the numerical flux using only one of the candidate  
stencils, one uses a convex combination of all the candidate stencils. Each of the candidate a *or "^ 
stencils is assigned a weight which determines the contribution of this stencil to the final ^&I QT 
approximation of the numerical flux.   The weights can be defined in such a way that in D    H 
smooth regions it approaches certain optimal weights to achieve a higher order of accuracy G0(ä d 
(a rth order ENO scheme leads to a (2r-l)th order WENO scheme in the optimal case), while atlon 

in regions near discontinuities, the stencils which contain the discontinuities are assigned a 
nearly zero weight. Thus, the essentially non-oscillatory property is achieved by emulating" ,-.:„v"""" 
ENO schemes around discontinuities and a higher order of accuracy is obtained by emulating •——■'■''—''■■— 
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upstream central schemes with the optimal weights away from discontinuities. WENO 
schemes completely remove the logical statements that appear in the ENO stencil choosing 
step. As a result, the WENO schemes run at least twice as fast as ENO schemes (see 
Section 7) on vector machines (e.g. CRAY C-90) and are not sensitive to round-off errors 
that arise in actual computation. Atkins [1] also has a version of ENO schemes using a 
different weighted average of stencils. 

Another advantage of WENO schemes is that its flux is smoother than that of the ENO 
schemes. This smoothness enables us to prove convergence of WENO schemes for smooth 
solutions using Strang's technique [18], see Section 6. According to our numerical tests, this 
smoothness also helps the steady state calculations, see Example 4 in Section 8.2. 

In [9], the order of accuracy shown in the error tables (Table 1-5 in [9]) seemed to suggest 
that the WENO schemes of Liu et al. are more accurate than what the truncation error 
analysis indicated. In Section 2, we carry out a more detailed error analysis for the WENO 
schemes and find that this "super-convergence" is indeed superficial: the "higher" order is 
caused by larger error on the coarser grids instead of smaller error on the finer grids. Our 
error analysis also suggests that the WENO schemes can be made more accurate than those 
in [9]. 

Since the weight on a candidate stencil has to vary according to the relative smoothness 
of this stencil to the other candidate stencils, the way of evaluating the smoothness of a 
stencil is crucial in the definition of the weight. In Section 3, we introduce a new way of 
measuring the smoothness of the numerical solution which is based upon minimizing the L2 

norm of the derivatives of the reconstruction polynomials, emulating the idea of minimizing 
the total variation of the approximations. This new measurement gives the optimal 5th 

order accurate WENO scheme when r = 3 (the smoothness measurement in [9] gives a 4th 

order accurate WENO scheme for r = 3). 
Although the WENO schemes are faster than ENO schemes on vector supercomputers, 

they are only as fast as ENO schemes on serial computers. In Section 4, we present a simpler 
way of computing the weights for the approximation of Euler systems of gas dynamics. The 
simplification is aimed at reducing the floating point operations in the costly but necessary 
characteristic procedure and is motivated by the following observation: the only nonlinearity 
of a WENO scheme is in the computation of the weights. We suggest the use of pressure 
and entropy to compute the weights instead of the local characteristic quantities. In this 
way one can exploit the linearity of the rest of the scheme. The resulting WENO scheme 
(r = 3) is about twice as fast as the original WENO scheme which uses local characteristic 
quantities to compute the weights (see Section 7). The same idea can also be applied to 
the original ENO schemes. Namely, we can use the undivided differences of pressure and 
entropy to replace the local characteristic quantities to choose the ENO stencil. This has 
been tested numerically but the results are not included in this paper since the main topic 
here is the WENO schemes. 

WENO schemes have the same smearing at contact discontinuities as ENO schemes. 
There are mainly two techniques for sharpening the contact discontinuities for ENO schemes. 
One is Harten's subcell resolution [4] and the other is Yang's artificial compression (slope 
modification) [20]. Both were introduced in the cell average context. Later, Shu and 
Osher [15] translated them into the point value framework. In one dimensional problems, 
subcell resolution technique works slightly better than the artificial compression method. 
However, for two or higher dimensional problems, the latter is found to be more effective and 
easier to use [15]. We will highlight the key procedures of applying the artificial compression 



method to the WENO schemes in Section 5. 
In Section 8, we test the WENO schemes (both the WENO schemes of Liu et al. and 

the modified WENO schemes), on several ID and 2D model problems and compare them 
with ENO schemes to examine their capability in resolving shock and complicated flow 
structures. 

We conclude this paper by a brief summary in Section 9. 
The time discretization of WENO schemes will be implemented by a class of high order 

TVD Runge-Kutta type methods developed by Shu and Osher [14]. To solve the following 
ordinary differential equation: 

du      _, . „ 

where L(u) is a discretization of the spatial operator, the third order TVD Runge-Kutta is 
simply: 

a'1'   =   un + AtL(un) 

u™   =   -Au
n + ^«W + \ AtL(uW) (1.3) 

«»+1     =     Ittn + |„(2) + |AtI(tt(2)) 
O ö ö 

Another useful, although not TVD, fourth order Runge-Kutta scheme is: 

«W    =   un + ^AtL(un) 

UW   =   un + ^AtL(u^) 
Li 

u&   =   un + AtL{v,W) (1.4) 

„n+l     _ 
3 

=   | (-«" + «<x> + 2«« + «(3)) + IAtL(u&) 

This fourth order Runge-Kutta scheme can be made TVD by an increase of operation 
counts [14]. We will mainly use these two Runge-Kutta schemes in our numerical tests in 
Section 8. The third order TVD Runge-Kutta scheme will be referred to as "RK-3" while 
the fourth order (non-TVD) Runge-Kutta scheme will be referred to as "RK-4". 

2    The WENO Schemes of Liu, Osher and Chan 

In this section, we use the flux version of ENO schemes as our basis to formulate WENO 
schemes of Liu et al. and analyze their accuracy in a different way from that used in [9]. 
We use one dimensional scalar conservation laws (i.e. d=m=l in (1.1) ) as an example: 

«* + /(«)« = 0 (2.1) 

Let us discretize the space into uniform intervals of size Aa; and denote Xj = jAx. 
Various quantities at Xj will be identified by the subscript j. The spatial operator of the 
WENO schemes, which approximates -f(u)x at Xj, will take the following conservative 
form: 



where the numerical flux fj+± approximates hj+L = h(xj+±) to a high order with h(x) 
implicitly defined by [15] 

1       rx+Ax/2 

««■»-EJL.,,*«« <2-3> 
We can actually assume f(u) > 0 for all u in the range of our interest. For a general 

flux, i.e. f'(u) ^ 0, one can split it into two parts either globally or locally: 

f(u) = f+(u) + f-(u) (2.4) 

where df<^J    > 0 and df(£}    < 0. For example, one can define 

f±(u) = ^(f(u)± an) (2.5) 

where a = max|/'(ti)| and the maximum is taken over the whole relevant range of u. This 
is the global Lax-Friedrichs (LF) flux splitting. For other flux splittings, especially the Roe 
flux splitting with entropy fix (RF), see [15] for details. Let ft L and /" 1 be, resp. the 

numerical fluxes obtained from the positive and negative parts of f(u), we then have: 

Here we will only describe how ff x is computed in [9] on the basis of the flux version 

of ENO schemes. For simplicity, we will drop the "+" sign in the superscript. The formulas 
for the negative part of the split flux are symmetric (with respect to xJ+i) and will not be 
shown. 

As we know, the rth order (in L1 sense) ENO scheme chooses one "smoothest" stencil 
from T candidate stencils and uses only the chosen stencil to approximate the flux h-,\. 
Let's denote the r candidate stencils by Sk, k = 0,1,..., r—1 where 

Sk = (Xj+k-r+l, Xj+k-r+2i ' ' ' ? Xj+k) 

If the stencil Sk happens to be chosen as the ENO interpolation stencil, then the rth order 
ENO approximation of hj+i is: 

2 

fj+l - qrk(fj+k-r+i, • • •, /,-+*) (2.7) 

where 
r-l 

fk(9o, • • -,5r-i) = Y^ahdi (2.8) 

Here ar
kl, 0 < k, I < r-l are constant coefficients. For later use, we provide these coefficients 

for r = 2,3 in Table 1. 
To just use the one smoothest stencil among the r candidates for the approximation 

of hj+i, is very desirable near discontinuities because it prohibits the usage of information 
on discontinuous stencils. However, it is not so desirable in smooth regions because all the 
candidate stencils carry equally smooth information and thus can be used together to give 
a higher order (higher than r, the order of the base ENO scheme) approximation to the flux 



Table 1: Coefficients a£j. 

T k 1 = 0 1=1 1 = 2 

2 0 -1/2 3/2 
1 1/2 1/2 

3 0 1/3 -7/6 11/6 

1 -1/6 5/6 1/3 
2 1/3 5/6 -1/6 

hj+i. In fact, one could use all the r candidate stencils, which all together contain (2r— 1) 

grid values of / to give a (2r—l)th order approximation of h-,i: 

fj+h ~ qr-l   (fj-r+1 ,•••, fj+r-l) (2.9) 

which is just the numerical flux of a (2r—l)th order upstream central scheme. As we know, 
high order upstream central schemes (in space) combined with high order Runge-Kutta 
methods (in time), are stable and dissipative under appropriate CFL numbers and thus 
are convergent, according to Strang's convergence theory [18] when the solution of (1.1) is 
smooth (see Section 6). The above facts suggest that, one could use the (2r — l)th order 
upstream central scheme in smooth regions and only use the rth order ENO scheme near 
discontinuities. 

As in (2.7), each of the stencils can render an approximation of h-.i. If the stencil is 

smooth, this approximation is rih order accurate, otherwise, it is less accurate or even not 
accurate at all if the stencil contains a discontinuity. One could assign a weight u\. to each 
candidate stencil Sk, k = 0,1,...,r — 1 and use these weights to combine the r different 
approximations to obtain the flnal approximation of h-, i as follows: 

fj+\ = ]C "kqlifj+k-r+l, • • •, fj+k) 
fc=0 

(2.10) 

where ql(fj+k-r+i,• • -,fj+k) is defined in (2.8). To achieve the essentially non-oscillatory 
property, one then requires the weights to adapt to the relative smoothness of / on each 
candidate stencil such that any discontinuous stencil is effectively assigned a zero weight. In 
smooth regions, one can adjust the weight distribution such that the resulting approximation 
of the flux /■_!_! is as close as possible to that given in (2.9). 

Simple algebra gives the coefficients C£ such that 

r-l 

9V-1  (/i-r+l > • • •, fj+r-l) = Yl CWkUi+k-r+1 ,•'•, fj+k) (2.11) 
fc=0 

an(i Z)fc=oQ = 1 for all r > 2. For r = 2,3, these coefficients are given in Table 2. 
Comparing (2.11) with (2.10), we get: 

r-l 

fj+l = Clr-l1 (fj-r+U--■, fj+r-l)+^2{^k-Cr
k)qT

k(fj+k.r+1,- 
k=0 

•ifj+k) (2.12) 



Table 2: Optimal weights Ck. 

ci k=0 k=l k=2 
r=2 1/3 2/3 — 

r=3 1/10 6/10 3/10 

Recalling (2.9), we see that, the first term on the right hand side of the above equation is a 
(2r-l)th order approximation of hj+i. Since Y?k=o Cr

k = 1, if we require Efeo«* = 1, the 
last summation term can be written as 

r-l 

J^(wfc - Cl)(qr
k(fj+k-r+i, • • •, fj+k) - fci+i) 

jt=0 

Each term in the last summation can be made 0(h2r~1) if 

u>k = Cr
k + 0(hr-1) 

(2.13) 

(2-14) 

for k = 0,1,..., r-1. Here, h = Ax. Thus Ck will bear the name of optimal weight. 
The question now is how to define the weight such that (2.14) is satisfied in smooth 

regions while essentially non-oscillatory property is achieved. In [9], the weight uk for 
stencil Sk is defined by 

uk = 
ak      (2J5) 

where 
cr 

a0-\ h Qr_j 

A; = 0,1,...,r-l. Ö* = (7Ti5^     * = 0,l,...,r-l. (2.16) 

Here e is a positive real number which is introduced to avoid the denominator to become 
zero (in our later tests, we will take e = 10~6 ); the power p will be discussed in a moment; 
ISk in (2.16) is a smoothness measurement of the flux function on the kth candidate stencil. 

It is easy to see that T,l=o ^k = 1- To satisfy (2.14), it suffices to have (through a Taylor 
expansion analysis): 

ISk = D(l + 0(hr-1)) (2.17) 

for k = 0,1,..., r—1 where D is some nonzero quantity independent of k. 
As we know, an ENO scheme chooses the "smoothest" ENO stencil by comparing a 

hierarchy of undivided differences. This is because these undivided differences can be used 
to measure the smoothness of the numerical flux on a stencil. In [9], ISk is defined as 

r-lr-l(f[j+k+i-r,l])2 

r-l l=i i=i 

where /[•, •] is the Ith undivided difference: 

/b',o] =  fi 
S[j,l]   =   /[?'+M-l]-/[j\J-l],      * = l,...,r-l. 

For example, when r = 2, we have 

ISk = (S[j + k-l,l))2       & = 0,1 

(2.18) 

(2.19) 



When r = 3, (2.18) gives 

ISk = \ ((f\j + k - 2, l])2 + (f[j + k-l, l])2) + (f[j + k-2,2])2       k = 0,1,2   (2.20) 

In smooth regions, Taylor expansion analysis of (2.18) gives 

ISk = (f'h)2(l + 0(h))      * = 0,l,...,r-l. (2.21) 

where /' = f'(uj). Note the 0(h) term is not 0(hr~l) that we would want to have (see 
(2.17)). Thus in smooth monotone regions, i.e. /' ^ 0, we have: 

ojk = Cr
k + 0(h)      fc = 0,l,...,r-l. (2.22) 

Recalling (2.12), we see that the WENO schemes with the smoothness measurement given 
by (2.18) is (r + l)th order accurate in smooth monotone regions of f(u(x)). This result 
was proven in [9] using a different approach. For r = 2, this is optimal in the sense that 
the 3 order upstream central scheme is approximated in most smooth regions. However, 
this is not optimal for r = 3, for which this measurement can only give 4th order accuracy 
while the optimal upstream central scheme is 5th order accurate. We will introduce a new 
measurement in the next section which will result in an optimal order accurate WENO 
scheme for the r = 3 case. 

When r = 3, Taylor expansion of (2.20) gives: 

ISo   =   \ ((A - \f"h2? + (fh - i/'V)2) + (fh2)2 + 0(h5) (2.23) 

Ei   =    \((f'h-\f'hy + (f'h+±f%^+(f"h*)2 + 0(h5) (2.24) 

1S2 = \ ((A+\fhy + (fh+i/'V)2) + (fhy + o(h5)     (2.25) 

We can see that the second order terms are different from stencil to stencil. Thus (2.22) is 
no longer valid at critical points of f(u(x)) which implies that the WENO scheme of Liu 
et al. for r = 3 is only 3rd order accurate at these points. In fact, the weights computed 
from the smoothness measurement (2.18) diverge far away from the optimal weights near 
critical points (see Figure 1 in the next section) on coarse grids (10 to 80 grid points per 
wave). But on fine grids, since the smoothness measurements ISk for all k are relatively 
smaller than the non-zero constant e in (2.16), the weights become close to the optimal 
weights. Therefore the "super-convergence" phenomena which appeared in Table 1-5 in [9] 
are caused by large error commitment on coarse grids and less error commitment on finer 
grids when using the errors of the 5th order central scheme as reference (see Table 3 and 4). 

At discontinuities, it is typical that one or more of the r candidate stencils reside in 
smooth regions of the numerical solution while other stencils contain the discontinuities. 
The size of the discontinuities is always 0(1) and does not change when the grid is refined. 
So we have for a smooth stencil Sk, 

ISk = 0(h2*) (2.26) 

and for a non-smooth stencil Si, 
ISi = 0(1) (2.27) 



From the definition of the weights (2.15), we can see that, for this non-smooth stencil Si, 
the corresponding weight w/ satisfies 

ui = 0(h2p) (2.28) 

Therefore for small h and any positive integer power p, the weight assigned to the non- 
smooth stencil vanishes as h —► 0. Note, if there is more than one smooth stencil in the 
r candidates, from the definition of the weights in (2.15), we expect each of the smooth 
stencils will get a weight which is 0(1). In this case, the weights do not exactly resemble 
the "ENO digital weights". However, if a stencil is smooth, the information that it contains 
is useful and should be utilized. In fact, in our extensive numerical experiments, we find 
the WENO schemes in [9] work very well at shocks. We also find that p - 2 is adequate 
to obtain essentially non-oscillatory approximations at least for r = 2,3, although it is 
suggested in [9] that p should be taken as r, the order of the base ENO schemes. We will 
use p = 2 for all our numerical tests. 

In summary, WENO schemes of Liu et al. defined by (2.10), (2.15) and (2.18) have the 
following properties: 

1. They involve no logical statements which appear in the base ENO schemes. 

2. The WENO scheme based on the rth order ENO scheme is (r + l)th order accurate 
in smooth monotone regions, although this is still not as good as the optimal order 
(2r-l)*\ 

3. They achieve the essentially non-oscillatory property by emulating ENO schemes at 
discontinuities. 

4. They are smooth in the sense that the numerical flux /•, i is a smooth function of all 2 

its arguments (For a general flux, this is also true if a smooth flux splitting method 
is used, e.g. global Lax-Friedrichs flux splitting). 

3    A New Smoothness Measurement 

In this section, we present a new way of measuring the smoothness of the numerical solution 
on a stencil which can be used to replace (2.18) to form a new weight. 

As we know, on each stencil Sk, we can construct a (r-l)th order interpolation poly- 
nomial, which if evaluated at x = Xj+i, renders the approximation of h-.i given in (2.7). 
Since total variation is a good measurement for smoothness, it would be desirable to mini- 
mize the total variation for the approximation. Consideration of a smooth flux and of the 
role of higher order variations leads us to the following measurement for smoothness: let 
the interpolation polynomial on stencil Sk be qk{x), we define 

r_1 ~»h»-*(A*yd* (3.i) 
/=1 "'i-i 

where q^' is the Ith derivative of qk{x). The right hand side of (3.1) is just a sum of 
the L2 norms of all the derivatives of the interpolation polynomial qk{x) over the interval 
(Xj_i,xj+i). The term h21'1 is to remove ^-dependent factors in the derivatives of the 

J_i  Jx 

2 

8 



polynomials. This is similar to but smoother than the total variation measurement based 
on the Ll norm. It also renders a more accurate WENO scheme for the case r = 3, when 
used with (2.15) and (2.16). 

When r = 2, (3.1) gives the same measurement as (2.18). However, they become 
different for r > 3. For r = 3, (3.1) gives 

/So   =   ^(/i-2-2/i_1+/i)
2 + ^(/j_2-4/j_1+3/i)

2 (3.2) 

IS,   =   -(fj-i-2fj + fj+1f + -(fj_1-fj+lf (3.3) 

IS2   =   f(/i-2/i+1+/i+2)
2 + i(3/i-4/i+1 + /j+2)2 (3.4) 

In smooth regions. Taylor expansion of (3.2)-(3.4) gives, resp. 

Bo = ^(f"h2)2 + \(2fh - lf'"h3)2 + 0{h&) (3.5) 

ISi = ^(f'h2)2 + \{2fh + \f"h*)2 + 0(h6) (3.6) 

IS2 = ^(f'h2)2 + \{2fh - |/'"/>3)2 + 0(h«) (3.7) 

where /"' = f'"(uj). If /' ^ 0, then 

ISk = (A)2(l + 0(h2))      k = 0,1,2 (3.8) 

which means the weights (see (2.15)) resulting from this measurement satisfy (2.17) for 
r = 3, thus we obtain a 5th order (the optimal order for r = 3) accurate WENO scheme. 

Moreover, this measurement is also more accurate at critical points of f(u(x)). When 
/' = 0, we have 

ISk = ^(f"h2)2(l + 0(h2))      k = 0,1,2 (3.9) 

which implies that the weights resulting from the measurement (3.1) are also 5th order 
accurate at critical points. 

To illustrate the different behavior of the two measurements (i.e. (2.18) and (3.1)) for 
r = 3 in smooth monotone regions, near critical points or near discontinuities, we compute 
the weights k>0,u?i and w2 for the following function: 

( smlTcxj if 0 < XJ < 0.5, . 
Jj     \l- sin 2VXJ    if 0.5 < Xj < 1. l     U; 

at all half grid points xJ+i where Xj = jAx, x-+i = Xj + Ax/2 and Arc = 1/40. We 

display the weights o;o and u>i in Figure 1. (u;2 = 1 — u>0 — u, is omitted in the picture). 
Note the optimal weight for u>0 is CQ = 0.1 and for wx is Cf = 0.6. We can see that the 
weights computed with (2.18) (referred to as the original measurement in Figure 1) are 
far less optimal than those with the new measurement especially around the critical points 
x = |,|. However, near the discontinuity x = ^, the two measurements behave similarly: 
the discontinuous stencil always gets an almost zero weight. Moreover, for the grid point 
immediately to the left of the discontinuity, CJO 

a 7 and u>j « |, which means, when only one 
of the three stencils is non-smooth, the other two stencils get 0(1) weights. Unfortunately, 



Original Measurement oo0 

Original Measurement OJ, 

New   Measurement a>0 

New   Measurement 

0.25 0.50 

ö^wo-oqloooao-o^i 

0.75 1.00 

Figure 1: A comparison of the two smoothness measurements. 

these weights do not approximate a 4th order scheme at this point. A similar situation 
happens to the point just to the right of the discontinuity. 

For simplicity of notations, we use WENO-X-3 to stand for the 3rd order WENO scheme 
(i.e. r = 2, for which the original and new smoothness measurement coincide) where X=LF, 
Roe, RF refers resp. to the global Lax-Friedrichs flux splitting, Roe's flux splitting and Roe's 
flux splitting with entropy fix; The accuracy of this scheme has been tested in [9]. We will 
use WENO-X-4 to represent the 4th order WENO scheme of Liu et al. (i.e. r = 3 with 
the original smoothness measurement of Liu et al.) and WENO-X-5 to stand for the 5th 

order WENO scheme resulting from the new smoothness measurement. In later sections, 
we will also use ENO-X-Y to denote conventional ENO schemes of "Y"th order with "X" 
flux splitting. We caution the reader that the orders here are in L1 sense. So ENO-RF-4 in 
our notation refers to the same scheme as ENO-RF-3 in [15]. 

In the following we test the accuracy of WENO schemes on the linear equation: 

ut + ux   -   0     -1<£<1 

u(x,0)   =   u0(x)       periodic. 
(3.11) 

(3.12) 

In Table 3, we show the errors of the two schemes at t = 1 for the initial condition u0(x) = 
sin(xa;) and compare them with the errors of the bth order upstream central scheme (referred 
to as CENTRAL-5 in the following tables). We can see that WENO-RF-4 is more accurate 
than WENO-RF-5 on the coarsest grid (N=10) but becomes less accurate than WENO-RF- 
5 on the finer grids. Moreover, WENO-RF-5 gives the expected order of accuracy starting 
at about 40 grid points. In this example and the one for Table 4, we have adjusted the time 
step to At ~ (Ax)* so that the 4th order Runge-Kutta in time is effectively 5th order. 

In Table 4, we show errors for the initial condition u0(x) = sin4(^x). Again we see that 
WENO-RF-4 is more accurate than WENO-RF-5 on the coarsest grid (N=20) but becomes 
less accurate than WENO-RF-5 on finer grids.  The order of accuracy for WENO settles 
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Table 3: Accuracy on ut + ux = 0 with UQ{X) = sin(7ra;). 

Method N Loo error Loo order L\ error L\ order 
10 1.31e-2 - 7.93e-3 - 
20 3.00e-3 2.13 1.32e-3 2.59 

WENO-RF-4 40 4.27e-4 2.81 1.56e-4 3.08 
80 5.176-5 3.05 1.13e-5 3.79 
160 4.99e-6 3.37 6.88e-7 4.04 
320 3.44e-7 3.86 2.74e-8 4.65 
10 2.98e-2 - 1.60e-2 - 
20 1.45e-3 4.36 7.41e-4 4.43 

WENO-RF-5 40 4.58e-5 4.99 2.22e-5 5.06 
80 1.48e-6 4.95 6.91e-7 5.01 
160 4.41e-8 5.07 2.17e-8 4.99 
320 1.35e-9 5.03 6.79e-10 5.00 
10 4.98e-3 - 3.07e-3 - 
20 1.60e-4 4.96 9.92e-5 4.95 

CENTRAL-5 40 5.03e-6 4.99 3.14e-6 4.98 
80 1.57e-7 5.00 9.90e-8 4.99 
160 4.91e-9 5.00 3.11e-9 4.99 
320 1.53e-10 5.00 9.73e-ll 5.00 

down later than in the previous example. Notice that this is the example for which ENO 
schemes lose their accuracy [12]. 

4    A Simple Way for Computing Weights for Euler Systems 

For system (1.1) with d > 1, the derivatives J^,« = 1,.. .,d are approximated dimension 

by dimension: for example, when approximating ^-, one fixes xi,l > 1 and uses an one 
dimensional approximation in the direction of x\. In the following, we only discuss how to 
approximate ^ and will drop the index "1" for simplicity. We will also assume that all 

the eigenvalues of the Jacobian J£ are nonnegative (a condition identical to /' > 0 in the 
scalar equation). For a general flux, one can split it locally into positive and negative parts 
just as in the scalar case. The formulas for the negative part of the flux will be omitted due 
to symmetry. 

For systems of equations, the fluxes f + i are usually approximated in the (local) char- 
acteristic fields. Let's take A-+i to be some average Jacobian at x-+i, e.g., the arithmetic 

u=(ui+uJ+1)/2 (4.1) 

mean 

A*\ du 

or for Euler systems, the Roe's mean matrix [11]. We denote by rs (column vector) and 
ls (row vector) the sth right and left eigenvector of A-+i, resp.  Then the scalar WENO 
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Table 4: Accuracy on ut + ux = 0 with u0(x) = sin4(7ra;). 

Method N Loo error Loo order L\ error L\ order 
20 7.31e-2 - 3.29e-2 - 
40 2.48e-2 1.56 9.99e-3 1.72 

WENO-RF-4 80 4.60e-3 2.43 1.44e-3 2.79 
160 3.59e-4 3.68 8.31e-5 4.12 
320 2.12e-5 4.08 3.06e-6 4.76 
640 1.51e-6 3.81 9.57e-8 5.00 
20 1.08e-l - 4.91e-2 - 
40 8.90e-3 3.60 3.64e-3 3.75 

WENO-RF-5 80 1.80e-3 2.31 5.00e-4 2.86 
160 1.22e-4 3.88 2.17e-5 4.53 
320 4.37e-6 4.80 6.17e-7 5.14 
640 9.79e-8 5.48 1.57e-8 5.30 
20 5.23e-2 - 3.35e-2 - 
40 2.47e-3 4.40 1.52e-3 4.46 

CENTRAL-5 80 8.32e-5 4.89 5.09e-5 4.90 
160 2.65e-6 4.97 1.60e-6 4.99 
320 8.31e-8 5.00 4.99e-8 5.00 
640 2.60e-9 5.00 1.56e-9 5.00 

scheme can be applied to each of the characteristic fields. For example, (2.10) becomes 

r-l 

U+\+ = X^ WM?3fc0«-fj+fc-r+l, • • *, ls-fj+fc) (4.2) 
k=0 

which gives the numerical flux in the sth characteristic field. Here u>k,s,k = 0,1,...,r-l 
are the weights in the sth characteristic field: 

">k,s — Wjfc(ls-fj_r+1,. . ., ls-fj+r—l) (4.3) 

which is a nonlinear function, (uk is defined by (2.15)). The numerical fluxes obtained in 
each characteristic field can then be projected back to the component space by: 

(4.4) 

Because of the nonlinearity of the weights (see (4.3)), the above procedure involves many 
local projections (or vector vector products). In fact, these projections are responsible 
for most of the floating point operations of WENO schemes (true also for ENO schemes). 
Moreover, these projections can not be avoided if the weights are to be computed from the 
projected quantities. However, if the weights can be computed from other quantities, we 
then can exploit the linearity of the rest of the scheme (e.g. the linearity of qr

k) to reduce 
the number of floating point operations because the only nonlinear part of WENO schemes 
is in the calculation of the weights. 
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The question then is what quantities can serve as replacements of the projected val- 
ues. Obviously for each characteristic field, the replacing quantity must indicate the jump 
discontinuities in that field. Although such quantities are yet to be discovered for general 
systems of equations, we find, after an extensive searching and trial, that pressure and en- 
tropy are good replacements for the projected values when Euler systems are concerned, at 
least for problems without strong shocks and reflective waves. 

Namely, we will use pressure to compute the weights in the genuinely nonlinear charac- 
teristic fields (s = l,m) and use entropy for the linearly degenerate field(s) (1 < s < m). 
The motivation: (1). The pressure does not jump at contact discontinuities but always 
jumps at shocks; (2). The entropy jumps at contact discontinuities but jumps only slightly 
at a weak shock. 

Since the pressure and entropy can be obtained independent of the characteristic projec- 
tion procedure, we can reformulate the WENO schemes to take advantage of the linearity 
of the rest of the scheme. Let's define 

r-l 

^i+i',« = Yl w*,«?*(fi+*-r+i ,■■■■> tj+k)      s = l,...,m (4.5) 
k=0 

For Euler systems, the sth (1 < s < m) characteristic field is linearly degenerate. These 
fields have the same characteristic speed (eigenvalue) and the weights are all computed from 
the entropy. So we have for all 1 < s < m: 

Uk,s=uk,2      Vfc = 0,...,r-1. 

and therefore 

for all 1 < s < m. Combine (4.2) and (4.4) and use the linearity of q\ to take out ls, we get 

m 

=    (li <Fj+hl - ^+|,2)) ri + (M-Fi+i,m - ?i+iA)) *m + ?j+h2     (4.6) 

As we can see, we only need two projections from component space to characteristic space 
and two inverse projections, plus the few operations for computing T>\ s,s = 1,2, m. 

We will denote, by WEN0-LF-5-PS, the WENO scheme for the case r = 3, which 
uses pressure and entropy for weight computation in conjunction with the new smoothness 
measurement (3.1), the weights (2.15) and global Lax-Friedrichs flux splitting (according 
to our numerical tests, the original smoothness measurement of Liu et al. does not perform 
well at shocks when combined with the above way of computing weights). 

Accuracy of WENO-LF-4, WENO-LF-5 and WEN0-LF-5-PS on the ID Euler system 
is tested using an initial condition which produces a smooth solution, the same example 
used in Section 6. The result is similar to the scalar case in Table 3 and thus will not be 
shown. 
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5    Sharpening of Contact Discontinuities 

For a linear, constant coefficient problem ( f(u) = cm in (2.1)), Yang's artificial compression 
method, when applied to the WENO schemes is simply ( assuming c> 0 ): 

ffH = fj+i + ci+i (5.1) 

where /-+i is the flux obtained by one of the methods introduced in the previous three 
sections, and 

S+l = m (5.2) ym(/£§ - /j+i>/£i - /,■-§)»/i+i - fj+^fjli - /i-i 

Here f.x is obtained by the same method for /•_, i  pretending a < 0; m is the usual 
J"r 2 2 

minmod function defined by 

f 5",W l°«'l'   if« = «*5»(ai) = ••• = sign(an) 
m(a1,---,an) = <       *<*<" (5.3) 

^ 0 otherwise; 

and aj is given by 

""(^w^h)' (s-4) 
where a is a positive parameter. We will use a = 33 as suggested by Yang [20] in all our 
tests in Section 8, though this parameter can be tuned to optimize the results for individual 
problems. The case of a < 0 can be treated symmetrically and the generalization to variable 
coefficient or nonlinear problems is rather straight forward. See [15] for details. 

We will apply the above sharpening technique only to contact discontinuities or contact 
characteristic field(s) in case of Euler systems. A scheme which uses the above artificial 
technique will be denoted by adding to its name the suffix "-A", e.g. WENO-LF-5-A. 

6    Convergence for Smooth Solutions 

As we can see from the previous sections, the WENO schemes are smooth in the sense that 
the spatial operator L 

L — L{fj-r, fj-r+l,- ■ ■, fj+r-l) (6.1) 

is infinitely differentiable to any of its arguments ( see (2.2), (2.10), (2.15), (2.16) and (2.18) 
or (3.1)). Here r > 2 is the L\ order of the base ENO scheme. In case of a general flux, if a 
smooth flux splitting is used (e.g. the global Lax-Friedrichs flux splitting), the smoothness 
of the WENO schemes is unchanged. 

Strang's theorem (Theorem I in [18]) implies that, for a conservation law whose flux 
function and solution have enough continuous derivatives, a smooth, consistent scheme is 
convergent if its first variation (see [18] for the definition) is /2-stable. 

It is easy to see that, for the scalar one dimensional conservation law (2.1) with /' > 0, 
the spatial operator of WENO schemes has the following simple first variation L 

J+r-l QL 

l=j—r 

/'(%) 
Ax (^-lVj-r+l, * • •, tlj+r-l) " «^.iVi-r, ' ' ', Vj+r-lj) (6-2) 
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because §^(«j," -,UJ) = 0 and uk(uj,-•-,UJ) = Cr
k for all k = 0,...,r- 1 and I = 

j - r,... ,j + r - 1. (6.2) can be rewritten into a summation of a (2r - 2)th order central 
difference D2r~2 and a (2r — l)i/l order upwind biased difference. 

L = - 
Ax 

(p2r-\uj.r+U- ■ •, tti+r_!) + (-l)'-1^^-1«^) (6.3) 

where rr = 'r fcr-i)! > ^ an<^ ^+ * ^s t^ie (2r ~"1)*'1 order forward difference operator. 
Applying the classical Fourier analysis to the first variation, we see that the (2r — 2)th order 
central difference has a purely imaginary spectrum while the second term in (6.3), which is 
just a (2r — l)th order upwind biased difference, has a spectrum of the form 

^-^H) 2r-1 9 6 
(sin- + icos-) (6.4) 

where 0 < 0 < 2ir. (6.3) and (6.4) together imply that the spectrum of the operator L lies 
fully on the left half of the complex plane. Therefore, with an appropriately chosen CFL 
number, the first variation of the WENO schemes are ^-stable when the 3rd or higher order 
Runge-Kutta time discretization is used. 

Let's define by u(xo,to,Ax) the numerical solution at (x0,<o) € Rd x R+ for grid size 
Ax and fixed CFL number. For general scalar conservation laws, the same analysis gives 

Theorem 6.1 For the initial value problem of (1.1) with m = 1 (i.e., scalar conservation 
laws), V(xo,<o) G RdxÄ+, if the exact solution v and ^,g have r+[^^]+q0+2 continuous 
derivatives in the domain of dependence of (xo,*o) as defined in [18], the WENO schemes 
using a smooth flux splitting and a nth order Runge-Kutta scheme ( n > max(r, 3) ) satisfy 

ti(x0, t0, Ax) = v(xo, t0) + 0(Axr) (6.5) 

for appropriately chosen CFL number. Here go is a small constant integer (see [18]). 

For a few special cases, we list the CFL numbers in Table 5. 

Table 5: CFL numbers (n: order of the Runge-Kutta scheme). 

n = 3 n = 4 
r = 2 1.625 1.745 
r = 3 1.434 1.731 

7    Efficiency Comparison 

In this section, we compare the efficiency of WENO-LF-4, WENO-LF-5, WEN0-LF-5-PS 
and ENO-LF-4 on a vector supercomputer (CRAY C-90) and two serial workstations (SUN 
SparclO and SGI Indigo2). 
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ID, 2D and 3D Euler systems are solved. The 3D Euler system is (1.1) with d = 3, m = 5 
and 

u = (p,pu,pv,pw,E)T; (7.1) 

f(u) = (pu,P + pv?,puv,puw,u(E + P))T; (7.2) 

g(u) = (pv,pvu,P + pv2,pvw,v(E + P))T; (7.3) 

h(u) = (pw,pwu,pwv,P + pw2,w(E +P))T. (7.4) 

where 

P = (7-l)(£-^,(«2 + *2 + ™2)) 

The initial condition is 

p = 1 + 0.2 sin(7r(x + y + z)),   u = v = w = 1,    P = l 

Here we use f, g, h, x, y, z instead of fa, f2, f3, Zi, x2, x3. The ID and 2D Euler systems and 
their initial conditions can be deduced from the above 3D problem by removing the extra 
degree of freedom(s). 

We display the CPU time of ENO-LF-4, WENO-LF-4, WENO-LF-5 and WENO-LF- 
5-PS (all with RK-4) on the CRAY C-90, the SparclO and the SGI Indigo2 in Table 6. 
We observe that WENO-LF-4 and WENO-LF-5 are at least twice as fast as ENO-LF-4 on 
the CRAY C-90 and WENO-LF-5-PS is 2.5 times as fast as ENO-LF-4 for the ID Euler 
problem, 3.2 times as fast for the 2D Euler problem and 3.9 times as fast for the 3D Euler 
system. On the workstations, WENO-LF-4 and WENO-LF-5 are a bit faster than ENO- 
LF-4 on the SUN SparclO but a bit slower on the SGI Indigo2. WENO-LF-5-PS is 1.5 
to 2.2 times as fast as ENO-LF-4 on the SUN SparclO and on the SGI Indigo2. As a 
reference, we also include the CPU times of a typical second order TVD scheme [8] (Van 
Leer's limiter with 2nd order Runge-Kutta scheme in time, our own implementation) in the 
following tables. We can see the 2nd order scheme is about 10 times as fast as ENO-LF-4 
on the CRAY C-90, 4.5 times as fast on the SUN SparclO and 3.5 times as fast on the SGI 
Indigo2. 

In Table 7, the number of floating point operations and the MFlops (million floating- 
point operations per second) are given for the 2nd order scheme, ENO-Roe-4, ENO-LF-4, 
WENO-LF-5, WENO-LF-5-PS, ENO-Roe-4-A and WENO-LF-5-A. The operation count 
and MFlops for WENO-LF-4 is about the same as those for WENO-LF-5, thus omitted 
in the table. We can see all the WENO schemes achieve the speed of about 500 MFlops, 
which is 50% of the peak speed of CRAY C-90. The decrease of MFlops for high dimensions 
is because of the shorter array length N used in our tests. Notice also that the operation 
count per grid point per Runge-Kutta stage, of the full characteristic based 4th or 5th order 
ENO schemes using Lax-Friedrichs building blocks, is about 3 to 4 times that of the 2nd 

order schemes. This ratio actually decreases to only about 1.5 if the Roe building block 
is used instead, i.e. f+(u) and f~(u) are not approximated separately. This is somewhat 
surprising, as it was commonly believed that high order methods are much more expensive 
than lower order ones. When the Roe building block is used, Yang's artificial compression 
causes a 40% increase in operation count for the ID Euler system and a 65% increase for 
the 2D Euler system as we can see from the operation counts for ENO-Roe-4 and ENO- 
Roe-4-A. When the Lax-Friedrichs building block is used, the increase of operation count is 
65% for the ID Euler system and 100% for the 2D Euler system as shown by the operation 
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Table 6: CPU time in seconds. N points in each spatial dimension; 104-d iterations for the 
d-dimensional system. 

d N 2nd order ENO-LF-4 WENO-LF-4 WENO-LF-5 WENO-LF-5-PS 
CRAY C-90, compiled with "-0 vector2" 

1 1600 1.75 16.67 7.44 7.45 6.29 
2 200 13.13 122.52 63.93 60.84 37.67 
3 60 15.48 171.42 76.79 78.89 43.47 

SUN SparclO (66MHz, HyperSparc), compiled with "-r8 -04" 
1 1600 69.43 311.22 317.55 319.02 215.95 
2 200 512.33 2582.25 2132.50 2116.53 1163.72 
3 40 178.95 807.75 716.05 754.88 389.77 

SGIIndigo2 (75MHz, R8000), compiled with "-r8 -03" 
1 1600 21.03 66.21 73.88 77.01 58.14 
2 200 151.26 555.51 564.54 578.22 347.48 
3 60 167.44 626.92 699.58 715.91 366.29 

counts for WENO-LF-5 and WENO-LF-5-A. The increase in CPU time is well reflected by 
the above percentages. 

8    Numerical Results 

8.1    Scalar Conservation Laws in One Dimension 

Example 1. Linear Equation.   We solve the linear equation: 

ut + ux 

u(a:,0) 

0       -Kx < 1, 

tto(z)      periodic 

where 

u0(x) - < 

' \ (G(x, ß,z-6) + G(x, ß,z+S) + 4G(x, ß, z))   -0.8 < x < -0.6; 
1 -0.4 < x < -0.2; 
l-|10(as-0.1)| 0<x<0.2; 
I (F(x, a, a-6) + F(x, a, a+ 6) + 4F(x, a, a))   0.4 < x < 0.6; 
0 otherwise. 

= p-ß{x-zf G(x,ß,z) = e- 

F(x, a, a) = ymax(l - a2(x - a)2,0) 

The constants are taken as c = 0.5, z = -0.7,6 = 0.005, a = 10 and ß = ^. The solution 
contains a smooth but narrow combination of Gaussians, a square wave, a sharp triangle 
wave, and a half ellipse. 

We compute the solution up to t = 8 with 200 points. The results are shown in Figure 2. 
We observe that both WENO-Roe-4 and WENO-Roe-5 perform better than ENO-Roe-4 
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Table 7: Number of operations per Runge-Kutta stage per grid point and MFlops on CRAY 
C-90. d: the spatial dimension. 

Scheme d x±y x *y x/y \x\ sign(x) xy,y/x- MFlops 

2nd order 
1 82 83 9 8 3 3 478 
2 239 248 22 20 8 6 400 
3 476 506 39 36 15 9 350 

ENO-Roe-4 
1 102 98 3 19 0 3 179 
2 309 304 6 50 0 6 191 
3 663 656 9 93 0 9 — 

ENO-LF-4 
1 244 233 3 39 0 3 223 
2 791 766 6 102 0 6 219 
3 1751 1718 9 189 0 9 190 

WENO-LF-5 
1 235 284 27 3 0 3 557 
2 703 838 70 6 0 6 503 
3 1466 1718 129 9 0 9 442 

WENO-LF-5-PS 
1 145 129 13 3 0 4 474 
2 341 315 26 6 0 8 453 
3 576 579 39 9 0 12 357 

ENO-Roe-4-A 
1 144 135 4 33 6 3 164 
2 511 484 10 106 24 6 178 

WENO-LF-5-A 
1 375 447 37 19 12 3 526 
2 1379 1654 110 70 48 6 482 
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for all the four types of waves in the initial condition. WENO-Roe-4 does better than 
WENO-Roe-5 at acute turns in the solution curve (or spike-like peaks) but WENO-Roe-5 
does better for the square wave and at obtuse turns in the solution curve. With Yang's 
artificial compression technique, WENO-Roe-5-A performs the best at all waves. Note, we 
have adjusted the CFL number for WENO-Roe-5-A from 0.4 to 0.2. For CFL=0.4, using 
a = 40 in (5.4) gives similar results. 

Example 2. Non-convex Problems. We test the 3rd and 5th order WENO schemes on 
the Buckley-Leverett problem whose flux is 

*")= 4*+ (!-.)» <"> 

with initial data u = 1 in [|,0] and u = 0 elsewhere. (For the numerical results of the 4th 

order WENO scheme of Liu et al., see [9]). The exact solution is a shock-rarefaction-contact 
discontinuity mixture. 

The results obtained by WENO-RF-3 (with RK-3) and WENO-RF-5 (with RK-4) are 
shown in Figure 3. We can see both schemes converge to the correct entropy solution and 
give sharp shock profile. Note that, around discontinuities, WENO schemes are simulating 
the base ENO schemes. Therefore the sharpness of the shock profile obtained by the WENO 
schemes are only expected to be as good as that obtained by the base ENO schemes. 
However, in terms of this sharpness, our tests show that the 3rd order WENO scheme is 
comparable to the 3rd order ENO scheme instead of the base 2nd ENO scheme and, the 5th 

WENO scheme is comparable to the 4th order ENO scheme. 

8.2    Euler System in One Dimension 

Example 1. ID Riemann Problems. We consider here two well known problem, which 
have the following Riemann type initial conditions: 

u(x,0) = 

The first one is the Sod problem [17]. The initial data are: 

(pL,qL,PL) = (1,0,1);    (pR,qR,PR) = (0.125,0,0.1) 

The second one is the Riemann problem proposed by Lax [7]: 

(pL, 9L, PL) = (0.445,0.698,3.528);    (pR, qR, PR) = (0.5,0,0.571) 

The numerical results are presented in Figure 4. We can see that all schemes give the 
correct solution with good resolution. WENO-RF-5 is better than WENO-LF-5-PS which is 
in turn better than WENO-RF-3. We note that Figures 4b and 4c ( Figures 4e and 4f) are 
comparable, resp. to Figure 10 ( Figure 11) in [15]. Also see Figures 9a ( Figure 10a) in [9]. 
WENO-LF-5-A does much better than all other schemes at the contact discontinuities. We 
would like to point out that, according to our experience with extensive numerical testing, 
these two problems, especially the Lax's problem, are tough test cases for non-characteristic 
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Figure 2: Linear Equation. 3rd order Runge-Kutta in time. 200 points, CFL=0.4 (0.2 for 
(d) only), T=8. (a) ENO-Roe-4. (b) WENO-Roe-4. (c) WENO-Roe-5. (d) WENO-Roe-5- 
A. 
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Figure 3: The Buckley-Leverett problem, (a): WENO-RF-3; (b): WENO-RF-5. 

based schemes of order at least three. Oscillations can easily appear for such schemes. Here 
WENO-LF-5-PS performs well in these two cases. 

Example 2. ID Shock Entropy Wave Interaction. In this example, we test the WENO 
schemes on a model that involves a moving shock interacting with an entropy wave of small 
amplitude. On a domain [0,5], the initial condition is: 

p = 3.85714;     u = 2.629369;   P = 10.33333;   when   x < 0.5 
p = e-csm(kx).    U = Q. p = 1. when     a;>0.5 

where e and k are the amplitude and wave number of the entropy wave, resp. The mean 
flow is a pure right moving Mach 3 shock. If € is small compared to the shock strength, the 
shock will march to the right at approximately the non-perturbed shock speed and generate 
a sound wave which travels along with the flow behind the shock. At the same time, the 
perturbing entropy wave, after "going through" the shock, is compressed and amplified and 
travels approximately at the speed of u + c where u and c are the velocity and speed of the 
sound of the mean flow left of the shock. The amplification factor for the entropy wave can 
be obtained by linear analysis. See [10, 21] for details. In order to get rid of the transient 
waves due to the non-numerical initial shock profile, we let the shock move up to x = 4.5 
and then shuffle it back to x = 0.5. The solution is examined when the shock reaches 
x = 4.5 the second time. 

The goal of this test is to examine the stability and accuracy of the WENO schemes in 
the presence of the shock. Since the entropy wave here is set to be very weak relative to the 
shock, any excessive oscillation could pollute the generated waves (e.g. the sound waves) 
and the amplified entropy waves. In our tests, we take e = 0.01 and k = 13. The amplitude 
of the amplified entropy waves predicted by the linear analysis is 0.08690716 (shown in 
the following figures as horizontal solid lines). First we use 800 points which is effectively 
20 points in each wave length of the generated entropy wave. Since the generated sound 
waves (or pressure wave) are of lower frequency than the amplified entropy waves, they are 
much better resolved by this grid size. Therefore we only display the entropy component 
of the numerical solutions. WENO-LF-4, WENO-LF-5 and WENO-LF-5-PS are used in 
our tests and the results are shown in Figure 5 (the mean flow has been subtracted from 
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the numerical solution). We see that all three schemes catch the amplified entropy waves 
quite well. WENO-LF-4 performs the best on this grid and WENO-LF-5 ranks the second. 
In order to examine the relative performance of WENO-LF-4 and WENO-LF-5, we run 
the same test on a grid of 1200 points. The results for these two schemes are displayed in 
Figure 6. We can see that on this grid (approximately 30 points per wave length), WENO- 
LF-5 is as accurate as WENO-LF-4. In fact, on finer grids, WENO-LF-5 becomes more 
accurate than WENO-LF-4. This is in good agreement with our accuracy test in section 4. 
For the purpose of comparison with low order schemes, we also include the entropy computed 
by a typical second order scheme [8] (half Van Leer's limiter, half Superbee limiter with 
2nd order Runge-Kutta scheme in time, 2000 points). The advantage of using higher order 
schemes for this example is apparent. 

Example 3.   Two Interacting Blast Waves.     We consider here the interaction of two 
blast waves. The initial data are the following: 

u(x,0) = 

where 

uL    if 0 < x < 0.1 
uM   if O.K x < 0.9 
UR    if 0.9 < x < 1 

PL = PM = PR = l   UL = UM = UR = 0   PL = 103 PM = 10"2 PR = 102 

A reflective boundary condition is applied at both x = 0 and x = 1. See [19] for a detailed 
discussion of this problem. 

Three grids are used: 199, 399, 799 points. We examine our numerical solutions at 
t = 0.038. The "exact" solution (solid lines in all the pictures) are computed by ENO-RF-5 
with 1600 points. In Figure 7, we show the density computed by WENO-RF-3 (with RK-3), 
WENO-RF-4, WENO-RF-5 and WENO-RF-5-A (with RK-4). 

We observe that the 4th order and 5th order WENO schemes are much better than 
the 3rd order WENO scheme and the results are comparable with those obtained by the 
unmodified ENO-RF-4 (see Figure 12 in [15]. Note, the 4th order ENO scheme in the L1 

norm was denoted as ENO-RF-3 there). WENO-RF-4 is slightly better than WENO-RF-5 
on the medium grid while on the fine grid WENO-RF-5 seems to be better. The results 
of WENO-RF-5-A on the coarse and medium grids are nearly as good as WENO-RF-5 on, 
resp. medium and fine grids. 

Example 4- Quasi-One Dimensional Nozzle Flow. In this example, we use the WENO 
schemes to solve the steady state quasi-lD nozzle flow. The governing equation of the 
quasi-lD nozzle flow is the ID Euler system with the following forcing term: 

g(u, x) = -^-(pu, pu\ u(E + P)f 

where A = A(x) is the cross area function of the nozzle and Ax = j£. The nozzle here is 
of unit length, whose shape is determined by assuming a linear, isentropic Mach number 
distribution, which is 0.8 at x = 0 (the entrance) and 1.8 at x = 1 (the exit). The exit flow 
condition is then decided by the prescribed shock position, which is x = 0.5 in our test. 

In Figure 8, we display the density computed by WENO-Roe-4 and WENO-Roe-5 with 
34 points. We can see both schemes converge nicely to the exact solution (solid line in the 
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Figure 6: ID Shock entropy wave interaction(cont'd). Entropy. At = 0.6Aa:. 

pictures). The residue computed with both schemes settles down to 10~7 for this grid, and 
to a smaller number for a finer grid. 

This example shows that WENO has its advantage for steady state calculations. 

8.3    Euler System in Two Dimensions 

Example 1. Oblique Sod's Problem. The purpose of this test is to analyze the capability 
of WENO schemes in resolving waves that are oblique to the computational mesh. The 
2D Sod's problem is solved where the initial jump makes an angle 0 against the z-axis 
(0 < 0 < \). If 9 = -|, we have the one-dimensional Sod's problem. If 0 < 0 < -f, all 
the waves produced will be oblique to the rectangular computational mesh. We take our 
computational domain to be [0,6] x [0,1] and position the initial jump at (x, y) = (2.25,0). 
The physical domain varies with 0 and is taken as [0,^] x [0,^-g]. The scaling factor 
-^g is to ensure the same grid resolution normal to the wave propagation on a given mesh 
at some fixed time for all choices of 0. See [3] for details. We take 0 to be arctan 1, arctan2, 
and arctan 4. The solution is computed up to t = 1.2 on a 96 x 16 mesh. 

WENO-LF-4, WENO-LF-5, WENO-LF-5-A and WENO-LF-5-PS are used in our tests 
and the results are compared with that obtained by ENO-LF-4 (all with RK-4 and At = 
0.6Ax). For the case 0 — arctan 1, we display the density contours obtained by WENO- 
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Figure 8: Density. Steady quasi-lD nozzle flow. 34 points. RK-3 in time. 

LF-5-PS in Figure 9a; In Figure 9b, we show the densities at y = 0 obtained by all four 
schemes. We can see that all WENO schemes are doing well in resolving the oblique waves 
and their differences from the ENO-LF-4 (except WENO-LF-5-A) are barely noticeable. 
WENO-LF-5-A gives sharp profile of the contact discontinuity as expected. In Figure 9(c- 
f), a more quantitative study is carried out. Namely, for each scheme, we measure the 
differences between oblique cases and the one-dimensional case. We can see that WENO- 
LF-4 and WENO-LF-5 perform similarly as ENO-LF-4 does while WENO-LF-5-PS gives 
a slightly larger deviation near the contact discontinuity. However, this small difference 
can be regarded as negligible. We want to note that WENO-LF-5-PS performs well at the 
shock. 

Example 2. A Mach 3 Wind Tunnel with a Step. This model problem has been carefully 
examined in [19]. The set up of the problem is the following: The wind tunnel is 1 length 
unit wide and 3 length units long. The step is 0.2 length units high and is located 0.6 length 
units from the left-hand end of the tunnel. The problem is initialized by a right-going Mach 
3 flow. Reflective boundary conditions are applied along the walls of the tunnel and an in- 
flow and an out-flow boundary conditions are applied at the entrance (left-hand end) and 
the exit (right-hand end). For the treatment of the singularity at the corner of the step, we 
adopt the same technique used in [19], which is based on the assumption of a nearly steady 
flow in the region near the corner. 

WENO-LF-4 and WENO-LF-5 are used in our tests and the results are compared with 
those obtained by ENO-LF-4 (all with RK-4 and At = 0.6Az). Two grids are used: 122 x 39 
and 242 x 79. They correspond resp. to the medium and fine grids in [19]. 

In Figure 10 to 11, we show the density component obtained by all three schemes on the 
two grids. We can see that all the schemes perform well with good resolution. Relatively 
speaking, WENO-LF-4 and WENO-LF-5 have slightly better resolution at the contact line 
(originated from the Mach step) and contain less visible "bumps", which are indeed small 
numerical oscillations, than ENO-LF-4. 

WENO-LF-5-PS does not work for this problem because of the strong reflecting waves. 
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Figure 10:   Flow past a forward facing step.   Density on medium grid:   122 x 39.   (a) 
WENO-LF-4. (b) WENO-LF-5. (c) ENO-LF-4. 
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Example 3. Double Mach Reflection of a Strong Shock. The computational domain 
for this problem is chosen to be [0,4] x [0,1]. The reflecting wall lies at the bottom of 
the computational domain starting from x = |. Initially a right-moving Mach 10 shock is 
positioned at x = |, y = 0 and makes a 60° angle with the x-axis. For the bottom boundary, 
the exact post-shock condition is imposed for the part from x = 0 to x = | and a reflective 
boundary condition is used for the rest. At the top boundary of our computational domain, 
the flow values are set to describe the exact motion of the Mach 10 shock. See [19] for a 
detailed description of this problem. 

Two grids have been used in our tests: 240 x 59 and 480 x 119. They correspond to the 
medium and fine grids in [19], resp. We will only show the solutions on part of the domain: 
[0,3] x [0,1] where most of the flow features are located. 

We use WENO-LF-4, WENO-LF-5 and ENO-LF-4 (all with RK-3 and At = 0.6Ax) in 
our tests. We show the density contours obtained by these three schemes. See Figure 12 
and 13. We see that all three schemes resolve the two Mach stems well. Again WENO-LF- 
5-PS does not work because of the strong reflecting wave pattern in this problem. 

Example 4- 2D Shock Entropy Wave Interaction. In this example, we test the WENO 
schemes on a 2D model that involves the interaction between a normal shock and a weak 
entropy wave which makes an angle 6T € (0,7r/2) against the x-axis. If 9T = 0, we have 
essentially the ID problem (see Example 2 in Section 8.2). Since the weak entropy waves 
are oblique to the shock, the waves generated by the interaction are much more difficult 
to resolve than in the ID case. Our goal here is to further examine the capability of the 
WENO scheme in capturing such small scale waves in the presence of a shock. See [21, 16] 
for detailed discussions on this subject. The set-up of the problem is the following: for a 
right moving normal shock of Mach number M, we add a small entropy wave to the flow 
on the right of the shock which is equivalent to changing only the density of the flow on the 
right of the shock to: 

p = Pre-
er(siaßrVPr 

where pT and Pr are resp. the density and pressure of the right state of the shock, ßr = 
kT(xcos6T + ysm0T) and kr is the entropy wave number. In order to enforce periodic 
boundary conditions in the t/-direction, we take the computation domain to be [0,5] x 
[0, k ^e ]. We initially position the normal shock at x — 0.5 and allow it to move up to 
x = 4.5 and then shuffle the data back to x = 0.5. We extract the data at the time when 
the shock moves up to x = 4.5 again. See [16] for a similar implementation. 

In our tests, we take ur, the velocity on the right of the shock, to be 0 and set M = 3, 
er = 0.01,fcr= 15,0r = 3O°. 

We measure the performance by comparing the amplitude of the amplified entropy 
waves, which is computed by a Fourier analysis in the y direction for all fixed grid values 
x£ [3.4,4.4]. 

Both ENO-LF-4 and ENO-LF-5 suffer a loss of accuracy if not modified (see [16]). 
WENO-LF-4 and WENO-LF-5 work nicely without any modification. 

The loss of accuracy of the ENO schemes can be easily fixed by the techniques introduced 
in [1, 13], which effectively force an upstream centered stencil to be chosen away from the 
shock and free adapted stencil to be used near the shock. The techniques can also be adapted 

31 



DENSITY WENO-LF-4 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

(a) 30  contours   from   1.731   to 20.92      Grid: 240x59      cfl=0.6      t=0.2 

DENSITY WENO-LF-5 

0.0 0.5 1.0 1.5 2.0 2!5 3.0 

(b) 30  contours   from   1.731   to 20.92      Grid: 240x59      cfl=0.6      t=0.2 

DENSITY ENO-LF-4 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

(c) 30 contours   from   1.731   to 20.92      Grid: 240x59      cfl=0.6      t=0.2 

Figure 12: Double Mach reflection. Density on medium grid: 240 x 59. (a) WENO-LF-4. 
(b) WENO-LF-5. (c) ENO-LF-4. 
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Figure 13: Double Mach reflection (cont'd). Density on fine grid: 480 x 119. (a) WENO- 
LF-4. (b) WENO-LF-5. (c) ENO-LF-4. 
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to enhance the performance of WENO schemes by modifying the weights as follows: 

~)={Cr
k     if JS^cT1 for any/= 0,...,r-l, 

1  u>k     otherwise. ^ ' ' 

where a is taken as 2 and vk,k = 0,...,r-l are the regularly computed weights. (8.2) 
leads to the optimal weights being used for stencils away from the shock and regularly 
computed weights being used near the shock. We denote the modified ENO-LF-4, ENO- 
LF-5, WENO-LF-4 and WENO-LF-5 to be, resp. EN02-LF-4, EN02-LF-5, WEN02-LF-4 
and WEN02-LF-5. Note that, with the modified weights, WENO-LF-4 becomes 5th order 
accurate in smooth regions. In all tests, RK-4 is used with At = 0.6Aa:. 

First we use 800 points in the z-direction and 20 points in the y—direction which 
give approximately 20 points per entropy wave length in both directions. In Figure 14, 
the amplitude of the amplified entropy waves obtained by all aforementioned schemes are 
displayed. The solid horizontal line is the amplitude predicted by linear analysis which is 
0.08744786 (see [10, 21]). We see that the modified schemes generally perform better in 
terms of accuracy and decay rate than the unmodified schemes. As a reference, we have also 
included the amplitudes obtained by a typical second order TVD scheme [8] (half Van Leer's 
limiter, half Superbee limiter with 2nd order Runge-Kutta scheme in time, 800 points). We 
can see that high order schemes perform much better than the second order schemes in 
terms of accuracy and decay rate for this problem. 

WENO-LF-5-PS does not perform well for this problem even with the remedy above. 
This indicates that the pressure-entropy combination is not good enough to indicate pre- 
cisely the smoothness of the numerical solution. This causes oscillations generated at shocks 
and thus destroys the accuracy of the scheme in resolving the waves which have "undergone" 
the interaction with the shock. 

Remark: We have seen that WENO-LF-5-PS does not work for the step problem 
and the double Mach reflection problem because it can not handle the reflective boundary 
properly. This can be explained by the following: the usual way of imposing the reflective 
boundary condition3 is to reverse the normal velocity at the grid points which are symmetric 
with respect to that boundary while setting other flow quantities (density, pressure and 
tangential velocity) to be the same; in particular the pressure and entropy at each pair of 
symmetric grid points are identical. Therefore neither the pressure nor the entropy can 
indicate possible jumps in the normal velocity. This failure will result in an unstable weight 
distribution in the normal direction near the reflective boundary and cause fatal errors such 
as density becoming negative. An immediate "fix" seems to be using the normal velocity 
to compute the weights for one of the linearly degenerate fields. Unfortunately, the jump 
in the normal velocity is not like a contact discontinuity, which belongs solely to one of the 
characteristic fields. While this might cure the ill distribution of the weights in the field, in 
which the velocity is used, it can not cure this ill distribution in other fields. 

However, WENO-LF-5-PS can be applied to problems where the reflective boundary 
does not play a vital role. As an example, we look at the following model problem. 

Example 5. Shock Vortex Interaction. This model problem describes the interaction 
between a stationary shock and a vortex. The computational domain is taken to be [0,2] x 

We assume here the physical boundary is flat, as is the case in aforementioned problems 
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Figure 14: 2D shock entropy wave interaction. Amplitude of amplified entropy waves. 800 
points (about 20 points per entropy wave length). 

[0,1]. A stationary Mach 1.1 shock is positioned at x = 0.5 and normal to the z-axis. Its 
left state is (p, u, v, P) = (1, yfy, 0,1). A small vortex is superposed to the flow left to the 
shock and centers at (xc,yc) = (0.25,0.5). We describe the vortex as a perturbation to the 
velocity (u, v), temperature (T = j) and entropy (5 = In £) of the mean flow and denote 
it by the tilde values: 

u 

v 

f 

S 

trea(l-r2)sinö 

-ere^-^cosfl 

(7 - l)e2e2a^-^) 
4aj 

=   0 

(8.3) 

(8.4) 

(8.5) 

(8.6) 

where r = -^ and r = s/(x - xc)
2 + (y - yc)

2. Here e indicates the strength of the vortex, 
a controls the decay rate of the vortex and rc is the critical radius for which the vortex 
has the maximum strength. In our tests, we choose 6 = 0.3, rc = 0.05 and a = 0.204. The 
above defined vortex is a steady state solution to the 2D Euler equation. 

We use a grid of 251 x 100 which is uniform in y but refined in x around the shock using 
a Roberts transform (see [2] and the references there). The upper and lower boundaries 
are intentionally set to be reflective. The pressure contours obtained by WENO-LF-5-PS 
at t = 0.05, t = 0.20 and t = 0.35 are shown in Figure 15(a-c). We can see that for this 
problem, where the reflective boundary is nonessential, WENO-LF-5-PS works nicely. To 
appreciate this further, we look at the solution at t = 0.8. By this time one branch of the 
shock bifurcations has reached the top boundary and been reflected. The pressure contours 
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obtained by WENO-LF-5-PS at this moment are shown in Figure 15d.  We see that the 
reflection is well captured. 

In Figure 15(e-g), we compare the results obtained by WENO-LF-5-PS, WENO-LF- 
5 and ENO-LF-4. 90 contours are drawn for the pressure component in the range of 
(1.19,1.37). We see that the three methods give approximately the same resolution. A 
careful examination reveals that WENO schemes are slightly better in the sense that less 
numerical noise is generated. Between the two WENO schemes, WENO-LF-5 seems a little 
better for the same reason. For a qualitative comparison, see also [2]. Note that a different 
vortex is used there. 

Figure 15: 2D shock vortex interaction. Pressure, (a)-(d) WENO-LF-5-PS. 30 contours, 
(a) t=0.05. (b) t=0.20. (c) t=0.35. (d) t=0.80. (e)-(g) t=0.60. 90 contours from 1.19 to 
1.37. (e) WENO-LF-5-PS. (f) WENO-LF-5. (g) ENO-LF-4. 

Example 6. Flow Past a Cylinder.   In this test, we use the WENO schemes to simulate 
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the supersonic flow past a cylinder. In the physical space, a cylinder of unit radius is 
positioned at the origin on a x — y plane. The computational domain is chosen to be 
[0,1] x [0,1] on the £-77 plane. The mapping between the computational domain and the 
physical domain is: 

x   =   (Rx-(Rx-l)Z)cos(e(2V-l)) (8.7) 

y   =   (Ry-(Ry-l)t)wL(6(2Ti-l)) (8.8) 

where we take Rx = 3, Ry = 6 and 0 = ff. See [16] for the eigenvalues and eigenvectors of 2D 
Euler systems on general structured grids. A uniform mesh of 60 x 80 in the computational 
domain is used. For an illustration of the mesh in the physical space (drawing every other 
grid line), see Figure 16a. 

The problem is initialized by a Mach 3 shock moving toward the cylinder from the 
left. A reflective boundary condition is imposed at the surface of the cylinder, i.e. £ = 1, 
inflow boundary condition is applied at £ = 0 and outflow boundary condition is applied at 
17 = 0,1, 

The pressure contour obtained by WENO-LF-5 with RK-4 and At = 0.6Ax is shown in 
Figure 16b. Similar results can be obtained by WENO-LF-4 and ENO-LF-4. 

9 Conclusion 

With the new smooth measurement, which is based on minimizing the L2 norm of the 
derivatives of the interpolation polynomials, the WENO schemes formulated from the rth 

order ENO schemes can be made {2r-\)ih order accurate in smooth regions of the flux 
function (in spatial variables), at least for r = 2,3. However, at discontinuities, all WENO 
schemes are just rth accurate (r is the order of the base ENO scheme). 

The 4th order WENO scheme of Liu et al. and the 5th order WENO scheme resulting 
from the new smoothness measurement are found to be at least twice as fast as the 4th order 
ENO schemes on vector supercomputers (e.g. CRAY C-90) and as fast on serial machines 
(therefore on parallel machines as well). Many ID and 2D numerical tests suggest that both 
WENO schemes are very robust for shock calculations. The 4th order WENO scheme of 
Liu et al. is slightly more accurate than the 5th order WENO scheme on coarse grids (20 
points or less per wave length) but becomes less accurate on finer grids. 

For Euler systems, we also suggest computing the weights from pressure and entropy 
instead of the projected values. The resulting WENO schemes are about twice as fast as 
the WENO schemes which use the projected values to compute weights, and work well for 
problems which do not contain strong shocks or strong reflected waves. 

More detailed numerical results for WENO schemes can be found in [6]. 
We have also adopted the artificial compression method of Yang [20] to enhance the per- 

formance of WENO schemes at contact discontinuities. However, the CPU cost is increased 
by as much as 100% when a Lax-Friedrichs building block is used. We believe the idea of 
artificial compression method can be adapted directly into the weight definition to achieve 
the sharpening effect at a much lower expense. This will be investigated in the future. 
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suggestions. 
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