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FOREWORD 

The information in this report was included in an Extended Abstract for 

the 17th Biennial Conference on Carbon, held in Lexington, Kentucky, 16-21 

June 1985. 

We thank the Office of Naval Research for support in the preparation of 

this report and Dr. L. H. Peebles, Jr., for his encouragement and criticism. 
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I.  INTRODUCTION 

Oxidation stabilization is a key step in the manufacture of mesophase 

carbon fiber because the mesophase must be immobilized to permit carbonization 

without loss of the layer alignment imposed by fiber spinning.1 The objective 

in the present work is to use micrographic methods to observe the depth of 

oxidation stabilization in mesophase bodies with dimensions greater than those 

of fibers.  The approach is to prepare oriented mesophase bodies by 

application of a magnetic field2 or by uniaxial deformation,  oxidize them 

under conditions that stabilize the microstructure, and carbonize them to 

observe the depth to which the oriented structure is retained. 

The starting materials for these experiments were mesophase pitches pre- 

pared by applying the Chwastiak process4 to Ashland A240 petroleum pitch. 

Each batch was sparged with nitrogen and stirred continuously while held at 

temperatures near 400°C for 10 to 20 h to achieve transformation levels of 85% 

or higher. 



II.  MAGNETICALLY ORIENTED MESOPHASE 

Mesophase plates several millimeters thick were prepared by heating the 

mesophase pitch to about 320°C in a horizontal magnetic field of about 5000 

gauss.  By rotating the sample dish, the mesophase layers became preferen- 

tially oriented parallel to the plane of the dish, and the resulting mesophase 

plates were nearly free of disclinations and folds.  Figure la shows a verti- 
# 

cal section of an oriented mesophase plate that had been oxidized in air at 

240°C for 34 h; the deep cracks formed on cooling after the magnetic orienta- 

tion treatment. 

Figure lb illustrates the results of carbonizing this specimen to 600°C 

at 10°C/min.  A well-defined boundary is apparent between stabilized mesophase 

that retained the preferred orientation and mesophase that softened, lost its 

preferred orientation, and was often driven from its original position by 

bubbles of pyrolysis gas.  In this  case,  the stabilization depth was 

17 um; oriented mesophase ribs outline the cracks that provided access to air. 

a. AFTER OXIDATION b. AFTER CARBONIZATION 

ACCESS CRACKS- 

BLOATING BUBBLE- 

STABILIZED MESOPHASE 

Fig. 1.  Magnetically oriented mesophase, observed by 
crossed polarizers. 



III. EXTRUDED AND DRAWN MESOPHASE RODS 

Mesophase rods of fine fibrous microstructure were prepared by a method 

of extrusion and draw similar to that used by Jenkins and Jenkins.  The rod 

illustrated in Fig. 2 was produced from a near-100%-transformed mesophase 

pitch (400°C for 20 h) with a penetrometric softening point of 309°C. 

Although pyrolysis bubbles that formed during extrusion tended to disrupt the 

fibrous microstructure, only a light draw was necessary to restore the pre- 

ferred orientation.  The specimen of Fig. 2 was drawn at a rate of 4 cm/min 

from a 0.9 mm orifice at 330°C. 

The mesophase rods were oxidized under various conditions of atmosphere 

(air or 02) 
and time (8 to 65 h) with temperatures limited to 300°C or less to 

avoid structural relaxation. Portions of the oxidized rods were carbonized 

under N2 to 1000°C at 4°C/min.  The results of two experiments are presented 

in Figs. 3 and 4.  The depth of stabilization is delineated by coarsening of 

the fibrous microstructure.  As observed with the magnetically oriented 

mesophase, oxidation proceeded to equivalent depths from the free surface and 

from cracks with access to the atmosphere. Mesophase that was insufficiently 

oxidized was often driven from within the oxidized casing by the pressure of 

pyrolysis gases. 
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Fig. 2. Longitudinal and transverse views of 
extruded and drawn mesophase rod. 



PYROLYSIS BUBBLE 

COARSENED MESOPHASE 

STABILIZED MESOPHASE 

ACCESS CRACK 

Fig. 3.  Transverse microstructure of oxidized 
mesophase rod (air, 300°C, 8 h) after 
carbonization to 1000°C.  Stabilization 
depth:  10 pm. 

Fig. 4.  Transverse microstructure of oxidized mesophase rod 
(02, 265°C, 64 h) after carbonization to 1000°C. 
Stabilization depth:  36 ym. 



IV.  MESOPHASE OXIDATION 

Observations of weight change in some of the oxidation runs on mesophase 

rods indicated that substantial quantities of oxygen were absorbed and that 

both weight-gain and weight-loss reactions were involved.  Some thermogravi- 

metric analysis (TGA) results are given in Fig. 5 for the oxidation of sized 

particles (-325/+400 mesh, 38-45 um) of the mesophase pitch used to extrude 

and draw rods.  The initial weight gains exceed 10%, but weight-loss reactions 

subsequently appear; near 300°C, these reactions are sufficiently strong to 

cause a net weight decrease for long-term stabilization processes. 
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Fig. 5.  Oxidation of sized mesophase 
particles in O2. 



V.  DISCUSSION 

Observations of the depth of stabilization are summarized in Table 1. 

Oxidation stabilization appears to be a diffusion-limited process, responding 

as expected to increased 02 pressure, temperature, and time. High oxidation 

levels are attained, at least transiently, at the exposed mesophase sur- 

faces. The oxidation process shows good throwing power in mesophase cracks. 

A diffusion depth of 50 ym may be adequate to stabilize bulk mesophase, 

provided that the access porosity is on this scale. 

Table 1. Depths of Stabilization by Oxidation 

Oxidant 

Temperature 
(°C) 

Time 
(h) 

Depth 
(ym) 

Aira 240 34 17 

Air 300 8 10 

Air 300 60 30 

Oxygen 300 64 45 

Oxygen 265 64 36 

Magnetically oriented mesophase. 



REFERENCES 

1. L. S. Singer, U.S. Patent 4,005,183 (1977). 

2. P. Delhaes, J. C. Rouillon, G. Fug, and L. S. Singer, Carbon 17, 435 
(1979). 

3. J. C. Jenkins and G. M. Jenkins, Carbon 21, 473 (1983). 

4. S. Chwastiak, U.S. Patent 4,209,500 (1980). 

11 


