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I.  INTRODUCTION 

Residual stress, a well-known phenomenon in composites, is frequently 

caused by thermal expansion mismatch between reinforcement and matrix 

phases. Particularly for carbon-carbon composites, the consequences of 

thermal expansion can be severe. The extreme thermal expansion anisotropy of 

the graphite crystal perpendicular and parallel to the basal plane and the 

high stiffness parallel to the basal plane, can precipitate fracture in large 

composite structures during processing. 

Given the high temperatures involved in processing, direct evidence for 

residual stress is difficult to obtain in such composites. Some work has been 

done by measuring cracking in processed cylindrical carbon-carbon composites 

(Ref. 1). Curvature or warping of machined bars of nonhomogeneous material is 

often observed when local variations of material properties create residual 

stress (Ref.2). This report discusses evidence for residual stress obtained 

by cutting thin slices from a 3D Cartesian weave carbon-carbon composite and 

measuring the residual curvature. 



II.  EXPERIMENTAL 

In preparing slices of various thicknesses, we observed that some slices 

of less than a certain thickness would not remain straight but would warp 

noticeably (Fig. 1). Further investigation discovered the warping to be 

related to both the thickness of the slice relative to the yarn spacing and 

the slice's location in the bulk composite. 

The material analyzed was a 2-2-3 (x-, y-, and z-directions, respec- 

tively) Cartesian weave composite, using PAN-based carbon yarn of approx- 

imately 380 GPa (55 Msi) modulus (Ref. 3). The x and y site spacings were 

0.76 mm (30 mils), and the z site spacings were 0.84 mm (33 mils) (nominal 

values). The composite was fabricated from a 3D, carbon yarn preform by 

repeated densification by chemical vapor deposition and graphitization to 

temperatures above 2500°C. The matrix material was graphitic, and the 

composite had an overall methanol immersion density of 1.9 * 10 3 kg/m 

(1.9 g/cm3). 

Slices 27 mm long, 4 mm wide, and 0.25, 0.5, and 1 mm thick were cut from 

the bulk composite. The length was parallel to the x-direction, and the width 

was parallel to the y-direction. Some of the 0.25-mm-thick slices curved 

markedly (Fig. 1a); for thicker slices, the curvature was less severe.  From 

the optical micrographs (Figs. 1 b and c) of the front and back surfaces of 

the slices, which display the directions of fiber reinforcement in the 

material, one can conclude that the curvature is caused by asymmetric fiber 

reinforcement of opposite faces of the thin slice coupled with residual 

thermal stress. 

Figure 2 diagrams the geometry of a unit cell. The site spacing along 

the thickness direction of the slice corresponds to 0.76 mm (30 mils). Thus, 

a slice cut thinner than that will contain only part of a unit cell through 

the thickness. Because the location of the slice was selected at random, the 

amount of x-direction reinforcing carbon fiber versus matrix material and y- 

and z-direction reinforcing fiber was somewhat variable in the slice. 
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III.  RESULTS AND DISCUSSION 

In Figs. 1 b and c, x-direction reinforcing filaments in the 0.25-mm- 

thick slice are evident along almost the entire back surface, but none is 

showing on the front, although y-direction reinforcing fibers are. Matrix 

pockets and ends of z-direction filaments appear on both front and back 

faces. Because of the thermal expansion anisotropy of the fiber, the matrix 

and transverse directions of the y- and z-yarns in this sample tend to shrink 

more in cooling from elevated temperature than the longitudinal direction of 

the x-yarns; so the x-direction yarns are in residual compression while the 

matrix and transverse fibers are in residual tension. The four components— 

matrix and yarns in three directions—will require good bonding under 

conditions of local thermal expansion mismatch to retain the residual 

stresses. 

The x-y surface of the sample is not perfectly parallel to the x-direction 

yarns, so the thickness of these yarns varies along the length of the sample, 

as the nonuniformity of the curvature along the sample illustrates. Given 

both this nonuniformity, which implies variation with position of the effec- 

tive bending stiffness, El, and the asymmetry of the sample with respect to 

the neutral surface, the relation of the composite curvature to the individual 

constituent properties is not simple to analyze. However, comparison in terms 

of a similar beam of homogeneous, isotropic material is instructive. 

Assuming a thin beam, simply supported at the ends (Ref. M), with a beam 

length of 27 mm, thickness of 0.25 mm, and midpoint deflection of 0.86 mm, the 

maximum tensile strain e   can be estimated from 
max 

= t_ 
emax  2R 

where t is the thickness and R is the radius of curvature. Given the radius 

of curvature, 106 mm, which can be estimated from the deflection and length, 

the estimated maximum tensile strain in the material is 1.2 x 10 -\ The 

limited applicability of isotropic beam theory dictates the need for more 



complex composite beam theory, such as the 2D laminate approach with 

asymmetric layup (Ref. 5); however, the estimate is reasonable by being less 

than the measured strain to failure of typical bulk 3D carbon-carbon 

composites in tensile testing (Ref. 3). 

Additional evidence for residual stress is demonstrated by the bimetallic 

strip behavior of the sample during heating and cooling, depicted in Fig. 3 

for the curved sample at different temperatures on the surface of a hot plate. 

On heating, the curvature decreases slightly. This is to be expected, because 

the thermal expansion of the fibers in the longitudinal direction is lower 

than that of the matrix and fibers in the transverse direction. The differ- 

ence will cause the matrix and transversely oriented fibers, which are in 

tension, to expand more than the x-direction fibers, which are in compression. 

The reverse occurs on cooling the sample in liquid nitrogen (77 K), which 

causes a small increase in sample curvature.  That the curvature returned to 

its initial condition at room temperature shows that the changes are revers- 

ible within the temperature range, and that, therefore, bonding integrity 

between the components of the composite remains good. 

The change in curvature with temperature can also be related to the 

degree of undercooling below the stress-free temperature, at which the beam is 

not curved. Using a linear thermal expansion model (Ref. 6), a study of 

residual stress in a thin beam of copper bonded to a ceramic showed that 1/R, 

where R is the radius of curvature, is proportional to the degree of under- 

cooling below the stress-free temperature, Tg, or 

1/R - k (Ts - T) 

where k is a constant and T is temperature. For a small degree of curvature, 

the midpoint displacement, d, is proportional to 1/R (Ref. 7). Thus, at a 

given temperature, T, d is proportional to (Tg - T), or 

d = k' (T3 - T) 
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where k' is a constant. From the observed values of d and T at two tempera- 

tures (e.g., room temperature and 280°C), we can solve for Tg. Thus the 

estimated stress-free temperature is about 1100°C (see Fig. 4), which implies 

that the fiber and matrix material bond well over a fairly wide temperature 

range and that the matrix remains sufficiently intact to retain some residual 

stress. The presence of residual stress and the implied large undercooling 

contrast with other indications that stress tends to be removed by matrix 

microcracking (Refs. 8 and 9) because of the large undercooling below the 

expected stress-free temperature, which is above 2000°C, where stress 

relaxation by creep becomes significant in carbon-carbon composites (Ref. 10) 

RT200 400 600 800 1000 1200 
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Figure 4.  Measured Maximum Displacement versus Temperature 



IV.  CONCLUSION 

In conclusion, thin slices of 3D Cartesian weave carbon-carbon composites 

with asymmetric cross section have been demonstrated to contain residual 

stresses as a result of thermal expansion anisotropy. The slices are curved, 

with longitudinal reinforcing filaments in residual compression and transverse 

fibers and matrix material in residual tension. 
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