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ABSTRACT 

This report continues the development of the Systematic Approach to tropical cyclone 
track forecasting by Carr and Elsberry (1994) with specific application to the western Pacific 
region. Five years (1989-93) of 12-h Naval Operational Global Atmospheric Prediction 
System (NOGAPS) analyses are examined for every tropical cyclone to establish a 
climatology of Environment Structure characterizations. Frequencies of the four Synoptic 
Patterns and the six Synoptic Regions are calculated, and characteristic tracks while in each 
of the Pattern/Region combinations are provided. Transition paths between the various 
Pattern/Region combinations are tabulated. 

A four-year subset of NOGAPS analyses is used in a reproducibility test in which 
three trainees attempted to achieve the same Environment Structure assignments as an 
experienced forecaster. Approximately 81% of the Synoptic Patterns, 86% of the Synoptic 
Regions, and 77% of the Pattern/Region combinations were correctly assigned by the 
trainees. However, certain Pattern/Region combinations were found to be poorly identified, 
which indicated a need for some new training materials. Approximately 81% of the 
Pattern/Region transitions to a correct or similar combination were detected by the trainees. 
About 72% of these correct/similar transitions were identified within _+ 12 h of the actual 
transition, and 88% were identified within _+ 24 h. Certain transitions were consistently 
missed, which again indicates a need for improved descriptions and training. 

Refinements of the Meteorological Knowledge Base of the Systematic Approach were 
made on the basis of the five-year climatology and reproducibility test. These refinements, 
which are summarized in Chapter 4.9, include new transitional mechanisms associated with 
Monsoon Gyre Formation and Dissipation and Reverse-oriented Trough Formation. A new 
conceptual model called Subtropical Ridge Modulation is defined in which superposition of 
a midlatitude trough or ridge may account for an Environment Structure transition. 

To clarify the application to specific situations and to improve the recognition of 
transitions, probabilities or transitions from each Pattern/Region combination are provided 
from the five-year climatology. In addition, guidelines are tabulated for each transition in 
terms of the key indicators in the streamline/isotach analysis, satellite imagery, and track 
changes. 
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1. Introduction 

In a previous technical report, Carr and Elsberry (1994; hereafter CE) introduced the 
concept of a Systematic and Integrated Approach to Tropical Cyclone (TC) Track 
Forecasting, which will hereafter be referred to as the Systematic Approach. In short, the 
objective of the Systematic Approach is to enable the forecaster to formulate an official TC 
track forecast that consistently improves upon the accuracy of numerical and other objective 
TC motion forecast guidance, particularly in the minority of cases where the numerical 
model forecast errors are very large. The central premise of the Systematic Approach is that 
for the forecaster to "add value" to the available track forecast models he/she must have a 
reasonably comprehensive knowledge of how the forecast guidance tends to err in various 
recurring meteorological situations, and a consistent procedure for formulating the official 
track forecast to minimize errors. 

After setting forth the motivation and methodological framework (CE Fig. 2.1) for 
the Systematic Approach, the bulk of CE was devoted to development of a set of conceptual 
models of Environment Structure, TC Structure, and TC-Environment Transformations (CE 
Fig. 2.1 and Tables 3.1-3.3). These conceptual models serve as a meteorological knowledge 
base for TC motion, and provide the underlying dynamical foundation of the Systematic 
Approach. A subsequent technical report will complete the initial introduction of the 
Systematic Approach by developing a second knowledge base of numerical TC forecast 
model traits and objective TC track forecast technique traits organized around the 
meteorological knowledge, and by illustrating the potential practical utility of the complete 
Systematic Approach via several representative case studies. Although such a technical 
report is currently under development, preparation of this interim report seemed desirable 
for the reasons set forth below. 

Many of the dynamical processes and much of the nomenclature associated with the 
conceptual models of the meteorological knowledge base were introduced in CE. During the 
model-by-model development of the knowledge base, the emphasis was on acquainting 
forecasters with the key aspects of each model. No attempt was made to describe the range 
of possible and sometimes subtle ways the models must be applied to a wide variety of 
actual situations. In addition, the conceptual models of Environment Structure and structure 
change via TC-Environment Transformations were illustrated in CE using comparatively 
unambiguous real-world examples that were chosen to highlight a particular conceptual 
model and minimize the role of competing influences. Thus, the format of CE provides a 
somewhat simplified exposition of the meteorological knowledge base to facilitate 
assimilation of the key components by TC forecasters. In particular, CE does not provide 
climatological frequencies of various recurring conceptual model combinations nor a 
comprehensive view of the preferred paths of change among the model combinations. 

Much emphasis was given in CE to developing a number of conceptual models for 
various modes of significant interaction between the circulation of the TC and the 
environment. In these so-called TC-Environment transformation models, the presence of 



a TC may precipitate major changes or "transitions" in Environment Structure1 that in turn 
result in substantial changes in the motion of that TC or other nearby TCs. Owing to space 
constraints, no discussion was included of important situations in which largely TC- 
independent evolutions of Environment Structure are the principal source of major changes 
in TC motion. 

This report addresses the above issues that were not covered in CE. In Chapter 2, 
the results of using the Systematic Approach meteorological knowledge base to characterize 
a large number of TC motion scenarios in the western North Pacific is presented. Analysis 
of the resulting climatology will reveal such important facts as: 

(i) the frequency of various combinations of the Synoptic Patterns and Regions that 
comprise the set of Environment Structure conceptual models, including year-to-year 
and season-to-season variability; 

(ii) characteristic TC tracks associated with particular Pattern/Region combinations; 
and 

(iii) the frequency of Environment Structure transitions between various 
combinations of Synoptic Patterns and Regions, as well as the range of characteristic 
TC track changes arising from the transitions. 

Case studies presented in CE showed particularly distinct transitions in Environment 
Structure, e.g., when the TC-Environment transformation acts robustly and alone. However, 
environment transitions may be precluded, delayed, or terminate with a reversion to a 
previous Pattern/Region owing to competing influences such as concurrent TC-Environment 
transformations or Environmental Structure evolutions largely unrelated to the TC. The 
climatological analysis presented in Chapter 2 will also address the various types and 
frequencies of the recurring transitions. 

Operational utilization of the meteorological knowledge base of the Systematic 
Approach presumes the forecaster will be able to identify the correct Synoptic Pattern and 
Region without the benefit of hindsight that is available to the researcher. The second 
objective of this report is to present in Chapter 3 the results of a "reproducibility test," in 
which three trainees apply the TC-Environment conceptual models and attempt to achieve 
the same classification as one of the developers of the Systematic Approach, who is an 

1 By contrast, most recent basic research into the processes affecting TC motion has 
been organized around the hypothesis that TC motion results from the superposition of: 
(i) a predominant, passive response of the TC to advection by a large-scale environment 
that evolves essentially independently of the TC; and (ii) a second-order propagation of 
the TC relative to that environmental advection. 



experienced forecaster and was permitted to have recourse to hindsight. Such a test provides 
information such as: 

(i) the relative difficulty of discerning various Synoptic Pattern/Region combinations, 
and discerning the type and timing of Environment Structure transitions between 
Patterns and between Regions within a Pattern; 

(ii) ambiguities in the formulation and documentation of the various TC- 
Environment conceptual models when applied to a wide array of real-world 
situations; and 

(iii) deficiencies in the training of the test participants, which need to be corrected 
to improve the utility of the Systematic Approach meteorological knowledge base to 
the operational forecaster. 

The third objective of this report is to present a refined and more comprehensive 
view of the meteorological knowledge base of the Systematic Approach based on the insights 
gained from the climatological analysis and the reproducibility test. Included in this objective 
is the development of some operationally useful tools that will assist the forecaster in better 
understanding and applying the meteorological knowledge base of the Systematic Approach 
to a wide range of TC-Environment situations. The forecaster is first provided the range of 
climatologically recurring "paths" of Environment Structure transitions and associated TC 
track changes. However, the additional modes of Environmental Structure transitions have 
been identified through the climatological analysis in Chapter 2 will be described in Chapter 
4. Case studies similar to those in CE will be provided to familiarize the forecaster with the 
general nature of these other modes of Environment Structure transitions and the associated 
TC track changes. 

The second tool to be introduced in Chapter 5 will be a set of operationally relevant 
flow charts that will equip the forecaster with the ability to ascertain whether the TC- 
Environment situation is in the process of transitioning, and what the most probable 
transition should be given the present TC-Environment situation. Brief summaries will be 
included of the key processes and identifying attributes associated with the various TC- 
Environment structures, changes in those structures, and the underlying transitional 
mechanisms. 



2. Climatology of Synoptic Patterns and Regions 

(Principal Author, M. A. Boothe) 

2.1 Introduction 

The Environment Structure of the tropical western North Pacific tends to resemble 
one of four Synoptic Patterns defined (Table 2-1) in the Systematic and Integrated Approach 
to Tropical Cyclone Track Forecasting (hereafter Systematic Approach) of Carr and 
Elsberry (1994; hereafter CE). In addition, the tropical cyclone (TC) lies in a smaller 
Synoptic Region (Table 2-1) within the Synoptic Pattern, such that the environmental flow 
associated with this Synoptic Pattern/Region detennines the storm's motion. The first 
objective of this chapter is to describe a climatological data base that has been developed 
in terms of the Synoptic Pattern/Region frequency of occurrence based on all western North 
Pacific TCs during 1989-1993. Various TC track characteristics for each Pattern/Region will 
also be presented. This climatological data base provides insights for assigning properly the 
present and future Environment Structure. 

22 Data Base 

L. Carr has examined five years (1989-93) of 12-h Naval Operational Global 
Atmospheric Prediction System (NOGAPS) 500 mb analyses of streamlines and isotachs for 
all dates on which a TC existed in the western North Pacific. Only storms of intensity equal 

Table 2-1. Synoptic Pattern/Region combinations (with abbreviations) that characterize the 
Environment Structure in the Systematic Approach (see descriptions in CE). 

Patterns 

S - Standard 

N - North Oriented 

G - Monsoon Gyre 

M - Multiple TCs 

Regions 

DR - Dominant Ridge 
WR - Weakened Ridge 
AW - Accelerating Westerlies 

NO - North-Oriented 
AW - Accelerating Westerlies 

DR - Dominant Ridge 
NO - North-Oriented 
AW - Accelerating Westerlies 

NF - Northerly Flow 
SF - Southerly Flow 



to or exceeding 25 kt (12 m s"1) have been included in the data base. Synoptic 
Pattern/Region assignments have been made for each storm based on the NOGAPS 
analyses, visible and infrared satellite imagery, and the complete storm track. That is, L. 
Carr had the benefit of both the past and the future motion to ensure that these 
Pattern/Region assignments could serve as the best possible standard or benchmark for a 
"reproducibility test" to be described in Chapter 3. A total of 166 storms during the five 
years results in 2485 Pattern/Region assignments that constitute this climatological data 
base. When multiple storms exist, separate Pattern/Region assignments are made for each 
storm. 

Evaluation of NOGAPS analyses has been limited to the 500 mb level (vice the 
optimum steering level for the TC intensity as recommended in CE) because only that level 
was immediately available for the entire 5-year period in the Naval Postgraduate School 
archives. This decision made it difficult to make an unambiguous Pattern/Region 
assignment on the basis of the NOGAPS analysis alone in a few situations involving weak 
TCs near the subtropical ridge axis or near other TCs. However, knowledge of the 
subsequent motion of the TC permitted a resolution of such ambiguities. For example, a 
situation involving a weak TC that is just equatorward of a thin subtropical ridge, which 
might be characterized equally well as S/DR or S/WR given only the 500 mb analysis, 
would be readily described as S/DR if the TC track over the next 12 h was west-northwest 
at a steady 10-12 kt (as opposed to a slowing and turn toward the north). 

Changes in the TC Environment Structure may occur either due to large-scale forcing 
or owing to interactions with the TC. During such transitions, the Environment Structure 
has features of both the original Pattern/Region as well as the one toward which it is 
changing. These transitional situations have been recorded by assigning two Patterns and 
two Regions, with the original Pattern/Region always recorded first until the transition is 
complete. 

2.3 Pattern and Region Frequencies 

The first question to be addressed is: "For any given time, what are the odds that 
a TC will be in a particular Pattern/Region?" The resulting climatology is obtained by 
counting each of the 2485 map time assignments as one occurrence of the particular 
Pattern/Region. For transitional (dual assignment) situations, each Pattern/Region is 
counted as one half, so that the total number of cases remains as 2485. 

2.3.1 Pattern Frequency 

The cumulative frequency of TCs existing in the four Synoptic Patterns is shown in 
Fig. 2.1a. The Standard (S) Synoptic Pattern, which is characterized by a strong generally 
east-west oriented subtropical ridge with trade wind easterlies and monsoon (or near- 
equatorial) trough equatorward, is the most prevalent (58%) Pattern. This seemingly high 
percentage is not surprising when it is realized that TCs in the S/DR Pattern/Region can 
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Fig. 2.1  Climatology of (a) Synoptic Patterns and (b) Synoptic Regions during 1989-1993 
in the western North Pacific. 



remain equatorward of the subtropical ridge all their lives and produce long straight-running 
tracks. In 27% of the 2485 cases, the TC is in a north-oriented (N) Pattern with ridging east 
of the storm, which then places the TC in a southerly environmental flow. Cases in which 
the TC is under the influence of a monsoon gyre (G) or multiple (M) TCs represent only 
11% and 4%, respectively, of the five-year sample. 

2.3.2 Region Frequency 

Tracks of TCs in different Synoptic Patterns are expected to differ because the large- 
scale environment flows are different. However, each Synoptic Pattern has two or three 
associated subareas that are called Synoptic Regions (see CE). Three of these Synoptic 
Regions are used in more than one Synoptic Pattern because similar flows exist within these 
smaller areas. For example, the Dominant Ridge (DR) Region is characterized by easterly 
flow south of the strong subtropical ridge in the Standard (S) Pattern or is located northwest 
of the gyre in the Gyre (G) Pattern. The DR Region comprises over half (54%) of all 
classifications (Fig. 2.1b). The second most common (24%) Synoptic Region is the North- 
Oriented (NO), which exists in the N and G Patterns. A TC may also move northward 
within the S pattern as it is recurving around the subtropical ridge in the Weakened Ridge 
(WR) Region, which is a relatively small subarea of only the S Pattern. The small area of 
the WR Region means that the recurving TC will spend little time in this region, which is 
indicated in Fig. 2.1b by the small number of cases (4%). Although the Accelerating 
Westerlies (AW) Region exists in three of the four Synoptic Patterns, TCs are generally 
moving rapidly in the AW Region and thus constitute only 14% of the cases. In addition, 
these TCs are often sheared apart and quickly dissipate. Finally, the M Pattern northerly 
flow (NF) and southerly flow (SF) Regions each contribute about 2% of the cases, and thus 
are rather rare events. 

2.3.3 Pattern/Region Frequency 

Although flows in similar Synoptic Regions of different Synoptic Patterns will be 
similar, the storm tracks may be slightly different because of the different large-scale 
environmental forcing. For example, the environmental flow in both S/DR and G/DR is 
essentially easterly. However, the presence of the gyre to the southeast in the G/DR 
Pattern/Region may tend to drive TCs slightly toward the southwest. Hence, a census of 
specific Pattern/Region combinations (Fig. 2.2) is necessary. 

The S/DR combination is the most frequent at 50.8%, N/NO has the second highest 
frequency at 17.5%, and all others are less than 10%. It is somewhat surprising that a larger 
(9.4%) percentage of cases in the Accelerating Westerlies (AW) Region are associated with 
a North-Oriented (N) Pattern, rather than as S/AW in the S Pattern in a typical recurvature 
sequence. One explanation is that although Environment Structure may start out Standard, 
the TC modifies it to the N Pattern so that it ends up moving into the N/AW rather than 
the S/AW combination. However, rarely does the Environment Structure change such that 
a TC initially in a N Pattern eventually reaches the midlatitudes by entering the S/AW 
combination. Another explanation might be that those TCs in the S/AW are moving more 
rapidly (and thus contribute fewer cases) than in the N/AW Region. 



North Oriented 

Monsoon 
Gyre 

Fig. 2.2 Climatology of Synoptic Pattern/Region combinations in the western North Pacific 
during 1989-1993. 

In the monsoon gyre (G) Pattern, most of the cases (6.1% of overall sample) are 
tracking northward in the NO Region. Then 3.2% cases are found in the G/DR Region, 
in which the TC has rotated around to the northern portion of the gyre and is moving 
generally westward. Only 1.6% of the sample are in the G/AW Region in which the TC 
is likely to dissipate or move rapidly out of the domain. Because of the different lengths 
of time that the TCs continue to exist, the percentages in G/DR versus G/AW does not 
indicate the fractions of storms that continue around the monsoon gyre versus escape into 
the westerlies. 
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Table 2-2 (a) Number of times (regardless of duration) the storms are in the Synoptic 
Pattern/Region without counting transitions. Number of storms that were in the 
Pattern/Region combination (b) excluding and (c) including dual assignments. 

166 TCs 
S/DR 158 38.1 
S/WR 33 8 
S/AW 22 5.3 
N/NO 81 19.5 
N/AW 47 11.3 
G/NO 30 7.2 
G/DR 14 3.4 
G/AW 11 2.7 
M/NF 9 2.2 
M/SF 10 2.4 

415 

S/DR 138 83.1 
S/WR 31 18.7 
S/AW 22 13.3 
N/NO 79 47.6 
N/AW 47 28.3 
G/NO 30 18.1 
G/DR 14 8.4 
G/AW 11 6.6 
M/NF 9 5.4 
M/SF 10 6 

166 TCs 

391 

S/DR 142 85.5 
S/WR 36 21.7 
S/AW 23 13.9 
N/NO 94 56.6 
N/AW 55 33.1 
G/NO 30 18.1 
G/DR 15 9 
G/AW 12 7.2 
M/NF 11 6.6 
M/SF 17 10.2 

435 

Simple percentages of the overall sample of assignments do not take into account 
that TCs spend different lengths of time in each Pattern/Region because each combination 
has a different areal extent, TCs travel at different speeds in each Pattern/Region, and some 
synoptic situations are self-destructive. Hence, Synoptic Pattern/Region combinations that 
occur frequently, but last for only a short time, may be under-represented. In this five-year 
data base of 166 storms, 415 separate Pattern/Region assignments were made (Table 2-2a), 
regardless of the length of time spent in the Pattern/Region. Some assignments persist for 
over a week, as in the case of long straight runners, and others exist for just one map time 
(12 h). In Table 2-2a, each of these situations is counted as a single Pattern/Region 
occurrence. Compared with the count of each analysis time in Fig. 2.2, S/DR has a large 
reduction from 50.8% of all maps down to 38.1% of the occurrences. The other nine 
Pattern/Region combinations all have increased frequencies, particularly the S/WR, which 
rises from 4.0% to 8.0%. In both analysis counts and occurrences, the S/DR, N/NO, and 
N/AW are the most common Pattern/Region combinations. 

Another useful question may be: "How many storms experience each Pattern/Region 
combination?" (Table 2-2b). Of the 166 storms in the five-year database, a large majority 
(138 or 83.1%) lie in the S/DR Pattern/Region at some point in their lives. Almost half 
(47.6%) of all storms are in N/NO at some time. If dual assignment cases in which the 
storm does not complete a transition to the Pattern/Region are also considered, then the 
count in every Pattern/Region either rises (e.g., S/DR increases to 142 or 85.5%) or 
remains the same (Table 2-2c). 

2.3.4 Seasonal Variations 

As the large-scale environment changes with the seasons, the Synoptic Pattern 
classifications (based upon the original method of counting each map time) also have 



seasonal trends (Fig. 2.3a). For this five-year period, TCs are observed in every month 
except February. Whereas storms exist in either the S or the N Patterns throughout the 
year, the G and M Patterns tend to be confined to limited periods. The N Pattern exhibits 
a nearly Gaussian distribution for much of the year with a maximum in late August/early 
September. Whereas the S Pattern tends to have a similar distribution, a relative minimum 
clearly exists in September (and perhaps into October), with another late season maximum 
in November. The monsoon gyre (G) Pattern is only observed from June to November 
during this five-year period, and the frequency distribution is near-Gaussian with a maximum 
in August. Although multiple (M) storm Pattern cases exist from April to December, the 
number of cases is so small that the seasonal distribution is not well defined. 

During January-May, the ratio of S to N Pattern classifications remains nearly 
constant, with the S Pattern roughly four times as likely as N (Fig. 2.3b). Presumably, it is 
the maxima of the G and N Patterns in August and September respectively, that leads to 
the relative minimum in S during that period. Again, the different lengths of time that a 
TC persists in each Pattern makes the interpretation less certain. 

2.4 Tracks 

Summaries of TC tracks in each Pattern/Region are used to illustrate some dramatic 
differences in motion, which emphasize the importance of assigning accurately the 
Environment Structure in the Systematic Approach. The S Pattern tracks (Fig. 2.4) are 
generally as expected. Long, generally east-to-west tracks in the trade wind easterlies are 
associated with the S/DR combination (Fig. 2.4c). A few tracks in the S/DR combination 
do have southward motion that is likely caused by an indirect influence of a nearby TC. 
Short northward tracks are associated with the S/WR combination as TCs move through the 
ridge (Fig. 2.4b), and then accelerate toward the northeast into the midlatitude westerlies 
in the S/AW combination (Fig. 2.4a). 

The ridge to the southeast of the TCs in the N (here the Nl and N2 Synoptic 
Patterns of CE have been combined) Pattern causes early (low latitude) recurvature <of 
mature storms or initial northward motion of developing storms (Fig. 2.5b). These TCs are 
often still far south of midlatitude westerlies when they enter the N/NO combination. The 
ridging associated with Rossby wave dispersion in a TC also tends to follow the TC as it 
travels north, which causes the poleward motion to persist and retards the development of 
eastward motion. Hence, TCs in N/NO (Fig. 2.5b) have longer tracks than those moving 
through subtropical ridge breaks in S/WR (Fig. 2.4b). Also, the more complicated 
interaction between a TC and the ridging in N/NO can cause sinusoidal "S" tracks as in Fig. 
2.5b. 
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Fig. 2.3   Monthly (a) occurrences and (b) percent frequency of the Synoptic Patterns in 
western North Pacific TCs during 1989-1993. 
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Fig. 2.4 Storm tracks during 1989-1993 while the storm is in the Standard Pattern and the 
(a) Accelerating Westerlies, (b) Weakened Ridge, and (c) Dominant Ridge Regions. 
Periods of dual assignments are omitted. 

12 



«0° N 

40° N 

30" N 

20   N 

40° N 

30   N 

20   N 

N/AW 
ACCELERATING 
WESTERLIES 

a                               y 
vO               -^j..„ 

®^^^yvW' 

.jJ/~J.  

\j^P       ^     \j-y 

^^^^^^^...^ 
■——•  

( r           /    i^y/ 
/                \  //s^            •   s^<             / 

^rJyT •                        •                        : 

*• 

10   N 

180   E 170   E 

Fig. 2.5   Storm tracks as in Fig. 2.4, except in the North-oriented Pattern and the (a) 
Accelerating Westerlies and (b) North-oriented Regions. 
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Most tracks in the G/NO combination have cyclonically curved paths as the TCs 
form and move counterclockwise around the east side of a monsoon gyre (Fig. 2.6c). A 
bifurcation often occurs as the storm in the G/NO combination moves poleward. If the 
storm is able to break through a weakness in the subtropical ridge, recurvature occurs and 
the storm makes the transition into the G/AW combination (Fig. 2.6a). If the TC does not 
break through the subtropical ridge and the gyre persists, the TC will move westward into 
the G/DR combination (Fig. 2.6b). Under the influence of the subtropical ridge to the 
NNW and the monsoon gyre to the SE, these TCs may have a long track toward the west 
or even WSW. 

Although few in number, the tracks of TCs in the M Pattern are also consistent (Fig. 
2.7). Northward propagation of the western TC in the M/NF Pattern/Region is retarded 
enough by the northerly flow between the ridge to the west and the eastern TC to give the 
western TC a southward component of motion (Fig. 2.7b). Conversely, TCs in the M/SF 
Region have a northward component of motion (Fig. 2.7a). Although not illustrated here, 
these storms tend to approach recurvature without slowing down as in the typical situation. 

2.5 Transitions 

Tracks of storms that remain in a particular Pattern/Region are expected to have 
persistent paths until an Environment Structure transition occurs. Thus, the greatest 
challenge for a forecaster is to recognize when the Environment Structure will change, which 
is then expected to lead to a significant track deviation from a persistence forecast (e.g., 
differences in tracks in Figs. 2.4 - 2.7). Transitions of Environment Structure occur as a 
result of transitional mechanisms (see CE Fig. 3.4 and related discussion) in three 
categories: (i) TC-Environment transformations (CE Table 3-3); (ii) changes in 
Environment Structure that do not principally depend on the presence of the TC; and (iii) 
simple advection of the TC through (and/or out of) some Synoptic Patterns by the 
environment steering. 

Based on this 5-year sample, each Environment Structure transition is associated with 
one or more1 of the transitional mechanisms that are shown in Fig. 2.8. The definitions of 
the transition mechanism acronyms are shown in Table 2-3. Notice that more than one 
transitional mechanism is listed for some transition paths in Fig. 2.8. For example, either 
a Beta Effect Propagation (BEP) or a Subtropical Ridge Modification (SRM) may cause the 
same transitional effects from S/DR to S/WR to S/AW. The N/NO to S/DR transition 
may occur from Tropical Cyclone Interaction (TCI4), a Vertical Wind Shear (VWS) 
situation, or from the SRM effect. In both these examples, midlatitude waves modify the 

1 Although these assessments were carefully based on the dynamical concepts, case 
studies, and transformation indicators (see CE p. 178-183), subjectivity in making some 
of these assessments is acknowledged. 
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Fig. 2.6   Storm tracks as in Fig. 2.4, except in the monsoon gyre Pattern and the (a) 
Accelerating Westerlies, (b) Dominant Ridge, and (c) North-oriented Regions. 
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Fig. 2.7   Storm tracks as in Fig. 2.4, except in the multiple storm Pattern and the (a) 
Southerly Flow, and (b) Northerly Flow Regions. 
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Figure 2.8 Transition mechanisms (see Table 2-3 for definitions of acronyms) between 
Synoptic Pattern/Regions defined in Table 2.1. The solid (dashed) transitions have (have 
not) been previously described by CE (see text). 

Table 2-3 Definitions of the transitional mechanism acronyms appearing in Fig. 2.8. 

Transitional Mechanisms Nomenclature 

Acronym Meaning Applicable CE transition schematic 

BEP Beta Effect Propagation Fig. 3.38 

vws Vertical Wind Shear Fig. 3.46 

RMT Ridge Modification by a "Large" TC Fig. 3.52 

MTI Monsoon Gyre-TC Interaction Fig. 3.68 

TCI1 Formation of a M Pattern Fig. 3.77 

TCI4 Weakening of another TC's 
Beta-induced ridging 

not illustrated 

ADV Advection by Pattern Steering Flow Fig. 3.52, 3.68, 3.77 

RTF Reverse-oriented Trough Formation not illustrated 

MGF Monsoon Gyre Formation not illustrated 

MGD Monsoon Gyre Dissipation not illustrated 

SRM Subtropical Ridge Modulation by 
Midlatitude Waves 

not illustrated 
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subtropical ridge circulation and thus influence TC recurvature or non-recurvature. This 
SRM transitional mechanism will be described in more detail in Chapter 4. 

Although a majority of the transition paths (solid arrows) in Fig. 2.8 have been 
discussed and illustrated in CE (see their Figs. 3.38, 3.46, 3.52, 3.68, and 3.77), a minority 
of transitions (dashed arrows in Fig. 2.8) have not been discussed in CE. In some situations, 
one of the previously discussed transitional mechanisms is found to precipitate another 
transition. Examples of this category include: (i) N/NO-S/DR transitions in response to 
the VWS TC-Environment transformation, which CE had previously associated only with 
the S/WR-S/DR transition; (ii) N/NO-S/DR transitions in response to the TC14 
transformation, which CE had previously viewed to be only an inhibitor of the S/DR-N/NO 
transition; and (iii) the transitions from the M Pattern in response to a Reverse-oriented 
Trough Formation (RTF), which will be shown in Chapter 4 to be a variation of the RMT- 
TC Environment transformation. A second (new) category of transition paths involve 
Monsoon Gyre Formation (MGF) or Monsoon Gyre Dissipation (MGD). The MGF 
transition simply reflects that a TC may form concomitantly with the MG, rather than 
forming after the MG is already well developed, which is the only scenario implied in the 
CE Fig. 3.12 and associated discussion. Similarly, it was found in the five-year sample that 
a MG may dissipate independent of the TC. More discussion of these variations of the 
transitional mechanisms in Fig. 2.8 will be given in Chapter 4. 

The number of occurrences of "recurring" transitions between the ten Pattern/Region 
combinations, and the number of storms that never experience a transition, during the five- 
year period are shown in Fig. 2.9. A total of 248 "complete" transitions occur. Here, the 
term "complete" is used to exclude those periods of dual Synoptic Pattern/Region 
assignments in which it appears a transition is approaching, but an actual change of either 
the Region, or the Pattern, or both does not occur. The term "recurring" implies that such 
a transition occurs more than once. Considering only recurring transitions reduces the 
number of transitions only slightly to 239, which is 96% of the total. Notice that the number 
of transitions entering a Pattern/Region does not necessarily equal those that are exiting. 
This difference is because TCs can develop or dissipate within any one of the ten 
Pattern/Region combinations. Examples of cases that undergo some of the newly defined 
transitions (shown by the dashed arrows in Fig. 2.9) will be described in Chapter 4. 

As indicated by the numbers in Table 2-2a, most TCs have at least one transition 
from one Pattern/Region combination to another during their lifetimes. That is, 415 
separate Pattern/Region assignments are made for only 166 storms. Of the 166 storms in 
the data base, only 43 (26%) remained in just one Pattern/Region while above 25 kt 
intensity. These TCs are depicted in Fig. 2.9 by numbers within the Pattern/Region circle. 
Most (39) of these cases were straight-runners in the S/DR Region in which the storms 
remained in the trade wind easterlies equatorward of a persistent subtropical ridge. The 
other four cases were all weak, short-lived storms (1.5 - 2 days). Three of these made 
cyclonic turns around the east side of monsoon gyres in the G/NO Region, while the fourth 
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Fig. 2.9 Recurring (i.e., more than one occurrence) transitions between Synoptic 
Pattern/Regions for intensity _>_ 25 kt. Number within each circle indicates storm remained 
in that Pattern/Region throughout the life cycle. The total number of transitions is 239. 
Solid transition lines are those discussed in CE, and dashed transition lines have not been 
previously discussed. 

intensified to 25 kt (12 m s"1) upon entering the G/DR Region from the G/NO Region and 
persisted there for the remaining two days with an intensity equal to or greater than 25 kt. 

An example of a series of transitions in which a TC remains within the same Synoptic 
Pattern is a typical recurvature case (S/DR -> S/WR --> S/AW). A TC propagates from 
the DR Region to the WR Region in a poleward transition relatively often (28: 11.7% of 
239 total; 30.8% of 91 leaving S/DR). TCs that continue to recurve then move into the AW 
Region (18: 7.5% of 239 total; 66.7% leaving S/WR). However, a ridge sometimes builds 
in the midlatitudes north of a TC in the WR Region that inhibits its recurvature into the 
westerlies (the SRM transition in Fig. 2.8). The TC may then be forced south and re-enter 
the DR Region, which results in a "stair-step" track. Such a process accounts for four of the 
nine S/WR- > S/DR "return" transitions. Three of the remaining five return transitions also 
made stair-step tracks due to vertical wind shear caused by late season northeasterly low- 
level flow (the VWS transition in Fig. 2.8). The remaining two return transitions originate 
in Nl/AW, and they are discussed below. 
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The most common (42: 17.6% of 239; 46.2% leaving S/DR) transition that a TC 
makes from S/DR is into N/NO, which is a change of the entire Synoptic Pattern. Most 
(32 of 42) of these transitions involve a RMT transformation in which the TC is the 
controlling factor, in that the TC modifies its environment enough to change the Synoptic 
Pattern. Hence, more storms tend to recurve into N/AW (45: 18.8% of 239; 66.2% leaving 
N/NO) via this TC-Environment transformation as opposed to passing around the ridge as 
in the typical recurvature scenario (S/DR -- > S/WR - > S/AW). 

Although the most frequent transition from the N/NO combination is to N/AW, a 
TC moving northward in N/NO is not a guarantee that it will transition into the N/AW 
combination. A relatively large fraction of cases (20: 8.4% of 239; 29.4% leaving N/NO) 
actually return to the S/DR combination. This is another example of a transition not 
described in CE that led to the inclusion of dashed lines in Fig. 2.8. If a TC enters N/NO 
at a low latitude, the Environment Structure may change substantially before the TC reaches 
the accelerating westerlies. Half of these 20 returns to S/DR occur when the peripheral 
southeastern ridge, which was strong enough to force the storm northward at low latitudes, 
becomes weaker relative to the subtropical ridge. Consequently, the TC track turns 
westward as the dominant flow becomes the easterlies south of the stronger ridge. Eight 
of the remaining returns from N/NO to S/DR are caused by another TC via the TCI4 
transformation (another new transition; see Fig. 2.8) in which the second storm to the east 
weakens the peripheral ridge to the southeast of the first TC. The remaining two cases 
involve off-season storms in which vertical wind shear (VWS) results in a lower steering 
level and the TC turns westward or even southwestward under the influence of the lower 
tropospheric subtropical ridge. 

The most frequent transition from G/NO is to G/AW (11: 4.6% of 239; 42.3% 
leaving G/NO) in which the TC moves poleward out of the gyre. The more frequent 
transitions to G/AW versus to G/DR in Fig. 2.9 may seem to be inconsistent with the 
smaller number of G/AW combinations versus G/DR in Fig. 2.2. However, this difference 
in numbers of analyses is related to the longer persistence times in G/DR, whereas the 
storms in G/AW tend to dissipate. If the transition from G/NO is considered to be a 
bifurcation between a poleward or a westward track, it is significant that the transition to 
G/AW is almost three times as likely as a transition to G/DR. The second most frequent 
transition from G/NO is to the N/NO combination, which does not involve a significant 
track change, since both combinations have poleward tracks. In these eight cases (3.3% of 
239; 30.8% leaving G/NO), the transition to a N Pattern occurs as the gyre and the TC 
circulations combine. Seven of these transitions involve a MTI transformation, which is a 
merger of the TC and gyre. Although much less common (4: 1.7% of 239; 15.4% leaving 
G/NO), the third most frequent G/NO transition is to the G/DR combination in which the 
TC rotates around to the western side of the gyre and into easterlies. A similar transition 
from G/NO to a westward track in the S/DR combination occurs in three cases (1.3% of 
total; 11.5% leaving G/NO. In this scenario, the gyre dissipates (labelled as MGD in Fig. 
2.8) and leaves the TC in the easterly flow of the S/DR combination. 
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Finally, a TC in the G/DR combination within easterly flow to the northwest of a 
gyre may or may not escape the gyre circulation. Gyres may intensify or move westward 
with the TG For example, the transition involving a MTI transformation to N/NO, in which 
the gyre to the east coalesces with the TC, is more common (7: 2.9% of total; 63.6% 
leaving G/DR) than the scenario in which the TC simply advects westward away from the 
gyre and into S/DR (4: 1.7% of total; 36.4% leaving G/DR). 

TCs enter the G Pattern via only two scenarios. The more common (5: 2.1% of 239; 
62.5% entering G/NO) scenario involves a TC that transitions from S/DR via advection 
into the eastern edge of a preexisting or developing gyre (G/NO). This transition often 
occurs when the TC is weak and the adjacent gyre circulation is strong enough to influence 
the TC. Recall that this data base only includes TCs with an intensity of at least 25 kt. For 
TCs of intensity less than 25 kt, the S/DR - > G/NO transition is the most common (9). 
Therefore, the S/DR - > G/NO transition is actually more common than Fig. 2.8 implies, 
and the forecaster must anticipate such a transition early in a TC life cycle. The less 
common (3 cases: 1.3% of total; 37.5% entering G/NO) transition into the G Pattern occurs 
when a strong gyre develops (labelled as MGF in Fig. 2.8) to the west of a TC in the N/NO 
combination, and the southerly flow on the gyre's eastern edge becomes the steering for the 
TC. Only subtle changes in track would be anticipated since the Regions remain as NO. 

An Environment Structure change to the Multiple (M) Pattern originates from only 
the S/DR Pattern/Region. All six (2.5% of total; 6.6% leaving S/DR) transitions to M/NF, 
and all ten (4.2% of total; 11.0% leaving S/DR) transitions to M/SF, involve a storm 
originally in S/DR. Storms in either M/NF or M/SF can undergo the transition to N/NO 
(three cases each) if the two closely positioned storms produce enough RMT-type ridging 
to the southeast to change to the N Synoptic Pattern, which is referred to as RTF in Fig. 
2.8. Another transition occurs when the eastern TC, which is located in southerly flow 
between the western TC and the subtropical ridge to the northeast, is accelerated directly 
into S/AW (4 cases: 1.7% of total; 57.1% leaving M/SF). As the two storms separate, the 
western TC in M/NF typically (3 cases, 1.3% of total) returns to S/DR. 

Finally, storms that move into an Accelerating Westerlies (AW) Region rarely return 
to another Pattern/Region. The common scenario is the TC is adverted quickly away and 
dissipates. Of the 78 cases that enter the three AW Regions, only three (1.3% of total; 
3.8% from AW) return. These three cases involve weak storms that enter the AW of a 
weakening reverse-oriented monsoon trough N Pattern at a relatively low latitude. The 
subtropical ridge builds to the north (labelled as SRM in Fig. 2.8) of the TC, and the TC 
transitions to S/WR, and in two cases a further transition to S/DR occurs. However, such 
cases are rare, and the vast majority of storms in AW move into the midlatitudes and 
dissipate. 
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3. Reproducibility Test 

(Primary authors: Sean White and Chris Kent) 

3.1 Introduction 

The Synoptic Patterns and Regions developed in the Systematic Approach of Can 
and Elsberry (1994; hereafter CE) were the focus of this reproducibility test. The primary 
goal of conducting this reproducibility test was to ascertain whether trainees could determine 
the correct Synoptic Patterns/Regions listed in Table 2-1, because correct identification of 
these Patterns/Regions is an essential step in the application of the Systematic Approach. 
Another objective was that a study of the incorrect identifications by the trainees would 
highlight deficiencies in the descriptions of the Patterns/Regions or in the training phase 
of the program. That is, trainee misconceptions, difficulty in identifying Patterns/Regions, 
and misclassifications based on the conceptual models were anticipated, and do not 
necessarily indicate the knowledge base of the Systematic Approach is flawed. Rather, it 
may simply indicate deficiencies in the descriptions of the conceptual model(s), or in the 
training phase. 

3.2 Training 

The three trainees had no previous tropical cyclone forecast experience. Their 
instruction in the Systematic Approach was to first read a draft version of CE. After each 
assigned reading, discussions were conducted to ensure the trainees possessed a thorough 
understanding of the material. Feedback and questions from the trainees contributed to 
improvements in the descriptions in the final version of CE. Also, some training aids were 
introduced and flow charts (discussed later) were produced through this training phase that 
emphasized the salient points of and interrelationships among the Synoptic 
Patterns/Regions. 

The second phase of the training began with some relatively easy storms from 1989, 
and the trainees were allowed to work together to apply the conceptual models of the 
Systematic Approach. Upon completion, a detailed debrief was conducted with the 
instructor that reinforced the principles. The trainees then moved on to another set of 1989 
cases where they worked independently. This second set of cases was to establish whether 
the trainees were adequately trained to proceed with the reproducibility test. Again, an 
extensive debrief was conducted to intercompare Pattern/Region assignments, and where 
differences existed, to review each individual's reasoning. After this second set of cases was 
completed, a determination was made to proceed to the actual reproducibility test. 

33 Reproducibility Test of Pattern/Region Assignments 

Trainees were presented with operational 500 mb analyses from Fleet Numerical 
Meteorology and Oceanography Center (FNMOC). On these charts, the warning and 
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past 12-, 24-, and 36-h positions, translation speeds, and intensities had been plotted (Fig 
3.1). Geostationary satellite infrared (IR) imagery was also provided twice a day (but no 
animation was provided as would be available in an operational center). The primary 
purposes of the satellite imagery were to establish the position of the TC in the synoptic 
circulation (monsoon gyre, reverse-oriented monsoon trough, etc) and to make a rough 
estimate of the TC size from the overall cloud shield. 

Some special circumstances of this reproducibility test make it a "lower bound" of 
what might be expected from a training program for forecasters. As noted above two of 
these trainees have no operational forecasting experience, and the third trainee'has no 
tropical cyclone forecasting experience. On the one hand, these trainees were provided a 
single storm at a time in an isolated work environment, so they did not have the pressures 
of real-time operations. On the other hand, the trainees individually made their Synoptic 
Pattern/Region assignments (and were not allowed to go back and change an assignment 
when new evidence appeared), so they did not have the benefit of feedback from other 
forecasters or a lead forecaster as in a "team" operation. 

1flnn ,
The testwasfor all western North Pacific tropical cyclones from June-October during 

1990 (except August-September), 1991 (except July), 1992, and 1993. This reprodudbility 
test consists of only a subset of the five-year period (1989-1993) involved in the 
climatological summary of the Synoptic Pattern/Region assignments described in Chapter 
2. Each of the three trainees generally proceeded chronologically from the 1990 cases 
through to the 1993 cases. The experience gained by each trainee might show improvement 
m their overall ability to assign correct Synoptic Patterns/Regions as the test continued 
However, the entire sample of four years was completed with no feedback on intermediate 
years. 

The identifications made by each trainee were compared to the assignments by an 
experienced forecaster (L. Carr) who is the principal author of the Systematic Approach 
In addition to having personally forecast many of these storms, L. Carr also had the benefit 
of the complete storm track, the entire set of satellite imagery, and future analyses. Thus 
he had the benefit of hindsight that the trainees were not allowed. Consequently L Carr's 
assignments of the Synoptic Pattern/Region are considered to be the " benchmaVk." 

First, the methods utilized in determining the number of correct identifications will 
be examined. Various measures of reproducibility will be examined, and interpretations of 
the scores will be provided. Finally, these results will be discussed with a view towards 
producing improved training materials and the "fine tuning" of the conceptual models 
presented m the Systematic Approach. 
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Fig. 3.1 Example of 500 mb streamline and isotach (10 kt interval; light shading > 30 kt, 
and heavy shading > 50 kt) analysis with present (dot) and past 12-, 24-, and 36-h storm 
positions. 

24 



3.3.1 Method of Scoring. The first goal of the reproducibility test is to assess how 
successfully each trainee identified the Synoptic Patterns, the Synoptic Regions, and then 
the combined Pattern/Region. This section contains a description of the methods utilized 
in assigning either correct or incorrect Pattern/Region identifications by the trainees. 

The Synoptic Pattern/Region combinations possible under the Systematic Approach 
and their associated abbreviations are listed in Table 2-1. Descriptions of these Patterns 
and Regions are given in CE. In particular, notice in Table 2-1 that the N Pattern is a 
combination of the Nl and the N2 Patterns of CE. The reasons for this combination based 
on this reproducibility test are given below. 

Hypothetical examples of the classifications of the Synoptic Patterns/Regions by the 
experienced forecaster (henceforth the benchmark) and by a trainee are shown in Table 3-1. 
While not actual classifications for a particular storm, the classifications are created to 
provide an example of the number of possible combinations. Each successive line is 
numbered (1-5) to provide easy reference and counts as either correct or incorrect. 

Notice in Table 3-1 that two Pattern/Region assignments are given for entries 3-5. 
Such a dual assignment indicates that some aspects of both Patterns/Regions are present. 
This commonly occurs prior to a transition from one Pattern to another Pattern or from one 
Region to another Region within the same Pattern. Whereas it may seem to be more 
desirable to force a single Pattern/Region assignment, such dual assignments recognize that 
the Tropical Cyclone (TC)-Environment Structure is a continuum (see CE). Furthermore, 
potential inaccuracies in TC positions or in the FNMOC analyses make it desirable to allow 
for some ambiguity in the specifications of the Pattern/Region. 

An important distinction is made here relative to the procedure in Chapter 2, where 
the climatology data base counts line 3 of Table 3-1 as an "occurrence" by assigning 0.5 for 
both the S and the N Patterns, an "occurrence" of 0.5 for both the DR and the NO Regions, 

Table 3-1. Five examples of possible assignments of Synoptic Pattern (first letter; see 
symbol definitions in Table 2-1) /Region (second letter) for benchmark (L. Carr) and a 
trainee. These fields are created only to serve as an example of possible combinations of 
benchmark and trainee assignments. 

Benchmark Trainee 

1. S/DR S/DR 
2. S/DR S/DR 
3. S/DR N/NO S/DR 
4. S/DR N/NO N/NO 
5. N/NO S/DR G/NO S/DR 
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and 0.5 for both the S/DR and the N/NO Pattern/Region combinations. However, such 
an equal handling of the dual Pattern/Region assignments is not necessarily appropriate for 
scoring in the reproducibility test. The interpretation of dual assignments by L. Carr and 
the trainees was not the same (this aspect was not anticipated so a common interpretation 
was not established prior to the reproducibility test; it is recommended that a standard 
procedure should be addressed by an operational center), which caused some difficulty in 
adopting a scoring system. L. Carr's interpretation was that the order of the letters should 
imply the likely direction of the transition, rather than implying that the environment 
structure conformed better to the first letter listed. Unfortunately, each of the trainees had 
a different interpretation, or did not utilize the dual assignments with the same intent. 
Whereas one trainee felt that a clear (single) designation of the Pattern/Region was 
required (or at least highly desirable), another trainee frequently utilized dual assignments 
(and thus might be viewed as "gaming" the scoring system). The third trainee was 
intermediate between these extremes. 

Given the desire for a binary scoring scheme (correct = 1 and incorrect=0), the dual 
Pattern/Region assignments introduce an arbitrariness into the scoring. Consider first only 
the Pattern (first letter) assignments in the examples in Table 3-1. Three criteria are used 
in the scoring system: 

i) assigning correct (score = 1) when the trainee Pattern assignment is the same as 
the single benchmark assignment as shown in lines 1 and 2, or if the trainee Pattern 
assignment agrees with the first of the dual benchmark assignments as shown in line 
3; 

ii) assigning correct (score = 1) if the trainee Pattern assignment agrees with either 
the first or second dual benchmark assignments, as shown in line 4; and 

iii) assigning correct (score=1) if the first or second trainee Pattern assignments 
agrees with either of the dual benchmark assignments, as shown in line 5. 

The Region and Pattern/Region scoring also utilized the same three criteria as illustrated 
above for scoring the Pattern assignments. Each of these three criteria (i-iii), in the order 
listed, provides more leeway in determining correct assignments. For example, criteria i) 
allows for a correct assignment without considering a dual assignment by either the 
benchmark or the trainee, whereas criteria ii) and iii) allow for a correct assignment while 
considering dual assignments by both benchmark and trainee. 

Although the scoring was initially conducted considering only Pattern/Region 
combinations under criteria i), subsequent scoring utilized criteria ii) and iii). Thus, a 
somewhat liberal scoring system was adopted in view of the lack of an agreed practice or 
interpretation of dual assignments prior to the beginning of the reproducibility test. Also, 
when the scoring methods outlined by criteria ii) and iii) were used, the Pattern/Region 
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combinations were subdivided into Pattern only, Region only, and Pattern/Region scores, 
which results in three different measures of reproducibility. 

The analysis of assignment differences between the benchmark and the trainees 
immediately revealed a difference in interpretations of the Nl and N2 Synoptic Patterns. 
The key difference is the size of the TC and thus whether the ridging to the east and 
equatorward of the TC will tend to translate poleward with the TC and delay recurvature 
(see CE). That is, the sometimes subtle distinctions between the Nl and the N2 Patterns 
caused the trainees considerable difficulties. In fact, one trainee systematically reversed the 
assignments of the Nl and N2 Patterns. Upon examination of the training materials, the 
definitions provided the trainees, and the realization that only subtle differences exist 
between the Nl and the N2 Patterns, the decision was made to combine the Nl and the N2 
Patterns into the N Pattern. Whereas this does result in the "artificiar inflation of the final 
scores, the purpose of the reproducibility test was to determine the trainee's ability to 
recognize the different Synoptic Patterns/Regions, not to distinguish between two subtly 
different Patterns. In this regard, this aspect of the reproducibility reveals more about the 
shortfalls in either the training or the definitions. Some additional aspects concerning the 
enhancements made to the training and definitions will be examined in a subsequent section. 

These various measures of reproducibility (emanating from the subdivision of the 
Pattern/Region combinations) and the subsequent interpretations will be examined for each 
of the Synoptic Patterns, Regions, and Pattern/Region combinations. 

332 Reproducibility test of Patterns only. This first test documents the trainee's 
ability to identify correctly the Patterns (large-scale Environmental Structure) within the 
context of the Systematic Approach. Pattern recognition involves correct determinations of 
the existence and orientation of the large-scale environment (synoptic features) surrounding 
the TC. These synoptic features are a key element of the TC-Environment conceptual 
model and the subsequent TC tracks according to CE. 

The percent correct identifications of each trainee (A-C) for a four-year (1990-1993) 
total for each of the four Synoptic Patterns is shown in Table 3-2. The high percent (greater 
than 90%) correct identifications for the S Pattern is due to the frequency of occurrence 
(58.2%) and the ease of recognizing this Pattern. Notice the percent range for the three 
trainees is quite small (about +/- 1.5%) for the S Pattern. 

The N Pattern, which is the second most frequent (28.2%) Pattern, has a substantially 
decreased number of correct identifications by the trainees. For example, trainee C 
detected this pattern in only 43.4% of the cases. Since no yearly or other mid-term review 
was allowed in this reproducibility test, no opportunity was available to correct trainee C's 
anomalous N Pattern tendencies until the end of the test. In a typical operational 
environment, this anomaly would have been detected and probably corrected. 
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Table 3-2. Percent correct identifications for each trainee (A-C) for the four-year (1990- 
1993) total for each of the four Synoptic Patterns. The right column lists each trainee's 
overall percent correct identifications. The combined row shows percent correct for all 
three trainees combined. Below this row is the combined number of Patterns found in the 
four-year sample. In parentheses is the frequency of each Pattern for the four years. 

SYNOPTIC PATTERNS 

N M 
OVERALL 

A 93.6 84.6 61.0 79.5 87.6 

TRAINEES       B 91.4 78.2 35.4 45.9 80.8 

C 94.2 43.4 42.0 86.3 75.2 

Combined 93.1 69.1 46.0 72.4 81.2 

834.5 405 144 50.5 1434 

(58.2) (28.2) (10.1) (3.5) 

Several factors are believed to be involved in the degraded performance in 
recognizing the N Pattern. This is a more difficult Environmental Structure to recognize 
than the S Pattern. One difficulty is to recognize the frequent transitions from S to N 
Patterns via the Ridge Modification by a large TC (RMT) transformation mechanism The 
N Pattern environmental features outlined in CE require closer scrutiny of the large-scale 
synoptic features, while also considering the effects on the environment of the imbedded TC. 
On the one hand, a TC that is not influencing its surroundings would make identification 
of the Synoptic Pattern relatively easy, provided the two can be separated. On the other 
hand, the possibility that a TC is interacting or providing influence may make separating the 
TC and its environment difficult, and thus make determination of the large-scale 
Environmental Structure (Pattern) more difficult. 

Although the N Pattern was more difficult to recognize than the S Pattern, the test 
still resulted in a combined correct total of 69.1%. Trainee C revealed that during the RMT 
transition this trainee held back from allowing the S to transition to the N Pattern because 
the TC did not exhibit a northeast track. Trainee C attributed northeast TC motion to the 
N Pattern due to the orientation presented by the initial schematic N Pattern conceptual 
model provided during the training phase. The TC motion in most of the N Patterns, falsely 
identified by trainee C as the S Pattern, exhibited predominant northerly TC motion. 
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Trainee C identified this northerly motion as the S Pattern with significant RMT as 
described in CE. This tendency to stay longer in the S Pattern is reflected in this trainee 
obtaining the highest four-year total of correct S Pattern identifications. Whereas trainees 
A and B more frequently allowed this RMT transition and thus correctly identified more 
N Patterns, trainee C delayed or missed the N Pattern transition due to the predominant 
northerly TC motion (trainee C expected the TC motion to be northeasterly) and reliance 
on the RMT to account for the substantial ridging to the east and equatorward of the TC. 
In Chapter 4 the description of the N Pattern has been broadened to include northwesterly 
through east-northeasterly TC environmental steering. 

The G Pattern had a much smaller frequency of occurrence (10.1%) than the S and 
N Patterns and was recognized by the trainees at the lowest combined four-year total 
(46.0%) of any of the four Synoptic Patterns. This is thought to be caused by the 
unfamüiarity of the trainees with the Environmental Structure of the G Pattern because the 
training with the 1989 sample cases did not emphasize the G Pattern as much as was 
possible. 

In more than half of the four-year cases, the trainees incorrectly identified the G 
Pattern as the N Pattern. CE state that the G Pattern contains a prominent north-south 
oriented ridge circulation to the east of the Monsoon Gyre. However, the N Pattern also 
has significant ridging to the east, so trainees not recognizing these subtle differences in the 
Environmental Structure from the analyzed maps would be unlikely to look for evidence of 
the G Pattern's presence contained in the satellite IR imagery. Supporting evidence of a 
G Pattern is provided in the satellite imagery in terms of a partial or complete, quasi- 
circular, and rather large- scale, ring of convective clouds. 

As the trainees progressed through the sample (years 1990-1992), their overall yearly 
percent correct identifications improved (not shown). For 1993, this was not the case as the 
percent correct identifications fell substantially. This decrease is in part due to the 
increased frequency of the G Pattern for the 1993 season. Although the ability of the 
trainees to recognize the G Pattern (about 50% of the time) is not too discouraging in view 
of its low frequency of occurrence, improvement in recognition of the G Pattern is desirable 
due to the anomalous TC tracks that are produced. The trainee's difficulty in recognizing 
the G Pattern demonstrates the need for greater emphasis during the training phase of the 
environmental characteristics and the supporting evidence that is found in the satellite 
imagery associated with the G Pattern. 

A low frequency of occurrence is not the only factor contributing to a degradation 
in recognition of the Synoptic Patterns. Although the M Pattern frequency of occurrence 
is only 3.5%, the trainees' four-year combined percent correct identifications of the M 
Pattern was 72.4% (Table 3-2). Detection and recognition of the M Pattern is easy with the 
characteristic features set forth in CE. An example is the TC Interaction (TCI1) model, 
which is the TC-environment transformation that describes the approach of one TC to 
another TC. Once the M Pattern is established, the key requirements are that the two TCs 
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are in proximity and that one TC or the other be sufficiently close to a significant ridge axis. 
This type of Synoptic Pattern combined with the significant TC track deviations that are 
associated with the M Pattern allow for comparatively easy recognition. 

Whereas trainees A and C achieved relatively high (at or above 80%) correct 
identifications for the M Pattern, trainee B had significantly less (45.9%) correct 
identifications. In most of the M Pattern cases in the sample, significant TC track deviations 
did occur owing to the northerly or southerly environmental flow patterns described in CE. 
Trainee B did not attribute the TC-Interaction (TCI1) to the observed TC track deviations. 
Rather, trainee B utilized other TC-Environment models or combinations of these models 
as described in the many TC-Environment transformations found in CE. Trainee B's results 
showed no persistent tendencies (the incorrect Synoptic Patterns chosen to explain the M 
Pattern were randomly dispersed throughout the sample years). Once again, trainee B's 
tendency to mischaracterize M Patterns would likely have been detected in an operational 
setting, and would have been corrected. 

333 Reproducibility test of Regions only. This second test documents the trainee's 
ability to identify correctly the Regions within the context of the Systematic Approach. 
Synoptic Region recognition is a crucial factor in the Systematic Approach because it is 
these regions that classify the areas within the Synoptic Pattern that are related to the 
environmental steering imposed on TCs. 

The percent correct identifications of each trainee (A-C) for a four-year (1990-1993) 
total for each of the six Synoptic Regions is shown in Table 3-3. Notice the overall 
combined total for the Regions (86%) is above that for the Patterns (81.2%). 

The trainees' highest combined four-year percent correct (94.5%) identifications was 
for the DR Region because the DR Region is easily recognized. The WR Region was the 
least recognizable Region, as the trainee's combined percent correct identifications for the 
WR Region was only 59.2%. The short time the TC remains in the WR Region is thought 
to be the contributing factor that explains the trainees' reduced ability to recognize the WR 
Region. 

A TC may enter the WR Region from the S Pattern through two situations. The first 
situation occurs after leaving the DR Region and before entering the AW Region during 
recurvature. The second situation occurs after leaving the DR Region and before returning 
to it during a "stair-step" track maneuver. One aspect of the Systematic Approach is that 
transitions may occur through a TC-Environment transformation. As stated earlier, the TC- 
Environment transformation process is a continuum and thus the transition from one Region 
to another Region may not be recognized in a frame by frame reference (12 h intervals as 
was the case for this reproducibility test). 
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Table 3-3. Percent correct identifications for each trainee (A-C) for the four-year (1990- 
1993) total for each of the six Synoptic Regions. The right column lists each trainee's 
overall percent correct identifications. The combined row shows percent correct for all 
three trainees combined. Below this row is the combined number of Regions found in the 
four-year sample. In parentheses is the frequency of each Region for the four years. 

SYNOPTIC REGIONS 

DR WR      AW NO NF       SF OVERALL 

TRAINEES      B 

94.0      61.5    92.5       90.1       81.0    80.0    91.6 

96.5      20.8    77.0       67.4       25.0    61.9    84.0 

C 93.1 80.0 81.1 53.9 82.6 79.3 81.2 

Combined   94.5 59.2 83.5 70.3 66.7 74.7 86 

802.5 36 164 381 23 27.5 1434 

(56.0) (2.5) (11.4) (26.6) (1.6) (1.9) 

As such, a TC in transition from the DR Region to the WR Region and then either 
to the AW Region (recurvature) or back to the DR Region (stair-step) is in a constant state 
of transition. The time a TC is in a WR Region and not experiencing tendencies toward 
another transition could be quite short. Thus, the opportunity to characterize the 
environment associated with the WR Region is limited due to the short time that a TC is 
in the WR Region. Trainee B's low percent correct (20.8%) identification for the WR 
Region is thought to be due to this time constraint. This time constraint coupled with the 
less distinct circulation features describing the WR Region make this Region difficult to 
recognize. 

The trainees' combined percent correct identifications for the AW Region was 83.5% 
(Table 3-3). The easily recognizable features of this Region in any of the S, N, or G 
Patterns allowed the trainees to recognize the AW Region despite the relatively small 
frequency of occurrence of 11.4%. The trainees' percent correct identifications in the NO 
Region (70.3%) is very similar (within 1%) to their percent correct identifications in the N 
Pattern (69.1%). Although the trainees' individual percent correct identifications for the 
NO Region (Table 3-3) do vary relative to those" for the N Pattern (Table 3-2), the 
recognition factors listed above for distinguishing the N and the G Patterns are considered 
to explain the reduction in the percent correct identifications for the NO Region. 
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Even though both the NF and the SF Regions of the M Synoptic Pattern were 
represented at less than 2% frequency for the four-year sample, the trainees' combined 
percent correct identifications for both the NF and the SF Regions were near 70% (+/- 
5%). As mentioned above, the M Pattern is easily recognized and thus so are the SF and 
the NF Regions. On the one hand, trainees A and C had percent correct identifications for 
the M Pattern that are similar to the percent correct identifications the trainees achieved 
for both the NF and the SF Regions. The M Pattern (Table 2-1) can only be associated 
with one or the other of these Regions. On the other hand, trainee B's significant difference 
between the percent correct identifications for the NF and the SF Regions suggests 
something other than the time factor may be involved in trainee B's ability to recognize the 
NF or the SF Regions. The discussion above regarding trainee B's tendency to 
mischaracterize M Patterns also applies here. 

Trainee B had considerable difficulty in recognizing the NF Region (Table 3-3) 
because he did not recognize the equatorward motion of the TC as a characteristic of the 
M Pattern. If such a recognition failure would have existed in operational forecasting 
situations, it would have been noticed and measures would have been taken to correct 
anomalous Region assignments. 

In general, the percent correct identifications for the Synoptic Regions is above that 
for the Synoptic Patterns. The importance of the Synoptic Region in describing the TC 
environmental steering suggests that recognizing the correct Region is more important than 
recognizing the correct Pattern. That is, an incorrect Pattern assignment with a correct 
Region assignment would still describe the essential environmental steering affecting a TC. 
However, the successful application of the Systematic Approach will require correct Pattern 
and Region identifications to enable the forecaster to recognize correctly the crucial TC- 
Environment transformations. These Pattern/Region combinations are discussed in the next 
subsection and the TC-Environment transformations found in this reproducibility test case 
are discussed in Chapter 3.4. 

3.3.4 Reproducibility test of Pattern/Region combinations. This third test 
documents the trainees' ability to identify correctly the Pattern/Region combinations. 
Recognition of these Patterns/Regions constitutes the backbone of the Systematic Approach 
in producing an improvement over present predictive TC track techniques. Although the 
reproducibility tests of Patterns only and Regions only are valuable in highlighting the 
environmental features the trainees had difficulty recognizing, they do not reflect the true 
overall ability of the trainees in determining the correct Pattern/Region combinations. 

The percent correct identifications of each trainee (A-C) for a four-year (1990-1993) 
total for each of the ten possible Synoptic Pattern/Region combinations is shown in Table 
3-4. Notice the unusually low percent correct (8.8%) identification for trainee B for the 
S/AW combination. 
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Table 3-4. Percent correct identifications for each trainee (A-C) for the four-year (1990- 
1993) total for each of the ten Synoptic Pattern/Region combinations. The right column 
lists each trainee's overall percent correct identifications. The combined row shows percent 
correct for all three trainees combined. Below this row is the combined number of 
Pattern/Region combinations found in the four-year sample. In parentheses is the 
frequency of each Pattern/Region combination for the four years. 

SYNOPTIC PATTERNS/REGIONS 

S/DR      S/WR   S/AW    N/NO     N/AW 

A 93.3      64.1    51.7     83.2      74.2 

TRAINEES    B 94.7       16.7    8.8       70.8       71.3 

C 93.0       78.8    47.4     40.6       22.2 

Combined 93.6       53.3    35.6      65.0       56.7 

773       36      25.5     289.5     115.5 

(54.0)    (2.5)   (1.8)     (20.2)    (8.0) 

G/NO G/DR G/AW M/NF M/SF   OVERALL 

A 69.9    44.4    25.0 82.6    75.0    84.6 

TRAINEES    B 29.3    35.5    23.8 25.0    59.1    76.9 

C 42.4    27.6    40.0 82.6    79.3    71.2 

Combined 47.8    34.4    29.5 66.7    72.0    77.5 

91.5    29.5    23.0 23.0    27.5    1434 

(6.5)   (2.0)   (1.6) (1.6)   (1.9) 
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A simple combination of the Synoptic Pattern (Table 3-2) and the Synoptic Region 
(Table 3-3) test results does not explain the trainees' results for the Synoptic Pattern/Region 
combinations. This is because of the method of scoring, in particular criteria iii) in Section 
3.3.1 that allows a correct assignment if it agrees with either one of the dual assignments 
that is regarded as the benchmark. Trainee B's 8.8% correct identifications for the S/AW 
combination does not appear to be consistent with the 77% correct identifications for the 
AW Region. This can occur because criteria iii) allows a high AW Region only assignment, 
but then has a low Pattern/Region combination score because the correct Pattern was not 
also identified with these AW Region assignments. Therefore, a trainee with a large percent 
correct identification in either the Patterns only or the Regions only may have a decreased 
ability in a particular Pattern/Region combination due to the scoring when dual assignments 
are made. 

The combined percent correct identifications of the S/DR Pattern/Region 
combination by the trainees was 93.6%. As stated above, the S Pattern and the DR Region 
are both easily identifiable. The trainees' combined percent identifications for the rare 
(2.5%) S/WR combination was 53.3%. Trainee B demonstrated the lowest ability for this 
Pattern/Region combination because of the reasons stated above under the WR Region 
description. 

The last S Pattern/Region is the S/AW combination. The trainees' combined 
(35.6%) correct identifications for the S/AW combination is lower than would be expected 
given the ease of identification for both the S Pattern (Table 3-2) and the AW Region 
(Table 3-3). Similarly, the G/AW Pattern/Region combination has a low percent correct 
identifications, even though the G Pattern (Table 3-2) and the AW Region (Table 3-3) have 
higher percent correct identifications. The ease in recognizing the AW Region as a TC 
turns to the north was offset by the lack of discernment by the trainees of the G Pattern 
(being mistaken for the N Pattern or S Pattern) resulting in lower scores in the 
Pattern/Region combinations. 

With the exception of trainee C, the trainees' ability in the N/NO combination, which 
is the second most common Pattern/Region combination, was comparable to the trainees' 
ability within the N Pattern and the NO Region. Trainee's A and B percent correct 
identifications were similar to the combined (65%) correct identification for all the trainees. 
Trainee C only had a 40.6% correct identification of the N/NO combination due to trainee 
C's anomalous N Pattern identifications described above. The N/AW combination, which 
is the third most frequent Pattern/Region (8.0%), was correctly identified in 56.7% of the 
cases. Although trainee C was able to recognize well the AW Region (Table 3-3), the 
excessive S Pattern assignments by trainee C explains the misidentification of the N/AW 
combination as a S/AW combination, which resulted in trainee C achieving only a 22.2% 
correct identification for the N/AW combination. 

Only a 47.8% correct identification was achieved by the trainees for the G/NO 
combination. The difficulties experienced by the trainees in recognizing the G Pattern 
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resulted in lower than desired abilities in identifying the G/NO combination as well as the 
low 34.4% and 29.5% correct identifications for the G/DR and the G/AW combinations, 
respectively. Once again, training for the G Pattern needs to be given greater emphasis to 
improve the correct identification of this Pattern. 

Finally, the M/NF and the M/SF Pattern/Region combinations received relatively 
high combined percent correct identifications of 66.7% and 72%, respectively (Table 3-4). 
As noted above, trainee B had difficulty with the M/NF Pattern/Region combination. The 
percent correct identifications by trainee B for the M/NF (25%) and the M/SF (59.1%) are 
due to the anomalous M Pattern tendencies of trainee B. 

The overall combined correct percent identifications for the trainees was 77.5% for 
the Synoptic Pattern/Region (Table 3-4). The special circumstances of this reproducibility 
test make it a "lower bound" of the Pattern/Regions to be expected in operation. This 
ability of trainees without previous tropical cyclone forecasting experience to recognize these 
Patterns/Regions reinforces the validity of the Systematic Approach. This test is important 
to application of the Systematic Approach because this component involves subjective 
thought processes in the recognition and assignment of the Pattern/Region combination. 

3.3.5 Revised Training. As indicated in Section 3.2, the training for this 
reproducibility test of recognizing the TC-Environment situation occurred as the CE report 
on the Systematic Approach was being finalized. One of the new training tools that was 
developed during the reproducibility test will be described here, with the intent that this tool 
be incorporated into the future training. Next, some proposed enhancements to be made 
to the training will be described based on the lessons learned during the reproducibility test. 
Two sources were utilized to apply the principles of the Systematic Approach to the TC- 
Environment situation. The first of these was the FNMOC analyses with the past tracks 
superposed (Fig. 3.1). The second was the geostationary satellite infrared imagery that was 
utilized both as a validation of the features in the numerical analyses and to provide 
additional information on the TC-Environment situation. 

To assist in distinguishing between the S and N Patterns, the following procedure is 
proposed for annotating the FNMOC analysis: 

i)        denote the current position of the TC with a red TC symbol; 

ii)       denote the axis of the subtropical ridge in the vicinity of the TC using a 
brown sawtooth line; 

iii)      denote the axis of a peripheral ridge to the south through east of the TC 
by a brown sawtooth line; and 

iv)      draw in blue a streamline beginning at the midpoint of a line that extends 
south-southeast from the TC to the axis of the peripheral ridge and ends 

35 



where the streamline reaches a longitude that is either 10° east or west of the 
longitude of the TC 

Step iv) in this procedure is used to determine whether a TC in the Standard (S) 
Pattern/ Dominant Ridge (DR) Region is approaching the Ridge Modification by a large 
Typhoon (RMT) transformation to a North-Oriented (N) Pattern/ North-Oriented (NO) 
Region. The S/DR and the N/NO Pattern/Region combinations account for 74.1% of all 
the Pattern/Region combinations. Drawing the streamline described in step iv) facilitates 
identification of the transition between these two Pattern/Region combinations via the RMT 
transformation. In other words, this streamline identifies the influence imposed on the TC 
by the Environmental Structure, and as such, enables identification of the TC-Environment 
Structure. 

As an example, consider the FNMOC 500 mb streamline analyses in Fig. 3.2. In 
panel a), the defining streamline starts at the midpoint of the TC and the peripheral ridge, 
extends northward and then westward to end at a longitude 10° west of the TC. 
Consequently, this represents a S/DR Pattern/Region. In panel b), the streamline extends 
northward, somewhat westward, and finishes eastward of the TC. Notice that the streamline 
does pass through the longitude of the TC, which indicates that a RMT transformation for 
the S/DR transition to the N/NO Pattern/Region is in progress. In panel c), the streamline 
denotes the transition to the N/NO Pattern/Region combination is completed because it 
does not pass west of the longitude of the TC from its beginning to end. Finally, panel d) 
has a streamline similar to the streamline in panel c), except that the additional information 
from the storm path indicating a significant increase in the TC translation speed suggests 
placing this TC-Environment Structure in the N/AW Pattern/Region combination. 

Geostationary satellite infrared imagery was utilized to validate the FNMOC analyses 
and provide additional information on the TC-Environment Structure, i.e., the Synoptic 
Patterns and Regions. Specific indicators of TC-Environment Structures or Transformations 
that are determined from the satellite imagery include: i) size of the TC; ii) existence of 
a "wave-train" convective pattern to the southeast of the TC; and iii) indication of a 
monsoon gyre. 

The size of the TC and the extent of the subtropical ridge poleward and/or eastward 
of the TC are factors considered in evaluating the possibility of the RMT transformation. 
Relatively large TCs can be expected to exhibit larger and stronger peripheral ridging to the 
southeast due to Rossby wave dispersion. If this peripheral ridging is significantly large 
relative to the subtropical ridge, the RMT transformation may occur (see description in CE). 
The information provided by the satellite imagery in conjunction with the streamline analysis 
described as step iv) above provides supporting evidence for the transition of the TC- 
Environment Structure. 
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Fig. 3.2 FNMOC 500 mb streamline and isotach (kt) analyses at 0000 UTC for (a) 27 
November 1991, (b) 28 November, (c) 29 November, and (d) 30 November during 
Supertyphoon Yuri. Each analysis is annotated with a defining streamline used to determine 
if a transition from S/DR is in progress (panel b) or is complete (panels c and d). 
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The "wave-train" pattern is the distinct cloud max-min-max pattern of convection 
that includes the TC and extends to the southeast. This easily recognized pattern allows 
identification of the existence of Rossby wave dispersion and also provides information on 
the possibility of a RMT transformation. However, caution must be exercised on relying 
only on the "wave-train" convective pattern to signify Rossby wave dispersion with its 
potential for the RMT transformation. A cloud max-min-max pattern is also evident when 
a second TC approaches from the east toward a TC. The subsidence induced between these 
two TCs may also produce a cloud max-min-max pattern similar to that generated by a 
single comparatively large TC. 

The Gyre (G) Pattern definitions and the associated Regions as explained in CE 
were not applied well in this reproducibility test. That is, the trainees' frequency of 
detection of the G Pattern was only 46.0% (Table 3-2). A better or more consistent use of 
satellite imagery in detection of the G Pattern is the major impetus for this revised training 
section. The importance of utilizing the geostationary satellite imagery in conjunction with 
the FNMOC analyses in validating "large-scale" synoptic features cannot be over- 
emphasized. CE state one premise of the Systematic Approach is to introduce the element 
of human reasoning based on a dynamic, meteorological knowledge base so that the 
numerical guidance is not the only source of information to the forecaster. The 
geostationary satellite imagery allows forecasters to develop a conceptual model independent 
of the numerical analyses. A subtle point in the Systematic Approach is the forecaster's 
ability to separate the individual effects of the TC from the environment and vice versa. In 
other words, a forecaster must be able to envision the synoptic environment without the TC 
present. As with the other Synoptic Pattern conceptual models, the forecaster must 
recognize that actual G Patterns depicted in FNMOC analyses may vary from the idealized 
schematics found in CE. 

The G Synoptic Pattern may be distinguished in geostationary satellite imagery by 
the extensive, deep convection that occurs in the confluent region between the large 
monsoon gyre and the ridge circulation to the east. This convection is further characterized 
by CE as partial or complete, quasi-circular, and comparatively large scale as it tends to 
wrap around the monsoon gyre and take on a characteristic "fish-hook" shape. 

One trainee having incorrectly assigned the N Synoptic Pattern for the G Synoptic 
Pattern in more than half the cases is attributed to the similar north-south oriented ridging 
to the east of both of these Synoptic Patterns in the idealized conceptual models in CE. 
Whereas this similarity makes it difficult to distinguish the N and the G Synoptic Patterns 
from the FNMOC analyses alone, the differences are more pronounced in geostationary 
satellite imagery. As in the G Synoptic Pattern characteristics outlined above, the N 
Synoptic Pattern does have the extensive, deep convection to the east due to the confluence 
with the peripheral ridge. Unlike the G Synoptic Pattern, the N Synoptic Pattern does not 
have the partial or complete, quasi-circular convection. A more consistent use of the 
geostationary satellite imagery in conjunction with the FNMOC analyses should allow the 
forecaster to assign the correct TC-Environment Structure. The deficiencies revealed by the 
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reproducibility test emphasize the importance of utilizing concurrently these sources of 
information. 

Additional discussion of "lessons learned" from the reproducibility test will be given 
in Chapters 4 and 5. 

3.4 Reproducibility Test of Pattern/Region Transitions 

3.4.1. Introduction. Whereas properly identifying the correct Synoptic Pattern and 
Region is important, of even greater importance is the proper recognition of when a cyclone 
transitions from one Synoptic Pattern/Region combination to another. Because such 
transitions will normally lead to significant changes in the track of the cyclone, recognition 
of an upcoming transition and the timing of that transition are tantamount to accurate track 
forecasts. It is in this area of reducing potential forecast errors associated with changing 
storm motion that the Systematic Approach can be most useful in its application. The 
hypothesis is that a properly equipped forecaster can anticipate the Synoptic Pattern/Region 
transition and select (reject) the objective aid guidance that agrees (disagrees) with the 
anticipated transition (CE). 

3.4.2. Definitions. Before examining the results of the reproducibility test involving 
the three trainees, some terminology must be defined to give the reader the proper 
understanding. The first term to be defined is transition. As defined by CE, a transition 
may involve a change from one Synoptic Pattern to another, or from one Region to another 
region within the same Pattern. As discussed in Chapter 3.3.1, the benchmark assignment 
is not always a single Pattern and Region. In those cases in which dual Pattern/Region 
combinations were assigned (see Table 3-1 in Chapter 3.3.1), the definition of a transition 
becomes more complicated. 

Table 3-5 contains four sequences of Pattern/Region combinations. Case 1 is an 
example of how a Region transition from Dominant Ridge (DR) to Weakened Ridge (WR) 
appears to begin, and the trainee might have even implied by the reversed sequence 
WR/DR in the third line that the Region was more like a WR than a DR. However, the 
effects forcing these Region changes in Case 1 then cease, and the original Pattern/Region 
combination is again assigned. Thus, this is not considered to be a Region transition 
because the WR Region never existed as a single entry. Whereas such a definition of a non- 
transition may appear to be arbitrary, it was judged to be an appropriate choice for this test 
in which the meaning and interpretation (especially of the ordering of letters) of dual 
assignments had not been agreed upon in advance for this reproducibility test. 
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Table 3-5. Four examples of Synoptic Pattern (first column; symbols defined in Table 2-1) 
and Synoptic Region (second column) sequences in time that illustrate definitions of 
transitions (see text). 

CASE1 CASE 2 CASE 3 CASE 4 

S DR S DR S DR S        DR s DR/WR N NO S/N DR/NO S        DR/WR s WR/DR N/S NO/DR S        WR/DR s DR N NO S/N    WR/NO 

Case 2 in Table 3-5 is an example of a direct transition in both Pattern and Region 
with no intermediate combinations. Here, the occurrence and the timing of the transition 
are obvious. Case 3 involves two intermediate combinations. The transition is considered 
to have occurred when the N/NO Pattern/Region combination appears as a single entry. 
That is, an Environment Structure that was clearly one Pattern/Region has clearly become 
a different Environment Structure. Even though the ordering of the letters has changed 
from line 2 to line 3 of Case 3, this is not considered to be an indication of a transition. 
This is because the experienced forecaster (L. Carr) and the three trainees did not agree 
in advance that the order of the letters in a dual assignment would have such a meaning. 
Notice that only the Pattern might have changed with a similar Region (e.g., S/DR 
transition to G/DR, or a G/NO to a N/NO), or only the Region may have changed within 
the same Pattern (e.g., S WR/DR becoming S/WR after earlier having been S/DR). In 
Case 3, the transition is clear because both the Pattern and Region have changed. 

Case 4 in Table 3-5 is an example of a convoluted transition. This sequence includes 
both the DR and WR Regions of the S Pattern in the second and third lines. As in the first 
three lines of Case 1, a transition is not considered to have occurred from the original S/DR 
to a single entry representing the change to the WR Region (recall the order of listing of 
two regions is not considered to have special meaning). A transition is considered to have 
occurred at the fourth line because the original (DR) Region is no longer one of the Region 
combinations. 

As in Section 3.3.1, designing a scoring method is difficult for such transitions 
involving multiple Patterns/Regions and dual assignments on the part of the experienced 
forecaster and each of the three trainees. A fully correct transition requires that the trainee 
assignments have a sequence from the benchmark Pattern/Region to the new Pattern/ 
Region. A similar transition is defined as occurring if the trainee begins the sequence in the 
benchmark Pattern and Region, but transitions to a Pattern/Region that has a similar track 
change of the tropical cyclone (i.e., S/DR - N/NO; S/DR - S/WR; S/DR - M/SF; S/DR 
- G/NO). These four examples all will result in a cyclone track change from westward or 
northwestward to a northward or northeastward track. The AW region is unique because 
of the typical speed of the cyclone while in this region, which precludes any other region 
from being considered as "similar." 
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The terms miss and false are also defined for use in scoring the transitions. A miss 
is when the benchmark has a transition and the trainee does not have either the correct or 
a similar transition. The term false is used when the benchmark does not have a transition 
and the trainee does indicate a transition occurred. 

The final definitions are two types of flip-flops. The first type of flip-flop is the 
trainee assigns a transition from the benchmark Pattern/Region to either the correct or a 
similar Pattern/Region, but his sequence of assignments passes through a Pattern/Region 
that was not involved in the actual transition. An example of such a transition is S/DR - 
N/NO followed by N/NO - S/WR when the correct transition was S/DR - S/WR. This 
type of flip-flop results not only in a flip-flop being scored, but also a similar transition will 
have been scored because the S/DR - N/NO is a similar transition to the S/DR - S/WR. 
This flip-flop will be referred to as a similar flip-flop for discussion purposes. The second 
type of ßp-flop is when an unnecessary transition from the benchmark Pattern/Region to 
a second, and incorrect, Pattern/Region is indicated by the trainee. That is, the trainee 
recognizes his transition was temporary or not necessary and then changes back to the 
correct Pattern/Region. This is simply called an out/back flip-flop. 

The final terms to be defined are the use of the words early and late in reference to 
the timing of the transition. A trainee-identified transition that occurs before the 
benchmark transition is considered to be early. The late transition is when the trainee's 
identified transition happens after the transition of the benchmark. As the analyses were 
only supplied every 12 h, all timing increments are in 12-h periods. 

3.43. Method of Scoring. The reproducibility test for the transitions has the goal 
of assessing how successfully each trainee identified a transition was occurring and the 
timing of the transition. The definitions described in 3.4.2 are used for the scoring. The 
number of correct and similar transitions is the most important result, because it indicates 
that the trainees were able to recognize that a transition in the Environment Structure was 
occurring that would be expected to trigger a track change. 

The importance of the transitions is amplified when one considers there were 141 
transitions in 85 tropical cyclones, or 1.66 transitions per storm, contained in the 
reproducibility test data set. Even if a storm did not experience a transition, the 
Environment Structure may seem to approach a transition for some interval. Thus, it is also 
important to not have a large number of false transitions or out/back flip-flops, which might 
lead to windshield-wiper track direction forecasts. Misses, false, and flip-flop transitions are 
viewed with varying degrees of importance with respect to the reproducibility test. The 
missed and false transitions are of the greatest importance because the trainee did not see 
the transition occur or thought he saw a transition that did not actually occur. These 
problems will be used to help identify deficiencies in the training procedures to improve the 
training provided to future users of the Systematic Approach. 
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The scoring results are summarized in Table 3-6 by individual year and a 4-y 
combined total. The numbers of transitions in 1990 through 1993 are 15, 34, 60, and 32, 
respectively. The tables have a combined total of 423 transitions since each of the three 
trainees should have detected 141 transitions. That is, the combined sums for the individual 
years will be 45, 102, 180, and 96, respectively. Unless otherwise identified, all future 
references to the number of transitions for the individual years and combined 4-y total will 
be the total for all three trainees. 

3.4.4. Transition Tests. The 4-y combined scores will be discussed first, and followed 
by the discussion of the items of interest in the individual years. 

0 4-y Combined- A combined total of 423 transitions should have been detected by 
the three trainees in the 4-y combined data set. Of the 423 transitions, 204 (482%) were 
correctly identified by the trainees and an additional 138 (32.6%) similar transtions were 
identified. Summing these two transitions, 80.9% of the 423 transitions for the 4-y combined 
were identified by the trainees. Thus, the trainees missed only 81 (19.1%) of the transitions. 
Furthermore, an additional 26 (6.1%) false transitions were classified by the trainees, and 
there were 64 (15.1%) flip-flops by the trainees. 

A review of the missed transitions was done to see if there was a Pattern or Region 
that was continually missed by the trainees. A percentage of missed Patterns was computed 
by dividing the number of times the Pattern was missed by the number of times the Pattern 
occurred in a transition. Each transition has two Patterns and two Regions so a total of 846 
double-sided Pattern/Region transitions were counted. Transitions from the S Pattern were 
missed 68 of 342 times (19.9%), from the N Pattern were missed 51 of 336 times (15.2%), 
from the G Pattern were missed 35 of 123 times (28.5%), and from the M Pattern were 
missed 8 of 45 times (17.8%). Similarly, no Region transition was missed significantly more 
than the other Regions. Transitions from the NO Region were missed 66 of 318 (20.8%), 
DR was missed 49 of 255 (19.2%), WR was missed 20 of 84 (23.8%), AW was missed 19 
of 144 (13.2%), NF was missed 5 of 21 (23.8%), and SF was missed 3 of 24 (12.5%). 

Table 3-6 Combined numbers of transitions that should have been detected by the three 
trainees and separation into correct, similar, missed, false and flip-flops for each year and 
the 4-y combined total. 

Year 
(Transitions) 

Correct Similar Combined Missed False Flip- 
flop 

1990   (45) 28 13 41 4 3 9 
1991   (102) 42 40 82 20 12 17 
1992   (180) 92 52 144 36 6 24 
1993   (96) 42 33 75 21 5 14 
Combined 

1   (423) 
204 

(48.2%) 
138 

(32.6%) 
342 

(80.9%) 
81 

(19.1%) 
26 

(6.1%) 
64 

(15.1%) 
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When the Pattern/Region combinations were examined, the transitions involving 
G/DR and S/AW were missed 10 percent more frequently than any other combination. 
The G/DR was missed 12 of the 27 times (44.4%) it occurred in a transition, and S/AW 
was missed 11 of 30 times (36.7%). The least missed Pattern/Region combination was 
N/AW. It was missed only 5 of 93 times (5.4%). 

Of the 81 misses in Table 3-6, seven cases involved all three trainees missing the 
transition (a total of 21 misses). In all seven cases, the transition was to another 
Pattern/Region that has a storm movement that was similar to what it was before the 
transition: three were transitions from G/NO to N/NO; two were S/WR to N/NO; one 
was S/WR to S/AW; and one was S/DR to G/DR. An additional 30 of the 81 misses 
involved 15 cases where two of the trainees missed the transition. 

The 54 false transitions were examined in a similar way to the missed transitions. 
The false transitions did not involve any Pattern, Region, or Pattern/Region combination 
significantly more often than the others. At 13 of 123 (10.6%), the G Pattern was the most 
frequent false transition Pattern identified by the trainees. The Region with the largest 
number of false transitions was the SF Region at 3 of 24 (12.5%). The M/SF was also the 
worst Pattern/Region combination for falsely identified transitions. 

The three trainees had a total of 64 flip-flops for the 4-y combined data set. Of these 
flip-flops, 27 (42.2%) were typed as similar flip-flops in that the trainee began in the correct 
or similar Pattern/Region combination, sequenced through a Pattern/Region not involved 
in the actual transition, and ended with the correct or similar Pattern/Region. An 
additional 29 (453%) of the flip-flops were of the out/back type in that the trainee did an 
unnecessary transition from the benchmark, recognized the mistake, and transitioned back 
to the correct Pattern/Region. The average time period the trainee took to perform the 
out/back flip-flop was 30 h. 

ill Timing. Another important result is the trainee's timing of the transition 
compared to the benchmark. While identifying that a transition is occurring is extremely 
important, correctly timing the transition is also of importance. Helping the forecaster 
properly identify the timing of the transition is a goal of the Systematic Approach training. 

Figure 3.3 contains a histogram of the 342 correctly and similarly identified 
transitions for the three trainees for the 4-y combined data set. These correct or similar 
transitions were identified "on time" in 118 cases. However, one transition was identified 
120 h late. Of the 342 correct/similar transitions, 245 (71.6%) were identified either 12 h 
late, on time, or 12 h early. These 245 well-timed transitions represent 58% of all the 
transitions that occurred in the 4-y combined data set. The timing distribution of the 
trainees is slightly shifted toward the late identifications. This is understandable considering 
the trainees did not have the opportunity of looking backward and correcting for a missed 
transition. 
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Figure 3.3  Histogram of timing of correct and similar transitions identified by the three 
trainees for the 4-y combined data set. 

If the "acceptable" timing window for transitions is expanded to ±24 h, the number 
of correct/similar transitions is 302. This expanded window would result in 88.3% of the 
342 transitions being identified as correct/similar transitions. 

iii) 1990- A total of 45 transitions occurred in the 13 tropical cyclones in the 1990 
data set. This year had the highest percentage of correct transitions with 62.2%. The year 
also had the best combined percentage of transitions with 41 (91.1%) being identified. Only 
4 transitions (8.8%) were missed, which makes 1990 the lowest percentage of misses by over 
10 percentage points. On the other hand, the percentage of flip-flops was higher. 

iv) 1991. A total of 102 transitions occurred in 19 tropical cyclones. The scores for 
the trainees were similar to the scores for the 4-y combined data set. However, the highest 
percent of false transitions was recorded in this year. 

v) 1992. With 180 transitions that occurred during 28 tropical cyclones, this was the 
most active transition year of the four, and alone accounted for 42.6% of all transitions. 
The scores for 1992 were very close to the average scores for the four years. The only 
significant deviation was that the number of false transitions was about one half of the 
average. 

vi) 1993. This year included 25 tropical cyclones and 96 transitions. The scores for 
the year were similar to the four-year combined averages. The percentage of misses was 
slightly higher at 21.9% compared to the average of 19.1%. 
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4.        Refinement of the Meteorological Knowledge Base 

(Primary author: L. E. Can, III) 

4.1      Background 

Carr and Elsberry (1994; hereafter CE) described the roles of the Environment and 
the TC in governing TC motion (schematically illustrated in CE Figs. 3.3 and 3.4) via 
specific conceptual models (listed in Tables 3.1 - 3.3 of CE). The TC-Environment 
conceptual models in CE were based in large measure on the first author's operational 
experience forecasting TCs during the 1990 and 1991 western North Pacific seasons. The 
completion of the five-year climatology described in Chapter 2, and the reproducibility test 
in Chapter 3, have provided a more systematic evaluation of the set of TC-Environment 
conceptual models proposed in CE. This chapter summarizes some of the more important 
results from this evaluation. 

The consensus of the Systematic Approach developers (Carr and Elsberry) and 
reproducibility test trainees (Boothe, Kent, and White) is that the set of TC-Environment 
conceptual models proposed by CE are sufficient to characterize nearly all the variations 
of TC-Environment Structure that occur in the western North Pacific basin. However, a 
number of refinements are suggested to: 

(i) provide additional emphasis regarding various details and inferences from the 
TC-Environment conceptual model set that were robustly verified and have 
potentially great forecasting utility; 

(ii) revise and clarify the descriptions of some of the TC-Environment conceptual 
models; 

(iii) document additional and sometimes complex transitional situations that are not 
explicitly mentioned in CE; 

(iv) provide additional guidance for distinguishing between Pattern/Region 
combinations that have similar appearances in the NOGAPS analyses and satellite 
imagery; and 

(v) provide more structured guidance to increase the timeliness of detecting that a 
transition in Environment Structure is taking place and to increase the probability 
of characterizing correctly that transition to a new Pattern/Region combination. 

This chapter will address the first four issues above, including the introduction of two 
new conceptual models of Environment Structure transitions. The Reverse-oriented Trough 
Formation (RTF) occurs in association with two (or more) adjacent TCs. In the Subtropical 
Ridge Modulation (SRM), the transition is primarily related to midlatitude troughs and 
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ridges. Issue (v) in the above list will be addressed in Chapter 5. 

4.2      S Pattern-related refinements 

Three variations of the Standard (S) Pattern schematic were identified by CE (see 
their list on p. 26). It was noted that longitudinal variations (hereafter slope) of the 
subtropical ridge axis are correlated with variations in the generally westward direction of 
motion for TCs in the Dominant Ridge (DR) Region. For example, the west-southwest 
(WSW) track direction of Typhoon Ed (Fig. 3.18a in CE) is consistent with the east- 
northeast (ENE)-to-WSW slope of the subtropical ridge axis (Fig. 3.6b in CE). The smaller 
than average size of Ed is an important factor in this close agreement between the WSW 
track and ridge slope since the beta-effect propagation (BEP) speed of small TCs is usually 
negligible compared to the speed of environmental steering in the DR Region (see CE Fig. 
3.9 and discussion of Ed on p. 77). Such agreement should not be expected with larger TCs, 
in which the BEP will tend to move the TC poleward into, and sometimes through (recall 
CE Fig. 3.51 and related discussion), the subtropical ridge regardless of the ridge axis slope. 
The five-year climatology confirms the prevalence of the S/DR combination and that 
important track variations about the generally westward tracks may be detected based on 
the past and forecast slope of the ridge axis. 

A particularly useful expectation is that a non-climatological south-of-west track will 
be followed by small TCs when a ENE-to-WSW ridge axis slope is expected to persist. An 
illustration of this valuable relationship is provided here for Tropical Storm Winona (Figs. 
4.1 and 4.2), which maintained a "compact" size throughout its existence (ATCR 1989, p. 33- 
36). Notice that a persistent ENE-to-WSW ridge axis slope is evident in the NOGAPS 
analyses during 16-20 January 1989 (Fig. 4.1), and that the storm position to the NNW of 
the NOGAPS-analyzed circulation center in Fig. 4.1c further supports the presence of east- 
northeasterly environmental steering. Although the track direction of Winona is persistently 
WSW (Fig. 4.2a), the JTWC forecasts tend to be more poleward with increasing forecast 
interval, which results in a right-of-track bias (Fig. 4.2b).1 The 60 n mi forecast error at 24 
h is actually a significant error for a small TC, as it potentially may be the difference 
between a direct hit and insignificant wind damage. 

The case of Supertyphoon Gordon is another example that only smaller-than-average 
TCs will likely track south-of-west in the DR Region south of a ENE-to-WSW sloping ridge 
(Fig. 4.3). The WSW track of Gordon during 10-13 July 1989 changes to WNW during 

1 As will be shown in the Objective Aid Traits Knowledge Base in a subsequent report, 
the character of the JTWC forecast in Fig. 4.2b is indicative of a tendency to follow the 
consensus of the numerical and objective guidance, which tends to be more representative 
of the motion traits of average or larger TCs that thus tend to propagate more to the 
northwest than small TCs. 
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Fig. 4.1 Streamline (thin) and isotach (heavy; contour interval of 20 kt beginning at 30 kt) 
analyses at 500 mb from NOGAPS at 0000 UTC on (a) 16, (b) 18, and (c) 20 January 1989 
during TS Winona (TC symbol). 
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Fig. 4.2 (a) Best track from JTWC for TS Winona during 9-22 January 1989. (b) Example 
of a JTWC track forecast (dashed) from 06 UTC 18 January and best track from 00 UTC 
18 January through 06 UTC 19 January. Notice how close this small storm approached 
Guam compared to the forecast (ATCR 1989). 

14-19 July 1989 (Fig. 4.3c) despite a sloping ridge structure (not shown) similar to that 
associated with Winona (Fig. 4.1). The key difference is that Gordon was a small TC (Fig. 
4.3b) until 13 July and was larger-than-average size after 15 July (Fig. 4.3a). 

43      S/WR and N/NO Pattern/Region Ambiguity 

One lesson from the reproducibility test (Chapter 3) is that the decision whether to 
characterize the Environment Structure in terms of the S/WR Pattern/Region combination 
versus the N/NO combination tends to be problematic. In the troublesome cases, the TC 
is equatorward of the subtropical ridge axis, and is typically larger-than-average in size, and 
this is associated with peripheral ridging (perhaps amplifying) to the southeast. Initially, this 
peripheral ridging may not be accompanied by an erosion of the subtropical ridge poleward 
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Fig. 4.3 Satellite images on (a) 15 July and (b) 11 July 1989 illustrate the increased size of 
ST Gordon in time, (c) Best track of ST Gordon from 9-19 July 1989 illustrating the south 
of west track prior to 14 July and the north of west track after 1200 UTC 14 July. 

of the TC, or by an attendant shift of the isotach maximum from say the north-northeast to 
the east of the storm position. Thus, the Pattern/Region is characterized as S/DR. As the 
TC approaches a break in the subtropical ridge associated with a midlatitude trough, the 
decreasing height gradient to the north, perhaps combined with the slowly amplifying height 
gradient to the southeast, may result in a distinct shift of the isotach maximum to the east. 
Such a shift, in combination with the break in the subtropical ridge to the north and the 
peripheral ridging to the southeast, reasonably satisfies the N2 Pattern schematic of CE. 
Such a scenario may be characterized in three ways with almost equal justification: (i) as 
a transition from S/DR to S/WR by a significantly propagating TC that only subsequently 
appears to transition suddenly to N/NO as the ridge weakness is approached; (ii) as a 
transition from S/DR to N/NO that did not occur until the TC moved close to the break 

49 



in the subtropical ridge, which is thus a matter of timing (i.e., rate of peripheral ridge 
development versus rate of approach of the ridge break); or (iii) as a brief transition from 
S/DR to S/WR followed by a S/WR to N/NO transition. 

An example in which the three trainees chose option (i) and the master developer 
of the Systematic Approach chose option (ii) is shown in Fig. 4.4 for Supertyphoon Yancy 
during August/September 1993. Notice the distinct isotach shift and the increase in 
prominence of the peripheral ridging southeast of Yancy from 1200 UTC 31 August to 1200 
UTC 1 September (Figs. 4.4a and b, respectively), which led the master developer to assign 
a N/NO combination. It should be noted that the master developer's characterization was 
influenced by knowledge (not available to the trainees) that the peripheral ridging would 
follow Yancy during recurvature (Fig. 4.4e). Such behavior is indicative of a N Pattern, 
whereas a gradual turn toward the east is more typical in the AW Region of a S Pattern. 

In retrospect, this ambiguity should have been expected. The principal feature 
associated with a RMT-induced transition from a S to N Pattern is just a more vigorous 
version of the peripheral ridging that accompanies BEP and is associated with Rossby wave 
dispersion (recall CE Appendices D and F). Since modelling results indicate that this 
peripheral ridging depends on TC size, and TC size is a continuum, it is not surprising that 
certain combinations of subtropical ridge structure and TC size would result in a marginal 
RMT-induced transition from the S to N Pattern when the TC approaches a break in the 
subtropical ridge. 

Although this scenario generated many misclassifications in the reproducibility test, 
it is emphasized that the TC track change after such a sudden transition to the N/NO 
combination does not depart greatly from the recurvature track in a persistent S/AW 
combination. For example, the track of Yancy (Fig. 4.4e) has a more typical recurvature 
track (e.g., Typhoon Hattie; CE Fig. 3.41) than do the tracks of Typhoons Page or Yvette 
with their anomalous poleward turns immediately following recurvature (CE Figs. 3.53 and 
3.57, respectively). 

4.4      N Pattern-related refinements 

In CE, two North-oriented (N) Synoptic Patterns were defined. Nl Pattern (CE Fig. 
3.7a) is a manifestation of the formation in a reverse-oriented monsoon trough, and involves 
a smaller TC that moves through the pattern. The N2 Pattern (CE Fig. 3.7b) is generated 
by a single, and usually larger-than-average TC, as a result of strong Rossby wave dispersion 
peripheral ridging to the southeast of the TC (as a result, the peripheral ridge in the N2 
Pattern tends to move poleward with the TC). During the development of the 5-year 
climatology, many variations on these proposed N Pattern types were observed. That is, a 
continuum of patterns was found that adequately satisfy the basic defining characteristic of 
the N type: anomalous ridging along the south through east periphery of the TC (or TCs) 
that is providing the primary impetus to TC motion. Among the range of possibilities are: 
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Fig. 4.4 Streamline and isotach (dashed; contour interval of 10 kt beginning at 20 kt with 
shading beyond 30 kt) analysis from NOGAPS at 12 UTC on (a) 31 August, (b) 1 
September, (c) 2 September, and (d) 3 September 1993. Present (asterisk) and past 12-, 24-, 
and 36-h positions of ST Yancy are shown. 
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Fig. 4.4(e) Best track for ST Yancy during 27 August - 5 September 1993. 

(i) N pattern development in response to the combined Rossby wave dispersion 
effects of multiple TCs, which will be addressed in Chapter 4.7 in terms of the new 
RTF transitional mechanism; 

(ii) wide variations in the slope of the peripheral ridge with associated influences on 
TC motion (e.g., ENE TC motion in response to anomalous ridging to the south 
that has a nearly zonal orientation, in contrast to the more poleward motion implied 
in the Nl and N2 Pattern schematics in CE); 

(iii) variations in the relationship between the movement of the embedded TC and 
the peripheral ridge (e.g., sometimes a portion of the peripheral ridge associated 
with a single TC will break away and drift southwest, which leads to a weakening of 
the N Pattern, and perhaps a transition to another (usually S) Pattern; and 

(iv) changes in the Environment Structure from resembling Nl to more like N2 as 
a developing TC circulation appears to modify the character of the N pattern in its 
vicinity. 

These variations observed in the five-year sample will henceforth be viewed as extensions 
and refinements of the proposed N pattern conceptual model as presented in CE to more 
adequately reflect reality. Reference to two explicit types of N Patterns (i.e., Nl and N2) 
will no longer be made. Rather the basic N Pattern type will be viewed as arising from a 
range of circumstances that cause attendant variations in the appearance of the pattern. 
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4.5 G Pattern-related refinements 

4.5.1 Impact of rapid monsoon gyre (MG) movement. The implication from the G 
Pattern conceptual model in CE (see their Fig. 3.12 and accompanying discussion) is that 
TCs forming to the southeast of the MG will subsequently follow cyclonically curved, and 
predominantly poleward-oriented, tracks around the eastern semicircle of the MG at a rate 
roughly equivalent to the MG tangential wind speeds at the location of the TC. A tacit 
assumption is that the translation of the MG is small compared to the MG tangential wind 
speed at the location of the TC. In all the TC-MG case studies in CE, the impact on TC 
track of MG movement was relatively minor and the tracks have the expected cyclonic 
curvature. For example, the MG has minimal translation relative to the cyclonically curved, 
poleward-oriented tracks of Nancy and Owen (Fig. 3.89 in CE), and the highly circular track 
of Peggy (Fig. 3.92). Similarly, the cyclonically curved, poleward-oriented track of Tip (Fig. 
3.69 in CE) from 9-11 September 1989 is consistent with the slow poleward drift of the 
associated MG center as Tip and the MG coalesced via a MTI transformation. 

In several cases in the five-year climatological data base, the translation of the 
associated MG was roughly as fast as the movement of the TC. In such situations, the 
expected cyclonic curvature of the TC track may be greatly reduced or even absent. For 
example, the MG circulation in the August 1991 case involving TD 15W moves so fast to 
the west that TD 15W effectively retrogrades from the DR Region of the G Pattern during 
25 and 26 August (Figs. 4.5a-b) to the transition zone between the DR and NO Regions by 
27 August (Fig. 4.5c). As a result of this rapid westward movement of the MG, the track 
of TD 15W is more zonally-oriented rather than poleward-oriented and is slightly 
anticyclonic during the period (Fig. 4.5e). In the case involving Tropical Storm Val, the MG 
moves north-northwestward essentially as fast as Val during 24-26 September (Figs. 4.6a-c). 
As a result, Val remains roughly east of the MG's position, and the track of Val during 24- 
26 September is more poleward than zonally oriented, and is sinuous rather than cyclonically 
curved (Fig. 4.6e). 

Very little is presently known about the processes associated with MG development 
and movement. Thus, no dynamically-based guidance is available to the forecaster for 
anticipating in advance whether a MG will move rapidly or be quasi-stationary throughout 
its existence. MG motion does seem to exhibit persistence; that is, rapid or quasi-stationary 
MGs tend to remain that way for most or all of their existence. 

4.52 Monsoon Gyre Formation (MGF) recognition. During the reproducibility test, 
the trainees had considerable difficulty recognizing when the TC-Environment Structure 
conformed to the G Pattern (only a 46% average success rate according to Table 3-2). The 
principal cause of this problem was that CE did not address a transition of Environment 
Structure into a G Pattern as a result of Monsoon Gyre Formation (MGF) (see Fig. 2.8). 
In particular, the trainees indicated a need for guidance in recognizing MGF as it is 
occurring. In CE, it was tacitly assumed that the TC forms within the pre-existing MG and 
will have characteristic tracks in response to advection by the MG circulation. Since MG 
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Fig. 4.5 As in Fig. 4.4, except for TO 15W during (a) 25, (b) 26, (c) 27, and (d) 28 August 
1991. 
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Fig. 4.5(e) Best track for TD 15W during 21-30 August 1991. 

Fig. 4.6 As in Fig. 4.4, except for TS Val during (a) 24, (b) 25, (c) 26, and (d) 27 September 
1992. 
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Fig. 4.6 (continued) 
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Fig. 4.6(e) Best track of TS Val during 19-27 September 1992. 

circulations are often difficult to detect on the basis of NOGAPS 500 mb analyses alone, a 
refinement to the G Pattern model is discussed here with some examples to improve 
detection of MGF based on interpretation of satellite imagery. Two distinct ways that cloud 
patterns manifest the formation and movement of the MGs will be discussed for the cases 
of TD 15W and Tropical Storm Val in Figs. 4.5a-e and 4.6a-e, respectively. 
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In the TD 15W case, the initial (Fig. 4.7a) cloud pattern has a more linear 
appearance characteristic of a reverse-oriented trough to the southeast of the large Typhoon 
Gladys. During the next three days (Figs. 4.7b-d), cyclonic curvature of the reverse-oriented 
monsoon cloud band becomes more evident. The circulation of incipient TD 15W (using 
the best track in Fig. 4.5e to confirm the location) appears in the cumulus cloud lines at the 
northeast end of the main band of deep convective clouds. One key indicator from the 
satellite imagery that TD 15W is embedded in a concurrently-developing MG circulation is 
the development of a relatively cloud-free "moat" between the circulation of TD 15W and 
the main band of convection to the southeast (Fig. 4.7d). The next four satellite images 
(Figs. 4.7e-h) are during the same period as the NOGAPS analyses in Figs. 4.5a-d, and 
confirm the rough correlation between the center of the cloud moat and the MG circulation 
center in the analyses. 

In the Tropical Storm Val case, the MGF takes on a rather different appearance in 
the satellite visible imagery. Initially, a broad area of loosely-organized convective activity 
that does not exhibit any reverse-oriented character is present near 8°N, 170PE (Fig. 4.8a). 
During the next three days (Figs. 4.8b-d), the broad area of cloudiness drifts northwest with 
some increase in organization evident. Notice the cloud-ringed area of minimum cloudiness 
near 14° N, 154° E on 23 September (Fig. 4.8d), which is significantly west of the best-track 
position for Val (Fig. 4.6e). The next four images (Figs. 4.8e-h) are for the same period as 
the NOGAPS analyses in Figs. 4.6a-d. The key indicator from the imagery that a MG is 
forming in conjunction with Tropical Storm Val is the semi-circular convective activity 
(including the convective cloud mass of Val) that defines the eastern periphery of a broad 
and roughly circular minimum cloud area. This center of the circular cloud minimum area 
is roughly correlated with the (northward-moving) MG circulation center in the NOGAPS 
analyses (when present) for the four days. In the last image (Fig. 4.8h), the cyclonic swirl 
of cumulus clouds near 26° N, 147° E, which manifests the center of the MG circulation, is 
clearly distinct from the cloud swirl of Val near 33° N, 15GPE. 

4.6 TCI-related refinements 

4.6.1 Relative frequency of TCIs. CE defined six modes of Multiple Tropical 
Cyclone Interaction (TCI) that were numbered according to the estimated frequency of 
occurrence. For example, TCI1 (which acts to form a M Pattern) was expected to be the 
most likely interaction and TCI6 involving a true Fujiwhara interaction to be the least likely. 
The actual frequencies of occurrence of the various modes of TCIs based on the five-year 
climatology are listed in Table 4-1. Notice that the numbers of TCI1W and TCI1E case are 
larger than the number of SF Region and NF Region tracks in Figs. 2.4a and b, which is 
explained in Note 1 of Table 4-1. The estimated yearly frequencies given in Table 4-1 
suggest that TC forecasters should expect multiple cases of TCI1E/W, and TCI3W, and 
TCI4 during a typical western North Pacific season. The other TCI modes occur less often 
than once a season, and thus are rare. 
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Fig. 4.7 Satellite visible imagery at 03 UTC on (a) 21, (b) 22, (c) 23, and (d) 24 August 
1991 of the evolution of a cloud pattern southeast of Typhoon Gladys. 
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Hg. 4.7 (continued) Satellite visible imagery at 03 UTC on (e) 25, (f) 26, (g) 27, and (h) 
28 August 1991 illustrating the formation of a monsoon gyre coincident with formation of 
TD15W. 
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Fig. 4.8 Satellite visible imagery at 03 UTC on (a) 20, (b) 21, (c) 22, and (d) 23 September 
1992 illustrating the formation near 8°N, 170° E and subsequent evolution of monsoon gyre 
cloud pattern. 
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Fig. 4.8 (continued) Satellite visible imagery at 03 UTC on (e) 24, (f) 25, (g) 26, and (h) 
27 September 1992 illustrating the coincidence of the monsoon gyre cloud pattern and TS 
Val. 
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Table 4-1 Number of occurrences and yearly frequencies for the various modes of TC 
Interaction during the period 1989-1993. See Carr and Elsberry (1994) for the description 
of the TCI modes. 

Mode of TC Interaction Total Number of Cases (TCs) Yearly frequency 

TCI4 25 5 

TCI1W 161 
3 

TCI1E ll1 
2 

TCI1W and/or TCI1E 19? 4 

TCI33 14 3 

TCI2 4 1 

TCI6 2 <1 

TCI5 3 <<14 

Notes: * Notice that these numbers exceed the number of corresponding tracks in Fig. 2.4a 
and b. These differences arise because the number of TCI's here includes cases in which 
the transformational mechanism was deemed to be operative to the extent that the 
Environment Structure surrounding the TC was transformed into a transitional state 
between the S and M Patterns for some period of time (e.g., Pattern = S/M and Region 
= DR/SF or DR/NF). However, a complete transition to the SF or NF Region of the M 
Pattern was not observed. By contrast, the track segments in Fig. 2.4 represents only periods 
when the TC Region was given a definite assignment of SF or NF. 

2 This number represents the sum of the TCI1W and TCI1E cases minus the number 
of times (8) when TCI1W and TCI1E occurred concomitantly. Alternately, there were 11 
(19-8) cases when either TCI1W or TCI1E occurred, but not both. 

3 Recall in CE reference was made to TCI3W and TCI3E. It has been determined 
that TCI3E (i.e., the influence on the peripheral ridge of a western TC from a TC to the 
east) is essentially just an element of the Reverse-oriented Trough Formation (RTF) model 
that will be discussed in Chapter 4.7.2 below. Thus, the term TCBE will be dropped and 
the designator TCI3 will henceforth represent the phenomenon that CE termed TCI3W, in 
which a TC track is influenced by the peripheral ridge of the TC to the west. This requires 
modifications of CE Table 3.9. Replace S/AW by N/AW from 12 UTC 17 September to 
00 UTC 21 September and replace S/DR by N/NO from 00 UTC 26 September to 00 UTC 
27 September, and replace TCI3E by RTF in the Transformation column. 

4 All three of the TCs experiencing TCI5 were associated with the same MG, which 
is the Nancy-Owen-Peggy case of 1989 (see CE p. 147-161). Thus, only one unique period 
of TCI5 occurred in the five-year period. The only other apparent cases of TCI5 are the 
Odessa-Ruby-Pat case of 1985 (see CE Fig. 3.98) and the recent case of Pat-Ruth in 1994, 
which also involved a full TCI6 merger. Thus, a frequency on the order of once per five 
years is suggested. 
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Fig. 4.9 Track segments of storms during 1989-1993 that were in a S/DR combination and 
were experiencing a TCI3 influence. 

™T Z'6*2 TCI3 track characterfstics. Track segments corresponding to the 14 cases of 
TCD from a TC to the west (CE's TCI3W) listed in Table 4-1 are shown in Fig. 4.9. Notice 
that all but one of the track segments are south of west, or are primarily westward. The 
only significant exception is the sustained west-northwestward track segment of Typhoon 
Omar (1992) that subsequently passed over Guam. In this case, the impact of the TCI3 
from Tropical Storm Polly to the west (CE Fig. E.7b) was to slow the translation speed of 
Omar (see CE Fig. E.7a) compared to the translation speed before and after the period 
when TCI3 was occurring. Given that the Typhoon Omar case appears to be an anomaly 
the remaining tracks in Fig. 4.9 suggest that the forecaster may anticipate a rather 
predictable TC track direction once TCB commences. As a case study in the next 
subsection will demonstrate, TCI3 and TCI4 tend to occur concomitantly, which results in 
feedback that may make the anticipation of the onset and cessation of TCI3 (and hence 
TCI4 also) rather unpredictable. 

4.6.3 TCI4-induced transitions. CE only briefly mentioned TCI4, and then only in 
the context of precluding a S/DR to N/NO transition by preventing the development of 
significant -induced ridging to the southeast of the TC undergoing TCI4 (i.e., from a TC 
to the east). Based on the five-year climatology, about two times per year a TCI4 seemed 
to precipitate, or at least contribute to, a N/NO to S/DR transition (recall Fig 2 8) via 
erosion of the north-oriented ridge. Thus, the subtropical ridge on the poleward side 
becomes the Dominant Ridge in a S Pattern. 
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Two examples of TC track changes associated with the TCI4-induced N/NO to S/DR 
transition are shown in Figs. 4.10a-b. In the case of TY Brian (Fig. 4.10a), the N/NO to 
S/DR transition occurred immediately following a S/DR to N/NO transition, which resulted 
in a very sharp track kink from 0000 UTC 30 September to 0000 UTC 1 October 1989. In 
the case of TY Ryan (Fig. 4.10b), TCI4 from TY Sybil (18 W) to the east resulted in a 
major turn from a northeastward to a west-northwestward track beginning around 1200 UTC 
7 September 1992. The transition in Environment Structure from N/NO to S/DR 
associated with a major left turn of TY Ryan is illustrated with analyses in Fig. 4.11. At 
0000 UTC 6 September (Fig. 4.11a), a peripheral ridge and an associated isotach maximum 
are clearly evident to the southeast of Ryan, and Ryan is to the east of the circulation center 
for the TC. All of these are indicators that Ryan is in the NO Region of a N Pattern. 
Notice that the circulation of TY Sybil to the east separates the peripheral ridge of Ryan 
from the subtropical ridge circulation to the north-northeast of Sybil. Essentially the same 
situation prevails at 0000 UTC 7 September (Fig. 4.11b), except that the previous northward 
motion of Sybil has been arrested, presumably due to a cancellation between BEP and the 
northwesterly flow over Sybil from the peripheral ridge generated by Ryan. 

By 0000 UTC 8 September (Fig. 4.11c), Sybil is actually moving to the south in 
response to the peripheral ridging from Ryan. As the position of Sybil shifts to the 
southeast of Ryan, the circulation of Sybil continues to separate Ryan's peripheral ridge 
from linking with the subtropical ridge to the north. An increasingly deleterious effect on 
the strength of the peripheral ridge is suggested by the indentations in the 20- and 30 kt 
isotachs and associated diffluent region to the southeast of Ryan near 23° N, 158° E. Notice 
also the appearance of a 30-kt isotach maximum to the northwest of Ryan, which in 
combination with the isotach maximum to the southeast indicates weakening in the 
environmental steering flow. In the previous 24-h period, the translation of Ryan began to 
decrease and then turned toward the west-northwest (Fig. 4.10b), which is an indication that 
a Environment Structure transition from N/NO to S/DR is in progress. 

By 0000 UTC 9 September (Fig. 4.11d), as in the intervention of Sybil to the east 
continues and Ryan approaches the subtropical ridge axis, the Environmental Structure in 
the vicinity of Ryan has fully transitioned to S/DR. Completion of the transition is 
indicated by the weakening of the isotach maximum to the southeast of Ryan, the shift of 
the highest wind speeds to the north-northeast, and an increase in Ryan's translation speed 
from 6 to 9 kt over the previous 24 h (Fig. 4.10b). Although the impact of Sybil's circulation 
on the peripheral ridging of Ryan evidently plays a key role in the Pattern/Region 
transition, strengthening of the subtropical ridge to the northeast of Ryan also seems to have 
occurred between Fig. 4.11c and 4.lid. Thus, subtropical ridge modulation (SRM) by 
midlatitude waves (to be described in Chapter 4.8) seems to have contributed to the 
transition. 

The equatorward displacement of TY Sybil between 0000 UTC 7 September is 
attributed to TCI3 from the peripheral ridge of TY Ryan to the west. This case 
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Fig. 4.10 Best tracks of (a) TY Brian from 28 September to 3 October 1989 and (b) TY 
Ryan from 29 August to 12 September 1992. 

65 



Fig. 4.11 Analyses as in Fig. 4.1, except for (a) 6, (b) 7, (c) 8, and (d) 9 September 1992. 
TY Ryan is the western storm and TY Sybil is the quasi-stationary storm to the east. 
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Fig. 4.11 Analyses as in Fig. 4.1, except for (a) 6, (b) 7, (c) 8, and (d) 9 September 1992. 
TY Ryan is the western storm and TY Sybil is the quasi-stationary storm to the east. 

study illustrates how TCI4 and TCI3 may occur concomitantly, and then a "tug of war" may 
be established. That is, the circulation of a western TC induces a peripheral ridge that is 
tending to displace the western TC poleward and the eastern TC equatorward, while the 
circulation of the eastern TC tends to erode the peripheral ridge, which mitigates the 
tendency of the eastern TC to be displaced equatorward and also diminishes the tendency 
for poleward movement of the western TC. Such an interaction depends sensitively on the 
sizes, separation distance, and directional orientation of the two TC circulations. 
Consequently, it is anticipated that the onset, duration, and cessation of TCI3- and TCI4- 
related track changes will have a low predictability. 

4.7      Reverse-oriented Trough Formation (RTF) transformation model 

4.7.1 RTF Model description. According to CE, the key dynamical processes in the 
subtropical Ridge Modification by a "Large" TC (RMT) transformation and the associated 
S/DR to N/NO transition are the negative vorticity advection (NVA) tending to build a 
peripheral ridge to the south and east of the TC and the positive vorticity advection (PVA) 
tending to erode the subtropical ridge to the north and west of the TC. These nonlinear 
NVA and PVA contributions arise from the -induced distortion of the TC circulation away 
from axisymmetry, and the magnitude of the advections is proportional to the horizontal 
scale of the TC. 

This RMT transformation conceptual model is extended here to consider the case 
of two TCs that are oriented roughly east-west and are sufficiently close (less than about 20P 
lat.) so that no significant ridge exists between them. If the combination of these TCs is 
sufficiently large, and particularly if the eastern TC is at a higher latitude than the western 
TC, then the RMT process associated with each TC may constructively superpose. Such a 
superposition may lead to an extensive peripheral ridge extending south and east of the two 
TCs, and to an extended PVA area that may erode the subtropical ridge poleward of the 
TC pair. As a result, a reverse-oriented trough consisting of the two TCs may be formed 
that results in the establishment of a N Pattern in which the TCs tend to move 
northeastward in conjunction with the steering from the large peripheral ridge to the 
southeast. This scenario is the essence of the Reverse-oriented Trough Formation (RTF) 
transformation model. 

In the five-year sample, the RTF transformation model was assigned to both S-to-N 
and M-to-N Pattern transitions. The key difference was whether the two TCs were close 
enough and properly oriented to satisfy the M Pattern criteria before the transition to N 
occurred. The following case study illustrates the RTF transformation inducing the 
Environment Structure transition M/NF to N/NO and M/SF to N/NO, which were not 
anticipated by CE, but were found to recur in the five-year sample (see Figs. 2.8 and 2.9). 
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Fig. 4.12 Best tracks for (a) TY Flo from 28 September to 9 October 1993 and (b) ST Ed 
from 27 September to 9 October 1993. 

68 



Fig. 4.13 Analyses as in Fig. 4.1, except for (a) 3, (b) 4, (c) 5, and (d) 6 October 1993. TY 
Flo is the western TC and ST Ed is the eastern TC in the central portion of the domain, TS 
Gene is in the lower-right corner, and TD 28W is forming in the South China Sea in panel 
(d). 
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(i) a disturbance, which will become TD 28W, located in the South China Sea just off the 
coast of Vietnam; (ii) Typhoon Flo just east of Luzon, RP; (iii) Typhoon Ed near 18? N, 
137 E; and (vi) Tropical Storm Gene near 6°N, 155° E. Notice that the axis of the monsoon 
trough has a slight reverse orientation from TD 28W in the South China to Flo, an 
essentially zonal orientation from Flo to Ed, and a climatologically normal orientation from 
Ed to Gene. A prominent ridge is to the southeast of TD 28 W and Flo, but not to the 
southeast of Ed. The orientation of Ed and Flo to the subtropical ridge suggests that Flo 
is the western TC in a M/NF Pattern, and that Ed is beginning a transition from S/DR to 
M/SF. The slightly south of west motion of Flo at this time (Fig. 4.12b) is consistent with 
the assignment of the NF Region, although the west-southwest to east-northeast slope of the 
subtropical ridge axis may also be contributing to the south of west motion of Flo. 

In the 4 October analysis (Fig. 4.13b), the South China Sea disturbance has drifted 
southward, Flo has moved westward, and Ed has moved northward. Thus, the three 
circulations produce a reverse tilt to the monsoon trough axis. Notice that a prominent 
ridge has developed (near SP N, 137° E) to the south-southeast of Ed. A combination of the 
reverse-oriented trough and the peripheral ridge to the southeast would be consistent with 
an assignment of a N Pattern. However, a continued assignment as a M Pattern is 
supported by the isotach maximum positions to the northwest and northeast of Flo and Ed, 
respectively, and by a continued westward component of motion for both Ed and Flo. 

On 5 October, both TCs undergo a major turn toward the northeast (Figs. 4.12a-b). 
The analysis (Fig. 4.13c) has an isotach maximum to the southeast of each TC, and a 
continuous band of greater than 20 kt winds along the southeast sides of the TCs and to the 
northwest of the well-established peripheral ridge. All of these factors are indicative of a 
transition to a N Pattern for Ed, Flo, and TD 28W (with the South China Sea disturbance 
having become TD 28W). By 6 October (Fig. 4.13d), the transition to a N Pattern is 
confirmed by the northeastward movement of all three cyclones in response to the extensive 
peripheral ridge to the southeast. Meanwhile, the subtropical ridge to the northwest has 
been completely eroded, and replaced with a trough. 

In summary, the new RTF transformation conceptual model is an adaptation of the 
RMT transformation model, and addresses transitions to the N Pattern involving the 
combined influence of multiple TCs. The RTF is involved in three M/NF to N/NO and 
three M/SF to N/NO transitions (Fig. 2.8). RTF may be contributing to a small (probably 
less than 10) number of the S/DR to N/NO transitions, in which two TCs that do not satisfy 
the M Pattern criteria nevertheless are sufficiently close to trigger a RTF. 

4.8      Subtropical Ridge Modulation (SRM) conceptual model 

4.8.1 SRM model description. In CE, a midlatitude trough was included in the S 
Pattern schematic (CE Fig. 3.5). The presence of this trough (and by implication, the 
accompanying upstream and downstream midlatitude ridges) was said to "modulate" the 
structure of the mid-tropospheric subtropical ridge. That is, the north-south extent of the 
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subtropical ridge is reduced equatorward of the midlatitude trough, which results in a 
"weakness" through which a TC may pass, especially for larger TCs for which Beta Effect 
Propagation (BEP) is a significant factor. Superposition of a midlatitude ridge and the 
subtropical ridge tends to inhibit recurvature, or at least defer recurvature until the TC 
approaches a midlatitude trough-induced weakness in the subtropical ridge. 

The SRM transitional mechanism may account for a transition in the Environment 
Structure of the TC by either weakening or strengthening the subtropical ridge. For 
example, the SRM model appears in Fig. 2.8 as a contributor to some of the DR to WR and 
WR to AW Region transitions in the S Pattern via a weakening of the subtropical ridge by 
a midlatitude trough. Conversely, a ridge-strengthening modulation is implied by the WR 
to DR transition. A strengthening of the subtropical ridge via SRM also contributes to the 
Environment Structure transition from N/NO to S/DR in Fig. 2.8. 

Since either the trough or the ridge portion of a midlatitude wave may affect the 
structure of the subtropical ridge, accurate prediction of an associated Environment 
Structure transition is complicated by several factors. Because the TC is typically moving 
west-northwestward and the midlatitude wave is moving eastward, this relative motion 
creates a delicate timing problem. Interaction between the TC circulation and the 
midlatitude wave may cause TC structure changes. For example, the TC may be weakened 
as it approaches the mid-latitude trough owing to large vertical wind shear, and thus may 
undergo a significant reduction in steering level. In addition, the midlatitude wave may be 
undergoing either amplification or weakening. 

4.8.2 SRM model illustration. The SRM entries in Fig. 2.8 are related to three 
potential scenarios: (i) aiding TC recurvature in the S Pattern; (ii) precluding or delaying 
TC recurvature in the S Pattern; and (iii) contributing to an Environment Structure 
transition from N/NO to S/DR. Because the scenario of a midlatitude trough aiding TC 
recurvature is very familiar to TC forecasters, a separate case study is not included. Rather, 
the first case study will illustrate both scenarios (i) and (ii) above, and the second case study 
will illustrate scenario (iii). 

Case Study #1: The case of Typhoon Dan (27W) during October 1992 is illustrated 
with 12-hourly analyses (Fig. 4.14), the JTWC best track (Fig. 4.15), and geostationary 
satellite infrared imagery (Fig. 4.16). At 0000 UTC 28 October (Fig. 4.14a), Dan is in the 
DR region of a S Pattern (note isotach maximum to the northeast), and is propagating 
significantly (note peripheral ridging to the southeast is an indication of BEP). These 
assessments are consistent with the steady northwestward track of Dan at this time (Fig. 
4.15). However, a midlatitude trough that is approaching Dan from the northwest is 
producing a weakness in the subtropical ridge. By 1200 UTC 28 October (Fig.4.14b), the 
ridge to the northwest of Dan has weakened further as the trough approaches, and the 
translation speed of Dan has begun to decrease (Fig. 4.15), which suggests that Dan is in 
the DR/WR transition zone of the S Pattern. By 0000 UTC 29 October (Fig. 4.14c), the 
proximity of Dan to the ridge axis and the shift of the isotach maximum to the east suggests 
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Fig. 4.14 Analyses as in Fig. 4.1, except for (a) 0000 UTC and (b) 1200 UTC 28 October 
1992 and (c) 0000 UTC and (d) 1200 UTC 29 October. TY Dan is indicated by the TC 
symbol. 
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Fig. 4.14 Analyses for (e) 0000 UTC and (f) 1200 UTC 30 October 1992. 
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Fig. 4.15 Best track for TY Dan from 23 October to 4 November 1992. 
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Fig. 4.16 Geostationary satellite infrared imagery at 0300 UTC for (a) 28, (b) 29, (c) 30, 
and (d) 31 October 1992 including TY Dan. 
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that Dan has transitioned to the WR Region. This assessment is consistent with the slowly, 
poleward-turning track of Dan at this time (Fig. 4.15). The scenario thus far illustrates the 
combined effects of BEP and SRM (i.e., the ridge-weakening mode) leading to a S/DR to 
S/WR transition as depicted in Fig. 2.8. 

By 1200 UTC 29 October (Fig. 4.14d), the midlatitude trough is well east of Dan, and 
a midlatitude ridge is approaching from the northwest. Notice also the increased north- 
south extent of the subtropical ridge on the western periphery of Dan compared to 24 h 
previously (Fig. 4.14b). This increase reflects the ridge-strengthening mode of the SRM 
conceptual model. A steering component tends to offset the normal northwestward BEP 
of Dan, which is reflected in the rapid decrease in translation speed and a left turn (Fig. 
4.15). Such a track change suggests that Dan is in transition from S/WR to S/DR. 

As a midlatitude ridge approaches to the north of Dan over the next 12 h, the 
analyses (Figs. 4.14e-f) indicate building of the subtropical ridge. By 1200 UTC 30 October 
(Fig. 4.14f), a prominent subtropical ridge is present poleward of Dan and the 30-kt isotach 
maximum is now to the northwest of Dan. In conjunction with the translation speed 
increase to 12 kt, Dan is assigned in the DR Region of a S Pattern. Thus, transition from 
S/WR to S/DR has been accomplished via the SRM transformation. 

Geostationary satellite infrared imagery during the period (Fig. 4.16) illustrates the 
significant changes in upper-level cloud patterns that accompany the DR-to-WR-to-DR 
transition sequence. Whereas little TC cirrus outflow to the northeast is evident on 28 
October (Fig. 4.16a) when the midlatitude trough is approaching from the northwest, 
northeastward outflow is enhanced as Dan enters the WR Region on 29 October (Fig. 
4.16b). The appearance, and increase with time, of such a bright, unbroken cirrus plume 
streaming to the northeast is generally considered to be a good indicator that recurvature 
is imminent. However, a distinct thinning or break has appeared in the cirrus outflow 
plume to the northeast of Dan on 30 October (Fig. 4.16c), and the degree of this break 
increases with time (Fig. 4.16d). Such a change in the cirrus plume, combined with the 
translation speed decrease to an unusually slow 2-4 kt near the ridge axis, provide important 
indicators that a delayed recurvature or stair-step track is likely to occur.2 

Case Study #2. The TS Jack (05W) case during May 1993 is illustrated by analyses 
(Fig. 4.17) and the JTWC best track (Fig. 4.18). On 16 May (Fig. 4.17a), Jack is in a N 

2 Admittedly, severe track changes such as in this case are expected to have low 
predictability. By closely following the track, analyses, and satellite imagery clues 
summarized above, the forecaster may reduce the delay in modifying the official forecast to 
reflect such sudden track changes. In addition, such key indicators can alert the forecaster 
that a low predictability scenario is possible, and thus insert alternate scenarios in the 
Prognostic Reasoning Message. This concept will be addressed in some detail in a 
subsequent report that demonstrates the application of the Systematic Approach. 
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Fig. 4.17  Analyses as in Fig. 4.1, except for (a) 16, (b) 17, (c) 18, and (d) 19 May 1993 
during TS Jack. 
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Fig. 4.18 Best track for TS Jack during 14-23 May 1993. 

Pattern with a prominent peripheral ridge to the southeast and a break in the subtropical 
ridge to the north. As expected, Jack is moving on a poleward-oriented track (Fig. 4.18). 
The deep midlatitude trough that protrudes remarkably far equatorward (to nearly 15° N in 
the vicinity of Jack) represents a ridge-eroding mode of SRM. 

Over the next three days (Figs. 4.17b-d), the deep midlatitude trough is replaced by 
much more zonal flow, so that a distinct subtropical ridge circulation is re-established to the 
north of Jack. This change, combined with the weakening of the peripheral ridge to the 
southeast, puts Jack in the DR Region of a S Pattern. Confirmation that a transition from 
N/NO to S/DR has occurred is provided by the track direction change from northward to 
westward during the 24-h period centered on 0000 UTC 18 May (Fig. 4.18). Even though 
weakening of the peripheral ridge is certainly a contributor, the N/NO to S/DR transition 
is probably most associated with the subtropical ridge-building mode of SRM. This case 
illustrates that Environment Structure transitions leading to such major track changes may 
involve more than one transitional mechanism. 
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4.9      Summary 

This section has described a number of refinements to the Systematic Approach 
meteorological knowledge base that reflect lessons learned from the development of the 
five-year climatology (Chapter 2) and the results of the reproducibility test (Chapter 3). A 
summary of these refinements and how they fit into the overall framework of the 
meteorological knowledge base is given below: 

- small TCs may be expected to follow west-southwestward tracks in the DR Region 
of a S Pattern when the axis of the subtropical ridge has such a slope; 

- it is not possible to distinguish consistently between the Nl and N2 Patterns, so 
that a single N Pattern is adopted, while acknowledging that transitions into the N 
Pattern can be accomplished in a number of ways including: (i) Ridge Modification 
by a single "large" TC (RMT); (ii) TC-independent evolutions of the large-scale 
environment; and (iii) Reverse-oriented Trough Formation (RTF) by the combined 
RMT effects of multiple TCs; 

- variations in N Pattern orientations (as defined by the slope of the peripheral 
ridge) can account for TC track directions ranging from northwest clockwise to east- 
northeast; 

- forecasting whether the environment of a certain range of larger than average TCs 
will undergo a S/DR to S/WR versus a S/DR to N/NO transition as the TC 
approaches a break in the subtropical ridge will be difficult due to an inherent 
overlap in the effects of the BEP and RMT TC-Environment transformations; 

- the translation speed of monsoon gyres (MGs) may range from quasi-stationary to 
magnitudes exceeding the translation speed of a TC within the G Pattern, which may 
result in significant variations in the track of a TC being advected around the 
translating MG; 

- the G Pattern model of CE has been augmented to account for MG formation 
(MGF) in the vicinity of pre-existing TCs (i.e., N/NO to G/NO and S/DR to G/NO 
transitions occur), and MG dissipation (MGD) before the TC dissipates or is 
advected out of the G Pattern; 

- the relative frequency of the six modes of TCI has been assessed (Table 4-1); 

- TCI3 from the peripheral ridge of a western TC nearly always results in a eastern 
TC track that is south of west; 

- TCI4 not only tends to inhibit the S/DR to N/NO transition, but may also cause 
(or at least contribute to) a reverse N/NO to S/DR transition by eroding a pre- 
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existing peripheral ridge associated with the TC being affected; 

- a new Reverse-oriented Trough Formation (RTF) TC-Environment transformation 
conceptual model has been introduced to account for the formation of a N Pattern 
in association with multiple TCs; and 

- a new Subtropical Ridge Modulation (SRM) conceptual model has been 
introduced to account for Environment Structure transitions in which superposition 
of a midlatitude trough or ridge plays a major role. 

Since several new conceptual models have been added, the depiction of the 
Systematic Approach provided collectively by CE Tables 3.1-3.3 and CE Figs. 3.4 is 
deficient. This deficiency is corrected in Fig. 4.19 by combining the content of CE Tables 
3.1-3.3 and CE Fig. 3.3 into one illustration of the new structure and content of the 
meteorological knowledge base. Unlike CE Fig.3.3, the broader concept of transitional 
mechanisms appears explicitly in Fig. 4.19 with the TC-Environment Transformation 
conceptual model set and the largely TC-independent Environment Effects conceptual 
model set now appearing as two sub-groups within the Transitional Mechanisms conceptual 
model group. The two basic types of Environment Structure transitions that may arise from 
certain of the Transition Mechanisms is still appropriately illustrated by CE Fig. 3.4. Thus 
Fig. 4.19 and CE Fig. 3.4 together provide the new conceptual framework of TC motion in 
the Systematic Approach. 
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5.       Application Guidelines for the Meteorological Knowledge Base 

5.1      Background 

A complex array of Environmental Structure transitions among the ten 
possible Synoptic Pattern/Region combinations have been observed (Figs. 2.8 and 2.9) to 
recur in the western North Pacific in response to one or more of eleven identified 
transitional mechanisms (Table 2-3). One of the key lessons learned from the 
reproducibility test discussed in Chapter 3 was that the three trainees had significant 
difficulty in correctly identifying some of the transitions. Although the transition detection 
rate was high (greater than 80.9% since the "missed" category in Table 3-6 includes 
"detected but wrong") and the false alarm rate was low (6.1%), only about half (48.3%) of 
the transitions were correctly identified. In the other 32.7% of the cases, the transition 
selected by the trainees was "similar" to the correct Pattern/Region combination in the sense 
that a similar TC track change would result. Often when the transition was S/DR to G/NO, 
one or more trainees mischaracterized the transition as S/DR to N/NO because they failed 
to recognize the formation of a MG in the vicinity of the TC. The two transition 
characterizations are nevertheless similar in that a poleward track change results. As noted 
in Chapter 4.3, the S/DR to S/WR and S/DR to N/NO transitions are also sometimes 
difficult to distinguish. 

Minimizing the frequency of such incorrect (even though similar) transition 
assignments is important for two reasons. First, a generally similar TC track change might 
be followed by quite a variety of track evolutions. For example, a cyclonical TC track 
around the MG and then toward the northwest would normally be expected following a 
S/DR to G/NO transition. By contrast, sinuous northward or northeastward motion 
typically occurs following the S/DR to N/NO transition. Second, numerical TC forecast 
guidance may be expected to have different forecast traits (biases) following transitions into 
two different patterns. For example, a transition into a G Pattern typically involves a small 
TC that, along with the MG, may be poorly resolved in the numerical model, which 
increases the likelihood of a significant degradation of the TC track forecast. By contrast, 
a transition from S/DR to N/NO involving a relatively large TC that is more likely to be 
well represented in the numerical model may result in little or no bias in the track guidance. 

Most of the transition mischaracterizations were in part attributable to two key 
weaknesses in the meteorological data base. The first weakness was the need for 
refinements to the meteorological knowledge base to address a wider variety of scenarios 
than CE had anticipated. This weakness has been addressed in Chapter 4. The second 
weakness was that the trainees needed assistance in considering: (i) which transitions are 
possible from a given Synoptic Pattern/Region combination, and of those, which are the 
most probable in various situations; (ii) the one or more key transitional mechanisms that 
are responsible for each of the possible transitions; and (iii) the key identifying satellite, 
numerical model, and TC track indicators that are usually associated with each of the 
possible transitions and transitional mechanisms. 
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In retrospect, this second weakness may simply reflect the Numerical Guidance 
Evaluation Process of the Systematic Approach (as represented by the flow chart in CE Fig. 
2.1) has not been fully developed. An implementing methodology will be addressed in a 
forthcoming third technical report of this series. As an interim measure, some 
Pattern/Region transition recognition guidelines derived from the material in this report and 
CE are provided here. 

52      Transition recognition guidelines 

Although the transition summary in Fig. 2.9 may be intimidating, it is emphasized 
that the TC occupies only one Pattern/Region combination in the diagram at a specific 
time, and a limited set of transitions is possible. Only the specific transition paths leaving 
that Pattern/Region in Fig. 2.9 need be considered by the forecaster to discern whether: 
(i) the recent trends in numerical model analyses indicate a transition is imminent or in 
progress; or (ii) the numerical model forecasts fields predict that a transition will occur. To 
facilitate such considerations, a set of transition path schematics have been extracted from 
Fig. 2.9 to illustrate the relative probabilities among the possible transitions (including no 
transition when applicable) for each Synoptic Pattern/Region (Figs. 5.1 - 5.4). In addition 
to expanding upon the main points of the transition frequency discussion in Chapter 2.5, a 
number of other important relationships are brought out by these schematics. 

To complement the transition probability schematics, Transition Guideline Tables 5-1 
through 5-4 have been prepared. Each table is a distillation of information from CE and 
Chapters 2 and 4 of this report that a forecaster should consider in discerning whether a 
Environment Structure transition is occurring or will occur. A Transition Guideline table 
is given for each Synoptic Pattern, and the information is organized by possible transition 
paths from the highest to the lowest climatological probabilities. The key information is the 
probability information, seasonal variations, TC structure considerations, and potential 
indicators of transition and transitional mechanism that may be discerned from satellite 
imagery, numerical analysis fields, and TC track changes. Although Tables 5-1 to 5-4 are 
intended primarily for discerning transitions based on analyses, the tables might tentatively 
be used with appropriate cautior? to discern transitions based on numerical model forecasts. 
Obviously, the satellite imagery indicators only apply to transitions that are actually in 
progress. 

Caution must be used when applying the Transitional Guideline tables as well as the 
Transition Frequency Schematics to numerical model forecast fields and TC tracks since 
model biases probably will alter both the relative probabilities of the possible transitions 
from a particular Pattern/Region combination, and alter the appearance and/or timing of 
certain model field and TC track indicators when forecast products are being used. The 
Numerical Model Traits knowledge base, which will be developed in the next technical 
report, will provide a compilation of such biases. 
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A TC in the S/DR combination (Fig. 5.1a) has five possible transitions plus the 
option of "no transition." Because this number of possibilities is significantly higher than for 
any other Pattern/Region combination (see also Figs. 5.2 - 5.4), evaluating possible 
Pattern/Region transitions from S/DR is a comparatively difficult task. However, notice 
that the transitions to N/NO and S/WR plus the "no transition" option account for 76% of 
all cases. In addition to being relatively rare, the other transition paths require the presence 
of another TC in the case of the M Pattern, or a MG in the case of a G Pattern. This 
observation suggests that the key first step in evaluating a potential transition from S/DR 
is to assess whether either a TC or MG is present or is in the process of developing in the 
proper location to allow a transition to the M or the G Patterns. 

S PATTERN TRANSITION PROBABILITIES 

(a) From DR Region 

(b) From WR Region (c)From AW Region 

Fig. 5.1 Probabilities of a TC in a Standard (S) Synoptic Pattern either remaining in the 
present Region (percentage inside the central circle) for the entire life cycle, or transitioning 
to another Pattern/Region (circles at end of radials; percentages along radials) based on a 
five-year sample of western North Pacific TCs. Panels (a), (b), and (c) are for a TC 
presently in the DR, WR, and AW Regions, respectively, of the S Pattern. 
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Table 5-1   Transition guidelines to be used in conjunction with Fig. 5.1 to evaluate the 
possible transitions from the Standard (S) Pattern. 

S Pattern Transition Guidelines 
FROM DR REGION 

No Transition: (28% of cases) 
(1) More likely in situations involving smaller-than-average TC size (small BEP) and low amplitude 

midlatitute wave pattern (less SRM). 

To N/NO: (30% of cases) 
(1) Transition via RMT mechanism is more likely for larger-than-average single TC and relatively weak 

subtropical ridge. 
(2) Transition via RTF mechanism becomes increasingly likely as the trough axis defined by multiple TCs 

(and/or disturbances)  begins to take on a reverse orientation. 
(3) Key transition indicators: 

(i) building peripheral ridge to SE of TC(s) in NOGAPS 500 mb streamlines (use Streamline Test to 
assess ridge strength relative to subtropical ridge to north), 

(ii) shift of 500 mb isotach maximum from north and east of TC to south and east, 
(iii) increasing signs of cloud max-min-max pattern (Min area looks grey in IR imagery). Cloud 

signature may lead appearance of peripheral ridge in NOGAPS analyses, 
(iv) anomalous slowing of TC well equatorward of latitude of pre-existing subtropical ridge axis. 

ToS/WR: (20% of cases) 
(1) More likely for larger TCs (more BEP) at western end of subtropical ridge, especially if high amplitude 

midlatitude trough approaching (more SRM). 
(2) Key transition indicators: 

(i) absence of ridging poleward of TC in NOGAPS 500 mb streamlines (Caution: Thin ridges that can 
preclude/delay transition of small/midget TCs in DR Region are usually under-represented or 
missed in NOGAPS) 

(ii) shift of 500 mb isotach maximum from more northward to more eastward of TC. 
(iii) gradual slowing of TC speed that may or may not be accompanied by poleward turning. 

To G/NO: (10% of cases-- occurs only during June to November) 
(1) Reflects typical case of MG formation (MGF) to west of TC, which is often at disturbance stage (65% 

of transitions to G/NO). 
(2) Key transition indicators: 

(i) development of MG cloud pattern in satellite imagery (e.g., see Fig. 4.8 and CE Figs. 3.74a-b). 
(ii) MG development usually depicted in NOGAPS 500 mb streamlines as broad cyclonic flow to 

west of TC, and may eventually appear as a large, closed cyclone. MG circulation development in 
NOGAPS often lags MG cloud pattern development, and MG center location may be inaccurate. 

(iii) gradual turn by TC onto a more poleward track (may be absent if MG moving rapidly westward) 
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Table 5-1 (continued) 

S Pattern Transition Guidelines 
(continued) 

FROM DR REGION (continued) 

To M/SF: (7% of cases; average of 3 per year; favored during August - December) 
(1) Key transition indicators: 

(i) TC approaching threshold distance and required orientation relative to TC to west and subtropical 
ridge circulation to northeast, 

(ii) Moderate TC translation speed increase, or absence of deceleration expected near ridge axis 

To M/NF: (4% of cases; average of 2 per year, favored during August - December) 
(1) Key transition indicators: 

(i) TC approaching threshold distance and required orientation relative to TC to east and subtropical 
ridge circulation to northwest, 

(ii) shift of 500 mb isotach maximum near TC from northeast quadrant to northwest quadrant 
(iii) significant slowing (including stalling) of TC translation speed and potentially sharp 

equatorward turn. 

FROM WR REGION 
ToS/AW: (60% of cases) 

(1) More likely for larger TCs at western end of subtropical ridge with southwesterly flow enhanced by 
midlatitude trough digging equatorward to latitude of TC. 

(2) Key transition indicators: 
(i) increasingly prominent, unbroken cirrus outflow to NE of TC in IR imagery, 
(ii) TC convective cloud mass not separating from low-level circulation in VIS imagery, 
(iii) TC track direction passing through north, and translation speed beginning to show significant 

increase (may be modest if westerlies are particular weak or if TC is in process of dissipating). 

To S/DR: (30% of cases) 
(1) Interruption of normal recurvature into S/AW by either ridge-building on poleward side (SRM; 67% of 

cases) or when approaching mid-latitude trough shears apart TC (westerly VWS; 33% of cases). 
Westerly VWS favored after late October in vicinity of Northeast Monsoon flow. 

(2) Key transition indicators: 
(i) In westerly VWS cases, increasing separation of TC convective cloud mass from low-level 

circulation in VIS imagery. Cirrus plume streaming to NE remains prominent and unbroken as 
convective cloud mass separates from low-level circulation and recurves, 

(ii) Track direction of TC (low-level in VWS cases) changes from northwestward and increasingly 
poleward to westward or even west-southwestward, and translation speed increases, 

(iii) In SRM cases, development of cirrus plume streaming to NE reverses and a break (thinness) 
begins to develop (see Fig. 4.16c), and NOGAPS 500 mb isotach maximum shifts from 
the northeast quadrant of the TC to the northwest quadrant. 

No Transition: (10% of cases- TC dissipates before exiting region) 
(1) Typically involves TDs or minimal TSs that weaken to <25 kt before transition to AW Region is 

accomplished. 

FROM AW REGION 

No Transition: (100% of cases- TC recurves and dissipates or transitions to extratropical cyclone) 
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Notice that MGs (and thus G Patterns) developed only during June through 
November during the five-year period (Fig. 2.3b), and were most prevalent during July 
through September. Similarly, all but one of the M Patterns occurred during June through 
December. Thus, it will normally be within these periods that the forecaster must give 
careful attention to the possibility of transitions from S/DR to G/NO, to M/SF, or to 
M/NF. As indicated in Table 5-1, satellite imagery will be the primary tool for detecting 
the formation or approach of a second TC (transition to M Pattern) or formation of a MG 
(transition to G Pattern) in the vicinity of the TC. Whereas recognizing the formation of 
a second TC is relatively straightforward, MG cloud patterns are much more subtle and 
established cloud pattern recognition guidance has not been available. The discussion and 
examples in Chapter 4.5.2 provides interim guidance until a more complete analysis can be 
conducted. When a MG formation seems possible based on satellite imagery, a 
corroborative indicator is a broad turn from a westward direction of motion onto a more 
poleward-oriented track. As indicated in Chapter 4.5.1, such a turn may not occur if the 
MG is moving rapidly westward while influencing the TC. 

For the relatively infrequent situations in which transition to M/NF must be 
considered, the key transition indicators from S/DR to M/NF (Table 5-1) for the western 
TC are a distinct shift of the 500 mb isotach maximum to roughly west of the TC, a 
deceleration, and a turn onto a west-southwestward track. By contrast, the transition'to 
M/SF is more subtle, with no deceleration as the eastern TC approaches the subtropical 
ridge axis being an important clue. 

Whenever the influence of a MG or another TC can be ruled out, the forecaster 
must only consider the three more probable options: no transition; transition to S/WR; and 
transition to N/NO. Although these options have roughly similar probabilities (see Table 
5-1), a key factor that favors the "no transition" option is a small TC size, since smaller TCs 
propagate less and have a weaker, modifying effect on subtropical ridge structure. A 
transition to N/NO is favored if the TC is larger than average, if a 500 mb peripheral ridge 
is building to the southeast of the TC, and if the isotach maximum shift is shifting to the 
south and east. If a TC is approaching a break in the subtropical ridge without being 
accompanied by an increasingly prominent peripheral ridge to the southeast in NOGAPS, 
then a S/WR transition is indicated (additional key transition indicators are given in Table 
o-i). 

The transition possibilities from S/WR (Fig. 5.1b) are only two plus the option of no 
transition. However, the two possible transition paths from the S/WR combination 
represent arguably the toughest forecasting challenge that forecasters face - the recurvature 
versus stair-step track dilemma. Based on the five-year climatology, recurvature is favored 
over stair-step by 2-to-l. Notice from Table 5-1 that an important satellite imagery indicator 
of transition from S/WR is the evolution of the cirrus outflow plume. Whereas plume 
development tends to confirm the S/AW transition (unless the TC is sheared apart due to 
VWS!), plume breakup and weakening points to a transition to S/DR. It is also important 
to notice that once recurvature has occurred, no transitions from the S/AW combination 
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were observed during the five-year period (Fig. 5.1c). 

No TCs during the five-year period remained in the N/NO combination (Fie 5 2a) 
for the remainder of the life cycle. Transition to N/AW is favored over transition to S/DR 
by a ratio of more than 2-to-l. However, recall from Chapter 2.4 that for 8 of the 20 
transitions from N/NO to S/DR the presence of another TC to the east was a contributing 
influence to the erosion of the    -induced peripheral ridge (i.e., the TCI4 transformation) 
M/MA

S
?

C
°^/J£1S n0t Pr0perly P°sitioned t0 the ^t, the probability of transition from 

N/NO to N/AW increases 66% to 80%. The relatively rare (4%) N/NO to G/NO 
transition via transformation of the reverse-oriented trough into a MG occurs only from 
June -December. If neither a MG or properly positioned second TC are present the 
probability of a transition from N/NO to N/AW rises to 84%, with the remaining 16% to 
S/DR. As indicated m Table 5-2, the key indicators for a transition to G/NO is the 
deve opment of the characteristic MG cloud pattern in satellite imagery, and the 
deve opment (usually delayed relative to the satellite signature) of a large cyclonic 
circulation to the west of the TC in the 500 mb analysis. Notice that no significant TC track 
change may occur during a transition from N/NO to G/NO, as the NO Region is common 
to both patterns. The key transition indicator to S/DR (Table 5-2) is a major shift of the 
500 mb isotach maximum from the southeast to the north quadrant of the TC that is 
accompamed by an accelerating turn of the TC onto a predominantly westward track. 

 N PATTERN TRANSITION PROBABILITIES 

(a) From NO Region 

66% 

G/NO 
4% 

N/NO 
29% 

S/DR 

(b) From AW Region 

Fig. 5.2   Probabilities of transitions as in Fig. 5.1, except for the (a) NO   and (b) AW 
Regions of the N Pattern. v ' 
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Table 5-2 Transition guidelines to be used in conjunction with Fig. 5.2 to evaluate possible 
transitions from the North-oriented (N) Pattern. 

N Pattern Transition Guidelines 
FROM NO REGION 

To N/AW: (66% of cases overall; but likely to be significantly larger if no TC to east (see To S/DR below)) 
(1) Expected result of environmental steering in a persistent N Pattern (assuming TC remains > 25 kt) 
(2) May be delayed if peripheral ridge to east of TC moves north with TC. 
(3) Key transition indicators: 

(i) commencement of accelerating right turn toward the east, particularly following a period of 
leftward turning, 

(ii) Development of a cirrus plume to NE is weak and often delayed when transition occurs without 
the aid of a significant midlatitude trough to the north (e.g., see CE Figs. 3.56 and 3.58) 

To S/DR: (29% of cases overall; but likely to be significantly smaller if no TC to east) 
(1) Results from weakening of the peripheral ridge to the southeast and/or strengthening of the subtropical 

ridge arising from one or more of the following processes: 
(i) TCI4 from another TC to east weakening /3-induced peripheral ridge (factor in 40% of cases), 
(ii) SRM-building of subtropical ridge due to midlatitude ridge passing to north (factor in 25% of 

cases), 
(iii) Westerly VWS-induced change of steering level as TC shears apart (factor in 10% of cases), 
(iv) Southwest drift of peripheral ridge to southeast of TC, which causes a break in the connection 

with the subtropical ridge circulation to the northeast. 
(2) Key transition indicators: 

(i) Shift of 500 mb isotach maximum near TC from southeast to north quadrant that is closely 
timed with items (ii) and (iv) under (1) above. 

(ii) Weakening of RMT-related cloud max-min-max pattern; particularly when normal convective 
activity with increasingly cold cloud tops begins to replace the warmer (grey-appearing), and 
more stratiform mid-level clouds tops that manifest the presence of a strong peripheral ridge. 

(iii) Increase in translation speed as track changes from poleward to westward. 

To G/NO: (4% of cases) 
(1) Represents MG Formation (MGF) in a pre-existing Reverse-oriented Trough. 
(2) Key transition indicators: 

(i) reverse-oriented cloud pattern that includes TC begins to take on a more curved appearance, and 
a cloud-minimum "moat" may begin to appear between TC cloud pattern and MG cloud ring if TC 
is not too far from MG center (see Fig. 4.9 and CE Figs. 3.90 and 3.91) 

(ii) See item (2) (ii) under To G/NO transition under FROM DR in Table 5-1. 

FROM AW REGION 

No Transition: (94% of cases- TC recurves and dissipates or transitions to extratropical cyclone) 

To S/WR: (6% of cases) 
(1) Associated with ridge building SRM as midlatitude ridge approaches from northwest. 
(2) Key transition indicators: Same as for N/NO to S/DR transition above. 
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By contrast, the probability that a TC will remain in N/AW (Fig. 5.2b) until 
dissipation/extratropical transition is quite high (94%). However, the forecaster must be 
aware that a transition to S/WR (usually on the way to S/DR) is a small possibility, and 
reflects a dissipation of the peripheral ridge to the east of the TC. 

Ten percent of the TCs in G/NO (Fig. 5.3a) will dissipate while in that Synoptic 
Pattern/Region. Transitions from G/NO to G/AW (via advection by MG) or to N/NO (via 
the MG-TC Interaction (MTI) transformation) are more probable than transitions to G/DR 
(via advection by MG) or S/DR (via advection by MG or MG dissipation) by a factor of 
nearly 3-to-l! Key observational indicators of the G/AW and N/NO transitions (Table 5-3) 
are: (i) the TC cloud pattern is on the periphery of the MG in the G/AW transition, 
whereas in the latter the TC cloud moves toward the center of the MG cloud pattern; and 
(ii) the TC motion is steadily poleward in the G/AW, whereas a significant deceleration and 
possible temporary equatorward turn is an indicator of a transition to N/NO. 

G PATTERN TRANSITION PROBABILITIES 

(a) From NO Region 

(b) From DR Region (c) From AW Region 

Fig. 5.3  Probabilities of transitions as in Fig. 5.1, except for the (a) NO, (b) DR, and (c) 
AW Regions of the G Pattern. W 
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Table 5-3 Transition guidelines to be used in conjunction with Fig. 5.3 to evaluate possible 
transitions from the Monsoon Gyre (G) Pattern. 

G Pattern Transition Guidelines 
FROM NO REGION 

To G/AW: (38% of cases) 
(1) Results from advection of TC northwestward by MG circulation through weakness in subtropical ridge. 
(2) Favored when TC location is well out on periphery of MG circulation as a subtropical ridge break is 

approached, so that TC is not drawn into DR Region by inner portion of MG circulation. 
(3) Key transition indicators: 

(i) TC nearing significant break in subtropical ridge in NOGAPS streamlines just to north of TC . 
(ii) TC track becoming increasingly poleward, with minimal deceleration, and perhaps modest accel- 

eration occurring before TC direction passes through north. 

To N/NO: (28% of cases) 
(1) Results from MG-TC Interaction (MTI) 
(2) Key transition indicators: 

(i) Shift of TC cloud pattern toward center of larger MG cloud pattern. Possible development of 
crescent-shaped convective cloud mass to southeast of TC. 

(ii) Particularly rapid development of peripheral ridge to southeast of MG/TC in NOGAPS 500 mb 
streamlines, and an associated isotach maximum to southeast of TC. NOGAPS indicators may lag 
reality in particularly data-sparse areas, 

(iii) Sudden slowing of TC translation speed and possible equatorward turn (or tight cyclonic loop), 
followed by sharp poleward turn and significant translation acceleration. 

To G/DR: (14% of cases) 
(1) Results from advection of TC by MG from northeast to northwest quadrant. 
(2) Key transition indicators: 

(i) TC cloud pattern location begins to appear somewhat west of north relative to MG cloud pattern, 
(ii) Shift in 500 mb isotach maximum to slightly west of north of TC. 
(iii) TC track toward west, usually with a slight equatorward component. 

ToS/DR: (10% of cases) 
(1) Manifests a dissipation of MG while TC is in NO Region. 
(2) Key transition indicators: 

(i)  MG cloud pattern becomes less prominent and eventually dissipates. 
(ii)  MG/TC circulation in NOGAPS may begin to shrink down to a scale more commensurate with 

size of TC. Note: Rate of circulation shrinkage depicted in NOGAPS may significantly lag 
reality, particularly in areas with little data. 

No Transition: (10% of cases) 
(1) Results from dissipation of TC before TC can be transitioned out of G/NO Pattern/Region combination. 
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Table 5-3 (continued) 

G Pattern Transition Guidelines 
(continued) 

FROM DR REGION 

To N/NO: (58% of cases) 
(1) See (1) under To N/NO under FROM G/NO REGION above. 
(2) See (2) under To N/NO under FROM G/NO REGION above. 

To S/DR: (33% of cases) 
(1) Results from either: 

(i) MG dissipation while TC is in DR Region; or 
(ii) advection of TC westward and usually equatorward until TC escapes influence of MG. 

(2) Key transition indicators: 
(i) For MG dissipation cases see (2) in To S/DR under FROM G/NO REGION above, 
(ii) For advection of TC westward and away from influence of MG: 

(a) TC cloud pattern appears increasingly west of,  and distinct from,  MG cloud pattern. 
(b) TC circulation in NOGAPS streamlines becomes clearly separated from MG circulation to 

southeast. 

No Transition: (8% of cases;  represents only 1 case in 5 years) 
(1) Results from dissipation of TC before TC transitioned out of G/DR Pattern/Region combination. 

FROM AW REGION 

No Transition: (100% of cases) 
(1) TC recurves and dissipates or transitions to extratropical cyclone. 

The transitions to G/DR and S/DR (Table 5-3) are associated with generally gradual 
changes in TC track from the characteristic poleward direction of the G/NO to the 
predominantly westward direction in the DR Region of either the S or G Patterns. The key 
distinction between the two transitions is that G Pattern results from advection of the TC 
by the circulation of a persistent MG, whereas the S Pattern results from the dissipation of 
the MG. Since the MG is usually poorly resolved in NOGAPS streamline fields, carefully 
monitoring the evolution of the MG cloud pattern in the satellite imagery will usually be 
required to distinguish these two transitions. In particular, MG dissipation may be discerned 
by carefully looking for a weakening of the MG cloud pattern signature (e.g., less distinct 
cloud ring; cloud-free moat becoming less evident or absent). 

From a G/DR situation (Fig. 5.3b), a transition to N/NO via the MG-TC Interaction 
(MTI) transformation is nearly twice as probable as a transition to S/DR. Notice in Table 
5-3 that a transition from G/DR to S/DR may result from either advection around a 
persisting MG or dissipation of the MG. As for TCs in G/NO situations, careful monitoring 
of the MG cloud pattern in satellite imagery is important.    When the MG persists, 
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monitoring the position of the TC cloud pattern relative to the MG cloud pattern can 
provide an early indication whether a N/NO versus a S/DR transition is in progress. A shift 
of the TC cloud pattern toward the center of the MG cloud pattern is expected during 
transitions to N/NO (i.e., manifesting the merger of TC and MG), whereas the TC remains 
on the periphery of the MG during transitions to S/DR via advection by the MG. 

Only one TCS was observed to dissipate before transition from a G/DR situation 
could be accomplished. As was the case of the AW Region in the S Pattern, transitions 
from G/AW have not been observed (Fig. 5.3c). 

Notice that for a TC in a M/SF situation (Fig. 5.4a), the probability of transition to 
either S/AW or N/NO are about roughly equal. For a TC in a M/NF situation (Fig.5.4b), 
the probability of a transition to S/DR or N/NO are equal (Fig. 5.4b).4 Transitions from 
the M Pattern to the N Pattern were not anticipated in CE, and have been shown in 
Chapter 4.7 to result from a TC-Environment transformation called Reverse-oriented 
Trough Formation (RTF). The key indicator associated with a RTF-induced transition to 
N/NO (Table 5-4) is the development of a prominent northeast-to-southwest ridge 
circulation extending along the periphery of the TCs involved. Appearance of this ridge in 
the 500 mb streamlines with a concomitant shift of the 500 mb isotach maximum to the 
southeast of both TCs can be a key indicator that the N/NO transition is in progress. Since 
an accurate depiction (in NOGAPS analyses or forecasts) of the evolution of the peripheral 
ridge depends on an accurate representation of both TC circulations, the appearance or 
absence of the peripheral ridge circulation and associated isotach shift in NOGAPS analyses 
cannot be used as a sole indicator of whether a transition to N/NO is occurring. The 
appearance in satellite imagery of a cloud max-min-max pattern characteristic of a Rossby 
wave train extending southeast of the TC pair (or trio) provides probably the best 
corroborative evidence, although such a pattern is sometimes difficult to discern in real time. 

Recall from Fig. 2.9 that the number of cases on which these probabilities are based 
is rather small. Thus, significant changes in the relative probabilities may occur in a larger 
climatological data base. Nevertheless, the probability of a transition from either region of 
a M Pattern to a N/NO combination is likely to remain significant, and forecasters must be 
aware that such situations are possible. 
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M PATTERN TRANSITION PROBABILITIES 

(a) From SF Region 

.   43% / \    57% 
N/NO k—4 M/SF |—U S/AW 

(b) From NF Region 

50% r A    50% 

S/DR k 1 M/NF 1—94 N/NO 

Fig. 5.4 Probabilities of transitions as in Fig. 5.1, except for the (a) Southerly Flow and (b) 
Northerly Flow of the Multiple (M) TC Pattern. 
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Table 5-4 Transition guidelines to be used in conjunction with Fig. 5.4 to evaluate possible 
transitions from the Multiple (M) TC Pattern. 

M Pattern Transition Guidelines 
FROM SF REGION 

ToS/AW: (57% of cases) 
(1) Results from advection of TC poleward and out of M pattern by environmental steering in SF Region. 
(2) Key transition indicators: 

(i) Subtropical ridge begins to build to south of TC in NOGAPS streamlines, and isotach maximum 
begins to shift from northeast quadrant to southeast quadrant of TC circulation, 

(ii) TC track direction passes to east of north and translation speed increases (acceleration may be 
modest initially since TC passed through ridge axis at higher than normal speed). 

ToN/NO: (43% of cases) 
(1) Results from Reverse-oriented Trough Formation (RTF) mechanism building broad peripheral ridge to 

SE as trough axis defined by TCs begins to take on a southwest-to-northeast orientation. 
(2) Key transition indicators: 

(i) Development of an increasingly prominent, extensive peripheral ridge to south and east of line 
of TCs and/or disturbances in NOGAPS 500 mb streamlines. In particular, watch for increasingly 
poleward orientation of the peripheral ridge axis with time. 

(ii) Shift of 500 mb isotach maximum from the northeast quadrant of the eastern TC to southeast 
quadrant. Look for this shift to be matched by a similar isotach shift for the western TC. In 
particular, watch for development of a single closed 30-kt isotach that extends along southeast 
peripheries of both TCs. 

(iii) A significant poleward turn and slowing of the eastern TC translation speed that may be matched 
by a similar and usually more severe track change for the western TC. Look for this track change 
to occur at about the same time as the isotach shift mentioned in (ii) above. In a relative motion 
diagram, this collective change of track by the TCs involved may appear as a cessation (or 
significant slowing) of relative rotation (i.e., as the TCs begin to move on quasi-parallel tracks 
under the influence of the building peripheral ridge to the southeast. 

FROM NF REGION 

To S/DR: (50% of cases) 
(1) Results from movement of the TC westward and equatorward out of the M Pattern owing to dominance 

of the environmental steering in NF Region over the northwestward BEP of the TC. 
(2) Key transition indicators: 

(i) Presence of increased ridging in NOGAPS streamlines to north of TC, and shift of isotach 
maximum from northwest quadrant of TC to north or northeast quandrant. 

(ii) Increase of TC translation speed from 6-8 kt indicative of NF Region to the 10-12 kt typical of 
DR Region. 

To N/NO: (50% of cases) 
(1) See (1) under To N/NO in the FROM SF REGION above. 
(2) Key transition indicators: 

(i) See (i) under To N/NO in the FROM SF REGION above. 
(ii) See (ii) under To N/NO in the FROM SF REGION above, except that isotach maximum shift is 

from the northwest quadrant to southeast quadrant. 
 (iii) See (iii) under To N/NO in the FROM SF REGION above, for comments about western TC. 
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