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I.    INTRODUCTION 

Spike-nosed projectile configurations, Fig. 1, are fired at armored targets where the 
spike provides a standoff distance between the armor and the shaped charge warhead of 
the projectile. However, the cone-nosed configurations, Figs. 2 and 3, provide a windshield 
to reduce the drag and provide a standoff distance as well. The hoped for lower drag for 
these projectiles should extend their range, if the projectiles are launched at the same speed. 
This cone-nosed configuration can then be used against semi^-hardened or "soft" targets, 
such as helicopters, at greater distances. Thus, the name "multi-purpose" is used instead 
of "antitank" projectile. A survey of the prior art regarding spiked bodies was made and is 
listed in the earlier work of Refs. 1 and 2. 

In prior studies1' 2, Mikhail presented computational results for spiked configurations with 
increasing geometrical complexity. In Ref. 1, configurations of spikes with no vortex rings 
and bodies with no base flow simulations were considered. In Ref. 2, the vortex generator 
ring was added and the body base flow was computed. In the present work, an aftbody with 
steep boattail and tail fin boom is added. The present work lays the foundation for the next 
and final step, which is to include fins on the boom. 

The computations were made using the axisymmetric flow simulation code using zonal 
overlapping grid of Ref. 3. It uses the explicit, time-dependent, McCormack's robust numer- 
ical scheme. The purpose of this work is to provide the drag information of every geometrical 
component of the projectile body without fins, for both the spike- and the cone-nosed pro- 
jectiles, at high supersonic speeds and zero angle of attack. The specific configurations 
considered and the test cases with their conditions are provided next. 

II.    PROJECTILE GEOMETRIES, TEST CASES, AND TEST CONDI- 
TIONS 

Before computing a real projectile with fins, the logical step was to test the computation 
on a simpler configurations with the tail boom but without the fins. Experimental data were 
sought before the computations were performed. The computations need to be assessed and 
validated before they can be claimed successful and reliable. Only wind tunnel data were 
expected to exist, since without fins, these projectiles are statically unstable and therefore 
unsuitable for range tests. 

Two sets of wind tunnel data were located. The first set4 is for transonic (0.9 < M< 1.1) 
and low supersonic (M=1.2 and 1.4) speeds. They were for a 3.543-inch (90-mm) shoulder- 
fired, antitank, spiked projectile for a recoilless launcher. Unfortunately, no tests were made 
at the high supersonic speeds (M = 3.0 - 4.5), which is of interest to the present work. This 
configuration is named Config. 1 in this study. 

Successful computations were made at Mach =3.5 and 3.0. Attempts were made for 
computing the cases at Mach 1.2 and 1.4 but yielded very large, unperiodic flow oscillations 
which were not indicated in Ref. 4. However, small oscillations were reported for a similar 
projectile in Ref.   5.    Thus, these two lower Mach number cases could not be used for 



validation. The tests were made at the NASA 2-ft continuous flow transonic wind tunnel 
for the full-scale model. The wind tunnel conditions for the M=1.2 and 1.4 cases were 14.85 
psi (102.4 kPa) for the total pressure and 6.29 psi (43.4 kPa) for the dynamic pressure. The 
unit Reynolds number was 4.5xl06 per foot (14.76xl06 per meter). 

The second projectile configuration (Config. 2) is the 120-mm M830A1 multi-purpose 
sub-caliber projectile with the tail fin boom but without the fins. The body diameter is 3.124 
inch (80 mm). It has a bi-boattail with slopes of 12.5° and 4.5°. Computations were made 
at M = 4.30, 3.95, and 2.05. These speeds were chosen because the actual projectile (with 
fins) was fired at the U.S. Army Research Laboratory (ARL) range, and data exist for them 
at these Mach numbers. However, as mentioned before, no range firings were made for the 
unstable, no-fin configuration. It was thought that in future computational efforts, when the 
fins are added, the present computations would be the starting point for comparison with the 
data. The range conditions are sea-level conditions of p=14.7 psi (101.3 kPa) and T=60°F 
(15.5C). The unit Reynolds numbers were 30.1, 27.6, and 14.3xl06/ft (98.7, 90.55, and 
46.9xl06/m) for M=4.3, 3.95, and 2.05, respectively. With no positive validation available 
for this configuration, a similar configuration (Config. 3) that has data was chosen next for 
computation and comparison. 

The third and last configuration (Config. 3) is a 40% scaled down model of an earlier 
version of the M830A1 projectile. Wind tunnel test results were available in the second 
data reference6 mentioned earlier. The tests were made in a 9-inch (22.5-cm) blow-down 
supersonic wind tunnel at M = 3.5 and 3.0. The model had a diameter of 1.261 inch (32 
mm) and a bi-boattail with slopes of 20.5° and 4.6°. The tunnel total pressure was 75 and 
60 psi, respectively (517.2 and 413.8 kPa ). The total temperature was 60F° (17.5C). The 
unit Reynolds number was 9.1 and 10.2xl06/ft (29.9 and 33.5xl06/m). No error bounds 
were given for these measurements. However, calibrations errors of the tunnel balance were 
mentioned as possible error source. 

III.    GOVERNING EQUATIONS 

The compressible Navier-Stokes equations for axisymmetric and two-dimensional flow 
can be expressed1' 2> 3 in the following strong conservation form in which the dependent 
variables p,u,v, and e are mass averaged, in which e is the specific total energy, T is the 
temperature, p and p are the mean density and pressure, respectively, and t is time: 

in which 
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in which p is the molecular viscosity, e is eddy viscosity and ß = 1 or 0 for axisymmetric or 
two-dimensional cases, respectively. 

The air is assumed to be a perfect gas. Sutherland's law for temperature dependence of 
the laminar viscosity was used. 

The laminar and turbulent Prantdl numbers, Pr and Prt, were assumed constant with 
values of 0.72 and 0.9, respectively.   The ratio of the specific heats, 7, was also assumed 



constant and equal to 1.4. Cv and Cp are the specific heat capacities at constant volume and 
constant pressure, respectively. 

The total energy per unit mass, e, is given by 

e = CvT+(l/2)(u2 + v2). 

In the £ — 77 computational plane, Equation 1 is transformed to the conservation law form 
and the equations can be found, for example, in Ref. 3. 

1. Turbulence Model Turbulence is modeled through a modification of the eddy 
viscosity model of Baldwin and Lomax7. This widely applied model employs the two-layer 
concept (inner and outer layers). 

Because of the perpendicular surfaces of the spike surfaces at the nose tip and at the facing 
shoulder, the normal distance to the wall "y" in the turbulence model is difficult to assign8 . 
This problem was approached in Ref. 8 by measuring y along a 45° ray emanating from the 
point of intersection of the two perpendicular walls. 

IV.    THE CODE, GRIDS, AND COMPUTATIONS 

1. The Code The computer code was developed by Patel et al.3 and uses the robust 
explicit, time-dependent method of McCormack. Explicit schemes must run with small, lim- 
ited time step sizes and are often slow in comparison with implicit schemes. However, for the 
present study, robustness was favored over computer time economization, a matter left for 
possible future efforts. The code is vectorized and is run on a Cray-XMP/48 machine. How- 
ever, the present computations were all run in serial arithmetic mode to avoid uncertainties 
in parallelization. The zonal grid and overlapping is provided in the code and is represented 
by eight different available zones, which may be increased if desired. A global uniform time 
step was used herein against grid-varying time steps to simulate "time-accurate" solutions 
and to avoid introduction of numerical unsteadiness that may interfere with possible physi- 
cal flow unsteadiness. The time step is determined from the CFL (Courant-Fredrich-Levy) 
condition, with a conservative factor of 0.6 being used as the Courant number to avoid any 
instabilities that may be triggered by physical or numerical unsteadiness. The computation 
takes 0.7xl0-5 sec per one time step. This amounts to about 1950 and 1150 CPU seconds 
per grid point per one thousand time steps for the larger grid of Config. 1 and the smaller 
grid of both Configs. 2 and 3, respectively. 

2. Boundary Conditions No-slip conditions are specified on all wall surfaces. The 
incoming flow conditions are assumed to be of uniform profiles with free-stream values based 
on the wind tunnel test conditions or sea level as given in Section II. The out-going flow 
conditions at the downstream end of the flow field were imposed as zero gradients at the 
body tail boom end plane. 



The outer boundary conditions were imposed as nonreflective conditions, i.e., zero gradi- 
ent conditions along characteristic lines for all variables. The characteristic direction is de- 
termined from the local velocity and temperature. This approach allows setting the "outer" 
field close to the body without the penalty of any unnecessary approximation regarding 
shock reflection at the boundary or any degradation attributable to the far-field conditions 
(zero-gradients) being set too close. 

At the symmetry line, ahead of the spike tip, a two-point zero gradient boundary condi- 
tion is imposed on the solved variables. 

3- Initial Conditions For Configuration 1, the M=3.5 case was computed first. The 
computations started with uniform, free-stream condition values for all the variables. The 
M=3.0 case was then started using partially converged solution of the M=3.5 case. 

For Config. 2, the M=4.3 case was computed first using all free-stream flow conditions as 
starting flow field. The cases of M=3.95 and 2.05 were then started using partially converged 
solution of the M=4.3 case. 

For Config. 3, the same was done by starting the case of M=3.5 with uniform flow fields, 
then the case of M=3.0 was initiated using the obtained converged solution of the M=3.5 
case 

4.    The Grids 

a- Configuration 1 Five overlapping zones were used in the computations. Origi- 
nally, the zones had the grids of (20x89), (17x72), (11x65), (70x88), and (130,36), respec- 
tively. The first and second arguments in the parentheses refer to the axial and radial direc- 
tions, respectively. This grid is equivalent to 14,559 total points or an equivalent (121x121) 
grid. Computations at M=3.0 and 3.5 yielded very large, nonperiodic oscillations and did 
not converge. The grid was then almost doubled to 28,000 points distributed as (35x131), 
(17x114), (11x107), (105x124), and (130x56). This grid is equivalent to (168x168) mesh'. 
The solution convergence instability was then controlled, leaving only the smaller, physical 
oscillations attributable to the vortex break-up. The Mach 3.5 and 3.0 cases were computed. 
However, the lower Mach number cases of 1.2 and 1.4 still did not converge. This numerical 
behavior for the lower Mach numbers is believed to be physical in nature, as described by 
the unsteady flow patterns described and captured in shadowgraphs by Biele 5. Success in 
obtaining solutions for the M=3.5 and 3.0 cases indicates that these oscillations at M = 
1.2 and 1.4 are not to be considered as numerical in nature or attributable to coarse grid. 
Further investigation should be pursued to resolve this issue. 

The radial grid is exponentially distributed. The first point distance to the wall, At/i is 
used as an input for possible grid-spacing variation. Figures 4, 5, and 6 show the grid for 
this configuration. 



b. Configurations 2 and 3 Both configurations were computed using five-zone over- 
lapping grids. The total grid number was 15,837 points, equivalent to a (126x126) mesh. 
The grid was distributed as (25x69), (31x56), (32x56), (80x56), and (109x56). The effect of 
the size of Ayi was tested and is given in the results section. The grid is shown in Figs. 7, 
8, and 9 for Configuration 2; and Fig. 10 for Configuration 3. 

V.    RESULTS 

1. Flow Unsteadiness for Spiked Configurations The work of Haupt et al.9 for 
range shadowgraph studies at transonic speeds of M = 0.75 to 1.24, has documented large 
scale flow oscillations for both the low and high drag modes. These oscillations, similar 
to what Mikhail computationally reported 2 for the M=1.9 case, are attributable to the 
break-up and re-generation of vortices in the highly separated flow on the spike, behind 
the vortex generator ring. These oscillations are different from those occurring when the 
flow transitions between the high and low drag modes. This latter type of oscillation was 
reported and studied by Calarese10 and Shang11 for a re-entry vehicle with a short spike. 
The former oscillations for a high or low drag case were encountered in the present work 
when the Mach number was lowered to M=1.9, 1.4, and 1.2. Very large flow oscillations 
continued in the computations and no steady flow pattern was observed. Biele 5, also using 
firing range shadowgraphs for spiked projectiles for Mach 0.9 -3.5, indicated that the flow was 
unsteady because of vortex shedding from the vortex ring at Mach 1.4 and 2.6. However, 
the same projectile was also reported to have no flow unsteadiness when fired at either 
Mach 3.1 or 1.85. Biele indicates that there are at least three different flow patterns which 
the projectile goes through when decelerating from M=3.1 to 1.2. He explains that the 
drag/Mach number curve shows waviness because of this phenomenon of the combination 
of those three flow patterns. Spike length, spike-to-body diameter ratio, flow Reynolds and 
Mach numbers are the main parameters influencing the occurrence of these patterns. 

2. Configuration 1 Computations were made for the M = 3.5 and 3.0 cases using a 
wall-dense grid distribution with Aj/a of l.xlO-4 inch (2.5xl0"3 mm). The flow exhibited 
constant flow oscillations because of the break-up of vortices. The areas distinctly affected by 
the flow oscillations are the tip of the spike and the boattail regions. The flow was unsteady 
but close to being periodic. The same flow unsteadiness was also reported 2 for a similar 
spike-nosed body. Because the code and scheme were validated earlier *■ 2 for similar spiked 
configuration, the present computations were considered satisfactory, being an additional 
application for this class of projectiles. 

The flow field, represented by the Mach contours, for the M=3.5 case is shown near 
the spike and the boattail regions in Figs. 11 and 12. Noted is the vortex sheet (surface) 
emanating from the vortex ring to the body shoulder, then over the tail boom. Noted 
also, as was reported earlier by Mikhail2, is that this sheet does not "bend" down to follow 
the boattail. Thus, no Mach expansion fan is observed at the body-boattail junction, as 
evidenced from Fig. 12. The flow at the spike tip pulsated with the small eddy break-up 
cycle. The bow shock changed shapes from normal to the body axis to a sloped shock. Figure 
11 shows the sloped form. The second case at M=3.0 gave very similar results. Figures 13 



and 14 depict the same flow field pattern near the spike and the boattail regions for that 
case. 

The total forebody drag coefficient (total drag minus the tail boom base drag) was 0.256 
at M=3.0 and decreased to 0.245 at M=3.5, as given in Fig. 21. Figure 22 depicts the surface 
pressure distribution for M=3.5, while Fig. 23 presents the configuration with its component 
drag for M=3.0. The case of M=3.5, not surprisingly, gave similar drag anatomy. The drag 
anatomy for the two cases is listed in Table 1. 

Table 1. Drag Anatomy for Configuration 1 

Drag Component M = :3.5 M = :3.0 

Cd Cd % Cd Cd% 

Spike Tip Face 
Vortex Ring (both sides) 
Main Shoulder Face 

Boattail 
Viscous Drag (all body) 

0.0739 
0.0068 
0.1391 
0.0250 
0.0006 

30.16 
2.78 

56.79 
10.23 
0.24 

0.0641 
0.0055 
0.1545 
0.0312 
0.0007 

25.03 
2.16 

60.36 
12.19 
0.26 

Total Drag 0.2454     100.00     0.2560     100.00 

Finally, it is very interesting to observe the very low viscous drag percentage for the 
configuration. One is reminded that the flow is separated over the spike, the boattail, and 
most of the tail boom. Therefore, only the main body diameter and part of the tail boom, 
with its small surface area, contribute positively to the viscous drag. 

3. Configuration 2 Three Mach cases of 4.3, 3.95, and 2.05 were computed using the 
grid described in Section IV-4b. Two grid spacings were tested to indicate the viscous flow 
resolution near the body surface. The first grid spacing used Aj/a of 0.005 inch (0.127 mm), 
as very coarse distribution. The second was very fine and fifty times smaller, having Aj/i 
of 0.0001 inch (0.0025 mm). Obviously, for the present explicit numerical scheme, a larger 
computer time (fifty times larger) will be needed because of the smaller time step value that 
will be used. This test was made to check the effect of grid spacing and resolution on the 
drag values. 

Usually, numerical convergence becomes much slower near transonic and low supersonic 
speeds. Also, separated flow regions, such as base flow or the boattail flow in the present 
case, usually take the longest time to converge, while the forebody flow field reachs its steady 
state relatively quickly. The present cases are no exception. The M = 4.3 and 3.95 cases 
converged quickly for both grid resolutions, while the 2.05 case was significantly slower to 
converge. The fine spacing gave no improvements for the total drag for the M=4.3 and 3.95 
cases.   Some 4% increase in the total drag (basically from the separated boattail region) 



was observed for the M=2.05 case.   However, the viscous drag changed very little.   This 
improvement should be balanced by such large increase in required computing time. 

The Mach contours for the M=4.3 case are shown in Figs. 15, 16, and 17. Figure 17 
shows how the flow follows the body contour in the boattail region, causing the expected 
Mach expansion fan unlike in Config. 1 case. The case of M=2.05 is also shown in Figs. 18, 
19, and 20, with no major differences in the flow pattern. The total forebody drag for the 
three cases was 0.2984, 0.1905, and 0.1796 for M=2.05, 3.95 and 4.3, respectively, as also 
given in Fig. 24. The groove drag was computed using the correlation of Ref. 12 and is 
included in the given values. 

The drag anatomy for the M=4.3 case is listed below, together with the other two Mach 
numbers. The viscous drag is very small in this case because of the very high Reynolds 
number, which was 30.1xl06 /ft (98.2xl06/m). This viscous drag value will triple when the 
Reynolds number decreases as will be shown in the case of Config. 3. The groove drag for 
M=2.05 is slightly high since it is outside the Mach speed range of Ref. 12. The surface 
pressure distribution for M=2.05 and the components drag for M=4.3 are shown in Figs. 25 
and 26, respectively. They are also listed in Table 2. 

Table 2. Drag Anatomy for Configuration 2 

Drag Component M = 4.3 M = 3.95 M = 2.05 

Cd       Cd%        Cd       Cd%        Cd      Cd% 

Tip Meplat Face         0.0136 7.60 0.0138 7.25 0.0129 4.31 
Nose                        0.1151 64.10 0.1177 61.79 0.1528 51.19 
Boattails                   0.0447 24.90 0.0519 27.25 0.1105 37.05 

Viscous Drag (all body)    0.0047 2.61 0.0053 2.76 0.0098 3.29 
Groove Drag 0.0014 0.79 0.0018 0.95 0.0124 4.16 

Total Drag 0.1796    100.00     0.1905    100.00     0.2984    100.00 

Since the computations were not validated against experiment for this type of configura- 
tion, the following case of Config. 3, which is very similar and has experimental data, was 
then computed for validation. 

4. Configuration 3 This 40% scaled down model was computed using the dense grid 
spacing of Ayi of 0.0001 inch (0.0025 mm) and the same number of grid points as Config. 
2. The two cases of Mach 3.5 and 3.0 were computed without difficulty and without any 
unsteadiness in the flow. The computed total drag coefficient was 0.2668 compared to the 
measured value of 0.253 of Ref. 4. For the M= 3.5 case, the computed value was 0.2387 
compared to 0.257 for the wind tunnel. This last wind tunnel value is considered slightly 
in error since it shows value greater than the M=3.0 case, as shown in Fig.  27.   Usually, 



the drag coefficient decreases with the Mach number rather than increases.   The present 
computation conforms and yields the correct trend. 

The drag composition for the two cases is listed in Table 3. The surface pressure is 
given in Fig. 28 for M=3.5 case. The case of M=3.0 gave a similar drag composition and is 
depicted with M=3.5 case in Fig. 29. 

Table 3. Drag Anatomy for Configuration 3 

Drag Component M = 3.5 M = 3.0 

Cd       Cd%        Cd        Cd% 

Tip Meplat Face              0.0045 1.90 0.0047 1.75 
Nose                              0.1434 60.06 0.1512 56.67 
Boattails                        0.0657 27.52 0.0843 31.60 

Viscous Drag (all body)    0.0197 8.25 0.0194 7.27 
Groove Drag                    0.0054 2.27 0.0072 2.71 

Total Drag 0.2387     100.00    0.2668     100.00 

Notice that the viscous drag has increased to 8.2% because of the lower Reynolds number 
compared to the high Reynolds number case of Config. 2. Also, the meplat drag is smaller 
than in Config. 2 due to a smaller meplat. 

The overall computations are believed to be validated and acceptable. Therefore, the 
above cases of Config. 2, which is very similar in shape, are considered satisfactorily com- 
puted. 

VI.    SUMMARY AND CONCLUSIONS 

Seven different cases were computed for three projectile configurations encompassing the 
two categories of anti-ank projectiles. Computations were made at both wind tunnel and 
sea-level Reynolds numbers. The results obtained are summarized as follows: 

1. The flow over a spike-nosed configuration (Config. 1) with vortex generator ring, 
boattail, and tail fin boom was computed at Mach 3.5 and 3.0 at a wind tunnel Reynolds 
number of 4.5xl06/ft and zero angle of attack. The computed spike flow features were 
consistent with the prior computations and validation of Ref. (2). The new boattail and 
fin boom flow indicated that the vortex sheet (surface) extended over the boattail, thus 
inhibiting the usual wave expansion fan expected at the body-boattail junction. The flow 
exhibited a small unsteadiness pattern near the spike tip, probably triggered by the subsonic 
region at that location. 



Flow oscillation on the spike is an undesirable factor because it may interact with the 
yawing motion of the projectile and thus, may become amplified itself or may rather increase 
the yawing motion, rendering the projectile unstable or causing large dispersion. 

2. The flow over the cone-nosed body of the M830A1 projectile with the 12.5° and 4.5° 
bi-boattails (Config. 2) was computed for Mach 4.3, 3.95, and 2.05 at sea-level Reynolds 
numbers of 30.1, 27.6, and 14.3 x 106/ft, respectively. The flow showed very small flow 
unsteadiness at the nose meplat at Mach 4.3, but it disappeared at Mach 2.05. There were 
evident expansion waves at the body-boattail junction because of the absence of the vortex 
sheet of the vortex ring of the spiked configuration. 

3. The 40% scaled down model, cone-nosed configuration of 20.5° and 4.6° bi-boattails 
(Config. 3) was computed at wind tunnel Reynolds numbers of 9.1 and 10.2 x 106/ft for 
Mach 3.5 and 3.0, respectively. The axial force coefficient was compared with data and 
indicated a measurement error at Mach 3.5 where the value increased rather than decreased, 
differently than the normal trend. 

4. Drag component anatomy was made for all cases computed. For the spiked cases, the 
spike tip and body shoulder contributed 25% and 60% of the total drag at M=3. For the 
coned configuration (Config. 3), the nose contributed 57% while the boattails added 32%, 
respectively, at Mach 3. This insight of the drag components is a significant contribution of 
the present work. No experiment has, yet, provided such an insight. 

5. Contrary to the general expectation, the spike-nosed configuration drag was not much 
higher than the cone-nosed drag in the Mach 3.0-to-3.5 range. This finding is limited to 
spiked bodies with vortex generator rings, at the low-drag mode, at Mach > 3.0. A spiked 
body without the ring can suffer much higher drag than cone-nosed body at lower speeds 
(M < 3), especially at the spike high drag mode. 

6. The present computations indicated that these two classes of configurations can be 
successfully computed with the presented approach. This work, therefore, paves the way to 
computing the complete HEAT projectile configuration by including the fins. 
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LIST OF SYMBOLS 

Aref = reference area, (ird2/4) 
CD = drag coefficient, drag force/(0.5pV2Aref) 
Cp = specific heat under constant pressure 
Cv = specific heat under constant volume 
d = projectile reference diameter 
e = specific total energy 
J = Jacobian of the coordinate transformation 
M = Mach number 
p = static pressure 
Re = Reynolds number per unit length 
Rel = Reynolds number, based on reference diameter 
T = static temperature 
u,v = velocity components in the x,y directions 
VQC = free stream flow velocity 
x,y = Cartesian coordinates for 2-D case, also axial 

and radial coordinates for axisymmetric case 

Greek Symbols 
a       = angle of attack 
7       = ratio of specific heats 
p       = density 
\L       = laminar (molecular) viscosity coefficient 
e        = turbulent eddy viscosity coefficient 
£, 7/    = transformed coordinates in the computational 

plane for the coordinates x, y 

Subscripts 
o       — denotes total (stagnation) condition 
oo      = free stream condition 
w       = location on the body surface (wall) 
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