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The purpose of this predoctoral fellowship research project is to use edge information 
with the Reduced-encoding Imaging by Generalized-series Reconstruction (RIGR) 
technique to improve temporal and spatial resolution in dynamic contrast-enhanced 
magnetic resonance imaging of the breast.  Towards this goal, a multiresolution 
technique was selected for the edge detection, and several methods of incorporating 
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information available from a second high-resolution reference image was developed. 
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4     Introduction 

This fellowship research project focuses on improving the temporal and spatial resolu- 

tion in dynamic contrast-enhanced magnetic resonance imaging (MRI) of the breast. 

Dynamic contrast-enhanced MRI has been investigated as a possible means for non- 

invasive determination of the benign or malignant status of a breast tumor due to the 

differential rate of enhancement following injection of a contrast agent (1-9). In order to 

capitalize on the time of greatest differentiation between malignant and benign lesions, a 

sequence of images of the breast must be acquired during the first 1 or 2 minutes follow- 

ing contrast injection (10,11), leading to a requirement for high temporal resolution. In 

addition, high spatial resolution in 3 dimensions is imperative to allow the visualization 

of very small tumors with complete coverage of the breast. High signal-to-noise ratio 

(SNR) is necessary so that noise does not interfere with the differentiation between the 

malignant and benign enhancement rates. 

However, with conventional MRI techniques, since each of the dynamic images is 

collected independently, the requirements for increasing the temporal and spatial reso- 

lutions are conflicting. For example, if N encodings are collected for each image where 

TR is the time to collect one encoding and Ak is the spatial frequency step between 

encodings, the spatial resolution will be j^, but the temporal resolution will be limited 

to NTR which may not be acceptable for large N. 

To overcome this problem with conventional MRI, several methods have emerged 

to reduce the number of dynamic encodings needed per dynamic image. Perhaps the 

most well-known are the Reduced-encoding Imaging by Generalized-series Reconstruc- 

tion (RIGR) (12,13) and Keyhole (14,15) techniques which are characterized by the 

same data acquisition scheme (Fig. 1). Both methods acquire a single high-resolution 

reference image with a series of reduced dynamic encodings. 

The main difference between the methods is in the reconstruction of the dynamic 

images. Keyhole uses a Fourier series based approach. The high frequency encodings 

from the reference data set are appended to the low frequency dynamic encodings to 

create a full data set which is then inverse Fourier transformed to arrive at the dynamic 

image. Although the method has been applied to dynamic breast imaging (16,17), it has 



many problems which can cause improper diagnosis due to missed lesions (18). There is 

the potential for data inconsistency between the reference and dynamic data sets which 

could lead to image artifacts. This is especially important in contrast-enhanced imaging 

because the inflow of the contrast agent causes an increase in the overall intensity level 

as well as the intensity in the enhancing areas. In addition, Keyhole can only track 

dynamic changes at low resolution (19,20). This can easily be seen by looking at the 

reconstruction equation for idiff, which is the difference image between the reference 

image and a dynamic image or, effectively, an image of the dynamic changes: 

JV/2-1 

/diff(*)=    E    [ddyn(nAk)-dT4nAk)]e-i2™Ak*. [1] 
n=-N/2 

Since N is the number of dynamic encodings, it can be seen that the dynamic changes are 

reproduced at low resolution with Keyhole. Since the changes are the object of interest 

in dynamic contrast-enhanced MRI, Keyhole is not well suited for this application. 

Although RIGR uses the same number of dynamic encodings, RIGR can reconstruct 

the dynamic images with a higher spatial resolution than is possible with a Fourier based 

approach. This is because the basis functions of the generalized series model contain 

high-resolution information from the reference image. This has important ramifications 

in the tracking of dynamic changes as can be seen below in the reconstruction equation 

for the difference image idiff: 

JV/2-1 JV/2-1 

/diff(*)=    £    cn ITe{(x)e-i2™Akx    =    Yl    cnV{*)- [2] 
n=-N/2 n=-N/2 

y v ' 

basis functions 

The importance of this difference will be demonstrated in the figures in the completed 

research section of this report. 

The purpose of this fellowship research project is to use edge information with the 

RIGR technique to improve the temporal and spatial resolution in contrast-enhanced 

dynamic imaging of the breast. The motivation for this is that the RIGR technique 

tends to bias the contrast of the dynamic image towards that of the reference image. 

By using only the edge information from the reference image, this problem should be 

alleviated. Towards this goal, the problems of edge extraction and the incorporation of 



the boundary information into the RIGR algorithm were investigated. As the project 

evolved, a novel method for utilizing the additional information from a second high- 

resolution reference image was developed. These topics will be covered in the body of 

this report, and areas for future work will be discussed in the conclusion. 

5     Completed Research 

The two project areas of boundary extraction and the utilization of this edge information 

in the RIGR algorithm will be discussed in this section. In addition, the new TRIGR 

technique which arose from the work on this project will be covered. Since it is the 

dynamic changes that are of interest, the results will be presented as images of the 

dynamic changes. Both Keyhole and the original RIGR algorithm will be included for 

comparison purposes. 

To test the methods developed during this research, a breast simulation was designed 

which has four lesions surrounded by breast "parenchyma" (see Fig. 2). Only two of the 

lesions are visible pre-contrast to allow the effects of the boundary determination to be 

shown. One of these tumors and one of the others enhance rapidly, and the other two 

enhance more slowly, modeling malignant and benign lesions, respectively. In addition, 

the parenchyma has a gradual increase in intensity as occurs in contrast-enhanced MRI. 

The size and location of the lesions can be changed as well as the rate of enhancement of 

each region to test an algorithm's spatial resolution and ability to track the time course 

of enhancement. Since the dynamic images and the time evolution of signal in each pixel 

is known exactly in these simulated images, it will be easy to judge the performance of 

an algorithm. 

5.1    Edge Extraction 

The first area that was addressed was the extraction of the edge information from the 

reference image. Two methods were investigated for doing this: wavelet edge detection 

and the closely related multiresolution edge detection. Both schemes detect edges at 

several scales which is advantageous because structures of different sizes may be of 

importance in an image. However, the concept of scale is different in the two transforms. 
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For the wavelet edge detector, the idea of scale is tied to the size of the edge itself. 

This results in detecting wider edges as the scale of the wavelet gets larger. With the 

multiresolution edge detector, the concept of scale relates to both physical proximity 

and greyscale "closeness" between regions enclosed by a boundary. 

5.1.1   Wavelet Edge Detection 

Wavelets are a new form of basis functions that show promise for application to many 

problems in signal processing (21-23), magnetic resonance imaging (24-29), etc. They 

have generated a lot of interest due to the fact that they can be chosen to be localized 

in both frequency and time (or space), unlike the Fourier basis functions which are of 

infinite length in time (or space.) In addition, wavelets can be chosen to be orthonormal 

with a high number of vanishing moments. These properties promise the ability to 

represent a signal or image with fewer components than is possible with Fourier methods. 

The application of wavelets that relates to this project is the ability of some types of 

wavelets to perform edge detection (30-32). It has been shown (31) that a wavelet 

which is the derivative of a "smoothing function" can, in effect, perform multiscale edge 

detection. This is because the local extrema at each scale of the wavelet transform detail 

image using such a wavelet is the derivative of the image smoothed at that scale. 

The Mallat wavelet edge detector was tested on several MRI images to see how it 

behaved. An example is shown in Fig. 3. The original image is image (a), and images 

(b)-(h) show the detail image of the wavelet transform at seven scales. For the purpose 

of edge detection, the detail images would be thresholded at an appropriate level to 

retain only the wavelet transform maxima. Although thresholding reduces the edges 

due to noise variations, it also causes more segments of the desired edges to be lost. 

This was not done here to show that the edges are quite broken using this edge detector 

even before the thresholding, and there are important boundaries that this wavelet edge 

detector missed, such as the upper boundary of the large tumor. The reason for this 

dropout is that the wavelet edge detector makes an implicit assumption about the shape 

of the edge. It can only detect edges that have a similar shape to that of the chosen 

wavelet. However, there is no way to know a priori the shape of an edge in an MR 

image.  For this reason, we turned our attention to the multiresolution edge detection 



approach which does not make any a priori assumptions about the shape of the edge, 

but lets the boundaries emerge from the interactions between the pixels. 

5.1.2   Multiresolution Edge Detection 

The multiresolution edge detection approach (33,34) is similar to the wavelet edge de- 

tection approach in that it can give boundaries at various scales. However, the mul- 

tiresolution edge detector computes the "force" between all pixels in the image and uses 

the resulting force field to determine the edges. As such, it does not impose an a priori 

model of the shape of the edge. The force or attraction between two pixels depends on 

both the grey level difference and the physical proximity between them. This is based 

on the observation that two points that are close together are more likely in one region 

than two points that are distant from each other. In addition, a high grey level contrast 

between two pixels indicates more strongly the possibility that they are in separate re- 

gions than two pixels that have similar grey levels. At different resolutions, the grey 

level and physical closeness that is required for a group of pixels to comprise a region is 

different. 

Figure 4 shows the results of applying this algorithm to the same image as in Fig. 3. 

Image (a) is the original MR image, and images (b)-(h) show the edges detected at 

progressively coarser scales. For our purposes, the multiresolution edge detector seems 

to capture the boundaries of the regions better than the wavelet edge detector while 

maintaining the benefits of edges at various scales. The boundaries are more continous 

which is what would be expected in an MR image since tumors, etc., have continuous 

boundaries. In addition to an image of the edges, the program, which was written by 

Narendra Ahuja and Mark Tabb, can also output an image with the regions replaced 

by their average values or by the region number. This additional information can be 

valuable for the selection of the "most important" boundaries in an image. 

5.2    Using the Edge Information 

As mentioned before, the RIGR algorithm uses the generalized series model for the 

reconstruction of the dynamic images: 



N/2-1 N/2-1 

Id(x)=    Y,    cnITei(x)e-i2™Akx =    Yl    cn^)- [3] 
n=-N/2 n=-N/2 

The edge information must be used to create a new Jref which contains the boundaries 

from the high-resolution reference image, but the contrast from the dynamic data. In 

this way, information about the dynamic changes is contained not only in the coefficients, 

c„, but also in the basis functions of the generalized series. The key step in this project 

is to incorporate the edge information into the RIGR algorithm in the best possible way. 

Given that the edges have been extracted from the reference image, they were used to 

create a ID boxcar model for each phase encoding to which the data was fit to determine 

the appropriate amplitudes for each boxcar region using the equation: 

M-l 

d(nAk) = Y, amwmS\-ac{wmnAk)e-i2mAkXm [4] 
m=0 

where d(nAk) is the data, M is the number of regions, and wm and xm are the width 

and center, respectively, of a region. Both the dynamic data and the corresponding 

encodings from the reference data set were fit to this model. This information was used 

in three different ways. 

Method 1 

In this method, the reference image that was used was simply the boxcar model 

that was fitted to the dynamic data. In other words, the reference image had the edges 

from the reference image, but the image intensity in each region was the fitted mean 

of the dynamic signal. Although this idea seemed good, it resulted in a loss in spatial 

resolution since all of the high frequency variations in the reference image were removed. 

Method 2 

For this reason, a different approach was tried in which both fitted boxcar models 

were used. The mean value of each region from the reference and dynamic fitted boxcar 

models were used to scale the mean intensity level in the high-resolution reference image. 

In this way, the mean contrast in the reference image was closer to that of the dynamic 

image, but the higher frequency variations were allowed to remain in the reference image. 
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This significantly improved the results over the previous approach. 

Method 3 

Additional improvement was gained by using the fitted means for the dynamic and 

reference data to scale the signal in the regions of the high-resolution reference image, 

rather than scaling only the mean. The results of using this method on the breast 

simulation are shown in Fig. 5. Image (a) and (b) are the pre-contrast reference and 

dynamic image, respectively. Image (c) is the difference image between (a) and (b) and is 

the "gold-standard" for comparison with the next three images. These three images were 

reconstructed using 128 phase encodings while the next three images were reconstructed 

using 16 dynamic phase encodings. Images (d) and (e) were reconstructed using the 

Keyhole and the original RIGR methods, respectively. Image (f) was reconstructed 

from the new RIGR algorithm with edge information. Significant improvement from the 

use of edge information can be seen in the upper two lesions of image (f). As expected, 

the lower two lesions are not as well resolved since the reference image has no information 

about the boundaries of these two lesions. 

Figure 6 shows profiles through the upper two tumors of the images in Figure 5. The 

enforcement of the edge constraints has led to a reduced smearing of the edge between 

the two regions as well as a flatter intensity profile through each region. 

The application of the method to data from rats with breast cancer provided by 

Dr. Erik Wiener of Dr. Paul Lauterbur's group is shown in Fig. 7. Images (a)-(c) 

are the reference image, the dynamic image and the difference between the two images, 

respectively. These three images were reconstructed using 256 phase encodings. In 

this case, a post-contrast reference image is used to provide the edge constraints for 

the regions. Images (d)-(f) show the difference image reproduced using only 8 phase 

encodings with the Keyhole method, the original RIGR method and the modified RIGR 

method, respectively. Profiles through the large enhancing tumor for each of these 

images are shown in Fig. 8. The improvement due to the use of edge information is not 

as apparent here as in the breast simulation. This indicates that we need to determine 

a better way to use the boundary information for a real, noisy image. 

These results generated a poster presentation at the 3rd Annual Meeting of the 

Society of Magnetic Resonance held in August at Nice, France (see Appendix A). 
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5.3    Two-reference RIGR 

An effective method for improving the temporal and spatial resolution for a sequence of 

dynamic images developed as an offshoot from this research project. The two reference 

RIGR (TRIGR) method utilizes the additional information available from a second 

high-resolution reference image to improve the quality of the reconstructed dynamic 

images. This method is motivated by the observation that, in many dynamic imaging 

applications, it is possible to obtain two high-resolution reference images - one for the 

baseline state and another for the active state. In the case of contrast-enhanced dynamic 

imaging of the breast, the baseline reference would be a high-resolution pre-contrast 

image. The active reference would be a high-resolution post-contrast image, taken after 

the dynamic imaging period when the contrast agent is strongly visible in the slice. 

The TRIGR method uses the data acquisition scheme illustrated in Fig. 9. A high- 

resolution baseline reference image is acquired where the number of phase encodings is 

dictated by the spatial resolution requirements. This is followed by a series of reduced 

dynamic encodings, where the number of encodings is chosen to give the desired tem- 

poral resolution. The third component is a high-resolution active reference image. It is 

important to note that the active reference image need not be acquired after the dynamic 

imaging period. All that is required is that the active reference image indicate the areas 

of change from the baseline reference image. For some applications, it may be beneficial 

to acquire multiple reference images at various points in the experimental protocol and 

then use the appropriate two images for the reconstruction of a given dynamic image. 

This multiple reference version may be appropriate for breast imaging if, for example, 

it is desired to monitor the shape of the contrast agent washout curve (35,36). 

Reconstruction of the dynamic images is accomplished using the generalized series 

model as with the original RIGR algorithm except that information about the dynamic 

changes is built into the basis functions by using a difference reference image. Specifically, 

the reconstruction steps are: 

1. Construct the difference reference image by reconstructing the baseline and active 

reference images using the traditional Fourier method with the full set of encodings 

and subtracting the complex images. 
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2. Create the dynamic difference data by subtracting from the dynamic data the 

corresponding encodings of the baseline reference image, namely 

ddiß(x) = ddyn(k) - 4aseline(&) [5] 

where ddya(k) is the dynamic data and 4aSeiine(k) represents the corresponding 

part of the baseline reference encodings. 

3. The TRIGR model then becomes: 

N/2-1 

/diff(s) = Iref(s)      £      Cnei2™Ak* [6] 
n=-N/2 

where 7ref(a;) is the difference reference image of step 1 and TV is the number of 

dynamic encodings. The coefficients cn are obtained by fitting the difference data 

of Eq. (5) to the following equation to maintain data consistency (12) 

N/2-1 

ddiff(m) =    ^2    cndret(m - n) [7] 
n=-N/2 

where dTe{(m - n) is the difference data created by subtracting the baseline and 

active reference data sets. Plugging these coefficients into Eq. 6 will yield the 

reconstructed dynamic difference image. 

4. If the dynamic image itself is desired, it can be generated by adding the complex 

dynamic difference image of step 3 to the baseline reference image, ie: 

^dyn(z) = /baseline^)      +      idifffa) [8] 

where Jbaseiine(z) is reconstructed using the standard Fourier technique with the 

full set of encodings. 

This modification to the RIGR algorithm has several benefits. In the original RIGR 

algorithm, the basis functions were derived from either a pre-contrast or post-contrast 

reference image. However, the contrast in either of these images may not accurately 

represent the dynamic changes, which could lead to image artifacts. In the TRIGR 

method, information about the dynamic changes is built into the basis functions by 

using a difference reference image. This new reference image should more closely reflect 

the dynamic changes and, thus, lead to a better dynamic image. 

13 



In addition, the fitting to ensure data consistency is performed using the difference 

data. This allows the parameters of the generalized series model to represent only the 

dynamic changes, not the static parts of the image. This should lead to a more faithful 

reproduction of the dynamic changes. 

Fig. 10 shows the application of this technique to the breast simulation. Images 

(a) and (b) are the pre-contrast and post-contrast references, respectively. Image (c) 

is the difference image between the dynamic image (not shown) and the pre-contrast 

image. This is the image we are trying to reconstruct. These three images were all 

reconstructed using 128 phase encodings. The next three images show the difference 

image reconstructed using only 8 phase encodings with three different methods. Images 

(d) and (e) were reconstructed using Keyhole and the original RIGR algorithm, respec- 

tively. Image (f) was reconstructed using the TRIGR method. The improvement of (f) 

over (d) or (e) can easily be seen. Note in particular the improved reconstruction of the 

lower two lesions as compared to the original RIGR algorithm. This is due to the fact 

that the difference reference image contributes a priori information about those lesions 

that is not present in the pre-contrast reference image. 

Figure 11 shows images of a rat with breast cancer made with data from Dr. Erik 

Wiener. Images (a), (b), and (c) are the pre-contrast, post-contrast and dynamic change 

image (difference between the dynamic image (not shown) and the pre-contrast image), 

respectively, reconstructed using 256 phase encodings. Images (d), (e) and (f) were 

reconstructed using only 8 phase encodings with Keyhole, the original RIGR method, 

and the new TRIGR method. The increase in image quality in (f) is obvious. Since 

only 8 phase encodings were used, as opposed to 256, this would lead to a 32-fold time 

savings over conventional Fourier imaging. 

The TRIGR algorithm generated a conference talk at the 3rd Annual Meeting of the 

Society of Magnetic Resonance (see Appendix A), and a manuscript has been submit- 

ted for publication in Magnetic Resonance in Medicine (see Appendix B). In addition, 

TRIGR processing has been included in the V2.0 release of the V software package (see 

Appendix C) so other researchers can test the algorithm. 
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6     Conclusions 

Given the success that we have had so far, we expect to be able to meet the goals stated in 

the original fellowship research project proposal. In addition, since the TRIGR method 

has shown so much promise and is well-suited for application to dynamic contrast- 

enhanced MRI of the breast, we plan to add the following items to this project: 

1. Incorporate edge information with the TRIGR method. This includes determining 

the best way to extract the relevent edge information from the reference images as 

well as the incorporation problems discussed with the regular RIGR processing. 

2. Test the method using the breast simulation to determine the attainable temporal 

and spatial resolutions and the ability of the method to track the enhancement 

curves of different regions versus lesion size, number of dynamic phase encodings, 

etc. 

3. Test the methods using MRI data to see how it works on real data. 
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Introduction 
This paper addresses the dynamic imaging problem 

with application to contrast-enhanced dynamic breast 
imaging.   Specifically, we want to develop a technique 
which will enable us to obtain high-resolution dynamic im- 
ages using a small number of dynamic encodings. In the 
past few years, several groups have investigated this prob- 
lem, resulting in two techniques: Reduced-encoding Imag- 
ing through Generalized-series Reconstruction (RIGR) [1] 
and Keyhole [2, 3].   Both techniques take a single high- 
resolution reference image and a small number of dynamic 
encodings to improve temporal resolution. The difference 
between the two techniques is in how they recycle the ref- 
erence information.   In Keyhole, the high-resolution ref- 
erence information is simply pasted on the low-resolution 
dynamic data and inverse Fourier transformed.   As re- 
cently analyzed by Spraggins [4], Keyhole can only recon- 
struct dynamic changes at low resolution. This problem 
is not encountered with RIGR which uses the generalized 
series model to combine the reference and dynamic in- 
formation in a data consistent way. This paper presents a 
further improvement on RIGR which enables it to produce 
an image of the dynamic change at a resolution approach- 
ing that of the reference image. 

Method 
In dynamic imaging, the object of interest is the dy- 

namic signal change. In order to capture these dynamic 
changes at high spatial resolution, we modify the original 
RIGR processing by explicitly building boundary infor- 
mation into the basis functions of the generalized series 
model [5]. 
*•' Boundary constraints are obtained from either a sin- 
gle reference image or two reference images, for example, 
a pre-contrast and a post-contrast image. Segmentation 
of the images is accomplished with a multiresolution algo- 
rithm [6]. This method is based on a multiscale transform 
that takes into account both the grey level similarity and 
physical proximity between pixels to compute a force on 
a pixel. Based on the resulting force fields, the image is 
segmented into different regions at different scales. The 
algorithm determines the regions in an image from the 
interactions between pixels, avoiding the use of a priori 
models of edge geometry. 
•.•'■: One question that is often asked is: if we build this 
information into the basis functions, what will happen? 
We have found, based on a point spread function analysis, 
that if the edges of the reference image exactly match the 
boundaries associated with the dynamic changes, the dy- 
namic change will be reconstructed with the resolution of 
the reference image. If the boundary constraints are not 
exact, the resolution will still be improved due to the re- 
duced width of the point spread function associated with 
the generalized series model. 

Results and Discussion 
The method was used for contrast-enhanced dynamic 

MR imaging on rats with breast cancer. The method 
showed significant improvement in difference image qual- 
ity over keyhole and the original RIGR. This is illustrated 
in the figure below where the pre-contrast reference im- 
age (a), post-contrast reference image (b) and difference 
image (c) were reconstructed using 256 phase encodings. 
Images (d), (e) and (f) show the difference image repro- 
duced using only 8 dynamic phase encodings with the Key- 
hole method, the original RIGR method and the modified 
RIGR method, respectively. The increase in image quality 
of (f) over (d) or (e) can easily be seen. 

Conclusions 
An improved method is proposed in this paper for fast 

dynamic imaging. This method provides significantly bet- 
ter spatial resolution for dynamic imaging than Keyhole 
or the original RIGR. The method is especially useful for 
contrast-enhanced dynamic MR imaging experiments in 
which high temporal and spatial resolution is desired. 
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Introduction 
In dynamic imaging, one is interested in reconstruct- 

ing a sequence of images from the same slice or volume 
to monitor a process such as the enhancement due to an 
injected contrast agent. Several groups have been investi- 
gating the problem of providing high temporal resolution 
for the sequence of images while maintaining high spa- 
tial resolution. The approach used by RIGR (Reduced- 
encoding Imaging through Generalized-series Reconstruc- 
tion) [1] and Keyhole [2, 3] is to collect a single high- 
resolution reference image followed by a series of reduced 
dynamic encodings. This paper presents two modifica- 
tions to RIGR to further increase the quality of the recon- 
structed images: (1) using two reference images and (2) 
fitting the generalized series model to the difference data. 

Method 
The new method is motivated by the fact that in 

dynamic imaging the object of interest is the dynamic 
change. We can benefit from this by using the RIGR 
technique to calculate the difference image between the 
reference and dynamic images. This allows the parame- 
ters of the RIGR algorithm to model only the dynamic 
change, not the underlying high-resolution morphology, 
and should lead to a better reconstruction of the dynamic 
process. Consequently, we want to use a reference image 
that represents the regions of dynamic change. We do this 
by utilizing two reference images - one for the "baseline" 
state and one for the "fully active" state. In the example 
of contrast-enhanced dynamic MR imaging of the breast, 
the baseline reference is a pre-contrast high resolution im- 
age and the active reference is a high resolution image 
following the dynamic data sets when the contrast agent 
is strongly visible in the image. 

The steps of the two-reference RIGR are as follows: 

(1) A high-resolution baseline reference data set is 
acquired followed by a sequence of reduced encoding 
dynamic data sets and a high-resolution active 
reference data set. 

(2) To create the difference reference image, we simply 
subtract the pre-contrast reference image from the 
post-contrast reference image. 

(3) The corresponding section of the baseline reference 
data set is subtracted from the low-resolution 
dynamic data to create the dynamic difference data. 

(4) The difference reference image of (2) and the 
dynamic difference data of (3) are processed using 
the RIGR algorithm. The resulting difference image 
can be overlaid on the baseline reference image to 
obtain the dynamic image. 

Note that no benefit will be derived from following a 
similar methodology in Keyhole. If the difference dynamic 
data were substituted into the difference reference image, 
the dynamic changes between a pair of images would still" 
be reconstructed at low resolution due to the linearity of 
the Fourier transform. 

Results and Discussion 
The method was tested on contrast-enhanced dynamic 

MR imaging data of rats with breast cancer. Illustrated 
in the figure below are the pre-contrast (a), post-contrast 
(b) and dynamic difference (c) images which were recon- 
structed using 256 phase encodings. Images (d), (e) and 
(f) show the dynamic difference image reproduced using 
only 8 dynamic phase encodings with the Keyhole method, 
the original RIG'R method and the two-reference RIGR 
method, respectively. The increase in image quality of 
(f) over (d) or (e) can easily be seen. This improvement 
in difference image quality would lead to a more faithful 
tracking of the dynamic process. 

Conclusions 
A fast dynamic imaging method has been developed 

which utilizes two reference images to improve the quality 
of dynamic images produced by RIGR. In addition, RIGR 
is used to reconstruct the difference image to allow the 
model to more accurately fit the dynamic changes. The. 
difference image can be overlaid on the baseline reference 
image to obtain the dynamic image if desired. The method 
is applicable to dynamic imaging applications in which 
baseline and fully active reference images can be obtained 
such as contrast-enhanced dynamic MR imaging. 
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Introduction 
With the emergence of new complex signal processing 
algorithms for spectral data quantification, constrained 
image reconstruction, functional MRI data analysis, and 
multidimensional data visualization, a unified processing 
platform is necessary for rapid technology transfer from 
developers to users. The development of V as a general- 
purpose, public-domain software system for MR signal 
processing is our attempt to address this problem [1]. 
While V is not a comprehensive package which includes 
every known algorithm, it provides a flexible system struc- 
ture for easy incorporation of new functions. It is our hope 
that other research groups will participate in its further 
developments and will adopt it as a vehicle for algorithm 
exchange and application. 

System Overview 
V is an interactive processing environment specifically de- 
signed for MR dynamic imaging, spectroscopy, and spec- 
troscopic imaging experiments. Structurally, it has five 
major interdependent modules: (a) a command-line user 
interface, (b) working unit, (c) kernel and application 
functions, (d) I/O unit, (e) on-line documentation and 
examples. Functionally, it is similar to an earlier software 
system, viewit, developed at the National Center for Su- 
percomputing Applications (NCSA) [2], in that it can be 
viewed as a "scientific calculator" for multidimensional ar- 
rays with extra "buttons" for a variety of MR processing 
functions (see Table I). Its interactive processing capa- 
bility also resembles that of other general-purpose signal 
processing software such as Khoros [3]. Unlike Khoros, 
it can support data of arbitrary dimension, an especially 

. important feature for MR data processing. 

Special Features 

Functionality 

A unified data format is used in V to facilitate both data 
interchange among the existing V routines and the devel- 
opment of new modules.   The basic storage unit in V is 
the register, which contains raw data, dimension informa- 
tion, labels for identification, and data type. Registers are 
stored in a stack whose size varies dynamically as more 
space become necessary for processing, and there is no 
limit to the number of data dimensions or registers. This 
makes V useful for simultaneous processing of data derived 

. from .experiments using multiple protocols or for analyzing 
different spatial or temporal slices from the same experi- 

" ment. 

A powerful command-line interface with on-line documen- 
tation provides a user-friendly working environment. Op- 
erations on the registers in the stack and their contents 
are performed through calling interfaces, which serve as li- 
aisons between the user and low-level processing. For each 
V function, there is one calling interface. When a calling 
interface is active, it may also invoke a particular library 
function to process the data. In addition, a large pool of 
routines from LINPACK, LAPACK, EISPACK and other 
public domain libraries are available in V. 

In addition to the rich collection of general purpose sig- 
nal and image processing functions, V also contains a set 
of functions implementing some of the recently-developed 
constrained reconstruction and time-domain spectral anal- 
ysis techniques. In the area of constrained reconstruction, 
for example, functions are available to perform process- 
ing using'the RIGR (Reduced-encoding Imaging through 
Generalized-series Reconstruction), SLIM (Spectroscopic 

Localization by IMaging), GSLIM (Generalized SLIM), 
and half-Fourier methods. For spectral data processing, 
a collection of time-domain fitting algorithms including 
LPSVD and HSVD is provided. 

Visualization is possible in the MIT Xll window environ- 
ment. To maximize the software portability, visualization 
is implemented through software interface to other pub- 
lic domain display utilities, xv is used to display two- 
dimensional images or plots of ID data. In many applica- 
tions like functional imaging and cardiac cine imaging, it is 
necessary to display an image sequence as a movie so an in- 
terface to the public domain MPEG players (mpeg.encode 
and mpeg_play) is also present in V. 

Extendibiliiy and Portability 

V is designed to facilitate the incorporation of newly- 
developed or often-used functions. Existing software rou- 
tines written by users can be built into the kernel with 
minimum modification. While calling interfaces must be 
written exclusively in C, library functions may be written 
in any programming language. With this capability, it is 
hoped that V will serve not only as a research tool but also 
as a convenient means for distributing software among the 
MR research community. 

Particular care has been taken in the development of V 1o 
ensure minimal hardware, software library and language 
requirements. While V has been tested only on SUN, 
IDM, HP and SGI workstations, the distribution includes 
portable source code which should compile on almost any 
hardware platform. 

Conclusion 

- We nave developed a software system for unified MR sig- 
nal processing. V is being provided free to the public 
and is available via anonymous ftp from v.brl.uiuc.edu 
(128.174.211.48). In the past year, this system has al- 
ready been utilized by several research groups. With fur- 
ther development, it may become an effective tool for the 
exchange and application of complex algorithms developed 
by different groups in the MR community. 
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TABLE I.   Abbreviated List of V Functions 
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Data Manipulation:  dimension reordering, scaling, 
extracting, translation, dimension reflection, 
redimensioning, zero padding, constant value fill, 

.    multidimensional mosaic, data replacement 
Spectroscopy:  SLIM, GSLIM, automatic baseline 

correction, HSVD, LPSVD, parameter-based synthesis 
and extrapolation, DC offset removal 

Reconstruction:  RIGR, POCS, parametric methods, 
windowing and filtering, n-D Fourier transform 

Math:  Addition, subtraction, modulus, phase, linear 
scaling, random data generation, wavelet transforms 

Input and Output:  2D/3D plotting, static and temporal 
image sequence visualization, multiple I/O formats 
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Abstract 

This paper presents a fast dynamic imaging method which is characterized by the acqui- 
sition of two high-resolution reference images and a sequence of low-resolution dynamic 
data sets. Image reconstruction is accomplished using a generalized series based al- 
gorithm. Experimental results demonstrate that dynamic images with high temporal 
resolution can be obtained while maintaining excellent spatial resolution. This method 
will be useful for a variety of dynamic imaging applications including contrast-enhanced 
dynamic imaging and functional brain studies. 

I    Introduction 

Many MRI applications such as contrast-enhanced dynamic imaging and functional 
brain studies involve the collection of a time series of images of the same slice or volume 
to monitor a dynamic process. In order to capture the details of the dynamic process, it 
is important to obtain high temporal resolution while maintaining high spatial resolu- 
tion. However, with conventional Fourier imaging, the requirements for increased time 
resolution and spatial resolution are conflicting. Since each of the dynamic images is 
acquired independently, the temporal resolution possible is limited by the number of 
spatial encodings applied. 

Two methods which have recently been proposed for improving the temporal reso- 
lution of a sequence of dynamic images are RIGR (Reduced-encoding Imaging through 
Generalized-series Reconstruction) (1-5) and Keyhole (6-13). The techniques are sim- 
ilar in that they both acquire a single high-resolution reference image with a series of 
reduced dynamic encodings. However, Keyhole uses a Fourier transform based approach 
for the reconstruction of the dynamic images. The high frequency data from the refer- 
ence image is simply pasted onto the low-resolution dynamic encodings to create a full 
data set. This data set is then inverse Fourier transformed to arrive at the dynamic 
image. Image artifacts can occur as a result of data inconsistency between the refer- 
ence and dynamic data sets. In addition, Keyhole can only reconstruct a low-resolution 
version of the dynamic changes (14,15). On the other hand, the RIGR algorithm uses 
the generalized series model to reconstruct the dynamic images. Information from the 
reference image is built into the basis functions of the model which allows it to track 
the dynamic process with greater resolution than is possible using Fourier reconstruc- 
tion techniques with an equivalent number of dynamic encodings. This paper presents a 
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modified RIGR technique which uses the additional information from a second reference 
image to improve spatial and temporal resolution in the dynamic images. 

II    Method 

Compared to the original RIGR method, the proposed method is characterized by 
two distinguishing features: (1) the collection of two reference data sets and (2) the 
application of the generalized series model to the difference data sets, resulting in di- 
rect reconstruction of the dynamic signal variations. This method is motivated by the 
consideration that, in many dynamic imaging applications, it is possible to obtain two 
high-resolution reference images: one for the "baseline" state and another for the "ac- 
tive" state. In the example of contrast-enhanced dynamic imaging of breast cancer, 
where the aim is to track the changes that occur in the breast for several minutes follow- 
ing the injection of a contrast agent, the baseline reference would be a high-resolution 
pre-contrast image. The active reference would be a high-resolution post-contrast image 
taken after the dynamic data sets when the contrast agent is strongly visible in the 
image. 

Data acquisition for the proposed method is characterized by the following three 
steps: 

1. Acquire a high-resolution baseline reference image where the number of phase 
encodings is chosen to satisfy the spatial resolution requirements. 

2. Acquire a series of low-resolution dynamic data sets where the number of phase 
encodings per set is chosen to give the desired temporal resolution. 

3. Acquire a high-resolution active reference image. Note that this image can be 
acquired in the middle of the dynamic encodings if that is better for a given 
application. All that is required is that the active reference image indicate the 
areas of change from the baseline reference image. In some situations, it may be 
preferable to obtain reference images at various points during the experimental 
procedure and then use the appropriate two reference images for each dynamic 
image. 

Reconstruction of the dynamic images is accomplished using the generalized series 
model with a reference image reflecting the areas of change in the sequence of images. 
Specifically, the reconstruction steps are: 

1. Construct the difference reference image by reconstructing the baseline and active 
reference images using the traditional Fourier method with the full set of encodings 
and subtracting the complex images. 

2. Create the dynamic difference data by subtracting from the dynamic data the 
corresponding encodings of the baseline reference image, namely 

ddiff(z) = ddyn(k) - dhase]ine{k) (1) 
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where c/dyn(&) is the dynamic data and e?baseline(k) represents the corresponding 
part of the baseline reference encodings. 

3. The RIGR model then becomes: 

JV/2-1 

/diff(z) = Irei(x)      £     Cnei2™Ak* (2) 
n=-N/2 

where ITe{(x) is the difference reference image of step 1 and N is the number of 
dynamic encodings. The coefficients cn are obtained by fitting the difference data 
of Eq. (1) to the following equation to maintain data consistency (1) 

N/2-1 

ddiff(m) =    Yl    cndrei(m - n) (3) 
n=-N/2 

where <iref(m — n) is the difference data created by subtracting the baseline and 
active reference data sets. Plugging these coefficients into Eq. (2) will yield the 
reconstructed dynamic difference image. 

4. If the dynamic image itself is desired, it can be generated by adding the complex 
dynamic difference image of step 3 to the baseline reference image, ie: 

idyn(z) = ibaseline(aO      +      I<m{x) (4) 

where IbaseUneC^) is reconstructed using the standard Fourier technique with the 
full set of encodings. 

Ill    Results 

The method was tested on contrast-enhanced dynamic MR imaging of rats with 
breast cancer. A representative slice through an enhancing tumor in one of the rats is 
shown in Fig. 1. The pre-contrast and post-contrast reference images which were recon- 
structed using the standard Fourier method with 256 phase encodings are illustrated in 
(a) and (b), respectively. Image (c) shows the dynamic difference image between the 
dynamic image (not shown) and the baseline reference image and was reconstructed 
using 256 phase encodings. Images (d), (e) and (f) show the dynamic difference image 
reproduced using only 8 dynamic phase encodings with the Keyhole method, the original 
RIGR method and the two-reference RIGR method, respectively. It can be seen that 
(f) more closely reproduces the dynamic changes than either (d) or (e). 

IV    Discussion 

The generalized series approach that is employed in the proposed method builds in- 
formation from the reference image into the basis functions of the model.   The result 
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is a high-resolution dynamic image since the basis functions are high-resolution. In the 
original RIGR algorithm, the basis functions were from either the baseline or the active 
reference image. However, the contrast in these reference images may not accurately re- 
flect the dynamic changes, which could lead to image artifacts. Given that two reference 
images are available, we can instead build information about the dynamic changes into 
the basis functions by using a difference reference image. This difference reference image 
will more closely represent the areas of change and will lead to a better reconstruction 
of the dynamic changes. 

Accordingly, we use the proposed algorithm to reconstruct an image of the dynamic 
changes rather than the dynamic image itself. (The dynamic image can then be obtained 
by simply overlaying the dynamic change image on the reference image.) An additional 
benefit of this modification is that the parameters of the generalized series model need 
only represent the dynamic changes, not the static parts of the image. This leads to a 
more faithful representation of the dynamic changes and, thus, a better dynamic image. 

These expectations are realized in the experimental results that have been obtained. 
As shown in Fig. 1, the image reconstructed using the proposed method (f) more closely 
resembles the desired difference image (c) than either the Keyhole (d) or the original 
RIGR algorithms (e). Since the proposed method used only 8 dynamic phase encodings, 
as opposed to 256, this would yield a 32-fold time savings compared to standard Fourier 
imaging with minimal loss of image quality. 

One could consider employing a similar methodology with Keyhole by appending the 
high frequency difference reference data to the low frequency dynamic difference data 
sets followed by the inverse Fourier transform. Although the resulting difference images 
will be high-resolution, it is easy to prove that the actual dynamic signal changes will 
still be reconstructed with low resolution. This behavior is similar to the single reference 
image case analyzed by Spraggins (14) and Hu (15); that is, no benefit is gained from 
the use of two reference images in this Keyhole scheme. 

V    Conclusion 

A fast dynamic imaging method has been developed which uses two high-resolution 
reference images and a sequence of reduced dynamic encodings to reconstruct a time 
series of dynamic images. The proposed method shows improved quality of the recon- 
structed dynamic images as compared to both Keyhole and the original RIGR, which 
would lead to a more faithful tracking of the dynamic processes. The method would be 
useful for a variety of dynamic imaging applications such as contrast-enhanced dynamic 
MR imaging and functional brain studies. 
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Figure 1: (a)-(c) pre-contrast reference, post-contrast reference and dynamic difference 
images, respectively, reconstructed with 256 phase encodings, (d)-(f) dynamic difference 
image reproduced using only 8 dynamic phase encodings with Keyhole, original RIGR 
and two-reference RIGR, respectively. 
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10     Appendix C - V Software Package 

V is a software package for interactive multi-dimensional magnetic resonance imaging 

and spectroscopy reconstruction, processing and analysis which was developed by Dr. 

Zhi-Pei Liang's group. The V package is intended as a platform for easy distribution 

of functions between researchers in the MR community. V was designed so that other 

researchers could incorporate their own functions into the V program with minimum 

modification. These functions can then be easily distributed to and tested by others 

since a common processing platform would be used. This also would reduce duplicate 

programming efforts and encourage researchers to try a new method for their application. 

The basic V package includes many basic functions for data manipulation and dis- 

play as well as image processing algorithms such as the TRIGR algorithm developed 

under this research grant.    V can handle real and complex multidimensional data. 

V also has complete documentation and on-line help. It is available via anonymous 

ftp at v.brl.uiuc.edu. Any questions or comments regarding V should be addressed to 

v@mrel.brl.uiuc.edu. This address can also be used to subscribe to a biannual newsletter 

that is being developed for V users. 
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11     Appendix D - Acronyms 

BMRL - Biomedical Magnetic Resonance Laboratory 

MR - Magnetic Resonance 

MRI - Magnetic Resonance Imaging 

RIGR - Reduced-encoding Imaging by Generalized-series Reconstruction 

RSNA - Radiological Society of North America 

SMR - Society of Magnetic Resonance 

SMRI - Society of Magnetic Resonance Imaging 

SMRM - Society of Magnetic Resonance in Medicine 

SNR - Signal to Noise Ratio 

TRIGR - Two reference Reduced-encoding Imaging by Generalized-series Reconstruction 
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I • • 

Dynamic data 

Reference data 

FIG. 1. Data acquisition scheme of RIGR and Keyhole: a single high-resolution reference 

data set is acquired followed by a series of reduced dynamic encodings. 

Lesion 1: 
visible pre-contrast 
enhances rapidly 

Lesion 3: 
not visible pre-contrast 
enhances slowly 

Lesion 2: 
visible pre-contrast 
enhances slowly 

Lesion 4: 
not visible pre-contrast 
enhances rapidly 

Breast parenchyma: 
enhances very slowly 

FIG. 2. Breast simulation model 
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FIG. 3.   Mallat wavelet edge detector:  (b)-(h) edge detection results at 7 scales usinj 

the Mallat wavelet edge detector on image (a). 
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FIG. 4.  Ahuja multiresolution edge detector: (b)-(h) edge detection results at 7 scales 

using the multiresolution edge detector on image (a). 
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FIG. 5. Results using edge information with RIGR on breast simulation data: (a)- 

(c) pre-contrast reference, dynamic and difference images, respectively, reconstructed 

with 128 phase encodings, (d)-(f) difference image reproduced using 16 dynamic phase 

encodings with Keyhole, original RIGR and RIGR with edge information, respectively. 
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FIG. 6. Profiles through the upper two lesions of the images in Fig. 5. 
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FIG. 7. Results using edge information with RIGR on a rat with breast cancer: (a)- 

(c) pre-contrast reference, dynamic and difference images, respectively, reconstructed 

with 256 phase encodings, (d)-(f) difference image reproduced using 8 dynamic phase 

encodings with Keyhole, original RIGR and RIGR with edge information, respectively. 
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(d) (e) (f) 

FIG. 8. Profiles through the large enhancing tumor of the images shown in Fig. 7 

• • • 

Dynamic data 

Reference 1 data Reference 2 data 

FIG. 9. The data acquisition strategy for TRIGR: two high-resolution reference images, 

one each for the baseline and active states, and a series of reduced dynamic encodings. 
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FIG. 10. TRIGR results on breast simulation data: (a)-(c) pre-contrast reference, post- 

contrast reference and dynamic change image (difference between a dynamic image (not 

shown) and the pre-contrast reference image), respectively, reconstructed with 128 phase 

encodings, (d)-(f) dynamic change image reproduced using only 8 dynamic phase en- 

codings with Keyhole, original RIGR and two-reference RIGR, respectively. 
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FIG. 11. TRIGR results on data from a rat with breast cancer: (a)-(c) pre-contrast 

reference, post-contrast reference and dynamic change image (difference between a dy- 

namic image (not shown) and the pre-contrast reference image), respectively, recon- 

structed with 256 phase encodings, (cl)-(f) dynamic change image reproduced using 

only 8 dynamic phase encodings with Keyhole, original RIGR and two-reference RIGR, 

respectively. 
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