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SOME STRIP CONTRIBUTIONS TO TRANSDUCER DESIGN AND ANALYSIS

1.0 INTRODUCTION

Certain developments in the Sonar Transducer Reliability Improvement Program (STRIP) have
applications beyond those already used and documented in the STRIP progress reports. One such
development was the Simplified Guidance Model (SGM) for k,, mode longitudinal vibrator transducer
elements [1]. For example, the SGM can be used to deduce, understand, and explain certain transducer
design aids and design techniques which then may be used as tools for reducing the cost and time required
to complete a 33-mode longitudinal vibrator projector element and array design. There may not be many
more totally new large budget k,; mode transducer array design developments, but there probably will be
major design modifications of present fleet arrays of these types of elements. There will also be important
problems to solve concerning reproducibility and reliability of present fleet arrays of k,, mode transducers.
Thus, there exists a continuing need to be able to effectively and efficiently modify existing sonar
transducer array designs.

At the same time, there is a need to efficiently and effectively educate new sonar transducer array
engineers. It is important not to lose the knowledge, skill, and insight base that resides with the engineers
who are presently able to solve problems and supervise the procurement of reliable near replicas of
present k,, mode transducers. Without a proper transfer of design and analysis skills, the Navy might find
itself in the position of "reinventing the wheel” in this area. Much of the expertise developed by the
present transducer array engineers was gained by studying performance predictions made using elaborate
computer programs. The SGM may be augmented in such a way that, using only paper and pencil, an
engineer may obtain much of the same insight and information as was gained from the elaborate,
expensive computer-aided calculations. The same augmented SGM could be easily programmed on a
personal computer as an inexpensive teaching aid. In fact, Appendix B presents such computer program
prediction results for three selected examples taken from Sec. 5 and concludes that:

a. The corresponding derivations and design insights of Sec. 5 were fully consistent with subject
computer predictions. This provided a strong indication that there were no significant errors in
the associated "pencil and paper" derivations of Sec. 5.

b. The predictions provided additional clarity and understanding concerning the "design aid insights”
as originally developed from the "pencil and paper" derivations of Sec. 5.

The goal of this document is to augment and apply the SGM in such a way as to be useful in

satisfying all of the above indicated future needs. Some specific objectives are: 1) Augment the SGM
so that it may be used as an educational tool to help new transducer array engineers acquire some of the

Manuscript approved 31 July 1995




2 Carson and Walden

subject knowledge, skills, and insight; and 2) Apply the augmented SGM to derive and illustrate some
of the pertinent design and analysis aids.

In Sec. 2, a basis is established for developing these design and analysis tools by providing one
specific illustration of a systematic General Design Approach (GDA). In Sec. 3, one aspect of the GDA;
namely, the Trial Design Generation Scheme (TDGS), is further clarified with a specific example. Then,
in the context of this GDA, the design and analysis aid tools are developed and explained. In Sec. 4, we
consider the design options available to the engineer when all of the transducer design parameters except
those for the ceramic stack assembly and a fiberglass tuning ring are fixed. Finally, in Sec. 5, the SGM
is augmented to include the entire transducer and applied to derive and illustrate certain design and
analysis aids. To keep the train of thought in the discussion fairly well focused, many of the derivations
were placed in an Appendix A. Also, Appendix B presents computer program prediction results for three
selected examples taken from Sec. 5.




Transducer Design and Analysis

2.0 GENERAL DESIGN APPROACH

The General Design Approach (GDA) is a three-step_iterative
element and array design as suggested by Fig. 2-1.

procedure for projector transducer

STEP #1
FORMULATE
CONSTRAINTS AND
GOODNESS CRITERIA \\
RETURN TO STEP #1 STEP #2
OR STEP #2 IF STEP #3 APPLY A
SO INDICATES TRIAL DESIGN
GENERATION SCHEME
STEP #3 /
PREDICT ARRAY
PERFORMANCE
USING COMPOSITE
MATHEMATICAL MODEL
Fig. 2-1 — The general design approach is a three step iterative procedure for projector transducer element and array design

In Step 1 of Fig. 2-1 the design engineer attempts to specify all important design constraints and
goodness (desired performance) criteria for the array, including those for the transducer element. Step 1
is neither simple nor unalterable. For example, each iteration through these three steps provides new
understanding, and, thus, often indicates a nced for further modification of the array design constraints
and goodness criteria. In Step 2, the Trial Design Generation Scheme (TDGS) is developed. The TDGS
is a systematic, practical scheme for developing trial transducer array element designs which reflect and

satisfy the array constraints and goodness criteria of Step 1.

The TDGS may include various

approximations which facilitate the rapid, if not yet complete, attainment of specific transducer element
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performance characteristics. The STRIP has developed a number of tools which aid in the rapid
identification of an appropriate design. The STRIP design development procedures are further described

in Secs. 3, 4, and 3.

In Step 3 of Fig. 2-1, the Composite Mathematical Model (CMM) predicts the complete array
performance based on the anticipated characteristics of the driver amplifiers, transducer elements, array
baffles, and the acoustic medium (including array interactions). Of course, the expected characteristics
of the individual transducer elements are determined by the TDGS. The CMM determines if the
transducer element design developed in the TDGS of Step 2 yields the required array performance. Step
3 is the fundamental verification of the entire design procedure. Even a trial design produced with
arbitrary justification would be a candidate for consideration if, when analyzed in an adequate CMM, the
predicted array performance was satisfactory.

Typically, the results of Step 3 will indicate that further adjustment of the design of the transducer
element, or relaxation or adjustment of the array performance criteria, is necessary to achieve convergence
of the predicted array performance to the desired array performance characteristics. The arrow closing
the loop from Step 3 to Step 1 in Fig. 2-1 serves as a reminder that the design procedure is iterative.

As an illustration of how the GDA is implemented, consider the design problem of what was known
as the Conformal/Planar Array Program or, more concisely, the C/P Program. This program required an
array design consisting of about 3000 individually driven transducer elements. The array was required
to operate at all steerings from endfire to broadside. The purpose of a projector array is to produce a
specified sound field. In the C/P Program, a transducer radiating face velocity distribution for the 3000
array elements was chosen which, according to the radiation theory, would produce the specified sound
field. This distribution was named the "Desired Velocity Distribution" and was designated as one
constraint in Step 1. This velocity distribution was then used in the calculations of the TDGS of Step 2.
Then, in Step 3, the actual velocity distribution of the collective transducer radiation faces was predicted
based on the CMM. In general, such a predicted distribution will be different from the original desired
distribution. The process is repeated until the difference reaches an acceptable value or until it is
impractical to consider further refinements. At that point, the predicted velocity distribution could be used
as the final desired velocity distribution constraint in Step 1 requiring a subsequent iteration through the
three steps to optimize the design relative to this new constraint.

In the next section, the application of the TDGS is further illustrated using this example of the C/P
Program. '
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3.0 AN EXAMPLE OF A TRIAL DESIGN GENERATION SCHEME

A Trnal Design Generation Scheme (TDGS) may vary widely depending on such things as the
designer's focus, the specific problem, constraints imposed by the application, and resources available.
To clarify the concept of a TDGS, this section presents one specific example of a TDGS which was
found to be useful in the C/P Program and other applications.

For the conformal/planar array, consisting of a large number of individually driven transducer
elements, some form of velocity control was a necessity. Velocity control is simply any provision to
insure that the desired velocity distribution for the array of transducer radiating faces will be at least
approximately achieved. The TDGS had to supply a means for accommodating the velocity control
constraint imposed in Step | of the GDA.

"Current velocity control" was chosen in the C/P Program as the means to achieve velocity control.
By current velocity control is meant: 1) the magnitude and phase of the input current to each transducer
element is controlled; and 2) the transducer element is designed to make the velocity of its radiating face
proportional to the input current nearly independently of the radiation impedance on the face. Note that
control of the current implies design constraints for the electronic amplifiers to be used to individually
drive transducer elements.

Current Velocity Control

It can be shown that the following equations hold (Note: Quantities such as E, I,, Z, and V,; are
discussed in more detail in Secs. 4 and 5). The input electrical voltage E; and current I, are related to the
velocity of the radiating face V, by the following equations:

E, = a(Z, + Z,)V, @.1)

and

I =bZ +Z)V,, G.2)

where Z_ is the radiation impedance as seen by the radiating face, Z,, is the mechanical impedance of the
transducer configured with a short circuit across the main terminals, and Z,_ is the mechanical impedance
of the transducer configured with an open circuit. For a given frequency, the quantities a, b, Z, and Z,,
are constants for a given element design including any electrical components which are part of the design,
The equations hold for any element in the array. However, it is assumed that a one-dimensional model
is adequate to describe the transducer elements of interest. In a given problem, one may find that a one-
dimensional model is not sufficient, especially for the CMM required in Step 3 of the GDA.

The input electrical impedance Z; is simply E; divided by I, yielding

z =B _a% 2 (3.3)
g bz, + 2,

For current velocity control, one considers only transducer element designs which satisfy the following
conditions:
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|Z‘_C| >> |Z|. 3.4)
When this condition is satisfied, Eq. (3.2) reduces to:

I, = (bZ)Vy, (3.2a)
where it can be seen that the velocity is proportional to the input current and independent of the radiation

impedance.

When tested in the CMM, a TDGS basced only on the constraint in Eq. (3.4) was not sufficient. Such
a TDGS produced designs with the undesirable characteristic that the range of variation in input
impedance Z;, was much greater than the corresponding variations in the radiation impedance Z.. In order
to produce designs with variations in Z, about the same as those of Z, the designer added the constraint:

|1Z,.| << |Z,]. (3.5)

In the resulting TDGS, both Eqs. (3.4) and (3.5) hold; therefore, Eq. (3.3) reduces to:

zZ, - (b; ]z (3.32)

Thus, Z; was forced to be proportional to Z,, and the variations in electrical input impedance are made
approximately the same as the variations in radiation impedance.

The resulting improved TDGS was comprised of two parts: a single frequency TDGS, and a
frequency band TDGS. The single frequency TDGS is obtained by utilizing the mathematical relations
between the element parameters implied by applying conditions A, B, and C at some chosen frequency
®

o

Condition A: Maximize ]Zicl relative to Z, at o,
Condition B: Minimize Ich! relative to Z, at @,
Condition C: Comply with all other chosen design constraints.

Equation (3.2a) follows from condition A and is used for current velocity control. Combining conditions
A and B yields Eq. (3.3a), making Z; proportional to Z.. It also follows from condition B that:

E ~a(ZV,) = af., (3.6)

where the force on the radiating face. f=Z-V,,. Thercflore. a consequence of condition B is that the input
voltage 1s proportional to the force on the radiating face.

A further consequence of conditions A and B is:

E; I, = (abZ)f.Vy. 3.7
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Thus, the volt-amp product EI is proportional to the force-velocity product fV,. In fact, when
compliance with all other design constraints (Condition C) happens to lead to a transducer design with
small internal losses, the volt-amp product EI; is approximately equal to the force velocity product £V,,.
That is,

ElL = fV,. (3.7a)

For this single frequency TDGS, it can be shown that the minimum value of | El | should ordinarily
occur at a frequency very near ©,. Low | EL | is a desirable feature with respect to amplifier constraints.
It can also be shown that a minimum value of ‘Ei| in Eq. (3.6) should occur near w,. In the typical
design configuration which employs current velocity control, the input voltage E; is also the voltage
applied to the active ferroclectric ceramic material. A low 'Eil is highly desirable since it is important
not to exceed the electrical field limit of the ceramic driver.

Figure 3-1 shows the |Zic[ of four radically different transducer element designs which will be used
to illustrate some of the features of this specific TDGS. These designs were produced by the single
frequency TDGS for the C/P Program constraints. Transducer elements 1, 2, and 3 were constrained to
have nearly the same | Zicl and, thus, the same degree of current velocity control over the frequency band
as shown in curves 1, 2, and 3. However, they are radically different from each other in that elements
1 through 3 weigh approximately 75, 30, and 40 lbs, respectively. Transducer design #4 represented by
curve #4 weighs the same as #3 (40 lbs). but design #4 is radically different from the first three.
Specifically, IZiCI for designs 1, 2, and 3 equals 35 MQ) at ©,, but element 4 has a |Zic| of only 15 MQ
at @,

Figure 3-2 illustrates some of the characteristics of the E;I, product for transducer designs produced
by the single frequency TDGS. The same four radically different designs associated with Fig. 3-1 are
used. Notice that at ®, all transducer elements produce essentially the same lEiIil product. A computer
program searched out the greatest ‘frVH lin the 3000-clement array for 21 different beam steerings and
used this extreme to plot these four curves. Notice, also, that the absolute minimum of | ElL | is near @,

The frequency band part of this specific TDGS consisted largely of using simplified predictive models
and/or the computer implemented CMM predictive model to find those designs from the single frequency
TDGS which best preserved the desirable features over the whole frequency band of interest. For
example, if the only goodness criteria were to keep |EiIi| as small as possible, element #4 in Fig. 3-2
represented by curve #4 would be chosen. However, |Zic is low for design #4 and it might be too low
for current velocity control in a given array problem. If that were the case, one would then consider
elements like 1, 2, and 3 all of which have the same larger IZ Of elements 1, 2, and 3, one would
pick element #1, represented by curve #1, as the lowest [EiIiT over the band. However, element #1
weighs 75 Ibs and, if a further design constraint were that no element could weigh more than 50 Ibs., one
would then pick element #2, represented by curve #2, as having the lower |EiIi| consistent with the
weight and Zicl constraints.

The example of employing current velocity control in this specific TDGS was presented primarily to
clarify the meaning of a TDGS in the context of the GDA. There are other options which could have
been exercised in this scheme to achieve slightly different results. For instance, consider the following;:
Condition A (maximize | Zicl at ®,) is often achieved by choosing the proper value for an inductor placed
in parallel with the Ceramic Stack Assembly (CSA). Conditton B (minimize |Zec| at ) is for practical
purposes equivalent to adjusting the transducer element design such that the motion (of the radiating face)
per volt (across the CSA) in air is maximized at o). If, after completing the single frequency TDGS, the
designer did not like the resulting average input impedance phase angle occurring over the array, this
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phase angle could be adjusted by a slight alteration of the single frequency TDGS. For example,
condition B could be made to occur at a slightly different frequency than o, or instead, condition A could
be similarly modified.

In summary, all quantities and constraints must be considered in the overall array design procedure,
not just IEiIi|, |Zc\ and element weight. This is made feasible using modern high-speed digital
computers which make it possible to examine enough design variations to insure that a reasonably
optimum array configuration has been identified relative to the chosen constraints and goodness criteria.
However, the cost and time required to complete a comprehensive design and analysis effort can be
significantly reduced by using improved simplificd predictive models in the TDGS. Further examples of
simplified predictive models and associated design and analysis aids are presented in Secs. 4 and 5.

icl»
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Fig. 3-1 — The magnitude of the mechanical input impedance Z,, of four radically different transducer element designs
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Fig. 3-2 — Characteristics of the Ejl; product for four different transducer designs produced by the single frequency TDGS
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4.0 CERAMIC STACK ASSEMBLY DESIGN AND ANALYSIS AIDS
4.1 Ceramic Stack Assembly/Fiberglass Tuning Ring Transfer Matrix

The performance of a transducer array and the transducer elements in that array is dependent upon
the determination of the design of various design parameters. Limitations are placed on each component
or subassembly in Step 1 of the General Design Approach (GDA). Listed below are some of the basic

array and transducer element design parameters that must be considered.

Table 4.1 - Basic Array and Transducer Element Design Parameters

1. | Array geomctry and construction.

2. | Transducer radiating face geometry and placement of these {aces in the array.

3. | Desired array velocity and distribution for the radiating faces.

4, | Headmass assembly design.

5. | Tailmass assembly design.

6. | Electrical transformer and tuning inductor design.

7. | Watertight integrity design.

8. | Modular driver amplifier design. Note: It is assumed that each transducer element is driven by
one of the driver amplifiers.

9. | Ceramic stack assembly (CSA) and fiberglass tuning ring (FTR) design [see Egs. (4.1) and
(4.1a)].

In Sec. 4 it is assumed that all of the transducer design parameters associated with items 1 through
8 are temporarily fixed. Secction 4 considers only the cffects of modifying the design parameters of the
CSA and/or FTR (item 9).

The SGM [1] was specifically tailored to allow direct, economical, and efficient determination of the
effects of adjustments in the piezoelectric CSA on 33-mode longitudinal vibrators. The original
application of the SGM was to determine adjustments in the CSA (in combination with an FTR) which
could be used to solve the piezoelectric ceramic reproducibility problem [2] for longitudinal vibrators.
The design and analysis applications as they apply to the CSA are examined in this section.

The theory of the SGM will not be redevcloped here, since it has been presented in detail in Ref. 1.
However, we will take from Ref. 1 a number of important relations which are then used to develop insight
for generating trial designs for CSA and FTR components of the transducer element. A simple step-by-
step method will be presented to help produce a near optimum design for the CSA and FTR relative to
the constraints and goodness criteria of a given transducer design problem. Some of the other design
parameters will be explicitly considered in Sec. 5.
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One of the important relations which can be derived from the SGM is the transfer matrix equation
[Eq. (4.1)]. The transfer matrix equation follows from the simplified equivalent circuit diagram of the
CSA shown in Fig. 4-1, given the following assumptions:

1. The lengths of the individual ceramic rings (1) are short compared to a wavelength.
2. The ceramic stack length (L) is short compared to a wavelength.

3. The primary resonance frequency of the unloaded ceramic stack is much higher than the operating
frequency band of the transducer.

4. The compliance of the stress rod is much greater than the compliance of the ceramic stack.

The transfer matrix equation relates the voltage (E) and current (I) applied to the CSA with a certain force
(F) and a certain velocity of the radiating face (V) as indicated below:

1 1
—[C. + _
E Nd33[ PO ioNdy, || F
_ , @.1)
. AC AC
I iw (Cp + CY | 4
8xl, 8xl.

where: E is the voltage across the electrical terminals of the CSA,
I is the corresponding electric current flowing in the CSA,
d,, relates electric field to displacement,
g5, relates charge density to displacement,
N is the number of ceramic rings used to construct the CSA,
1, is the length of any one of the N ceramic rings,
A, is the electroded area of any one of the two ends of each of the N rings,
C: is the compliance of the FTR,
C is the compliance of the CSA in the open-circuit configuration,
C’ is the compliance of the CSA in the short-circuited configuration,
F is a certain force (seec discussion which follows), and
V is a certain velocity (see discussion which follows).

As is summarized in Sec. 4.2.1 and explaificd in dctail in Ref. 1, when (as in all subsections of Sec.
4) the head and tail assemblics are assumed to be fixed, the force (F) and velocity (V) on the right side
of Eq. (4.1) are proportional to the force F,, and velocity V,, interface of the fiberglass washer and the
transducer radiating head assembly. In fact. given the assumptions of the SGM one finds that the constant
of proportionality relating F to F is unity; that is, F = F,.

The constant of proportionality relating V to V,, depends only on the frequency, the nature of the head
and tail assembly, and the acoustic loading on the radiating face [see Eq. (4.13)].
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Fig. 4-1 — Simplified equivalent circuit of the CSA with combined head and tail impedances

Examination of Eq. (4.1) shows only two piezoclectric constants explicitly displayed; namely, ds; and -

2.;. Actually, a set of three independent piezoclectric constants is required to characterize the CSA. The
third piezoelectric constant [for matrix Eq. (4.1)] is contained in CSA compliances, C (the CSA short-
circuit compliance) and C’ (the CSA open-circuit compliance). These compliances are defined as
follows:

1
C=8EN-<=5f L (4.22)
A, A,
and
1
C' = SaN-X = 53‘3)_!‘_, (4.2b)
AC AC

where: SE, relates displacement to force when the CSA electrical terminals are short circuited,
S, relates displacement to force when the CSA electrical terminals are open circuited, and

L is the total length of the CSA such that,

L=N1_, 4.3)

4

Howevér, SE, and S%, are not independent and only one of them need be used. They are related in the
following way:
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S32 = S3§ - gssdsa' 44

In light of the dependence expressed in Eq. (4.4), d,,, 2,,, and S5, can be chosen as the set of three
independent piezoelectric constants to fully characterize the CSA.

Using Eqs. (4.2) through (4.4), one can write
L .
Cc'=¢C —(_)@33d33). (4.5)
AC

Based on the above discussion, Eq. (4.1) can be re-expressed as follows to display the explicit dependence
on the three chosen piezoelectric constants (d,, €53, S5,):

1 o “L_SE 1
E| | Ny "la io Ndy, | | F
- (4.1a)
iwN L.k N
I . T CF+A—C<533‘833‘133)] ;__I; 1%4
33Ac 33Ac

Examination of Eqs. (4.1) and/or (4.1a) reveals the important fact that if any adjustments are made
to the CSA and/or FTR (as reflected in the compliance Cp of the FTR) such that the coefficients of the
2 x 2 matrix remain the same, then the input/output performance of the adjusted transducer will be the
same. The internal performance (such as electric field. mechanical strain, etc.) may be different, but all
transducers with the same 2 x 2 matrix for Eq. (4.1) [or Eq. (4.1a)] will have the same externally
measurable electro-acoustic performance. The clectroacoustic performance characteristics of most general

interest are
1. Source level per volt.
2. Source level per amp.
3. Input electrical impedance.
4. Open-circuit receive response.
5. Short-circuit receive responsc.
For the purposes of Scc. 4, any sct of transducers which have the same coefficients in the transfer matrix

will be said to have the same CSA/FTR transfer matrix. As noted above, these transducers will have
identical characteristics with respect to the externally measurable quantities listed above.
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4.2 Design Scenario 1 - Design Options Adjusting Only A_ and L (of CSA) but With L/A_ Ratio
Fixed

This Section uses the SGM to devclop some insight concerning design options and procedures
available for the special case using only adjustments (changes) in the value of A, and L (electrode area
and total length of the CSA) subject to the additional constraint of a fixed value for the L/A, ratio. For
convenience, this special case will be referred to as Design Scenario 1.

As was emphasized in Sec. 3, any quantitative design calculations and predictions should be made
using a good CMM. Therefore, in an actual application, the design engineer should have progressed far
enough into a given iteration of the GDA to determine at least those Table 4.1 type parameters needed
to perform corresponding Design Scenario 1 type calculations using the CMM. Please note, however, that
during a given application of Design Scenario 1, all Table 4.1 type parameters are fixed except A, and
L.

For Design Scenario | perhaps thc most important observations are the following: (1) In the
CSA/FTR matrix [Eq. (4.1a)], the parameters A_ and L always occur together as the ratio L/A_; (2) Even
though we are changing the values of design parameters A_ and L, the fact that we are maintaining a fixed
value for L/A_means that all Design Scenario 1 transducers have the same CSA/FTR transfer matrix and
thus the same externally measurable electro-acoustic performance characteristics. Yet it is also true that
the transducers included in Design Scenario 1 can vary radically. With small values of L and A, only
a relatively small volume of ceramic material would be contained in the CSA, while large values of L and
A, the CSA would contain a relatively large volume of ceramic material. The size of the transducer
would of course vary accordingly.

In addition to physical size differences, there are scveral other variations accommodated by Design
Scenario 1. The source level per volt applied to the ceramic is an externally measurable quantity and,
therefore, is unaffected by changes permitted by Design Scenario 1. On the other hand, the source level
per electric field would change as 1, (the length of the ceramic rings) is changed. Thus, the source
level/electric field will be different and adjustable among transducers included in Design Scenario 1.
Similarly, the mechanical stress and strain in the CSA is adjustable among Design Scenario 1 transducers.
Specific insight concerning how to make such design adjustments (e.g., using an appropriate option of the
CMM) is developed next with the aid of the SGM.

4.2.1 Adjusting the CSA Electric Field (e) hy Adjusting L With Fixed L/A, Ratio
The theory of the SGM [1] shows that the force F and the velocity V are related as follows:
F =12V, (4.6)

where the impedance Z is the parallel combination of the impedance of the head assembly and tail
assembly given by Eq. (4.7).

Zulr @.7)
Zy+Zy

In Eq. (4.7), Z; is the impedance presented to the CSA by the tail assembly, and Z, denotes the
impedance presented at the FTR interface by the combined impedance of the head assembly and the
acoustic loading.
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Using F = ZV, it follows from Eqs. (4.1) or (4.1a) that

1% iONdy, 8)

E 1+iw(C+O)Z’

and if one defines the electric field as € = E/L, then,

1% io NI d,, 4.9)

- = ’

e 1+i0(C+0)Z

or equivalently,
v, ield, (4.92)
e 1+ (Cp+O)Z"

Since the CSA consists of N ceramic rings wired in parallel, E is the voltage applied to a single ceramic
ring as well as the entire CSA.

In a similar fashion, using F = ZV, it follows from Eqgs. (4.1) or (4.1a) that

1
V. 8 ! (4.10)

I A, 1+ie(CrChZ

Alternatively, using L = [N, this relationship can be expressed as

L
V. 8 1 (4.102)

I NA, 1+0(C,+ChZ

In the development of the SGM, it 1s shown that the equivalent circuit for the longitudinal vibrator,
Fig. 4.1, implies that

vy = : @11)
Zy
and

V=V,-V. (4.12)

Combining Eqs. (4.11) and (4.12) gives
Zy 4.13
Vi=Vy - V= |l Vg (4.13)

T

One important measure of performance is source level. Source level (not in decibels) is proportional
to V, at each frequency, and the constant of proportionality depends only on the frequency, the nature
of the head mass assembly, and the acoustic loading. It, therefore, follows from Eq. (4.13) that V also
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is proportional to source level, and the constant of proportionality does not depend on any of the quantities
being allowed to change in the derivations presented (i.e., only CSA quantities and FTR quantities are
allowed to vary here).

Thus, when all parameters except those for the CSA and FTR are fixed, the quantities V/E and V/I
are equivalent to source level/volt on the ceramic (source level/E) and source level/amp (source level/T)
into the ceramic as measures of performance. Thus, Eq. (4.8) shows explicitly why changing A_ and/or
1, does not affect the source level/E of a given transducer design; the source level/E is not a function of
either 1, or A

However, Eq. (4.9) shows that for fixed N (as in Design Scenario 1), the source level/electric field
(source level/e) is a function of 1. as 1, is increased, the source level for a given field (g) is also
increased, In other words, the electric field required for a given source level can be reduced by increasing
1.. Notice, as shown explicitly by Eq. (4.9a), that the source level/e is actually a function of the total
length L of the CSA. In Design Scenario I, since N is fixed and L = N1, [Eq. (4.3)], the source level/e
is also a function of I, Later, in Design Scenario 3, where L is held fixed but both 1, and N may vary
consistent with Eq. (4.3), the source level/e does not change even though 1, is changed.

In a similar fashion, Eq. (4.10a) shows why only the source level/l is not affected by changes in L
and A, as long as the ratio L/A_ is held constant (which is true for Design Scenario 1 but not Design
Scenario 2). Equation (4.10) could be altercd to show that the source level/current density relation would
be affected by changing A, even if L/A_ is held fixed. However, current density is usually not an
important factor in transducers of the type being considered.

4.2.2 Adjusting CSA Stress by Adjusting A, With Fixed L/A, Ratio

In a manner similar to the discussion of source level/E and source level/e, the SGM may be used to
"suggest" that mechanical stress in the CSA for a given source level can be reduced by increasing A_ and
the mechanical strain in the CSA for a given source level can be reduced by increasing L. Thus, for
Design Scenario 1, transducers, A, and L can be increascd so that L/A_ is fixed, but both stress and strain
are reduced. This insight is explored further in the following paragraphs.

As is suggested by the SGM equivalent circuit diagrams of the longitudinal vibrator, given the
approximations of the SGM, the forces at the various interfaces are equal; that is, F; = F,= F;, where F;
is the force at the tail assembly to CSA interface, F,, is the force at the CSA to FTR interface, and F, is
the force at the FTR to head assembly interface. Since F,, = Z,; V, and since Z, and the array velocity
distribution are assumed fixed, one observes that in the SGM all these forces remain constant as one
adjusts either A_ or L. Thus, since the average stress at each interface is the force divided by the area,
one observes that as A, is increased the average stress in the CSA (which is equal to F/A, = F /A =
Z,V/A) is decreased. The statements about stress are true for any transducer for which the SGM holds
and for fixed design parameters in the following:

1. Array geometry and construction.
2. Transducer radiating face geometry.
3. Array velocity distribution for the radiating faces.

4. Head mass assembly.
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In Design Scenario 1, these conditions are met; therefore, this SGM-based discussion suggests that
A, may be varied to adjust the CSA stress levels. This SGM-based discussion spoke of average stress;
but, in an actual design adjustment, an appropriate option of the CMM would consider the maximum
stress in the CSA.

For later use, notice that the above discussion implies that a minimum value exists for A, say A™
such that the stress limits associated with the CSA are not exceeded. Write this constraint as follows:

A, 2 A", 4.14)
A similar constraint on A, might be developed relative to charge density, but this constraint is not
considered here.
423 Adjusting CSA Strain by Adjusting L With L/A, Ratio Fixed

Subject to the approximations of the SGM, the "average strain" in the CSA is proportional to
(Vo - VPI/L.

1
v, - (zH - CF]V,,. “19)

Using Egs. (4.11) and (4.153), (V,, - V;)/L may be expressed in terms of V,; as is shown in Eq. (4.16).

Yo Vr_ (z yin, 1 ]VH, (4.16)
L

H Ca : T
Z, ioCy

For Design Scenario 1, all the quantities in the numerator of Eq. (4.16) are fixed; therefore, as L is
increased, the average strain in the CSA dccreascs. This SGM-based discussion spoke of average strain;
but, in an actual design adjustment, an appropriate option of the CMM would consider the maximum
strain in the CSA.

The above discussion implies that a minimum value exists for L, say L™™, such that the strain limits
assoctated with the CSA are not exceeded. (These strain limits are also a function of the stress bias
applied with the stress rod.) For subsequent use, it is convenient to express this constraint in the form

L > Lmin.x. (4.17)

NOTE: In Sec. 4.3 another constraint is placed on the minimum value of L relative
to the electric ficld himit and this mimimum value is given the distinguishing
symbol L™

4.3 Design Scenario 2 - CSA L/A_ Ratio Optimization

In Sec. 4.2, the SGM was used to develop some insight concerning design options and procedures to
determine (using the CMM) the "best choices” for the values for the CSA parameters A_ and L (with all
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other design parameters held fixed) subject to the additional constraint of a fixed value for the CSA L/A,
ratio. In this section, the SGM is uscd to develop some insight concerning design options and procedures
which may be used to determine (using the CMM) an optimum (or at least a practical optimum) value
for the CSA L/A, ratio; that is, how to determine (L/A )°". For convenience, this special case will be
referred to as "Design Scenario 2."

The general approach used below to develop insight relative to Design Scenario 2 is:

1. The CSA/FTR compliance is "optimized" so as to result in a resonance frequency, f,, for V/e (or
equivalently V/E) which minimizes the maximum value of the CSA electric field (g) required to
achieve the specified array source level (Sec. 4.3.1).

2. The "intrinsic frequency band width" of the transducer is adjusted to be as broad as practical so
as to minimize the demands made on the power amplifier design (Sec. 4.3.2).

As previously emphasized, any quantitative design calculations and predictions should be made using
a good CMM. Therefore, in an actual application the design engineer should have progressed far enough
into a given iteration of the GDA to determine at least those Table 4.1 type parameters needed (using the
CMM) to perform corresponding Design Scenario 2 type calculations. For example, the maximum CSA
electric field needed to achieve the specified source Ievel needs to be known; this means the CMM must
be asked to calculate the electric field for all frequencies in the band of interest, all positions in the array,
and all electrical steering angles. Since electric ficld limits are crucial in a piezoelectric ceramic type
transducer, examination of this array performance data would show that there is a best location for the
resonant frequency f,, where f, is defined as the {requency of maximum value for source level/e (source
level for a given electrical field on the ceramic).

As is explained below, during a given application of Design Scenario 2 all Table 4.1 type parameters
are fixed except L/A, and the compliance, C,, of the FTR. Of course, during application of Design
Scenario 2 one may temporarily take the point of view that L/A, and the FTR are fixed and apply the
Design Scenario 1 type adjustments to A, and L.

For Design Scenario 2, the fact that we are not maintaining a fixed L/A_ ratio and/or FTR means that

Design Scenario 2 transducers do not have the same CSA/FTR transfer matrix and, thus, do not have the
same externally measurable electro-acoustic performance.

PREVIEW AND OVERVIEW OF GUIDELINES FOR OPTIMIZING THE L/A, RATIO

The SGM-based insight development (presented directly below) for Design Scenario 2 is a little
tedious, but the resulting guidelines may be simply and easily summarized as follows:

1. The L/A_ ratio is optimized by making it as large as practical.

2. To be consistent with 1 above (large L/A, ratio). the compliance (C) of the FTR should be made
as small as practical; in some cases this means that the FTR may be eliminated.

3. With the aid of the CMM the resonance frequency, f,, for V/e (or equivalently V/E) is adjusted
to minimize the maximum value of the CSA electric field (g) (or equivalently E), required to
achieve a given specified array source level.
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While reading the following explanation of Design Scenario 2, it is suggested that the reader keep in
mind the above three-point summary of the resulting guidelines. :

43.1 Optimizing € and E Over the Array by Adjusting the Resonance Frequency of V/e

Equation (4.9a) (repeated below for convenience) is used as a starting point for explaining how to shift
f, to optimize & and E over the array for the transmit frequency band of interest.

4 o Lds, (4.92)

€ 1+0(C+0)Z '

In this discussion, all of the transducer design parameters except the CSA and/or FTR design parameters
(see Sec. 4) remain fixed. Thus, in Eq. (4.9a), Z is fixed. One observes in Eq. (4.9a) that for any given
value of L and d.,, the only way to change the frequency f, where the maximum value of V/e occurs is
to adjust the value of the composite compliance C; + C. Let C, be this composite compliance as in
Eq. (4.18):

C,=Cp+C=Cp+ S3§A£. (4.18)

4

In Eq. (4.8), it does not matter whether the composite compliance C, is changed by changing C; (changing
the FTR) or changing C (changing the short circuit CSA compliance). Therefore, C, may be iteratively
changed in the array CMM and the predictions may be used to determine a best location for the resonant
frequency f,, say fJ*, for the array source level/E and source level/e. Corresponding to f2** will be the
best choice for C,, say C. For convenience, rewrite Eq. (4.8) as follows for the special case where
C.= C™™

Vv _joNd, (4.82)

E  1+iec?z

Notice that for any given values for N and d,,, the shape of the curve of a plot of V/E vs frequency is
the same as the shape for another set of values for N and d,,. However, the curve can be shifted up or
down by increasing or decreasing N and/or d,;.

In a corresponding fashion, rewrite Eq. (4.9a) as
v iw Ld,,
€

= (4.9b)
1+iw(C.7HZ

Equation (4.9b) shows that there is some minimum value of L, say L ™" required to give a high enough
value of V/e to comply with the given ficld limit on €. For future use write this condition as

[ s pmine (4.19)

Equation (4.19) insures that for the array source level requirements

¢ < emax (4.20)
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For later use, note the following: two lower bound conditions have now been placed on the minimum
value of L, L™™ [Eq. (4.17)] and L™™ [Eq. (4.19)]. Let L™" be the larger of these two lower bounds and
write the resulting constraint on L as follows:

L > Lm.in. (4.21)

The above results also imply another constraint involving L which can be seen as follows. Recall that
C is given by Eq. (4.2a) (repeated here for convenience).

C- (AiJ SE, (4.22)

[

Using Eqs. (4.18) and (4.2a), and the known desired value for C,; namely, C®

o, write the following
equations:

C,+C = c:P’, (4.182a)
C=C*-cg,, (4.18Db)
and
L 1oy
e F(Ce Cp). (4.22)
¢ 33

Equation (4.22) is one of the two equations which will be used to develop insight concerning
determination of the optimum value for the L/A_ ratio, that is, (L/A_)®™. The second equation [Eq. (4.5a)]
is determined in the next subsection as a result of optimizing the bandwidth for the sake of the power
amplifier.

4.3.2 Optimizing Bandwidth for Sake of the Amplifier

Although voltage E and electric field & are the important electrical limits for the transducer element,
the modular amplifiers have both a voltage and a current limit (also an E I product limit). For simplicity,
assume that any tuning inductor is placed in parallel with the transducer so that E; and € have already
been adjusted and optimized for all array conditions as explained in Sec. 4.3.1. The problem remaining
is to adjust the transducer design so that I, for frequencies not near f, remains as low in value as possible
and, thus, assuring that the bandwidth over which the current limits of the amplifier are not exceeded will
be as large as practical.

The determination of the best value of L/A_ [subject to the constraint of Eq. (4.20)] and C; for
keeping I, low over as large a frequency band as practical involves the frequency dependence of the head
assembly, tail assembly and the acoustic loading of the array. These other design variables will be
included starting in Sec. 5, but for now these complications will be by-passed by making two temporary
design aid postulates. Later, when the other design variables are explicitly considered, these temporary
postulates will not be needed. The two temporary design aid postulates are:
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Design Aid Postulate 1

The greater the separation (difference) between the resonance frequency f, for the maximum array source
level/E (related to V/E) and the resonance frequency f; for the maximum array source level/l (related to
V/), the greater the bandwidth over which the current limit of the amplifier will not be exceeded.

Comparing the denominator of Eq. (4.8) for V/E with the denominator of Eq. (4.10) for V/I suggests
the second postulate.

Design Aid Postulate 2

The difference between f, and f, can be made as large as possible (that is, postulate 1 can be satisfied)
by making the difference between (C; + C) and (C; + C’) as large as possible.

The degree of validity and usefulness of these two design aid postulates may be examined in later
sections where the nature of the acoustic loading, hcad assembly, and tail assemblies are combined with
that of the CSA and FTR. In any given casc the designer can easily check the validity by applying the
computerized composite mathematical model for the transducer trial design in the array environment.
These postulates have sometimes worked well in practice and for now are accepted as valid trial design
generation aids.

Postulate 2 (and, thus, postulate 1) can be applied using the following form of Eq. (4.5):

(Cp+ C) - (Cp+ Chy = ZL_(g”d”). (4.52)

In Eq. (4.5a), with all other ceramic stack asscmbly parameters (Table 4.1) fixed, the only adjustment
allowed is in L/A_. Equation (4.5a) shows (as required by postulate 2) (C; + C') can be made as
different as possible from (C; + C) by making L/A, as large as possible.

The other relevant equation involving L/A_ is Eq. (4.22) which is repeated for convenience.

£ L -cy. (422)

CE
AC S33
Equation (4.22) shows that L/A_ can be made as large as possible by making C. = 0 (no FTR).

Therefore, the optimum value [however. also sce Eqs. (4.22b) and (4.23¢)] of L/A_ is given by

opt opt
(_é) - CeE , (4.222)
Si3

A

4

Recall that C™ is the composite compliance nceded to optimally locate f,, the V/E resonance frequency.

These last observations can be made more directly by using Eq. (4.22) in Eq. (4.5a) to yield:
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8339 -
Cr+ O - (Cp+ €Yy = 222 - ¢y, (4.23)
33
or more simply,
833%3 [ o
(€ - Ch = =2 - ¢y, (4.231)
33

Equation (4.23) shows directly that for a given choice for g,,, d,,, and SE, (which are temporarily
assumed to be fixed), that the difference in the composite compliance (C; + C') and (C; + C) can be made
as great as possible (to satisfy postulate 2) by making C, = 0.

Equation (4.23a) is shown simply to emphasize the fact that making C’ as different as possible from
C is equivalent to making (C; + C") as different as possible from (C; + C). This is really what is being
accomplished by applying postulate 2.

43.2.1 Retention of a Minimum FTR Compliance

In practice, for many cases it is recommend that a minimum compliance FTR be retained in order to
make the transducer reproducible on a production basis [2]. If for practical purposes a minimum FTR
compliance C}" is retained, then the equation for (L/A )™ becomes

LY” in 1 |
(A_) = (C:P’ - (;;““)EE (4.22b)
33

[

For this condition, the difference in the two composite compliances is given by

d .
(Cp+C) - (Cp+ ChH = %E—sé(c?’ - ¢, (4.23b)
33

43.2.2 Introduction of Coupling Cocfficient K,

For later use note, relative to Eqs. (4.23) and (4.23a). that an often tabulated piezoelectric ceramic
quantity called coupling coefficient K,, may be defined as

K2 - 833933
33 Pk
33

4.24)

Using this expression for K%, Eq. (4.23) may be written as
33
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(Cr+ ) - (Cp+ Ch = KG{CF - Cy). (4.23¢)

A large value for ceramic coupling coefficient, K, is, in general, considered "good." In this regard,
please note from Eq. (4.23c) that the larger K,, the greater (according to design aid postulates 1 and 2)
the bandwidth over which the current limit of the modular amplifiers will not be exceeded.

433 Sub-optimum L/A,

Thus far, Sec. 4.3 has provided insight concerning determination of (L/A )™, and Sec. 4.2 provided
insight concerning determination of specific values for 1. and A, Consider now the case where, for
practical reasons, one cannot use (L/A )™ in the design (e.g., a transducer length constraint), but must use
a sub-optimal ratio L/A, < (L/A)®™. In conjunction with Eq. (4.21) it was pointed out that some
minimum, L™, ceramic stack length exists to satisfy both the electric field and strain limits. Suppose L™"
is achievable, but the corresponding minimum allowable arca A™ [Eq. (4.14)] is such that L™Y/A™" <
(L/A ). A solution would be to make L > L™". However, suppose the transducer length constraint is
such that a maximum length of the CSA. say L™, exists and L™ > L™", but even using this maximum
length the subject ratio is sub-optimal; that is, L™/A"™" < (L/A )",

For this sub-optimal case one may proceed as follows. One wishes to retain C* as the value of the
composite compliance in order to retain the optimization relative to € and E discussed in Sec. 4.3.1 [Eqgs.
(4.8a) and (4.9b)]. From Eq. (4.22) one notes that in order to retain C* if the ratio L/A, is reduced
below its maximum (i.e., below its optimum) value, then the FTR compliance, C,, must be increased in
value. Applying this procedure to this sub-optimal case, the performance relative to the velocity/e and
velocity/E on the CSA using the L™/A™" is the same as for a CSA using (L/A)". For the case being
considered, since L > L™" Eq. (4.19) applicd to Eq. (4.9b) ensures that the electric field & is less than
or equal to the maximum field €™ [Eq. (4.20)]. However, the demands on the amplifier current and volt
amp product requirements are greater. Onc can say that with L/A_ < (L/A ), the bandwidth has been
reduced over which a given amplifier design could drive the array. To increase the bandwidth using L/A_
< (L/A)™, one would have to design a larger capacity power amplifier.

4.4 Design Scenario 3 - Design Options Adjusting N and |, (fixed L)

This section uses the SGM to develop some insight concerning design options and procedures
available for the special case where the only changes allowed are adjustments in the value of N and 1,
. (number of ceramic rings and length of a ceramic ring) subject to the additional constraint of Eq. (4.3)

(L = NI,) with a fixed value for L. For convenience this special case will be referred to as "Design
Scenario 3."

4.4.1 Main Application for Design Scenario 3

Reduction (to acceptable values) of the required voltage E on the electrical wiring of the CSA is the
main application for Design Scenario 3. Equation (4.8) indicates that, as N is increased there is a decrease
in the voltage E required to achieve a given velocity V and, thus, the corresponding desired source level.
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4.4.1.1 Things that Change in Design Scenario 3

In addition to the change just described ("improvement" of V/E and the source level/volt), V/I changes
[Eq. (4.10a)] and the CSA/FTR transfer matrix changes [Eq. (4.1a)]. In regard to these last two changes,
please note the following:

1. As N is changed the ratio V/I changes in the opposite direction of V/E; if V/E is increased, then
V/1 is decreased and visa versa.

2. Since the CSA/FTR transfer matrix changes as N is changed in Design Scenario 3, the
corresponding externally measurable performance will also change. However, all such Design
Scenario 3 transducers can be madc to have the same CSA/FTR transfer matrix by adding an
electrical transformer across the CSA elcctrical terminals. The turns ratio of this transformer can
be selected to compensate for the change in N (see, for example, page 14 of Ref. 1).

4.4.1.2 Things That Do Not Change in Design Scenario 3

In Design Scenario 3 all transducer performance characteristics are fixed except for the three items
indicated in Sec. 4.4.1.1. However, for definitcness it is uscful to list some of these items that do not
change.

1. V/e [Eq. (4.9a)] and source level/e do not change.
2. The mechanical stress (Sec. 4.2.2) and strain (Sec. 4.2.3) do not change.

3. The L/A, ratio does not change.

4.5 Design Scenario 4 - Design Options Adjusting only CSA Piczoclectric Ceramic Parameters

In this section, it is no longer assumed that the piezoelectric parameters of the CSA are being held
fixed. Instead, this section uses the SGM to develop some insight concerning design options when
changes are allowed in the chosen set of three independent piezoelectric ceramic parameters (e.g., di3, 853,
and SEZ,) with all other transducer design parameters held fixed. For convenience, this special case will
be referred to as Design Scenario 4.

Return first to Eq. (4.23) which shows that the bandwidth over which the amplifier can drive the array
(see design aid postulates 1 and 2) can be increased by increasing the product g,,d,,/S5;. As noted in Sec.
432, Egs. (4.24) and (4.23c) show that this last observation is equivalent to saying that increasing the
CSA coupling coefficient K, will increase this bandwidth.

Examination of Eq. (4.8a) shows that increasing d,, increases the source level/E. In other words,
increasing d,, decreases the voltage E on the CSA needed to achieve a given source level. Similarly,
examination of Eq. (4.9a) shows that increasing d,, improves the source level/e; that is, increasing d;
decreases the electric field on the CSA required to achieve a given source level. Analogous statements
can be made about g,, and the source level/l.

If one increases g,, and/or d;;, as observed above, then the relative location of the resonance
frequencies for source level/E and source level/l will be changed consistent with the above observation
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concerning an increase in bandwidth due to an increase in the coupling coefficient K,,. If the S5, CSA
parameter is held fixed, the resonance frequency f, remains fixed and the resonance frequency f, will be
changed as d,, and/or g,, is changed. This can be seen by examination of Eqs. (4.18a), (4.2a), (4.2b), and
(4.23a) (C; and L/A, are not allowed to change in Design Scenario 3). Furthermore, note that the
compliance, C, is fixed [Eq. (4.2a)] and compliance C' changes [Eq. (4.23a)] as d,; and/or g,; is changed.

Although only the projector array problem is being considered, such an array is often used as the
receiver array. [t is useful to note (by reciprocity) that the open-circuit receive response is increased by
increasing g,, and the short-circuit receive response is be increased by increasing d,;.

4.5.1 Replacing g,, With %, (and C})

For many purposes in projector-type transducer designs, it is useful to replace g,, with &5, (see, for
example, Refs. 1 and 2 concerning piezoelectric ceramic reproducibility), using d,,, €1,, and S, as the
set of independent material parameters. One reason is that €,, is easily measurable because

Cp = Agn/l, (4.25)
and C; (the low-frequency capacitance of one ceramic ring) is easily measurable.

The main discussion of this change from g, to &1, occurs in Sec. 5; however, as one illustration, K,,
will now be rewritten in terms of €5, using Eq. (4.26).

83 ~ d33/€3T3 . (4.26)

Using Eq. (4.26) in Eq. (4.24) gives

Ky = (d33)2/€3T3 Ssg- (4.27)

Recall that a large value for K, is desirable and note that the smaller €1, the larger K,,. Notice also from
Eq. (4.25) that the smaller &1, the smaller the low frequency capacitance, C;. Thus, one can say that the
smaller the value of low-frequency capacitance the better from the point-of-view of desiring a large
coupling coefficient, K,;.

452 Summary for Design Scenario 4
The above discussion indicates why, consistent with other considerations (such as high drive stability,

etc.), the projector designer will choose a high value for d,,, and a low value for €], (or equivalently a
high value for g,,) and for a high value of S&,.
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5.0 COMPOSITE TRANSDUCER DESIGN AND ANALYSIS AIDS

An array of acoustically interacting and complicated transducer elements can only be designed
adequately with the help of computer aided design analysis. In cases where these costly and time-
consuming computer-aided design calculations have been performed, certain design trends and design
techniques were suggested by examination of the volumes of computer-generated graphs. As was
indicated in the introduction (Sec. 1), the SGM may be augmented with simple models in such a way that,
using only paper and pencil, an engineer may derive much of the same knowledge, skill, and insight as
was gained from the elaborate, expensive computer-aided calculations. In fact, in some cases, more
insight is gained from such a paper and pencil exercise. As was promised, the augmented SGM is also
applied to derive and illustrate some of the pertinent design and analysis aids. Appendix B presents
computer program prediction results for three selected examples taken from Sec. 5. As will be pointed
out below, the three selected examples presented in Appendix B are associated respectively with Eqs.
(5.34), (5.79), and (5.10) (see Secs. 5.2.2.1.2,5.2.2.5, and 5.2.2.6.2.1.2, respectively).

The augmented SGM provides qualitative insight which helps to understand the performance obtained
or obtainable from specific designs. The augmentcd SGM can guide the design engineer quickly to an
approximate solution to his design problem -- without having to perform extensive computer-aided
analysis. No claim is made that the augmented SGM can replace computer aided analysis. However, it
can provide knowledge, skill, and insight which will significantly reduce the time and cost of completing
the final design and analysis calculations. As was emphasized in Sec. 3, any quantitative design
calculations and predictions should be made using a good CMM.

In Sec. 4, it was shown that the SGM could be used to determine transducer design aids for the case
where only the CSA and FTR design parameters were assumed to be explicitly displayed and available
for manipulation. All the other transducer design parameters were held fixed and not explicitly available
for consideration. In this section, simple models for the head assembly, tail assembly, and radiation
loading are selected and used in conjunction with the SGM representations of the CSA and FTR models.

5.1 The Radiation Model; Simplification of the Head and Tail Assemblics

In this simplified representation, the head and tail assemblies are represented by mass-like devices.
Thus, the impedance Z,, looking into the tail assembly, is represented as

Z, = iomg, (5.1)

where m is the mass of the tail assembly. The impedance for the head assembly in the case where there
is no applied radiation loading (e.g., the transducer operating in air), is given by

ZH = iﬁ)an (no radiation loading) , (5.2)

where m,; is the mass of the head assembly. The tail representation [Eq. (5.1)] is quite realistic for a large
class of longitudinal vibrators. The head representation [Eq. (5.2)] is fairly representative except where
the head is thin enough to have significant flexing. For most cases, except where flexing head is a
concern, these two equations provide an estimation of the impedances that correlates well with actual
observations.

When radiation loading is present, the impedance of the head assembly is given by
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Z, = iomy, + Z_ (with radiation loading) , (53

where Z_is the radiation impedance. Z_is a complex number as shown in Eq. (5.4), where R is the real
part and iX is the imaginary part of Z. In an array design problem, the radiation impedance (both R and
X) for a given transducer element in the array is, in general, a function of many things such as the
element position in the array, the electrical steering angles for the array and the velocity distribution in
the array.

Z =R+iX, 4

For the design aid simplification purposes, it is assumed that this function can be represented by the
following simple, artificial frequency-dependent, radiation impedance, Z. In this representation, R and
X are taken to have the following linear dependence on w:

R=¢r and X = wx, v (5.5)

where r and x are constants (not functions of @). Since we are interested in designing transducer elements
to operate in an acoustically interactive array, we assume that this representation is useful for our purposes
not only for the radiation loading for a single element operating alone, but also for the average or typical
radiation loading for a single element operating in an array. This simple, artificial representation of Z,
departs radically from any actual frequency dependence for radiation impedance. Therefore, there was
great concern that use of this simplified Z, representation might lead to erroneous design insights.
However, the results reported below using this selected simple Z_ representation agree qualitatively with
design insights obtained using very sophisticated radiation models and computer-aided calculations and

graphs.

With this simple model for Z, the impedance looking into the head assembly with a radiation load
applied is given by

Z, = or + io(my + X) (wit radistion loading) . (5.6)

Let m be defined as the effective mass of the head mass assembly with radiation loading present.

mo=my +Xx. (5.7)

Then the head assembly impedance Z, can be expressed as

Z, = @r +iom = o (r + im) (with radiation loading) . (5.8)

Equations (5.1) and (5.8) constitute our simplified model for the tail and head assembly impedances in
the presence of an applied radiation loading.

5.2 Analysis Without a Tuning Inductor

These simple forms for Z, Z, and Z,, were used in the SGM to derive numerous forms of the basic
equations which in turn were analyzed to illustrate certain conclusions concerning design trend, design
aids, and design and analysis techniques. This section presents the resulting model equations for the
composite transducer without an added tuning inductor. The emphasis is on transducer designs which best
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meet the electric field constraints of the piezoelectric ceramic rings. Later, in Sec. 5.3, a parallel tuning
inductor is included in the analysis of the composite transducer.

Where possible, we attempt to show the derivations of these model equations. In some cases, the
complete derivations were too lengthy to be included without interrupting the flow of the discussion. In
those cases, a more complete derivation is presented in Appendix A.

5.2.1 Basic Forms for E/V,, and I/V,

The initial form for the input voltage (E) to the CSA required to achieve a given velocity of the
radiation loaded head device V,, i1s given by (sce Sec. A.1):

YA A
1 + iaC, (————H z ] 5.9

.

Zy + Z;

Using the simplified forms for the head and tail mass impedances presented in Sec. 5.1, Eq. (5.9) can be
rearranged (see Sec. A.2) into the following simpler form: '

E 1 .
— = rE - i(1 - mE)]. 5.10
v de33[ , ~ i Nl (5.10)
The quantity E_ is defined by
E, - (wzce - _1_], (5.11)
mr

Recall that C, was defined [Eq. (4.18)] as the sum of the compliances of the fiberglass spring and the
ceramic stack where the CSA is in the short-circuited configuration.

For many purposes, it is the magnitude of a complex quantity which is important. The magnitude of
E/V,, may be written as

E 1 202 2
E|. PEX + (1 - mEY. (5.12)
V, @Nd, \/ o * )
For convenience, define B, as
B, = r*E. + (1 - mE), (5.13)

Then, rewrite Eq. (5.12) as
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E

Va

1
= VB (5.14)
wNd, V!

A similar equation to the one above (derived in Sec. A.3) relates the input current to the CSA (I) and
the velocity of the radiating face (V,).

VA
g A (1 + _Z_’Z] 1+ ieC) __ZLT_] (5.15)
Ve 8xnl Zy Zy + Z;
It can be simplified in the following way:
A
g % [(1 - ml, ) +ir,], (5.16)
Vi 8l
where the quantity I, is defined as
I - (mﬁce’ . _1_), (5.17)
ey

The sum of the compliances of the fiberglass spring and the CSA in the open-circuited configuration is
denoted by C! [see also Eq. (4.2b) for C’].

p L

Cl=Cp+Cl=Cp+Sp— (5.18)
AC
Then, the magnitude of the complex quantity I/V,, is given by
A 3 S =
L= e P a - m (5.19)
V| 8zl
For convenience, define B, as
B, = r’L + (1 - mL), (5.20)
Then rewrite Eq. (5.18) as
A
R JB:. (5.21)
VH g331c ’

It is interesting to compare Eq. (5.14) for I E/V, | to Eq. (5.21) for | I/VH| . Notice that the quantities
B, and B, have exactly the same form for the frequency dependence. The only difference is that B,
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involves the short-circuit compliance C, [see Eq. (5.11)], whereas B, involves the open circuit compliance
C! [Eq. (5.17)]. All the frequency dependence for |I/VH| is contained in B,. On the other hand, note
that E/VH[ has the multiplier l/o. Therefore, if one fully characterizes either B, or B, as functions of
variables such as mq, my, and o, then one would know all about the frequency dependence of lI/VH
and a great deal about IE/VH| within the limitations set by use of the simplified models (Sec. 5.1).

5.2.2 Special Frequencies and Characteristics for E/V,, €/V,, and I/'V,

There exist special frequencies where B, and B, become especially simple. Thus, the expressions for
E/V,, e/Vy (e is the electric field), and 1/V, become especially simple. These special frequencies are
useful for the development of design aids. In this section, we will consider the characteristics of E/V,,
e/Vy, and 1/V, at these special frequencies. Some of the observations made here are not himited to
situations where the simple radiation model is applicable; these more generally applicable observations
will be pointed out as they are encountered.

5.2.2.1 In-air Resonance Frequencies - o, and o,

In this section, we will consider the characteristics of E/V,, &/Vy, and 1/V,; in air for some special
frequencies. Since the radiation impedance is effectively zero in air, the following observations are not
a function of the simple radiation model. Let ©, be the frequency where the quantity |E/VHI is a
minimum in air; that is, the in-air resonance frequency for | E/VH| . By setting r and x equal to zero (the
idealized in-air condition), one derives from Eq. (5.12) the following expression:

1 3
= 1 - E ), 5.22
N, J(@ - myE) (5.22)

E

Vyl

in-air

The minimum value of |E/VHl in air occurs when the quantity 1 - m,E, goes to zero. Let E_ be
the value of function E, which satisfies that condition. Then,

E =_—, (5.23)

Using Eq. (5.23) in Eq. (5.11) gives an expression for the angular frequency @, where the magnitude of
E/V, is minimized.

(_1_ s _1_], (5.24)

The corresponding equation to Eq. (5.22) for the in-air magnitude of I/Vy, is

A
= ¢ m . (5.25)

831,

ES
Va in-air

The magnitude of I/V,; is minimized when the quantity 1 - m,I, goes to zero. Let I, be the value of
function I, which satisfies that condition. Then,




32 Carson and Walden

1 =L (5.26)

W = 1 (_1_ + _1_] (5.27)

This resonant frequency with respect to current is also sometimes called the antiresonant frequency.

Note that these results predict infinite in-air velocities at o, and ®,. This unrealistic prediction occurs
because in the SGM the losses in the CSA are assumed to be zero, and in the above assumed head and
tail devices there are also no losses. In actual devices, there will be losses so that, although the velocities
may be large, they are never infinite.

5.2.2.1.1 Relation of the In-air Resonant I'requencies o, o, to the Coupling Coefficient K;; - As
was discussed in Sec. 4, transducer engineers arc sometimes interested in a commonly tabulated quantity
called the coupling coefficient, K;;. It was defined in Sec. 4 as
K2 = gssdss.
E
33

(4.24)

Recall that large values of K,, are associated with various goodness criteria.

K,; can be related to o, and o, as follows (sec Scc. A.4 for more detailed derivation). The ratio of

Egs. (5.24) and (5.27) forms an expression for o /oy, Since this quantity is squared, it must necessarily
be greater than zero.

SSN l :8m

- _C_e/ > 0. (5.28)
C,

This expression, plus the following three equations from other parts of this report:

C, = Sp—= + Cp, (4.18)
Ac
/ p L
Ce = 533 _A_ + CFs (5.18)

and
D E
S35 = S35~ 8330335 “4.4)

can be used to rewrite Eq. (5.28). (See Sec. A4)
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E L
o S3 x + Cp
"o ¢ >Q (5.29)
2 L
W,y S3l; — * CF
AC
then
2
.(_'o_n_ = 1 > 0
2 .
@y 1 - 833953 1 (5.30)
E
S33 1 + CFAL‘
SeL

Thus, substitution of the definition of K., will yield the desired relationship between the in-air resonant
frequencies and the coupling coefficient.

w
- >0.
w

m

1 - K, (5.31)

1
- CpA,
E
Limits can be placed on the value of the quantity under the radical sign by noticing that by definition Cp,

A, S5, and L are positive numbers. K., is squared and, therefore, positive. In order for the inequality
to be preserved in Eq. (5.31), it is necessary that

2 1
0<1- Ky <1.
- CpA, (5.32)
E
SyL
From examination of Eqs (5.31) and (5.32), it is clear that
®, < o, (5.33)

Recalling the definition of C, the CSA short-circuit compliance,

E
c - Sl (4.22)

4

Equation (5.31) could be expressed as
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w,

3 , .

" 1 - K2 1 (5.31a)
o

F

1 + —

In conclusion, we can make the following observations about the relationship between K,; and the
resonant frequencies. If K, is increased, o, /o, increases. This last observation suggests that increasing
o /o, should be accepted as a goodness criteria (0, /@, is often used in discussions of the "effective
coupling coefficient"). Note that decreasing C; also increases o, /o,. If increasing K, is accepted as a
goodness criteria, then decreasing C; should also be accepted as a goodness criteria. This suggests that
eliminating the fiberglass washer 1s good from the point of view of increasing the "effective coupling
coefficient." Said another way, increasing C; decreases the effective coupling coefficient. Recall (Sec.
4.3.2.1), however, that retention of a minimum FTR compliance was recommended to make the transducer
reproducible on a production basis.

5.2.2.1.2 In-Water Performance at o, and o, - If one examines the in~water performance at the in-
air resonance frequency e, it is found that [E/Vy| is proportional to the magnitude of the radiation
impedance |Z,| and that the magnitude of the voltage ‘E is proportional to the magnitude of the
radiation force | Fr| . These observations are independent of the form assumed for Z .

A derivation is presented in Sec. A.5 which shows that
|

—_ 1z, (5.34)
W, Ndzm,,

rm

Vi

W=W,

is the value of the radiation impedance at ® = @,. The above relationship between
was derived without making any assumptions about the

InEq. (5634),Z,
the magnitude of E/V,, and the magnitude of Z
form of the radiation impedance Z_.

m

According to Eq. (5.34), if o, is held fixed [e.g., by adjusting C, and/or m; in Eq. (5.24)] then the
bigger the head mass, m,, the better: that is, the bigger the head mass, the less voltage E required for
a given velocity V,,. Said another way, the bigger the head mass, the greater the source level for a given
voltage E on the CSA. This result was at first suprising in that it seemed to violate experience gained
using the sophisticated computerized models; namely, the idea that smaller head masses are always better.
This point will be cleared up in Secs. 5.2.2.6 and 5.2.2.6.2.1 where it is shown that although a larger head
mass improves the voltage to radiation velocity ratio, it also decreases a certain bandwidth flatness criteria.
Thus, in this example, the simple model is not in disagreement with experience, but is, in fact, helping
to provide further insight conceming observed trends.

Partly because of this, at first "strange" example in which "bigger head masses were better," this
example was chosen as the first candidate applications of the computer program SGM-A1 to be used to
"test" and "explore" the paper and pencil derived design aids and insights of Sec. 5. The SGM-Al
predictions are presented in Appendix B. Another reason for choosing this example as the first candidate
application of the computer program SGM-A1 was because there was essentially no doubt that the above
pencil and paper derivaton was correct and. thus, this example served to check the "new" computer
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program, SGM-Al. The SGM-Al predictions agrced with the above indicated pencil and paper
derivation. In addition, the SGM-A1 predictions indicated that the pencil and paper example in which
"bigger head masses were better" was not confined to some extremely narrow frequency band near o,
(more details are presented in Appendix B).

For future purposes, it is useful to examine further the requirements of Eq. (5.24) in order to hold o,
fixed as m,, is increased. Examination of Eq. (5.24) shows that one way to hold o, fixed is to decrease
m, as my is increased; another way is to dccrease C, as my, is increased. According to Eq. (4.18), C, =
C: + C, so one way to decreasc C, is to decrease the compliance of the FTR, C.. Once C; is reduced to
zero (no FTR), then C, could only be reduced by reducing C. According to Eq. (4.2a), C = SLL/A;
therefore, C could be reduced cither by incrcasing the ceramic ring area A, or reducing the length, L, of
the CSA. Since reducing L would incrcase the electric field on the ceramic rings, one would prefer to
increase A, Note that holding L fixed and increasing A, would increase the volume of the ceramic
material. Note also that none of the quantities m, L, or A are contained in Eq. (5.34) so changing these
quantities does not change |E/VH| at o = o,

Equation (5.34) can be re-arranged to display the relationship of the drive voltage to the magnitude
of the radiation force.

_ |Znl Vel
|E|w=w Gn-water) = (5.35)
mmNd33mH
Since the radiation force is given by F, =V, Z
|F,| = Vgl 12,1, (5.36)
we can see that
F
IElm=m Gn-water) = —2|A— . (5.37)
o, Nd,;m,

In Eq. (5.37), F,, 1s the value of F, at @ = ©,,. Equation (5.37) shows that at ® = ©,, when the transducer
1s operating in water, the magnitude of the drive voltage |E| is proportional to the magnitude of the
radiation force | F,| . (A similar derivation can be conducted with E and F, showing that E is proportional
by a complex constant to F.)

Analogous relationships can be derived for the in-water performance for operation at the in-air
resonance frequency (@ = ®,). These are derived in Sec. A.5. The resulting relationships are summarized
below.

A

¢
g331¢ wn mH

1

Vu

(5.38)

|Z,0
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AC lFI'nI

e m (5.38a)
8yl ,0,my

1] =

5.2.2.2 In-Water Phase Zero Crossing Frequency - o, (also ©,)

Another special case of interest is the frequency, w,,, such that the phase angle between E and V
is zero. When the phase angle between E and V|, is zero, the imaginary component of Eq. (5.10) goes
to zero. Let E , be the value of E, when the phase angle 1s zero. Then,

E = (5.39)

oa

1
m

From the definition of E_, [Eq. (5.11)], it can be seen that at the in-water phase zero crossing the angular
frequency must be given by

0= (L) (5.40)
Cim my
At o = o,,, one obtains
E -1 r (5.41)
#lomoy w,oNd;; m

Since in water m = my + x and if x 2 0 (scc below). one finds, as in the case of @, that for ® = @,
bigger m,, is better in the sense that less voltage E is required to achieve a given velocity V,;,. One reason
for interest in ®,, 1s that if r is small cnough, then the phase zero crossing frequency is not much different
than the in-water resonance frequency, o, for the quantity ‘E/’\/H . An expression will be derived for
®,, and it will be found that @ i1s a much more complicated function of C,, m,, and m, than that for o,
given by Eq. (5.40). For later purposes, also note that Eq. (5.40) may be written as

2 - L L. 1. 2 (5.42)

In general, the effective mass contributed by the radiation loading is greater than zero (although for
a given frequency within an array there may be positions of some elements where x < 0). For x > 0, note

that
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W, < @, (5.43)

as shown by comparison of Eqs. (5.24) and (5.40).

02 = i(i " L) > i( 1, _1_) - w3, (5.44)
my

Cimy my) C,\my+x

Similar results hold for I/V,,. In this case, there is a frequency, oy, such that the phase angle
between I and V,; is 90° (not 0° as in the case of E/V,). Note that for this case the real part of I/V; must
be zero. The corresponding equations for this case are shown as Eqs. (5.45), (5.46), (5.47), and (5.48).

Referring back to Eq. (5.16),

A
A S L (5.45)
Vy ome gyul, m
i%0
and
1
7 -1, (5.46)

% m

From the definition of [, [Eq. (5.17)], it can be seen that

0l = L (l " _I_J, (5.47)

<o, (5.48)

With some slight reinterpretation, the above results concerning ®,, and ©,, hold for a more general
frequency dependence for Z.

For the simple frequency dependence assumed for Z, one notes that
w C
[ON
90 _ Ze o n (5.49)
2 / 2
w,, C W),

Thus, the relation between /0, and coupling cocfficient, K,,, is the same as for o, ®,_. However, for
a more general frequency dependence, this may not be true.
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5.2.2.3 Velocity Control Frequencies - o, and o,

Another pair of special frequencies of interest are called the "velocity control" frequencies. These
frequencies are of interest because the applied voltage and the input current are proportional to the
velocity of the radiating face and independent of the radiation impedance. Furthermore, it will later be
shown (Sec. 5.3) that an inductor may be chosen to adjust one or the other of these velocity control
frequencies to any selected value.

The velocity control frequency for E/V,; occurs where E_ in Eq. (5.12) is zero.

E,=0. (5.50)

The corresponding frequency is obtained by substituting the condition above into Eq. (5.11) and solving
for the velocity control frequency w,,.

2 1
W, = . (5.51)
v Cmy
When the magnitude of E/V is evaluated at w,,, we obtain
£ -1 . (5.52)
Vy o, Qe Nd,,

From the above equation, it is apparent that not only is the velocity V, proportional to E and independent
of the radiation loading (i.e., independent of r and x), but for this special case of a mass-like head device,
the velocity is independent of m,.

A similar situation holds for |I/VH[, the current velocity control frequency. The equations
corresponding to Eqs. (5.50), (5.51), and (5.52) are shown here without derivation.

Iiv =0, (5.53)
2 1
Wy = =, (5.54)
C,m,
and
A
VL - (5.55)
Hl,-0 g33 [4

Thus, the relationship between o, /o, and coupling coefficient K,, is the same as for o /o,
[Eq. (5.31)]. This can be scen by taking the ratio of Egs. (5.51) and (5.54).
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2 2

O _ Co | O (5.56)
2 / 2’

('OEV Ce m

With some slight reinterpretation, the above results concemning ©,, and ®,;, hold for a more general
frequency dependence for Z..

5.2.2.4 Characterization of B, and B,

At the end of Sec. 5.2.1, it was noted that if one characterizes either B, or B, [see Eqgs. (5.13) and
(5.20)], then one would know all about the frequency dependence of the quantity I/VHl and a great deal
about the frequency dependence of the quantities |E/VH| and |8/VH| (where € 1s the electric field on
the CSA). In fact, it turns out that for many practical values of my, and m, the frequency dependence
of IE/VH’ and/or |e/V,| is ualitatively very similar to that of B,. Full characterization of the
frequency dependence of'} E/VH?; 1.e., B,, is a more difficult problem, so characterization of l JAS | s le.,
B,, was considered first.

5.2.2.4.1 Bandwidth Characterization of ’I/VH| using Frequency o, (Resonance Frequency for
|I/VH|) to Minimize B, - The quantity B, can be characterized (see Sec. A.6) by finding the equation
for the frequency o, which minimizes (B,)"?. Since all the frequency dependence of | I/VH| is contained
in B,, o, is also the resonance frequency of | v, |. One forms the partial derivative 8(B,)"*/8w and sets
this partial derivative equal to zero. The solution of that equation yields

m_, 1]

1
clr*+m* mp

-

W (5.57)

In the case of |I/V,| (as opposed to |E/V, |, |&/V,| and B)), the frequency which minimizes (B,)",
®,, is actually the resonance frequency for | I/VH| . This is true because, unlike |E/VH | , all the frequency

dependence for |I/VH| is contained in B,. In terms of the resonance frequency, ®;, one may write (see
Sec. A.7) |INH[ as shown below.

A ”n 2
= — \J(r2 + mA? - o)) (C)F r —— (5.58)

831, r: + m?

1
Va
At ® = 0,, one obtains

Vu

A 2
S — (5.59)
w=u, g33 ¢ r + m

As with certain other special cases noted above, Eq. (5.59) leads to what may at first seem like a strange
;onclusion; namely, at least for some frequency region around the frequency o,,, if A /1, is held fixed,
then bigger head masses lead to a lower current for a given velocity V, and, thus, for a given source level
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per ampere. Of course, as m is changed, either C. or m; or both (r is assumed fixed) must be changed
to satisfy the requirements of Eq. (5.57) to maintain o, constant. For m > r, then as m increases, m or
C! must be decreased. The compliance C, could be decreased without changing L/A, by reducing the
thickness of the FTR (that is, by reducing C;). However, once C. = 0 (i.e.,, no FTR), then one must
consider the reduction in the value of L/A_ necessary to further reduce C.; even when this is done, one
finds that the limiting value of II/VH | , at ® = o; with o, fixed, is zero.

The bandwidth characteristics of |I/V H| were investigated further by_fixing o, and considering a
bandwidth defined at two frequency band end-points, a lower frequency ©, < o, and an upper frequency
oy > 0;. At e, the quantity TI/VH | was forced to be some fixed multiple, G/, of the value at resonance.

8 -6/l.L| (5.60)
Hly=a H 0=
where
Gl/, > 1, (5.61)
Similarly, at o, the quantity II/VH| was constrained as shown below.
Vi -6,l.L| (5.62)
H w=wy H W=w;
where
Gl/J > 1. (5.63)

It can be shown (Sec. A.8) that the bandwidth, defined as o, - @, for a fixed value of ©,, increases
as the head mass m, decreases. That is, as far as this bandwidth criteria is concerned, smaller head
masses are better. This agrees with previous experience using more sophisticated models.

5.2.2.4.2 Frequency o, to Minimize B, - The quantity B, as it relates to [E/VH| 1s characterized
by finding the equation for the frequency o, which minimizes (B,)"”. After the obvious change of
variables, the steps in deriving o, are the same as those for deriving ®; {(Sec. A.6). One forms the partial
derivative 8(B,)"*/(Sw), and sets this partial derivative equal to zero. The solution of this equation for

o,; yields

ol =L (_”_’__ . _1_), (5.64)

It is important to keep in mind that ®, is not the resonance frequency for lE/VH| or |8/VH| (see o,
discussion in Sec. 5.2.2.5). Even though o, is not the resonance frequency for |E/V, |, it is shown in
Secs. 5.2.2.6.1 and A.12 that the quantity o, can be used to provide some insight concerning the
frequency characterization of |E/V,j and some insight into corresponding design trends as such things
as m, my, and C, are varied.
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For convenience, it is useful to gather terms together and define a quantity M, as

M, = _m __1__, (5.65)

rr+m®  mg

so that Eq. (5.64) can be written in the shorter form
1
ei ‘C‘,: L (5.66)

The magnitude of E/V can be expressed (Sec. A. 9) in the following form:

El._1 2+ mio? - OIfCE e T (5.67)
VH (.ONd33 r2 + m2
At the frequency © = o, the magnitude of | EfVH| reduced to
2
E -1 I - (5.68)
Vu w=o, W Ndyy N r* + m

Equation (5.67) is most useful when both o, and C, are fixed. However, if C, is allowed to vary, it
is convenient to remove the apparcnt dependence upon C, through the substitution of Eq. (5.66) in
Eq. (5.67) to yield

\J(r2 + n12)((,32 - w2>2 ..1_ M12 P . (5.69)

ei
4 2 2
+
W, r m

£
Vy wNd,,

The electric field € on the ceramic is given by

€ = (5.70)

E
1(,‘
where the quantity 1, is the length of a ceramic ring. The various equations for €/V, are almost the same
as those for E/V,,. The only difference is that in the multiplier (1/@Nd,;), N is replaced by L where the

quantity L = N1_ is the total length of the CSA. For instance, the equations for &/V, corresponding to
Eqgs. (5.10) and (5.14) for E/V,, are as follows:

€ 1 : . |
— = rE - il - mE)], 5.71
v, " el [’E, - i( Dl (5.71)
and
€ 1
= | = /B. . - (5.72)
Vyl oldy, '

Similarly, Eqs. (5.74), (5.68), and (5.69) are related to Eqs. (5.73), (5.74), and (5.73a) presented below.
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" 2
B 1 (r2 + nl2)(w2 _ (.O;i)z Ce2 + r , (5.73)
Vy wld,, r? +m?
€ 1 2 2 22 1 2 r?
—| =  + mo - oy —M + ——, (5.73a)
Vyl wld, ¢ r2 o+ m?
and
3 S L iy (5.74)
Vi Wuldy \ 1 + m?

V=W g

Since L (the length of the CSA) is a more fundamental design constraint than N (the number of rings
in the CSA), the characterization of the frequency dependence implications of B, is more instructive in
terms of &/V,, instead of E/V,,. This characterization of B, is indicated below and, for more detailed
elements of the derivation, see Sec. A.11.

Once again, we notice that somewhat contrary to general experience, Eq. (5.74) suggests that the
larger head mass is an advantage. That is. for some frequency region around the frequency w,, bigger
head masses lead to a lower electric field for a given velocity V,, and, thus, for a given source level. On
the other hand, as we shall see, when the bandwidth characteristics of s/VHl and IE/VH| are taken into
consideration, it is clear that the larger head mass also decreases the bandwidth.

It is interesting to form the ratio 0,/o, from Eqs. (5.57) and (5.64). It can be seen that

o

2
o G _ o (5.75)

/
w, C

B

IO

Thus, the relation between o,/@, and coupling coefficient K,; is the same as that identified for o /o,
[Eq. (5.32)].

5.2.2.5 In-water Resonance Frequency for |E/V" and Ia/V},] -0

e

To derive an expression for the in-water resonance frequency (w,) for the quantities |E/VHl and
|8/VH | , one forms the partial derivative (8 I E/V, I )dw), sets this partial derivative equal to zero, and
solves for w,. (See Sec. A.10).

s 1 | (m o+ my) ‘ (5.76)

e}
Conl mia? + m?)

As previously stated, w©,, the in-water rcsonant frequency for the quantities |E/VH| or |8/VHi is
different from .. However, it turns out that for many practical values of the design parameters such as
I, X, my, and m,, there is close correspondence between | E/VH| expressed as a function of the in-water
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resonant frequency o, and | E/VH| expressed as a function of the frequency ©, which minimizes B,. To
help reveal this relation, Eq. (5.76) may be put in the form

‘02 - w; 1+ M;’, (5.77)

with M, given by

m
M, = T . (5.78)
2 A 2
r<c+m° + mmT

v

Using Eqgs. (5.24) and (5.77), 1t turns out that IE/VH‘ may be rewritten (see Sec. A.10) in terms of @,
as

2
E 1 ) ) ( ” 3 2)2 M, r? (5.79)
— | = r+m“co“\/1+M~,—(o —_— ——— .
Vy o Nd,, ( ) - ¢ W e m
Suppose the design variables are such that the condition
M, << 1 (5.80)

is satisfied; then ©, and o, are approximately the same frequency [see Eq. (5.77)], and Eqgs. (5.69) and
(5.79) are essentially the same equation. As is explained in Secs. 5.2.2.6.1 and A.12, such conditions for
which @, is "sufficiently close” to @, form the basis for a useful approximation to study the bandwidth
characteristics of lE/VH | and !eNHT )

There are certainly values of design variables for which Eq. (5.80) is not true and, thus, @, would not
be "close to" ®,. For example, suppose that m could be made as close to zero as desired. Then the
conditions of Eq. (5.80) would not be met (for large enough values of m;), and the design trends
associated with fixed o, would not then be expected to hold for fixed o, Numerical tests were consistent
with this assertion. For example, for very small m and fixed @,, it was found that larger m required
longer CSA's in order to meet a given electric field requirement at ..

Based on some of the other special cases considered above (e.g., E/VH| at ® = @, or ® = ©,), one
would expect that as m,, is made larger and larger with © = o©,, then |E/VH as given by Eq. (5.79)
would approach zero; that is, the voltage required for a given velocity or source level would decrease as
m,, increases. With the help of one application of 1'Hospital's rule (Sec. A.11), one can indeed show for
a given tail mass that at © = o, then |[E/V,| approaches zero as my approaches infinity. Also, an
alternate direct proof is discussed in Sec. 5.2.2.6.2.1.2. '

As just indicated, for this example of in-water performance at ©=0, and with a fixed value of ©,, the
pencil and paper derivation of the proof that "bigger head masses are better” is more complicated than
for previously considered examples. Because of this greater complexity and because of the importance
of the in-water resonance frequency o, this @=w, example was chosen as the second candidate
applications of the computer program SGM-A1 to be used to "test" and "explore" the paper and pencil
derived design aids and insights. In addition, the SGM-A1 predictions again indicated that pencil and
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paper example in which bigger head masses were better was not confined to some extremely narrow
frequency band (see Appendix B, for more details).

The ratio ©,/w, is obtained from Eqs. (3.75) and (5.77).

2 2 2
w; W} C s ®
— ==+ MYy =1+ MY = (1 MY~ (5.81)
we mei e (")m

In this case, we note that if Eq. (5.80) is satisfied; i.e., if M, « 1, then the relation between o/0, and
coupling coefficients K, is nearly the same as for 0, /o, [Eq. (5.30)]. If this condition on M, does not
hold, then the effective coupling coefficient as represented by o,/o, will be less than that represented by
0, /0.

If m > 0 (that is, x > 0) and r # 0, then ©, < ©,,. To see this, start with a form equivalent to
Eq. (5.76).

R S SR (5.82)
Con| P2+ m® 2 mp(r® + m?

LIS

w

but
? = = < 2mﬁ - 2 s (5.83)
mfr< +m°) mpom-  mmgp
and
_:,l_ <L, (5.84)
r*+m* m®

Thus, using Eq. (5.42) for o,

L2 G2 (5.85)

w, < — = eo
me ﬂl; mmg

oty
jum—y
o
—
>

Examination of Eqs. (3.77) and (5.78) (for r = 0) shows that o, < ®, [Eq. (5.86)].
W.< .. (5.86)

ei e

For the case where r = 0, one may summarize the relative magnitudes for o, ®,, and o,, as

0, <0, <o, (5.87)

By comparing Eqs. (5.40), (5.61), and (5.76), one obscrves that as r approaches zero (that is, for small
enough values of r), then o, ©,, and o_, arc ncarly the same frequency. This point is summarized as:

e 2> €0

ifr - 0, then o, > 0, > 0, ,and as r — 0.
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®, 0, =w,. (5.88)

5.2.2.6 Bandwidth Characterization of |E/V,, and |8/V"l

It turns out that bandwidth characterization of ]E/VH| and !s/VH| is more difficult than that of
|I/VH| (Sec. 5.2.2.4.1) because of the additional factor 1/o presents in the frequency dependency of
|E/VH| and !s/VHl (the last paragraph of Sec. 5.2.1). For this reason, it was found expedient and
useful to consider certain approximations and/or special cases. The first consideration (Sec. 5.2.2.6.1)
was based on an approximation involving ®,. The second consideration (Sec. 5.2.2.6.2) was based on
two special cases of a more exact approach (involving ®,) which we call the Fixed End-Points Analysis
(FEPA). The FEPA is not only more exact but it also strongly suggests a very useful TDGS - see also
Secs. 2,3 and 5.2.2.6.2).

5226.1 Approximate Characterization of ]E/VHI and Is/VH| Using ®, - One useful
approximation was suggested by the discussion associated with Eqs. (5.77), (5.79), and (5.80) for
conditions such that o is sufficiently "close" to the resonance frequency, o, for |E/Vy| and |&/Vyi;
then, a bandwidth analysis in which o is fixed and similar to that presented in Secs. 5.2.2.4.1 and A8

for fI/VH l , 1s instructive and useful.

As a first step, we must be more precise about the conditions to be considered under which o, is
sufficiently close to o, Rearrange Eq. (5.78) as follows:

M o= — T
2 prap? ) (5.78a)
— N

My

Suppose relatively large tail masses, m, are being considered such that

"M e, (5.802)
mT
that is,
my>> 1M (5.80b)
m
then
M oL, (5.78b)
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If
r
— << 1; (5.78¢)
m
ie., if
r<<m, (5.78d)

then Eq. (5.80) holds (i.e., M, << 1).

Note also that Eq. (5.80b) may be written as

P2
mp>>— +m (5.80¢)
m
which implies
mT >>m. (5.80d)
Thus, the conditions under which o, is sufficiently close to o, shall be taken to mean
Condition A:
2 2
my >> rm o om. (5.80¢)
m
Condition B:
r<<m, (5.78d)

In other words, we are considering large tail mass, m, compared to the quantity m. Recall m = m, + x
[Eq. (5.7)] and that typically x > 0. Thus, Condition A [Eq. (5.80¢)] typically is equivalent to considering
large tail masses, m,, compared to the head mass m,. Practical experience indicates that the usual values
of r attainable versus the limits on making m,, small; for example, due to flexing, radiating head masses
mean that Condition B [Eq. (5.78d)] is a practical reality. Condition A [Eq. (5.80¢)] is also achievable
and 1s known to often be the outcome of a practical transducer design exercise.

When o, is sufficiently close to the actual resonance frequency o, for [E/VH| and |8/VH | , then it
makes some sense to consider conditions analogous those in Eqgs. (5.60), (5.61), (5.62), and (5.63).
Consider o, to be fixed and a lower frequency ©, < o, and an upper frequency o, > o,. At these two
frequency band end-points, assume that the magnitude of the ISNH | is forced to satisfy the following:

€ €
€ -6 |5 5.89
v, Ly (5.89)

W=y W=0,

and
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B (5.90)

V=0,

€
= =G
VH UH

W=0y

where G, and G, are constants. Since o, is close to o, (by assumption), it makes some sense to consider
the spectal values of @, and w for which G, and G also satisfy the following:

G, > 1. (5.91)

Gy > 1. (5.92)

[Equations (5.91) and (5.92) would always be true if we were considering the resonance angular
frequency, o, instead of ©,.] For those limited conditions under which o, is sufficiently close to o, and
Egs. (5.9lf and (5.92) hold, one can characterize a bandwidth as o, - o, for fixed o, much as was done
for |I/VH in Secs. 5.2.2.4.1 and A 8.

The details of this bandwidth characterization of 'S/VH | and | E/VH| are derived in Sec. A.12,
Some of the main results [at least for the limited conditions under which Eqs. (5.91) and (5.92) are valid]
are as follows:

Larger tail masses, m, increase the bandwidth, o - ®,, and there is no penalty on the electric
field if the mass of the head, m,, is held fixed. However, with m, held fixed and as m; is
increased, one must decrease the compliance, C,, to hold w, fixed. This can be done up to a
point by decreasing C; (using a thinner FTR). If further compliance reduction is needed, it should
be accomplished using a larger ceramic ring area, A_.

Smaller head masses, m,;, increase the bandwidth as long as the condition m > r is met.
However, there is an electric ficld penalty as the value of my, is reduced. One way to avoid this
electric field penalty is to increase the length, L, of the CSA and at the same time, increase the
area A_ so as to hold the ratio L/A_ constant. With this adjustment, the real penalty is the increase
in L which in many designs problems tends to quickly violate the practical constraints upon the
length of the transducer design.

5.2.2.6.2 Fixed End Point Analysis - In each of the above mentioned bandwidth analyses, a certain
chosen frequency was held fixed. In the following analysis, the frequencies ®, and o at the end points
of the frequency band are held fixed and the required values of ] s/VH| at o, and o are also held fixed.
For convenience, this analysis will be referred to as a FEPA. Within the limits of the augmented SGM,
the FEPA is exact; that is, no additional approximations are made. Also, full consideration of the fixed
end-points analysis shows that all the necessary steps for a new and very useful TDGS - see also Secs.
2 and 3) are suggested by the FEPA. The new TDGS could and would be completely independent of the
SGM. The new TDGS could and should be executed using the appropriate parts (transducer element
model, array acoustic radiation interaction model, etc.) of the CMM (Composite Math Model - see
Sec. 2) applicable to a given array design task. The essential idea of this independence from the SGM
is illustrated in Sec. B.4)
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In the FEPA, the resonance frequency, o,, was constrained to be between o, and o as follows:

0w, < 0, < oy, (5.93)
In certain circumstances, one allowed
0, S W, (5.932)
or
W, S Wy, (5.93b)

Because the resonance frequency was so constrained [Eq. (5.93)], it was assumed that achieving a given
source level/e at the edges of the band (that is, at ©, and w;) was a limiting design constraint.

This FEPA not only automatically found a best location for ©,, but provided insight into a method
to arrive at the best choices for m; and my. To help ensure that w, was, in fact, between ©, and o, the
slope constraints shown as Egs. (5.94) and (5.95) were applied.

5l_€
a2 (5.94)
Vy <0
0w W=y
and
51_E
(5.95)
.__V_H <Q,
0w w=w
1

For a given transducer design problem. the designer would determine the maximum piezoelectric
ceramic electric field, say, g,,,,, which the designer wished to allow. The designer would also determine
the velocity magnitude of the radiating face needed at © = w,, say IVH|m:mL, and at ©® = @, say

VH|0=O)U, to achieve the desired sound level in the water. This would determine fixed values for
‘a/VHImsz and fVH | o=, 35 follows:
€
T/e_ = _V__max , (5.96)
H W=Wy I H'w=0)1_
and
€
i e (5.97)
Hloeo,  Velomo,

Recall Eq. (5.72).
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€ 1
= | = B
L
Vy wdy,L ‘/—_
Use Eq. (5.72) to write
€ 1
— = B (5.98)
iL s
Vi o=0, @ d5L
where B, is B, [see Eq. (5.13)] with © = w,.
€ =
Lw,_d%-ﬁ~ = B, . (5.99)
Hi,-
W=wy
Let k, be a constant defined as
k, = 0, di— (5.100)
H W=wy
Use Eq. (5.100) to rewrite Eq. (5.99) as
L%; =B, . (5.101)
Similarly, define a constant k as
ky = 0y dy -V'i , (5.102)
H 0=wy
and thus,
Lk, = By, (5.103)

52.2.6.2.1 Use of An Equation for C, for Fixed End Points Constraints to Study Bandwidth
Characteristics - In terms of the above described fixed end-points constraints, one may derive the
following equation for the composite compliance C, (see Sec. A.13):

c . b, (£]2 & (5.104)




50

Carson and Walden

where

and o is defined as

4 4
a, = (r* + mH(e; - *oy),

Canl

L

6 = —
kU

(5.105)

(5.106)

(5.107)

(5.108)

In principle, Eq. (5.104) for C, could be used to study the bandwidth characteristics of |8NH| (and
also |E/V,|) in general. However, only two special cases were analyzed. These two special cases are

discussed next.

52.2.6.2.1.1 Special Case I (oo = 1) - Special Case 1 uses the value of C, from Eq. (5.104) for the
case where a = 1 in Eq. (5.108). For o= 1, note the following: Use Eqs. (5.100), (5.102), and (5.108)

to write

But, with o = 1, we obtain

Recall that at these end points (i.e., at ©, and ©). we have sct € = g ,..

W dy—

o = kL = " oL
ky
d

Wy 33—
H W=y

€ _Wrle

V vV
Hly=0 UlI"H W=,

(5.109)

(5.110)

Therefore, we conclude that
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|VH| - Y IVHI . (5.111)
Wy

W=ey w=0y

Since ©, < @, we note that for o = | (that is, Special Case 1), we have

|VH| < |VH| . (5.111a)
O)—O.)L 0)—0)U
and
sl€
5.95
V, <o (5.95)
Sw

w=uy

then the above discussion for oo = I may be illustrated as shown in Fig. 5-1.

le/VBlm=0L le/VHlm=wu

le/VHl

—————————

L e = WOLOU wu

W

Fig. 5-1 — General shape of IS/VH! versus @ for Case 1 (o = 1) of the FEPA
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For a = 1, one obtains the following equation for C, (see Sec. A.14):

C = 2 ( n +—1-J. (5.1042)
)

Co(eprep\rt e m My
Using M, from Eq. (5.65),
m 1
Ml = ——’,——-———5 + —y (5.65)
re+m my
one may write
2 =
C, = —2‘_—;M1~ (5.104b)
Recall Eq. (5.66).
AR Y) (5.66)
Ce

Comparing Egs. (5.104a) and (5.66), one concludes that for Special Case 1 (ie., o = 1), the o, is
constrained as follows:

2 _ WLt oy (5.112)
el 2 N

For the fixed end points constraints with o = 1, we sce that o is a fixed value given by Eq. (5.112).

Next, we determine for o = | the conditions which are required to satisfy Eq. (5.93); that is,

w; < 0, < Wy, (5.93)

From Eq. (5.112) above, we find (see Sec. A.13) that

0, <0, < 6. (5.113)
Recall Eq. (5.77).

coz = wi,. m (5.77)

Thus, we note that @, > o and write

w; <0, <0, (5.114)

Thus, the left half of Eq. (5.93) is automatically satisfied for o = 1; that is,
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W, < 0,.

(5.93a)

From the definition of ®, as the resonance frequency for [s/VHI (and also |E/VHf), we know that

o, < oy if and only if Eq. (5.95) holds; that is, if and only if

5lLE
Vy -0
1% W=y
We also know that o, = @ if and only 1f
515
Vy -0
06 W=y

This new information may be illustrated by adding to Fig. 5-1 to produce Fig. 5-2.

(5.95)

(5.952)

(e (slope =0)

le/VHl

e~
e,
~
~

X

- (e (slope =0)

" —
T ——
-

e e e e e ————

e = e e s o s e e e v

L Wei

g
&

)

Fig. 5-2 — Relation of slope, ., and "flatness” for Case 1 (¢ = 1) of the FEPA
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From this information, we see that the best one could do to flatten the frequency response of |8/VH |
in this fixed end points approach with a = 1, is to determine how to change m; and/or m to try to make

W, = 0y, (5.115)

e

Reviewing at this point, we have the following situation. We have found that o is fixed for Special
Case 1 and given by

2 + 2
P e (5.112)
ei 2 '

We know that the best thing we can do to flatten the frequency response is to try to move o, up and, if
possible, move it up so much that

0, = 0y (5.115)

We also know that
@, = 0, 1+M], (.77

where [this appears as Eq. (A.10.5) in Sec. A.10]

]

2 r
M2 = .
r2 o+ m?\f
m + | ———
my

Thus, in general, we observe that increasing M3 will move ®, up relative to the fixed w,. From
Eq. (A.10.5) we observe, in general, that we can increase M? by increasing m, and/or decreasing m.
Thus, a general conclusion for the o = 1 case is that to flatten the frequency response, one should increase
m; and decrease m (i.e., decrease m) until @, = o or, failing that, until some practical limits are reached
in increasing m, and decreasing m,,.

One can be more specific concerning practical limits for m and m. by proceeding as follows. Using
Egs. (5.115) and (5.112) in Eq. (5.77) we write

'*:2(0—(]4 -1+ M2, (5.116)
. |

or

L)

0 - (5.116a)
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or
2 2
M, = -~ -1,
i"“ - (5.116b)
2
Wy
For convenience, let
2 2
bu = 2 -1 (5.117)
.EJ_{‘_ + 1
2
Wy

Note that b, > 0 since © /o, < | and, therefore, since M, > 0, Eq. (5.116b) has real number solutions

Write
M, = b,. (5.116¢)
Equation (A.10.5) for M;:
Me - r?
m + rem
My
)
r
=p
2+ m? 4> (5.116d)
m + e——.
My
or
rt o+ m?
r=blm+ (5.116e)
0 s
ny
thus,
__1- - (r - mbﬂ)

A (5.1161)
my  br? + m?
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Since 1/m; 2 0, we require

r-mb; 20, (5.118)
or
I by (5.1182a)
m
or using the definition of b, [Eq. (5.117)],
I > __2___ ’ -1
m 2 ' (5.118b)
_.__;‘_ + 1
Wy

For a very narrow band design, o, would be only slightly larger than o, and in the limit of ®;, = @, one
finds

Lo, (5.118¢)
m

In the usual case, this is always true. Thus, in general, for a narrow band design, there might be many
combinations of 1/m; and m which would satisfy Eq. (5.116f) and, thus, many ways to flatten the
frequency response by making o, = @y,.

For a very wide band design where o is much larger than ©,, the limiting case from Eq. (5.118b)
is

L >3 =173, (5.1184)

m

In practical problems, r cannot be made large enough and m cannot be made small enough to satisfy
Eq. (5.121d). Thus, for large bandwidths, one concludes (for Special Case 1, oo = 1) that the best one
could do is make m; as large as possible and my as small as possible, and even then 0, < 0, and we
would not have achieved the flattest band where o, = 0.

One more special bandwidth will be considered between these last two limiting cases of a very narrow
and a very large bandwidth. Traditionally, there has been an interest in the half power points in the
bandwidth. Since for a = 1 we now know the best we can do is make o, = o, let us assume that this
has been done and reinterpret @, as the lower half power frequency relative to the resonance frequency
o, = oy. In general, the acoustic power P is given by

P =y |2R. (5.119)

Recall for our special simplifying radiation assumptions
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Thus,

wr,

P = |Vyfor.

Let P, be P for © = @, and P, be P for 0 = o, = 0.

We want

L
Using Eq. (5.119a) gives
IVH l;wb W,r
However, for o. = 1 (Special Case 1),
Valyeo, =

et
Wy

1|V
2

vl
|a
.
H w=0, 4

L% .

W=y

Since now we have o, = o, Eq. (5.120a) may be written as

or

or

Use of Eq. (5.120d) in Eq. (5.118b) gives

wL =
e

1. e
Wby 00

[NoR I

= 0,793,

(5.5)

(5.119a)

(5.120)

(5.120a)

(5.111)

(5.120b)

(5.120¢)

(5.120d)
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r 2 ?
ol T | 1, (5.118¢)
il + 1
2
L o711, (5.118f)
m

It turns out that, in practice, even this seemingly modest ratio of r/m is usually not achievable. To carry
the example a little farther, suppose Eq. (5.118f) were just barely achievable; that is, suppose

L - o711, (5.118g)
m

Then, according to Eqs. (5.118) and (5.116f), one required m; = co; that 1s,

1 .o, (5.116g)
and, of course, from Eq. (5.118g),
1 =—1 = 1.406r. (5.118h)
711

In summary, for Special Case 1 (a = 1), we have illustrated the following design trend:

For flatter frequency response of ]z»:/\/H | and | E/Vy | for the usual situation of desiring
the largest possible bandwidth, one ends up choosing the largest practical tail mass, m,
and the smallest practical head mass, m,;. This happens because of the physical limits of
increasing the radiation resistance R = or and decreasing the quantity m = m,, + x.

However, we also have an example where for narrow band designs, equal flatness could be achieved
with a family of m; and m,, pairs.

Next (for Special Case 1), we examine the requircments on the length of the CSA, L, in order to
always operate at the chosen field limit of € = ¢, at the end points of the frequency band. For o =1,
we found that

. , (5.110)
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Therefore, one may use the equation for | e/Vy | at either end of the frequency band to determine the
required value of L to satisfy both end point conditions. If we choose the @, end point, then one suitable
equation is (see Sec. A.16)

2 2
kg L? = (r2 smy " ~ 1 b,22 PR A . (5.121)
rPem®  my rt + m?
where b?, is defined as
2 2 ¥
by = | v | (5.122)
0y + 0]
Note that since @, < @,

The situation versus the mass of the tail, m, is very straightforward; namely, the larger the m, the shorter
the length of CSA, L, needed to meet the field constraint of € = €_,,. Since large m; also was found to
flatten the frequency response, we see that large tail masses have no length penalty and, in fact, have an
advantage. There seems to be no exception to the rule that the larger m, the better.

The situation is not as simple concerning m. One may observe from Eq. (5.124) that for 1/m, = 0,
then for large enough m, L increases as m increases. So, we know that for large enough m and m, # oo,
the slope of kiL* must be positive. Onc may show (sec Scc. A.16) that

8kIL? 2, )
18kL° (b3 - 1) + Lre 2p2, (5.123)
2 om r2 o+ m? my my

where

o -1<0, (5.124)

For m = 0, the slope starts out positive. We also note, as before, that for large enough m, the slope
must be positive. What happens in between these extremes? Note that for 1/m, = 0 (m, = o), that since
b2, - 1 <0, the slope is negative. Thus, for the special case of m, = o, larger m means smaller L. This
is a somewhat unexpected result and is similar to other findings where large head masses seem to require
a lower field. Suppose next that

<<, (5.125)
My
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(‘nuti # 0).

my

Then, as long as Eq. (5.125) holds, we have the approximation

1 Ok/L . mr* (b,z ~ 1) L (5.1232)

2 dw re o+ n12 my

For small enough m, the slope is positive and then as m increases [if we don't violate Eq. (5.125)], the
slope would become zero and then become negative. In other words, we would find a relative maximum
for L. However, as m continues to increase, we would eventually have to violate Eq. (5.125), at which
point we know that for sufficiently large m, the slope must again become positive. It, therefore, appears
that under certain conditions, one might have the situation illustrated in Fig. 5-3.

Equation (5.123a) also shows directly that for m; = oo, the slope would always be negative
because b, - 1 < 0.

L relative max

/

AN

L relative min

Fig. 5-3 — One possible relation of L (total length of the CSA) as a tunction of m for Case 1 (@ = 1) of the FEPA
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For Special Case 1 (i.e., for o = 1), the equation for C, is the same as that found in Sec. 5.2.2.6.1 for
o, fixed; thus, the conclusions concerning C, are the same.

5.2.2.6.2.1.2 Special Case 2 [see Eq. (5.126) below] - Before beginning the discussion of Special
Case 2, it is noted that Special Case 2 was chosen as the third candidate application of the computer
program SGM-A1 to be used to "test" and "explore" the pencil and paper derived design aids and insights
of Sec. 5. The SGM-A1 predictions and associated observations are presented in Appendix B. The reader
may find it useful to consult this Appendix B third candidate application in conjunction with studying
Special Case 2.

Special Case 2 was chosen as the third candidate application of the computer program SGM-A1 for
the following three reasons:

1. The special importance of the FEPA approach (also see Sec. 5.2.2.6.2.2),

2. The relative complexity of the paper and pencil derived design aids and insights for the FEPA,

3. The relation of this third candidate application (Special Case 2 of the FEPA approach) to the
second candidate application (bigger head masses are better performance at w=w, with a fixed

value of @)

The general results of this third candidate application of the computer program SGM-A1 were the
same as for the first two applications; namely,

1. The corresponding derivations and design insights of Sec. 5 were fully consistent with subject
computer predictions; this provided a strong indication that there were no significant errors in the

associated pencil and paper derivations of Sec. 3.

2. The predictions provided additional clarity and understanding concerning the "design aid insights"
as originally developed from the pencil and paper derivations of Sec. 5.

The defining condition for Special Case 2 is the following:

(5.126)

€ €
V V
H (AEIN H W=y

In other words, the motion per electric field (or per volt) is the same at the end points (0, and ©;) of the
frequency band. Using Eq. (5.108) for a, Eq. (5.100) for k, and Eq. (5.102) for ky,, one obtains

€
A
A R (5.109)
ky oydy €
VH
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Because of Eq. (5.126), one obtains for Special Case 2

“r (5.127)

For o = o, /o, one obtains the following equation for C, (see Sec. A.17):

2 2
C, = 1 remo, 2_m + 1 . (5.104¢)
0,0y m2 My r? o+ m?
See Eq. (A.10.43) (printed here for your convenience).
M: = __1_ + ?m + 1 .
mr  mr*+m® ot em?
Note that C, may be written
1
C, = M,. (5.104d)
W0y
From Eq. (A.10.40) we have:
wi = —LMe.
Ce

Comparing Eqgs. (5.104d) and (A.10.40), we conclude that for Special Case 2, we may identify o, as
(5.128)

w ot

W, = (,OL(.OU.

Thus, for Special Case 2 (or equivalently for o = ©,/ ®) in this FEPA, the resonance frequency o, is
a fixed value given by Eq. (5.128).

Notice that since ©, < @, then ©] < o, ©, < of, and, thus, for o = ©,/ ®,, we automatically
satisfy the requirements of Eq. (5.93).

W, <0, <o, (5.93)

‘The above information for Special Case 2 may be illustrated as shown in Fig. 5-4.

The best that can be done to flatten the {requency response is to adjust m and m; so as to maximize
the value of lz/VH 1 o= From Eq. (5.72), one may write

LI (5.129)

le?
w,Ld,,

€
|4
Hy=q,
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le/Vulw=wL le/VHlow=mwu

/ \

le/Vul -~

e —— e ——

|
|
|
|
|
Fe

(oL We = \/ WLWuU Wu

W

Fig. 5-4 — General shape of |e/Vy]| versus @ for Case 2 (& = © /0y) of the FEPA

where B, is the value of B, for w = w,. Consider first the partial derivative of |ENH|w=m with respect
to m,. This is equivalent to considering 8B,, /0m;. One finds (see Sec. A.18)

6B1e
=2F F _, (5.130)
amT el” e2
where
2 2 2 2 2
F, = \l(u + m] +r? - (_._._..._r Tme, m]’ (5.131)
m, m;,

and
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(L . m ]
m 2 2
F, = -—151 - r TR : (5.132)
M 1 m Y r
—— +
My r?+m? r* + m??|

Examination of Eqs. (5.131) and (5.132) shows that for all values of m and mT

F,>0, (5.131a)
and

F,>0. (5.132a)
Thus,

221; >0, (5.130a)

Therefore, we conclude that as m, increases, |3Nn|m:m increases which means that, once again,
. . < .
increasing m., flattens the frequency responsc of |8NH| (and IE/VH | ). The best possible value would

be m; = oo,

Next, the partial derivative of |8/VH | o= With respect to m was considered. Although a general
expression was derived (see Sec. A.19), it did not lend itself to easy general interpretation. Therefore,
only the special case where m; — o was considered. Then (see Sec. A.19),

OB 2r?

le

om (r2 +m 2)3/2

(5.133)

b

for

My — o,

Thus, for m; —> oo, the slope is always negative and, thus, the smaller m, the larger [a/\/H | o= Once
again, we find that the smaller m, the flatter the frequency response.

When Eq. 5.133a holds, onc has an altcrnate proof to that presented in Sec. 5.2.2.5 which shows that
for fixed o, then as m increascs. Ia/V” o dcecrecases. Thus, the bigger m, the better as far as the
required electric ficld € for a given source level at ® = w,. However, as we just noticed, this is the
opposite of what is needed for a flat frequency response.
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Next (for Special Case 2), we examine the requirecments on the length of the CSA, L, in order to
always operate at the chosen ficld point limit of € = g, at the end points of the frequency band. For
Special Case 2, the defining constraints were

max

€ e

, (5.126)

W0y

|4
Hlyeg, H

Therefore, one may use the equation for |8NHI at either end of the frequency band to determine the
required value of L to satisfy both end point conditions. If we choose the @, end point, then one suitable
equation is (see Sec. A.20)

. e 2 o 2
kL = ry—tm, - Ll sl -m LM, - 20 (5.134)
Wy my Wy ny

One form given for M, in Sec. A.10 is [Eq. (A.10.46) is printed here for your convenience]

2 2
Me _ 1 . m N r .
) )
my 2 e m? r2 4 om2

Using Eq. (A.10.46) in Eq. (3.134), onc may calculatc the required L for any choices of m and m.

Next, the 8L*/m; for Eq. (3.134) was derived (see Sec. A.20) for use in further characterizing the
behavior of L versus changes in m;. This partial derivative is useful because for those conditions where
we find that this partial derivative is negative then we know that the slope of Eq. (5.134) is negative and,
thus, as m; is increased, L decreases. Similarly, for those conditions where we find that this partial
derivative is poistive, we know that as my is increased, L increases. We will, in fact, find that for most
transducer designs the subject partial derivative is negative.

The resulting equation for this partial derivative is

" 2 ® 2 2 w
k;ﬂ— = i_L(L_T_’"_ + nﬂ) (FIL)(F, - U), (5.135)

where

1L = 1 - 3 (5.136)
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and

Fy= |1+ ]2~ (5.137)

Since o, /o, < 1 and it can be seen that the rest of the right-hand side of Eq. (5.137) is less than "1"
(divide the numerator into the denominator), we conclude from Eq. 5.136 that

F, > 0. (5.136a)

Thus, from Eq. (5.135), we conclude that the sign of 8L*/3m. is determined by the sign of quantity
(Fp - oy/oy).

First, notice that Eq. (5.137) shows that at least for small enough values of m, then F, can be made
arbitrarily close to a value of 1 and, thus, less than the fixed number o, /@, > 1. Therefore,

F, - Y <o, (5.137a)

Wy

We can conclude that for small enough values of m, the sign of the subject partial derivative is negative.
Thus, for small enough values of mT , as mT is increased, L decreases.

Second, notice that as my increases, the F, increases. Then, one may ask what are the conditions
such that
Wy
F2L -— 20 (for what conditions). (5-138)
L

This is the same as asking the following question: As we increase m; starting from small enough values
of m,, what are the conditions such that the sign of the subject partial derivative will change from
negative to positive? This, in turn, is the same as asking, as we increase m., starting from small enough
value of m,, what are the conditions such that as we increase m; will we reach a minimum value of L
after which as m. is further increased, L will also increase.

One finds (see Sec. A.20) that Eq. (5.138) is equivalent to the following:

1 m
- g -
(5.1382)

Since l/m > 0 (except for m, = ), then Eq. (5.138a) leads to the following requirement:
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r>m (5.138b)

Notice that if the
‘/wf,/wi -1>1, (thus, 0, 2 /20, ),

then Eq. (5.138a) [and similarly Eq. (5.138)] requires r > m and that the larger the bandwidth (i.e., larger
oy/o,), the larger r must be in relation to m in order for Eq. (5.138) to hold.

As has already been explained, in most practical cases r < m. Thus, in most practical cases where
one is seeking as broad a bandwidth as possible, the usual situation will be for Eq. (5.137) [not
Eq. (5.138)] to hold, even for the largest practical values of m,. If Eq. (5.137) holds (i.e., F,, - o /0,
< 0), then we have 8L*/8m, < 0. Therefore, we have just found for the usual broad band design that
as my is increased, the length of the CSA, L, required to meet the electric field constraints at the ends of
the band, decreases. (See also the third candidate application of the SGM presented in Appendix B.)

Not only does the frequency response flatten, but the length L may be shortened as m, increases.
Thus, we can see why for broad band designs, the design trend is to require the largest practical value for
m.

However, for narrow band designs, one notes that r < m is acceptable according to Eq. (5.138b). In
these narrow band cases one could have, for practical head masses m,,, the condition of Eq. (5.138) and,
thus, have 8L*/8m, > 0. Then, increasing m; would increase the length of L required to meet the end
point electric field constraints.

The only characterization of L versus changes in m was for the special case of m; = o0. For that case,
Eq. (A.10.46) (printed below for your convenience) shows that

VA
r? + m?
(for mT=°°)
and Eq. (5.134) becomes
2 R 2
e -9 [ m 1300
wy P m? Cu JrP v m? ’

(for mp=o0)

We observe from Eq. (5.134a) that as m is decreased (for example, to flatten the frequency response), the
length L needed to meet the end point field constraints would increase. Thus, at least for the special case
of m; = oo, the penalty paid for decreasing m to flatten the frequency response is the requirement to
lengthen L to meet field constraints.
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Consider next Eq. (5.104c¢) for the composite C,.

c -1 |[Frm 2m ) 1 (5.104¢)
Wyo, m; My rt+ m?

With m held fixed, then as m; is increased (which we know is the desirable trend), then Eq. (5.104c)
shows that C, must be decreased; that is, the CSA and FTR combination needs to be made stiffer. This
is the same trend as for Special Case 1.

For large values of m; one has

c « 1 L (5.104¢)

€
Wy 77 1+ g2

Then, as m is decreased to flatten the frequency response, C, must be increased (m; held fixed). This is
the same trend as found in Special Case 1.

522,622 Summary of FEPA - The above described FEPA, showed why in the usual practical
longitudinal design problem, large tail masses, m, and small head masses are desirable to flatten the
frequency response of the transducer. If it were possible to produce larger radiation resistances, R, than
the usual physical constraints dictate, then there would be exceptions to this design trend of always using
large my and small m,.

The analysis also showed that in most but not all usual circumstances, the larger the tail mass, m,,
the shorter the length of the CSA, L, neceded to mect the electric field constraint, €., for the CSA.
However, the larger m, the smaller the composite compliance C, (i.e., the stiffer the CSA/FTR assembly),
needed. This means that one should use the thinnest practical FTR and one must increase the area A, of
the piezoelectric ceramic rings. The fact that L may be shortened with larger m helps in the process of
decreasing C,.

Decreasing the head mass, m, to flatten the frequency response was shown under usual circumstances
to increase the CSA length, L, required to meet the field constraint, €., and required an increase in
compliance C.,.

The FEPA explicitly illustrated that the best location for the resonance frequency, @, is a function
of the acoustic field constraints of the design problem. This, in turn, suggested that design approaches
that start out by fixing @, (or some other interesting special frequency) are not an efficient way to arrive
at a near optimum design. A better approach would be to choose w, and o and fix the corresponding
values of Is/VHI at these end points as indicated above.

The FEPA suggests all the necessary steps for a new and very useful TDGS which would be
completely independenc of the SGM. It could and should be executed using the appropriate parts of the
CMM (Composite Math Model - see Sec. 2). The essential idea of this independence from the SGM is
illustrated in Sec. B.4. The development of such a fixed end-point TDGS for the general frequency
dependence case would involve a computer aided iterative approach in the CMM.
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5.3 Analysis with Tuning Inductor

The analysis presented in Sec. 5.2 did not consider inclusion of an electrical tuning inductor as part
of the transducer element. However, the basic equations already presented are all that is needed to
proceed with an analysis which includes a tuning inductor. Although not presented in this paper, one
could use these basic equations already presented to provide insight into the use of an electrical tuning
inductor to help minimize the demands on the power amplifier used to drive the transducer element.

In the remainder of this book, three examples are presented to illustrate how one might proceed to
use the basic equations to characterize the effects of including a tuning inductor. Only a parallel tuning
inductor (see Fig. 5-5) is considered.

Figure 5-5 indicates the main quantities to be used to begin consideration of adding a parallel tuning
inductor with inductance T to the previously considered transducer element without a tuning inductor.

Transducer Element
Without Inductor T’

Fig. 5-5 — Inclusion of an inductor I" in the equivalent circuit of the transducer

With a parallel tuning inductor, note that the input voltage E; to the composite transducer is the same
as the voltage E on the CSA; that is,

E =E. (5.139)
The input current L. is given by
1
I =1+ E. 5.140
! il ( )

Thus, the motion relative to I, is given by
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(5.141)

iol

m‘|~'~“
5|"‘
= b

Recall the following equations:

E 1 .
£ - rE - i(1 - mE)], (5.10)
A
R N (AR AP (5.16)
Ve 83l
and rewrite Eq. (5.141) as
A, 1 1

i

[(1-mL)+irl ]+ [rE, -i(1 -mE)]. (5.142)

1
i
Vu 83l iol' wNd,,

Equation (5.142) could be manipulated, similar to the examples in Sec. 5.2 for I/V,,, to study the various
affects of the inductor in I/V,. For example, for I/V,,, one interesting quantity was the in-air resonance
frequency ©,. For L/V,, let the in-air resonance frequency be @,.. Since in-air r = 0 and m = m,,;, one
has

I

A .
i c [4
— = [(1 - m,)] - — (1 - mE), (5.143)
H in=~air g33lc ’ iwz F Nd33 ’
or

I, A )

Zb sl a - mg)- — 2 - mE)|, (5.144)
VH in —air 83316 w-FNd33

where E and I are evaluated at © = .

In this idealized case of no losses in air, one could derive an expression for ®,. by setting the right
side of Eq. (5.144) equal to zero and solving for @. An easier characterization is to solve for I as
follows:

A
“d -myl) - —3 _(1-mE)=0 (5.145)

8xnl, w’,INd,,

and
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- w: NAcd33 (1 - mHIo) (5.146)

1
T " gul, (1 -mE)’

In Eqgs. (5.145) and (5.146), I, and E, must be evaluated at ©=w,. One can show (see Sec. A.21) that

the low-frequency capacitance C; is given by .
NA
Cp = s ) (5.147)
33310
Thus,
(1 -myuE
r-_1. #Eo) (5.148)

wi,CT (1 - myl)

One can also show (see Sec. A.21)

2
E =1 + (oNdy,)" (5.149)
Cr
Thus,

) i my(o,Ndy,)*

fl 1 {1 My c, (5.150)
mz,CT A - mgl) ’

T - 1 _ ((,on/Nd33)2 my : (5.151)

ol G omd)

with I, evaluated at © = ©,.. In Sec. A.22, it is shown that Eq. (5.151) may be rewritten as follows (for
® =0,):
2 2 2
W, - ®
po 1 fen @y "‘), (5.152)
2 2 .2
o, /Crlo, (@, - wi)

Recall that ©, < o,. Thus, if 0, < e, < ©,, that is, if ®, > ©,, then the right-hand side of
Eq. (5.152) is positive, and since I > 0, there are values of I that satisfy Eq. (5.152).

Note that if o, > ©,, then as ©,. approachcs «, (from the right), I increases without limit because
o2 - o approaches zero. This checks with the fact that I' = o is the same as no parallel inductor, in
which case 0, = ©,.
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If o, < o, < @, then 0% - ®> < 0 and @2 - 02 > 0, so Eq. (5.152) would call for negative
inductances which, of course, do not exist.

If o, = o, then I' = 0, which would be the same as a parallel short circuit for the transducer
element.

If o, < o, < @, then both ©? - ®2 and ®? - 2 are negative and thus, Eq. (5.152) again calls for
r>o0.

Thus, it appears that for any inductance other than I' = 0 or I" = oo, there are two in-air resonances
for I/V, one above o, and one below o,,.

Graphically, these conclusions are illustrated in Fig. 5-6.

A4

w

Fig. 5-6 — Qualitative character of |Ii/VH| (includes parallel inductor); solid line: no losses, dotted line: with small losses

Although not analyzed above, we know (for example, from the law of conservation of energy) that
| L/Vy | would not reach a value of zero, but would behave as illustrated with the dashed portions of the
curve.
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As a second example of use of the previously derived equations to characterize the affects of including
a parallel inductor, consider the following. Equation (5.142) for I/V, (which includes the inductor) may
be shown (see Sec. A.23) to be analogous to Eq. (5.16) for I/V,; (which does not include the inductor).

I A
e L M- ) - | e (5.153)
Ve  8xl w’I'C,
where
E
L =1 -—2°, (5.154)
oTC,

Note that, as previously observed, if I' = oo, then the equation for I/V, reduces Eq. (5.16) for L/Vy
(no inductor).

Recall that with no inductor, we noted that for I, = 0, the 1/V,, was independent of the radiation
loading (independent of r and x). This was considered a "current velocity control condition." For no
inductor, the current velocity control angular frequency o,,was given by

sy = ,1 , (5.54)
Comy
and at this frequency,
A
L (5.55)
Hly-o, 831,
Similarly, from Eq. (5.153), we note that if
I1,=0, (5.155)
then
I A
LA L (5.156)
Vu Saalcl wTCp

where o,,. is the angular frequency such that Eq. (5.155) holds, that is, the current velocity control
angular frequency with a parallel inductor.

When Eq. (5.155) holds, we see from Eq. (5.154) that the following also holds:
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I, - ——— =0, (5.157)
or (providing E_ = 0)
I
21 =, (5.158)
o, e, E

Thus, Eq. (5.156) may be rewritten as (for © = a,,,)

4 A (1 - i]_ (5.159)
Vg '

Note that if I, = 0 (which we have noted requires I' = oo, i.e., no parallel inductor), then Eq. (5.159)
reduces to the no-inductor case of Eq. (5.55).

Equation (5.158) may be solved for the I" needed for a selected current velocity control frequency
®

vl

E
r-—1 2 (5.160)
Io

w /CT

2
iv
with E and I, evaluated at ® = o,,’.

Equation (5.149) above may be used to rewrite Eq. (5.160) as

2
T - _1_[1 + 1 _(ﬂdﬁ)_] (5.161)
ﬁ)?v/CT Io CT

Note that if I, > 0, then since I > 0, there would exist a value of " corresponding to such choices of

©;,. It turns out that I, > 0 covers all usual practical cases. To see this, observe the following. Recall

1 =ec -1, (5.17)

for no parallel inductor (I' = ) I, = 0 for ® = @,,. Thus, if

0, > @, (5.162)

then
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I1>0. (5.163)

[

Thus, we see that for o, "close" to ®,,, one would require a large inductance value for I, and as o,
is increased in value above that of o,,, then I, increases, and, thus, by Eq. 5. (170), the required value of
I" decreases. Next, we need an equation to compare @,, with ®,. Since ? = 1/C!m, [see Eq. (5.54)]
and @2 = 1/C! (1/my + 1/m,) [see Eq. (5.27)], the desired equation is

(5.164)

As we have already observed, "good transducer designs" have very large values of m;/m and, ideally,
m/my, —> . Thus, from Eq. (5.164), we see that normally o,, has a very small value and in the limiting
case approaches zero. Thus, in turn, from Eq. (5.162) we see that in these "good designs” that for all
practical values of ®,,., we have I, > 0 [Eq. (5.163)] and, thus, a parallel inductor will exist [Eq. (5.161)]
for such values of o,,.

As a third and last example of use of previously derived equations to characterize the affects of
including a parallel inductor, we give some consideration to the input impedance Z, with a parallel
inductor included.

Referring to Fig. 5-5, the input impedance Z, is given by

z - E (5.165)
1
i
but,
E=E (5.139)
so
z-E (5.166)
1
i

One may also note from Eq. (5.166) that

%)
z - V1) (5.167)

From the characteristics already presented for E/V, and 1/V,,, we may note that in air at o, E/V,
goes to zero and, referring to Fig. 5-6, we note that at two frequencies L/V,; goes to zero. Thus,
qualitatively, we expect Z, in-air to be shown in Fig. 5-7.
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|Z,l

P

e
]
2

Fig. 5-7 — Qualitative character of lZi] (with parallel inductor); solid line: no losses, dotted line: with small losses

As previously discussed, with small losses included, these zero conditions would not occur and one
would expect the qualitative behavior indicated by the dashed lines.

As T' - oo, we have found that we approach the previously studied case with no parallel inductor,
then the highest frequency peak in Fig. 5-7 moves down to the angular frequency o, and the lowest
frequency peak moves down to @ = 0.

The behavior of Z, in air vs the in air directly measurable quantities C;, ®, and o, was of some
special interest in the STRIP (the program where the simplified guidance model, used in this document,

was developed) effort and so this characterization is pursued further as follows.

Rewrite Eq. (5.166) as follows:
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1 5 (5.1663)
Z, E
Use Eq. (5.140) to rewrite Eq. (5.167) as follows:
1. 1,1 (5.168)
Z, E ol
But,
| O |
1.1 (5.169)
Z E

where Z is the input impedance (see Fig. 5-5) to the transducer element without the parallel tuning
inductor. Use Eq. (5.169) to rewrite Eq. (5.168) as follows:

1 1 1

— . (5.170)
zZ, Z il

lL i, ,-wcr(iﬂ_-T(_“’;'_“’ﬂ, (5.171)
Z mn ((0,2,' - 0)2)

Notice that at © = o, 1/Z | inic = 00; that is, Z li « = 0 and at ® = o, then 1/Z|
agree with previous derivations concerning E/V Hrin_ﬂi, and I/Vy|

H ! in-air

In Sec. A.24, it is shown that

war = 0. These facts

Use of Eq. (5.171) in Eq. (5.170) gives
2 (2 _ 2
1 ilec (‘_%_] (@ -0?) 1 (5172)
T 2 2 T ¢
Z, @, ((o,,, - o)) o

1. For o << 0, < ®,, then

Note the following:

1 . 1
ZL ~ '("’Cr - _(.;)?)_ (5.1728)

2. For o < o, < 0, then (@2 - ©*) > 0 and (0?2 - ®*) > 0, so an I exists which makes

ll
—_— = 0. 5.172b
Zi ( )
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3. Forw = o, the 1/Z, = 1/Z = o independent of the value of . In the actual case of some internal
losses, it is found that this tendency is still present in that changes in I at ® = o, do not have
a big effect.

4. For o, <o < o, then (02 - ®?) < 0 and (02 - ©%) > 0 so the factor ©C(0,/0,)/(0] - @*)/ag -
0?) <0, and since " > 0, there is no I' which cause 1/Z; l mar = 0foro, <o <o,

5. For o, < ®, < o, then (02 - ®’) < 0 and (@} - ®*) < 0 so that the factor oCHo/0,)/ (o -
0/} - ©®) > 0, and T exists so that 1/Z; [, 4 = 0.

These five observations agree with the quantitative information shown in Fig. 5-7.

Suppose that in an actual transducer the values of C, or 0/, (or equivalently o /0,), or o, or o,
vary from some desired baseline value. How could one adjust ' to compensate and, thus, cause the
maximum and minimums of 1/Z, | n.uir 10 still occur at about the same baseline frequency values? Equation
(5.172) yields the following guidance:

1. o, (the frequency of the maximum 1/Z, | i) 1s independent (or with small losses nearly
independent) of I (see item 3 above). Therefore, I is not effective in controlling @, and, thus,
the FTR should be used to try to adjust o, to the baseline value.

2. Increases in C; or @ /o, (or decreases in con/comf or o, require decreases in I in order to adjust
one or the other of the minimum values of 1/Z; |, ;. to occur at the baseline frequency.

Similar decreases in C; or ®_/o, or o, require increases in I" to compensate.
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Appendix A

DETAILED DERIVATIONS

A.0 DETAILED DERIVATIONS

In order to avoid interrupting the flow of thought in Secs. 4 and 5, the details of the derivations of
some relationships were omitted from Secs. 4 and 5. These derivations have been gathered together in
this Appendix. In some cases, the details are presented only for the convenience of the interested reader.
In other cases, the reader may find that the details and accompanying observations and analysis are
essential for a complete understanding.

A.l1 DERIVATION OF THE INITIAL FORM FOR E/V, [EQ. (5.9)]

The starting point for the derivation of Eq. (5.9) is Eq. (4.8) from Sec. 4 which follows.

1% iONdy
E 1+iaCp+OZ’

Equation (4.8) must be reformulated in terms of V;, Z,; and Z; which is done using Egs. (4.7) and (4.13),
respectively, repeated below from Sec. 4.

ZyZy
Zy + Z; ’

and

V.l1 + ~H
”( z,) ) i0Nd,, (A.11)
E 1 +i0(Cp + OZ,Z,)(Zy + Zp)

81
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Thus,

_E_ = [1 + é 1
Vy Z, |ioNd,,

A slight rearrangement of Eq. (A.2) and use of Eq. (4.18) (C, = C; + C) yield the desired result; namely,
Eq. (5.9) which is reprinted here for convenience.

YAV
1+i0C,|—L-
Z,+Z,

;E_ = 1 1 + ..Zil
Vy ioNd,, VA

Z,Z
1 +iw(Cp + C)_J_’_T_},_ (A.1.2)
T

T

A2 DERIVATION OF A SIMPLER FORM FOR E/V, [EQ. (5.10)]

The starting point for the derivation of Eq. (5.10) is Eq. (5.9) (derived above in Sec. A.1). First
multiply through the left-hand side of Eq. (5.9) by the 1/1 factor.

z zZ,Z
LD SN P} | PO Bt e ) B (A.2.1)
Vy WNd,, Z, Z,+2Z,
Then perform a series of algebraic manipulations as follows.

E_ 1 (Znt% wceﬁf_Z_T_ _ i, (A2.2)
V, wNd;| Z, Z, + Z,

zZ,+Z
E. 1 locz, -2 1|, (A.2.3)
Vy wNd,, Z,
and
yA
E 1 wcezy_i__’!Jrl . (A2.4)
Vy WNd,, z,

Substitute the simplified forms for Z; and Z,, from Sec. 5.1 which are; Z; = iom; [Eq. (5.1)] and Z, =
o(r +im) [Eq. (5.8)].

E . _1
Vy wNd,,

WMy

w® C,(r +im) - z(M + 1)}, (A.2)5)
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E _ 1 \ocesim - [ L) (A.2.6)
Vy wNd, ‘ .y
E _ 1 w? Cr- T, zw’Cem -m , (A2.7)
Vy  wNd, my my
and
E . rcozce-~i +dm (A)QC",—i - 1. (A.2.8)
Vy  wNd, my my

At this point, use the symbol E, from Eq. (5.11) in Sec. 5.2.1 which is

E, = (wzce - -—1—],

my

to obtain

E__1
Vy wNd,

[rE, + i(mE, - 1)]. (A.29)
This last equation is equivalent to Eq. (5.10).

A3 DERIVATION OF A SIMPLER FORM FOR I/V, [EQS. (5.15) AND (5.16)]

This section presents the derivations of the various expressions for I/V,,. These derivations are almost
identical to those for E/V, presented above, but are documented below for the convenience of the reader.

First, we present a derivation of the expression for I/V,, as it appears in Eq. (5.15). The starting point
for the derivation is Eq. (4.10) shown below.

V _ 8l 1
I A 1+i0(C,+ CHZ

Equation (4.10) must be reformulated in terms of V,, Z,, and Z; using Eqs. (4.7) and (4.13) which were
also repeated above in Sec. A.2.
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d A ) (€, + CH=2ETT Znlr
= + iw +
( ZH] 2, Z, + Z, (A3.1)
Vyll + —
Z;
and
A Z Z
1 . 1+ =1+ ia(C, + C/).._.__.__ (A3.2)
Ve 83l T Zy + Z,

Use of Eq. (5.18) (C, = C, + C’) yields the desired results; namely, Eq. (5.15) below

A VA YA
S ) R PN i
Ve  8xl. Zy Zy + 7,

Next, we present the derivation of an alternate expression for I/'Vy, given in Eq. (5.16). To do this
Eq. (5.15) is rearranged to appear as follows:

A Z
_I_ = ¢ (1 + __@] + i(QCe/ZH . (A.3.3)
Ve 8xnl Zy
At this point, use the radiation model approximations for Z; and Z,, which are Z; = iom. [Eq. (5.1)]
and Z,, = o(r + im) [Eq. (5.8)].
A .
i = c 11+ o)(r + im) + i(,)2Ce/(r + im)!, (A.34)
Ve 831, iomy
A
A VR R A 0 Clr - 0*C!m|, (A.3.5)
Ve &l mp Mg
A,
._I_= l—(oCm +.17_§_ +1w2C:r—_L_ . (A.3.6)
Ve &5l my my
and
A 2
Lo Leliom wC, - L Ay WC,) - L. (A3.7)
Ve  8il, my my

At this point substitution of the symbol I from Sec. 5.2.1, where I, = @’C! - I/m, [Eq. (5.17)], yields
the desired results, Eq. (5.16) below
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LA gy g
VH g331c ° °

A4 DERIVATION OF AN EXPRESSION FOR o, /o, [EQ. (5.31)]

The starting point for the derivation of Eq. (5.31) is the pair of equations for the idealized in-air
resonance frequency [Eqs. (5.24) and (5.27) from Sec. 5.2.2.1]:

and

('02=_}_.i+__:_l_
? c/\my my)

Taking the ratio of these two relations one 6btains Eq. (5.28) the following:

Next one assembles Eqs. (4.2a), (4.2b), (4.4), (4.18), and (5.18), respectively.

L
C=8;=,
. 33Ac

L
c'=80~=,
33A

¢
D E
S33 = S33 ~ 8334335

C,=Cp+C,
and
cl=c.+C,

Using these equations in Eq. (5.28) yields the following steps.
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o G (A4.1)
(,)i C/ + CF
EL
o2 SaaA— + Cp
ol N (A4.2)
on  s2L.c,
AC
E L
o’ Saaz' + Cp
g : : (A43)
On (S - gud) L 4 C
m (33 833 33) F
[+
) sEL ¢
W, A F
- = < 7T (A4.4)
W), SBI;“_I:_ c, - 833933
c AC
o !
W’ | - 83305l 1 (A4.5)
A E L
¢ S33— + Cp
AL‘
and
2
W, _ 1
o - Sudn( 1 (A.4.6)
E
S33 1 + CFAC
S5L
Recall the following definition of K,; found in Eq. (4.24).
K3 = 333‘233'
S33

Substitution of this definition into Eq. (A.4.6) vields the desired result [Eq. (5.31)].
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O
wm

1 - Ky, (5.31)

1
1 + CFAC
SeL

A5 DERIVATION OF EXPRESSIONS FOR THE IN-WATER VALUE OF |E/V,| AND
|1/v,| AT THE IN-AIR RESONANT FREQUENCIES, o, AND o, [EQS. (5.34) AND
(5.38)] _

Equations (5.34) and (5.38) are expressions for I E/V, | at ©,, and | I/VHl at o, respectively and both
assume the assumptions of the simplified radiation model [Eqs. (5.1), (5.2), and (5.3)]. However, the
relations are shown here to be special cases of two more general relations, derived here without use of
the radiation model.

The starting point for the derivation of Eq. (5.34) is the basic expression for E/V,; found in Eq. (5.9).

Z,Z
1+ ieC,| 21
Zy *+ Zp

In-air impedance of the head assembly experiences no radiation loading.

Z

Hyg-gir

=ZH

and
Zy =Zy+Z

in~water

At the resonant frequency o, in air, E/V,, is minimized. Thus,

o - i[Znt i (AS5.1)
" Ce ZHZT

In water, when E/V,, is evaluated at the in-air resonant frequency o, we get

_E_ - 1 ZT i ZH in-water 1 - ZH in-air " ZT ZH ln—wnthT (A.S.Z)
VH wmiN d33 ZT Zy in-erT ZH in-water ¥ ZT ,
and
E 1 (%+Zy+ 2] @yt Z9Cy+ 207 (A5.3)
Vy iNdyo, Z, Z,2.(Zy+ 2, +2)|
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where Z_, is the radiation impedance at @,

E_ 1 1]@+2,+2)ZZ) - Zy+Z)Zy+Z) 2, A54)
V, iNd,e,Z, Z,Z) ’
2, +ZNZ,+2Z
E__1 1 @Zy+2Z,+Z)- @y 2925+ 2,) , (A5.5)
Vy ‘Ndss"’m Z, Z,
E 1 1 ZTZrm
==__- _ —{Z,+Z +Z.-2,-2Z -2Z.-—""], (A.5.6)
E__ -1 l_(_ZTZrmJ, (A5.7)
Vy iNd 0, Z, Z,
and
__ 1z (A5.8)

E__ 1 Zm
V, iNd,w, Z,
When we substitute the simplified model for the hcad assembly operating in air [Eq. (5.2)] into the
expression above, we obtain Eqs. (A.5.9) and (5.34), respectively.

E “Zm , (A5.9)
Vy iNdjw, (e, mg)

and

1

- 'Zrm | :

-
Nd 0, my

E
Vu
In a similar fashion a derivation of Eq. (5.38) can bc obtained. The starting point is Eq. (5.15),
A z Z
A PR 1+iwce’__”_zl_ )
Vi 8zl Zr Zy + Zp

Notice that the form of this expression for I/V,, differs from the corresponding equation for E/VH by
only a constant. Thus all of the steps of the derivation of Eq. (5.34) are equivalent to that for the
derivation of Eq. (5.38) provided the constant 1/ioNds; is replaced by A /g, 1.
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Making this change rclative to Eq. (A.5.9) viclds the corresponding general relation for I/Vy
[Eqs. (A.5.10) and (5.38), respectively].

I A,
I a— (A.5.10)
Vy igyl, w, my

and, therefore,

A

e ol

S
Vy 8xnl 0, my

A6  DERIVATION OF AN EXPRESSION FOR o, THE FREQUENCY WHICH MINIMIZES
B, [EQ. (5.57)]

In Eq. (5.20) of Sec. 5.2.1 the function B, was defined as

B, = 1l + (1-ml),

I = (w2C£ - ——1—]
my

The minimum of B, with respect to variation of frequency is obtained by taking the derivative of B, with
respect to © and setting the result equal to zero.

where I, is given by Eq. (3.17) as

—Zf = 2r210—§% +2(1 - nllo)(—m)—:%, (A6.1)
and
% =[r’1, - m(1 - ml)] 2%. (A.6.2)
But from Eq. (5.17)
_2_2_ - 20C/, (A.6.3)

Thus, Eq. (A.6.2) may be written

8B .
== = [0? + mY I, - mioC,. (A6.9)
w
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Since we are not interested in the solution ©;, = 0, we make 8B,/6w = 0 by setting the other factor of
Eq. (A.6.4) equal to zero as follows:

> +m)HI -m=0 (A.6.5)
and
m
I = -, (A.6.6)
rt + m?

Using Eq. (5.17) for I, and identifying o, as the angular frequency which solves Eq. (A.6.6) gives the
desired equation {Eq. (5.57)].

2 1 m 1
(.Oi = —-—/ T_—; + — f
Ce rc+m mT

We must still show that o, is the value of @ which minimizes the value of B,. To do this, consider
Eq. (A.6.4). Since 40C. >0, then the other factor of this equation determines the sign of 6B,/8w. For
convenience, let D, be the symbol for the other factor; that is,

D, =(*+m)I -m. (A-6.7)

We know that at © = ®, the value of I, 1s such that D, = 0. Examination of Eq. (5.17) shows that as
o is increased from a value of ©® = 0, I, starts out as a negative number and increases, eventually
becoming a positive number. Thus, according to Eq. (A.6.7), D, and thus, the slope 8B,/5w starts out
as a negative number, goes to zero at © = ®,, and then the slope becomes positive for ©>w®,. Thus, o,
is indeed the angular frequency which minimizes B,.

Notice that since II/VH| is proportional to B, [i.e., Eq. (5.21)] the frequency ®; which minimizes B,
is also a resonant frequency for !I/VH .
A7  DERIVATION OF AN EXPRESSION FOR II/V,,| AT o, [EQ. (5.58)]

The starting point for the derivation of Eq. (5.58) is Eq. (5.16), the basic equation for I/V,, assuming
the simplified radiation model.

I A .
— = (1—mI)+lrI],
Ve  8ul, ° ’

1
I - (wec; - _J.
mT

where I is given by Eq. (5.17) to be

Alternately, from Eq. (5.19) we have
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1

Vu

A 5
= P - (- ml,
831,

Recall Eq. (5.59) from the previous section. It can be solved for m, in terms of the resonant frequency
.

i

Lol - (A.7.1)
my r’+m
Then for this value of 1/m,,
I - (mzcj - Clo? + 75{1—;11—5] (A7.2)
From Eq. (5.19) above we can see that
R [(1 - mL) + r*I']U' (A.7.3)
Ve| &l
. [1 - 2ml) + (m® + O ] (A.7.4)
V| &zl
2
L. L )y 2m(w? - 0)C. - 2m
Yl - 8ale rhem? A.75)
. 51 12
s
A, 2
L. 1 - 2m(w?® - w?)Ce/— 22m 5
Vel &l re+m (A7.6)
- ) ) 12
* (ml * r2) ((.02 - w:) Ce r? +n;12 (‘*)2 i wiZ)C: ' (7'2 Tm2)2 } ’
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A 2 2 , 12
= e ly - 62"1 T T I (A.1.7)
831, rPem® r? e m?

L
Vb

and finally we have Eq. (5.58),

A4 r? a2
= _C_ = + (nl2 + r2)((l)2 - ()Ji) Ce .
8331c re +m2

A
Vk

Before we leave this section, it is useful for later derivations to point out that by comparison of
Eq. (5.58) with Eq. (5.21), we can identify the function B, as

2

B, = —
2 2
r’+m

+ (m? + ri)w® - (0?)2 Ceﬂ. (A.7.8)

A8 DEMONSTRATION THAT THE | /vy, | BANDWIDTH INCREASES WHEN THE HEAD
MASS DECREASES AND/OR THE TAIL MASS INCREASES

For this discussion, o, is held fixed (see Sec. 5.2.2.4.1) and the bandwidth of II/VH| is defined as
the difference between two frequencies. o the upper frequency and o, the lower frequency, which
bracket the fixed resonant frequency o,

0; < w; < Q. (A.8.1)

The lower frequency is that frequency at which the magnitude of I /vy | o=, is some multiple (G,) of the
|I/VH| o-n, at resonance. Thus, from Eq. (5.60) we have the following relationship

L
Vh

W=y

Similarly, the upper frequency is selected by satisfying Eq. (5.62)

1

Vu

/
U

I
V
H W=0y W=,
In this section we show that, in general, for predetermined values of G, and G, the subject bandwidth

oy - o, (o; fixed) increases when the mass of the head assembly, m,,, decreases and/or the mass of the

tail assembly, m,, increases.

Notice that since !I/\/HI is minimized at the resonance frequency, ®;, then |I/VH’ at both the upper
and lower frequency is greater in magnitude. Thus,




Transducer Design and Analysis

93

G, >1

and

Gy > 1.

(A.8.2)

(A.8.3)

As indicated in Sec. 5.2.2.4, the frequency dependence of I/Vy, is contained in the function B,. Thus,
Egs. (5.60) and (5.62) can be re-expressed using, by substituting the definition of B,, Eq. 5.19 to yield:

A, , A
B, = G,——/B,
83310\/— g3310\/—
at wU at (.Oi
and
A A
B <Gy E,
81l, 81l,
at (,OU at (,-J‘.

These two equations are more simply stated as
)
By = GL By
and

B2U - GU le .
where B, = B, at o, B,;, = B, at o, and B,, = B, at ©,.

Using Eq. (A.7.8) to express B, at o, 0, and ©,, we now get

2 2 2 2212 r o2 r
(r* + m (0 - 0)C, + ——— =G — -
re + m* re +m*
and
2 2
2 2 2 22~ r /2 r
(r +m)((.0U_(.0i) Ce + > -GU D) 2
rc+m rc+m
r2

2 2.2
((OL - (.0;) = —m
(r° + m“)°C,

(A.8.4)

(A8.5)

(A.8.6)

(A8.7)

(A.8.8)

(A.8.9)

(A.8.10)



Carson and Walden

94
and
, (G - 1)r?
(0} - ) = ’“‘i—-‘r—,; (A8.11)
(r* + m»°C,
By definition, o, is the frequency lower than ©; which yields the chosen magnitude of | I/VH| . Thus,
, p .
G, - Dr
O e I (48.12)
r* + md°C,
and
2 a
) b G/ - Dr*
(0 - ) = + Gy -~ b . (A.8.13)
r? + m¥'c,
For convenience, define M ' as follows:
M* - ——r————p (A.8.14)
(r* + m®»C,
Using M " from Eq. (A.8.14), rewrite Eqs. (A.8.12) and (A.8.13) as follows:
(‘)i _ 0)? - IMﬂ(G[{z_l) (A.8.12a)
and

Wy - @ = +\/M”(G,/,2—1), (A.8.132)

From these last two equations one may make the following observations. As M’ increases, o,
decreases (moving farther "below" the fixed ©,) and @, increases (moving farther "above" the fixed ).
Thus, a bandwidth defined as o, - @, (for a fixed value of ©, increases as M increases.

M' can be increased various ways but in this analysis all such changes are subject to the constraint
of holding ®; fixed; the constraining equation {Eq. (5.57)] is repeated for convenience

2 1 m 1
@, = =t —
C/ re + m? an

€

From the definition of M ' [Eq. (A.8.14)], one may write
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M=1_Tr (A.8.15)

/2 2"
CEr +m

The last two equations will be used to discuss three cases or ways to increase M ' and thus increase
the subject bandwidth or flatness of |1V Hl . In all cases o, is held fixed.

Case 1 Fix C, (vary m and m,)

With both o, and C held fixed, Eq. (A.8.15) shows that M ' can be increased by decreasing m. Since
m = m, + x and for m; + x > 0, one observes that m can be decreased by decreasing the mass of the
head, m,. Thus, for Case 1, decreasing the mass of the head increases the bandwidth and "flattens" the
frequency response for IINHI. For Case 1, Eq. (5.57) shows that as m is changed m,; must also be
changed to hold o, fixed with C, also fixed. It turns out (as will be shown) that if m > r then as m is
decreased m, must be increased to comply with Eq. (5.57) and if m < r then m, must be decreased as my
is decreased. For m = r one requires the largest value for m, to comply with a fixed value of ®; and C,
in Eq. 5.62. Since the usual situation is for m > r, then for Case 1 it is concluded that the usual design
trend calls for a smaller head mass and a larger tail mass in order to flatten the frequency response and
increase the subject bandwidth o, - @, for v H| .

The behavior of the quantity m/(r* + m®) versus changes in m determines what changes in m, are
needed in the above discussion. The graph of this function has the general shape shown in Fig. A-1.

25 ! ' ! ; ; ! ! ! !

m/(r>+m2)

Fig. A-1 — Behavior of the quantity m/(r* + m?) versus changes in m
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To see this, proceed as follows.

5T
2 2
re+mc 1 _ m @m),

om rPem® o (2 s md)

(A.8.16)

5 m
2 2 8.17
re .+ m - 1 (7‘2 + mz _ 2”12)’ (A81 )

ém r® + m??

and

s
rPem® o 1 - m?) (A.8.18)

om r* + m*F

Thus, as shown in the figure, for m < r the slope is positive, for m > r the slope is negative, and for
m = r the function has a maximum and the value of the function at m = r is 1/2r.

Case 2 Fix m; (vary m and C)

With both @; and m. held fixed, it is convenient to solve Eq. (5.57) for C, obtaining the following.

e
2

c/ = L_m - 1 (A.8.19)
re +m*
Also, use C, from this last equation to rewrite Eq. (A.8.13) as follows.

)
-~

r W;

M’ = .
(rt- + nlh) m . _1. (A.8-20)
rPem® my
and
2
w;r
/- i
M 2 2\ (A.8.21)
re+m
m o+ —
( My )

Again, in Case 2 as in Case 1, one observes [from Eq. (A.8.21)] that M ' is increased as m is
decreased. Thus, once again, the bandwidth and flatness of I/VHl is improved by decreasing the head
mass. In Case 2, m; is held fixed so according to Eq. (A.8.19), C, must be changed as M is changed.
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As before, using the behavior of m/(r* + m?) one concludes that if m > r then as m decreases C, must
be increased, and if m < r then as m decreases C, must be decreased and for m = r one requires the
maximum value for C,. Since the usual practical situation is for m > r then one obtains the conclusion
that as my is decreased, the compliance C, must be increased to maintain a fixed frequency (in this
case ®,).

How would the compliance C_ be adjusted? Recall Eq. (5.18).

/ p L
Ce=533;1"+cp

[

In the case where C, needs increasing, one could incrcase the compliance C; of the FTR. Better yet, one
could increase the length L of the CSA if gcometric constraints permitted, and this would have the added
benefit of decreasing the electric field . One could also decrease the area A, down to some lower limit
corresponding to mechanical stress and strain limits. The case where C, needs decreasing is discussed
below in Case 3.

Case 3 Fix my (vary m; and C,)

With both ®, and m,, (and, thus, m) fixed one can consider varying m, and C,. Equation (A.8.21)
shows that M ' can be increased by increasing m,. Thus, it is concluded that the larger the tail mass (with
my held fixed and C, adjusted to hold o, fixed), then the better the bandwidth and flatness of the
quantities |I/VH l Equation (A.8.10) shows that as m, is increased then the compliance C, must be
decreased to maintain the fixed frequency o,

How should C, be decreased as m is increased? From Eq. (5.18) above, one could decrease C, by
decreasing L, but this would increase the electric field. One could decrease C, by decreasing the
compliance C; of the FTR up to the limit of removing the FTR entirely. One could further decrease C,
by increasing the area A_, which would, in tumn, reduce the mechanical stress and strain.

Summary

In summary, one may state that for the usual practical case of m > r then the smaller the head mass
and the larger the tail mass the better the bandwidth, o, - ©, for a fixed w, and, correspondingly, the
flatter the frequency response of |I/VH! and |E/VH |

In the above analysis, the value of lI/VH| at the ends of the frequency band were constrained to be
proportional to the value at the frequency © = o, [see Eqs. (5.60) and (5.62)]. Ate = w,, |I/VH| 1s given
by Eq. (5.59) to be
A r2

4

T el A 2 2
oo, S NTT+m

L
VH

Equation (5.59) shows that as m is decreased the value of |INH| at ® = o, is increased; that is, it
requires a higher electric field to achieve a given velocity, V,,, and, thus, to achieve a given source level.
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Thus, as m is decreased to obtain a flatter frequency response, the required current is increased, not only
at ©,, but at the end points {Egs. (5.85) and (5.86)]. The current could be held constant by increasing L,
the length of the CSA, as m is decreased to flatten the frequency response of |I/VH|. However,
according to Eq. (5.18), one would also have to increase A, and/or decrease C in order to maintain the
desired value of C.. Thus, any time m is decreased (Cases 1 and 2 above) there is a penalty; namely, L
and perhaps A, must be increased in order to not exceed a given current limit. Increasing the length L
of the CSA usually leads to an encounter with a length constraint for the transducer design. Among other
things, it is this length constraint that often leads the designer to operate at the highest practical value of
electric field.

In Case 3, m (and, thus, m,) was fixed but the tail mass m, was increased in order to flatten the
frequency response (and C, was decreased to keep ®; constant). Thus in Case 3, one observes that there
is no current level penalty for increasing the tail mass, m,, if m is being held fixed. One might ask,
however, how is C, to be decreased as required. According to Eq. (5.18), one could shorten L but this
would increase the ficld requirement. Instcad, L could be held fixed and the area, Ac, of the ceramic
could be increased to stiffen the CSA (decrease C,). Thus, in a sense, there is also a penalty for
increasing mq, but increasing the area A, may be possible whereas increasing the length L (when m is
decreased) is usually a more severe space constraint penalty.

A9 DERIVATION OF AN EXPRESSION FOR | E/V, | IN TERMS OF o, THE FREQUENCY
WHICH MINIMIZES B, [EQ. (5.67)]

The starting point for the derivation of Eq. (5.67) 1s Eq. (5.64). Equation (5.64) can be used to define
1/m; in terms of the special frequency o,

1. Co’ - =1 (A.9.1)
my r< + m- .
Substituting this into Eq. (5.11) gives
E, = |(&® - 0)C, + —2— (A9.2)
re + m*

This in turn can be substituted into Eq. (5.13).

v
2 n 2
B, = (r* + m)(0® - 0))C, + ———l——)—]

2 2
(r*+m (A9.3)
s 1-2ml? - o¥)Cc, + — 21|,
{( et) e (rz + 1712)}
B = (1 + mY(@? ~ @) €] + mC(e? - wp)
(A9.4)

m? r® + m? 2m? 2
+ - - 2m(0® - 0;)C,,

+
2+ mh  rPem® (¢ m?
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and

2 r?

B, = (r® + mH(e® - co;j,,-)2 C, + ——. (A9.5)
r*+m?

When this expression for B, is substituted into Eq. (5.14), we obtain the expected expression for
IE/\/H [ ; namely, Eq. (5.67).

E
Ve

_ 1

r 2
wNd,,

r®+m?

2 2 2 2\2 2
[(r + mYw - w,) C, +

A.10 DERIVATION OF THE IN-WATER RESONANCE FREQUENCY, o, [(EQ. (5.76)], FOR
le/v, | AND |E/V,,]

This subsection derives the expression for the in-water resonance frequency, w,, [Eq. (5.76)], of the
quantities |E/VH| and ls/VH | Also included is the derivation of an equation for o, in terms of o,
[Eq. (5.77)] and derivation of an equation for IE/VHl in terms of o, [Eq. (5.79)]. As pointed out in
Sec. 5.2.2.4.2, the equations for |s/\/H l are the same as for | E/V,| except for the factor 1/oNd,, which
changes to 1/oLd,, for the equations involving |.s/\/H .

Equation (5.76) is repeated for convenience.

s 1 | (m o m)
2 :

-
Co\l mi(r® + m?

The starting point for the derivation is Eq. (5.14) which is repeated next.

E 1
—| = B. .
Vy| wNd, ‘/_1
Proceed as follows.

E|_ 1 |B ’ (A.10.1)
Vi Ndy; \ «*
E B,

8 |— & | —
Vy 1 \ o? (A.10.2)

and
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But from Eq. (5.13) one writes

Thus,
B E E
« = 22| e W +2 — w (0]
dw W) dw 8] ® Sdw
or
B
_2\0p @) e - mE ® W
dw ® % dw ( g ") dw
Let

So

s 21
_w . 333
ow w
From Eq. (5.11) one may write
E
— = wC, 1
A wmy

Carson and Walden

(A.10.3)

(A.10.4)

(A.10.5)

(A.10.6)

(A.10.7)

(A.10.8)

(A.10.9)
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Thus,
EO
o}
o) (¢ . 1 (A.10.10)
dw ¢ wm,
Also,
1 E, E,
o — - m— 2
[co wJ 1 ® (A.10.11)
= — P —
bw w* Sw
Using Eq. (A.10.10) in Eq. (A.10.11) yields:
1 _E
5(; ’"“;;’) ( . [ , (A.10.12)
————t = - +m Ce +
dw W

2
WMy

Using Egs. (A.10.10) and (A.10.11) in Eq. (A.10.7) gives the following:

0 My

B, - rE, [ce - ] -q - mEo)[—l—° . m(Ce .
=

and

Form the following definitions.

and

(A.10.13)

(A.10.14)

(A.10.15)

(A.10.16)

(A.10.17)
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Using these definitions, rewrite Eq. (A.10.14) as follows.

B, = (r* + m) B, - (B, + B).
Use Eq. (5.11) in Eq. (A.10.15) to write

B4=L2-£(wzc __1_]
® w

and
B, = — - mC, + 2
w* w‘nzT
Also, Eq. (A.10.16) may be rewritten as follows:
B; =0+ mC, + n
(O] mt
Combining Egs. (A.10.20) and (A.10.21) gives
B4 * B5 = 1'1 * 2’)’"
AN WMy

and

Also, using Eq. (5.11) in Eq. (A.10.17) gives

C + 1 (.02C - —1" s
€ a e
WMy My

]

By

&
It
€
o
O
+
|
I
|
i

and

1

242
By = 0C; - ——.
W My

Using Eqs. (A.10.23) and (A. 10.26) in Eq. (A.10.18) gives

(A.10.18)

(A.10.19)

(A.10.20)

(A.10.21)

(A.10.22)

(A.10.23)

(A.10.24)

(A.10.25)

(A.10.26)




Transducer Design and Analysis 103

B, = (* + m}[wC? - 1 - i(l + %] (A.10.27)
o’my) @’ My
and
2 2 .
B, (r® + m® w'C? - LT S P (A.10.28)
& w e my
Define B, as follows:
B, = [w*C? - 16 - -—-L- 1+ 2, (A.10.29)
my re o+ m- my
SO
rt+m?
B,-1"*™p, (A.10.30)
w2
Combining equations
6 V£ 2 2
w1 11 (20 rmipg (A.10.31)
6w 2 (&) w?

Nd,, B,
>

All the quantities on the right end of Eq. (A.10.31) are greater than zero for all ® > 0 except B,.
Therefore, the sign of 8 | E/V, | /8w is determined by B, and this partial derivative equals zero if and only
if B, =0.

Examination of Eq. (A.10.29) for B, shows that as o increases from some small value near to but

greater than zero the sign of B, starts out as ncgative, remains negative until for some value of 0 =ao,,
B, goes through a value of zero after which the sign of B, changes and remains positive. Thus, at @,

(A.10.32)

and one has shown that |E/V,_,| has its one and only minimum value at ®,. The expression for o, is
determined by considering B, = 0 as follows.
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and

The desired equation for o’
Eq. (A.10.38).

The next goal is to derive Eq

ofct - L)1 _[1.2m) (A.10.33)
mi| r*+m? my
oict = (=L i+ 2, L, (A.10.34)
r®+ m? mr)  ml
2 2m b 2
mel + =—={+ (@ +m
i T( mT] ( ) (A.10.35)
wC; = T - s
mp(rc + m°)
2 2 2
re+m° + 2mmy, +m
wic? = —— T (A.10.36)
mp(rs + m<)
2, )
wic? = L (m + mp” (A.10.37)
my(r? + m?
2 2
o= LT (m + my) (A.10.38)

b
P4

Ce

].

[Eq. (5.76)] is obtained by taking the square root of both sides of

bl
my(r® + m?)

. (5.77) which is repcated for convenience.

2 2 2
w, = 0yl + My,

The following previously derived equations [Egs. (5.66) and (5.65), respectively] are used in the

derivation.

where

L
CC
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M:-._.._’l.l:__-i-__l_.

2 2
re+m- My

For convenience, define M, as follows.

2 2
" re+um +m
M = ( ) . (A.10.39)

e
mar® + m?

Comparison with Eq. (3.76) shows that onc can write the following.

W= LM (A.10.40)

C

4
It will be shown next that

M =M+ —’_ (A.10.41)
(r= + m°y

Manipulate M2 as follows.
p e
) " 2
2 Tt mT o+ 2mmgp + mp

M - , (A.10.42)
me(r® + m?

T (A.10.43)
2 2 2 2 2 e
mr mArs + m®) re+m
N 2 2
M-t 2m o, om 1 . m (A.10.44)

my mr*em®)  (rem® rrem? o @ em®)

2
M=l Lo m Vel 2w om?, (A.10.45)
my  r*+m?  (r?+m??
and
2 2
M=l L _m | (A.10.46)
mp 1+ m?] @+ m?)

Using the definition of M, one obtains Eq. (A.10.41) as desired. Next use Eq. (A.10.41) in Eq. (A.10.40)
and proceed as follows.
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P I S OV S S (A.10.47)
Ce (7'2 + m2)2
and
. M 2
e N R S (A.10.48)
C, r* o+ m®»* M?
Use Eq. (5.66) and write
2
o= af 1 —— L. (A.10.49)
(r* + m®* M;
Define M? as follows.
Mo 1 A.10.50
2 S R (A.10.50)
(r° +m°)" M,
Use Eq. (5.65) in Eq. (A.10.50) and continue as follows.
M = r- -
. o m ) (A.10.51)
(r*+m°y|—m— + —
re+m- mq
ME = r’
: ( 2 2 (A.10.52)
m + —_——
oy
M2 - e , (A.10.53)

- o)
(r2 +m? + mm.)”
Taking the square root yields Eq. (5.78) which is repeated for convenience.

rm
M, = T

2 2 ‘
re+m° + n”ﬂT

Use of M, in Eq. (A.10.49) yields one of the desired equations; namely, Eq. (5.77).
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The next goal is to derive Eq. (5.79) which is repcated for convenience.

- :
1 3 2\2 M r?

= * + mHei1 + My - @) — + ———,

wNd,, 4 2,2

W,

£
VH

The starting point for the derivation is Eq. (5.69) which is also repeated.

E 1 ) 2 ” 22 1 2 r2
— | = (r* + m‘)(w' - coei) — M; + -
Vu| @Nd,, Wy re+m
One solves Eq. (5.77) for o as follows.
2 _ 2 1
Wy = Wy ————. (A.10.54)
V1 + My
Use Eq. (A.10.54) in Eq. (5.69) to write
E 1 w: 2 M2 2
7.. = Nd (r2 4 7712) w? - e _i(l + M22) + - r x (A.10.55)
n| Whay i +M§ W, re+m

Multiplying through by the factor I + M3 yields Eq. (5.79) as desired.

A.ll BEHAVIOR OF |E/V,| AT 0 = o,

The goal in this section is to show that with m. held fixed, as my, is increased sufficiently (my > 0)
then the value of IE/VHI at ® = o, can be made as small as desired. The starting point will be
Eq. (5.79) which is repeated for convenicnce.

2
E 1 2 N 2 22M1 7'2
—| = rf s mAHe1 + My - oy — + ——.
IV,,l wNd,, ( )( 2 ) o

o)
rt+ m?

At ® = ©, one obtains

2

1 2 5 3 2 2 r
= ree mAL v My - 1) Mj ¥ ——, Al11.1)
"’eNd33J( )( i ) 1 2 2 (

re+m

E
VHw=we

The quantity under the radical, which shall be called B, [see Eq. (A.11.2) which follows], determines the
behavior of IE/VH| ©® = ©, as m is increased.
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2 2
B, = (r* + mz)(\/l + M - 1) M+ —T— (A.11.2)

rt + m?

Rewrite as follows.

B, = (rz)(,/l F M - 1)2Mf . Tﬁ_ . m2(,/1 - M - 1)Mf. (A.11.3)

rt +m?
Let
T, = '(W ) 1)2 M2, (A.11.4)
T, = —— r’ - (A.115)
ret+m
and

) 2,
T2 - m2(\/1—+7v1_§ - 1) M. (A.11.6)

Recall Egs. (5.64) and (5.78) shown below.

r+m®  my

and

rm
M, = T

“

2 2 )
re s mc o+ omng

Using this information, one notes the following.

fm M, = L, (A.11.7)
moe an

lim M, =0, (A.11.8)

lim T, = 0, (A.11.9)

and

lim T, =0, (A.11.10)
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but

lim T, = (= times 0). (A.11.11)
meo ﬂlT

If by an application of L'Hospital's rule one could show that lim T, as m — oo was, in fact, zero, then

the desired goal would have been reached: namely, one would have shown that lim B, = 0 and, therefore,

ENHl at ® = o, can be made as small as desired by making m large enough (m is made large by
making the head mass, m,, large since m = m, + x).

The last step then is to apply L'Hospital's rule as indicated.

Let T, be defined as

T, = m(,/l + M,f - 1). (A.11.12)

Note that
T, =TM, (A.11.13)
lim T, = lim M, ) lim T, s (A.11.14)
and
im7, = -Lllm7, . (A.11.15)
e my m--

Thus, it will be sufficient to apply L'Hospital's rule to the factor T, as follows. Let

T, = E, (A.11.16)
Ty
where
T, = /1 N Mf -1 (A.11.17)
and

(A.11.18)

Applying L'Hospital's rule,
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oM, rm2m + mp)

2 s
r? + m® + mmy)

oM, - ( s ] @m + myp,

om rmT r2 + m2 + mmT
and
oM
2 - ~__1_M§(2m + mT),
om rmy
Thus,
8T, M;
= - @m + my
om p)
rmpy1 + M,
and

0T, 1
om m?
Combining this information gives
. T
lim 7, = lim —= .
o T6

m - =

3
m*M;(2m + m.)
1

li]n T4 . = li]l m - =9
rmpy1 + Mf

o

im?7, = n}zT (lim Ist] [(tm2m8s5) + (mplimm?) ],
ylemy)

(A.11.19)

(A.11.20)

(A.11.21)

(A.11.22)

(A.11.23)

(A.11.24)

(A.11.25)

(A.11.26)

(A.11.27)
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3 3
» 1 . rnzT v 1 rmT
imT, = 2lim + mim—| ——1 ,
4 . i, . i R (A.11.28)
-—+m+mT ._..+m+mT
m oo m e
. 1
lim T, = 2(0) + (m)(0), (A.11.29)
rmyp
and
lim7, =0, (A.11.30)

As indicated above, this is the last step in the proof that

E

H

lim

0=,

A.12 A BANDWIDTH CHARACTERIZATION OF |E/V,| AND |&/V,| IN TERMS OF o,

Even though o, is not the resonance frequency of IE/VH| (or, equivalently, Ia/VH |) it has proven
useful, as is indicated in Sec. 5.2.2.6, to approximately characterize the frequency dependence
characteristics of IE/VH‘ in terms of w,. Although the general conclusions are similar to those for
‘INH | , the analysis steps are somewhat different because of the fact 1/@ found in the equation for
|E/V,| [Eq. (5.67)] and |e/V,| [Eq. (5.732)] but not found in the equation for |I/V,| [Eq. (5.58)].
There are also some differences due to the fact that |E/VH| and ls/VH' are not a function of the area
A,

The starting point for a bandwidth characterization of IE/VHI uses the constraints explained in Sec.
5.2.2.6 and embodied in the following equations [Eqs. (5.89), (5.91), (5.90), (5.92), respectively] repeated
for convenience.

€ €
— = G, |— ,
H VH
=W, 0 =W,y
G, >1,
€ €
= = Gyl— ,
VH H
W=y W=,

and
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ky > 1.

Next, use Eq. (5.73a) to write out the following.

€ 1 ) o/ 2 2\2 2 r?
— = (r + m") w; -~ w,) C + [ (A'lz'l)
Vy ovo, coLLd33\[ ( L e*) ¢ 7 m?
Also use Eq. (5.74) repeated here for convenience.
€ _ 1 r?
Va w-0, W Ldyy \ 7% + m?
Use Eqgs. (A.12.1), (5.74), and (5.85) to write
) b ) 2 G 2
1 (r*+ m2)(w2 - wZi)2 C,+— A L T, (A.12.2)
(.OLLd33 re+ m2 weiLd33 r2 + n12
) N 212 2 r? 207 g2
(r< + m*)(coL - coe,-) Ce + — 5 = GL-—2— n > (A.12.3)
re+m STt m
and
2 2 9 2 o)
O 2L gt T L r- . (A.12.4)
’ (r + m°* w2 (r? + m)alicC?
Let
) r2
M* = - — (A.12.5)
(r° + myw,C
So,
M=—07 — > 0. (A.12.6)
(r* + m9yn,C
So in terms of M? write
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izL_ - 1] + M? = sz_i M2, (A.12.7)
W, W,
w, o, ¥  afe Y., )
-2 -Gi|l—| M+ (M +1) =0, (A.12.8)
@, wei W,y
and
4 2y12
M
(ﬂé] ) (1 LG ](ﬁ] L M2+ 1) =0, (A.12.9)
wei 2 wei
Use the quadratic formula with
a=1,

and

to write

G.M* G ¥
2|1 + £,0411 + —M*] - 4(M- + 1)

(A.12.10)

2 2,502 2 2
((OL] - (1 + GLM )i\J (1 + ﬂM2] _ (M2 + 1)’ (A.12.11)
wei 2 2

2 2y r2 4, .4
I (1 . GM JiJl + GIM? + GM e 1, (A.12.12)
W, 2 4

and
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W, 2

2 2402 4
(&] - (1 , GiM J*\Jl . _C_i_L_ M* + MG - 1), (A.12.13)

Since G, > 1, then G} > 1 and G? - 1 > 0 and, thus, the discriminate is positive so there is a real number
solution for Eq. (A.12.13). Rewrite the last equation as follows.

2 K; &
[ﬂ) -1 = SEm J Lu MK - D). @A.12.14)

[A) 2

ei

Note that @, < @,; (by definition), so @, /o, <1, (0 /0,) <1, and (o /o,) - 1 <0. Therefore, one must
choose the negative sign and write the following.

2 2 V 4
G G s
(_ﬁg) 12 8p _\J ‘fM“ . MAGE - 1. (A.12.15)

By similar steps one concludes also the following.

(6]} 2 . G?' . G4
(—U] -1 = —QEM" + ._4gM4 + M2(G2 - 1. (A.12.16)
W

ei

From these last two equations one may make the following observations. As M increases, o,
decreases (moving farther "below" the fixed o) and ©; increases (moving farther "above" the fixed ®,).
Thus, a bandwidth defined as o, - o, (for a fixed value of ®,) increases as M increases.

M can be increased various ways but in this analysis all such changes are subject to the constraint of
holding w,; fixed; the constraining equation [Eq. (5.64)] is repeated for convenience.

-

1 m 1
Oy == |5 " —|
C\rt+m mr

From the definition of M one obtained Eq. (A.12.6) repeated below.

M= (A.12.6)

~
r* + mAHw,C,

The last two equations will be used to discuss three cases or ways to increase M and thus increase
the bandwidth or flatness of ’S/VH' and IE/VH | In all cases o, 1s held fixed.
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Case 1 Fix C, (vary m and m,)

With both @, and C, held fixed, Eq. (A.12.6) shows that M can be increased by decreasing m. Since
m = m, + x and for m,; + x > 0, one observes that m can be decreased by decreasing the mass of the
head, m,,. Thus, for Case 1, decreasing the mass of the head increases the bandwidth and "flattens” the
frequency response for |e/VH| and | E/V, | For Case I, Eq. (5.64) shows that as m is changed m, must
also be changed to hold o, fixed with C, also fixed. It turns out (as will be shown) that if m > r then
as m is decreased m; must be increased to comply with Eq. (5.57) and if m < r then m; must be
decreased as m, is decreased. For m = r one requires the largest value for m; to comply with a fixed
value of 0, and C, in Eq. (5.64). Since the usual situation is for m > r, then for Case 1 it is concluded
that the usual design trend calls for a smaller head mass and a larger tail mass in order to flatten the
frequency response and increase the subject bandwidth o - ©, for %SNHI and IE/VH |.

The behavior of the quantity m/(r* + m?) vs. changes in m determines what changes in m. are needed
in the above discussion. The graph of this function was discussed in Sec. A.8 in conjunction with Fig.
A-1 and Eqgs. (A.8.16) through (A .8.18).

Thus, as shown in Fig. A-1, for m < r the slope is positive, for m > r the slope is negative, and for
m = r the function has a maximum and the value of the function at m =r is 1/2r.

Case 2 Fix m; (vary m and C)

With both o, and m, held fixed, it is convenient to solve Eq. (5.69) for C, obtaining the following.

c -1 ( m_ . _L), (A.12.17)
r2

ol ]
4 + - m
® el m T

Also, use C, from this last equation to rewrite Eq. (A.12.6) as
|

2
0
M = o :mz) w":( m - ) i] (A.12.18)
“ rt + m? my
and
M = L :
i (m . 72 4 mz] (A.12.19)
i

Again in Case 2 as in Case 1, one observes [from Eq. (A.12.19)] that M is increased as m is
decreased. Thus, once again, the bandwidth and flatness of ls/VH! and IE/VHI are improved by
decreasing the head mass. In Case 2, m; is held fixed so according to Eq. (A.12.17), C, must be changed
as M is changed.
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As before, using the behavior of m/(r* + m?) one concludes that if m > r then as m decreases C, must
be increased, and if m < r then as m decreases C, must be decreased and for m = r one requires the
maximum value for C,. Since the usual practical situation is for m > r then one obtains the conclusion
that as my is decreased, the compliance C, must be increased to maintain a fixed frequency (in this

case ).

How would the compliance C, be adjusted? Recall Eq. (4.18).

L
g=g+$x.

[4

In the case where C, needs increasing, one could increase the compliance C; of the FTR. Better yet, one
could increase the length L of the CSA if geometric constraints permitted, and this would have the added
benefit of decreasing the electric field . One could also decrease the area A, down to some lower limit
corresponding to mechanical stress and strain limits.

Case 3 Fix my (vary m; and C,)

With both o, and m,, (and, thus, m) fixed one can consider varying m, and C,. Equation (A.12.19)
shows that M can be increased by increasing m,. Thus, once again, it is concluded that the larger the tail
mass (with m, held fixed and C, adjusted to hold o, fixed), then the better the subject bandwidth and
flatness of the quantities |E/VHr and |e/VH | Equation (A.12.17) shows that as m is increased then
the compliance C, must be decreased to maintain the fixed frequency o,.

How should C, be decrecased as my is increased? From Eq. (4.18), one could decrease C, by
decreasing L, but this would increase the electric field. One could decrease C, by decreasing the
compliance C; of the FTR up to the limit of removing the FTR entirely. One could further decrease C,
by increasing the area A_, which would in turn reduce the mechanical stress and strain.

SUMMARY

In summary, one may state that for the usual practical case of m > r then the smaller the head mass
and the larger the tail mass the better the bandwidth, o, - o  for a fixed ©, and correspondingly the
flatter the frequency response of la/VH | and | E/V, |

In the above analysis, the value of IS/VH | at the ends of the frequency band were constrained to be
proportional to the value at the frequency © = o, [sce Eqgs. (5.89) and (5.90)]. Ato = o, IaNHI was
given by Eq. (5.74)

2y

1 re
wldy \ r? + m?

<
v,

W=

Equation (5.74) shows that as m is decreased the value of ’s/VH| at ® = o, is increased; that s, it
requires a higher electric ficld to achieve a given velocity, V,,, and, thus, to achieve a given source level.
Therefore, as m 1s decreased to obtain a flatter frequency response, the required electric field is increased,
not only at @, but at the end points [Egs. (5.89) and (5.90)]. The electric field could be held constant
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by increasing L, the length of the CSA, as m is decreased to flatten the frequency response of |8/VH|
and |E/VH| . However, according to Eq. (4.18), one would also have to increase A_ and/or decrease C;
in order to maintain the desired value of C,. Thus, any time m is decreased (Case 1 and Case 2 above)
there is a penalty; namely, L and perhaps A_ must be increased in order to not exceed a given field limit.
Increasing the length L of the CSA usually leads to an encounter with a length constraint for the
transducer design. Among other things, it is this length constraint that often leads the designer to operate
at the highest practical value of electric field.

In Case 3, m, (and, thus, m) was fixed but the tail mass m; was increased in order to flatten the
frequency response (and C, was decreased to keep o, constant). In Case 3, one observes that there is no
electric field penalty for increasing the tail mass, m, if m,, is being held fixed. One might ask, however,
how is C, to be decreased as required. According to Eq. (4.18), one could shorten L, but this would
increase the field requirement. Alternately, L could be held fixed and the area, Ac, of the ceramic could
be increased to stiffen the CSA (decrease C,). In a sense, there is also a penalty for increasing m,, but
increasing the area A, may be possible whereas increasing the length L (when m is decreased) is usually .
a more severe space constraint penalty.

A.13 DERIVATION OF C, FOR FIXED END POINTS CONSTRAINTS

A derivation of Eq. (5.104) for C, as used in Sec. 5.2.2.6.2.1 is presented. Equations (5.105), (5.106),
and (5.107), respectively, are repeated for convenience.

where

N
n
1
o
~~
(4
=~
|
K
[ 8]
SN
<
N
~
+
=
~
+
3
S
-

and o was defined by Eq. (5.108)

<
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The starting point is to use Egs. (5.101) and (5.103) to form the following ratio

kIL? _ By,

. (A.13.1)
kL By

Where B, was given by Eq. (5.13)

and E, by Eq. (5.11)

E, = (oﬁce - —1-]
my

and B, is B, with = 0, and By, is B, with ® = o,. Similarly, E  is E, for ® = o and E is E, for
0 = Q.

Using o from Eq. (5.108), write

o? = f.L_ _ Bu (A.13.2)
ky By ‘

Use Egs. (5.13) and (A.13.2) to write

w?[P’Egy + (1 - mE, Y| = r’Ey + (1 - mE,), (A.13.3)

“2[(’2 + mAEyy - 2mE,, + 1] = (r* + mME, - 2mE,, + 1, (A.13.4)

and

* + mE>, - «’EL) - 2m(E,; - «’E,) + (1 - o) =0, (A.13.5)

Next use E, from Eq. (5.11) to form E, and E_, and continue as follows to form the desired quadratic
equation for C,.

2 1
E, = (che - __)’ (A.13.6)
my

2 1
E, = (wuce - —r;z-]’ (A.13.7)
T
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- W%E,) = @3C, - - - ¢?|eiC, - 2 A1338
(EoL o Eou) = w;C, ;;“T o (‘*’Uce 7’;)’ (A.13.8)
(E,, - @’E,p) = (mi - ozzco%,)Ce -1 - az)—l-—, (A.13.9)
my
also
1Y 2 1V
EX - «®E2) = |oC. - | - adeiC - =], (A.13.10)
(oL oU) (Le mr] ( uCe mT]
263C 1 2(0%,6' 1
2 202 4.2 L 4 2
(B - @*Eqy) = @;C, - v - a?|eyCy - e - L1, (A.13.11)
My mr my ms
and
2 22 4 2 4\~2 2 2 2 2 a1
(Bar - @°Egg) = (01 - @Poy)Ce - = (o - o®wyC, + (1 - af)—=;. (A13.12)
T mT

Equations (A.13.9) and (A.13.12) may be used in Eq. (A.13.5) to form a standard quadratic equation for
C. as follows.

aCl +bC, + ¢, =0. (A.13.13)

The "temporary symbols" a,, b, and ¢, are defined by Eqs. (5.105), (5.106), and (5.107) above. Provided
a,# 0, then use of the standard quadratic formula yields Eq. (5.104) as desired. If a,= 0, then one has

c = _& (A.13.132)

A.14 EQUATION FOR C, FOR SPECIAL CASE 1 (o =1)

To derive an equation C, for o = 1, one may proceed as follows. Recall Eq. (5.105)

2 2 4 2,.4
a, = (r° + mHYw;, - a‘wy).

For a = 1, obtain
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.. (A.14.1)
Recall Eq. (5.106)

2 2
b, = ~2w; - wPep) T 4 m]
T
For a = 1, obtain
2 _ 21t v m? A142
bt="2(b)L—b)U)———-———+m (”)
T
Recall Eq. (5.107)
2 2
¢, = |1 L 2m L gl - oY),
my My
Fora =1,
¢, =0 (A.14.3)
These values used in Eq. (5.104) give
C = b + b (A.14.4)
¢ 2a, 2a

Note from Egs. (A.14.1) and (A.14.2) that b/2a, < 0 and, thus, we must choose the minus sign, giving

_ b b (A.14.42)
¢ 2a a,
Therefore, for o = 1, one finds
, 2 2
2(wL—co?J) Tl osm
m, (A.14.4b)
Ce = 2 2 4 4
r* +m )(wL - wU)
or
2 2
c, - 2w} - vy : ( m__ ., _1_] (A.14.4¢)
(0F + opfl - o)\t m?

which gives Eq. (5.104a) as desired.
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C = 2 m + _1_ .
e 3 ) 2 2
(.)z + (,oz] r- -+ m- my

A.15 DEMONSTRATION THAT o, <o, <o, FOR a =1

For Special Case 1 (i.e., for o = 1), we wish to prove Eq. (5.113)

0, <0, <oy

By assumption o, < o, so

W) < Wy, (A.15.1)
201 < ) + 0y, | (A.15.2)
. 2, 2
W2 < WL "’U’ (A.15.3)
2
but Eq. (5.112) showed
’ “ bl
2 WLty
w,; =
el 2
Thus,
wi < o)fi (A.15.4)
and
W, < w, (A.15.5)
|
| Similarly,
! 0l + @l ol + @l
; U v, Yu L , (A.15.6)
| 2 2
S0,
A 0)2 + Q)i
Wl > u , (A.15.7)
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m?, S ooi,., (A.15.8)
and
W, < Oy, (A.15.9)
Combining Egs. (A.15.5) and (A.15.9) gives Eq. (5.113) as desired.
A.16 DERIVATION OF EQS. (5.121), (5.123), AND (5.124)
Recall Eq. (5.101)
L%} = B,
Recall Eq. (A.9.5) for B,
B, = (r* + m)(@? - 0Pt + L (A.9.5)
rt+m?
for ® = o, this gives
2 2 2 2.2 ~2 r2
B, = (r* + mI)(0 - 0,)°C, + ——. (A.16.1)
r? + m?
However, for Special Case 1 (i.e., o = 1), recall Eqs. (5.112) and (5.104a)
2 mi + ‘0%1
(’Jei = 2
and
c - 2 m . 1 .
e o) o} s S
0 + WG \TT + m” my
Use these last two equations to rewrite Eq. (A.16.1) as follows:
: W+ 0 ’ 2 2
BlL = (r2 + ’nz) i Py + _1__ ((.Oi - = ) ” 2 " + 4 (A.16.2)
re+mc My 2 (,)L+(,o‘l'] r2+m?

and
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bl - -
m 1 )| Wy~ rt
B, =(r*+m? +
1L 2 2 2 2 2 2
re+m Mr) |+ oy re+m
Define [Eq. (5.122)]
R
2 2)*
2 Wy~ Wy
by = 2 2
Wt Wy

Use Eq. (5.122) in Eq. (A.16.3) to write

2 2 mn ]. 2 7
- - “ 7
Bll - (’ +m ) + — btz +

Use Eq. (A.16.4) in Eq. (5.101) to write Eq. (5.121)

2, 2

r-+m my

b

- o)
2 m 1] ,2 re
kiL* = (r? +m’)( + ——] b, +

Now continue as follows to produce Eq. (5.123).

Rewrite Eq. (5.121) as

2 2

m* 2m  r*+m? r?
kZLz = e 2 + + b122 + Py 3
re+mc My my re+m

8kl 2mby) | (rP+bam?) (2 omy s
= -2m + + by,
om  rlem? (r? + m??

and

_;.kf 8L" ___m [bé(r2 +m?) - (r?+ b,:;mz)} + —1—(1 + _n_zz_)bé,

dm  (r? + m%? ml m?

which yields Eq. (5.123) as desired.

(A.16.3)

(A.16.4)

(A.16.5)

(A.16.6)

(A.16.7)

(A.16.8)
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1,28L% m 2,2 1 m\, 2
L2807 o2 - D]+ 1+ )62,
) L 6m (r2+n22)2[ ( 12 )] mr( ] 2

Now consider b?, - 1 using Eq. (5.122)

2
2 2
X Wy ~ W
2 2 2|
W, + Wy
where
2 _ < < + 0
Oy — 0 < Wy < R+ Oy,
2 2 2
Wy -~ Wy <@y *+ W,
and
2 2
Wy - W
U L o
2 2
Thus,
R
2 < 1
so as desired
)
blZ - 1 < 0-

A.17 EQUATION FOR C, FOR SPECIAL CASE 2 (o = 0,/0,)

To derive an equation for C, for Special Case 2, one may proceed as follows.

equivalent to Eq. (5.127)

®
L
0 = —,
Wy

Recall Eq. (5.103)
a = (r* + mH(w] - oczw?j)-

For a = o, /w, obtain

(A.16.9)

(A.16.10)

(A.16.11)

(A.16.12)

Special Case 2 is
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o
0, - (r?. + "12) w‘;, _ :'w‘:] , (A.17.1)
U
or
a, = (r*+ mz)(wz - wiw%,). (A.17.2)
Thus,
a, = (r* + mz)wi(coL - w:;,) (A.17.3)
Note that since ©, < o, then -a, > 0.
Recall Eq. (5.106)
b, = 2(w; - oczwfj) LA
m;,
For o = o /0, obtain
2 (02 2 - 2
bt = 2] - L Wy r-+m- ml. (A174)
2 m;
7
Thus,
b,=0 (A.17.5)

Recall Eq. (5.107)

(r2 +m*  2m
¢, = |——— +

__+1](1—
m
_IJI_

o)
my

For a = 0 /o, obtain Eq. (A.17.6)

9 “
re+m-
¢, = |—— +
¢ 2
mr

These values [Eqs. (A.17.3), (A.17.5), and (A.17.6)] used in Eq. (5.104) gives

2m
My

(A.17.6)

(A.17.7)
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Since C, > 0 and -a, > 0 and C, > 0, one chooses the positive sign; therefore,

c =+ |, (A.17.8)
-a,
Using Eq. (A.17.3) for a, and Eq. (A.17.5) for ¢, gives
2 2
rPem® 2mo )L G2
— T — - (A.17.9)
my my Wy
C =
¢ 2 2,2 2, 2
(r° + m9H(wy - wpoy
or
2 2 W - w21
(o | E S O R S o) S (A.17.10)
my Wiy r* e m®l ol - o)ZJ 00’

which gives Eq. (5.104¢) as desired

) )
c =L J|rtm 2m o gL
2 2 2
my My re+m

A.18 DERIVATION OF 6B, /6m; FOR SPECIAL CASE 2

The starting point for the derivation of an equation for 8B, /6m, was Eq. (5.13) for B,.

B, =r’El+ (1 -mE) .

Recall that B,. [see Eq. (A.11.2)] is B, for ® = ©,. Thus,

B, - r’EL + (1 - mE, ) (A.18.1)
where E , is E, for o = o,
OB ... OF OE
* = 2r’E,, —% - 2m(l - mE, )—= (A.18.2)
dmy dm dmy
and
6B , , oy
le 2[(r‘ + mE,, - m] e (A.18.3)
dm, dm,

Define F,, as
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= (r2 2
F,=@*+m)E, -m (A.18.9)
Recall Eq. (5.11) for E,
E, = w2Ce -1
my
so,
E = 1
e = W,C, - — (A.18.5)
my
Recall Eq. (A.10.40)
2 1 3
W, = -C—-\/Me. (A.10.40)
€
Thus,
20 - A.18.
wiC, = M, (A.18.6)
Use Eq. (A.18.6) in Eq. (A.18.5) to write
E,-M, - >, (A.18.7)
m;
Use Eq. (A.18.7) in Eq. (A.18.4) to write
F,- "12)(Me _ _1_] . (A.18.8)
My
Next, recall Eq. (A.10.46)
2 2
Mez - _L + 9 nl o) + b r 3
me e m?l (PPem??
Thus,
(A.18.9)

2 [rt+m? ’
NI
(r*+mM, = | T—=— + m| +1?

and
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2., .2 2
r*+mHM, = J(r ML m) +72, (A.18.10)
g

Use Eq. (A.18.10) in Eq. (A.18.8) to write Eq. (5.131) (reprinted below) as desired

ri+m? : ré+m?
2
Fe1= +m| +rc - + mi.
my my

It should be noted that F,, > 0 for all values of m; and m.

At this point, we now have [from Eqgs. (A.18.4) and (A.18.3)]

9B, _ 0L, (A.18.32)

- le !
dm, om,

We need an expression for 8E_/6m,. Using Eq. (A.18.7) above, write
8E, &M, 1
+

5 = 5 — (A.18.11)
My My mg
Use Eq. (A.10.46) to form 6M,/8m.. as follows
1 m Y r’
o —  + + 9
oM, ) \(’"T rt o+ ;112] (r® + m?? (4.18.12)
dm, om, ’
oM
e Lol _m ) 1) (A.18.13)
6mT 2Me my rt o+ m2 m%
and
oM -
e Y1, m |1 (A.18.14)
omp  Mjimp  r? o+ m?)md

Use Eq. (A.18.14) in Eq. (A.18.11) to write
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0B, _ 1 (L, _m (A.18.15)
on 2 M \n 2 2
r m e\Mr 1r°+m
or using Eq. (A.10.46) for M,
(—.L + : m q]
0F, _ 11 _ M 77+ m7 (A.18.16)
om 2 2 2 '
Ty 1 m . re
i My r* e m? (r? + m?? ]
If one identifies F,, as
E
. OEe (A.18.17)
e2 ’
dm,

one obtains Eq. (5.132) as desired. It should be noted that F, > 0 for all values of m and m..

A.19 DERIVATION OF 6B, /6m FOR SPECIAL CASE 2

The starting point for the derivation of an equation for 6B,,/dm was Eq. (A.18.1) (see Sec. A.18).
Thus,

6B, _ ‘5[r255e + (1 - "150)2] (A.19.1)
om dm ’
0B . OE OmE
e = 2%, —% - 21 - mE)—2, (A.19.2)
om om o &m
but
dmE, g +m 3E, (A.19.3)
dm 0 om )’
SO
108, , OF, OE, (A.19.4)
= =rE -1 -mE)}E +m ks
2 6m % &m ( )\ Eoe om

and




130

Carson and Walden

Recall Eq. (A.18.7)

thus,

Recall Eq. (A.10.43)

or

Ne

and

16 OE
E ﬂlle ) [(r2 * nl2)Eoe - nl} 6’;;8 - Eoe(]' - mEge) .
1
EOe - Me - "77:
3E,, ) M,
ém om
Mz = 1,, + ?m — + 1 .
my  Mrc+m7)  r°+m’
M, = -—1: + 2m 1 1 ,
my  \™r re + m*
6Me - 1 _%_ 1 _ 2!_7‘1- i1 2m
om  2M,|mypr* + m* My r? + m?|
oM . .
e _ 1 — re + m°c - _@ + 1nzan R
om M, (r* + m*'m, my
oM, 1 , . .
= Il .9 r" + ”lk - 2’11“ - nznzT)’
om mpM, (r* + m~)"
oM . R
- = { - 0(7“' -ms - mm;r)a
om meM, (r* + m?)°

(A.19.5)

(A.19.6)

(A.19.7)

(A.19.8)

(A.19.9)

(A.19.10)

(A.19.11)
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oM, r* - m(m + my) (A.19.12)

om  m M, (r* + m*?

Use of Eqs. (A.18.7) and (A.19.12) in Eq. (A.19.50) yiclds a general expression for 1/2 §B,/ém.
However, due to the apparent complexness of the gencral form, only the special case where m; —> oo was
given consideration.

If 2m/m, << 1, then Eq. (A.19.7) becomes

Mo | Lo 1 (A.19.72)
m;f re+ m°

If 1/m2 << 1/r* + m?, then

M o« — (A.19.7b)

Under these same conditions,

1
Eoe o Me = ‘—ﬁ——"": (A.18.78)
re+m°
and
oM - -
¢ n = m (A.19.122)

om M, (* +md (P + mHP

Using these approximate values in Eq. (A.19.5) yields

1 8B,, - (r® +m? o { i —mq .,] _ 1 - m (A.19.52)
2 om \/’r’iTm—z (r* +mH¥? Jriem? JrZ+m?

and

(A.19.5b)

1 6Ble -1 [ 3 2 2 2 2 m
- = myrs+m*-m*+ (@ +m)1 - ———
2 8m (2 + mz)s/zl ( ) ‘/r_2+_m_2

or Eq. (5.133) as desired.

6B, _ -2r?
ém (r2 + m,2)3/2 '

Eq. (5.133) may also be derived directly from B,, with m = c.
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A.20 DERIVATION OF EQS. (5.134), (5.135), AND (5.138a)

Recall Eq. (5.134)

2 2
(] W
k,?L2=r2 ~—£Me——l— +11 - m ———LMe—-l—
Oy my oy my
The starting point for deriving Eq. (5.134) 1s Eq. (5.101) reprinted here.
kiL* = B,
For B, recall Eq. (5.133)
B =rE, + (1 - mE)".
Evaluate B, at © = o, to yield
B, = r’El + (1 - mE,)*, (A.20.1)
where E | 1s E; with 0 = o,
Recall Eq. (5.11)
E, = &°C, - L
¢ my
S0
E =woC - 2 (A.20.2)
0L L e Y . .
my
However, for Special Case 2, recall Eq. (5.104d) |
c, -1 m,
0wy,
Thus,
E oo Yt L (A.20.3)
olL e
W@, iy
and
)
E, - —tm, - L (A.20.4)
Wy my

Use of Eqs. (A.20.4) and (A.20.1) in Eq. (3.101) viclds Eq. (5.134) as desired.
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Next, we derive Eq. (5.133) repeated for convenience.

=
my W\ Mr

Start with Eq. (5.101) (repeated above) and write

kf 8L 6B,

dm,  dm,

Next, use Eq. (A.20.1) to write

286L° 2 W (P e m? A
k = 2 =+ m*l(F,)F, -
LBmT ( ]( IL( L

0B .. OE OE
L 2r'E oL _2m( - mE ;) oL
dmy omy My
or
5B 8E, . .
g 2—01‘[(r" + mI)E,; - m].
om, omy

Use Eq. (A.20.4) and write

6E0L ) _ull; oM, . 1
om, 0y om,. 2’

Recall Eq. (A.18.14) for 8M,/dm .

oM, (1, m |1
dm, M\ m, 2 '

Use Eq. (A.18.14) in Eq. (A.20.8)

8B, [y e 1f1 ., _m
dm, mi 0y M\ m, 2

Define F,, as

w
F,=(1-2e 1t _m
Wy Mi\my  r? +m?

L

Use Eq. (A.10.46) for M, in Eq. (A.20.10) and obtain Eq. (5.136) (reprinted here)

Wy
o

(A.20.5)

(A.20.6)

(A.20.7)

(A.20.8)

(A.20.9)

(A.20.10)
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2
1 m r
— +
mp r?+m? r? + m??

Note that since o /o, < 1, then Eq. (5.136a) is obtained.

F,>0.
Use Eq. (A.20.10) in Eq. (A.20.9) to write
OF
. Lp (A20.11)
om, m%
Use Eq. (A.20.1)1 in Eq. (A.20.7) and write
6BIL 2 2 A
ol = F [0+ mDE, - m]. (A.20.12)
r  mr
For convenience, define F, as
FtL - [(r?. + nl?.)EOL _ ’n] (A.20.13)
and write
OB
L. 2pF . (A.20.14)
R 2 T WL L
o my

Note that since F,, > 0 [see Eq. (5.136a)], the sign of 6B, /0m; is determined by F,. Therefore, continue
manipulating F,, as follows. Use E, from Eq. (A.20.4) and write

. @ 2 2
F, = (r* + mH—M, - (’_J_’"_ + m}, (A.20.15)
(.-)U mT

Recall Eq. (A.18.10)

re+m? i
r* +mHM, = ( * m] 12,

ny

Use this in Eq. (A.20.15)




Transducer Design and Analvsis 135

FtL=_(ili\J(r~+m‘ +m| +r*- remc, m) (A.20.16)
0y m, my
or
O (rt+m? r Oy
F,=-*L +m 1+ - Z
i : A.20.17
U( my J r2+mz+m2 W, ( )
my
Define F,; as follows to obtain Eq. (5.137)
72
F, = |1+ - 5
re+mt
+m
Thus,
(4] 2 2 (4]
F, = L™ , ullF, - Y (A.20.18)
(.OU my - (.oL

Use Eq. (A.20.18) in Eq. (A.20.14)

6B, _ 2 i"i[ﬁ;f_i”_' ; m) (Fu)(FzL - i"_y) (A.20.19)
dmy  mp ooy my W,

Eq. (A.20.19) used in Eq. (A.20.5) yields Eq. (5.135) as desired.

Next, we derive Eq. (5.138a). Start with Eq. (5.138).

®
FQL——Q 2 0.
Wy

Use Eq. (53.137)

r2 + m2 2 O’)L ) (A.20.20)

Continue manipulating as follows:
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1 r? 0y
e i 2 2 2 (A.20.21)
_’;__._—.l— + m L
mT

(A.20.22)

(A.20.23)

(A.20.24)

(A.20.25)
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A21 DERIVATION OF EQS. (5.147) AND (5.149)

Recall Eq. (5.147).

NA_ d
CT = 0133 ,
833ic

The starting point for derivation of Eq. (5.147) is the definition of the low frequency capacitance C;
for the N ring CSA. Since the N rings are wired in parallel, C; is N times the capacitance of one of the
ceramic rings (all assumed to be identical). For one ring, the capacitance is A g}./1.. Thus, for N rings,

c. - M, €% (A.21.1)
T 1 ¢

4

One important piezoelectric ceramic parameter relation is as follows:

dy
83 = - (A.21.2)
€33
Thus,
€5 = s | (A.21.3)
833

Use of Eq. (A.21.3) in Eq. (A.21.1) vields the desired result; namely, Eq. (5.147) above.

Next, recall Eq. (5.149).

. (wNd,,)*

The starting point to derive Eq. (5.149) is to compare the defining equations for E_ and I, [Egs. (5.11)
and (5.17), respectively].

E, = wC, - 1
and
I = o%C] - L

We need an equation relating C, to C.. Recall Eqs. (4.18), (5.18), and (4.4) reprinted below
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L
Ce = SBI;_ + CF’
AC
L
Cl=88= + Cp,
AC
and
D E
S35 = S35~ 833433

Use Eq. (4.4) in Eq. (4.18) and write
_faD L
C = (Sss * 83 d33)‘A— + Cp

[4

and

[ 4

c, - (s;;Ai . cp] v g d

Note from Eq. (5.18a), we may rewrite Eq. (A.21.5) as

/ L
C,=C + gsadas;‘i"
c
Note: Eq. (A.21.6) is equivalent to Eq. (4.5a).
Use g,; from Eq.( A.21.2) in Eq. (A.21.6) to write
Ce = Ce/ + d;3 L
Ace33

Rewrite as follows:
2
e +

C,=C -
NA¢'€33

Recall Eq. (4.3)

Rewrite Eq. (A.21.7a) as

33A'

(A.21.4)

(A.21.5)

(A.21.6)

(A.21.7)

(A.21.72)
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C, = Cl + N*dj,—*—. (A.21.8)

Use Eq. (A.21.1) for C; in Eq. (A.21.8).

2
Cc =c¢ + (Nds3) (A.21.8a)
e e CT
Use C, from Eq. (A.21.8a) in Eq. (5.11) to write
2
E -lotc! - 1), (N (A.21.9)
° ©omy C;

Using the definition of I, from Eq. (5.17) in Eq. (A.21.9) yields the desired results; namely, Eq. (5.149).

A.22 DERIVATION OF EQ. (5.152)

Recall Eq. (5.152)

r-_1 _(,)_i(wi,-wf,,)

2 2 2 )
(J)n/ CT wm ((.On/ - (.Ob
The starting point for the derivation of Eq. (5.152) was Eq. (5.151).

1 (w,Nd,Y my

= R
(Oi,CT CT (1 - mHIO)

with I, evaluated at ® = ©,. In Eq. (5.151), recall that ® = @_.. First, we show that

My _ 2 Mymgy 1
) S - wi). (A.22.1)

nl

To do this, recall @, (the in-air resonance frequency from 1/V,) was given by Eq. (5.27)
> 1 ( 1 1 ]
W, = —— * —
C,\My Mg

thus,
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c! - L(L . _1_], (A22.2)

/ 1
I = wC, - —
to yield
o
rf,. =1 .1y 1 (A.22.3)
T WE\my mp) my
Use Eq. (A.22.3) to write the following:
my _ my
1 - myl oro w2, 1 1 my (A.22.4)
Tl s my S — v — |+ —
wi my mp my
my my
= Py N
L=myl| LS Ggmy (A.22.5)
P i L
my my
—_— = .
1 mHIowwn, ] i"_n_’ R P (A.22.6)
@ My W,
my ) ny
1~ mHIowmn/ . “Ji’ . my ‘ (A.22.7)
w My

and
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my 2 My 1

— =W . A.22.8

1 - myl, “my + my) (oo2 - w2) ( )
w=wn/ n n!

Multiplying the right side by -1/-1 and rearranging yields Eq. (A.22.1) above.
Second, show that
o Nd,, W', (m, + m 2
(_n’c_aa) L L O O gy, (4.22.9)
T

2 2
2 0 mgm
W, O, wMr

To do this, recall Eq. (5.28)

=

£

[

C
C

[ 3

e

E
o~

and Eq. (A.21.8)

C =
4 CT
Use C, from Eq. (A.21.8) in Eq. (5.28) to write
W, _ La L (Ndy,)?
w,2,, Ce/ Cr
Rewrite Eq. (5.27) as
1 2 mymg
(o Tyt mp)

Use 1/C! from Eq. (A.22.11) in Eq. (A.22.10).

2 mymp  (Ndy)?

=] + u
(my + mp C,

SSN l =8w

or

(A.22.10)

(A.22.11)

(A.22.12)
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2
Wdyyy™ 1 (my *mpf e, (A.22.13)
Cr @ (mymp | 2
or
Nd,.) 2
Wdy)” 1 (my M) (02 - o2). (A22.14)
Cy Wil (mymg
Multiplying both sides of Eq. (A.22.14) by w? yields Eq. (A.22.9).
Third, use Eqs. (A.22.9) and (A.22.1) to write
) 2 2
(w,Ndyy) My @0, (mytmp), _ o2\ e 1 (A.22.15)

= Py n m
Cr (L-myl) w;wi, (mymp) Ty, +my (“’;2;’ - 03:2:)

or
2 2 2 2
(0 Nds  my | @ (o o) , (A.22.16)
)
Cr  (I-myl) 0, (wi, - wi)
with I evaluated at © = o,
Use the results of Eq. (2.16) to rewrite Eq. (5.151) as follows:
1 W@, - et @0 - e,
T = m _n ot n_f nin (A.22.17)
2, 2 2
w ’CT wm((*),,/ - (‘)n)

which yields the desired result; namely, Eq. (5.152).

A.23 DERIVATION OF EQ. (5.153)

Recall Eqs. (5.153), and (5.154), respectively.

I A,
Vy gsslc{

where
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Eo
IO/ = Io - m’-’I‘C .
T

The starting point for the derivation of Eq. (5.153) was Eq. (5.142) (reprinted here)

Soo A jqemnysin ) — B i -mE)).
Vy 831, ° * il wNd,, °
First note that
1. A 8l (A.23.1)

ONdy; gyl NAdy, '

Recall Eq. (5.147)

NA_.d
CT = Cc*33
8xl,
Thus,
1 . A 1 (A.23.1a)

wNdy; 8331, CT'

Use Eq. (A.23.2) to rewrite Eq. (5.142) as

1. A A
=S [ -ml)+irl ]+  [rE -i(1-mE A.23.2
V. g33lc[( o) tird ] i‘*’PCTgsslc[ , ~ i 8] ( )
or
Ll A T omlyr il 1+—L _[rE -i(t -mE )] (A.23.3)
Vi 83l. ° 7 ielCp ° °
or
1 A 1 - mE E
—=—""{i1-ml - { J +irll, - — (A.23.9)
Ve Zsl. ol'C, wr'C,
or

li Ac 1 Ea . Eo
_— 1- J - m(lo - J +zr(10 - ] . (A.23.5)
Vu 831, ol'C, ol'C, ol’'C,

Using I! as defined by Eq. (5.154) yields the desired results; namely, Eq. (5.153).




144 Carson and Walden

A.24 DERIVATION OF EQ. (5.171)

Recall Eq. (5.171)

1_1
Z E
or
L
1.0 A241
z E (A.24.1)
Vu
Recall Eqs. (5.10) and (5.16). respectively.
E 1 ,
—_ = rE - i(l - mE
v " g U - mE)]
and
A
L Lo (t-mp) + i1,
VH 833t
So,
1 _ ‘WNA_ dyy, [(1-ml) + irl ] (A.24.2)
Z 81, [PE, - i1 - mE)]
In-air r= 0 and m = m, so
1 WNA, d (1 - myl) (A.243)
Ziu-air 83310(_1)(1 - lnH EO)
or
1L Medn (4 - myl) (A.24.4)
Ziu—air g33lc (1 - mHEo)

Recall Eq. (5.147)
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) NA dy,
r s ——.
831,
Thus,
1 . ,-wcTil__“Jﬁff__I_«’l, (A.24.5)
Ziu"a!r (1 B ’nH EO)
Next, recall Eq. (5.149)
wNd..)?
Eo=10+————( )
¢y
Thus,
[ =g (oNdy (A.24.6)
o 0 C
T
Equation (A.24.6) used in Eq. (A.24.5) yields
(wNd,,)*
. VomyB, +my—o (A.24.7)
= =ieC, I _
in-afr (1 nzH EO)
or
U ec |y« N my (A24.8)
ot CT (1 - mI{Eo)

and

So
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Use of this C, in Eq. (5.11) gives

Thus,
w? my my
myE = —|1 + —| -~ —
w), My) Mg
So,
My w? my
1-myE =|1+— —-—2—1+—
my iy m;
or
n w2
1 -myE, =1+ 2|1 - =
my W
or
my _ Mgmy 1
1 -mykE, (my + my) 1 -9
2
wm
or
my 2 Mgmg 1

—_— =0 .
(1 - myE) "(my + my) ("an - w2)

Recall Eq. (A.22.14)

(Nd..? (m,, + m,) ”
1) _ 01 _ T (mz _ ﬁ)fn)-
C, Wi’ (mymy)

(A.24.9)

(A.24.10)

(A.24.11)

(A24.12)

(A.24.13)

(A.24.14)

(A.24.15)
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So,

(WNdp)* 2 (my + my

C 2.2 (m,n
T Wi (mgmp)

(wr - o). (A.24.16)

Use of Eqs. (A.24.16) and (A.24.15) in Eq. (A.24.8) gives

2 2 2 2

_L O P (my + my)  mymy (‘*’n - “’m) (A.24.17)
T i a1

Z, g 0,0, (mymyp)  (my + my) (w,zn - co2)

_,?'__“_"’_'") (A.24.18)
in-gir ® ((.oi - (.02)

2. .2
m (A.24.19)

and

(A.24.20)

Factoring out @, in the numerator yields the desired results; namely, Eq. (5.171).
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Appendix B

PRACTICAL ILLUSTRATIONS OF THE SGM ANALYSIS

B.00 PRACTICAL ILLUSTRATIONS OF THE SGM ANALYSIS

In an effort to insure a clear understanding of several key expressions presented in Sec. 5, this appendix
presents graphical illustrations of these analytical results using a simple SGM-based computer program
(with various subroutines) written in Matlab®, a numeric computation and visualization software package.
By design, these programs make use of the fundamental expressions of the augmented SGM [primarily Eqgs.
(5.10) and (5.16)] and do not make use of the other pencil and paper derived equations in Sec. 5. (In order
to distinguish between the equations used in the SGM-based numerical model and the other pencil and
paper derived expressions, this appendix refers to the latter category of expressions as "insight oriented"
design aid equations.) If we find that the numerical computer predictions agree with the corresponding
insight oriented predictions, then this fact can be taken as a strong indication that there were no significant
errors in the Sec. 5 analysis.

In order to apply the subject SGM-based computer program, a specific transducer model had to be
produced. For this purpose a simplified version of the TR-330A (a Navy fleet sonar transducer) was
chosen as the transducer to model. The resulting model is referred to below as the "STR-330A” model
as a reminder that the STR-330A model is vastly simplified compared to the complete TR-330A model
used in previous performance predictions, which should be used in any future quantitative performance
predictions for the TR-330A. Please remember, as has been emphasized throughout this report, the STR-
330A Model predictions need only agree qualitatively (not quantitatively) with the design insight data
derived from the complete TR-330A model and/or experiments. In those cases where there is also good
quantitative agreement, this fact represents an unexpected extra confidence factor.

This choice of using a simplified version of the TR-330A as the transducer to model in the SGM-based
computer model was made for two reasons:

1. A great deal of theoretical and experimental TR-330A data exists (for example, see the STRIP
reports) for comparison with the data produced using the STR-330A model.

2. All TR-330A data is UNCLASSIFIED, making it much more useful for our purposes.

[Note that because the graphical illustrations to be presented and discussed in this appendix
are designed to facilitate a better intuitive understanding for the reader, the angular
frequency symbol o (rad/s) given in the text will represented in linear frequency units

(Hz)]
The reader will find that results of the numerical predictions to be presented compare remarkably well

with the results found using the insight oriented design aids derived in Sec. 5. They also have shown to
enhance the clarity and understanding concerning the use of the SGM design aids.
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B.1 THE IN-WATER SGM RESULTS OF THE STR-330A TONPILZ TRANSDUCER MODEL

We will begin testing the simplified model presented in Secs. 5.1 and 5.2 by graphing various
quantities that are pertinent to the electrical and acoustical performance of the TR-330A transducer. This
transducer consists primarily of an aluminum head mass, a steel tail mass, four PZT-4 (Navy Type I)
piezoceramic rings, and two GE-11 fiberglass tuning rings, one located at the front of the ceramic stack
and the other near the rear of the ceramic stack. Specific transducer properties employed in the
performance calculations are given in the following list:

d;; = 3022 x 10-12 m/V (piezoelectric charge coefficient of ceramic ring)
g3 = 24.9 x 10-3 Vm/N (piezoelectric voltage coefficient of ceramic ring)
St = 15.5 x 10-12 m*N (elastic constant for ceramic ring)

S%, = 8216 x 10-12 m*N (elastic constant for ceramic ring)

A, = 88674 x 10-4 m? (electroded area of ceramic ring)

I, = 0.01090 m (length of ceramic ring)

N = 4 (number of ceramic rings in CSA)

St = 114 x 10-12 m*/N (elastic constant for fiberglass tuning ring)
A; = 0.0019 m” (area of fiberglass tuning ring)

I; = 0.0028 m (length of fiberglass tuning ring)

m,; = 0.568 kg (head mass)

m; = 1.53 kg (tail mass)

In addition to these transducer quantities, the radiation loading effects of the medium were also required.
Referring back to Eq. (5.4) in Sec. 5.2, we find that the radiation impedance, Z , is given by

Z =R+iX,

For the purposes of the design simplification, it is assumed that this function can be represented by
quantities, R and X, that have a linear dependence with frequency [Eq. (5.5)].

R=rey od X=xw.

First, realistic values for the radiation resistance constant, r, and the radiation reactance constant, x,
need to be determined for the in-water loading condition. In order to accomplish this, the transducer is
assumed to have the same radiation impedance as that of a baffled circular piston of radius, a, given by

Z =pcna®[R,(2ka)- X,(2ka)] , (B.1)
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with

M X,(2ka) = Z_I(Jgk%a’;i) , (B.2)

where J,(2ka) and H,(2ka) are the Bessel function and the Struve function of the first order.

Upon calculating the transducer’s impedance over the desired frequency bandwidth of 5,000 Hz
(31,416 rad/s) to 15,000 Hz (94,248 rad/s), the mid-band impedance at 10,000 Hz (62,832 rad/s) is chosen
to represent radiation impedance constants in the simplified transducer model. (However, if we wanted
to use this numerical model in an actual transducer design, we could easily modify the model to use the
exact impedance function over the frequency range. This was not done in the following analysis, since
our purposes were to verify the Sec. 5 transducer design aids.) Specifically, the impedance constants at
10,000 Hz are determined to be:

r=02447 ad x = 0.0953. (B.3)

Now that all the needed baseline transducer parameters have been determined, we can make some
pertinent transducer performance calculations, such as the input voltage per unit head velocity (E/V},), the
input current per unit head velocity (I/V,), and the input electric field per unit head velocity (¢/V,;) as
functions of frequency using Eqgs. (5.10), (5.16), and (4.8.1), respectively. The frequency band considered
covers from 5,000 to 15,000 Hz. Plots of the magnitudes and phases of these quantitics over this band
are given in Figs. B.1-1, B.1-2, B.1-3, B.1-4, and B.1-5. It can be easily scen from the IE/VH| versus
frequency plot (Fig. B.1-1), that the in-water resonance frequency, o, is located at approximately 7,500
Hz. From the phase data given in Fig. B.1-2, notice that the in-water phase zero crossing frequency, o,,,
also occurs at 7,500 Hz. (This expected behavior is discussed in detail in Sec. 52.2.2) Similar
conclusions can be drawn when one examines the magnitude and phase plots of I/V,; versus frequency,
as shown in Figs. B.1-3 and B.1-4, respectively. The anti-resonance frequency occurs at approximately
9,500 Hz, the point where lI/VH! is minimum and the phase angle between I and Vy, is 90°; ie., @,.
Using a very conservative value for the electric field of 2 V/mil applied to the transducer’s ceramic stack
assembly (much higher fields may be applied in practice), specific values for the resulting head velocity
(V,), radiated acoustic power (P), and the electrical power input (P,,) are calculated over the frequency
range of interest. The graphs of the magnitudes of V,; and P versus frequency are shown in Figs. B.1.6
and B.1.7, respectively. The graphs showing P,, and the phase between E and I over the frequency band
of interest are provided in Fig. B.1-8 and Fig. B.1-9.

Each of these results for the modeled TR-330A transducer compared very well qualitatively (which
is all that is required for our purposes), and surprisingly well quantitatively with actual TR-330A data,
thus providing a good measure of verification for the simplified guidance model developed in Sec. 5. It
must be mentioned, however, that the results are limited due to the fact that the flexing head and
mechanical losses in the molded rubber around the head, found in the actual TR-330A transducer, have
not been accounted for in the model. Nevertheless, much design insight can still be acquired. In the
following subsections, we will build upon this simplified model, and investigate the effects of changing
certain parameters such as the head mass and tail mass on the transducer’s performance.

B.2 THE IN-WATER SGM RESULTS OF THE STR-330A TONPILZ TRANSDUCER MODEL:
VARIABLE my, FIXED m, AND o,

The next illustration exhibits the in-water transducer performance as the head mass, my, is varied, but
holding the tail mass, m, and the in-air resonance angular frequency, o, fixed. In Sec. 5.2.2.1.2, it is




152 Carson and Walden

stated that the in-water |E/V,| at 0=, [Eq. (5.12)] can be expressed more concisely in Eq. (5.34)
(shown below) as

L1 R )
Hlyeo, Wy Ndm,

This form of |E/Vy| claims that if the in-air resonance frequency @, is held constant, then as m,
increases, the voltage E required to obtain a given head velocity V,; decreases around w,. Since at first
this conclusion seemed to violate experience gained using sophisticated computer models, it was important
to determine if the same conclusion would be drawn by directly evaluating the more general relationship
for -|[E/V,| given by Eq. (5.12) under the same conditions. This was accomplished by solving for @2

in the following form [Eq. (5.24)]:

Using the baseline parameters for C,, m, and m,, this calculation results in an in-air resonance frequency
occurring at approximately 8,100 Hz. This frequency becomes the baseline in-air resonance frequency
w,, for the model. With this same relationship the effective compliance C, may be changed such that for
any variation of m,, the in-air resonance frequency remains fixed. It can be readily seen from Eq. (5.24)
that as m,, is increased, C, must be decreased to maintain this condition. The |E/V,| in Eq. (5.12) may
now be numerically evaluated for the baseline head mass (m,)), a 10% larger head mass (m,+10%), and
a 10% smaller head mass (m,~10%).

Figure B.2-1 shows the computed values of |E/V,| as a function of frequency for each different m,,.
It can be readily seen that the results implied by Eq. (5.34) are, in fact, confirmed; i.e., the larger m,, the
lower the required E to produce a given V, around @, It may also be pointed out that the in-water
resonance frequencies for the three cases of m,; vary slightly. Figure B.2.2 shows the phase of E/V, over
the same frequency band. Since the electric field € = E/l,, the values of |e/Vy| for each m, versus
frequency, shown in Fig. B.2-3, have the same shape as the curves found in Fig. B.2-1. Using each m,
and the corresponding C, required to maintain a fixed value of w_, the amplitude and phase of I/V,; are
also determined and illustrated in Figs. B.2-4 and B.2-5. For an applied electric field of 78,740 V/m (or
equivalently 2 V/mil), the complex electrical quantities E, I, Z,, and P,, are also calculated. Plots of [I],
|[E|*|I| product, and P,, are given in Figs. B.2-6, B.2-7, and B.2-8, respectively. As seen in Fig. B.2-8,
the increased m,, results in an increased input electrical power around resonance.

B3 THE IN-WATER SGM RESULTS OF THE STR-330A TONPILZ TRANSDUCER MODEL:
VARIABLE m,, FIXED m; AND «,

In an analysis similar to the one described in the previous section, this subsection attempts to further
illustrate the effects of changing the transducer head mass m,; on the transducer performance. (See Sec.
5.2.25.) The only difference being that in this case the in-water resonance frequency ®, shall be held
fixed, instead of the in-air resonance frequency w,. Following the derivation presented in Sec. A.10, we
find that the in-water resonance frequency @, for the quantities |E/V,| and |e/V,| is given by
Eq. (5.76)
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2 1 [P @mrm)
(4

@ 2
Co mp(r® + m?)

Using the same procedure as described in the fixed w,, case, along with Eq. (5.76), we determine that
the effective compliance C, must be decreased when my, is increased in order to maintain the fixed w,
condition. E/V, was computed for each of the following three values for the head mass: m,, m,+10%,
and my,-10%. The magnitude and phase of E/V,, for these cases are graphically illustrated in Figs. B.3-1
and B.3-2, while |e/Vy]| is shown in Fig. B.3-3. Similar trends are seen as in the fixed «,, case; namely,
that as my, is increased, E/V, (or equivalently e/V,) decreases around the resonance frequency @, For
this fixed @, case it may be observed in Figs. B.3-1 and B.3-3 that away from resonance there is a slight
reduction in the bandwidth as a result of increasing my,. This trend should become more obvious as m,
continues to deviate from the baseline value. These graphs also illustrate that there are two particular
frequencies, one below @, (= 6,000 Hz) and the other above w, (= 9,300 Hz), at which all three curves
for m,, intersect. As we will see in more detail in the next subsection, this candidate application of the
SGM added some additional insight into the insight oriented design aids presented in Sec. 5. It is
interesting to note that if this phenomenon had been observed when the original insight-oriented analyses
were done, it could have facilitated the development the Fixed End Point Analysis of Sec. 5.2.2.6.2 which
is illustrated in the third candidate application of the SGM in Sec. B.5.

Other pertinent transducer performance quantities such as |[I/Vy]|, phase of I/Vy, |I|, |Z,|, phase
of Z,, |E|*|I| product, and P, using the applied electric field of 2 V/mil are illustrated for each m,
as a function of frequency in Figs. B.3-4 through B.3-10, respectively. As in the case of fixed w,, the
input electrical power P, required by the transducer around resonance increased with m,.

B.4 THE IN-WATER SGM RESULTS OF THE STR-330A TONPILZ TRANSDUCER MODEL:
FIXED END POINT ANALYSIS, SPECIAL CASE 2

In this subsection we will attempt to illustrate one of the most important conclusions drawn by the
augmented simplified guidance model analysis. Hopefully, it will result in more insight for the transducer
designer. In the Fixed End Point Analysis (FEPA) (See Secs. 5.2.2.6.2 and A.13), the lower and upper
end points of the frequency band of interest, w_ and w, are held fixed. Additionally, design constraints
are placed on the values of @, and the |e/V,| at the end point frequencies. As given by Eq. (5.93), w,
is constrained to be located between the lower and upper end point frequencies, w, and @;. The
constraint on |e/V,| in the FEPA depends on the specific case of interest. In Sec. 5, two of these cases
are discussed in detail: Special Case 1 and Special Case 2.

Special Case 1 uses the value of C, from Eq. (5.104) for the case where & = 1 in Eq. (5.108). Special
Case 2 imposes the design constraint that the |€/V,;| must be equal at the lower and upper end points,
@, and @,. Both of these special cases provide useful insights to the designer, however, only Special
Case 2 will be graphically illustrated here. For convenience, we repeat the design constraint given by
Eq. (5.126),

€ =

€
VH H

W=y W=y
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This relationship causes the o parameter defined in Eq. (5..108) to be Eq. (5.127) below

It is the intention of this candidate application of the SGM to verify the trends pointed out by the
insight oriented derivations contained in the FEPA in Sec. 5 and Appendix A. The FEPA provides insight
into a method to select best choices for m,; and m;, while automatically finding a best location for ..
In this illustration, we will be using an iterative approach. The purpose of using this iterative approach
as opposed to directly implementing a few of the insight oriented analytical expressions derived in Sec.
5226212 is to show that the SGM may provide satisfactory results with primarily the use of the
transducer designer’s insight. (In practice, however, the procedure can be automated with a computer
program to do this much more efficiently.) The same procedure can be used as a TDGS in conjunction
with a full-scale computer model. The transducer performance calculations employed in the following
analysis will be the same general expressions utilized in previous subsections of this Appendix. The
analysis encompases all the necessary design principles discussed in Secs. 4 and 5. In other words, it
demonstrates how the designer should modify the necessary transducer parameters (components) to meet
the overall transducer performance objectives.

In the first Case 2 example, we will look at the situation where m,, is varied, but m, is held fixed.
In addition to the Case 2 design constraint given by Eq. (5.126), we will insure that the |8NH| at the
end points for each m,, is the same as the | e/Vy1 at the end points using the baseline m,;. Five different
values of the head mass are tested in the FEPA. They include m,, (the baseline value), m;+10%, m-10%,
m,+20%, and m-20%. Initially, let’s analyze the inherent effect of changing my; i.e., before application
of the FEPA, on the numerical model’s calculation of is/VH‘ [Eq. (5.16)]. This is shown in Fig. B.4.1.
As expected, |8/VH| varies considerably over the 5,000 to 11,100 Hz band. The resonance frequency
also shifts as m, is varied. These results demonstrate that considerable changes occur in the transducer’s
performance; thereby, demonstrating the need to implement a procedure to compensate for these
differences in }s/VHl at the frequency end points. Next we will apply the FEPA which serves as a
systematic procedure for adjusting these parameters to meet the imposed design constraints. It can be
summarized as follows:

1. Apply Eq. (5.16) to the baseline transducer model over the frequency band, and choose the fixed
end point frequencies @ and o, such that ‘SNH ’ » at © = © is equal to |&/V, | p at ® = Oy,
where |8/VH | » is defined as the baseline electric ficld per unit head velocity.

2. Modify the value of m, in the modcl. and recompute |a/VH| as a function of frequency and
compare |8/VH| at o, and o .

3. Make iterative modifications to the effective compliance C, such that Is/VHI at ® = o is equal
to |e/VH| at ® = o for the new my,.

4. Adjust the length of each ceramic ring (1) in the CSA so that la/VH| = |8/VH l , at the fixed
end points o and o,




...
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5. Modify the area of each ceramic ring A, according to
Sy L

B (B4)
€ -C

4

which is determined using a combination of Eqs. (4.2a) and (4.18).

6. Finally, implement the new value for A, into the transducer model and recompute |8/VH | .
7. Repeat steps 2 through 6 for each new value of m,,.

The FEPA procedure was applicd to the transducer using arbitrarily chosen lower and upper end
points of 5,000 and 11,100 Hz, respectively. The ls/\/Hl results from the application of the FEPA for
each case of m, are plotted over the frequency range in Fig. B.4-2. Note the dramatic improvement in
the agreement of the curves for the various m, cases when compared to the curves illustrated in the
"uncorrected" cases found in Fig. B.4-1. Additionally, after performing the FEPA the resonance
frequencies ©, for all the cases of m, now coincide. (This obtained identical results as the second
candidate application shown in Sec. B.3 where ®, was required to remain fixed.) In other words, if one
completes the FEPA, then o, is automatically adjusted to the desired location. It is demonstrated once
again that the larger m, the lower the electric field required to produce a desired source level or head
velocity around resonance. It also demonstrates that the smaller m, the flatter the frequency response of
the transducer. Consequently, the size of the head mass the designer chooses depends on the specific
transducer performance requirements. If we choose flatness as a goodness criteria, then we would want
to choose a smaller m,; in our transducer design. Table B.1 provides the tabulated values for C, L, A,
and L/A_ required to complete the FEPA.

Table B.1 - Example of Fixed End Point Analysis: Case 2 Variation of m,; m; Held Fixed

Head Mass | Cx10* (m/N) I, (m) L (m) A, (m?) L/A, (1/m)
mH 0.093012 0.01090 0.04360 0.000886 492
mH + 10% 0.088733 0.01099 0.04396 0.000947 46.4
mH - 10% 0.097941 0.01060 0.04240 0.000809 523
mH + 20% 0.085357 0.01130 0.04520 0.001021 442
mH - 20% 0.104303 0.01055 0.04220 0.000747 56.5

We can see from this data that as the head mass increases the effective compliance must decrease, and
the ceramic stack length must increase. Other pertinent transducer performance quantities of interest such
as |E/VH | , phase of E/V, [I/VH , phase of I/V,, lI], Z.|, phase of Z_, El °|Il product, and P,
using an applied electric field of 2 V/mil, are illustrated for each m, in Figs. B.4-3 through B.4-11,
respectively. Note that there is also close agreement in the antiresonance frequency for each case of my
from the input current magnitude per unit head velocity (|I/VH | ) found in Fig. B.4-5,

In the second Case 2 example, we will look at the situation where m; is varied, but my is held fixed.
Our goal is now to insure that the |a/VH| at o, and o for each m; is the same as the HI e/Vy | p at o
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and o using the baseline m;. This application of the FEPA is analogous to the procedure in the first
example discussed above. Before applying the FEPA, let’s consider what ordinarily happens to |e/VH|
as mq is changed. (See Fig. B.4-12.) As expected, |e/VH| varies considerably over the 5,000 to 11,100
Hz band. The resonance frequency is also shifted. Next, we will illustrate in Fig. B.4-13 the results
obtained after applying the FEPA to the transducer. Note the improved agreement in IS/VHI at o, and
oy, as well as the location of o, This figure also demonstrates the trend that larger tail masses give
larger Ie/VHI values at @, and flatten the frequency response. (Refer to Sec. 5.2.2.6.2.1.2 for a detailed
analysis of why this behavior is expected.) However, the differences in ‘s/V H| seen here are much less
than those differences seen as my, is varied. Table B.2 provides the tabulated values for C,, L, A_, and
L/A, required to complete the FEPA.

Table B.2 - Example of Fixed End Point Analysis: Case 2 Variation of m,; m, Held Fixed

Tail Mass C.x10® (m/N) 1, (m) L (m) A, (m?) L/A, (1/m)
mT 0.093012 0.01090 0.04360 0.886740 49.2
mT + 10% 0.090407 0.01062 0.04248 0.894526 475
mT - 10% 0.096267 0.01125 0.04500 0.877718 513
mT + 20% 0.088361 0.01042 0.04168 0.902777 46.2
mT - 20% 0.100452 0.01172 0.04688 0.868636 54.0

It is readily seen from the data that as m, is increased, C, and L must decrease to meet the electric field
end point requirements. The trend for C, to decrease with increasing m; is predicted by Eq. (5.104c¢) in
the main text. The decrease in L is expected assuming that the following condition [Eq. (5.137) below]
holds:

This is the condition for which the slope of L with respect to m; is negative. If one performs a similar
derivation to the one required to obtain Eq. (5.138b), it logically follows from Eq. (5.137) that

T
oL

In order to meet this condition for our TR-330A transducer, where m = m, + x = 0.6633 and the
frequency end points are 5,000 and 11,100 Hz, then

rem (B.5)

r < 13147, (B.6)

Since in our case r = 0.2447 (found using the radiation impedance model of a baffled piston), this
condition has indeed been met. Therefore, we conclude that our example fits into the broad-band design
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and the trend suggested by the augmented SGM is in good agreement with the computational results.
In fact, Eq. (B.3) suggests that the ceramic stack length L should continue the trend to decrease with
increasing m, until @ /o, = 1.07, the point at which L would start increasing with increasing m,. That
case would be considered a very narrow band transducer design. However, in practice the broad-band
design is the most common type encountered.

In order to complete our characterization of the transducer upon application of the FEPA Special Case
2, other transducer performance calculations are included for the case where my is varied. Illustrated in
Figs. B.4-14 through B.4-22 are | E/V, | , phase of E/V,,, |I/VH , phase of I/V, 1| , |Ze| , phase of Z,,
|E|+|1] product, and P, using the typical applied electric field of 2 V/mil.

m
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Fig. B.4-15 — STR-330A Model Results After Application of FEPA Case 2: In-water phase of E/Vy versus frequency for
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Fig. B.4-16 — STR-330A Model Results After Application of FEPA Case 2: In-water |I/Vy| versus frequency for various mq;
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Fig. B.4-17 — STR-330A Model Results After Application of FEPA Case 2: In-water phase of I/Vy versus frequency for
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Fig. B.4-18 — STR-330A Model Results After Application of FEPA Case 2: In-water |I| versus frequency for various m; fixed
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Fig. B.4-20 — STR-330A Model Results After Application of FEPA Case 2: In-water phase of Z, versus frequency for various

my; fixed wp, wy, and my
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Fig. B.4-21 — STR-330A Model Results After Application of FEPA Case 2: In-water |E|+|I| product versus frequency for

various my; fixed wp, @y, and my
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Fig. B.4-22 — STR-330A Model Results After Application of FEPA Case 2: In-water electrical power input versus frequency
for various my; fixed wy, Wy, and my




