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DEVELOPMENT OF A ROTARY WING NAVIER-STOKES CFD CODE 
BASED ON TLNS3D CODE 

Hong Hu 
Hampton University 

Hampton, Virginia 23668 

SUMMARY 

This report documents the development of a multi-grid Navier-Stokes code for rotary 
wing calculations, TLNS3DR. The TLNS3DR is based on the fixed-wing TLNS3D code 
by addding a rotation term and making necessary modifications on boundary conditions. 
The TLNS3D code solves the thin-layer Navier-Stokes equations using an explicit multi- 
stage Runge-Kutta type of time stepping with multigrid method. The TLNS3DR code 
re-formulates the TLNS3D code in the rotor blade-fixed moving frame of reference and 
solves relative motion of fluids. 

In this report, the formulation of the Navier-Stokes equations in the moving frame 
of reference in terms of relative velocity is given. Several numerical examples are then 
presented. The results of rotor blade in hover calculated by the new TLNS3DR code 
seems quantitatively correct. The computation also shows that this multigrid code is 
efficient. 



1. INTRODUCTION 

The accurate and efficient calculation of rotor flow fields poses a particularly chanllege 
problem in the computational helicopter aerodynamics community. The accurate calcula- 
tion of the aerodynamic forces on the rotor requires a correct prediction of the vortex wake, 
including the blade trailing wake as well as the interaction of the tip vortex of one rotor 
blade with the following rotor blade. The generation of the free-wake and its interaction 
with the blade make the helicopter aerodynamic computation extremely complex. 

The computational methods for calculating helicopter rotor flow fields can be divided 
into two types: integral equation methods (panel methods) and finite-difference/finite- 
volume methods. Integral equation methods for both incompressible and compressible 
rotor flows are developed by several investigators1-5. The methods are able to treat 
rotor blade and vortex wake accurately and efficiently. However, they are restricted to 
linear, low-speed, subsonic, or at most, to nonlinear flows with weak shocks. This is 
a very serious limitation, because modern rotor blades operate in the transonic regime, 
where the nonlinear compressibility is important and the strong shocks can exist in the 
flow field. Finite-difference/finite-volume methods based on the full-potential6'7, Euler8-10 

and Navier-Stokes9'10 (NS) equations with a single grid for rotor flow fields are developed 
during the past few years, while more recently the calculations are mainly concerned with 
various NS equations. These methods, particularly NS including thin-layer NS methods, 
can treat compressible flows with shocks, including strong shocks, in the region of the 
rotor blade accurately. The effects of free-wake are captured fairly accurately as a part 
of the overall flowfield. However, the calculation of NS equations on a fine, single grid is 
expensive. 

On the other hand, a multigrid NS Computational Fluid Dynamics (CFD) computer 
code, TLNS3D, is developed11 for the fixed-wing motion. The TLNS3D code solves the 
thin-layer Navier-Stokes equations using an explicit multistage Runge-Kutta type of time- 
stepping with multigrid method. The philosophy of multigrid method is the use of suc- 
cessively coarser grids to compute corrections to a fine grid solution. The use of multigrid 
strategy results in a much faster convergence than single-grid method. The efficiency of the 
multigrid method using five-stage Runge-Kutta time-stepping is demonstrated11 through 
computations for transonic flows over fixed wings. The code is shown to result in a sig- 
nificant reduction in CPU time as compared to the single-grid multistage time-stepping 
method. 

The purpose of the present work is to develop a rotary-wing multigrid Navier-Stokes 
code, TLNS3DR, by modifying the TLNS3D code. The new code re-formulates the 
TLNS3D code in the rotor blade-fixed moving frame of reference and solves relative mo- 
tion of fluids. In this report, the formulation of the Navier-Stokes equations in the moving 
frame of reference in terms of relative velocity is given. Several numerical examples are 
then presented. The results of rotor blade in hover calculated by the new TLNS3DR 
code seems quantitatively correct. The computation also shows that this multigrid code 
is efficient. 

2. THE NAVIER-STOKES EQUATIONS 

2.1 NS Equations in Space-fixed Frame of Reference 



The basic equations under consideration are unsteady Navier-Stokes equations. In the 
space-fixed frame of reference, the dimensional form of the NS equations in the conservative 
form is given by 

§£+v. (,•?•) = (> (i) 

—(p*V*) + V* • (p*V*V* + p*I) - V* ■ f * = 0 (2) 

-{p*t*) + V* • (p*h*V*) - V* • (f * • V* - q*) = 0 (3) 
dt 

with 

p* = /(7-l)(e*-^) (4) 

where p* is the density, V* the velocity vector, t* the time, p* the pressure, I the identity 
matrix tensor, f the viscous shear stress tensor, e* the total energy given by e* = e*+V*2/2 
with e* as internal energy, h* the total enthalpy, and q* the heat conduction given by 
q* = — kV*T* where T* is the temperature.   The superscript, *, denotes dimensional 
quantities. 

Using the free-stream density (p^,), the free-stream speed of sound divided by the 
square-root of the gas specific heat ratio (a^/^/y), and wing root- chord length (c), the 
above equations take the following form: 

^ + V-(pV) = 0 (6) 

—(pV) + V • (pVV + p!) - V • f = 0 (7) 

(pe) + V • (phV) -V-(f-V-q) = 0 (8) 
dt 

with 
V2 

p = p(7-l)(c-—) (9) 

7P V2 

where ^ = ,*/,£,; V = cV*; V = T^/y/C; t = ^/(c^y); p = p^/p^a*2» = p'/p^,; 
T = T*/P*oo-, e = e*7/o*L; & = ^*7/a*L; 9 = «SA/TAPSO«""^«); and the subscript, oo, 
refers to free-stream condition. 



Equations (6), (7) and (8) a]ong with Eqs. (9) and (10) are Navier-Stokes equations 
in non-dimensional form, where f and q are given by 

=      Moo^nudui      duj       2 £    duk, 
T = —R^Kä^ + ^-s^^] (11) 

and 

g = (g-'^g-) = -i?ePr(7-l)Vr <12> 

respectively, where // is the non-dimensional viscous coefficient given by /j, = n* / H%Q = 
T3/2(l + C)/(T + C), and C = 0.4317; T is the non-dimensional temperature given by 
T = T*/T*; Re is the Reynolds number given by Re = /^V^c///^; M^ is the free- 
stream Mach number given by M^ = V^Ja*^; and Pr is the Prandtl number given by 
Pr = Cpfi^/k^ with cp as gas specfic heat and k^ as free-stream conductivity. 

2.2 NS Equations in Blade-fixed Frame of Reference 

For a general motion of a rotor blade, the governing equations are simple to solve 
if a rotor blade-fixed moving frame of reference formulation is used. In addition to the 
space-fixed frame of reference OXYZ, a blade-fixed moving frame of reference oxyz is 
introduced as shown in Figure 1. The moving frame of reference oxyz is translating at 
a velocity of V0(t) and rotating around a pivot point (rotor blade axis: fp(xp,yp,zp)) 

at an angular velocity of Ü(t). The relation for the non-dimensional absolute velocity 

(V = (u,v,w)), relative velocity (Vr = (ur,vr,wr)) and transformation velocity (Vt — 

(ut, vt, wt) = V0 + Ve = V0 + Ü x f) is given by 

V = Vr + V0 + Üxf (13) 

where r is the position vector measured in the blade-fixed moving frame of reference relative 
to fp. It should be noted that the transformation velocity (Vt) includes both translation 

—♦ —t 

(V0) and rotation (O x f) velocities and therefore this formulation is general for both 
hovering and forwarding motion of the helicopter. 

To express Eqs. (6), (7) and (8) in terms of the blade-fixed moving frame of reference, 
the relations of substantial and local derivatives are used: 

(14) 

(15) 

(16) 

(17) 

Db D'b 
Dt ~ Dt' 

db 
dt 

d'b 
~ dt' ' 

-Vt-Vb 

DB 
Dt 

D'B 
Dt' 

+ QxB 

dB 
dt 

= d'»-vt 
dt'       * 

■VB + Üx B 



where the prime (') denotes the operation with respect to the blade- fixed moving frame 
of reference; 6 is a scalar and B is a vector. 

By using Eqs. (13) through (17), Eqs.(6), (7) and (8) become 

f£ + V.(Pyr) = 0 (18) 

^i(pVr) + V • {pVrVr + pi) - V • fr = -p3t (19) 

& - 
öp(per) + V • (phrVr) -V-(fr-Vr-q) 

= -p[Vr • a0 + (ft x f) • a0 + V0 ■ (a, - Ö x t?r) (20) 

+ Vr ■ ("ST x *0 + (fi x *0 • (TUT x *0] 

with 

0*'       '    v        '  v a«' 

F2    v,2 

P=(7-lMer-f + f) (21) 

-yp       v2    y2 

*- = tfPIj + t-l (22) 

«t — {atx,aty,atz) — -j^ j^p- 
(23) 

= a0 + (-^- xf) + 2((lxK) + Üx(ßx?) 

M^fjp r duri     durj      2      durfc1 
Tr = ~R7~ [(^7 + ^7}" 3*""&7] (24) 

where a0 is the acceleration of the translation velocity given by a0 = DV0/Dt and hr is the 
total rothalpy. Equations (18), (19) and (20) along with Eqs. (21) through (24) are set of 
Navier-Stokes equations in the moving frame of reference in terms of relative velocity. 

In the cartesian coordinates, Eqs. (18), (19) and (20) are rewritten in the matrix form 
as: 

ItF + §~x{Pr ~ Pvr) + ^{Ör ~ 6vr) + Tz{är ~ 6vr) = § (25) 

Ur = [p, pur, pvr, pwr, per]* (26) 

Fr = [pur, pur + p, purvr, purwr, pUrhrY (27) 

Gr = [pVr, pVrUr, pv\ + p, pVrWr, pVrhrY (28) 

5 

with 



Hr = [pwr, pwrur, pwrvr, pw\ + p, piVrhrY (29) 

Fvr = [0, rr„, rTxy, rTxz, urrrii + vrTrxy + wrTrxz - qx]f (30) 

Gvr = [0, Tryx, rrys, rr>,, urrryx + vrrTyy + wrTTyz - qyY (31) 

Hvr = [0, Trzx, rr^, rr„, urrrzi + urrrzy + iürrr„ - gz]* (32) 

S = [0, -pat., -paty, -/>at,, 

- p[Vr ■ a0 + (Ü x r) ■ a0 + V0 ■ (at - Ü x Vr) (33) 

l* 

where Ur is the field vector; Fr, Gr and Hr are inviscid flux vectors; Fvr, Gvr and Hvr 

are viscous flux vectors; and S is the source vector due to the motion of the moving frame 
of reference. All field and flux vectors and viscous shear stresses are based on the relative 
velocity field. The subscript, r, denotes relative quantity. 

2.3 NS Equations in Computational Domain 

The Navier-Stokes equations given by Eq. (25) are then specialized to a body fit- 
ted coordinate system (£, ?/, £) in computational domain, where £, rj and ( represent the 
streamwise, normal and spanwise directions, respectively. The thin-layer assumption is 
employed by keeping viscous diffusion term in the normal (rj) direction only, since the 
dominant viscous effects arise from viscous diffusion normal to the body surface for high- 
Reynolds-number turbulent flows. For the time-independent (£,r),() coordinate system in 
the blade-fixed moving frame of reference, Eq. (25) becomes 

W(J    Ur)+^ + ^ + -W = ^- + J    S (34) 

with 
Fr = J    (£xFr + £yGr + £zHr) 

= J-1 [pür, pUrUr + £xp, pÜrVr + typ, pÜrWr + £zp, pÜrhrY 

Gr = J~\vxFr + r)yGr + rjzHr) 

= J~ [pvr, pvrur + rixp, pvrvr + T]yp, pvrwr + r]zp, pvrhrY 

Hr = J-\(xFr + (yGr + (zHr) 

= J~   [pwr, pWrUr + (xp, pWrVr + (yp, pWrWr + (zp, pWrhrY 

Gvr = J~ {rjxFvr + f]yGvr + rfzHvr) 

j-iy/jMoope (38) 
- J       jj 10' QlUrti + Vxfa, <t>lVrr, + Vyfa, <j>\Wrv + Vz<f>2, ^1« + VrfaY 

where 
«r = ixUr + (yVr + (zWr (39) 

6 

(35) 

(36) 

(37) 



vr = rjxUr + T]yVr + T]zWr (40) 

wr = (xur + (yvr + (zwr (41) 

<f>i=vl + V2y + V2
z (42) 

fa = -dnxUrr, + VyVrt, + r}zWrTj) (43) 

°=&+^%T- (44) 

?2 = u\ + v2 + w2
r (45) 

and J-1 is the inverse Jacobian of the transformation. It should be noted that the viscosity 
(n) and conductivity (k) are replaced by fie and he, respectively, to include the effect of 
turbulence, where e is turbulence edge viscosity and e is tuebulence edge conductivity. The 
turbulence model used here is the algebraic model of Baldwin and Lomax12. 

Equation (34) is the most general form of thin-layer NS equations in the blade-fixed 
moving frame of reference in terms of relative velocity.   The »S-term in Eq.   (34) is the 

source term contributed from the time-dependent rotation (0(f)) and translation (V0(t)) 
of the rotor blade.   For hovering motion which is the case considered here, and where 
V0 = 0 and O = (H- Üj+ Ok with tt = constant, the 5-term in Eq. (34), or Eq. (33), 
reduces to 

S = p[0, (x - xp)ü2 + 2üwr, 0, (z - zp)ü
2 - 20ur, 0]' (46) 

where (xp,yp, zp) is the blade rotation axis as mentioned earlier. 

3. NUMERICAL SCHEME 

The present work is based on the fixed-wing TLNS3D code11. The difference of the 
present NS formulation from the fixed-wing NS formulation of TLNS3D code is due to 
the source term, S. Hence the numerical scheme follows exactly the one of the TLNS3D 
code with the addition of the source term (5) into the code, along with the necessary 
modification of the boundary conditions. 

3.1 Finite-Volume Discretization 

Replacing the spatial derivatives by central differences in Eq. (34), the following 
semi-discrete form is obtained: 

&     _x - 
ßjj(J      Ur)i,j,k + (Fri+i/2,j,k - Fri-i/2,j,k) 

+ (Gri,j+l/2,k - Gri,j-\/2,k) f£j\ 

+ \Hri,j,k+l/2 — Hri,j,k-l/2) 

= (Gvri,j+l/2,k ~ GVri,j-l/2,k) + Ji^j,kSi,j,k 



where 

Fri±l/2,j,k - ö(Fri,j,k +Fri±l,j,k) 

Gri,j±l/2,k —  2^ri'hk "*" Gri,j±l,k) 

Hri,j,k±l/2 = 7i(Hri,j,k + Hri,j,k±l) 

(48) 

(49) 

(50) 

and A£, AT] and A( are taken to be one. The cell centroidal point is (i,j,k), and the 
halh-integer subscripts refer to cell interface. The viscous term (Gvrilj±ijk) is evaluated 
according to TLNS3D code using relative velocity. Artificial dissipation of TLNS3D code 
is used where the velocity is repleced by the relative velocity. 

Using the notation Qr to represent all inviscid flux terms, Qvr to represent the viscous 
flux terms and Dr to represent the artificial dissipative fluxes for convenience, Eq. (47) is 
rewritten as 

^■(•^tfrki,* + Qr = Qvr + Dr + J^SiJ,* (51) dt' 
where 

Qr = (Fri+l/2,j,k ~ -FVj-l/2,j,fc) 

+ (Gri,j+l/2,k - Gri,j-l/2,k) 

+ (Hri,j,k+l/2 - Hri,j,k-l/2) 

and 

(52) 

(53) Qvr — (Gvri,j+l/2,k ~ Gvritj-i/2,k) 

3.2 Multi-stage Time-Stepping Scheme 

The source term (S) is added into the five-stage Runge-Kutta time- stepping scheme 
used in the TLNS3D code. This time-stepping scheme is described as follows: 

C7<° \J r 

üi5 

= üin) 

At 
= Ü?) - aj-^-IQ?» + ßiQiV - 7i^0) - J-'S] 

J 
At 

= #<0) - «2-=I[Q?) + Ä9?r> - 7i^0) - 72l>f1) - J-'S] J 
At 

= ÜI» - a8-^[Q?> + ßsQiV ~ 7i0iO) " 72^1} - 73^2) - J-1^] J 
At tf<°> - a^[Q^ + ßiQW _ 7lZ)(o) _ 72JD(D _ 73JD(2) _ 74^(3) _ J-15] 
J 
A* 

^0) - «5-=r[Q<4) + ßsQi? - lM0) - 72^ - 73^2) - 74^3) - 752?<*> 

Mn+l) = Mt) 

(54) 



where the superscripts, (n) and (n + 1), refer to time levels; and the superscripts, (0) 
through (5), refer to multistage level within each time step. In addition to the five- 
stage time-stepping scheme, the local time-stepping and residual smoothing technigues 
are applied to accelerate the convergence of the scheme to steady state for rotor hovering 
motion. The details of the residual smoothing is discussed in Ref. [11]. 

3.3 Multigrid Acceleration Technique 

The multigrid scheme of TLNS3D is employed for hovering motion calculations. The 
idea of multigrid is the use of successively coarser grids to compute corrections to a fine 
grid solution. The use of multigrid technique can significantly accelarate the convergence 
rate. In order to provide optimum damping of the high frequency errors, the coefficients 
of <*! = 1/4,or2 = 1/6,a3 = 3/8,04 = 1/2,o5 = 1, ßi = l,ß2 = 0,ß3 = l,ß4 = 0,ß5 = 1, 
and 7i = 1,72 = 0,73 = 0.56,74 = 0,75 = 0.44 are used according to TLNS3D. The 
coefficients on the residual smoothing are also carefully selected. The results presented in 
this report are obtained using a V-cycle multigrid scheme. 

3.4 Boundary Conditions and Grid 

A C-0 type grid is employed. The grid is generated using the WTCO11 code. Figure 
2 is the partial view of C-0 grid for the half-span rectangle rotor blade. A mesh consisting 
of 129 x 65 x 65 points in the streamwise, spanwise and normal directions, respectively, is 
used. 

On the blade surface, no-slip and no-penetration conditions are used by setting relative 
velocity (Vr) to zero. The adiabatic wall condition and zero-normal pressure gradient 
condition at the wall are also applied at the blade surface. The farfield boundaries are 
treated by using Riemann invariants condition used in TLNS3D code11. At the inboard- 
plane, near the rotation axis of the blade, the condition oiur/wr = ut/wt = -(z-zp)/(x- 
xp) is used to guarantee that the radial velocity is zero at this boundary. 

4. NUMERICAL EXAMPLES 

Calculations are performed for a straight, untapered and untwisted rectangle blade 
with constant NACA0012 section. A single isolated blade is considered. The blade length 
is 12, while the chord length is 1. Flows at three different conditions for hovering motion 
are calculated: non-lifting shock-free subsonic flow, non-lifting transonic flow and lifting 
transonic flow. For the non-lifting flows, the calculations for fixed-wing motion under 
equivalent condition are also made for serving as reference solutions. Additional extensive 
calculations are made on the BERP blade, the UH-60A blade and a equivalent rectangle 
blade, and results are presented in Ref. [13]. 

The first example is for non-lifting shock-free subsonic flow. Figures 3a and 3b are the 
surface pressure and local Mach contours, respectively, for fixed-wing flow at M^ = 0.628 
and iJe = 3.7 x 106. All Mach contours presented here are calculated at j = 33 which 
is about just outside the boundary layer. Figures 3c and 3d are the surface and local 
Mach contoures, respectively, for hovering motion at Mtip = 0.628 and Re = 3.7 x 106. 
By comparing the results of hovering motion with those of fixed-wing motion, it is seen 
that effects of rotation term, which is J~*S in NS equations, are quantitatively correctly 
calculated. The solution for hovering motion looks reasonably correct. Figures 3e and 3f 



are convergence history in terms of residual for fixed-wing motion and hovering motion, 
respectively. A total of 400 equivalent fine grid time steps (beased on the equivalent CPU 
time required) are used in both cases. The CPU time on the NASA-LaRC's CRAY-YMP 
with a single processor for all cases presented here is around 6100 seconds, which is about 
0.011 seconds per fine grid point, or 27.98 x 10~6 seconds per fine grid point per time step. 

The second example is for non-lifting transonic flow. Figures 4a and 4b are the surface 
pressure and local Mach contours, respectively, for fixed-wing flow at M^ = 0.84 and 
Re = 4.97 x 106. Figures 4c and 4d are the surface and local Mach contoures, respectively, 
for hovering motion at Mtip = 0.84 and Re = 4.97 x 106. By comparing the results of 
hovering motion with those of fixed-wing motion, it is seen that effects of rotation term are 
quantitatively correctly calculated for this transonic flow case. The solution for hovering 
motion looks reasonably correct, where shock occurs in the tip region of the blade. Figures 
4e and 4f are convergence history in terms of residual for fixed-wing motion and hovering 
motion, respectively. These two figures tell us that the solution for hovering motion does 
not converge as fast as one for fixed-wing motion, and this fact may due to the unsteadiness 
of the hovering motion. 

The third numerical example is for lifting transonic flow. Figures 5a and 5b are the 
surface and local Mach contoures, respectively, for hovering motion at angle-of-attack of 
4.2°, Map = 0.877 and Re = 3.93 x 106. The solution looks reasonably correct, where 
shock occurs in the tip region of the blade with a reasonable shock strength and location. 
Figure 5c is the tip cross flow vector field where the relative velocity is plotted. From this 
figure, it is seen that the tip roll-up vortex is captured with the current (129 x 65 x 65) 
mesh size, and the solution of the tip vortex looks quantitatively correct. Figures 5d is 
convergence history in terms of residual. 

5. CONCLUDING REMARKS 

The TLNS3D code is modified into TLNS3DR code for rotary-wing calculations. The 
solutions for helicopter rotor blade in hover are obtained using the new TLNS3DR code 
and the solutions, including shock and tip roll-up vortex, looks quantitatively correct. The 
accurancy of the new code is going to be tested, and the fine-tune of the code may be 
necessary to improve quality of the code. The application of multigroid method in the 
present rotary-wing calculations shows that the method is very efficient compared with 
the single grid method, although the solution for hovering motion converges slower than 
that for fixed-wing motion. The code's capability of capturing free tip vortex is promising 
as a analysis tool in rotor tip design. 
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Figure 2. C-0 mesh. 
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NACA0012 Section, Non-Rotating Rectangle Blade 
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Figure 3a. Non-rotating subsonic flow, pressure coefficient. 
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Figure 3b. Non-rotating subsonic flow, local Mach number. 
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Calculated Surface Pressure Coefficient Contours 

Figure 3c. Subsonic flow in hover, pressure coefficient. 
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NACA0012 Section, Rectangle Blade in Hover 

0=a=O0, Mtip=.628, Q=0.0619, Re=3.7x106,129x65x65 Mesh 

Calculated Local Relative Mach Contours 
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Figure 3d. Subsonic flow in hover, local Mach number. 
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Figure 3e. Non-rotating subsonic flow, residual. 
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Figure 3f. Subsonic flow in hover, residual. 
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NACA0012 Section, Non-Rotating Rectangle Blade 
e=a=0°, M^.84, Re=4.97x106,129x65x65 Mesh 

Calculated Surface Pressure Coefficient Contours 
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Figure 4a. Non-rotating transonic flow, pressure coefficient. 
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Level Mach 

U 1.296 
T 1.264 
S 1.232 
R 1.200 
Q 1.168 
P 1.136 
O 1.104 
N 1.072 
M 1.040 
L 1.009 
K 0.977 
J 0.945 
I 0.913 
H 0.861 
Q 0.849 
F 0.817 
E 0.785 
D 0.753 
C 0.721 
B 0.689 
A 0.657 
9 0.625 
8 0.593 
7 0.562 
6 0.530 
5 0.498 
4 0.466 
3 0.434 
2 0.402 
1 0.370 

Figure 4b. Non-rotating transonic flow, local Mach number. 
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Figure 4c. Transonic flow in hover, pressure coefficient. 
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Figure 4d. Transonic flow in hover, local Mach number. 
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Figure 4e. Non-rotating transonic flow, residual. 
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Figure 4f. Transonic flow in hover, residual. 
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Figure 5a. Lifting transonic flow in hover, pressure coefficient. 
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Figure 5b. Lifting transonic flow in hover, local Mach number. 
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Figure 5c. Lifting transonic flow in hover, tip flow field investigation. 

29 



(D 
3 
s 
(A 

o 

I       I       I J u. 
200 

Work 

NACA0012 Section, Rectangle Blade in Hover 

0=a=4.2°, Mtip=.877, Q=0.0865, Re=3.93x106,129x65x65 Mesh 

Convergence History in terms of Residual 

Figure 5d. Lifting transonic flow in hover, residual. 
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