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solution by the finite element method is discussed. The nonsmoothness could 
have its origin in the unsmooth boundary or the differential equation. This 
paper, which is a survey of the recent results, elaborates among others on 
the method of auxiliary mapping, the partition of unity finite element method 
and the hp version of FEM in three-dimensions. Numerical examples illustrate 
mathematical results. 
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1    Introduction 

Finite element methods face significant problems if the exact solution of the solved 
problem is not sufficiently smooth. 

The unsmoothness could have very different character. 

a) Let us consider, as the model problem, the boundary value problem for the 
Laplace or elasticity equation on the domain ti C R2. If the boundary of the 
domain has corner, located with the internal angle u in the origin, then the 
solution u, in the neighborhood of the origin, has essentially the form u = 
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r^(j>{6) where (r, 9) are the polar coordinates, ß > 0 and <f>{9) is an analytic 
function in 0. For the Laplace equation, the mixed boundary conditions and 
internal angle u = 27r, we have ß = 1/4. For the elasticity equation, mixed 
boundary conditions and a particular internal angle, the exponent ß could be 
very small, e.g. see [1]. The same occurs when operators with piecewise smooth 
coefficients are considered, e.g. see [2]. The solution which essentially has the 
form u = rß<f>(6) belongs to the Besov space B^^ti) for 1 < k < ß, but not 
for k > 1 + ß. Also, u € Hk(Ü) for k < 1 + ß, but u £ Hk(Ü) for k > 1 + ß. 
Furthermore, the solution belongs to countably normed spaces introduced in 
[3], [4], and [5]. Particularly, we have for any a = (ai,a2) 

\Dau\ <Ca\Sa\r^a\ (1.1) 

with 7 > 0, |a| > 1 and C independent of a. 

We have shown in [3], [4], and [5] that the solution of elliptic problems with 
piecewise analytic data belongs to these spaces. In [6], [7], and [8], we have 
proven that if the exact solution belongs to this space then the hp version of 
the finite element method converges exponentially with 

||e||£ < Ce-o»113 (1.2) 

where N is the number of degrees of freedom and p > 0 depends on 7 in (1.1); 
particularly, p —> 0 as 7 —> 0. In [9] we have shown that in one-dimension, 
p —* 0 as 7 —* 0 for any hp version, more precisely, ||e||£ > Ce~pNl 2, (for more 
see § 2.1). 

If ß or 7 is small, then we will speak about a strong singularity, which should 
be distinguished from the case when ß or 7 is not extremely small. We mention 
here only the two-dimensional problem, although the situation is similar in 
three-dimensions, too. (See §4 of this paper). 

b) The second type of unsmooth solutions has completely different character. Con- 
sider the model problem solving the equation 

-Au + Cu = f (1.3) 

with C being large (in absolute value) either positive or negative (for example, 
if considering Helmholtz problem) or 

where a:j(x) are rough functions. Then also, if / is smooth, the solution of (1.3) 
has a boundary layer character (C > 1) or is highly oscillatory when C < -1. 
The solution of (1.3) or (1.4) is not smooth, but has very different character 
when compared with the one described in a. 

In this paper, we will address methods for solving problems when the solution is 
singular in the sense mentioned above. 



2    The method of auxiliary mapping 

Before we address the method of the auxiliary mapping (MAM), we will discuss in 
detail the one-dimensional finite element method based on polynomial approximation. 
This will lead to an insight into difficulties when the standard finite element method 
is used. 

2.1    The hp version of the finite element method in one- 
dimension. 

Let us consider the problem 

-u"p = f,   x€/ = (0,l), 

«/»(0) = 0, (2.1) 

Mi) = i 

with the exact solution 
up = xß,   ß> 1/2. (2.2) 

This case is analogous to the two-dimensional case when u = rad>(8) with a > 0 and 
/? = l/2 +a. 

Consider the finite element method on the mesh An, 

An : 0 = x0 < xx < • • • < xn_i < x„ = 1, 

with Ij - (xj_x, XJ), hj = XJ - Xj_!, j = 1, ..., n and polynomial shape functions of 
degrees Pj > 1 on 7j? j = 1, ..., n, with Pn = (Pl,... ,Pn). Let 

5(An,Pn) = {ue H\l),u{0) = 0,u(l) = 1}. 

Denoting N(S(An, Pn)) = dimS(An, Pn) = -1 + £?=1 Pi, N is obviously the number 
of degrees of freedom. 

Let U
5(A„,P„) 

be tne classical finite element solution of (2.1), (2.2). Furthermore, 

eS(AniPn) = ^-^A„,Pn) (2.3) 

let 

and 

£,(A„,P„) = \\cfM)\\E = (jf (± (uß -uMA„,pj)
2 ix)"2. (2.4) 

We will now address the question as to what can be said about Ep(An,Pn) as 
a function of (An,Pn). The first essential question is about the lower bound of 
Eß(An,Pn) with dimS(An,Pn) = N. In [9], we have proven among others 



Theorem 2.1 Let 

then 

dimS(A„,P„)=N 

eß(N)>C(ß)q° 
y/{ß-W)N 

y/NP-V7 

where 
q0=(V2-l) 

and C(ß) is a constant independent of N. D 

Theorem 2.1 shows that when /? — 1/2 is very small, i.e., if the solution is strongly 
singular, then no finite element method using polynomial shape functions can be effi- 
cient. Let us show now that we can construct a sequence (A„, Pn) so that Ep(/S.n, Pn) 
is essentially the same as Eß(N). To this end, for 0 < q < 1, define 

An(g) : 0 = x0 < xi < ■ • ■ < xn 

with 
Xi = qn~*, i = 1,..., n 

and for 0 < s let Pn(s) = (pi,... ,pn) with 

Pi = [l + a(i-l)],» = l,...,n 

where by [a], we denote the closest integer to a. Denote by S(s,q,n) the associated 
finite element space for An(q) and Pn(s) and let N(s, q, n) = dimS(s, q, n). As before, 
we denote by UsLq<n\ the finite element solution and by e^L * its error. Then we 
have proven in [9]: 

Theorem 2.2 If 

1. s > So, then 

2. s < So, then 

3. s = so, then 

with 

and 

II^M.njIb^W.g.-^-^V53^; (2.5) 

h^h^ciß^sy^ (2.6) 

|e^„in)||* < C(ß,q,)e-V(ß-W»y/wTr {27) 

r = \^& (2-8) 
i + Vq 

so = (a-l/2)1^-. (2.9) 
mr 



Furthermore, if 

<?opt   =   (V2-l)2 (2-10) 

sopt   =   2a-1, (2.11) 

then   

ll4L„oP„»)IU < C(ß)q^r^ = C(^)e—V^7^. (2.12) 

The constants C in (2.5), (2.6), (2.7), and (2.12) are independent of N. D 

Remark 2.1 We have proven in [9] that instead of < used in Theorem 2.2, the 
equivalency holds, i.e., that the lower bound has the same form as the upper bound. 

In adaptive procedures, often q — 1/2 is used. Then for optimal distribution of 
the degrees given by (2.9), 

ll«S..i/i.»>H* * C(ß)e-™™V(ß^. (2.13) 

Remark 2.2 We have qopt = 0.1715.   It is always better slightly to overrefme the 
mesh and the value q = 0.15 is recommended. 

Comparing (2.12) with (2.4), we see that the mesh An(q) and degrees distribu- 
tion Pn(s) leads essentially to the best possible error. To obtain the error which is 
comparable with the best error (2.4), it is essential that degrees of elements are not 
uniform, they are low when the elements are small and high when the elements are 
large. The question arises what is the error for uniform p. In [9], we have proven 

Theorem 2.3 Let 
Pn(s) = (p1,...,pn),Pi = [sn] 

1. If s > s0, then 

2. If s < so, then 

3. If s — So, then 

where 

... (0-1/2)^ 
^,n)b<W,g,5)^=r; (2.14) 

M \\e^Siqtn)\\E<C(ß,q,s)-^=; (2.15) 

\\^l,q,n)h < C(ß,q,s) j= , (2.16) 

-=</>-!/»£; 
(2.17) 

1-y/g r = — 
i + y/q 

a = mm(2ß-l,ß). (2.18) 



Furthermore, if 

q = qopt   =    (v^-l)2 (2.19) 

5 = 5opt   =   2/3-1, (2.20) 

then 

y/ifl-l/7)N/2 .   .   

lle5(50p„90pt,n)IIS<0^j -j= -^/=e VV • (2-21) 

D 

Comparing Theorem 2.2 and Theorem 2.3, we clearly see that uniform degrees 
distribution decreases the rate of convergence. 

In [9], we analyzed in great detail the one-dimensional case. From this analysis, it 
follows, that for the optimal hp version, the elemental errors should be asymptotically 
equal, and the degree in the first element has to be the smallest one. If it is not, then 
the mesh is underrefmed. If the singularity is strong, the optimal mesh is so strongly 
refined, that implementational difficulties (round-offs) could occur. 

As we stated in Theorem 2.2 and Theorem 2.3 « instead of < could be used. 
Let us illustrate the effectiveness of the estimates in Theorem 2.3. Consider the 

case ß = 0.75, q = 0.15 and s = 2ß — 1 = 0.5 and uniform p. This case is analogous 
to the case of Laplace equation mentioned in the introduction when 7 = 1/4. Based 
on Theorem 2.3, we have 

ll^.»->ll* < C^e-5™1''. (2.22) 

In Table 2.1, we report for n, p, N the relative error 

«% = ll^.»,n)ll*/ll«Wll • 100 

and the constant 
D(N) = ||^.15,n,l|sJV°^eM™1/a (2.23) 

which illustrates the effectiveness of (2.22). Based on the theory presented in [9], 
D(N) should be uniformly bounded from below and above. Because s = 1/2, we 
have for odd n, pn = integer + 1/2 and hence, we report the errors for both p integers 
closest to 5n. Finally, we report the ratio of /immMmax- We see that in fact, the 
formula (2.22) is very accurate 



n P iV e% D <*min/ ^max 

1 2 1 23.81 0.424 1. 
2 1 1 23.10 0.412 0.18 
2 2 3 15.10 0.620 0.18 
3 1 2 17.60 0.516 0.26 (-1) 
3 2 5 9.842 0.655 0.26 (-1) 
4 2 7 6.786 0.650 0.40 (-2) 
5 2 9 5.140 0.663 0.59 (-3) 
5 3 14 3.175 0.742 0.59 (-3) 
6 3 17 2.206 0.691 0.89 (-4) 
7 3 20 1.688 0.688 0.13 (-4) 
7 4 27 1.074 0.744 0.13 (-4) 
8 4 31 0.6865 0.621 0.20 (-5) 
9 4 35 0.5572 0.645 0.30 (-6) 
9 5 44 0.3223 0.616 0.30 (-6) 

10 5 49 0.2421 0.595 0.45 (-7) 

Table 2.1.   The performance of the hp version of the finite element method. 

We have shown that Theorem 2.1, Theorem 2.2, and Theorem 2.3 completely and very 
precisely characterize the performance of the hp version. We see that for /?— 1/2 very 
small, the hp version using polynomial shape function cannot be effective. Although, 
the lower bound is available only in the one-dimensional case, it is obvious that we can 
expect in two- (and three-) dimensions that when 7 is very small, any finite element 
method based on polynomial shape functions will converge very slowly. 

2.2    The 2-dimensional model problem 

Consider the elasticity problem (isotropic material, E = 1000, v — 0.3) without body 
forces on the domain 

tt = {xi, x2 I |xi| < 2, \x2\ < 2} \ {xu i2 I 0 < xx < 2, x2 = 0} 

shown in Figure 2.1 and with the following boundary conditions 

un  = ut = 0  (fixed) on Ti U T2 

Tn  = 10, Tt = 2   (prescribed tractions) on T5 

Tn  =Tt = 0  (free) on du \ (I\ U T2 U T5) 

(2.24a) 

(2.24b) 

(2.24c) 

The solution has major singularities in the neighborhood of the origin Pi = (0,0), 
where 7 « 0.3 and at the point P2 = (2,2), where 7 w 0.7. Hence, we have the 
roughly analogous case as discussed in § 2.1. In Figure 2.2(a) and Figure 2.2(b), we 
show the mesh 7 with 22 elements and mesh II with 48 elements. The geometric 
factor is 0.15 (figure is not in scale), so that the ratio between the size of the smallest 
and largest element in the mesh II is 0.843 x 10-3. 



(-2,2) 

r3 

r2 

r4 

(0,0) rL  

r7 

r6 

r5 

(2,2) 

(-2,-2) (2,-2) 

Figure 2.1: The scheme of the model problem. 

b) 

-H~-0.152x0.5 
-0.15x0.5 

0.5 

ft£\ K0.15x0.5 
—I h-0.152x0.5 
-HI— 0.153x0.5 

(a) (b) 

Figure 2.2: The mesh I (22 elements) and mesh II (48 elements). 



In Table 2.2, we give relative error in the energy norm as a function of the degree 
p (uniform) of the elements. The error was computed from the strain energy of the 
finite element solution and the exact solution computed by extrapolation. 

Mesh / Mesh II 
k DOF e% DOF e% 

1 38 64.60 92 46.52 
2 120 49.04 280 21.21 
3 226 42.26 488 15.46 
4 376 37.59 792 12.12 
5 570 34.33 1192 10.70 
6 808 31.87 1688 9.82 
7 1090 29.88 2280 9.14 
8 1416 28.23 2960 8.61 

Table 2.2.  The relative error e in the energy norm in %. 

From Table 2.2, we see an algebraic rate and that for p > 5, the mesh II is under- 
refined. 

2.3    The method of auxiliary mapping 

In the neighborhood of the singular point, for example, the origin, the elements have 
two straight lines and one circular arc. The shape functions are mapped polynomials 
when the blending mapping is used so that the mapping of the side (AB) of the 
standard element on the circular arc is linear in the arc length (for more, see [10]). 
The scheme is shown in Figure 2.2 

A   ii 

Figure 2.3: The elements. 

Let T be the element with one circular side as shown in Figure 2.3. 
Consider the conformal map z = £7 which mapps T onto T. Then we have the 

following lemma: 



z=x1+ix2 

(I) 

z=? OJ'=«>/Y 

(Ü 

Si 

Figure 2.4: Mapped element. 

Lemma 2.4 Lei it be defined on T and U on T and let u(z) — U(Q.   Then for 

/©'««/((SMS")« 
/©■«•/((©"♦OV 

«;#& Ci and C2 independent of u. U 

Let (r, 6) be the polar coordinates in the plane x\, x-i and (/?, i/>) in the plane £1, 
£2. Then, in the special case u = ra<j)(9), we get U = pya^(jip) with for 7 > 0. Hence 
U has smaller singularity than u. Using the pull-back polynomials from the standard 
element, we see that U on T can be approximated in ifx (T)-seminorm much better 
than u on T. In general, J7 is smoother than u when u is singular due to the corner 
of the boundary. Using Lemma 2.4, we can approximate u well on T by pull-back 
polynomials if, in addition, the conformal map is used. To obtain conforming elements 
with common circular side, the blending mapping preserving the length as explained 
above, is essential. 

Implementation of this method, which we call Method of Auxiliary Mapping 
(MAM), is very easy. This method is very effective when the solution is very sin- 
gular due to corner or interface. In Table 2.3, we show the error in the energy norm 
for the MAM on the mesh I using 7 = 6 for the elements in the origin Pi = (0,0) 
and 7 = 2 in for the elements in the point P2 = (2,2). 

10 



p DOF e% 
1 38 44.13 
2 120 15.81 
3 226 9.69 
4 376 4.22 
5 570 1.80 
6 808 1.10 
7 1090 0.65 
8 1416 0.37 

Table 2.3.  The accuracy of MAM. 

The MAM method on mesh I has obviously the same DOF as the standard p-method 
and the cost is also exactly the same. The effectiveness of the MAM method is obvious 
by comparing Table 2.2 and Table 2.3. It is necessary to underline that although the 
method is based on conformal mapping, it has nothing to do with solving Laplace 
equation. The mapping is used for a smoothening and it is essential that the H1- 
seminorm is preserved when going from the mapped element to the original one. 

The MAM was discussed and analyzed in [11], [12], [13] in the two-dimensions 
and in [14] in three-dimensions. It was shown that the method is not too sensitive 
to the selection of the smoothening parameter. The MAM is very easy to implement 
as p version or hp version in the frame of standard codes. It avoids the problem of 
slow convergence of the classical hp version when the solution is very singular due to 
corners of the domain or interfaces. 

3    The PUFEM—The Partition of Unity Finite 
Element Method 

3.1    Introduction 
Let us first address the main idea of the proof of the convergence of the classical p 
version of FEM. We construct a function in the finite element space which approxi- 
mates well the exact solution in the energy norm. Then the finite element solution has 
the error which is majorized by the approximations error of the constructed function. 
The construction proceeds as follows (see [7], [8], [15]): 

(a) Given the partition of the domain fi into elements T, an approximation by 
polynomials of degree p on every single element is constructed. Because of 
the completeness of the polynomials, the error of approximation can be made 
arbitrarily small by selecting sufficiently high degree p. 

(b) Using the fact that the exact solution belongs to iirl(0) (the energy space), 
the discontinuity of the approximation along the element boundary can be esti- 
mated (in Hl'2(dT)) and a correction is used so that the constructed function 

11 



is continuous. A theorem ([15], [16]) on the polynomial extension from dT to 
T is utilized. 

Let us assume now that we solve, for example, the Laplace problem, i.e., we know 
a-priori that the solution is harmonic. Then realizing that the harmonic polynomials 
are complete in the space of harmonic functions, we can approximate well the exact 
solution on every element by harmonic polynomials only. Hence, there is no difference 
when compared with the step (a) above. 

Nevertheless, the part (b) now creates essential difficulty so that the idea of ap- 
proximation by harmonic polynomials cannot be used. This is especially important 
when a still more general complete set of approximation functions is used. For ex- 
ample, Bergmann [17] an Vekua [18] construct an analog of harmonic polynomials 
satisfying homogeneous equations of second order with analytic coefficients. This can 
be used for example, when equation (1.3) with / = 0 is considered. 

The major step is to construct a continuous function from the piecewise continuous 
(on patches) functions. This will be made by a partition of unity approach. The idea 
was used and theoretically analyzed in [19], [20], [21], and [22]. This is the PUFEM 
method presented here. For detailed description of the PUFEM method, see [20], 
[21], and [22]. 

3.2    The PUFEM method 

Let us describe the major ingredients of the PUFEM method. The critical notion is 
here the notion of (Af, Coo, CG) partitions of unity. 

Definition 3.1 Let fi C Rn be an open set, {fl,} be an open cover of Q, satisfying a 
pointwise overlap condition: 

3M e N,Vx 6 ft, card {z | x € fy} < M. 

Let {(fii) be a Lipschitz partition of unity subordinate to the cover {0,} satisfying 

supp fa C ft,,   Vi, 

2J <f>i = 1      on ft, 
i 

||<M|L°°(R») < Coo, 

llv*ll*-e"> ^ dWV 

where Coo and CG are two constants. Then {</>,} is called a (M,COO,CG) partition of 
unity subordinate to cover {S7t}. The partition of unity {<^,} is said to be of degree 
m€N0 if {<f>i} C Cm(Rm).  The covering sets {£),} are called patches. D 

12 



Definition 3.2 Let {ft,-} be an open cover of Q C Rn and let {</>,} be a (M, Coo, CG) 

partition of unity subordinate to the cover {fl,-}. Let Vi C .ff1 (ft,- Hft) 6e given. Then 
space 

v := X>v; = fe^ Iu; e vjl c H\n) (3.1) 

is ca//ec? i/ie PUFEM space. The PUFEM space V is said to be of degree m € N0 if 
V C Cm(ft).  The spaces V are referred to as the local approximation spaces. O 

Let us now mention the basic theorem [20], [21], [22]: 

Theorem 3.1 Let ft C Rn be given. Let {Qi}, {<£,} and {V} be as in Definition 3.1 
and Definition 3.2. Let u € ff^ft) be the function to be approximated. Assume that 
the local approximation spaces Vi have the following approximation properties: On 
each patch ft,- Cl ft, u can be approximated by a function u,- € V such that 

||t»-Vi||La(n,-nn)   <£i(0> (3-2) 

||V(u-t;0IU»(n.-nn)  <ea(0- (3-3) 

Then the function 

satisfies 

u.p^M-GVCff1^) (3.4) 

l|V( 

/ \l/2 

\\u-uap\\L,{Ci)  <VMCoo(Ee?(0j (3-5) 

«-«.P)IIL»(O> ^^^(^(ä^:)2^^^))    •        (3.6) 

D 

The PUFEM can be understood as the h, p, or hp version. Consider for example 
the p version. Let {ft,} be the patches covering ft and assume that the exact solution 
u is harmonic. Assume that the spaces Vi are the spaces of harmonic polynomials of 
degree p. Then 

£l(i)   <Cdiam(a-)p-(fc-1)ll«||^(^nO) (3-7) 

ea(0  <Cp-lk-1)\\u\\HnQ.na) (3.8) 

and the error estimate from Theorem 3.1 takes the form 

||V(u - uap)\\L2io) < MV2C(CG + CooK^IMIi^n). (3-9) 

We see that the PUFEM method allows to do what was mentioned in § 3.1. 
In [22], more details of PUFEM method including the a-posterion error estimation 

are given. 

13 



3.3    A numerical example 

Let us consider the Helmholz problem on unit square 

-Au-k2u =0 on ft = (0,1) x (0,1), (3.10) 

Y + iku  =g on oft, (3.11) 

where g is chosen such that the exact solution u is a plane wave of the form 

u(x) = eik(XiCOs6+x>sül0\e = ?-: (3.12) 

The following types of local approximations spaces were analyzed in [21].   The 
first type are "generalized harmonic polynomials" of Bergmann-Vekua type. Then 

Vv(p) = sp<m{e±ineJn(k,r)\n = 0,...,p} (3.13) 

where the functions Jn are Bessel functions of the first kind. The second type are 
systems of plane waves given by 

W(p) = span {e'-M-icos^sm*,) | ß  = ^j = 0,... ,p _ 1} (3.14) 
P 

with p = 4n + 2, n an integer, so that u(x) given by (3.12) does not belong to W(p) 
for any p. It can be shown that functions from Vv(k) and W(p) can approximate 
well any function satisfying (3.10). For more, see [21]. If u is solution of (3.10), and 
ft C ft, then 

inf    I 
wP€W(p) 

l»Ou " MHM") < C(7,ft)e^p 

holds for any 7 > 0. 
Assume now that on ft, we have a square mesh with size h = 1/n and use the 

partition of unity created by the standard bilinear pyramid shape functions. 
We now compare the effectiveness of the PUFEM method with some other ones. 

Let us discuss, as example, the case k = 100 and be interested in the error measured 
in the Z,2 norm. We will compare the PUFEM based on the space W(p) with the 
usual Gaberkin method (FEM), the generalized least squares finite element method 
(GLSFEM [23]) and the quasi-stabilized finite element method (QSFEM [24]). The 
FEM, GLSFEM and QSFEM are based on piecewise linear functions on uniform 
mesh and they differ in their choice of bilinear form. In particular, the bilinear form 
of QSFEM is constructed such that the "pollution" (see [24]) is minimized and it is 
virtually the best method available which is based on piecewise linear functions. 

In Table 3.1, we show the necessary DOF to obtain relative error e% in L2 norm. 
We report in Table 3.1 also the DOF of the best approximant by bilinear functions. 
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e% Best approx. by 
bilin. funct. 

QSFEM GLSFEM FEM 

30 
10 

5 

2.045 (+3) 
5.041 (+3) 
3.464 (+3) 

3.969 (+3) 
1.000 (+4) 
1.960 (+4) 

2.016 (+4) 
6.150 (+4) 
1.274 (+5) 

7.734 (+4) 
2.352 (+5) 
4.692 (+5) 

Table 3.1.  DOF necesary to obtain the accuracy e% in i2 norm; k = 100. 

In Table 3.2, we show the DOF for PUFEM, for n = 4 and compare it with the other 
methods 

p e% PUFEM Best approx. by 
bilin. funct. 

QSFEM FEM 

26 
30 
34 

10.8 
0.69 
0.11 

6.50 (+2) 
7.50 (+2) 
8.50 (+2) 

3.80 (+3) 
5.89 (+4) 
3.45 (+5) 

7.95 (+3) 
1.23 (+5) 
7.23 (+5) 

2.08 (+5) 
3.23 (+6) 
1.90 (+7) 

Table 3.2.   DOF necesary to achieve various accuracies in L2 for PUFEM with 
n = 4 and various other methods, k = 100. 

The excellent performance of the PUFEM method shown in Table 3.2 is due to 
the fact that PUFEM employs the general character of the solution; while the other 
methods utilize only piecewise linear functions. In Table 3.3, we report the number 
of operations using band elimination, for PUFEM, n = 4. 

p e% PUFEM QSFEM FEM 
26 
30 
34 

10.8 
0.69 
0.11 

1.76 (+7) 
2.71 (+7) 
3.94 (+7) 

6.3 (+7) 
1.5 (+10) 
5.2 (+11) 

4.3   (+11) 
1.01 (+13) 
3.6   (+14) 

Table 3.2.   The number of operations using band elimination, k = 100, error in L?, 
k = 100. 

Let us underline that the construction of the stiffness matrix for the PUFEM based 
on W(p) is relatively cheap and the cost is negligible when compared with the cost 
of the solver. The stiffness matrix for the PUFEM based on the space Vv(p) is more 
expensive than for W(p). Nevertheless, the space Vv(p) is in some sense optimal (see 
[22]). 

In Table 3.4 and Table 3.5, we show the results for k = 32 and the error measured 
in the if1-seminorm. Table 3.4 shows the accuracies and number of iterations and 
operations for the iterative method proposed in [25]. Table 3.5 shows the operation 
count for PUFEM method with the band elimination, A; = 32 and n = 1. 
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FEM  —  
)3FEM 

VDOF H1 error #of NOP Hl error #of NOP 
e% iterat. e% iterat. 

33 65.0 232 4.51 (+6) 30.5 272 5.29 (+6) 
65 21.7 434 3.37 (+7) 14.3 492 3.82 (+7) 

129 8.16 831 2.68 (+8) 7.02 953 2.96 (+8) 
257 3.64 1665 2.07 (+9) 3.48 1863 2.31 (+9) 
513 1.72 3263 1.62 (+10) 1.69 3762 1.86 (+10) 

Table 3.4.   Operation count for solving the linear system, error in ^-seminorm 
k = 32. 

p H1 error e% NOP 
18 
22 
26 
30 

46. 
6.7 
0.38 
0.00025 

1.3 (+5) 
2.3 (+5) 
3.8 (+5) 
5.9 (+5) 

Table 3.5.   Operation count for band elimination for PUFEM, k = 32, n = 1, error 
in Ä'1-seminorm 

Let us underline once more that the cost of the stiffness matrix is negligible in compar- 
ison with the cost of the solver. The PUFEM method belongs to the family of mesh 
free methods, see [26], [27], nevertheless, we underline in this paper the flexibility of 
PUFEM which allows us to employ the properties of solved differential equations. 

4    The hp version of FEM in three-dimensions 

4.1    The hp version 

In contrast to the two-dimensional case, the character of the singularities in the 
neighborhood of the boundary is much more complex. In three-dimensions, we have 
to distinguish between the behavior in the neighborhood of the edges far from the 
vertices, close to the vertices, and in the neighborhood of the vertices, and in the 
neighborhood of the vertices which is (conically) far from the edges. In the two- 
dimensional case, only one type exist in the neighborhood of the corner. 

In [28], [29], [30], and [31], the regularity of the solutions in terms of countable 
spaces is analyzed. Based on these results, the hp versions converge exponentially 

||e||<Ce-^
1/5,7>0. (4.i) 

In contrast to the one-dimensional case, there is no proof that the exponent 1/5 
is the optimal one, but we conjecture that it is. The meshes leading to this rate 
have elements with large aspect ratios, which increases as N -► oo. These "needle" 
elements are in the neighborhoods of the edges and reflect the fact that the solution 
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is smooth along the edges and unsmooth in the direction perpendicular to the edge. 
Also, the optimal upper-bound (and the lower-bound) depending on the strength of 
the singularities, is not known, but analogously as in the one-dimensional case, it is 
possible to expect that 7 in (4.1) could be very small in the case when the singularity 
is strong. So far, we discussed the hp version. The p version was analyzed in [32] and 
[33]. See also, [34] for some computational experience. 

4.2    Computational Examples 

In this section, we show briefly an example analyzed by the code STRIPE developed 
at Aeronautical Research Institute of Sweden. Consider the problem on the domain 
shown in Figure 4.1 where the boundary conditions are 

• on the faces A-C-E-N, A-B-E-F, A-B-C-D, and I-J-L-M, we have 
{Tx,Ty,Tz) = 0; 

• on the face G-H-I-J, we have (Tx,Ty,Tz) = (-10,0,0); 

• on the face D-K-L-M-N-C, we have u = 0, Ty = Tz = 0; 

• on the face N-M-J-H-F-E, we ahve v = 1, Tx = Tz = 0; 

• on the face K-G-I-L, we ahve v = 0, Tx = Tz = 0; and 

• on the face K-D-B-F-H-G, we ahve w = 0, Tx = Ty = 0. 

Figure 4.1: The domain 

The singularity of the solution occurs in the vertex A, along the edges A-B, A-C', 
A-E, and the edge I-J.   The singularity along the edge I-J is weaker than along 
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A-B, A-C, and A-E. The basic mesh is shown also in Figure 4.1. Around the edges, 
the mesh is refined in the analogous way as in two-dimensions, with Mi, M<i layers 
in the neighborhood of the edges A-B, A-C, A-E, and I-J. Figure 4.2 shows the 
case with M\ = 1 and M2 — 3. In the neighborhood of the vertex A, the mesh is a 

10.15                 ^^^ 
M,=1 

t 

,0.15 

_0.15    0.15_ 

M2=3 

ft 

Figure 4.2: Detail of the Mesh 

complex one accommodating the meshes along the edges A-B, A-C, and A-E. The 
hp version together with increasing N does increase the number of layers around the 
edges where the singularity is located. The p version fixes the mesh and increases the 
degree uniformly or selectively. In the Figure 4.3, we show in the scale log ||e|| x N1^, 
the error for various p (uniform) and Mi with M2 = 1. As predicted, we see the rate 
e_77V if we combine properly Mi and p. It will appear in the graph as the straight 
line. As seen from Figure 4.3, we have to combine in a proper way the degrees of 
elements and the number of layers. In the range of accuracy under consideration, 
M2 = 1 is sufficient. In Table 4.1, we show the proper combination which leads to 
the exponential convergence with respect to N = DOF 

Mi P 
0 6 
2 5,6,7 
4 6,7,8 

Table 4.1.  The combination of Mi x p for the hp version. 

Remark 4.1 The relative error in the energy norm shown in Figure 4.3 was com- 
puted from the strain energies 

||e||g  _   /£exact-£FE\1/2 

V £EX J \U\\E 
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p-VERSION 

•   UNIFORM - h - VERSION, p=2 

N" 5 10 15 

NUMBER OF DEGREES OF FREEDOM 

Figure 4.3: The error in the energy norm 

where the energy eexact was computed from Mx = 4, M2 = 2 and p = 10 and 
extrapolation so that the error in the given range shown in Figure 4.3 is guaranteed. 

D 

Figure 4.3 shows also the error for the h version with uniform mesh and elements 
of degree 2. In Figure 4.4, we show the CPU time on one processor computation of a 
Silicon Graphics Challenger for the hp version and the h version. In the CPU time, 
the total time is included, i.e., the construction of the stiffness matrix, direct solver 
and the postprocessing. In Figure 4.4, we show also CPU time for the iterative solver 
written by J. Mandel (Solver International, Inc.) which is a special solver based on 
PCG method. 

So far, we have addressed the case with uniform degrees. We can also use an 
adaptive procedure which is more effective. In the adaptive procedure, different 
degrees of the shape functions (but not the full space of shape functions of degree p) 
are used. In Figure 4.5, we show the relation between the CPU time and achieved 
accuracy measured in the energy norm for the adaptive approach and uniform p 
approach for M\ = 4 and M2 = 1. 

We see clearly the effectiveness of the hp version in the three-dimensional examples 
for solutions with singularities. 
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