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Abstract

This paper is the second in a series of three devoted to the analysis of regularity
of solutions of elliptic problems on nonsmooth domains in IR®>. The present paper
concentrates on the regularity of solution of Poisson equation in neighborhoods of
edges of a polyhedral domain in the frame of the weighted Sobolev spaces and
countably normed spaces.

These results can be generalized to elliptic problems arising from mechanics and
engineering, for instance, the elasticity problem on polyhedral domains. Hence, the
results are not only important to comprehensively understand the qualitative and
quantitative aspects of the behaviours of the solution and its derivatives of all orders
in neighbourhoods of edges, but also essential to design an effective computation and
analyze the optimal convergence of the finite elements solutions for these problems.
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1. INTRODUCTION

In engineering applications the domains of the problems under consideration
are often unions and intersections of simple geometrical objects such as cylinders,
balls, cones, etc.. The unions and intersections of these simple objects yield edges
and vertices. It is well known that the singularities of the solutions occur near the
edges and vertices. The singularities make the computation for these problems on
the domains with edges and vertices extremely inefficient and inaccurate. Hence
precise description of the singularity is not only significant for the regularity theory
of partial differential equations on nonsmooth domain, but also extremely important
for the construction of effective numerical approximation methods.

This paper is the second of a series devoted to the analysis of regularity of
solutions of elliptic equations on nonsmooth domains in IR?, and it will concentrate
on the regularity in neighborhoohs of edges of a polyhedral domains. The typical
description of the edge singularity is the asymptotic expansion of singular functions
(see [7,8,9,11,12,13,17,19,20,22))

J S T

=333 Cialwa)pjsu(0)r*(Inr)* + uo

7=1s5=01=0

where (7,8, z3) are the local cylinderical coordinates, Cjs; and 1 are analytic in
z3 (except Vertices) and in 0, respectively. Recently the classical weighted Sobolev
spaces W"c and Vﬁ with Kontrat ev- and Maz’ya-type weights were used to analysing
the regularlty of high-order derivatives of solutions (see [18,21,23]). As indicated in
previous paper [15], these approaches do not sufficiently characterize the behaviour
of solutions near the edges. The solutions u(z) in the edge-neighborhood is analytic
except at the edge, and their derivative of order £ > 1 may grow rapidly as z tends
to the edge and as k increases. The regularity results in terms of the asymptotic
expansions and the classical weighted Sobolev spaces are unable to reflect these
natures of regularity in the edge-neighborhood. The classical weighted Sobolev
spaces Wg and Vg with 0 < B < 1 are suitable only for the regularity of lower-order
derivatives of the solution, but not for higher-order derivatives, for instance, £ > 2
if the elliptic equation is of the second order.

In this paper we will analyze the regularity of solution in the edge-neighborhoods
in the frame of the weighted Sobolev spaces and countably normed spaces with
dynamical weights. The theory of these spaces on the edge-neighborhoods has been
well established in previous paper [15]. The regularity results in terms of these spaces
will provide us with the complete qualitative and quantitative informations of the
derivatives of solution at all orders and will lead us to the exponential convergence of
the approximation by properly selected piecewise polynomial spaces (see [8,9,14,16)).

Although the regularity results for problems in vertex-neighborhoods of polygo-
nal domains are similar to those for problems in edge-neighborhoods of polyhedral
domains (see [2,3]), it is worth indicating that there are differences on the substances
and approaches. We will elaborate the substantial differences in Section 4.

The notations and definitions of various spaces will be quoted in Section 2 from
the previous paper [15]. The Section 3 deals with the existence and uniqueness
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of weak solution of Poisson equation on polyhedral domain with data given in the
corresponding weighted Sobolev spaces. The main part of the paper is Section 4
in which the regularity of solutions in the edge-neighborhoods will be derived in
the frame of the dynamical weighted Sobolev spaces and countably normed spaces.
These regularity results for Poisson equation can be generalized to linear elliptic
equation and system of equations without substantial difficulties.

2.  PRELIMINARY

We shall quote the notations and definition of the spaces which were introduced
in Part I and will be used in this paper.

Let © be a polyhedral domain in R® as shown in Fig. 2.1, and let T;,7 € T =
{1,2,3,---, I} be the faces (open), A;; be the edge which is the intersection of T;
and T;, and Anm,m € M = {1,2,--- M} be the vertices of Q. By 7, we denote a
subset {j € I|An, € T;.} of Iform € M. Let £ = {ij|i,j € I,T:NT; = A;;}, and let
Ly, denote a subset of £ such that £, = {ij € L|An € A;;}. We denote by w;; the

interior angle between I'; and I'; for ij € £. Let I = U I; and T = U I'; where
i€D

D is a subset of I and N = Z\D. Further, let D,, = DN, and Ny, Nﬂl' for
m € M.

Am

Fig. 2.1 Polyhedral domain

For precise description of the regularity of solutions of elliptic problems in poly-
hedral domains. We have decomposed in [15] the domain into neighborhoods of
edges and vertices as shown in Fig. 2.2 and introduced the weighted Sobolev spaces
and weighted continous function spaces, and the countably normed spaces in these
neighborhoods. The structures of these space have been fully studied in [15].

Assume that the edge A;; lies in the z3—axis and A;; = {(0,0,z3)| a < z3 < b}.
Then a neighborhood of A;; is defined as

Z,le,.jyg‘.j (Aij) = {IL‘ € Q|0 <r= diSt(:L‘,Aij) <E&j, a+ 5,’]' <z3<b-— 5,’1'}

3




0 < &;5,6;; < 1 are such that U, 5,;(Ai;) NL¢= ¢ for £ #1,7.
By Os,,(Ar) we denote a neighborhood of the vertex An

Os..(An) = {z €Q | 0< p= dist(z, An) < 6}

Here A, is assumed the origin and p = (27 + 22 + 22)V/2. 6, € (0,1) is selected such
that Os,, (Am)NTe = ¢ for any (€L,

4
5
S
A

4
S

Y

Fig. 2.2 Neighborhoods of edges and vertices
(a) the neighborhood U, s,;(Ai;); (b) the neighborhood Os,,(Am )

(c) the neighborhood Vs, 0., (Am,A,J) (d) the inner neighborhood Os,.(Am)-
Os,.(An) is further decomposed into an inner neighborhood of vertex and several

neighborhoods of vertex-edge. For ij € L, we define a neighborhood of the vertex
A, and edge Ay

vSm,a',‘j(Am,Aij) ={z € Os,.(An)0 < ¢ < O'ij}
where ¢ = ¢(z) is the angle between A;; and the radia from Am to z. We assume
further that A;; lies in the positive zs-axis. Then sin ¢ = (/23 +23/p. 6;; € (0,1)
is such that Vs,, s (Am,A,J)ﬂVgsm,(,M(Am,A;c ¢) = A, for all ij € £,, and kl € £m,
ij # kf. The inner-neighborhood Os,.(Ay) is defined as
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@Sm (Am) = OSm(Am)\ U Vﬁm,a.'j(AmaAij)-
ij€Lm
For the sake of simplicity, we shall write Ui; or U(Aij) Vim,ij or V(Am, Aij)y Om
or O(Am) instead of Z/{Eij,g,.j(A,-j),ng,g,.j(Am, Aij) and Osm(Am).
By HF(Q),k > 0 integers we denote the usual Sobolev spaces on §! with the
norm

lelbgke = & 10"z,
o<lal<k
where a = (o, 2,03), |a| = a1 + @2 + a3, D*u = u e 02,2, As usual we write

HO(Q) = L*(Q), Hy(Q) = {u € H(Q)|u =0 on I}, and fulge o = E [1D%ul} 2

(semi-norm), and |D*ul? = |D‘yu|2
a =k

The weighted Sobolev spaces are defined individually in the neighborhood of

edges and vertices.
For z € O, B € (0,1/2) and integers £ > 0 we define the weight function.

Brm+|o|— f > ]
at oy _ 1P or |a| 21,
5, (2) = { 1 for |a| < £.

()

and weighted Sobolev spaces with integers k > £

Hgﬁ (ém) = {“‘ ”u“i{’;’i(@m) = L*(6.) < oo}

We next construct a weight function in Vi ;; = V (Am, Aij), with integers £ > 0,
Bmii = (Bm, Bij); Bm € (0,1/2) and B;; € (0,1), as {follows:

> Jorol

0<|a|<

pﬁm'i']al_l(sin ¢)ﬁ‘j+a1+az_l ' for f S (851 + (65} S Ia|’
‘I’Zif,u (z) =4 pPmtlal=t for a; + a; < £ < e,
1 for o] < L.

Then we introduce the weighted Sobolev spaces over Vp, i; with integer k > ¢

2 < o0
Prm IJ(Vm 'J) a<|a|<k L Vi) }

A weight function in the edge-neighborhood U;; = U (A;;) is defined as

Hy! | (Vmjis) = {U| ||““H“ = NQﬁm is |2

pPijtoataz—t for a3 + ag > ¢,
51 (z) =
; 1 for ay + az < ¢,

with an integer £ > 0 and §;; € (0,1). Then the weighted Sobolev space Hgﬁ (U;;)
is given by ’




H! (Uy) = {u|“u||ka_ > Je5Du]y

(uij) < oo} .

Here §3;; coincides with that for the space ng (Vim,ij)- As usual lDlul2 = 3 |D*uf?
ja|=¢
and

|u|HH = E | @5 Dou |

Let 8 = (Bm,m € M, Bij,15 € L:) w1th B € (0,1/2), Bi; € (0,1) be a multi-
index. Then the space H g,e (Q) denotes the set of functions such that their restric-
tions on Uij, Op, Vi and Qo belong to Hg‘f (Usj), Hg,i (@m) Hgﬁ,ﬁ (Vim,ij) and
H"* (), respectively, for all ij € £ and m € M, and

L)

2 _ 2 2
lellgpse = Z, lmse o, + 5, Tl o, +
2 2
)IEDY ||“||H’;;:’ij(vm,.-,-)+”“”H"(no)

meM ijEL

The regularity of solutions in the edge-neighborhood U;; will be given in terms
of countably normed spaces with weighted Sobolev norm

B, (Uy) = {u| we HE (Us) for all k> ¢, |05, Doulyz, < Cd"a!}

and countably normed space with the weighted C*—norm

CL.(Uy) = {ueCOWy) | rforll-iDou € CUy) for o with |a = |k| > 2,
||T‘ﬁ'1+|a| lD"‘(u( ) — u(O,O,Jf;;))”CO(aH) < Cd%al

dk
nd 7u(0,0,as)l| o, o) S Cdik! for k > o}

Hereafter Is, = (a + 6;5,b — 6;;), d* = d1d3?d3?, ol = eqlaplas!, C > 1, and d; > 1
are independent of a.
The relations between the spaces B%ij (U;;) and C?@‘,j (Us;) has been discussed in
[15] from which we quote a theorem.
Theorem 2.1 Bé.-j (U;;) C C?,'.j (Z/_{ij) C B?i;j +e (Uij) ;€ > 0 arbitrary. 0
It is convenient to use cylindrical coordinates (r, 8, z3) with respect to the edge

A;; when we analyze the regularities of solutions in the edge-neighborhood ;.
Hence we introduced weighed Sobolev spaces in the cylindrical coordinates

’Hﬁ'](u )= {ul Hu”%gi(u E ||(I)ﬁe —a2 Py, L ) < OO}

and the countably weighted Sobolev spaces
6




BE (Us;) = {u & M5! (Uy) for all k> ¢, |

;e d
@g‘jr o3 'D“u\

o)
Lz(uij) S Cd a.}

where DU = U0 gaz 23 -
The following theorem, which gives us the relations between spaces in Cartesian
coordinates and those in the cylindrical coordinates, has been proved in [15] .

Theorem 2.2 For £ < 2 the spaces HZj (Ui;) and 'Hgﬁ. (U;;) are equivalent, and
the space Bf,'_]. (U;;) is equivalent to the space Bf,',j (U;;). ]

3. WEAK SOLUTION OF POISSON EQUATION IN POLYHEDRAL
DOMAIN

Consider the Poisson equation in polyhedral domain

—Au = f’
(3.1) ulro = ¢°
| Sl =g

with f € Lg(Q),¢' = G*|re and G* € HF*74(Q),£=0,1
Lemma 3.1 If felLg, (Om) ,0< Bm <1/2and v € H! (@m>, then

(3.2) ‘/OM foda| < Cllfllg 6, Iollgp 0,

Proof. By Schwartz’s inequality
lfs,, foda| < ClflL,, @m 7|26,
< ClIflL,, (6m) I0lLe s,
< ClIflL,, @) Iola 6, -
Here we used the fact that B, € (0,1/2) and the imbedding result of Sobolev spaces

(see [1]). O
Lemma 3.2 If f € Lg,; (Ui;),0< By <1 and v € H! (U;;), then
(3.3) [, 70| S O, o 1ol gy

Proof. By Schwartz’s inequality

,,.-ﬁijv

(3.4) ‘ /u fode

< ML, @) L)

7




By Lemma 5.1 of [Part 1]

/ r=2hi |y? da:‘ = ’/ p21=Fii)=2 |y 2 dm’
Us; Uj

<0 [ w0 (|t + 1ol do

Uis

which together with (3.4) yields (3.3). O

Lemma 3.3 If f € Lﬁm,i;( mz]) /Hmm - (ﬂmaﬁij) with :8771 € (0’1/2)7 and
Bi; € (0,1), and v € H' (Vp,55), then

/v fodz

m,ij

(3.5)

SO, , G PlE 0,00

Proof. By Schwartz’s inequality we have

/v foda

Let ,ém =1/2 — pp, and ,5,-]' =1—f;; and Bm,ij = (Bm,,é,]) Then by Lemma 4.2 of
[15]

(3.6) p~Pm (sin ¢) ™ v

< ”f“Lﬁin].(Vm,;j) 2(Vm.='1') '

“p‘ﬁ"’ (sin @)™ v

_ / p?Pm=2(sin $)2i=2| g/ 2y [2dg

2(vm,ij)
(3.7) < C||pl/2v||H1 1 O )
1/2 .
< C”p v”H (Vm,is)"
Note that
-1/2 -1
(3.8) “p vl Lny) = o™ N2, 0 1P 0,0 )
S C”UHHI(Vm i)
Then (3.5) follows from (3.6)-(3.8). O

Combining Lemma 3.1-3.3 we have
Theorem 3.1 If f € Lg(2), then f € (H1 (Q))I, and

I/ (HI(Q))’ < ClfllL 0
Lemma 3.4 Let G € Hj (U;). Then for v € H' (Uy)

(3.9) /F o v

< C”G”H“

i) HH Ui;)°

8




. Proof. Let U;; = Qe x I, Q. = {(xl,xg) \ 0<y/22+a3=r< 6} and
Is; = (a + 6i5,b— 8;;), and let v = Q.NT;. By Hlﬂi(Qc) we denote the weighted

Sobolev space over Q.

2
Lz(Q€)<OO}.

Then for almost every z3 € Is;;, G € H},; (Qe) and v € H'! (Q.). By Lemma 2.11
of [2] we have

HY! (Q.) = {w (e1,23) |[lwlligss o, = I0lpzg, + 3 [0 w
1] |all=1

(3.10) [ 161 Iolds < C 1615 @ Il

where C is a constant independent of z3, integrating (3.10) in 23 over Is;; we obtain
(3.9). O
Lemma 3.5 IfG € H}J,’:w (Vi) with B € (0,1/2) and B;; € (0,1), then for
v € H? (Vmﬂ'j)

(3.11) Gvds

< .
,/1“.- 8V ij s¢ ”G“His,i., (Vmi5) ”v“H] (Vm.is)

Proof. Let S5 ={(4,0)0<¢<0,0<8< w;;} and I = (0,6r). Then Vi =
S5 X Is,,. We may assume that T; is in the z; — 3 plane. Let v = 85';’]-01’1- =
{(¢,0)|0 < ¢ < 0,0 =0}. Then by Lemma 2.11 of [2]

(3.12) [ 161 blds < € 1Glggy vl s

where H' (S;'J) and HH (S{‘J) are the Sobolev and weighted Sobolev spaces over S;
namely

1
ol sy = f (o + o+ 5 ol gt

) } $dodo.

Multiplying (3.12) with p and integrating it in p over I5 we get

(3.13) L y

bm

and

1
50

1602 o) = Js {IGP + (sin )" (|G¢|2 .

g
tJ

|G| |v| pdpdd < 0/16 pHGHH;’,l,(Sf’J-) “v“I—Il(ng) dp

by Schwartz’s inequality



1/2

1/2
<C / 2fm G 2 1,1 d 2(1-fm) 2 1
< ( o Gl () 80) ([, O olfgr s o

By Lemma 4.1 of [15] we have

m

20Bm G 2 1 d
-/16 p ” ”H;e,’ (SGJ) P
: 1
(3.14) < C/v ) {pzﬁm—zlGl2 + p¥m (sin ¢)2&J(|;G¢|2 +

<C IIGIIZﬁE1

1
psin ¢

G9|2)} dzx
KT (vmy"j) ’

Analogously, using the fact that 8, € (0,1/2) and the imbedding theorem of
Sobolev space

2(1—PBm) 2 d
/I.f’ ol or 40

1
(315) S C - {p—2ﬁm|‘ul2 +p2(1—ﬁm) ( ;'qu

2

1
psin ¢

Vg

)}

<C ||U||i11(vm,¢,)'

The combination of (3.13)-(3.15) leads to (3.11).
Lemma 3.6 Let G¢ H}@r: (@m) Then for v € H! (@m) and 1 € T,

. < 1,1, « 1/ =~ .
(3.16) 1], GodSI < C Gl o, Wl s,

Proof. Let S = S\ Uijecn Sf’j where S is the intersection of 2 and the infinite
polyhedral which coincides with Q in the vertex neighborhood O (Ay) and S; were

defined in the proof for the previous lemma. Then O,, = S x Is,.. The proof of
(3.16) is similar to that of (3.11) except that

[ 1Glvlds < CIGlgp s Il s
instead of (3.12), and
2Bm 2 < < 2 11, =
| 7P 1G5y do < ClIGUEE (6,
instead of (3.14), and

2(1"Bm) 2
[ o ol 5y e < ol o,
10




instead of (3.15). ' O
Lemma 3.4-3.6 lead us to
Thoerem 3.2 IfG € Hé’l (9), then for v € H (Q)

(3.17) \ /3 _Guds

< ClIGlgz o 1ol

a

We are now ready to prove the theorem of the existence and uniqueness of

the weak solution for the problem (3.1) with f and G* given in the corresponding
weighted Sobolev spaces.

Theorem 3.3 Let Q be a polyhedra in R?, f € Lg(Q), ¢¢ = G¥|re and G* €
HZ“74(Q),£ = 0,1 with B, € (0,1/2) and B;; € (0,1) for all m € M and ij € L.
Then the problem (3.1) has a unique solution u € H' () (weak sense) such that
u—G° € Hy (), and

4
(3.18) ol gy < C (anLﬁm) + 3 e “Hf,“’z“‘(o)) -

Proof. We may assume that ¢° = 0. The bilinear form on Hj (Q) x Hg () is
defined as
B (u,v) = /QVu - Vudz.

Due to Theorem 3.1 and 3.2
F(v) = /Q fvdz + /1“1 g'vds

defines a linear functional on H' (), and

1
“F”(Hl(n))' sC (“f”Lﬂ(Q) + “G IIH;'I(Q)) '
By Lax-Milgram theorem there exists a unique solution u € Hg () for the varia-
tional equation of the problem (3.1)
(3.19) B(u,v) = F(v), YveHy(Q),

and
g gy < € (L0 + 1)

which is (3.15) with ¢° = 0. For general case that ¢° # 0 (3.16) can be proven easily.
O

11



Remark 3.1 If |I'° =0 and

(3.20) /Q fdz + /F g'ds =0,

then Theorem 3.3 holds in the quotient space module a constant. O

4. REGULARITY IN NEIGHBORHOODS OF EDGES

We shall make further investigation on the regularities of the solution of (3.1) in
neighborhoods of the edges in frame of the weighted Sobolev spaces and countably
normed spaces. We concentrate ourself on a neighborhood Ui, of the edge Ajs. As
assumed in previous sections, Ay, lies in the z3-axis and Uy = {(r,0,z3) | (r,0) € Q-,
x3 € Is} with Q. = {(r,0)|0<r<e,0< b <w}and [y =(-1461-6). (r,0,z3)
are the cylindrical coordinates with respect to Aj2. We further assume that I'y C
I'° Ty C I''. For sake of simplicity we shall write U = U, 5 = Uz = Ue 5 (A12) , Q =
Q5 etc.. As in Section 2 we denote D%y = D%'u 238 = Ugar bz s and D°u = D¥ Uy

= Upaygaz e With a = (o a3) = (a1, a2, 03) and |a[ |a’| n a3 =a;+ oy + as. We
shall write Hy (U) = Hf' (Us2) and By, (U) = By, (ths), ete.

4.1 Regularity of high-order derivatives with respect to the direction
along the edges

Lemma 4.1 Let T = {(21,23)| z1 € (0,¢),23 € I;} and G € H/2(S). Suppose
that v € H'(T) and v = 0 for z; =€ or 23 = £ (1 — §). Then

(4.1) I/T GApvds

< C ||G||H1/2(T) ”U”Huz(T)

where Apv = } (v (21,23 + h) — v (21, 23)), C is a constant independent of G and v.
Proof. First we extend G and v into T = (—¢,€) x [5 by symmetric manner
with respect to z;-axis. The extended functions are denoted by G and ©. Then
G e HY?(T) and 4 € HO (T). Further we extend ¥ in whole plane by zero extension
outside T, and extend G in the plane as well. Then the H'?-norm of G and Hl/ 2

norm of & are preserved, and A,v is well defined. Let G and % denote the Fourier
transformation of G (¢,7) and &(¢, 7). The equivalent norms of G' and ¥ in H'/?(IR?)
are defined as

~ .12 1/2
Gl g ey = (frall +€ + 022G dean)
and

1/2

ol ey = (fgo (4 7)ol dcn)

12



Then

[ Gawds =1 [ Gayods = % Jge GAwodS

(4.2) Cr e
=1 /le G ———dedn
For |hé} <1
et —1 1 €] <
N A SR Sk A
and for |h¢| > 1
e"ith —1 1 2
< — <2
b [ (14e24q2)" 2 7 [€R]

Hence we have by Schwartz’s inequality
(4.3)

. e ®h _1q
I/JR"’ Gﬁ—T‘dfd"l
<2 (fo |6 (1) agin) ™ (o o (142 7) )
2 "G"Hll2 (IRQ) ”{)”H”’ (IRQ)

< C”G”HU?(T) HﬁllHllz(T)

1/2

<40 |Gl Il g,

Then (4.1) follows from (4.2) and (4.3) at once. O

Select €’ € (6, 1) and § € (0,6) and let U’ = U 5o = Uer 51 (Au) C . Then
U > U =U,,, and we have the following theorems.

Theorem 4.1 Let u € H'(Q) be the weak solution of the problem (3.1) with
feLg(Q) and G € H 7 (Q),£=0,1.

() If feL*U') and G € H**(U'), £=0,1,then u,, € H' (U), and

llu$3||Hl(u)
14
wey SO\l + 2 16 g + Mo vanm}

< Coq 1A lpz g + W lLaw + 2, (“Gequ_e T ||Gf”H2_e,2_z (m)} :

(i) If fo, € Lg, ') and G¢, € HE“*~* ("), then u,, € H' (), and

13




(4.5)

”uiva”Hl(u)
1-m 4
S Co mL:V':O,l(MO ||fzg‘“Lﬁ12(uf) + e=20,1 “Gxg"“H'gl-;J—t(u,)) + MOH“.'L‘:; ||L2(ul)}

Gl

T3

¢
< Co ||f||Lp(n) + ||fxs“Lﬂ12(u') + e:z%‘g “G ”Hf;’”"‘(n) l Hzl-;ﬂ-‘(u,)} .

(i) ¥ f= fi+ fo with i € L2(U’), and foz, € Lg,(U'), Gt = Gf + G with
Gt e H*' (') and G, 21212 “U"), then u,, € H' () and

”qu‘S”Hl(u
< Co {||f1"L2(u' “Gl “Hz"(u' + mz% 1 ||f2 73 N L, @)
(4.6) +e=0,1 ” 25 Hzﬁl—:,z_e(u’) +Mo ||u$3||Lz(u,)}

SCO{Hf “Lfa(n)Jr E HGe“H"”“"(n)+“f1“L2(u')+“f2*““Lfsn(“’>

+£ 51 (“G “H2 70! + ” 2,23 Hf,l“;z“(u')>}'

Here Cy is a constant independent of z3, and

1 1
AS’ Ae

(4.7) Mo_max{ }, As=6-68 Ac=¢—e.

Proof.  First we assume that G® = 0. Let Ayu = ; (u(z + hes) — u(z)) with
h € (0,6) and ez = (0,0,1), and let I:II(Q) = {u e H'(Q)|u=0 for z€ Q\LI’}.

By the standard argument of difference quotient (see, e.g. [10]), we have for any
weH (Q)

(4.8) / V (M) Vwdz = /Q (AnVa) - Vwdz

- —/Qvu-V(A_hw)dm

by (3.19)
=— /Q f(A_pw)dz — /1‘1 G (A_pw)dS

- / F(Aow)dz — / [y © (B0 8S:

In the case (i), f € L? (') and G* € H' (). We have by Schwartz’s inequality

14




(4.9) ’ /u F(Aopw) dv

by Lemma 7.2.3 of [10]

S c ”f”LQ(u:) ||A“hw”L2(ui)

< Ol g g el

By Lemma 4.1 we have

(4.10) <cl|e

1
L A & (Bh)dS o7 ey 1027 s ey

by the imbedding inequality of Sobolev space (see [1])

S C ”GlllHl(ul) ”w”Hl(ul)
S C ”Gluﬂl(ul) ||vw“L2(u/) .

Here we used the inequality

Combining (4.8)-(4.10) we have

(4.12) l /u 'V (Apu) - Vuda

1
< C (920 * 16 Ve gy ) IV 2 -
Let ¢ (z3) and @3 (1) be C* cut-off functions such that 0 < ¢y (z3),¢2(r) < 1,

and

], for |as| <1-—¢ 41, forr<e
(413) 1 (2s) = { 0, for |za|>1-6 92 (r) = { 0, for r > ¢

Set n = 1 (z3) p2 (r) and w = n?Apu. Then

V (Awu) - Vo =V (Ayu) V (1 Apu) = [nV (D) * + 20 (Aru) V1 - V (Apw)

which together with (4.12) yields

/u/ |7V (Apu)|® dz
1 2
< € (17 g gy + 16 g gy ) IV P 200) 2
<cC (Ilf L2 + 1G ey ) (1Y (Anw)llg2 g + 1(Aku) Vallp2 m)
120/ (Ak) Tl g - 10V (Ak)lg 0
15




Let A(f,G")=C (||f||Lz(u,) + |IG1“H1(u'))' Then we have
1(950) Vil gy 179 (rll gz < § 107 (Audlz g + 2100 Tl

A (£,6Y) In¥ (Aww)llz g < 2JA (4, &)[ + % 17V (w200

A(£6) 10 Vil gy < 3 1A (5,6 + 5 10800 Tliz

Substitution of these inequalities into (4.14) gives

% ()32 < € (1712 + 16 [y + 10200) Vi)

Note that n = 1in ¥, |Vy| < CM, with My = max (A , M) Then by Lemma
7.23 of [10] we obtain (4.4) for G° = 0.

In the case (ii), fz, € Lp, (U’),Gi € H;261212 Z(U') ,£ = 0,1. Then for any
w € Hy ()

(4.15) l /Q FA_pwdz

= A wd.’]’;
‘/ll’ ( hf)
by Schwartz’s inequality

TN

)
by Lemma 5.1 of [15]

S C ”Ahf”Lﬁlg(u') ”w”Hl(ul)
by Lemma 7.23 of [10] and (4.11)

< Cllfanlin,, gy IVl E2 -

Due to Lemma 3.2

e, o G (Ackw) dS| < |fo, o (B4GY) wdS|
(4.16) < ClAG g gy 0l

= Hy,, @) "™ H @)
by Lemma 7.23 of [10] and (4.11)

-<— C ”Gl‘a “Hlﬂ’llz(u/) Ilvwl|L2(u/) .
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Combining this with (4.8), (4.15) and (4.16) we obtain

1
G,

(4.17) fu V(M) - Vwds < C (||fx3||Lﬁ12(w) +| i (u,)) IVl g -

Then the proof of (4.5) is the same as that for (4.4) except that the inequality (4.17)
is used instead of (4.12).

(4.6) for G° = 0 in the case (iii) is obtained by combining (4.4) and (4.5).

We now prove (4.4) and (4.6) is general, i.e. G°|r, # 0. Let v = u — G°. Then v

satisfies

—Av=ftAuG 4G =],

’U|1“1 - 0,
ov, [ oG° _
%IF2_(G+_5n_) Fz"'Ga

where Ayy = ai, + -57 If f e L*(U), G'e H>™U'), then f € L*(U’) and

G! € H' (U'). Applying (4.4) with G° = 0 we obtain (4.4) in general. If fo €

L, @), Gt € HE™ '), £ =0,1then f = fi+fowith i = G5 €

L2 (ul)’ .fZ = (f + Al?GO) € Lﬁm (u,) and .fi-’,:cs € Lﬁ12 (u/)’ élaé},-a € HE,112 (u’)

Applying (4.6) we have (4.5) in general. O
The regularity of higher derivates in x3 is given in the next theorem.

Theorem 4.2 Suppose that u € H' () be the weak solution of the problem (3.1)

with G € Hy %7 (Q),£=10,1 and f € Ls ().

(B1) If for € L? (u,),Gign e H*'(U"),£ = 0,1 , 0 < m < k, then up €
H' (), and :

(4.18)

4
Glm

u k+1|
” T3

k
Hi SCW {Eo (fo;n - (u,)) + |[utaa I 2 (u,)} :

(B2) If fup € Lp, (U"), Gy € HE”(U),£=0,1,0<m < k+1, then
Ukt e H' (U), and

+
L’ Z;O,I ‘

(4.19)

U, k+1
Z3

Jom Gom

k
Hl(u) S C (k) {Tnz=0 ( Hzl_;ﬂ_l(u/)) + “u1'3||L2(ul)} ¢

Furthermore, if f € B}, (') and G* € B, (U'),£=0,1 then

Ls,, @) T lgo:,l ‘

(4.20) <ecdit?(k+2)! Vk>0.

Hi(u) —

U_k+1
3

17




Proof. Let é,=6— —A6 and e, =€+ 1 tAe, 0<{<k, where A6 =6— ¢ and
Ae =€’ —e. By Uy we denote Ue, 6, Then U=Uy CU; CUy---CU=U".
If the condition (B1) holds, the application of (4.4) leads to

4
I gy < Co (ufnLeW R G LT

(Un2) < Go (“fxg”Lz(u"-l) + l:ZO,l ' 2(Uk-l))
< Co (”f%”L?(uk_l) +e=20,1 i ? (Un— 1))

2 /4 2 2
< a3m 1) (g + 5, 1610 ) + €30 uumuLz(uk).

Gﬁ

z3

+ M (k) ||u

U2
z3

H* ™ U-1)

GZ

Z3

+M(Ic)

H~ (Us—1)

where M (k) = kMo = kmax ( Ao M) The argument above can be carried out

for all ugm, 1< m < k+1. Henceusp € H' (U),1 <m < k+1, and by the
mathematlcal 1nductlon it can be shown that for0<s<k

Uggtt ‘ H ty—.s)
< 2 Cm+1Mm k s—mm Ge s—m
(4.21) = mz=:0 0 ( ) ( f”a t z=;o:,1 T3 H2—t(uk-—s+rn)

s+1 s+1
FOSM () a2

Then (4.18) follows from (4.21) immediately.

If the condition (B2) holds, we can analogously prove by mathematical induction
that u s+ € H'(U) for 0 < s < k, and

(4.22)

U, s+1
T3

H' ¢h—.1)
S C zs +
o (Mol 3, [ fion )

+ Z CmMm(k) {CO (“fa:ss“_m“Lﬂn (Uk—s4m) + ¢=0,1 ”G SH_m”Hz—” l(u"'“s'”"))

’In._

4
s+1

GZ s4+1=—m

T3

s+l—m
T3

szgz’z_[(uk—ei-m-{-l)}
s+1 ars+1
+C3™'M ()(IIfHLBM) HG ”H2 )+||uz3||L2(uk))

”Lﬁn (U—s4m+1)  ¢=0,1

We shall prove (4.22) for G =0, {=0,1. The proof for the case that G*#0is
similar to what follows. (4.22) holds for s = 0 due to (4.5) of Theorem 4.1. Suppose

it is true up to s, then applying (4.5) to 231" we obtain

18




[+

H' Ur—s-2)
< Co{ Mool oy + MO Ny oy + gl )}

By the hypothesis of the induction we have

”ua:;"'2 III{1 (Us—s—2)
< Col|fx§+2 ”Lﬁlz (Ur—s-1) + COM(k)”f‘”;“ ”Lﬁu (Ur—s) + COM(k){COHfzg“ ”Lﬁu (Ux—s)

S
+ X CpMm(B)Collfogri-mlL,, .

s4l—m II
T3 Lﬁlg(uk—a+m+l))

s+m)

O M (k) (Ilf IL,,, . + ”“%”Lz(uk))}
= Cy + Z Cg)an( ){CO||f“’;+2_m”Lﬁ12(u“

842
Z3

Lﬁm (Urk—s—-1) —s—14m)

5+2 pr5+2
+"fx§+2—m HLﬁu (uk—s+m)} + Co M (k) (”f”Lmz(uk) + ”ul‘:!”Lz(Uk)) )

Hence (4.22) holds for (s + 1), and then we complete the induction.

If f e BYU') and G* € B2 74(U4"), then there are some d3 > 1 and C3 > 1 such
B B
that for £ > 0

(4.23) ”fzg“”L'Bm(u/) < CSJI:;]"!’

|G < Csdb* 2t (k+2 - 0)l.

¥

H " ey =

Substituting (4.23) into (4.22) and noting that M(k) = kM, we obtain

(4.24) 3 .
||u$§+1 ”Hl(u) < C{Cngd§+1(k + 1)'

k ~
+ mZ_I(Co + 1)CrMPdEFT™(k + 1 — m)k™ + C5TI M KR+,

By using Sterling formula: k! = kFe~*/2rk (1 +0 (%)), we havefor 1 <m <k

k™ (k + 1— m)‘ k™ (k 1 1— )k+1—m —(k+1—-m)\/27.‘. (k. + 1— m)

<C
(4.25) <SC(k+1)* et fon (k+1)-e
< C(k+1)le™.

We have by substituting (4.25) into (4.24)
19




m=1

+H(CoMoe)*+! (k +1)!}
< CdE*? (k4 2)\.

< dk+2 L m J k+1-m !
”ux:l:ﬂ ”Hl(l/l) C 0003 (k ) + (C() + 1)(00M06) d3 (]C + 1)

where d3 = max (Jg, CoMoe). m]

4.2 Regularity of high-order derivatives with respect to the direction
perpendicular to the edges

We now turn our attention to the regularity of high-order derivates with respect
the variables other than z3. Let ¢; (z3) and ¢, (r) be the C*° cut- off functions
defined in (4.13), and let v (z) = 1 (23) @2 (r) u () where u(z) is the weak solution
of (3.1). Then v satisfies

—A'U B _f in U’ = uel’ﬁl
(4.26) 0 lr=er = vlgms0-s) = 0,
' v

%0 _ /0 _~1 A

where §¢ = @1 (z3) @2 () ¢, G = 1 (z3) 02 (r) G* and [ = @1 (3) @a(r)f + b,
h= 2(Vigu - Vigpa(r))p1(23) + upr(7s) A12epa(r)

+2uq, P} (23)p2(r) + uepl (23)p2(T)

: a 9 0? 0* : x N A
with Vi = (5;,%;) and Aqp = (5;%— + 55?) Obviously f € Lg,(U"), G° €

Hf,n“ ~t(U'),£ = 0,1. Furthermore v, f and G? vanish for r > ¢’ or |zs| > 1§,
and with the constant My given in (4.7).
(U'))

(4.27a) ”f”L (u')— (”f”L[3 (u:)-l-Mo”ur“L?(u,) Z Mz ||u

G° <C M2=% |GO gy 0
(4.27b) “ IHZ; (L{’) - (s=2071 0 IG IH (u/) + IG IHZ’; (u’))
< CMg—s “GOHH;;‘;(U/) )
1 -
(4.27¢) | ”HZ’;(U’) =€ (M" 1GM L2 + 1G22 (w)

< CMo |G g2 -

If f € L2(U') and G* € H* ('), then f € L2 (U'),G* € H*™(U'), and
20




Lz(u')) ’

U .m
Z3

(4280)  Wfllgrg SC (nfny(u,) + Mol + 2 MG

~ 2-¢
(4.28b) |6 ety <0 5 M8 &l
| < G| gy
Let »
H (U') — {u c HI(Z,{') | 'u,l,:g = u|x3=i(1_5,) = O}
and

1

it ) = {uw e B' @) | ulpy =0}

Then v — G° € IfI}J (U') and satisfies the following variational equations

(4.29) [ Vo Vwdz /u Jde+ /F (e 05, Vo €FI o).

We now extend v, f and G¢ into Q.. x IR! by zero extension outside A’. Then for
almost every & = (z1,23) € Qe, v(&,) € H! (IRI) , f(&,")eL? (]Rl) ,G"*(%,-) €
H*¢ (]Rl) ,{ =0,1. Let F denote the Fourier transform, namely, for admissable
function w

1 00 :
w(z,)) = F(w) = \/——i[-oo w (21, T, 23) € Ndzs, A € (—00,00).

Then 6 = F (v), f = F ( f) ,Gt = F (G*) ,£ = 0,1 exist and § solves the following

problem

A+ N =f, in Q. =(Q,
(4.30) Olr=e =0, 5
. A D . .
I@:O = go = G0|0:0’ —|8=w = gl = Gllﬁzw.

on

S

Let HY (Q') = {t € H (Q')| % |;—o = 0}. Then & — G° € H}, (Q") and satisfies

the variational equation

@31) [ (Vib-Vad+ NFod)di= [ fidi+ [ §bds, Y € HY(Q)
Q' Q' Y2

where v, = T2 N 0Q'.
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We shall introduce the weighted Sobolev space HZ:; (Q') defined in {]. For integer
kand £,k > £ >0, Hgi (Q") is the completion of C*°— function in the norm

;112
(4.32) lllgrse o Z |25 @) D'afy2,,
with 7 (%) = 2] = (2} + z2)'/? and
Al )T (:TJ)B”H"’I"Z, for |o/| = a1 + a2 > £,
oy (8) = { 1, for |o/| < L.

As usual we shall write Hﬁ12 (Q") = Lg, (Q).

Lemma 4.2 Let u € H'(Q) be the weak solution of the problem (3.1) with
feLg(Q) and G € Hy %74 (Q),£=0,1. If B € (0,1) satisfies

T

(433) ﬂ]z >1-— K12, K12 =

2w12

Then the weak solution © of the problem (4.30) belongs to Hz’i (Q') and

43 Wl <0 (M 5 i )

and

191522 oy + W 19128132 gy + N 1902 g
=¢ (1 * |)‘|2) {Hfl L; (Q) £=0,1 HG ||H2 “~4@Q + I)\I ”GOI L’ )}

Proof. Sincev € H' (Q' x 1Rf), f € Ls, (@ x RY) and G* € HEP*™ (@' % R'),
b€ H (Q'), f € Lp,(Q') and G* € Hgl_f’z—l (Q) for almost every A € R'.

Because 0 is the weak solution of the problem (4.30), by Theorem 2.1 and Remark
of [2], ¥ € H? (@), and

(4.35)

bt 10

1312

A2 2 A
oMz g < C (”f A%
with C independent of A. This leads to (4.34) 1mmed1ately.
We now assume that G° = 0. By Lemma 2.10 and 2.11 of [2] we get for any
b € H' (Q')
| [, fiodi] < CUfll,, 0 10T g
22




and

|| s < of [ M L

Letting @ = ¢ and substituting the inequalities above into the variational equation
(4.30) we obtain

(4.36&) ”VIIA)“LQ(QI) <C (”‘f”pr(Q:) + ”Gl ”Hllsllz (Ql))
and
(4.36b) AHollgz g < C (“f ”Lﬁn @7 ¢ ”H}Q(Q')) '

Here we used the inequality

The combination of (4.34) and (4.36) leads to

”ﬁ“ilfaﬁ(c?') iy MJ:,”VIQA}”%J?(Q ) T A9 g
<0 (1+0F) (M, @0 162 0n) -

If G+ 0 and G' = f =0, setting & = & — G° and applying the result above we get

(4.37)

~ 12 4 A
ez, o Loy T W Il g

< 2 4115002 012—4:2—¢
< C+ NP {INIC T g + 5, IS
which together with (4.37) implies (4.35) and then completes the lemma. O

Theorem 4.3. Let u € H'(Q) be the weak solution of the problem (3.1) with
f € Lg(Q) and G' € Hy "*7'(Q), I = 0,1. In addition, fs, € Lg,(U') and G €
HZ;I’2"I(U'), [ =0,1 with 2 satisfying (4.33). Then u € Hzﬁi (U), and

i
||u”HZ,122 ) _<_ CmZ%’l {“f:vg‘ll:[“‘812 70} =+ 1:%1 |Gx§n|H2ﬁ:2!,2—l
+M0||G1||L2(L(l + ; M02—81G0|Hs(u')

w9 FMolluragligz g + 3 M2 llszrmllpzg |
< C {0 + 1oL
1 1
+ 3, G et + 165, ”H?{;’“(uo)} ’
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Z ||@312Da“”1,2(u)

laf=|e’|=2

l 1
(4.39) ML, 0y + 25, 1¢ [z gy + Moll Pl

2-351;0 2 2-s
+ 2 MGy + Mollurllgz g+ 35 M3 sz -

where M) is a constant given by (4.7).

Proof. Since f € Ls, (') and G' € H3”*7'(U"), f € Lp,,(Q x R') and &' €
21212 @ x RY), 1 =0,1. Hence f € Lp,(Q') and & € H%;I’z_I(Q') for almost

every A € R', and

00 2112 Y
(4.40a) [ 1R, @y = 1713, ey
and for [ =0,1
(440b) /_oo ”él”i_lz—z,z l d/\ = “GIHL L)

By Lemma 4.2, & = F(v) € H3*7(Q’), and (4.34)-(4.35) hold. If fom € Lg,, (1)
and vag; € H?;;I’Z_I(U’) for m = 0,1 and [ = 0,1, due to (4.34), we have

E “‘Dﬁlz‘D ”L (Q'XIR,J)

laf=]o’|=2
<C [ UM 0+ 5 1€ o gy + RN g, )0
by (4.40)
< UL, g+ 2, G hpranigyy + Il )
by (4.27) '
< Ol 00+ 35, 1 g + M1 e
+ E MG g+ 3 Mgl + Ml )

This leads immediately to (4.39).
Similarly, due to (4.35), we have

2 2
Pty = Wi,
A2 2 A2 4
= C/_m(llvllﬂzﬁw,ﬁ IMPIV120l32 4 + M I0IE 2 8N
(4.41) /°° a1l F1i2 - n Aom
<C [ @+ )(Hflleu(Q,)+l§1 16 gecta-t gy + MPIG 2 g A

< ~m z ~lm —-1,2- .
- C z%,l(”f% ”Lﬁlz(Ql) + l-—.ZO:,l HGz‘a ”H2/3121,2 I(Q:))

m=!
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where fos = 1(23)ba(r) fzy and G’;s = ¢1(z3)$2(r)G., . Therefore we have estimates
of fz, and G. , which are similar to those in (4.27) except that f, G' u, and Ugs are

replaced by f,, G’;a , Urg, and ugs+r . Combining these with (4.27) and (4.41), we
obtain (4.38). ]
Remark 4.1  Although there are similarities between the regularity of solutions in
the edge neighborhoods and those of solutions for the problems in polygonal domains

in R?, there are substantial differences. For the problems on a polygonal domain

) in IR?, the boundary values problem of Poisson equation realizes an isomorphism

H(Q) — HE(0) x HE™/2(r0) x H 20,k > 0, but it is not true

for the problem on a polyhedral domain {2 in IR3, namely, the conditions that f €
HZ+2’2(Q),GI € HEH'I’?_I(F’),I = 0,1 are not sufficient to guarrantee the solution

u € HEP2(U) . )
Theorem 4.4 Let f(z) € Ls(Q) and G' € HY"*7(Q),1 = 0,1. If fop € HO (W)
and Gi.:rsn € HZ;Z_I’z_I(U') for m = 0,1 and k > 0 with i, satisfying (4.33), then

the problem (3.1) has a unique solution (weak) u € H'(Q) N HZ;';Z’2(L{), and for
lo| < k+2

(4.42)
2, —op Ty 1
1957 D ullgpg,y <C {mgo,l(”ff?‘ It o 25, 1= Izt

i
+||f“Lﬁ(Q) + z=zo,1 ”G ”HZ_I’%Z(Q)} .

Furthermore, if f € Bgn(b{’) and G' € B%;’(U’),l = 0,1, then u € B%n(U), and
there are some constants C > 1 and d; > 1 such that for all «

(4.43) @5 =2 Dul| 2 a S Cdal.

Proof. The assertion for |a| = 2 is ture owing to Theorem 4.3. Let 6* = 3(6+6')
and ¢ = 1(6 4+ §). (4.42) and (4.43) hold over U* = Ue» ¢+ for ol = k > 2 and
a1 + ag < 2 due to Theorem 4.2. It remains to show (4.42) and (4.43) for a with

a; 4+ a; > 2. To this end, set U; = U, 5,0 < ¢ < k, with ¢, = € + ii—_—e, =

k
b6 — 6
6 — z—k—, so that Uy =Ues =U and Uy =Ues oo = U™ Let v =717u,ept, s +1 < k,

s,t > 0. Then v satisfies
—Av = for =121 fot )re, in

v|o=0 = TSGEMQI(?:O = G[s),t|9=°’

v

ani9=w12 =r (TG}cg )7"|9=W12 = Gi,t|0=w12'

(4.44)
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Obviously f,: € Ly, (1), G\, € H5*(U'),1=0,1 and
”fs!tllLﬁn(U') < C”f“H’;';;(u/)’

!
”Gs,t”H;—;v? l(U’) > C”G ”Hk+2 12— z wuy’
Due to Theorem 4.2, we have for t = k and s =0

- P2 upesang g2, < O(llfmallﬂg,; wt Z IIGL?IIHZT;_:,H )
4.45 1)
+”.f“Lﬁ(Q) + l::ZO,l ”G ”H,zs_l'z_l(g))'

Suppose (4.45) holds up to (s — 1) with 0 < s +¢ < k. Then the application of
(4.39) of Theorem 4.3 to the problem (4.44) gives us
o,2 —oz o
|lo|=lai= 2”q)ﬁ12 "D e )”Lz(uk-s)

<C st4m G —t2-
(446) - {mg),l(”f o+ ”Lﬁn (Ur—s41) + I=ZO,1 ” s,t+m||H?312’2 Z(Uk—s-{-l))

2
s S
Hi(r uT’E§+m)T“L2(uk_s+1) t mz=:O Ir uraz?m”U(Uk—su)}'

By the assumption of the induction, we have for m = 0,1

”(T Ups xt+'") ”L2 —et1)
O+, z+m||L2<uk oy TPy
C

(”f-'L'SHHkO(ui + Z I|G’.‘L‘3”Hk+2 —-12- l(ul + ”fHLﬁ
+1=Zo,1 G ”Hﬁ—lz z(m)

< (uk—e+2))
<

(4.47)

and for m = 0,1,2

“Tsursxg"”m ”L2 (Un—s41)

—-240
S ”Ts lzur"z;+m||L2(uk_s+2)

4.48 :
( ) | < C(”fgcs”I_I';alf’2 0] + lzzm ||G.’L‘3”H’;;+‘22—l,2—-l(u,) + ”fHLﬁ(Q)

i
+ I=ZOJ G ||H2_z,2_,(9))

Combining (4.46)-(4.48) we obtain for 0 < s <k and s+t <k

a,2 ps—o2 Do
' lo|=lo’[=2 @55t D ”5”1'2(%_5)
1
(4.49) < C(”f“’SHH';’;;(uk_s) + ”f”Lﬁ(Q) + 12:0,1 ”G“’SHHZ:';""H(M)
1
HIG 121 )
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This completes (4.42) by the induction for a with o = k +2 and a; < 2.
Now it remains to show (4.42) for ap > 2. For o with |a| = k¥ +2 and a3 > 2,
let w = r*1U,a1gay—2,92. Then :

_Aw = Tal —2(r2f9a2 —21‘;"3 )Tal .
Noting that

Aw= r*~2D% + (20; + 1)7‘a1_1ural+10a2—2x§'3

- (24
+a§r°‘1 2u,’.a10a2—2zg‘3 =+ ralural+20a2—2x§3 +rHU o foa—2553¥2"

we obtain

"ral—2Dcxu”Lﬁ]2 @)
< ||T'al_2(7'2foaz—2z§3 Jrex “Lﬁ12 w T (2a + l)llral—lur°1+10°2—2m§3 ”Lﬁn(u)
4.50 -
(4.50) +0d [P ey gar 2023 |, @y F P rertzgea—2033 L, )
+”r01 u'r"‘l 62 '2$:3+2 ”Lﬁlz Uy

Then simple induction over a; leads to

“ra’l _zural 00‘21‘;3 ||Ll912 (ul)
l 1
) C(”fxs”H’;;; . L ”f”Lﬁ(Q) + Izzo’l(HGm”Hzgz—z,z—’(u') + “G ”H;—l.z_’(ﬂ)).

This completes (4.42).

We now shall prove (4.43). We assume that G' = 0,1 = 0,1 for simplicity, and
we establish the following estimates by mathematical induction

s 1
”rsur-"*‘zxg ”Lﬁm (Ux—s) S C*{IZ%) m§0 ||fs—l,t+m ”me (u/)Ding kl-—m
(4.51) + mz_—;0 “umg+m ”L2(u~)Df+l Dy™gs-mt
s+2
+ 3 lluggrmllpz g DI D5 kT2

where 0 < s+t < k, D; and D5 are suitable constants. For s = 0, (4.49) holds due
to (4.18) of Theorem 4.2. Suppose it is true up to (s — 1) with s + ¢ < k. Then by
application of (4.39) of Theorem 4.3 to the equation (4.44), we have

19552 D (r*upeat )l g2,

lel=le’|=2
(4.52) < Co{”fs,t”Lﬁu(uk_sH) + (M*k)Hrsu,s-nxg”Lz(uk_s“)
i 2([ss—1 2—t || .8 ,
+M.k ”T ursx§|lL2(uk—s+1) + tlgg,l(M*k) ||7' uT”";“ ||L2(uk—s+1)}
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where M, = max{ } > 1. By the hypothese of induction

A§’ Ae
”7‘ Ups+1 t”Lz(uk o)
< ”7’5 1 'r°+1 :||Lﬂ2(uk 1)

< G {Z E I| fs—1- lt+m||L}3 ) D D3™ k=™

(4.53)

+ Z ||ur$t+m”L2(um D; DBmks "

+ mz_o gt |2 e DI DS k74,
(4.54a) I a2y S It L, @)
and

[~ z’zg‘”lan(Uk—sﬂ)

< e Q:r’ﬂi§+’l|lLﬁ12(uk—s+2)
s— | nN—-mil-m

(4.548) s OAZ Z Wesereimlin,,, wnDiDs ™k

+ m‘; s g2 ey D37 D5 R
+ mXiio letgssersm |2 DI D™ 57}
The combination of (4.52)-(4.54) leads to
7" ursszat |1, @y < A+ B+ E,
A =l un + T % @+ MICu fermtetmllL,, o DD E

+C. Z Z E I| fom2- lt+t'+m||L L) D L D3™ kA2 t(M +1)* -t

t'=0 [=0 m=0

—_— C* Z ZO “fs-l,t-}-m||L512(u1)Dngmkl—m,

=0 m=
s—1
B = CoCu{ & lltragsmligzge DiDF™ ko M.
2 s—2 ) i
+ 2 X N el DIDS™ 7MY
S
S e

and
sl s+1 n-m 1,.s—m+42
E = CoCul L lltagm iz, D' D5k M,

2 s
s n—m1.s—m+2—t’'
+tgo mzz:o ||uz:§+m+t1||L2(u')DlD3 k M*}

+2
< C* sz ”uxt+m ”L2 Di+2ngks—m+2
m=0 3

o)
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with C. > Cp and D; > 4C. max(2 + M., ds). This completes the induction.
If fe B%w(u,),G’ =0,/ = 0,1 then by (4.19) of Theorem 4.2, we have for a with
la| = a1 + a2 £ 2,
a,2 P o as
(4.55a) | @5 r~>2D u]]Lz( uy S C1 D3 as!
and we may assume for all o that
(4.55b) ||r°‘1_2(r2f9a2xaas)ra1 ||Lﬁ12 wn S C1D{* D§? D3 a!
Substituting (4.55) into (4.51), we obtain for s +¢ =k

||T'Su ‘9+2:1:‘ ||IJ{3 2(“)

< C. {z 5 C1D:Di(s — DI(t + m)!k=™
-0 m=0
s+2
+ m2=0 C1 D™ DLk~ ~met1 (t4+m)! + mzzjo C1 DY Diks—™42(¢ + m)!}
< C{4C,DsDitks + 2C, DY Dilks+! + 2C; D2 Ditlk+2}
< CoD{PEDikeHH2,

Note that by Sterling’s formula
k2 = B2 < Og(k + 2)1e42 20 (k 4 2) < Ca(k + 2)!(2e)*F?
which implies
||rsur’+2wé”Lﬁl2 wn S CaDT2DL(2e)M 2 (k 4+ 2)! < Cydit2dit!(s + 2)1.

Hence (4.43) is proved for a with a; = 0,d; = 4eD; and d3 = 4eD3. In the
same manner (4.51) and (4.56) can be proved for o with a; < 2 except that v =
TN U e gag 93, || < k and ap < 2 satisfies the equation (4.44) and the estimates
(4.45), (4.51) and (4.56) instead of v = r®u,s,t with s +¢ < k. It remains to prove
(4.42) for a with @z > 2. Suppose that (4.43) holds up to (ap — 1), then by (4.50)
and (4.55) we obtain '

||7°al_2Da“||L[, )
< Cy DY D2 Dg a' + Ca{(2a + 1)d3* 15 72d53 (a1 + 1) (a2 — 2)!exs!
+a2d? d322d3 oy (g — 2)las! + dert2d32 7245 (o + 2) (e — 2)!as!

+da1 da2_2da3+2 (011 2)'(&3 + 2)'}
S C4d°‘a'

where Cy > C; and dy > 2ma,x(d1,Dg,d3). This completes the induction. Then
(4.43) holds for all o, and u € B} _(U).
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Remark 4.2 If f(z) € Lg(), G' € H;"*7'(Q) with B2 = 0,1 = 0,1, then (4.4)
of Theorem 4.1 and (4.34) of Lemma 4.2 implies that u(z) € H;;‘; (U') with By,
satisfying (4.33), and

l
ez < AL 0 + 3 16 Tga-s)

Further, if f(z) € Hy2 (/') NLs(Q), G' € HE2 2 ) nHE "7 (Q) with 1z = 0,
then u(z) € HZ:;“(ZJ) with By, satisfying (4.33), and

l i
ooy < OO oy @z oyt 3 16 gzt 16 gt}

O
As a consequence of Theorem 4.4 and Theorem 2.1, we have regularity of solution
in the countably normed space with weighted C*— norms.

Theorem 4.5 [If f(z) € BS (U') N Ls(), G'(z) € BL (') nH5 "*7'(Q), then
the weak solution u(z) of the Poisson equation (3.1) belongs to C ﬂu(u YNHY(Q). O

Remark 4.3 In special case that the data functions are analytic or piecewise
analytic, namely,

(i) function f is analytic in Q,

(i) ¢%,£ = 0,1, are analytic on every face T; CT® and T'; C It
Then the solutlon u of the problem (3.1) belongs to B} (/) ﬂHl(Q) and C5_(U)N
H'(Q). =

Remark 4.4 The regularity described by the countably normed space with weighted
C*—norm implies the pointwise estimates of the derivatives of solution of all orders,
namely, for z € U;j,|la| =k >0,

(4.57) |D°‘(u(m) —u(0,0,z3))| < Cd® oy~ Bis+lel=1)
and

dlc
(4.58) u(0,0,z3)| < Cdik!.

dl’3

In many applications, for instance, the error analysis of the p and h —p version of
the finite or boundary element method, we prefer to use the pointwise estimates of
the high order derivatives of solution instead of the weighted Sobolev norms of high
order derivatives. By using estimates (4.57) and (4. 58) we have shown in [8,9,16]
that the approximation to functions belonging to Cﬁl (U) converges exponentially
by properly designed piecewise polynomial spaces. o
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