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Abstract 
This paper is the second in a series of three devoted to the analysis of regularity 

of solutions of elliptic problems on nonsmooth domains in K3. The present paper 
concentrates on the regularity of solution of Poisson equation in neighborhoods of 
edges of a polyhedral domain in the frame of the weighted Sobolev spaces and 

countably normed spaces. 

These results can be generalized to elliptic problems arising from mechanics and 
engineering, for instance, the elasticity problem on polyhedral domains. Hence, the 
results are not only important to comprehensively understand the qualitative and 
quantitative aspects of the behaviours of the solution and its derivatives of all orders 
in neighbourhoods of edges, but also essential to design an effective computation and 
analyze the optimal convergence of the finite elements solutions for these problems. 
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1.       INTRODUCTION 

In engineering applications the domains of the problems under consideration 
are often unions and intersections of simple geometrical objects such as cylinders, 
balls, cones, etc.. The unions and intersections of these simple objects yield edges 
and vertices. It is well known that the singularities of the solutions occur near the 
edges and vertices. The singularities make the computation for these problems on 
the domains with edges and vertices extremely inefficient and inaccurate. Hence 
precise description of the singularity is not only significant for the regularity theory 
of partial differential equations on nonsmooth domain, but also extremely important 
for the construction of effective numerical approximation methods. 

This paper is the second of a series devoted to the analysis of regularity of 
solutions of elliptic equations on nonsmooth domains in IR3, and it will concentrate 
on the regularity in neighborhoohs of edges of a polyhedral domains. The typical 
description of the edge singularity is the asymptotic expansion of singular functions 
(see [7,8,9,11,12,13,17,19,20,22]) 

J     S     T 

j=l s=0 t=0 

where (r, 6, £3) are the local cylinderical coordinates, Cjst and tpjst are analytic in 
x3 (except vertices) and in 0, respectively. Recently the classical weighted Sobolev 
spaces Wk

ß and V^ with Kontrat'ev- and Maz'ya-type weights were used to analysing 
the regularity of high-order derivatives of solutions (see [18,21,23]). As indicated in 
previous paper [15], these approaches do not sufficiently characterize the behaviour 
of solutions near the edges. The solutions u(x) in the edge-neighborhood is analytic 
except at the edge, and their derivative of order k > 1 may grow rapidly as x tends 
to the edge and as k increases. The regularity results in terms of the asymptotic 
expansions and the classical weighted Sobolev spaces are unable to reflect these 
natures of regularity in the edge-neighborhood. The classical weighted Sobolev 
spaces W^ and V^ with 0 < ß < 1 are suitable only for the regularity of lower-order 
derivatives of the solution, but not for higher-order derivatives, for instance, k > 2 
if the elliptic equation is of the second order. 

In this paper we will analyze the regularity of solution in the edge-neighborhoods 
in the frame of the weighted Sobolev spaces and countably normed spaces with 
dynamical weights. The theory of these spaces on the edge-neighborhoods has been 
well established in previous paper [15]. The regularity results in terms of these spaces 
will provide us with the complete qualitative and quantitative informations of the 
derivatives of solution at all orders and will lead us to the exponential convergence of 
the approximation by properly selected piecewise polynomial spaces (see [8,9,14,16]). 

Although the regularity results for problems in vertex-neighborhoods of polygo- 
nal domains are similar to those for problems in edge-neighborhoods of polyhedral 
domains (see [2,3]), it is worth indicating that there are differences on the substances 
and approaches. We will elaborate the substantial differences in Section 4. 

The notations and definitions of various spaces will be quoted in Section 2 from 
the previous paper [15].   The Section 3 deals with the existence and uniqueness 
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of weak solution of Poisson equation on polyhedral domain with data given in the 
corresponding weighted Sobolev spaces. The main part of the paper is Section 4 
in which the regularity of solutions in the edge-neighborhoods will be derived in 
the frame of the dynamical weighted Sobolev spaces and countably normed spaces. 
These regularity results for Poisson equation can be generalized to linear elliptic 
equation and system of equations without substantial difficulties. 

2.       PRELIMINARY 

We shall quote the notations and definition of the spaces which were introduced 
in Part I and will be used in this paper. 

Let Ü be a polyhedral domain in R3 as shown in Fig. 2.1, and let Ti,i € 2 = 
{1,2,3, •••,/} be the faces (open), Au- be the edge which is the intersection of f,- 
and Tj, and Am,m € M = {1,2, • • • M) be the vertices of ti. By lm we denote a 
subset {j € I\Am € I» of I for m € M. Let £ = {ij\i,j € /, f ,• n f,- = Atj}, and let 
Cm denote a subset of C such that Cm = {ij € C\Am € A,j}. We denote by U{j the 
interior angle between T; and Tj for ij G C. Let T0 =  U T,- and T1 =  U T,- where 

i€D ieAT 
V is a subset of I and Af = 1\V. Further, let Vm=Vf]Im and Afm = Af f)Tm for 
m e M. 

Fig. 2.1    Polyhedral domain Q 
For precise description of the regularity of solutions of elliptic problems in poly- 

hedral domains. We have decomposed in [15] the domain into neighborhoods of 
edges and vertices as shown in Fig. 2.2 and introduced the weighted Sobolev spaces 
and weighted continous function spaces, and the countably normed spaces in these 
neighborhoods. The structures of these space have been fully studied in [15]. 

Assume that the edge AtJ- lies in the x3-axis and A,j = {(0,0, x3)| a < x3 < b). 
Then a neighborhood of A,-j is defined as 

Weyi5y(Aij) = {x € ß|0 < r = dist(x, A„) < ey,    a + S{j <x3<b- Sij} 

3 



0 < Eij,Sij < 1 are such that Wey,«0-(Ay)PIT/ = <£ for £ ^ z, j. 
By C«m(Am) we denote a neighborhood of the vertex Am 

0Srn(Am) = {x e VI   |   0<p = d*st(a:,Aro)<5m} 

Here Am is assumed the origin and p = (xf + x\ + xlf'2. 8m € (0,1) is selected such 
that 0Sm(Am)f]Te = (l> for any £eCm. 

Vs.JA^A^) 

Fig. 2.2    Neighborhoods of edges and vertices 
(a) the neighborhood Uti}iSij{^ij); (b) the neighborhood ösm(AOT); 

(c) the neighborhood V«mfffii(i4m, A„); (d) the inner neighborhood <f>5m(Am). 

C5m(Am) is further decomposed into an inner neighborhood of vertex and several 
neighborhoods of vertex-edge. For ij € Cm we define a neighborhood of the vertex 
Am and edge A,j 

V«m)ff0.(Am, Atj) = {x € O5m(>lm)|0 < <£ < crti} 

where <f> = <£(x) is the angle between Atj and the radia from Am to x. We assume 

further that A,-j lies in the positive x3-axis.  Then sin ^> = yjx\ + x\jp. 6ij € (0,1) 
is such that V5m,fiy(Am,Ai,-)nVfim,ffM(Am,Afc^) = Am for all ij £ Cm and U € £m, 
ij 7^ H. The inner-neighborhood Ö5m(Am) is defined as 

4 



Ösm{Am) = 0Sm(Am)\  U  Vs^Mm^ij)- 
ij€Lm 

For the sake of simplicity, we shall write Uij or W(A,-j) Vm,ij or V(Am, Ay), Om 

or 0(Am) instead of ^.^(Ay), Vs^s.M™ A«) and ^».(^m)- 

By Hk(tt),k > 0 integers we denote the usual Sobolev spaces on 0 with the 

norm 

«llb*(n>=    £   ll^lllAo) 
0<|a|<fc 

where a = (aua2,a3), \a\ = a, + a2 + a3, I>a« = V1*"2^3' As usual we write 

H°(n) = L2(ft), Hi(Sl) = {u€ H1^)!« = 0 on T0}, and MJ^ = , EJP2«!!^^ 

(semi-norm), and |Z)fcu|2 =   Efc |£>a«|2. 

The weighted Sobolev spaces are defined individually in the neighborhood of 

edges and vertices. 
For x G Öm, ßm G (0,1/2) and integers £ > 0 we define the weight function. 

$/£ W = \  1 for M < L 
/m+l«l-<        for |a| > / 
1 

and weighted Sobolev spaces with integers k > £ 

Hjl(em) = {M|IM^(a„)=o^JI<^ 
We next construct a weight function in Vm,ij = V (An, Ay), with integers £ > 0, 

/Wi = (#»> £y), ßm G (0,1/2) and ß{j € (0,1), as follows: 

V(Öm) 
< 00 

' /m+l*K(sin ^)ft>+«i+«a-'        for * < <*i + a2 < |a|, 
<&<*/    (x) = \   pßm+\a\-t for a-L + a2 < £ < \a\, 

{ 1 for \a\ < £. 

Then we introduce the weighted Sobolev spaces over Vm,ij with integer k > £ 

W 
L2(vm,0) 

< 00 

A weight function in the edge-neighborhood ZYy - U (Ay) is defined as 

«*> = {1 
rft>+ai+or2-/ for ai+a2> £, 

for «1 + «2 < ^1 

with an integer £ > 0 and /?y € (0,1). Then the weighted Sobolev space H^ (Wy) 

is given by 
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Hg (W0-) =(«111^1^= £ W^u 
{ ß'J        \a\<k 

T2 <   OO 
L {tin) 

rk,l Here ßij coincides with that for the space H^ (VTO,o)- As usual 

and 

Dlu =   £  \Dau\ 

|u|H*:'(Wy) L2("y)' 

Let ß = {ßm,m € M,ßij,ij € £) with /3m € (0,1/2), #,- € (0,1) be a multi- 
index. Then the space Hß1 (0) denotes the set of functions such that their restric- 

tions on Uij,Om, Vm,ij and tt0 belong to Hj£ (WO), Hj£ (Öm) H^>y (Vm,o) and 

Hfc (Oo)i respectively, for all zj G C and m € M., and 

IMIkw«n=    E HullHMrw--)+  E   HullHwfö ) + 

£   ..g    HMfe< ..OW 
+
 HIH*(OO) 

The regularity of solutions in the edge-neighborhood Wo will be given in terms 
of countably normed spaces with weighted Sobolev norm 

B 3tj (%i) = {«!«€ Hg (Wo)   /or a// * > £, ||*g.,I>a« T2        <<7<TQ:! 
L (My) - 

and countably normed space with the weighted C —norm 

C%.(Uij)=   {ueC°(Üij)   |   rP>J+W-lDau e C°(Wo) for a with \a\ = |fc| > 2, 
ll^+M-i^^^) _ u(o,0,z3))||w, 7 . < Cdaa! 

||^„(0,0,.x3)||co(j4y) < C4k\ for * > o| 

Hereafter ISi. = (a + 8ih b - 6^), da = d?d?d^, a! = a^W, C > 1, and dt > 1 
are independent of a. 

The relations between the spaces B2
ß. (Wo) and C2

ß.. (Wo) has been discussed in 
[15] from which we quote a theorem. 

Theorem 2.1     Bj.. (Wo) C C%. (Wj) C Bj. .+e (Wo), e > 0 arbitrary. D 
It is convenient to use cylindrical coordinates (r, 0, x3) with respect to the edge 

A,-j when we analyze the regularities of solutions in the edge-neighborhood Wo- 
Hence we introduced weighed Sobolev spaces in the cylindrical coordinates 

2 

L2(Wy) 

and the countably weighted Sobolev spaces 
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B%W) = [u e wj£(wy) for all k > i, l*fr-aav«\vm - Cd°a^ 

where Vau = uraiga2x
a3- 

The following theorem, which gives us the relations between spaces in Cartesian 
coordinates and those in the cylindrical coordinates, has been proved in [15] . 

Theorem 2.2     For I < 2 the spaces H^. (U{j) and Hk£ (Uij) are equivalent, and 

the space Be
ßij (Uij) is equivalent to the space ßjy (Uij). D 

3.  WEAK SOLUTION OF POISSON EQUATION IN POLYHEDRAL 
DOMAIN 

Consider the Poisson equation in polyhedral domain 0 

(3.1) 
' -A« = /, 

<   n|ro = g° 
du I       _ „1 

with /Giß (ft) y = G* |H and G< € tf^"' (fl) ,* = 0,1 

Lemma 3.1     If / € Lßm (Öm) ,0< /?m < 1/2 and »eH1 (Öm), then 

(3-2) 1/   /«&|<C7||/||Möm)||t;||Hl(öm). 

Proof.      By Schwartz's inequality 

\löm fvdx <    C L^m(Ön 
p @mv 

V(ön 

<C\\f\\Lßm(öm)MV(öm) 
ZC\\f\\Lpm{öm)\\v\\j?{ömy 

Here we used the fact that ßm € (0,1/2) and the imbedding result of Sobolev spaces 
(see [1]). 

Lemma 3.2     If / € Lft, (Uj), 0 < ßij < 1 and v € H1 (Hy), then 

D 

(3.3) /    fvdx 
Mi 

<c L/5y(Wy)l|l'llH1(Mo-) 

Proof.      By Schwartz's inequality 

(3.4) /    fvdx 
M, < II/IIL 

7 
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By Lemma 5.1 of [Part 1] 

/   r-*ßi*\v\2dx    =   f   r^-^-2\v\2dx 
JUa JUi, 

<C f     r2(l-ft>) Dlv + \v\   1 dx 

which together with (3.4) yields (3.3). n 

Lemma 3.3      If / € Lßmt} (Vm,ij), ßm,ij = (ßm,ßij) with ßm G  (0,1/2), and 
ßij G (0,1), and v G H1 {Vm,ij), then 

(3.5) / fvdx   <C||/||T IV       JMITTI,,,       > 

Proof.      By Schwartz's inequality we have 

(3.6) /       fvdx < 
^ßm.a^y^i) 

ßij p~ßm (sin (j))'^3 v , 2 
L (vm,o) 

Let ßm = 1/2 - ßm and /% = 1 - ß(j and /L.ij = (ßmJij)- Then by Lemma 4.2 of 
[15] 

p-ßm(sm<f>) ßl3 v 

(3.7) 

Note that 

T,        ^   =/      p2ß-\s\n<j>fß^\p^v\2dx 
L> (Vm,ij) JVtnij 

(3.8) 
-1/2V L2(vmij) ^II^IILV^IMILV^) 

Then (3.5) follows from (3.6)-(3.8). 

Combining Lemma 3.1-3.3 we have 

Theorem 3.1     If / G Lß (0), then / G (H1 (fl))', and 

(HV))' < C|I/IIL,(O,- 

Lemma 3.4     Let G G Hi'1 (W0-)- Then for u G Hl (^i) 

(3.9) 
./r\ n 9W.J 

<C 
H£(Wü)  V H1^)- 

D 

D 



Proof. Let W0- = Q. x ISii, Q, = {(*!,*2) | 0 < V^f+^1 = r < £} and 

Is, = (« + ««.* - *ö), and let 7 = äfHV By H%(Qt) we denote the weighted 
Sobolev space over Q£ 

H£AQ.) = {<»(2W*) Hkjj«,., = «<V)   lo,N1 
+ Y,   \rßijDa'w T2 <   OO 

L2(Qe) 

Then for almost every x3 £ h«,    G € H^ (&) and t, G H1 (Q.). By Lemma 2.11 

of [2] we have 

(3.10) /|G| \v\ds<C\\G\\^   Jv^^ 

where C is a constant independent of x3, integrating (3.10) in x3 over ISij we obtain 

(3.9). D 

Lemma 3.5     If G € H^. (Vntij) with ßm € (0,1/2) and ß%j € (0,1), then for 

v e H1 (Vm,a) 

(3-11) 
/, Dav^.'j 

Gvds zc^iV^Wteo^) 

Proof. Let S% = {(<t>, 9)\ 0 < <f> < <r, 0 < $ < Wij} and Is = (0,6m). Then Vm,ij = 
SI x J5m. We may assume that I\ is in the xx - x3 plane. Let 7 = dSfjCWi = 
{(V, Ö)| 0 < ^ < <r, Ö = 0}. Then by Lemma 2.11 of [2] 

(3.12) /|G?|H<fa<C||G?||Hi.i|H|Hi(s!r. 

where H1 (5?) and Hj£. (5?-) are the Sobolev and weighted Sobolev spaces over Sg 
namely 

INIff(S;)=/s.(w
2 + N2 + ihl2) <^d0 

Multiplying (3.12) with p and integrating it in p over J« we get 

<j>d<j>d6. 

(3.13) /        |G| M pdpd* <C I    P ||G||Hi.i (s^ IMInVsg.) ^ 

by Schwartz's inequality 
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1/2 

By Lemma 4.1 of [15] we have 

1/2 

(3.14) < C /      \p2ßm-2 \G\2 + ^(sin<^(|-GJ2 + 

<C||G|fi 

psinc/) 
Ge\2))dx 

IH^,-(V".ü) 

Analogously, using the fact that ßm G (0,1/2) and the imbedding theorem of 
Sobolev space 

L/^h^äP 
(3.15) <C i -2/3m|tf    ,   „2(l-/?m) 

+ P* 
2 

1 
-VA, 

P 
+ 

ps'm <f> 
ve dx 

£CII»IIH',V„,„,- 
D 

The combination of (3.13)-(3.15) leads to (3.11). 

Lemma 3.6     Let G € Hj£ (Öm). Then for ^tf (ÖTO) and t € J„ 

(3.16) l/r>nömGw5|<c||G||H,1(öm)|HIHl(öm)- 

Proof. Let S = S\ UijeCm S?j where S is the intersection of 0 and the infinite 
polyhedral which coincides with 0 in the vertex neighborhood Ö (Am) and Sfj were 
defined in the proof for the previous lemma. Then Om = S x Ism. The proof of 
(3.16) is similar to that of (3.11) except that 

/ |G||t;|<fo<C||G|| U\s)WvWK\s) 

instead of (3.12), and 

//2""!|G|lk.(J)^<^»Gllk;i(a„) 
instead of (3.14), and 

/4/^-*',IHk'(*)*<HlH'(ft.) 

10 



instead of (3.15). 

Lemma 3.4-3.6 lead us to 

Thoerem 3.2     If G € Hj'1 (ft), then for v G H1 (ft) 

D 

(3.17) 1/   Gvds 
\Jdü ^llGllH-(,)IHHVr 

D 

We are now ready to prove the theorem of the existence and uniqueness of 
the weak solution for the problem (3.1) with / and Gl given in the corresponding 
weighted Sobolev spaces. 

Theorem 3.3 Let 0 be a polyhedra in IR3, / <E Lß(Ü), ge = Ge\rt and G* £ 
H^'2_*(ft),£ = 0,1 with ßm <E (0,1/2) and ßtj e (0,1) for all m € M and ij <E C. 
Then the problem (3.1) has a unique solution u E H1 (ft) (weak sense) such that 
u - G° e H* (ft), and 

(3.18) Miff«» ^ c Lß(Q) + £ W 
t=0,l 

H2-t,2-l,^. 
B (0) 

Proof.      We may assume that g° = 0.  The bilinear form on Hj (ft) x HQ (ft) is 
defined as 

B(u,v)= / Vu • Vvdx. 
J w 

Due to Theorem 3.1 and 3.2 

F(v) = [ fvdx + I g1vds 

defines a linear functional on H1 (ft), and 

«F«(H'm)'SC(»^0 + lG'lHi-'J- 

By Lax-Milgram theorem there exists a unique solution u e til (ft) for the varia- 
tional equation of the problem (3.1) 

(3.19) 

and 
\u 

B(u,v) = F(v),    WGHji(ft) 

iiff(o, ^C
(II/IIL^)

+
I

G1
IH-J 

which is (3.15) with g° = 0. For general case that g° ^ 0 (3.16) can be proven easily. 
D 
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Remark 3.1     If |r°| = 0 and 

(3.20) j fdx + jig
1ds = 0, 

then Theorem 3.3 holds in the quotient space module a constant. □ 

4. REGULARITY IN NEIGHBORHOODS OF EDGES 

We shall make further investigation on the regularities of the solution of (3.1) in 
neighborhoods of the edges in frame of the weighted Sobolev spaces and countably 
normed spaces. We concentrate ourself on a neighborhood Uu of the edge Ai2. As 
assumed in previous sections, Ai2 lies in the x3-axis and Uu = {(r, 0, x3) | (r, 0) € Qe, 
x3 e Is} with Qe = {(r, 6) | 0 < r < e, 0 < 0 < u) and Is = (-1 + 6,1 - 6). (r, 0, x3) 
are the cylindrical coordinates with respect to Ai2. We further assume that I\ C 
r°, T2 C T1. For sake of simplicity we shall write U = USts = Mu = Ue,s (Ai2), Q = 
Q, etc.. As in Section 2 we denote Dau = Da'ux°3 = u ax d2 «3 and Vau = Va'ux<*z 

** ■*'3 X*     X-    XQ 3 

= uTciga2x<>3 with a = (a',a3) = (ai,a2,a3) and \a\ = \a'\ + a3 - aa + a2 + a3. We 

shall write HJ£ (U) = Hj£ (W12) and Bjl2 (W) = B£ia (W12), etc. 

4.1 Regularity of high-order derivatives with respect to the direction 
along the edges 

Lemma 4.1     Let T = {(xux3) | xl <E (0,e),x3 € Is} and G G H1/2^). Suppose 
that v e Hx(r) and v = 0 for x-± = e or x3 = ± (1 - 5). Then 

(4.1) I / GAhvds 
\JT 

<^I|G||H1/2(T)||,||H1/2(T) 

where AhV = \ (v (a?i, x3 + h) — v (xi, x3)), C is a constant independent of G and u. 

Proof. First we extend G and v into T = (-e,e) x Is by symmetric manner 
with respect to a^-axis. The extended functions are denoted by G and v. Then 
G e H1^2 (T) and v G Hjj, (T). Further we extend v in whole plane by zero extension 

outside T, and extend G in the plane as well. Then the H1/2-norm of G and H0;0- 

norm of v are preserved, and A^u is well defined. Let G and v denote the Fourier 
transformation of G (£, rj) and v(£, rj). The equivalent norms of G and v in H1'2(1R2) 
are defined as 

H^H^IR2) = (/R^
1
 + ^ + ^2)1/2 lÖf d^ 

1/2 

and 

•/»,.,2,., V2 

lH-(^) = (/R»(1 + f2+''2)"2H2^ 
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Then 

(4.2) 

/ GAhvdS \ jfGAhvdS =l- j^GAhvdS 

iht _ 1 

For \H\ < 1 

iih _ Y 1 
< 

d£dy 

lei 

and for \h(\ > 1 

(1+^2+^2)1/2-   (l+£2 + ^2)1/2 

e-Hh _ x 

< 1 

h 

1 
<7TTT<2. 

(1+^2+^2)1/2  -   |^| 

Hence we have by Schwartz's inequality 
(4.3) 

fm, Gv : d£dri 
IM2 h ' 

< 

<2\\G 

1/2 

H1/2(IR2)I|{)|IH1/2(IR2) 

< C||Ö||Hi^(i) \\v\\H^{f) 

<4C||G||H1/2(T)||,||H1/2(T) 

Then (4.1) follows from (4.2) and (4.3) at once. □ 

Select e' G (e, 1) and 6' G (0,8) and let W = Ue>,6> = Ue>,s> (AX2) C ft-   Then 
W DU =Ues, and we have the following theorems. 

Theorem 4.1      Let u G H1 (ft) be the weak solution of the problem (3.1) with 
/ G Lß (ft) and Gl G HJ-

<I2_
' (ft) ,£ = 0,1. 

(i)     If / € L2 (W) and Gf G H2-' (W),    £ = 0,1, then «^ G H1 (W) , and 

KSIIH
1
^) 

(4.4) <C0 LV) M+  E 
€=0,1 

G' H2-V) + MO|I"X3||LV)} 

^^{ii/iiL.(M0 + ii/iiL/l(o,+4stl(MH-a, + G" HJ^-'W, 

(ii)     If fxa G LAa (W) and &X3 G Hj"''2"' (W), then uX3 G H1 (W), and 
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(4.5) 

IKIIH^W) 

2-1,2-1 Gx3 EGTV) 

(iii)     If / = h + h with h € L2 (W), and f2,X3 € Lßl2(W), Ge = G[ + G<2 with 
G[ € H2' (W) and G^3 € H2"''2"'^'), then uX3 € H1 (W) and 

UiJul *»I"H>) 

<Co{||/i||LV+ E.|G5 
&=0,1 

.,> +     E        /2, 

(4-6) + E 
&=0,1 

G 2,2;, ^2-V)+Mo|KJL>)} 

W"') 

<^o<|||/||La(n)+  E 

&=o,i  V H2><) 

G< 

H2-*,2-<, 

(0) 

Here Go is a constant independent of £3, and 

(4.7) Mo = max 
lA6' Ae. 

A8 = 8- 8' Ae = e' - e. 

Proof. First we assume that G° = 0. Let Ahu = \(u(x + he3) - u (x)) with 

h e (0,8) and e3 = (0,0,1), and let H\ü) = {u € H1^ = 0 for x£ Ü\U'}. 
By the standard argument of difference quotient (see, e.g. [10]), we have for any 

w € H1 (ft) 

(4.8) / V (A*«) Vuxfe = / (AfcVu) • 
Jw Jn 

= - I Vu ■ V (A_fcu>) dx 

S/wdx 

by (3.19) 
= - [ f(A-hw)dx- I  G1{A-hw)dS 

Jü Jr1 

= - I f (A-hw) dx - [ G1 (A.hw) dS. 
Jw Jr2f)dw 

In the case (i), / € L2 (W) and G1 € H1 (W). We have by Schwartz's inequality 
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(4-9) |X, / (A-H d-\ < C \\f\\Vm IIA-HILV 

by Lemma 7.2.3 of [10] 

^C\\f\lV(w)\\w**h2(u>) 
By Lemma 4.1 we have 

(4.10) I Gl(A-hw)dS 
Jr2f\aw 

<C G1 
W     „1/2, 

H1/a(ran«/')N   "H    (r»naw) 

by the imbedding inequality of Sobolev space (see [1]) 

<C||G>||HV)|MIHV) 

SC||C||H.      ||V»IL. 
Here we used the inequality 

(4.11) 

Combining (4.8)-(4.10) we have 

HIH>) ^ IIVHIL>) 

(4.12) \l V (A,.) • Vwdx |< C (||/||L>) + \\G%1{ul)) \\Vw\\Vm ■ 

Let (fi (x3) and <^2 (0 be C°° cut-off functions such that 0 < </?i (x3), y>2 (r) < 1, 
and 

(4.13) tp1{x3) 
0, 

for \x3\<l-6' ,   . .     / 1, 
for |x3|>l-«       '    ^2(r) = \0, 

for r < e 
for r > e'. 

Set rj = (pi (xs) (f2 (r) and w = rj2AhU. Then 

V (Afcu) • Vw = V (AäM) V (T/
2
A^U) = \rjV (A^)|2 + 2V (Ahu) VT/ • V (Afcu) 

which together with (4.12) yields 

jui \nV{Ahu)\2dx 

(4.14) +2 ||,,V (A,u)||L>) • ||(Afc«) Vr/||L2(w/) 

^ c(H/HLV> + inW)) (I^
V

(
A

^)HLV) + II(^)^IILV) 
+2||(Afc«)Vi7||La(wl)-||i7V(AÄii)||Lap//) 
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Let A(f,&) = C (||/||L>) + ICTHV))- 
Then We haVe 

\\(Vhu)VV\\V{ul) \\r,V(Ahu)\\V(ul) < l- |kV (Afc«)||k(wl) + 2 ||(AÄti) V.^^ , 

A (/, G1) \\r,V (Ak«)||L2(MI) < 21A (/, G1) f + i Hi/V (A,u)||2L>) , 

A (/, G1) ||(Afc«) V.7||LV) <||A (/, G1) |2 + \ ||(Afcu) V^J^ 

Substitution of these inequalities into (4.14) gives 

\\r,V(Ahu)\\2V(ul)<C 
( L> M + G1 ff^ + IKA^V^.^) 

Note that r/ = 1 in U, | VT/| < CM0 with M0 = max (^, ^). Then by Lemma 
7.23 of [10] we obtain (4.4) for G° = 0. 

In the case (ii), /„ € LAa (W), G^ € B2^ (W), £ = 0,1. Then for any 
we Hl

0 (12) 

(4.15) I / /A_fcU>ds =   /   (Afc/) wefc 

by Schwartz's inequality 

by Lemma 5.1 of [15] 

<C\\Ahf\\L^{ut)\\w\\Him 

by Lemma 7.23 of [10] and (4.11) 

<c\\U\Lßl2iu>)\\v™\\v{ur 
Due to Lemma 3.2 

/ran8w °l ^-hW"> dS\ ^ l^n»'(A/iG1) ^5 
(4.16) 

by Lemma 7.23 of [10] and (4.11) 

<C\\AhG^ß>l)\H H>: 

^CII^II^^IIVHILV,- 
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Combining this with (4.8), (4.15) and (4.16) we obtain 

(4.17)      Jui V(Afc«) • Vwdx < C (||/«|lLAa(«o + I^SIIH^^)) 
l|Vu,||L»' 

Then the proof of (4.5) is the same as that for (4.4) except that the inequality (4.17) 
is used instead of (4.12). 

(4.6) for G° = 0 in the case (iii) is obtained by combining (4.4) and (4.5). 

We now prove (4.4) and (4.6) is general, i.e. G°|ri ± 0. Let v = u - G°. Then v 
satisfies 

f -Av = f + A12G° + G°xl = /, 

v\ri = 0, 

G\ 

where Ai2 * + * If / € L2 (W), Gl G H2-e (W), then / G L2 (W) and 

G1 G H1 (W). Applying (4.4) with G° = 0 we obtain (4.4) in general. If fX3 G 
LAa (W), G^3 G H2^2"' (W), / = 0,1 then / = /a + /2 with fx = <% G 

L2 (W), /a = (/ + A12G°) G LAa (W) and JU G LAa (W), &,&„ G H^2 (W). 
Applying (4.6) we have (4.5) in general. D 

The regularity of higher derivates in x3 is given in the next theorem. 

Theorem 4.2    Suppose that u G H1 (0) be the weak solution of the problem (3.1) 
,2-"-    " 

-r.nl 

with Gl G H2
0'

e'2-£ (O) ,£ = 0,1 and / G Lß (0) 
(Bl)      If /*«. G L2(W'),G^m G H2-'(WV = 0,1 ,  0 < m < k, then u^+1  G 

H1 (W), and 

(4.18) 

W„fc+l 
^3 ifl <c(t) E   1/ H>) ro=0 LV) + Si,GSr H-V)   +IKÜLV) 

(B2)     If /,-. G Lfe (W), Gi? G H2^2"' (W),* = 0,1 , 0 < m < k + 1, then 

uxk+i G H1 (W), and 

(4.19) 

^3 ffM s cw IL INIL,„<„,+s IK»krv>)+»«»»Lv. ro=0 f=0,l 

Furthermore, if / G Bj12 (W) and Ge G Bj12 (W) ,£ = 0,1 then 

(4.20) U  fc+l 
X3 

„,      <c4+2(fc + 2)!    Vfc>0. 
H (W) -    d    v        ' 
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Proof.     Let 6( = 8 - f A<5 and et = e + f Ae,    0 < £ < k, where AS = 6 - 6' and 
Ae = e' - e. By Ut we denote We<A. Then U =UQ ^Ut CU2-■ ■ CUk =W. 

If the condition (Bl) holds, the application of (4.4) leads to 

IKIIHWO * Co (mVm + ? I^IH
8
-

1
^) 

+ M{k) IKI|
LVJ ' 

U~2 
HW2) < Co (II/^IIL^) + ,5, l^lir-Wo + M {k) IMILV^ 

H-(,fc_1) 
+ M(') L   (M^O 

< CgM (*) (||/||LVfc) + ^ |^|H2-,(WJ + CIM* (k) \\uX3\\Vm 

where M (k) = kM0 = kmax (^, ^). The argument above can be carried out 

for all ux™, 1 < m < k + 1. Hence u*.» G H1 (W), 1 < m < fc + 1, and by the 
mathematical induction it can be shown that for 0 < 5 < k 

X3 H.   (Wfc_s_l) 

(4.21) < E C?+1M™(k)   |/,rn. 
m=0 

T 2 +    E G* 
H    (wfc_s+m) 

+C0
H

-
1
M^

1
(*)IKIILV» 

Then (4.18) follows from (4.21) immediately. 

If the condition (B2) holds, we can analogously prove by mathematical induction 
that M^+I G H1 (U) forO<s<k, and 

(4.22) 

H1 («*_._,) u-s+1 H\uk_ 

<    <7O(||/T.+I|IL 'A2 ("*-) +^,l 
G 3+1 

H ■2-1,2-1. 

+ E Lft2(wfc_s+m+i)     f=0)i 
/-ft 

^3 H ■2-1,2-1, 

+Co+1^(k){\\f\\Lßi2m+Zi Gl 

H 

■012 (Wfc-.+m+l) 

■Z-^-^,  x  +  ||ltx-liT2. 

012 
Vfc) 

+ I|U*»»LV*> 

We shall prove (4.22) for G* = 0, .£ = 0,1. The proof for the case that Ge ^ 0 is 
similar to what follows. (4.22) holds for 5 = 0 due to (4.5) of Theorem 4.1. Suppose 
it is true up to s, then applying (4.5) to x^+1 we obtain 
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*3 H   (W*_,_2) 

By the hypothesis of the induction we have 

h2(uk_,_j} ■ 

\U„S+2      TTl rm\uk_s_2) 
< Co\\f^ 11^(^.0 + CoM(k)\\f^llLAa(Wfc_.) + CoM(fc){C7o||/^||Lft2(Wfc_s) 

+ E C0
mJ»f*(fc)(C7o||/,j+i-.||L    (Wfc s+m) + ||/,j+i-»|L    tu J 

+«+,M'«(*)(ll/llLai(«,, + «»-»llLV))} 

= Co   / .8+2 

+ /x*+2-m 

Hence (4.22) holds for (s + 1), and then we complete the induction. 

If / € Bj(W) and Gl € Bj-'(W')> then there are some d3 > 1 and C3 > 1 such 
that for Jfc > 0 

(4.23) 

Gi 2_,,2_,      <C3^2-*(* + 2-/)!. 
■tl/3,2 l"  ) 

Substituting (4.23) into (4.22) and noting that M(k) = kM0 we obtain 

(4.24) 
IKHHV)^   C{C0C3dt\k + \)\ 

+ E (Co + l)C0
mM0

m<^+1-m(fc + 1 - m)\km + C0
fc+1M0

fc+1fcfc+1}. 

By using Sterling formula: k\ = kke~k\f2-Kk fl + 0 (|)), we have for 1 < m < & 

jfcm (Jfc + 1 - m)!   < CP1 (Jfc + 1 - m)fc+1_m e^k+1-m^2Tr (k + 1 - m) 

(4-25) <C{k + l)k+1 e-^+^^Tr (Jfc + 1) • em 

<C(k + l)\em. 

We have by substituting (4.25) into (4.24) 
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K*+i|lwV„    <C\C0C3d
k+2(k+ 2)1 + Z(Co + l)(CoM0erd3

k+l-m(k + l)\ 
'    x3      "XX (U) I m=i 

+(C0M0e)k+1(k + l)\} 
<Cdk+2(k +2)1 

where d3 = max (d3, C0M0ej. 
D 

4.2 Regularity of high-order derivatives with respect to the direction 
perpendicular to the edges 

We now turn our attention to the regularity of high-order derivates with respect 
the variables other than x3. Let ^ {x3) and y2 (r) be the C°° cut-off functions 
denned in (4.13), and let v (x) = n {x3) tp2 (r) u (x) where u(x) is the weak solution 
of (3.1). Then v satisfies 

(4.26) 

-Av = f in W = Ue'fi 
V \r=e> = v\X3=±(!-6') = °> 

dv 
_   7,0   _  (~* 

=0 — 9   — & = ~91 = G1\6 e=o'     dn 

where g1 = tpt (x3) <p2 (r) /, G' = tpx {x3) y2 (r) G* and / = y>i (a*) ^(r)/ + h, 

h =   2{V12u ■ Vi2<P2(r))<Pi(x3) + u(p1(x3)A12<P2(r) 
+2uX3<p'1{x3)ip2{r) + up'{(x3)<p2(r) 

with V12 = (^-,/-) and A12 = (J^ + Ä).   Obviously / G LAa(W), # € v dxx dx2 dx\     dx\ 
Hfe '2~£ (W'M = °> *■  Furthermore u, / and Ge vanish for r > e' or |x3| > 1 - 6', 
and with the constant M0 given in (4.7). 

(4-27a)   HI Ww<) * C (ll/IlL^ + M° |K||L>) + T M2- (V|LV)) ; 

(4.27b) 
G° w2 

n
ft2 ,>>   ^tS,M»2"|G0|H"<-) + |GO|HS<-. 

^ n (\/T2-S ii/^(0ii   .. <CMr\\G°\\Hrm; 
A2V 

(4.27c) 
G1 

H 
<CMo||^||H:,:(w/). 

If / € L2 (W) and Gl € H2' (W), then / € L2 (W), Gl G H2' (W), and 
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(4.28a)      ||/||LV) < C (\\f\\Vm + M0 |K||L>) + £ M2"* 
\ s—U,l 

X3 L>>    ' 

(4.28b) 
G* 

2-1 

„2-w.   <CEMt'-s 
•W      («') s-o 

Gl 

H">) 
<CM0

2 i-i Gl 

H2~ V) ■ 

Let 

and 

ii\u') = {ueH1{u') | M|r=£» = «U=±(i-«») = o} 

H^ (W) = {« € H1 (W)   |    «U = o}. 

Then t> - G° G fij, (W) and satisfies the following variational equations 

(4.29) / V« • Vwdx = f fdx+ f glwdS,   Vtu G Hl
D (W). 

v       ' Ju< Jw Jr2f)dw 

We now extend v, / and G* into Q'e x IR1 by zero extension outside W. Then for 
almost every x = (Xl,x2) G Qe; v(x,-) G H1 (iR1) , /(£,•) G I2 (iR1) , G" (5, ■) G 

#2_f (iR1) ,£ = 0,1. Let T denote the Fourier transform, namely, for admissable 
function w 

1      t°° 
w(x,\) = T(w) = -?=        w(x1,x2,x3)e-*X3Adx3,    A G (-00,00). 

V 27T ■/—oo 

Then v = T (v), / = T (/) , Gt = T [&) , * = 0,1 exist and v solves the following 
problem 

(4.30) 

' -Ait) + A2£ = /, in Qe, = Q', 
0|r=e, = 0, 

Let H^ (<7) = {u; G if1 (QO I ii> \g=0 = 0}. Then 6 - G° G H^ (Q') and satisfies 
the variational equation 

(4.31) / f (Vxt) • Vjti + IA|2uw) dx = y (/ädx + J glibdstVw G Hk(Q') 

where 72 = r2nöQ'. 
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We shall introduce the weighted Sobolev space Hj£ (Q') defined in []• For integer 

k and I, k > t > 0,    Hj£ (Q') is the completion of C°°- function in the norm 

(4.32) M'H&W) £ K;^)^ 
|a'|=0 

L2(Q< 

1 /9 
with r (x) = \x\ = (xj + x\)     and 

A*A(~\ - I r (x)Ma'\-£ ,        for \a'\ = a, + a2 > *, 
*/J» W " | I, for |a'| < L 

As usual we shall write Hß'i2 (Q') = ~Lß12 (Q
1). 

Lemma 4.2      Let u G H1 (ft) be the weak solution of the problem (3.1) with 
/ G Lß (Ü) and Ge € H^'2"' (0) ,£ = 0,1. If /?i2 G (0,1) satisfies 

(4.33) ß12 > 1 - Ki2,       «12 = 
7T 

2w 12 

Then the weak solution v of the problem (4.30) belongs to H^ (Q') and 

(4.34) 

and 

|r|lH&W> " o^tl/lw^+S^lkr V)+'
A

'
4
»*"LV) 

(4.35) 
|öfo^^ + l^|2||Viafi|lL»wo + l^|4|l«HLV) 'HftaW') 

< C (l + |A|2)    |/| 
LftjW)     *=o,i "     IIHft2     W) 

eo||Lv, • 
Proof.      Since ^H1 (Q' X IR1), / G Lfc (Q' X IR1) and Gl G H2^'2"' ((I' X IR1), 

HH1 (Q% f G WQ') and G( G H^/'2-' (Q') for almost every A € IR1. 
Because v is the weak solution of the problem (4.30), by Theorem 2.1 and Remark 

of [2], v G Hj2 (gO , and 

WhZ(Q>)-c f-M L/312(Q') „+£ |e 
fcO,l H^r^w) 

with C independent of A. This leads to (4.34) immediately. 
We now assume that G° = 0.   By Lemma 2.10 and 2.11 of [2] we get for any 

w G H1 (go 

/gf/t&^l<C7||/||LAa(gi)|H|Hlwr 
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and 
\[ 91J>d8\<c\&\Hl.1      \\ H&(Q'>l|U,»H1«o 

Letting w = v and substituting the inequalities above into the variational equation 
(4.30) we obtain 

(4.36a) H^HLV) ^ C [  * L +   & 
^   (Q> V ^12 («0 

and 

(4.36b) \M\HVm<c(lf\\Kam+  & 

Here we used the inequality 

The combination of (4.34) and (4.36) leads to 

H£w>, 

H&W 

(4.37) 
"I'H&W) + lA|2 HV^llT,2ron + lA!4 Mbw 

<c (l + |A|2) (||/ 

L (<?') 'LV) 

LA2W 
+ G1 

Hk'w) 

If G° ^ 0 and G1 = f = 0, setting tu = v — G° and applying the result above we get 

I^HH
2

,1
2

2(QO 
+
 
|A|2||V

^
II
LV) 

+ M'L'wo 
^(l + IAnjlAIIIGOII^^+^JIGllli^}, 

which together with (4.37) implies (4.35) and then completes the lemma. □ 

Theorem 4.3. Let u € H^fl) be the weak solution of the problem (3.1) with 
/ e MO) and Gl € Hj-/,2-'(0), / = 0,1. In addition, fX3 G Lßl2(W) and Gl

Xa € 

Hj~''2~'(W')> ' = 0,1 with ß12 satisfying (4.33). Then u e Hjf2(W), and 

?_m |TT2-(,2-( 
3    n/5l2 

(4.38) 

■H&PO - cmS,il11^11 W«')+ ,5,ilG[ 

+^o||G1||L2(w/) + sEiM0
2-1G°|ff(w,) 

+M0|k^||LV) + E^-||«,;+»||L»(W0} 

<c{ll/llLAa(o)+ 11/^11^(1/0 
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:a,2 ,£,J^D^vm 

(4.39) < c{\\fK12(u, + ;=E \G'\K-r>) + ^oll^ltv, 

+ E ^-'I^IH^ + ^OIKIIL^+E^-'KSIILV) ;=O,I v   ' " \" >     s=o 

where Mo is a constant given by (4.7). 

Proof. Since / G Lßl2(W) and G' € Hj-',2-'(W'), / € Lßl2{Q' x IR1) and & G 
Hj7a''

2"'(Q' x IR1), / = 0,1. Hence / G Lßia(Q') and G' G Hj~',2~'(Q') for almost 
every A G IR1, and 

oo 
2 J\ _ imi2 
Lßl2m

dX = UJ "Lßi2(u VM> 11/ 
-OO 

and for / = 0,1 
/CO 

.J|G'||^-(^A = ||G'||Lte(„,r 

By Lemma 4.2, ü = ^(u) G Hj-''2-'(Q'), and (4.34)-(4.35) hold. If fxf G L^W) 
and G^m G Hj~',2"'(W') for m = 0,1 and / = 0,1, due to (4.34), we have 

by (4.40) 

sc«/iiitoM,+51i<S'ilJSrOT + ii^iiLW 
by (4.27) 

+^1*r-ViirOT+£i^-"WLv>+^wi.v>}- 
This leads immediately to (4.39). 

Similarly, due to (4.35), we have 

/oo 

(4-41) ^ cjy+I
A

I
2
)(»/IILASN., + E IIG'IIH--V>

+
WII^LW^ 
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where fX3 = Mx3)Mr)fx3 and Gl
X3 = (kM<h(r)Gx3- Therefore we have estimates 

of fX3 and Gl
Xi, which are similar to those in (4.27) except that /, Gl, ur and ux> are 

replaced by fX3,G
l
X3,urX3 and ux.+i . Combining these with (4.27) and (4.41), we 

obtain (4.38). * D 

Remark 4.1 Although there are similarities between the regularity of solutions in 
the edge neighborhoods and those of solutions for the problems in polygonal domains 
in IR2, there are substantial differences. For the problems on a polygonal domain 
0 in 1R2, the boundary values problem of Poisson equation realizes an isomorphism 

HJ+2'2(0) - Hj'°(ft) x HJ+3'2'3/2(r°) x Hj+1/2,1/2(r1),fc > 0, but it is not true 
for the problem on a polyhedral domain 0 in IR3, namely, the conditions that / € 
Hk

0
+2'2(ti),Gl € Ht+2"''2~'(r'),/ = 0,1 are not sufficient to guarrantee the solution 

u e nk+f\u). D 

Theorem 4.4 Let f(x) € Lß(ü) and Gl € Hj"'^'(O), / = 0,1. If fx? € Hjfa(W) 

and Gl
xm € Hj+2~',2"'(W) for m = 0,1 and k > 0 with ß12 satisfying (4.33), then 

the problem (3.1) has a unique solution (weak) u <E H^fi) n Hj+2,2(W), and for 

|a| < fc + 2 

(4.42) 
-.a,2 \^2r-^Vau\\T2 «LV>   * C {jj^^u, + & II^HHS?—«^)) 

+ 11/11^(0,+ E1HGfllH'^-«(0)) ■ 

Furthermore, if / € Bj12(W) and Gl € Bj-'(W'),I = 0,1, then u € Bj12(W), and 
there are some constants C > 1 and d{ > 1 such that for all a 

(4.43) \\<r-">V"u\\V{u) < Cd"a\. 

Proof.      The assertion for \a\ = 2 is ture owing to Theorem 4.3. Let 6* = ±(6+ 6') 

and e* = |(Ä + £')•   (4-42) aIld (4-43) hold over ^* = U^>s* for M = fc > 2 and 

ai + «2 < 2 due to Theorem 4.2. It remains to show (4.42) and (4.43) for a with 

ax + a2 > 2.   To this end, set Hi = We„s.,0 < i < k, with e,- = e + i—-—, d; = 

5 - »—-—, so that Uo = U€,s = U and Uk = We.,5* = W*. Let v = r'ur»4> * + <<*;, 
A; 

s,t > 0. Then u satisfies 

(4.44) 

-Aü = /,,t = r-2(r2/e.)r., inW 

"3 

dv 

hi r ^    1(r(^l')rSle=U'12   =^S,<le=W12- 
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Obviously fs,t € LAa(W), Gi,t € H^''2"'^'), / = 0,1 and 

H/'.*llLAa(W)^C|l/llHK(W')' 

K'1IH£'
2
><) < CII

G
'IIH*+

2
-''

2
~W 

Due to Theorem 4.2, we have for t — k and s = 0 

(4'45) +ll/llL,W+S1HG'ilHr-'-'(n,)- 

Suppose (4.45) holds up to (s — 1) with 0 < s +1 < k. Then the application of 
(4.39) of Theorem 4.3 to the problem (4.44) gives us 

- c{S0ß
f-t+mK^-^)+i5i ]lGl^JlK:r^J <c 

(4.46) 
2 

+ \\(rSur»xt+m)r\\T2aj ^+   E   ||r*H s  t+m ||T 2 }. 

By the assumption of the induction, we have for m — 0,1 

ll('-x.„HrllL>(i„,_,+l) 

+ E IIG"IIH°-"-',J 

and for m = 0,1,2 

r«,SrHm     T2 ^rmiiL2
(Wfc_s+1) 

(4-48) < C(\\U\K>I) + ;=E II^IIH-—m + \\fhm 

+ E IIG'HH^-O 
/=0,1 -"-/S I") 

Combining (4.46)-(4.48) we obtain for 0 < 5 < k and s +1 < k 

£      \\*'£r'-°'>V°ur.xt 
|«|=|a'|=2 '012' "   UrS*V\V(Ut k-s) 

(4.49)       ^ ^II-^HHK^..) 
+ MKw + ,£ llGUIH£2-',2>') 

+IIGV-W- 
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This completes (4.42) by the induction for a with \a\ = k + 2 and a2 < 2. 
Now it remains to show (4.42) for a2 > 2. For a with \a\ = k + 2 and a2 > 2, 

let w — raiura1ga2-2x°'s. Then 

-AID = rai_2(r2/0«2-2;r°3)r-°'i • 

Noting that 

Aw =   rai-2Vau + (2e*i + l)ro,1_1i/).«1+i0«a-2.r°3 

+afrai-2urc,iea2-2 «3 +rölurai+2ÖQ2-2 «3 + raiurffllflaa_a «+2. 

we obtain 

||rQl-2£>ad|T     l?A 

<  \\rai~2(r2fe*2-2x°3)r°l HLA2(M) + (2a + 1)Hr°'1    lur-l+>fl-2-»ar?3 llLft2(«) 
(4.50) ,      oil   a,-2 II 1    II   ai II +atf||rai  X-iff-a-a^llL^^ + Hr 1«r„1+2flaa-2a:-3||LA2(w) 

+ ||rai«rQiea2-2:ca3+2||LA2(W). 

Then simple induction over a2 leads to 

< c(\\f*s\\K>l)+n/iiL,(0>+Sß^Mtr2-'^+ "* «HT'-W- 

This completes (4.42). 

We now shall prove (4.43). We assume that Gl = 0, / = 0,1 for simplicity, and 
we establish the following estimates by mathematical induction 

(4.51) +tQ ll«r^»llL
a(M.)ZJJ+1^3m*-m+1 

+1[h^h^^+2^mks-m+2} m—0 

where 0 < s +1 < k, Di and D3 are suitable constants. For 5 = 0, (4.49) holds due 

to (4.18) of Theorem 4.2. Suppose it is true up to (s — 1) with s + t < k. Then by 

application of (4.39) of Theorem 4.3 to the equation (4.44), we have 

(4.52) £ COÜI/MIIL^,»,.,,,, + (M.k)\\Vu^V(Uk_w) 

+M.^||r-»r.4||LVi_i+i)+(ii:i(M,«:)-'||r-«r.,,t,.||L>(i,i_<ti)} 
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2     2 
where M* = max{—, —} > 1. By the hypothese of induction 

< llr*-1* 

\rsurs+ixt \\T2,7I 

(4.53) <C,(gijS,-,-^\\^u,)D'lDrk 
s-\ 

flSo"-"S,"'llL(w*) 

+ Sll«^-llLV,^fl^"m^m+1}' 

„«-I.. II s [I -s—2„ (4.54a) ll»""V.,jllL^fc_f+l) < V^^^u^y 

and 

^   ll^~\.,H|iw«*-.+a> 
s-2     l _ 

(4.546) -    a{£ So IIZ-a-M+t'+mllL^^)^^mA: "m 
s
~2 

s-1 n_m Z.s—1—m 
+ sDi«™j»^-iiLV,flr,Bs-t 

+ t0iiv
,+"'iiL!(«.)D{ß»m*'"m> 

The combination of (4.52)-(4.54) leads to 

||rstv+24||LA2(w)< A + B + E, 

A   = C0\\f.ti\\i, m+E E(2 + M,)a||/,-i-M+m||L/3i2(w,)JD^3m^-m+1 

+C E E E II/^^^^HT   (MI)öli?3mfc«-»+a-*'(^ +1)2"*' 
*'=n /=n m=n ft2v    ; i'=0 /=0 m=0 

s      / 
-m 

< C* E   E   ||/s-M+m||Lfl    (i/')-^l-^3m^" 
/=0 m=0 Ä2v" ; 

B = c0cX^hrx^A\vm
DlD^mks'm^M* 

+ E E ||«rxW,.||LV)A^3m*-m+1-*'^-0 

m=0 

and 
. s+l 

£ = G,C.{E i|ti,jt«nL2   z?rl2?3m*-m+2M. m=0 3 ^ I"  J 

+   E     E    ||«,Hm+HIL»fM.xA'^m*-m+2'''^} 
<'=0 m=0 

s+2 
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with C* > Co and D\ > 4C* max(2 + M«, d3). This completes the induction. 
If / G Bgl2(w,), Gl = 0, / = 0,1 then by (4.19) of Theorem 4.2, we have for a with 

\a\ = ai + a2 < 2, 

(4.55a) \\*°£r~a2V'"\\Vyu) ^ C^a*[ 

and we may assume for all a that 

(4.556) IK'-V/^.jOr-i ||LAa(M,, < CxD?D?D?a\. 

Substituting (4.55) into (4.51), we obtain for s +1 = k 

< Cm{ti,C1DiDl(s-l)\(t + m)\kl-m 

+ ± C,iD^1I>^-m+1(< + m)!+?;2Ci2)J+2I>^-,n+2(< + m)!} 
m=0 m=0 

< C^C^DlDltik* + 2C1D
S

1
+1 Dt

3t\k'+1 + 2C1D
s

1
+2Dt

3t\k
s+2} 

< C2D[+2D3k
s+t+2. 

Note that by Sterling's formula 

ks+l+2 = kk+2 < C3(k + 2)\ek+2yj2ir{k + 2) < C3(k + 2)\(2e)k+2 

which implies 

H^«r^,|||LAa(wl) < C4D*+2D3(2e)k+2(k + 2)! < CAd\+2<?3t\(s + 2)!. 

Hence (4.43) is proved for a with a2 = 0,c?i = 4eDi and d3 = AeD3. In the 
same manner (4.51) and (4.56) can be proved for a with a2 < 2 except that v = 
raiuraiga2x

a3, \a\ < k and a2 < 2 satisfies the equation (4.44) and the estimates 
(4.45), (4.51) and (4.56) instead of v = rsursxt3 with s + t < k. It remains to prove 
(4.42) for a with a2 > 2. Suppose that (4.43) holds up to (a2 - 1), then by (4.50) 
and (4.55) we obtain 

< d^D^ß^a! + C4{(2a + IK1    d?2   dsVi + 1)!(«2 - 2)!a3! 

+a2^1c/2
,2-2^3a1!(a2 - 2)!a3! + d?1+2d?-2<%*(en + 2)(a2 - 2)!a3! 

+^^22_2^33+2«i!(ai - 2)!(a3 + 2)!} 
< C4d

aa\ 

where C4 > C\ and rf2 > 2max(di,D2,fl7
3).   This completes the induction.   Then 

(4.43) holds for all a, and u <E Bjia(W). 
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Remark 4.2     If f(x) G L0(Q), Gl G Hj_,-2-'(fl) with ßu = 0, / = 0,1, then (4.4) 
r2,2 

satisfying (4.33), and 
of Theorem 4.1 and (4.34) of Lemma 4.2 implies that u(x) G H-   (W) with ßu 

ll»llHg,«,SC(ll/llL<>((1)+El|G'llHr-(I!))- 

rfc,0 /; ,/\ n T    /0x    ^ c TIfc+2-/.2-//'7//N n TT2-/,2-// Further, if/(a) G H5*(W')nMn), G' G Hj+2-'-2-'(W')nHp2-'(ft) with /312 = 0, 
fc+2 
012 

then u(x) G B.k,+2,2(U) with 012 satisfying (4.33), and 

ll»llHr«£C(ll/ll^>+ll/(l)llHSOT+gJIG'»Hr's-'(n)+llG'llH»rU-'(«')'- 
D 

As a consequence of Theorem 4.4 and Theorem 2.1, we have regularity of solution 
in the countably normed space with weighted Ck— norms. 

Theorem 4.5    If f(x) G Bj13(W) n Lß(Sl), Gl(x) G Bj-'(W) n H2,"''2"^), then 
the weak solution u(x) of the Poisson equation (3.1) belongs to Cß12(U)r\H (0). □ 

Remark 4.3    In special case that the data functions are analytic or piecewise 
analytic, namely, 

(i) function / is analytic in 0, 
(ii) ge,£ = 0,1, are analytic on every face f,- C T0 and Tj C T1. 

Then the solution u of the problem (3.1) belongs to Bjia(W) nHa(0) and Cjia(W) D 
HX(Ü). n 

Remark 4.4    The regularity described by the countably normed space with weighted 
Ck—norm implies the pointwise estimates of the derivatives of solution of all orders, 
namely, for x G Üij, \a\ = k > 0, 

(4.57) \Da{u(x) - u(0,0,x3))| < Cdaa\r-^
+^-l) 

and 

(4.58) 
dk 

ru(0,0,x3) 
dx3 

< Cdkk\ 3f 

In many applications, for instance, the error analysis of the p and h—p version of 
the finite or boundary element method, we prefer to use the pointwise estimates of 
the high order derivatives of solution instead of the weighted Sobolev norms of high 
order derivatives. By using estimates (4.57) and (4.58) we have shown in [8,9,16] 
that the approximation to functions belonging to C2ßi2(Ü) converges exponentially 
by properly designed piecewise polynomial spaces. □ 
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