
Center for Human Modeling and Simulation
Quarterly Progress Report

No. 54

Norman I. Badler
Director, HMS

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104-6389
Fourth Quarter 1994

February 24, 1995

DTICI
ELECTEE^
DEC 0 4 19951 *"*

AfiPioved to p^j^ re]oas<8,
Jfttabuaoa üaüsait«ci

19951129 114
DTJC QUALITY INSPECTED 9

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information 15 estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports. 121S Jefferson
Davis Highway. Suite 1204. Arlington, VA 22202-4 302. and to the Office of Management and Budget. Paperwork Reduction Project (0/04-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1995
3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

CENTER FOR HUMAN MODELING AND SIMULATION QUARTERLY
PROGRESS REPORT NO. 54

6. AUTHOR(S)

Dr. Norman I. Badler

5. FUNDING NUMBERS

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Pennsylvania
Computer & Information Science Department
Philadelphia, PA 19104-6389

PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

27709-2211

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This Quarterly Report includes descriptions of various projects underway at the
Center for Human Modeling and Simulation during October through December.

14. SUBJECT TERMS

Human Modeling and Simulation

15. NUMBER OF PAGES

117
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 75^0-01-280-5500 Standard Form 298 (Rev 2-89)
Prp^cnb^a Dv ANSI Std /J9-IH
298-102

MEMORANDUM OP TRANSMITTAT.

U.S. Army Research Office
ATTN: AMXRO-RT-IPL (Hall)
P.O. Box 12211
Research Triangle Park, NC 27709-2211

 Reprint (15 copies) JCX_ Technical Reporc (4fl copieg)

 Manuscript (1 copy) Final Report (4Q copies)

 Thesis (1 copy)

 Jss PhD Other

COKTRACT/GRANT NUMBER DAAL03-89-C-0031

TITLE: Center for Human Modeling and Simulation Quarterly Prog

Report No. 54
ress

is forwarded for your information.

SUBMITTED FOR PUBLICATION TO (applicable only if report is manuscript)

Sincerely,

Dr. Norman I. Badler
Professor, CIS and Director, HMS
University of Pennsylvania
Computer and Information Science Department
Philadelphia, PA 19104-6389

Contents

1 Introduction: Norman I. Badler

2 Jack: John Granieri

3 Motion Data Acquisition: Mike Hollick .

4 SASS: Francisco Azuola .

5 Motion Planning with Strength Analysis: Xinmin Zhao 4

6 Inverse Kinematics of the Human Arm: Deepak Tolani 4

7 Grasping Implementation: Brett J. Douville 4

8 Object Specific Reasoning: Libby Levison 5

9 Improvement of Human Model: Bond-Jay Ting 5

10 Recursive Forward Dynamics Algorithm: Evangelos Kokkevis 7

11 Locomotion Reasoning: Barry D. Reich g

12 Realistic Animation of Liquids: Nick Foster g

13 Modeling Respiratory Mechanics: Jonathan Kaye g

14 Jack Motion Library: Jonathan Crabtree 9

15 Efficient Rendering: Jeff Nimeroff 10
»

A Inverse Kinematics of the Human Arm: Deepak Tolani 11

B Adaptive Deformable Model Evolution Using Blending: DeCarlo and Metaxas 12

C Integrating Anatomy and Physiology for Behavior Modeling: DeCarlo, Kaye,
Metaxas, Clarke, Webber, and Badler 13

D Volumetric Deformable Models with Parameter Functions: A New Approach to
the 3D Motion Analysis of the LV from MRI-SPAMM: Park, Metaxas, and Axel 14

E Jack Reaching Planning With Strength Analysis and Collision Avoidance - User'
Guide: Xinmin Zhao 15

F Behavioral Control for Real-Time Simulated Human Agents: Granieri. Becket.
Reich, Crabtree, and Badler Iß

G Planning and Terrain Reasoning: Moore, Geib, and Reich 17

H Production and Playback of Human Figure Motion for 3D Virtual Environments:
Granieri. Crabtree, and Badler jg

Accesion For F NT!S CRA&I
DTIC TAB D
Unannounced D
Justification

By
Distribution /

Availability Codes

Dist

M

Avail and/or
Special

H

1 Introduction: Norman I. Badler

This Quarterly Report includes descriptions of various projects underway in the Center for Human
Modeling and Simulation during October through December 1994.

These reports include:

• Release of the Jack Motion Library, and progress in motion authoring tools.

• Motion data acquisition to generate human animation.

• An update on SASS.

• The incorporation of strength analysis into motion planning.

• Development of fast inverse kinematics.

• Implementation of a grasping taxonomy for Jack

• Continued work in object specific reasoning.

• Improvements in the human body segment shapes, including a better hand model.

• Progress in adding dynamics to Jack.

• The Zaroff system and locomotion reasoning.

• The animation of fluid phenomena.

• Physics-based-graphical modeling for respiratory mechanics.

• Updates to the Jack Motion Library.

• Continued work on space rendering.

There are also eight appendices:

• Inverse Kinematics of the Human Arm: Tolani

• Adaptive Deformable Model Evolution Using Blending: DeCarlo and Metaxas

• Integrating Anatomy and Physiology for Behavior Modeling: DeCarlo, Kaye. Metaxas. Clarke,
Webber and Badler. Presented at the First International Symposium for Medical Robotics
and Computer Assisted Surgery.

• Volumetric Deformable Models with Parameter Functions: A New Approach to the 3D Motion
Analysis of the LV from MRI-SPAMM: Park, Metaxas. and Axel

• Jack Reaching Planning With Strength Analysis and Collision Avoidance - User's Guide: Xin-
min Zhao

• Behavioral Control for Real-Time Simulated Human Agents: Granieri, Becket, Reich, Crabtree.
and Badler; to appear in the 1995 Symposium on Interactive 3D Graphics.

•

Planning and Terrain Reasoning: Moore, Geib, and Reich; to appear in the AAAI Spring
Symposium on Integrated Planning Applications proceedings in 1995.

Production and Playback of Human Figure Motion for 3D Virtual Environments: Granieri,
Crabtree, and Badler; to be presented at the 1995 Virtual Realitv Annual International Sym-
posium (VRAIS '95).

This research is partially supported by ARO DAAL03-89-C-0031 including U.S. Army Research
Laboratory and Natick Laboratory; ARPA AASERT DAAH04-94-G-0362; DMSO DAAH04-94-G-
0402; ARPA DAMD17-94-J-4486; U.S. Air Force DEPTH through Hughes Missile Systems F33615-
91-C-0001; Naval Training Systems Center N61339-93-M-0843; Sandia Labs AG-6076; NASA KSC
NAG10-0122; MOCO, Inc.; National Library of Medicine N01LM-43551; DMSO through the Uni-
versity oflowa; and NSF IRI91-17110, CISE CDA88-22719.

2 Jack: John Granieri

By the end of 1994, I finished the encapsulation of the DI (dismounted infantry) motion playback sys-
tem (which we refer to informally as JackML, or Jack Motion Library, or simply the motion library)
into a single object library, which can be linked and run within an IRIS Performer-based image-
generator application (in this case it's currently used in TTES at NAWCTSD and in NPSNET-IV at
Naval Post Graduate School.) (NPSNET is also distributed to various sites within the government.)

A paper entitled Production and Playback of Human Figure Motion for 3D Virtual
Environments, to be presented at VRAIS '95 (See Appendix H), essentially describes the current
state of the implementation, as well as some of the components of the library we're currently working
on.

I plan on incorporating the fast inverse kinematics work being done by Deepak Tolani into Jack
ML, as well as the work being done by Rama Bindiganavale.. This extends the functionality of Jack
ML from a simple motion playback system to a more hybrid motion generation system.

I am currently building the motion level-of-detail (LOD) into Jack ML. This should improve
performance of the visual system (so one can incorporate more soldiers in a simulation), as well as
increase fidelity of ballistics (as they are computed via intersections, so the intersections can take
place on the highest LOD human model).

The playback system relies on the notion of a posture graph to store and retrieve motion data.
For the static posture changes we simply traverse the posture graph. For locomotion and crawling,
we have a simple hard-coded state machine to map from a state vector (in the case of TTES, this
is just the Entity State PDU lifeform fields) to motion generation. In the spirit of making an open,
authorable motion generator, we wish to have this state machine also be authorable. To this end.
we will investigate the use of PaT-Nets to author the mapping from the state vector to motion
playback/generation. This gives us a very general purpose method for changing the motion control
of the human figure. Since PaT-Nets are interpreted, it also allows the user to experiment. We will
need to compile the PaT-Nets to a faster run-time version for execution within Jack ML.

Currently, the off-line motion authoring tools (for building posture graphs, as well as the state
vector mapping functions) are built using a version of Jack and some C functions. The on-line
motion tools are embedded in Jack ML, which in turn must be hosted in an IRIS Performer-based
application. To unify these two separate environments, so one can build and run the motions (and
motion generation techniques) in the same environment, I have begun the development of a new
system which is in essence Jack running on top of IRIS Performer, with a Tk user interface. The user
interface will allow us to build 2D interface components which will make it much easier to visualize
and manipulate posture graphs and PaT-Nets. Some of this work is related to, and will be used by,
other projects here.

The initial design for this multi-processing framework for behavioral simulation is described in
the paper Behavioral Control for Real-Time Simulated Human Agents (See Appendix F)
We will be implementing the first cut of this system in the near term.

The key benefits for our research, from this unification, are (1) Since all current image-generation
applications we are involved with are based on IRIS Performer, our code must be optimized for that
API, (2) the multi-processing framework is needed to take advantage of the multiple processor
machines which are coming to dominate the visual simulation field, (3) much of the work done
already in Jack for controlling multiple figures and motion generation,- will then be available for
integration into Jack ML. This system will be used to prototype and build the control functions for
the real-time simulated agents which will be used in distributed simulations for our sponsors under
the DMSO project.

This new system will most likely become the standard Jack system environment in the fut ure.

3 Motion Data Acquisition: Mike Hollick

We have begun work on a system that will be used to gather motion data for generating human
animation, as well as real-time interaction. The first step has been to purchase and integrate 4
additional Flock of Birds sensors. By adding these to our current Flock we can begin to experiment
with sensor placement configurations to increase the accuracy of the recorded posture data. In order
to support the additional sensors, the current driver has been modified and tested off-site to confirm
that the sensor communication will work correctly through an intermediate hardware interface such
as a terminal server. This intermediate interface is needed to maintain a direct serial connection with
each sensor when the number of sensors exceeds the available serial ports on the host workstation.

The next step is to determine sensor placements that produce the most accurate representations
of the actual posture, while minimizing the degree of encumbrance. This will also involve work on
the Jack side of the system, where we will need to test different, constraint types and heuristics to use
the data most efficiently. It is probable that several sensor configurations will be ultimately selected,
with each configuration being the best for a certain class of motion. For example, for motions that
only involve the upper body, it would make little sense to have sensors on the knees and ankles.

4 SASS: Francisco Azuola

During the last quarter, I finished the implementation of SASS v.2.5 to be released with Jack 5.9.
The SASS user's manual will be provided with the new Jack 5.9 manual.

Omission

In Quarterly Progress Report No.51 and in the articles. "Infrastructure for Human Modelling
in VR" and "Building Anthropometry-Based Virtual Human Models", we omitted to mention the
contribution of Dr. Ann Aldridge (from NASA) to the figure scaling project, namely, the original
version of the "anthropometric data extraction" tool.

5 Motion Planning with Strength Analysis: Xinmin Zhao

For the past several months, I have been working on incorporating strength analysis into the motion
planning process. The objective is that the planned motion should be not only collision free, but
also strength feasible for an agent with limited strength. The motion planning algorithm has been
modified to include strength analysis. Our experiments with the modified algorithm so far show that
it works well. For more information, please see the user's guide of Jack reach planning (Appendix
E).

6 Inverse Kinematics of the Human Arm: Deepak Tolani

My current task in the DMSO project is the generation of inverse kinematics for the human arm. In
particular, I've focused on two separate problems: (1) generating inverse kinematics solutions in real
time using a simplified model of the human arm, and (2) calculating accurate inverse kinematics
using Jack's model of the shöulder-arm complex. Appendix A summarizes my current status in
these two areas.

7 Grasping Implementation: Brett J. Douville

During the past three months 1 have been working on the implementation of a grasping taxonomy
for Jack. Once this work has been completed Jack will be able to reach for an object, grasp it in an
appropriate grasp, and then manipulate the object.

The grasping behaviors are currently programmed in Lisp using PaT-Nets. Individual instanti-
ations of finger-controlling and thumb-controlling PaT-Nets generate realistic behavior by directly
manipulating joint angles. Collisions between the segments of the finger (or thumb) and other fingers
or the object to be grasped determine transitions to different states of the PaT-Net.

The motivation behind using collision detection to drive the grasping behavior is based in human
grasping tasks: when humans grasp an object they are searching largely for tactile information- by
driving grasping using collision detection, Jack is simulating tactile sensations. I expect to distinguish
between several different types of grasping collisions in the upcoming months, which should lead to
even better grasping.

Currently, grasping is being integrating with Xinmin Zhao's motion planning to achieve realistic
reaching and grasping.

8 Object Specific Reasoning: Libby Levison

In the last quarter I finished writing my dissertation proposal x and began implementing the system.

Currently there is a complete vertical integration for a subset of the task-action commands- the
actions LOOK, GRASP, RELEASE and REACH are fully implemented. The OSR can output Jack action
directives of various agent performing these actions on various objects. The OSR decomposes the
actions, and determines missing information needed by the Jack system (eg, which hand to use). It
then checks that the agent has adequate resources to perform the actions, and outputs the directives.

In addition to the algorithm which reasons about each task-action and converts it to a set of action
directives, the vertical integration has required the construction of two additional components. First
is a knowledge base of properties of the agents and objects which the system uses in determining the
missing information. Second, I have built the task-action library for the task-actions listed above-
the library contains the underspecified definitions of these commands.

In the next quarter, I plan to continue work on the implementation. In addition to encoding
new actions (eg MOVE-OBJECT and LOCOMOTE, the OSR system must be integrated into Jack This
includes 1) converting the knowledge base to interface with the graphics knowledge base, which will
allow the OSR to acquire as much knowledge as possible from the graphics knowledge base and 2)
generating action directives which are Jack behaviors, and performing them in the Jack system. Bv
the end of Q1.95 I plan to have a stable system implementation.

9 Improvement of Human Model: Bond-Jay Ting

When human 5.8 was created, the major work was on the head and neck. Although there were
some minor improvements, the hand model didn't get much attention. Therefore, in this version of
human model improvement, the focus is on creating a better hand model.

To minimize the impact on Jack the redesign is based on the old segment structure. The total
number of segments remains 16. Although there is a slight change in the joint position of the palm,
the rest of the joints were kept at the original position. The major change is the geometrv for eacli
segment:

1 '-Connecting Planning and Acting: Towards an Architecture for Object Specific Reasoning" (1995). Libby Levison.
I niversity of Pennsylvania.

j!!J!wuiwwfw B.w*;;y^*^W'{ivw!*:w;yAw.M;Wwi

.^■;:.-V-v':j&:':.
:':Sp:ii1

(a) The new hand model (b) Hand model for Jack 5.8

Figure 1: Hand model

Palm: Palm is the most complicated segment in the hand model. After studying the muscles
and the joint locations of the palm, the outside part of the hand is made to be a more rounded
shape. And instead of the straight line distribution in the previous version, the new joint locations
for fingers have been moved to a more rounded fashion.

Fingers: Basically, the shapes of the fingers remained the cylindrical cone shape. The limited
changes are located in the proximal parts (the first segments) and the distal parts (the last segments).
For the proximal parts, the fins have been enlarged and moved toward the front part of the hand.
For the distal parts, the shapes have been redesigned to meet the shape of finger tips.

Thumb: One of the biggest changes of the new hand model is the thumb. The first segment of
thumb has been redesigned with a larger base to simulate the part of the segment which is embedded
in the palm. Also, similar to the distal part of the fingers, the tip of the thumb has been redesigned
to simulate the shape of thumb.

Fig. 1 shows both the new and old hand model. The new hand model also uses polygons more
efficiently. Compared to 468 > iygons in the previous version, the new hand model has only 391
polygons.

To create a physics based hand motion, we need to insert the mass properties of the hand into
the model. Unfortunately, the current mass data collected for the hand model are either "total
hand mass" or "total mass for fingers and the mass for palm". Neither case is sufficient enough
for our simulation. Therefore, a distribution function is needed to distribute the mass into different

Segments. Since there is no data showing the density of each segment, we make the uniform density
distribution assumption. The mass is distributed according to the volume of each segment.

Beside the hand modeling, I have also been working on the uneven scaling problem. In Jack
the scaling problem is handled by a uniform scaling scheme. Each node in the segment is scaled
according to a three dimensional vector in which each component represents the scaling factor in
the corresponding axis. When creating a new human figure from one prototype to match a set of
measured data, the scaling factor in two ends of a segment don't necessarily have to be the same.
That is, the uniform scaling scheme is not sufficient.

To solve this problem, an uneven scaling scheme is introduced. Uneven scaling scales along a
predefined axis (one of the local coordinate axes or global coordinate axes). The scaling vector of
any node in the segment is linearly interpolated according to two reference positions (nodes or sites)
and two corresponding scaling vectors.

10 Recursive Forward Dynamics Algorithm: Evangelos Kokke-
vis

After testing the recursive forward dynamics algorithm in a simple simulation environment the
code is now incorporated into Jack. An effort has been made to create a general system 'that
can automatically generate dynamically correct motion for any articulated structure defined as a
standard Jack figure. The only extra parameter that user needs to supply is the mass of each
segment. The moment of inertia and the center of mass are automatically computed from the
segment's geometry. The resulting system is both intuitive to use and runs at interactive speeds
even for fairly complex structures. To detect collisions between objects, the fast collision detection
algorithm already implemented in Jack has been employed. The user can specify the coefficients of
iriction and restitution for the objects and hence, simulate different material properties, enhancing
the realism of the animation.

With a general dynamical simulation environment at hand, the next step was to investigate ways
to give the user control over the animation. The goal would be to have the dynamics assisting the
user in creating a realistic animation without overrestricting him on the motions he can generate
For a specific motion, the user should be able to prescribe the trajectory of the important (to the
motion) degrees of freedom and leave the state of the rest of the figure to be handled naturallv bv the
dynamic simulator. A dynamical controller should then be employed to generate the internal forces
and torques needed to be exerted on the joints to have them follow the specified trajectories. Model
Reference Adaptive Control proved to be a good choice for the controllers. Adaptive controllers
have the advantage, as the name suggests, to progressively "learn" the dynamic properties of the
system they control. They are also simple to implement and run efficiently since no knowledge of
the often complicated underlying system dynamics needs to be hardwired into them. At this stage,
kinematic joint trajectories provided by the user can be replicated dynamically using this type of
feedback control.

Adaptive control properties need to be investigated further to give a more robust general _
tion system. Once this is done, the next step will be to apply the above system in the more specific

amma-

application of dynamically controlling human motion.

11 Locomotion Reasoning: Barry D. Reich

This quarter I worked on the Zaroff system, an animated simulation of a game of Hide and Seek,
with Chris Geib, Mike Moore, and Tripp Becket. We use Jack to create an architecture where
AI planning can be combined with sensor-based, reactive navigation. In the PaT-Net-controlled
simulations, planning is used to generate intentions. The intentions are achieved through the use of
PaT-Nets which configure a set of simulated sensors to execute the desired actions.

We wrote a paper describing the Zaroff system which will appear in the AAAI Spring Sympo-
sium on Integrated Planning Applications proceedings in 1995 (also University of Pennsylvania CIS
Department Technical Report MS-CIS-93-56/LINC LAB 280). It is included in this report (See
Appendix G). We also worked on papers for The 5th Conference on Computer Generated Forces and
Behavioral Representation and The International Joint Conference on Artificial Intelligence. The
former has since been accepted.

This quarter I also worked on a project and paper for the 1995 Symposium on Interactive 3D
Graphics with John Granieri, Tripp Becket, and Jonathan Crabtree (See Appendix F). We are
developing a system for interactive behavioral programming in real-time.

12 Realistic Animation of Liquids: Nick Foster

Techniques developed for modeling, and rendering fluids were combined as a single development
system for animating liquid effects 2 . The system provides a user interface for interactively modeling
a complex environment including liquid, obstacles and floating objects. The behavior of the liquid
and objects in the scene can be calculated accurately using a physics-based model, and the results
rendered realistically using the RenderMan interface 3. The system was used for a number of sample
applications. These included an animation of ocean waves, and a simulation of internal bleeding
from a penetrating knife wound to the lung.

13 Modeling Respiratory Mechanics: Jonathan Kaye

The models of respiratory mechanics I developed earlier showed the qualitative behavior of the
system for normal, quiet breathing. The motivation of developing these was to demonstrate basic,
qualitative relationships during breathing. While these simulations were sufficient to show basic
behavior, thus having potential for explaining why pressures and volumes change, we needed more
precision to drive the physics-based graphical modeling (for visualization).

2Realistic Animation of Liquids, N. Foster and D. Metaxas. Submitted to SIGGRAPH 1995.
3 The RenderMan Companion, S. Upstill; Addison Wesley, New York, (1990)

During the current reporting period, I presented a paper on our work at the First International
Symposium for Medical Robotics and Computer Assisted Surgery (See Appendix C).

Needing more detail than the qualitative models provided, I reworked my models and derived
ordinary differential equations (quantitative) for different pathological conditions on multiple com-
partment lung models (e.g., trapped air in pleural space, simple pneumothorax, open sucking chest
wound, and tension pneumothorax). In the process, I learned more about respiratory mechanics to
validate the approach. I am planning to incorporate these new models with cardiovascular model-
ing, to show how the physiological systems are dependent in some situations because of the physical
space they share.

14 Jack Motion Library: Jonathan Crabtree

The greater part of the work done during this quarter relates to the DMSO project, either in the form
of continued support for the NAWCTSD TTES system or in the form of preliminary investigations
into those areas spanned by the first-year report deliverables.

Continued support for the TTES application has been comprised primarily of updates to the
Jack Motion Library. In particular, all the application code was modified for" compatibility with
SGI Performer 1.2, the latest version of the rendering toolkit on which both TTES and DMSO will
ultimately depend for their real-time display requirements. Updates to the Jack Motion Library
include bug fixes and optimizations for greater efficiency, most notably the addition of an option to
fully precompute all the joint transformation matrices involved in any given figure motion. This will
almost certainly be an essential component in maintaining the real-time constraints inherent in the
second-year DMSO deliverables.

As a first step toward determining what changes will be necessary in human agent PDUs (Protocol
Data Units) for this project, a more general mechanism for making posture changes was explored
and implemented; while the posture graph establishes a regimen on the organization and storage of
motion data, it does not directly address issues of how information about when posture changes
take place should be stored. For instance, in cyclic traversals of a posture graph, such as arise in
animating walking or running, it is desirable to associate conditions with edges of the posture graph
indicating that an agent must continue to make posture changes (for instance, a walking agent in
the TTES system) as long as that agent's velocity is nonzero. The possible sets of edge conditions
will correspond closely with the information encodeable in an expanded human agent PDU; at the
very minimum, each action that can be animated must be representable in the distributed protocol,
and conversely each distinct message under the protocol should map to some transition or set of
transitions and conditions in the posture graph.

Future work in this area will include an analysis of the movement set (once it has been fully
realized) to extract a behavioral hierarchy. Knowledge of this hierarchy will guide further extension's
(or development of additional structures) to the posture graph abstraction in order to represent
behavioral state information. We have also been exploring, at the implementation level, the possi-
bility of segmenting motion by body region. This would allow for multiple concurrent behaviors; for
instance, an agent might be walking while carrying an object or while aiming a weapon or operating
a tool.

s

In real ted work, a database converter was developed to output the contents of a SGI Performer
visual database into a Jack-readable format (a collection of figure and psurf files). The conversion
process preserves articulation information and also texture and color specifications. In conjunction
with the wide range of database loaders available for Performer 1.2, this provides a path, through
the intermediate Performer format, to convert files of several different types (.fit, .sgo, .pto, etc.)
into the Jack peabody language.

A new display mode was added to the standard version of Jack. It aids in visualizing the
"skeletons" of figures by drawing a small sphere at each joint center, and rectangular "sticks" for
the segments between joints. This mode could be expanded to provide a simpler and more intuitive
interface for joint manipulation and figure positioning, by making the precise locations of all joint
centers visible simultaneously. With the standard figure display disabled, visual clutter is also
reduced.

15 Efficient Rendering: Jeff Nimeroff

During the last quarter Julie Dorsey, Eero Simoncelli, Norman Badler and myself completed work
on the final draft of our paper on rendering spaces 4 that was accepted in Presence, the Journal of
Virtual Reality and Teleoperators. The paper abstracted specific rendering scenerios into subspaces
of a general rendering space and was an attempt at applying algebraic abstraction techniques to
computer graphics. Julie Dorsey and I also completed a SIGGRAPH submission on photorealistic
rendering based on research that is to be continued throughout the next two quarters.

4 "Rendering Spaces for Architectural Environments", J. Nimeroff and J. Dorsey and E. Simoncelli and N. Badler
Accepted for Publication in Presence, the Journal of Virtual Reality and Teleoperators. November 199-1.

10

A Inverse Kinematics of the Human Arm: Deepak Tolani

11

Inverse Kinematics of the Human Arm

Deepak Tolani

February 21, 1995

1 Introduction

My current task in the DMSO project is the generation of inverse kinematics
for the human arm. In particular, I've focused on two separate problems:
(1) generating inverse kinematics solutions in real time using a simplified
model of the human arm, and (2) calculating accurate inverse kinematics
using Jack's model of the shoulder-arm complex. This report summarizes
my current status in these two areas and outlines

2 Fast Inverse Kinematics

The best existing numerical algorithms for inverse kinematics are only marginally
adequate for real time applications. Additionally, most numerical methods
don't yield all solutions and they often fail near a singularity of the manipu-
lator. For these reasons, it is desirable to obtain an analytical solution. One
of the conditions which guarantees a closed-form solution in a six degree of
freedom manipulator is the presence of three intersecting joint axes. Thus, if
we utilize a simplified model of the human arm where the shoulder is modeled
as a spherical joint, we should be able to derive an analytical solution.

Figure 1 illustrates the Peabody representation of a simplified version of
Jack's left arm. In the simplified model, the shoulder-clavicle complex is
reduced to a single spherical joint with three degrees of freedom. The joint
transformations from the shoulder to the wrist frame are given by

R~Mi)RA<p2)R,{h)TiRy{4>A)T2Ry(^)Rx(h)RM7)

Ti =

03 =

-a3

I 0
ds

. 0 1

r2 = I

. 0

0
0

04

1

49,<fe = 32.S ,a4 = 25.93

where Ta and T2 are constant matrices that relate the positions of the shoul-
der,elbow, and wrist joints. Note that the equation above assumes column
notation for vectors.

The inverse kinematics problem may be stated as follows. Given a desired
position and orientation of the wrist frame relative to the shoulder frame
A.Wrist find a suitable set of angles 0l5 ...,07such that the following equation
is satisfied:

A1A2A3A4A5A6A7= Amis, (1)

Where

A* =

A4 =

" cos(01) -J ?in(01) 0 0 '

A1 =
sin(01) cos(01)

0 0
0 0
1 0

0 0 0 1.

" 1 0 0 0 "

A2 =
0 cos(02) —sin(02) 0
0 sin(02) cos(i '2) 0
0 0 0 1 .

' cos(03) -sin(03) 0 - ■I.cos(03)a3
sin(03) cos(03) 0 - -l.sin(03)a3

0 0 1 d3
0 0 0 1

' cos(04) 0 sin (04) sin(04) a4
0 1 0 0

-sin(04) 0 cos (04) cos(04) 0,4
0 0 0 1

As =

cos(05) 0 sin(05) 0
0 10 0

-sin(05) 0 cos(05) 0
0 0 0 1

A,

A7

1 0 0 0
0 cos(06) -sin(06) 0
0 sin(06) cos(06) 0
0 0 0 1

cos(07) -sin(07) 0 0
sin(07) cos(07) 0 0

0 0 1 0
0 0 0 1

a3 = .49 d3 = 32.8 a4 = 25.93

However, Awrist specifies only six independent equations but we have
seven unknowns. Thus, in general, there are an infinite number of joint
angles satisfying equation 1. The simplest solution is to forfeit one degree of
freedom of the system. Since many positioning tasks do not simultaneously
utilize all three degrees of freedom of the wrist, it is often expedient to fix
one of the wrist joints to a rest angle.

2.1 Case 1: Joint angle 7 is constant

Without loss of generality, assume that the last wrist joint is constrained
so that Aj is a constant matrix. We can then write the inverse kinematics
problem as '

AiA2A3A4A5A6= A^^Ar1 (2)

where the right hand side is given and the unknowns are the joint angles
81,...,06.

Denoting

L-wrist

011

021

031

0

012

022

032
0

013 014 "

023 024

033

0
034

1

, the vector p = [#14,524,03 i]T is the origin of the wrist frame measured in
the shoulder coordinate system. The magnitude of p depends only upon
the lengths of the upper and lower arms and 94. As shown in figure 3, the
relationship between 64 and ||p|| can be derived from the law of cosines as

04 TT

a = arctanf

V' = arccos

- a

d3'

P +

(3)

21 a4

I \J<4 + 4
Since p is given, 64 can be calculated directly from equation 3. Although

are two distinct solutions for 64, only one answer is physically realizable
because of joint limits.

To calculate the remaining joint angles, we note that the position of the
shoulder joint expressed in coordinate system six is just a function of the last
three joints 64, #5 #6. More precisely, we can write

 A,; Ar Ai An

0
0
0
1

(4)

A6 A5

cos(#4)a3 + sin(#4)d3

0
sin(#4)a3 — COS(#4)G!3 — a4

We also note that *e can compute 6p as

(5)

where

/v
6
Py

V *Pz)

-cos{67)tl +s'm{97)t2
-sm(97)tl -cos(97)t2

-{gl3gU + g'2-ig24 + g33g34)
(6)

U = gUglA + (filcjlA + cßlgM

t2 = <j\ 2g 14 + g22g2-i + gZ2gM

Equating equations 4 and 5 gives

cos{04)(i:> + sin(^)c/3

0
sin(6,

4)a3 — cos(04)d3 — a4

As A, 5-^-6
6Pv

v i ;
7)

where the only unknowns are 95 and 96. Denoting the left hand side of equa-
tion 7 by [/i,0,/3]T and expanding the right hand side yields three scalar
equations

pxcos(95)+pys\n{95)s\n{96) + p:cos{96)sm(95) = /l

py cos{96) - pz sin(96) = 0

-pxsm(65) + pycos{05)sm{86)+p:cos{65)cos(66) = /3

The second equation is of the form

a cos(96) + bsm(9e) = c

and has two solutions given by

(8)

06 = a tan 2{b. a) ± a tan 2(vV + 62 - c2, c)

Substituting a value for 0,-, into each of the first two equations of system 8
yields a set of equations of 1 he form

a cos(ö5) — bsm(95) = c

a s'\n(95) + bcos(95) = d

which has the solution

#5 = a tan 2(ad — 6c, ac + bd)

where atan2 is the two argument arctangent function. Finally, the values of
#1, #2,#3can be determined by extracting the Euler angles from the rotational

components of {AwristA.jl) A^A^AJ1. If we rearrange equation 1 as

AiA2A3 = (A^rirfA,.1) A6
1A5

1A4
1

(9)

we note that the right hand side contains quantities that have been deter-
mined. Denoting the 3x3 rotational component of the right hand side of the

r\\ r12 r13

and using ct- and st to represent cos(#,- matrix equation by

ru T\2 ri3 '

T2\ r22 f23

rsi r32 ^33 .

r2i r22 r23

^31 ?'32 ^33
and sin(0,-) yields the equations

C1C3-S1C2S3 -ClS3-S1C2C3 SiS2

S1C3 + C1C2S3 -SlS3 + C1C2C3 -C1S2

s2s3 S2C3 c2

We can obtain two possible values for 62 from the (3,3) component of the
matrix equation above

02 = ±arccos(r33)

We can then solve for #3 and öxby taking the appropriate arc tangents

r31 r32 \
63

Or

arctan 2

arctan 2

iSin(02) 'sin(ö2]

^13 -^23

sin(ö2) ' sin(02)

where arctan2 is the two-argument version of the arc tangent function. If
82 = 0 or 180 the equations for 93 and 6X degenerate. In this case, we can only
compute their sum or difference. One possible workaround is to add a small
e to 62. Another fix is to arbitrarily set 93 — 0 and to compute Qx as

Q\ = arctan 2(r21,—rn)

where arctan2 is the two argument arctangent function.

6

2.2 Case 2: Joint angle 5 is constant

In the previous section, we assumed that the last wrist joint was fixed. We
now consider the case where the first wrist angle is constant, and joints 6 and
7 are allowed to move. We first compute 94 using the same technique as in
the previous section. Let p represent the vector from the origin of the wrist
frame to the origin of the shoulder frame. The coordinates of p measured in
frame 5 can be calculated by the following two equations

P — A5 A4 A3 A2 A U-1

(5px)

/0\
0
0

\

Py

1)

and

cos

sin

\(65)(sm(04)d3 + cos(6>4)a3) + sin(6l
5)(- sin(6>4)a3 + cos(#4)d3 + aA)

0
i(^5)(sin(6l

4)(i3 + cos(#4)a3) + cos(6>5)(—aA + sin(#4)ö3 — cos(84)d3)

5P = A6A7AJ; ist

equating these two equations gives

0
0

V i /

w here

/i sin(6l
6)cos(6l7

/l COs(ö6) COs(#7

/l =

h =
f3 =

sin(07)/i + cos(Ö7)/2

V)-/2sin(06)sin(07)-/3cos(06)

' - /2 cos(6>6) sin(6>7) + h sin(#6)

-(#11014 + </21#24 + 031034)

-{gi29l4 + 922924 + 932934)

-(913914 + 923924 + 933934)

Px

0

(10)

The equation above is very similar to equation 8 and can be solved using
a similar approach. Finally, once 6e and #7have been computed, 6i,02la,nd
95 can be calculated by using the Euler angle extraction technique discussed
in the previous section.

2.3 Case 3: Joint angle 6 is constant

Finally, consider the case where the middle wrist joint is fixed. Let "p denote
the coordinates of the shoulder joint measured in the final wrist frame. We
have two alternative ways to compute ' p :

/ >* \
?Py
7Pz

V 1 /

= A-1- wrist

I o\
0
0

V 1 /

and

A-1 A-1 A-1
Ay /v6 i\5

003(64)0,3 + sin(#4)<i3
0

sm(64)ü3 — cos(94)d3 — a4

Equating the two equations above and moving A6 and A7 to the right hand
side yields the equations

cos(6s)hi — sin(6'5)/i3 = cos

0 = cos

sin(6>5)/j1 + cos(65)h3 = COS

where

;(Wi - sin(07)/2 (11)

:(07)(cos(06)/2) + sm(e7)(cos(6e)fi) - sin(ö6)/3

;(67)(sm(d6)f2) + sin(ö7)(sin(6l6)/1) + cos(06)/3

hs

cos(64)a3 + sin(#4)<i3

sin(Ö4)ö3 — cos(ö4)c?3 — a4

and

fl = -(#11014 + 021024 + 031034)

h = -(012014 + 022024 + 032034)

h = -(013014 + 023024 + 033034)

Since #6 is constant, the only unknowns are 85 and #7. The second equa-
tion of system 11 is of the form

acos(#7) + 6sin(#7) = c

and has two solutions given by

87 = a tan 2{b, a) ± a tan 2(Va2 + b2 - c2, c)

For a given value of 87, we can find the corresponding values of 85 by solving
equations 1 and 3 of system 11 which are of the form

a cos(#5) — bs'm(65) = c

asin(9s) + bcos(95) = d

with the solution
#5 = a tan 2(ad — be, ac + bd)

3 Accurate Inverse Kinematics

The inverse kinematics formulas above assume that the shoulder is a simple
three degree of freedom spherical joint. However, the actual shoulder-clavicle
joint complex used in Jack is more complicated. In Jack, the shoulder com-
plex consists of five interdependent joints, two of which are located at the
clavicle and three of which are located at the shoulder. These five joints
are controlled with three degrees of freedom: elevation, abduction, and twist
((f), 8, T) corresponding approximately to a spherical motion. The coordinate
transformation from the left elbow to the clavicle joint is given by the equa-
tion

C(9j(f))T,S((pJ,T)T2 (12)

where C(0,<f>) and S(<J>,6,T) are transformations given by the clavicle and
shoulder joints

C(BA) = Ry(9l)Rx{^)

and

T,

10 0 0
0 0 10
0-100
0 0 0 1

T2 =

1 0 0 -.49
0 10 0
0 0 0 32.8
0 0 0 1

ii = cos(9)ß1 + (1 - cos{9))ß2 - 90

öi °- ,, = *?
5 -5

ßi =
.251^ + 97.076 0<<£< 131.4
— .035<^+128.7 otherwise

ß2 =
.21066(f) + 92.348 0 < <f> < 130.0

120 otherwise

Note that these equations are not the same as the ones in the book
"Simulating Humans". However, I believe they accurately reflect the trans-
formations used in the current implementation of Jack. I will now discuss two
possible methods to implement the inverse kinematics for the Jack shoulder-
arm complex. The net transformation from the wrist to the clavicle joint is
given by the rather formidable equation

Ry(ei)RAöi)TlRx(-0i)RA02)RA<P)RAr')T2Ry(S)Ry(u:1)Rx(u2)Rz(u3)

A wrist

where r = T + (^ — l) 62,6 is the elbow angle, and u>\, LO2 , u^ are the wrist
angles one of which is assumed to be constant. The inverse kinematics prob-
lem is to find a suitable set of joint angles 9t4>, r, 6, u>i, u>2, u>3 that interpolates
a desired Awrist.

10

3.1 Method 1 : A Hybrid Analytic and Numerical
method.

Equation 12 can be approximated very crudely by a coordinate transforma-
tion from the elbow joint to the shoulder joint given by :

RZ{0)RX{4>)R, (r + (^ - X) Ö2) T* (13)

Since we already know how to analytically compute the inverse kinemat-
ics of a spherical mechanism, we can compute an approximate solution to
equation 12 by solving for 6,(f>,T in equation 13. We can then input these
angles as a "first guess" to a numerical procedure, such as Jack's own in-
verse kinematics routines, to obtain an accurate solution. There are two
primary advantages of this hybrid approach over a purely numerical method.
Most numerical methods can only generate a single solution. Moreover, not
all inverse kinematic numerical methods are guaranteed to converge. Using
an approximate analytical solution allows multiple solutions to be explored.
Additionally, since the numerical procedure is invoked near a solution, con-
vergence is both more rapid and probable.

However, there is one minor problem. Since the analytic formula is only
approximate, the analytic phase may sometimes fail to detect a solution.
This can happen when a solution exists near the reach boundary of the actual
mechanism but may lie outside the workspace of the analytic approximation.
This problem can be mitigated by the following heuristic. If a solution cannot
be found at the fixed shoulder position or if the desired position requires
a nearly fully extended elbow, we sample a variety of shoulder positions
corresponding to different configurations of the clavicle joint. If the analytic
phase succeeds for any of these configurations the numerical procedure is used
to confirm if an actual solution exists. The simplest scheme for choosing the
sampling points for the shoulder is to choose eight positions corresponding
to the limits and midpoints of the clavicle joints as shown in the table below

11

Elevation Abduction Shoulder position relative to clavicle
0 -44 (-1.7,-2.64,11.0)
0 42 (1.62,-2.66,11.0)
0 128 (4.89,-1.40,10.2)
90 -44 (-1.43,-6.54,9.24)
90 42 (1.36,-6.57,9.23)
90 128 (4.513,-4.6,9.42)
179 -44 (-1.35,-7.24,8.72)
179 42 (1.29,-7.24,8.72)
179 128 (3.98,-6.72,8.31)

3.2 Method 2: A variation of Manocha and Canny's
algorithm

I've also tried to find a more direct inverse kinematics solution for Jack's arm
model. Manocha and Canny have recently developed a numerical method for
6R mechanisms that finds all solutions for a desired position and orientation.
However, their algorithm is designed to work for independent joints expressed
in Denavit-Hartenberg notation and is not readily amenable to the coupled
joint mechanism used in Jack. In order to use their algorithm, it is necessary
to find a set of three DH matrices equivalent to the five interdependent joints
in Jack. More formally, we wish to find three Denavit-Hartenberg matrices
Ai,A2,A3 satisfying

A1(0)A2 {</>) A3(T) = RyißJRxifaMRxi-MR^RsWR, (r + f ^ - 1J 92

(14)
The first question is whether or not such a parameterization is even pos-
sible. In fact, any coupled system of joints with only n degrees of free-
dom can be represented by an equivalent "virtual" system of n indepen-
dent joints, but this representation is valid only instantaneously. Thus, un-
like a physically realizable device, the n independent joints are not fixed
but change with the configuration of the mechanism. Mathematically this
means that the Denavit-Hartenberg parameters (ai,dt,a,j i = 1..3)on the left
hand side of equation 14 are not constants but functions of #, ^>,and T. I
have attempted to solve 14 for a suitable set of values for the unknowns
0-1,02, 03, ai, a2,o3, d\, d2,d3 as functions of 0,<A,and T. However, the result-

12

ing equations are very ugly and I have not yet found a satisfactory solution.
Moreover, the algorithm by Manocha and Canny relies on the fact that the
joint variables are isolated in each matrix, which will no longer be the case
for our "virtual" joints. Despite these problems, I am not yet convinced that
this scheme is infeasible and I will continue pursuing it.

4 Exploiting Redundancy

In the previous sections, we assumed that one of the wrist joints was fixed
at a constant angle. In practice, it may not always be straightforward to
determine which joint to hold constant or to decide upon a suitable angle
for the stationary joint. If a poor decision is made, the inverse kinematics
solution may produce an "awkward" looking wrist posture. An even more
serious problem is that the simplification of the arm to a six degree of free-
dom system reduces the reachable workspace which may cause the inverse
kinematics procedure to fail even when a solution exists. Thus, it seems that
a better scheme would be to exploit the extra degree of redundancy and to
choose the solution that best satisfies an additional optimization criterion.
For example, there is empirical evidence that humans tend to try to mini-
mize wrist torques and one way of approximating this behavior would be to
choose the solution that minimizes the displacement of the wrist angles from
their rest position. I am currently investigating both analytical and numer-
ical methods that utilize redundancy in the hope that these techniques will
yield more "natural" looking postures for human arm inverse kinematics.

13

i :
64 r7

St

Figure 1: Peobody representation of the human arm

Shoulder

32.8

iDOW

'rist

"igure 2: Calculating the elbow angle

B Adaptive Deformable Model Evolution Using Blending:
DeCarlo and Metaxas

12

Adaptive Deformable Model Evolution Using
Blending

Douglas DeCarlo and Dimitri Metaxas
Department of Computer <k Information Science

University of Pennsylvania
Philadelphia PA 19104-6389

dmd@gradient.cis.upenn.edu, dnm@central.cis.upenn.edu

Abstract

We propose a new paradigm for shape representation and estimation which rep-
resents an object using a hierarchy of physics-based blended deformable components.
Initially, the model is a sphere. In a physics-based way, the models deform and are
replaced by more complex models allowing the evolution from the initial shape to the
final shape. This evolution into more complex models is based on the arbitrary blend-
ing of shapes. Through hierarchical blending, multiple blends of the initial shape can
occur. Since these models are defined based on global parameters, the shape recovered
is a natural symbolic description. The descriptive power of these models allows the
representation of objects with multiple holes. We present experiments involving the
extraction of complex shapes, including an example of an object with multiple holes.

Keywords: Shape and Object Representation, Physics-Based Modeling, Shape Blending,

Shape Estimation

Adaptive Deformable Model Evolution Using
Blending

Abstract

We propose a new paradigm for shape representation and estimation which rep-
resents an object using a hierarchy of physics-based blended deformable components.
Initially, the model is a sphere. In a physics-based way, the models deform and are
replaced by more complex models allowing the evolution from the initial shape to the
final shape. This evolution into more complex models is based on the arbitrary blend-
ing of shapes. Through hierarchical blending, multiple blends of the initial shape can
occur. Since these models are defined based on global parameters, the shape recovered
is a natural symbolic description. The descriptive power of these models allows the
representation of objects with multiple holes. We present experiments involving the
extraction of complex shapes, including an example of an object with multiple holes.

Keywords: Shape and Object Representation, Physics-Based Modeling, Shape Blending,
Shape Estimation

Summary

(1) What is the original contribution of this work?

We develop a new physics-based modeling approach to shape estimation where the
initial model parameterization is that of sphere. Based on the forces exerted by the
data, the model can change its representation adaptively through blending. Therefore,
with no a priori parameterization, the model evolves and locally re-parameterizes in a
physics-based way. In addition, through this technique we can represent models which
include multiple holes. Finally, the resulting parameterization is based on global shape,
allowing the symbolic description of the recovered shape.

(2) Why should this contribution be considered important?

A shape representation should cover the widest possible variety of shapes which can be
formed form a single model. Our approach achieves this goal. Furthermore, it can rep-
resent in a compact way more complex objects than any other technique known to us.
Our technique is useful in reconstruction and should have applications in recognition.

(3) What is the most closely related work by others and how does this work differ?

While there have been several other global models (such as CAD based models) that
can represent shapes with multiple holes, the shapes are not represented in a unified
and compact way (see introduction for more details).

(4) How can other researchers make use of the results of this work?

These new models and estimation techniques can be applied to problems where shape
modeling and characterization with a few parameters is important, i.e., reconstruction,
recognition, and modeling.

1 Introduction

A challenging open problem in shape representation and estimation is the development of

models that can be used in applications ranging from reconstruction to recognition. The

difficulty in creating such models is the often conflicting requirements of reconstruction

and recognition, i.e., representational accuracy versus symbolic descriptive power. As a

result, most researchers have addressed this problem by creating models that employ a lot of

parameters and are appropriate for reconstruction only [5, 14, 15, 25, 27] or have developed

models with few descriptive parameters suitable for recognition tasks [1, 2, 3, 8, 9, 17, 21, 24].

Recently, models designed for application in both shape reconstruction and shape recog-

nition have been presented [4, 6, 7, 13, 19, 22, 28]. Both [22] and [28] provide methods

where the collection of parameters is ordered by level of detail. Techniques based on su-

perquadrics [6, 7, 13] were presented to obtain part-level models. The models in [11, 19, 26]

incorporate global deformations which represent prominent shape features, and local defor-

mations which capture surface detail. For these models, correct configurations are extracted

using a physics-based framework where forces are exerted by the data. In [4] a new class of

deformable models based on axial shape blending was proposed. The distinguishing feature

of blended models compared to all previous shape models is that in addition to being able

to represent more complex objects in a compact way, they also have the additional power of

compactly representing objects with varying topology, such as a sphere and a torus.

Regardless of how general or specific the currently existing shape models are, they are

all limited by the assumption of a predefined parameterization that is determined by the

underlying predefined geometric or physical properties of the model used. For example, in

modal analysis [22] the modal calculation depends on some predefined elastic properties. In

in the models defined in [4, 19] predefined types of local (e.g., thin plate or membrane) and

global (e.g., tapering, bending) deformations constrain the classes of objects that can be

represented.

A truly general shape model should have no a priori parameterization and imposition

of physical properties if it can be applied across a large number of objects. In the absence

of prior knowledge, such a shape model should have an initial shape that is not favoring

any spatial topology—therefore it should be a sphere. Furthermore, the associated shape

estimation technique should allow the model to evolve and change parameterization and

properties based on the shape of the given data. In other words the parameterization should

be data driven and not predefined. Finally, the object representation should be able to

satisfy as discussed above the requirements of both reconstruction and recognition.

In this paper we propose a new paradigm for shape representation and estimation which

uses a new class of physics-based deformable models. Starting from the initial model of a

sphere, the models evolve based on data forces. The representation of the model is changed

to reflect the shape of the data. This local adaptation of global shape is based on blending

of arbitrarily shape and is a generalization of the axial blending presented in [4].

The shape evolution, based on the localized blending, also allows the adaptation of the

topology of the model. This amounts to being able to represent objects with no holes, as

well as objects with multiple holes oriented arbitrarily.

Based on the underlying shape of the data, multiple local re-parameterizations of the

global parameters may be necessary. In our technique this is done through hierarchical

blending. The resulting model representation is a blend of a series of globally parameterized

shapes allowing in addition to shape accuracy, a symbolic shape description. Such a symbolic

shape representation can be expressed as a tree where the leaves are the parameterized

primitives and where inside-outside relationships are described. Therefore, as opposed to

all previous part-based shape estimation techniques, our model can be represented as a set

of connected components where each component is an integral part of the model. Fig. 2

shows the result of blending of two primitives. An additional benefit of using the above

models which are parameterized based on global deformations is their robustness to noise

and their suitability in estimating the underlying shape of sparse and incomplete data,

without imposing any prior smoothness.

In this paper, we first define the geometry of the new class of deformable models which

is based on the hierarchical blending of arbitrarily oriented shapes with global deformations.

Then we present how blended models can be incorporated into the previously developed

physics-based estimation framework presented in [19, 26]. We then present modifications to

this framework that are necessary in order to be able to dynamically evolve an initial shape

through blending. Finally, we demonstrate our technique through a series of experiments

involving incomplete range data from various objects with varying topologies.

2 Geometry of blended shapes

We will be incorporating blended shapes into the physics-based deformable model framework

introduced in [19, 26]. In the following sections, we will describe the process of shape blending

using many example shapes. In section 4.1, we will see how our vision system starts with

3

a model of a sphere, and incrementally blends where necessary based on forces from the

data. This adaptive blending process will cause an evolution from a sphere model to the

final model which represents the data.

While local deformations can be added on top of our blended shapes to capture shape

detail, this will be defeating the purpose of our adaptive blending scheme. Even small bumps

can be represented using blending-although it will most likely use a number of parameters

on the order of a local representation. If local deformations are desired, then we can define

a minimum feature size that can be blended. Any smaller features (such as small bumps)

can be captured by local deformations.

2.1 Deformable model geometry

The models used in this paper are 3-D surface shape models. The position of a point on the

model is given in world coordinates by x which is the result of a translation and rotation of

its position s, with respect to a fixed (non-inertial) reference frame. The material coordinates

u = (u,v) of these shapes are specified over a domain 0. The position of a point on the

world model at time t, with material coordinates u, with respect to an inertial frame of

reference is

x(u,t) = c(t) + R(t)s(u,t), (1)

where c is the center of the inertial frame, and R is a rotation matrix which specifies the

relative orientation of the inertial frame to a fixed reference frame.

In the fixed reference frame, the position of model points is defined by a reference shape s.

This reference shape s is constructed by applying a global deformation T (such as bending)

with parameters qx to a shape primitive e as follows:

s(u) = T(e;qT). (2)

T can be a composite sequence of primitive deformation functions, T(e) = Tn(Tn_i(... Ti(e))).

For every 3-D shape primitive (such as a superellipsoid [1]), we have e : ti —> R3. An

example primitive (in this case, a sphere) is shown in Fig. 1, and shows how the material

coordinates (the domain 0) are "folded up" resulting in the closed shape e.

e(u,v) : tt —► R3

Figure 1: Example shape primitive function e(u) = e(u,v)

For a superellipsoid, Q = [—7r/2,7r/2] X (—7r, 7r]. When folding up this space, we first

make a "tube" by identifying — ir and ir in v (which amounts to connecting the left and right

sides of Q in the diagram). We can then form the poles by identifying all points with values

of u = 7r/2 together (for the north pole), and all points with values u = — ir/2 together (for

the south pole), which in effect closes each end of the tube.

To represent the geometry of the primitive, a mesh of nodes is used, where each node is

assigned a unique point in Q. The edges connecting the nodes represent connectivity of the

nodes in 17 space. Nodes can be merged together to form a closed mesh where points in f>

map to the same 3-D model location (such as for the poles of a sphere). As a result, the

topology of the mesh agrees with the topology of the shape primitive.

For the applications in this paper, we will be using the superellipsoid and supertoroid

primitives [1], although any other parameterized primitives could be used. We will later

see how our vision system starts with a sphere model and uses these components to build

a blended shape. In the next section, we describe how by combining together these shape

primitives, we produce a shape model with much greater shape coverage.

2.2 Blended shape geometry

A blended shape is a combination of two component shapes. The desired pieces of each

component shape are selected, and are "glued" together. This gluing is performed using

linear interpolation [4], which produces a continuous blended shape as a result. We can

blend together two shapes using the following formula:

s(u) = Sl(u)a(u) + Tl[s2(B(u))j [1 - a(B(n))j, (3)

where Si and s2 are the component shapes, as in Fig. 2(a), a : Q —► [0,1] is the blending

function which controls how each of the component shapes are expressed and how they

are glued together, a is specified using the blending regions shown in Fig. 2(b). These

blending regions are overlaid on the material coordinate spaces of the component shapes.

The portion of these spaces corresponding to the retained surface is shown in white, while

the portion which is removed is shown in gray. The retained portions of the surfaces are

shown in Fig. 2(c). Basically, the blending regions specify where to "cut'" the shape (the

boundary line), and which part of the shape to keep (white or gray). Ideas similar to these

cutting and gluing operations have been used in studying manifold surgery for topology [10].

Manifold surgery has been used to construct manifolds of arbitrary topology using a few

simple components. B : tt —*• Q is an invertible function which maps the domains of the

selected region of s2 into the region which was removed from s^ 7Z : R3 —> R3 is a rigid

transformation (a rotation and a translation), which aligns s2 with Sj. For the moment, we

will assume that both B and 1Z are identity functions. Finally, s is the resulting blended

shape, shown in Fig. 2(d).

Sl

s2
u f J-

■\-
__-;. - .

(a) (b) (d)

Figure 2: (a) Shape primitives sx and s2 (b) Blending regions (c) Restriction of shapes to
blending regions (d) Resulting blended shape s

The resulting blended shape s shown in Fig. 2(d) has a smooth transition between each of

its components. This will be the case if a has at least O1 continuity, as shown in Fig. 3. For

the example blending region given in Fig. 3(a), the resulting blending function a is shown

in (b). Notice how a is 1 where the region is white, and 0 where the region is gray. A

smooth transition from 0 to 1 connects these two regions. The area on the shape primitive

affected by this blending region is displayed in Fig. 3(c) as the white region on the shape.

A discussion of the implementation of a, as well as the size of the transition region (the

"steepness" of the plateau) is given in section 2.3.

(b) (c)

Figure 3: (a) Example blending region (b) Blending function a corresponding to this region
(c) Area on shape corresponding to this region

When defining the boundary of blending regions, we must consider the topology of the

underlying shape. Fig. 4(a) shows a single blending region which includes part of the "seam

of the tube" where v = IT and v = —T meet. Fig. 4(b) shows an example blending region

which includes the north pole of a sphere, as well as the area on the sphere which is affected

by this region. The representation of blending regions is described in section 2.3.

(a) (b)

Figure 4: (a) A blending region which "wraps around" in fl along v (b) A blending region
which includes the north pole (also shown on the shape)

In Fig. 2(b), the blending regions of each of the component shapes lines up exactly, so

that B is the identity function. Usually the blending region boundary for s2 does not have

such a simple correspondence with the blending region boundary for Si. Fig. 5(b) shows

how B maps the blending region for s2 to allow a simple correspondence with Si, shown in

(a). Note that B maps both the boundary and the space surrounding it. This permits a

correspondence to be performed for those points off the boundary where linear interpolation

is performed (where 0 < a < 1). One must be careful in preserving the orientation of the

blending boundaries. Each boundary has an implicit direction associated with it (clockwise

or counter-clockwise) which must be preserved by B. Not doing so can produce a surface

with a self-intersection where it is turned inside-out.

(a) (b) (c)

Figure 5: (a) Blending region for Si (b) Blending region for S2 (c) Blending region for s2

after being mapped by B

In addition to the correspondence in material coordinate space performed by B, there

must also be a correspondence in 3-D space. In other words, the two components must

be "lined up" before blending is performed. This spatial correspondence is performed by

applying a rigid transformation (translation and rotation) to the primitive s2. An example

of this spatial alignment is shown in figure Fig. 6, where the rigid transformation is shown

in Fig. 6(b) to (c). The blending regions used by this shape are given in Fig. 5(a) and (b).

The mesh of the blended result in Fig. 6(d) is a composite mesh formed by combining the

meshes in (c). A mesh merging algorithm, such as the one presented in [23] can be used to

perform this merging as a post-processing step to blending. The bottleneck in mesh merging

algorithms is the nearest-node computations. In this case, the nearest-node computations

become constant time operations since B provides the correspondence across meshes, and

only small neighborhoods need to be checked to find the nearest node.

9

s2

(a) (b) (d)

Figure 6: (a) Shape primitive Si and s2 (b) Restriction of shapes to blending regions (c)
Component shapes after rigid transformation of s2 (d) Resulting blended shape

2.3 Representation of blending regions

For the applications in this paper, the blending regions are defined as rectangular regions

in Q space. Each region has 6 parameters, cu, c„, plu, pi„, p2u and p2v (where the vector

pi is linearly independent of p2). There are two different representations used for blending

regions, depending on their location in 0—those which do not include the pole, shown in

Fig. 7(a), and those which include the north pole, shown in Fig. 7(b). Blending regions

which include the south pole are represented in an analogous manner.

(a) (b)

Figure 7: (a) Non-polar blending region (b) Blending around north pole

There are also additional parameters for each blended shape-a translation and rotation

10

to specify 71 (6 parameters), the parameter d which controls the extent of the transition

region of a, and h which restricts the range of the blending function to [h, 1]. Normally,

h = 0, but this parameter will be used to lessen or remove the effect of s2 on the resulting

shape during hole addition (when h = 1, s = Si).

A straightforward basis transformation operation takes points in ft to points using the

basis (pi,p2). We will denote the point u e Q expressed in this basis as Ü. Points on the

boundary of the blending region have ||ü|| = 1, and points on the interior have ||ü|| < 1. We

can use ü to construct B by converting a value of u to ü using the blending region for one

shape component, and then back using the blending region for the other component. Note

that we must preserve the "handedness" of this coordinate system so that surface orientation

is preserved by the blend.

We can compute a from ü by setting a to 0 where ||ü|| < 1 — d, to 1 where ||ü|| > 1 + d,

and to an intermediate value otherwise. Hence we see that d controls the "steepness" of a as

seen in Fig. 3. To make a smooth, we can construct a piecewise polynomial surface, where a

Cl smooth connection between 0 and 1 is provided using a surface formed using the Hermite

polynomial H(x) = 3x2 — 2x3 for x e [0,1].

3 Topology and coverage of blended shapes

3.1 Hole additions

The addition of a hole requires two blending regions—two parts of a shape are cut out,

and the hole is glued into this location. Fig. 8(a) shows a sphere with two parts removed.

11

The blended regions for this sphere are also displayed, showing how two regions in 0 are

removed. Fig. 8(b) shows the hole of a torus. Two separate cuts are made on the torus, and

the resulting hole is glued into the sphere, shown in Fig. 8(c).

_L . _. ^+J

(b) (c)

Figure 8: (a) Superellipsoid (sj) (b) Supertoroid hole (s2) (c) Blended result-a torus

Unlike the holes in [4] which could only be added between the poles of a sphere, the holes

presented here are general, and can be added between any two locations of a blended object.

We will see in section 4.1 how the hole additions are performed by the estimation system.

3.2 Indentations

Indentations actually do not require any additional machinery to be produced. But since

many global shape representations fail to produce shapes with indentations or cavities, it

is presented here. Fig. 9(a) shows a cylinder with part of the top removed by the given

blending region. Fig. 9(b) shows a shape which is turned inside out by having a negative

major axis length (in this case, a^ < 0). This produces a closed surface where the surface is

on the inside of the shape. Citing off part of this surface reveals the surface on the inside,

which can be used for making a cavity. When this cylinder and inverted cylinder are blended

together, they produce the "cup" object seen in Fig. 9(c).

12

(a) (b) (c)

Figure 9: (a) Cylinder (si) (b) Inverted cylinder (S2) (c) Blended result-a cup

3.3 Hierarchy of blended shapes

In the sections above, the blending described is performed on shape primitives only. Without

any additional machinery, we can perform blending on two component shapes which are

already blended. This results in a tree structure, where the leaves of the tree are shape

primitives, and the internal nodes of the tree are blended shapes. Since B is invertible, we

can use this mapping to find corresponding points on any two component shapes anywhere

in this tree structure.

Since holes can be added anywhere, this means that an object of any topology can be

potentially represented. Later, we will see an example of the fitting of a two-holed object in

section 5.

We can produce a symbolic description of a blended shape which displays this hierarchy.

For each of the experiments performed in section 5, a symbolic description is provided. Such

a description may be potentially useful for recognition purposes.

«

4 Dynamics and generalized forces

In [4], the dynamics framework of [19] was extended to accommodate blending. We find that

similar modifications are needed to incorporate the blending described here. In this frame-

13

work all the degrees of freedom of the model (translation, rotation, and global parameters)

are collected together to form the generalized coordinates of the model, q,

q = (qc,qö^)', (4)

where qc = c(i), qe is the quaternion used to specify R(£), and qs is given by

qs = (qJi.qb
T

2.qi
T.q^)T.

qS] and qS2 are the parameters of each of the component shapes, qj are the parameters that

specify a, B and 1Z, and qT are the parameters of the global parameterized deformations.

For a hierarchical blended shape, each of the component shapes qSl and qS2 can either be a

primitive, or child blended shape which will have the form given by (5).

When fitting the model to data, the goal of shape reconstruction is to recover the pa-

rameters in q. The approach used here performs the fitting in a physics-based way—the

data apply forces to the surface of the model, deforming it into the shape represented by

the data [26]. In shape estimation applications, we use a simplified form of the Lagrange

equations of motion [18] where the mass is set to zero (so that the model has no inertia and

comes to rest as soon as the applied forces equilibrate or vanish):

Dq = fq = (fc
T,f0

T,ft
T ,T ,T)T_

where D is the damping matrix and where fq are the generalized forces [19]. These general-

ized forces can be further broken down into components each corresponding to a component

14

of q as given in (4) above.

Using (6), q can be computed, and an integration method can be used to update q.

Performing this process iteratively results in the model more closely representing the desired

shape. In this implementation, an adaptive Euler integration method is used to update q.

We compute the generalized forces fq from the 3-D applied forces. The computation of

fc and ffl are the same as described in [19]. The computation of fs is given by

fs = (RJS) fapplied- (7)

We compute Js, the Jacobian for the global shape s, as follows:

Js = <9s/dqs. (8)

The Jacobian of the global shape, Js, "converts" the applied forces into generalized forces,

which will deform the global shape. The addition of blending changes the computation of

Js. In particular, from (3) and (8):

Qf(u)JSl (l-Q(ß(u)))ftrot(JS2;

where JS] = dsi/dqSl is the Jacobian for the first shape, JS2 = ds2/dqS2 is the Jacobian for

the second shape, and J& is the Jacobian for the parameters of the blending function, and

reflects how the global shape s changes with respect to the blending function parameters q;,.

15

TZrot is the rotational component of 71. From (3), we find that

"■^-(-^-«(-W)))^ "»)

Given the implementation of a presented in section 2.3, we can construct a piecewise deriva-

tive of each of the blending parameters in q^.

4.1 Model evolution

Our initial model in our estimation system is always a single superquadric primitive having

the shape of a sphere. During the fitting process, we can decide to perform blending based

on the shape and forces from the data points. When we split the model this way, we must

define the blending regions, as well as specify the other shape we are blending with. The

experiments in section 5 give examples of this model splitting, showing an evolution from a

sphere to the final model.

For a given shape model and data, the shape estimation process eventually reaches a

steady state, where all applied forces equilibrate or vanish. When these forces do not vanish,

it is due to the inability of the model to reach a shape that fits the data well. Fig. 10(a)

shows an example situation where forces are equilibrated. A superellipsoid cannot produce

the tapered shape represented by this data.

We can apply a region growing algorithm [20] (where the region consists of nodes, and

the connectivity is defined by the mesh) to find these regions on a shape where there are

non-zero forces. Fig. 10(b) shows such a region for the shape and data given in (a).

During the estimation process, we can compute these regions on the shape where the

16

(b)

Figure 10: (a) 2-D cross section of a superellipsoid with forces from data points that have
equilibrated (b) region on shape where forces have equilibrated

forces have equilibrated. We can then replace the current model with a blended model.

The boundary of both blending regions is set to the boundary we computed from the region

growing (so initially B is the identity mapping). We also initially set all relevant parameters

in s2 to those taken from Si (for a superquadric, al5 a2, a3, ei, e2).

This operation only changes the representation of the model, not its shape. The benefit

of performing this split, is that in the area of this region of force equilibration, the shape can

now deform to capture the deviation in the data that is causing the equilibration. Looking

at (9), we notice that the blending function has the desirable effect of localizing the effect

of a force to the appropriate shape component. So the forces that were pulling on S\ in the

blending region will now cause the deformation of s2.

This method also applies to fitting shapes with indentations or cavities. If the size

parameters (a1: a2 and a^) of s2 become smaller (or even negative), then there will be an

indentation present at that location.

The addition of a hole to the model involves the proximity detection of different parts

of the model. Surface intersection detection methods such as [16] can be used. Once this

proximity is detected, we can correctly position the hole and construct a blended shape.

This involves specifying % so that the ends of the hole line up with the removed parts of

17

the original shape. Holes do not necessarily have to form between two locations on the same

shape primitive. If the hole is deep, it is very common for the hole to form between two

parts of the model which are cavities which formed due to the presence of the hole in the

data. This can been seen in the experiment in Fig. 15(f)-(g). The blending regions for Si are

computed from the region growing computation described above. As described in section 3.1,

the only part of the supertoroid that is used is the "hole". The initial blending region for s2

can be taken from Fig. 8(b). We must also specify 1Z, so the location of the hole is aligned

with the regions on S\. This can be performed by a seperate fitting process where the 3-D

positions of boundary regions of Si can pull on a model containing the boundary regions of

s2. A bending deformation can be added to the hole to include bent holes.

Fig. 11 shows the transformation from a shape model shown in (a) (in this case, a sphere)

to include a hole (d). The model shown in Fig. 11(b) is the model which is constructed when

the blend is created. The torus hole is not expressed in the resulting shape since h. = 1,

and the topology of the mesh of the torus is set to that of a sphere [4]. During the fitting

process, if a hole is present in the data, data forces will change h to have the value 0, shown

in Fig. 11(b). When h = 0, the topology of the torus mesh is set to be that of a torus, and

the shape is a torus with a zero sized hole. When h > 0. then we do not permit the torus

hole to open, since doing so will produce an open surface.

It is by these two processes-the addition of a blending region of the same shape type,

and the addition of holes, which produce the evolution of the model from a sphere to the

final model. Neither of these processes changed the shape of the model initially. Instead,

they added blending to the model in a particular location which allowed the model to gain

18

??^
f^

(b) (d)

Figure 11: Hole addition (a) Starting shape (b) Shape blended with torus with h = 1 (c)
Shape blended with torus with h = 0 (d) Shape blended with torus with open hole

a better fit on the data. Then, the parameters used to specify a, B and 71, in addition to

the global parameters, are updated by the fitting process by applied forces from the data.

4.2 Force-model assignment

When fitting data which represent a shape with a cavity or hole, care must be taken in

assigning forces from the data points. If a nearest-node assignment method is used, the

points on the inside of a cavity or hole may pull on the back side of the surface nearby. The

reason why this point choice is incorrect is because the data is pulling on a point behind the

surface that the data represents. In other words, the range data does not distinguish the

"inside" of its shape from its "outside".

When taking range data, it is important to record (at least roughly) where the sensor

position was for each data point. This information is often omitted from range data sets. If

we have a vector for each data point which indicates the direction of the sensor, we know that

half-space which includes that vector also includes the normal to the surface of the scanned

object. Therefore, when we choose which node of our model to attach to a data point,

that model node should be in this half-space. This modification allows fitting of objects

with cavities or holes. Fig. 15 is an experiment where this force-model assignment method

19

produces the correct fit.

5 Experiments

In the following three fitting experiments, we show the results of using our shape estimation

system. Fig. 12 shows information on each of the experiments including the source and size

of the data set, the number of parameters in the final model, the number of iterations taken

by the solver, and the resulting mean squared error (MSE).

Data Source Points MSE #Parm Iter
block/cylinder
mug
two holed

MSU (column2)
MSU (cupl)
CAD generated

1034
1207
893

1.35%
2.83%
1.02%

29
68
83

190
372
511

MSU: data from the Michigan State University PRIP database [12].

Figure 12: Experiment data and statistics

In each of the three examples, the data set and initial model of a sphere is shown. The

first fit shown is a rough fit—by fitting the a,\, a<i and a 3 parameters of the initial sphere.

Fig. 13(d) shows the first adaptation of the shape model, where a blending region was

added (in gray). The blended region added is shown in (e). After fitting the new shape

model, the shape in (f) is formed, followed by the final fit in (g), and the final blending

regions in (h). A symbolic representation of the object is shown in (i).

The fitting of a mug is shown in Fig. 14. The blending region which corresponds to the

mug handle forms in (d), and after rough fitting is shown in (e) with the corresponding

blending region in (f). After further fitting of the handle in (g), a hole blend is added in (h)

with blending region (i). After rough fitting and hole opening (j), the final fit is obtained

20

■.■■:". i

TO •I;A

«■•**

■■■•■ ■'■■ . ■•:./>•■-.XU-igf.%- ~-pfc.$:

(a) (b)

'■ 1i ' ' ' ';—;■--;——■■;■

(d)

PS

(e) (f)

f^

(g) (h)

Figure 13: Fitting of a block and cylinder: (a) range data (b) initial model (c) model after
rough fit (d) blending added (e) initial blending regions (f) rough fit after blending (g) final
fit (h) final blending regions (i) symbolic representation

(k). A symbolic description of a mug is shown in (1).

Finally, the fitting of an object with two holes is shown in Fig. 15. A indentation blending

region for one of the holes is formed in (d), and after initial fitting becomes indented (e).

After several more blends, the shape evolves two additional indentations (f). After further

fitting, a hole has formed in (g). The second hole has formed in (h), and the final fitted

result is shown in (i).

21

6 Conclusion

We have presented a new approach to shape modeling where the models used are not pre-

parameterized, and have the ability to adapt to the topology of the given data based on

the forces exerted from the data to the model. The models automatically evolve, based on

blending of parameterized shapes. The blending allows both accuracy in shape estimation

and symbolic shape description. The techniques presented here also allow a hierarchical

evolution of the initial spherical shape to fit the given data, making the estimation process

more robust. Since the model is based on global parameterizations, the technique is robust

to noise and can be used in sparse and incomplete data. Finally, unlike all other previous

part-based shape estimation techniques, our shape representation is based on a connected

component description where each component is an integral part of our model. We have

presented shape estimation results for objects with varying topology whose shape could not

be estimated compactly and robustly with previous shape models and techniques.

99

(d)

(g)

(c)

-• : ; ..;.*-
i —

(e) (f)

rtqn

(h) 0)

Cylinder

Handle Handle hole

(j) (k) (1)

Figure 14: Fitting of a mug (a) range data (b) initial model (c) rough fit (d) blending region
added (e) rough fit of blended shape (f) blending regions after rough fit (g) further fit of
blended shape (h) addition of hole blending region (i) blending regions for hole (j) rough fit
(k) final fit of mug (1) symbolic representation

23

flil
.. •.■■•..•• •'•••.-'(V-.' :■

3$ •:>• /!•'■'■■■•"•.:. ■'"'.' •"■•••• ■".'!.■.■'•-.

TcÄ V. '.■•■; •;'■••'. •'*i••'••• ■■.. '."•' ■'

,^i'"^^;

■"• i ■" ''S tvr.>.;f;.-' ■..'■'.•■:•. .-.;-•■•'•
V •> -.-. .; •■■' .'• :.y: >

'..•'■.'"•>''•;. ■'..*

"■ . V .*•''•».: ir'.iV' '*"

(h) a:
Figure 15: Fitting of a two holed object (a) range data (two views to show sparsity) (b)
initial model (c) rough fit (d) blending region added (e) indentation formed (f) two more
indentations formed (g) hole formed between two indentations (h) second hole formed (i)
final shape (j) symbolic representation

24

References

[1] A. Barr. Superquadrics and angle-preserving transformations. IEEE Computer Graphics

and Applications, 1(1):11—23, 1981.

[2] I. Biederman. Recognition-by-components: a theory of human image understanding.

Psychological Review, 94:115-147, April 1987.

[3] T. Binford. Visual perception by computer. In IEEE Conference on Systems and

Control, December 1971.

[4] D. DeCarlo and D. Metaxas. Blended dcformable models. In Proceedings CVPR '94,

pages 566-572, 1994.

[5] H. Delingette. Simplex meshes: A general representation for 3d shape reconstruction.

In Proceedings CVPR '94, pages 856-859. 1994.

[6] F. Ferrie, J. Lagarde, and P. Whaite. Darboux frames, snakes and superquadrics: Geom-

etry from the bottom up. IEEE Pattern Analysis and Machine Intelligence, 15(8):771-

784, 1993.

[7] A. Gupta and R. Bajcsy. Volumetric segmentation of range images of 3d objects using

superquadric models. Computer Vision, Graphics, and Image Processing, 58:302-326,

1993.

[8] S. Han, D. Goldgof, and K. Bowyer. Using hyperquadrics for shape recovery from range

data. In IEEE Proceedings ICCV '93, pages 492-496, June 1993.

[9] A. J. Hanson. Hyperquadrics: smoothly deformable shapes with convex polyhedral

bounds. Computer Vision, Graphics, and Image Processing, 44:191-210, 1988.

[10] M. W. Hirsch. Differentiable Topology. Springer-Verlag, 1991.

[11] E. Koh, D. Metaxas, and N. Badler. Hierarchical shape representation using locally

adaptive finite elements. In Proceedings ECCV '94, pages 441-446, May 1994.

[12] G. C. Lee and G. C. Stockman. Obtaining registered range and intensity images using

the Technical Arts scanner. Technical Report CPS-91-08, Dept. of Computer Science,

Michigan State University, 1991.

[13] A. Leonardis, F. Solina, and A. Macerl. A direct recovery of superquadric models

in range images using recover-and-select paradigm. In Proceedings ECCV '94, pages

309-318, 1994.

25

[14] C. Liao and G. Medioni. Simulataneous segmentation and approximation of complex

patterns. In Proceedings CVPR '94, pages 617-623, 1994.

[15] R. Malladi, J. A. Sethian, and B. C. Vemuri. Shape modeling with front propagation: A

level set approach. IEEE Pattern Analysis and Machine Intelligence, 1994, to appear.

[16] D. Manocha and J. F. Canny. A new approach for surface intersection. International

Journal of Computational Geometry and Applications, pages 491-516, 1991.

[17] D. Marr and K. Nishihara. Representation and recognition of the spatial organization

of three-dimensional shapes. Proceedings Royal Society London, 200:269-294, 1978.

[18] D. Metaxas. Physics-Based Modeling of Nonrigid Objects for Vision and Graphics. PhD

thesis, Department of Computer Science, University of Toronto, 1992.

[19] D. Metaxas and D. Terzopoulos. Dynamic deformation of solid primitives with con-

straints. IEEE Pattern Analysis and Machine Intelligence, 15(6):569—579, June 1993.

[20] V. Nalwa. A Guided Tour of Computer Vision. Addison Wesley, 1993.

[21] A. Pentland. Perceptual organization and the representation of natural form. Artificial

Intelligence, 28:293-331, 1986.

[22] A. Pentland and S. Sclaroff. Closed-form solutions for physically based shape modeling

and recognition. IEEE Pattern Analysis and Machine Intelligence, 13(7):715—729, 1991.

[23] M. Rutishauser, M. Strieker, and M. Trobina. Merging range images of arbitrarily

shaped objects. In Proceedings CVPR '94, pages 573-580, 1994.

[24] F. Solina and R. Bajcsy. Recovery of parametric models from range images: The

case for superquadrics with global deformations. IEEE Pattern Analysis and Machine

Intelligence. 12(2): 131-147, 1990.

[25] R. Szeliski, D. Tonnesen, and D. Terzopoulos. Modeling surfaces of arbitrary topology

with dynamic particles. In Proceedings CVPR '93, pages 82-87, 1993.

[26] D. Terzopoulos and D. Metaxas. Dynamic 3D models with local and global deformations:

Deformable superquadrics. IEEE Pattern Analysis and Machine Intelligence, 13(7):703-

714, 1991.

[27] D. Terzopoulos, A. Witkin, and M. Kass. Constraints on deformable models: Recovering

3D shape and nonrigid motion. Artificial Intelligence, 36(1):91—123, 1988.

28] B. C. Vemuri and A. Radisavljevic. Multiresolution stochastic hybrid shape models

with fractal priors. ACM Transactions on Graphics. 13(2):177—207, 1994.

26

Integrating Anatomy and Physiology for Behavior Mod-
eling: DeCarlo, Kaye, Metaxas, Clarke, Webber, and
Badler

13

Integrating Anatomy and Physiology for Behavior
Modeling*

Douglas DeCarlo, Jonathan Kaye, Dimitri Metaxas, John R. Clarke,

Bonnie Webber, Norm Badler

Center for Human Modeling and Simulation, University of Pennsylvania

Abstract. In producing realistic, animatable models of the human body,
we see much to be gained from developing a functional anatomy that links
the anatomical and physiological behavior of the body through fundamental
causal principles. This paper describes our current Finite Element Method
implementation of a simplified lung and chest cavity during normal quiet
breathing and then disturbed by a simple pneumothorax. The lung model
interacts with the model of the chest cavity through applied forces. The
models are modular, and a second lung and more complex chest wall model
can be added without disturbing the model of the other lung. During inhalation,
a breathing force (corresponding to exertion of the diaphragm and chest wall
muscles) is applied, causing the chest cavity to expand. When this force
is removed (at the start of exhalation), the stretched lung recoils, applying
pressure forces to the chest wall which cause the chest cavity to contract. To
simulate a simple pneumothorax, the intrapleural pressure is set to atmospheric
pressure, which removes pressure forces holding the lung close to the chest
cavity and results in the lung returning to its unstretched shape.

1 Introduction

For some time now, we at the Center for Human Modeling and Simulation at the University
of Pennsylvania have been developing human behavior models for virtual agents in simulated
worlds. One underlying philosophy has been that producing realistic behavior involves both
presenting our agents with accurate visual graphics and endowing them with structural and
functional constraints of the body, as they interact with their world.

To produce analogous realism in our virtual agents' bodies, we recognize the critical
relationship between the physical existence of an anatomical part with the functional role(s)
it plays. This has led us to to couple our quantitative deformable model techniques [6]
with models of the physiological mechanisms that produce physical changes. This allows
us to design models that reflect the fact that anatomical parts have two intrinsic, interrelated
existences: they are physical objects that obey physical laws, and they are part of physiological
systems, so their behavior contributes to the overall functioning of the body. They are
interrelated because changes to one can affect the other, both as part of the same system and
as a result of physical adjacency.

"This work has been supported by the National Library of Medicine under grant number NOl-LM-^1—3515.

Figure 1: Qualitative, idealized lung model

1.1 The Effort

For several years we have been working to provide computer-based decision support in aid
of the initial definitive management of multiple trauma [2, 9, 12]. Because trauma disrupts
physiological processes through anatomy, we see much to be gained from creating ^.functional
anatomy that will aid in visualizing and predicting the results of penetrating trauma to the
human torso. A functional anatomy links the anatomical and physiological behavior of the
body using fundamental, causal principles. Another area of medicine that can gain from
models of functional anatomy is the emerging field of Virtual Surgery. To date, however,
many efforts have concentrated on providing realistic images and dynamics (e.g., Noar [7] on
techniques used in endoscopic simulators), neglecting functional issues. The consequence is
that a necessary characteristic for virtual surgical simulators [10], reactivity, that organs must
react appropriately to manipulation or cutting, such as by bleeding or leaking fluid, cannot be
achieved.

We chose first to model the respiratory mechanism since it involves physiological change,
such as pressures and flows, that depends on gross anatomical deformations. Ultimately, with
models for other physiological systems [8], we want to demonstrate their interaction due to
the physical space they share.

We currently express physiological dynamics in both a quantitative and qualitative frame-
work. This provides us with a mixed quantitative/qualitative description of physiological
behavior, which may be more appropriate for explanation than a purely quantitative model.
Our system consists of two integrated levels of abstraction: (i) geometric and physics-based
modeling of anatomy (shape extraction, motion, deformations, and graphical rendering); and
(ii) simulation of physiological mechanisms that behave in accordance with physical laws and
physiological processes.

This paper describes our ongoing effort [3] involving the procedures we have developed
that graphically demonstrate organ geometry, physics, and physiological dynamics. It details
our current implementation of a simplified lung during normal, quiet breathing, describing the
quantitative results of our Finite Element Method implementation, based on techniques from
[6].

Our qualitative formulation of the dynamics involved in quiet breathing is described in [3].
It makes use of the qualitative simulation paradigm QSIM [4]. Figure 1 shows the quantities
we considered, assuming constant resistance and compliance.

2 Quantitative Lung Modeling

Our anatomical modeling is based on our physics-based framework [6, 11] for shape and
nonrigid motion estimation and synthesis. This framework features a Lagrangian dynamics
framework which will be used to describe the dynamics of our lung model. The geometry of
the lung model will be chosen so that we may utilize these previously developed methods for
deformable body mechanics.

When applying Lagrangian dynamics [6], we obtain second order equations of motion
which take the general form

Mq + Dq + Kq = gq + fq, (1)

where q are the generalized coordinates (the degrees of freedom) of the model, M, D, and K
are the mass, damping, and stiffness matrices, respectively, gq are inertial forces, and fq are the
generalized external forces. The vector q contains the information needed to specify the shape
of the lung. If the equation of motion (1) is integrated over time, the dynamic deformation of
the model is observed.

The shape and viscoelastic properties of the lungs are modeled by using isoparametric
finite elements [13]. Because we currently lack detailed data on the elastic properties of the
viscoelastic material of the lung, we use linear finite elements. However, our methodology is
general and is also applicable to non-linear finite elements.

We incorporate the isoparametric finite elements into the Lagrange equations of motion (1).
The finite elements are used to compute internal elastic forces that arise due to the deformation
of the lung. This deformation is caused by applied forces that include pressure and collision
forces.

We can now use this model to create dynamic simulations of inhalation and exhalation,
and also of a simple pneumothorax. Our model of the lung interacts with the surrounding
chest cavity by applied forces. This type of representation of the lung lends itself to a modular
approach, where this lung model could be incorporated into a larger model of human anatomy
without changing the implementation. For instance, the addition of a second lung or heart
would not require changes in the implementation of the first lung. The first lung need not
"know" about the other lung or the heart directly. Their effects could be dealt with through
applied forces.

2. / Model Geometry

The following sections describe the lung model used in the dynamic simulation. While the
model is two-dimensional, it observes the qualitative behaviors of a full lung model in three
dimensions.

This lung model will react to external forces that include pressure forces (due to the
difference in pressure between the lung and intrapleural space), and contact forces caused by
the lung rubbing against the chest wall.

The lung is contained within the chest cavity. For this implementation, the chest cavity is
given two degrees of freedom, which correspond to diaphragm and chest wall deformation.
This simplified chest model is suitable currently, for the purpose of demonstration. However,
because of the modularity of our lung model, we could add a more complex chest wall model
without disturbing our model of the lung. This chest cavity model contains what is necessary
for simulation of inhalation and exhalation. Figure 2 shows kinematic motion of the chest wall
at the extremes-(a) at rest, and (b) fully inhaled.

(a) (b)

Figure 2: Geometry of the chest wall (a) at rest, and (b) after inhalation

(a) (b) (c)

Figure 3: Dynamic construction of lung model (a)-(b), and finite element mesh geometry (c)

Within this chest wall is the finite element mesh for the lung and intrapleural space.
The initial model can be constructed by creating the lung in its unstretched shape shown in
figure 3(a), and then setting the intrapleural pressure to its negative value (with respect to
atmospheric pressure), resulting in the lung at rest in (b) (recall that the lung is stretched in
its normal resting state due to the negative intrapleural pressure). In this (and all following)
model diagrams, the lung is shaded with a light gray, and the intrapleural space with a darker
gray. A diagram of the finite element mesh used is shown in figure 3(c).

2.2 Model Dynamics

During inhalation, the increase in size of the lung is due to pressure forces. As the chest cavity
increases in volume, the difference in pressure between the lung and intrapleural space causes
the lung to expand. For the applications in this paper, we make the simplifying assumption
that the pressure changes occur instantaneously. This means the lung is always at atmospheric
pressure, and the intrapleural space has one common pressure, P, which changes assuming
PV is constant (where V is the intrapleural volume).

The forces that arise due to pressure differences occur at the boundaries of the intrapleural
space, which is the only location where two adjacent elements will differ in pressure. For such
an element, we can compute the pressure force at a node along an element edge as

P
./pressure = ~Tn (2)

where P is the pressure of an element, / is the length of the edge, and n is a normal pointing

Figure 4: Inhalation of the lung

out of the element that is perpendicular to the edge. This is a 2-D analog of the / = P/area
relationship. When considering the sum of all pressure forces, the net contribution of force for
each edge is related to the pressure gradient across the edge.

2.2.1 Chest Cavity Dynamics

The deformation of the chest cavity is performed by specifying its two degrees of freedom-
diaphragm and chest wall shape. The pressure forces described above not only are applied
to the lung, but also act on the chest wall. Using our Lagrangian dynamics framework, these
applied forces are converted into generalized forces which directly control the shape of the
chest cavity. During inhalation, a breathing force (corresponding to exertion of the diaphragm
and chest wall muscles) is applied, causing the chest cavity to increase in size. Once this force
is removed (at the start of exhalation), the stretched lung recoils, applying pressure forces to
the chest wall, causing the chest cavity to decrease in volume.

The contact forces due to collision of the lung with the chest wall are implemented as in
[5].

2.3 Simulations

The following are simulations using the dynamic lung model described above. These simu-
lations run at interactive rates on a 100 MHz R4000 VGX SGI. Figure 4 shows a simulation
showing the process of inhalation using our model. The behavior of this model agrees quali-
tatively with our qualitative physiological model.

To simulate a simple pneumothorax, we can set the intrapleural pressure to be equivalent
to body surface pressure (atmospheric pressure) in our model. This will eliminate any pressure
forces holding the lung close to the chest cavity. The resulting collapsing motion of the lung is
shown in figure 5. The location of the injury is indicated by the gap in the chest wall. Notice
how the lung returns to its unstretched shape, as shown in figure 2(a).

3 Conclusion

Our work involves the simulation, modeling, and visualization of anatomical and physiological
mechanisms, considering in particular pathology related to penetrating injuries. Our intent
is to provide a reusable anatomical knowledge base coupled directly with knowledge of the

Figure 5: Simple pneumothorax of the lung

underlying physiology, or what we refer to as a functional anatomy. A functional anatomy links
the anatomical and physiological behavior of the body through fundamental causal principles.

In this paper, we have examined one aspect of our project, the Finite Element Method
implementation of a two-dimensional, idealized lung. This preliminary work will be used as
the basis for our continuing physics-based three-dimensional modeling which we will apply to
simulating normal respiratory physiology and related pathologies. It will also serve as a basis
for considering the interaction of physiological systems due volume constraints.

References

[1] N. Badler, C. Phillips, and B. Webber. Simulating Humans: Computer Graphics, Animation, and
Control. New York: Oxford University Press, 1993.

[2] Clarke, J.R., Webber, B., Niv, M., Rymon, R., Gertner, A. and Kaye, J. The Care of Injured
Patients: An architecture of Medical Knowledge. Der Chirurg (Special issue on surgical decision-
making), April 1994.

[3] J. Kaye, D. Metaxas, J. R. Clarke, B. Webber. Lung Modeling: Integrating Anatomy and Phys-
iology. First International Symposium on Medical Robotics and Computer-Assisted Surgery
(MRCAS-94), Pittsburgh, 1994.

[4] B. Kuipers. Qualitative Simulation. Artificial Intelligence, 29: pp. 289-338, 1986.

[5] D. Metaxas. Physics-Based Modeling ofNonrigid Objects for Vision and Graphics. Ph.D. thesis,
Department, of Computer Science, University of Toronto, 1992.

[6] D. Metaxas and D. Terzopoulos. Shape and Nonrigid Motion Estimation Through Physics-Based
Synthesis. IEEE Trans. Pattern Analysis and Machine Intelligence, 15(6): pp. 569-579 June
1993.

[7] M.D. Noar. Endoscopy Simulation: A Brave New World? Endoscopy, 23: pp. 147-9, 1991.

[8] G. Provan, S. Neumann, J. R. Clarke, and J. Kaye. A Mixed Qualitative/Quantitative Acute
Cardiovascular Model: Preliminary Report, for the AAAI Spring Symposium, AI in Medicine,
Stanford, 1994.

[9] Rymon, R., Webber, B. L. and Clarke, J. R., Progressive Horizon Planning - Planning Exploratory-
Corrective Behavior. IEEE Transactions on Systems, Man, and Cybernetics 23(6). Special issue
on Planning, Scheduling and Control, November 1993.

[10] R. M. Satava. Virtual reality surgical simulation: the first steps. Surgical Endoscopy, 7: pp.
203-205, 1993.

[11] D. Terzopoulos and D. Metaxas. Dynamic 3D Models with Local and Global Deformations:
Deformable Superquadrics. IEEE Trans. Pattern Analysis and Machine Intelligence, 13(7): pp.
703-714, 1991.

[12] Webber, B., Rymon, R. and Clarke, J.R. Flexible Support for Trauma Management through Goal-
directed Reasoning and Planning. Artificial Intelligence in Medicine 4(2): pp. 145-163, April
1992.

[13] O. Zienkiewicz. The Finite Element Method. McGraw-Hill, 1977.

D Volumetric Deformable Models with Parameter Func-
tions: A New Approach to the 3D Motion Analysis of
the LV from MRI-SPAMM: Park, Metaxas, and Axel

14

Volumetrie Deformable Models with Parameter Functions:
A New Approach to the 3D Motion Analysis of the LV

from MRI-SPAMM

Jinah Park1, Dimitri Metaxas1 and Leon Axel2

l Dept. of Computer & Information Science, U. of Pennsylvania, Philadelphia, PA 19104
2Dept. of Radiology, U. of Pennsylvania, Philadelphia, PA 19104

e-mail: jinah@gradient.cis.upenn.edu, dnm@central.cis.upenn.edu

Abstract

We present a new method for analyzing the 3D motion of the heart's left ventricle
(LV) from tagged magnetic resonance imaging (MRI) data. Our technique is based on
the development of a new class of volumetric physics-based deformable models whose
parameters are functions and allow the definition of new parameterized primitives and
parameterized deformations which can capture the local shape variation of a complex
volumetric object. These parameters require no complex post-processing in order to
be used by a physician. Using a physics-based approach, we convert these volumetric
geometric models into deformable models that deform due to forces exerted from the
data points. We present a new technique for calculating forces exerted by tagged MRI
data to material points of the deformable model. These new volumetric models allow
the accurate estimation of the shape and motion of the inner and outer walls of the
LV, and the shape and motion within the walls. We present experiments involving the
extraction of shape and motion of the LV during systole. Furthermore, by plotting the
variations over time of the extracted LV model parameters from normal heart data we
are able to quantitatively analyze and compare the epicardial and endocardial motion.

Key words: Medical Computer Vision, Motion Analysis, Shape Representation,
Volumetric Deformable Models with Parameter Functions, Physics-Based Modeling.

1 Introduction

Characterization of heart wall motion on a regional level is required to understand cardiac mechan-

ics and the processes of underlying disease such as ischemia. Previously, material points on the

myocardium have been located and tracked in order to accurately measure heart wall motion. Such

marker-based methods have included the implantation of beads [21] or ultrasonic crystals [20], use

of naturally occurring landmarks [22], and MR tagging [26]. SPAMM (SPAtial Modulation of Mag-

netization) [1], which is a magnetic resonance imaging technique with magnetic tagging, has been

developed at the University of Pennsylvania. This technique has been used to demonstrate regional

motion patterns during systole[16, 2], and the methods for calculating material deformation have

been validated using deformable phantoms [24]. The advantage of the SPAMM technique is that

a number of material points can be marked in a very short time with a simple procedure, and can

be tracked during systole in a non-invasive setting, providing temporal correspondence of material

points. This correspondence in conjunction with the use of the three dimensional location of each

tagged point can be subsequently used as input to a motion analysis technique to extract the three

dimensional motion parameters.

Recently, computer vision techniques for reconstructing the 3D surface shape and motion (en-

docardial) of the left ventricle (LV) of the heart from CT or MRI data have been developed

[9, 6, 18, 3, 17, 4, 13] and are based on the use of finite elements, spring-mass systems, defor-

mation modes, bending and stretching thin-plate models, and other physics-based or geometric

techniques. One limitation of the above techniques is that they do not capture the twisting motion

of the heart, known to occur during systole. Also, they are formulated in terms of either many local

parameters that require non-trivial processing to be useful to a physician, or very few parameters

that can offer only a gross approximation of the motion of a heart. To overcome the problems of

the above techniques in terms of accurately estimating the LV surface shape and motion and in

order to extract parameters that can be easily interpreted by physicians Park et al. [14] developed

a new class of surface deformable primitives whose global parameters are functions. These new

models can capture the axial twisting, bending, and contraction of the LV surface. The input to

these models were datapoints sampled from the mid-wall of the 3D finite element model of Young

and Axel [23]. which estimated the LV shape and motion from MRI-SPAMM.

However, the LV motion can't be captured entirely with surface models because the endocardial

and epicardial motions are sufficiently different. Recently, techniques for analyzing the volumetric

motion of the LV have also been developed. Young and Axel [23] and Moore et al. [12] used 3D

finite elements and SPAMM data, while Denney and Prince [5] used a multidimensional stochastic

model and tagged MR image sequences. The main limitation of these techniques is that there

is an enormous amount of information on motion and deformation captured. In [23] the three-

dimensional strain tensor, for example, has three normal components and three shear components,

each of which may vary with position in the wall as well as over time. In order to understand the

complex relationship between these components and other motion parameters, it is desirable to

characterize the motion in terms of a few physical parameters that offer sufficient accuracy.

In this paper we present a new general class of volumetric primitives for estimating and ana-

lyzing the full motion of the LV from MRI-SPAMM data. Through our technique we estimate the

deformation and motion of the LV in terms of a few "global" parameter functions, such as twisting,

whose value is allowed to vary locally. In this way the complex motion of the heart is described

by the same small number of parameters, which vary from region to region. Therefore, we can

capture the shape and motion 1) of the LV walls and, 2) in between the walls. Furthermore, these

parameters are intuitive and can be used by a physician without further complex processing. These

new volumetric deformable primitives are parameterized using global parameter functions whose

value varies across the shape of the primitives as opposed to being constant [10, 19]. Through the

use of appropriate parameterization the axes of the deformable primitives can be curved. This is

a generalization compared to other parameterized volumetric primitives used in computer vision.

Fig. 1(c) shows an example of the new family of volumetric deformable primitives with parameter

functions, used in estimating the volumetric shape of the LV.

(b) (c)

Figure 1: Volumetric Deformable Models

While these new shape primitives can be used in many applications, we here present shape and

motion estimation results for the LV. By incorporating the geometric definition of the models into

our physics-based framework [10], we create dynamic models that deform due to forces exerted

from 3D MRI-SPAMM datapoints and conform to the given dataset. The initial shape of the LV is

captured based on contour information from the inner and outer walls of the LV, which is extracted

using snakes [7]. Given that the geometry of the MRI-SPAMM data is such that the given data lie

in sets of orthogonal planes, we develop a new algorithm for extracting forces from the given data

to material points within our volumetric model. By solving a cubic equation, we first define the

model's material coordinate where the computed force is being exerted. Then we extrapolate the

computed force to the nodes of the corresponding volumetric finite element. Subsequently, we use

the physics-based methodology developed in [10] to estimate the values of the parameter functions

of our model. The LV extracted parameters can then be directly used for analysis by a physician

after plotting parameter graphs.

We applied our technique to normal subjects and analyzed the results of our parameter extrac-

tion. These results quantitatively verified qualitative knowledge about the LV known to physicians.

Furthermore, we present a method for visualizing the model fitting results.

2 Volumetrie Deformable Models with Parameter Functions

2.1 Geometry

Our new class of deformable models allows the use of global parameters that can characterize a

volumetric shape in terms of a few parameter functions.

The material coordinates of our model, u = (u, v, w), are defined in a three-dimensional domain

ft, and the positions of points on the model relative to an inertial frame of reference $ in 3D

space are given by a vector-valued, time-varying function x(u,Z) = (x(u,t),y(u,t),z(u,t))T, where

denotes transposition. We set up a non-inertial, model-centered reference frame <j> and express

the position of a point on a model as

x = c + Rs,

where the center of the model c(i) is the origin of 4> and the rotation matrix R(t) gives the

orientation of <f> relative to $ with a reference shape s. Thus, s(u,/) gives the positions of points

on the model relative to the model frame. Local deformations [10] are not used, since the global

deformations s will be defined based on parameter functions capable of capturing the local variation
of the LV shape.

We define the reference shape as

s = T(e;A,(u),/?i(u),...),

where e can represent either a set of 3D points in space1 or a geometric primitive e(u; a0(u),

OJI(U),. ..) defined par'ametrically in u and parameterized by the variables a,-(u). The shape rep-

resented by e is subjected to the deformation T which depends on the deformation parameter

functions /?;(u). Although generally nonlinear, e and T are assumed to be differentiable2 so that

we may compute the Jacobian of s. T may be a composite sequence of primitive deformation

functions T(e) = Ti(T2(.. .Tn(e))). We concatenate the deformation parameters into the vector

qs = (Qo(u),a1(u),...,/30(u),/31(u),...)T.

The parameters at and ßt are functions of u, instead of constants. This definition allows us to

generalize definitions of volumetric primitives (e.g., volumetric superquadrics, cubes) and param-

eterized deformations (e.g., twisting), as will be shown in the following section and was demon-

strated for surface models in [14]. Our technique for creating volumetric primitives with parameter

functions can be applied to any parametric primitive, by replacing its constant parameters with
differentiable parameter functions.

For the applications in this paper, the orientation of the deformable model is schematically

drawn in Fig. 2. The model-centered reference frame 4> is chosen at the center of the LV with the

y-axis pointing towards the right ventricle (RV). The material coordinates u = (u, v, w) are depicted

in Fig. 2(b), where u runs from the apex to the base of the LV, v starts and ends at the point

In that case, the material coordinates u coincide with the Cartesian space in which the 3D points are expressed.
In the case where e is a set of points, the above assumption does not apply.

2

where the septum is located, and w is used for the definition of model points between the inner and

outer walls of the deformable model. We will also assume that a,-(u) = as-(«, w), /3;(u) = ßi(u,w).

Fig. 1(a) is an example of the volumetric model with constant parameters, and Figs, l(b-c) are

examples of two volumetric models whose parameters are functions of w and of (u, w), respectively.

w <

Short-axis view Long-axis view

(a)

Figure 2: Orientation of a model

To create a volumetric model for the LV, we first define a generalized volumetric primitive

e = (ei,e2,e3)T as follows3:

e = e(u;ai(u),a2(u),a3(u)) = aQw

(ai(u) cos u cos v

02(u) cos« sin v

\ ct3(u) sin u
(1)

where -TT/2 < u < 7r/4, —IT < v < w, O,Q(U) > 0, and 0 < ßi(w), 0,2(11), 0.3(11) < 1. ao is a scale

parameter and a\, a2 and a^ are the aspect ratio parameters along the x-, y- and z-axis, respectively.

Note that the ranges of the u and v parameters for our generalized volumetric primitive are defined

(see (1)) in order to construct an open volumetric parameterized primitive. To define our model

we further add parameterized twisting and axis offset deformations.

Given the above defined primitive e = (ei,e2,e3), we define the parameterized twisting along

the model axis z, which results in the global shape s^ = (s\,S2,S3)T:

st = Tt(e;T(u,w)) =

e\ cos(r(w, w)) — e2 sin(r(w, w)) ^

e\ sin(r(u, w)) + e2 COS(T(U, W))

«3 /

(2)

where T(U, W) is the twisting parameter function along the axis z. Finally, we apply offset deforma-

tions which allow the axis to be non-straight in the x and y directions. In this way we can recover

3This is a generalization of the definition of an ellipsoid.

the LV shape more accurately. The resulting reference shape s is expressed as follows:

/ si + elo(u,w) \
s = T0(Tt(e;elo(u,w),e2o(u,w)) = \ s2 + e2o(u,w) , (3)

where ei0(u,w) and e2o(u,w) are axis-offset parameter functions in the x and y directions, respec-
tively. The model parameter functions qs used in this paper are piecewise linear functions, to avoid
smoothing C° regions of the LV.

2.2 Kinematics and Dynamics of the System

The velocity of points on the model is given by [10]:

x = [I B RJ]q = Lq, (4)

where L is the model Jacobian matrix which maps the model's parameter space into the 3D space,
<1 = (q^qj^qj)1^ is the vector of the model's degrees of freedom, qc = c and q# is the vector of
the rotational degrees of freedom expressed as a quaternion. Finally, B = [...<9(Rp)/<90;...] and J
is the Jacobian of the reference shape s.

We can make our model dynamic in q by introducing a deformation strain energy [10]. The
mass density was set to zero for the shape recovery application so that the system has no inertia.
The resulting simplified dynamic equations of motion are

Dq = f„ (5)

where D is the damping matrix and f,(u,f) are the generalized external forces associated with
the degrees of freedom of the model. This equation yields a model that comes to rest when all
the applied forces equilibrate or vanish. We also decouple the equations by assuming that D is
diagonal and constant over time. We employ an adaptive-step first-order Euler method to integrate
(5). Given that the MRI-SPAMM data are relatively accurate and to avoid undesired smoothing
caused by the model, we did not introduce any internal stiffness, K, to the global parameters of
our model.

The generalized forces f? are computed using the formula

f0 = I LTfdu. x9 /

These forces are associated with the components of q, where f(u,i) is the 3D force distribution
applied to the model.

3 Boundary and SPAMM Data

The data were obtained from the Department of Radiology, University of Pennsylvania and were

collected during the LV systole over 5 intervals. The SPAMM data collection technique is based

on the application prior to imaging of a saturation pulse sequence where the amplitude of the

magnetization varies spatially, in a sinusoidal-like fashion. This saturation pulse sequence forms

the tagging planes. At the minima of this sinusoidal-like variation of the magnetization, dark lines

appear in the image plane which intersects the tagging planes. If we continue to image the tissue

after the saturation pulse sequence is applied, we can see those dark lines move, allowing us to

track the motion of the underlying tissue. To track points instead of lines, we apply another set

of saturation pulse sequences which form a set of tagging planes orthogonal to the previous set

of tagging planes. The intersection on an image plane of the associated dark lines defines the

SPAMM datapoints on this plane. Figs. 3(a) and (b) show short axis views of a LV at end-diastole

and towards end-systole, respectively, where the SPAMM datapoints are defined by the intersections

of the respective dark lines. The method for extracting these intersection points was described in

[25].

(a) time=l (b) time=4

Figure 3: SPAMM images

Given that every image plane is spatially fixed, while the LV moves, the through-plane motion

of the SPAMM datapoints on every image plane cannot be captured. Fig. 4 shows the location of

a SPAMM datapoint S at two different times t\ and t2. Initially, S(t\) coincides with a material

point M(<i). However, the motion of the SPAMM datapoint between these two time-instances

corresponds to the component on the image plane of the motion of the material point M, which

at time t2 lies somewhere along the line of intersection of the tagging planes at time t2 as shown

in Fig. 4. Therefore, we need to combine two sets of mutually orthogonal image planes (e.g., short

and long axis views) to estimate the 3D motion of the LV. These sets of SPAMM datapoints are

shown in Fig. 8.

It is also important to mention that the SPAMM data in the two orthogonal sets of image

planes do not correspond to the same material points, but to different material points. These

observations will be used in the calculation of the forces exerted from the SPAMM data to the

volumetric deformable model.

To determine the initial shape of the inner and outer walls of the LV. we use snakes [7] to

6

image plane

tagging plane

tagging line (t=l)

tagging line (t=2)

O material point (M)

• SPAMM data point (S)

Figure 4: Tagging Planes and Image Planes

capture sets of 2D boundary contours from the two orthogonal sets of image planes. The boundary

datapoints sampled from the contours at the initial time t = 1 (end-diastole) is shown in Fig. 9(a).

where black dots are for the outer wall and white dots are for the inner wall.

The boundary and the SPAMM datapoints will exert forces on our model in order to estimate

the shape and motion of the LV.

4 Model Force Computation from the Data

Depending on the type of data we compute the corresponding forces on the model in two different

ways. We assume a triangular tessellation of the inner and outer walls of the volumetric primitives

(as depicted in Fig. 2(b)) which are the faces of a prismatic tessellation of the volumetric model.

4.1 Force Computation from Boundary Data

Boundary data simply constrain the shape of the inner and outer walls of the LV and provide

no correspondence of points over time. Therefore, we compute the forces from each boundary

datapoint P to the corresponding model wall (inner or outer) as shown in Fig. 5. Approximating

each boundary triangular element with a plane, we determine the element whose distance from P

is minimum and we compute the intersection point Q. The force that P exerts on the model is

fp = 7i(P-Q),

where 71 is the strength of the force. We then distribute f> to the nodes xj,x2 and X3 of the

associated boundary triangular element based on the formula

fXi = m; fp, i = 1,2,3,

where the m; are computed from the solution of the following linear system

^m8-Xi = Q.

(7)

(8)

m2 f.

m3 U

Figure 5: Forces from Boundary Datapoints.

4.2 Force Computation from SPAMM Data

As opposed to the boundary data, SPAMM data provide correspondence over time of the associated

SPAMM points. Initially we assume that the SPAMM datapoints and the model material points

coincide. Let M(ii) be the material point which initially coincides with a SPAMM datapoint S(/i)

at time t\ (see Fig. 6). Let also S(t2) and S(<3) be the corresponding SPAMM datapoints to the

point S(ti) at the next two time frames. Then the force on M(fi) from S(i2) is computed as

fs(*2) = 72 [([S(t2) - M(*!)] • m) m + ([S(*2) - M(^)] • n2) n2] (9)

where 72 is the strength of the force and rii,n2 are the unit normals of the corresponding initial

(i.e., at time ti) tagging planes as shown in Fig. 4.

That force will cause M(ii) to move to a new position M(£2). Subsequently, the force is(t3) on

M(£2) from Sf^) will be computed in a similar fashion and it is shown in Fig. 6.

Once we compute these force we distribute them to the nodes of the deformable model. These

nodal forces will cause the model to deform. To distribute at any time frame ti, the computed force

is to the nodes of the prism AoutBoutC0UtAinBinCin within which M lies, we do the following (see

Fig. 7). Based on the finite element theory we want to compute a triangle ABC in which M lies

such that . „ „ „ „
A - A .•„ R- R,„ C- C,„

TZ £~, (10)
Loui B out Bi ■'out

M(t.)

>•• n

M(t3):

Figure 6: Forces fs(/2), fs(*3) from SPAMM points S(t2) and S(t3), respectively.

where r is a scalar. To compute r we solve the following cubic scalar equation using the Newton-

Raphson method

(M-A).((C-A)x(B-A)) = 0, (11)

where A,B,C are computed wrt to r from (10).

We extrapolate fs to the nodes of triangle ABC in the same way as it was described in the force

computation for the boundary data and we compute the scalars mA,mB,mc which correspond to

nodes A,B,C, respectively. Then the forces to the nodes of the prism are computed as follows:

where A = {A,B,C}.

*No

Win =

r mN is

(1 - r) mN is, (12)

Figure 7: Distributing a Force from a SPAMM datapoint.

The computation of r which determines the model material point which corresponds to a

SPAMM data is only done once at the beginning of the LV motion estimation. It is the corre-

spondence of SPAMM data over time that allows us to estimate the twisting motion of the LV.

5 Experiments

All our experiments run at interactive time speeds on a Silicon Graphics R4000 Crimson work-

station, including the real time graphics. The set of data used in the following experiments were

obtained from 10 image planes where five of them are from short-axis view planes and the other five

are from the long-axis view planes. They span the spatial extent of a normal LV. Furthermore, for

each image plane, we have data sets over five time sequences during systole (from end-diastole (time

1) to end-systole (time 5)). Therefore in total we have 5x5x5 = 75 data sets of two-dimensional

images, containing time-varying three-dimensional datapoints (boundary and SPAMM) of the LV.

time 1 time 2 time 3 time 4 time 5

v ••" • /
/■ ■■ j

(a) SPAMM datapoints from Short Axis View Image Planes

■ .* ■■ •*

"»■ •' " • »" •■/ *V V .".* . .*

:>'/;"' •% V v .' • ■ ■ • ■>•. / V * . •" .v «» y .-,•. *. ■• •/.
/ • * V •" •/ t •/ •''•.••• V
•" .* "* * * '•*' ' • •'/ '.••' V.

V .'•* / V /» /

(b) SPAMM datapoints from Long Axis View Image Planes

Figure 8: SPAMM Data Sets

From each image, we extract 1) boundary datapoints, using snakes [7], from the inner and outer

walls of the LV and, 2) SPAMM datapoints (i.e., intersections of tagging lines appear in the image)

as shown in Fig. 9(a) and Fig. 8. For the experiments presented in this paper, we utilized

1. 265 outer boundary datapoints from the images (both short and long axes views) at time 1

(shown as black dots in Fig. 9(a)),

2. 261 inner boundary datapoints from the images at time 1 (shown as white dots in Fig. 9(a)),

3. SPAMM datapoints from 5 short axis view image planes over 5 time intervals (shown in

Fig. 8(a)), where the number of datapoints4 are 194, 174, 173, 166 and 157 at time 1, time

Since some of the SPAMM datapoints on the image plane disappear and/or reappear at subsequent times, we
used at every time frame only those points which have a corresponding point at the previous time frame. Therefore
the number of active points decreases towards end-systole.

10

2, ... time 5, respectively.

4. SPAMM datapoints from 5 long axis image planes over 5 time intervals (shown in Fig. 8(b)).
The number of datapoints are 216, 191, 182, 190, 182 at time 1, time 2, ... time 5, respectively.

It should be noted that we evaluate the spatial location of the image planes based on the
acquired, during the SPAMM acquisition process, spatial locations of the corners of each image
plane. We then express the coordinates of each datapoint wrt to the center of the LV.

5.1 Parameters

As described in Section 2.1, our deformable model is defined by 6 parameter functions which can be
interpreted intuitively without any further complex processing. We first estimate the value of the
material coordinate w for the inner and outer walls during fitting to the data in the first time frame
(i.e., end-diastole). Then we estimate the parameter functions a\(u, w), a,2[u, w) and 03(1/, w) which
are the model's aspect ratios along the x-, y- and z-axes, respectively. Since the short-axis views
of the LV lie in the xy plane, the changes in aj(u, w) and 0,2(11, w) over time will capture the radial
contraction of the LV. Likewise the changes in the aspect ratio along the 2-axis (i.e., 0,3(11, w)) will
capture the longitudinal contraction of the LV. The estimated twisting parameter T(U, W) is defined
about the z-axis which coincides with the long axis of the LV. The final two estimated axis offset
parameters e\0(u,w) and e2o(u,w) allow the long axis to be non-straight in the x and y directions,
respectively. Thus we can capture more accurately the shape variation over time of the LV. Since
all the above parameters vary with w, we can estimate their variation between the LV walls.

Table 1 summarizes what each parameter function, which is recovered during the fitting process,
represents during the 3D shape and wall motion estimation of the LV.

Parameters Representation

a\(u, u)),a2(u, w)

a3(u,w)

T(U, W)

eu{u.iv), e2o(u,w)

magnitude of radial contractions

magnitude of longitudinal contraction

magnitude of twisting about the long axis

magnitudes of long axis deformation

Table 1: Parameters

5.2 Model Fitting to Boundary datapoints at End-diastole

Based on the boundary datapoints from the inner and outer walls, we first recover the global shape
of the LV at time 1 (i.e., end-diastole). This is done by overlaying the initial volumetric model
onto the data. Then the nodes on the inner and outer surfaces of the model are pulled towards the

11

inner and outer boundary datapoints, respectively, based on the computation of forces described

in Section 4.1. As a result of these forces the model parameter functions change so that the model

conforms to the dataset. When all applied forces equilibrate or vanish, or the error of fit (the

distance between a data point and the model surface) falls in an acceptable range, the model comes

to rest.

The varying volume of the volumetric deformable model at the various stages of the initial

fitting to the boundary datapoints is shown in Figs. 9(b-d). W{n = 0.896 and wout — 1.368 for the

model shown in Fig. 9(b). For better fitting results we initially allow 0,1,0,2,0,3 to vary wrt to w

(Fig. 9(c). The values of these parameters are: al(wout) = 0.360, al(w,„) = 0.282, a2(wout) =

0.341, a2(win) = 0.276, a"i{wout) = 0.807, and a3{win) = 0.924. We then allow all the parameters

vary wrt to u,w (Fig. 9(d)).

m^M-mm,

&,

'<' » 1

(a) (b) (c) (d)

Figure 9: Initial shape recovery from boundary data.

5.3 Model Fitting to Data Points over Time

Once we fit the model to the initial boundary data, the SPAMM points at the initial time are

read and we find the corresponding model material coordinate points as describe in Section 4.2.

During subsequent time frames we use both boundary and SPAMM data to fit the model. The

force computation is done as described previously.

5.4 LV Fitting Results

Fig. 10 shows model fitting results over 5 time frames. The top row shows a view from the base of

the LV of the fitted model. The twisting of the inner wall (shown in white) is obvious. The middle

row shows a side view of the model, while the last row is similar to the first row and shows a view

of the model from the apex. We can easily observe the longitudinal contraction as well as radial

contraction.

Figs. ll(top,middle,bottom) show the fitted model superimposed to the SPAMM data at times

/ = 1,3,5, respectively. Columns (a),(b),(c) show the model with short axis SPAMM datapoints,

long axis SPAMM datapoints and all the SPAMM datapoints, respectively. SPAMM datapoints

12

(a) time 1 (b) time 2 (c) time 3 (d) time 4

Figure 10: Fitted models during systole

(d) time 5

13

are denoted with black dots, while the corresponding model material points are denoted with white

dots.

5.4.1 Analysis of the Estimation Results

Figs. 12(a-h) show graphs of the extracted model parameters as functions of u at the inner and

outer walls. The difference in the corresponding parameter values is obvious. For example the

radial contraction and the twisting are more significant in the inner LV wall (see Figs. 12(b,d,h))

compared to the outer walls (see Figs. 12(a,c,g)). The longitudinal contraction is similar in the

inner and outer walls, but there is more contraction from the base to the apex. In the figures, the

value 2.0 on the horizontal axis corresponds to the apex of the LV, while the value of 7.0 to a point

close to the base. The above findings quantitatively verify qualitative knowledge common among

physicians.

We can also measure the ejection fraction by computing volume changes of the inner cavity,

observe changes in the myocardium thickness during systole, and extrapolate the parameter values

throughout the muscle (in between walls) from our models.

Finally, in order to view the changes in the parameters during systole, we color-code the pa-

rameter variation of each parameter function along u and w on the SGI monitor display.

6 Conclusion

We have presented a new method for analyzing the 3D motion of the heart's left ventricle (LV) from

MRI-SPAMM data. We developed a new class of volumetric physics-based deformable models whose

parameters are functions. These parameters improve the accuracy of shape description through the

use of a few intuitive parameters such as functional twisting. As opposed to the parameters of

previous models for the LV, these parameters require no complex post-processing in order to be

used by a physician. By developing new algorithms for estimating the forces from the SPAMM

datapoints to the model's material points we were able to estimate the complex shape and motion

of the LV. Through our analysis of the LV motion, we were able to quantitatively verify qualitative

knowledge common among physicians. We plan to conduct experiments with several normal and

abnormal hearts to establish the normal heart parameter variation.

References

[1] Axel L., Dougherty L., "Heart wall motion: Improved method of spatial modulation of magne-

tization for MR imaging," Radiology, 1989, 172, pp. 349-350.

[2] Axel L., Goncalves F., Bloomgarden D., "Regional heart wall motion: Two-dimensional anal-
ysis and functional imaging of regional heart wall motion with magnetic resonance imaging,"
Radiology, 1992, 183, pp.745-750.

14

time 1

time 3

1 *

time 5
(a) (b) (c)

Figure 11: Fitted Models during systole (SPAMM datapoints and material points)

15

percentage

al_ .outer

'limel

percentage

1.20 -

1.10 -

1.00-

0.90 -

0.80-

0.70-

0.60 -

0.50 -

2.

pcrcenlagc

1.20 -

1.10 -

l.(X) -

al_ Jnner

timel

lime'2 time*2

umej

Iime4

iimeJ

Üme4

 ^i":»:r:;;::;;~ ...
 •'" time5 - t - *'" time5

tS?^~- -
--ZT-

. -r''"' - —

.--- ,'' - s

i
i __. 1

2.

percentage

X) 4.00 6.

(a)
a2_outer

DO
V

limel

DO 4.00

(b)
a2_inner

1 U
6.00

limel

i lime2 Iime2

umc3"

,...t- lime4

uniL'.s

 *- lime4

0.90 *

•'•-::.":..;.-:--;v --.- lime5 *"• ,..- Iime5

0.80 -

0.70^

0.60 -4

0.50 -

, ■■"••-*' ,-•""
- -''! _, ,'

i

0.50 -
i

Z X 10"

200.IX)

KX).(X)

0.00

■100.00

-200.00

-300.00

-4(X).(K)

-5(X).(X)

(c)
a3d outer

-=^J|==^

limel

"time2

" tinie.3

time4

' time5

z x Id--'

2CX1.00

100.00

0.00 ;

-100.00

-200.00 ■

-300.00

-400.00

-500.00 ■

(d)
a3d inner

limel

time2

Iime3

_ time4

■ time5~

=^^

degree

i.vm

10.00

5.tX> -

O.(X)

(e)
twist outer

-IS.(X)

-20.IX) ■

timel

time2

' ume5

time4

" timeS

degree

15.(X)

I0.(X1

5.W

O.(X) ■

-5.CX) -

(f)
twist_inner

-z^P*
-10.00 ^'-s--

-15.00 -

-20.(X) -

timel

time2

lime?

time4

Time5

2.00

(g) (h)

Figure 12: Extracted model parameters as functions of u at the inner and outer wall.

16

3] Amini A., Duncan J., "Pointwise tracking of Left-Ventricular Motion in 3D," Proc. IEEE Work-
shop on Visual Motion, Princeton, NJ, 1991, pp. 294-298.

4] Cohen L.D., Cohen I., "A Finite Element Method Applied to New Active Contour Models and
3D Reconstruction from Cross Sections," Proc. 2nd ICCV, Japan, 1990, pp. 587-591.

5] Denney T.S. Jr., Prince J.L., "3D Displacement Filed Reconstruction on an Irregular Domain
from Planar Tagged Cardiac MR Images," Proc. Workshop on Motion of Non-Rigid and Artic-
ulated Objects, pp. 172-177, Austin, TX, November 1994.

6] Huang W.C., Goldgof D., "Adaptive-Size Meshes for Rigid and Nonrigid Shape Analysis and
Synthesis," IEEE Transactions on Pattern Analysis, 1993, 15(6), pp. 611-616.

7] Kass M., Witkin A., Terzopoulos D., "Snakes: Active Contour Models," International Journal
of Computer Vision, 1988, 1(4), pp. 321-331.

8] Marr D., Nishihara K., "Representation and Recognition of the Spatial Organization of Three-
Dimensional Shapes," Proc. Royal Society London B, 1978.

9] Mclnerney T., Terzopoulos D., "A Finite Element Model for 3D Shape Reconstruction and
Nonrigid Motion Tracking," Proc. 4th International Conference on Computer Vision, Berlin,
Germany, 1993, pp. 518-523.

10] Metaxas D., Terzopoulos D., "Shape and Nonrigid Motion Estimation Through Physics-Based
Synthesis", IEEE Trans. Pattern Analysis and Machine Intelligence, 1993, June, 15(6), pp.
569-579.

11] Metaxas D., Koh E., "Flexible Multibody Dynamics and Adaptive Finite Element Techniques
for Model Synthesis and Estimation," Proc. Second U.S. National Congress on Computational
Mechanics, Washington, D.C., August, 1993.

12] Moore C, O'Dell W., McVeigh E., Zerhouni E., "Calculation of three-dimensional left ventric-
ular strains form biplanar tagged MR images," J Mag Res Imag, 1992. 2, pp. 165-175.

13] Nastar C, Ayache N., "Spatio-temporal analysis of nonrigid motion from 4D data," Proc.
Workshop on Motion of Non-Rigid and Articulated Objects, pp. 146-151, Austin, TX, November
1994.

14] Park J., Metaxas D., Young A., "Deformable Models with Parameter Functions: Application
to Heart-Wall Modeling," Proc. IEEE Computer Vision and Pattern Recog. (CVPR'94), Seattle,
WA, 1994, June, pp. 437-442.

15] Park J., Metaxas D., Young A., Axel L., "Model-based Analysis of Cardiac Motion from Tagged
MRI Data," Proc. Seventh Annual IEEE Symposium on Computer-Based Medical Systems, pp.
40-45, Winston-Salem, North Carolina, June 1994.

16] Rogers W., Shapiro E., Weiss J., Buchalter M., Rademakers F., Weisfeldt M., Zerhouni E.,
"Quantification of and correction for left ventricular systolic long-axis shortening by magnetic
resonance tissue tagging and slice isolation," Circulation, 1991, 84, pp. 721-731.

[17] Shi P., Amini A., Robinson G., Sinusas A., Constable C.T., Duncan J., "Shape-based 4D
Left Ventricular Myocardial Function Analysis," Proc. of IEEE Workshop on Biomedical Image
Analysis, Seattle, WA, 1994, pp. 88-97.

[18] Pentland A., Horowitz B., "Recovery of Nonrigid Motion and Structure," IEEE Pattern Anal-
ysis and Machine Intelligence, 1991, July, 13(7), pp. 730-742.

[19] Terzopoulos D., Metaxas D., "Dynamic 3D Models with Local and Global Deformations:

Deformable Superquadrics," IEEE Trans. Pattern Analysis and Machine Intelligence, 1991.
13(7), pp.703-714.

[20] Villarreal F.L., Waldman L.K., Lew W.Y.W., "A Technique for measuring regional two-
dimensional finite strains in cannie left ventricle," Circ Res 1988, 62, pp. 711-721.

[21] Waldman L.K., Fung Y.C., Covell J.W., "Transmural myocardial deformation in the canine

left ventrical: Normal in vivo three-dimensional finite strains," Circ Res, 57, pp. 152-163, 1985.

[22] Young A.A., Hunter P.J., Smaill B.H., "Estimation of epicardial strain using the motions
of coronary bifurcations in biplane cineangiography," IEEE Trans Biomed Eng, 1992, 39, pp.
526-531.

[23] Young A.A., Axel L., "Three-dimensional Motion and Deformation of the Heart Wall," Radi-
ology, 1992, 185, pp. 241-247.

[24] Young A.A., Axel L., Dougherty L., Bogen D.K., Parenteau C.S., "Validation of Tagging with
MR Imaging to Estimate Material Deformation," Radiology, 1993, 188, pp. 101-108.

[25] Young A.A., Kraitchman D.L., Axel L., "Deformable Models for Tagged MR Images: Recon-
struction of Two- and Three-Dimensional Heart Wall Motion," Proc. of IEEE Workshop on
Biomedical Image Analysis, Seattle, WA, 1994, pp. 317-323.

[26] Zerhouni E.A., Parish D.M., Rogers W.J., Yang A., et al. "Human heart: Tagging with MR
imaging - a method for noninvasive assessment of myocardial motion," Radiology 1988, 169.
pp. 59-63.

18

E Jack Reaching Planning With Strength Analysis and Col-
lision Avoidance - User's Guide: Xinmin Zhao

15

Jack Reaching Planning With Strength
Analysis and Collision Avoidance - User's

Guide

Xinmin Zhao
Center for Human Modeling and Simulation

Department of Computer and Information Science
University of Pennsylvania

200 South 33rd St. Philadelphia, Pennsylvania 19104-6389
Email: xzhao@graphics.cis.upenn.edu

February 15, 1995

1 Introduction
This document describes the implementation and usage a motion planning
algorithm for human reaching motions. Given a goal position of the hand,
and a description of the environment, this algorithm tries to find a collision
free motion sequence that moves the hand to the goal position.

In general motion planning is a difficult problem. To plan the motion
for an agent with n degrees of freedom, the complexity of the problem is
exponential in n. For example, when n is 5, the problem can be approx-
imated by constructing a grid of about 1E10 nodes and finding a path in
it. When there are many degrees of freedoms, such as the human reaching
motion planning problem which involves at least 9 degrees of freedom, it is
impractical to solve this problem completely.

There are many assumptions we can make to simplify the problem. For
instance, we may assume the environment is 2D instead of 3D, or the obsta-
cles are of certain simple shapes, etc. Here we adopt a different approach to

simplify the problem. Instead of guarantee a solution when there is one, this
algorithm will find a solution efficiently in general, but it may fail to find a
solution in some cases, even-though solutions may exist. And it works in 3D
environment and can handle any shape of obstacles.

2 The algorithm

This algorithm is based on a robot motion planning algorithm developed by
[1]. It is the fastest general algorithm available today. First, a 3D bitmap
of the environment is constructed. In the bitmap Os stand for empty (free)
space while Is stand for obstacles. Then the bitmap is searched to determine
if there is a point path from the hand's start position to the goal position.
If there is no point path, apparently there is no solution. If there is a point
path, the algorithm proceed to find a motion sequence for the hand, arm and
may be the body to move the hand to the goal position collision free.

This algorithm requires a 3D bitmap of the environment. Currently we
use a bitmap of 64x64x64 (= 262144 nodes) to partition the environment. In
order to have reasonable accuracy, the 3D space it covers cannot be too large.
In the current implementation we limit the space to be a 200x200x200 cm3

cube and assume the arm can only move inside the cube (the working cell
of the arm). Since the bitmap is 64x64x64, the resolution of the partition is
about 3cm, which is good enough considering human arm thickness. While
it is possible to have larger bitmap sizes and cover more environment space,
constructing and searching them will become very expensive.

Currently, the algorithm controls 9 degrees of freedom: one at the elbow
joint, 3 at the shoulder, 3 at the waist, and 2 at the foot in the x and z
direction (i.e., Jack can walk on the floor, but cannot climb up and down).
For efficiency reason, it does not control the hip, knee, and ankle joints. It
is assumed that Jack is in the "correct" or almost "correct" body posture
before the reaching begins. Jack is limited to move on the floor no more than
32 cm in each direction.

3 New features since last release

There are two features added since last release: incorporating strength anal-
ysis into motion planning and providing a more informative user interface.

1. Strength Analysis:

Using motion planning we can plan a collision free motion sequence to
accomplish a given task. In some applications we also want to know
if a person with limited strength is able to perform the planned mo-
tion. For this reason, we have incorporated strength analysis into our
motion planning system. Given a sequence of planned motion, using
inverse dynamics we compute the required torque at each joint in or-
der to perform the motion. The required torques are compared against
available torque data (collected by NASA) and determine if the motion
is feasible. If a motion is not strength feasible, the program will point
out which joint does not have enough strength to perform the planned
motion.

2. Planning strength feasible motion:

In order to planning a human task, finding a collision free motion may
not be enough. Moreover, there are applications where we are inter-
ested in finding not only a collision free motion, but also a strength
feasible motion as well. We have added another dimension to the mo-
tion planning problem: planning a motion which is both collision free
and strength feasible for the particular agent whose strength data is
given.

3. Improved user interface:

In the current interface, the user is given more information on what's
going on in the motion planning process. More specifically, the user is
informed of:

(a) The progress we are making towards the goal by displaying the
distance of hand to the goal and the current posture of the agent;

(b) How much time is left for the planner;

4 Commands

We provide the following commands under the menu "MotionPlan":

1. init motion plan

This initializes the internal data structures for the motion planning
algorithm. It should be executed before any other commands. It asks
for a human figure and a space reference site.

As mention in the previous section, this algorithm will limit the envi-
ronment to be a 200x200x200 cm3 cube. The reference site gives the
origin of the cube. If the reference site has coordinates (x,y,z), then
the two diagonal points on the cube are (x,y,z) and (x+200, y+200,
z+200). The hand/arm motion will be limited to be inside the cube.

2. input goal site

It asks for goal site name. Before each planning, the site's current
location is used as the goal position.

3. input obstacle

Input the obstacle segments.

During the planning phase, collisions between the human arm/hand
and the obstacles are detected at every step of the movement. To
have good performance of the algorithm, it is essential to speed up
the collision detection. In the current implementation, we do collision
detection between:

palm, lower arm, upper arm and upper body with obstacles;

palm, lower arm, upper arm with upper body (self collision
detection).

And all collision detections are done using bounding box collision de-
tection. We ignore the collisions of fingers for the following reason:

It is time consuming to do. And the reaching can always be
done by closing the hand.

4. apply force on hand

This command inputs the external force acting on the hand (e.g., the
weight of the object Jack is carrying). The user need to specify the
acting point of the force (e.g., palm center site) and the x-y-z force
vector (units in Newton). Initially all external forces are set to 0.

5. plan a motion

This command computes the environment (obstacles) bitmap, evalu-
ates the current start and goal positions, and computes the collision
free motion sequences. It asks for the left hand or right hand, and the
maximum allowed time to do the planning (in addition to the time used
to compute the bitmap). The algorithm returns the best result it got if
no solution is found when the time is up. (Note that it is a randomized
algorithm, it may take different amount of time in each run, even for
the same task. Typical running time ranges from seconds to minutes
or more, depending on the task and the machine used.)

This command only computes a collision free motion, and it does not
consider strength in the planning process.

6. pian a strength feasible motion

This command computes a motion sequence which is both collision free
and strength feasible.

7. strength analysis of the planned motion

This command analyzes a planned motion for strength feasibility. If
the planned motion at one time exceed the available strength at a
particular joint, the program will color that joint red. The joint will
stay red until the the required strength is within the agent's strength
limits.

8. strength analysis of the current posture

This command checks if the required strength exceed the available
strength of the agent in its current posture. Again, it colors red any
joints that exceed the agent's strength.

9. play the planned motion

You may play the planned motion at slower speeds. This command asks
for the playing speed. For example, input 2 means play the motion at
1/2 of the normal speed, while input 1 means play the planned motion
at normal speed.

5 Motion Planning Examples

In the DEMO directory, there are two JCL files to test the motion planning
algorithm. In the environment the transparent cube stands for the working
cell of the hand. To the motion planning algorithm, outside the cube means
obstacles.

The JCL files are: BUrame.jcl and Bl.plan.jcl. You may run the demo
by issuing the flowing commands:

csh> Depth-Jack BUrame.jcl

or

csh> Depth-Jack Bl-.plan.jcl

BUrame.jcl will load the environment, and read the precomputed motion
frames showing the planned reaching motion. Bl.plan.jcl actually computes
the motion frames used in BUrame.jcl. (Note that this is a random algo-
rithm. So the planned motion may be different each time the same task is
planned.)

6 Examples with Strength Analysis

In the DEMO directory, there are two JCL files to show how feasible strength
motion planning works. The JCL files are: load-O.jcl and load.60.jcl. Both
shows motion planning of the same task: reaching for the top of the shelf.
But in one case Jack is carry 60 Newtons in his hand, and in the other case
Jack is carry 0 Newton.

References

[1] BARRAQüAND, J., AND LATOMBE, J.-C. Robot motion planning: A
distributed representation approach. International Journal of Robotics
Research 10,6 (December 1991), 628-649.

Behavioral Control for Real-Time Simulated Human Agents:
Granieri, Becket, Reich, Crabtree, and Badler

16

Behavioral Control for Real-Time Simulated Human Agents

John P. Granieri, Welton Becket,
Barry D. Reich, Jonathan Crabtree, Norman I. Badler

Center for Human Modeling and Simulation
University of Pennsylvania

Philadelphia, Pennsylvania 19104-6389
granieri/becket/reich/crabtree/badler@graphics.eis.upemi.edu

Abstract
A system for controlling the behaviors of an interac-

tive human-like agent, and executing them in real-time,
is presented. It relies on an underlying model of contin-
uous behavior, as well as a discrete scheduling mecha-
nism for changing behavior over time. A multiprocess-
ing framework executes the behaviors and renders the
motion of the agents in real-time. Finally we discuss
the current state of our implementation and some areas
of future work.

1 Introduction
As rich and complex interactive 3D virtual environ-

ments become practical for a variety of applications,
from engineering design evaluation to hazard simula-
tion, there is a need to represent their inhabitants as
purposeful, interactive, human-like agents.

It is not a great leap of the imagination to think
of a product designer creating a virtual prototype of a
piece of equipment, placing that equipment in a virtual
workspace, then populating the workspace with virtual
human operators who will perform their assigned tasks
(operating or maintaining) on the equipment. The de-
signer will need to instruct and guide the agents in the
execution of their tasks, as well as evaluate their per-
formance within his design. He may then change the
design based on the agents' interactions with it.

Although this scenario is possible today, using only
one or two simulated humans and scripted task anima-
tions [3], the techniques employed do not scale well to
tens or hundreds of humans. Scripts also limit any abil-
ity to have the human agents react to user input as well
as eacli other during the execution of a task simulation.
We wish to build a system capable of simulating many
agents, performing moderately complex tasks, and able
to react to external (either from user-generated or dis-
tributed simulation) stimuli and events, which will oper-
ate in near real-time. To that end, we have put together
a system which has the beginnings of these attributes,

and are in the process of investigating the limits of our
approach. We describe below our architecture, which
employs a variety of known and previously published
techniques, combined together in a new way to achieve
near real-time behavior on current workstations.

We first describe the machinery employed for behav-
ioral control. This portion includes perceptual, control,
and motor components. We then describe the multipro-
cessing framework built to run the behavioral system in
near real-time. We conclude with some internal details
of the execution environment. For illustrative purposes.
our example scenario is a pedestrian agent, with the
ability to locomote, walk down a sidewalk, and cross
the street at an intersection while obeying stop lights
and pedestrian crossing lights.

2 Behavioral Control
The behavioral controller, previously developed in [-1]

and [5], is designed to allow the operation of paral-
lel, continuous behaviors each attempting to accom-
plish some function relevant to the agent and each con-
necting sensors to effectors. Our behavioral controller
is based on both potential-field reactive control from
robotics [1, 10] and behavioral simulation from graph-
ics, such as Wilhelms and Skinner's implementation [20]
of Braitenberg's Vehicles [7]. Our system is structured
in order to allow the application of optimization learn-
ing [6], however, as one of the primary difficulties with
behavioral and reactive techniques is the complexity of
assigning weights or arbitration schemes to the various
behaviors in order to achieve a desired observed behav-
ior [5, 6].

Behaviors are embedded in a network of behavioral
nodes, with fixed connectivity by links across which only
floating-point messages can travel. On each simulation
step the network is updated synchronously and with-
out order dependence by using separate load and emit
phases using a simulation technique adapted from [14].
Because there is no order dependence, each node in the
network could be on a separate processor, so the net-
work could be easily parallelized.

Each functional behavior is implemented as a sub-
network of behavioral nodes defining a path from the
geometry database of the system to calls for changes
in the database. Because behaviors are implemented
as networks of simpler processing units, the representa-
tion is more explicit than in behavioral controllers where
entire behaviors are implemented procedurally. Wher-

ever possible, values that could be used to parameterize
the behavior nodes are made accessible, making the en-
tire controller accessible to machine learning techniques
which can tune components of a behavior that may be
too complex for a designer to manage. The entire net-
work comprising the various sub-behaviors acts as the
controller for the agent and is referred to here as the
behavior net.

There are three conceptual categories of behavioral
nodes employed by behavioral paths in a behavior net:

perceptual nodes that output more abstract results
of perception than what raw sensors would emit.
Note that in a simulation that has access to a com-
plete database of the simulated world, the job of
the perceptual nodes will be to realistically limit
perception, which is perhaps opposite to the func-
tion of perception in real robots.

motor nodes that communicate with some form of mo-
tor control for the simulated agent. Some motor
nodes enact changes directly on the environment.
More complex motor behaviors, however, such as
the walk motor node described below, schedule a
motion (a step) that is managed by a separate,
asynchronous execution module.

control nodes which map perceptual nodes to motor
nodes usually using some form of negative feed-
back.

This partitioning is similar to Firby's partitioning of
continuous behavior into active sensing and behavior
control routines [10], except that motor control is con-
sidered separate from negative feedback control.

2.1 Perceptual Nodes
The perceptual nodes rely on simulated sensors to

perform the perceptual part of a behavior. The sensors
access the environment database, evaluate and output
the distance and angle to the target or targets. A sam-
pling of different sensors currently used in our system is
described below. The sensors differ only in the types of
things they are capable of detecting.

Object: An object sensor detects a single object. This
detection is global; there are no restrictions such
as visibility limitations. As a result, care must
be taken when using this sensor: for example, the
pedestrian may walk through walls or other objects
without the proper avoidances, and apparent real-
ism may be compromised by an attraction to an
object which is not visible. It should be noted that
an object sensor always senses the object's current
location, even if the object moves. Therefore, fol-
lowing or pursuing behaviors are possible.

Location: A location sensor is almost identical to an
object sensor. The difference is that the location
is a unchangeable point in space which need not
correspond to any object.

Proximity: A proximity sensor detects objects of a
specific type. This detection is local: the sensor can
detect only objects which intersect a sector-shaped
region roughly corresponding to the field-of-view of
the pedestrian.

Line: A line sensor detects a specific line segment.

Terrain: A terrain sensor, described in [17], senses the
navigability of the local terrain. For example, the
pedestrian can distinguish undesirable terrain such
as street or puddles from terrain easier or more de-
sirable to negotiate such as sidewalk.

Field-of-View: A field-of-view sensor, described
in [17], determines whether a human agent is visi-
ble to any of a set of agents. The sensor output is
proportional to the number of agents' fields-of-view
it is in, and inversely proportional to the distances
to these agents.

2.2 Control Nodes
Control nodes typically implement some form of neg-

ative feedback, generating outputs that will reduce per-
ceived error in input relative to some desired value or
limit. This is the center of the reactivity of the be-
havioral controller, and as suggested in [9], the use of
negative feedback will effectively handle noise and un-
certainty.

Two control nodes have been implemented as de-
scribed in [4] and [5], attract and avoid. These loosely
model various forms of taxis found in real animals [7, 11]
and are analogous to proportional servos from control
theory. Their output is in the form of a recommended
new velocity in polar coordinates:

Attract An attract control node is linked to 6 and d
values, typically derived from perceptual nodes,
and has angular and distance thresholds, tg and
td. The attract behavior emits A9 and Ad values
scaled by linear weights that suggest an update
that would bring d and 9 closer to the threshold
values. Given weights k$ and kd :

f ° A9 = < ke(e-te)
{ kB(9 + te)

Ad =

if -te < 0
ife>te

otherwise

if d< t«

<te

0
kd(d-td) otherwise.

Avoid The avoid node is not just the opposite of at-
tract. Typically in attract, both 6 and d should
be within the thresholds. With avoid, however,
the intended behavior is usually to have d outside
the threshold distance, using 6 only for steering
away. The resulting avoid formulation has no an-
gular threshold:

f °
A9 = < ke(* - 9)

I M-T-0)

A9 =
kd(td

if d > td

if d < td and 9 > 0
otherwise

ifrf>*d
d) otherwise.

Wall

Goal

I.-?/—-

^P2

avoid
field

Figure 1: Sawtooth path due to potential field discon-
tinuities

2.3 Motor Nodes
Motor nodes for controlling non-linked agents are im-

plemented by interpreting the Ac? and AÖ values emit-
ted from control behaviors as linear and angular ad-
justments, where the magnitude of the implied velocity
vector gives some notion of the urgency of traveling in
that direction. If this velocity vector is attached di-
rectly to a figure so that requested velocity is mapped
directly to a change in the object's position, the result-
ing agent appears jet-powered and slides around with
infinite damping as in Wilhelms and Skinner's environ-
ment [20].

2.3.1 Walking by sampling potential fields

When controlling agents that walk, however, the mo-
tor node mapping the velocity vector implied by the
outputs of the control behaviors to actual motion in
the agent needs to be more sophisticated. In a walking
agent the motor node of the behavior net schedules a
step for an agent by indicating the position and orien-
tation of the next footstep, where this decision about
where to step next happens at the end of every step
rather than continuously along with motion of the agent.
The velocity vector resulting from the blended output
of all control nodes could be used to determine the next
footstep; however, doing so results in severe instability
around threshold boundaries. This occurs because we
allow thresholds in our sensor and control nodes and as
a result the potential field space is not continuous. Tak-
ing a discrete step based on instantaneous information
may step across a discontinuity in field space. Consider
the situation in Fig. 1 where the agent is attracted to a
goal on the opposite side of a wall and avoids the wall
up to some threshold distance. If the first step is sched-
uled at position pi, the agent will choose to step directly
toward the goal and will end up at p2- The agent is then
well within the threshold distance for walls and will step
away from the wall and end up at p3, which is outside
the threshold. This process then repeats until the wall

Max Step Length

Min Step Length

Agent

Figure 2: The fan of potential foot locations and orien-
tations

Percepiual

Nodes

d

Control

Nodes

6rf : >

Motor

Ncxk-s

Goal Sensor

goal-obj-ptr

Attract

rnin-d. nun- 8

scaling weights (4)
e

d

Walk

nun-step

mux-step

step-speed

Walker Sensor

fov. max-d

averaging weighs 14)

Avoid

max-d

scaling weights (4)
e 59 : >

next step
3

d

69/T
Cylinder Sensor

fov. max-d

averaging weights (4)

Avoid

max-d

scaling weights 14)
e

Figure 3: An example behavior net for walking

is cleared, producing an extremely unrealistic sawtooth
path about the true gradient in the potential field.

To eliminate the sawtooth path effect, we sample the
value of the potential field implied by the sensor and
control nodes in the space in front of the agent and step
on the location yielding the minimum sampled 'energy'
value. We sample points that would be the agent's new
location if the agent were to step on points in a number
of arcs within a fan in front of the agent's forward foot.
This fan, shown in Fig. 2, represents the geometrically
valid foot locations for the next step position under our
walking model. This sampled step space could be ex-
tended to allow side-stepping or turning around which
the agent can do [3], though this is not currently ac-
cessed from the behavior system described in this pa-
per. For each sampled step location, the potential field
value is computed at the agent's new location, defined
as the average location and orientation of the two feet.

2.4 An example behavior net
The example behavior net in Fig. 3 specifies an over-

all behavior for walking agents that head toward a par-
ticular goal object while avoiding obstacles (cylinders in
this case) and each other. The entire graph is the behav-
ior net, and each path from perception to motor output
is considered a behavior. In this example there are three
behaviors: one connecting a goal sensor to an attraction
controller and then to the walk node (a goal-attraction
behavior), another connecting a sensor detecting prox-
imity of other walking agents to an avoidance controller

and then to the walk node (a walker-avoidance behav-
ior), and a final behavior connecting a cylinder prox-
imity sensor to an avoidance behavior and then to the
walk node (a cylinder-avoidance behavior).

Each node has a number of parameters that deter-
mine its behavior. For example, the walker sensor and
the cylinder sensor nodes have parameters that indi-
cate how they will average all perceived objects within
their field of view and sensing distance into a single ab-
stract object. The Attract and Avoid nodes have scaling
weights that determine how much output to generate as
a function of current input and the desired target values.

The walk motor behavior manages the sampling of
the potential field by running data through the percep-
tual and control nodes with the agent pretending to be
in each of the sampled step locations. The walk node
then schedules the next step by passing the step location
and orientation to the execution module.

Note that this example has no feedback, cross-talk,
or inhibition within the controller, though the behav-
ioral controller specification supports these features [5].
Although this example controller itself is a feed-forward
network, it operates as a closed-loop controller when at-
tached to the agent because the walk node's scheduling
of steps affects the input to the perceptual nodes.

Our use of attract and avoid behaviors to control
groups of walking agents may appear on the surface
like Ridsdale's use of hot and cold tendencies to control
agents in his Director's Apprentice system [18]. How-
ever, his system was not reactive and on-line as our
behavioral controller is, it did not limit perception of
agents, it had no structured facilities for tuning behav-
ior parameters, and it did not take advantage of devel-
opments in reactive control and behavioral simulation.
His system focused on the use of an expert system to
schedule human activity conforming to stage principles
and used hot and cold tendencies to manage complex
human behavior and interaction. We limit the use of
behaviors to reactive navigation and path-planning, us-
ing parallel transition networks rather than one large
expert system to schedule events, and we look to sym-
bolic planning systems based on results in cognitive sci-
ence, such as [3, 8, 16], to automate high-level human
behavior and complex human interactions.

3 Parallel Automata
Parallel Transition Networks (PaT-Nets) are transi-

tion networks that run in parallel with the behavior
net, monitor it, and edit it over time [8]. They are
a mechanism for scheduling arbitrary actions and in-
troducing decision-making into the agent architecture.
They monitor the behavior net (which may be thought
of as modeling low level instinctive or reflexive behavior)
and make decisions in special circumstances. For exam-
ple, the agent may get caught in a dead-end or other
local minimum. PaT-Nets recognize situations such as
these, override the "instinctive" behavior simulation by
reconfiguring connectivity and modifying weights in the
behavior net, and then return to a monitoring state.

In our pedestrian example we combine object and
location sensors (in perceptual nodes) with attract con-
trol nodes, and proximity and line sensors (in percep-
tual nodes) with avoid control nodes. Pedestrians are
attracted to street corners and doors, and they avoid
each other, light poles, buildings, and the street except
at crosswalks.

Figure 4: North-net: A sample ped-net shown graph-
ically

Figure 5: A pedestrian crossing the street

We use PaT-Nets in several different ways.
Light-nets control traffic lights and ped-nets control
pedestrians. Light-nets cycle through the states of the
traffic light and the walk and don't walk signs.

Fig. 4 is a simple ped-net, a north-net, which moves
a pedestrian north along the eastern sidewalk through
the intersection. Initially, avoidances are bound to the
pedestrian so that it will not walk into walls, the street,
poles, or other pedestrians. The avoidances are always
active even as other behaviors are bound and unbound.
In State 1 an attraction to the southeast corner of the
intersection is bound to the pedestrian. The pedestrian
immediately begins to walk toward the corner avoiding
obstacles along the way. When it arrives the attraction
is unbound, the action for State 1 is complete. Nothing
further happens until the appropriate walk light is lit.
When it is lit, the transition to State 2 is made and ac-
tion Cross to NE Corner is executed. The agent crosses
the street. Finally, the agent heads north.

Fig. 5 shows a pedestrian controlled by a north-net.
The transition to State 2 was just made so the pedes-
trian is crossing the street at the crosswalk.

4 Real-Time Simulation Environment
The run-time simulation system is implemented as a

group of related processes, which communicate through
shared memory. The system is broken into a minimum
of 5 processes, as shown in Fig. 6. The system relies
on IRIS Performer [19] for the general multiprocessing
framework. Synchronization of all processes, via spin
locks and video clock routines, is performed in the CON-
TROL process. It is also the only process which performs
the edits and updates to the run-time visual database.
The CULL and DRAW processes form a software render-
ing pipeline, as described in [19]. The pipeline improves
overall rendering throughput while increasing latency,
although the two frame latency between CONTROL and
DRAW is not significant for our application. Our CON-
TROL process is equivalent to the APP process in the
Performer framework. We have used this framework to
animate multiple real-time human figures [12].

4.1 CONTROL Process
The CONTROL process runs the main simulation loop

for each agent. This process runs the PaT-Nets, and un-
derlying behavior net for each agent. While each agent
has only one behavior net, they may have several PaT-
Nets running, which sequence the parameters and con-
nectivity of the nodes in the behavior net over time (as
shown in Fig. 6).

By far the costliest computation in the CONTROL pro-
cess, for the behaviors modeled in this example applica-
tion, is the evaluation of the Walk motor node in the be-
havior net, and specifically the selection of the next foot
position. Since this computation is done only once for
every footfall, it usually runs only every 15 frames or so
(the average step time being about 1/2 second, and av-
erage frame rate 30Hz). If the CONTROL process starts
running over its allotted frame time, the Walk nodes
will start reducing the number of points sampled for the
next foot position, thereby reducing computation time.
The only danger here is described in Section 2.3.1, the
potential for a sawtooth path. If many agents are walk-
ing at similar velocities, they can all end up computing
their next-step locations at the same frame-time, creat-
ing a large computation spike which causes the whole
simulation to hiccup. (It is visually manifested by the
feet landing in one frame, then the swing foot suddenly
appearing in mid-stride on the next frame.) We attempt
to even out the computational load for the Walk motor
node evaluation by staggering the start times for each
agent, and thereby distributing the computation over
about 1/2 second for all agents.

Another computational load in the CONTROL process
comes from the evaluation of the conditional expressions
in the Pat-Nets, which may occur on every frame of the
simulation. They are currently implemented via LISP
expressions, so evaluating a condition involves parse and
eval steps. In practice, this is fairly fast as we pre-
compile the LISP, but as the PaT-Nets increase in com-
plexity it will be necessary to replace LISP with a higher
performance language (i.e. compiled C code). This may
remove some of the generality and expressive power en-
joyed with LISP.

Another technique employed to improve perfor-
mance, when evaluating a large number of Pat-Nets and
behavior, nets, is to have the CONTROL process spawn
copies of itself, with each copy running the behavior of
a subset of the agents. This works as long as updates
to the visual database are exclusive to each CONTROL

process. (In practice this is the case, since the current
behavior net for one agent will not edit any parameters
for another agent in the visual database.) Of course, the
assumption in spawning more processes is that there are
available CPUs to run them.

The CONTROL process also provides the outputs of
the motor nodes in the behavior net to the MOTION
process. These outputs, in the case of the walking be-
havior, are the position and orientation of the agent's
next foot fall. It also evaluates the motion data (joint
angles) coming from the MOTION process, and performs
the necessary updates to the articulation matrices of the
human agent in the visual database.

4.2 SENSE Process
The SENSE process controls and evaluates the sim-

ulated sensors modeled in the perceptual nodes of the
behavior net. It provides the outputs of the percep-
tual nodes to the CONTROL process, which uses them
for the inputs to the control nodes of the behavior
net. The main computational mechanism the sensors
employ are intersections of simple geometric shapes (a
set of points, lines, frustums or cones) with the visual
database, as well as distance computations. This pro-
cess corresponds to an ISECT process in the Performer
framework.

The major performance parameters of this process
are the total number of sensors as well as the complex-
ity and organization of the visual database. Since it
needs read-only access to the visual database, several
SENSE processes may be spawned to balance the load
between the number of sensors being computed, and the
time needed to evaluate them. (These extra processes
are represented by the dotted SENSE process in Fig. 6.)
There is a one frame latency between the outputs of the
perceptual nodes and the inputs to the control nodes
in the behavior net (which are run in the CONTROL
process), but this is not a significant problem for our
application.

4.3 MOTION Process
Once the agent has sensed its environment and de-

cided on on appropriate action to take, its motion is
rendered via real-time motion generators, using a mo-
tion system that mixes pre-recorded playback and fast
motion generation techniques.

We use an off-line motion authoring tool [2, 13] to
create and record motions for our human figures. The
off-line system organizes motion sequences into posture
graphs (directed, cyclic graphs). Real-time motion play-
back is simply a traversal of the graph in time. This
makes the run-time motion generation free from frame-
rate variations. The off-line system also records mo-
tions for several levels-of-detail (LOD) models of the
human figure. (Both the bounding geometry of the fig-
ure, as well as the articulation hierarchy (joints) are
represented at several levels of detail.) The three levels-
of-detail we are using for the human figure are:

1. A 73 joint, 130 DOF, 2000 polygon model, which
has articulated fingers and flexible torso, for use in
close-up rendering, and fine motor tasks (Jack®),

2. A 17 joint, 50 DOF, 500 polygon model, used for
the bulk of rendering; it has no fingers, and the
flexible torso has been replaced by two joints,

PaT-Nets

dit/i O- / EXIT (J

behavior net

SENSE
, process

visual database

; MOTION ;
'•, process /' \ process / motion frames

1: perceptual nodes 2: control nodes 3: motor control nodes = data flow " A = control flow

Figure 6: The multiprocessing framework for the real-time behavior execution environment

3. An 11 joint, 21 DOF, 120 polygon model used when
the human agent is at a large distance from the
camera.

This process produces a frame of motion for each
agent, then sleeps until the next frame boundary (the
earliest any new motion could be needed). It provides
the correct motion frame for the currently active LOD
model in the visual database. For certain types of sen-
sors modeled in the perceptual nodes, this process will
also be requested to provide a full (highest LOD) update
to the visual database, in the case where a lower LOD
is currently being used, but a sensor needs to interact
with the highest LOD model.

The motion database consists of one copy of the pos-
ture graphs and associated motion between nodes of the
posture graph. Each transition is stored at a rate of
60HZ, on each LOD model of the human agent. This
database is shared by all agents. Only a small amount of
private state information is maintained for each agent.

The MOTION process can effectively handle about 10-
12 agents at update rates of 30Hz (on ' 100MHz MIPS
R4000 processor). Since the process only has read-only
access to the motion database, we can spawn more MO-
TION processes if needed for more agents.

4.4 Walking as an example
A MOTION process animates the behaviors specified

by an agent's motor nodes by playing back what are
essentially pre-recorded chunks of motion. As a time-
space tradeoff, 'this technique provides faster and less
variable run-time execution at the cost of additional
storage requirements and reduced generality. The in-
teresting issues arise in how we choose a mapping from

motor node outputs to this discrete representation; it
plays a significant role in determining how realistic the
animated agents will be.

The primary motor behavior to be executed is walk-
ing. Our full walking algorithm combines kinematics
with dynamic balance control and is capable of gener-
ating arbitrary curved-path locomotion [15]. In order
to reduce computational costs, however, we have not
incorporated the algorithm directly into our run-time
system. Instead, as implied by the preceding discussion,
we record canonical "left" and "right" steps generated
by the algorithm (which is a component of our off-line
motion authoring system) and then play them back in
an alternating fashion to produce a continuous walking
motion.

The input to the appropriate MOTION process's walk-
ing subsystem consists of the specification of the desired
next foot position and orientation (for the swing foot).
This input is itself already discretized, as the motor
node responsible (the Walk motor node) for evaluat-
ing how desirable it is for the agent to be at particular
positions only computes the desirability criteria at a set
number of points (in Fig. 2). However, even given that
there are only n possibilities for the placement of the
swing foot on the next step, this would still require us
to record order n2 possible steps, since the planted foot
could be in any one of the n different positions at the
start of the step (determined by the last step taken)
and any one of the n at the end.

Without recording all n2 distinct steps it is neces-
sary to choose the best match among those that we do
record. One of the most important criteria in obtaining
realistic results is to minimize foot slippage relative to

Q Swing foot

Q Planted foot
(w.r.t. next step)

Figure 7: Posture graph for variable step length walking
(3 step sizes)

the ground; foot slippage occurs when the pre-recorded
movement (in particular its amount and direction) does
not match that specified by the walk motor node at
run time. On the basis that translational foot slippage
is far more evident than rotational slippage (at least
from our informal observations), we currently adopt an
approach in which we record three types of step: short,
medium, and long. Turning is accomplished by rotating
the agent around his planted foot smoothly throughout
the step. Having three step sizes significantly increases
the chances of being able to find a close match to the
desired step size, and, in fact, the walk motor node
can be constrained to only consider the three arcs of
the next foot location fan (see Fig. 2) that correspond
exactly to our recorded step sizes. Doing so eliminates
translational slippage, but has the sawtooth hazard.

The posture graph for all possible step-to-step tran-
sitions is shown in Fig. 4.4. Notice that even with only
three kinds of straight-line walking there are many pos-
sible transitions, and hence numerous motion segments
to be recorded. However, allowing for variable step
length is very important. For instance, an attract con-
trol node can be set to drive the agent to move within
a certain distance of a goal location; were there only a
single step size, the agent might be unable to get suf-
ficiently close to the goal without overshooting it each
time, resulting in degenerate behavior (and possible vir-
tual injury).

One thing worthy of mention with respect to the
number of different walking steps required to reproduce
arbitrary curved-path locomotion is that while there are
theoretically order n1 of them, the similarities are sig-

nificant. It is thus possible that it will prove feasible to
store a single full set of steps along with a little more in-
formation to represent how those steps can be modified
slightly to realistically turn the agent left or right, and
make it sufficiently fast for our real-time applications.

5 Conclusions and Future Work
We have designed a multiprocessing system for the

real-time execution of behaviors and motions for sim-
ulated human-like agents. We have used only toy ex-
amples to date, and are eager to push the limits of the
system to model more complex environments and inter-
actions amongst the agents.

Although our agents currently have limited abilities
(locomotion and simple posture changes), we will be
developing the skills for interactive agents to perform
maintenance tasks, handle a variety of tools, negotiate
terrain, and perform tasks in cramped spaces. Our goal
is a system which does not provide for all possible be-
haviors of a human agent, but allows for new behaviors
and control techniques to be added and blended with
the behaviors and skills the agent already possesses.

We have used a coarse grain parallelism to achieve
interactive frame rates. The behavior net lends itself
to finer grain parallelism, as one could achieve using a
threaded approach. Our system now is manually tuned
and balanced (between the number of agents, the num-
ber of sensors per agent, and the complexity of the vi-
sual database). A fruitful area of research is in the au-
tomatic load balancing of the MOTION and SENSE pro-
cesses, spawning and killing copies of these processes,
and doling out agents and sensors, as agents come and
go in the virtual environment. Results in real-time sys-
tem scheduling and approximation algorithms will be
applicable here.

6 Acknowledgments
This research is partially supported by ARO DAAL03-
89-C-0031 including U.S. Army Research Laboratory;
Naval Training Systems Center N61339-93-M-0843;
Sandia Labs AG-6076; ARPA AASERT DAAH04-94-G-
0362; DMSO DAAH04-94-G-0402; ARPA DAMD17-94-
J-4486; U.S. Air Force DEPTH through Hughes Missile
Systems F33615-91-C-0001; DMSO through the Univer-
sity of Iowa; and NSF CISE CDA88-22719.

References
[1] Ronald C. Arkin. Integrating behavioral, percep-

tual, and world knowledge in reactive navigation.
In Pattie Maes, editor, Designing Autonomous
Agents, pages 105-122. MIT Press, 1990.

[2] Norman I. Badler, Rama Bindiganavale, John
Granieri, Susanna Wei, and Xinmin Zhao. Posture
interpolation with collision avoidance. In Proceed-
ings of Computer Animation '94, Geneva, Switzer-
land, May 1994. IEEE Computer Society Press.

[3] Norman I. Badler, Cary B. Phillips, and Bonnie L.
Webber. Simulating Humans: Computer Graphics,
Animation, and Control. Oxford University Press,
June 1993.

[4] Welton Becket. Simulating Humans: Computer
Graphics, Animation, and Control, chapter Con-
trolling forward simulation with societies of behav-
iors.

[5] Welton Becket and Norman I. Badler. Integrated
behavioral agent architecture. In The Third Con-
ference on Computer Generated Forces and Behav-
ior Representation, Orlando, Florida, March 1993.

[6] Welton M. Becket. Optimization and Policy
Learning for Behavioral Control of Simulated Au-
tonomous Agents. PhD thesis, University of Penn-
sylvania, 1995. In preparation.

[7] Valentino Braitenberg. Vehicles: Experiments in
Synthetic Psychology. The MIT Press, 1984.

[8] J. Cassell, C. Pelachaud, N. Badler, M. Steedman,
B. Achorn, W. Becket, B. Douville, S. Prevost, and
M. Stone. Animated conversation: rule-based gen-
eration of facial expression, gesture and spoken in-
tonation for multiple conversational agents. In Pro-
ceedings of SIGGRAPH '94- In Computer Graph-
ics, pages 413-420, 1994.

[9] Thomas L. Dean and Michael P. Wellman. Plan-
ning and Control. Morgan Kaufmann Publishers,
Inc., 1991.

[10] R. James Firby. Building symbolic primitives with
continuous control routines. In Artificial Intelli-
gence Planning Systems, 1992.

[11] C. R. Gallistel. The Organization of Action: A New
Synthesis. Lawrence Elerbaum Associates, Publish-
ers, Hillsdale, New Jersey, 1980. Distributed by the
Halsted Press division of John Wiley & Sons.

[12] John P. Granieri and Norman I. Badler. In Ray
Earnshaw, John Vince, and Huw Jones, editors,
Applications of Virtual Reality, chapter Simulating
Humans in VR. Academic Press, 1995. To appear.

[13] John P. Granieri, Johnathan Crabtree, and Nor-
man I. Badler. Off-line production and real-time
playback of human figure motion for 3d virtual en-
vironments. In IEEE Virtual Reality Annual Inter-
national Symposium, Research Triangle Park, NC,
March 1995. To appear.

[14] David R. Haumann and Richard E. Parent. The
behavioral test-bed: obtaining complex behavior
from simple rules. The Visual Computer, 4:332-
337. 1988.

[15] Hyeongseok Ko. Kinematic and Dynamic Tech-
niques for Analyzing, Predicting, and Animating
Human Locomotion. PhD thesis, University of
Pennsylvania, 1994.

[16] Micheal B. Moore, Christopher W. Geib, and
Barry D. Reich. Planning and terrain reasoning.
In Working Notes - 1995 AAAI Spring Symposium
on Integrated Planning Applications., 1995. to ap-
pear.

[17] Barry D. Reich, Hyeongseok Ko, Welton Becket,
and Norman I. Badler. Terrain reasoning for hu-
man locomotion. In Proceedings of Computer Ani-
mation '9J,, Geneva, Switzerland, May 1994. IEEE
Computer Society Press.

[18] Gary Ridsdale. The Director's Apprentice: An-
imating Figures in a Constrained Environment.
PhD thesis, Simon Fräser University, School of
Computing Science, 1987.

[19] John Rohlf and James Helman. IRIS Performer:
A High Performance Multiprocessing Toolkit for
Real-Time 3D Graphics. Computer Graphics,
pages 381-394, 1994.

[20] Jane Wilhelms and Robert Skinner. A 'notion'
for interactive behavioral animation control. IEEE
Computer Graphics and Applications, 10(3): 14-22,
May 1990.

G Planning and Terrain Reasoning: Moore, Geib, and Re-
ich

17

Planning and Terrain Reasoning*

Michael B. Moore Christopher Geib Barry D. Reich
University of Pennsylvania

Department of Computer and Information Science
200 S. 33rd Street, Philadelphia, PA 19104-6389

E-mail: {mmoore,geib,reich}@graphics.eis.upenn.edu

Abstract

We describe the ZAROFF system, a plan-based con-
troller for the player who is "it" in a game of hide and
seek. The system features visually realistic human fig-
ure animation including realistic human locomotion.
We discuss the planner's interaction with a changing

. environment to which it has limited perceptual access.

Introduction
The game of hide and seek challenges the ability of
players to plan for acquiring information. The player
who is "it" (hereafter called the seeker) must explore
his environment attempting to locate other players.
Those players must select hiding places which are diffi-
cult to discover while providing access for them to run
safely to home base when the way is clear. The goal of
this is to develop simulated agents that can play hide
and seek (or more dangerous games). Due to the com-
petitive nature of the game, reasoning must take place
quickly in dynamically changing hostile surroundings.

This paper presents part of ZAROFF
1
 a system for

generating an animated simulation of humans play-
ing hide and seek. (Figure 1 shows frames from one
game.) We describe a planning system for the seeker
and its vertical integration into a system that selects
reactive behaviors to execute in an animated simula-
tion. Operation of the planner is interleaved with exe-
cution of the reactive behaviors so that the agent may
adapt to a dynamic environment. Adaptivity is also
supported through least-commitment planning, as the
planner only looks ahead one action at each level of its
abstraction hierarchy.

The planner described in this system has been
ported from an initial domain that combined search

'This research is partially supported by ARO DAAL03-
89-C-0031 including U.S. Army Research Laboratory;
ARPA AASERT DAAH04-94-G-0362; DMSO DAAH04-
94-G-0402; ARPA DAMD17-94-J-4486; U.S. Air Force
DEPTH through Hughes Missile Systems F33615-91-C-
0001; DMSO through the University of Iowa; and NSF
CISE CDA88-22719.

1 Named for the hunter in Richard Connell's 1924 short
story, The Most Dangerous Game

and manipulation tasks (Geib, Levison, & Moore
1994) to this new domain which requires locomotion.
The software chosen for this work is Jack® (Badler,
Phillips, & Webber 1993) running on Silicon Graph-
ics workstations. Jack is a human modeling and sim-
ulation program developed at the Center for Human
Modeling and Simulation at the University of Penn-
sylvania, that features visually realistic human loco-
motion based on both kinematic and dynamic tech-
niques (Ko 1994). Jack's LISP application program-
ming interface (Becket 1994) is used to implement
ZAROFF. This interface supports access to the en-
vironment (a database) and its behavioral simulation
system.

In ZAROFF, a planner interacts with an animated
simulation that provides a dynamically changing envi-
ronment to which the planner has only limited percep-
tual access. These environmental characteristics moti-
vate our system architecture.

Interacting with the environment
Our planner interacts with a multi-agent environment
that consists of a database of graphical entities (e.g.
geometric objects, human figures) and a behavioral
simulation engine that moves objects in the database.
The database records data on three-dimensional ge-
ometric figures with position and orientation. The
planner's access to database information is restricted,
to better simulate the limits of human perception.
The planner's actions either directly manipulate the
database, or indirectly affect the database by influenc-
ing the behavioral simulation engine.

Perception in ZAROFF

By limiting the planner's access to the database, the
planner only has access to information about objects
which the seeker can "see". For the planner to decide
on an action, it must see all the objects involved in
that action.

We implement a model of perception which restricts
access to only those objects in the environment which
are in a direct line of sight from the seeker. This is ap-
proximated using the graphics technique of ray-casting.

* * jgm

I
d m \i i

Figure 1: Frames from the conclusion of a game

Rays are cast from the seeker's eyes toward other fig-
ures. If any of these rays hit a figure before intersecting
another object, that figure is perceivable. While "per-
ception" is not synthetic vision, it satisfies the same
role of forcing information-acquisition actions and mo-
tivates our use of a special purpose search planner.

This model of perception is less restrictive than that
used in HOMER (Vere & Bickmore 1990), another an-
imated simulation, which limited distance (only close
objects can be seen) and angle of view (only objects in
front can be seen) in a two-dimensional environment.

Action in ZAROFF

Actions chosen by the planner are carried out. by an
action execution module (see Figure 2). Both compo-
nents are well matched to the dynamic environment
in which ZAROFF acts: the planner quickly selects the
next action to perform based on comparison between
the perceived world state and an incomplete hierarchi-
cal plan that is regularly revised. The action execu-
tion module controls locomotion in a manner reactive
to changes in the terrain and moving objects.

System Architecture
Our division of the control of a seeker between a plan-
ning component (the general purpose planner and spe-
cial purpose search planner) and a reactive behavior
component (the action execution module) reflects a
distinction between deliberative and non-deliberative
actions. Keeping track of where you are located in
a complex environment and what hiding places have
been checked requires deliberate effort, while walking
from one place to another generally does not. To-
gether, these two components create realistic anima-
tions of human decision-making and locomotion while
playing hide and seek.

Figure 2 depicts information flow in ZAROFF. The
system starts by initializing the plan with the input
goal (finding a hiding human), populating the database
with the initial locations of all the objects and human
figures in the simulation, and creating a partial map
from what the seeker can see around him. The planner
and the Behavioral Simulation System start processing
simultaneously. The planner queries the state of the
database through the Filtered Perception module to
decide how to elaborate the plan and select an action.
If necessary, the Search Planner is consulted to assist in
planning how to find things. When the planner decides

on an action, it instructs Action Execution to carry it
out. Further planning is suspended until the action
has terminated (successfully or unsuccessfully).

In making decisions about what to do next, each
component makes use of its own internal simulation,
which differs from the graphical animation of the en-
vironment. The planner uses abstract descriptions of
the effects of each action to choose one which will move
closer to the specified goal. The search planner simu-
lates the movements of an agent on its internal map of
the environment. Action Execution simulates taking
the next step in several alternate locations. At each
level of decision making, an internal simulation is used
at an appropriate granularity.

Action Execution
The Action Execution module is responsible for the
control of all actions occurring in ZAROFF. Most
actions such as opening and closing doors are per-
formed directly by this module. Human locomotion
is a special case which is performed by the Behav-
ioral Simulation System (BSS) (Becket & Badler 1993;
Badler, Phillips, k Webber 1993). Action Execution
controls this locomotion indirectly.

Non-locomotion actions are performed directly by
Action Execution manipulating the environment. For
example, a door is opened by rotating it about its
hinges. This rotation is done incrementally, a small
amount each frame of animation.

Locomotion is performed indirectly by Action Ex-
ecution creating sensors and binding them to human
figures in the database. Since BSS is constantly moni-
toring the environment, this immediately initiates the
appropriate agent locomotion.

Neither path-planning nor explicit instructions are
used to drive locomotion; agent control and appar-
ent complexity are the result of the interaction of a
few relatively simple behaviors with a complex (and
changing) environment. An agent is made aware of its
environment through the use of a network of sensors.
Based on the information gathered by these sensors the
path through the terrain is incrementally computed.
This allows the agent to react to unexpected events
such as moving obstacles, changing terrain, or a mov-
ing goal (Reich et al. 1994).

Sensors
A sensor is a function which maps a human's posi-
tion and orientation (his state) in the environment to

a stress value, where lower values represent more de-
sirable states. The agent (here, the seeker) utilizes a
set of sensors in interacting with its environment. Cur-
rently there are four classes of sensors:

Attraction: An attraction sensor (attractor) is used
to draw the seeker toward a goal, either an object
or a location. If a goal object moves, the point of
attraction moves appropriately. The sensor output
(stress value) of an attractor is high when the agent
is far from the goal and decreases as the agent nears
the goal.

Repulsion: A repulsion sensor (repulser) is used to
avoid collisions between the seeker and objects. Re-
pulsers have a sector-shaped region of sensitivity. If
there are no objects in this region the sensor output
is zero. Otherwise the output is proportional to the
distance and size of the detected objects.

Field-of-View: A field-of-view sensor determines
whether or not the agent is visible to any other
agent. (It will be used to support, the players who
must hide.) The sensor output is proportional to the
number of agents' fields-of-view it is in, and inversely
proportional to the distances to these agents.

The Behavioral Simulation System

BSS provides general locomotion of objects in Jack,
and is used in ZAROFF to generate human locomotion.
The central control mechanism of BSS is a loop that
includes perception, control, and action. During the
perception phase the sensors are polled, during the
control phase the next foot position is selected, and
during the action phase the step is taken.

General purpose planning
The next two sections describe the system for plan-
ning the overall behavior of the seeker agent, which
combines a hierarchical planner with a special purpose
search planner.

Behavioral

Simulation

System

■Figure 2: Information flow in ZAROFF

ITPLANS (Geib 1992) is a hierarchical planner, in
which hierarchical expansion only takes place to the
degree necessary to determine the next action to be
carried out. It consists in an incremental expansion of
the frontier of the plan structure to successively lower
levels of abstraction. The incremental nature of the
plan allows the system to make commitments at the
appropriate level of detail for action while not com-
mitting the system to future actions that might be ob-
viated by changes in the world. The close coupling of
ITPLANS with the environment manifests itself in two
ways:

First, the traversal and pruning process the planner
follows at each interval relies on being able to deter-
mine the actual state of the world and compare that
with its goals. During the expansion process ITPLANS

examines the state of the world and its memory to de-
termine if any of the goals within its plan have been
satisfied. When a goal has been satisfied serendipi-
tously, it can be pruned out of the plan structure, and
the system can move on to consider its next goal.

Second, ITPLANS "leans on the world" (Agre 1988)
when predicting the results of its actions. Rather than
maintaining a complete model of the world and the
state that results from executing the action, ITPLANS

uses a simpler method based on associating conditional
add and delete lists with each action. ITPLANS as-
sumes that a given proposition is true in the state that
results from the action if (1) the proposition is explic-
itly added by the add list or (2) the proposition is true
?io«' in the world and it is not contained on the delete
list. By this method, ITPLANS can make predictions
about the results of executing an action without mod-
eling the entire world state.

Search planning
A consequence of limited perception is the occasional
need to find objects. Our approach is to isolate this
reasoning in a specialized module, a search planner
that translates information acquisition goals to high-
level physical goals to explore parts of the environment.
As Haas points out (Haas 1993), any plan for acquir-
ing information must rest on what the agent knows
about the environment. That is, in order to search for
an object, an agent must know (or discover during the
search) the regions of space where the object might be.

Searches terminate successfully when a referent ob-
ject is seen in the environment. They terminate unsuc-
cessfully when there are no more regions to explore.
A search may also be terminated if the environment
changes in a way that obviates the search.

Maintaining a Map
Our approach to search planning relies on maintaining
information about the state of a heuristic search on an
internal map. The heuristic search has finding a de-
sired object as its goal. It uses distance from the agent
to order regions for exploration. Two lists of regions

hider

_/\
doorO

seeker

Figure 4: Plan view of example environment

are maintained by the search algorithm, an open list of
regions yet to be explored and a closed list of regions
which have been explored. Its internal map consists of
nodes that correspond to bounded regions connected
by links that correspond to doors.

In one iteration of the search, the closest region on
the open list is selected to be explored. ITPLANS gen-
erates a plan for going to and exploring that region,
opening any doors necessary along the way. After each
action in this plan is executed, the resulting world is
observed to determine if the desired object has been
located. New doors and regions observed during the
action are added to both the map and the open list.

Pemberton and Korf (Pemberton & Korf 1992)
present optimal algorithms for heuristic search on
graph spaces, where only a portion of the graph is avail-
able before the agent must commit to an action. We
use their Incremental Best-First Search (IBFS) algo-
rithm, which uses best-first search to find the closest
known open node. Heuristic estimates for this known
part of the graph are recalculated as necessary.

Example
Having given an overview of the system's components,
we now illustrate ZAROFF with an example drawn from
a game of hide and seek. To illustrate the conduct of a
search, we will use an example environment with two
buildings, one of which has two internal rooms sepa-
rated by a door (Figure 4). Consider the seeker's goal
of finding a hiding player. This is specified as goto(X)
with the added constraint that type(X) = HUMAN.

ITPLANS considers the action goto(X) to be prim-
itive but underspecified since the variable X is not
bound to a particular object of type HUMAN. In order to
bind the variable, the search planner must be called to
generate a plan for locating a HUMAN. To this end, IT-

PLANS adds to the plan & find node and calls the search

planner to instantiate a search plan (Figure 3a).
The search planner reasons from this knowledge ac-

quisition goal of locating a HUMAN, to the goal of ex-
ploring regions where a HUMAN might be. Satisfying
this goal requires physically searching through possi-
ble regions.

ITPLANS asks the search planner to expand the find
node. Each time a find node is expanded, the search
planner first examines the Jack environment to deter-
mine if an object of the specified type is visible to the
agent. If not, the search planner selects a region to ex-
plore next, generates a goal to explore that region, and
adds it to the plan (Figure 3b). The initial map (Fig-
ure 5) of regions has two doors for the search planner
to choose from; the closest, doorl, is recommended for
exploration. This goal is then further expanded by IT-

PLANS to go to doorl and open it (Figure 3c). Since
all of the arguments in the first action are bound to
specific objects, it can be carried out. Action Execu-
tion performs this action indirectly by binding an at-
traction sensor to the seeker. When the seeker arrives,
doorl is opened directly by Action Execution.

After doorl is opened, ITPLANS uses the search
planner to evaluate the progress of the search by exam-
ining the world for objects having the property HUMAN.
If one is located, the search is considered successful.
If not, the search planner selects a new region for ex-
ploration and the searching process repeats until there
are no more regions to explore.

In this case, opening doorl does not reveal a HUMAN,
but does permit the agent to see another door, door2,
that is automatically added to the search planner's in-
ternal map. As door2 is the closest unexplored space,
on the next iteration the planner will plan to explore
behind door2. Opening door2 does not reveal the
HUMAN, so the search proceeds to the next closest un-
explored region - the other building.

Here we see the advantage of maintaining a map.
Immediately after opening door2, the agent is inside
one building and decides to go to the door of the other
building. Since this destination region is known (from
having seen it previously), we could simply take the
action goto(doorO). This would result in the agent
walking directly toward the door until stopped by the
wall. To avoid getting caught in this local minimum,
the search planner uses its internal map (Figure 6) to
plan a path to the next region. The only known path
to doorO is to exit the current building through doorl.
The search planner returns this sequence of intentions

doorl

doorO doorO

Figure 5: Initial map Figure 6: Final map

goto(X)

type(X)=HUMAN

find(X)

(a)

goto(X)

find(X)

explore(door1)

(b)

goto(door1) open(door1)

(c)

Figure 3: Evolution of the plan graph

to ITPLANS, which then invokes Action Execution to
generate locomotion along this path. After opening
doorO, the seeker finally sees a HUMAN and can go to it.

Conclusion
We have implemented a plan-based controller for the
seeker role in the game of hide and seek. Our agent dy-
namically reacts to changes in the environment, from
the level of terrain up to changes in information about
where the other players may be hiding. The imple-
mentation combines general purpose planning, special
purpose reasoning about conducting a search, and re-
active control of human behaviors.

ZAROFF is an effective system for animating humans
carrying out tasks that require locomotion. Limiting
the human agent's awareness of its environment by
simulated perception increases the realism of the be-
havior generated.

Acknowledgements
We wish to thank our advisors Norm Badler and Bon-
nie Webber for their support of this work. Thanks
also to them, Welton Becket, Jonathan Crabtree, Brett
Douville, and Jeff Nimeroff for commenting on drafts
of this paper.

References
Agre, P. 1988. The dynamic structure of everyday
life. Technical Report* 1085, MIT Artificial Intelli-
gence Laboratory.

Badler, N.; Phillips, C; and Webber, B. 1993. Simu-
lating Humans: Computer Graphics, Animation and
Control. Oxford University Press.

Becket, W., and Badler, N. I. 1993. Integrated behav-
ioral agent architecture. In Proceedings of the Third
Conference on Computer Generated Forces and Be-
havior Representation, 57-68.

Becket, W. M. 1994. The Jack LISP API. Techni-
cal Report MS-CIS-94-01, University of Pennsylvania,
Philadelphia, PA.

Geib, C. W.; Levison, L.; and Moore, M. B. 1994.
SodaJack: An architecture for agents that search for
and manipulate objects. Technical Report MS-CIS-
94-16/LINC LAB 265, Department of Computer and
Information Science, University of Pennsylvania.

Geib, C. 1992. Intentions in means-end planning.
Technical Report MS-CIS-92-73, Department of Com-
puter and Information Science, University of Pennsyl-
vania.

Haas, A. 1993. Natural language and robot planning.
Technical Report 9318, Department of Computer Sci-
ence, SUNY Albany.

Ko, H. 1994. Kinematic and Dynamic Techniques for
Analyzing, Predicting, and Animating Human Loco-
motion. Ph.D. Dissertation, University of Pennsylva-
nia.

Pemberton, J. C, and Korf, R. E. 1992. Incremental
path planning on graphs with cycles. In Proceedings
of AIPS 92, 179-188.

Reich, B. D.; Ko, H.; Becket, W.; and Badler, N. I.
1994. Terrain reasoning for human locomotion. In
Proceedings of Computer Animation '94, 996-1005.
Geneva, Switzerland: IEEE Computer Society Press.

Vere, S., and Bickmore, T. 1990. A basic agent.
Computational Intelligence 6:41-60.

H Production and Playback of Human Figure Motion for
3D Virtual Environments: Granieri, Crabtree, and Badler

18

Production and Playback of Human Figure Motion for 3D Virtual
Environments

John P. Granieri, Jonathan Crabtree, Norman I. Badler

Center for Human Modeling and Simulation
University of Pennsylvania

Philadelphia, PA 19104-6389, USA
granieriIcrabtreeIbadler@graphics.eis.upenn.edu

Abstract
We describe a system for off-line production and

real-time playback of motion for articulated human fig-
ures in 3D virtual environments. The key notions are
(1) the logical storage of full-body motion in posture
graphs, which provides a simple motion access method
for playback, and (2) mapping the motions of higher
DOF figures to lower DOF figures using slaving to
provide human models at several levels of detail, both
in geometry and articulation, for later playback. We
present our system in the context of a simple prob-
lem: Animating human figures in a distributed simu-
lation, using DIS protocols for communicating the hu-
man state information. We also discuss several re-
lated techniques for real-time animation of articulated
figures in visual simulation.

1 Introduction
The ability to render realistic motion is an essen-

tial part of many virtual environment applications.
Nowhere is this more true than in virtual worlds con-
taining simulated humans. Whether these human fig-
ures represent the users' virtual personae (avatars) or
computer-controlled characters, people's innate sensi-
tivity as to what looks "natural" with respect to hu-
man motion demands, at the very least, that moving
characters be updated with each new frame that the
image generator produces.

We first discuss a topical problem which requires
the real-time rendering of realistic human motion, and
then describe our system for authoring the motion off-
line, and playing back that motion in ,real time. We
also address some of the issues in real-time image gen-
eration of highly-articulated figures, as well as com-
pare several other methods used for real-time anima-
tion.

2 Human motion in DIS
The problem we are interested in is generating and

displaying motion for human figures, in particular sol-
diers, in distributed virtual environments. Parts of the
general problem and the need for representing simu-
lated soldiers (referred to as Dismounted Infantry, or
DIs), are covered in [15, 5]. Although primarily driven

by military requirements today, the general technolo-
gies for projecting real humans into, and represent-
ing simulated humans within, virtual environments,
should be widely applicable in industry, entertainment
and commerce in the near future.

The Distributed Interactive Simulation (DIS) [7]
protocol is used for defining and communicating hu-
man state information in the distributed virtual envi-
ronment. The DIS protocol, at least the part relating
to human entities, is in its early stages of development,
and fairly limited in what it can specify about a hu-
man figure [11], but is a good baseline to start with.
Our purpose here is not to engage in a discussion of the
intricacies (nor worth) of the DIS protocol, but merely
to use it as an example of a distributed simulation pro-
tocol which can communicate state information on a
simulated human entity between simulation nodes in
a network.

The information representing a human entity is cur-
rently defined by several discrete enumerations in the
appearance field of an Entity State Protocol Data Unit
(PDU) in the DIS protocol [8]. The relevant informa-
tion we are interested in from the Entity State PDU
is shown in Fig. 1. The human is always in one of the
four postures, along with a weapon state. The head-
ing defines the forward direction. Although there are
enumerations for walking and crawling, we use combi-
nations, such as (posture=sian<f«7i<7)-|-(velocity>0) to
be equivalent to walking or running. Although the
protocol allows for up to three weapons of different
types on a soldier, we only modeled one, a rifle.

If the human can be in any of n possible postures,
there are potentially n~ transitions between the pos-
tures. Rather than create n2 posture transitions, we
encode the postures and transitions into a posture
graph [1]. The graph defines the motion path to tra-
verse to move the human figure from any one posture
to another. These graphs are directed and may in-
clude cycles. It also provides the logical structure for
the run-time motion database.

When the velocity of the human is zero, the possible
transitions between static (for lack of a better term)
postures are encoded in the posture graph of Fig. 2.
A few of the actual postures are shown in Fig. 3. In

Field Value Units

Posture Standing
Kneeling
Prone
Dead n/a

Weapon Deployed
Firing n/a

Position ^x ! *yi * z meters
Velocity Vr, Vy, Vz meters/second
Heading theta degrees

Figure 1: Essential human state information in a DIS
Entity State PDU

Figure 2: The static posture graph

Figure 3: Some of the static postures a soldier can
take in DIS

the posture graph, the nodes represent static postures,
and the directed arcs represent the animated full-body
transitions, or movements, from posture to posture.
Each arc has an associated time for traversal, which
is used to find the shortest path, in time, if more than
one path exists between a starting posture and a goal
posture.

When the velocity of the figure is non-zero, the
possible transitions between locomotion postures are
shown in the posture graph of Fig. 4. In this graph,
the nodes are static postures, but the figure would
never be in the posture for more than one frame.

The system we built consists of two distinct parts:
1) the off-line motion data generator, and 2) the on-
line real-time playback mechanism, running in a high-
performance IRIS Performer-based [12] image genera-
tor application.

3 Off-line motion production
Motion production involves three steps: 1) creating

postures and motion for each node and arc in a posture
graph, for one human model, 2) mapping the result-
ing motion onto human models with lower degrees-
of-freedom (DOF) and lower resolution geometry, and

TO STATIC

POSTURE GRAPH

Figure 4: The locomotion posture graph

finally 3) recording the results and storing in a format
for easy retrieval during playback.

3.1 Authoring the motion
The first step in producing motion for real-time

playback is to create postures representing the nodes
in the posture graphs, as well as the corresponding mo-
tions between them, represented as the directed arcs
in the graphs. We used a slightly modified version of
the Jack human modeling and animation system [2]
for this purpose. Jack provides a nice constraint-
based, goal-driven system (relying heavily on inverse-
kinematics and primitive "behavioral" controls) for
animating human figures, as well as facilities for or-
ganizing motions for general posture interpolation [1].
It is important to note that the posture graphs pre-
sented in this paper differ from the posture transition
graphs presented in [1]. In the latter, the posture tran-
sition graphs are used to organize motion primitives
for general posture interpolation with collision avoid-
ance. In the former application (this paper) the pos-
ture graphs are a logical mechanism for organizing a
database of pre-recorded motion, and determining mo-
tion sequences as paths between nodes of the graph.
An underlying assumption of the posture graphs is
that the articulated human figure's motion is contin-
uous, and therefore can be organized into a connected
graph.

Each directed transition in the static posture graph
typically was produced from 10 to 15 motion primi-
tives (e.g. move-arm, bend-torso, etc). Many of the
directed motions from a posture node A to a posture
node B are simply run in reverse to get the correspond-
ing motion from posture B to posture A. In several
cases, the reverse motion was scripted explicitly for
more natural results.

The human figure can also move (either forwards or
backwards, depending on the difference between the
heading and the direction of the velocity vector) by
either locomoting (if posture is standing) or crawling
(if posture is prone). The locomotion posture graph
transitions of Fig. 4 were generated by Hyeongseok
Ko's walking system [9]. Six strides for each type of
walking transition were generated (forward walking,
backward walking, running): left and right starting
steps, left and right ending steps, and left and right
cyclic steps. The crawling animation was generated
manually, and is based on two animations - one that
goes from the prone posture to the cyclic state, and
one complete cyclic motion. Note that only straight
line locomotion of fixed stride is modeled. We are
currently working on extending the system to handle
variable stride length and curved path locomotion, as
possible in the system of [9].

3.2 Slaving
The second step in the production process is con-

cerned with preparing the motion for the real-time
playback system. We wish to have tens, and poten-
tially hundreds, of simulated humans in a virtual en-
vironment. This neccesitates having multiple level-
of-detail (LOD) models, where the higher resolution
models can be rendered when close to the viewpoint,
and lower resolution models can be used when farther

human-1 human-2 human-3
polygons 2400 500 120
rigid segments 69 19 12
joints 73 17 11
DOFs 134 50 21
motion 60Hz 30Hz 15Hz

Figure 5:
models

The different levels of detail for the human

away. We reduce the level of detail in the geometry
and articulation by creating lower-resolution (both in
geometry and articulation) human figures, with the
characteristics listed in the table of Fig. 5.

All the motions and postures of the first step
are authored on a (relatively) high resolution human
body model which includes fully articulated hands and
spine. This model is referred to as "human-1" in
the above table. We manually created the two lower-
resolution models, human-2 and human-3. Because
of the difference in internal joint structure between
human-1 and the lower LOD models, their motions
cannot be controlled by the available human control
routines in Jack (which all make assumptions about
the structure of the human figure - they assume a
structure similar to human-1). Instead of controlling
their motion directly, we use the motion scripts gener-
ated in the first step to control the motion of a human-
1, and then map the motion onto the lower resolution
human-2 and human-3. We call this process slaving,
because the high resolution figure acts as the master,
and the low resolution figure acts as the slave.

Even though the different human models have dif-
ferent internal joint structures and segment shapes,
their gross dimensions (e.g., length of arms, torso, etc.)
are similar. The slaving process consists of interpolat-
ing the motions for the full human figure, generating
all the in-between frames, and simultaneously having
a lower LOD human model (human-2 or human-3)
slaved, and then saving the in-between frames for the
soldier. We will describe the process used for slaving
from human-1 to human-2; the case with human-3 is
similar.

For each frame of an animation, we first compute
the position and joint angles for human-1. Then, an
approximation of the joint angles for human-2 are
computed. This is straightforward, as certain joints
are the same (the elbow, for example, is only one DOF
on both human models), and others can be approx-
imated by linear combinations (for example, the 35
DOFs of the spine on human-1 can be summed and
mapped directly onto the 7 DOF torso of human-2).
This gives a good first approximation of the posture
mapping, and provides an initial configuration for the
final mapping. For the resulting motion of human-2
to look correct, we need to have certain landmark sites
of the two bodies match exactly (the hands must be
on the rifle). The final mapping step involves solving
a set of constraints (point-to-point and orientation),
to bring the key landmark sites into alignment. The

Figure 6: human-1 and human-2 models during slav-
ing. human-1 is the master. Upper window is the
skeletal articulation. Models are offset for illustrative
purposes.

constraints are solved using an iterative inverse kine-
matics routine [17] to move the body parts into align-
ment.

Because of differences in geometry between the
master and slave, in general we cannot expect all
the landmark sites to match exactly. For the prob-
lem domain of this paper, animating the DIS proto-
col, the hands are always holding a rifle, so match-
ing the hand positions accurately from the master is
very important (otherwise the slave's hands may pen-
etrate the rifle). Using a priority scheme in evaluat-
ing constraints, we assign higher priority to the hand-
matching constraints than others, to account for this
fact. If the slaving procedure cannot fit the master
and slave within a certain tolerance, it will generate a
warning for the animator.

3.3 Recording
The final step in the motion production process is

to record the resulting motions of the human figures.
The recorded motion for one transition is referred to as
a channel set (where each joint or figure position is re-
ferred to as a channel; the channel is indexed by time).
For each LOD human figure, a homogeneous trans-
form is recorded, representing figure position relative
to a fixed point, and for each joint, the joint angles
are recorded (one angle per DOF). Also for joints, the
composite joint transform is pre-computed and stored
as a 4x4 matrix (which can be plugged directly into
the parenting hierarchy of the visual database of the
run-time system). Each channel set has an associated

'Jptwnrk

= data flow ■ *\ = control flow

Figure 7: Overview of multi-processing framework for
run-time system.

transition time. The channels of human-1 are inter-
polated and stored at 60Hz, human-2 at 30Hz, and
human-3 at 15Hz. These rates correspond to the mo-
tion sampling during playback (see below).

4 Real-time motion playback
The real-time playback functions are packaged as

a single linkable library, intended to be embedded in
a host IRIS Performer-based visual simulation appli-
cation. The library loads the posture graphs shown
in Fig. 3 and 4, as well as the associated channel set
motion files. Only one set of motions are loaded, and
shared amongst any number of soldier figures being
managed by the library. The articulated soldier fig-
ures themselves are loaded into the Performer run-
time visual database. The library runs as a separate
process, the MOTION process, serving motion data to
the APP process (the APP, CULL and DRAW process are
defined in the Performer multiprocessing framework).
See Fig. 7 for a schematic overview of the runtime
system.

An update function in the APP process is provided
which maps joint angle values into the joint transforms
of the soldier figures in the Performer visual database.

The APP process sends requests to the MOTION pro-
cess, and receives joint angle packets back from the
library. The content of the request to the library is
simply the state information extracted from a DIS En-
tity State PDU, as shown in Figure 1. A simple con-
trol function translates these requests into playbacks
of channel sets (the traversal of arcs of the posture
graphs).

In the case of a static posture change (a motion
from the static posture graph of Figure 2), the sys-
tem will find the shortest path (as defined by traver-
sal time) between the current and goal postures in the
graph, and execute the sequence of transitions. For
example, if the posture graph is currently at Standing
Deployed, and Prone Firing is requested, it will transi-
tion from Stand Deployed to Crawl to Prone Deployed,
and finally to Prone Firing.

The same shortest-path traversal method is used
for executing posture changes in the locomotion pos-
ture graph of Fig. 4. It is important to realize that the
only difference between the "static" and "locomotion"
posture graphs is conceptual; the data structures in-
volved are identical, and the distinction merely has to
do with the conditions under which posture transitions
are made. A posture change is made with a node of
the static graph as a destination only upon receipt of
a DIS Entity State PDU indicating that the agent is
in such a posture. In the absence of further informa-
tion, the agent remains in that posture. Conversely,
when a posture change is made with a node of the
locomotion graph as the destination, something that
will occur if a PDU indicates the agent now has a non-
zero speed, the agent does not remain in that posture
once it is reached; absence of further information in
this case means that the agent's speed is still nonzero,
and hence the agent must take another step, or crawl
another meter forwards, or whatever is appropriate
for the current mode of locomotion. This continued
motion requires that another posture change be made
immediately.

One may think of labeling the transition arcs be-
tween posture graph nodes with conditions, as in a
finite state machine. For instance, the transition from
Standing Deployed to Walking Forwards (left foot for-
ward) is taken whenever the agent's speed becomes
non-zero and the agent's heading vector agrees with
the velocity vector. On the other hand, if the vectors
are not pointing in approximately the same direction,
a transition is instead made to one of the Walking
Backwards states. While the agent's speed remains
nonzero (as it is assumed to in the absence of PDU up-
dates), the system continually makes transitions back
and forth between, for example, the Walking Forwards
(left foot forward) and Walking Forwards (right foot
forward) nodes. This cycle of transitions creates a
smooth walking motion by concatenating successive
left and right steps. Note that since we currently have
no cycles of more than two nodes, finding the shortest
path between postures in a cycle is a trivial matter!

Crawling is handled similarly, though it is a simpler
case; there is no need for separate "left foot forward"
and "right foot forward" states.

The system samples all the pre-recorded motion us-
ing elapsed time, so it is guaranteed to always play
back in real time. For a 2 second posture transition
recorded at 60fps, and a current frame rate of the im-
age generator of 20fps, the playback system would play
frames 0,3,6,..., 120. It recomputes the elapsed tran-
sition time on every frame, in case the frame rate of
the image generator is not uniform.

The motion frame update packets sent from the

MOTION process back to the APP process are pack-
aged to only include those joint angles which have
changed from the last update. This is one way we
can minimize joint angle updates, and take advantage
of frame-to-frame coherence in the stored motions 1.
A full update (all joint angles and figure positions) is
about 400 bytes.

4.1 Motion level-of-detail
It is recognized that maintaining a constant frame

rate is essential to the believability of a simulation,
even if it means accepting an update speed bounded
by the most complex scene to be rendered. Automatic
geometric level-of-detail selection, such as that sup-
ported by the IRIS Performer toolkit, is a well-known
technique for dynamically responding to graphics load
by selecting the version of a model most appropriate
to the current viewing context [4, 6, 14].

The LOD selection within the visual database seeks
to minimize polygon flow to the rendering pipeline
(both in the software CULL and DRAW components
of the software pipeline, as well as to the transforma-
tion engines within the hardware pipeline).

Given our representation, which enforces the sep-
aration of geometry and motion, it is possible to ex-
pand level of detail selection into the temporal domain,
through motion level-of-detail selection. In addition to
reducing polygon flow, via selecting lower LOD geo-
metric models, we also are selecting lower LOD ar-
ticulation models, with fewer articulation matrices, as
well as sampling motion at lower frequencies. This re-
duces the flow of motion updates to the articulation
matrices in the visual database. The models we are
using are listed in Fig. 3.2.

In the playback system, we simultaneously transi-
tion to a different geometric representation with a sim-
pler articulation structure, and switch between stored
motions for each articulation model. We gain perfor-
mance in the image generator, while consuming more
run-time storage space for the motions. Our metric
for LOD selection is simply the distance to the virtual
camera. This appears to work satisfactorily for our
current application domain, but further evaluation of
the technique, as well as more sophisticated selection
metrics (e.g. the metrics described in [6, 4]) need to
be explored.

5 Example implementations and uses
The real-time playback system is currently being

used in two DIS-based applications to create motion
for simulated soldiers in virtual environments.

The Team Tactical Engagement Simulator [15]
projects one or more soldiers into a virtual environ-
ment, where they may engage hostile forces and prac-
tice coordinated team activities. See Fig. 8 for a sam-
ple view into the training environment. The soldier
stands in front of a large projection screen, which is
his view into the environment. He has a sensor on his
head and one on his weapon. He locomotes through

1 An initial implementation of the playback library was run
as an independent process, on another machine, from the host
image generator, and joint angle packets were sent over TCP/IP
stream sockets, hence the desire to minimize net traffic.

Figure 8: A View of Battle Town with several soldiers
in different postures

the environment by stepping on a resistive pad and
controls direction of movement and field of gaze by
turning his head. The soldier may also move off the
movement pad, and the view frustum is updated ac-
cordingly based on his eye position (head-coupled dis-
play). This allows the soldier, for example, to crouch
down to see under a parked vehicle, or to peek around
the corner of a building while still affording himself
the protection of the building. TTES also creates the
necessary DIS Entity State PDUs to represent the real
soldier (mapping from sensor values into the small set
of postures in the Entity State PDU), and sends them
out over the net to other TTES stations that are par-
ticipating in the exercise.

The playback system is also used in a version of
the NPSNET-IV [5] system, for generating motion of
SIMNET- and DIS-controlled soldier entities.

Motion level-of-detail selection is of particular rel-
evance to the example projects described above, be-
cause in the situation where a hostile agent enters the
field of view of a soldier (one of the real human partic-
ipants) and brings his weapon into the deployed posi-
tion, the hostile's actions will probably be noted only
in the participant's peripheral vision. It is well-known
that humans can detect the presence of motion in their
peripheral vision very easily, but that resolution of de-
tail is very low. When head-tracking data is available
or a head-mounted display is in use it is possible to
designate areas of the viewing frustum as peripheral
and reduce geometric and motion detail accordingly
(not just based on linear distance to the camera, but
angular offsets also). In the TTES environment this
"focus of attention'" information can be obtained from
the aim of the real soldier's rifle when it is in the raised
position, as the real soldier will almost certainly be
sighting in this situation.

6 Comparison of production/playback
methods

One of the most obvious criteria for evaluating a
given motion representation is size; there is a clear
progression in the methods used to animate humans
(or any entity whose geometric representation varies
over time) based on the amount of space required to
store a given motion. We look at three methods.

The first method, requiring the most storage, in-
volves generating and rendering the movements of
characters in an off-line fashion. Frame-by-frame,
a sequence of two-dimensional snapshots is captured
and saved for later playback. The image genera-
tor then displays the bit-mapped frames in sequence,
possibly as texture maps on simple rectangular poly-
gons. Hardware support for texture mapping and al-
pha blending (for transparent background areas in the
texture bitmaps) make this an attractive and fast play-
back scheme. Furthermore, mip-mapping takes care of
level-of-detail management that must be programmed
explicitly in other representations. Since the stored
images are two-dimensional, it is frequently the case
that artists will draw each frame by hand. In fact, this
is precisely the approach utilized in most video games
for many years. It is clear that very little computation
is required at run-time, and that altering the motions
incurs a high cost and cannot be done in real time. In
fact, modifying almost any parameter except playback
speed must be done off-line, and even playback speed
adjustments are limited by the recording frequency.
However, one real problem with using two-dimensional
recording for playback in a three-dimensional scene is
that non-symmetric characters will require the genera-
tion of several or many sets of frames, one for each pos-
sible viewing angle, increasing storage requirements
still further. The authors of the popular game DOOM
[13] record eight views of each animated character (for
each frame) by digitizing pictures of movable models,
and at run time the appropriate frames for the cur-
rent viewing angle (approximately) are pasted onto a
polygon. These eight views give a limited number of
realistic viewing angles; it is impossible, for instance,
to view a DOOM creature from directly above or be-
low. Interestingly enough, an article on plans for a
follow-up to DOOM reveals that the authors intend
to switch to one of the two remaining representations
we describe here:

Unlike the previous games, the graphic repre-
sentation of characters will be polygon mod-
els with very coarse texture mapping. This
will make it hard to emulate natural locomo-
tion, so they'll stay away from creating too
many biped characters.[16]

Making the move to the second method involves a
relatively slight conceptual change, namely taking 3-
dimensional snapshots instead of 2-dimensional snap-
shots. This means storing each frame of a figure's
motion as a full three-dimensional model. Doing so
obviates the need for multiple data sets correspond-
ing to multiple viewing positions and shifts slightly
more of the computational burden over to the image

generator. Instead of drawing pixels on a polygon
the run-time system sends three-dimensional polyg-
onal information to the graphics subsystem. It is still
an inflexible approach because the figures are stored
as solid "lumps" of geometry (albeit textured), from
which it is extremely difficult, if not impossible, to ex-
tract the articulated parts of which the original model
is comprised. Modifications must still be effected off-
line, although rendering is done in real time. This is
essentially the approach used by the SIMNET image
generators to display soldiers on a simulated battle-
field [3].

The final method is the one implemented by the
system described in this paper, in which we record
not the results of the motions, but the motions
themselves. We store a single articulated three-
dimensional model of each agent, and from frame to
frame record only the joint angles between articu-
lated segments. Modern rendering toolkits such as
the IRIS Performer system used in this project in-
creasingly allow support for storing coordinate trans-
formations within a visual database, with relatively
little cost associated with updating the transformation
matrices in real time. As a result of adopting this ap-
proach, storage space is reduced and it is far easier to
accurately perform interpolation between key frames
because articulation information is not lost during mo-
tion recording. It also allows for virtual agents with
some motions replayed strictly "as-is" and some mo-
tions which may be modified or generated entirely in
real time. For instance, the slight changes in shoulder
and elbow joint orientation required to alter the aim of
a weapon held by a virtual soldier could be generated
on demand.

We believe that the smallest representation pre-
sented in our size hierarchy, the third method, actually
retains the most useful information and affords the
most flexibility, while placing an acceptable amount
of additional computational burden on the run-time
display system.

7 Extensions &: future work
We are currently exploring several extensions to the

techniques described above, to add more expressive
power to the tool bag of the real-time animator.

Key-framing and interpolation The use of the
pre-recorded motions in the above posture graphs
trades time for space. We do not compute joint
angles on the fly, but merely sample stored mo-
tions. As the motions become more complex, it
becomes very time-consuming to produce all the
motions in the off-line phase, so we only produce
key frames in a transition, every 5 to 10 frames,
and then use simple interpolations to generate the
inbetweens during real-time playback. This tech-
nique can't be extended much beyond that, as
full-body human motion does not interpolate well
beyond that many frames. This also reduces the
amount of stored motions by a factor proportional
to the spacing of the key frames, but increases
computation time when a playback frame lands
between two key frames.

Partitioning full-body motion
In the posture graphs described previously, each
motion transition included all the joint angles for
the whole body. A technique to reduce motion
storage, while increasing playback flexibility, is to
partition the body into several regions, and record
motion independently for each region. For exam-
ple, the lower body can be treated separately dur-
ing locomotion, and the upper body can have a
variety of different animations played on it. Also,
to support the mapping of motion from partially
sensed real humans (i.e. sensors on the hands)
onto the animated human figures, we want to an-
imate the lower body and torso separately, then
place the hands and arms using a fast inverse
kinematics solution.

Articulation level-of-detail The var-
ious LOD models we used for the human figures
were all built manually. Techniques for synthesiz-
ing lower LOD geometric models are known, but
they don't apply to building lower articulation
LOD models. Some techniques for automatically
synthesizing the lower articulation skeletal mod-
els, given a high resolution skeleton and a set of
motions to render, would be very useful.

Other dynamic properties A limitation is curj

rently imposed by the fact that the segments of
our articulated figures must be rigid. However,
this is more an implementation detail than a con-
ceptual problem, since with sufficient computa-
tional power in the run-time system real-time seg-
ment deformation will become possible. In gen-
eral it seems likely that the limiting factor in vi-
sual simulation systems will continue to be the
speed at which the graphics subsystem can ac-
tually render geometry. The adoption of coarse-
grained multiprocessing techniques [12] will allow
such operations as rigid or elastic body deforma-
tions to be carried out in parallel as another part
of the rendering pipeline. The bottom line is that
greater realism in VR environments will not be
obtained by pouring off-line CPU time and run-
time space into rendering and recording charac-
ters in exacting detail; the visual effect of even
the most perfectly animated figure is significantly
reduced once the viewer recognizes that its move-
ments are exactly the same each and every time
it does something. We seek to capitalize on the
intrinsically dynamic nature of interacting with
and in a virtual world by recording less informa-
tion and allowing motions to be modified on the
fly to match the context in which they are re-
played. Beginning efforts in this direction may
lie found in [10].

8 Conclusions
We have described a system for off-line production

and on-line playback of human figure motion for 3D
virtual environments. The techniques employed are
straightforward, and build upon several well known
software systems and capabilities. As the number of

Dynamics

Inverse
Kinematics

Forward
Kinematics (interpolation schemes)

Table lookup (method of this paper)

Time to compute 1 frame of motion

Figure 9: Trade-off between time and generality for
motion generation techniques

possible states for a simulated human increases, the
posture graphs will need to be replaced with a more
procedural approach to changing posture. For appli-
cations built today on current workstations, the cur-
rent technique is a balance between performance and
realism.

Figure 9 shows a very coarse, and albeit intuitive,
plot of the trade-offs between generality and compu-
tation time for several motion generation techniques.
For realistic agent animation in virtual environments,
the research community will be trying to push this
curve to the left, making the more powerful techniques
run faster. The curve has been drifting to the left in
recent years mainly on the progress made in render-
ing hardware and overall workstation compute perfor-
mance.

We chose humans for animating, as they are what
we are interested in, but the techniques described in
this paper could be applied to other complex artic-
ulated figures, whose states can be characterized by
postures, and whose motions between postures can be
organized into posture graphs.

Acknowledgments
This research is partiallv

DAAL03-89-C-0031 including
Laboratory (Aberdeen), Natick Laboratory, and
NASA Ames Research Center; U.S. Air Force DEPTH
through Hughes Missile Systems F33615-91-C-0001;
Naval Training Systems Center N61339-93-M-0843;
Sandia Labs AG-6076; DMSO through the University
of Iowa; NASA KSC NAG10-0122; MOCO, Inc.; NSF
IRI91-17110, CISE CDA88-22719, and Instrumenta-
tion and Laboratory Improvement Program #USE-
9152503.

supported by ARO
U.S. Army Research

References
[1] Norman I. Badler, Rama Bindiganavale, John

Granieri, Susanna Wei, and Xinmin Zhao. Pos-
ture interpolation with collision avoidance. In
Proceedings of Computer Animation '9Ji% Geneva,

Switzerland, May 1994. IEEE Computer Society
Press.

[2] Norman I. Badler, Cary B. Phillips, and Bon-
nie L. Webber. Simulating Humans: Computer
Graphics, Animation, and Control. Oxford Uni-
versity Press, June 1993.

[3] Jay Banchero. Results to be published on system
for dismounted infantry motion in a SIMNET im-
age generator. Topographical Engineering Cen-
ter, US Army.

[4] Edwin H. Blake. A metric for computing adaptive
detail in animated scenes using object-oriented
programming. In G. Marechal, editor, Eurograph-
ics '87, pages 295-307. North-Holland, August
1987.

[5] David R. Pratt et al. Insertion of an Articulated
Human into a Networked Virtual Environment.
In Proceedings of the 1994 AI, Simulation and
Planning in High Autonomy Systems Conference,
University of Florida, Gainesville, 7-9 December
1994.

[6] Thomas A. Funkhouser and Carlo H. Sequin.
Adaptive display algorithm for interactive frame
rates during visualization of complex virtual en-
vironments. In James T. Kajiya, editor, Com-
puter Graphics (SIGGRAPH '93 Proceedings),
volume 27, pages 247-254, August 1993.

[7] Institute for Simulation and Training, Orlando,
FL. Standard for Distributed Interactive Simu-
lation - Application Protocols (v 2.0, 4^n draft,
revised), 1993.

[8] Institute for Simulation and Training, Orlando,
FL. Enumeration and Bit-encoded Values for use
with IEEE 1278.1 DIS - 199J,, ist-cr-93-46 edi-
tion, 1994.

[9] Hyeongseok Ko. Kinematic and Dynamic Tech-
niques for Analyzing. Predicting, and Animating
Human Locomotion. PhD thesis, University of
Pennsylvania, 1994.

[10] Ken Perlin. Danse interactif. SIGGRAPH Video
Review. Vol. 101 1994.

[11] Douglas A. Reece. Extending DIS for Individual
Combatants. In Proceedings of the 1994 AI, Sim-
ulation and Planning in High Autonomy Systems
Conference, University of Florida, Gainesville, 7-
9 December 1994.

[12] John Rohlf and James Helman. IRIS Performer:
A High Performance Multiprocessing Toolkit for
Real-Time 3D Graphics. In Andrew Glassner,
editor. Proceedings of SIGGRAPH '94 (Orlando,
Florida. July 24-29, 1994), pages 381-395, July
1994.

[13] Neil J. Rubenking. The DOOM Phenomenon. PC
Magazine, 13(19):314-318, 1994.

[14] Greg Turk. Re-tiling polygonal surfaces. In Ed-
win E. Catmull, editor, Computer Graphics (SIG-
GRAPH '92 Proceedings), volume 26, pages 55-
64, July 1992.

[15] Frank Wysocki and David Fowlkes. Team Tar-
get Engagement Simulator Advanced Technology
Demonstration. In Proceedings of the Individual
Combatant Modeling and Simulation Symposium,
pages 144-190, 15-17 February 1994. Held in Fort
Benning, GA.

[16] Jeffrey Adam Young. Doom's Day Afternoon.
Computer Player, pages 20-28, October 1994.

[17] Jianmin Zhao and Norman I. Badler. Inverse
kinematics positioning using nonlinear program-
ming for highly articulated figures. ACM Trans-
actions on Graphics, to appear, 1995.

