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1     Introduction: Norman I. Badler 

This Quarterly Report includes descriptions of various projects underway in the Center for Human 
Modeling and Simulation during October through December 1994. 

These reports include: 

• Release of the Jack Motion Library, and progress in motion authoring tools. 

• Motion data acquisition to generate human animation. 

• An update on SASS. 

• The incorporation of strength analysis into motion planning. 

• Development of fast inverse kinematics. 

• Implementation of a grasping taxonomy for Jack 

• Continued work in object specific reasoning. 

• Improvements in the human body segment shapes, including a better hand model. 

• Progress in adding dynamics to Jack. 

• The Zaroff system and locomotion reasoning. 

• The animation of fluid phenomena. 

• Physics-based-graphical modeling for respiratory mechanics. 

• Updates to the Jack Motion Library. 

• Continued work on space rendering. 

There are also eight appendices: 

• Inverse Kinematics of the Human Arm: Tolani 

• Adaptive Deformable Model Evolution Using Blending: DeCarlo and Metaxas 

• Integrating Anatomy and Physiology for Behavior Modeling: DeCarlo, Kaye. Metaxas. Clarke, 
Webber and Badler. Presented at the First International Symposium for Medical Robotics 
and Computer Assisted Surgery. 

• Volumetric Deformable Models with Parameter Functions: A New Approach to the 3D Motion 
Analysis of the LV from MRI-SPAMM: Park, Metaxas. and Axel 

• Jack Reaching Planning With Strength Analysis and Collision Avoidance - User's Guide: Xin- 
min Zhao 

• Behavioral Control for Real-Time Simulated Human Agents: Granieri, Becket, Reich, Crabtree. 
and Badler; to appear in the 1995 Symposium on Interactive 3D Graphics. 



• 

Planning and Terrain Reasoning: Moore, Geib, and Reich; to appear in the AAAI Spring 
Symposium on Integrated Planning Applications proceedings in 1995. 

Production and Playback of Human Figure Motion for 3D Virtual Environments: Granieri, 
Crabtree, and Badler; to be presented at the 1995 Virtual Realitv Annual International Sym- 
posium (VRAIS '95). 

This research is partially supported by ARO DAAL03-89-C-0031 including U.S. Army Research 
Laboratory and Natick Laboratory; ARPA AASERT DAAH04-94-G-0362; DMSO DAAH04-94-G- 
0402; ARPA DAMD17-94-J-4486; U.S. Air Force DEPTH through Hughes Missile Systems F33615- 
91-C-0001; Naval Training Systems Center N61339-93-M-0843; Sandia Labs AG-6076; NASA KSC 
NAG10-0122; MOCO, Inc.; National Library of Medicine N01LM-43551; DMSO through the Uni- 
versity oflowa; and NSF IRI91-17110, CISE CDA88-22719. 

2    Jack: John Granieri 

By the end of 1994, I finished the encapsulation of the DI (dismounted infantry) motion playback sys- 
tem (which we refer to informally as JackML, or Jack Motion Library, or simply the motion library) 
into a single object library, which can be linked and run within an IRIS Performer-based image- 
generator application (in this case it's currently used in TTES at NAWCTSD and in NPSNET-IV at 
Naval Post Graduate School.) (NPSNET is also distributed to various sites within the government.) 

A paper entitled Production and Playback of Human Figure Motion for 3D Virtual 
Environments, to be presented at VRAIS '95 (See Appendix H), essentially describes the current 
state of the implementation, as well as some of the components of the library we're currently working 
on. 

I plan on incorporating the fast inverse kinematics work being done by Deepak Tolani into Jack 
ML, as well as the work being done by Rama Bindiganavale.. This extends the functionality of Jack 
ML from a simple motion playback system to a more hybrid motion generation system. 

I am currently building the motion level-of-detail (LOD) into Jack ML. This should improve 
performance of the visual system (so one can incorporate more soldiers in a simulation), as well as 
increase fidelity of ballistics (as they are computed via intersections, so the intersections can take 
place on the highest LOD human model). 

The playback system relies on the notion of a posture graph to store and retrieve motion data. 
For the static posture changes we simply traverse the posture graph. For locomotion and crawling, 
we have a simple hard-coded state machine to map from a state vector (in the case of TTES, this 
is just the Entity State PDU lifeform fields) to motion generation. In the spirit of making an open, 
authorable motion generator, we wish to have this state machine also be authorable. To this end. 
we will investigate the use of PaT-Nets to author the mapping from the state vector to motion 
playback/generation. This gives us a very general purpose method for changing the motion control 
of the human figure. Since PaT-Nets are interpreted, it also allows the user to experiment. We will 
need to compile the PaT-Nets to a faster run-time version for execution within Jack ML. 



Currently, the off-line motion authoring tools (for building posture graphs, as well as the state 
vector mapping functions) are built using a version of Jack and some C functions. The on-line 
motion tools are embedded in Jack ML, which in turn must be hosted in an IRIS Performer-based 
application. To unify these two separate environments, so one can build and run the motions (and 
motion generation techniques) in the same environment, I have begun the development of a new 
system which is in essence Jack running on top of IRIS Performer, with a Tk user interface. The user 
interface will allow us to build 2D interface components which will make it much easier to visualize 
and manipulate posture graphs and PaT-Nets. Some of this work is related to, and will be used by, 
other projects here. 

The initial design for this multi-processing framework for behavioral simulation is described in 
the paper Behavioral Control for Real-Time Simulated Human Agents (See Appendix F) 
We will be implementing the first cut of this system in the near term. 

The key benefits for our research, from this unification, are (1) Since all current image-generation 
applications we are involved with are based on IRIS Performer, our code must be optimized for that 
API, (2) the multi-processing framework is needed to take advantage of the multiple processor 
machines which are coming to dominate the visual simulation field, (3) much of the work done 
already in Jack for controlling multiple figures and motion generation,- will then be available for 
integration into Jack ML. This system will be used to prototype and build the control functions for 
the real-time simulated agents which will be used in distributed simulations for our sponsors under 
the DMSO project. 

This new system will most likely become the standard Jack system environment in the fut ure. 

3    Motion Data Acquisition: Mike Hollick 

We have begun work on a system that will be used to gather motion data for generating human 
animation, as well as real-time interaction. The first step has been to purchase and integrate 4 
additional Flock of Birds sensors. By adding these to our current Flock we can begin to experiment 
with sensor placement configurations to increase the accuracy of the recorded posture data. In order 
to support the additional sensors, the current driver has been modified and tested off-site to confirm 
that the sensor communication will work correctly through an intermediate hardware interface such 
as a terminal server. This intermediate interface is needed to maintain a direct serial connection with 
each sensor when the number of sensors exceeds the available serial ports on the host workstation. 

The next step is to determine sensor placements that produce the most accurate representations 
of the actual posture, while minimizing the degree of encumbrance. This will also involve work on 
the Jack side of the system, where we will need to test different, constraint types and heuristics to use 
the data most efficiently. It is probable that several sensor configurations will be ultimately selected, 
with each configuration being the best for a certain class of motion. For example, for motions that 
only involve the upper body, it would make little sense to have sensors on the knees and ankles. 



4    SASS: Francisco Azuola 

During the last quarter, I finished the implementation of SASS v.2.5 to be released with Jack 5.9. 
The SASS user's manual will be provided with the new Jack 5.9 manual. 

Omission 

In Quarterly Progress Report No.51 and in the articles. "Infrastructure for Human Modelling 
in VR" and "Building Anthropometry-Based Virtual Human Models", we omitted to mention the 
contribution of Dr. Ann Aldridge (from NASA) to the figure scaling project, namely, the original 
version of the "anthropometric data extraction" tool. 

5    Motion Planning with Strength Analysis: Xinmin Zhao 

For the past several months, I have been working on incorporating strength analysis into the motion 
planning process. The objective is that the planned motion should be not only collision free, but 
also strength feasible for an agent with limited strength. The motion planning algorithm has been 
modified to include strength analysis. Our experiments with the modified algorithm so far show that 
it works well. For more information, please see the user's guide of Jack reach planning (Appendix 
E). 

6     Inverse Kinematics of the Human Arm: Deepak Tolani 

My current task in the DMSO project is the generation of inverse kinematics for the human arm. In 
particular, I've focused on two separate problems: (1) generating inverse kinematics solutions in real 
time using a simplified model of the human arm, and (2) calculating accurate inverse kinematics 
using Jack's model of the shöulder-arm complex. Appendix A summarizes my current status in 
these two areas. 

7     Grasping Implementation: Brett J. Douville 

During the past three months 1 have been working on the implementation of a grasping taxonomy 
for Jack. Once this work has been completed Jack will be able to reach for an object, grasp it in an 
appropriate grasp, and then manipulate the object. 

The grasping behaviors are currently programmed in Lisp using PaT-Nets. Individual instanti- 
ations of finger-controlling and thumb-controlling PaT-Nets generate realistic behavior by directly 
manipulating joint angles. Collisions between the segments of the finger (or thumb) and other fingers 
or the object to be grasped determine transitions to different states of the PaT-Net. 



The motivation behind using collision detection to drive the grasping behavior is based in human 
grasping tasks: when humans grasp an object they are searching largely for tactile information- by 
driving grasping using collision detection, Jack is simulating tactile sensations. I expect to distinguish 
between several different types of grasping collisions in the upcoming months, which should lead to 
even better grasping. 

Currently, grasping is being integrating with Xinmin Zhao's motion planning to achieve realistic 
reaching and grasping. 

8     Object Specific Reasoning: Libby Levison 

In the last quarter I finished writing my dissertation proposal x and began implementing the system. 

Currently there is a complete vertical integration for a subset of the task-action commands- the 
actions LOOK, GRASP, RELEASE and REACH are fully implemented. The OSR can output Jack action 
directives of various agent performing these actions on various objects. The OSR decomposes the 
actions, and determines missing information needed by the Jack system (eg, which hand to use). It 
then checks that the agent has adequate resources to perform the actions, and outputs the directives. 

In addition to the algorithm which reasons about each task-action and converts it to a set of action 
directives, the vertical integration has required the construction of two additional components. First 
is a knowledge base of properties of the agents and objects which the system uses in determining the 
missing information. Second, I have built the task-action library for the task-actions listed above- 
the library contains the underspecified definitions of these commands. 

In the next quarter, I plan to continue work on the implementation. In addition to encoding 
new actions (eg MOVE-OBJECT and LOCOMOTE, the OSR system must be integrated into Jack This 
includes 1) converting the knowledge base to interface with the graphics knowledge base, which will 
allow the OSR to acquire as much knowledge as possible from the graphics knowledge base and 2) 
generating action directives which are Jack behaviors, and performing them in the Jack system. Bv 
the end of Q1.95 I plan to have a stable system implementation. 

9    Improvement of Human Model: Bond-Jay Ting 

When human 5.8 was created, the major work was on the head and neck. Although there were 
some minor improvements, the hand model didn't get much attention. Therefore, in this version of 
human model improvement, the focus is on creating a better hand model. 

To minimize the impact on Jack the redesign is based on the old segment structure. The total 
number of segments remains 16. Although there is a slight change in the joint position of the palm, 
the rest of the joints were kept at the original position. The major change is the geometrv for eacli 
segment: 

1 '-Connecting Planning and Acting: Towards an Architecture for Object Specific Reasoning" (1995). Libby Levison. 
I niversity of Pennsylvania. 
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(a) The new hand model (b) Hand model for Jack 5.8 

Figure 1: Hand model 

Palm: Palm is the most complicated segment in the hand model. After studying the muscles 
and the joint locations of the palm, the outside part of the hand is made to be a more rounded 
shape. And instead of the straight line distribution in the previous version, the new joint locations 
for fingers have been moved to a more rounded fashion. 

Fingers: Basically, the shapes of the fingers remained the cylindrical cone shape. The limited 
changes are located in the proximal parts (the first segments) and the distal parts (the last segments). 
For the proximal parts, the fins have been enlarged and moved toward the front part of the hand. 
For the distal parts, the shapes have been redesigned to meet the shape of finger tips. 

Thumb: One of the biggest changes of the new hand model is the thumb. The first segment of 
thumb has been redesigned with a larger base to simulate the part of the segment which is embedded 
in the palm. Also, similar to the distal part of the fingers, the tip of the thumb has been redesigned 
to simulate the shape of thumb. 

Fig. 1 shows both the new and old hand model. The new hand model also uses polygons more 
efficiently. Compared to 468 > iygons in the previous version, the new hand model has only 391 
polygons. 

To create a physics based hand motion, we need to insert the mass properties of the hand into 
the model. Unfortunately, the current mass data collected for the hand model are either "total 
hand mass" or "total mass for fingers and the mass for palm". Neither case is sufficient enough 
for our simulation. Therefore, a distribution function is needed to distribute the mass into different 



Segments. Since there is no data showing the density of each segment, we make the uniform density 
distribution assumption. The mass is distributed according to the volume of each segment. 

Beside the hand modeling, I have also been working on the uneven scaling problem. In Jack 
the scaling problem is handled by a uniform scaling scheme. Each node in the segment is scaled 
according to a three dimensional vector in which each component represents the scaling factor in 
the corresponding axis. When creating a new human figure from one prototype to match a set of 
measured data, the scaling factor in two ends of a segment don't necessarily have to be the same. 
That is, the uniform scaling scheme is not sufficient. 

To solve this problem, an uneven scaling scheme is introduced. Uneven scaling scales along a 
predefined axis (one of the local coordinate axes or global coordinate axes). The scaling vector of 
any node in the segment is linearly interpolated according to two reference positions (nodes or sites) 
and two corresponding scaling vectors. 

10    Recursive Forward Dynamics Algorithm: Evangelos Kokke- 
vis 

After testing the recursive forward dynamics algorithm in a simple simulation environment the 
code is now incorporated into Jack. An effort has been made to create a general system 'that 
can automatically generate dynamically correct motion for any articulated structure defined as a 
standard Jack figure. The only extra parameter that user needs to supply is the mass of each 
segment. The moment of inertia and the center of mass are automatically computed from the 
segment's geometry. The resulting system is both intuitive to use and runs at interactive speeds 
even for fairly complex structures. To detect collisions between objects, the fast collision detection 
algorithm already implemented in Jack has been employed. The user can specify the coefficients of 
iriction and restitution for the objects and hence, simulate different material properties, enhancing 
the realism of the animation. 

With a general dynamical simulation environment at hand, the next step was to investigate ways 
to give the user control over the animation. The goal would be to have the dynamics assisting the 
user in creating a realistic animation without overrestricting him on the motions he can generate 
For a specific motion, the user should be able to prescribe the trajectory of the important (to the 
motion) degrees of freedom and leave the state of the rest of the figure to be handled naturallv bv the 
dynamic simulator. A dynamical controller should then be employed to generate the internal forces 
and torques needed to be exerted on the joints to have them follow the specified trajectories. Model 
Reference Adaptive Control proved to be a good choice for the controllers. Adaptive controllers 
have the advantage, as the name suggests, to progressively "learn" the dynamic properties of the 
system they control. They are also simple to implement and run efficiently since no knowledge of 
the often complicated underlying system dynamics needs to be hardwired into them. At this stage, 
kinematic joint trajectories provided by the user can be replicated dynamically using this type of 
feedback control. 

Adaptive control properties need to be investigated further to give a more robust general _ 
tion system. Once this is done, the next step will be to apply the above system in the more specific 
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application of dynamically controlling human motion. 

11    Locomotion Reasoning: Barry D. Reich 

This quarter I worked on the Zaroff system, an animated simulation of a game of Hide and Seek, 
with Chris Geib, Mike Moore, and Tripp Becket. We use Jack to create an architecture where 
AI planning can be combined with sensor-based, reactive navigation. In the PaT-Net-controlled 
simulations, planning is used to generate intentions. The intentions are achieved through the use of 
PaT-Nets which configure a set of simulated sensors to execute the desired actions. 

We wrote a paper describing the Zaroff system which will appear in the AAAI Spring Sympo- 
sium on Integrated Planning Applications proceedings in 1995 (also University of Pennsylvania CIS 
Department Technical Report MS-CIS-93-56/LINC LAB 280). It is included in this report (See 
Appendix G). We also worked on papers for The 5th Conference on Computer Generated Forces and 
Behavioral Representation and The International Joint Conference on Artificial Intelligence. The 
former has since been accepted. 

This quarter I also worked on a project and paper for the 1995 Symposium on Interactive 3D 
Graphics with John Granieri, Tripp Becket, and Jonathan Crabtree (See Appendix F). We are 
developing a system for interactive behavioral programming in real-time. 

12    Realistic Animation of Liquids: Nick Foster 

Techniques developed for modeling, and rendering fluids were combined as a single development 
system for animating liquid effects 2 . The system provides a user interface for interactively modeling 
a complex environment including liquid, obstacles and floating objects. The behavior of the liquid 
and objects in the scene can be calculated accurately using a physics-based model, and the results 
rendered realistically using the RenderMan interface 3. The system was used for a number of sample 
applications. These included an animation of ocean waves, and a simulation of internal bleeding 
from a penetrating knife wound to the lung. 

13     Modeling Respiratory Mechanics: Jonathan Kaye 

The models of respiratory mechanics I developed earlier showed the qualitative behavior of the 
system for normal, quiet breathing. The motivation of developing these was to demonstrate basic, 
qualitative relationships during breathing. While these simulations were sufficient to show basic 
behavior, thus having potential for explaining why pressures and volumes change, we needed more 
precision to drive the physics-based graphical modeling (for visualization). 

2Realistic Animation of Liquids, N. Foster and D. Metaxas. Submitted to SIGGRAPH 1995. 
3 The RenderMan Companion, S. Upstill; Addison Wesley, New York, (1990) 



During the current reporting period, I presented a paper on our work at the First International 
Symposium for Medical Robotics and Computer Assisted Surgery (See Appendix C). 

Needing more detail than the qualitative models provided, I reworked my models and derived 
ordinary differential equations (quantitative) for different pathological conditions on multiple com- 
partment lung models (e.g., trapped air in pleural space, simple pneumothorax, open sucking chest 
wound, and tension pneumothorax). In the process, I learned more about respiratory mechanics to 
validate the approach. I am planning to incorporate these new models with cardiovascular model- 
ing, to show how the physiological systems are dependent in some situations because of the physical 
space they share. 

14     Jack Motion Library: Jonathan Crabtree 

The greater part of the work done during this quarter relates to the DMSO project, either in the form 
of continued support for the NAWCTSD TTES system or in the form of preliminary investigations 
into those areas spanned by the first-year report deliverables. 

Continued support for the TTES application has been comprised primarily of updates to the 
Jack Motion Library. In particular, all the application code was modified for" compatibility with 
SGI Performer 1.2, the latest version of the rendering toolkit on which both TTES and DMSO will 
ultimately depend for their real-time display requirements. Updates to the Jack Motion Library 
include bug fixes and optimizations for greater efficiency, most notably the addition of an option to 
fully precompute all the joint transformation matrices involved in any given figure motion. This will 
almost certainly be an essential component in maintaining the real-time constraints inherent in the 
second-year DMSO deliverables. 

As a first step toward determining what changes will be necessary in human agent PDUs (Protocol 
Data Units) for this project, a more general mechanism for making posture changes was explored 
and implemented; while the posture graph establishes a regimen on the organization and storage of 
motion data, it does not directly address issues of how information about when posture changes 
take place should be stored. For instance, in cyclic traversals of a posture graph, such as arise in 
animating walking or running, it is desirable to associate conditions with edges of the posture graph 
indicating that an agent must continue to make posture changes (for instance, a walking agent in 
the TTES system) as long as that agent's velocity is nonzero. The possible sets of edge conditions 
will correspond closely with the information encodeable in an expanded human agent PDU; at the 
very minimum, each action that can be animated must be representable in the distributed protocol, 
and conversely each distinct message under the protocol should map to some transition or set of 
transitions and conditions in the posture graph. 

Future work in this area will include an analysis of the movement set (once it has been fully 
realized) to extract a behavioral hierarchy. Knowledge of this hierarchy will guide further extension's 
(or development of additional structures) to the posture graph abstraction in order to represent 
behavioral state information. We have also been exploring, at the implementation level, the possi- 
bility of segmenting motion by body region. This would allow for multiple concurrent behaviors; for 
instance, an agent might be walking while carrying an object or while aiming a weapon or operating 
a tool. 

s 



In real ted work, a database converter was developed to output the contents of a SGI Performer 
visual database into a Jack-readable format (a collection of figure and psurf files). The conversion 
process preserves articulation information and also texture and color specifications. In conjunction 
with the wide range of database loaders available for Performer 1.2, this provides a path, through 
the intermediate Performer format, to convert files of several different types (.fit, .sgo, .pto, etc.) 
into the Jack peabody language. 

A new display mode was added to the standard version of Jack. It aids in visualizing the 
"skeletons" of figures by drawing a small sphere at each joint center, and rectangular "sticks" for 
the segments between joints. This mode could be expanded to provide a simpler and more intuitive 
interface for joint manipulation and figure positioning, by making the precise locations of all joint 
centers visible simultaneously. With the standard figure display disabled, visual clutter is also 
reduced. 

15     Efficient Rendering: Jeff Nimeroff 

During the last quarter Julie Dorsey, Eero Simoncelli, Norman Badler and myself completed work 
on the final draft of our paper on rendering spaces 4 that was accepted in Presence, the Journal of 
Virtual Reality and Teleoperators. The paper abstracted specific rendering scenerios into subspaces 
of a general rendering space and was an attempt at applying algebraic abstraction techniques to 
computer graphics. Julie Dorsey and I also completed a SIGGRAPH submission on photorealistic 
rendering based on research that is to be continued throughout the next two quarters. 

4 "Rendering Spaces for Architectural Environments", J. Nimeroff and J. Dorsey and E. Simoncelli and N. Badler 
Accepted for Publication in Presence, the Journal of Virtual Reality and Teleoperators. November 199-1. 
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A    Inverse Kinematics of the Human Arm: Deepak Tolani 
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Inverse Kinematics of the Human Arm 

Deepak Tolani 

February 21, 1995 

1 Introduction 

My current task in the DMSO project is the generation of inverse kinematics 
for the human arm. In particular, I've focused on two separate problems: 
(1) generating inverse kinematics solutions in real time using a simplified 
model of the human arm, and (2) calculating accurate inverse kinematics 
using Jack's model of the shoulder-arm complex. This report summarizes 
my current status in these two areas and outlines 

2 Fast Inverse Kinematics 

The best existing numerical algorithms for inverse kinematics are only marginally 
adequate for real time applications. Additionally, most numerical methods 
don't yield all solutions and they often fail near a singularity of the manipu- 
lator. For these reasons, it is desirable to obtain an analytical solution. One 
of the conditions which guarantees a closed-form solution in a six degree of 
freedom manipulator is the presence of three intersecting joint axes. Thus, if 
we utilize a simplified model of the human arm where the shoulder is modeled 
as a spherical joint, we should be able to derive an analytical solution. 

Figure 1 illustrates the Peabody representation of a simplified version of 
Jack's left arm. In the simplified model, the shoulder-clavicle complex is 
reduced to a single spherical joint with three degrees of freedom. The joint 
transformations from the shoulder to the wrist frame are given by 

R~Mi)RA<p2)R,{h)TiRy{4>A)T2Ry(^)Rx(h)RM7) 



Ti   = 

03   = 

-a3 

I       0 
ds 

. 0       1 

r2 = I 

. 0 

0 
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04 

1 

49,<fe = 32.S ,a4 = 25.93 

where Ta and T2 are constant matrices that relate the positions of the shoul- 
der,elbow, and wrist joints. Note that the equation above assumes column 
notation for vectors. 

The inverse kinematics problem may be stated as follows. Given a desired 
position and orientation of the wrist frame relative to the shoulder frame 
A.Wrist find a suitable set of angles 0l5 ...,07such that the following equation 
is satisfied: 

A1A2A3A4A5A6A7= Amis, (1) 

Where 

A* = 

A4 = 

"   cos(01)    -J ?in(01 )   0   0 ' 

A1 = 
sin(01)     cos(01) 

0               0 
0 0 
1 0 

0 0 0  1. 

" 1 0 0 0 " 

A2 = 
0 cos( 02) —sin( 02)   0 
0 sin( 02) cos( i '2)    0 
0 0 0 1 . 

'   cos(03) -sin( 03) 0   - ■I.cos(03)a3 
sin( 03 ) cos( 03) 0    - -l.sin(03)a3 

0 0 1 d3 
0 0 0 1 

'    cos(04)     0    sin (04) sin( 04 ) a4 
0 1 0 0 

-sin(04)    0   cos (04) cos( 04 ) 0,4 
0 0 0 1 



As = 

cos(05) 0   sin(05) 0 
0 10 0 

-sin(05) 0   cos(05) 0 
0 0 0 1 

A, 

A7 

1         0               0 0 
0   cos(06)   -sin(06) 0 
0   sin(06)     cos(06) 0 
0         0                0 1 

cos(07)    -sin(07)   0 0 
sin(07)     cos(07)     0 0 

0                0          1 0 
0               0          0 1 

a3 = .49    d3 = 32.8    a4 = 25.93 

However, Awrist specifies only six independent equations but we have 
seven unknowns. Thus, in general, there are an infinite number of joint 
angles satisfying equation 1. The simplest solution is to forfeit one degree of 
freedom of the system. Since many positioning tasks do not simultaneously 
utilize all three degrees of freedom of the wrist, it is often expedient to fix 
one of the wrist joints to a rest angle. 

2.1     Case 1: Joint angle 7 is constant 

Without loss of generality, assume that the last wrist joint is constrained 
so that Aj is a constant matrix. We can then write the inverse kinematics 
problem as ' 

AiA2A3A4A5A6= A^^Ar1 (2) 

where the right hand side is given and the unknowns are the joint angles 
81,...,06. 



Denoting 

L-wrist 

011 

021 

031 

0 

012 

022 

032 
0 

013 014   " 

023 024 

033 

0 
034 

1 

, the vector p = [#14,524,03 i]T is the origin of the wrist frame measured in 
the shoulder coordinate system. The magnitude of p depends only upon 
the lengths of the upper and lower arms and 94. As shown in figure 3, the 
relationship between 64 and ||p|| can be derived from the law of cosines as 

04 TT 

a   = arctanf 

V'   =   arccos 

- a 

d3' 

P + 

(3) 

21 a4 

I \J<4 + 4 
Since p is given, 64 can be calculated directly from equation 3. Although 

are two distinct solutions for 64, only one answer is physically realizable 
because of joint limits. 

To calculate the remaining joint angles, we note that the position of the 
shoulder joint expressed in coordinate system six is just a function of the last 
three joints 64, #5 #6. More precisely, we can write 

    A,;      Ar      Ai      An 

0 
0 
0 
1 

(4) 

A6    A5 

cos(#4)a3 + sin(#4)d3 

0 
sin(#4)a3 — COS(#4)G!3 — a4 

We also note that *e can compute 6p as 

(5) 



where 

/v 
6 
Py 

V   *Pz   ) 

-cos{67)tl +s'm{97)t2 
-sm(97)tl -cos(97)t2 

-{gl3gU + g'2-ig24 + g33g34) 
(6) 

U    =   gUglA + (filcjlA + cßlgM 

t2   =    <j\ 2g 14 + g22g2-i + gZ2gM 

Equating equations 4 and 5 gives 

cos{04)(i:> + sin(^)c/3 

0 
sin(6,

4)a3 — cos(04)d3 — a4 

As A, 5-^-6 
6Pv 

v i ; 
7) 

where the only unknowns are 95 and 96. Denoting the left hand side of equa- 
tion 7 by [/i,0,/3]T and expanding the right hand side yields three scalar 
equations 

pxcos(95)+pys\n{95)s\n{96) + p:cos{96)sm(95)   =   /l 

py cos{96) - pz sin(96)    =   0 

-pxsm(65) + pycos{05)sm{86)+p:cos{65)cos(66)   =   /3 

The second equation is of the form 

a cos(96) + bsm(9e) = c 

and has two solutions given by 

(8) 

06 = a tan 2{b. a) ± a tan 2( vV + 62 - c2, c) 

Substituting a value for 0,-, into each of the first two equations of system 8 
yields a set of equations of 1 he form 

a cos(ö5) — bsm(95)    =   c 

a s'\n(95) + bcos(95)    =    d 



which has the solution 

#5 = a tan 2(ad — 6c, ac + bd) 

where atan2 is the two argument arctangent function. Finally, the values of 
#1, #2,#3can be determined by extracting the Euler angles from the rotational 

components of {AwristA.jl) A^A^AJ1. If we rearrange equation 1 as 

AiA2A3 = (A^rirfA,.1) A6
1A5

1A4
1 

(9) 

we note that the right hand side contains quantities that have been deter- 
mined. Denoting the 3x3 rotational component of the right hand side of the 

r\\    r12    r13 

and using ct- and st to represent cos(#,- matrix equation by 

ru T\2 ri3 ' 

T2\ r22 f23 

rsi r32 ^33  . 

r2i    r22    r23 

^31      ?'32     ^33 
and sin(0,-) yields the equations 

C1C3-S1C2S3     -ClS3-S1C2C3       SiS2 

S1C3 + C1C2S3     -SlS3 + C1C2C3     -C1S2 

s2s3 S2C3 c2 

We can obtain two possible values for 62 from the (3,3) component of the 
matrix equation above 

02 = ±arccos(r33) 

We can then solve for #3 and öxby taking the appropriate arc tangents 

r31 r32    \ 
63 

Or 

arctan 2 

arctan 2 

iSin(02) 'sin(ö2] 

^13 -^23 

sin(ö2) ' sin(02) 

where arctan2 is the two-argument version of the arc tangent function. If 
82 = 0 or 180 the equations for 93 and 6X degenerate. In this case, we can only 
compute their sum or difference. One possible workaround is to add a small 
e to 62. Another fix is to arbitrarily set 93 — 0 and to compute Qx as 

Q\ = arctan 2(r21,—rn) 

where arctan2 is the two argument arctangent function. 
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2.2     Case 2: Joint angle 5 is constant 

In the previous section, we assumed that the last wrist joint was fixed. We 
now consider the case where the first wrist angle is constant, and joints 6 and 
7 are allowed to move. We first compute 94 using the same technique as in 
the previous section. Let p represent the vector from the origin of the wrist 
frame to the origin of the shoulder frame. The coordinates of p measured in 
frame 5 can be calculated by the following two equations 

P       — A5  A4  A3 A2  A U-1 

(5px) 

/0\ 
0 
0 

\ 

Py 

1    ) 

and 

cos 

sin 

\(65)(sm(04)d3 + cos(6>4)a3) + sin(6l
5)(- sin(6>4)a3 + cos(#4)d3 + aA) 

0 
i(^5)(sin(6l

4)(i3 + cos(#4)a3) + cos(6>5)( —aA + sin(#4)ö3 — cos(84)d3) 

5P = A6A7AJ; ist 

equating these two equations gives 

0 
0 

V i / 

w here 

/i sin(6l
6)cos(6l7 

/l COs(ö6) COs(#7 

/l = 

h = 
f3 = 

sin(07)/i + cos(Ö7)/2 

V)-/2sin(06)sin(07)-/3cos(06) 

' - /2 cos(6>6) sin(6>7) + h sin(#6) 

-(#11014 + </21#24 + 031034) 

-{gi29l4 + 922924 + 932934) 

-(913914 + 923924 + 933934) 

Px 

0 

(10) 



The equation above is very similar to equation 8 and can be solved using 
a similar approach. Finally, once 6e and #7have been computed, 6i,02la,nd 
95 can be calculated by using the Euler angle extraction technique discussed 
in the previous section. 

2.3    Case 3: Joint angle 6 is constant 

Finally, consider the case where the middle wrist joint is fixed. Let "p denote 
the coordinates of the shoulder joint measured in the final wrist frame. We 
have two alternative ways to compute ' p : 

/ >* \ 
?Py 
7Pz 

V    1    / 

= A-1- wrist 

I o\ 
0 
0 

V 1 / 

and 

A-1 A-1 A-1 
Ay   /v6   i\5 

003(64)0,3 + sin(#4)<i3 
0 

sm(64)ü3 — cos(94)d3 — a4 

Equating the two equations above and moving A6 and A7 to the right hand 
side yields the equations 

cos(6s)hi — sin(6'5)/i3 = cos 

0 = cos 

sin(6>5)/j1 + cos(65)h3 = COS 

where 

;(Wi - sin(07)/2 (11) 

:(07)(cos(06)/2) + sm(e7)(cos(6e)fi) - sin(ö6)/3 

;(67)(sm(d6)f2) + sin(ö7)(sin(6l6)/1) + cos(06)/3 

hs 

cos(64)a3 + sin(#4)<i3 

sin(Ö4)ö3 — cos(ö4)c?3 — a4 

and 



fl = -(#11014 + 021024 + 031034) 

h = -(012014 + 022024 + 032034) 

h     =     -(013014 + 023024 + 033034) 

Since #6 is constant, the only unknowns are 85 and #7. The second equa- 
tion of system 11 is of the form 

acos(#7) + 6sin(#7) = c 

and has two solutions given by 

87 = a tan 2{b, a) ± a tan 2(Va2 + b2 - c2, c) 

For a given value of 87, we can find the corresponding values of 85 by solving 
equations 1 and 3 of system 11 which are of the form 

a cos(#5) — bs'm(65)    =    c 

asin(9s) + bcos(95)    =   d 

with the solution 
#5 = a tan 2(ad — be, ac + bd) 

3     Accurate Inverse Kinematics 

The inverse kinematics formulas above assume that the shoulder is a simple 
three degree of freedom spherical joint. However, the actual shoulder-clavicle 
joint complex used in Jack is more complicated. In Jack, the shoulder com- 
plex consists of five interdependent joints, two of which are located at the 
clavicle and three of which are located at the shoulder. These five joints 
are controlled with three degrees of freedom: elevation, abduction, and twist 
((f), 8, T) corresponding approximately to a spherical motion. The coordinate 
transformation from the left elbow to the clavicle joint is given by the equa- 
tion 

C(9j(f))T,S((pJ,T)T2 (12) 



where C(0,<f>) and S(<J>,6,T) are transformations given by the clavicle and 
shoulder joints 

C(BA)   =   Ry(9l)Rx{^) 

and 

T, 

10 0 0 
0 0 10 
0-100 
0     0     0    1 

T2 = 

1 0   0 -.49 
0 10      0 
0 0   0 32.8 
0 0   0      1 

ii    =   cos(9)ß1 + (1 - cos{9))ß2 - 90 

öi °-    ,, = *? 
5 -5 

ßi = 
.251^ + 97.076    0<<£< 131.4 
— .035<^+128.7       otherwise 

ß2 = 
.21066(f) + 92.348   0 < <f> < 130.0 

120 otherwise 

Note that these equations are not the same as the ones in the book 
"Simulating Humans". However, I believe they accurately reflect the trans- 
formations used in the current implementation of Jack. I will now discuss two 
possible methods to implement the inverse kinematics for the Jack shoulder- 
arm complex. The net transformation from the wrist to the clavicle joint is 
given by the rather formidable equation 

Ry(ei)RAöi)TlRx(-0i)RA02)RA<P)RAr')T2Ry(S)Ry(u:1)Rx(u2)Rz(u3) 

A wrist 

where r = T + (^ — l) 62,6 is the elbow angle, and u>\, LO2 , u^ are the wrist 
angles one of which is assumed to be constant. The inverse kinematics prob- 
lem is to find a suitable set of joint angles 9t4>, r, 6, u>i, u>2, u>3 that interpolates 
a desired Awrist. 
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3.1    Method 1  :   A Hybrid Analytic and Numerical 
method. 

Equation 12 can be approximated very crudely by a coordinate transforma- 
tion from the elbow joint to the shoulder joint given by : 

RZ{0)RX{4>)R, (r + (^ - X) Ö2) T* (13) 

Since we already know how to analytically compute the inverse kinemat- 
ics of a spherical mechanism, we can compute an approximate solution to 
equation 12 by solving for 6,(f>,T in equation 13. We can then input these 
angles as a "first guess" to a numerical procedure, such as Jack's own in- 
verse kinematics routines, to obtain an accurate solution. There are two 
primary advantages of this hybrid approach over a purely numerical method. 
Most numerical methods can only generate a single solution. Moreover, not 
all inverse kinematic numerical methods are guaranteed to converge. Using 
an approximate analytical solution allows multiple solutions to be explored. 
Additionally, since the numerical procedure is invoked near a solution, con- 
vergence is both more rapid and probable. 

However, there is one minor problem. Since the analytic formula is only 
approximate, the analytic phase may sometimes fail to detect a solution. 
This can happen when a solution exists near the reach boundary of the actual 
mechanism but may lie outside the workspace of the analytic approximation. 
This problem can be mitigated by the following heuristic. If a solution cannot 
be found at the fixed shoulder position or if the desired position requires 
a nearly fully extended elbow, we sample a variety of shoulder positions 
corresponding to different configurations of the clavicle joint. If the analytic 
phase succeeds for any of these configurations the numerical procedure is used 
to confirm if an actual solution exists. The simplest scheme for choosing the 
sampling points for the shoulder is to choose eight positions corresponding 
to the limits and midpoints of the clavicle joints as shown in the table below 
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Elevation Abduction Shoulder position relative to clavicle 
0 -44 (-1.7,-2.64,11.0) 
0 42 (1.62,-2.66,11.0) 
0 128 (4.89,-1.40,10.2) 
90 -44 (-1.43,-6.54,9.24) 
90 42 (1.36,-6.57,9.23) 
90 128 (4.513,-4.6,9.42) 
179 -44 (-1.35,-7.24,8.72) 
179 42 (1.29,-7.24,8.72) 
179 128 (3.98,-6.72,8.31) 

3.2     Method 2: A variation of Manocha and Canny's 
algorithm 

I've also tried to find a more direct inverse kinematics solution for Jack's arm 
model. Manocha and Canny have recently developed a numerical method for 
6R mechanisms that finds all solutions for a desired position and orientation. 
However, their algorithm is designed to work for independent joints expressed 
in Denavit-Hartenberg notation and is not readily amenable to the coupled 
joint mechanism used in Jack. In order to use their algorithm, it is necessary 
to find a set of three DH matrices equivalent to the five interdependent joints 
in Jack. More formally, we wish to find three Denavit-Hartenberg matrices 
Ai,A2,A3 satisfying 

A1(0)A2 {</>) A3(T) = RyißJRxifaMRxi-MR^RsWR, (r + f ^ - 1J 92 

(14) 
The first question is whether or not such a parameterization is even pos- 
sible. In fact, any coupled system of joints with only n degrees of free- 
dom can be represented by an equivalent "virtual" system of n indepen- 
dent joints, but this representation is valid only instantaneously. Thus, un- 
like a physically realizable device, the n independent joints are not fixed 
but change with the configuration of the mechanism. Mathematically this 
means that the Denavit-Hartenberg parameters (ai,dt,a,j i = 1..3)on the left 
hand side of equation 14 are not constants but functions of #, ^>,and T. I 
have attempted to solve 14 for a suitable set of values for the unknowns 
0-1,02, 03, ai, a2,o3, d\, d2,d3 as functions of 0,<A,and T. However, the result- 
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ing equations are very ugly and I have not yet found a satisfactory solution. 
Moreover, the algorithm by Manocha and Canny relies on the fact that the 
joint variables are isolated in each matrix, which will no longer be the case 
for our "virtual" joints. Despite these problems, I am not yet convinced that 
this scheme is infeasible and I will continue pursuing it. 

4    Exploiting Redundancy 

In the previous sections, we assumed that one of the wrist joints was fixed 
at a constant angle. In practice, it may not always be straightforward to 
determine which joint to hold constant or to decide upon a suitable angle 
for the stationary joint. If a poor decision is made, the inverse kinematics 
solution may produce an "awkward" looking wrist posture. An even more 
serious problem is that the simplification of the arm to a six degree of free- 
dom system reduces the reachable workspace which may cause the inverse 
kinematics procedure to fail even when a solution exists. Thus, it seems that 
a better scheme would be to exploit the extra degree of redundancy and to 
choose the solution that best satisfies an additional optimization criterion. 
For example, there is empirical evidence that humans tend to try to mini- 
mize wrist torques and one way of approximating this behavior would be to 
choose the solution that minimizes the displacement of the wrist angles from 
their rest position. I am currently investigating both analytical and numer- 
ical methods that utilize redundancy in the hope that these techniques will 
yield more "natural" looking postures for human arm inverse kinematics. 
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We propose a new paradigm for shape representation and estimation which rep- 
resents an object using a hierarchy of physics-based blended deformable components. 
Initially, the model is a sphere. In a physics-based way, the models deform and are 
replaced by more complex models allowing the evolution from the initial shape to the 
final shape. This evolution into more complex models is based on the arbitrary blend- 
ing of shapes. Through hierarchical blending, multiple blends of the initial shape can 
occur. Since these models are defined based on global parameters, the shape recovered 
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Summary 

(1) What is the original contribution of this work? 

We develop a new physics-based modeling approach to shape estimation where the 
initial model parameterization is that of sphere. Based on the forces exerted by the 
data, the model can change its representation adaptively through blending. Therefore, 
with no a priori parameterization, the model evolves and locally re-parameterizes in a 
physics-based way. In addition, through this technique we can represent models which 
include multiple holes. Finally, the resulting parameterization is based on global shape, 
allowing the symbolic description of the recovered shape. 

(2) Why should this contribution be considered important? 

A shape representation should cover the widest possible variety of shapes which can be 
formed form a single model. Our approach achieves this goal. Furthermore, it can rep- 
resent in a compact way more complex objects than any other technique known to us. 
Our technique is useful in reconstruction and should have applications in recognition. 

(3) What is the most closely related work by others and how does this work differ? 

While there have been several other global models (such as CAD based models) that 
can represent shapes with multiple holes, the shapes are not represented in a unified 
and compact way (see introduction for more details). 

(4) How can other researchers make use of the results of this work? 

These new models and estimation techniques can be applied to problems where shape 
modeling and characterization with a few parameters is important, i.e., reconstruction, 
recognition, and modeling. 



1     Introduction 

A challenging open problem in shape representation and estimation is the development of 

models that can be used in applications ranging from reconstruction to recognition. The 

difficulty in creating such models is the often conflicting requirements of reconstruction 

and recognition, i.e., representational accuracy versus symbolic descriptive power. As a 

result, most researchers have addressed this problem by creating models that employ a lot of 

parameters and are appropriate for reconstruction only [5, 14, 15, 25, 27] or have developed 

models with few descriptive parameters suitable for recognition tasks [1, 2, 3, 8, 9, 17, 21, 24]. 

Recently, models designed for application in both shape reconstruction and shape recog- 

nition have been presented [4, 6, 7, 13, 19, 22, 28]. Both [22] and [28] provide methods 

where the collection of parameters is ordered by level of detail. Techniques based on su- 

perquadrics [6, 7, 13] were presented to obtain part-level models. The models in [11, 19, 26] 

incorporate global deformations which represent prominent shape features, and local defor- 

mations which capture surface detail. For these models, correct configurations are extracted 

using a physics-based framework where forces are exerted by the data. In [4] a new class of 

deformable models based on axial shape blending was proposed. The distinguishing feature 

of blended models compared to all previous shape models is that in addition to being able 

to represent more complex objects in a compact way, they also have the additional power of 

compactly representing objects with varying topology, such as a sphere and a torus. 

Regardless of how general or specific the currently existing shape models are, they are 

all limited by the assumption of a predefined parameterization that is determined by the 

underlying predefined geometric or physical properties of the model used.   For example, in 



modal analysis [22] the modal calculation depends on some predefined elastic properties. In 

in the models defined in [4, 19] predefined types of local (e.g., thin plate or membrane) and 

global (e.g., tapering, bending) deformations constrain the classes of objects that can be 

represented. 

A truly general shape model should have no a priori parameterization and imposition 

of physical properties if it can be applied across a large number of objects. In the absence 

of prior knowledge, such a shape model should have an initial shape that is not favoring 

any spatial topology—therefore it should be a sphere. Furthermore, the associated shape 

estimation technique should allow the model to evolve and change parameterization and 

properties based on the shape of the given data. In other words the parameterization should 

be data driven and not predefined. Finally, the object representation should be able to 

satisfy as discussed above the requirements of both reconstruction and recognition. 

In this paper we propose a new paradigm for shape representation and estimation which 

uses a new class of physics-based deformable models. Starting from the initial model of a 

sphere, the models evolve based on data forces. The representation of the model is changed 

to reflect the shape of the data. This local adaptation of global shape is based on blending 

of arbitrarily shape and is a generalization of the axial blending presented in [4]. 

The shape evolution, based on the localized blending, also allows the adaptation of the 

topology of the model. This amounts to being able to represent objects with no holes, as 

well as objects with multiple holes oriented arbitrarily. 

Based on the underlying shape of the data, multiple local re-parameterizations of the 

global parameters may be necessary.    In our technique this is done through hierarchical 



blending. The resulting model representation is a blend of a series of globally parameterized 

shapes allowing in addition to shape accuracy, a symbolic shape description. Such a symbolic 

shape representation can be expressed as a tree where the leaves are the parameterized 

primitives and where inside-outside relationships are described. Therefore, as opposed to 

all previous part-based shape estimation techniques, our model can be represented as a set 

of connected components where each component is an integral part of the model. Fig. 2 

shows the result of blending of two primitives. An additional benefit of using the above 

models which are parameterized based on global deformations is their robustness to noise 

and their suitability in estimating the underlying shape of sparse and incomplete data, 

without imposing any prior smoothness. 

In this paper, we first define the geometry of the new class of deformable models which 

is based on the hierarchical blending of arbitrarily oriented shapes with global deformations. 

Then we present how blended models can be incorporated into the previously developed 

physics-based estimation framework presented in [19, 26]. We then present modifications to 

this framework that are necessary in order to be able to dynamically evolve an initial shape 

through blending. Finally, we demonstrate our technique through a series of experiments 

involving incomplete range data from various objects with varying topologies. 

2     Geometry of blended shapes 

We will be incorporating blended shapes into the physics-based deformable model framework 

introduced in [19, 26]. In the following sections, we will describe the process of shape blending 

using many example shapes.   In section 4.1, we will see how our vision system starts with 
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a model of a sphere, and incrementally blends where necessary based on forces from the 

data. This adaptive blending process will cause an evolution from a sphere model to the 

final model which represents the data. 

While local deformations can be added on top of our blended shapes to capture shape 

detail, this will be defeating the purpose of our adaptive blending scheme. Even small bumps 

can be represented using blending-although it will most likely use a number of parameters 

on the order of a local representation. If local deformations are desired, then we can define 

a minimum feature size that can be blended. Any smaller features (such as small bumps) 

can be captured by local deformations. 

2.1     Deformable model geometry 

The models used in this paper are 3-D surface shape models. The position of a point on the 

model is given in world coordinates by x which is the result of a translation and rotation of 

its position s, with respect to a fixed (non-inertial) reference frame. The material coordinates 

u = (u,v) of these shapes are specified over a domain 0. The position of a point on the 

world model at time t, with material coordinates u, with respect to an inertial frame of 

reference is 

x(u,t) = c(t) + R(t)s(u,t), (1) 

where c is the center of the inertial frame, and R is a rotation matrix which specifies the 

relative orientation of the inertial frame to a fixed reference frame. 

In the fixed reference frame, the position of model points is defined by a reference shape s. 

This reference shape s is constructed by applying a global deformation T (such as bending) 



with parameters qx to a shape primitive e as follows: 

s(u) = T(e;qT). (2) 

T can be a composite sequence of primitive deformation functions, T(e) = Tn(Tn_i(... Ti(e))). 

For every 3-D shape primitive (such as a superellipsoid [1]), we have e : ti —> R3. An 

example primitive (in this case, a sphere) is shown in Fig. 1, and shows how the material 

coordinates (the domain 0) are "folded up" resulting in the closed shape e. 

e(u,v) : tt —► R3 

Figure 1: Example shape primitive function e(u) = e(u,v) 

For a superellipsoid, Q = [—7r/2,7r/2] X (—7r, 7r]. When folding up this space, we first 

make a "tube" by identifying — ir and ir in v (which amounts to connecting the left and right 

sides of Q in the diagram). We can then form the poles by identifying all points with values 

of u = 7r/2 together (for the north pole), and all points with values u = — ir/2 together (for 

the south pole), which in effect closes each end of the tube. 

To represent the geometry of the primitive, a mesh of nodes is used, where each node is 

assigned a unique point in Q. The edges connecting the nodes represent connectivity of the 

nodes in 17 space. Nodes can be merged together to form a closed mesh where points in f> 

map to the same 3-D model location (such as for the poles of a sphere). As a result, the 

topology of the mesh agrees with the topology of the shape primitive. 



For the applications in this paper, we will be using the superellipsoid and supertoroid 

primitives [1], although any other parameterized primitives could be used. We will later 

see how our vision system starts with a sphere model and uses these components to build 

a blended shape. In the next section, we describe how by combining together these shape 

primitives, we produce a shape model with much greater shape coverage. 

2.2     Blended shape geometry 

A blended shape is a combination of two component shapes. The desired pieces of each 

component shape are selected, and are "glued" together. This gluing is performed using 

linear interpolation [4], which produces a continuous blended shape as a result. We can 

blend together two shapes using the following formula: 

s(u) = Sl(u)a(u) + Tl[s2(B(u))j [1 - a(B(n))j, (3) 

where Si and s2 are the component shapes, as in Fig. 2(a), a : Q —► [0,1] is the blending 

function which controls how each of the component shapes are expressed and how they 

are glued together, a is specified using the blending regions shown in Fig. 2(b). These 

blending regions are overlaid on the material coordinate spaces of the component shapes. 

The portion of these spaces corresponding to the retained surface is shown in white, while 

the portion which is removed is shown in gray. The retained portions of the surfaces are 

shown in Fig. 2(c). Basically, the blending regions specify where to "cut'" the shape (the 

boundary line), and which part of the shape to keep (white or gray). Ideas similar to these 

cutting and gluing operations have been used in studying manifold surgery for topology [10]. 



Manifold surgery has been used to construct manifolds of arbitrary topology using a few 

simple components. B : tt —*• Q is an invertible function which maps the domains of the 

selected region of s2 into the region which was removed from s^ 7Z : R3 —> R3 is a rigid 

transformation (a rotation and a translation), which aligns s2 with Sj. For the moment, we 

will assume that both B and 1Z are identity functions. Finally, s is the resulting blended 

shape, shown in Fig. 2(d). 

Sl 

s2 
u f  J- 

■\- 
__-;.    -        . 

(a) (b) (d) 

Figure 2:   (a) Shape primitives sx and s2 (b) Blending regions (c) Restriction of shapes to 
blending regions (d) Resulting blended shape s 

The resulting blended shape s shown in Fig. 2(d) has a smooth transition between each of 

its components. This will be the case if a has at least O1 continuity, as shown in Fig. 3. For 

the example blending region given in Fig. 3(a), the resulting blending function a is shown 

in (b). Notice how a is 1 where the region is white, and 0 where the region is gray. A 

smooth transition from 0 to 1 connects these two regions. The area on the shape primitive 

affected by this blending region is displayed in Fig. 3(c) as the white region on the shape. 

A discussion of the implementation of a, as well as the size of the transition region (the 



"steepness" of the plateau) is given in section 2.3. 

(b) (c) 

Figure 3: (a) Example blending region (b) Blending function a corresponding to this region 
(c) Area on shape corresponding to this region 

When defining the boundary of blending regions, we must consider the topology of the 

underlying shape. Fig. 4(a) shows a single blending region which includes part of the "seam 

of the tube" where v = IT and v = —T meet. Fig. 4(b) shows an example blending region 

which includes the north pole of a sphere, as well as the area on the sphere which is affected 

by this region. The representation of blending regions is described in section 2.3. 

(a) (b) 

Figure 4:  (a) A blending region which "wraps around" in fl along v (b) A blending region 
which includes the north pole (also shown on the shape) 

In Fig. 2(b), the blending regions of each of the component shapes lines up exactly, so 

that B is the identity function. Usually the blending region boundary for s2 does not have 

such a simple correspondence with the blending region boundary for Si. Fig. 5(b) shows 

how B maps the blending region for s2 to allow a simple correspondence with Si, shown in 

(a).   Note that B maps both the boundary and the space surrounding it.   This permits a 



correspondence to be performed for those points off the boundary where linear interpolation 

is performed (where 0 < a < 1). One must be careful in preserving the orientation of the 

blending boundaries. Each boundary has an implicit direction associated with it (clockwise 

or counter-clockwise) which must be preserved by B. Not doing so can produce a surface 

with a self-intersection where it is turned inside-out. 

(a) (b) (c) 

Figure 5:   (a) Blending region for Si (b) Blending region for S2 (c) Blending region for s2 

after being mapped by B 

In addition to the correspondence in material coordinate space performed by B, there 

must also be a correspondence in 3-D space. In other words, the two components must 

be "lined up" before blending is performed. This spatial correspondence is performed by 

applying a rigid transformation (translation and rotation) to the primitive s2. An example 

of this spatial alignment is shown in figure Fig. 6, where the rigid transformation is shown 

in Fig. 6(b) to (c). The blending regions used by this shape are given in Fig. 5(a) and (b). 

The mesh of the blended result in Fig. 6(d) is a composite mesh formed by combining the 

meshes in (c). A mesh merging algorithm, such as the one presented in [23] can be used to 

perform this merging as a post-processing step to blending. The bottleneck in mesh merging 

algorithms is the nearest-node computations. In this case, the nearest-node computations 

become constant time operations since B provides the correspondence across meshes, and 

only small neighborhoods need to be checked to find the nearest node. 

9 



s2 

(a) (b) (d) 

Figure 6: (a) Shape primitive Si and s2 (b) Restriction of shapes to blending regions (c) 
Component shapes after rigid transformation of s2 (d) Resulting blended shape 

2.3     Representation of blending regions 

For the applications in this paper, the blending regions are defined as rectangular regions 

in Q space. Each region has 6 parameters, cu, c„, plu, pi„, p2u and p2v (where the vector 

pi is linearly independent of p2). There are two different representations used for blending 

regions, depending on their location in 0—those which do not include the pole, shown in 

Fig. 7(a), and those which include the north pole, shown in Fig. 7(b). Blending regions 

which include the south pole are represented in an analogous manner. 

(a) (b) 

Figure 7: (a) Non-polar blending region (b) Blending around north pole 

There are also additional parameters for each blended shape-a translation and rotation 
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to specify 71 (6 parameters), the parameter d which controls the extent of the transition 

region of a, and h which restricts the range of the blending function to [h, 1]. Normally, 

h = 0, but this parameter will be used to lessen or remove the effect of s2 on the resulting 

shape during hole addition (when h = 1, s = Si). 

A straightforward basis transformation operation takes points in ft to points using the 

basis (pi,p2). We will denote the point u e Q expressed in this basis as Ü. Points on the 

boundary of the blending region have ||ü|| = 1, and points on the interior have ||ü|| < 1. We 

can use ü to construct B by converting a value of u to ü using the blending region for one 

shape component, and then back using the blending region for the other component. Note 

that we must preserve the "handedness" of this coordinate system so that surface orientation 

is preserved by the blend. 

We can compute a from ü by setting a to 0 where ||ü|| < 1 — d, to 1 where ||ü|| > 1 + d, 

and to an intermediate value otherwise. Hence we see that d controls the "steepness" of a as 

seen in Fig. 3. To make a smooth, we can construct a piecewise polynomial surface, where a 

Cl smooth connection between 0 and 1 is provided using a surface formed using the Hermite 

polynomial H(x) = 3x2 — 2x3 for x e [0,1]. 

3     Topology and coverage of blended shapes 

3.1     Hole additions 

The addition of a hole requires two blending regions—two parts of a shape are cut out, 

and the hole is glued into this location.  Fig. 8(a) shows a sphere with two parts removed. 

11 



The blended regions for this sphere are also displayed, showing how two regions in 0 are 

removed. Fig. 8(b) shows the hole of a torus. Two separate cuts are made on the torus, and 

the resulting hole is glued into the sphere, shown in Fig. 8(c). 

_L .     _.       ^+J 

(b) (c) 

Figure 8: (a) Superellipsoid (sj) (b) Supertoroid hole (s2) (c) Blended result-a torus 

Unlike the holes in [4] which could only be added between the poles of a sphere, the holes 

presented here are general, and can be added between any two locations of a blended object. 

We will see in section 4.1 how the hole additions are performed by the estimation system. 

3.2     Indentations 

Indentations actually do not require any additional machinery to be produced. But since 

many global shape representations fail to produce shapes with indentations or cavities, it 

is presented here. Fig. 9(a) shows a cylinder with part of the top removed by the given 

blending region. Fig. 9(b) shows a shape which is turned inside out by having a negative 

major axis length (in this case, a^ < 0). This produces a closed surface where the surface is 

on the inside of the shape. Citing off part of this surface reveals the surface on the inside, 

which can be used for making a cavity. When this cylinder and inverted cylinder are blended 

together, they produce the "cup" object seen in Fig. 9(c). 
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(a) (b) (c) 

Figure 9: (a) Cylinder (si) (b) Inverted cylinder (S2) (c) Blended result-a cup 

3.3     Hierarchy of blended shapes 

In the sections above, the blending described is performed on shape primitives only. Without 

any additional machinery, we can perform blending on two component shapes which are 

already blended. This results in a tree structure, where the leaves of the tree are shape 

primitives, and the internal nodes of the tree are blended shapes. Since B is invertible, we 

can use this mapping to find corresponding points on any two component shapes anywhere 

in this tree structure. 

Since holes can be added anywhere, this means that an object of any topology can be 

potentially represented. Later, we will see an example of the fitting of a two-holed object in 

section 5. 

We can produce a symbolic description of a blended shape which displays this hierarchy. 

For each of the experiments performed in section 5, a symbolic description is provided. Such 

a description may be potentially useful for recognition purposes. 

« 

4    Dynamics and generalized forces 

In [4], the dynamics framework of [19] was extended to accommodate blending. We find that 

similar modifications are needed to incorporate the blending described here. In this frame- 
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work all the degrees of freedom of the model (translation, rotation, and global parameters) 

are collected together to form the generalized coordinates of the model, q, 

q = (qc,qö^)', (4) 

where qc = c(i), qe is the quaternion used to specify R(£), and qs is given by 

qs = (qJi.qb
T

2.qi
T.q^)T. 

qS] and qS2 are the parameters of each of the component shapes, qj are the parameters that 

specify a, B and 1Z, and qT are the parameters of the global parameterized deformations. 

For a hierarchical blended shape, each of the component shapes qSl and qS2 can either be a 

primitive, or child blended shape which will have the form given by (5). 

When fitting the model to data, the goal of shape reconstruction is to recover the pa- 

rameters in q. The approach used here performs the fitting in a physics-based way—the 

data apply forces to the surface of the model, deforming it into the shape represented by 

the data [26]. In shape estimation applications, we use a simplified form of the Lagrange 

equations of motion [18] where the mass is set to zero (so that the model has no inertia and 

comes to rest as soon as the applied forces equilibrate or vanish): 

Dq = fq = (fc
T,f0

T,ft 
T   ,T   ,T)T_ 

where D is the damping matrix and where fq are the generalized forces [19]. These general- 

ized forces can be further broken down into components each corresponding to a component 
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of q as given in (4) above. 

Using (6), q can be computed, and an integration method can be used to update q. 

Performing this process iteratively results in the model more closely representing the desired 

shape. In this implementation, an adaptive Euler integration method is used to update q. 

We compute the generalized forces fq from the 3-D applied forces. The computation of 

fc and ffl are the same as described in [19]. The computation of fs is given by 

fs = (RJS)    fapplied- (7) 

We compute Js, the Jacobian for the global shape s, as follows: 

Js = <9s/dqs. (8) 

The Jacobian of the global shape, Js, "converts" the applied forces into generalized forces, 

which will deform the global shape. The addition of blending changes the computation of 

Js. In particular, from (3) and (8): 

Qf(u)JSl (l-Q(ß(u)))ftrot(JS2; 

where JS] = dsi/dqSl is the Jacobian for the first shape, JS2 = ds2/dqS2 is the Jacobian for 

the second shape, and J& is the Jacobian for the parameters of the blending function, and 

reflects how the global shape s changes with respect to the blending function parameters q;,. 
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TZrot is the rotational component of 71. From (3), we find that 

"■^-(-^-«(-W)))^ "») 

Given the implementation of a presented in section 2.3, we can construct a piecewise deriva- 

tive of each of the blending parameters in q^. 

4.1     Model evolution 

Our initial model in our estimation system is always a single superquadric primitive having 

the shape of a sphere. During the fitting process, we can decide to perform blending based 

on the shape and forces from the data points. When we split the model this way, we must 

define the blending regions, as well as specify the other shape we are blending with. The 

experiments in section 5 give examples of this model splitting, showing an evolution from a 

sphere to the final model. 

For a given shape model and data, the shape estimation process eventually reaches a 

steady state, where all applied forces equilibrate or vanish. When these forces do not vanish, 

it is due to the inability of the model to reach a shape that fits the data well. Fig. 10(a) 

shows an example situation where forces are equilibrated. A superellipsoid cannot produce 

the tapered shape represented by this data. 

We can apply a region growing algorithm [20] (where the region consists of nodes, and 

the connectivity is defined by the mesh) to find these regions on a shape where there are 

non-zero forces. Fig. 10(b) shows such a region for the shape and data given in (a). 

During the estimation process, we can compute these regions on the shape where the 
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(b) 

Figure 10: (a) 2-D cross section of a superellipsoid with forces from data points that have 
equilibrated (b) region on shape where forces have equilibrated 

forces have equilibrated. We can then replace the current model with a blended model. 

The boundary of both blending regions is set to the boundary we computed from the region 

growing (so initially B is the identity mapping). We also initially set all relevant parameters 

in s2 to those taken from Si (for a superquadric, al5 a2, a3, ei, e2). 

This operation only changes the representation of the model, not its shape. The benefit 

of performing this split, is that in the area of this region of force equilibration, the shape can 

now deform to capture the deviation in the data that is causing the equilibration. Looking 

at (9), we notice that the blending function has the desirable effect of localizing the effect 

of a force to the appropriate shape component. So the forces that were pulling on S\ in the 

blending region will now cause the deformation of s2. 

This method also applies to fitting shapes with indentations or cavities. If the size 

parameters (a1: a2 and a^) of s2 become smaller (or even negative), then there will be an 

indentation present at that location. 

The addition of a hole to the model involves the proximity detection of different parts 

of the model. Surface intersection detection methods such as [16] can be used. Once this 

proximity is detected, we can correctly position the hole and construct a blended shape. 

This involves specifying % so that the ends of the hole line up with the removed parts of 
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the original shape. Holes do not necessarily have to form between two locations on the same 

shape primitive. If the hole is deep, it is very common for the hole to form between two 

parts of the model which are cavities which formed due to the presence of the hole in the 

data. This can been seen in the experiment in Fig. 15(f)-(g). The blending regions for Si are 

computed from the region growing computation described above. As described in section 3.1, 

the only part of the supertoroid that is used is the "hole". The initial blending region for s2 

can be taken from Fig. 8(b). We must also specify 1Z, so the location of the hole is aligned 

with the regions on S\. This can be performed by a seperate fitting process where the 3-D 

positions of boundary regions of Si can pull on a model containing the boundary regions of 

s2. A bending deformation can be added to the hole to include bent holes. 

Fig. 11 shows the transformation from a shape model shown in (a) (in this case, a sphere) 

to include a hole (d). The model shown in Fig. 11(b) is the model which is constructed when 

the blend is created. The torus hole is not expressed in the resulting shape since h. = 1, 

and the topology of the mesh of the torus is set to that of a sphere [4]. During the fitting 

process, if a hole is present in the data, data forces will change h to have the value 0, shown 

in Fig. 11(b). When h = 0, the topology of the torus mesh is set to be that of a torus, and 

the shape is a torus with a zero sized hole. When h > 0. then we do not permit the torus 

hole to open, since doing so will produce an open surface. 

It is by these two processes-the addition of a blending region of the same shape type, 

and the addition of holes, which produce the evolution of the model from a sphere to the 

final model. Neither of these processes changed the shape of the model initially. Instead, 

they added blending to the model in a particular location which allowed the model to gain 
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(b) (d) 

Figure 11: Hole addition (a) Starting shape (b) Shape blended with torus with h = 1 (c) 
Shape blended with torus with h = 0 (d) Shape blended with torus with open hole 

a better fit on the data. Then, the parameters used to specify a, B and 71, in addition to 

the global parameters, are updated by the fitting process by applied forces from the data. 

4.2     Force-model assignment 

When fitting data which represent a shape with a cavity or hole, care must be taken in 

assigning forces from the data points. If a nearest-node assignment method is used, the 

points on the inside of a cavity or hole may pull on the back side of the surface nearby. The 

reason why this point choice is incorrect is because the data is pulling on a point behind the 

surface that the data represents. In other words, the range data does not distinguish the 

"inside" of its shape from its "outside". 

When taking range data, it is important to record (at least roughly) where the sensor 

position was for each data point. This information is often omitted from range data sets. If 

we have a vector for each data point which indicates the direction of the sensor, we know that 

half-space which includes that vector also includes the normal to the surface of the scanned 

object. Therefore, when we choose which node of our model to attach to a data point, 

that model node should be in this half-space. This modification allows fitting of objects 

with cavities or holes. Fig. 15 is an experiment where this force-model assignment method 
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produces the correct fit. 

5    Experiments 

In the following three fitting experiments, we show the results of using our shape estimation 

system. Fig. 12 shows information on each of the experiments including the source and size 

of the data set, the number of parameters in the final model, the number of iterations taken 

by the solver, and the resulting mean squared error (MSE). 

Data Source Points MSE #Parm Iter 
block/cylinder 
mug 
two holed 

MSU (column2) 
MSU (cupl) 
CAD generated 

1034 
1207 
893 

1.35% 
2.83% 
1.02% 

29 
68 
83 

190 
372 
511 

MSU: data from the Michigan State University PRIP database [12]. 

Figure 12: Experiment data and statistics 

In each of the three examples, the data set and initial model of a sphere is shown. The 

first fit shown is a rough fit—by fitting the a,\, a<i and a 3 parameters of the initial sphere. 

Fig. 13(d) shows the first adaptation of the shape model, where a blending region was 

added (in gray). The blended region added is shown in (e). After fitting the new shape 

model, the shape in (f) is formed, followed by the final fit in (g), and the final blending 

regions in (h). A symbolic representation of the object is shown in (i). 

The fitting of a mug is shown in Fig. 14. The blending region which corresponds to the 

mug handle forms in (d), and after rough fitting is shown in (e) with the corresponding 

blending region in (f). After further fitting of the handle in (g), a hole blend is added in (h) 

with blending region (i).   After rough fitting and hole opening (j), the final fit is obtained 

20 



■.■■:". i 

TO •I;A 

«■•** 

■■■•■ ■'■■ .   ■•:./>•■-.XU-igf.%- ~-pfc.$: 

(a) (b) 

'■ 1i   '   '   ' ';—;■--;——■■;■ 

(d) 

PS 
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f^ 

(g) (h) 

Figure 13: Fitting of a block and cylinder: (a) range data (b) initial model (c) model after 
rough fit (d) blending added (e) initial blending regions (f) rough fit after blending (g) final 
fit (h) final blending regions (i) symbolic representation 

(k). A symbolic description of a mug is shown in (1). 

Finally, the fitting of an object with two holes is shown in Fig. 15. A indentation blending 

region for one of the holes is formed in (d), and after initial fitting becomes indented (e). 

After several more blends, the shape evolves two additional indentations (f). After further 

fitting, a hole has formed in (g). The second hole has formed in (h), and the final fitted 

result is shown in (i). 
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6     Conclusion 

We have presented a new approach to shape modeling where the models used are not pre- 

parameterized, and have the ability to adapt to the topology of the given data based on 

the forces exerted from the data to the model. The models automatically evolve, based on 

blending of parameterized shapes. The blending allows both accuracy in shape estimation 

and symbolic shape description. The techniques presented here also allow a hierarchical 

evolution of the initial spherical shape to fit the given data, making the estimation process 

more robust. Since the model is based on global parameterizations, the technique is robust 

to noise and can be used in sparse and incomplete data. Finally, unlike all other previous 

part-based shape estimation techniques, our shape representation is based on a connected 

component description where each component is an integral part of our model. We have 

presented shape estimation results for objects with varying topology whose shape could not 

be estimated compactly and robustly with previous shape models and techniques. 
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(d) 

(g) 

(c) 
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i — 

(e) (f) 

rtqn 

(h) 0) 

Cylinder 

Handle Handle hole 

(j) (k) (1) 

Figure 14: Fitting of a mug (a) range data (b) initial model (c) rough fit (d) blending region 
added (e) rough fit of blended shape (f) blending regions after rough fit (g) further fit of 
blended shape (h) addition of hole blending region (i) blending regions for hole (j) rough fit 
(k) final fit of mug (1) symbolic representation 
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(h) a: 
Figure 15: Fitting of a two holed object (a) range data (two views to show sparsity) (b) 
initial model (c) rough fit (d) blending region added (e) indentation formed (f) two more 
indentations formed (g) hole formed between two indentations (h) second hole formed (i) 
final shape (j) symbolic representation 
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Abstract. In producing realistic, animatable models of the human body, 
we see much to be gained from developing a functional anatomy that links 
the anatomical and physiological behavior of the body through fundamental 
causal principles. This paper describes our current Finite Element Method 
implementation of a simplified lung and chest cavity during normal quiet 
breathing and then disturbed by a simple pneumothorax. The lung model 
interacts with the model of the chest cavity through applied forces. The 
models are modular, and a second lung and more complex chest wall model 
can be added without disturbing the model of the other lung. During inhalation, 
a breathing force (corresponding to exertion of the diaphragm and chest wall 
muscles) is applied, causing the chest cavity to expand. When this force 
is removed (at the start of exhalation), the stretched lung recoils, applying 
pressure forces to the chest wall which cause the chest cavity to contract. To 
simulate a simple pneumothorax, the intrapleural pressure is set to atmospheric 
pressure, which removes pressure forces holding the lung close to the chest 
cavity and results in the lung returning to its unstretched shape. 

1    Introduction 

For some time now, we at the Center for Human Modeling and Simulation at the University 
of Pennsylvania have been developing human behavior models for virtual agents in simulated 
worlds. One underlying philosophy has been that producing realistic behavior involves both 
presenting our agents with accurate visual graphics and endowing them with structural and 
functional constraints of the body, as they interact with their world. 

To produce analogous realism in our virtual agents' bodies, we recognize the critical 
relationship between the physical existence of an anatomical part with the functional role(s) 
it plays. This has led us to to couple our quantitative deformable model techniques [6] 
with models of the physiological mechanisms that produce physical changes. This allows 
us to design models that reflect the fact that anatomical parts have two intrinsic, interrelated 
existences: they are physical objects that obey physical laws, and they are part of physiological 
systems, so their behavior contributes to the overall functioning of the body. They are 
interrelated because changes to one can affect the other, both as part of the same system and 
as a result of physical adjacency. 

"This work has been supported by the National Library of Medicine under grant number NOl-LM-^1—3515. 



Figure 1: Qualitative, idealized lung model 

1.1    The Effort 

For several years we have been working to provide computer-based decision support in aid 
of the initial definitive management of multiple trauma [2, 9, 12]. Because trauma disrupts 
physiological processes through anatomy, we see much to be gained from creating ^.functional 
anatomy that will aid in visualizing and predicting the results of penetrating trauma to the 
human torso. A functional anatomy links the anatomical and physiological behavior of the 
body using fundamental, causal principles. Another area of medicine that can gain from 
models of functional anatomy is the emerging field of Virtual Surgery. To date, however, 
many efforts have concentrated on providing realistic images and dynamics (e.g., Noar [7] on 
techniques used in endoscopic simulators), neglecting functional issues. The consequence is 
that a necessary characteristic for virtual surgical simulators [10], reactivity, that organs must 
react appropriately to manipulation or cutting, such as by bleeding or leaking fluid, cannot be 
achieved. 

We chose first to model the respiratory mechanism since it involves physiological change, 
such as pressures and flows, that depends on gross anatomical deformations. Ultimately, with 
models for other physiological systems [8], we want to demonstrate their interaction due to 
the physical space they share. 

We currently express physiological dynamics in both a quantitative and qualitative frame- 
work. This provides us with a mixed quantitative/qualitative description of physiological 
behavior, which may be more appropriate for explanation than a purely quantitative model. 
Our system consists of two integrated levels of abstraction: (i) geometric and physics-based 
modeling of anatomy (shape extraction, motion, deformations, and graphical rendering); and 
(ii) simulation of physiological mechanisms that behave in accordance with physical laws and 
physiological processes. 

This paper describes our ongoing effort [3] involving the procedures we have developed 
that graphically demonstrate organ geometry, physics, and physiological dynamics. It details 
our current implementation of a simplified lung during normal, quiet breathing, describing the 
quantitative results of our Finite Element Method implementation, based on techniques from 
[6]. 

Our qualitative formulation of the dynamics involved in quiet breathing is described in [3]. 
It makes use of the qualitative simulation paradigm QSIM [4]. Figure 1 shows the quantities 
we considered, assuming constant resistance and compliance. 



2    Quantitative Lung Modeling 

Our anatomical modeling is based on our physics-based framework [6, 11] for shape and 
nonrigid motion estimation and synthesis. This framework features a Lagrangian dynamics 
framework which will be used to describe the dynamics of our lung model. The geometry of 
the lung model will be chosen so that we may utilize these previously developed methods for 
deformable body mechanics. 

When applying Lagrangian dynamics [6], we obtain second order equations of motion 
which take the general form 

Mq + Dq + Kq = gq + fq, (1) 

where q are the generalized coordinates (the degrees of freedom) of the model, M, D, and K 
are the mass, damping, and stiffness matrices, respectively, gq are inertial forces, and fq are the 
generalized external forces. The vector q contains the information needed to specify the shape 
of the lung. If the equation of motion (1) is integrated over time, the dynamic deformation of 
the model is observed. 

The shape and viscoelastic properties of the lungs are modeled by using isoparametric 
finite elements [13]. Because we currently lack detailed data on the elastic properties of the 
viscoelastic material of the lung, we use linear finite elements. However, our methodology is 
general and is also applicable to non-linear finite elements. 

We incorporate the isoparametric finite elements into the Lagrange equations of motion (1). 
The finite elements are used to compute internal elastic forces that arise due to the deformation 
of the lung. This deformation is caused by applied forces that include pressure and collision 
forces. 

We can now use this model to create dynamic simulations of inhalation and exhalation, 
and also of a simple pneumothorax. Our model of the lung interacts with the surrounding 
chest cavity by applied forces. This type of representation of the lung lends itself to a modular 
approach, where this lung model could be incorporated into a larger model of human anatomy 
without changing the implementation. For instance, the addition of a second lung or heart 
would not require changes in the implementation of the first lung. The first lung need not 
"know" about the other lung or the heart directly. Their effects could be dealt with through 
applied forces. 

2. /    Model Geometry 

The following sections describe the lung model used in the dynamic simulation. While the 
model is two-dimensional, it observes the qualitative behaviors of a full lung model in three 
dimensions. 

This lung model will react to external forces that include pressure forces (due to the 
difference in pressure between the lung and intrapleural space), and contact forces caused by 
the lung rubbing against the chest wall. 

The lung is contained within the chest cavity. For this implementation, the chest cavity is 
given two degrees of freedom, which correspond to diaphragm and chest wall deformation. 
This simplified chest model is suitable currently, for the purpose of demonstration. However, 
because of the modularity of our lung model, we could add a more complex chest wall model 
without disturbing our model of the lung. This chest cavity model contains what is necessary 
for simulation of inhalation and exhalation. Figure 2 shows kinematic motion of the chest wall 
at the extremes-(a) at rest, and (b) fully inhaled. 



(a) (b) 

Figure 2: Geometry of the chest wall (a) at rest, and (b) after inhalation 

(a) (b) (c) 

Figure 3: Dynamic construction of lung model (a)-(b), and finite element mesh geometry (c) 

Within this chest wall is the finite element mesh for the lung and intrapleural space. 
The initial model can be constructed by creating the lung in its unstretched shape shown in 
figure 3(a), and then setting the intrapleural pressure to its negative value (with respect to 
atmospheric pressure), resulting in the lung at rest in (b) (recall that the lung is stretched in 
its normal resting state due to the negative intrapleural pressure). In this (and all following) 
model diagrams, the lung is shaded with a light gray, and the intrapleural space with a darker 
gray. A diagram of the finite element mesh used is shown in figure 3(c). 

2.2    Model Dynamics 

During inhalation, the increase in size of the lung is due to pressure forces. As the chest cavity 
increases in volume, the difference in pressure between the lung and intrapleural space causes 
the lung to expand. For the applications in this paper, we make the simplifying assumption 
that the pressure changes occur instantaneously. This means the lung is always at atmospheric 
pressure, and the intrapleural space has one common pressure, P, which changes assuming 
PV is constant (where V is the intrapleural volume). 

The forces that arise due to pressure differences occur at the boundaries of the intrapleural 
space, which is the only location where two adjacent elements will differ in pressure. For such 
an element, we can compute the pressure force at a node along an element edge as 

P 
./pressure = ~Tn (2) 

where P is the pressure of an element, / is the length of the edge, and n is a normal pointing 



Figure 4: Inhalation of the lung 

out of the element that is perpendicular to the edge. This is a 2-D analog of the / = P/area 
relationship. When considering the sum of all pressure forces, the net contribution of force for 
each edge is related to the pressure gradient across the edge. 

2.2.1    Chest Cavity Dynamics 

The deformation of the chest cavity is performed by specifying its two degrees of freedom- 
diaphragm and chest wall shape. The pressure forces described above not only are applied 
to the lung, but also act on the chest wall. Using our Lagrangian dynamics framework, these 
applied forces are converted into generalized forces which directly control the shape of the 
chest cavity. During inhalation, a breathing force (corresponding to exertion of the diaphragm 
and chest wall muscles) is applied, causing the chest cavity to increase in size. Once this force 
is removed (at the start of exhalation), the stretched lung recoils, applying pressure forces to 
the chest wall, causing the chest cavity to decrease in volume. 

The contact forces due to collision of the lung with the chest wall are implemented as in 
[5]. 

2.3    Simulations 

The following are simulations using the dynamic lung model described above. These simu- 
lations run at interactive rates on a 100 MHz R4000 VGX SGI. Figure 4 shows a simulation 
showing the process of inhalation using our model. The behavior of this model agrees quali- 
tatively with our qualitative physiological model. 

To simulate a simple pneumothorax, we can set the intrapleural pressure to be equivalent 
to body surface pressure (atmospheric pressure) in our model. This will eliminate any pressure 
forces holding the lung close to the chest cavity. The resulting collapsing motion of the lung is 
shown in figure 5. The location of the injury is indicated by the gap in the chest wall. Notice 
how the lung returns to its unstretched shape, as shown in figure 2(a). 

3    Conclusion 

Our work involves the simulation, modeling, and visualization of anatomical and physiological 
mechanisms, considering in particular pathology related to penetrating injuries. Our intent 
is to provide a reusable anatomical knowledge base coupled directly with knowledge of the 



Figure 5: Simple pneumothorax of the lung 

underlying physiology, or what we refer to as a functional anatomy. A functional anatomy links 
the anatomical and physiological behavior of the body through fundamental causal principles. 

In this paper, we have examined one aspect of our project, the Finite Element Method 
implementation of a two-dimensional, idealized lung. This preliminary work will be used as 
the basis for our continuing physics-based three-dimensional modeling which we will apply to 
simulating normal respiratory physiology and related pathologies. It will also serve as a basis 
for considering the interaction of physiological systems due volume constraints. 
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Abstract 

We present a new method for analyzing the 3D motion of the heart's left ventricle 
(LV) from tagged magnetic resonance imaging (MRI) data. Our technique is based on 
the development of a new class of volumetric physics-based deformable models whose 
parameters are functions and allow the definition of new parameterized primitives and 
parameterized deformations which can capture the local shape variation of a complex 
volumetric object. These parameters require no complex post-processing in order to 
be used by a physician. Using a physics-based approach, we convert these volumetric 
geometric models into deformable models that deform due to forces exerted from the 
data points. We present a new technique for calculating forces exerted by tagged MRI 
data to material points of the deformable model. These new volumetric models allow 
the accurate estimation of the shape and motion of the inner and outer walls of the 
LV, and the shape and motion within the walls. We present experiments involving the 
extraction of shape and motion of the LV during systole. Furthermore, by plotting the 
variations over time of the extracted LV model parameters from normal heart data we 
are able to quantitatively analyze and compare the epicardial and endocardial motion. 

Key words: Medical Computer Vision, Motion Analysis, Shape Representation, 
Volumetric Deformable Models with Parameter Functions, Physics-Based Modeling. 



1    Introduction 

Characterization of heart wall motion on a regional level is required to understand cardiac mechan- 

ics and the processes of underlying disease such as ischemia. Previously, material points on the 

myocardium have been located and tracked in order to accurately measure heart wall motion. Such 

marker-based methods have included the implantation of beads [21] or ultrasonic crystals [20], use 

of naturally occurring landmarks [22], and MR tagging [26]. SPAMM (SPAtial Modulation of Mag- 

netization) [1], which is a magnetic resonance imaging technique with magnetic tagging, has been 

developed at the University of Pennsylvania. This technique has been used to demonstrate regional 

motion patterns during systole[16, 2], and the methods for calculating material deformation have 

been validated using deformable phantoms [24]. The advantage of the SPAMM technique is that 

a number of material points can be marked in a very short time with a simple procedure, and can 

be tracked during systole in a non-invasive setting, providing temporal correspondence of material 

points. This correspondence in conjunction with the use of the three dimensional location of each 

tagged point can be subsequently used as input to a motion analysis technique to extract the three 

dimensional motion parameters. 

Recently, computer vision techniques for reconstructing the 3D surface shape and motion (en- 

docardial) of the left ventricle (LV) of the heart from CT or MRI data have been developed 

[9, 6, 18, 3, 17, 4, 13] and are based on the use of finite elements, spring-mass systems, defor- 

mation modes, bending and stretching thin-plate models, and other physics-based or geometric 

techniques. One limitation of the above techniques is that they do not capture the twisting motion 

of the heart, known to occur during systole. Also, they are formulated in terms of either many local 

parameters that require non-trivial processing to be useful to a physician, or very few parameters 

that can offer only a gross approximation of the motion of a heart. To overcome the problems of 

the above techniques in terms of accurately estimating the LV surface shape and motion and in 

order to extract parameters that can be easily interpreted by physicians Park et al. [14] developed 

a new class of surface deformable primitives whose global parameters are functions. These new 

models can capture the axial twisting, bending, and contraction of the LV surface. The input to 

these models were datapoints sampled from the mid-wall of the 3D finite element model of Young 

and Axel [23]. which estimated the LV shape and motion from MRI-SPAMM. 

However, the LV motion can't be captured entirely with surface models because the endocardial 

and epicardial motions are sufficiently different. Recently, techniques for analyzing the volumetric 

motion of the LV have also been developed. Young and Axel [23] and Moore et al. [12] used 3D 

finite elements and SPAMM data, while Denney and Prince [5] used a multidimensional stochastic 

model and tagged MR image sequences. The main limitation of these techniques is that there 

is an enormous amount of information on motion and deformation captured. In [23] the three- 

dimensional strain tensor, for example, has three normal components and three shear components, 

each of which may vary with position in the wall as well as over time. In order to understand the 

complex relationship between these components and other motion parameters, it is desirable to 

characterize the motion in terms of a few physical parameters that offer sufficient accuracy. 

In this paper we present a new general class of volumetric primitives for estimating and ana- 



lyzing the full motion of the LV from MRI-SPAMM data. Through our technique we estimate the 

deformation and motion of the LV in terms of a few "global" parameter functions, such as twisting, 

whose value is allowed to vary locally. In this way the complex motion of the heart is described 

by the same small number of parameters, which vary from region to region. Therefore, we can 

capture the shape and motion 1) of the LV walls and, 2) in between the walls. Furthermore, these 

parameters are intuitive and can be used by a physician without further complex processing. These 

new volumetric deformable primitives are parameterized using global parameter functions whose 

value varies across the shape of the primitives as opposed to being constant [10, 19]. Through the 

use of appropriate parameterization the axes of the deformable primitives can be curved. This is 

a generalization compared to other parameterized volumetric primitives used in computer vision. 

Fig. 1(c) shows an example of the new family of volumetric deformable primitives with parameter 

functions, used in estimating the volumetric shape of the LV. 

(b) (c) 

Figure 1: Volumetric Deformable Models 

While these new shape primitives can be used in many applications, we here present shape and 

motion estimation results for the LV. By incorporating the geometric definition of the models into 

our physics-based framework [10], we create dynamic models that deform due to forces exerted 

from 3D MRI-SPAMM datapoints and conform to the given dataset. The initial shape of the LV is 

captured based on contour information from the inner and outer walls of the LV, which is extracted 

using snakes [7]. Given that the geometry of the MRI-SPAMM data is such that the given data lie 

in sets of orthogonal planes, we develop a new algorithm for extracting forces from the given data 

to material points within our volumetric model. By solving a cubic equation, we first define the 

model's material coordinate where the computed force is being exerted. Then we extrapolate the 

computed force to the nodes of the corresponding volumetric finite element. Subsequently, we use 

the physics-based methodology developed in [10] to estimate the values of the parameter functions 

of our model. The LV extracted parameters can then be directly used for analysis by a physician 

after plotting parameter graphs. 

We applied our technique to normal subjects and analyzed the results of our parameter extrac- 

tion. These results quantitatively verified qualitative knowledge about the LV known to physicians. 

Furthermore, we present a method for visualizing the model fitting results. 



2    Volumetrie Deformable Models with Parameter Functions 

2.1    Geometry 

Our new class of deformable models allows the use of global parameters that can characterize a 

volumetric shape in terms of a few parameter functions. 

The material coordinates of our model, u = (u, v, w), are defined in a three-dimensional domain 

ft, and the positions of points on the model relative to an inertial frame of reference $ in 3D 

space are given by a vector-valued, time-varying function x(u,Z) = (x(u,t),y(u,t),z(u,t))T, where 

denotes transposition.  We set up a non-inertial, model-centered reference frame <j> and express 

the position of a point on a model as 

x = c + Rs, 

where the center of the model c(i) is the origin of 4> and the rotation matrix R(t) gives the 

orientation of <f> relative to $ with a reference shape s. Thus, s(u,/) gives the positions of points 

on the model relative to the model frame. Local deformations [10] are not used, since the global 

deformations s will be defined based on parameter functions capable of capturing the local variation 
of the LV shape. 

We define the reference shape as 

s = T(e;A,(u),/?i(u),...), 

where e can represent either a set of 3D points in space1 or a geometric primitive e(u; a0(u), 

OJI(U),. ..) defined par'ametrically in u and parameterized by the variables a,-(u). The shape rep- 

resented by e is subjected to the deformation T which depends on the deformation parameter 

functions /?;(u). Although generally nonlinear, e and T are assumed to be differentiable2 so that 

we may compute the Jacobian of s. T may be a composite sequence of primitive deformation 

functions T(e) = Ti(T2(.. .Tn(e))). We concatenate the deformation parameters into the vector 

qs = (Qo(u),a1(u),...,/30(u),/31(u),...)T. 

The parameters at and ßt are functions of u, instead of constants. This definition allows us to 

generalize definitions of volumetric primitives (e.g., volumetric superquadrics, cubes) and param- 

eterized deformations (e.g., twisting), as will be shown in the following section and was demon- 

strated for surface models in [14]. Our technique for creating volumetric primitives with parameter 

functions can be applied to any parametric primitive, by replacing its constant parameters with 
differentiable parameter functions. 

For the applications in this paper, the orientation of the deformable model is schematically 

drawn in Fig. 2. The model-centered reference frame 4> is chosen at the center of the LV with the 

y-axis pointing towards the right ventricle (RV). The material coordinates u = (u, v, w) are depicted 

in Fig. 2(b), where u runs from the apex to the base of the LV, v starts and ends at the point 

In that case, the material coordinates u coincide with the Cartesian space in which the 3D points are expressed. 
In the case where e is a set of points, the above assumption does not apply. 

2 



where the septum is located, and w is used for the definition of model points between the inner and 

outer walls of the deformable model. We will also assume that a,-(u) = as-(«, w), /3;(u) = ßi(u,w). 

Fig. 1(a) is an example of the volumetric model with constant parameters, and Figs, l(b-c) are 

examples of two volumetric models whose parameters are functions of w and of (u, w), respectively. 

w   < 

Short-axis view Long-axis view 

(a) 

Figure 2: Orientation of a model 

To create a volumetric model for the LV, we first define a generalized volumetric primitive 

e = (ei,e2,e3)T as follows3: 

e = e(u;ai(u),a2(u),a3(u))    =    aQw 

( ai(u) cos u cos v 

02(u) cos« sin v 

\ ct3(u) sin u 
(1) 

where -TT/2 < u < 7r/4, —IT < v < w, O,Q(U) > 0, and 0 < ßi(w), 0,2(11), 0.3(11) < 1. ao is a scale 

parameter and a\, a2 and a^ are the aspect ratio parameters along the x-, y- and z-axis, respectively. 

Note that the ranges of the u and v parameters for our generalized volumetric primitive are defined 

(see (1)) in order to construct an open volumetric parameterized primitive. To define our model 

we further add parameterized twisting and axis offset deformations. 

Given the above defined primitive e = (ei,e2,e3), we define the parameterized twisting along 

the model axis z, which results in the global shape s^ = (s\,S2,S3)T: 

st = Tt(e;T(u,w))    = 

e\ cos(r(w, w)) — e2 sin(r(w, w)) ^ 

e\ sin(r(u, w)) + e2 COS(T(U, W)) 

«3 / 

(2) 

where T(U, W) is the twisting parameter function along the axis z. Finally, we apply offset deforma- 

tions which allow the axis to be non-straight in the x and y directions. In this way we can recover 

3This is a generalization of the definition of an ellipsoid. 



the LV shape more accurately. The resulting reference shape s is expressed as follows: 

/ si   +   elo(u,w) \ 
s = T0(Tt(e;elo(u,w),e2o(u,w))   =     \   s2   +   e2o(u,w)      , (3) 

where ei0(u,w) and e2o(u,w) are axis-offset parameter functions in the x and y directions, respec- 
tively. The model parameter functions qs used in this paper are piecewise linear functions, to avoid 
smoothing C° regions of the LV. 

2.2     Kinematics and Dynamics of the System 

The velocity of points on the model is given by [10]: 

x = [I   B   RJ]q = Lq, (4) 

where L is the model Jacobian matrix which maps the model's parameter space into the 3D space, 
<1 = (q^qj^qj)1^ is the vector of the model's degrees of freedom, qc = c and q# is the vector of 
the rotational degrees of freedom expressed as a quaternion. Finally, B = [...<9(Rp)/<90;...] and J 
is the Jacobian of the reference shape s. 

We can make our model dynamic in q by introducing a deformation strain energy [10]. The 
mass density was set to zero for the shape recovery application so that the system has no inertia. 
The resulting simplified dynamic equations of motion are 

Dq = f„ (5) 

where D is the damping matrix and f,(u,f) are the generalized external forces associated with 
the degrees of freedom of the model. This equation yields a model that comes to rest when all 
the applied forces equilibrate or vanish. We also decouple the equations by assuming that D is 
diagonal and constant over time. We employ an adaptive-step first-order Euler method to integrate 
(5). Given that the MRI-SPAMM data are relatively accurate and to avoid undesired smoothing 
caused by the model, we did not introduce any internal stiffness, K, to the global parameters of 
our model. 

The generalized forces f? are computed using the formula 

f0 =  I LTfdu. x9 / 

These forces are associated with the components of q, where f(u,i) is the 3D force distribution 
applied to the model. 



3    Boundary and SPAMM Data 

The data were obtained from the Department of Radiology, University of Pennsylvania and were 

collected during the LV systole over 5 intervals. The SPAMM data collection technique is based 

on the application prior to imaging of a saturation pulse sequence where the amplitude of the 

magnetization varies spatially, in a sinusoidal-like fashion. This saturation pulse sequence forms 

the tagging planes. At the minima of this sinusoidal-like variation of the magnetization, dark lines 

appear in the image plane which intersects the tagging planes. If we continue to image the tissue 

after the saturation pulse sequence is applied, we can see those dark lines move, allowing us to 

track the motion of the underlying tissue. To track points instead of lines, we apply another set 

of saturation pulse sequences which form a set of tagging planes orthogonal to the previous set 

of tagging planes. The intersection on an image plane of the associated dark lines defines the 

SPAMM datapoints on this plane. Figs. 3(a) and (b) show short axis views of a LV at end-diastole 

and towards end-systole, respectively, where the SPAMM datapoints are defined by the intersections 

of the respective dark lines. The method for extracting these intersection points was described in 

[25]. 

(a) time=l (b) time=4 

Figure 3: SPAMM images 

Given that every image plane is spatially fixed, while the LV moves, the through-plane motion 

of the SPAMM datapoints on every image plane cannot be captured. Fig. 4 shows the location of 

a SPAMM datapoint S at two different times t\ and t2. Initially, S(t\) coincides with a material 

point M(<i). However, the motion of the SPAMM datapoint between these two time-instances 

corresponds to the component on the image plane of the motion of the material point M, which 

at time t2 lies somewhere along the line of intersection of the tagging planes at time t2 as shown 

in Fig. 4. Therefore, we need to combine two sets of mutually orthogonal image planes (e.g., short 

and long axis views) to estimate the 3D motion of the LV. These sets of SPAMM datapoints are 

shown in Fig. 8. 

It is also important to mention that the SPAMM data in the two orthogonal sets of image 

planes do not correspond to the same material points, but to different material points. These 

observations will be used in the calculation of the forces exerted from the SPAMM data to the 

volumetric deformable model. 

To determine the initial shape of the inner and outer walls of the LV. we use snakes [7] to 
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image plane 

tagging plane 

tagging line (t=l) 

tagging line (t=2) 

O   material point (M) 

•     SPAMM data point (S) 

Figure 4: Tagging Planes and Image Planes 

capture sets of 2D boundary contours from the two orthogonal sets of image planes. The boundary 

datapoints sampled from the contours at the initial time t = 1 (end-diastole) is shown in Fig. 9(a). 

where black dots are for the outer wall and white dots are for the inner wall. 

The boundary and the SPAMM datapoints will exert forces on our model in order to estimate 

the shape and motion of the LV. 

4    Model Force Computation from the Data 

Depending on the type of data we compute the corresponding forces on the model in two different 

ways. We assume a triangular tessellation of the inner and outer walls of the volumetric primitives 

(as depicted in Fig. 2(b)) which are the faces of a prismatic tessellation of the volumetric model. 

4.1     Force Computation from Boundary Data 

Boundary data simply constrain the shape of the inner and outer walls of the LV and provide 

no correspondence of points over time. Therefore, we compute the forces from each boundary 

datapoint P to the corresponding model wall (inner or outer) as shown in Fig. 5. Approximating 

each boundary triangular element with a plane, we determine the element whose distance from P 

is minimum and we compute the intersection point Q. The force that P exerts on the model is 

fp = 7i(P-Q), 



where 71 is the strength of the force.   We then distribute f> to the nodes xj,x2 and X3 of the 

associated boundary triangular element based on the formula 

fXi = m; fp,   i = 1,2,3, 

where the m; are computed from the solution of the following linear system 

^m8-Xi = Q. 

(7) 

(8) 

m2 f. 

m3 U 

Figure 5: Forces from Boundary Datapoints. 

4.2     Force Computation from SPAMM Data 

As opposed to the boundary data, SPAMM data provide correspondence over time of the associated 

SPAMM points. Initially we assume that the SPAMM datapoints and the model material points 

coincide. Let M(ii) be the material point which initially coincides with a SPAMM datapoint S(/i) 

at time t\ (see Fig. 6). Let also S(t2) and S(<3) be the corresponding SPAMM datapoints to the 

point S(ti) at the next two time frames. Then the force on M(fi) from S(i2) is computed as 

fs(*2) = 72 [([S(t2) - M(*!)] • m) m + ([S(*2) - M(^)] • n2) n2] (9) 

where 72 is the strength of the force and rii,n2 are the unit normals of the corresponding initial 

(i.e., at time ti) tagging planes as shown in Fig. 4. 

That force will cause M(ii) to move to a new position M(£2). Subsequently, the force is(t3) on 

M(£2) from Sf^) will be computed in a similar fashion and it is shown in Fig. 6. 

Once we compute these force we distribute them to the nodes of the deformable model. These 

nodal forces will cause the model to deform. To distribute at any time frame ti, the computed force 

is to the nodes of the prism AoutBoutC0UtAinBinCin within which M lies, we do the following (see 

Fig. 7). Based on the finite element theory we want to compute a triangle ABC in which M lies 

such that . „     „ „      „ 
A - A .•„ R- R,„ C- C,„ 

TZ £~, (10) 
Loui B out Bi ■'out 



M(t.) 

>••     n 

M(t3): 

Figure 6: Forces fs(/2), fs(*3) from SPAMM points S(t2) and S(t3), respectively. 

where r is a scalar. To compute r we solve the following cubic scalar equation using the Newton- 

Raphson method 

(M-A).((C-A)x(B-A)) = 0, (11) 

where A,B,C are computed wrt to r from (10). 

We extrapolate fs to the nodes of triangle ABC in the same way as it was described in the force 

computation for the boundary data and we compute the scalars mA,mB,mc which correspond to 

nodes A,B,C, respectively. Then the forces to the nodes of the prism are computed as follows: 

where A = {A,B,C}. 

*No 

Win       = 

r mN is 

(1 - r) mN is, (12) 

Figure 7: Distributing a Force from a SPAMM datapoint. 

The computation of r which determines the model material point which corresponds to a 

SPAMM data is only done once at the beginning of the LV motion estimation. It is the corre- 

spondence of SPAMM data over time that allows us to estimate the twisting motion of the LV. 



5    Experiments 

All our experiments run at interactive time speeds on a Silicon Graphics R4000 Crimson work- 

station, including the real time graphics. The set of data used in the following experiments were 

obtained from 10 image planes where five of them are from short-axis view planes and the other five 

are from the long-axis view planes. They span the spatial extent of a normal LV. Furthermore, for 

each image plane, we have data sets over five time sequences during systole (from end-diastole (time 

1) to end-systole (time 5)). Therefore in total we have 5x5x5 = 75 data sets of two-dimensional 

images, containing time-varying three-dimensional datapoints (boundary and SPAMM) of the LV. 

time 1 time 2 time 3 time 4 time 5 

v ••"        • / 
/■ ■■ j 

(a) SPAMM datapoints from Short Axis View Image Planes 

■ .* ■■ •* 

*"»■      •' "         •* »" •■/ *V V .".* . .* 

:>'/;"' •% V v .' • ■ ■ • ■>•. / V * . •" .v «» y .-,•. *. ■• •/. 
*/ •* * V •" •/ t •/ •''•.••• V 
•"   .* "* \* * '•*' ' •     •'/   '.••'  V. 

V   .'•*  / V   /»    / 

(b) SPAMM datapoints from Long Axis View Image Planes 

Figure 8: SPAMM Data Sets 

From each image, we extract 1) boundary datapoints, using snakes [7], from the inner and outer 

walls of the LV and, 2) SPAMM datapoints (i.e., intersections of tagging lines appear in the image) 

as shown in Fig. 9(a) and Fig. 8. For the experiments presented in this paper, we utilized 

1. 265 outer boundary datapoints from the images (both short and long axes views) at time 1 

(shown as black dots in Fig. 9(a)), 

2. 261 inner boundary datapoints from the images at time 1 (shown as white dots in Fig. 9(a)), 

3. SPAMM datapoints from 5 short axis view image planes over 5 time intervals (shown in 

Fig. 8(a)), where the number of datapoints4 are 194, 174, 173, 166 and 157 at time 1, time 

Since some of the SPAMM datapoints on the image plane disappear and/or reappear at subsequent times, we 
used at every time frame only those points which have a corresponding point at the previous time frame. Therefore 
the number of active points decreases towards end-systole. 

10 



2, ... time 5, respectively. 

4. SPAMM datapoints from 5 long axis image planes over 5 time intervals (shown in Fig. 8(b)). 
The number of datapoints are 216, 191, 182, 190, 182 at time 1, time 2, ... time 5, respectively. 

It should be noted that we evaluate the spatial location of the image planes based on the 
acquired, during the SPAMM acquisition process, spatial locations of the corners of each image 
plane. We then express the coordinates of each datapoint wrt to the center of the LV. 

5.1     Parameters 

As described in Section 2.1, our deformable model is defined by 6 parameter functions which can be 
interpreted intuitively without any further complex processing. We first estimate the value of the 
material coordinate w for the inner and outer walls during fitting to the data in the first time frame 
(i.e., end-diastole). Then we estimate the parameter functions a\(u, w), a,2[u, w) and 03(1/, w) which 
are the model's aspect ratios along the x-, y- and z-axes, respectively. Since the short-axis views 
of the LV lie in the xy plane, the changes in aj(u, w) and 0,2(11, w) over time will capture the radial 
contraction of the LV. Likewise the changes in the aspect ratio along the 2-axis (i.e., 0,3(11, w)) will 
capture the longitudinal contraction of the LV. The estimated twisting parameter T(U, W) is defined 
about the z-axis which coincides with the long axis of the LV. The final two estimated axis offset 
parameters e\0(u,w) and e2o(u,w) allow the long axis to be non-straight in the x and y directions, 
respectively. Thus we can capture more accurately the shape variation over time of the LV. Since 
all the above parameters vary with w, we can estimate their variation between the LV walls. 

Table 1 summarizes what each parameter function, which is recovered during the fitting process, 
represents during the 3D shape and wall motion estimation of the LV. 

Parameters Representation 

a\(u, u)),a2(u, w) 

a3(u,w) 

T(U, W) 

eu{u.iv), e2o(u,w) 

magnitude of radial contractions 

magnitude of longitudinal contraction 

magnitude of twisting about the long axis 

magnitudes of long axis deformation 

Table 1: Parameters 

5.2     Model Fitting to Boundary datapoints at End-diastole 

Based on the boundary datapoints from the inner and outer walls, we first recover the global shape 
of the LV at time 1 (i.e., end-diastole). This is done by overlaying the initial volumetric model 
onto the data. Then the nodes on the inner and outer surfaces of the model are pulled towards the 
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inner and outer boundary datapoints, respectively, based on the computation of forces described 

in Section 4.1. As a result of these forces the model parameter functions change so that the model 

conforms to the dataset. When all applied forces equilibrate or vanish, or the error of fit (the 

distance between a data point and the model surface) falls in an acceptable range, the model comes 

to rest. 

The varying volume of the volumetric deformable model at the various stages of the initial 

fitting to the boundary datapoints is shown in Figs. 9(b-d). W{n = 0.896 and wout — 1.368 for the 

model shown in Fig. 9(b). For better fitting results we initially allow 0,1,0,2,0,3 to vary wrt to w 

(Fig. 9(c). The values of these parameters are: al(wout) = 0.360, al(w,„) = 0.282, a2(wout) = 

0.341, a2(win) = 0.276, a"i{wout) = 0.807, and a3{win) = 0.924. We then allow all the parameters 

vary wrt to u,w (Fig. 9(d)). 

m^M-mm, 

&, 

'<' » 1 

(a) (b) (c) (d) 

Figure 9: Initial shape recovery from boundary data. 

5.3 Model Fitting to Data Points over Time 

Once we fit the model to the initial boundary data, the SPAMM points at the initial time are 

read and we find the corresponding model material coordinate points as describe in Section 4.2. 

During subsequent time frames we use both boundary and SPAMM data to fit the model. The 

force computation is done as described previously. 

5.4 LV Fitting Results 

Fig. 10 shows model fitting results over 5 time frames. The top row shows a view from the base of 

the LV of the fitted model. The twisting of the inner wall (shown in white) is obvious. The middle 

row shows a side view of the model, while the last row is similar to the first row and shows a view 

of the model from the apex. We can easily observe the longitudinal contraction as well as radial 

contraction. 

Figs. ll(top,middle,bottom) show the fitted model superimposed to the SPAMM data at times 

/ = 1,3,5, respectively. Columns (a),(b),(c) show the model with short axis SPAMM datapoints, 

long axis SPAMM datapoints and all the SPAMM datapoints, respectively.   SPAMM datapoints 
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(a) time 1 (b) time 2 (c) time 3 (d) time 4 

Figure 10: Fitted models during systole 

(d) time 5 
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are denoted with black dots, while the corresponding model material points are denoted with white 

dots. 

5.4.1     Analysis of the Estimation Results 

Figs. 12(a-h) show graphs of the extracted model parameters as functions of u at the inner and 

outer walls. The difference in the corresponding parameter values is obvious. For example the 

radial contraction and the twisting are more significant in the inner LV wall (see Figs. 12(b,d,h)) 

compared to the outer walls (see Figs. 12(a,c,g)). The longitudinal contraction is similar in the 

inner and outer walls, but there is more contraction from the base to the apex. In the figures, the 

value 2.0 on the horizontal axis corresponds to the apex of the LV, while the value of 7.0 to a point 

close to the base. The above findings quantitatively verify qualitative knowledge common among 

physicians. 

We can also measure the ejection fraction by computing volume changes of the inner cavity, 

observe changes in the myocardium thickness during systole, and extrapolate the parameter values 

throughout the muscle (in between walls) from our models. 

Finally, in order to view the changes in the parameters during systole, we color-code the pa- 

rameter variation of each parameter function along u and w on the SGI monitor display. 

6     Conclusion 

We have presented a new method for analyzing the 3D motion of the heart's left ventricle (LV) from 

MRI-SPAMM data. We developed a new class of volumetric physics-based deformable models whose 

parameters are functions. These parameters improve the accuracy of shape description through the 

use of a few intuitive parameters such as functional twisting. As opposed to the parameters of 

previous models for the LV, these parameters require no complex post-processing in order to be 

used by a physician. By developing new algorithms for estimating the forces from the SPAMM 

datapoints to the model's material points we were able to estimate the complex shape and motion 

of the LV. Through our analysis of the LV motion, we were able to quantitatively verify qualitative 

knowledge common among physicians. We plan to conduct experiments with several normal and 

abnormal hearts to establish the normal heart parameter variation. 
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1     Introduction 
This document describes the implementation and usage a motion planning 
algorithm for human reaching motions. Given a goal position of the hand, 
and a description of the environment, this algorithm tries to find a collision 
free motion sequence that moves the hand to the goal position. 

In general motion planning is a difficult problem. To plan the motion 
for an agent with n degrees of freedom, the complexity of the problem is 
exponential in n. For example, when n is 5, the problem can be approx- 
imated by constructing a grid of about 1E10 nodes and finding a path in 
it. When there are many degrees of freedoms, such as the human reaching 
motion planning problem which involves at least 9 degrees of freedom, it is 
impractical to solve this problem completely. 

There are many assumptions we can make to simplify the problem. For 
instance, we may assume the environment is 2D instead of 3D, or the obsta- 
cles are of certain simple shapes, etc. Here we adopt a different approach to 



simplify the problem. Instead of guarantee a solution when there is one, this 
algorithm will find a solution efficiently in general, but it may fail to find a 
solution in some cases, even-though solutions may exist. And it works in 3D 
environment and can handle any shape of obstacles. 

2    The algorithm 

This algorithm is based on a robot motion planning algorithm developed by 
[1]. It is the fastest general algorithm available today. First, a 3D bitmap 
of the environment is constructed. In the bitmap Os stand for empty (free) 
space while Is stand for obstacles. Then the bitmap is searched to determine 
if there is a point path from the hand's start position to the goal position. 
If there is no point path, apparently there is no solution. If there is a point 
path, the algorithm proceed to find a motion sequence for the hand, arm and 
may be the body to move the hand to the goal position collision free. 

This algorithm requires a 3D bitmap of the environment. Currently we 
use a bitmap of 64x64x64 (= 262144 nodes) to partition the environment. In 
order to have reasonable accuracy, the 3D space it covers cannot be too large. 
In the current implementation we limit the space to be a 200x200x200 cm3 

cube and assume the arm can only move inside the cube (the working cell 
of the arm). Since the bitmap is 64x64x64, the resolution of the partition is 
about 3cm, which is good enough considering human arm thickness. While 
it is possible to have larger bitmap sizes and cover more environment space, 
constructing and searching them will become very expensive. 

Currently, the algorithm controls 9 degrees of freedom: one at the elbow 
joint, 3 at the shoulder, 3 at the waist, and 2 at the foot in the x and z 
direction (i.e., Jack can walk on the floor, but cannot climb up and down). 
For efficiency reason, it does not control the hip, knee, and ankle joints. It 
is assumed that Jack is in the "correct" or almost "correct" body posture 
before the reaching begins. Jack is limited to move on the floor no more than 
32 cm in each direction. 



3    New features since last release 

There are two features added since last release: incorporating strength anal- 
ysis into motion planning and providing a more informative user interface. 

1. Strength Analysis: 

Using motion planning we can plan a collision free motion sequence to 
accomplish a given task. In some applications we also want to know 
if a person with limited strength is able to perform the planned mo- 
tion. For this reason, we have incorporated strength analysis into our 
motion planning system. Given a sequence of planned motion, using 
inverse dynamics we compute the required torque at each joint in or- 
der to perform the motion. The required torques are compared against 
available torque data (collected by NASA) and determine if the motion 
is feasible. If a motion is not strength feasible, the program will point 
out which joint does not have enough strength to perform the planned 
motion. 

2. Planning strength feasible motion: 

In order to planning a human task, finding a collision free motion may 
not be enough. Moreover, there are applications where we are inter- 
ested in finding not only a collision free motion, but also a strength 
feasible motion as well. We have added another dimension to the mo- 
tion planning problem: planning a motion which is both collision free 
and strength feasible for the particular agent whose strength data is 
given. 

3. Improved user interface: 

In the current interface, the user is given more information on what's 
going on in the motion planning process. More specifically, the user is 
informed of: 

(a) The progress we are making towards the goal by displaying the 
distance of hand to the goal and the current posture of the agent; 

(b) How much time is left for the planner; 



4    Commands 

We provide the following commands under the menu "MotionPlan": 

1. init motion plan 

This initializes the internal data structures for the motion planning 
algorithm. It should be executed before any other commands. It asks 
for a human figure and a space reference site. 

As mention in the previous section, this algorithm will limit the envi- 
ronment to be a 200x200x200 cm3 cube. The reference site gives the 
origin of the cube. If the reference site has coordinates (x,y,z), then 
the two diagonal points on the cube are (x,y,z) and (x+200, y+200, 
z+200). The hand/arm motion will be limited to be inside the cube. 

2. input goal site 

It asks for goal site name. Before each planning, the site's current 
location is used as the goal position. 

3. input obstacle 

Input the obstacle segments. 

During the planning phase, collisions between the human arm/hand 
and the obstacles are detected at every step of the movement. To 
have good performance of the algorithm, it is essential to speed up 
the collision detection. In the current implementation, we do collision 
detection between: 

palm, lower arm, upper arm and upper body with obstacles; 

palm, lower arm, upper arm with upper body (self collision 
detection). 

And all collision detections are done using bounding box collision de- 
tection. We ignore the collisions of fingers for the following reason: 

It is time consuming to do. And the reaching can always be 
done by closing the hand. 



4. apply force on hand 

This command inputs the external force acting on the hand (e.g., the 
weight of the object Jack is carrying). The user need to specify the 
acting point of the force (e.g., palm center site) and the x-y-z force 
vector (units in Newton). Initially all external forces are set to 0. 

5. plan a motion 

This command computes the environment (obstacles) bitmap, evalu- 
ates the current start and goal positions, and computes the collision 
free motion sequences. It asks for the left hand or right hand, and the 
maximum allowed time to do the planning (in addition to the time used 
to compute the bitmap). The algorithm returns the best result it got if 
no solution is found when the time is up. (Note that it is a randomized 
algorithm, it may take different amount of time in each run, even for 
the same task. Typical running time ranges from seconds to minutes 
or more, depending on the task and the machine used.) 

This command only computes a collision free motion, and it does not 
consider strength in the planning process. 

6. pian a strength feasible motion 

This command computes a motion sequence which is both collision free 
and strength feasible. 

7. strength analysis of the planned motion 

This command analyzes a planned motion for strength feasibility. If 
the planned motion at one time exceed the available strength at a 
particular joint, the program will color that joint red. The joint will 
stay red until the the required strength is within the agent's strength 
limits. 

8. strength analysis of the current posture 

This command checks if the required strength exceed the available 
strength of the agent in its current posture. Again, it colors red any 
joints that exceed the agent's strength. 

9. play the planned motion 



You may play the planned motion at slower speeds. This command asks 
for the playing speed. For example, input 2 means play the motion at 
1/2 of the normal speed, while input 1 means play the planned motion 
at normal speed. 

5    Motion Planning Examples 

In the DEMO directory, there are two JCL files to test the motion planning 
algorithm. In the environment the transparent cube stands for the working 
cell of the hand. To the motion planning algorithm, outside the cube means 
obstacles. 

The JCL files are: BUrame.jcl and Bl.plan.jcl. You may run the demo 
by issuing the flowing commands: 

csh> Depth-Jack BUrame.jcl 

or 

csh> Depth-Jack Bl-.plan.jcl 

BUrame.jcl will load the environment, and read the precomputed motion 
frames showing the planned reaching motion. Bl.plan.jcl actually computes 
the motion frames used in BUrame.jcl. (Note that this is a random algo- 
rithm. So the planned motion may be different each time the same task is 
planned.) 

6    Examples with Strength Analysis 

In the DEMO directory, there are two JCL files to show how feasible strength 
motion planning works. The JCL files are: load-O.jcl and load.60.jcl. Both 
shows motion planning of the same task: reaching for the top of the shelf. 
But in one case Jack is carry 60 Newtons in his hand, and in the other case 
Jack is carry 0 Newton. 
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Abstract 
A system for controlling the behaviors of an interac- 

tive human-like agent, and executing them in real-time, 
is presented. It relies on an underlying model of contin- 
uous behavior, as well as a discrete scheduling mecha- 
nism for changing behavior over time. A multiprocess- 
ing framework executes the behaviors and renders the 
motion of the agents in real-time. Finally we discuss 
the current state of our implementation and some areas 
of future work. 

1     Introduction 
As rich and complex interactive 3D virtual environ- 

ments become practical for a variety of applications, 
from engineering design evaluation to hazard simula- 
tion, there is a need to represent their inhabitants as 
purposeful, interactive, human-like agents. 

It is not a great leap of the imagination to think 
of a product designer creating a virtual prototype of a 
piece of equipment, placing that equipment in a virtual 
workspace, then populating the workspace with virtual 
human operators who will perform their assigned tasks 
(operating or maintaining) on the equipment. The de- 
signer will need to instruct and guide the agents in the 
execution of their tasks, as well as evaluate their per- 
formance within his design. He may then change the 
design based on the agents' interactions with it. 

Although this scenario is possible today, using only 
one or two simulated humans and scripted task anima- 
tions [3], the techniques employed do not scale well to 
tens or hundreds of humans. Scripts also limit any abil- 
ity to have the human agents react to user input as well 
as eacli other during the execution of a task simulation. 
We wish to build a system capable of simulating many 
agents, performing moderately complex tasks, and able 
to react to external (either from user-generated or dis- 
tributed simulation) stimuli and events, which will oper- 
ate in near real-time. To that end, we have put together 
a system which has the beginnings of these attributes, 

and are in the process of investigating the limits of our 
approach. We describe below our architecture, which 
employs a variety of known and previously published 
techniques, combined together in a new way to achieve 
near real-time behavior on current workstations. 

We first describe the machinery employed for behav- 
ioral control. This portion includes perceptual, control, 
and motor components. We then describe the multipro- 
cessing framework built to run the behavioral system in 
near real-time. We conclude with some internal details 
of the execution environment. For illustrative purposes. 
our example scenario is a pedestrian agent, with the 
ability to locomote, walk down a sidewalk, and cross 
the street at an intersection while obeying stop lights 
and pedestrian crossing lights. 

2     Behavioral Control 
The behavioral controller, previously developed in [-1] 

and [5], is designed to allow the operation of paral- 
lel, continuous behaviors each attempting to accom- 
plish some function relevant to the agent and each con- 
necting sensors to effectors. Our behavioral controller 
is based on both potential-field reactive control from 
robotics [1, 10] and behavioral simulation from graph- 
ics, such as Wilhelms and Skinner's implementation [20] 
of Braitenberg's Vehicles [7]. Our system is structured 
in order to allow the application of optimization learn- 
ing [6], however, as one of the primary difficulties with 
behavioral and reactive techniques is the complexity of 
assigning weights or arbitration schemes to the various 
behaviors in order to achieve a desired observed behav- 
ior [5, 6]. 

Behaviors are embedded in a network of behavioral 
nodes, with fixed connectivity by links across which only 
floating-point messages can travel. On each simulation 
step the network is updated synchronously and with- 
out order dependence by using separate load and emit 
phases using a simulation technique adapted from [14]. 
Because there is no order dependence, each node in the 
network could be on a separate processor, so the net- 
work could be easily parallelized. 

Each functional behavior is implemented as a sub- 
network of behavioral nodes defining a path from the 
geometry database of the system to calls for changes 
in the database. Because behaviors are implemented 
as networks of simpler processing units, the representa- 
tion is more explicit than in behavioral controllers where 
entire behaviors are implemented procedurally.   Wher- 



ever possible, values that could be used to parameterize 
the behavior nodes are made accessible, making the en- 
tire controller accessible to machine learning techniques 
which can tune components of a behavior that may be 
too complex for a designer to manage. The entire net- 
work comprising the various sub-behaviors acts as the 
controller for the agent and is referred to here as the 
behavior net. 

There are three conceptual categories of behavioral 
nodes employed by behavioral paths in a behavior net: 

perceptual nodes that output more abstract results 
of perception than what raw sensors would emit. 
Note that in a simulation that has access to a com- 
plete database of the simulated world, the job of 
the perceptual nodes will be to realistically limit 
perception, which is perhaps opposite to the func- 
tion of perception in real robots. 

motor nodes that communicate with some form of mo- 
tor control for the simulated agent. Some motor 
nodes enact changes directly on the environment. 
More complex motor behaviors, however, such as 
the walk motor node described below, schedule a 
motion (a step) that is managed by a separate, 
asynchronous execution module. 

control nodes which map perceptual nodes to motor 
nodes usually using some form of negative feed- 
back. 

This partitioning is similar to Firby's partitioning of 
continuous behavior into active sensing and behavior 
control routines [10], except that motor control is con- 
sidered separate from negative feedback control. 

2.1     Perceptual Nodes 
The perceptual nodes rely on simulated sensors to 

perform the perceptual part of a behavior. The sensors 
access the environment database, evaluate and output 
the distance and angle to the target or targets. A sam- 
pling of different sensors currently used in our system is 
described below. The sensors differ only in the types of 
things they are capable of detecting. 

Object: An object sensor detects a single object. This 
detection is global; there are no restrictions such 
as visibility limitations. As a result, care must 
be taken when using this sensor: for example, the 
pedestrian may walk through walls or other objects 
without the proper avoidances, and apparent real- 
ism may be compromised by an attraction to an 
object which is not visible. It should be noted that 
an object sensor always senses the object's current 
location, even if the object moves. Therefore, fol- 
lowing or pursuing behaviors are possible. 

Location: A location sensor is almost identical to an 
object sensor. The difference is that the location 
is a unchangeable point in space which need not 
correspond to any object. 

Proximity: A proximity sensor detects objects of a 
specific type. This detection is local: the sensor can 
detect only objects which intersect a sector-shaped 
region roughly corresponding to the field-of-view of 
the pedestrian. 

Line: A line sensor detects a specific line segment. 

Terrain: A terrain sensor, described in [17], senses the 
navigability of the local terrain. For example, the 
pedestrian can distinguish undesirable terrain such 
as street or puddles from terrain easier or more de- 
sirable to negotiate such as sidewalk. 

Field-of-View: A field-of-view sensor, described 
in [17], determines whether a human agent is visi- 
ble to any of a set of agents. The sensor output is 
proportional to the number of agents' fields-of-view 
it is in, and inversely proportional to the distances 
to these agents. 

2.2    Control Nodes 
Control nodes typically implement some form of neg- 

ative feedback, generating outputs that will reduce per- 
ceived error in input relative to some desired value or 
limit. This is the center of the reactivity of the be- 
havioral controller, and as suggested in [9], the use of 
negative feedback will effectively handle noise and un- 
certainty. 

Two control nodes have been implemented as de- 
scribed in [4] and [5], attract and avoid. These loosely 
model various forms of taxis found in real animals [7, 11] 
and are analogous to proportional servos from control 
theory. Their output is in the form of a recommended 
new velocity in polar coordinates: 

Attract An attract control node is linked to 6 and d 
values, typically derived from perceptual nodes, 
and has angular and distance thresholds, tg and 
td. The attract behavior emits A9 and Ad values 
scaled by linear weights that suggest an update 
that would bring d and 9 closer to the threshold 
values. Given weights k$ and kd : 

f   ° A9 = <   ke(e-te) 
{  kB(9 + te) 

Ad = 

if -te < 0 
ife>te 

otherwise 

if d< t« 

<te 

0 
kd(d-td)    otherwise. 

Avoid The avoid node is not just the opposite of at- 
tract. Typically in attract, both 6 and d should 
be within the thresholds. With avoid, however, 
the intended behavior is usually to have d outside 
the threshold distance, using 6 only for steering 
away. The resulting avoid formulation has no an- 
gular threshold: 

f  ° 
A9 = <   ke(* - 9) 

I M-T-0) 

A9 = 
kd(td 

if d > td 

if d < td and 9 > 0 
otherwise 

ifrf>*d 
d)    otherwise. 
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Figure 1: Sawtooth path due to potential field discon- 
tinuities 

2.3     Motor Nodes 
Motor nodes for controlling non-linked agents are im- 

plemented by interpreting the Ac? and AÖ values emit- 
ted from control behaviors as linear and angular ad- 
justments, where the magnitude of the implied velocity 
vector gives some notion of the urgency of traveling in 
that direction. If this velocity vector is attached di- 
rectly to a figure so that requested velocity is mapped 
directly to a change in the object's position, the result- 
ing agent appears jet-powered and slides around with 
infinite damping as in Wilhelms and Skinner's environ- 
ment [20]. 

2.3.1     Walking by sampling potential fields 

When controlling agents that walk, however, the mo- 
tor node mapping the velocity vector implied by the 
outputs of the control behaviors to actual motion in 
the agent needs to be more sophisticated. In a walking 
agent the motor node of the behavior net schedules a 
step for an agent by indicating the position and orien- 
tation of the next footstep, where this decision about 
where to step next happens at the end of every step 
rather than continuously along with motion of the agent. 
The velocity vector resulting from the blended output 
of all control nodes could be used to determine the next 
footstep; however, doing so results in severe instability 
around threshold boundaries. This occurs because we 
allow thresholds in our sensor and control nodes and as 
a result the potential field space is not continuous. Tak- 
ing a discrete step based on instantaneous information 
may step across a discontinuity in field space. Consider 
the situation in Fig. 1 where the agent is attracted to a 
goal on the opposite side of a wall and avoids the wall 
up to some threshold distance. If the first step is sched- 
uled at position pi, the agent will choose to step directly 
toward the goal and will end up at p2- The agent is then 
well within the threshold distance for walls and will step 
away from the wall and end up at p3, which is outside 
the threshold.  This process then repeats until the wall 
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Figure 2: The fan of potential foot locations and orien- 
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Figure 3: An example behavior net for walking 

is cleared, producing an extremely unrealistic sawtooth 
path about the true gradient in the potential field. 

To eliminate the sawtooth path effect, we sample the 
value of the potential field implied by the sensor and 
control nodes in the space in front of the agent and step 
on the location yielding the minimum sampled 'energy' 
value. We sample points that would be the agent's new 
location if the agent were to step on points in a number 
of arcs within a fan in front of the agent's forward foot. 
This fan, shown in Fig. 2, represents the geometrically 
valid foot locations for the next step position under our 
walking model. This sampled step space could be ex- 
tended to allow side-stepping or turning around which 
the agent can do [3], though this is not currently ac- 
cessed from the behavior system described in this pa- 
per. For each sampled step location, the potential field 
value is computed at the agent's new location, defined 
as the average location and orientation of the two feet. 

2.4    An example behavior net 
The example behavior net in Fig. 3 specifies an over- 

all behavior for walking agents that head toward a par- 
ticular goal object while avoiding obstacles (cylinders in 
this case) and each other. The entire graph is the behav- 
ior net, and each path from perception to motor output 
is considered a behavior. In this example there are three 
behaviors: one connecting a goal sensor to an attraction 
controller and then to the walk node (a goal-attraction 
behavior), another connecting a sensor detecting prox- 
imity of other walking agents to an avoidance controller 



and then to the walk node (a walker-avoidance behav- 
ior), and a final behavior connecting a cylinder prox- 
imity sensor to an avoidance behavior and then to the 
walk node (a cylinder-avoidance behavior). 

Each node has a number of parameters that deter- 
mine its behavior. For example, the walker sensor and 
the cylinder sensor nodes have parameters that indi- 
cate how they will average all perceived objects within 
their field of view and sensing distance into a single ab- 
stract object. The Attract and Avoid nodes have scaling 
weights that determine how much output to generate as 
a function of current input and the desired target values. 

The walk motor behavior manages the sampling of 
the potential field by running data through the percep- 
tual and control nodes with the agent pretending to be 
in each of the sampled step locations. The walk node 
then schedules the next step by passing the step location 
and orientation to the execution module. 

Note that this example has no feedback, cross-talk, 
or inhibition within the controller, though the behav- 
ioral controller specification supports these features [5]. 
Although this example controller itself is a feed-forward 
network, it operates as a closed-loop controller when at- 
tached to the agent because the walk node's scheduling 
of steps affects the input to the perceptual nodes. 

Our use of attract and avoid behaviors to control 
groups of walking agents may appear on the surface 
like Ridsdale's use of hot and cold tendencies to control 
agents in his Director's Apprentice system [18]. How- 
ever, his system was not reactive and on-line as our 
behavioral controller is, it did not limit perception of 
agents, it had no structured facilities for tuning behav- 
ior parameters, and it did not take advantage of devel- 
opments in reactive control and behavioral simulation. 
His system focused on the use of an expert system to 
schedule human activity conforming to stage principles 
and used hot and cold tendencies to manage complex 
human behavior and interaction. We limit the use of 
behaviors to reactive navigation and path-planning, us- 
ing parallel transition networks rather than one large 
expert system to schedule events, and we look to sym- 
bolic planning systems based on results in cognitive sci- 
ence, such as [3, 8, 16], to automate high-level human 
behavior and complex human interactions. 

3    Parallel Automata 
Parallel Transition Networks (PaT-Nets) are transi- 

tion networks that run in parallel with the behavior 
net, monitor it, and edit it over time [8]. They are 
a mechanism for scheduling arbitrary actions and in- 
troducing decision-making into the agent architecture. 
They monitor the behavior net (which may be thought 
of as modeling low level instinctive or reflexive behavior) 
and make decisions in special circumstances. For exam- 
ple, the agent may get caught in a dead-end or other 
local minimum. PaT-Nets recognize situations such as 
these, override the "instinctive" behavior simulation by 
reconfiguring connectivity and modifying weights in the 
behavior net, and then return to a monitoring state. 

In our pedestrian example we combine object and 
location sensors (in perceptual nodes) with attract con- 
trol nodes, and proximity and line sensors (in percep- 
tual nodes) with avoid control nodes. Pedestrians are 
attracted to street corners and doors, and they avoid 
each other, light poles, buildings, and the street except 
at crosswalks. 

Figure 4: North-net: A sample ped-net shown graph- 
ically 

Figure 5: A pedestrian crossing the street 

We use PaT-Nets in several different ways. 
Light-nets control traffic lights and ped-nets control 
pedestrians. Light-nets cycle through the states of the 
traffic light and the walk and don't walk signs. 

Fig. 4 is a simple ped-net, a north-net, which moves 
a pedestrian north along the eastern sidewalk through 
the intersection. Initially, avoidances are bound to the 
pedestrian so that it will not walk into walls, the street, 
poles, or other pedestrians. The avoidances are always 
active even as other behaviors are bound and unbound. 
In State 1 an attraction to the southeast corner of the 
intersection is bound to the pedestrian. The pedestrian 
immediately begins to walk toward the corner avoiding 
obstacles along the way. When it arrives the attraction 
is unbound, the action for State 1 is complete. Nothing 
further happens until the appropriate walk light is lit. 
When it is lit, the transition to State 2 is made and ac- 
tion Cross to NE Corner is executed. The agent crosses 
the street. Finally, the agent heads north. 

Fig. 5 shows a pedestrian controlled by a north-net. 
The transition to State 2 was just made so the pedes- 
trian is crossing the street at the crosswalk. 



4    Real-Time Simulation Environment 
The run-time simulation system is implemented as a 

group of related processes, which communicate through 
shared memory. The system is broken into a minimum 
of 5 processes, as shown in Fig. 6. The system relies 
on IRIS Performer [19] for the general multiprocessing 
framework. Synchronization of all processes, via spin 
locks and video clock routines, is performed in the CON- 
TROL process. It is also the only process which performs 
the edits and updates to the run-time visual database. 
The CULL and DRAW processes form a software render- 
ing pipeline, as described in [19]. The pipeline improves 
overall rendering throughput while increasing latency, 
although the two frame latency between CONTROL and 
DRAW is not significant for our application. Our CON- 
TROL process is equivalent to the APP process in the 
Performer framework. We have used this framework to 
animate multiple real-time human figures [12]. 

4.1     CONTROL Process 
The CONTROL process runs the main simulation loop 

for each agent. This process runs the PaT-Nets, and un- 
derlying behavior net for each agent. While each agent 
has only one behavior net, they may have several PaT- 
Nets running, which sequence the parameters and con- 
nectivity of the nodes in the behavior net over time (as 
shown in Fig. 6). 

By far the costliest computation in the CONTROL pro- 
cess, for the behaviors modeled in this example applica- 
tion, is the evaluation of the Walk motor node in the be- 
havior net, and specifically the selection of the next foot 
position. Since this computation is done only once for 
every footfall, it usually runs only every 15 frames or so 
(the average step time being about 1/2 second, and av- 
erage frame rate 30Hz). If the CONTROL process starts 
running over its allotted frame time, the Walk nodes 
will start reducing the number of points sampled for the 
next foot position, thereby reducing computation time. 
The only danger here is described in Section 2.3.1, the 
potential for a sawtooth path. If many agents are walk- 
ing at similar velocities, they can all end up computing 
their next-step locations at the same frame-time, creat- 
ing a large computation spike which causes the whole 
simulation to hiccup. (It is visually manifested by the 
feet landing in one frame, then the swing foot suddenly 
appearing in mid-stride on the next frame.) We attempt 
to even out the computational load for the Walk motor 
node evaluation by staggering the start times for each 
agent, and thereby distributing the computation over 
about 1/2 second for all agents. 

Another computational load in the CONTROL process 
comes from the evaluation of the conditional expressions 
in the Pat-Nets, which may occur on every frame of the 
simulation. They are currently implemented via LISP 
expressions, so evaluating a condition involves parse and 
eval steps. In practice, this is fairly fast as we pre- 
compile the LISP, but as the PaT-Nets increase in com- 
plexity it will be necessary to replace LISP with a higher 
performance language (i.e. compiled C code). This may 
remove some of the generality and expressive power en- 
joyed with LISP. 

Another technique employed to improve perfor- 
mance, when evaluating a large number of Pat-Nets and 
behavior, nets, is to have the CONTROL process spawn 
copies of itself, with each copy running the behavior of 
a subset of the agents. This works as long as updates 
to the visual database are exclusive to each CONTROL 

process. (In practice this is the case, since the current 
behavior net for one agent will not edit any parameters 
for another agent in the visual database.) Of course, the 
assumption in spawning more processes is that there are 
available CPUs to run them. 

The CONTROL process also provides the outputs of 
the motor nodes in the behavior net to the MOTION 
process. These outputs, in the case of the walking be- 
havior, are the position and orientation of the agent's 
next foot fall. It also evaluates the motion data (joint 
angles) coming from the MOTION process, and performs 
the necessary updates to the articulation matrices of the 
human agent in the visual database. 

4.2 SENSE Process 
The SENSE process controls and evaluates the sim- 

ulated sensors modeled in the perceptual nodes of the 
behavior net. It provides the outputs of the percep- 
tual nodes to the CONTROL process, which uses them 
for the inputs to the control nodes of the behavior 
net. The main computational mechanism the sensors 
employ are intersections of simple geometric shapes (a 
set of points, lines, frustums or cones) with the visual 
database, as well as distance computations. This pro- 
cess corresponds to an ISECT process in the Performer 
framework. 

The major performance parameters of this process 
are the total number of sensors as well as the complex- 
ity and organization of the visual database. Since it 
needs read-only access to the visual database, several 
SENSE processes may be spawned to balance the load 
between the number of sensors being computed, and the 
time needed to evaluate them. (These extra processes 
are represented by the dotted SENSE process in Fig. 6.) 
There is a one frame latency between the outputs of the 
perceptual nodes and the inputs to the control nodes 
in the behavior net (which are run in the CONTROL 
process), but this is not a significant problem for our 
application. 

4.3 MOTION Process 
Once the agent has sensed its environment and de- 

cided on on appropriate action to take, its motion is 
rendered via real-time motion generators, using a mo- 
tion system that mixes pre-recorded playback and fast 
motion generation techniques. 

We use an off-line motion authoring tool [2, 13] to 
create and record motions for our human figures. The 
off-line system organizes motion sequences into posture 
graphs (directed, cyclic graphs). Real-time motion play- 
back is simply a traversal of the graph in time. This 
makes the run-time motion generation free from frame- 
rate variations. The off-line system also records mo- 
tions for several levels-of-detail (LOD) models of the 
human figure. (Both the bounding geometry of the fig- 
ure, as well as the articulation hierarchy (joints) are 
represented at several levels of detail.) The three levels- 
of-detail we are using for the human figure are: 

1. A 73 joint, 130 DOF, 2000 polygon model, which 
has articulated fingers and flexible torso, for use in 
close-up rendering, and fine motor tasks (Jack®), 

2. A 17 joint, 50 DOF, 500 polygon model, used for 
the bulk of rendering; it has no fingers, and the 
flexible torso has been replaced by two joints, 
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Figure 6: The multiprocessing framework for the real-time behavior execution environment 

3. An 11 joint, 21 DOF, 120 polygon model used when 
the human agent is at a large distance from the 
camera. 

This process produces a frame of motion for each 
agent, then sleeps until the next frame boundary (the 
earliest any new motion could be needed). It provides 
the correct motion frame for the currently active LOD 
model in the visual database. For certain types of sen- 
sors modeled in the perceptual nodes, this process will 
also be requested to provide a full (highest LOD) update 
to the visual database, in the case where a lower LOD 
is currently being used, but a sensor needs to interact 
with the highest LOD model. 

The motion database consists of one copy of the pos- 
ture graphs and associated motion between nodes of the 
posture graph. Each transition is stored at a rate of 
60HZ, on each LOD model of the human agent. This 
database is shared by all agents. Only a small amount of 
private state information is maintained for each agent. 

The MOTION process can effectively handle about 10- 
12 agents at update rates of 30Hz (on ' 100MHz MIPS 
R4000 processor). Since the process only has read-only 
access to the motion database, we can spawn more MO- 
TION processes if needed for more agents. 

4.4    Walking as an example 
A MOTION process animates the behaviors specified 

by an agent's motor nodes by playing back what are 
essentially pre-recorded chunks of motion. As a time- 
space tradeoff, 'this technique provides faster and less 
variable run-time execution at the cost of additional 
storage requirements and reduced generality. The in- 
teresting issues arise in how we choose a mapping from 

motor node outputs to this discrete representation; it 
plays a significant role in determining how realistic the 
animated agents will be. 

The primary motor behavior to be executed is walk- 
ing. Our full walking algorithm combines kinematics 
with dynamic balance control and is capable of gener- 
ating arbitrary curved-path locomotion [15]. In order 
to reduce computational costs, however, we have not 
incorporated the algorithm directly into our run-time 
system. Instead, as implied by the preceding discussion, 
we record canonical "left" and "right" steps generated 
by the algorithm (which is a component of our off-line 
motion authoring system) and then play them back in 
an alternating fashion to produce a continuous walking 
motion. 

The input to the appropriate MOTION process's walk- 
ing subsystem consists of the specification of the desired 
next foot position and orientation (for the swing foot). 
This input is itself already discretized, as the motor 
node responsible (the Walk motor node) for evaluat- 
ing how desirable it is for the agent to be at particular 
positions only computes the desirability criteria at a set 
number of points (in Fig. 2). However, even given that 
there are only n possibilities for the placement of the 
swing foot on the next step, this would still require us 
to record order n2 possible steps, since the planted foot 
could be in any one of the n different positions at the 
start of the step (determined by the last step taken) 
and any one of the n at the end. 

Without recording all n2 distinct steps it is neces- 
sary to choose the best match among those that we do 
record. One of the most important criteria in obtaining 
realistic results is to minimize foot slippage relative to 
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Figure 7: Posture graph for variable step length walking 
(3 step sizes) 

the ground; foot slippage occurs when the pre-recorded 
movement (in particular its amount and direction) does 
not match that specified by the walk motor node at 
run time. On the basis that translational foot slippage 
is far more evident than rotational slippage (at least 
from our informal observations), we currently adopt an 
approach in which we record three types of step: short, 
medium, and long. Turning is accomplished by rotating 
the agent around his planted foot smoothly throughout 
the step. Having three step sizes significantly increases 
the chances of being able to find a close match to the 
desired step size, and, in fact, the walk motor node 
can be constrained to only consider the three arcs of 
the next foot location fan (see Fig. 2) that correspond 
exactly to our recorded step sizes. Doing so eliminates 
translational slippage, but has the sawtooth hazard. 

The posture graph for all possible step-to-step tran- 
sitions is shown in Fig. 4.4. Notice that even with only 
three kinds of straight-line walking there are many pos- 
sible transitions, and hence numerous motion segments 
to be recorded. However, allowing for variable step 
length is very important. For instance, an attract con- 
trol node can be set to drive the agent to move within 
a certain distance of a goal location; were there only a 
single step size, the agent might be unable to get suf- 
ficiently close to the goal without overshooting it each 
time, resulting in degenerate behavior (and possible vir- 
tual injury). 

One thing worthy of mention with respect to the 
number of different walking steps required to reproduce 
arbitrary curved-path locomotion is that while there are 
theoretically order n1 of them, the similarities are sig- 

nificant. It is thus possible that it will prove feasible to 
store a single full set of steps along with a little more in- 
formation to represent how those steps can be modified 
slightly to realistically turn the agent left or right, and 
make it sufficiently fast for our real-time applications. 

5 Conclusions and Future Work 
We have designed a multiprocessing system for the 

real-time execution of behaviors and motions for sim- 
ulated human-like agents. We have used only toy ex- 
amples to date, and are eager to push the limits of the 
system to model more complex environments and inter- 
actions amongst the agents. 

Although our agents currently have limited abilities 
(locomotion and simple posture changes), we will be 
developing the skills for interactive agents to perform 
maintenance tasks, handle a variety of tools, negotiate 
terrain, and perform tasks in cramped spaces. Our goal 
is a system which does not provide for all possible be- 
haviors of a human agent, but allows for new behaviors 
and control techniques to be added and blended with 
the behaviors and skills the agent already possesses. 

We have used a coarse grain parallelism to achieve 
interactive frame rates. The behavior net lends itself 
to finer grain parallelism, as one could achieve using a 
threaded approach. Our system now is manually tuned 
and balanced (between the number of agents, the num- 
ber of sensors per agent, and the complexity of the vi- 
sual database). A fruitful area of research is in the au- 
tomatic load balancing of the MOTION and SENSE pro- 
cesses, spawning and killing copies of these processes, 
and doling out agents and sensors, as agents come and 
go in the virtual environment. Results in real-time sys- 
tem scheduling and approximation algorithms will be 
applicable here. 
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Abstract 

We describe the ZAROFF system, a plan-based con- 
troller for the player who is "it" in a game of hide and 
seek. The system features visually realistic human fig- 
ure animation including realistic human locomotion. 
We discuss the planner's interaction with a changing 

. environment to which it has limited perceptual access. 

Introduction 
The game of hide and seek challenges the ability of 
players to plan for acquiring information. The player 
who is "it" (hereafter called the seeker) must explore 
his environment attempting to locate other players. 
Those players must select hiding places which are diffi- 
cult to discover while providing access for them to run 
safely to home base when the way is clear. The goal of 
this is to develop simulated agents that can play hide 
and seek (or more dangerous games). Due to the com- 
petitive nature of the game, reasoning must take place 
quickly in dynamically changing hostile surroundings. 

This paper presents part of ZAROFF
1
 a system for 

generating an animated simulation of humans play- 
ing hide and seek. (Figure 1 shows frames from one 
game.) We describe a planning system for the seeker 
and its vertical integration into a system that selects 
reactive behaviors to execute in an animated simula- 
tion. Operation of the planner is interleaved with exe- 
cution of the reactive behaviors so that the agent may 
adapt to a dynamic environment. Adaptivity is also 
supported through least-commitment planning, as the 
planner only looks ahead one action at each level of its 
abstraction hierarchy. 

The planner described in this system has been 
ported from an initial domain that combined search 
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89-C-0031 including U.S. Army Research Laboratory; 
ARPA AASERT DAAH04-94-G-0362; DMSO DAAH04- 
94-G-0402; ARPA DAMD17-94-J-4486; U.S. Air Force 
DEPTH through Hughes Missile Systems F33615-91-C- 
0001; DMSO through the University of Iowa; and NSF 
CISE CDA88-22719. 

1 Named for the hunter in Richard Connell's 1924 short 
story, The Most Dangerous Game 

and manipulation tasks (Geib, Levison, & Moore 
1994) to this new domain which requires locomotion. 
The software chosen for this work is Jack® (Badler, 
Phillips, & Webber 1993) running on Silicon Graph- 
ics workstations. Jack is a human modeling and sim- 
ulation program developed at the Center for Human 
Modeling and Simulation at the University of Penn- 
sylvania, that features visually realistic human loco- 
motion based on both kinematic and dynamic tech- 
niques (Ko 1994). Jack's LISP application program- 
ming interface (Becket 1994) is used to implement 
ZAROFF. This interface supports access to the en- 
vironment (a database) and its behavioral simulation 
system. 

In ZAROFF, a planner interacts with an animated 
simulation that provides a dynamically changing envi- 
ronment to which the planner has only limited percep- 
tual access. These environmental characteristics moti- 
vate our system architecture. 

Interacting with the environment 
Our planner interacts with a multi-agent environment 
that consists of a database of graphical entities (e.g. 
geometric objects, human figures) and a behavioral 
simulation engine that moves objects in the database. 
The database records data on three-dimensional ge- 
ometric figures with position and orientation. The 
planner's access to database information is restricted, 
to better simulate the limits of human perception. 
The planner's actions either directly manipulate the 
database, or indirectly affect the database by influenc- 
ing the behavioral simulation engine. 

Perception in ZAROFF 

By limiting the planner's access to the database, the 
planner only has access to information about objects 
which the seeker can "see". For the planner to decide 
on an action, it must see all the objects involved in 
that action. 

We implement a model of perception which restricts 
access to only those objects in the environment which 
are in a direct line of sight from the seeker. This is ap- 
proximated using the graphics technique of ray-casting. 
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Figure 1: Frames from the conclusion of a game 

Rays are cast from the seeker's eyes toward other fig- 
ures. If any of these rays hit a figure before intersecting 
another object, that figure is perceivable. While "per- 
ception" is not synthetic vision, it satisfies the same 
role of forcing information-acquisition actions and mo- 
tivates our use of a special purpose search planner. 

This model of perception is less restrictive than that 
used in HOMER (Vere & Bickmore 1990), another an- 
imated simulation, which limited distance (only close 
objects can be seen) and angle of view (only objects in 
front can be seen) in a two-dimensional environment. 

Action in ZAROFF 

Actions chosen by the planner are carried out. by an 
action execution module (see Figure 2). Both compo- 
nents are well matched to the dynamic environment 
in which ZAROFF acts: the planner quickly selects the 
next action to perform based on comparison between 
the perceived world state and an incomplete hierarchi- 
cal plan that is regularly revised. The action execu- 
tion module controls locomotion in a manner reactive 
to changes in the terrain and moving objects. 

System Architecture 
Our division of the control of a seeker between a plan- 
ning component (the general purpose planner and spe- 
cial purpose search planner) and a reactive behavior 
component (the action execution module) reflects a 
distinction between deliberative and non-deliberative 
actions. Keeping track of where you are located in 
a complex environment and what hiding places have 
been checked requires deliberate effort, while walking 
from one place to another generally does not. To- 
gether, these two components create realistic anima- 
tions of human decision-making and locomotion while 
playing hide and seek. 

Figure 2 depicts information flow in ZAROFF. The 
system starts by initializing the plan with the input 
goal (finding a hiding human), populating the database 
with the initial locations of all the objects and human 
figures in the simulation, and creating a partial map 
from what the seeker can see around him. The planner 
and the Behavioral Simulation System start processing 
simultaneously. The planner queries the state of the 
database through the Filtered Perception module to 
decide how to elaborate the plan and select an action. 
If necessary, the Search Planner is consulted to assist in 
planning how to find things. When the planner decides 

on an action, it instructs Action Execution to carry it 
out. Further planning is suspended until the action 
has terminated (successfully or unsuccessfully). 

In making decisions about what to do next, each 
component makes use of its own internal simulation, 
which differs from the graphical animation of the en- 
vironment. The planner uses abstract descriptions of 
the effects of each action to choose one which will move 
closer to the specified goal. The search planner simu- 
lates the movements of an agent on its internal map of 
the environment. Action Execution simulates taking 
the next step in several alternate locations. At each 
level of decision making, an internal simulation is used 
at an appropriate granularity. 

Action Execution 
The Action Execution module is responsible for the 
control of all actions occurring in ZAROFF. Most 
actions such as opening and closing doors are per- 
formed directly by this module. Human locomotion 
is a special case which is performed by the Behav- 
ioral Simulation System (BSS) (Becket & Badler 1993; 
Badler, Phillips, k Webber 1993). Action Execution 
controls this locomotion indirectly. 

Non-locomotion actions are performed directly by 
Action Execution manipulating the environment. For 
example, a door is opened by rotating it about its 
hinges. This rotation is done incrementally, a small 
amount each frame of animation. 

Locomotion is performed indirectly by Action Ex- 
ecution creating sensors and binding them to human 
figures in the database. Since BSS is constantly moni- 
toring the environment, this immediately initiates the 
appropriate agent locomotion. 

Neither path-planning nor explicit instructions are 
used to drive locomotion; agent control and appar- 
ent complexity are the result of the interaction of a 
few relatively simple behaviors with a complex (and 
changing) environment. An agent is made aware of its 
environment through the use of a network of sensors. 
Based on the information gathered by these sensors the 
path through the terrain is incrementally computed. 
This allows the agent to react to unexpected events 
such as moving obstacles, changing terrain, or a mov- 
ing goal (Reich et al. 1994). 

Sensors 
A sensor is a function which maps a human's posi- 
tion and orientation (his state) in the environment to 



a stress value, where lower values represent more de- 
sirable states. The agent (here, the seeker) utilizes a 
set of sensors in interacting with its environment. Cur- 
rently there are four classes of sensors: 

Attraction: An attraction sensor (attractor) is used 
to draw the seeker toward a goal, either an object 
or a location. If a goal object moves, the point of 
attraction moves appropriately. The sensor output 
(stress value) of an attractor is high when the agent 
is far from the goal and decreases as the agent nears 
the goal. 

Repulsion: A repulsion sensor (repulser) is used to 
avoid collisions between the seeker and objects. Re- 
pulsers have a sector-shaped region of sensitivity. If 
there are no objects in this region the sensor output 
is zero. Otherwise the output is proportional to the 
distance and size of the detected objects. 

Field-of-View: A field-of-view sensor determines 
whether or not the agent is visible to any other 
agent. (It will be used to support, the players who 
must hide.) The sensor output is proportional to the 
number of agents' fields-of-view it is in, and inversely 
proportional to the distances to these agents. 

The Behavioral Simulation System 

BSS provides general locomotion of objects in Jack, 
and is used in ZAROFF to generate human locomotion. 
The central control mechanism of BSS is a loop that 
includes perception, control, and action. During the 
perception phase the sensors are polled, during the 
control phase the next foot position is selected, and 
during the action phase the step is taken. 

General purpose planning 
The next two sections describe the system for plan- 
ning the overall behavior of the seeker agent, which 
combines a hierarchical planner with a special purpose 
search planner. 

Behavioral 

Simulation 

System 

■Figure 2: Information flow in ZAROFF 

ITPLANS (Geib 1992) is a hierarchical planner, in 
which hierarchical expansion only takes place to the 
degree necessary to determine the next action to be 
carried out. It consists in an incremental expansion of 
the frontier of the plan structure to successively lower 
levels of abstraction. The incremental nature of the 
plan allows the system to make commitments at the 
appropriate level of detail for action while not com- 
mitting the system to future actions that might be ob- 
viated by changes in the world. The close coupling of 
ITPLANS with the environment manifests itself in two 
ways: 

First, the traversal and pruning process the planner 
follows at each interval relies on being able to deter- 
mine the actual state of the world and compare that 
with its goals. During the expansion process ITPLANS 

examines the state of the world and its memory to de- 
termine if any of the goals within its plan have been 
satisfied. When a goal has been satisfied serendipi- 
tously, it can be pruned out of the plan structure, and 
the system can move on to consider its next goal. 

Second, ITPLANS "leans on the world" (Agre 1988) 
when predicting the results of its actions. Rather than 
maintaining a complete model of the world and the 
state that results from executing the action, ITPLANS 

uses a simpler method based on associating conditional 
add and delete lists with each action. ITPLANS as- 
sumes that a given proposition is true in the state that 
results from the action if (1) the proposition is explic- 
itly added by the add list or (2) the proposition is true 
?io«' in the world and it is not contained on the delete 
list. By this method, ITPLANS can make predictions 
about the results of executing an action without mod- 
eling the entire world state. 

Search planning 
A consequence of limited perception is the occasional 
need to find objects. Our approach is to isolate this 
reasoning in a specialized module, a search planner 
that translates information acquisition goals to high- 
level physical goals to explore parts of the environment. 
As Haas points out (Haas 1993), any plan for acquir- 
ing information must rest on what the agent knows 
about the environment. That is, in order to search for 
an object, an agent must know (or discover during the 
search) the regions of space where the object might be. 

Searches terminate successfully when a referent ob- 
ject is seen in the environment. They terminate unsuc- 
cessfully when there are no more regions to explore. 
A search may also be terminated if the environment 
changes in a way that obviates the search. 

Maintaining a Map 
Our approach to search planning relies on maintaining 
information about the state of a heuristic search on an 
internal map. The heuristic search has finding a de- 
sired object as its goal. It uses distance from the agent 
to order regions for exploration.  Two lists of regions 
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are maintained by the search algorithm, an open list of 
regions yet to be explored and a closed list of regions 
which have been explored. Its internal map consists of 
nodes that correspond to bounded regions connected 
by links that correspond to doors. 

In one iteration of the search, the closest region on 
the open list is selected to be explored. ITPLANS gen- 
erates a plan for going to and exploring that region, 
opening any doors necessary along the way. After each 
action in this plan is executed, the resulting world is 
observed to determine if the desired object has been 
located. New doors and regions observed during the 
action are added to both the map and the open list. 

Pemberton and Korf (Pemberton & Korf 1992) 
present optimal algorithms for heuristic search on 
graph spaces, where only a portion of the graph is avail- 
able before the agent must commit to an action. We 
use their Incremental Best-First Search (IBFS) algo- 
rithm, which uses best-first search to find the closest 
known open node. Heuristic estimates for this known 
part of the graph are recalculated as necessary. 

Example 
Having given an overview of the system's components, 
we now illustrate ZAROFF with an example drawn from 
a game of hide and seek. To illustrate the conduct of a 
search, we will use an example environment with two 
buildings, one of which has two internal rooms sepa- 
rated by a door (Figure 4). Consider the seeker's goal 
of finding a hiding player. This is specified as goto(X) 
with the added constraint that type(X)  = HUMAN. 

ITPLANS considers the action goto(X) to be prim- 
itive but underspecified since the variable X is not 
bound to a particular object of type HUMAN. In order to 
bind the variable, the search planner must be called to 
generate a plan for locating a HUMAN. To this end, IT- 

PLANS adds to the plan & find node and calls the search 

planner to instantiate a search plan (Figure 3a). 
The search planner reasons from this knowledge ac- 

quisition goal of locating a HUMAN, to the goal of ex- 
ploring regions where a HUMAN might be. Satisfying 
this goal requires physically searching through possi- 
ble regions. 

ITPLANS asks the search planner to expand the find 
node. Each time a find node is expanded, the search 
planner first examines the Jack environment to deter- 
mine if an object of the specified type is visible to the 
agent. If not, the search planner selects a region to ex- 
plore next, generates a goal to explore that region, and 
adds it to the plan (Figure 3b). The initial map (Fig- 
ure 5) of regions has two doors for the search planner 
to choose from; the closest, doorl, is recommended for 
exploration. This goal is then further expanded by IT- 

PLANS to go to doorl and open it (Figure 3c). Since 
all of the arguments in the first action are bound to 
specific objects, it can be carried out. Action Execu- 
tion performs this action indirectly by binding an at- 
traction sensor to the seeker. When the seeker arrives, 
doorl is opened directly by Action Execution. 

After doorl is opened, ITPLANS uses the search 
planner to evaluate the progress of the search by exam- 
ining the world for objects having the property HUMAN. 
If one is located, the search is considered successful. 
If not, the search planner selects a new region for ex- 
ploration and the searching process repeats until there 
are no more regions to explore. 

In this case, opening doorl does not reveal a HUMAN, 
but does permit the agent to see another door, door2, 
that is automatically added to the search planner's in- 
ternal map. As door2 is the closest unexplored space, 
on the next iteration the planner will plan to explore 
behind door2. Opening door2 does not reveal the 
HUMAN, so the search proceeds to the next closest un- 
explored region - the other building. 

Here we see the advantage of maintaining a map. 
Immediately after opening door2, the agent is inside 
one building and decides to go to the door of the other 
building. Since this destination region is known (from 
having seen it previously), we could simply take the 
action goto(doorO). This would result in the agent 
walking directly toward the door until stopped by the 
wall. To avoid getting caught in this local minimum, 
the search planner uses its internal map (Figure 6) to 
plan a path to the next region. The only known path 
to doorO is to exit the current building through doorl. 
The search planner returns this sequence of intentions 

doorl 

doorO doorO 

Figure 5: Initial map Figure 6: Final map 
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Figure 3: Evolution of the plan graph 

to ITPLANS, which then invokes Action Execution to 
generate locomotion along this path. After opening 
doorO, the seeker finally sees a HUMAN and can go to it. 

Conclusion 
We have implemented a plan-based controller for the 
seeker role in the game of hide and seek. Our agent dy- 
namically reacts to changes in the environment, from 
the level of terrain up to changes in information about 
where the other players may be hiding. The imple- 
mentation combines general purpose planning, special 
purpose reasoning about conducting a search, and re- 
active control of human behaviors. 

ZAROFF is an effective system for animating humans 
carrying out tasks that require locomotion. Limiting 
the human agent's awareness of its environment by 
simulated perception increases the realism of the be- 
havior generated. 
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Abstract 
We describe a system for off-line production and 

real-time playback of motion for articulated human fig- 
ures in 3D virtual environments. The key notions are 
(1) the logical storage of full-body motion in posture 
graphs, which provides a simple motion access method 
for playback, and (2) mapping the motions of higher 
DOF figures to lower DOF figures using slaving to 
provide human models at several levels of detail, both 
in geometry and articulation, for later playback. We 
present our system in the context of a simple prob- 
lem: Animating human figures in a distributed simu- 
lation, using DIS protocols for communicating the hu- 
man state information. We also discuss several re- 
lated techniques for real-time animation of articulated 
figures in visual simulation. 

1 Introduction 
The ability to render realistic motion is an essen- 

tial part of many virtual environment applications. 
Nowhere is this more true than in virtual worlds con- 
taining simulated humans. Whether these human fig- 
ures represent the users' virtual personae (avatars) or 
computer-controlled characters, people's innate sensi- 
tivity as to what looks "natural" with respect to hu- 
man motion demands, at the very least, that moving 
characters be updated with each new frame that the 
image generator produces. 

We first discuss a topical problem which requires 
the real-time rendering of realistic human motion, and 
then describe our system for authoring the motion off- 
line, and playing back that motion in ,real time. We 
also address some of the issues in real-time image gen- 
eration of highly-articulated figures, as well as com- 
pare several other methods used for real-time anima- 
tion. 

2 Human motion in DIS 
The problem we are interested in is generating and 

displaying motion for human figures, in particular sol- 
diers, in distributed virtual environments. Parts of the 
general problem and the need for representing simu- 
lated soldiers (referred to as Dismounted Infantry, or 
DIs), are covered in [15, 5]. Although primarily driven 

by military requirements today, the general technolo- 
gies for projecting real humans into, and represent- 
ing simulated humans within, virtual environments, 
should be widely applicable in industry, entertainment 
and commerce in the near future. 

The Distributed Interactive Simulation (DIS) [7] 
protocol is used for defining and communicating hu- 
man state information in the distributed virtual envi- 
ronment. The DIS protocol, at least the part relating 
to human entities, is in its early stages of development, 
and fairly limited in what it can specify about a hu- 
man figure [11], but is a good baseline to start with. 
Our purpose here is not to engage in a discussion of the 
intricacies (nor worth) of the DIS protocol, but merely 
to use it as an example of a distributed simulation pro- 
tocol which can communicate state information on a 
simulated human entity between simulation nodes in 
a network. 

The information representing a human entity is cur- 
rently defined by several discrete enumerations in the 
appearance field of an Entity State Protocol Data Unit 
(PDU) in the DIS protocol [8]. The relevant informa- 
tion we are interested in from the Entity State PDU 
is shown in Fig. 1. The human is always in one of the 
four postures, along with a weapon state. The head- 
ing defines the forward direction. Although there are 
enumerations for walking and crawling, we use combi- 
nations, such as (posture=sian<f«7i<7)-|-(velocity>0) to 
be equivalent to walking or running. Although the 
protocol allows for up to three weapons of different 
types on a soldier, we only modeled one, a rifle. 

If the human can be in any of n possible postures, 
there are potentially n~ transitions between the pos- 
tures. Rather than create n2 posture transitions, we 
encode the postures and transitions into a posture 
graph [1]. The graph defines the motion path to tra- 
verse to move the human figure from any one posture 
to another. These graphs are directed and may in- 
clude cycles. It also provides the logical structure for 
the run-time motion database. 

When the velocity of the human is zero, the possible 
transitions between static (for lack of a better term) 
postures are encoded in the posture graph of Fig. 2. 
A few of the actual postures are shown in Fig. 3.  In 



Field Value Units 

Posture Standing 
Kneeling 
Prone 
Dead n/a 

Weapon Deployed 
Firing n/a 

Position ^x !   *yi   * z meters 
Velocity Vr,    Vy,    Vz meters/second 
Heading theta degrees 

Figure 1: Essential human state information in a DIS 
Entity State PDU 

Figure 2: The static posture graph 

Figure 3:   Some of the static postures a soldier can 
take in DIS 

the posture graph, the nodes represent static postures, 
and the directed arcs represent the animated full-body 
transitions, or movements, from posture to posture. 
Each arc has an associated time for traversal, which 
is used to find the shortest path, in time, if more than 
one path exists between a starting posture and a goal 
posture. 

When the velocity of the figure is non-zero, the 
possible transitions between locomotion postures are 
shown in the posture graph of Fig. 4. In this graph, 
the nodes are static postures, but the figure would 
never be in the posture for more than one frame. 

The system we built consists of two distinct parts: 
1) the off-line motion data generator, and 2) the on- 
line real-time playback mechanism, running in a high- 
performance IRIS Performer-based [12] image genera- 
tor application. 

3     Off-line motion production 
Motion production involves three steps: 1) creating 

postures and motion for each node and arc in a posture 
graph, for one human model, 2) mapping the result- 
ing motion onto human models with lower degrees- 
of-freedom (DOF) and lower resolution geometry, and 



TO STATIC 

POSTURE GRAPH 

Figure 4: The locomotion posture graph 

finally 3) recording the results and storing in a format 
for easy retrieval during playback. 

3.1 Authoring the motion 
The first step in producing motion for real-time 

playback is to create postures representing the nodes 
in the posture graphs, as well as the corresponding mo- 
tions between them, represented as the directed arcs 
in the graphs. We used a slightly modified version of 
the Jack human modeling and animation system [2] 
for this purpose. Jack provides a nice constraint- 
based, goal-driven system (relying heavily on inverse- 
kinematics and primitive "behavioral" controls) for 
animating human figures, as well as facilities for or- 
ganizing motions for general posture interpolation [1]. 
It is important to note that the posture graphs pre- 
sented in this paper differ from the posture transition 
graphs presented in [1]. In the latter, the posture tran- 
sition graphs are used to organize motion primitives 
for general posture interpolation with collision avoid- 
ance. In the former application (this paper) the pos- 
ture graphs are a logical mechanism for organizing a 
database of pre-recorded motion, and determining mo- 
tion sequences as paths between nodes of the graph. 
An underlying assumption of the posture graphs is 
that the articulated human figure's motion is contin- 
uous, and therefore can be organized into a connected 
graph. 

Each directed transition in the static posture graph 
typically was produced from 10 to 15 motion primi- 
tives (e.g. move-arm, bend-torso, etc). Many of the 
directed motions from a posture node A to a posture 
node B are simply run in reverse to get the correspond- 
ing motion from posture B to posture A. In several 
cases, the reverse motion was scripted explicitly for 
more natural results. 

The human figure can also move (either forwards or 
backwards, depending on the difference between the 
heading and the direction of the velocity vector) by 
either locomoting (if posture is standing) or crawling 
(if posture is prone). The locomotion posture graph 
transitions of Fig. 4 were generated by Hyeongseok 
Ko's walking system [9]. Six strides for each type of 
walking transition were generated (forward walking, 
backward walking, running): left and right starting 
steps, left and right ending steps, and left and right 
cyclic steps. The crawling animation was generated 
manually, and is based on two animations - one that 
goes from the prone posture to the cyclic state, and 
one complete cyclic motion. Note that only straight 
line locomotion of fixed stride is modeled. We are 
currently working on extending the system to handle 
variable stride length and curved path locomotion, as 
possible in the system of [9]. 

3.2 Slaving 
The second step in the production process is con- 

cerned with preparing the motion for the real-time 
playback system. We wish to have tens, and poten- 
tially hundreds, of simulated humans in a virtual en- 
vironment. This neccesitates having multiple level- 
of-detail (LOD) models, where the higher resolution 
models can be rendered when close to the viewpoint, 
and lower resolution models can be used when farther 



human-1 human-2 human-3 
polygons 2400 500 120 
rigid segments 69 19 12 
joints 73 17 11 
DOFs 134 50 21 
motion 60Hz 30Hz 15Hz 

Figure 5: 
models 

The different levels of detail for the human 

away. We reduce the level of detail in the geometry 
and articulation by creating lower-resolution (both in 
geometry and articulation) human figures, with the 
characteristics listed in the table of Fig. 5. 

All the motions and postures of the first step 
are authored on a (relatively) high resolution human 
body model which includes fully articulated hands and 
spine. This model is referred to as "human-1" in 
the above table. We manually created the two lower- 
resolution models, human-2 and human-3. Because 
of the difference in internal joint structure between 
human-1 and the lower LOD models, their motions 
cannot be controlled by the available human control 
routines in Jack (which all make assumptions about 
the structure of the human figure - they assume a 
structure similar to human-1). Instead of controlling 
their motion directly, we use the motion scripts gener- 
ated in the first step to control the motion of a human- 
1, and then map the motion onto the lower resolution 
human-2 and human-3. We call this process slaving, 
because the high resolution figure acts as the master, 
and the low resolution figure acts as the slave. 

Even though the different human models have dif- 
ferent internal joint structures and segment shapes, 
their gross dimensions (e.g., length of arms, torso, etc.) 
are similar. The slaving process consists of interpolat- 
ing the motions for the full human figure, generating 
all the in-between frames, and simultaneously having 
a lower LOD human model (human-2 or human-3) 
slaved, and then saving the in-between frames for the 
soldier. We will describe the process used for slaving 
from human-1 to human-2; the case with human-3 is 
similar. 

For each frame of an animation, we first compute 
the position and joint angles for human-1. Then, an 
approximation of the joint angles for human-2 are 
computed. This is straightforward, as certain joints 
are the same (the elbow, for example, is only one DOF 
on both human models), and others can be approx- 
imated by linear combinations (for example, the 35 
DOFs of the spine on human-1 can be summed and 
mapped directly onto the 7 DOF torso of human-2). 
This gives a good first approximation of the posture 
mapping, and provides an initial configuration for the 
final mapping. For the resulting motion of human-2 
to look correct, we need to have certain landmark sites 
of the two bodies match exactly (the hands must be 
on the rifle). The final mapping step involves solving 
a set of constraints (point-to-point and orientation), 
to bring the key landmark sites into alignment.  The 

Figure 6: human-1 and human-2 models during slav- 
ing. human-1 is the master. Upper window is the 
skeletal articulation. Models are offset for illustrative 
purposes. 

constraints are solved using an iterative inverse kine- 
matics routine [17] to move the body parts into align- 
ment. 

Because of differences in geometry between the 
master and slave, in general we cannot expect all 
the landmark sites to match exactly. For the prob- 
lem domain of this paper, animating the DIS proto- 
col, the hands are always holding a rifle, so match- 
ing the hand positions accurately from the master is 
very important (otherwise the slave's hands may pen- 
etrate the rifle). Using a priority scheme in evaluat- 
ing constraints, we assign higher priority to the hand- 
matching constraints than others, to account for this 
fact. If the slaving procedure cannot fit the master 
and slave within a certain tolerance, it will generate a 
warning for the animator. 

3.3     Recording 
The final step in the motion production process is 

to record the resulting motions of the human figures. 
The recorded motion for one transition is referred to as 
a channel set (where each joint or figure position is re- 
ferred to as a channel; the channel is indexed by time). 
For each LOD human figure, a homogeneous trans- 
form is recorded, representing figure position relative 
to a fixed point, and for each joint, the joint angles 
are recorded (one angle per DOF). Also for joints, the 
composite joint transform is pre-computed and stored 
as a 4x4 matrix (which can be plugged directly into 
the parenting hierarchy of the visual database of the 
run-time system). Each channel set has an associated 
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Figure 7: Overview of multi-processing framework for 
run-time system. 

transition time. The channels of human-1 are inter- 
polated and stored at 60Hz, human-2 at 30Hz, and 
human-3 at 15Hz. These rates correspond to the mo- 
tion sampling during playback (see below). 

4    Real-time motion playback 
The real-time playback functions are packaged as 

a single linkable library, intended to be embedded in 
a host IRIS Performer-based visual simulation appli- 
cation. The library loads the posture graphs shown 
in Fig. 3 and 4, as well as the associated channel set 
motion files. Only one set of motions are loaded, and 
shared amongst any number of soldier figures being 
managed by the library. The articulated soldier fig- 
ures themselves are loaded into the Performer run- 
time visual database. The library runs as a separate 
process, the MOTION process, serving motion data to 
the APP process (the APP, CULL and DRAW process are 
defined in the Performer multiprocessing framework). 
See Fig. 7 for a schematic overview of the runtime 
system. 

An update function in the APP process is provided 
which maps joint angle values into the joint transforms 
of the soldier figures in the Performer visual database. 

The APP process sends requests to the MOTION pro- 
cess, and receives joint angle packets back from the 
library. The content of the request to the library is 
simply the state information extracted from a DIS En- 
tity State PDU, as shown in Figure 1. A simple con- 
trol function translates these requests into playbacks 
of channel sets (the traversal of arcs of the posture 
graphs). 

In the case of a static posture change (a motion 
from the static posture graph of Figure 2), the sys- 
tem will find the shortest path (as defined by traver- 
sal time) between the current and goal postures in the 
graph, and execute the sequence of transitions. For 
example, if the posture graph is currently at Standing 
Deployed, and Prone Firing is requested, it will transi- 
tion from Stand Deployed to Crawl to Prone Deployed, 
and finally to Prone Firing. 

The same shortest-path traversal method is used 
for executing posture changes in the locomotion pos- 
ture graph of Fig. 4. It is important to realize that the 
only difference between the "static" and "locomotion" 
posture graphs is conceptual; the data structures in- 
volved are identical, and the distinction merely has to 
do with the conditions under which posture transitions 
are made. A posture change is made with a node of 
the static graph as a destination only upon receipt of 
a DIS Entity State PDU indicating that the agent is 
in such a posture. In the absence of further informa- 
tion, the agent remains in that posture. Conversely, 
when a posture change is made with a node of the 
locomotion graph as the destination, something that 
will occur if a PDU indicates the agent now has a non- 
zero speed, the agent does not remain in that posture 
once it is reached; absence of further information in 
this case means that the agent's speed is still nonzero, 
and hence the agent must take another step, or crawl 
another meter forwards, or whatever is appropriate 
for the current mode of locomotion. This continued 
motion requires that another posture change be made 
immediately. 

One may think of labeling the transition arcs be- 
tween posture graph nodes with conditions, as in a 
finite state machine. For instance, the transition from 
Standing Deployed to Walking Forwards (left foot for- 
ward) is taken whenever the agent's speed becomes 
non-zero and the agent's heading vector agrees with 
the velocity vector. On the other hand, if the vectors 
are not pointing in approximately the same direction, 
a transition is instead made to one of the Walking 
Backwards states. While the agent's speed remains 
nonzero (as it is assumed to in the absence of PDU up- 
dates), the system continually makes transitions back 
and forth between, for example, the Walking Forwards 
(left foot forward) and Walking Forwards (right foot 
forward) nodes. This cycle of transitions creates a 
smooth walking motion by concatenating successive 
left and right steps. Note that since we currently have 
no cycles of more than two nodes, finding the shortest 
path between postures in a cycle is a trivial matter! 

Crawling is handled similarly, though it is a simpler 
case; there is no need for separate "left foot forward" 
and "right foot forward" states. 

The system samples all the pre-recorded motion us- 
ing elapsed time, so it is guaranteed to always play 
back in real time. For a 2 second posture transition 
recorded at 60fps, and a current frame rate of the im- 
age generator of 20fps, the playback system would play 
frames 0,3,6,..., 120. It recomputes the elapsed tran- 
sition time on every frame, in case the frame rate of 
the image generator is not uniform. 

The motion frame update packets sent  from the 



MOTION process back to the APP process are pack- 
aged to only include those joint angles which have 
changed from the last update. This is one way we 
can minimize joint angle updates, and take advantage 
of frame-to-frame coherence in the stored motions 1. 
A full update (all joint angles and figure positions) is 
about 400 bytes. 

4.1     Motion level-of-detail 
It is recognized that maintaining a constant frame 

rate is essential to the believability of a simulation, 
even if it means accepting an update speed bounded 
by the most complex scene to be rendered. Automatic 
geometric level-of-detail selection, such as that sup- 
ported by the IRIS Performer toolkit, is a well-known 
technique for dynamically responding to graphics load 
by selecting the version of a model most appropriate 
to the current viewing context [4, 6, 14]. 

The LOD selection within the visual database seeks 
to minimize polygon flow to the rendering pipeline 
(both in the software CULL and DRAW components 
of the software pipeline, as well as to the transforma- 
tion engines within the hardware pipeline). 

Given our representation, which enforces the sep- 
aration of geometry and motion, it is possible to ex- 
pand level of detail selection into the temporal domain, 
through motion level-of-detail selection. In addition to 
reducing polygon flow, via selecting lower LOD geo- 
metric models, we also are selecting lower LOD ar- 
ticulation models, with fewer articulation matrices, as 
well as sampling motion at lower frequencies. This re- 
duces the flow of motion updates to the articulation 
matrices in the visual database. The models we are 
using are listed in Fig. 3.2. 

In the playback system, we simultaneously transi- 
tion to a different geometric representation with a sim- 
pler articulation structure, and switch between stored 
motions for each articulation model. We gain perfor- 
mance in the image generator, while consuming more 
run-time storage space for the motions. Our metric 
for LOD selection is simply the distance to the virtual 
camera. This appears to work satisfactorily for our 
current application domain, but further evaluation of 
the technique, as well as more sophisticated selection 
metrics (e.g. the metrics described in [6, 4]) need to 
be explored. 

5     Example implementations and uses 
The real-time playback system is currently being 

used in two DIS-based applications to create motion 
for simulated soldiers in virtual environments. 

The Team Tactical Engagement Simulator [15] 
projects one or more soldiers into a virtual environ- 
ment, where they may engage hostile forces and prac- 
tice coordinated team activities. See Fig. 8 for a sam- 
ple view into the training environment. The soldier 
stands in front of a large projection screen, which is 
his view into the environment. He has a sensor on his 
head and one on his weapon.   He locomotes through 

1 An initial implementation of the playback library was run 
as an independent process, on another machine, from the host 
image generator, and joint angle packets were sent over TCP/IP 
stream sockets, hence the desire to minimize net traffic. 

Figure 8: A View of Battle Town with several soldiers 
in different postures 

the environment by stepping on a resistive pad and 
controls direction of movement and field of gaze by 
turning his head. The soldier may also move off the 
movement pad, and the view frustum is updated ac- 
cordingly based on his eye position (head-coupled dis- 
play). This allows the soldier, for example, to crouch 
down to see under a parked vehicle, or to peek around 
the corner of a building while still affording himself 
the protection of the building. TTES also creates the 
necessary DIS Entity State PDUs to represent the real 
soldier (mapping from sensor values into the small set 
of postures in the Entity State PDU), and sends them 
out over the net to other TTES stations that are par- 
ticipating in the exercise. 

The playback system is also used in a version of 
the NPSNET-IV [5] system, for generating motion of 
SIMNET- and DIS-controlled soldier entities. 

Motion level-of-detail selection is of particular rel- 
evance to the example projects described above, be- 
cause in the situation where a hostile agent enters the 
field of view of a soldier (one of the real human partic- 
ipants) and brings his weapon into the deployed posi- 
tion, the hostile's actions will probably be noted only 
in the participant's peripheral vision. It is well-known 
that humans can detect the presence of motion in their 
peripheral vision very easily, but that resolution of de- 
tail is very low. When head-tracking data is available 
or a head-mounted display is in use it is possible to 
designate areas of the viewing frustum as peripheral 
and reduce geometric and motion detail accordingly 
(not just based on linear distance to the camera, but 
angular offsets also). In the TTES environment this 
"focus of attention'" information can be obtained from 
the aim of the real soldier's rifle when it is in the raised 
position, as the real soldier will almost certainly be 
sighting in this situation. 



6    Comparison of production/playback 
methods 

One of the most obvious criteria for evaluating a 
given motion representation is size; there is a clear 
progression in the methods used to animate humans 
(or any entity whose geometric representation varies 
over time) based on the amount of space required to 
store a given motion. We look at three methods. 

The first method, requiring the most storage, in- 
volves generating and rendering the movements of 
characters in an off-line fashion. Frame-by-frame, 
a sequence of two-dimensional snapshots is captured 
and saved for later playback. The image genera- 
tor then displays the bit-mapped frames in sequence, 
possibly as texture maps on simple rectangular poly- 
gons. Hardware support for texture mapping and al- 
pha blending (for transparent background areas in the 
texture bitmaps) make this an attractive and fast play- 
back scheme. Furthermore, mip-mapping takes care of 
level-of-detail management that must be programmed 
explicitly in other representations. Since the stored 
images are two-dimensional, it is frequently the case 
that artists will draw each frame by hand. In fact, this 
is precisely the approach utilized in most video games 
for many years. It is clear that very little computation 
is required at run-time, and that altering the motions 
incurs a high cost and cannot be done in real time. In 
fact, modifying almost any parameter except playback 
speed must be done off-line, and even playback speed 
adjustments are limited by the recording frequency. 
However, one real problem with using two-dimensional 
recording for playback in a three-dimensional scene is 
that non-symmetric characters will require the genera- 
tion of several or many sets of frames, one for each pos- 
sible viewing angle, increasing storage requirements 
still further. The authors of the popular game DOOM 
[13] record eight views of each animated character (for 
each frame) by digitizing pictures of movable models, 
and at run time the appropriate frames for the cur- 
rent viewing angle (approximately) are pasted onto a 
polygon. These eight views give a limited number of 
realistic viewing angles; it is impossible, for instance, 
to view a DOOM creature from directly above or be- 
low. Interestingly enough, an article on plans for a 
follow-up to DOOM reveals that the authors intend 
to switch to one of the two remaining representations 
we describe here: 

Unlike the previous games, the graphic repre- 
sentation of characters will be polygon mod- 
els with very coarse texture mapping. This 
will make it hard to emulate natural locomo- 
tion, so they'll stay away from creating too 
many biped characters.[16] 

Making the move to the second method involves a 
relatively slight conceptual change, namely taking 3- 
dimensional snapshots instead of 2-dimensional snap- 
shots. This means storing each frame of a figure's 
motion as a full three-dimensional model. Doing so 
obviates the need for multiple data sets correspond- 
ing to multiple viewing positions and shifts slightly 
more of the computational burden over to the image 

generator. Instead of drawing pixels on a polygon 
the run-time system sends three-dimensional polyg- 
onal information to the graphics subsystem. It is still 
an inflexible approach because the figures are stored 
as solid "lumps" of geometry (albeit textured), from 
which it is extremely difficult, if not impossible, to ex- 
tract the articulated parts of which the original model 
is comprised. Modifications must still be effected off- 
line, although rendering is done in real time. This is 
essentially the approach used by the SIMNET image 
generators to display soldiers on a simulated battle- 
field [3]. 

The final method is the one implemented by the 
system described in this paper, in which we record 
not the results of the motions, but the motions 
themselves. We store a single articulated three- 
dimensional model of each agent, and from frame to 
frame record only the joint angles between articu- 
lated segments. Modern rendering toolkits such as 
the IRIS Performer system used in this project in- 
creasingly allow support for storing coordinate trans- 
formations within a visual database, with relatively 
little cost associated with updating the transformation 
matrices in real time. As a result of adopting this ap- 
proach, storage space is reduced and it is far easier to 
accurately perform interpolation between key frames 
because articulation information is not lost during mo- 
tion recording. It also allows for virtual agents with 
some motions replayed strictly "as-is" and some mo- 
tions which may be modified or generated entirely in 
real time. For instance, the slight changes in shoulder 
and elbow joint orientation required to alter the aim of 
a weapon held by a virtual soldier could be generated 
on demand. 

We believe that the smallest representation pre- 
sented in our size hierarchy, the third method, actually 
retains the most useful information and affords the 
most flexibility, while placing an acceptable amount 
of additional computational burden on the run-time 
display system. 

7    Extensions &: future work 
We are currently exploring several extensions to the 

techniques described above, to add more expressive 
power to the tool bag of the real-time animator. 

Key-framing and interpolation The   use   of  the 
pre-recorded motions in the above posture graphs 
trades time for space. We do not compute joint 
angles on the fly, but merely sample stored mo- 
tions. As the motions become more complex, it 
becomes very time-consuming to produce all the 
motions in the off-line phase, so we only produce 
key frames in a transition, every 5 to 10 frames, 
and then use simple interpolations to generate the 
inbetweens during real-time playback. This tech- 
nique can't be extended much beyond that, as 
full-body human motion does not interpolate well 
beyond that many frames. This also reduces the 
amount of stored motions by a factor proportional 
to the spacing of the key frames, but increases 
computation time when a playback frame lands 
between two key frames. 



Partitioning full-body motion 
In the posture graphs described previously, each 
motion transition included all the joint angles for 
the whole body. A technique to reduce motion 
storage, while increasing playback flexibility, is to 
partition the body into several regions, and record 
motion independently for each region. For exam- 
ple, the lower body can be treated separately dur- 
ing locomotion, and the upper body can have a 
variety of different animations played on it. Also, 
to support the mapping of motion from partially 
sensed real humans (i.e. sensors on the hands) 
onto the animated human figures, we want to an- 
imate the lower body and torso separately, then 
place the hands and arms using a fast inverse 
kinematics solution. 

Articulation level-of-detail The var- 
ious LOD models we used for the human figures 
were all built manually. Techniques for synthesiz- 
ing lower LOD geometric models are known, but 
they don't apply to building lower articulation 
LOD models. Some techniques for automatically 
synthesizing the lower articulation skeletal mod- 
els, given a high resolution skeleton and a set of 
motions to render, would be very useful. 

Other dynamic properties A limitation is curj 

rently imposed by the fact that the segments of 
our articulated figures must be rigid. However, 
this is more an implementation detail than a con- 
ceptual problem, since with sufficient computa- 
tional power in the run-time system real-time seg- 
ment deformation will become possible. In gen- 
eral it seems likely that the limiting factor in vi- 
sual simulation systems will continue to be the 
speed at which the graphics subsystem can ac- 
tually render geometry. The adoption of coarse- 
grained multiprocessing techniques [12] will allow 
such operations as rigid or elastic body deforma- 
tions to be carried out in parallel as another part 
of the rendering pipeline. The bottom line is that 
greater realism in VR environments will not be 
obtained by pouring off-line CPU time and run- 
time space into rendering and recording charac- 
ters in exacting detail; the visual effect of even 
the most perfectly animated figure is significantly 
reduced once the viewer recognizes that its move- 
ments are exactly the same each and every time 
it does something. We seek to capitalize on the 
intrinsically dynamic nature of interacting with 
and in a virtual world by recording less informa- 
tion and allowing motions to be modified on the 
fly to match the context in which they are re- 
played. Beginning efforts in this direction may 
lie found in [10]. 

8     Conclusions 
We have described a system for off-line production 

and on-line playback of human figure motion for 3D 
virtual environments. The techniques employed are 
straightforward, and build upon several well known 
software systems and capabilities.  As the number of 

Dynamics 

Inverse 
Kinematics 

Forward 
Kinematics (interpolation schemes) 

Table lookup (method of this paper) 

Time to compute 1 frame of motion 

Figure 9:  Trade-off between time and generality for 
motion generation techniques 

possible states for a simulated human increases, the 
posture graphs will need to be replaced with a more 
procedural approach to changing posture. For appli- 
cations built today on current workstations, the cur- 
rent technique is a balance between performance and 
realism. 

Figure 9 shows a very coarse, and albeit intuitive, 
plot of the trade-offs between generality and compu- 
tation time for several motion generation techniques. 
For realistic agent animation in virtual environments, 
the research community will be trying to push this 
curve to the left, making the more powerful techniques 
run faster. The curve has been drifting to the left in 
recent years mainly on the progress made in render- 
ing hardware and overall workstation compute perfor- 
mance. 

We chose humans for animating, as they are what 
we are interested in, but the techniques described in 
this paper could be applied to other complex artic- 
ulated figures, whose states can be characterized by 
postures, and whose motions between postures can be 
organized into posture graphs. 
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