
MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES

1 Form Approved
REPORT DOCUMENTATION PAGE I OMS No. 0704-0188

Public reoorting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources.
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspct of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate or Information Operations and Repor•s, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

"1. AGENCY USE ONLY (Leave blank) I 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I ~~~~~Final Report ______________

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Automatically Combining Changes to Software Systems ARO 117-93

6. AUTHOR(S)

Valdis Berzins

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS r Q • 8. PERFORMING ORGANIZATION
REPORT NUMBER

Computer Science Department

Moteey CANORN 93943IGAGNYNM()AN DRS(S)1.SOSRNG/MNTRN

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBERU. S. Army Research Office

P. 0. Box 12211
Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES

The view, opinions and/or findings contained in this report are those of the

author(s) and should not be construed as an official Department of the Army

position, policy, or decision, unless so designated by other documentation.
12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

This project has been working to establish a theoretically sound approach to

managing changes to software systems via automated methods for combining
changes with provable guarantees of correctness. Given a base version of a

software system and two different enhanced versions we are seeking to
automatically construct a combined version that incorporates both of the

enhancements to the base version. Combining changes to a system is a central problen

in many software development and maintenance activities, particularly in contexts
where several enhancements are developed concurrently.

j995 29 0 0DTIC QUALITY INSPECTMD 5

14. SUBJECT TERMS 15. NUMBER OF PAGES

Software change merging, computer aided design,

software maintenance, software evolution, concurrent engineer- 16. PRICE CODE

ing
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std Z39-18



AUTOMATICALLY COMBINING CHANGES TO SOFTWARE SYSTEMS

FINAL REPORT

Valdis Berzins

JANUARY 1995

U. S. ARMY RESEARCH OFFICE

CONTRACT / GRANT NUMBER ARO 117-93

NAVAL POSTGRADUATE SCHOOL

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.



1. Statement of the Problem Studied

This project has been working to establish a theoretically sound approach to
managing changes to software systems via automated methods for combining changes
with provable guarantees of correctness. The objectives of the research were

(1) to develop the general mathematics formalizing the semantics of changes to
software systems,

(2) to develop algorithms for automatically combining such changes that provide
guarantees of correctness when the changes are compatible with each other, and

(3) to detect and locate inconsistencies for correction of requirements when the
changes are not compatible.

Given a base version of a software system and two different enhanced versions,
we are seeking to automatically construct a combined version that simultaneously
incorporates both of the enhancements to the base version. Semantically based
methods for combining changes are needed because (1) manual methods are labor
intensive and error prone, and (2) conventional tools for combining changes treat
software objects as uninterpreted text strings and do not guarantee the integrity of the
results.

Combining changes to a system is a central problem in many software develop-
ment and maintenance activities, particularly in contexts where several enhancements
are developed concurrently. Experimental work has established that many software
errors can be attributed to the difficulty of understanding interactions between scattered
pieces of code [11]. Combining changes to a system is a central problem in many
software development and maintenance activities. Software systems are created and
evolve in a series of extensions, enhancements, and changes as new requirements are
discovered; as existing requirements are extended, reformulated, or dropped; and as
system faults are discovered and repaired. This process leads to a branching structure
of version histories. Operations for combining changes are needed in all of the follow-
ing contexts.

(1) Different branches can represent alternative designs for the same enhancement.
Automated tools for combining changes can be used to explore alternative choices
for decisions in the context of software prototyping and exploratory design.
Speed and accuracy provided by tool support can enable exploratory evaluations
of design alternatives based on experimental measurements, although these
processes are often impractically slow and expensive if done manually, especially
when exploring combinations of several interacting design decisions.

(2) Different branches can represent enhancements developed in parallel by different
engineers or teams. Semantically based tools for combining changes are useful
for combining the results of such parallel efforts. Different people working con-
currently on a large software system usually have incomplete knowledge of what
the others are doing. Semantically based tools for combining changes are essen-
tial for preserving the integrity of such systems, since people can detect incon-
sistencies only if they have knowledge of a conflicting set of decisions.

__

_v ) 1" a o i 1. 1•



(3) Different branches can represent alternative implementations of the system for
different operating environments which are derived from a common base version
of the system. An enhancement to such a software family can be developed once
based on the common root version, and propagated automatically to all of the
environment-dependent variations by a tool for combining changes. In the gen-
eral case, there can be many branches of the development affected by a change,
and there can be long chains of indirectly induced modifications, as discussed in
[12]. Similar patterns of change propagation occur when a fault in a design deci-
sion is discovered only after several subsequent changes have been based on the
faulty decision.

2. Summary of the Most Important Results

We have previously investigated the problem of combining programs that com-
pute partial functions [3], which is a simplified version of the problem addressed by
this project. We developed the earliest formulation of semantic correctness for merg-
ing, in terms of a semantic lattice. This model applies to the special case of compati-
ble extensions to functions, and addresses the problem of merging versions, rather than
merging changes to versions. Artificial conflict elements are used to formally locate
inconsistencies between versions that conflict. The paper also presents some semanti-
cally sound merging methods for functional programs (including recursion but not state
changes or loops).

Program modifications and imperative programs were first addressed by [9], using
program slicing [13]. This work uses program dependence graphs [8], originally
developed for optimizing compilers, to calculate combined changes for flowchart pro-
grams with assignments. Investigations of the semantics of slices have shown that the
method gives correct results in the cases where it does not report a failure. A weak-
ness of the work is the data-flow approximation used, which does not take into account
the semantics of the conditional decisions in the programs. Because of this, the exist-
ing program dependence graph algorithms report conflicts between any two changes
that potentially affect the same output variables, even if the changes affect disjoint por-
tions of the input space, and therefore cannot interfere with each other. The method
also does not have any formal model or representation for inconsistencies, and does
not directly provide diagnostic information on failure.

The two approaches outlined above essentially cover the entire state of the art of
software merging prior to this project. The main results of the project are models and
methods for software merging that combine the complementary strengths of the two
approaches described above.

We developed a model of change merging that is a uniform extension of standard
denotational semantics [5]. This model handles merging of arbitrary changes to pro-
grams, and contains a suitably extended set of conflict elements to support formal loca-
tion of inconsistencies. Our model is used to determine some general properties of
change merging, and in particular to explore the degree to which changes to the com-
ponents of a functional composition (modules related by data flow relations) can be
merged independently. Examples show that this is not possible in the general case,

3



and some special conditions where it is possible are characterized. Our model covers
most of the standard constructions of domain theory, including sums, products, func-
tion spaces, and two of the three kinds of power domain, and hence applies to a large
class of programming languages. The third kind of power domain (the Egli-Milner
construction) is shown to have a property that precludes treatment by any of the
known formalisms for modeling change merging (i.e., Boolean and Browerian alge-
bras), which indicates fundamental difficulties associated with the interaction between
parallel programs and computations that can fail to terminate. This construction is
needed if we want the meaning of a parallel program that sometimes works correctly
and sometimes diverges to be different from the meaning of a program that always
diverges and also different from the meaning of a program that always works
correctly.

We also developed a method for semantic change merging based on program
meaning functions [4]. This method improves merging accuracy at the expense of
computing time. Accuracy is improved in the sense that the method will produce suc-
cessful and semantically correct merges in cases where the program slicing method
will report failures. These cases correspond to the inability of the program slicing
approach to recognize disjoint execution path conditions and behavioral equivalences
between different algorithms. The meaning function approach should in principle be
capable of deriving any semantically valid merge. However, the method can run for-
ever if it is not restricted. Some heuristics to constrain the search for practical use are
suggested in the paper. This approach can also produce results in an extended domain
that includes representations for conflict elements in programs. In the cases where
such conflict elements are produced the method provides diagnostic information to
locate particular inconsistencies between program changes that lead to merging
failures.

Our theoretical models have been applied to develop and implement a merging
method for the prototyping language PSDL [10]. The novel features of this language
are hard real-time constraints, parallel computation, and nondeterminism. The merging
method is based on an extension of the slicing idea. Correctness of the method
depends on a behavioral invariance theorem for slices that was proved relative to a
semantic model that captures the nondeterministic and real-time aspects of PSDL pro-
grams. An implementation of this method is described in [6,7].

We have also developed a model for controlling the evolution of a software sys-
tem [2]. The model is a refinement of earlier work [12] to support the integration of
project coordination and configuration management in the context of evolutionary pro-
totyping. The model has been the basis for the design and implementation of an evo-
lution control system for prototypes developed using PSDL and the computer-aided
prototyping system CAPS [1]. The functions provided by the evolution control system
include computer-aided planning of software evolution steps, automated project
scheduling, automated assignment of tasks to designers based on declared management
policies, automated versioning of software objects, automated check in and check out
of versions from the design database, automated monitoring of progress with respect to
deadlines, and decision support for adjusting deadlines if timely completion becomes
infeasible.

4



3. Publications and Technical Reports

(1) V. Berzins, Luqi, A. Yehudai, "Using Transformations in Specification-Based
Prototyping", IEEE Transactions on Software Engineering, May 1993, pp. 436-
452.

(2) B. Kraemer, Luqi, V. Berzins, "Compositional Semantics of a Real-Time Proto-
typing Language", IEEE Transactions on Software Engineering, May 1993, pp.
453-477.

(3) D. Dampier, Luqi, V. Berzins, Automated Merging of Software Prototypes, Jour-
nal of Systems Integration 4, pp. 33-49, 1994.

(4) V. Berzins, "Software Merge: Semantics of Combining Changes to Programs", to
appear in ACM TOPLAS, 1995.

(5) V. Berzins, "Software Merge: Models and Methods for Combining Changes to
Programs", Proceedings of the European Conference on Software Engineering,
Oct. 1991, p. 221-250, Lecture Notes in Computer Science, Vol. 550, Springer-
Verlag.

(6) V. Berzins, Luqi, Y. Lee, "Applications and Meaning of Inheritance in Software
Specifications", Proceedings of the Hawaii Conference on System Sciences,
Koloa, Hawaii, Jan. 7-10, 1992, p. 64-73.

(7) V. Berzins, D. Cooke, Luqi, & M. Tanik, "Workshop on Software Automation",
in Proceedings of the IEEE/ACM Second International Conference on Systems
Integration, Morristown, NJ, June 15-18, 1992, pp. 720-722.

(8) Dampier, D. and Luqi, "Automated Software Maintenance Using Comprehension
and Specification", Proceedings of the 1st Workshop on Program Comprehension,
Orlando, Florida, November 9, 1992.

(9) D. Dampier, Luqi, V. Berzins, "Automated Merging of Software Prototypes",
Proc. of the Fifth International Conference on Software Engineering and
Knowledge Engineering, June 16-18, 1993, San Francisco, pp. 604-611.

(10) S. Badr, Luqi, "A Version and Configuration Model for Software Evolution",
Proc. of the Fifth International Conference on Software Engineering and
Knowledge Engineering, June 16-18, 1993, San Francisco, pp. 225-227.

(11) Luqi, J. Goguen, "Some Suggestions for Using Formal Methods in Software
Development", Proc. AFOSR/ARO/ONR Workshop on Increasing the Practical
Impact of Formal Methods for Computer-Aided Software Development, Mon-
terey, CA, Oct. 1993, pp. 7-11.

(12) D. Dampier, V. Berzins, "A Slicing Method for Semantic Based Merging of
Software Prototypes", Proc. of the AFOSR/ARO/ONR Workshop on Increasing
the Practical Impact of Formal Methods for Computer-Aided Software Develop-
ment, Oct. 13-15, 1993, Monterey, pp. 22-24.

(13) V. Berzins, "Software Merge: Models and Properties", Proc. of the 6th Interna-
tional Conference on Software Engineering and Knowledge Engineering, Jurmala,
Latvia, June 20-23, 1994, pp. 225-232.

5



(14) Luqi, J. Goguen, V. Berzins, "Formal Support for Software Evolution", Proc. of
Monterey Workshop 94, Monterey, CA, Sept. 7-9, 1994, pp. 10-21.

(15) D. Dampier, V. Berzins, "Software Change-Merging in Dynamic Evolution",
Proc. of Monterey Workshop 94, Monterey, CA, Sept. 7-9, 1994, pp. 38-41.

(16) S. Badr, V. Berzins, "A Software Evolution Control Model", Proc. of Monterey
Workshop 94, Monterey, CA, Sept. 7-9, 1994, pp. 160-171.

(17) V. Berzins, "Software Merge: Semantics of Combining Changes to Programs",
Technical Report NPS CS-93-011 Computer Science Department, Naval Postgra-
duate School, Dec. 1993.

(18) V. Berzins, S. Badr, "Robust Scheduling for Large Projects" Technical Report
NPS CS-93-012 Computer Science Department, Naval Postgraduate School, Dec.
1993.

(19) S. Badr and Luqi, "Automation Support for Concurrent Software Engineering"
Technical Report NPS-CS-93-013, Computer Science Department, Naval Postgra-
duate School, December 1993.

4. Participating Scientific Personnel
(1) Valdis Berzins, Computer Science Department, Naval Postgraduate School.

(2) Luqi, Computer Science Department, Naval Postgraduate School.

(3) Salah Badr, Computer Science Department, Naval Postgraduate School, Ph.D.,
December 1993.

(4) David Dampier, Computer Science Department, Naval Postgraduate School,
Ph.D., June 1994.

5. Bibliography

1. S. Badr, "A Model and Algorithms for a Software Evolution Control System",
Ph.D. Thesis, Computer Science Department, Naval Postgraduate School,
Monterey, CA, Dec. 1993.

2. S. Badr and V. Berzins, "A Software Evolution Control Model", in Proc. of
Monterey Workshop 94, Monterey, CA, Sep. 7-9, 1994, 160-171.

3. V. Berzins, "On Merging Software Extensions", Acta Informatica 23, Fasc. 6
(Nov. 1986), 607-619.

4. V. Berzins, "Software Merge: Models and Methods", in Proceedings of the
European Conference on Software Engineering, Springer-Verlag, Milan, Italy,
Oct. 1991, 221-250.

5. V. Berzins, "Software Merge: Semantics of Combining Changes to Programs",
to appear in ACM Trans. Prog. Lang and Systems 17 (1995).

6. D. Dampier, Luqi and V. Berzins, "Automated Merging of Software
Prototypes", Journal of Systems Integration 4, 1 (February, 1994), 33-49.

6



7. D. Dampier, "A Model for Merging Software Prototypes", Ph.D. Thesis,
Computer Science Department, Naval Postgraduate School, Monterey, CA, June,
1994.

8. J. Ferrante, K. Ottenstein and J. Warren, "The Program Dependence Graph and
its Use in Optimization", Trans. Prog. Lang and Systems 9, 3 (July 1987), 319-
349.

9. S. Horwitz, J. Prins and T. Reps, "Integrating Non-Interfering Versions of
Programs", Trans. Prog. Lang and Systems 11, 3 (July 1989), 345-387.

10. B. Kraemer, Luqi and V. Berzins, "Compositional Semantics of a Real-Time
Prototyping Language", IEEE Trans. on Software Eng. 19, 5 (May 1993), 453-
477.

11. S. Letovsky and E. Soloway, "Delocalized Plans and Program Comprehension",
IEEE Software 3, 3 (May 1986), 41-49.

12. Luqi, "A Graph Model for Software Evolution", IEEE Trans. on Software Eng.
16, 8 (Aug. 1990), 917-927.

13. M. Weiser, "Program Slicing", IEEE Trans. on Software Eng. SE-JO, 4 (July
1984), 352-357.

7


