AMRL-TR-68-14

ACOUSTIC ENVIRONMENTS OF THE F-111A AIRCRAFT DURING GROUND RUNUP

JOHN N. COLE JUSTUS F. ROSE, JR., MAJOR, USAF

Aerospace Medical Research Laboratories

19951120 026

MAY 1968

Distribution of this document is unlimited. It may be released to the Clearinghouse, Department of Commerce, for sale to the general public.

AEROSPACE MEDICAL RESEARCH LABORATORIES AEROSPACE MEDICAL DIVISION AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO

NOTICES

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Federal Government agencies and their contractors registered with Defense Documentation Center (DDC) should direct requests for copies of this report to:

DDC Cameron Station Alexandria, Virginia 22314

Non-DDC users may purchase copies of this report from:

Chief, Storage and Dissemination Section Clearinghouse for Federal Scientific & Technical Information (CFSTI) Sills Building 5285 Port Royal Road Springfield, Virginia 22151

Organizations and individuals receiving reports via the Aerospace Medical Research Laboratories' automatic mailing lists should submit the addressograph plate stamp on the report envelope or refer to the code number when corresponding about change of address or cancellation.

Do not return this copy. Retain or destroy.

ACOUSTIC ENVIRONMENTS OF THE F-111A AIRCRAFT DURING GROUND RUNUP

JOHN N. COLE

JUSTUS F. ROSE, JR., MAJOR, USAF

Distribution of this document is unlimited. It may be released to the Clearinghouse, Department of Commerce, for sale to the general public.

FOREWORD

The measurement program and analyses reported herein was performed by the Biodynamics and Bionics Division, Biomedical Laboratory of the Aerospace Medical Research Laboratories, Wright-Patterson AFB, Ohio. The program was conducted by Mr. John N. Cole and Justus F. Rose, Jr., Major, USAF, Biodynamic Environment Branch, under Project 7231, "Biomechanics of Aerospace Operations," and Task 723104, "Biodynamic Environment of Aerospace Flight Operations." Acknowledgement is made of the assistance of Messrs. R. E. England and H. K. Hille. The research was initiated August 1967 and completed January 1968.

This technical report has been reviewed and is approved.

WAYNE H. McCANDLESS Technical Director Biomedical Laboratory Aerospace Medical Research Laboratories

ABSTRACT

Sound pressure level measurements were made on an F-111A aircraft at 250-foot radial distance with three different engine power configurations at Wright-Patterson AFB, Ohio. In addition, sound level measurements were made at four maintenance positions where personnel would typically be located during normal ground operations. These data were used to compute the power spectra, directivity indices, equal sound pressure level contours, equal perceived noise level contours, and equal speech interference level contours. These results are presented in graphical form and can be used to determine the acoustic environments at distances from 125 to 6000 feet from the aircraft during ground operation.

Acces	sion For	
NTIS	GRA&I	
DTIC	TAB	
Unann	oumced	
Justi	fication_	
Diştr Avai	ibution A	Codes
	Avail an	d/or
Dist	Spec	1.
2-1		<i>t</i> i

TABLE OF CONTENTS

SECTION		<u>PAGE</u>
I.	INTRODUCTION	1
II.	MEASUREMENT PROGRAM	2
	GENERAL	2 2 3
III.	RESULTS	3
	MEASURED DATA ACOUSTIC POWER SPECTRA DIRECTIVITY INDICES SPL SPECTRA AT MAINTENANCE POSITIONS SOUND PRESSURE LEVEL CONTOURS - FAR FIELD . PERCEIVED NOISE LEVEL CONTOURS - FAR FIELD . SPEECH INTERFERENCE LEVEL CONTOURS - FAR FIELD .	3 4 5 6 6
REFEREN	CES	50

i v

LIST OF FIGURES

FIGURE	NO.	<u>PAGE</u>
1	Far Field Measurement Locations	. 7
2	Maintenance Positions Measurement Locations	. 7
3	Portable Data Acquisition System	. 8
4	Analysis System	. 8
5	F-111A Acoustic Power Spectra	. 10
6	F-111A Directivity Indices1	1-15
7	F-111A Maintenance Positions - Measured Sound Pressure Levels	16
8	F-111A Equal Sound Pressure Level Contours - One Engine at Military Power	l7 -25
9	F-111A Equal Sound Pressure Level Contours – Two Engines at Military Power	26-34
10	F-111A Equal Sound Pressure Level Contours - One Engine With Afterburner	35-43
11	F-111A Equal Perceived Noise Level Controus	14 - 46
12	F-111A Equal Speech Interference Level Contours 4	7 - 49

LIST OF TABLES

<u> FABLE</u>	NO.		PAGE
I	F-111A Sound Pressure Levels Measured at 250 Feet One Engine at Military Power Setting	•	9
II	F-111A Sound Pressure Levels Measured at 250 Feet Two Engines at Military Power Setting •••••••••	•	9
III	F-111A Sound Pressure Levels Measured at 250 Feet One Engine With Afterburner	•	10
IV	F-111A Maintenance Position Measured Sound Pressure Levels - Left Engine 85% Power, Right Engine Idle	•	16

SECTION I

INTRODUCTION

This report presents the results of measurements and analyses made of the acoustic noise levels produced by the F-111A aircraft (TF30-P-1 engines) during ground run-up operations. These results describe the sound pressure level (SPL) spectra produced at locations where engine maintenance personnel must work and at outdoor locations 250-ft radial distance from the aircraft when operated at three different power settings: one engine at military power, two engines at military power, and one engine at military power with afterburner.

Acoustic power spectra and directivity indices derived from these measured data describe the fundamental noise characteristics of this aircraft at the power settings described.

Contours of equal sound pressure level (SPL) calculated from the SPL measured at 250-ft distance using standard atmospheric attenuation data provide a convenient way to estimate octave band SPL produced at outdoor locations 125-6000 ft distance from the aircraft.

Similar contour sets that were developed in turn from the SPL contour sets provide estimates of perceived noise levels and speech interference levels. Perceived noise level (PNL) is a measure of noise that describes the relative subjective annoyance of different complex sounds. Speech interference level (SIL) is a measure of noise that describes the quality of speech communication possible in that noise environment.

These contour sets provide a simple means for determining the octave band SPL, PNL, or SIL at outdoor locations 125-6000 ft from the F-111A during ground run-up at different engine power settings. Such information is basic to evaluating the effects of such environments on structures and personnel and for establishing requirements for ear protection, communication systems, building noise reduction, etc.

SECTION II

MEASUREMENT PROGRAM

GENERAL

Sound pressure measurements were made on F-111A No. 63-9775 at Wright-Patterson Air Force Base, Ohio on 29 August 1967. The aircraft is equipped with two Pratt and Whitney TF30-P-1 engines operated at three different power configurations during the program: one engine (left) at military power, two engines at military power, and one engine (left) at military power with afterburner. The aircraft was tied down on a concrete power check stand measuring approximately 200 by 180 ft in an open field. The ground cover surrounding the stand was primarily grass, measuring approximately 4 to 5 inches in height. The only building or structure within 2000 ft of the aircraft was a corrugated metal shed located approximately 750 ft from the aircraft nose on the 0° radial; but this was not considered to have affected the measurements. The weather conditions during the measurement period were as follows: temper ature 70 F, relative humidity 55%, Barometric pressure 30.18 in. Hg, and wind direction and velocity 260° at 3 knots.

MEASUREMENT LOCATIONS

Continuous measurements were made during walk arounds at 250-ft radius from the aircraft engine exhaust (fig. 1). Due to the location of the aircraft tie-down facilities at the power check stand, the aircraft was cocked 10° off the longitudinal center line of the stand and, as a result, the measurement angles actually used were 10° greater than the angles that had been surveyed prior to the measurements. The microphone was continuously pointed at the aircraft and kept at a constant height of 6 ft above the ground. Measurements were also made at head level at four locations in the near field where maintenance personnel would typically be located (fig. 2): position no. 1 – engine start and run up; position no. 2 – pulling chocks prior to taxiing; position no. 3 – engine trimming (engine access panel no. 4321 open to approximate sound pressure level during trimming operation); position no. 4 – taxi out of ramp parking spot.

INSTRUMENTATION AND DATA REDUCTION

A portable, high quality instrumentation package (PORTAPAK) developed in this laboratory was used to acquire data in the field. This system, (fig. 3) employs condenser microphones for acoustic transducers, signal conditioning equipment to provide maximum signal to noise and dynamic range, and a battery operated portable magnetic tape recorder. Specifications for this system are in brief: frequency response 20 Hz to 20 kHz (essentially flat throughout this frequency band), dynamic range with $\frac{1}{2}$ - in. condenser microphone 72 to 148 dB, gain control -15 to +30dB. A battery operated pistonphone was used as a reference sound pressure level in field calibration.

Spectral analyses of the recorded data were accomplished in the laboratory using an analog data processing system employing a spectrometer and graphic level recorder with true rms detection (fig. 4).

The entire system was calibrated and small corrections were applied to the data to compensate for system response. Care was taken to insure at least a 10-dB signal to noise ratio at all times.

SECTION III

RESULTS

MEASURED DATA

Table I, II, and III summarize the octave band SPL measured at the specific locations described in figures 1 and 2. All data are fully corrected for the response characteristics of all instrumentation and are considered to be accurate within ± 2 dB absolute and ± 1 dB relative.

ACOUSTIC POWER SPECTRA

The Acoustic power spectra (fig. 5) of the F-111A for the three-engine power configurations were calculated directly from the SPL measured at 250 ft by integrating intensity-area products over the surface of an imaginary hemisphere of 250 ft radius. These relationships and methods are described in references 1 and 2. Results in figure 5 show that the total or overall acoustic power ranges from 1.5×10^4 watts for single engine at military power to 2.0×10^5 watts for single engine at military power with afterburner. Two-engine at military power produces approximately twice the total acoustic power of single engine at military power (i.e., its overall power level (OAPWL) is approximately 3 decibel power (dBp) greater).

Although no measurements were made on two-engines at military power with afterburner, the OAPWL for this can be approximated by adding 3 dBp to the levels calculated for the single engine at military power with afterburner. SPL for two engines at military power with afterburner will similarly increase by approximately 3 dB.

The dips in the power spectra around 250 Hz are caused by the fact that the SPL at 250 ft (from which these power levels (PWL) were derived) were low in this frequency region because of effects caused by ground reflection and ground impedance (ref. 3). Corrections for these effects typically involve adding 0-5 dBp to the octave band PWL over the frequency range of the 250-, 500-, and 1000-Hz bands depending upon the types of terrain and ground cover and heights of source and receiver. No attempts were made to accurately determine these corrections experimentally or theoretically for this study.

DIRECTIVITY INDICES

The directivity indices (DI) given in figure 6 were calculated from the SPL measured at 250 ft and the derived PWL of figure 5 using standard procedures (ref. 2). These DI describe in simple terms the directional radiation characteristics of the sources as functions of frequency, angle from the aircraft nose, and engine power setting. For any given frequency band the DI for one engine at military power and two engines at military power are quite similar. Maximum noise is radiated around 150-160° in the lower frequencies; the sources become less directive with increasing frequency. In the case of military power with afterburner operation, the angle of maximum radiation shifts to somewhat smaller θ values.

The directivity index, like the acoustic power spectrum, is a basic descriptor of a noise source and as such is useful to the acoustical engineer in estimating sound pressure level environments produced by that source under particular situations. For this reason, PWL and DI

information are included in this report. The bioenvironmental engineer and many other readers will probably find, however, that the SPL, PNL, and SIL presented in subsequent subsections will be more directly useful.

SPL SPECTRA AT MAINTENANCE POSITIONS

The SPL measured in the near field where maintenance personnel would typically be located are given in table IV and plotted in spectral form in figure 7. Energy is broadly distributed above 125 Hz with relatively high energy content in the upper frequency bands and overall SPL ranging from 118 to 128 dB. These environmental levels can be compared with existing criteria regarding hazardous noise exposure to determine protection requirements, maximum exposure time, etc (ref. 4 and 5).

SOUND PRESSURE LEVEL CONTOURS - FAR FIELD

The SPL measured at 250-ft radii were extrapolated over a range of about 125 to 6000 ft from the aircraft by applying standard values of atmospheric attenuation due to classical and molecular absorption (ref. 6). These attenuation values were modified according to reference 7 to take into account excess attenuation and other factors observed during actual field measurement programs studying ground to ground propagation of aircraft noise. These attenuation values apply to downwind propagation and hence might be conservative for cases of upwind propagation (i.e., would give estimates of SPL higher than those that might actually occur). The specific attenuation values applied to produce the F-111A equal SPL contours will provide good estimates of SPL (±5 dB) out to about 1 mile for a temperature range of 68 to 95 F and relative humidity of 46-100% if no large scale refractive effects exist such as focusing or the formation of shadow zones. For temperature and humidity conditions quite different from those considered herein (e.g., very dry or cold conditions) consult references 6 and 7 to obtain atmospheric attenuation values corresponding to those particular meteorological conditions. These values can be applied to the data of table I, II, and III to obtain estimated SPL for distances other than 250 ft.

The equal SPL contours, figures 8, 9, and 10, describe far-field noise environments of the F-111A as a function of frequency, angle from nose of aircraft, engine power setting, and distance from aircraft. From these contour sets the SPL spectrum at an outdoor location may be readily estimated, subject to the limitations prescribed.

PERCEIVED NOISE LEVEL CONTOURS - FAR FIELD

Perceived noise level (PNL) expressed in units of PNdB is a measure of noise that has gained wide acceptance as a measure of the relative annoyance or noiseness of different sounds. PNL is a quantity calculated from the SPL spectrum of a sound (ref. 8 and 9).

The PNL contours of figure 11 were derived by applying these methods to the SPL, (i.e., distance information obtained in preparing the equal SPL contours).

These PNL contours do not include any correction for discrete frequency components since no significant pure tone components were discernible in the recorded data when analyzed with 1/3-octave band resolution.

SPEECH INTERFERENCE LEVEL CONTOURS - FAR FIELD

The speech interference level (SIL) of a noise is defined as the arithmetic average of the SPL in the 600 to 1200 Hz, 1200 to 2400 Hz, and 2400 to 4800 Hz octave bands. SIL were calculated for the F-111A taking into account the difference between the older, conventional frequency bands (600 to 1200 Hz, etc) and the presently preferred frequency bands used in this study.

These contours of equal SIL, figure 12, provide a ready means to estimate the outdoor SIL produced by the F-111A operations at distances of 125 to 6000 ft from the aircraft during ground run-up.

Existing SIL criteria, (ref. 10) can be applied to determine the degree of speech communication possible in such environments.

Figure 1. Far Field Measurement Locations

Figure 2. Maintenance Positions Measurement Locations

Figure 4. Analysis System

TABLE I.F-111A SOUND PRESSURE LEVELS MEASURED AT 250 FEETONE ENGINE AT MILITARY POWER SETTING

OCTAVE BAND		ANGLE O FROM AIRCRAFT NOSE IN DEGREES									
Hz	10°	30°	50°	70°	90°	100°	110°	130°	150°	160°	170°
31.5	86	86	87	90	92	93	94	101	108	109	107
63	87	93	97	98	100	100	102	110	119	120	114
125	94	100	99	99	102	104	105	113	121	122	112
250	101	100	96	99	101	100	101	109	113	114	109
500	96	98	99	101	102	104	106	112	114	113	101
וא	97	98	98	102	104	107	108	113	112	109	104
2K	96	96	97	98	100	103	105	107	103	100	98
4K	96	97	97	97	98	100	102	103	98	95	94
8K	95	97	96	95	96	95	97	97	95	92	92
16K	91	93	92	89	91	88	89	89	88	86	86

OCTAVE BAND SOUND PRESSURE LEVELS IN dB re 0.0002 dynes/cm²

TABLE II.F-111A SOUND PRESSURE LEVELS MEASURED AT 250 FEETTWO ENGINES AT MILITARY POWER SETTING

OCTAVE BAND ANGLE O FROM AIRCRAFT NOSE IN DEGREES											
CENTER FREQUENCY Hz	10°	30°	50°	70°	90°	100°	110°	130°	150°	160°	170°
31.5	88	88	91	92	95	94	97	103	111	113	110
63	94	95	100	101	102	103	107	113	122	121	113
125	98	101	102	102	104	106	109	117	123	123	116
250	103	102	98	102	103	101	104	110	114	117	111
500	98	100	100	102	104	105	108	115	116	114	105
lK	98	99	99	104	105	108	110	114	113	111	105
2K	98	97	98	100	103	104	107	109	105	102	98
4K	96	98	98	98	100	102	103	104	100	98	93
8K	97	98	98	96	97	98	98	98	97	93	91
16K	91	93	92	88	90	90	89	89	88	85	84

OCTAVE BAND SOUND PRESSURE LEVELS IN dB re 0.0002 ${\rm dynes/cm}^2$

	OCTAVE BAND SOUND PRESSURE LEVELS IN dB re 0.0002 dynes/cm ²											
OCTAVE BAND	ANGLE & FROM AIRCRAFT NOSE IN DEGREES											
Hz	10°	30°	50 °	70°	90°	100°	110°	130°	150°	160°	170°	
31.5	98	98	100	102	106	106	108	117	122	121	115	
63	103	103	108	109	111	112	117	126	129	124	116	
125	101	107	107	108	111	111	116	127	130	124	114	
250	103	104	99	103	105	106	113	123	118	115	101	
500	100	103	105	109	113	114	119	128	114	109	95	
lK	99	104	106	110	114	116	120	123	113	107	95	
2К	99	101	104	107	112	113	117	7בנ	105	100	94	
4K	97	100	103	105	109	011	113	111	100	97	91	
8K	96	98	99	99	103	104	106	104	· 95	92	86	
16К	91	93	93	90	94	96	97	97	88	85	82	

TABLE III. F-111A SOUND PRESSURE LEVELS MEASURED AT 250 FEET ONE ENGINE WITH AFTERBURNER

Figure 5. F-111A Acoustic Power Spectra

Figure 6b. F-111A Directivity Indices - 63 Hz Octave Band Center Frequency

Figure 6c. F-111A Directivity Indices - 125 Hz Octave Band Center Frequency

Figure 6e. F-111A Directivity Indices - 500 Hz Octave Band Center Frequency

Figure 6i. F-111A Directivity Indices - 8kHz Octave Band Center Frequency

Figure 6j. F-111A Directivity Indices - 16kHz Octave Band Center Frequency

TABLE IV.	F-111A MA	INTENANO	CE POSIT	ION MI	EASURED
SOUND P	RESSURE LEV	/ELS - LE	FT ENGIN	IE 85%	POWER,
	RIGH	IT ENGIN	E IDLE		

OCTAVE BAND CENTER FREQUENCY				
Hz	*POSITION #1	*POSITION #2	*POSITION #3	*POSITION #4
31.5	97	99	99	94
63	110	111	110	101
125	116	115	116	109
250	122	117	118	112
500	117	117	118	109
lK	115	118	115	107
2К	113	119	113	107
4K	112	120	121	108
8K	114	121	118	112
16К	113	121	115	112

OCTAVE BAND SOUND PRESSURE LEVELS IN dB re 0.0002 dynes/cm²

* See Fig. 1b for position locations

Figure 8a. F-111A Equal Sound Pressure Level Contours-Center Frequency 31.5 Hz, One Engine at Military Power

Figure 8b. F-111A Equal Sound Pressure Level Contours-Center Frequency 63 Hz, One Engine at Military Power

Figure 8c. F-111A Equal Sound Pressure Level Contours-Center Frequency 125 Hz, One Engine at Military Power

Figure 8d. F-111A Equal Sound Pressure Level Contours-Center Frequency 250 Hz, One Engine at Military Power

Figure 8e. F-111A Equal Sound Pressure Level Contours-Center Frequency 500 Hz, One Engine at Military Power

Figure 8f. F-111A Equal Sound Pressure Level Contours-Center Frequency 1 Kc, One Engine at Military Power

DISTANCE D FROM AIRCRAFT IN FEET

Figure 8g. F-111A Equal Sound Pressure Level Contours-Center Frequency 2Kc, One Engine at Military Power

Figure 8h. F-111A Equal Sound Pressure Level Contours-Center Frequency 4 Kc, One Engine at Military Power

Figure 8i. F-111A Equal Sound Pressure Level Contours-Center Frequency 8 Kc, One Engine at Military Power

Figure 9b. F-111A Equal Sound Pressure Level Contours-Center Frequency 63.0 Hz, Two Engines at Military Power

Figure 9c. F-111A Equal Sound Pressure Level Contours-Center Frequency 125 Hz, Two Engines at Military Power

DISTANCE D FROM AIRCRAFT IN FEET

Figure 9d. F-111A Equal Sound Pressure Level Contours-Center Frequency 250 Hz, Two Engines at Military Power

Figure 9e. F-111A Equal Sound Pressure Level Contours-Center Frequency 500 Hz, Two Engines at Military Power

Figure 9f. F-111A Equal Sound Pressure Level Controus-Center Frequency 1 Kc, Two Engines at Military Power

Figure 9g. F-111A Equal Sound Pressure Level Contours-Center Frequency 2 Kc, Two Engines at Military Power

Figure 9h. F-111A Equal Sound Pressure Level Contours-Center Frequency 4 Kc, Two Engines at Military Power

Figure 9i. F-111A Equal Sound Pressure Level Contours-Center Frequency 8 Kc, Two Engines at Military Power

Figure 10a. F-111A Equal Sound Pressure Level Contours-Center Frequency 31.5 Hz, One Engine With Afterburner

Figure 10b. F-111A Equal Sound Pressure Level Contours-Center Frequency 63 Hz, One Engine With Afterburner

Figure 10c. F-111A Equal Sound Pressure Level Contours-Center Frequency 125 Hz, One Engine With Afterburner

Figure 10d. F-111A Equal Sound Pressure Level Contours-Center Frequency 250 Hz, One Engine With Afterburner

Figure 10e. F-111A Equal Sound Pressure Level Contours-Center Frequency 500 Hz, One Engine With Afterburner

Figure 10f. F-111A Equal Sound Pressure Level Contours-Center Frequency 1 Kc, One Engine With Afterburner

Figure 10g. F-111A Equal Sound Pressure Level Contours-Center Frequency 2 Kc, One Engine With Afterburner

Figure 10h. F-111A Equal Sound Pressure Level Contours-Center Frequency 4 Kc, One Engine With Afterburner

Figure 10i. F-111A Equal Sound Pressure Level Contours-Center Frequency 8 Kc, One Engine With Afterburner

Figure 11a. F-111A Equal Perceived Noise Level Contours One Engine at Military Power

Figure 11b. F-111A Equal Perceived Noise Level Contours Two Engines at Military Power

One Engine With Afterburner

Figure 12a. F-111A Equal Speech Interference Level Contours One Engine at Military Power

Figure 12c. F-111A Equal Speech Interference Level Contours One Engine With Afterburner

REFERENCES

- Von Gierke, H. E., "Aircraft Noise Sources", Chapter 33, <u>Handbook</u> of Noise Control, C. Harris (Ed), McGraw-Hill Book Co., Inc., New York, 1957.
- 2. Berenak, Leo L., Acoustics, McGraw-Hill Book Co., Inc., 1954.
- 3. Howes, Walton L., <u>Ground Reflection of Jet Noise</u>, National Aeronautics and Space Administration TR R-35, Lewis Research Center, Cleveland, Ohio, 1959.
- 4. United States Air Force, "Hazardous Noise Exposure," Air Force Regulation No. 160-3, 29 October 1956.
- 5. Kryter, K. D. et al., "Hazardous Exposure to Intermittent and Steady State Noise," <u>The Journal of the Acoustical Society of</u> America, Vol 39, No. 3, pp 451-464, March 1966.
- 6. Society of Automotive Engineers, Inc., "Standard Values of Atmospheric Absorption as A Function of Temperature and Humidity for Use in Evaluating Aircraft Flyover Noise," <u>Aerospace</u> <u>Recommended Practice</u> #866, Issued 31 August 1964.
- 7. Franken, Peter A., and Dwight E. Bishop, <u>The Propagation of Sound From Airport Ground Operations</u>, (Bolt Berenak and Newman Inc., Van Nuys, California), NASA CR-767, National Aeronautics and Space Administration, Langley Research Center, Langley Air Force Base, Virginia, May 1967.
- International Standards Organization, "Procedure for Describing Aircraft Noise Around An Airport," Recommendation R507, October 1966.
- Society of Automotive Engineers Research Project Committee R2.5, <u>Technique for Developing Noise Exposure Forecasts</u>, Technical Report FAA DS 67-14, Federal Aviation Administration Department of Transportation, Aircraft Development Service, Washington, D. C. August 1967.
- Von Gierke, H. E., and A. C. Pietrasanta, <u>Acoustical Criteria for</u> <u>Work Spaces, Living Quarters, and Other Areas on Air Bases</u>, WADC 57-248 (AD 130839), Wright Air Development Center, Wright-Patterson Air Force Base, Ohio, November 1957.

Security Classification		7
DOCUMENT CONTR	ROL DATA - R	& D
(Security classification of title, body of abstract and indexing a	nnotation must be (28. REPORT SECURITY CLASSIFICATION
Aerospace Medical Research Laboratories		UNCLASSIFIED
Aerospace Medical Div. Air Force Systems	Command	26. GROUP
Might-Batterson Air Force Base, Ohio 4543	3	N/A
3. REPORT TITLE		
ACOUSTIC ENVIRONMENTS OF THE F-111A	AIRCRAFT D	URING GROUND RUNUP
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report, August 1967 - January 1968		
5. AUTHOR(S) (First name, middle initial, last name)		
John N. Cole		
Justus F. Rose, Jr., Major, USAF		
6. REPORT DATE	78. TOTAL NO. C	DF PAGES 76. NO. OF REFS
IVIAY 1300		S REPORT NUMBER(S)
88, CONTRACT OR GRANT NO.	a, URIGINA I UR	
b. Project No. 7231	AMRL-TR	-68-14
c. Task No. 723104	9b. OTHER REPO this report)	ORT NO(S) (Any other numbers that may be assigned
d.		
10. DISTRIBUTION STATEMENT		l l l l l l l l l l l l l l l l l l l
Distribution of this document is unlimited.	It may be	released to the Clearinghouse,
Department of Commerce, for sale to the g	eneral publi	с.
11. SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACTIVITY Modical Desearch Taboratories
	Aerospace	Medical Div Air Force Systems
	Aerospace	Mright_Dattorson AFR OH 15422
	[Command	, wright-ratterson Arb, OH 43433
Sound pressure level measurements were m radial distance with three different engine AFB, Ohio. In addition, sound level meas positions where personnel would typically These data were used to compute the powe pressure level contours, equal perceived m interference level contours. These results used to determine the acoustic environmen the aircraft during ground operation.	ade on an F power confi urements we be located r spectra, c noise level are presen ts at distan	-111A aircraft at 250-foot gurations at Wright-Patterson ere made at four maintenance during normal ground operations. lirectivity indices, equal sound contours, and equal speech ted in graphical form and can be ces from 125 to 6000 feet from
		· · · · · ·
DD FORM 1472		

14.		LIN	КА	1 1 1				
	KEY WORDS	ROLE	WT	ROLE	WT	ROLE	N C WT	
Acoustics	· · · · · · · · · · · · · · · · · · ·			NOLE		ROLL		
Noise Aircraft F-1110 Aircraft								
Ground runup operation Prat and Whitney TF	ons 30-P-1 engines							
		·.						
							-	
••••••••••••••••••••••••••••••••••••••								
						1		
							-	