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ABSTRACT. In this paper we study a time-harmonic fluid-solid interaction model problem 
in one dimension. This is a Helmholtz-type system equipped with boundary and transmis- 
sion conditions. We show the existence of a unique solution to this problem and study its 
stability and regularity properties. We analyze the convergence of finite element methods 
with respect to appropriate energy norms. Computational results are also presented. 

1. INTRODUCTION 

We shall analyze a model problem for a fluid solid interaction proccess in one di- 
mension. Here, we assume that we are given a layered fluid-solid-fluid medium with 
configuration ft, ft = [0, L], L > 0. ft is divided in three subintervals ft = fti U ft2 U ft3 
where ftx = [0,xi] and ft3 = [xi,L] will be the "fluid" parts and ft2 = [xi,x2] will 
be the "solid" part. We assume that the time-harmonic acoustic wave equations are 
satisfied in the fluid and the time-harmonic elastic wave equations in the solid: 

Pxx + k2p = -gi,      in Oi 

(1.1) (aux)x + k2gu = -/,      in ft2 

Pxx + k2p = -g2,      inft3. 

Here k, k G R, k > k0 > 0 denotes the wave number and p = p(x),p = p{x) denote the 
pessure in fti and ^3 respectively and u = u(x) the displacement in 02- We assume that 
a and g are positive constants that characterize the materials, and gi,g2,f are given 
functions. We assume radiation conditions at the boundary of ft 

Pr(0) + tfcp(0) = 0, 
(1'2a) Px(L) - ikp(L) = 0. 

Also the continuity requirement for the pressure and for the displacement yields the 
transmission conditions at x\ : 

Px{x\) - k2u{xx) = 0, 
(l-2b) .    . .    v      _ 

p{xi) + aux{xi) = 0, 
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and at x2 : 

(1.2c) 
Px(x2) - k2u(x2) = 0, 

p(x2) + aux(x2) = 0. 

(1.1-2) is a system of three equations in one dimension equipped with boundary and 
transmission conditions. Each one of these is a Helmholtz-type equation where the 
wave number k appears as a common parameter of the system. We shall propose a 
weak formulation, show the existence of a unique solution for this problem and study 
its stability and regularity properties. Further we consider finite element methods for the 
approximation of the solution and analyze the convergence behavior of these methods 
with respect to appropriate energy norms. Throughout this work a particular emphassis 
is given in the dependence of the constants on the frequency parameter k. 

We shall state a weak formulation of this problem below. First, we introduce some 
notation: Let Hm(S), m positive integer, be the usual Sobolev space of complex valued 
functions which have derivatives in the sence of distributions up to the order m. Let 
|| • || and (•,■) be the L2(5')-norm and inner product, respectively. We shall denote by 
H the space H1^) x H1^) X H1^). If q,v and q are three smooth test functions 

defined on Üuü2 and S23, we see that (1.1) and (1.2) give 

(1.3) /   pxqsdx -k2  I    pqdx - k2!u(xi)g(xi) - ikp(0)q(0) =  /    giqdx , 

(1.4) /    auxvxdx-k2       guvdx - p(xi)v(xi) +p(x2)v{x2) =  /    fvdx , 

and 

(1.5) /   Pxljx -k2  I    pqdx + k2u(x2)q(x2) - ikp(L)q(L) =   /    g2qdx . 

Multiplying (1.4) by k2 and summing (1.3), (1.4) and (1.5) we arrive to the following 
weak formulation of problem (1.1-2): Find U = (p,u,p)eH such that 

(1.6) 5(W,V) = (^,V)o,7£,        VVGft 

where for V = {q,v,q) £ H, (" 

B(U,V)= I   pxqxdx-k2  I   pqdx-Puix^qix^-ikp^qiO) 

(1.6a) +k2 I    auxvsdx-k* I    guvdx - k2p{x1)v{x1) + k2p{x2)v{x2) 

+ I    pxqxdx-k2  /   pqdx + k2u{x2)q(x2) - ikp(L)q{L) 
JU3 Jus 
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and 

(1.6b) (F, V)0,n = (01, q) + k2(f,v) + (g2,q). 

In the sequel we shall see that (1.6) is indeed a suitable variational formulation for 
the problem at hand. We show that problem (1.6) admits a unique solution, we study 
its stability properties and we analyze the convergence of numerical approximations to 
it. In order to describe the results of this work we shall need some more notation. For 
k, k>0, fixed and W = (p,«,p), V = (q,v,q) € H, let 

(1.7) (U,V)0,n = (p,q) + k2(u,v) + (p,q). 

Of course (-,-)o,-H defines an inner product in L2 := L2(Sli)xL2(il2)^L2(tl3) equivalent 
to the standard inner product of this space. If V is an element of H, by Vx we denote 
(qx,vx,qx) where q, v and gare the components of V . Further by (•, -)i)W we shall denote 

the inner product in 7i defined by 

(1.8) {U,V)1,n = (ltx,Vx)0,-H + k2(U,V)o,n- 

Finally || • ||0,?i and || -\\i,n shall be the norms induced by the inner products (■, •)<),?* and 
(•, •)!,?*. These norms are better suited to the nature of our problem and furthermore 
help us to reduce the dependence on k of the constants in the stability estimates. 

In Section 2 we study the continuous problem (1.6). Using variational techniques, 
we show that if T € L2, and U is a solution of (1.6), then 

(1.9) ||W||i,w<Ci||*1|o,w, 

where d is a constant independent of k. The estimate (1.9) establishes the uniqueness 
of the solution of (1.6) and, combined with the fact that B(-, •) satisfies a Gärding-type 
inequality, yields the existence of U as well, by a standard alternative argument of the 
theory of differential equations. Using an estimate of the type (1.9) for a properly chosen 
auxiliary problem we prove the Babuska - Brezzi (BB) condition for the bilinear form 

B(v): 

(1.10) 8up5^^>7^l|W||ifW,        w/ew, 
ve-H    \\V\\i,H k 

where 7 is a positive constant independent of k. Furthermore, using (1.9) and (1.10) 
we derive other similar "regularity" estimates that are very useful in the convergence 
analysis of the numerical methods for our problem. 

In Section 3 we consider Galerkin-finite element methods for approximating the so- 
lution of (1.1-2). If Sh is a suitable finite element subspace of H consisting of piecewise 
polynomial functions, we define the Galerkin approximation Uu £ Sh to U as the solution 

of 

(1.11) S(Z4,S) = (.F,*)O,-K,       v$eSh. 



We establish existence of a unique solution of (1.11) provided that the quantity —k 

is small enough, where h is the maximum of the mesh sizes and s0 is the polynomial 
degree of the functions of Sh , cf. Section 3. Further, under the same hypothesis on h, 
we show that the discrete analog of the BB condition (1.10) is satisfied on Sh  and a 

quasioptimal estimate of the form 

(1.12) \\U-Uhh,n<C*m{ ||W-#||i,*, 

is valid, where C* is a positive constant independent of h and k. Thus, since the approx- 
imation properties of Sh will be known, (1.12) will imply convergence of optimal order 
of the finite element approximations in the || • ||i,« norm. This result is independent of 
the choice of the particular method and of the finite element spaces (h version, p version 
or h -p version). Note that stability estimates similar to (1.9), derived in section 2 are 
needed in the analysis of the discrete problem and, in particular, in the proof of (1.12). 

In Section 4 we present numerical results on the behavior of the finite element approx- 
imations to (1.1-2) (coupled problem). As it is expected from the theoretical analysis, 
increasing the polynomial degree s0, one decreases the influence of the "pollution effect" 
on the error and, of course, increases the rate of convergence. These results are com- 
pared to analogous computational results obtained previously for the single reduced 
wave equation (uncoupled problem), [IB 1, 2], [BS]. We also investigate whether the 
restrictive condition uj-k2 is small", mentioned above, is actually needed or not. The 
experiments of Section 4 provide numerical evidence of the fact (for s0 = 1) that the 
restriction hk2 < a, a constant, is necessary for the quasioptimal estimate (1.12) to 
hold. On the other hand, the results of [IB1,2] for the single reduced wave equation 
indicate that this restriction is rather pessimistic for establishing existence-uniqueness 
and stability (BB condition) of the finite element approximations. Indeed, for the un- 
coupled problem and in the case where Sh consists of piecewise polynomial functions in 
a uniform grid, it is shown in [IB1,2] that the discrete BB constant is proportional to 

j provided that kh remains bounded. 
Work on Galerkin approximations for a model problem of fluid-solid interaction has 

been also done by Demkowicz, [D]. A general variational setting was considered, for 
which the asymptotic convergence of the Galerkin approximations was established. Also, 
in a numerical evaluation of a one dimensional coupled problem it was observed that the 
discrete (and continuous) inf-sup constant decreases algebraically with the wave number 
k. Particular attention is given in [D] to the sensitivity of the stability constant with 
respect to wave damping at the interface of the two media. The approach we take here 
is different and focusses mainly on the stability of the continuous problem (1.1-2) and 
on the stability and convergence of the discrete problem (1.11) with respect to the wave 
number k. One may say that, for the coupled problem and without special assumptions 
on the finite element method, our results are an extension of similar results known for 
the one dimensional single reduced wave equation, cf. eg. [BGT], [AKS], [DS], [IB 1,2]. 
Note however that we do not use explicit representations of U and Uh in terms of Green's 
functions to derive our stability results. Other works for the Helmholtz equation with 



radiation boundary conditions of the type (1.2a) —in higher dimensions too— include 
[AK], [G], [HH1], [BS] [IB3], [BIPS]. Among these works, [AKS], [HH], [BS] and [BIPS] 
are devoted to the analysis of non-standard finite element methods which have been 
designed to minimize the "pollution effect" observed for the standard Galerkin method 
for moderate to high wave numbers. A detailed analysis of the behavior of the Galerkin 
finite element approximations in the case of high wave numbers is presented in [IB1- 
3] and [BS]. For a comparison of boundary element and finite element methods for 
time-harmonic acoustic wave equations cf. [HH2]. 

2. ANALYSIS OF THE CONTINUOUS PROBLEM 

We first observe that if U is a solution of (1.6) then its components satisfy (1.1-2): 

Lemma 2.1. Let T G L2. Assume that (1.6) has a solution U = (p,«,p) G H. Then 
U € H2 := #2(fti) x H2(Ü2) x H2(ü3), and p,u and p satisfy (1.1-2), where the 
derivatives in these equations are derivatives in the sence of distributions. 

The main part of this section is devoted to the proof of the following stability result: 

Proposition 2.1. IfU is a solution of problem (1.6) for T G L2 then 

(2.1a) ||W||lftt<Ci||*1|o,*, 

where C\ is a positive constant independent of k. Also, for T G H 

(2.1b) IMktt^Ci^lk*, 

We shall state two consequences of this result as Theorems 2.1 and 2.2 below. The 
proof of Proposition 2.1 is given after the proof of Theorem 2.2. 

Theorem 2.1. Let 7 G L2. Then there exists a unique solution of (1.6). Furthermore 

UeH2, and 

(2.2) ||W«lk«<C2(l + fc)||^|k«. 

Proof. The uniqueness follows from Proposition 2.1. Now, using the trace inequality: 

(2.2) \v(a)\2 < e\\vx\\2LHI) + ^C|M|2L2(/),    v G H\I),e > 0 

where a is one of the endpoints of the interval I, and the arithmetic-geometric mean 

inequality, we easily verify that B(-, •) satisfies 

(2.3) Re B(U,U) > C9M\i,n ~ Ml + k2)\M\l,n       ^eH, 

5 



with positive constants C0,/^o independent of k. Therefore B(-,-) satisfies a Gärding- 
type inequality. It is well known that (2.3) implies the alternative statement: Either 
the problem 

B(u,v) = o     wen, 
has a nontrivial solution or (1.6) has a solution. Therefore since we have established 
uniqueness, (2.3) implies existence of the solution for the problem (1.6). The estimate 
(2.2) follows from Lemma 2.1, Proposition 2.1 and (1.1).    D 

Let || • ||'lfW be the dual norm of || • ||i,w defined by ||V||i>w = sup#eW -pü^f • We 

have the following result: 

Theorem 2.2.   The bilinear form B(-, ■) defined onlixH satisfies 

(2.4) \B(U,V)\ < /?||W||i,w||V||i,*       VW,V G «, 

and 

(2.5) supR"yv)>7^1Nli.^,      vzvew, 
ven    ||V||i.« k 

where ß and 7 are two positive constants independent of k. Furthermore, if U is the 
solution of (1.6), we have the estimate 

(2.6) l|W||i,«<^OTi>W. 

Proof. The inequality (2.4) follows (similarly as (2.3) ) from (2.2), the arithmetic- 
geometric mean and Cauchy-Schwarz inequalities. For the proof of (2.5), let U be a 
given element of H. If V = ^U + Z, where Z eH shall be appropriately chosen bellow, 
we have 

B(U,V) = ^B{U,U) + B{U,Z) 

= 1 (B{UM) + Mi + k2)\\u\\ln) + (B{U,Z) - ^IliVii^) 

=:I + II. 

We choose Z such that the part II vanishes. I.e., Z shall be the solution of 

(2.7) B(*,Z) = /io^£(#,W)o,tt        V^eH. 

(2.7) is a dual problem to (1.6) and one can verify that the results of Proposition 2.1 
and Theorem 2.1 hold for this problem as well. Therefore Z is uniquely determined as 
solution of (2.7), and furthermore satisfies the estimate (since U EH) 

(2.7) ||Z||i,*<C^o4A^*- 



With this choice of Z we have 

(2.8) ReB(W,V)>pCo||W||?>w, 

where V G 1i satisfies 

i,n<^\\U\\x,H + \\Z\\i,n 

<^(clW,^+l)||W||1>w 

< ^Ca*||W||i,w 

Therefore (2.8) implies 

RcB(W,V)>p^,||W|ß,w 

>Co||W||i,7£^||V||i,w = 7i||W||i,«||V||ifw, 

and (2.5) follows. The estimate (2.6) is a consequence of [BA, Theorem 5.2.1] and of 
(2.4), (2.5).    D 

We now prove Proposition 2.1: 

Proof of Proposition 2.1. We write B(U, V) = B^U, V) + B2(U, V) + B2(U, V), where 

Bj(W, V) = /    pxqxdx -k2 I   pqdx - fc2u(*i)g(a:i) - ikp(0)q(0), 

(2.9) B2{U,V) =k2 I   auxvxdx - k* I   guvdx - k2p{x1)v{x1) + k2p(x2)v(x2), 

B3(U, V) = /    pxqxdx -k2  I   pqdx + k2u(x2)q(x2) - ikp(L)q(L). 

In the sequel we assume that U is a solution of (1.6) and f G L2. By Lemma 2.1 we 
have U G H2, and the components of U satisfy (1.1-2). Therefore the function V with 
components 

q = (x -x^px, 

(2.10) v = (x- x2)ux , 

q = (x - x2)px, 

is an element of H. We shall evaluate ReB(U, V). We observe first that (g(a:i) = 0 ): 

B-AU, V)= I   pxqxdx -k2  I   pqdx - fc2u(an)g(xi) - ikp(0)q{0), 

= /  Px{x-xi)pxxdx+ I    \px\2-k2       pix-x^dx + ikp^xxp^O); 



hence, using (1.2), 

ReBi(W,V)= /    \px\
2dx + Re- I (x - xx){\px\2)xdx 

-Reh2 ( (x - Xl)(\p\2)xdx - Xl\Px(0)\2 

2
 JÜ! 

= 1   \px\2dx + Re\{- I   \px\2dx + Xl\px(0)\ 
Jut z I    JQi 

-Reh2L f   Itfdx + xMO^-xilPxWl2 

= - I   \Px\2dx + h2 f   {pfdx-lxMOtf-h'xMVl2- 
2 Jut l    Joi * z 

Since |px(0)| = k\p(0)\ we conclude 

(2.11) ReB1(U, V) = I  I   \px\2dx + \k2 I   \p\2dx - Xlk
2\p{Q)\2 . 

Similarly, 

B2{U,V)=k2 j    auxvxdx-k4 I   guvdx - Ppix^xx) + k2p(x2)v(x2), 
Jn2 Jn2 

=k2  /    aux(x - x2)v,xxdx + k2  /    a\ux\2dx 
Ju2 •'A* 

- k* /   gu(x - x2)üxdx - k2p(xi)(xi - x^ü^xx); 
Ju2 

hence, using (1.2), 

ReB2(U,V)=k2 I    a\ux\2dx + Re-k2       a(x - x2)(\ux\2)xdx 
Ju2 

l    Jn2 

-Re-fc4 /    g{x - x2)(\u\2)xdx -Retfpix^ixi - x2yüx(x!) 
2     Jü2 

1 /" 1 
=-k2 l    a\ux\2dx + -k2a(x2 - xi)|ux(xi)|2 

2 Jn2 
l 

+ -k4 f   g\u\2dx - \kAg{x2 - x^u^2 + k2a{xx - x2)\ux{Xl)\2 . 
2     Jü2 

2 

Therefore 

ReB2(U,V)=lk2 I    a\ux\2dx + -k* f   g\u\2dx 

(2.12) 2   /«• 2     ^ , 
- ^*4j(^2 -ii)K^i)|2 - r«:2o(i2 -zi)M*i)|3 

2 ^ 



It remains to evaluate BziJJ, V) : 

5S(W,V)= /  px(
x-x*)Pxzdx+ I    \P*\2-k2 I   p{x-x2)pxdx-ikp{L){L-x2)px{L) 

JÜ! JÜ3 -^3 

and, using (1.2), 

ReBz(U,V)= I   \px\2dx + ReU-f   \px\2dx + (L - x2)\px{L)\2^ 

- Re \k2 j- J   \pfdx + (L- x2)\p{L)\21 - (L - x2)\px{L)\2 

= 1 f   \Pz\2dx + h2  I   \p\2dx 2 Jn« z    Jn3 13 

l._  , 1 
fo - x2)\px(L)\2 - ^k2(L - x2)\p(L)\2 , 

or, since \px(L)\ = k\p(L)\, 

(2.13) ReB1(U,V) = l f   \px\
2dx + h2 f   \p\2dx - (L - x2)k

2\p(L)\2 . 

From equations (2.11) and (2.13) it is clear that we need to estimate |p(0)|, \p(L)\. 
To this end, we observe that 

(2.14) ImB(U,U) = k\p(0)\2 + k\p(L)\2 , 

and therefore 

(2.15) k2\p(0)\2 + k2\p{L)\2 < k\(F,U\<H\ ■ 

Now, let V = Vi + V2 + V3 where 

Vi = (?,0,0),    V2 = (0,i;,0),    V, = (0,0,5) 

(q,v and q are given by (2.10)).   The relations (2.11) and (2.13) are still valid if we 
replace V by Vi and V3, respectively. Hence, in view of (2.15), we obtain 

h\p*\\2 + \k2\\p\? < |(^, VOo,*! + x1k\(^,U)0,n\, 
(2.16) I \ 

PP«II2 + \#W ^ K^. V3)o,«| + (L- x2)k\(f,U)o,n\ • 

We turn now to (2.12). In order to estimate the terms at x\, we rewrite them using 
the transmission condition (1.2b) as 

-k*g{x2 - x1)\u(x1)\2 + -k2a(x2 - *i)|ux(si)|S 

2 ■" (2.17) x x 

-^g(x2 - xi)|px(a;i)|2 + - = -g(x2 - a:i)|pr(a;i)|2 + — k2(x2 - a:i)|p(a;i) 



To bound the right-hand side of this equation, we proceed as follows: Let q' = xpx € 
H1^) and V[ = (q',0,0). Using the relation k2u(x!) = px(xx) and following the steps 
of the proof of (2.11) we conclude 

ReB1{U,V[) = f   \px\2dx+Re^(-f   \px\2dx + *i|px(si)|2j 

-Reipj- /   \p\2dx + \p(Xl)A -RePxMx^p^) 

J-j \Px\2dx + h2 f bl2^-^!^^)!2-^2^!^!)!2. 

Hence, using (2.15), we obtain 

M*i)i2+*2w*i)ia<- \M2
 + 1 *2iwr + 2ri(^voo,«i 

(2.i8) x\ 
<-±- (4|(^, Vi)o,«| + K^, V!)o.tt|) + 2fc|(^,W)o,«| ■ 

Zx\ 

Summarizing, (2.12), (2.17) and (2.18) give the estimate 

\k2\\ux\\2 + \k*\\u\\2 <|(^, V2)o,«| + C.|(^,Vi)o,*| 

+ C*\(F, VOo.wl + C*k\(f,U)0,<H\, 

where C* is a constant (not necessarily the same in two different places) independent 
of k. Recalling the definitions of Vi, V[ we have 

(2.19) k2\\ux\\2 + k*\\u\\2 < C*(k2\\f\\ \\ux\\ + \\gi\\ \\Px\\) + C.k\{r,U)0,nU 

where 

k\(f,U)o,<H\ <k\\gi\\ INI + A;3||/|| ||u|| + fc2|MI HPII 

(2'20) <c£(\\gi\\2 + *2II/II + M) + e(*albll + *4NI + k2\\p\\) 

Handling analogously the terms of (2.16) and summing we conclude: 

\\Px\\2 + PH2 + P||ux||
2 + *4|M|2 + IIP.II

2
 + *8||pila 

<a(lHl2 + *2||/|| +||ft||), 
or 

12        ^ n   IITII2 iiwii;|W<^niof«. 
which is the relation (2.1a). If T € H we have ||^"||o,w < ill^lkw *""* (2-lh) follows.    D 

Remark.     It is clear from the proof of Proposition 2.1 (cf.  (2.12), (2.17-9) ) that 
the constant C\ of (2.1a,b) tends to infinity as a -»• 0, in particular d = 0{\). 

10 



2. FINITE ELEMENT APPROXIMATIONS 

In this section we shall consider numerical approximations to the solution of problem 
(1.6). If S[, i = 1,2,3, are three finite dimensional subspaces of if1 (ft,-), i = 1,2,3, 
and Sh is the space Sh = Si X Si x S3

h we have Sh C H. We shall seek approximation 
Uh £Sh.toU defined as the solution of the problem: Find Uh € Sh such that 

(3.1) B{Uh,$) = (Jr,$)o,'H        V#e5Ä, 

where B(-, •) is defined in (1.6b). 

The finite element spaces. Our basic assumption on the finite element spaces Sh, 
i = 1,2,3, is that they consist of continuous piecewise polynomials of degree s, s > 
s0 > 1. These functions are constructed using a fixed but arbritrary partition of ftj into 
intervals {Pj}j. Note that the degree of the polynomials may vary in the intervals {I)}j. 

Let h* = maxj |lj| and h = maxjli1,/»2,/»3}. A consequence of standart approximation 

properties for these spaces is the relation: For any V G H2 there is an element $ £ Sh 

such that 

L2-m 

(3.2) ||V(m) - £(m)||o,tt < C ||V«||o,-w ,     m = 0,1, 

where V(0) = V and V(1) = Vx . Of course (3.2) gives a crude bound for inf<2>esh ||V - 
^||i,W, but we use this estimate as a tool in the proofs below. In particular, we first 
show that the bilinear form B(-, •) satisfies a discrete analog of the BB condition (1.10) 
(Theorem 3.1), and also that two quasioptimal estimates of the type (1.12) are satisfied 
((3.9) and Theorem 3.2). An essential tool in the proofs of these results is the stability 

estimate of Proposition 2.1. 

Theorem 3.1. Assume that h is small enough such that k2j^ < c, where c is an 
appropriately chosen constant. Then there exists a constant 7 > 0, independent of h 

and k, such that 

(3.3) sup   Refv
{f,Vh) > 7jl|W*lli,tt,        V% € Sh. 

vh<=sh     \\Vh\\i,H k 

Proof. We first consider the auxiliary bilinear form 

(3.4) A(U,V) = B(U,V)+no(l + k2)(U,V)0,H,        U,VeH, 

where /x0 is the constant of (2.3). It is easy to see that there is a constant ßA > 0, 
independent of k, such that 

|A(W,V)|</?A||W||i,«||V||if7i. 

11 



Also (2.3) implies that A(-, •) is coersive with respect to || • ||ifW. Therefore the projection 
PA : H -> Sh is well defined by 

(3.5) A($, PAV) = A($, V)       V$eSh. 

For the proof of (3.3), let Uh be a given element of Sh- Let Vh = ^Uh + PAZ, where 
Z eH shall be defined below. For this choice of Vh we have 
(3.6) 

B{Uhyh) = ^B(Uh,Uh) + B(U,PAZ) 

= 1 (B(Uh,Uh) + Ml + **)I|W*II W + (B(UH,PAZ) - f,0^-\\Uh\\ln 

= ± (B{Uh,Uh) + Ml + *8)l|W*llo,tt) + (*(%,Z) " Mo^-IMIo,* 

+ /io(l + fc2)(%,Z-P^)o,«. 

Choosing now Z G 7i to be the solution of 

(3.6') B{*,Z) = iio^j£.(*,Uk)o,n       V$eW, 

the second term of the last equality of (3.6) vanishes. (As we have seen in the proof of 
Theorem 2.1 Z is uniquelly determined as solution of (3.6'), and furthermore satisfies 
the estimate ||Z||i,« < Ci^0^f\\Uh\\i,-H ■) Therefore it remains to estimate the term 

(Uh,Z-PAZ)0,n. 

We shall use the following lemma, the proof of which is given below. 

Lemma 3.1. If Z eH and PAZ is defined by (3.5), then we have the estimate 

||Z-P^||o,w<C-||Z||i,w, 
So 

where the constant C > 0 is independent of h and k. 

Now, since ||Z||i,w < CJ||Wä||I,W and ||Wfc||0,w < il|Wft||i,w, we obtain 

Ml + k2)\(Uh,Z -PAZ)0,n\ <C(1 + k2)\\Uk\\0,n-\\Z\\i,-H 

<C^ß±\\Uk\\U = C±\\Uh\\ln. 
k* SQ SQ 

Therefore, if k2 j- is small enough, we obtain 

ReB(W*,V*)>ic7o||W||f|W-C^-||W|BtW 

(3.7) \ 
>^C||W||?f„, 
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where Vh G $h satisfies 

||V*||i,* < pllWfcHi.« + \\PAZ\\I,H < pllWjkHi.« + C\\Z\\ltn 

<^(Ck + l)\\Uh\\ltn 

< ^C,k\\Uh\\ltn. 

Therefore, (3.7) imphes 

k2 ReB(Uh,Vh)>^C\\Uh\\ln 

>C||W*||i,w^||V*||i,« =7^l|W*lli,«l|V*||i1w, 

which yields (3.3).    D 

Proof of Lemma 3.1. We shall use a classical duality argument. Let p := Z — PAZ and 
W eHhe the solution of 

(3.8) A($, #) = k2(p, $)0/K,        V<? e H. 

This problem has a unique solution with the regularity & 6 H2. Also, using the coersivity 
of A(-, •) and equation (1.1), we easily conclude that 

lhMo,*<*8IMIo,w. 

Therefore, using (3.2) for a properly chosen &h £ Sh, 

k2\\p\\ln = A{$,p) = A{$-$h,p) 
■L 

< ßA\\v - syi.wllplli/H < c—\\$xx\\o,'H\\ph,'H 
so 

<Cka-\\p\\9,n\\p\\i,ni 
so 

hence, 

Hk«<cA||p||1>w<cA||z||1>w 
SQ So 

since from the definition of PA we have ||PA-^||I,W < C||Z||i,ft •    O 

An application of Theorems 2.1 and 3.1 and of [BA, Theorem 6.2.1] gives the follow- 
ing: If the hypotheses of Theorem 3.1 hold, then £4 is uniquely determined as solution 
of problem (3.1) and 

(3.9) \\U - WA||i,w < Ck inf  \\U - *||i>w ,      C > 0 independent of k, 
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where U is the solution of (1.6). 
The estimate (3.9) is a quasioptimal result of the finite element approximation with 

respect to ||-||i,w . It is possible however to improve this result in terms of the dependence 
of the bound on k. Indeed, in the proof of the following result we shall replace the 
constant Ck in (3.9) by a constant independent of k. A comparison of (3.9) and (3.10) 
below indicates that (3.9) might be valid under a weaker restriction than k2h < c, c 
small. This assumption is consistent with availiable results for the single reduced wave 
equation, cf. [IB1,2], where the analog of (3.3) and therefore of (3.9) is proved (in a 
uniform mesh) under the weaker condition that kh remains bounded. The proof of the 
Theorem 3.2 is based on a argument due to Schatz, [S]. The use of the stability estimates 

of Section 2 is essential here. 

Theorem 3.2. Assume that the hypotheses of Theorem 3.1 hold.  Then 

(3.10) \\U - W&||i,-K < C* mf  l|W - *||i,-w ,      C* > 0 independent of k, 

where U andUh are the solutions of (1.6) and (3.1), respectively. 

Proof. Let $ e H be the solution of the problem (e=U — Uh) 

(3.11) S($,!P) = fc2(e,#)0l-w, V#<EW. 

As we have seen in Section 2, this problem has a unique solution. Now, for any H/u € Sh, 

k2\\e\\ln = B(e,V)=B(e,$-Vh) 

<ß\\e\\ltn\\$-¥k\\i,n. 

The results of Theorem 2.1 hold for & as solution of an adjoint problem to (1.6). There- 

fore & E H2 and 
||^x|kw<C(l + fc)fc2||e||0j«. 

Hence, by (3.2), 

k^e\\ln<Ck2-\\^xx\\^¥h,n 
so 

<Ck2-(l + k)\\e\\0,n\\e\\i,-H, 
so 

or 

(3.12) ||e||o,-«<C(l + fc)—||e||1|W. 
So 

Since the bilinear form £(•, •) satisfies (2.3), we have, for any $ G Sh , 

CO||C||?|7£ = B(C,C) + MO(H-*
2
)||C||O,7£ 

= B(e,W-#) + /io(l + A:2)||e||iU 
h2 

< /?||e||lfW||W - *||i.« + Ml + **)(! + k)2-^\\e\\ln , 
or» 50 
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and therefore, since k2 j^ is small enough, 

N|?,«<C||e||l,W||W-*||l,7£, 

or 
||W-W*||i,w<C||W-#||i|W,       v*esfc, 

which is the desired result.    D 
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4. NUMERICAL EVALUATION 

To demonstrate the principal numerical effects of Galerkin FE-solutions to the Helmholtz 
equation, we first consider a related uncoupled problem, [IBl], 

u" + k2u = l   on Ü = (0,1) 

(4.1) u(0) = 0 

u'(l) - iku(l) = 0. 

For the finite element solution, fi is covered by uniform mesh Xh of n elements with 
stepsize h — n-1. The subspace of piecewise polynomial functions of uniform degree 
p with nodes in Xh is called S"£. The error is measured in iT1-seminorm | • |i which, 
for this problem, is equivalent to the full .ff^-norm. The optimal convergence rate is 
then displayed by the H1 -projection (in the seminorm) of the exact solution onto 5£. 
It is well known that this best approximation interpolates the exact solution on Xh- 
In Fig. 1, the errors of best approximation and finite element solution are shown for 
k = 2, k = 10 and k = 100. 

We observe that for all k the Galerkin FE-solution reaches optimal convergence if h 
becomes small. However, for medium and large k, the range of optimal convergence is 
preceded by a range in which the FE-solution is numerically polluted, cf. [BS], [IB3]. In 
this range, the finite element error differs significantly from the optimal approximation. 
In particular, it was shown by numerical experiment that a constraint of the form 
h2k = const is indeed necessary for quasioptimal behaviour of the FE-solution if s0 = 1, 
cf. [IBl] - see Fig. 2. 

For sufficiently regular solution, oscillating with frequency k, the relative error in 
.ff^-norm can be estimated, generally, as [IB2] 

ei <Ci(fcfc)So+ C2k(kh)2so. 

It was shown in numerical experiments that this estimate is sharp in the preasymptotic 
range of convergence. Hence, raising the order of polynomial approximation s0 with 
hk/s0 = const, the gain in performance of the Galerkin FEM for numerical solution 
of the Helmholtz equation is twofold: increase of the order of asymptotic convergence 
and decrease of the pollution in the preasymptotic range. This is illustrated by the 
computational results shown in Fig. 3. The vertical line at the relative error t\ =0.1 
indicates the decrease in the number of elements, needed for a given accuracy as the 
degree of approximation is increased. For a more detailed discussion of the numerical 
effort involved, see [IB2]. The "bumps" in the plots are an effect of local approximation 
if the meshsize coincides with the wavelength, [IB2]. 

Turn now to computational results for the model problem (1.1-2) of fluid-structure 
interaction. The numerical evaluation has been carried out with the data: 

• The domains are fii = (0,3); fi2 = (3,6); ü3 = (6,9). 
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• In the first region, a source is present in the form of a step-function 

[0     in (0,1) 

9l = l  1     in [1,2] 
(o     in (2,3) 

• No load is given in the solid and in the 'right' fluid region: 

All domains are covered by uniform (in h and s) mesh; the computations are carried 
out with 10,20,40,... ,320 elements per region. The degree d of polynomial approxi- 
mation was varied from 1 to 7. The errors are measured 

1. pointwise as absolute values in x\ = 1.5, x-i = 4.5 and xz = 7.5. 
2. In the Hi -norm on the first region. 
In the second case, the FE-error was compared to the error of the IT1-projection. A 

review of the plots for all computations shows that the coupled problem displays the 
same principal effects as the uncoupled problem: 

1. The error is smaller than 100 % only if the meshsize exceeds a critical number 
which grows over-proportionally with the wavenumber k - see Fig. 4. 

2. On coarse mesh and for medium or large k, the pollution term dominates the FE- 
error. For small h, the FE-solution is quasioptimal with an optimality constant 
not depending on k (Theorem 3.2). This behaviour is shown in Fig. 5 where 
the relative errors of the if1-projection and the FE-solution are compared for 
different k and different degrees of approximation. The quasioptimal behaviour of 
the solution for sufficiently small j- can be seen in Fig. 6. 

3. Increasing the polynomial degree s0, one decreases the influence of the pollution 
term on the error and increases the rate of convergence - see Fig. 7. 

The graphics shown here for demonstration are representative for the whole series 
of computational results. In particular, no significant dependence of the error on the 

region ft; was observed. 
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